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 This thesis details the design of an electric machine to perform as both a starter and 

alternator in a series hybrid electric vehicle.  The focus of the work is on practical design aspects 

specific to single-sided axial flux permanent magnet machines with non-overlapped windings.  

First, a characterization of the rotor losses in these machine types is presented through 

experimental validation of finite element analysis estimates.  The approaches taken to model the 

axial flux geometry, especially in two-dimensions, are detailed, and the difficult issue of 

validating the finite element analysis estimates with experimental data is addressed with a 

prototype 24-slot, 20-pole single-sided machine fitted with single-layer non-overlapped windings.  

Next, the comparative advantages and disadvantages of the single-sided axial flux geometry and 

the most common form of radial flux structure, with an inside rotor, are explored within the 

context of surface mount permanent magnet machines.  New material is offered which highlights 

the benefits of the single-sided axial flux geometry and the constraints and assumptions made 

when making the comparisons are discussed in detail, including a study of the biases these can 

introduce.  The basis of comparison is founded on constant electromagnetic airgap shear stress, 

being the product of electric and magnetic loading, and indeed the constancy of both those 

factors.  The metrics used for comparison are the mass of the active materials and the volume 

essential to house said materials.  A range of lesser issues that are relevant when choosing a 

machine structure are presented and discussed.  Finally, the performance criteria for the 

integrated starter-alternator are quantified based on characterization of the internal combustion 

engine and the energy storage system of the vehicle and a full account of the design process is 

detailed, including justification of all design choices.  
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Chapter 1 

 

Introduction 

 

Interest in hybrid-electric vehicles (HEV) in the US has been growing significantly over the past 

decade, primarily as a result of rising fuel costs and environmental and sociopolitical concerns 

about oil consumption.  The HEVs on the market today are primarily parallel (or mild) hybrids in 

which the drive power for the vehicle is supplied by both an internal combustion engine (ICE) 

and a set of electric machines.  A different, and arguably more efficient, system design is the 

series HEV, or strong hybrid, in which the ICE is disconnected from the drive-train and all drive 

power is provided to the wheels through the electric machines.  A conceptual schematic of this 

system, with an additional plug-in charging option, is shown in Fig. 1.1.  A main result of the ICE 

disconnection is that the engine now has the flexibility to be run at its most fuel-efficient 

operating point without affecting the drive profile of the vehicle.  The project on which this 

dissertation is based entails the conversion of a parallel HEV to a series HEV through a redesign 

of the energy storage system of the vehicle (Fig. 1.1).   

The focus of this paper is the design of the electric machine that will perform as the generator 

shown in Fig. 1.1.  It should be noted that this machine must also have the ability to operate in 

motoring mode to provide mechanical power to the ICE during startup; thus, the machine will 

herein be referred to as an integrated starter-alternator (ISA).  The concept of an ISA is not a 
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Stator Iron 

new one, and with the growing peripheral electrical demands, even in traditional gasoline-engine 

vehicles, the design of more efficient and higher power alternators has become an important 

research topic.   

 

 

Fig. 1.1.  Conceptual schematic of a series HEV system. 
 
 
 

 
 
 
 

Fig. 1.2.  Basic structure (active materials) of a single-sided AF PM machine. 
 

Energy Storage System 

Rotor Iron 

Windings 

Magnets 
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1.1 Motivation of the Work 
In the context of the aforementioned project, this dissertation is based on several aspects of 

electric machine design with a focus on the single-sided axial flux (AF) permanent magnet (PM) 

machine geometry (Fig. 1.2).  AF geometries are not new.  Faraday’s first machine in 1831 was 

an axial flux machine and Tesla patented a disk motor in 1889.  This geometry has always 

appealed to innovative thinkers in electric machines, but has been dogged by some extra 

difficulties in arranging the mechanical structure.  This trouble was primarily in accurately 

maintaining a necessarily small airgap in a relatively large disk-shaped machine.  Thus, while 

many people have researched AF induction machines, they have not, in general, proved economic 

to manufacture because of the substantial benefit of a very small air-gap in an induction machine. 

The advent of rare-earth PMs has, however, made machines designed with rather larger air-gaps 

perfectly feasible.  It is likely that this single fact has brought the AF machine back into purview.  

When efficiency is of concern, the use of PMs in a machine hardly requires justification, 

especially as the cost of rare-earth PM material has become more reasonable in the last decade.  

The most widely used PM material in electric machines is NdFeB because of its high energy 

product, residual flux density and magnetic coercivity in comparison to other magnetic materials.  

Further rationalization of the choice to design this ISA as a PM machine using NdFeB as the field 

excitation is both redundant and unnecessary. 

Given all of this, the current reality is that while much research is carried on in universities 

regarding AF machines (a recent machines and drives conference had 262 papers with “machine” 

in the title, 14 of these had “axial flux” or “axial gap” in the title), they have not yet entered into 

the marketplace at anything like this frequency of occurrence, appearing only in applications 

where the aspect ratio is a dominant consideration, such as in-wheel vehicle drives.  One goal of 

this research is to provide a comparison of the single-sided AF machine geometry with the more 

traditional, inner-rotor, radial flux (RF) machine structure in order to demonstrate the viability of 

this type of machine.   

Finite element analysis (FEA) is an important design tool that is used extensively in the field of 

electric machine design.   Two-dimensional (2D) modeling is often preferred over its three-

dimensional (3D) counterpart due to reduced complexity in the modeling and appreciably 

decreased computation time and resources.  However, unlike the RF geometry, the AF machine is 

a naturally difficult structure to model in 2D.  If this is in fact managed, there are inherent errors 

in the model due to the necessary geometrical approximations.  A second goal of this research is 
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then to compare machine performance results obtained via FEA in both 2D and 3D with actual 

experimental data from a test machine using rotor loss calculation (or measurement) as the basis 

of comparison. 

In recent years, the use of non-overlapped winding (NOW) schemes in which a coil spans a single 

tooth as shown in Fig. 1.3, has largely replaced that of traditional full-pitched windings in high 

performance electric machine designs.  A discussion and brief tutorial of the theory behind NOW 

is provided in Appendix B.  Inherent in these winding designs are many benefits including 

reduced copper mass (and loss), better machine manufacturability, decreased cogging torque and 

performance enhancements in terms of fault-tolerance and flux-weakening capabilities, just to 

name a few.  However, the use of NOW also comes with penalties resulting from a harmonic-rich 

airgap MMF waveform that manifests as reductions in winding factors and increased rotor losses 

when compared with machines equipped with traditional windings.  Thus, the final goal of this 

work is to characterize the rotor losses in single-sided AF PM machines fitted with NOW through 

the difficult issue of validating FEA estimations with experimental data.    

 

                              

                                            (a)                                                                                       (b) 
 

Fig. 1.3.  Examples of stator windings for a RF, three-phase (a) conventional winding (18-slots/6-poles) 
and (b) a single-layer NOW scheme (18-slots/22-poles). 

1.2 Scientific Contributions and Relevant Publications 
The scientific contributions of this work are summarized as follows: 

1. A comparative study on AF and radial-flux (RF) PM machine geometries is done with a 

focus on the single-sided AF structure. (Chapter 3) 
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2. An assessment of 2D and 3D FEA modeling of single-sided AF PM machines is provided 

including measurement of rotor loss and comparison with FEA results. (Chapter 2) 

3. A detailed account of the machine design process for the ISA application is given with a 

focus on details specific to the design of single-sided AF PM machines. (Chapter 4) 

Publications associated with this dissertation are: 

1. J. Colton, D. Patterson, J. Hudgins, “Rotor Losses in Axial-Flux Permanent-Magnet 

Machines with Non-Overlapped Windings”, IET Conference on Power Electronics 

Machines and Drives, Apr. 2010.  (Currently in re-write process for submission to IEEE 

Transactions.) 

2. J. Colton, D. Patterson, J. Hudgins, K. Vacha, “Generator Design for Existent Windmills:  

From Water Pumping to Electricity Generation”, IEEE Syposium on Power Electronics, 

Machines and Drives in Wind Applications, Jun. 2009. 

3. D. Patterson, J. Colton, B. Mularcik, B. Kennedy, S. Camilleri, R. Roboza, “A 

Comparison of Radial and Axial Flux Structures in Electrical Machines”, IEEE 

International Electric Machines and Drives Conference, May 2009.  (Currently in 

submission process for IEEE Transactions.) 

4. J. Colton, D. Patterson, J. Hudgins, “Design of a Low-Cost and Efficient Integrated 

Starter-Alternator”, IET Conference on Power Electronics Machines and Drives, Apr. 

2008.  

1.3 Literature Review 
This literature review is divided into three topics of interest:  a historical development of the 

theory behind NOW, preceding work done on the impacts of NOW implementation on rotor eddy 

current losses and previous research involving comparisons between AF and RF machine 

structures.  The aim is to provide an account of the state of the art in the technical fields relevant 

to the research work presented in this dissertation. 

1.3.1 Non-Overlapped Windings  

For the past decade, much attention has been given to winding schemes where the stator coils 

wrap around a single tooth, in contrast with the conventional windings in which the coils span 

three teeth (Fig. 1.3).  These new types of windings have been called many names, “fractional-

slot” or “concentrated” windings for example, but will be termed “non-overlapped” windings 
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(NOW) throughout this paper.  NOW can either be described as double-layer (DL), in which 

there is a coil is around every tooth, or single-layer (SL), where there are only coils placed around 

alternating teeth as shown in Fig. 1.4 for an AF stator.  The subsequent literature review is an 

attempt at a coherent description of the major advances in NOW analysis and design. 

          

                                   (a)                                                                                (b) 

Fig. 1.4.  Illustration of (a) SL and (b) DL winding layouts on an AF machine stator. 
  

Cros and Viarouge (2002) presented a study of three-phase NOW machines with various slot-pole 

combinations.  One outcome of the study was the identification of which slot-pole combinations, 

for slot numbers less than 24, allow for a NOW and whether a SL layout can be used.  More 

importantly, the winding factor, which gives insight to the machine performance, was computed 

for each structure.  Several specific structures were compared, including FEA calculation of their 

torque output waveforms, and Cros and Viarouge concluded that the best machine performance is 

obtained when the number of slots per pole per phase (spp) is between 1/3 and 1/2.  Particular 

attention was given to the 12-slot/10-pole SL winding structure for its low torque ripple and 

minimal cogging torque.  

Magnussen and Sadarangani (2003) added to work of Cros and Viarouge (2002) by identifying 

additional structures that can support NOW and detailing the analytical derivation of the winding 

factor computations.  This was accomplished by showing that the airgap MMF waveforms of 

NOW machines have significantly increased harmonic content as compared to a machine with 

unity spp.  It is this inherent increase in MMF harmonics that has prompted much of the 

continuing research into the characteristics of NOW machines. 

A comprehensive study of NOW machines was presented by Salminen (2004).  Winding factors 

and harmonic components were calculated for different slot-pole combinations and the 

characterization of cogging torque, torque ripple and inductances were performed analytically and 

verified via 2D FEA.  A prototype 12-slot/10-pole 45 kW RF internal permanent-magnet (IPM) 
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machine with DL NOW was constructed to validate the expectations resulting from the analytical 

techniques and FEA.  Good correlation was observed.       

Ishak et al. (2006) incorporated both analytical and FEA techniques in the investigation of 

machines  which can support either a SL or DL NOW to identify the positive and negative 

aspects of using one layout over the other.  One result of the work is that both the winding factor 

and the self-inductance corresponding to a SL winding may be higher than those for the 

equivalent DL scheme.  Additionally, it was shown that the mutual-inductance between phases is 

lowered when a SL winding is employed for a given slot-pole combination.  The implications of 

these findings prompted further investigations into the use of NOW machines for applications 

that require field-weakening capabilities or where fault-tolerance is of paramount importance.  

Building on the idea of using NOW machines for fault-tolerant applications, Bianchi et al. (2005, 

2006) applied the use of an analysis and design method, called the star-of-slots, to NOW 

machines.  This method is used to present a graphical (phasor) representation of the effects of 

different order harmonics by characterizing the EMF (or MMF) contribution for each individual 

harmonic.  More importantly, this method represents a simple, practical approach to designing the 

physical layout of the windings in a NOW machine by applying the star-of-slots method to the 

main harmonic.  Bianchi et al. also evaluated the self and mutual inductances of both SL and DL 

winding schemes for machines with several slot-pole combinations, with results in accordance 

with those described by Ishak et al. (2006). 

El-Refaie et al. (2005, 2006) offered closed-form techniques to analyze various parameters of 

NOW machines whereas previous work had been primarily based on FEA.  Analytic expressions 

were presented for calculations of the open-circuit magnetic field and back-EMF waveforms, 

resistance and inductance of the windings, and torques for both normal and flux-weakening 

modes of operation.  The developed analytical techniques were applied to a 36-slot/42-pole test 

machine and the resulting calculations were verified via 2D FEA. 

Several authors have investigated the mechanical characteristics of certain NOW schemes.   

Wang, et al. (2006), identified a type of NOW scheme (called modular) in which coils of a 

particular phase appear in groups.  These (RF) machines are shown, via analytical techniques and 

experimental verification, to exhibit a harmonic-rich radial force density pattern, raising the 

likelihood of low-frequency vibration excitation during normal operation.  Dorrell et al. (2008) 

studied the effect of different rotor eccentricities on surface-mount permanent magnet (SMPM) 
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NOW machines with sinusoidal excitation.  Unsurprisingly, through both an analytical algorithm 

and FEA, it was found that unbalanced magnetic pull was more prominent in the so-called 

modular machines due to the asymmetry inherent in the windings. 

The studies described up to this point in the literature review have primarily focused on 

application of NOW to RF machines; however, it has been shown that these winding schemes are 

also beneficial for AF machines.  Kamper et al. (2008) detailed the use of NOW for an air-cored 

AF machine.  The analytical winding factors for iron-cored AF, NOW machines were 

investigated and used to develop complementary expressions for corresponding air-cored 

machines.  Experimental data was offered to support the analytical work and verify that for an 

air-cored AF machine, NOW can provide better performance than a traditional distributed 

winding.            

Given the advantages of NOW over traditional winding schemes described throughout the 

literature, it is justified for NOW to be employed in the design of the AF PM machine for the ISA 

application which is the focus of this paper.  However, it should be noted that the study of the 

impacts of NOW in machines has not been exhausted.  One area, in which there is still need for 

research, is with regards to the impacts of the space-harmonic content of the airgap MMF 

waveform on rotor losses as is detailed in the next section. 

1.3.2 Rotor Eddy-Current Losses  

 

The computation of rotor losses in PM machines has gained interest recently due to the increased 

implementation of NOW schemes in machine design.  It has been shown that NOW induce rich 

harmonic content in the airgap MMF distribution.  These harmonics, by definition, rotate at 

speeds and directions which are not synchronized to the rotor rotation (the main MMF harmonic), 

and therefore a time-varying flux pattern is introduced in the rotor materials and eddy-current 

losses there are increased.  Efforts in describing and defining these losses have primarily been 

concentrated in the last several years as will be illustrated here. 

Bianchi et al. (2010) calculated the rotor losses due to MMF harmonics of RF NOW machines by 

using analytical techniques to simplify a 2D FEA procedure.  The stator-induced harmonics were 

transformed into a rotor reference frame frequency and applied to current sheets in the model.  

The rotor losses for an extensive list of slot-pole combinations for a particular machine size were 

tabulated and the main result was that the SL winding schemes exhibit increased loss due to 

richer harmonic content, especially sub-harmonics, than their DL counterparts. It should be noted 
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that the effects of stator slotting and any time-harmonics in the stator current waveform were 

neglected. 

Saban and Lipo (2007) introduced a method of calculating rotor eddy-current losses for a high-

speed RF machine in which both 2D and 3D FEA were employed.  The main idea of the 

technique is that 2D FEA can be used to determine a rotor-referenced current sheet, which 

mimics the effects of the stator MMF waveform, to serve as an input to a 3D model.  The method 

presented takes into account time harmonics, space harmonics and the effects of slotting in the 

MMF distribution, however, no loss calculation results were presented. 

An analytical technique for calculating rotor back-iron eddy-current losses due to MMF space 

harmonics in a RF machine was presented by Polinder et al. (2007) in contrast to the FEA 

methods that had thus far been developed.  The technique is based on decomposition of the MMF 

distribution (with slotting incorporated by application of Carter’s coefficient) into its harmonic 

components and calculating the corresponding individual flux density magnitudes to be used in 

the loss calculations.  Jassal et al. (2008) used this approach to compare rotor back-iron loss 

between three different NOW machines and a machine with traditional windings, confirming that 

the rotor loss for the NOW machines all exceed that of the traditional machine.  

Han et al., (2010) examined rotor eddy-current losses for an IPM machine using a similar 

approach as was suggested by Polinder et al. (2007); except that here the loss calculation was 

performed via 2D FEA.  The study identified that the parameters with the greatest impact on 

these losses are the magnitude of the fundamental component of the stator MMF, the stator slot 

pitch and the yoke pitch between the rotor barrier ends. 

Nuscheler (2008) presented a 2D analytical model for calculating rotor eddy-current losses, in a 

RF SMPM machine, which is derived directly from Maxwell’s equations.  Multiple instances of 

two different slot-pole combination machines, each with varying degrees of rotor lamination and 

magnet segmentation, were analyzed with the model in terms of only the harmonic with the 

highest magnitude (excluding the main harmonic).  It was determined that lamination of the rotor 

yoke increases the eddy-current losses in the magnets, but that loss can be mitigated by 

segmentation of the magnets. 

A study involving experimental validation of analytical rotor eddy-current calculations for an AF 

machine was performed by Alberti et al. (2008).  The analytical method is based on solutions of 

Maxwell’s equations in two dimensions and the losses are calculated by considering the 
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contribution of each harmonic individually.  The authors were careful to include the effects of 

stator slotting, as AF machines typically employ open slots.  An experimental procedure was 

proposed in which the rotor eddy-current losses are calculated via a power balance and good 

correlation between the analytical and experimental results was observed. 

Yamazaki et al. (2008) described their work involving the use of proprietary 3D FEA software to 

calculate rotor losses in both IPM and SMPM RF machines fitted with either NOW or 

conventional distributed windings.  The FEA algorithm was verified experimentally by 

comparing torque and iron loss calculations (including both hysteresis and eddy-currents) to those 

obtained from measurements taken from an operating machine by a simple power balance.  The 

primary results of the investigation are that the eddy current losses in a PM machine with NOW 

are much larger than that of an equivalent distributed winding machine and that the primary 

magnet eddy current loss in an SMPM machine is a result of stator slot openings. 

1.3.3 Machine Geometry Comparisons 

The difficulty of making comparisons between machine geometries is bound up in the issue of 

attempting to compare apples with apples.  Thus various constraints are imposed by researchers 

to try and force equality in comparison.  The end result is often that the constraints themselves 

favor one geometry over another, leading to inconclusive results.  The general message of the 

literature that will be presented is fairly clear:  Researchers have demonstrated that at a high pole 

count, and if the aspect ratio is free or constrained to large values, any of the AF geometries 

should be seriously considered as a design option. 

In the first paper we study, Zhang et al. (1996) laid out a comparison of the standard inside rotor 

radial flux geometry with three kinds of axial flux geometries, denoted AFPM-11 (one stator, one 

rotor), AFPM-12 (one stator, two rotors) and AFPM-21 (two stators, one rotor).  The two kinds of 

AFPM-12 machines, which have also been termed TORUS machines and are discussed in detail 

by Huang et al. (2001), were not separately considered.  In one of these, magnet poles of the same 

polarity face each other across the stator and the machines are known as TORUS-NN types; 

whereas in the other, opposite polarities face each other and are known as TORUS-NS machines.  

For clarification, the AFPM-12 studied by Zhang et al. (1996) is a TORUS-NN type.  Further 

research, as will be discussed subsequently, has shown that using slotted or non-slotted stators 

can add more possibilities to the range of axial flux machines, and indeed, the TORUS-NS type 

can be constructed with no stator iron. 
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The work reported by Zhang et al. (1996) was based on the well-known sizing equations 

involving electromagnetic shear stress, where specific torque, or torque-per-unit-mass, was 

derived.  An advantage for AF machines that increased with pole count was demonstrated.  The 

geometric study appears not to have included the volume associated with providing the electric 

loading which will be included in later sections.  Two RF and three AF designs were compared 

and the results suggested that, when compared with the best RF design, the AFPM-11 was better 

(by measure of specific torque) by a factor of 1.8, the AFPM-12 by a factor of 2.1 and the AFPM-

21 by a factor of 2.4. 

Huang et al. (1999) reworked the sizing equations with much more detail, comparing the AFPM-

12 with a TORUS-NN machine.  No direct comparison of RF and AF structures was covered; 

however, it was observed that a PM axial flux machine has a significantly lower volume than an 

equivalent squirrel cage induction machine. 

Simsir and Ertran (1999) looked specifically at the TORUS-NN machine in comparison with a 

traditional RF machine for a particular application.  The conclusion was that the AF brushless DC 

motor has a much higher specific torque than the RF brushless DC motor and that this advantage 

increases with higher pole counts. 

The standard RF geometry and four different AF geometries were studied by Sitapati and 

Krishnan (2001).  The AF structures included a single-sided layout (i.e. AFPM-11) with both 

slotted and slotless stators considered, the dual stator AFPM-21 and a variant on the TORUS-NS 

machine in which the single stator had no iron to encase the windings.  Detailed designs of all 

five machines were carried out at five different power levels, with the aim of producing similar 

performances and efficiencies.  The conclusion was that the AF machines always have a smaller 

volume than the RF machines for a given torque rating.  It was also noted that the slotless designs 

required more copper and magnet material than the other geometries, which would impinge on 

overall cost. 

Cavagnino et al. (2002) studied, primarily from a thermal standpoint, the RF machine and the 

AFPM-21 machine.  This paper goes into a very high level of detail, but ultimately only designs 

that ensured a wasting surface that was adequate for the losses generated were considered.  

Designs were carried out for a range of aspect ratios, or diameter/length (D/L) ratios, and showed 

very high specific torque in buildable AF machines at large aspect ratios.  In general, an AF 

machine design with a small aspect ratio is not practical. 
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A three-way comparison between RF, AF and transverse flux motors was conducted by Rahman 

(2004), with the specific application of an in-wheel motor for an electric vehicle.  The 

comparison is based on a patented “twin pole” winding scheme and is made based on physical 

size (i.e. package dimensions) for a 9 pole-pair machine with five phases.  The RF and transverse 

flux motors were both configured with the rotor outside the stator and the AF machine considered 

is a single-sided structure.  The results showed that the RF motor had a slightly better 

performance than the AF motor.  The transverse flux version demonstrated the best performance, 

though it was designed with 20 pole pairs because the model would not converge with 9 pole 

pairs.  The constraints for this comparison included not only a fixed pole count but also a given 

package size.  Rahman does state that the AF motor would exceed the performance of the RF 

design if the aspect ratio was greater than 5, whereas for this comparative study, the packaging 

dictated an aspect ratio of 3.5.  Rahman also reports that the cogging torque was lower for the AF 

design. 

Parviainen et al. (2005) reported a detailed study comparing the traditional RF geometry to the 

AFPM-21 structure.  Mechanical constraints were discussed and included in the analysis.  The 

metric of comparison was solely the cost of the active materials.  The conclusion was that at 8 

poles, the two designs were of similar cost, but for designs with greater than 8 poles, the AF 

geometry was lower cost than the radial flux. 
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Chapter 2 

 

Rotor Losses in Axial Flux PM 

Machines 

 

The goal of this chapter is to detail the process of using FEA (both 2D and 3D) to estimate the 

rotor eddy-current loss in a single-sided AF PM machine as well as to substantiate the FEA 

estimations with experimental measurements.  While eddy-current rotor loss in an AF PM 

machine may not have as much impact on performance as that in say, an inner-rotor RF PM 

machine, the topic is still of concern because AF machines are typically designed with open slots 

and solid steel back-plates in addition to the possibility of using NOW.   

The focus placed here on experimental measurement of these losses may initially seem frivolous 

in this age of rich computing resources and intelligent FEA software; however, this experimental 

evidence that is important specifically when AF PM machines are considered.  Unlike the more 

traditional RF geometry, AF machines are difficult to model in 2D and if this is done, there are 

inherent errors in the model due to geometrical approximations.  It is possible to use 3D analysis; 

however this approach is substantially more time and resource consuming than its 2D counterpart, 

so it is often not a good option until a design has been more established.  Additionally, 3D FEA 

computations are quite sensitive to meshing operations and time stepping (when a transient solver 

is used). 
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A useful approach to modeling the AF PM machine in 2D will be described subsequently and the 

experimental measurements are then used to typify the magnitudes of errors that can be expected 

from the model estimations in both 2D and 3D.  The process of experimentally isolating the rotor 

loss measurements is not trivial and will occupy the majority of this chapter. 

2.1 Finite Element Analysis 
The software used in the analysis described here is Ansoft’s Maxwell® where the transient solver 

is utilized in order to include the large-scale motion of the rotor passing over the stator slots.  The 

results presented here have been computed for a 24-slot/20-pole single-sided AF PM test machine 

with single-layer NOW.  The specific parameters of the machine match those of the machine on 

which experimental tests are performed and are described below in Table 2.1.  

TABLE 2.1 Parameter Values of the AF PM Test Machine Used for Measurement and Estimation of Eddy-
Current Rotor Losses 

 

Parameter Value  Parameter Value 

Rated Power 1 kW  Slots (Ns) 24 

Nominal speed 3000 rpm  Poles (p) 20 

Stator O .D. 110 mm  Winding type Single-NOW 

Stator I. D. 66 mm  Phase resistance 1.3 Ω 

Stator height 25 mm  Phase inductance 6 mH 

Magnet type NdFeB-N35  Rotor thickness 4 mm 

Magnet thickness 4 mm  Airgap length 1 mm 

 

2.1.1 2D Modeling 
An approach to model the AF PM machine in two dimensions is to view the machine from the 

side (Fig. 2.1) and model a small portion of the machine with translation motion of the rotor piece 

instead of rotation.  However, the translation motion causes errors in the particular software used 

in this project; so as a work-around, we liken the AF machine to a small piece of a very large RF 

machine.  In this way, we can assign rotation motion around a radius on the order of 100 m in 

order to “simulate” the intended translation motion.  Depending on the slot (Ns) to pole (p) 

relationship of the machine, the model need only contain a fraction of the total geometry where 

the appropriate symmetry multiplier (m), equal to the GCD{Na,p}, is applied to the model.  The 

edges indicated in Fig. 2.1 are assigned master/slave boundary conditions, where based on the 
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winding function shown in Fig. 2.2, the relationship for this particular machine model is master = 

-slave.  The output parameters of the FEA (i.e. torques, etc.) can easily be converted from the 

large RF machine reference frame to that of the smaller AF PM machine that is under 

consideration.  

   

Fig. 2.1.  Illustration of the 2D modeling of a single-sided AF PM machine. 
 
 

In order to calculate the total eddy-current power loss in the rotor, the 2D FEA model is analyzed 

to determine the z-direction current density (Jz) in the magnets and rotor back-iron.  The current 

density is used because the net current in each rotor component is necessarily zero (indeed it is 

forced to zero by a constraint in the model description).  The rotor power loss (Pr) is then 

calculated as the integral over the model surface area (SA) as shown in (2.1) where h is the model 

depth in the z-direction (h = ro – r i) and σe is the conductivity of the material. 

 �� = ℎ��|�	|
�� 
����  (2.1) 

  

The analysis described was first conducted without a current input to the stator windings at 

various speeds in order to determine the rotor loss as a result of stator slotting alone (Pr,slot).  

Then, the same procedure was performed for rotor speeds of 1000 and 2000 rpm with stator 

current set to provide selected values of output torque to be consistent with the experimental 

operating points as described subsequently in section 2.2.  Each simulation was carried out over a 

rotor rotation equal to one pole-pitch and calculation of rotor loss was made (by hand) at each of 

10 time steps and then averaged to obtain the results shown in Table 2.2.  It is these values that 

will be compared with experimental data. 

 
 

Master Slave 
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(a) 

 

 
 

(b) 
Fig. 2.2.  Winding functions for the 24-slot/20-pole AF PM machine used for the measurement and 
estimation of rotor eddy-current losses. A single phase is shown in (a) while (b) shows the complete 

winding function for an arbitrary time instant. 
 

TABLE 2.2 Rotor Loss Estimations Resulting from 2D FEA 
 

Rotor Speed 
(rpm) 

Output Torque 
(Nm) 

Estimated Rotor 
Loss (W) 

1000 0 1.8 

1000 1.7 2.9 

1000 2.7 4.4 

2000 0 6.8 

2000 1.7 10.1 

2000 2.4 13.5 

3000 0 14.8 

 

Line of 
symmetry 

Line of 
symmetry 
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2.1.2 3D Modeling 
Some comparison of the 2D FEA estimations (and experimental measurement) of the eddy-

current rotor loss for the test machine with what is expected to be more accurate estimations via 

3D FEA was deemed useful.  However, due to the complexity and time consumption of running a 

transient simulation in 3D FEA, somewhat limited results are presented here for comparison.  

Three full 3D simulations have been run to obtain values for Pr,slot at speeds of 1000, 2000 and 

3000 rpm.  This was accomplished with a transient analysis in the aforementioned software 

employing large-scale rotor motion, but null currents in the stator windings.   

It has been the author’s experience in using 3D FEA that macroscopic calculations (i.e. torque) 

are quite robust, but more microscopic estimations (i.e. rotor loss) can be quite sensitive to solver 

parameters such as mesh and time step sizes.  In fact, quite erratic (and physically impossible) 

results have been found with meshing that is too coarse and/or inappropriate time stepping.  The 

eddy-current rotor loss estimations presented here have been obtained using the solver statistics 

detailed in Table 2.3 and though the symmetry rules applied in the 2D FEA are equally applicable 

here, the simulations were performed using the entire machine model.  Each simulation was 

carried out over a rotor rotation equal to one pole-pitch and eddy-current loss calculations were 

made automatically at each of 100 time steps.  The results of the 3D FEA estimations for the rotor 

eddy-current loss are shown in Fig. 2.3 with average values for Pr,slot equal to 1.3 W, 5.7 W and 

8.3 W for rotor speeds of 1000, 2000 and 3000 rpm respectively. 

 

TABLE 2.3 Solver Parameters Used in the 3D FEA Calculation of Eddy-Current Rotor Loss 
 

Parameter Value 

Magnet mesh 10,000 tetrahedra 

Rotor back-iron mesh 10,000 tetrahedra 

Stator pole-face mesh 5,000 triangles 

Aspect ratio 3 

Nonlinear residual error 0.001 
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Fig. 2.3.  3D FEA calculation of Pr,slot for rotor speeds of 1000, 2000 and 3000 rpm. 
 

2.2 Experimental Measurement 
The purpose of this section is to detail the experimental techniques used to isolate the rotor eddy-

current loss.  The methodology will be explained here, while the actual rotor loss determination 

(and comparisons with FEA calculations) will be addressed in the following section. 

The test machine used for experimentation is a single-sided AF PM machine as pictured in Fig. 

2.4 with parameters listed in Table 2.1.  The problem of isolating the rotor loss is approached by 

running the test machine in generation mode via a drive motor, coupled through an in-line torque 

transducer.  Rotational speed measurement is made using a Hall-effect sensor and both voltage 

and current measurements are accessible for all three phase outputs of the generator.  The power 

balance for this described arrangement is given by 

 �� � �� = ���� � ��� � ��,�� � ��,���� � ��, !" (2.2) 

 

where the power terms are: 

 Pm: mechanical power (input)  

 Pe: electrical power (output)  

 Pf+w: friction and windage loss  

 Ps,Cu: stator copper loss  

 Ps,Fe: stator iron loss  

 Pr,slot: rotor loss due to stator slotting  

Average = 8.3 W 
Average = 

5.7 W 

Average = 1.3 W 
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 Pr,NOW: rotor loss due to NOW  

 

           

Fig. 2.4.  Photographs of the single-sided AF PM machine used for experimentation. 

 

2.2.1 No-Load Tests 

The first no-load test is to determine the spinning loss in the test machine.  This loss measurement 

encompasses Pf+w, Ps,Fe and Pr,slot and is accomplished through the setup described previously 

with the generator load disconnected.  The measured spinning losses are shown in Fig. 2.5 for 

speeds in the range of 300 to 3000 rpm.  In order to obtain the best resolution possible at no-load, 

the in-line torque transducer used in this setup is rated at only 0.5 Nm. 

 

Fig. 2.5.  Spinning loss measurements for the test machine shown with a 2nd-order polynomial curve-fitting 
for the actual measured data points indicated. 
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One concern that is often associated with single-sided AF PM machines is the large axial load 

experienced by the bearing.  Therefore, the second no-load test performed was to isolate the 

bearing friction loss, Pf+w, as a function of speed (note that the aerodynamic portion of this loss is 

ignored).  In order to do so, the spinning loss measurement previously described was repeated 

using an uncut steel toroid as the stator piece (still fitted with a Hall-effect sensor for speed 

measurement).  The airgap was adjusted by adding shims between the bearing and the rotor brace 

such that the axial load in the bearing is equivalent to that of the actual machine, as computed via 

magnetostatic 3D FEA.  Fig. 2.6 shows the results of the spinning loss measurements with the 

uncut toroid.  It can be argued that this measurement also contains a core loss component, 

however, as can be seen in Fig. 2.7, the increased airgap reduces the magnetic penetration depth 

into the core and the flux densities encountered are quite small.  Therefore any core loss here is 

considered to be negligible. 

 

Fig. 2.6.  Spinning loss measurements for the test machine where the stator is replaced with an uncut toroid 
shown with a 2nd-order polynomial curve-fitting for the actual measured data points indicated. 

 

 
Fig. 2.7.  2D FEA representation of the stator flux densities present in the test machine when the stator is 

replaced with an uncut steel toroid. 
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2.2.2 Core Loss Measurements 

Arguably the most challenging experimental measurement to isolate is the loss in the stator core.  

The stator of this particular test machine is constructed from a toroidal core consisting of tape 

wound 0.28 mm thick grade M4, grain-oriented silicon steel.  In order to typify the behavior of 

the core loss under different operating conditions, the B-H curve of an uncut toroid was measured 

for a range of frequencies and magnetic induction levels. 

The toroid was fitted with two sets of windings where the primary was connected to the output of 

an audio amplifier (driven with a sinusoidal signal generator) and the open-circuit voltage on the 

secondary circuit was directly measured and numerically integrated to obtain the flux density 

measurement.  The specific core loss (W/kg) was then determined by numerical calculations on 

the B-H curve, scaled by the physical parameters of the toroid.  This procedure was completed for 

frequencies ranging from 60 Hz to 500 Hz (corresponding to the fundamental frequency of the 

machine at rated speed) and induction levels from 0.6 T to 1.8 T.  A sampling of the B-H curves 

is shown in Fig. 2.8 and the results of the loss calculations are given in Table 2.4. 

The type of steel used in the stator of this machine is grain-oriented and the loss measurements 

described previously are made for flux in-line with the rolling direction of the steel.  This is the 

true flux path in the stator back-iron of the machine; however, in the teeth, flux is pushed directly 

across the grain orientation and it is expected that the loss would increase in this case.  According 

to Soinski (1984), the specific loss is increased by a factor of approximately 2.8 when the flux 

path is 90o from the rolling direction; it is this value that is assumed for the core loss calculations. 

TABLE 2.4 Experimental Core Loss Data for the M-4 Steel Toroid Used for the Test Machine Stator at 
Various Frequencies and Induction Levels 

 

Freq.  
(Hz) 

Induction 
Level (T) 

Specific 
Loss (W/kg) 

 Freq.  
(Hz) 

Induction 
Level (T) 

Specific 
Loss (W/kg) 

60 1.8 1.47  300 1.8 17.28 

60 1.5 0.90  300 1.5 10.27 

60 0.8 0.26  300 0.7 2.28 

100 1.8 3.05  400 1.8 28.61 

100 1.5 1.84  400 1.4 15.37 

100 0.9 0.71  400 0.8 4.35 

200 1.8 9.75  500 1.5 24.41 

200 1.6 7.09  500 1 11.04 

200 1 2.96  500 0.6 4.85 
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                                         (a)                                                                                   (b) 
 

     
                                         (c)                                                                                   (d) 
 

     
                                         (e)                                                                                    (f) 
 

Fig. 2.8.  B-H curves for the M-4 steel toroid used for the test machine stator at frequencies of (a) 60 Hz, 
(b) 100 Hz, (c) 200 Hz, (d) 300 Hz, (e) 400 Hz, (f) 500 Hz. 

 

2D FEA was used to identify that the magnetic induction levels present in the stator teeth and 

yoke are 1.3 T and 0.8 T respectively.  In terms of core size, the complete toroid has a mass of 

1.15 kg where the total volumes of stator teeth and yoke are 41% and 20% respectively, of the 

uncut toroid mass.  Thus, for loss calculations, the yoke mass is 0.23 kg and that of the teeth is 

0.47 kg (total for all 24 teeth).  Using this physical data, the total core loss in the machine can be 

calculated as a function of fundamental frequency (or rotational speed).  To this end, the data 

given in Table 2.4 along with 2nd-order polynomial curve fits for each frequency as a function of 
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flux density was used to extrapolate values of specific loss at the induction levels of 1.3 T and 0.8 

T.  The core loss (in Watts) as a function of machine speed is then shown in Fig. 2.9. 

 

Fig. 2.9.  Stator core loss for the test machine as a function of rotor speed.  The points shown are not 
measurements; they are extrapolated from actual measurement data using a 2nd-order polynomial curve fit.  
A curve fit for the points shown is also illustrated on the graph, simply for the purpose of illustrating the 

trend of the calculations. 
 

2.2.3 Loaded Tests 

In these tests, the AF PM machine was run in generation mode, as previously described, with a 

variable resistance load connected and the resulting loss measurements are summarized in Table 

2.5.  The “Total Measured Loss” reported is the difference between the input Pm and the output Pe 

as described in (2.2).  Simple i2R calculations were made to determine the “Conduction Loss”, 

where no discernible temperature rise was noticed in the stator windings. 

TABLE 2.5 Summarized Results from Experimental Measurement of the Test Machine On-Load 
 

Rotor Speed 
(rpm) 

Output 
Torque (Nm) 

Total Measured 
Loss (W) 

Conduction 
Loss (W) 

923 1.7 19.0 10.69 

889 2.2 29.27 20.15 

889 2.7 66.84 46.17 

2000 1.7 46.92 10.86 

2000 2.3 78.24 25.39 

2000 2.5 93.22 31.63 

 



24 
 

2.3 Results and Discussion 
In this section, the experimental rotor eddy-current losses (Pr,slot and Pr,NOW) are inferred from the 

experimental measurements described in the previous section.  Comparisons are also made with 

respect to the loss estimations obtained from FEA. 

The rotor eddy-current loss that results from stator slotting alone (Pr,slot) can be isolated from the 

experimental measurements by subtracting the measured bearing loss (Fig. 2.6) and stator core 

loss (Fig. 2.8) from the spinning loss measurements shown in Fig. 2.5.  The equations found from 

curve-fitting are used to evaluate the spinning loss and stator core loss at rotor speeds exactly 

corresponding to the measured data points of the bearing loss to provide the plot of Pr,slot as a 

function of rotor speed shown in Fig. 2.10.  Also shown on the plot are the estimations obtained 

via 2D and 3D FEA.  It can be observed that the general shape of the data points from the 2D 

estimation is systematic, but the absolute values are quite overestimated.  For the 3D estimations, 

the calculated values are in better agreement with the experimental results, but the trend of the 

curve appears non-physical, most likely as a result of the choices of mesh size and time steps in 

the computation process.   

 

Fig. 2.10.  Plot showing the relationship between Pr,slot as inferred from experimental measurement and the 
estimated values obtained from 2D and 3D FEA. 

 

The rotor eddy-current loss that exists as a consequence of the NOW scheme (Pr,NOW) is obtained 

from the experimental measurements of the machine on-load by subtracting the spinning loss 

(Fig. 2.5) and conduction loss (Table 2.5) from the total measured loss in Table 2.5.  The equation 

found from curve-fitting is used to evaluate the spinning loss at rotor speeds corresponding to the 
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measured data points of the on-load testing.  The results of this calculation are shown in Table 2.6 

along with a reiteration of the 2D FEA estimations (3D FEA estimations of this value were not 

calculated due to the complexity and time consumption of running a full transient simulation in 

3D).   

The behavior (i.e. the trend) of Pr,NOW both as inferred from experimental measurements and 

estimated via 2D FEA is as expected in that the loss increases as the current loading increases for 

a given rotor speed.  However, the loss calculation based on experimentation increases at a 

drastically higher rate than is shown in the 2D FEA calculations.  It is likely that this discrepancy 

is bound up in: (1) the number of measurements that must be taken when the machine is loaded in 

order to calculate Pr,NOW and (2) the fact that the loss is so small in comparison with the total 

power output of the machine that large errors result from the subtraction of two relatively equal 

numbers.  Further work should be done in the estimation of this value; however, because the 

measurement information is simpler to obtain, the trends for Pr,slot shown in Fig. 2.10 give some 

insight into the differences between 2D and 3D FEA estimation for an axial flux machine.  

 

TABLE 2.6 Comparison Between Pr,NOW as Inferred from Experimental Measurement and the Estimations 
Obtained via 2D FEA 

 

Rotor Speed 
(rpm) 

Output 
Torque (Nm) 

Pr,NOW 
Measured (W) 

Pr,NOW  
2D FEA (W) 

~1000 1.7 0.40 1.1 

~1000 2.2 1.59 1.7 

~1000 2.7 13.14 2.6 

2000 1.7 12.46 3.3 

2000 2.3 29.25 6.0 

2000 2.5 37.99 6.7 
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Chapter 3 

 

Machine Geometry 

 

 

The purpose of this section is to provide a frank discussion of the comparative advantages and 

disadvantages of the single- and double-sided AF geometries as well as the inner-rotor style RF 

structure when considering surface-mount PM machines.  The basis of the comparisons is 

founded on constant electromagnetic air-gap shear stress, being the product of electric and 

magnetic loading, and indeed the constancy of both of those factors.  So also included in this 

section is a definition of electric and magnetic loadings in reference to the AF PM machine 

structure. 

3.1 Electric and Magnetic Loading in Axial Flux Machines 
The concepts of constancy of electric and magnetic loading need a little more care when applied 

to an axial flux machine as opposed to the more traditional radial flux structure.  Because the 

ensuing comparisons are all made with assumptions of both constant electric loading and constant 

magnetic loading, the purpose of this section is to clearly characterize these in terms of the axial 

flux PM machine geometry shown in Fig. 3.1.  

The airgap flux density, Bg (T), is established by the PM on the rotor in the axial direction and is 

assumed to have the ideal spatial distribution shown in Fig 3.2.  The magnetic loading, Bm (T) is 



27 
 

Stator Iron 

defined here as the peak value of the airgap flux density waveform.  It is dependent on the 

particular magnet material used in addition to the machine geometry and, assuming infinite 

permeability in the steel, can be determined from the relationship  

 #� = #� $�$� � $% (3.1) 

 

where Br (T) is the magnetic remanence of the PM material and lm and lg represent the axial 

thickness of the magnets and airgap respectively.  Carter’s coefficient may be included in (3.1) if 

the effects of stator slotting are to be considered.  It is assumed that the magnet pole arc, θm, is 

some arbitrary fraction of the pole pitch, θp, and that the ratio θm/θp is constant with radius.  It 

should be apparent that under these assumptions, the magnetic loading of the axial flux PM 

machine does not vary with radius.   

 

 

 

Fig. 3.1.  Illustration of the active components and structure of a single-sided axial flux PM machine. 

     

In a general sense, electric loading, Ae (A/m), is defined as the ratio of the total stator current to 

the machine circumference at the airgap interface (Miller, 1989).  Now in an axial flux machine 

stator, the slots obviously fan out as seen in Fig. 3.1.  These slots are also invariably of constant 

width, and hence of constant total current.  Thus the electric loading, seen in the micro, is actually 

higher at the inner radius and lower at the outer radius.  Without loss of generality, we use the 

average electric loading, defined at the average airgap radius, rav, for a 3-phase machine as 

 �� = 6'�'()2+,-.  (3.2) 

 

ro r i 

Airgap surface: 

Rotor Iron Windings 

Magnets 
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where Nc indicates the number of coils per phase, Nt denotes the number of turns per coil and I 

(A) is the RMS value of the stator current in any phase.   

 

Fig. 3.2.  Ideal airgap flux density distribution along the circumferential direction. 

 

The spatial distribution of stator current is dependent upon the specific slot and pole combination 

used in the machine.  For example, the ideal winding function for a single phase of a 6-slot/4-pole 

machine with non-overlapped windings is shown in Fig. 3.3-a and Fig. 3.3-b shows the complete 

winding function of the machine, assuming a balanced set of 3-phase currents, evaluated at some 

arbitrary time instant.  The winding function is not dependent upon the radius at which it is 

considered. 

 

θm 

θp 

… 
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(a) 

 

(b) 

Fig. 3.3.  Winding functions for a 6-slot/4-pole machine with non-overlapped windings.  That of a single 
phase is highlighted in (a) where the two phases not shown are identical with phase shifts of 120o and 240o.  

In (b), the complete winding function for the stator MMF is shown for an arbitrary time instant. 
 

Fundamentally, a force F (N) is produced in the machine due to the interaction of rotor flux and 

stator current.  As detailed by Miller (1989), the electromagnetic airgap shear stress, σ (Pa) is 

defined as the magnitude of this force per unit airgap surface area and can also be expressed as 

the product of the electric and magnetic loadings as 

 � = /+0,�
 � ,1
2 = 3#��� (3.3) 

 

Specifically, only the spatial harmonics of the winding function waveform that coincide with 

those of the airgap flux density contribute to torque production.  The proportionality constant, k, 

in (3.3) is used to account for the difference in magnitudes between the peak values of the ideal 

waveforms and those of the torque producing components as shown in Figs. 3.2 and 3.3-b.   

Finally, the torque, τ (Nm), produced in the single-sided axial flux machine shown in Fig. 3.1 can 

be defined in terms of the aforementioned quantities as  
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 4 = �-.�%,-. (3.4) 

 

where σav indicates the shear stress when the electric loading is evaluated at the average machine 

radius, rav  (m), and Ag (m
2) is the airgap surface area. 

Since the slots in an axial flux machine are typically rectangular, of constant with (ws) and depth 

(ls) as shown in Fig. 3.4, it is reasonable to redefine average electric loading as 

 �� = �$�5�'�2+,-.  (3.5) 

  

in terms of the slot current density, J (A/m2), usually established in design by thermal 

considerations.  In this equation, Ns is used to represent the number of slots in the machine and 

the current density implicitly accounts for the slot fill factor.  For the purpose of the subsequent 

discussions and comparisons, it is assumed that not only is the average electric loading kept 

constant, but so is the current density, in an effort to maintain the same order of loss in all the 

machine geometries under scrutiny. 

 

Fig. 3.4.  Slot geometry in a typical axial flux machine stator. 

 

The ensuing comparisons are made in terms of active material volume, so it is helpful to get a 

sense of how the dimensions of the machine may be impacted by the electric and magnetic 

loadings.  The slot width is dependent upon the design choices of magnetic loading and the 

maximum flux density, Bt (T), allowable in the stator teeth and is given by  

 5� = 61 � 8�89 #�#� :2+,-.'�  (3.6) 

ls 

ws 
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Substituting (3.6) back into (3.5), it becomes clear that the slot length, which has a direct impact 

on the total axial length of the machine, is uniquely determined once the design parameters of 

electric and magnetic loading, current density and maximum steel flux density are defined.  The 

expression for slot length is given by 

 $� = ��� ; #�#� � 8�89 #�< (3.7) 

 

3.2 Single- versus Double-Sided Axial Flux PM Machines 
Only a minority of the studies discussed in the literature review considered the single-sided axial 

flux machine (Fig. 3.1).  Those that did tended to make a comparison between single- and double-

sided versions of a machine at the same radius.  However, if a torque specification is known and 

the dimensions of the two competing machines are essentially free, then the single-sided machine 

can be shown to exhibit a significantly higher utilization of active material. 

The subsequent development starts with a single-sided axial flux machine and the amount of 

active material is then doubled for two separate design cases, while maintaining constancy of 

both electric and magnetic loadings.  In the first case, a double-sided machine (dual stator) is 

created at the same stator outer radius, while the second approach is to reallocate the additional 

active material to construct a larger, single-sided machine.  The derivation shows a 41% increase 

in the torque (power) for the enlarged single-sided machine when compared with the double-

sided version.  

For the baseline single-sided axial flux PM machine shown in Fig. 3.1, the torque is defined as in 

(3.4).  Following common usage when dealing with radial flux machines, we adopt the term split 

ratio, which is, neglecting the airgap, the ratio of the stator inner diameter to the stator outer 

diameter.  We apply this directly, with the same definition, to axial flux machines using the 

symbol αSR.  The airgap surface area and the average machine radius of the axial flux geometry 

are then expressed as functions of split ratio as given in (3.8) and (3.9) respectively. 

 �% = +,�
=1 − >�?
 @ (3.8) 
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 ,-. = ,�2 =1 + >�?@ (3.9) 

 

And finally, the torque expression is rewritten as 

 4 = +�-.,�A2 =1 + >�?@=1 − >�?
 @ (3.10) 

 

If the total axial length of the machine is la, the torque density (TD) of the machine is given in 

(3.11) where the total volume calculation neglects the impact of the winding end-turns. 

 BC = 4+,�
$- = �-.,�=1 + >�?@=1 − >�?
 @2$-  (3.11) 

 

Now we explore the two previously described ways of doubling the airgap surface area and the 

effects these changes have on the torque density of the machine.  In the first case, another stator is 

added on the opposite side of the rotor, creating a second airgap; thus, the total required magnet 

thickness also doubles in order to maintain the same magnetic loading (see Eq. 3.1).  Because the 

electrical loading is also kept constant, the geometry of each stator remains unchanged from the 

original single-sided baseline version (see Eq. 3.7).  This new machine has twice the airgap area 

of the single sided machine at the same torque radius, so the torque doubles.  The total axial 

length does not quite double since the rotor iron has become unnecessary.  However, the focus of 

this study is on machines with high pole counts, where the necessary rotor iron thickness tends to 

zero as the pole count rises (Fig. 3.6); so we assume a doubling of the axial length in order to 

simplify the analysis.  Thus, the total machine volume doubles and the torque density remains the 

same as in the original single-sided machine.   

In the second case, the new outer radius, ro’ , of the single-sided machine that is required to double 

the original airgap area can be calculated from simple geometry as 

 ,�D = √2,� (3.12) 

 

assuming that αSR is unchanged.  The torque output, τ’ , of this larger machine is then 
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 4D = �-.02�%20√2,�2 = 2√24 (3.13) 

 

Since both the magnetic and electric loadings are kept constant, the magnet thickness and stator 

axial length are unchanged.  So it is a reasonable assumption that the volume of this machine 

doubles as the airgap surface area is doubled.  It should be noted that more stator yoke and rotor 

back-iron would be needed at the same pole count (Fig. 3.6); however, a good designer would 

increase the pole count for the larger diameter to better handle end turn wastage.  The torque 

density of this larger, single-sided machine is then 

 BC′ = 4′G′ = 2√242G = √2BC (3.14) 

 

This analysis has shown that while doubling the amount of active material in a single-sided axial 

flux PM machine at the same radius to produce a double-sided machine results in the same torque 

density (as the original version), reallocating that extra material to a larger single-sided machine 

results in an increase in torque density by a factor of 1.414.  Therefore, it is concluded that a 

single-sided machine has a torque density that is ~41% higher than that of a double-sided 

machine. 

3.3 Axial Flux versus Radial Flux Machines 
The difficulty in making comparisons between machine geometries is bound up in the issue of 

attempting to compare apples with apples.  Various constraints are imposed by researches to try 

and force equality in comparison; the end result is often that the constraints themselves favor one 

geometry over another, leading to inconclusive results.  The two aspects of AF and RF machines 

that will be discussed here are the rotor volume and airgap surface area advantages enjoyed by the 

AF structure when compared to the traditional inner-rotor RF geometry.  The imposed constraints 

are clearly outlined and it is the authors aim to identify any biases introduced by said constraints. 

3.3.1   Optimal Split Ratio 

The metrics used in the ensuing comparison between radial and axial flux machine structures are 

the torque density, or torque per unit of total volume needed to house the active materials and the 

specific torque, or torque per unit mass of the active materials.  The torque density of a radial-flux 

machine is written as a function of split ratio as 
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 BC = �=2+>�?,�$-@=>�?,�@+,�
$- = 2�>�?
  (3.15) 

 

However, this expression does not fully define the dependency of torque density on split ratio 

because electric loading (and hence the airgap shear stress) can also be expanded as a function of 

split ratio.  The optimum split ratio, in terms of torque density, for a radial flux machine is 

presented by Pang, et al. (2006) as a function of both the number of slots in the machine and the 

ratio of magnetic loading (Bm) to the maximum steel flux density (Bt).  The derivation is based on 

general purpose sizing equations and while the mathematics will not be repeated here, plots are 

included in Fig. 3.5 to show the optimal split ratio for a radial flux machine as it varies with the 

slot count and the flux density ratio, Bm/Bt (Pang, 2006). 

In terms of maximum torque production for a fixed outer diameter in an axial flux machine, the 

optimal split ratio has been shown to be αSR = 0.577 (Simsir, 1999) (Spooner, 1992).  

Additionally, it is apparent that as the split ratio increases closer to unity and the outer machine 

radius approaches infinity, the specific torque of the machine improves; however, this is an 

impractical result because it implies a machine with zero mass and infinite diameter.  As a point 

of practicality, split ratio values between 0.577 and 0.650 are considered to be within the 

optimum range for an axial flux machine (Simsir, 1999).   

 

 
(a) 
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(b) 

 
Fig. 3.5.  Plots showing the optimal split ratio for a radial flux machine as determined by Pang, et al. 

(2006), in comparison with those of an axial flux machine.  Optimal split ratio is shown as a function of (a) 
the number of slots in the machine and (b) the ratio of peak flux density in the airgap (Bm) to that in the 

steel (Bt). 
  

3.3.2 Rotor Volumetric Advantage 

There is a definite rotor volumetric advantage to axial flux machines at reasonably high pole 

counts.  A large part of the inside volume of a traditional radial flux rotor, or indeed the stator in 

an outer rotor radial flux machine, is not used electromagnetically.  Ingenious solutions for 

“slinky” style wound stators for outer rotor machines and spiders to support a rotor structure will 

not save on total volume, but will save active material and hence, both active and passive mass.  

An estimate of the volume “wasted”, i.e. not used electromagnetically, will now be given for both 

an axial flux and radial flux rotor. 

Fig. 3.6-a depicts a side view cut-away of an axial flux PM machine that has been adapted to a 

linear coordinate system in order to ease the ensuing geometrical descriptions.  In this diagram, l r 

represents the thickness of the rotor backiron that is penetrated magnetically and ly is the 

thickness of the stator yoke.  Note that the dimensions discussed are equally applicable to a radial 

flux PM machine cross-section if the label for the axial direction is replaced with the radial 

direction as explained in Fig. 3.6-b.    
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(a) 

 

 
(b) 

 
Fig. 3.6.  Structure and dimensions of a surface mount PM machine are shown in (a) and (b) illustrates the 

PM flux paths.  The representations shown are linear, but equally applicable to RF or AF structures 
according to the coordinate systems indicated in (b). 

 
The axial flux structure has the advantage that the rotor thickness can be designed to be exactly as 

thick as is required to obtain the desired flux density in the steel (Bt).  Because of this, the only 

wasted volume in the rotor plate is the center disk up to the stator inner radius so that the fraction 

of rotor volume that remains unused is simply αSR
2.  If we assume that the axial flux machine is 

designed with a split ratio in the “usual” optimum range, then the fraction of rotor volume wasted 

is between 33% and 42% of the total rotor volume.   

It should be apparent that the ratio of flux density in the airgap to that in the rotor backiron is the 

inverse of the ratio of the respective cross-sectional areas carrying the flux.  Note that only half of 

the flux lines crossing the airgap and entering a tooth pass through a cross section of the rotor 

back-iron (Fig. 3.6-b).  For the radial flux structure, this ratio can be expressed as 

 #�#� = 2$�$-H8�89 IJ2+>�?,�K L $- = 898� $�K+>�?,� (3.16) 
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where the airgap length has been neglected.  Eq. (3.16) can be used to calculate l r for a given 

machine size, pole count and flux density ratio; however, unlike the axial flux design, the rotor 

thickness in a radial flux machine cannot be adjusted to exactly match this quantity.  The fraction 

of rotor volume that is wasted (δrad) can then be determined by 

 M�-N = +=>�?,� � $� � $�@
$-+=>�?,� � $�@
$- = 61 − +>�?,�K=>�?,� − $�@ 8�89 #�#� :


 (3.17) 

 

In order to quantify the rotor volume that is wasted in various radial flux machine designs, we 

make assumptions about some of the parameters used in (3.17): 

1. The airgap thickness is fixed at lg = 1 mm. 

2. The desired magnetic loading is fixed at Bm = 0.8 T. 

3. The magnets used in the design have a remnant flux density of Br = 1 T.  (Note: This is 

less than that of sintered NdFeB (N35) which have Br = 1.23 T.) 

4. The ratio of magnet pole arc to pole pitch is fixed at θm/θp = 0.9. 

From assumptions 1-3 above, (3.1) can be used to calculate a necessary magnet thickness of lm = 

4 mm.  Fig. 3.7-a shows a plot of δrad as a function of pole count and machine rotor radius (αSRro) 

at a fixed flux density ratio of Bm/Bt = 0.5 while Fig. 3.7-b shows δrad as a function of flux density 

ratio and machine rotor radius for a fixed pole count of p = 8.  This shows that for machines with 

pole counts greater than six, the axial flux structure will always exhibit higher rotor volume 

utilization than that of a radial flux machine for any machine size. 

 

(a) 
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(b) 
 

Fig. 3.7.  Plot showing the percentage of back-iron volume that remains unused electromagnetically for a 
radial flux rotor. 

 

3.3.3 Torque Production 

In this section, it is shown that the single-sided axial flux machine typically requires a lower 

airgap surface area for a given torque specification and (average) shear stress design point than a 

traditional radial flux machine.  For the axial flux geometry, (3.8) and (3.10) can be combined to 

yield the expression for the airgap surface area (as a function of split ratio) given by 

 �%_�� = +=1 − >�?
 @ 6 24�-.+=1 + >�? − >�?
 − >�?A @:

 AP

 (3.18) 

 

For the radial flux structure, the symbol αasp is introduced to represent the aspect ratio, or rotor 

diameter to length ratio (r i/la).  Then the torque production can be expressed as 

 4 = 4�+,�A 6 >�?A>-�9: (3.19) 

 

This can be solved for the machine radius and used to determine the required airgap surface area 

as given by 
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 �%_?� = 4+>-�9 J4>-�94+� L
 AP  (3.20) 

 

A torque specification of 100 Nm and an (average) electromagnetic shear stress design point of 

20 kPa were used to illustrate the differences in required airgap surface areas between the axial 

and radial flux machine geometries as shown in Fig. 3.8.  The lower area required by the single-

sided axial flux machine compared with all but the most disc-like radial flux machines is 

significant.  The cost of a PM machine is largely dominated by the amount of magnet material 

necessary because there is such a large difference in cost between magnets and other active 

materials in the machine.  Since the amount of magnet material in a machine is proportional to the 

airgap surface area, a lower area equates to a significant reduction in cost. 

 

Fig. 3.8.  Plot showing the required airgap surface area for an axial flux machine and radial flux machines 
with various aspect ratios for a torque requirement of 100 Nm and a shear stress design point of 20 kPa.  

 

3.4 Details of Constant Electric and Magnetic Loading in 

Axial Flux and Radial Flux Machines 
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3.4.1 Magnetic Loading 

One might initially expect that the cost of magnetic loading in axial and radial flux structures 

would be the same per unit area, but as will be discussed subsequently, this is not necessarily the 

case.  Firstly, at this stage of axial flux technology development, it is common to use larger 

airgaps than are possible in a radial flux machine.  This would then imply a higher cost for a 

given magnetic loading owing to the need for thicker magnets (Eq. 3.1).  The reality is that the 

differences are much smaller than one might imagine and sometimes nonexistent due to the 

shaping of magnets required for surface mounted PMs for a radial flux machine.  The necessary 

curved surfaces of the magnets are invariably ground to shape from a pre-sintered block of 

material and he cost of such magnets includes the wasted material.  Thus, premiums on cost of 

the order of 30% are to be expected.   

A second problem is the magnet retention mechanism necessary in a radial flux structure has 

which has several negative impacts on magnetic loading.  It is common to add a glass fiber or 

Kevlar “bandage” around the rotor which then adds to the effective airgap from a magnetic 

perspective; in this way, the radial flux machine may have a larger effective airgap than an axial 

flux machine.   

A common solution to reduce the cost of the curved magnet piece in a radial flux machine is to 

shallowly embed the magnets in pockets in the rotor, allowing the use of flat magnet pieces.  This 

embedding of the magnets introduces its own repercussions on cost of magnetic loading because 

it provides flux shorting paths which can reduce the effective flux of the magnet by a factor of up 

to 20%.  Furthermore, attempting to reduce the flux shorting effect must be carefully balanced 

against a reduced burst strength capability in over-speed conditions.  A final consideration for this 

rotor assembly is that the manufacturing process involved can be quite challenging and ultimately 

add to the cost. 

Thus qualitatively, we may conclude that the costs for magnetic loading are similar in both axial 

and radial flux machine structures.  However, we have not been able to derive a generalized, 

workable analytic relationship so each case should be considered independently. 

3.4.2 Electric Loading 

The physical amount of copper contained in a slot is clearly the same for a given current density, 

fill factor and electric loading.  Differences then appear in the end-winding wastage.  However, 

most new machines are constructed with non-overlapped windings so the effect is less apparent 
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than when a traditional distributed winding scheme is used.  We therefore assume that there is no 

significant difference in the copper cost per unit area for a given electric loading. 

The stator steel is a different matter.  The amount of iron necessary firstly to provide the teeth to 

enclose and support the copper and secondly to provide the yoke, can be computed as an area per 

unit length of circumference of the airgap in a radial flux machine and of the average radius in an 

axial flux machine.  Note that these are the same lengths used in the definition for electric loading 

for the radial and axial flux geometries respectively.  This area per length then represents the steel 

volume per unit stack length in a radial flux machine and per unit length of the radial stator 

thickness in a single-sided axial flux machine. 

Unlike an axial flux machine, the slots in a radial flux machine fan out and so the width (in a 

circumferential direction) is a function of radius.  If we consider a 2D cross-section of a radial 

flux machine, the total surface area allotted to slots (As) per unit airgap circumference can be 

written as 

 ��_?�2+,1 =
H1 − 8�89 #�#� I + J0,1 + $�,?�2
 − ,1
L2+,1  

(3.21) 

 

where again, the airgap thickness is neglected.  Similarly for the axial flux structure, the total slot 

cross-sectional area per unit circumferential length at the average radius is given by 

 ��_��2+,-. = 61 − 8�89 #�#� : $�,�� (3.22) 

 

In order to constrain the copper cost to be the same for a given electric loading in each machine 

geometry, we equate (3.21) and (3.22) to obtain an quadratic equation in ls,RF.  Taking only the 

positive root, an expression for ls,RF can is determined as a function of ls,AF to be 

 $�,?� = ,1 R−1+ S1+ 2$�,��,1 T (3.23) 
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The yoke thickness, ly, which is assumed to be constant from the bottom of the stator slot to the 

outer radius in the radial flux geometry or the back of the stator in the axial flux structure, can be 

determined using the same logic as was used in section 3.3.2 to ascertain the necessary rotor 

thickness.  The expression for the axial flux machine is 

 $U = +,-.'� 8�89 #�#�  (3.24) 

 

and the radial flux geometrical calculations result in the same equation with rav replaced with r i.  

We make the simplifying assumption that rav = r i.   

Given these, the surface area of the annulus needed for the radial flux machine per unit 

circumferential length, ignoring the scrap cut out for slots can be readily computed from 

knowledge of ls,RF and ly.  The axial case is similarly simple.  For comparative purposes, Fig. 3.9 

shows, for r i = 50 mm and a range of axial slot lengths from 2 to 30 mm, the fractional increase in 

steel required for constant electric loading in a radial flux machine when compared to an axial 

flux machine. 

 

Fig. 3.9.  The fractional increase in steel, in a RF machine when compared with an AF machine, necessary 
to provide the same electric loading.  The results shown are for r i = 50 mm, Ns = 9 and ls,AF is allowed to 

vary.    
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3.5 Auxiliary Issues 
The observation presented in the introduction regarding the relative uptake of the single-sided 

axial flux PM machine both in academia and industry is revealing.  There is a range of issues, 

some of which are reputed to rule out the axial flux structure as a viable solution and others of 

which are claimed to be significant advantages.  Of course some of these issues have more basis 

in scientific fact than others and the purpose of this section is to introduce a sampling of these. 

1. Axial Attractive Force 

This is high in single-sided axial flux machines and is usually a surprise to most people 

when they first encounter it which leads to concerns.  However, standard deep-groove 

ball bearings do have quite a high axial load rating and careful design and testing has 

shown that standard ball bearings, when correctly used and sized, are entirely adequate in 

a well-designed machine.  In fact, it is common practice to add axial loads to radial flux 

machines using wave washers in order to reduce bearing noise during operation.  Fasco 

Australia has recently taken out a patent for a method of reversing the usual wave washer 

thrust on one of the machine bearings with the purpose of reducing the net magnetic force 

(Langford, 2010). 

2. Stator Construction 

Prototypes and small production quantities of single-sided axial flux machines are 

invariably produced by the expensive process of milling or spark eroding slots in a tape-

wound toroid.  However, mechanically controlled “punch and wind” machines abound in 

the patent literature and a lesser number of successful machines have been in operation 

for many years.  Fasco Australia has developed a numerically controlled machine with a 

single punch and die that produces stators at a high rate with low cost (Patterson, 2010).  

The advantages of the method are that the slot shape can be easily changed and the only 

steel wasted in the process is that cut out for the slots.  Such a stator production method 

should be rigorously compared to the very expensive progressive die machines used for 

large-scale radial flux machine stator lamination production. 

3. Stator Coils 

With the assumption that the machine design is done with open stator slots and a non-

overlapped winding scheme in which a coil spans a single tooth, the coils in an axial flux 

machine are planar (regardless of whether the machine is single- or double-sided).  Thus 

they are very easy to wind and place and the use of rectangular section copper for high 
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performance machines is comparatively simpler when compared with the process of 

winding coils for radial flux machines. 

4. Airgap Maintenance 

The axial flux geometry does not lend itself well to the small airgaps traditionally 

required in machines, prior to common use of rare earth magnet materials for field 

generation.  However, the discussion presented in this paper is regarding PM machines 

which allow the machine designer to impose a larger airgap while still achieving good 

performance.  That said, the efforts of practicing engineers in the process of continuous 

improvement is a remarkable thing and we are thence finding ways to gradually refine 

our airgap tolerances and reduce the airgap length. 

5. Magnet Retention 

This is a substantial positive attribute of the axial flux geometry, either single- or double-

sided, where a simple lip on the rotor can manage magnet retention with no practical 

speed limitation.  Additionally, the magnet retention mechanism on an axial flux machine 

is external to the main flux paths so as not to interfere with operational characteristics. 

6. Heat Paths 

In many applications, it is relatively easy to allow the rotor of a single-sided axial flux 

PM machine to enjoy very poor heat paths from the primary source of heat in the stator 

even for an air-cooled machine.  This protects the heat-sensitive rare earth permanent 

magnets and allows for a lower heat specification for the magnet material, thereby 

mitigating some costs.  Furthermore, the flat back of the stator may be arranged to have 

excellent heat paths to its mounting surface.  
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Chapter 4 

 

Design of the Integrated Starter-

Alternator 

 

The fact that the application for this machine is an integrated starter-alternator (ISA) for a series 

hybrid electric vehicle (HEV) greatly simplifies the design process because the machine can be 

optimally designed around a single torque-speed operating point instead of over a range of values.  

This machine will operate predominantly in generating mode, but it must also be capable of 

motoring operation to supply the required starting torque of the internal combustion engine (ICE) 

up to a given speed.  So generally speaking, the design challenge inherent to this type of 

application is that the torque requirement of the machine during motoring is often much larger 

than the nominal operating torque when the machine is in generation mode.  In this chapter, the 

performance criteria for the machine are quantified based on characterization of both the ICE and 

the energy storage system of the vehicle and a full account of the design process is detailed, 

including justification of all design choices. 

4.1   Specification of the Performance Criteria 
An investigation of the relevant characteristics of the vehicle’s energy storage system and the ICE 

chosen for this application will now be presented.  The goal is to determine the torque-speed 
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operating point and any electrical characteristics around which the integrated starter-alternator 

should be designed.   

4.1.1 The Internal Combustion Engine 

 
The primary advantage of a series-HEV in comparison to a parallel-HEV is the disconnection of 

the ICE from the driveline of the vehicle.  This not only permits the utilization of a smaller 

capacity ICE, but also ensures that the operating conditions of the engine are independent of the 

driving demands on the vehicle.  The objective of the ICE testing procedure is to specify a single 

torque-speed operating point of the engine that corresponds to its maximum fuel efficiency since 

it is assumed that the engine will be run only at this operating point or not at all.  The design of 

the ISA will then be based around this particular torque-speed condition.  

The model of engine chosen for this project is a Honda GX390 engine with datasheet parameters 

as listed below in Fig. 4.1.  The primary characteristics of interest are the maximum output power 

of 8.7 kW and peak torque output of 26.4 Nm, although the actual output of the engine depends 

on a number of factors including the operating speed of the engine (Fig. 4.1).  In order to 

determine the peak fuel efficiency of the engine, a measure of brake specific fuel consumption 

(BSFC), defined as the ratio of the rate of fuel consumption to shaft output power, is taken at a 

variety of loads and engine speeds as shown in Fig. 4.2.  The testing of the ICE was performed at 

the University of Nebraska Tractor Test Laboratory using a SuperFlow engine dynamometer 

setup.   

Specification Description 

Engine type 4-stroke, overhead valve, single cylinder 

Dimensions (L x W x H) 407 x 459 x 449 mm 

Dry weight  31.5 kg 

Peak power 8.7 kW (at 3600 rpm) 

Peak torque 26.4 Nm (at 2500 rpm) 

Displacement 389 cm3 

Bore x Stroke 88 x 64 mm 

Compression Ratio 8.2 : 1 

Lubrication system Splash 

  
 
 

Fig. 4.1.  Datasheet specifications for the Honda GX390 engine. 
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Fig. 4.2. BSFC map of the ICE for a range of torque-speed operating points.  Note that peak fuel efficiency 
of the ICE is indicated by minimum BSFC. 

  

From these measurements, it can be seen that the high fuel efficiency (low BSFC) operating 

points are clustered around engine speeds between 2700 and 2800 rpm for torque outputs ranging 

from 22.5 to 23.5 Nm.  The irregularity in the sample points shown in Fig. 4.2 is indicative of the 

difficulties encountered in stabilizing the ICE at a single operating point for any length of time.  

Further testing in order to corroborate the results shown was unable to be performed due to 

limitations in access to the appropriate facilities.  Regardless of these issues, it is determined that 

the generation mode design parameters of the integrated starter-alternator (ISA) will be based 

around the nominal operating point of 23 Nm at 2800 rpm, corresponding to a power output of 

6.7 kW.  

4.1.2 Electrical Requirements 

 

The ISA will be interfaced to the energy storage system of the vehicle via a three-phase converter 

that allows bidirectional power flow, thereby performing inverter functions during motoring 

mode and rectification for generation mode operation (see Fig. 1.1).  The design of this converter 

block is beyond the scope of this dissertation; however, for machine design purposes, it is 

assumed that it consists of a three-phase rectifier/inverter on the machine side coupled with a DC-

DC converter on the battery side as shown in Fig. 4.3.  In order to not only keep the components 
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of the converter small but also to minimize losses in the converter, it is desirable for the rectified 

voltage output of the generator to be roughly equal to the desired battery bus voltage.  The battery 

bank for the vehicle consists of 64 cells, each at a nominal voltage of 3.7 V (peak of 4.2V), 

connected in series to give a nominal bus voltage of 236.8 V.  The RMS value of the output of the 

six-pulse rectifier is equal to 1.655 times the peak value of the phase voltage.  Therefore the 

machine will be designed to have a per-phase peak output voltage of approximately 143 V at the 

nominal speed of 2800 rpm, corresponding to a per-phase machine constant of 0.488 Vpk,l-

n/(rad/s).   

 

Fig. 4.3.  Block diagram of the power electronics system connecting the ISA with the battery bank.  
 

4.2 Stator Design 
The machine geometry chosen for this application is a single-sided AF PM machine, as discussed 

previously, so this section will include details about the single stator. 

4.2.1 Machine Sizing 

In sizing this particular machine, we work around the torque specification discussed in section 4.1 

where all dimensions of the machine are essentially free.  Eq. (3.10) gives the expression for 

torque in an AF machine as a function of outer radius and split ratio (αSR).   The concept of 

optimal split ratio for AF machines, as discussed in section 3.3.1, is a topic of current research.  

In order to illustrate what happens to the machine design with variation of the split ratio, we begin 

by specifying a nominal torque of between 22.8 and 23.2 Nm and then compute combinations of 

inner and outer radii, using (3.10) with σAV = 15 kPa.  The following constraints are imposed on 

all the designs being analyzed. 

1. Equal electric (Ae) and magnetic (Bm) loadings. 

2. Equal current densities (J). 
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3. Equal peak steel flux density (Bt). 

4. Equal magnet pole arc to pole pitch ratios (θm/θp). 

5. Fixed number of slots per meter as at the average machine radius (Q). 

6. Fixed number of poles per meter at the average machine radius (P). 

7. Equal airgap thickness (lg) and magnet remnant flux density (Br). 

Three metrics of comparison were used to evaluate the designs:  (1) specific torque (Nm/kg) or 

torque per unit mass of active materials, (2) torque density (Nm/m3) or torque per unit volume of 

the total package, including the added volume resulting from the winding end-turns and (3) cost 

per unit torque ($/Nm) of the active materials.  The windings are assumed to be of the DL NOW 

variety.  Fig. 4.4 shows the specific torque and torque density as a function of split ratio for the 

parameter values as listed in Table 4.1, while the cost trend for the designs is indicated in Fig. 

4.5.  Machines with split ratio values less than approximately αSR = 0.45 are not included in the 

analysis because the slot width necessary to maintain Bm/Bt = 0.5 resulted in a tooth width that 

was at or below zero at the inner machine radius.  Fig. 4.6 does show the continuation of the 

specific torque and torque density trends for split ratios between 0.2 and 1 by increasing Bm/Bt to 

0.9 (indicating a lower design point for the flux density level in the steel).  In reality however, 

there does exist a minimum value for the inner machine radius as it is necessary to accommodate 

the inner winding end-turns as well as the rotor shaft.  The details of the calculations used in 

deriving these results can be found in Appendix A.   

From these trends, it is obvious that the torque density and specific torque cannot generally be 

maximized simultaneously, so selection of the optimal split ratio depends on the relative 

importance of these two concepts.  The dollar cost trend indicates an optimal split ratio closer to 

αSR = 1.  This is because the cost of magnet material (NdFeB is considered here) is much higher 

than that for the steel and copper, so the minimum total cost for the machine occurs for the 

designs with the lowest airgap surface areas.  The relative cost function for this application is 

someone arbitrary, so a split ratio target of αSR = 0.6 was selected.  The machine sizing was 

completed for a shear stress of 15 kPa and all pertinent parameters as listed in Table 4.1, resulting 

in machine dimensions of ro = 98 mm and r i = 58 mm. 
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TABLE 4.1 Parameter Values Used to Evaluate Machine Designs with Varying Split Ratio 
 

Parameter Value  Parameter Value 

θm/θt 0.75  Q (m-1) 60 

Bm (T) 0.8  P (m-1) 40 

Bm/Bt 0.5  Br (T) 1.0 

J (A/m2) 2.0 x 106  lg (m) 0.001 

         

 
 

Fig. 4.4   Torque density and specific torque as a function of split ratio in AF machines with parameter 
values as given in Table 1. 

 
 

 
 

Fig. 4.5   Cost per unit torque as a function of split ratio in AF machines with parameter values as given in 
Table 1. 
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Fig. 4.6   Torque density and specific torque as a function of split ratio in AF machines with parameter 
values as given in Table 1 except that here Bm/Bt = 0.9. 

 

4.2.2 Selection of Slot and Pole Counts 

As discussed previously, this winding configuration chosen for this machine will be of the NOW 

variety.  The particular slot and pole counts selected for this application have impacts on several 

aspects of the machine performance and so important areas of consideration are:  (1) rotor losses, 

(2) main harmonic winding factors and (3) practical concerns such as physical construction and 

electrical frequency limitations.  It is important to note that the machine to be constructed for this 

application is intended as a proof-of-concept and so design choices that are described here may 

differ in a setting where many thousands of machines will be produced on an assembly line.     

It is assumed that a high-performance sinusoidal drive will be used to control this machine and as 

such, even with state-of-the-art power electronics techniques, there is an upper limit to the 

frequency that can be achieved by the drive.  The nominal speed of this machine is 2800 rpm 

(section 4.1.1); however, it is only necessary for the drive to supply the machine in motoring 

mode, in order to start the ICE, up to a much lower speed.  The drive accessible in this laboratory 

is a 20-HP DURApulse (model GS3-2020), which has a maximum frequency for sinusoidal drive 

of 400 Hz.  If we take a conservative design approach, and assume that the drive must supply the 

machine up to a base speed of 2000 rpm, the pole count for this application is then limited to 24 

poles.  It is advantageous, in terms of rotor design and end-winding management to select a high 

pole count, so only machines with p = 20, 22 or 24 were seriously considered for implementation.  

According to (Cros 2002), a NOW configuration for a three-phase machine is possible when the 

constraint 
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 '�3 ∙ XYCZ'�, K 2P [ = \]^_`_, (4.1) 

 

is adhered to.  Table 4.2 shows the slot and pole combinations that are feasible for this 

application. 

TABLE 4.2 Slot and Pole Combinations Considered for the ISA Design 
 

Poles (p) Slots (Ns) 

24 45, 36, 27, 18 

22 
45, 42, 39, 36, 33, 30, 27, 24, 

21, 18, 15, 12 

20 
45, 42, 39, 36, 33, 27, 24, 21, 

18, 15, 12 

 

It was decided that two prototype machines would be constructed with the same slot and pole 

count, but one should have a DL winding and the other a SL winding.  In this way, it is possible 

to investigate the differences in machine performance between the two schemes.  In order for a 

SL winding to be possible, two conditions must be met (Bianchi, 2007): 

1. Ns must be even, AND 

2. Either XYCa'�, K/2c must be even or  
 de�fa d ,9/
c  must be even. 

The machines with slot numbers that lend themselves to a SL NOW are indicated in Table 4.2, 

highlighted in red.  The winding factors for the main (torque-producing) harmonic for each slot-

pole combination are calculated as in (Bianchi, 2007) and are shown in Table 4.3, below.  Note 

that the winding factor for a SL winding is always greater than or equal to that of its DL 

counterpart (Bianchi, 2007).  The highest winding factors occur for machines with slot counts of 

24 or 42 corresponding to either 22 or 20 poles.   

In terms of rotor losses for NOW machines, it was determined by Bianchi et al. (2010) that local 

minima occur for the relation Ns/p = 1.5 for both SL and DL schemes, in addition to Ns = p for SL 

machines and Ns/p = 2.5 for the DL case.  The 24 slot, 22 pole combination comes closest to the 

minimum for the SL winding, so that is the slot-pole combination selected for this application. 
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TABLE 4.3 Winding Factors of the Main Harmonic for Various Slot-Pole Combinations 
   

 Ns 
42 36 30 24 18 12 

p  

24 - 0.866 - - 0.866 - 

22 0.953 
0.902 SL 

0.899 DL 
0.875 

0.957 SL 

0.949 DL 
0.902 

0.259 SL 

0.250 DL 

20 0.953 0.946 - 
0.966 SL 

0.933 DL 
0.946 0.250 

 

4.2.3  Slot and Winding Design 

The necessary width (ws) and depth (ls) of the stator slots can be determined by (3.6) and (3.7) 

respectively, with the following parameter values: 

1. The magnet pole arc to pole pitch ratio is assumed to be θm/θp = 1.  The actual value of 

this is designed as described in section 4.3.   

2. The ratio of magnetic loading to steel flux density is Bm/Bt = 0.64.  The magnetic loading 

is 0.8 T and the target steel flux density is conservative at 1.25 T in order to better 

manage the stator core losses.  

3. The electric loading at the average radius is Ae = 18,750 A/m.  This comes from (3.3) 

with a shear stress of 15 kPa and a magnetic loading of 0.8 T, where the coefficient, k, is 

unity to obtain the minimum electric loading.   

4. The current density is J = 1.8 x 106 A/m2.  This comes from a standard current density of 

4.5 A/mm2 and taking into account a 40% copper fill-factor (due to hand-winding). 

The calculations result in ws = 8 mm and ls = 29 mm.  However, due to several factors, including 

an attempt to relieve eddy-current loss in the copper windings, the actual slot depth is set at 35 

mm so that the windings can be set back somewhat away from the magnets. 

The stator yoke thickness that is required for electromagnetic purposes can be determined from 

the same logic that the rotor thickness is calculated, as  

 $U = 8�89 #�#� +,-.K  (4.2) 
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For this design, the resulting yoke thickness is ly = 7 mm.  The stator yoke has the secondary 

functionality of providing mechanical stiffness to the machine, so this value was increased to ly = 

10 mm in the actual design.     

The single-sided AF machine was modeled in 2D FEA software as described previously in 

section 2.1.  In order to determine the number of turns per winding that is required to obtain the 

aforementioned per-phase machine constant of 0.488 Vpk,l-n/(rad/s), it is necessary to look at the 

back EMF waveform of a single phase.  In order to do so, we simply apply a DC current in one 

phase winding (with the other phases set to zero current) and obtain the resulting torque output as 

the rotor is rotated over at least a full pole-pitch.  This is obviously a torque waveform, not a 

voltage waveform; however it does contain the information of interest regarding the machine 

constant.  The resulting torque waveform for this 24-slot/22-pole machine, with a DC current in a 

single phase, for a rotor rotation over exactly one pole pitch is shown in Fig. 4.7 for both the DL 

and SL cases.  The peak torque output for the DL is approximately 7.1 Nm with 100 A-DC and so 

a machine constant for a single turn is calculated as 0.047 Nm/A (or equivalently V/(rad/s)).  So 

in order to achieve 0.488 V/(rad/s), it is necessary to include approximately 10 turns per coil.  As 

expected for the SL winding, the same peak torque output, but with 300 A-DC, suggests a 

requirement of 20 turns per coil; the SL winding has twice as many turns per coil, but half as 

many coils so that the number of turns per phase is equal to the DL case.      

   

                                       (a)                                                                         (b) 

Fig. 4.7   Torque waveform resulting when a single phase is driven with 100 A (DC) and the rotor is rotated 
over a single pole pitch.  Currents in the two remaining phases are maintained at zero.  The DL winding 

output is shown in (a) and that of the SL winding is indicated in (b). 
 

With an axial slot depth of ls = 35 mm and a slot width of ws = 8 mm, and taking into account the 

40% fill factor, this gives a total copper fill area of 112 mm2 or 5.6 mm2 per turn for both the SL 

and DL windings.  This corresponds to round copper wire with a diameter of 2.7 mm (or size 10 
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AWG wire), which was deemed too heavy to work with by-hand.  Instead, the windings were 

completed with 4 strands of size 16 AWG (diameter of 1.29 mm) in-hand.  2D FEA was used 

again in order to determine the current required to maintain a full-load average torque output of 

23 Nm.  The torque curves in Fig. 4.8 are shown for a total slot current of 445 Arms to get an 

average torque of 22.9 Nm for both winding schemes.  Note that the machine with the DL 

winding requires a slightly larger slot current (448 Arms) to obtain the same torque output, 

resulting from the lower winding factor as shown in Table 4.3.  With 20 turns per slot, this gives a 

per-phase RMS current of 22.3 A; since each turn is constructed with 4 strands of 16 AWG, the 

per-strand current density is ~4.3 A/mm2, which is very conservative for a machine of this size 

with no forced cooling.  

     

                                     (a)                                                                     (b) 

Fig. 4.8  Full-load torque waveforms obtained via 2D FEA for (a) the SL winding and (b) the DL case. 

4.3 Rotor Design  
The purpose of this section is to detail the design of the rotor backiron in addition to the magnet 

dimensions.  The rotor thickness required for electromagnetic purposes, as discussed in section 

3.3.2, is given by the equation 

 $� = +,-.K 8�89 #�#�  (4.3) 

 

where in this design, there are 22 poles and because the rotor iron does not see the full flux 

reversals that the stator iron sees, the allowable steel flux density is increased to Bt = 1.6 T.  The 

calculation results in a necessary rotor thickness of 5.6 mm, although this was rounded up to an 

even 6 mm for production.  The necessary magnet thickness is determined from (3.1) to be lm = 4 

mm, with a desired magnetic loading of Bm = 0.8 T, a nominal airgap thickness of lg = 1 mm and 
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a remanent flux density of Br = 1 T.  Actually, sintered NdFeB (N35) magnets, which have Br = 

1.23 T will be used in this machine, however the lower flux density was used to obtain a 

conservative design in the event that the magnet quality is not as expected.  In the physical 

structure of the machine, it is possible to adjust the airgap if necessary.  Fig. 4.9 shows the 2D 

FEA verification of the no-load flux densities achieved in the machine.     

 
Fig. 4.9  2D FEA calculation of the no-load flux densities achieved in the machine for the described design.  

 
 

As an additional requirement, the magnet thickness must be designed so as to resist 

demagnetization when the machine is operating at maximum load.  It was not possible to measure 

the necessary cranking torque for the ICE used in this application, however, an assumption is 

made that four times the rated torque is required to start the engine.  Fig. 4.10-a shows the magnet 

flux for full load operation for the machine with both SL and DL windings, while Figs. 4.10-b 

and 4.10-c show the same information for operation at 200% and 370% rated torque respectively.  

From this, we see that flux reversal in the magnets does not occur because the flux density in the 

magnets is not forced below 0.3 T.  Thus, the magnet thickness of lm = 4 mm is sufficient to resist 

demagnetization even in overload conditions. 
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(a)  
 

 

 

(b) 
 

 

 

(c) 
 

Fig. 4.10  2D FEA flux plots of the designed machine for (a) rated load, (b) 200% rated load and (c) 370% 
rated load for two different time instants at each loading.  The flux density in the magnets is not pushed 

below 0.3 T even under overload conditions.  
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 A machine designed with NOW inherently presents a lower cogging torque in comparison with a 

machine with a traditional winding scheme (Aydin, 2007).  This happens because the cogging 

component associated with an individual magnet is out of phase with those of the other magnets 

and thus the cogging torque of the machine is reduced due to the partial cancellation of the 

individual components. However, it is possible to further reduce the cogging torque without 

compromising machine performance by adjusting the magnet pole arc width.  This technique is 

commonly used in the design of RF PM machines and is equally applicable to AF PM machines 

(Caricchi, 2004).  Cogging torque is not particularly important in this application, but the exercise 

of designing the magnet pole arc so as to minimize the cogging torque is done regardless, as a 

“good” practice.     

The 2-D transient simulation is run (as described in section 2.1) for magnet pole arcs (θm) varying 

between 65% and 90% of the pole-pitch (θp), with cogging torque outputs as shown in Fig. 4.11.  

The motion is set at a speed of approximately 1 pole-pitch per second in order to prevent bias in 

the results due to so-called “spinning losses” in the machine.  Note that the expected 12 periods of 

cogging torque is indistinguishable in the waveforms shown due to the “noise” resulting from the 

FEA calculations.  All of these plots show low cogging torque values, as is expected with NOW, 

but the important detail to notice is the initial trend of the torque waveforms.  We can see that the 

waveform for θm = 0.65θp is negative for the initial rotor position; but when the magnet pole arc 

to pole-pitch ratio is increased to 70%, the torque waveform becomes positive for the same initial 

rotor position.  This means that there must be a magnet pole arc value between 65% and 70% of 

the pole-pitch that nulls the cogging torque.  We see the same trend happen for magnet arcs 

between 80% and 85% of the pole-pitch.  Since machine performance is better with the larger 

magnet pole arc, the latter range was investigated more closely.  Fig. 4.12 indicates that the 

cogging torque is minimized for a magnet pole arc to pole-pitch ratio of approximately 0.81 and 

thus the magnets are designed to have θm = 13.25o. 

   

                                          (a)                                                                                  (b) 
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                                          (c)                                                                                 (d) 
 

   
                                          (e)                                                                                 (f) 
 

Fig. 4.11   Cogging torque waveforms for varying magnet pole arcs. 
 
 

 
 

Fig. 4.12   Cogging torque waveforms for magnet pole arcs in the range of 80-82% of the pole pitch. 
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Chapter 5 

 

Summary and Continuing Work 

In this thesis, the design of an electric machine to perform as both a starter and alternator in a 

series hybrid electric vehicle has been detailed.  The focus of the work is on practical design 

aspects specific to single-sided axial flux permanent magnet machines with non-overlapped 

windings.  First, a characterization of the rotor losses in these machine types was presented 

through experimental validation of finite element analysis estimates.  The approaches taken to 

model the axial flux geometry, especially in two-dimensions, were detailed, and the difficult issue 

of validating the finite element analysis estimates with experimental data was addressed with a 

prototype 24-slot, 20-pole single-sided machine fitted with single-layer non-overlapped windings.  

Next, the comparative advantages and disadvantages of the single-sided axial flux geometry were 

explored within the context of surface mount permanent magnet machines.  New material was 

offered to highlight the benefits of the single-sided axial flux geometry and the constraints and 

assumptions made when making the comparisons were discussed in detail, including a study of 

the biases these can introduce.  The basis of comparison was founded on constant electromagnetic 

airgap shear stress, being the product of electric and magnetic loading, and indeed the constancy 

of both those factors.  The metrics used for comparison were the mass of the active materials and 

the volume essential to house said materials.  A range of lesser issues that are relevant when 

choosing a machine structure were presented and discussed.  Finally, the performance criteria for 

the integrated starter-alternator was quantified based on characterization of the internal 
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combustion engine and the energy storage system of the vehicle and a full account of the design 

process was detailed, including justification of all design choices. 

The present laboratory facilities and available equipment at the author’s institution allow electric 

machine and drive testing for only very low power machines (1 kW or less).  However, a new 

laboratory space is currently being renovated and furnished with the intention of providing a 

platform for the testing of larger machines.  Therefore it is possible for the work presented in this 

thesis to continue with future students.  The purpose of this section is then to identify the up-to-

date status of the project and outline the procedures and equipment necessary for completion of 

the prototype machine construction and testing.  

Fabrication of the two aforementioned 7-kW prototype machines for the integrated starter-

alternator has commenced.  Fig. 5.1 shows the unassembled machines to illustrate the status of 

the process to date.  Both stators have been formed by milling slots (as specified in Chapter 4) out 

of a tape-wound toroid of grade M12 silicon steel.  Once the milling process was complete, the 

stators were soaked in a 50% phosphoric acid solution (H3PO4) in order improve isolation 

between the laminations that were shorted as a result of the machining.  The stator coils have 

been formed by winding four strands of 16 AWG copper wire in-hand around an aluminum 

bobbin in the shape of a tooth and placed in the stator by hand for both the single- and double-

layer configurations.  The solder connections for the single-layer machine have been completed, 

but those of the double-layer machine are currently being made.  The mechanical structure of the 

rotor assemblies has been finalized and the machining for said pieces is complete.  All materials 

necessary for magnet installation have been acquired, though the magnet-gluing process has not 

yet begun.  Finally, the frames that will house these two prototype machines have been designed 

and constructed. 

In order to complete the fabrication, the following steps should be undertaken:   

1. Finish making the solder connections for the double-layer machine. 

2. Insert thermocouples into select windings on both stators so that the temperature of the 

coils can be monitored during testing. 

3. Take the stators to be potted in resin and have mounting holes tapped through the yokes.  

Additionally, spaces for three Hall-effect sensors should be machined into the top of the 

stator teeth. 

4. Glue the magnets onto the rotor plates and install the Hall-effect sensors. 
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5. Assemble the active components of the machines and mount to the frames. 

It is estimated that this process would be completed in one month’s time for a student working 

part-time if no significant issues are encountered. 
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Fig. 5.1   Photographs of the machine assemblies to illustrate the fabrication process to-date.  In (a) the 

rotor plates with shafts are shown along with the stator back-pieces with bearing insets, (b) shows the 

wound single- and double-layer stators and the motor mounting frames are shown in (c).  

Before testing of the prototype machines can commence, some laboratory equipment should be 

purchased (or installed).  First and foremost, a structurally sound and adjustable platform to affix 

the machines to during testing must be manufactured; ideally this would be fastened directly to 

the concrete floor of the lab.  Secondly, dSPACE computing resources must be available and 

configured in order to interface with the DURApulse drive mentioned in Chapter 4.  Finally, large 

power supplies should be acquired which have the capacity to provide the electrical power 

necessary to fully test these machines, even under overload conditions.  It is worth noting that it is 

possible to test the machines at rated load by using a series connection of the two 3.3 kW (100 V, 

33 A) power supplies that are currently available in the laboratory.  

The intention of constructing two similar machines is that the machine under test can be run as a 

generator by connecting it through an in-line torque transducer to the other prototype machine 

which would be operating in motoring mode and interfaced to the drive electronics.  With this 

configuration, the following tests should then be performed for each machine: 

1. Machine constant confirmation.  The purpose of this test is simply to verify that the 

machine constant is as designed for and that the winding connections have all been 
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made properly.  The machine under test is run with no load connected and the open-

circuit voltages (line-neutral) at the machine terminals are measured.  It is not necessary 

to use a torque transducer between the two machines, but one can be placed there if 

required for coupling.  A smooth, sinusoidal set of three-phase voltages should be seen 

and the machine constant in V/(rad/s) can be calculated using the magnitude and 

frequency information from the voltage waveform of a single phase.  

2. Spinning loss measurement.  In this, the machine under test is run with no load 

connected and a small capacity torque transducer should be used in order to obtain good 

precision.  The 2D FEA estimation of rotor loss due to slotting is approximately 350 W 

at 3000 rpm (~1.2 Nm), so a torque transducer with a 2 Nm capacity would be ideal.  

Speed sensing should be done with either the Hall effect sensors in place or via an 

encoder.  The mechanical input power to the generator can then be determined and since 

there is no load connected, the entirety of this power is the spinning loss encompassing 

power loss due to friction and windage, stator iron loss and rotor loss due to stator 

slotting.  This test should be run for a full spectrum of speeds ranging up to rated speed.  

3. Core loss measurement.  This test should be performed on the extra, uncut stator toroid, 

as described in Chapter 2 for a range of frequencies from 60 to 500 Hz.  A higher power 

amplifier may need to be acquired. 

4. Spinning loss measurement where stator is replaced with an uncut toroid.  Once the core 

loss measurement is completed, the uncut toroid should have mounting holes tapped 

into it to affix it to the machine frame containing the bearing.  The “machine” assembly 

is then the same as if an actual stator was in place and the test setup is the same as 

previously described for spinning loss testing.  The purpose of this measurement is to 

isolate the loss due to bearing friction.  The airgap should be increased from 1 mm to 

1.5 mm by adding shims (that have already been manufactured) between the bearing and 

the rotor brace such that the axial load in the bearing is equivalent to that of the actual 

machine.  The mechanical power input to the “machine”, which is entirely bearing loss, 

can then be measured. 

5. Loaded tests up to rated load.  A three-phase resistive load should be connected to the 

output of the generator.  Two three-phase loads are currently available in the lab:  one is 

fixed resistance (around 12 Ω) per phase rated at approximately 8 kW and the other is a 

3.3 kW variable resistance load.  These would suffice to test the machine at a few low 

power operating points and a single higher-power point; ideally another load would be 

acquired that is completely variable and rated at around 10 kW.  Speed and torque 
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measurements should be taken as before, using the 20 Nm rated torque transducer, in 

order to calculate the mechanical power input to the generator.  Voltage and current 

measurements on two of the phases should be used to calculate the electrical output of 

the generator.  These measurements will be used to determine the generator efficiency at 

a range of operating points and also, in conjunction with the other aforementioned tests, 

to extract particular losses that are of interest.        

6. Overload tests.  The purpose here is to test the ability of the machine to supply the 

starting torque for the engine.  It may not be possible to carry out these tests until a more 

established and larger-scale testing facility is made available, however, an overview of 

the process will still be given here.  Firstly, a power supply and drive capable of 

handling the current (~ 100 Arms per phase) necessary for the machine to output 400% 

rated torque should be purchased and installed.  Secondly a higher capacity torque 

transducer (rated at 80-100 Nm) should also be acquired.  Finally, it is necessary to have 

a mechanical load to absorb the power (i.e. an eddy-current brake).  In this setup, the 

machine under test is run in motoring mode, connected directly to the drive electronics 

at the input and to the mechanical load, through an in-line torque transducer, at the 

output.  The ability of the machine to provide the necessary torque for a very short time 

period is assessed and the thermocouples placed in the stator windings are monitored.       

In summary, this dissertation provided a full account of the design process for an integrated 

starter-alternator for a series hybrid vehicle.  Justification of all design choices was provided 

through the investigation of several important aspects of electric machine design and the final 

result was a single-sided AF PM machine with a rating of 6.7 kW at 2800 rpm.  The present 

laboratory facilities and available equipment at the author’s institution allow electric machine and 

drive testing for only very low power machines (1 kW or less), so testing of a prototype machine 

was not possible.  However, a new laboratory space is currently being renovated and furnished 

with the intention of providing a platform for the testing of larger machines.  Therefore it is 

intended that the work presented in this thesis be continued with future students.  To that aim, the 

current state of the prototype machine construction was identified the procedure for completion of 

construction was given.  Additionally, the methods and equipment necessary for execution of the 

prototype machine testing was provided.  
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Appendix A:  Split Ratio Calculations 

for Axial Flux Machines 

The purpose of this appendix is to provide the details of the calculations regarding specific torque 

and torque density of AF machines as functions of split ratio, the results of which are provided in 

section 4.2.  The parameters listed in Table 4.1 are all assumed to be predetermined quantities 

used to perform the geometrical calculations identified here. 

A.1  Specific Torque and Monetary Cost 
The specific torque of an AF PM machine is defined as the torque per unit mass of the active 

materials.  To determine this quantity, the total volumes of magnet material, steel and copper 

must each be defined in terms of geometrical parameters and design criteria. 

The volume of magnet material necessary in each design can be calculated as in (A.1) where lm, 

the axial thickness of the magnets, is determined from (A.2).   

 G�-% = +0,�
 � ,1
2 8�89 $� (A.1) 

 

 #� = #� $�$� � $% (A.2) 

 

The volume of steel in the rotor backiron, Vs,r is given by (A.3) where the rotor thickness, l r, is 

designed to exactly match that required for electromagnetic purposes as discussed in Chapter 3 

and given by the expression in (A.4).  The number of poles (p) in the machine is calculated from 

the predefined number of poles per meter length at the average machine radius (P) as in (A.5).  

 G�,� = +,�
$� (A.3) 

 

 $� = +,-.K 8�89 #�#�  (A.4) 
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 K = 2+,-.� (A.5) 

  

The stator geometry is slightly more challenging to define as the total volume of steel in the 

stator, Vs,s, is dependent upon the slot geometry as shown in (A.6).  We begin the derivation of the 

expression for circumferential slot width (ws) by first defining the magnetic loading (Bm) and 

maximum steel flux density (Bt) in terms of the flux per pole (ϕpole) and geometrical quantities as 

shown in (A.7) and (A.8).  Solving each of these for ϕpole, equating them and rearranging, yields 

the expression for slot width shown in (A.9).  The number of slots in the machine (Ns) is 

calculated from the predefined number of slots per meter length at the average machine radius 

(Q) as in (A.10).  A discussion regarding determination of the axial slot length (ls) from 

fundamental design criteria is given in Chapter 3, although the equation is provided here in 

(A.11) for completeness.   

 G�,� = 0$U + $�2+0,�
 − ,1
2 − $�5�=,� − ,1@'� (A.6) 

 

 #� = g9���H8�89 I J2+,-.K L =,� − ,1@ (A.7) 

 

 #� = g9���J2+,-.'� −5�L =,� − ,1@ J'�K L (A.8) 

 

 5� = 61 − 8�89 #�#� :+=,� + ,1@'�  (A.9) 

 

 '� = 2+,-.h (A.10) 

 

 $� = ��� i #�#� − 8�89 #�j (A.11) 
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The necessary stator yoke thickness, ly, is based on the same principles governing the rotor 

backiron design and is defined in (A.12).  The total steel volume in the machine is then the sum 

of the rotor steel (Vs,r) and stator steel (Vs,s). 

 $U = +,-.'� 8�89 #�#�  (A.12) 

 

The calculations regarding the amount of copper in an AF PM machine are inclusive of details 

regarding the specific winding scheme utilized as it impacts the arrangement of the end-turns of 

the windings.  It is assumed that NOW are used and calculations for both SL and DL layouts are 

presented here, although in practice, there are only particular slot-pole combinations that lend 

themselves to a SL winding (Bianchi, 2007).  The geometry of the coils in an AF machine is 

shown in Fig. A.1 for both cases.  It is apparent that there is less copper in each end-turn with a 

DL winding; however, there are twice as many coils as are present in the SL case.  The curvature 

of the machine is neglected in the ensuing calculations and it is assumed that all of the end-turns, 

at both the inner and outer radii of the machine, have a semicircular surface area (Fig. A.1).   

The added radial length of the machine due to the end turns in both the inward (le,i) and outward 

(le,o) directions can be determined by (A.13) for SL and (A.14) for DL, where the tooth with, wt, 

is calculated at the inner (wt,i) or outer (wt,o) radius, respectively as in (A.15) and (A.16). 

 $� = 5� � 5�2  (A.13) 

 

 $� = 5� + 5�2  (A.14) 

 

 5�,1 = 2+,1 −'�5�'�  (A.15) 

 

 5�,� = 2+,� − '�5�'�  (A.16) 
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                                      (a)                                                                                    (b) 

                                           

                                     
 
                                      (c)                                                                                    (d) 
 
Fig. A.1.  An AF stator is shown with SL and DL NOW in (a) and (b) respectively, while (c) and (d) show 

the geometry of the end-windings for the SL and DL cases. 
 

The volume of copper that is contained in the slots of the machine (VCu,s) is as shown in (A.17) 

regardless of the winding type, where ff indicates the slot fill factor.  The volume of copper 

wasted in the end-turns (VCu,e) is given by (A.18) for a SL winding and (A.19) for a DL winding.  

Note that the terms le,o and le,i in these two equations should be calculated appropriately for the 

winding type under consideration.  The total volume of copper is then the sum of VCu,s and VCu,e. 

 G��,� = 5�$�kk=,� � ,1@'� (A.17) 
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The total mass of active material in the machine (mtot) is then determined by summing the total 

volumes of magnet material, steel and copper multiplied by the respective densities (ρNdFeB = 7400 

kg/m3, ρsteel = 7800 kg/m3 and ρCu = 8900 kg/m3).  The specific torque is calculated by dividing 

the torque output of the specific machine design by the mass of active material. 

In order to calculate the monetary cost of each design, the individual masses of magnet material, 

steel and copper are multiplied by an estimated cost per mass ($/kg).  The specific values used for 

the trend shown in Fig. 4.5 are $38/kg for NdFeB, $1.50/kg for the steel and $4.40/kg for copper 

(as of mid-year in 2009). 

A.2 Torque Density 
The concept of torque density differs slightly from that of specific torque not only in the units of 

measure, but also in that specific torque takes into account only the active materials of the 

machine while the complete package size is considered when defining the torque density.  The 

total volume of the machine (Vpack) is regarded as a cylinder where the diameter includes the 

winding end-turns and the height is the total axial length of the machine as given in (A.20).  

Again, the term le,o should be calculated according to whether the machine is fitted with SL or DL 

windings.  The torque density is calculated by dividing the torque output of the specific machine 

design by the total package volume. 

 G9-(v = +0,� + $�,�2
0$U + $� + $% + $� + $�2 (A.20) 

A.3 Featured Geometries 
Table A.1 details the specific geometries considered for the discussion presented in section 4.2 

along with results of the calculations described in this appendix, where the parameters listed in 

Table 4.1 have the values indicated there and the assumptions listed in section 4.3 hold true.  The 
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aforementioned assumptions fix several calculations to be constant across all the designs:  ws = 

10.4167 mm, ls = 15.0 mm, ly = 3.125 mm, lr = 4.6875 mm and lm = 4.0 mm. 
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TABLE A.1   Calculation Results for Machine Designs Featured in Section 4.3 

ro 

(mm) 

ri 

(mm) 
αSR 

τ 

(Nm) 
Ns 

wt,o 

(mm) 

wt,i 

(mm) 

le,o 

(mm) 

le,i 

(mm) 
p 

Vcu 

(mm3) 

Vst 

(mm3) 

Vmag 

(mm3) 

Mtot 

(kg) 

Vpack 

(m3) 

Cost 

($) 

190 183 0.963 22.95 70.31 6.563 5.937 8.490 8.177 46.87 109852 603390 24608 5.866 .00344 18.28 

191 184 0.963 22.94 70.69 6.561 5.934 8.489 8.178 47.12 110441 609386 24740 5.919 .00348 18.41 

178 170 0.955 22.86 65.60 6.633 5.867 8.525 8.142 43.73 106589 543115 26239 5.379 .00304 17.91 

179 171 0.955 23.17 65.97 6.631 5.869 8.524 8.143 43.98 107202 548812 26389 5.430 .00307 18.04 

169 160 0.947 22.80 62.02 6.706 5.794 8.561 8.105 41.34 104645 501990 27907 5.053 .00275 17.82 

161 151 0.938 23.13 58.81 6.784 5.716 8.600 8.066 39.21 102914 467484 29405 4.780 .00251 17.77 

154 143 0.929 22.83 55.98 6.867 5.633 8.642 8.025 37.32 101465 439053 30791 4.556 .00231 17.77 

155 144 0.939 23.16 56.36 6.863 5.637 8.634 8.027 37.57 102148 444208 30998 4.603 .00234 17.91 

148 136 0.919 22.99 53.53 6.954 5.546 8.685 7.981 35.69 100370 416245 32120 4.378 .00215 17.83 

149 137 0.919 22.98 53.91 6.949 5.551 8.683 7.984 35.94 101076 421279 32346 4.425 .00217 17.98 

144 131 0.910 23.19 51.84 7.038 5.462 8.727 7.939 34.56 100429 403636 33694 4.292 .00204 18.13 

143 130 0.909 22.81 51.46 7.044 5.456 8.730 7.937 34.31 99698 398695 33449 4.245 .00201 17.97 

139 125 0.899 22.88 49.76 7.134 5.366 8.775 7.891 33.18 99522 386124 34834 4.155 .00191 18.21 

135 120 0.889 22.83 48.07 7.230 5.270 8.824 7.843 32.04 99133 373530 36050 4.063 .00181 18.39 

132 116 0.879 22.81 46.75 7.325 5.175 8.871 7.796 31.17 99333 365666 37398 4.013 .00173 18.68 

131 115 0.878 23.07 46.37 7.334 5.166 8.875 7.791 30.91 98532 360913 37096 3.967 .00171 18.51 

128 111 0.867 22.87 45.05 7.435 5.065 8.923 7.741 30.03 98544 352962 38293 3.914 .00164 18.76 

125 107 0.856 22.86 43.73 7.543 4.957 8.980 7.687 29.15 98391 344891 39358 3.857 .00157 18.96 

123 104 0.846 23.07 42.79 7.645 4.855 9.031 7.636 28.53 98945 341353 40649 3.844 .00152 19.30 

120 100 0.833 22.86 41.47 7.765 4.735 9.091 7.576 27.65 98486 333009 41469 3.781 .00146 19.41 
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ro 

(mm) 

ri 

(mm) 
αSR 

τ 

(Nm) 
Ns 

wt,o 

(mm) 

wt,i 

(mm) 

le,o 

(mm) 

le,i 

(mm) 
p 

Vcu 

(mm3) 

Vst 

(mm3) 

Vmag 

(mm3) 

Mtot 

(kg) 

Vpack 

(m3) 

Cost 

($) 

118 97 0.822 23.06 40.53 7.878 4.622 9.147 7.519 27.02 98780 329160 42553 3.761 .00141 19.69 

116 94 0.810 22.81 39.58 7.996 4.504 9.206 7.460 26.39 98957 325155 43542 3.739 .00137 19.92 

113 89 0.788 22.83 38.08 8.230 4.270 9.323 7.343 25.38 99947 321305 45691 3.734 .00131 20.52 

111 86 0.775 22.86 37.13 8.365 4.135 9.391 7.276 24.76 99794 316825 46417 3.703 .00127 20.67 

110 84 0.764 23.06 36.57 8.484 4.016 9.450 7.216 24.38 100559 316841 47539 3.718 .00125 21.01 

107 79 0.738 22.82 35.06 8.759 3.741 9.588 7.079 23.37 100795 311763 49084 3.692 .00119 21.40 

106 77 0.726 22.88 34.49 8.891 3.609 9.654 7.013 23.00 101325 311348 50017 3.700 .00117 21.68 

105 75 0.714 22.90 33.93 9.028 3.472 9.722 6.944 22.62 101785 310797 50894 3.707 .00115 21.93 

104 73 0.702 22.88 33.36 9.169 3.331 9.793 6.874 22.24 102174 310111 51714 3.711 .00113 22.17 

103 71 0.689 22.83 32.80 9.312 3.185 9.866 6.801 21.87 102492 309289 52477 3.713 .00111 22.39 

102 68 0.667 23.15 32.04 9.583 2.917 10.00 6.667 21.36 104141 312098 54475 3.764 .00110 23.05 

101 66 0.653 23.00 31.48 9.743 2.757 10.08 6.587 20.99 104271 310895 55088 3.761 .00108 23.21 

100 64 0.640 22.81 30.91 9.909 2.591 10.16 6.504 20.61 104330 309557 55644 3.755 .00106 23.35 

100 63 0.630 23.16 30.72 10.03 2.437 10.22 6.442 20.48 105614 313048 56841 3.802 .00106 23.78 

99 61 0.616 22.92 60.16 10.21 2.292 10.31 6.354 20.11 105555 311464 57303 3.793 .00104 23.89 

98 58 0.592 22.94 29.41 10.52 1.976 10.47 6.197 19.60 106592 312962 58811 3.825 .00103 24.37 

97 55 0.567 22.86 28.65 10.86 1.645 10.64 6.031 19.10 107440 314048 60168 3.851 .00101 24.80 

97 54 0.557 23.10 28.46 11.00 1.504 10.71 5.960 18.98 108512 317045 61195 3.892 .00101 25.17 

96 51 0.531 22.91 27.71 11.35 1.148 10.88 5.782 18.47 109101 317556 62345 3.909 .00100 25.52 

96 50 0.521 23.10 27.52 11.50 0.999 10.96 5.708 18.35 110079 320332 63297 3.947 .00100 25.86 

95 47 0.495 22.80 26.77 11.88 0.616 11.15 5.516 17.84 110409 320269 64239 3.956 .00098 26.13 

95 46 0.484 22.95 26.58 12.04 0.458 11.23 5.437 17.72 111293 322825 65116 3.990 .00099 26.45 
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Appendix B:  Background Theory for 

Non-Overlapped Windings 

The purpose of this appendix is to provide a brief introduction to the differences between 

traditional, full-pitched windings and the recently developed non-overlapped winding (NOW) 

schemes, primarily in terms of the harmonic content in the MMF waveforms (winding function 

waveforms).  In (2007), Bianchi et al. prepared a comprehensive resource detailing the design of 

NOW machines, so the brief treatment here is only information pertinent to the understanding of 

the material in this dissertation.  The benefits of NOW are touted in the introduction, but the 

drawback of these windings is that the carefully developed sinusoidal MMF waveform in a full-

pitched winding is transformed into more of a square wave with NOW.  The impacts of this will 

be discussed here.  Additionally, there are some slot-pole combinations that can be designed with 

a single-layer (SL) NOW, in which a winding is placed around every other tooth, as opposed to a 

double-layer (DL) scheme, where there is a coil around every tooth, and the differences in the 

MMF waveforms with these two layouts will also be explained. 

The winding functions for a single phase of both the 24-slot/20-pole and the 24-slot/22-pole 

machines discussed in this paper for both the SL and DL cases are shown in Fig. B.1.  Note that 

the total number of turns per phase is equivalent in both the DL and SL cases; that is, the SL 

scheme has half the number of coils as the DL case, but each winding has twice as many turns. 
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(a) 
 

 

 
(b) 

 
Fig. B.1.  Winding functions for a single phase of (a) a 24-slot/22-pole machine and (b) a 24-slot/20-pole 

machine with both SL and DL NOW. 
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The complete winding functions for these two machines (both SL and DL cases) are shown in 

Fig. B.2 for an arbitrary time instant.  From this figure, it is obvious that the MMF waveform 

resulting from current flow in the windings is far from sinusoidal and contains many harmonic 

components.  The main, torque producing harmonic (υ = p/2) is included in these plots for 

comparison.   

 

 
(a) 
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(b) 

 
Fig. B.2.  Complete winding functions for (a) a 24-slot/22-pole machine and (b) a 24-slot/20-pole machine 

with both SL and DL NOW shown at an arbitrary time instant. 
 

 

Fourier series expansions, on a 2π-period, of the single-phase winding functions are shown in Fig. 

B.3 to illustrate the harmonic spectrum present.  The two primary impacts of these harmonics are 

that (1) the winding factor of the main harmonic is reduced in comparison to the full-pitched 

winding case and (2) the rotor losses of the machine are increased.  The latter effect is due to the 

fact that the rotor motion locks to that of the main harmonic so that the remaining harmonics 

rotate asynchronously with the rotor and cause a time-varying flux waveform in the rotor 
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components; obviously these time-varying flux waveforms cause eddy-current losses in the rotor.  

Of specific concern are the subharmonics (the spatial harmonics with number less than the main 

harmonic) because these penetrate more deeply into the rotor and cause higher losses.  It is seen 

in Fig. B.3 that the SL windings have subharmonics with higher magnitudes than those of the DL 

windings, so the rotor losses are higher with the SL cases (Bianchi, 2010). 

 

(a) 
 

 

(b) 
 

Fig. B.3.  Fourier series expansions, on a 2π-period, of the single-phase winding functions for (a) a 24-
slot/22-pole machine and (b) a 24-slot/20-pole machine. 
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