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The concept of introducing image processing logic within the spatial gaps of

an array of photodiodes is the key factor behind the presented work. A two-

dimensional massively parallel image processing paradigm based on 8×8 pixel

neighborhood digital processors has been designed. A low complexity processor

array architecture along with its instruction set has been designed and fully ver-

ified on a FPGA platform. Various image processing tests have been run on the

FPGA platform to demonstrate the functionality of a design that uses 12 paral-

lel processors. The test results indicate that the architecture is scalable to sup-

port high frame rates while allowing for flexible processing due to inherent pro-

grammability at a high level. The gate level logic synthesis results of the processor

targeting a 0.13 µm CMOS technology indicates a low silicon area complexity, al-

lowing for image sensor integration.
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Chapter 1

Introduction

1.1 Historical Background and Overview

Recent advances in CMOS fabrication technology have made CMOS image sen-

sors a viable alternative to CCD sensors in multiple applications. In addition to

inherently low-cost of fabrication at high levels of integration density, low-power

and high speed operation are primary advantages of CMOS technology. More

importantly, deep sub-micron CMOS technologies provide the platform for inte-

grating both sensing and processing on the same die. This advantage is highly

desirable for implementing stand-alone and portable imaging systems such as

smart cameras that require substantial amounts of processing.

Integration of sensing and processing in the context of CMOS image processing

systems can generally be categorized into three levels: Chip level, column level,

and pixel level processing. Most of the previous work is related to integrating a

processing unit at the chip or column level [1]-[2]. However, recent work based

on scaling of CMOS image sensors to 0.18 µm processes and below has demon-

strated the feasibility of incorporating a processing element at each pixel or a



2

neighborhood of pixels [3].

In this thesis work, we present a two-dimensional massively parallel image pro-

cessing paradigm based on 8×8 pixel neighborhood digital processors. While the

ultimate goal is the development of a massively parallel single chip imager with

pixel neighborhood processing capabilities, as an essential first step, the present

work focuses on the neighborhood level parallel processing side of the system.

The choice of the neighborhood size is driven by two different but important

considerations:

• the spatial image correlation properties typically encountered in image pro-

cessing applications [4] and

• the necessary footprint for supporting the functionality of a general digital

processor without impacting overall scalability.

To that end, a processor array architecture along with its instruction set has been

designed. The system has been modeled completely in HDL and a basic version

with twelve processors has been implemented on a FPGA to demonstrate image

processing tasks.

1.2 Motivation

The motivations for the proposed approach are twofold. The first is the develop-

ment of massively parallel image processors which support very high frame rates

[5]-[7]. In this way, the solution developed will scale without regard to overall

imager size and resolution. The second motivation is provided by the fact that

the digital processors will allow highly flexible processing choices with random

access to different functions and real-time changes in imager functions. While
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the parallel neighborhood processors (NPs) will execute in lock step, the indi-

vidualized neighborhood processor enable capability present in the design will

also support region-of-interest processing for selected neighborhoods and reduce

power consumption.

1.3 Oraganization of Thesis

The later part of the thesis contains four chapters and the contents of each chapter

are structured as follows:

• Chapter 2 discusses the architecture and instruction set design of the system.

• Chapter 3 presents the HDL modeling of the system and its prototype FPGA

implementation.

• Chapter 4 presents the FPGA based image processing tests that demonstrate

the functionality of the neighborhood processing paradigm.

• Chapter 5 concludes the report and talks about future prospects.
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Chapter 2

Architecture and Design

2.1 Top Level Design

An overall hierarchical view of the design is displayed in figure 2.1. Program

Memory, Global Control Unit, Instruction Register and Timing Control Unit are

referred to as global modules, shared among all the Neighborhood Processors

(NPs).

NP: The term NP refers to an 8×8 pixel neighborhood along with local processing

architecture. Each NP runs the program that has been loaded in Program Memory

module, simultaneously and independently. The dashed two-sided arrow marks

shown in figure 2.1 as a background behind NPs denote possible inter NP com-

munications which will be discussed further in detail. NPs in a particular column

share an 8-bit Data Out Bus and a 1-bit Data Out Valid Line. Hence Data can

be readout row-wise (row-wise with respect to NPs) along these column shared

buses. Program stored into the Program Memory module must ensure that only

one NP has access to the column shared Data Out Bus at any given time.
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Figure 2.1: Array of neighborhood processors controlled by global modules.

Program Memory: The set of instructions to be performed in sequence are stored

in the Program Memory module. The design also facilitates loading of multiple

programs into the program memory and calling for the execution of these pro-

grams using their starting address in the program memory.

Global Control Unit: The Global Control Unit (GCU) takes care of decoding and

interpreting the instructions and accordingly provide control signals. It handles

the Program Memory pointer as well as timing for the Instruction Register Latch

and takes care of looping while executing jump instructions.

Instruction Register: The Global Control Unit decides which instruction stored

in the program memory module has to be executed and accordingly updates the
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Instruction Register which is globally shared among all the NPs. Then each NP,

according to its current state and GCU control lines, decides whether or not the

instruction is to be executed.

Timing Control Unit: The Timing Control Unit handles resetting and initializing

the entire system and also provides different control signals and clocks for various

modules. Timing waveforms with respect to three crucial clock signals generated

by Timing Control Unit are as shown in figure 2.2. These three clock signals are

vital for maintaining timing synchronization between the Global Control Unit, the

Instruction Register and all the NPs.

Figure 2.2: Timing Diagram for three clock signals.

2.2 Neighborhood Processor (NP) Interconnectivity

Inter connectivity between multiple NPs is made feasible by introducing shared

Neighborhood Registers denoted as NR in figure 2.3. To realize the interconnec-

tivity, we place an array of NPs in space. Neighborhood registers are placed at
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Figure 2.3: Interconnectivity between multiple NPs through NRs.

every junction for communication between NPs. To reduce the complexity, each

NP contains a neighborhood register at its top left corner as a part of its internal

architecture. Consider NP11 and NR11. NP11 communicates directly with NR11,

NR12, NR21 and NR22. NR11 handles all data transfers between NP00, NP01,

NP10 and NP11. Similarly, NR12 handles data transfers between NP01, NP02,

NP11 and NP12. This allows data transfer in horizontal, vertical, and diagonal

directions in just two steps - NP to NR and NR to NP. The significance of this

inter data transfer method is apparent when all NPs are functioning in parallel.

For example, data can be transferred from NP00 to NP11 via NR11, NP11 to NP22

via NR22, NP22 to NP33 via NR33, and so on, all at once, in two steps.
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2.3 Neighborhood Processor (NP) Architecture

Figure 2.4: NP Architecture

Figure 2.4 illustrates the NP architecture. Inter NP connections, Global Control

signals and other globally shared inputs are not shown in figure 2.4, except for

column shared buses Data Out and Data Out Valid. The main components of the

NP architecture are as follows:

• Register Bank: Each 8×8 pixel neighborhood is considered to be a part of the

Register Bank, where each pixel location is represented by three 8-bit Pixel

Value Registers A, B and C. The architecture is designed such that it provides

an option to use register C as two nibbles CH and CL, thereby giving a pro-

vision to handle 12-bit data processing. NPs can be programmed to operate

in parallel or NPs of a particular ROW or NPs of a particular COLUMN or

a single specific NP can be programmed to operate or programmed to stay
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inactive while others perform desired tasks, which is achieved by making

each NP unique by introducing a Row Column Register inside the register

bank of each NP. This register contains a specific unique value with respect

to each NP, which can be made use of with the help of the Instruction Set

to activate or deactivate a single NP or a group of NPs. NP activation and

deactivation is controlled by a single bit inside the Status Register of the NP

located inside NP Control Unit. A detailed explanation of Status Register

bits is given in Appendix A.

• NP Control Unit: The NP Control Unit is the working brain for each NP, as

the Global Control Unit is for the entire system. Based on Global Control

signals, information in the Instruction Register and information in the Status

Register, the NP Control Unit generates control signals for the NP. It also

controls the Column Shared Data Out Valid Line.

• Neighborhood Register and control: On the top left corner of the NP in

figure 2.4, the Neighborhood Register (NR) and its control unit (NR control)

can be observed. The NR Control takes control and data inputs from all other

neighboring processors and controls the Write operation on NR.

• ALU, Accumulators, and others: In addition to an Arithmetic and Logic Unit

(ALU), other components of the NP include multiplexers for routing and two

8-bit accumulators ACCA and ACCB. Routing of data inside the NP also

allows us to access information in ACCA, ACCB, the row column register,

and the status register for read operations using direct register addressing.

It also helps the NP Control Unit to perform write operation on the Status

Register with assistance from the Instruction Set.
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2.4 Instruction Set

Certain features like looping, conditional and unconditional jumps, indirect regis-

ter addressing and nibble based operations are achieved with the combined effort

of the NP Architecture and the Instruction Set Architecture. Our design operates

on 8-bit data using a 16-bit instruction set. The entire instruction set can be cate-

gorized into five different types as shown in Table 2.1. All five instruction types

have the first seven bits common; two bits for condition and five bits for opcode.

The first two condition bits involve one unconditional and three conditional exe-

cutable options for any instruction. The next five bits define either operation or

the type of instruction.

Table 2.1: Types of Instruction

Type no. First 2-bits Next 5-bits Remaining 9-bits

I Condition Opcode Address/Immediate

II Condition Opcode Opn and SR Update

III Condition Opcode Jump Toggle and PC-Offset

IV Condition Opcode Opn and Control bits

V Condition Opcode Function bits

• Type I: These are Single Operand Instructions involving arithmetic and logi-

cal operations excluding shift operations, performed using either of the two

8-bit accumulators.

• Type II: Type II operations are Zero Operand Instructions involving all shift

operations. Operation (Opn) and SR Update bits define respective shift oper-

ation and an option to control Status Register Update through instruction.

• Type III: These are Jump Instructions which involve four conditional options
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from two Condition bits together with a Jump Toggle bit giving us in total

eight different types of jump in a program. PC-Offset refers to the address

to be loaded into Program Counter (PC) based on jump condition.

• Type IV: One of the interesting features of our instruction set architecture is

the Indirect Register Addressing Mode. In this mode of operation we make

use of Accumulator B as a register pointer by loading it with the respective

register address. Since Accumulator B contains the address, all operations

are performed in Accumulator A. Furthermore, the address in Accumulator

B can be increased, decreased and modified with respect to any arithmetic

and logical operation as feasible through single or zero operand instruction

type. The Opn and Control bits define operation and an option to control

Status Register Update through instruction.

• Type V: Type V instructions are Special Instructions that involve dedicated

control functions like resetting the system at instruction level, forcing all

NPs to active state, Status Register readout, Nibble mode operation enable

and disable, clearing the accumulators, outputting data in accumulators, no

operation instruction and end of program.

The complete set of instructions is given in Appendix C.
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Chapter 3

Hardware Modeling and

Implementation

Figure 3.1: FPGA hardware platform for functional testing.

A FPGA based hardware modeling platform has been developed for functional

testing of the processing architecture. The entire setup and modeling path is re-

flected in figure 3.1. First, a binary equivalent of a test image is created via Matlab

and is converted into a Verilog RAM representation that acts as the input. The



13

actual design encompasses the NP array, Global Control Unit, and all the other

hardware resources of the processing architecture that include the instructions

stored in the Program Memory for executing a series of image processing tasks.

The output memory and VGA control sections manage the display of the output

image on a VGA monitor.

For hardware test purposes, a 12-NP model has been implemented using a Virtex-

5 OpenSPARC Evaluation Platform utilizing the Xilinx Virtex - 5

XC5VLX110T FPGA. Twelve NPs correspond to 768 pixels in a 24×32 (height

× width) pixel array. Hence, an input test image has been made of the same

size, converted into Verilog code to act as input RAM. The entire code for the

actual design and its supporting modules have been represented in Verilog and

VHDL. Fidelity of this code has been initially checked for behavioral modeling

using the ModelSim environment. Following this step, the design has been syn-

thesized using the Xilinx tools. Next, the ModelSim equivalent for Post-Place and

Route Model of the design from the Xilinx tools has been simulated to check post-

implementation fidelity. Finally the code is written onto FPGA and the hardware

test results that demonstrate certain image processing tasks have been observed

on a VGA monitor.
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Chapter 4

Test Results and Discussions

4.1 Image Processing Tests

Figure 4.1: Original input test image for 12-NP Model Testing

A series of hardware tests involving programs representing different image pro-

cessing tasks have been performed on the twelve NP model. Figure 4.1 refers to

the actual test image taken as input for a 12-NP model. With regard to output

images, one common trait that will be observed is appearance of few undesired

lines on the output due to resolution issues with the VGA monitor control. These

undesired lines have nothing to do with the output data readout along column
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shared buses.

4.1.1 Buffer Test

Figure 4.2: Buffered output of the input image

For a clear understanding of the actual pixel-level image of the original image,

the input test image has been buffered through the 12-NP Model and the output

image has been scaled and observed on a monitor with the help of VGA Control

module. Figure 4.2 illustrates the output image as seen on the monitor.
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4.1.2 Invert Test

Figure 4.3: Inverted output of the input image

An invert program has been loaded into the Program Memory module and the

output on VGA Monitor is illustrated in figure 4.3.
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4.1.3 Right Shift Test

Figure 4.4: Right shift of the input image

All NPs work in parallel and making use of this advantage, we can shift an entire

image by involving a program that basically moves data from one NP to another

through Neighborhood Registers. Figure 4.4 reflects an image shift equivalent to

one NP in right direction.
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4.1.4 Top Right Shift Test

Figure 4.5: Top Right Shift of the input image

Figure 4.5 reflects the output image when a diagonal Top Right Shift of the input

image is performed. Due to the distributed sharing of Neighborhood Registers

among adjacent NPs, this diagonal shift of image involves the same time as it

takes for Right Shift of the input image.
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4.1.5 Horizontal Edge Detection Test

Figure 4.6: Horizontal Edge Detection on the input image

The input image is scanned vertically pixel-wise NP-parallel for detecting hori-

zontal edges and the output is as illustrated in figure 4.6. It involved transfer of

data between NPs through Neighborhood Registers.
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4.1.6 Vertical Edge Detection Test

Figure 4.7: Vertical Edge Detection on the input image

The input image is scanned horizontally pixel-wise NP-parallel for detecting ver-

tical edges and the output is as illustrated in figure 4.7. It involved transfer of

data between NPs through Neighborhood Registers.
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4.1.7 Total Edge Detection Test

Figure 4.8: Total Edge Detection on the input image

The input image is scanned diagonally (three ways - right, bottom and right-

bottom) pixel-wise NP-parallel for detecting its edges and the output is as illus-

trated in figure 4.8. It involved transfer of data between NPs through Neighbor-

hood Registers.
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4.2 Speed Comparison

Tests between 2-NP (1×2 NP-wise or 8×16 pixel-wise) and 12-NP (3×4 NP-wise

or 24×32 pixel-wise) are performed to show the practical effect scalability has on

parallel processing and parallel readout. ModelSim simulation environment has

been employed to look into the number of clock cycles taken for each test by 2-NP

and 12-NP, which are as shown in Table 4.1

Table 4.1: No. of clock cycles for 2-NP and 12-NP model Tests

Test 2-NP 12-NP

Invert 837 837

Total Edge Detection 4337 4337

Readout 731 2193

For the Invert image and Edge Detection tests, since the pixels are processed

by their respective neighborhood processors, the time taken for 2-NP and 12-NP

models is the same. For the Readout test, since 12-NP model has 3 rows of NPs

and 2-NP model has only one row, time taken for 12-NP model readout is three

times the time taken for 2-NP model.

4.3 Gate Level Hardware Complexity

The ultimate goal of the presented work is to integrate each NP with CMOS image

sensors on a focal plane that houses an 8×8 pixel neighborhood. To that end,

an assessment of gate level hardware complexity of the NP has been performed

with a target 0.13 µm CMOS implementation technology. Table 4.2 displays the

breakdown of gate level components obtained from the logic synthesis of a single
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NP executed in the Cadence Design Environment and configured for a 0.13 µm

commercial grade CMOS standard cell library.

Table 4.2: Gate level logic synthesis results for a single NP

Type Instances Area %

sequential 1606 57.6

inverter 618 3.2

tristate 537 7.3

logic 3012 31.9

Based on the individual area utilization of the gates and the regularity of the

sequential components in terms of layout placement, the presented NP architec-

ture’s gate level complexity allows for the future development of a first generation

massively parallel single chip imager with pixel neighborhood processing.

4.4 Scalability Considerations

One of the key motivators for the described architecture is scalability. The fact

that a single NP controls an 8×8 pixel neighborhood implies we can expand our

design by factors of 8, row-wise or column-wise. Since all the NPs process in

parallel and since the NP circuitry will be placed within the spatial arrangement of

pixel neighborhood, scaling of total pixel neighborhood does not introduce extra

logical complexity upto the Global Control Unit (GCU) limit, which is 16×16 NPs

giving rise to 128×128 grid of pixels. Beyond that the only extra logical addition is

to introduce another Global Control Unit, which consumes relatively little area in

comparison with 128×128 grid of pixels. With respect to readout or Input/Output

constraints, each column refers to an 8-bit Data Out Bus. Hence, for a 128×128
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grid of pixels, we need only 16 8-bit Data Out Buses. Mathematically speaking

the relation between number of rows, columns, NPs and neighborhood can be

seen in Table 4.3.

Table 4.3: Mathematical understanding on scalability.

NPs pixels GCU 8-bit buses

r × c ∗ 8r × 8c max( ⌈ r/16 ⌉, ⌈ c/16 ⌉) c

16 × 16 128 × 128 1 16

32 × 32 256 × 256 4 32

1 × 2 8 × 16 1 2

3 × 4 24 × 32 1 4
∗r: rows, c: columns, ⌈x⌉ is least integer ≥ x
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Chapter 5

Conclusions and Future Prospects

5.1 Conclusions

A two-dimensional massively parallel image processing paradigm based on 8×8

neighborhood digital processors has been presented. The ultimate goal is the

development of a massively parallel single chip imager with pixel neighborhood

processing capabilities. As the initial step, the presented work focuses on the

neighborhood level parallel processing side of the system. To that end, a low

complexity processor array architecture along with its instruction set has been

designed and fully verified on an FPGA platform.

5.2 Future Prospects

5.2.1 Massively parallel single chip CMOS imager

One of the motivating factors for this design is to reduce rise in extra complexity

(complexity beyond neighborhood processor per 8×8 pixel array) when the de-
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sign is scaled to higher resolution. Section 4.3 and Section 4.4 reflect the feasibility

of this goal. Hence, there is a great opportunity for future work which will focus

on the development of a first generation massively parallel single chip CMOS im-

ager that incorporates the presented pixel neighborhood processing techniques.

5.2.2 Expansions in instruction set

Nine opcodes are available for expansion in the instruction set. Further, there is

plenty of scope for expansion in instructions of Type V. Hence, it reflects another

prospect for future work involving addition of more functions or commands to

the existing instruction set and modifications in NP architecture.

5.2.3 Address Event Representation (AER)

A video output involves transfer of numerous frames, where each frame repre-

sents a static image at a particular instant. Higher resolutions storage and transfer

of each individual frame information involves huge memory modules and high

power consumption for data transfer. Address Event Representation reduces the

size of the data to be transferred and thus saves storage space and power con-

sumption involved in data transfer.

Initially, the very first frame of the video is transmitted. Then in the array of pixels

taking multiple frames, each pixel compares its previous recorded value with the

new one and generates an interrupt if the difference crosses a certain threshold.

The time of interrupt generation and the address of the pixel that generated the in-

terrupt are saved in an interrupt memory. Then one after another these interrupts

are processed and the time of interrupt generation, the address of the pixel that

generated the interrupt and the difference of frame values are transmitted. Thus,



27

information is passed only if a significant change is observed in frames and only

information with respect to the pixels involved with the change are transmitted

thereby saving storage space and power consumption. This kind of data represen-

tation is termed as Address Event Representation. With few modifications and

additions to the existing design AER can be realized.

5.2.4 Low power/Reign of interest

The ability to turn on or turn off a specific NP or row of NPs or column of NPs,

indicates that the design supports reign of interest and also shows prospects for

low power applications.

5.2.5 Unexplored features

Certain features of the design like making use of nibble based operation to per-

form 12-bit operations and making use of shift operations to perform multiplica-

tions are yet to be explored further though they have been included and verified

in the design.

5.2.6 Compiler

Currently the design takes machine code out of assembly language using an as-

sembler. This is favorable for initial testing and debugging of the design through

instructions. Since the functionality has been successfully verified, a compiler

can be introduced to simplify the process of writing program for the presented

design.
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Appendix A

Status Register

The concept of having only one NP or row of NPs or column of NPs to either

perform desired tasks or be prevented from performing certain tasks is achieved

with the help of Status Register and a series of instructions involved in a program.

All NPs have a Status Register in their NP Control Unit. A particular bit in this

Status Register is responsible for activating or deactivating a NP. Table A.1 refers

to 8 bits of the Status Register.

Table A.1: Status Register bits.

MSB7 MSB6 MSB5 MSB4 MSB3 MSB2 MSB1 MSB0

Free bit NP ON SRU U Z N O C

• C: The Carry bit is set whenever carry is observed from output of ALU

involving an addition operation or whenever borrow is observed from output

of ALU involving a subtraction operation.

• O: The Overflow bit is set whenever addition of two positive numbers gives

out a negative number at ALU output.
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• N: The Negative bit is set whenever a negative number is observed at the

output of ALU.

• Z: The Zero bit is set whenever ALU output is observed to be of zero value.

• U: The Underflow bit is set whenever addition of two negative numbers gives

out a positive number at ALU output.

• SRU: The Status Register Update bit is that bit which defines whether or

not the above 5 bits; Carry, Overflow, Negative, Zero and Underflow are

to be updated or not. If SRU is high, these 5 bits will be updated at each

instruction accordingly else they remain in their previous state. SRU can

be turned ON or OFF with a series of instructions which finally end with

performing a write operation on Status Register such that only SRU bit is

altered while others remain the same. Type II and Type IV instructions can

momentarily (only for that instruction) allow update on these 5 bits even if

SRU bit is in low state.

• NP ON: This bit defines whether or not a NP participates in executing the

instructions. If this bit is high, then NP executes the set of instructions (pro-

vided condition bits must be satisfied for that specific instruction). If this bit

is low, then NP remains in a low state. This bit goes high when the system

is reset using the reset instruction. It can be brought low by making use of a

series of instructions that involve the Row Column Register of the NP. Once

it is turned low, NP becomes inactive to all instructions except for Type V

reset instruction or Type V instruction that turns all NPs to ON state.

• Free bit: This bit is available for further expansions and currently has no

significance.
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Appendix B

Register Addressing

The Current Design makes use of 16-bit instruction of which lower 9 bits are

generally used for defining immediate value or for defining register address. Each

NP has a Register Bank that comprises of 64×3 pixel registers along with 8 general

registers like Row Column Register (Register that contains a unique value for

each NP), Neighborhood Register, etc. Table B.1 refers to addressing mode when

Nibble based operations are disabled, implying that pixel register C is used as a

complete 8-bit register.

Table B.2 refers to addressing mode when Nibble based operations are enabled,

implying that pixel register C is utilized as two Nibbles CL and CH.

The Assembler realization of Immediate value or Register addressing is explained

in Table B.3
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Table B.1: Addressing when Nibble mode Off.

Reg/Imm Address/Value Example

Imm value 1 and any imm data 1 10001110

Pixel reg A 0 00 and then 0 00 010 001 (’A’ register

column number, of pixel addressed at

row number of pixel 3rd column and 2nd row)

Pixel reg B 0 01 and then 0 01 000 000 (’B’ register

column number, of pixel addressed at

row number of pixel 1st column and 1st row)

Pixel reg C 0 10 and then 0 10 001 010 (’B’ register

column number, of pixel addressed at

row number of pixel 2nd column and 3rd row)

Status Register 0 11 000 000 0 11 000 000

ACCA 0 11 000 001 0 11 000 001

ACCB 0 11 000 010 0 11 000 010

Row Column 0 11 000 011 0 11 000 011

Register

Top Left NR 0 11 000 100 0 11 000 100

Top Right NR 0 11 000 101 0 11 000 101

Bottom Left NR 0 11 000 110 0 11 000 110

Bottom Right NR 0 11 000 111 0 11 000 111
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Table B.2: Addressing when Nibble mode On.

Reg/Imm Address/Value Example

Imm value 1 and any imm data 1 10001110

Pixel reg A 0 00 and then 0 00 010 001 (’A’ register

column number, of pixel addressed

row number of pixel at 3rd column and 2nd row)

Pixel reg B 0 01 and then 0 01 000 000 (’B’ register

column number, of pixel addressed

row number of pixel at 1st column and 1st row)

Pixel nibble CL 0 10 and then 0 10 001 010 (’CL’ nibble

column number, of pixel addressed

row number of pixel at 2nd column and 3rd row)

Pixel nibble CH 0 11 and then 0 11 001 010 (’CH’ nibble

column number, of pixel addressed

row number of pixel at 2nd column and 3rd row)
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Table B.3: Assembler realization of register addressing or immediate value.

Assembler Language Interpretation

I AF Immediate value = hexadecimal AF

A A 01 Address;Reg A;Pixel 1st column 2nd row

A B 10 Address;Reg B;Pixel 2nd column 1st row

A C 00 Address;Reg C;Pixel 1st column 1st row

A CL 00 Address;Nibble CL;Pixel 1st column 1st row

A CH 00 Address;Nibble CH;Pixel 1st column 1st row

A S 00 Address;Status Register

A S 01 Address;ACCA

A S 02 Address;ACCB

A S 03 Address;Row Column Register

A S 04 Address;Top Left NR

A S 05 Address;Top Right NR

A S 06 Address;Bottom Left NR

A S 07 Address;Bottom Right NR
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Appendix C

Complete Instruction Set

The first 7 bits for any Instruction denote condition bits and operation code (op-

code). The first 2 bits have same significance and relevance to all the 5 types

of instruction except for Type III, which has a little different interpretation. The

next 5 bits referred to as opcodes are multiple for Type I and II, while its only

one unique value for other 3 types. Each Instruction Type is discussed in detail

through a series of tables.

C.1 Type I

The first 2 bits of Type I instruction have four options and are realized as explained

in Table C.1.

The next 5 bits refer to opcodes which involve Arithmetic and Logic operations

as explained in Table C.2. All the operations involve either ACCA or ACCB with

either immediate data or register data as referenced by the remaining 9 bits.

Sample instructions for Type I are given in Table C.3
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Table C.1: Type I - First 2 bits (15:14).

Assembly Bits Interpretation

Language

Z 00 Execute instruction if Zero bit is set

C 01 Execute instruction if Carry bit is set

N 10 Execute instruction if Negative bit is set

U 11 Execute instruction unconditionally

Table C.2: Type I - 5 opcode bits (13:9).

Assembly Bits Interpretation

Language

ADDA 00000 Add data to ACCA

ADDB 10000 Add data to ACCB

ADCA 00001 Add with carry to ACCA

ADCB 10001 Add with carry to ACCB

SUBA 00010 Subtract from ACCA

SUBB 10010 Subtract from ACCB

SBBA 00011 Subtract with borrow from ACCA

SBBB 10011 Subtract with borrow from ACCB

ANDA 00100 LOGICAL AND with ACCA

ANDB 10100 LOGICAL AND with ACCB

ORA 00101 LOGICAL OR with ACCA

ORB 10101 LOGICAL OR with ACCB

XORA 00110 LOGICAL XOR with ACCA

XORB 10110 LOGICAL XOR with ACCB

LOADA 01100 LOAD ACCA with data

LOADB 11100 LOAD ACCB with data

MOVA 01101 MOVE ACCA data to addressed register

MOVB 11101 MOVE ACCB data to addressed register
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Table C.3: Type I - instruction examples.

Instruction Interpretation

U ADDA A A 00 Add to ACCA the data in Register A of pixel

at 1st column 1st row, unconditionally.

Z LOADA I AE LOAD ACCA with immediate value AE(hexadecimal)

if Zero bit of Status Register is set.

C.2 Type II

The first 2 bits of Type II instruction have four options and are realized as ex-

plained in Table C.4.

Table C.4: Type II - First 2 bits (15:14).

Assembly Bits Interpretation

Language

Z 00 Execute instruction if Zero bit is set

C 01 Execute instruction if Carry bit is set

N 10 Execute instruction if Negative bit is set

U 11 Execute instruction unconditionally

The next 5 bits refer to only 2 opcodes defining whether the operation is on ACCA

or ACCB as explained in Table C.5

Table C.5: Type II - Opcode 5 bits (13:9).

Assembly Bits Interpretation

Language

A 00111 Shift operation on ACCA

B 10111 Shift operation on ACCB
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The next 4 bits (8:5) define the type of Shift operation whether it is right or left

etc. as explained in Table C.6.

Table C.6: Type II - Shift operation bits (8:5).

Assembly Bits Interpretation

Language

ASR 0111 Arithmetic Shift to Right

SR 1000 Shift Right

SRC 1001 Shift Right with Carry

SL 1010 Shift Left

SLC 1011 Shift Left with Carry

Of the next 5 bits (4:0); bit (4) defines whether Status Register bits - Zero, Carry,

Negative, Overflow and Underflow are to be updated or not for the respective

instruction as shown in Table C.7. Remaining 4 bits are of no significance now

and can be used for future developments. By default they are taken to be zero.

Table C.7: Type II - Status Register (SR) Update bits (4:0).

Assembly Bits Interpretation

Language

0 00000 Do not update SR

1 10000 Update SR

Sample instructions for Type II are given in Table C.8

C.3 Type III

The first 2 bits of Type II instruction have four options which along with the Jump

toggle bit (bit 8) give in total eight different jumps as explained in Table C.9.
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Table C.8: Type II - instruction examples.

Instruction Interpretation

Z A SR 0 If Zero bit of Status Register is set,

Shift Right the data in ACCA by 1 bit

without updating Status Register.

U B SLC 1 Unconditionally, Shift Left the data in

ACCB by 1 bit along with carry

and update Status Register.

Table C.9: Type III - Jump Conditions (15:14),(8).

Assembly Bits Interpretation

Language

Z 0 000 Jump if Zero bit is set

Z 1 001 Jump if Zero bit is not set

C 0 010 Jump if Carry bit is set

C 1 011 Jump if Carry bit is not set

N 0 100 Jump if Negative bit is set

N 1 101 Jump if Negative bit is not set

U 0 110 Jump if Overflow bit is set

U 1 111 Unconditional Jump

The opcode for Type III instructions is same and so the five bits (13:9) remain as

11110. The remaining 8 bits (7:0) denoted as PC-Offset refer to the value to be

loaded into Program Counter if jump condition is satisfied. Sample instructions

for Type III are given in Table C.10
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Table C.10: Type III - instruction examples.

Instruction Interpretation

N JUMP 0 04 If Negative bit of Status Register

is set, load Program Counter

with hexadecimal value 04.

Z JUMP 1 DF If Zero bit of Status Register

is not set, load Program Counter

with hexadecimal value DF.

C.4 Type IV

The first 2 bits of Type IV instruction have four options and are realized as ex-

plained in Table C.11.

Table C.11: Type IV - First 2 bits (15:14).

Assembly Bits Interpretation

Language

Z 00 Execute instruction if Zero bit is set

C 01 Execute instruction if Carry bit is set

N 10 Execute instruction if Negative bit is set

U 11 Execute instruction unconditionally

The next 5 bits (13:9) defining the opcode for Type IV instruction remain same at

01110. Type IV involve all Type I and II operations but with respect to ACCA as

the working Accumulator and ACCB as a register address pointer. The next 4 bits

define arithmetic, logic and shift operations as shown in Table C.12. In Table C.12,

data refers to information in register pointed by the address stored in ACCB.

Of the remaining 5 bits (4:0); bit (4) refers to Status Register Update, bit (3) refers
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Table C.12: Type IV - operations bits (8:5).

Assembly Bits Interpretation

Language

ADD 0000 Add data to ACCA

ADC 0001 Add data with carry to ACCA

SUB 0010 Subtract data from ACCA

SBB 0011 Subtract with borrow from ACCA

AND 0100 LOGICAL AND with ACCA

OR 0101 LOGICAL OR with ACCA

XOR 0110 LOGICAL XOR with ACCA

ASR 0111 Arithmetic Right Shift the value in ACCA

SR 1000 Shift Right the value in ACCA

SRC 1001 Shift Right with Carry the value in ACCA

SL 1010 Shift Left the value in ACCA

SLC 1011 Shift Left with Carry the value in ACCA

MOV 1100 MOVE value in ACCA to address pointed by ACCB

LOAD 1100 LOAD data into ACCA from address pointed by ACCB

to Read (Here Read refers to all operations mentioned in Table C.12 other than

MOV operation) or Write operation and remaining 3 bits are free bits for future

developments. If we observe Table C.12, LOAD and MOV both denote same

operational bit information. Hence, bit (3) is used to denote Read or Write oper-

ation (LOAD or MOV respectively). The bit values for bits (4:0) are as shown in

Table C.13.

Sample instructions for Type IV are given in Table C.14
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Table C.13: Type IV - Status Register (SR) Update and Rd/Wr bits (4:0).

Assembly Bits Interpretation

Language

0R 00000 Do not update SR. Not a MOV operation.

1R 10000 Update SR. Not a MOV operation.

0W 01000 Do not update SR. MOV operation.

Table C.14: Type IV - instruction examples.

Instruction Interpretation

N IRAM ADC 1R If Negative bit of Status Register

is set; Add with Carry the data in

register addressed by ACCB, to ACCA

and update Status Register

Z IRAM MOV 0W If Zero bit of Status Register

is set; Move the data in ACCA to

register addressed by ACCB

C.5 Type V

The first 2 bits of Type V instruction have four options and are realized as ex-

plained in Table C.15.

Table C.15: Type V - First 2 bits (15:14).

Assembly Bits Interpretation

Language

Z 00 Execute instruction if Zero bit is set

C 01 Execute instruction if Carry bit is set

N 10 Execute instruction if Negative bit is set

U 11 Execute instruction unconditionally
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The next 5 bits (13:9) defining the opcode for Type V instruction remain same at

01111. The remaining bits are realized as displayed in Table C.16.

Table C.16: Type V - Instructions. Bits (8:0).

Assembly Bits Interpretation

Language

FOPN 100000000 Force all NPs to ON State

RST 110000000 Reset the entire system

SROUT 111000000 Output Status Register on Data Out Bus

NOP 010000000 No Operation/Idle Instruction

END 001000000 End of Program

OUTA 000100000 Output ACCA on Data Out Bus

OUTB 000110000 Output ACCB on Data Out Bus

NBDS 000001000 Nibble Mode Operation Disable

NBEN 000001100 Nibble Mode Operation Enable

CLRA 000000010 Clear Accumulator A

CLRB 000000011 Clear Accumulator B

Sample instructions for Type V are given in Table C.17

Table C.17: Type V - instruction examples.

Instruction Interpretation

Z SPL OUTA If Zero bit of Status Register is set;

Output ACCA on Data Out Bus

U SPL NBEN Unconditionally, Enable Nibble Mode Operation

Further, 9 opcodes are available for future expansion of the instruction set.
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