
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

Summer 7-27-2012

A Hybrid Battery Model Capable of Capturing
Dynamic Circuit Characteristics and Nonlinear
Capacity Effects
Taesic Kim
University of Nebraska-Lincoln, taesickim@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses

Part of the Power and Energy Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Kim, Taesic, "A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and Nonlinear Capacity Effects" (2012).
Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 41.
http://digitalcommons.unl.edu/elecengtheses/41

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses/41?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F41&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 

A Hybrid Battery Model Capable of Capturing 

Dynamic Circuit Characteristics and Nonlinear 

Capacity Effects 

By 

Taesic Kim 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

 

Major: Electrical Engineering 

 

Under the Supervision of Professor Wei Qiao 

 

Lincoln, Nebraska 

 

July, 2012 



 
 

A Hybrid Battery Model Capable of Capturing Dynamic Circuit Characteristics and 

Nonlinear Capacity Effects 

Taesic Kim, M.S. 

University of Nebraska, 2012 

Adviser: Wei Qiao 

 

 
A high-fidelity battery model capable of accurately predicting battery 

performance is required for proper design and operation of battery-powered systems.  

However, the existing battery models have at least one of the following drawbacks: 1) 

requiring intensive computation due to high complexity, 2) not applicable for electrical 

circuit design and simulation, and 3) not capable of accurately capturing the State of 

Charge (SOC) and predicting runtime of the battery due to neglecting the nonlinear 

capacity effects.  This thesis proposes a novel hybrid battery model, which takes the 

advantages of an electrical circuit battery model to accurately predicting the dynamic 

circuit characteristics of the battery, and an analytical battery model to capturing the 

nonlinear capacity effects for accurate SOC tracking and runtime prediction of the battery.  

The proposed battery model is validated by simulation and experimental studies for single-

cell and multicell polymer lithium-ion batteries as well as for a lead-acid battery.  The 

proposed model is applicable to other types and sizes of electrochemical battery cells, 

such as Nikel Cadmium (NiCd) and Nikel Metal Hydride (NiMH).  The proposed battery 

model is computationally effective for simulation, design, and real-time management of 

battery-powered systems. 
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Chapter 1:  Introduction 

1.1  Motivation of the Work 

 Rechargeable batteries have been more and more pervasively used as the energy 

storage and power source for various electrical systems and devices, such as 

communication systems, electronic devices, renewable power systems, electric vehicles, 

etc.  The proper design and operation of these battery-powered systems and devices 

requires an appropriate battery model.  For example, modern battery power management 

systems rely on a high-fidelity battery model to track the State of Charge (SOC) and 

predict runtime of each battery cell and the whole battery system to optimize its 

performance.  This requires the battery model can accurately capture various nonlinear 

capacity effects of the battery.  Moreover, the proper design of a battery-powered 

electrical system or device requires the battery model to be capable of accurately 

capturing the dynamic electrical circuit characteristics of the battery to facilitate the 

system-level circuit design and simulation. 

1.2  Overview of Rechargeable Battery Characteristics 

1.2.1  Capacity 

Capacity is the amount of electric charge that a battery can store, which is 

measured in a unit of Ampere-hours (A-h).  This A-h unit represents the amount of 

electricity that a battery can deliver at one Ampere during one hour, and the battery 

capacity represents the maximum amount of energy that can be drawn from a fully 

charged battery until its terminal voltage reaches the cutoff value (i.e., the fully discharged 
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condition).  The C rating is specified as the capacity for a given time of discharge.  For 

example, theoretically, a battery with a rated capacity of 2 A-h will be discharged for 2 

hours at 1 A (i.e., 0.5C) from the fully charged condition to the fully discharged condition.  

However, the actual capacity of a battery can vary significantly from the rated capacity 

due to the nonlinear capacity effects resulting from past charges and discharges, aging of 

the battery, charging or discharging regime of the battery, ambient temperature, etc. 

1.2.2  State of Charge 

SOC is defined as the percentage of the available capacity (Cavailable) with respect 

to the maximum available capacity (Cmax) of a battery.  For example, if a battery is fully 

charged, its SOC is 100%.  On the other hand, a 0% SOC means that the battery is fully 

discharged.  A variety of battery SOC estimation methods have been developed, which, 

in general, can be classified into four categories: Coulomb counting methods, 

computational intelligence-based methods, model-based methods, and mixed methods. 

The Coulomb counting methods are simple and easy to implement in real-time systems 

[1].  In these methods, the SOC is simply calculated by integrating the measured current 

over time with the information of the initial SOC (SOCinitial).           

   
maxmax

)()(
)(

C

ti
SOC

C

tC
tSOC cell

initial
available −==                                     (1-1) 

However, the Coulomb counting methods have unrecoverable problems that might be 

caused by factors such as a wrong initial SOC value and accumulation of estimation errors. 

Moreover, the Coulomb counting methods cannot keep track battery nonlinear capacity 

variation effects, such as the rate capacity effect and recovery effect.    
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 The computational intelligence-based methods describe the nonlinear relationship 

between the SOC of a battery and the factors influencing the SOC, such as battery voltage, 

current, and temperature.  Artificial neural network (ANN)-based models [2], [3], fuzzy 

logic models [4], [5], support vector regression models [6], and mixed models have been 

used to estimate the SOC of a battery [7].  Figure 1 illustrates a typical three-layer 

feedforward ANN architecture used for battery modeling.  The ANN consists of one input 

layer, one hidden layer, and one output layer.  The input layer consists of voltage, current, 

and a bias 1.  Five neurons with sigmoidal activation functions are used in the hidden layer.  

The ANN outputs SOC value at the output layer.  Wij (i = 1, ···, 5; j = 1, 2, 3) and Vij (i = 

1; j = 1, ···, 6) are the weights between input and hidden layers and the weights between 

hidden and output layers, respectively.  Although accurate SOC estimation of a battery can 

be obtained from the computational intelligence-based methods by including the 

nonlinearity of the battery, the learning process required by these methods has a quite high 

computational cost and is difficult to implement for real-time SOC tracking. 

Model-based SOC estimation methods basically utilize state-space electrical 

battery models to design an observer for real-time SOC estimation.   For example, Kalman 

filter [8] and extended Kalman filter (EKF) [9]-[11] have been used to estimate the SOC 

of a battery based on the electrical circuit model of the battery for hybrid electric vehicle 

and electric vehicle applications.  However, these methods require an accurate electrical 

battery model and higher computation cost than the nonmodel-based Coulomb counting 

methods.  Furthermore, the estimation error can be large when unexpected noise is present 

[12]. 
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Figure 1.  A typical three-layer feedforward ANN used for battery modeling. 

 

  

The mixed SOC estimation methods combine the advantages of the 

aforementioned three methods [13].  In [13], the SOC of lithium-ion batteries are 

estimated by using neural networks and EKF.  

1.2.3  Nonlinear Capacity Effects in Discharge  

 The two important effects that influence battery discharge performance sensitively 

are rate capacity effect and recovery effect.  Both of them are called nonlinear capacity 

effects.  
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The gain of electrons at the cathode (oxidation) is coupled with the loss of electrons at the 

anode (reduction).  Assuming that an electrochemical battery is symmetric and the two 

electrodes react similarly, only species O and the cathode can be considered to express 

discharge behavior of the battery.   

 The concentration of species O with respect to position is illustrated in Figure 3.  

At the initial state, the species O are uniformly distributed inside the battery.  Once the 

battery is discharged, the species O at the cathode accept electrons from the external 

circuit and the species R.  This causes reduction of O near the cathode, resulting in a 

concentration gradient of O across the battery.  Due to this gradient, the species O that are 

further away from the cathode diffuse to the cathode.  When the battery is discharged at a 

low current, the diffusion tends to increase the concentration of O at the cathode.  

Eventually, the diffusion and the consumption reach a balance at the cathode, and the 

overall concentration of O at the cathode keeps dropping.  Once the concentration falls 

below a certain level or reaches the bottom, the battery will fail to operate (i.e., the battery 

is fully discharged).  As the current is increased, the gradient of the concentration becomes 

more significant and the available capacity as well as the cell voltage decrease faster.  This 

important phenomenon is named the rate capacity effect [16].  Figure 4 shows that the 

effective available capacity drops and changes the battery voltage with increasing 

discharge current for a polymer lithium-ion battery cell [17]. 

 If the battery is allowed to rest for enough time (i.e., switching off in Figure 3), the 

reaction of transformation at the cathode from species O to species R stops.  However, the 
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Figure 4.  Rate capacity effect of a polymer lithium-ion battery cell: effective discharge 
(available) capacity drops and changes battery voltage with the discharge current at 145 mA, 

360 mA, 720 mA, and 1440 mA at an ambient temperature of 23°C. (Courtesy of [17].) 

 

Figure 5.  Recovery effect: (battery) cell voltage as the results of constant and intermittent 
discharges. (Courtesy of [18].) 

 

1.2.4  Charging Process 
 
 During the charging process the energy that has been discharged from the battery 

is recovered.  Figure 6 shows the voltage, current, and capacity of a lithium-ion battery 
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when it is being charged under Constant Current Constant Voltage (CCCV) conditions, 

where the maximum charging voltage is 4.2V, the maximum charging current is 720 mA, 

and the ambient temperature is 23°C [17].  

  The charging process also has nonlinear characteristics based on the SOC, charge 

current rate, and temperature [19].   Once a battery is fully charged (i.e., SOC = 100 %) or 

its voltage is over the maximum charge voltage (Vmax), the charging current becomes 

dissipated, resulting in the generation of heat and gasses.  If the battery is overcharged, the 

elevated temperature boils and dries the electrolyte as well as vents or bursts the battery.  

These may cause permanent damage of the battery.  

 A high charge current rate reduces the charge efficiency due to the limit of the 

charge acceptance rate and the heat dissipation.  For example, in a lithium-ion battery cell 

there is a limitation for lithium-ions to go into the layers of the anode due to the chemical 

reaction time (i.e., the diffusion process or mass transport).  Too much charge current 

through the battery will cause surplus ions being deposited on the anode in the form of 

lithium metal.  This will result in an irreversible capacity loss.  Continuing to charge a 

battery with a high current rate can cause local overcharge, polarization, overheating, and 

unwanted chemical reaction, resulting in damage of the battery.  This also causes the 

terminals of the battery to quickly reach a very high voltage, indicating that the battery has 

been fully charged.  As mentioned before, charge acceptance rate can be recovered if the 

battery is allowed to relax [20] or if the proper instantaneous discharge with the reverse 

large current is used instead of relax during charge [21]. 
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 Ambient temperature significantly influences the charge acceptance and charge 

time as well.  Lower temperature reduces charge acceptance and increases charge time 

[19].   

 

Figure 6.  The voltage, current, and capacity of a lithium-ion battery when it is being 
charged under CCCV conditions. (Courtesy of [17].) 

 

1.2.5  Temperature Effect 

 Battery operation has a strongly dependency on temperature, which is a crucial 

factor for safety consideration.  Figure 7 shows changes in the discharge voltage of a 

polymer lithium-ion battery cell for a  constant discharge current of 360 mA at ambient 

temperatures of -20°C, -10°C, 0°C, 23°C, and 45°C [17].  Below the room temperature 

(e.g., < 23°C), the chemical reactions in the battery decreases and the internal resistance 

increases, which cause the reduction of the full charge capacity and increase of the slope 

of the discharge voltage curve.  On the other hand, at a higher temperature, a decrease in 

the internal resistance increases the full charge capacity and voltage [22].  However, the 
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higher rate of the chemical activity (e.g., self-discharge) may reduce the actual capacity 

during storage at a high temperature.  For both high and low temperatures, the further the 

operating temperature is away from the room temperature (e.g., 23°C), the quickly the 

battery will age.  Reference [23] proposes the capacity as a function of the ambient 

temperature as follows. 

                                              )]25(1[25,00 aTQQ −−= α                                            (1-4) 

where Ta is ambient temperature in °C, α is temperature coefficient, and Q0 and Q0,25 are 

the adjusted capacity at Ta and the nominal capacity at 25 °C in A-h, respectively.  The 

coefficient α can be estimated by fitting the empirical data to (1-4).  

 An abnormally high internal temperature of a battery is a nearly universal warning 

of thermal runaway, which is a major fault in all batteries.  These changes can occur 

within seconds, leading to a potentially catastrophic event.  The internal temperature 

change of a battery can be estimated by the thermal energy balance equation [24]. 

                                  
])([)(

)( 2
acinp TtTAhRti

dt

tdT
cm −−=⋅⋅                            (1-5) 

 where m stands for the battery mass in kg, cp is the specific heat in J/kg/K, Rin is the 

internal resistance, hc is the heat transfer coefficient in W/m2, A is the battery external 

surface area in m2, and Ta is the ambient temperature in °C.  

 The heat power includes the resistive heat and the heat transferred to the 

environment.  Additional heat generated from the entropy change or phase change and 

changes in the heat capacity can be ignored [24].  These omissions will not significantly 

affect the accuracy of battery models.  
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Figure 7.  Changes in the discharge voltage of a polymer lithium-ion battery cell for a 
constant discharge current of  360 mA at ambient temperatures of  -20°C, -10°C, 0°C, 23°C, 

and 45°C. (Courtesy of [17].) 

 

1.2.6  Self-discharge 

 Self-discharge is a phenomenon in which a battery loses the stored charge due to 

unwanted chemical actions within the battery without any external connection.  The self-

discharge rate depends on the type of the battery, SOC, charge current rate, ambient 

temperature, etc.  Figure 8 shows the change in discharge capacity retention for a fully 

charged lithium-ion battery stored at the ambient temperatures of 23° and 45°C, where 

the capacity retention of the battery prior to storage is 100% of the actual SOC.  Figure 9 

shows the battery capacity retention after long-term storage at a storage temperature of 

45°C when the battery is initially in the fully-charged state, 50% charged state, and fully 

discharged state. 
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 Typically, among rechargeable batteries, lithium batteries have the least amount 

of self-discharge around 2-3% discharge per month.  The self-discharge of lead acid 

batteries is around 4-6% per month; while nickel-based batteries have higher self-

discharge rates, e.g., 15–20% per month for nickel cadmium (NiCd) batteries and 30% 

per month for nickel metal hydride (NiMH) batteries [19], with the exception of low self-

discharge (LSD) NiMH batteries, whose self-discharge rates are 2-3% per month [25]. 

 

 

Figure 8.  The change in discharge capacity retention for a fully charged battery stored at 
ambient temperatures of 23°C and 45°C, where the capacity retention of the battery prior to 

storage is 100%. (Courtesy of [17].) 
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Figure 9.  The battery capacity retention after long-term storage at a storage temperature of 
45℃, when the battery is initially in the fully-charged state, 50% charged state, and fully 

discharged state. (Courtesy of [17].) 

 

1.2.7  Aging Effect  

 A battery does not have infinite life time due to unwanted chemical reactions, 

including electrolyte decomposition, physical damage, and the loss of active materials in 

the battery.  These irreversible changes usually cause unrecoverable capacity fade, and 

deteriorate the battery performance, such as increase of internal resistance and high self-

discharge rate.  These aging effects of the battery ultimately will result in battery failure.  

The aging process is caused by complex operating conditions affected by the number of 

cycling, ambient temperature, Depth of Discharge (DOD), current rate, etc. [26]  The 

authors of [26] summarized the following: 

a) High temperature accelerates the aging of the battery in both cycling and 

calendar modes; 
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b) Large DOD variance speeds up the aging process; 

c) Arduous current cycle profile accelerates the aging process. 

Figure 10 shows the charge/discharge cycle life characteristics when a lithium-ion battery 

is fully charged using CCCV, and then discharged using a constant current of 360 mA to a 

cutoff voltage of 3.0 V. 

 The State of Health (SOH) is an indicator of aging effect.  SOH represents the 

capability of a battery to deliver the specified performance (e.g., capacity) compared with 

a new battery.  SOH can be estimated by a single measurement of conductance or 

impedance of the battery cell, which is easy but inaccurate.  Furthermore, battery 

parameters, such as capacity, internal resistance, self-discharge rate, charge acceptance, 

and discharge capabilities, can be used in a comprehensive way to improve the accuracy 

of the SOH estimation.  In practice, SOH is defined as the ratio of the maximum charge 

capacity of an aged battery (Qmax_aged) to that of a new battery (Qmax_new) [27].   

                                                

max_ aged

max_ new

SOH
Q

Q
=                                                         (5) 

 
Normally, a battery is said in the mild fault condition when the SOH of the battery 

is below 80%. 
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Figure 10.  The charge/discharge cycle life characteristics when a lithium-ion battery is fully 
charged using CCCV, and then discharged using a constant current of 360 mA to a cutoff 

voltage of 3.0 V. (Courtesy of [17].) 
 

1.2.8  Memory effect  

 Memory Effect is another manifestation of the changing morphology of NiCd 

battery cells with nonlinearity [19].  The battery remembers how much discharge was 

required on previous discharges and would only accept that amount of charge in 

subsequent charges, causing them to hold less charge than was expected.  NiMH cells 

also have the memory effect but lesser than NiCd.  In fact, the repeated shallow charges 

of a battery cell cause the crystalline structure of the electrodes to change as 

aforementioned, which causes the internal impedance of the cell to increase and its 

capacity to be reduced.  Long slow charges, such as trickle charging, and high 

temperature tend to promote this undesirable crystal growth.  However, the memory 

effect can be solved by the following process.  To get the full charge, the battery should 
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be fully discharged before charging.  Moreover, if the battery is allowed to do 3 to 5 

cycles of charge/discharge, the battery capacity will be recovered. 

1.3  Outline of Thesis 

 This thesis proposes a novel hybrid battery model based on an electrical circuit 

battery model and a Kinetic Battery Model (KiBaM) [28].  The KiBaM is capable of 

capturing nonlinear capacity effects, such as the recovery effect and rate capacity effect, 

for accurate SOC tracking and runtime prediction of the battery.  Therefore, the proposed 

hybrid model can accurately capture dynamic electrical circuit characteristics and 

nonlinear behaviors of batteries for any operating conditions.  The proposed model is 

effective for modeling any electrochemical batteries, such as the lead-acid, NiCd, NiMH, 

and lithium-ion batteries.  

The outline of this thesis is the following: 

 Chapter 2 provides a literature review of different battery models, which are 

classified into five categories. 

 Chapter 3 describes the proposed hybrid battery model, followed by an 

explanation of nonlinear capacity variation and the method of parameter extraction.    

Chapter 4 provides simulation and experimental results for single-cell and 

multicell lithium-ion batteries as well as a lead-acid battery to validate the proposed hybrid 

battery model. 

 Chapter 5 concludes the thesis and provides some discussions for future work.  
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Chapter 2:  Literature Review 

 A variety of battery models have been developed for various purposes, such as 

battery design, performance estimation, prediction for real-time power management, and 

circuit simulation.  In general, the existing battery models can be classified into five 

categories: electrochemical models, computational intelligence-based models, analytical 

models, stochastic models, and electrical circuit models.  

2.1  Electrochemical Models 

 The electrochemical models use complex nonlinear differential equations to 

exactly describe chemical processes that take place in cells of batteries.  For example, 

Doyle’s electrochemical model consists of six coupled, nonlinear, differential equations 

[29].  These equations describe the dynamic voltage and current characteristics as 

functions of time, detailed physical reactions (e.g., the potentials), electrode phases, salt 

concentration, and reaction rate. 

 The DUALFOIL program uses this model to simulate lithium-ion batteries [30]. 

The program can be set by the users to compute the load profile as a sequence of constant 

current steps.  The battery operating time is obtained by recording the time at which the 

battery voltage decreases below the cutoff voltage in discharge.  The program has been 

extended to model other electrochemical battery models by including additional factors, 

such as energy balance and capacity fading [31]. 

The electrochemical models are the most accurate models.  However, establishing 

these models requires detailed knowledge of the battery chemical processes, which makes 
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them difficult to configure [32].  Moreover, due to high complexity and intensive 

computation requirement, it is difficult to use these models for real-time battery power 

management and circuit simulation.  

2.2  Computational Intelligence-Based Models 

 The computational intelligence-based models describe the nonlinear relationships 

among the quantities such as SOC, battery voltage, current, and temperature.  ANN-based 

models [33], [34], support vector regression models [35], and mixed models have been 

used to estimate the battery nonlinear behaviors [36].  Recently, a recurrent neural 

network (RNN) has been used to provide an SOC observer and battery voltage estimator 

[34], as show in Figure 11.  The RNN-battery model can accurately predict both the SOC 

and the terminal voltage of the batteries. 
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Figure 11.  Recurrent Neural Network (RNN)-based battery model. (Courtesy of [34].) 

Although accurate estimation of SOC and terminal voltage can be obtained by the 

computational intelligence-based battery models by including the nonlinearity of the 

batteries, the learning process required by these methods has a quite high computational 

cost. 

2.3  Analytical Models 

 The analytical models are simplified electrochemical models that can capture 

nonlinear capacity effects and predict runtime of the batteries with reduced order of 

equations.  These models perform well for SOC tracking and runtime prediction under 

specific discharge profiles.  However, they cannot capture the dynamic current-voltage 

(I-V) characteristics of the battery required for codesign and cosimulation with other 

electrical circuits and systems.   
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2.3.1  Pueker’s Law 

 The simplest analytical model is called the Peukert’s law [37].  It captures the 

nonlinear relationship between the runtime of the battery and the rate of discharge, but 

the recovery effect is not taken into account.  The nonlinear relationship can be written as: 

                                                       
p

P LIC =                                                                 (2-1) 

where Cp is the Puekert capacity in A-h, L is the battery lifetime, I is the discharge current, 

and p is the Puekert coefficient.  

2.3.2  Kinetic Battery Model 

 Another analytical model is the KiBaM proposed in [28], [38].  The KiBaM is an 

intuitive and simple battery model, which was originally developed to model chemical 

processes of large lead-acid batteries by a kinetic process [28].  

 

Figure 12.  The Kinetic Battery Model (KiBaM). 
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 The KiBaM describes the chemical processes of a battery by a kinetic process.  It 

assumes that a battery has two charge wells, where the charge is distributed with a 

capacity ratio c (0 < c < 1) between the two wells, as shown in Figure. 12.  The available 

charge well delivers charge directly to the load; while the bound charge well supplies 

charge only to the available charge well through a valve k.  The rate of charge flows from 

the bound charge well to the available charge well depends on k and the difference in 

heights of the two wells, h1 and h2, where h1 represents the SOC of the battery.  The 

battery is fully discharged when h1 becomes zero.  The changes of the charges in the two 

wells are expressed as [32]:                  
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                                         (2-2) 

where y1 and y2 are the total charges in the available charge well and the bound charge 

well, respectively; h1 = y1/c and h2 = y2/(1-c).  When the battery is discharged with a 

current of i(t), the available charge reduces faster than the bound charge and the 

difference in heights of the two wells grows.  When the current is removed or reduced, 

the charge flows from the bound charge well to the available charge well until h1 and h2 

are equal.  Therefore, during an idle period or a small-current load, more charge becomes 

available effectively in the available charge well than when a large-current load is applied 

continuously.  This explains both the recovery effect and rate capacity effect of the 

battery.  Assume initial conditions of y1,0 = y1(t0) = c∙C, y2,0 = y2(t0) = (1-c)·C, and y0 = 

y1,0 + y2,0, where C is the total battery capacity, the differential equations (2-2) can be 
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solved for a constant discharge current of I for a period of t0 ≤ t ≤ t1 by using Laplace 

transform; the solutions are given as: 
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where k' (= k/[c(1–c)]) is a constant related to the diffusion rate; δ is the height difference 

between the two wells, which plays an important role in obtaining the nonlinear capacity 

variation.  If the discharge current changes to a different value, y1, y2, and δ will be 

calculated by (2-3) with the new current value and initial conditions of y1,0 and y2,0, which 

are the final values of  y1 and y2, respectively, for the previous discharge current. 

Therefore, (2-3) can be used to determine y1, y2, and δ for any continuous piecewise 

constant discharge currents.  The discharge completes when y1 becomes zero, indicating a 

zero SOC.  Consequently, the unavailable charge, u(t), of the battery can be expressed as 

follows [32]: 

                                                   
)()1()( tctu δ−=                                                       (2-4)  
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2.3.3  Diffusion Model 

  The third analytical model is the diffusion model, which was developed to model 

lithium-ion batteries based on the diffusion of the ions in the electrolyte [39].  The model 

describes the evolution of the concentration of the electro-active species in the electrolyte 

to predict runtime under a given discharge load profile.  This model is introduced by 

Fick’s laws: 
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                                                  (2-5) 

where C(x, t) is the concentration of species at time t and distant x from the electrode, J is 

the flux of the electro-active species at time t and distance x, and D is the diffusion 

coefficient.  From the Fick’s laws, the following analytical relationship between the 

battery current, lifetime, and parameter β can be used to calculate the apparent charge lost 

σ(t) at time t . 
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where the parameter β is related to battery recovery characteristics, and  l(t) and u(t) are 

the dissipated charge to load and unavailable charge, respectively. 

  The KiBaM and the diffusion model take into account both the rate capacity 

effect and the recovery effect.  However, they cannot describe I-V characteristics that are 
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important for electrical circuit simulation and multicell battery design.  The KiBaM is 

actually a first-order approximation of the diffusion model [32].  

2.4  Stochastic Models 

 The stochastic models [40]-[45] focus on modeling recovery effect and describes 

battery behavior as a Markov process with probabilities in terms of parameters that are 

related to the physical characteristics of an electrochemical cell.  A stochastic KiBaM 

was developed to model a NiMH battery in [41] and [42], where the probability to 

recover during idle periods is made dependent on the length of the idle periods because 

the runtime of NiMH batteries strongly depends on the frequency of the load current.  

The stochastic battery model in [45] gives a good qualitative description for the behavior 

of a lithium-ion battery under pulsed discharge, as shown in Figure 13.  The recovery 

effect is modeled as a decreasing exponential function of the SOC and discharge capacity.  

Assuming the discharge demand as a Bernoulli-driven stochastic process and Poisson 

distribution, respectively, the authors compare the result obtained from the 

electrochemical model of the lithium-ion cell and that derived from the stochastic model 

[46].  However, the model does not handle arbitrary load profiles with varying discharge 

currents and does not account for other battery nonlinearities. 
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Figure 13.  Stochastic process representing the cell behavior. (Courtesy of [45].) 

 In another paper [47], the authors extended the stochastic model in [45] to 

incorporate the rate capacity effect.  The load is expressed as a stochastic demand on 

charge units.  This model can account for both the rate capacity effect and charge recovery 

effect.  Therefore, this model is relatively computational efficient and accurate to enable 

iterative battery life estimation for system level exploration.  Both of the above models are 

based on the discrete time Markov chain construction. 

2.5  Electrical Circuit Models 

 The electrical circuit models use equivalent electrical circuits to capture I-V 

characteristics and transient behavior of batteries by using combination of voltage and 

current sources, capacitors, inductors, and resistors.  Some of these models can also track 

the SOC and predict the runtime of the batteries by using sensed currents and/or voltages. 

The electrical circuit models are good for codesign and cosimulation with other electrical 

circuits and systems.  
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typical plot is shown in Figure 15 [48].  Its characteristics can be divided into three 

regions with respect to the frequency range.  The low frequency region ranging from mHz 

to a few Hz shows mass transport (i.e., diffusion effect), which is similar to linear ohmic 

characteristics.  A half circle in the middle range of a few Hz to kHz is similar to a RC 

parallel circuit and represents the charge transfer and electrochemical double layer effect.  

The high frequency range from kHz to MHz shows the conductance and skin effect, which 

is similar to inductor characteristics.  An equivalent electrical network of the battery can 

be made based on this plot, as shown in Figure 16.  Considering the electrolyte and 

electrode resistance (RE), linear ohmic characteristics (Rw), charge transfer (RCT), and 

electrochemical double layer effect (CDL), Randle’s equivalent circuit model can be used 

[14].  However, Randle’s model is complex in simulation realization and it is hard to 

extract the parameters of the model [49]. 

 

Figure 15.  Typical Nyquist plot of a battery. (Courtesy of [48].) 
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Figure 16.  Randle’s equivalent circuit model for a lithium-ion battery. . (Courtesy of [14].) 
 

 Figure 17 illustrates an electrical circuit model [50] for predicting battery run-

time and I-V Characteristics for a single battery cell, which consists of two capacitor and 

resistor (RC) circuits.  The RC circuit on the left is used for SOC tracking and runtime 

prediction for the battery cell, where the self-discharge resistance, Rself-discharge, is used to 

characterize the self-discharge energy loss of the battery cell; the capacitance, Ccapacity, is 

used to represent the charge stored in the battery cell; the current source, icell, represents 

the charge/discharge current of the battery cell; the voltage across the capacitance, VSOC, 

varies in the range of 0 V (i.e., the SOC is 0%) to 1 V (i.e., the SOC is 100%), 

representing the SOC of the battery cell quantitatively.  The RC circuits on the right 

simulates the I-V characteristics and transient responses of the battery cell, where the 

voltage-controlled voltage source, Voc(VSOC), is used to bridge the SOC (i.e., VSOC) to the 

open-circuit voltage, Voc, of the battery cell; the series resistance, Rseries, is used to 

characterize the charge/discharge energy losses of the battery cell; other resistances and 

capacitances are used to characterize the short-term (transient_S) transient responses, 

(e.g., the double layer capacitance and charge transfer), and long-term (transient_L) 

transient responses (e.g., equivalent to mass transport or diffusion process); and Vcell 

represents the terminal voltage of the battery cell.  
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Figure 17.  An electrical circuit battery model for predicting runtime and I-V 
characteristics. 

 

 The terminal voltage, Vcell, of the cell can be determined as follows by the open-

circuit voltage, Voc, and voltage drop due to the internal impedance Zeq and current icell of 

Figure 17. 

                                             eqcelloccell ZiVV ⋅−=                                                      (2-7) 

 Other than using the left-hand-side RC circuit of Figure 17, the SOC can also be 

calculated as [51]:         

                                      
usable

cell
initial C

ti
SOCtSOC −=

)(
)(                                            (2-8) 

where SOCinitial is the initial SOC the cell; Cusable is usable capacity of the cell.  The open-

circuit voltage and RC parameters of the model depend on the SOC [50]. 

 The electrical circuit model is relatively accurate to capture the dynamic circuit 

characteristics of a battery cell, such as the open-circuit voltage, terminal voltage, 

transient response, and self-discharge.  However, this model is unable to capture the 

nonlinear capacity behaviors, such as the rate capacity effect and recovery effect, of the 

battery due to the use of a constant capacitance, Ccapacity, to represent the remaining usable 
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capacity of the battery.  This reduces the model accuracy when predicting the battery 

performance at various load current conditions.  

 Recently, an enhanced circuit-based model was developed [52], [53] by mixing an 

RC electrical circuit model [50] with Rakhmatov’s diffusion analytical model [39] to 

include the battery recovery effect.  However, due to the high complexity of the diffusion 

analytical model, the enhanced model is highly complex and, therefore, is not feasible for 

real-time applications, such as real-time performance estimation/prediction for power 

management of batteries. 
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Chapter 3:  The Proposed Hybrid Battery Model 

3.1  The Proposed Hybrid Battery Model 

 The proposed hybrid model enhances the electrical circuit model in Figure 17 by 

replacing its left-hand-side RC circuit with an enhanced Coulomb counting algorithm 

based on the KiBaM to capture the nonlinear capacity variation of a battery, as shown in 

Figure 18.  Therefore, the proposed model is capable of capturing comprehensive battery 

performance more accurately than the electrical circuit model in Figure 17 by coupling 

the dynamic electrical circuit characteristics with nonlinear capacity effects of the battery.  

In addition, the proposed battery model needs less computational cost than the enhanced 

model in [52], thereby is feasible for real-time applications. 

Consider a period of t0 < t < tr in which the battery cell is first discharged with a 

constant current (i.e., icell = I > 0) and then rests (i.e., icell = 0) for the remaining of the 

period.  The proposed battery model is expressed by the following [54]:  

    maxmax
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)()()( __ tVtVtV LtransientStransienttransient +=                                           (3-4)
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where t0, td, and tr are the beginning time, discharge ending time, and (rest) ending time 

of the period, respectively; Cmax, Cavailable, and Cunavailable are the maximum, available, and 

unavailable capacities of the battery, respectively; τS = Rtransient_S·Ctransient_S; τL = 

Rtransient_L·Ctransient_L.  The SOC of the battery reduces when it delivers charge to load, 

which is expressed by the enhanced Coulomb counting term in (3-1).  The unavailable 

capacity, Cunavailable, represents the nonlinear SOC variation due to the nonlinear capacity 

effects of the battery.   The initial SOC, SOCinitial, is the estimated SOC at the end of the 

last operating period before t0.  Therefore, to implement the proposed model, only the 

initial SOC at the beginning of the battery operation (i.e., t = 0) is needed.  In practice, 

SOCinitial can be corrected by using (3-2) with the open-circuit voltage measured during 

some resting time intervals of the battery cell to avoid the accumulation of SOC 

estimation errors of using (3-1).  Moreover, if the battery operates in the charge mode, the 

current icell becomes negative, leading to the increase of the SOC when using (3-1). 
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Figure 18. The proposed hybrid battery model. 

 As in (3-3), the terminal voltage, Vcell, is estimated by Voc, the voltage across Rseries 

(i.e., icell·Rseries), and the transient voltage term, Vtransient, which represents the transient 

response of the RC network.  The RC network parameters are functions of the SOC. 
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             (3-7) 

These parameters are approximately constant when the SOC is high (e.g., 20%-100% 

[50]) and change exponentially when the SOC varies below a certain value (e.g., 20%-0% 

[50]) due to the electrochemical reaction inside the battery.  Equations (3-3)-(3-6) 

provide the time-domain response of the RC circuit in Figure 18.  

3.2  Nonlinear Capacity Variation 

 The KiBaM is integrated into the proposed hybrid model to capture the capacity 

variation of the battery due to nonlinear capacity effects, such as the rate capacity effect 
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and recovery effect.  The available capacity, Cavailable, which is the remaining usable 

capacity in the battery, is determined by: 

                                     
( ) ( ) ( )available initial unavailableC t C l t C t= − −                                                (3-8) 

Where 

                                                   
( ) ( )celll t i t dt=                                                             (3-9) 

is the dissipated charge to load at the current of icell during the discharge period.  The 

term Cunavailable(t) of (3-8) represents the unavailable capacity at time t, which causes the 

available capacity to be smaller than the ideal value of [Cinitial – l(t)] due to the rate 

capacity effect.  This effect can be interpreted by the KiBaM using the available and 

bound charges. 

 The unavailable capacity, Cunavailable, in (3-8) is determined by the unavailable 

charge, u(t), obtained from the KiBaM model.  

                                                   
( ) ( )unavailableC t u t=                                                      (3-10) 

A simplified expression for the unavailable charge u(t) can be obtained from (2-3), given 

by the following equation. 
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During the discharge time interval (t0 < t < td), u(t) increases, which represents the rate 

capacity effect.  During the resting time interval (td < t < tr), u(t) decreases because the 

charge flows from the bound charge well to the available charge well, which represents 

the recovery effect. 
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Based on (3-10) and (3-11), the unavailable capacity, Cunavailable, can be expressed 

by the following equation. 
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where Cunavailable (t0) is zero at t0= 0.  The unavailable capacity determined by (3-12) 

enables the proposed model to capture the rate capacity effect during discharge and the 

recovery effect during rest of the battery.  In general, if a battery is discharged with 

variable and discontinuous currents, then the entire discharge time can be divided into 

multiple periods and in each period the discharge current is constant or zero.  Then (3-12) 

can be applied to each period to continuously capture the unavailable capacity of the 

battery.  A special case is the discharge with a continuous constant current or with a 

constant pulse current. 

 Figure 19 shows the simulated nonlinear capacity variation of a 1-Ah, 3.7-V 

lithium-ion battery cell when it is discharged with a current of 3C (i.e., 3 A) for 500 

seconds and then rests for 500 seconds with zero discharge current, where k' = 0.005 and 

c = 0.3 are used for the proposed battery model.  In Figure 19, Cunavailable increases over 

time during the discharge period and reaches the maximum value at time td = 500 seconds. 

After that, Cunavailable reduces during the idle time from td = 500 seconds to tr = 1,000 

seconds, indicating that the unavailable capacity gradually becomes available, i.e., 

recovery of the battery capacity.  The battery is fully discharged when Cavailable becomes 

zero. 
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Figure 19. Nonlinear capacity variation of a 1-Ah lithium-ion battery cell when discharging 
with 3C for 500 seconds and resting for another 500 seconds. 

 
 Figure 20 shows the measured maximum available capacity of an 860-mAh, 3.7-

V polymer lithium-ion battery cell (see Appendix), which depends on the discharge 

current.  The extrapolating curve in Figure 20 illustrates the maximum available capacity 

at various load conditions.  Cunavailable increases as the discharge current increases, which 

results in the reduction of the available capacity.  If the battery cell is discharged to an 

infinitesimal load, the battery runtime is extremely short.  Therefore, there is no time for 

the charge to move from the bound charge well to the available charge well; the 

maximum available capacity equals the amount of charge in the available charge well.  

On the contrary, if the discharge current is small, all of the charges in the bound and 

available charge wells will become available to be delivered to the load. 
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Figure 20. The maximum available capacity of an 860-mAh polymer lithium-ion battery cell 
as a function of the discharge current. 

 

3.3  Model Extraction 

 All of the electrical circuit parameters of the proposed battery model can be 

extracted from least-square curve fitting of the experimental data obtained at room 

temperature using pulse discharge currents with an interval of 5% SOC.  In this section, 

the 860-mAh, 3.7-V polymer lithium-ion battery cell will be used to illustrate how the 

model is extracted.  The experimental procedure to extract Voc(SOC) and Rseries (SOC) is 
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The battery cell is discharged with a current of I = 0.6C (i.e., 0.516 A) during 0 ≤ t ≤ td 
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minutes, to allow it to recover the unavailable capacity.  This ensures that the electrical 

circuit parameters are independent of the rate capacity effect because the SOC tracking 

part of the model has taken into account that effect.  Voc(SOC) in (3-2) is extracted by 

estimating the steady-state open circuit voltage using exponential curve fitting. 

Moreover, the instantaneous voltage rising when discharge finished at td has 

relationship with Rseries(SOC) in (3-13), which can be calculated by the following 

equation: 

                                              

1 0
( )series

V V
R SOC

I

−=                                                    (3-13) 

Based on (3-3)-(3-6), the following equation is obtained to estimate the RC network 

parameters: 

                                        
( ) (1 ) (1 )bt dt

cellV t a e c e e− −= − + − +                                       (3-14) 

where e is V1; Vcell = Voc when  t→∞.  The parameter a, b, c, and d are determined from 

the least-squares curve fitting.  The RC network parameters can be then derived from 

(20). 
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The parameter c and the initial conditions y1,0 and y2,0, are determined from the 

maximum available charge (i.e., capacity Ah·3600 s) under very large and very small 
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current loads [42].  The delivered capacity under a very small current load is the total 

initial charge y0 of the two charge wells.  The maximum available capacity under a very 

large current load (i.e., the infinitesimal load) is the initial charge y1,0  of the available 

charge well in Figure 12.  Then the initial charge y2,0   (= y0 – y1,0) of the bound charge 

well and the capacity ratio c (= y1,0/y0) can be determined.  As shown in Figure 20, the 

maximum available charge is 3114 (= 0.865 Ah·3600 s), which is y0; y1,0  is 2872.8 (= 

0.798 Ah·3600 s), where 0.798 Ah is the maximum available charge at the infinitesimal 

load.  Consequently, the value of parameter c is 0.9248.  The value of k' is determined in 

such a way that the unavailable capacity (Cunavailable) obtained from (3-12) agrees with 

experimental results by discharging the battery cell with continuous constant currents 

from the full SOC until the cutoff voltage is reached.  Since Cunavailable(t0) is zero at t0 = 0, 

td is known and the value of c has been derived, only k' is unknown in (3-12).  Therefore, 

k' can be extracted.  The parameter k' of the polymer lithium-ion battery cells is almost 

constant for any continuous current loads. 
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Figure 21. A typical curve of terminal voltage response under pulsed-current discharge for 
extraction of the electrical circuit parameters of the proposed battery model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 500 1000 1500 2000 2500 3000
3.8

3.85

3.9

3.95

4

4.05

4.1

4.15

Time (seconds)

V
o

lt
ag

e 
(V

o
lt

)

t
d

t
r

V2

V1
Exponential Curve Fit

V0



42 
 

Chapter 4:  Model Validation 

 Simulation and experimental studies are carried out to validate the proposed 

hybrid battery model for a single-cell as well as a six-cell polymer lithium-ion battery for 

various discharge current operations.  Comparison with the electrical circuit model in [50] 

is also provided to show the superiority of the proposed model.  

4.1  Simulation of the Proposed Battery Model 

 The proposed hybrid battery model is implemented in MATLAB/Simulink for an 

860-mAh, 3.7-V polymer lithium-ion battery cell (see Appendix).  The parameters of the 

single-cell model are obtained by using the model extraction method in Chapter 3 and are 

listed in Table 1.  Based on the single-cell model, a series-connected, six-cell battery 

pack is built in MATLAB/Simulink.  A cell switching circuit proposed in [51] and [56] is 

employed to control the operation (i.e., charge, discharge, and rest) of each cell 

independently.  Figure 22 shows the implementation of the hybrid battery cell model in 

MATLAB/Simulink.  The rated & recovery charge unit offers the nonlinear capacity 

variation by changing the value of Cunavailable during battery operation.  All circuit 

components are implemented by using the standard modules from the SimPower Systems 

toolbox. 
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Figure 22. Hybrid single-cell battery model implemented in MATLAB/Simulink. 
 

TABLE 1 
BATTERY MODEL PARAMETERS FOR A POLYMER LITHIUM-ION CELL 

a0 -0.852 a1 63.867 a2 3.6297 a3 0.559 

a4 0.51 a5 0.508 b0 0.1463 b1 30.27 

b2 0.1037 b3 0.0584 b4 0.1747 b5 0.1288 

c0 0.1063 c1 62.49 c2 0.0437 d0 -200 

d1 -138 d2 300 e0 0.0712 e1 61.4 

e2 0.0288 f0 -3083 f1 180 f2 5088 

y1,0 2,863.3 y2,0 232.66 c 0.9248 k' 0.0008 

 

 

4.2  Experimental Setup 

 The six-cell battery pack simulated in MATLAB/Simulink is constructed in 

hardware to further validate the proposed model.  Figure 23 illustrates the experimental 

setup.  The cells are charged with CCCV by a DC source, and then discharged under 
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various discharge current profiles through a programmable DC electronic load, which 

offers Constant Resistor (C.R.), Constant Current (C.C.), and Pulsed Current (P.C.) 

modes as well as stores data such as current and voltage.  High-efficiency power 

MOSFETs are used to construct the cell switching circuit on a printed circuit board 

(PCB) [51], [56].  The sensing, control and protection functions are also implemented 

on the PCB. 

 

Figure 23. Experimental setup. 

4.3  A Single Cell Study for Polymer Lithium-Ion Battery 

 Figure 24 compares the terminal voltage responses obtained from simulations 

using the electrical circuit model and the proposed hybrid model with experimental 

results for a single cell for two constant-current discharge scenarios, where the discharge 
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currents are 0.93C (0.8 A) and 1.86C (1.6 A), respectively.  The terminal voltage 

responses obtained from the proposed model match the experimental results better than 

those obtained from the electrical circuit model, particularly when the battery cell is close 

to fully discharged.  Therefore, the proposed model can accurately predict the runtimes of 

the battery cell under various discharge current conditions.  However, due to neglecting 

the rate capacity effect, the runtime prediction errors of the electrical circuit model are 

obvious and increase significantly as the discharge current increases. 

 Figure 25 compares the terminal voltage responses obtained from simulations 

using the electrical circuit model and the proposed model with experimental results for 

two pulse-current discharge scenarios, where each current pulse has 600-second on time 

and 600-second off time.  Again, the proposed model captures the dynamic responses and 

predicts the runtimes of the battery cell accurately under various pulse-current discharge 

conditions.  On the other hand, due to neglecting the rate capacity and recovery effects, 

the errors of dynamic response tracking and runtime prediction of the electrical circuit 

model are larger than the proposed model and increase at higher discharge currents. 

 Furthermore, by capturing the variation of the unavailable capacity due to the 

recovery effect, the proposed hybrid model is able to accurately capture the SOC 

variation of the single cell under the pulse-current discharge, as shown in Figure 26. 
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(a) 

 

(b) 

Figure 24. Comparison of simulation results of the electrical circuit model and the proposed 
hybrid model with experimental results for a single polymer lithium-ion cell with constant 

discharge currents of (a) 0.93C (0.8 A) and (b) 1.86C (1.6 A). 
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(a) 

 

(b) 

Figure 25. Comparison of simulation results of the electrical circuit model and the proposed 
hybrid model with experimental results for a single polymer lithium-ion cell with pulse 
discharge currents of (a) 0.93C (0.8 A) and (b) 1.86C (1.6 A), where each pulse has 600-

second on time and 600-second off time. 
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(a) 

 
(b) 

Figure 26. Nonlinear capacity variation estimated by the proposed model for a single 
polymer lithium-ion cell under a pulse discharge current of 1.86C (1.6 A), where each pulse 

has 600-second on time and 600-second off time: (a) SOC variation and (b) unavailable 
capacity. 
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4.4  A Multicell Study for Polymer Lithium-Ion Battery 

 Experiments are performed at different scenarios to compare with corresponding 

simulation results to validate the proposed battery model [56] for the six-cell polymer 

lithium-ion battery, where the dynamics of each cell are represented by the proposed 

model.  For all scenarios, the experimental results agree with the simulation results 

obtained from the proposed model, as shown in Table 2.  In Scenario 1, the six cells are 

discharged using the C.R. mode simultaneously.  Since the initial SOCs of the cells are 

different, the cells are fully discharged sequentially.  Once a cell is fully discharged, it 

will be disconnected from the battery pack by the cell switching circuit but the remaining 

cells still supply energy to the load.  Figure 27 compares the terminal voltage responses 

of the six-cell battery obtained from simulation and experiment for Scenario 1.  The 

results show that not only the steady-state but also the dynamic responses of the battery 

obtained from the simulation agree with those obtained from the experiment. 

 In Scenario 2, all of the six cells are discharged simultaneously using the C.C. 

method.  In Scenario 3, the six cells are divided into two groups and each group has three 

cells.  The two groups of cells are discharged alternatively, i.e., P.C. discharge, with a 

time interval of 300 s until all of the cells are fully discharged.  Figure 28 shows that by 

using the cell switching circuit, the self-reconfigurable, six-cell battery provides energy to 

the load with the desired terminal voltage of ~12 V during operation. As shown in Table 2, 

compared to using the C.C. discharge (Scenario 2), more energy (300 mWh) is supplied 

by the six-cell battery when using the P.C. discharge (Scenario 3). This P.C. discharge 

method utilizes the recovery effect to improve the energy conversion efficiency of the 

multicell battery.  These results show that proposed model can accurately capture the 
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nonlinear capacity variation and dynamic electrical circuit characteristics of each cell as 

well as the whole battery pack for various discharge modes. 

 

 

Figure 27. Comparison of simulation and experimental results in Scenario 1 for the 
terminal voltage of the six-cell battery. 
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Figure 28. Comparison of simulation and experimental results in Scenario 3 for the 
terminal voltage of the battery. 

 

TABLE 2 
COMPARISON OF SIMULATION AND EXPERIMENTAL RESULTS FOR THE SIX-CELL BATTERY 

Scenario Discharge method 
Initial cell conditions expressed by SOC [%] Energy [Wh] 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Simulation Experiment

1 C.R. = 100 Ω 100 80 55 38 13 100 12.38 12.28 

2 C.C. = 860 mA 100 100 100 100 100 100 18.41 18.30 

3 
P.C. = 860 mA 

(300s on, 300s off) 
100 100 100 100 100 100 18.66 18.6 
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3 shows the parameters of the battery model extracted by the method described in 
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lithium-ion cell; while k' of the lead-acid battery is higher than that of the lithium-ion cell. 

These parameters indicate that the lead-acid battery has higher nonlinear capacity 

variations than the lithium-ion battery. 

 Figure 29 compares the terminal voltage responses obtained from simulations 

using the electrical circuit model and the proposed hybrid model with the experimental 

result for a pulsed discharge scenario, where the battery is discharged with a constant 

current of 0.6C (0.74 A) for 40 minutes, rests for 30 minutes, and then discharged until 

the cutoff voltage is reached.  As shown in Figure 29, the terminal voltage response 

obtained from the proposed model matches the experimental result much better than that 

obtained from the electrical circuit model.  The errors of the terminal voltage predicted 

from the proposed model are less than 1% with respect to the experimental result.  This 

means that the proposed model continuously tracks the SOC of the battery accurately. 

Consequently, the runtime of the battery predicted from the proposed model is almost the 

same as that obtained from the experiment.  On the contrary, the error of the runtime 

predicted from the electrical circuit model is significant.  Therefore, the proposed model 

can accurately capture the dynamic circuit characteristics and nonlinear capacity effects 

of lead-acid batteries as well. 
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TABLE 3 
BATTERY MODEL PARAMETERS FOR A LEAD-ACID BATTERY 

a0 5.429 a1 117.5 a2 11.32 a3 2.706 

a4 2.04 a5 1.026 b0 1.578 b1 8.527 

b2 0.7808 b3 -1.887 b4 -2.404 b5 -0.649 

c0 2.771 c1 9.079 c2 0.22 d0 -2423 

d1 75.14 d2 55 e0 2.771 e1 9.079 

e2 0.218 f0 -1240 f1 9.571 f2 3100 

y1,0 2592 y2,0 1728 c 0.6 k' 0.0034 

 

 

Figure 29. Comparison of simulation results of the electrical circuit model and the proposed 
hybrid model with experimental results for a lead-acid battery for a pulsed discharge 

scenario. 
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Chapter 5:  Conclusions and Recommendations  

This thesis has presented a novel hybrid battery model, which is capable of 

capturing dynamic electrical circuit characteristics and nonlinear capacity variation of 

battery cells under various operating conditions.  The proposed battery model has been 

implemented in MATLAB/Simulink for a single-cell battery as well as a six-cell battery 

pack using 860-mAh, 3.7-V polymer lithium-ion cells and a 1.2 Ah, 12-V lead-acid 

battery.  Simulation studies have been performed and compared with experiments to 

validate the proposed model.  Results have shown that the proposed model is able to 

capture nonlinear capacity effects and dynamic electrical circuit characteristics and 

predict the runtimes accurately not only for single-cell but also for multicell batteries for 

various discharge modes and load current conditions.  Compared to the existing electrical 

circuit battery models, the proposed hybrid model can offer more accurate SOC tracking 

and runtime prediction, thereby more accurate dynamic circuit characteristics capturing. 

 The proposed battery model can be applied to any type and size of 

electrochemical battery cells, such as lead-acid, NiCd, NiMH, and lithium-ion cells.  It 

provides an accurate model for battery and circuit system designers to study various 

battery characteristics and optimally design battery systems for various applications. 

Moreover, the proposed battery model is computationally effective and can be used in 

battery power management to optimize the energy conversion efficiency and prolong the 

operating time of battery systems in real time. 
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 In the future research, additional characteristics of rechargeable batteries, such as 

charging process, temperature effect, and aging effects, will be added to the proposed 

hybrid battery. 
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Appendix   

 The parameters of the polymer lithium-ion battery cells are listed as follows. Cell 

model: pl-383562 2C; nominal voltage: 3.7 V; nominal capacity: 860 mAh; discharge 

cutoff voltage (Vcutoff): 3 V; charge cutoff voltage (Vover): 4.2 V; maximum discharge 

current: 2C (1.72 A). 

 The parameters of the lead-acid battery are listed as follows. Battery model: 

LEOCH LP12-1.2AH; nominal voltage: 12 V; nominal capacity: 1.2 Ah; discharge cutoff 

voltage (Vcutoff): 10.8 V; charge cutoff voltage (Vover): 13.5 V; maximum discharge current: 

15C (18 A). 
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