
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

Winter 12-2-2011

Highly Efficient Maximum Power Point Tracking
Using a Quasi-Double-Boost DC/DC Converter
for Photovoltaic Systems
Christopher J. Lohmeier
University of Nebraska-Lincoln, chris929@huskers.unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses

Part of the Controls and Control Theory Commons, Electrical and Electronics Commons, Power
and Energy Commons, and the Signal Processing Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Lohmeier, Christopher J., "Highly Efficient Maximum Power Point Tracking Using a Quasi-Double-Boost DC/DC Converter for
Photovoltaic Systems" (2011). Theses, Dissertations, and Student Research from Electrical & Computer Engineering. 32.
http://digitalcommons.unl.edu/elecengtheses/32

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/269?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses/32?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

 

 

 

Highly Efficient Maximum Power Point 

Tracking Using a Quasi-Double-Boost DC/DC 

Converter for Photovoltaic Systems 

By 

Christopher J. Lohmeier 

 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

 

Major:  Electrical Engineering 

 

Under the Supervision of Professor Wei Qiao 

 

Lincoln, NE 

 

December, 2011  



 

 

 

 

Highly Efficient Maximum Power Point Tracking Using a Quasi-Double-Boost 

DC/DC Converter for Photovoltaic Systems 

Christopher John Lohmeier, M.S. 

University of Nebraska, 2011 

Adviser:  Wei Qiao 

 

Solar photovoltaic (PV) panels are a great source of renewable energy 

generation.  The biggest problem with solar systems is relatively low efficiency and high 

cost.  This work hopes to alleviate this problem by using novel power electronic 

converter and control designs.  An electronic DC/DC converter, called “Quasi-Double-

Boost DC/DC Converter,” is designed for a Solar PV system.  A Maximum Power Point 

Tracking (MTTP) algorithm is implemented through this converter.  This algorithm allows 

the PV system to work at its highest efficiency.  Different current sensing and sensorless 

technologies used with the converter for the MPPT algorithm are offered and tested.  

Design aspects of the system and components will be discussed.  Results from 

simulations and experiments will be presented.  These results will show that the 

proposed converter and MPPT control algorithm improves overall PV system efficiency 

without adding much additional cost.   
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Chapter 1:  Introduction 

The past few years have been filled with news of fuel price hikes, oil spills, and 

concerns of global warming.  One of the few positives that can be taken from this is that 

it is changing the average person’s mindset towards renewable energy.  People are 

finding the benefits of having their own renewable energy system more attractive than 

they ever have before.  The biggest form of renewable energy to benefit from this is 

solar PV systems because of their many merits, such as cleanness and relative lack of 

noise or movement, as well as their ease of installation and integration when compared 

to wind turbines.  However, the output power of a PV panel is largely determined by the 

solar irradiation and the temperature of the panel.  At a certain weather condition, the 

output power of a PV panel depends on the terminal voltage of the system.  To 

maximize the power output of the PV system, a high-efficiency, low-cost DC/DC 

converter with an appropriate maximum power point tracking (MPPT) algorithm is 

commonly employed to control the terminal voltage of the PV system at optimal values 

in various solar radiation conditions. 

There are three main DC/DC converter technologies used with most PV systems 

(Bernardo, 2009; Morales-Saldaña, 2006; Mrabti, 2009; Nabulsi, 2009; Shanthi, 2007). 

The first of these converters is the buck converter (Bernardo, 2009; Mrabti, 2009).  Buck 

converters are step-down converters that output a voltage lower than the voltage that 

is input to the converter.  The standard buck converter has an output that is equivalent 

to the input voltage multiplied by the duty cycle or 
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���� = � ∗ ��	                (1-1) 

Buck converters work for low voltage applications.  They can be implemented in 

MPPT algorithms (Bernardo, 2009), as long as the PV panels output voltage is greater 

than the voltage required by the load.  To maximize the efficiency of the PV panel from 

near zero to the maximum output, the entire range of the duty cycle needs to be used 

for the implementation of the MPPT algorithm.   

The second commonly used converter in PV systems is a boost converter 

(Shanthi, 2007).  Boost converters are step-up converters that output a voltage higher 

than the voltage that is input to the converter.  The standard boost converter has an 

output that is equivalent to the input voltage divided by the duty cycle. 

���� =

��


����
     (1-2) 

Basic boost converters work well with the MPPT control as long as the load can 

accept a voltage from the minimum output of the PV panel all the way up a certain 

value (e.g., 5 times) subject to practical limits of the duty cycle (e.g., 80%).  However, in 

many applications, a high boost ratio is required for the DC/DC converter to connect the 

low-voltage PV panel to a relatively high-voltage load or power grid.  This cannot be 

satisfied by using basic boost converters. 

The third commonly used converter in solar PV systems is a cascaded boost 

converter (Morales-Saldaña, 2006; Nabulsi, 2009).  Cascaded boost converters have an 
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output that is equivalent to the input voltage divided by the duty cycle to the n
th

 power, 

where n refers to the number of boost converters that are cascaded. 

���� =

��


�����
     (1-3) 

Cascaded boost converters work well in applications that require high voltage 

boost ratios.  One problem with both the boost and the cascaded boost converters is 

the oscillations and relative instability under changing and startup conditions as shown 

in (Rensburg, 2008). 

In order to utilize the potential with any of these converters in a PV system, the 

converter needs to be controlled by a MPPT algorithm.  Various MPPT algorithms (Hua, 

1998; Hussein, 1995; Koutroulis, 2001; Pan, 1999) have been proposed based on power 

measurements, including the hill-climbing (HC) method (Koutroulis, 2001), perturb-and-

observe (P&O) method (Hua, 1998), and incremental conductance (IncCond) method 

(Hussein, 1995).  The HC and P&O methods achieve the same fundamental thought in 

different ways (Salas, 2006).  These two algorithms are widely used because of their 

simplicity; however they can fail under rapidly changing atmospheric conditions.  The 

incremental conductance method can track the maximum power point (MPP) more 

accurately than the HC and P&O algorithms can, however it is relatively complicated to 

implement.   

Every addition, converter and MPPT algorithm add additional cost to the entire 

PV system.  However the cost in minimal compared to the PV panels and can usually be 

offset by improved efficiency.  Improving efficiency is the easiest way to cut cost with a 
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PV system.  A good MPPT algorithm and a high efficiency converter are a must to 

improve efficiency but should not be the only changes to the standard setup.  One 

should also employ higher output voltages to lower line losses and allow for more 

efficient AC conversion.  The second easiest way to improve overall system cost is in the 

components themselves.  A higher and more stable line voltage will mean smaller AC 

inverters with grid tie systems that will not need any boosting capabilities at all.  The 

removal of expensive components such as current sensors also helps to keep cost at a 

minimum and improves the system reliability.  The system needs to be robust enough 

that when the consumer wants to expand their energy production by adding more 

panels, they don’t need to replace their entire system.  The DC/DC converter and MPPT 

control algorithm proposed in this work will implement all of these improvements in 

hopes creating a highly efficient, low-cost, and highly reliable solar PV system for clean 

and renewable power generation.   
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Chapter 2:  System Configuration 

System Layout 

The overall PV system layout can be seen in Figure 1.  The system consists of a 

PV panel or panels, a quasi-double-boost DC/DC converter, a MPPT control algorithm 

and some sort of load. 

 

Figure 1. The layout of the overall PV system. 

 

The PV Panel 

PV panels generate electricity through what is called the “Photovoltaic Effect” 

(Wenham, 2009).  In the simplest form the Photovoltaic Effect can be described as 

follows:  Light particles called photons are constantly emitted from the Sun.  This can be 

seen by the brightness on a sunny day when many of these particles make it to earth’s 

surface.  The effect comes into play when these particles hit a PV material, such as a 
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solar cell.  When the photons impact this material it excites the atoms within the 

material, which causes an electron-hole pair to form.  A band gap built into the material 

causes the electron to move along a certain predefined path.  This electron-hole pair 

creation happens many times over, throughout the panel.  All of these flowing electrons 

generate a current that is directed out of the panel to some type of load.  Thus, the 

photovoltaic effect converts light into the more useful form of power, electricity. 

Solar cells output power in what is called an I-V curve.  A typical I-V curve of a 

solar cell can be seen in Figure 2 (Wenham, 2009).  This curve represents what the 

current output by the solar cell would be as the output voltage is varied and vise versa. 

Below the I-V curve, the P-V curve is also shown in Figure 2.  This curve can be easily 

obtained from the I-V curve through the equation P = V x I.  

 

Figure 2. A representative I-V curve for a solar cell showing the MPP (Wenham, 2009). 

MPP 
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There are three other important aspects of a solar cell also shown in Figure 2.  

The first two are the open circuit voltage (Voc) and the short circuit current (Isc) of the 

cell.   The open circuit voltage is the voltage that is output to the cell terminals when the 

cell is exposed to light and there is no current flowing between the terminals.  This is 

also the maximum voltage that can be produced by the cell, which makes knowing this 

number useful when designing a circuit or load to connect to the cell terminals.  The 

short circuit current is the current that will flow when the cell is under light and the 

terminals are shorted together.  This is the maximum current that can be output by the 

specific solar cell.  The third important aspect of a solar cell is the MPP.  This is the point 

where the cell is operating at maximum efficiency and outputting the highest power 

available.  The MPP also has voltage at maximum power (Vmp) and current at maximum 

power (Imp) points associated with it.  The way these points move and change with the 

environmental conditions around the cell will be discussed in more detail later.    

 Each individual cell is relatively little in size and can only produce a small amount 

of power.  The Voc of an individual solar cell is usually approximately 0.6 V(Wenham, 

2009).  The cells become much more useful when combined in an array to create a PV 

panel.  When connected together the cells properties add together to create an I-V 

curve that has the same appearance as that of an individual cell but is larger in 

magnitude.  The cells in an array are usually connected in series to obtain a higher and 

more appropriate terminal voltage.   
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The PV panels used in this research are BP Solar model SX 3175 (Appendix 1).  

Each panel consists of 72 individual solar cells connected in series to obtain a rated 

power of 175 W, which corresponds to a maximum power current and voltage of 4.85 A  

and 36.1 V, respectively.  The panel has an open circuit voltage of 43.6 V and a short 

circuit current of 5.3 A.   

Modeling of the PV Panel 

 

Figure 3. The PV panel model. 

 

A PV panel model is developed using the work in (Tsai, 2008) as a starting point.  

The panel is modeled as a current source as shown in Figure 3 that follows equation 2-1. 

)1}/)((exp{)( −⋅+= − kTARiVqIIi SinTSph                          (2-1) 

where i is the PV panel output current; Iph is photocurrent; IS(T) is the reverse saturation 

current; q ( = 1.6×10
-19 

) is an electron charge; Vin is the terminal voltage of the PV panel; 

RS is the PV panel series resistance; A is the ideal factor of the PN junction of the PV 
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diode, which varies in the range of [1, 2]; and k ( = 1.38×10
-23

J/K ) is the Boltzmann 

constant.  The photo current is then found using equation 2-2.  

λ⋅−+=




 )(

ref
TT

i
K

sc
II ph                                            (2-2) 

where ISC is the short circuit current provided by the PV panel at a reference 

temperature and an irradiance of 1kW/m
2
; Ki ( = 3mA/℃) is the temperature coefficient, 

λ is the solar irradiance in kW/m
2
; and T and Tref are measured temperature and 

reference temperature, respectively. The output current is then 

)}(exp{)()( refSrefSS TTKTITI −=                                         (2-3) 

where IS(Tref) is the reverse saturation current (Tref = 295K) and Ks ( ≈ 0.072/℃) is the 

temperature coefficient of the PV panel. 

The Quasi-Double-Boost DC/DC Converter 

Many DC/DC converter topologies were considered prior to designing the 

system.  Ultimately a double-boost DC/DC converter (Rensburg, 2008) was chosen 

because of the requirement for a high voltage regulation ratio (200/28) as well as the 

converter’s output stability over the entire duty cycle range.  As shown in Figure 1, the 

double-boost DC/DC converter consists of two inductors, two switches and three 

diodes.  The boost function is achieved by switching the two switches simultaneously.  

However, the following analysis reveals that the voltage regulation ratio is not exactly 

double boost previously derived (Rensburg, 2008). 
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Figure 4. The current waveform in DCM mode. 

The converter can work in a continuous current mode (CCM) or a discontinuous 

current mode (DCM).  The DCM is studied since the CCM is a special case of the DCM. 

The waveforms in the DCM are shown in Figure 4, where S1 and S2 are the gate signals of 

the two switches; TS and D are the switching period and duty ratio of the DC/DC 

converter, respectively; tc is the duration that the inductor currents decrease to zero 

from the maximum value; and IM is the maximum inductor current.  Neglecting the 

ripples of vin and vout, the following formula can be obtained for the switch on and off 

periods, respectively. 

                in S

M

V DT
I

L
=                                                          (2-4) 

                2 M

in out

c

I
V V L

t
− = −                                                    (2-5) 

where L1 = L2 = L; Vin and Vout are the average values of vin and vout, respectively.  Then 

the voltage regulation ratio can be obtained from (2-4) and (2-5) as follows. 
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c

c

in

out

t

tDT

V

V +
=

2
                   (2-6) 

The average value of the input current I in a period can be calculated as: 

                  
2

c

M

S

t
I D I

T

 
= + 
 

                         (2-7) 

According to the power conservation law, Vin*I = Pout, then 

                
M

S

c
in

outout
I

T

t
DV

R

VV
)

2
( +=

×
          (2-8) 

where R is the equivalent resistance of the load.  Substituting (2-4) and (2-7) into (2-8), 

then 

          
L

RTD

T

t

T

t

T

t
D

S

S

c

S

c

S

c

⋅⋅
=

×

+

22

2           (2-9) 

The conduction time tc can be derived from (2-9). 

           


















++

=

L

R
D

L

R

S
TD

tc

2411
                           (2-10) 

Equation (2-10) indicates that the conduction time during the switch off period is 

related with R, L, T, and D.  The following formula can be obtained by substituting (2-10) 

into (2-6). 
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2

2
411 








++

=
L

R

S
TD

V

V

in

out                     (2-11) 

Equation (2-11) indicates that in the DCM, the voltage ratio is not only 

determined by the duty ratio, but also determined by the output current and the 

inductance value.  If the equivalent load resistance varies from time to time, the duty 

ratio should be changed to sustain the desired voltage gain.  

When tc = (1−D) TS, the converter works in the critical mode, substituting tc into 

(2-9), then the critical inductance LC is: 

               
2)1(

2
)1( S

C

RTDD
L

D
⋅

−
=

+
     (2-12) 

Equation (2-12) indicates that the critical inductance depends on the duty cycle 

and load.  Equation (2-12) also indicates that there exist a supremum (i.e., the least 

upper bound) value LM such that for any L > LM, the circuit will work in the CCM for any 

duty ratios.  This unique maximal critical inductance can be derived by setting the first 

derivative of LC with respect to D as zero. 

              0=
∂

∂

D

LC                                                          (2-13) 

Then 

              
2

113.0
RT

LM ⋅=                                  (2-14) 
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Therefore, (2-14) can be used to design the inductor so that the circuit always 

works in the CCM when the load is fixed.  On the other hand, if the inductance is fixed, 

then there exists a critical duty cycle (DC), when D < DC, the converter works in the DCM; 

otherwise, the converter works in the CCM, in which (2-6) can be further simplified as: 

              
D

D

V

V

in

out

−

+
=

1

1
                                                            (2-15) 

     Equation (2-15) indicates that the voltage regulation ratio is not simply twice 

that of the basic boost converter as claimed in (Rensburg, 2008).  Thus, the original 

double-boost converter named in (Rensburg, 2008) is called the quasi-double-boost 

converter from here on. 
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Chapter 3:  The Maximum Power Point Tracking Algorithm 

Why is it needed? 

The I-V output curve characteristic of a PV panel is previously presented.  

Associated with this curve is a MPP.  This is the point where the solar cell is most 

efficient in converting the solar energy into electrical energy.  The MPP is not a fixed 

point, it actually moves throughout the day.  There are many factors that influence 

where this point is at a given time.   

The largest influence is the amount of solar radiation hitting the panel.  The 

more solar radiation that comes into contact with the panel the higher the Power curve, 

in Figure 2 becomes; the less radiation the lower it becomes.  This increase (or decrease) 

in solar radiation also causes the MPP to sway back and forth as conditions change.   

A variation in solar radiation over time is a factor that affects all PV panels no 

matter where they are installed.  The change can be caused by movement of the sun in 

the sky relative to the PV panel.  The greater the angle between the sun and the face of 

the panel the lower the amount of radiation the panel receives.  The movement of the 

sun is very predictable and can even be accounted for through the use of other 

mechanical solar tracking methods (Wenham, 2009) in which the panel itself is moved.  

However, a mechanical system that actually moves the panel itself is usually expensive 

and cumbersome when compared with traditional electrical tracking methods, 

explained below.   
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One cause of a change in radiation hitting a PV panel that is much less 

predictable is cloud cover.  As clouds move across the sky they may come between the 

solar cell and the sun, effectively shading either a portion of or the entire panel.  Thicker 

clouds will block out more of the sun’s rays across a panel than thinner ones will.  

Clouds do not have to entirely cover the panel to cause problems; they can also affect 

the output when they only shade part of the panel.  It has already been presented that a 

PV panel is made up of multiple solar cells in series.  Cloud cover on only one or a few of 

these cells can cause the voltage output by the panel to drastically change.  A change in 

voltage output also causes a huge change in where the MPP lies with respect to the 

curve when the panel is exposed to full sunlight.   

The final condition that has a major effect on a PV panel in the short term is the 

temperature of the panel itself.  A PV panel will work more efficiently when it is cold 

compared to when it is hot.  The change in efficiency will cause the MPP to raise or 

lower with a change in temperature.  Temperature change will not affect the panel as 

much as cloud cover but it still needs to be taken into account. 

The reason for operating a PV panel at maximum efficiency is simple; it all comes 

down to money.  The panel is the most expensive portion of the entire system.  

Photovoltaic panels are purchased for one reason, to produce power.  If the panel is not 

outputting the most power available from the sunlight at any given point in time it is 

effectively wasting that power.  The power lost by not using a MPPT algorithm could 
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work out to being the equivalent of buying six PV panels and only using five of them 

(Koutroulis, 2001).  

How does it work? 

  A MPPT system works just as it sounds it would.  The system tracks the MPP 

under varying conditions and then implements some sort of algorithm to adjust the 

converter so it will hold the panels power output at the highest point for that given 

time.  In general the tracking system completes this task using current and voltage 

measurements to find the power output of the PV panel at the current time.  The 

specific algorithm then takes this information and calculates the adjustments that need 

to be made to the circuit in order to allow the panel to produce more power. 

The adjustments made to the converter are usually in the form of a change in 

the duty cycle controlling the converter.  The effect is that a change in duty cycle 

changes the output voltage, as seen in equation (2-15), when the input voltage is held 

constant.  In a converter not connected to a PV panel this increase in output voltage 

would be caused by the converter allowing more input current to pass through it.  The 

characteristics of a PV panel coupled with this effect are what allow MPPT to occur.  In 

Figure 2 it can be seen that when the current of a PV panel increases the voltage will 

eventually begin to decrease, and when the voltage increases the current will eventually 

decrease.  When the duty cycle of the converter is increased the current allowed to pass 

from the PV panel to the converter is increased.  This causes the PV panel to move from 

the point it is currently operating at on the I-V curve to the next point with a higher 



17 

 

 

 

current output, moving left.  This in turn decreases the voltage output by the PV panel.  

Once the operating point of the panel is able to be changed an algorithm can be 

implemented to control this change, thus forming a MPPT system.  Each algorithm may 

act differently but this is the basis for most all MPPT systems.  After factoring in the 

attributes and deficiencies of each algorithm, the P&O method is used in this research. 

The MPPT Algorithm 

The P&O algorithm is a relatively simple yet powerful method for MPPT.  The 

algorithm is an iteration based approach to MPPT (Salas, 2006).  A flowchart of the 

method can be seen in Figure 5.   

The first step in the P&O algorithm is to sense the current and voltage presently 

being output by the PV panel and use these values to calculate the power being output 

by the panel.  The algorithm then compares the current power against the power from 

the previous iteration that has been stored in memory.  If the algorithm is just in the 

first iteration the current power will be compared against some constant placed in the 

algorithm during programming.  The system compares the difference between current 

and previous powers against a predefined constant.  This constant is placed within the 

algorithm to ensure that when the method has found the MPP of the PV panel, the duty 

cycle will remain constant until the conditions change enough to change the location of 

the MPP.  If this step is not included the algorithm would constantly change the duty 

cycle, causing the operating point of the panel to move back and forth across the MPP.  

The movement across the MPP is an unwanted oscillation that can be disruptive to 
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power flow and could also cause unwanted loss from not having the operating point 

right over the MPP at all times.  The next step in the algorithm is determining whether 

the current power is greater than or less than the previous power.  The answer to this 

tells the algorithm which branch of the flowchart to take next.  No matter which 

direction the algorithm takes, the next step is to compare the voltages in the current 

and previous iterations.  The voltage comparison tells the algorithm which side of the 

MPP the operating point is at thereby allowing the algorithm to adjust the duty cycle in 

the right direction, either a positive or negative addition to the current duty cycle.  The 

final step of the method is to actually change the duty cycle being output to the 

converter, and wait for the converter to stabilize before starting the process all over 

again.   
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Figure 5. Flowchart of the P&O MPPT algorithm. 

 

There are multiple ways to try to optimize the P&O algorithm.  The first and most 

important is to choose the constants within the system carefully.  The first constant (rc 

in the flowchart) that tells the algorithm whether or not the MPP has changed, needs to 

be sized just right.  It needs to be big enough to stop the oscillation effect once the MPP 

has been found but small enough to ensure that the algorithm will move to the correct 

point when the MPP changes even slightly.  Another important constant to optimize is 

the amount the duty cycle changes (Δd) with each perturb.  This needs to be small 

enough to allow for a sufficient number of steps within the full duty cycle range.  It is 
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also important to make this number small enough that when the MPP is reached one 

change won’t be enough to throw it over the MPP causing the same oscillations that 

were avoided by sizing rc correctly.  This also means that the amount of change in the 

duty cycle should be correlated with the first constant as well as.  This all makes it sound 

as though it would be best to have Δd as small as possible, but this would also cause 

problems.  The system needs to be able to respond to rapid changes in the 

environment, such as cloud cover.  If a cloud suddenly shades part of the panel the 

algorithm should be able to quickly account for the change in MPP and move the 

operating point to the new MPP.  Having the amount of change in the duty cycle per 

iteration very small would mean that it would take a great number of iterations to reach 

the new MPP.  Every iteration where the panel is not operating at the MPP can be 

considered a loss in power.  Therefore it is important to have Δd be large enough to 

allow the algorithm to converge to a new MPP quickly.  This shows that there is a large 

trade off between speed and efficiency with this algorithm.  The algorithm in use here 

increases or decreases the duty cycle by 0.125% per iteration. 

The last main way to optimize this algorithm is to change the time between 

when one iteration ends and the next one begins.  There needs to be enough time 

between the iterations to be sure that the converter or panel has reached a steady state 

after a variation in duty cycle.  If there is not enough time the power calculation may be 

being made from fluctuating voltage and currents.  The fluctuations would cause the 

calculated power to be wrong, which could make the rest of the algorithm change the 

duty cycle in the wrong direction.  Here again careful decisions need to be made though, 
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because if the time between iterations is too long then there will be convergence issues 

with the system under rapidly changing conditions.  

  



22 

 

 

 

Chapter 4:  Voltage and Current Sensing Technologies for MPPT 

Control 

Traditional Sensing Technology 

The value of the output power from a PV panel needed in MPPT algorithms can 

be found in many ways.  The most common way is through the use of a current and 

voltage transducer.  Though there are other ways.  If the output (load) resistance is 

known, then only a single current or voltage transducer may be needed (Jiang, 2011).  

However with the use of dynamic loads this is usually not possible.  When dynamic loads 

and converters are used the easiest way to measure solar output power is through the 

use of a current transducer inline between the panel’s output and the converter, with a 

voltage transducer measuring the drop across the PV panel’s leads.  While the voltage 

transducer easily implemented in this situation the current transducer does present 

some problems.  A standard current transducer is employed using a small current 

sensing resistor.  When the current passes through this resistor a voltage drop occurs 

that is proportional to the current.  The voltage drop can then be measured and the 

current can be computed within the control system.  The first problem with this current 

sensor arrangement is the guaranteed power loss.  The power dissipated by a resistance 

is equal to the current squared times the resistance or P = I
2
R.  This means that any time 

there is current flowing through the sensing resistor there is a power loss in the system.   

This loss can be made small by using a low value resistance for the sensing 

resistor.  However this can also lead to problems in that the lower the resistance value 
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the lower the voltage drop will be.  A lower voltage drop will be harder to measure with 

the voltage transducer.  This could lead to more errors in the measurements.  As a way 

to combat this problem two new current-sensorless designs are proposed.   

Current Sensorless Technology 

Since the current of the PV panel is related with the terminal voltage, it is 

possible to estimate the current from the voltage.  Such a current-sensorless MPPT 

technique is able to reduce the number of sensors used for the PV system.  In (Itako, 

2005), the current information is estimated from other known variables based on an 

assumption that the input current of the boost DC/DC converter reaches zero during the 

power detecting interval, which requires a power detecting cycle to measure voltage 

with a high sample rate.  Similarly, the current is estimated from the voltage ripple in a 

flyback inverter in (Kasa, 2005). 

 

Figure 6. Block diagram of the proposed current-sensorless control system. 

 

In the proposed current-sensorless control system, seen in Figure 6, the steady-

state output current of the PV panel is estimated from the voltage ripple of the input 

capacitor of the converter.  The estimated current is then used with the measured 
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voltage of the PV panel to determine the output power for the MPPT control algorithm 

of the PV system, without the need for the information about solar radiation.   
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Figure 7. Voltage and current waveforms in CCM. 

 

Figure 7 shows the waveforms of the voltage vin and currents i1 and i (see Figure 

1) through the converter in a period of CCM, where Im denotes the minimal value of the 

inductor current.  If the converter was to work in the CCM all the time, then in the 

steady state, the average current that flows through the two inductors in a period is: 

                (1 )
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      In [t0, t1], the energy stored in the two inductors is provided by the PV panel 

and the input capacitor C1, then 
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is the average voltage across the input capacitor C1; and  
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is the voltage ripple across the input capacitor.  Then the average value of the current i 

in Figure 7 can be estimated as: 
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     Equation (4-5) indicates that the output current of the PV panel can be 

estimated from the duty ratio and voltage ripple of the input capacitor, which can be 

calculated by the voltages sampled at the time t0 and t1.  By setting Im = 0, then the 

estimated current in the DCM can be written as: 
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     The relationship between ∆Vin and dV is ∆Vin ≈ 2∙dV, where dV is the 

difference in value between Vmax and Vin (see Figure 7).  Figure 8 shows the schematic of 

the sampling circuit used for voltage ripple detection.  By properly designing the 

parameters of the circuit, the amplified voltage ripple dV can be obtained by sampling 
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the voltage at time t0.  Once the current is obtained, the output power of the PV panel 

can be estimated as P = Vin · Iesm. 

 

Figure 8.  The schematic of the sampling circuit for voltage ripple detection. 

 

Inductor Current Sensing Technology 

The last current sensing technology uses the voltage drop across the second 

inductor (L2 in Figure 1).  The technology then takes this value with the value of the 

current duty cycle to estimate the input current of the converter through the use of a 

three-layer feedforward artificial neural network (Yu, 2002) as seen in Figure 9.  The 

system computes the input current through the use of a feedforward artificial neural 

network.  The neural network is laid out as in Figure 10, which uses the sigmoidal 

function as the activation functions in the hidden layer.  The sigmoidal function is 

defined as 
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The neural network is trained using a backpropagation training algorithm (Yu, 

2002) with the inductor voltage drop, duty cycle and input current data from a test 

system.  Once the neural network is trained it can be implemented in the 

microcontroller with fixed weight matrices to estimate the current on the fly.  The 

power output of the PV panel can be calculated using the estimated current and 

measured voltage.  These values are then used in the MPPT algorithm already in place 

with the resistor current sensing system.   

 

Figure 9. Block diagram of the proposed inductor current sensing control system. 
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Figure 10. Layout of the artificial neural network for inductor current estimation. 

 

This technology improves over the existing technology by not requiring the 

sensing resistor, which as stated above automatically adds a power loss to the system.  

While there is a power loss associated with the inductor it is already included within the 

system and therefore should not be considered an additional loss.  This technology also 

improves on the current-sensorless system presented above by not needing any 

additional regulated voltage supplies.  The Op Amps in Figure 8 all require both a 

positive and negative supply voltage.  This has to be created within the system and will 
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cause additional losses.  While these losses may be less than those with the standard 

technology removing them will lead to an increase in overall efficiency.  All that is 

needed with the proposed system is a low pass filter consisting of a simple capacitor and 

resistor (Ziegler, 2009), both of which are cheap and readily available.  
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Chapter 5:  Simulation Results 

Simulation studies are carried out in MATLAB Simulink to validate the converter 

and MPPT control for a PV system as is presented in Appendix 2.   

Validation of the PV Panel Model 

The PV panel model is firstly tested to make sure it is accurate.  The results from 

the first test can be seen in Figure 11.  In this test the I-V curves are found after different 

levels of solar irradiance were applied to the model.  It can be seen here that while the 

voltage remains nearly the same, the current changes greatly with varying irradiance.   

 

Figure 11.  I-V curves at different levels of solar irradiance generated by the PV panel model. 
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In the second test, simulations are performed for the PV panel model with 

different cell temperatures.  The results are shown in Figure 12. These results from the 

model provide a great visual depiction of how small an effect a temperature change has 

when compared to a change in irradiance, shown in Figure 11. 

 

Figure 12.  I-V curves at different levels of solar cell temperatures generated by the PV panel model. 

 

The Quasi-Double-Boost DC/DC Converter 

The DC/DC converter is the next part of the system that needs to be tested.  The 

converter tests are preformed with a constant voltage source of 36 volts.  This is both 

for ease of testing and for the accuracy of the results.  Other system parameters are set 
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as follows: the switching period of the converter is 50 μs (20 kHz); the inductors are 560 

μH and the load resistance R is 330 Ω.   

The first aspect of the converter is its characteristics in different operating 

modes: CCM and DCM.  This can be tested by looking at the inductor currents around 

the critical duty cycle found in equation (2-12).  With the parameters set above and 

equation (2-12) it can be calculated that the critical duty cycle is 0.568.  Figure 13 shows 

a converter duty cycle on each side of the critical value.  From Figure 13 it is shown that 

when the duty cycle is 0.60, which is higher than the critical value the converter 

operates in CCM.  The figure also shows that when the duty cycle is lower than the 

critical value at 0.50, the converter operates in DCM.  At a duty cycle of 0.55 which is 

close to the critical value but still below it the converter is only ever so slightly acting in 

DCM. 
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Figure 13. The inductor current of the converter in DCM and CCM. 

 

The next property of the converter to look at is the voltage regulation.  To test 

voltage regulation the converter is ran at specific duty ratios while input and output 

voltages are measured.  The regulation ratio is then compared to the ratio calculated by 

equation (2-15) in Figure 14.  As is shown in the graph, the simulated results for the 

voltage regulation are close to what had been calculated.  The one main difference is 

when the duty cycle is at 95%.  At this point the simulated value is a gain of 32.4 while 

the calculated value is a gain of 39.  This is believed to be due to the simulation being 

more accurate to real life where the higher voltage causes more losses though the 

components in the converter.   
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Figure 14.  Comparison of the calculated and simulated results of voltage regulation for the DC/DC 

converter. 

 

The MPPT Control 

The P&O MPPT method is implemented in Simulink and added to the converter 

circuit and PV panel model.  The overall layout of this system is shown in Appendix 2.  

The MPPT control unit takes as its input voltage and current measurements from the PV 

panel simulation.  The control unit then computes the power and sends the information 

along with the PV panel voltage value into the P&O algorithm.  The algorithm then 

decides whether the duty cycle output to the circuit should be increased, decreased or 
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kept the same.  This new duty cycle is then output to the converter.  The process is able 

to hold the PV panel at its maximum power output under changing conditions.   

In order to test the MPPT control algorithm the entire PV system has to be 

simulated.  The best way to test the MPPT algorithm is by simulating the PV panel under 

various light conditions all while running the converter.  This allows the tracking system 

to sense the changes in the panel output and correct for them using the duty cycle of 

the converter.  Figure 15 shows the results of a 40 second simulation of the entire PV 

system.  It can be seen that the irradiance was first increased from 0 to 1 kW/m
2
 and 

then decreased back down to 0 in a stair step fashion.  In the second part of Figure 15 

the algorithms reaction to the irradiance is shown in the form of the duty cycle it 

outputs.  The third graph on Figure 15 shows the resulting solar power output from the 

panel.   
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Figure 15.  Simulation results of the MPPT control algorithm. 

 

There are a few interesting outcomes worth noting from the results shown in 

Figure 15.  The first thing that is noticed is the rapid increase in the duty cycle at the 

beginning of the simulation.  This is something that will only be seen in a simulation and 

is a result of the PV panel model being so accurate to real life.  When a PV panel is not 
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given any light at all it can actually work in a reverse.  This is best described while talking 

about a panel hooked up to a battery directly.  The reverse leakage current through the 

diodes within a solar cell can actually take power away from the battery and emit it 

through the PV panel when no light is present.  The same is true for this simulation 

where the capacitor starts with a slight charge on it.  The algorithm is actually doing 

exactly what it is supposed to, just backwards.  When there is 0 kW/m
2
 irradiance the PV 

panel model is actually taking power out of the capacitor and it is flowing backwards 

through the circuit.  Even though the amount of power is very small (~-3e
-30

) the 

algorithm senses it and tries to compensate for it.  This compensation is seen in Figure 

15 by the duty cycle rapidly increasing at both the beginning and end of the simulation.  

Here the algorithm is actually trying to completely shut off the switches within the 

converter in order to lessen the loss of power.  Since the control algorithm only allows 

the converter to operate at a duty cycle from 5% to 95% when the duty cycle shown in 

Figure 15 increases to 95% it is reset at 72.5%.  Shortly after this reset the irradiance 

increases to 0.1 kW/m
2
, which causes all backward power flow to cease. This allows the 

algorithm to settle at the duty cycle which allows the most power flow from the panel to 

the converter.   

There are two main reasons that the backward power flow seen in Figure 15 is 

only a simulation result.  In the real system the controller will be powered from the PV 

panel in order to minimize losses when it is not needed.  This means that when there is 

zero irradiance the controller will not be running and, therefore, the converter will 

already be in its off state, not allowing reverse power flow.  The second reason this 
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should not be seen in the real system is that there is almost never a time when there is 

absolutely no irradiance.   At night the sun reflects off the moon, there are manmade 

lights everywhere and even the stars give off some irradiance that will be seen on the 

panel.  While this isn’t enough to see a usable amount of power, it is usually enough to 

stop the panel from allowing power to flow in reverse.   

The next thing to take notice of in Figure 15 is how good the system actually is at 

tracking the power output of the PV panel.  At very low irradiance values the algorithm 

has a slight lag before it settles at the correct value since the duty cycle has to change so 

much.  This can be seen both when the irradiance is increasing and when it is decreasing 

at values of 0.1 and 0.2 kW/m
2
.  This is only seen at these low values and is almost 

completely eliminated at higher irradiance values.  At the higher values of irradiance the 

algorithm is very quick at tracking to the new irradiance value once a change has 

occurred.  With the simulation only being 40 seconds in total length and having 

irradiance changes in steps over the full range of values, the algorithm preformed even 

better than expected.  This shows that the algorithm should have no problem adjusting 

for a quickly changing MPP on partly cloudy days.  The next step is to simulate the other 

current-sensorless technologies. 

Current-Sensorless MPPT Control 

Simulation studies are carried out in MATLAB Simulink to validate the proposed 

current-sensorless MPPT quasi-double-boost converter for the PV system.  These 

simulations are completed by using real solar radiation data obtained from National 
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Renewable Energy Laboratory (NREL) to validate the proposed system and control 

algorithm.  The data was collected from the South Table Mountain site in Golden, 

Colorado, on May 31, 2010.  During the simulation, the output power of the PV panel is 

estimated by the proposed current-sensorless MPPT algorithm and is compared with 

the measured output power by using both voltage and current transducers, as shown in 

the Figure 16. 

 

Figure 16. The power estimation results. 

 

The proposed current-sensorless algorithm estimates the real output power with 

good precision; the estimation errors are less than 1 W during most of the day.  Without 

knowing the solar radiation, the proposed MPPT algorithm controls the PV system to 

track the MPP of the PV panel by using the estimated current and measured voltage.  
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Figure 17 shows the operating points, i.e., the real MPPs, of the panel at various solar 

radiation conditions during the day, which are close to ideal MPPs. 

 

Figure 17. The MPPT results of the PV system. 

 

Inductor Current Sensing Technology 

Simulation studies are also carried out to validate the inductor current sensing 

technology and the resulting MPPT control algorithm.  These simulations were 

preformed within MATLAB’s Simulink using the neural network laid out as in Figure 10.  

The code for the neural network design can be seen in Appendix 2.  In order to gather 

data to train the system, the converter simulation presented above was run again.  The 

simulation used a varying duty cycle incremented in small steps and the resulting 

inductor voltage drop along with the input voltage and current were recorded.  These 
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results were then used to train the artificial neural network.  The resulting mean square 

error (MSE) output from training can be seen in Figure 18, where the MSE is calculated 

by 

         ��� = 	
�

�
�
�             (5-1) 

where E is the error between the actual input current and the input current estimated 

by the artificial neural network. 

 

Figure 18. Mean square error output during the neural network training. 
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Figure 18 shows that the mean square error stays below 10
-1.5

 for all inputs by 

the end of the training period.  To obtain a better understanding of what this actually 

means the weights found in testing, the neural network is applied to the data set 

recorded through the converter simulation and the estimated input current is compared 

against the actual recorded input current.  The results of this comparison are shown in 

Figure 19.   
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Figure 19. Comparison of actual and estimated input current.
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Figure 19 shows the I-V curve output for both the estimated and the actual PV 

panel current.  It can be seen that the two curves are very similar.  While the two curves 

do not exactly match they are close enough to run the MPPT system.  The important 

aspect of the curve for the MPPT algorithm is not the exact current value, but that the 

current is linear in the movement throughout the curve. The algorithm only cares 

whether the current is increasing or decreasing.  This can further be seen by simulating 

the MPPT system while using the artificial neural network to estimate the input current 

within the algorithm.  Figure 20 shows the results of running the system with the 

estimated current as an input to the MPPT algorithm.  The irradiance is set to 1 kW/m
2
 

and the duty cycle is began to different values, one higher (80%) than the value 

expected for the maximum power output and one lower (70%).  The algorithm finds the 

MPP in both directions to be 184 W, at a duty cycle of 74% which are the same as the 

results seen in Figure 15.  When comparing the results after the algorithm has reached 

the MPP in Figure 20 and in Figure 15, it is again seen that they are the same.  This 

shows that the algorithm with the inductor current sensing technology is working as 

good as the algorithm with the standard sensing technology, though it may be slightly 

slower.  The inductor current sensing algorithm still manages to find both new MPP 

within 1.6 seconds.  This is quick enough for the system to work under any normal 

working conditions.  The next step was to apply the results observed in the simulations 

to the actual system. 
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Figure 20.  Simulation results of the inductor sensing MPPT control algorithm. 

 

Sensing Technology Comparisons 

All three of the sensing technologies work when simulated but each one has pros 

and cons when compared against each other.  When comparing both current sensorless 

techniques there is not really one that stands out over the other.  Both work in the 
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lower power application presented here but do not improve on the traditional resistor 

sense technology.  Where the biggest improvement would be seen is in high power, 

high current applications.  This is where the resistor sense technology would incur the 

most losses.  However at these higher powers and currents the current sensorless and 

inductor current sense designs would not have any extra losses when compared to a low 

power system.  Being used in a higher power system may even improve the accuracy of 

both systems.  The higher current in the current sensorless design would give the 

system a more defined voltage ripple to perform calculations off of, improving overall 

results.  The inductor current sense system would also have a higher inductor voltage 

drop to read into the neural network which would allow the system to obtain better 

accuracy in the current estimation.  This would be due to there being a higher inductor 

voltage change correlated to the higher current.  The higher current would however 

require retraining of the neural network to ensure proper operation.   

In low power applications with low current the standard resistor sense 

technology is recommended, both for ease of use, cost effectiveness, and reliability.  In 

applications where the power level may change overtime, such as modular systems 

where panels may be added and removed the traditional system is also recommended.  

This is because both current sensorless technologies would have to be modified each 

time the input power level changed.  With the traditional sense technology as long as 

the voltage drop across the resistance does not exceed the input rating of the voltage 

transducer used to measure it the system will continue to work without any 

modification at any power level.  In higher power applications that would cause large 
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power losses across a resistive element it is recommended that both the current 

sensorless and the inductor current sense technology be evaluated for performance 

with the overall system.  High power applications are where these systems will excel 

over the traditional current sense technology. 
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Chapter 6:  Experimental Results 

A quasi-double boost DC/DC converter is built and tested with a 175 W 

maximum output power PV panel to validate the proposed design and simulation.  The 

system consists of the PV panel, the DC/DC converter, and an Arduino microcontroller in 

which the MPPT algorithm is implemented.  A computer with a National Instruments 

LabVIEW data acquisition system is used to record data from the system.  A picture of 

the system can be seen in Figure 21.  The code for the MPPT algorithm that is used in 

the Arduino can be seen in Appendix 3, and the LabVIEW code for the data acquisition 

system can be seen in Appendix 4.  

 

Figure 21.  The experimental system. 
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The Quasi-Double-Boost DC/DC Converter 

The first aspect of the converter to be verified is the modes of operation; where 

the converter switches from CCM to DCM.  As shown in Chapter 5 the critical duty cycle 

is calculated to be 56.8%.  Above 56.8% the converter is expected to run in CCM while 

below it should run in DCM.  Figure 22, Figure 23 and Figure 24 show the actual results 

from the converter being ran at these specific duty cycles.  The results are obtained with 

the same circuit parameters as in Chapter 5 and the converter input being connected to 

the BP PV panel. 

 

Figure 22.  Observations from the converter being ran at a 50% duty cycle. 
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Figure 23.  Observations from the converter being ran at a 55% duty cycle. 

 

 

Figure 24.  Observations from the converter being ran at a 60% duty cycle. 
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In Figure 22 it can be seen that when the duty cycle is at 50%, which is below the 

critical duty cycle, the circuit is operating in DCM.  This can clearly be seen by the 

clipping of the lower part of the inductor current wave (circled in red).  The results in 

Figure 23 are much harder it interpret, as is expected since a duty cycle of 55% is so 

close to the critical value of 56.8%.  The waveform in Figure 23 does not allow for any 

conclusions to be drawn as to whether the converter is in CCM or DCM.  Figure 24 can 

then be used to ensure that the converter does enter continuous CCM above the critical 

duty cycle.  The inductor current waveform in Figure 24 shows no signs of current 

clipping, thus the converter is clearly operating in CCM. 

The next aspect of the converter that needs to be verified is the voltage 

regulation.  The voltage regulation is found by measuring the input and output voltages 

at different duty cycle levels.  The output voltage is divided by the input voltage to 

obtain the voltage regulation.  Figure 25 shows the measured voltage regulation of the 

converter compared to the results simulated in Simulink as well as the expected voltage 

regulation value that had been calculated from equation (2-15).  The experimental 

results are measured with the converter connected to the PV panel as an input source 

and a 330 Ω resistor bank as an output load.   
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        Figure 25.  Calculated, simulated, and experimental results of voltage regulation. 

 

As can be seen in Figure 25, the voltage regulation results from the actual 

converter are nearly identical to those of the simulated converter up until an 80% duty 

cycle.  They also closely match the calculated values up until that point.  This result 

shows two things.  First, from the correlation of the regulation ratios 0.05 up to 0.75, it 

is observed that the converter is acting as expected.  The results are the same as both 

the calculated and simulated expectation for the circuit.   

Second, something can also be learned from the results above a duty cycle of 

75%.  The calculations and simulations do not take into account real world parameters 
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and physical limits on components.  The results from Simulink were taken with the 

converter connected to an ideal voltage supply at 36 volts.  This voltage supply was said 

to be able to supply unlimited current while staying at the 36 volt level.  The PV panel 

however is not an ideal source.  This fact is what contributes to the limiting factor on the 

voltage regulation of the circuit at the higher duty cycles.  As previously presented a PV 

panel has a finite limit on the amount of voltage, current, and power it can output.  

When the converter is running at higher duty cycle values the PV panel is outputting 

very high currents, close to the short circuit value.  Since the panel does have a finite 

amount of power it can produce this high current causes the panel’s output voltage to 

become much lower.  This high current, low voltage output characteristic effectively 

limits the voltage regulation of the converter by not allowing the circuit the power it 

needs to properly boost the output voltage to the expected level.  This actual converter 

was never expected to reach the calculated voltage regulation value of 39 at a 95% duty 

cycle.  If this was expected the circuit would have to be completely redesigned to handle 

overly high output voltages.  To illustrate this, the simulated input and output voltage is 

compared to the actual input and output voltage at a 75%-95% duty cycle. 

Table 1. Simulated and experimental input and output voltage values of the converter. 

  Simulation Actual 

Duty Cycle Input Voltage (V) Output Voltage (V) Input Voltage (V) Output Voltage (V) 

75% 36 252.354 18.4 127 

80% 36 319.978 10.6 114 

85% 36 439.827 7.11 77.2 

90% 36 647.811 4.53 50.9 

95% 36 1165.835 2.32 24.4 
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As can be seen in Table 1 at a 95% duty cycle the converter output is dropping 1165.835 

volts across the 330 Ω resistor bank.  In terms of power this correlates to (P=V
2
/R) an 

output power of 1165.835
2
 / 330 = 4118.7 W.  This clearly shows why the real converter 

cannot, and why it is not wanted to, reach even the simulated voltage regulation value 

of 32.4 at the 95% duty cycle.  The PV panel has a maximum power output of 175 W.  

Building a converter that only needs to handle 175 W but at a voltage above 1 kV would 

not be economically feasible for most any application. 

 The last attribute of the converter that needed to be tested was the circuit’s 

efficiency.  Testing of the efficiency was preformed with the converter being connected 

between the output of the PV panel and the 330 Ω resistor bank.  The input and output 

currents were measured using two Fluke 112 multimeters while the input and output 

voltages were measured using a Tektronix TDS 2024 oscilloscope.  The test was 

performed on the converter alone without any of the current sensing or sensorless 

technologies in place.  The results of the efficiency test can be seen in Figure 26 and 

Table 2.  There are a few things to note about Figure 26.  First of all is that the efficiency 

result for a duty cycle of 95% is not included on the graph.  This is simply because the 

result is so much lower than the others that it makes the graph harder to see, the result 

can still be seen in Table 2.  The second thing to notice about the graph is that the 

efficiencies are highest when the duty cycle is lowest.  This was expected due to the 

large inductance values.  The final and most compelling aspect of the graph is the almost 

uniform efficiency over the band of duty cycles that the MPPT system will use on most 
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normal days.  This band covers the duty cycles from 5% to 75%.  Over this area there is a 

minimum efficiency of 92.4% and a maximum of 98%. 

 

Figure 26.  The efficiency of the quasi-double-boost DC/DC converter. 
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Table 2.  Results of the converter efficiency test. 

Duty 

Input 

Voltage 

(V) 

Output 

Voltage 

(V) 

Input 

Current 

(A) 

Output 

Current 

(A) 

Input 

Power 

(W) 

Output 

Power 

(W) Efficiency 

0.05 43 47 0.164 0.147   7.052 6.909 97.9722% 

0.1 42.8 53.4 0.217 0.166   9.2876 8.8644 95.4434% 

0.15 42.5 62.2 0.3 0.193   12.75 12.0046 94.1537% 

0.2 42.5 72.7 0.411 0.227   17.4675 16.5029 94.4777% 

0.25 42.3 83 0.541 0.258   22.8843 21.414 93.5751% 

0.3 41.6 92.4 0.681 0.286   28.3296 26.4264 93.2819% 

0.35 41.1 102 0.844 0.315   34.6884 32.13 92.6246% 

0.4 40.7 112 1.021 0.345   41.5547 38.64 92.9859% 

0.45 40.6 122 1.22 0.375   49.532 45.75 92.3645% 

0.5 39.6 130 1.42 0.400   56.232 52 92.4740% 

0.55 38.6 139 1.655 0.428   63.883 59.492 93.1265% 

0.6 37.4 145 1.872 0.447   70.0128 64.815 92.5759% 

0.65 32.4 147 2.235 0.456   72.414 67.032 92.5677% 

0.7 28.2 156 2.841 0.485   80.1162 75.66 94.4378% 

0.75 21.6 145 3.224 0.446   69.6384 64.67 92.8654% 

0.8 14.1 116 3.325 0.359   46.8825 41.644 88.8263% 

0.85 8.6 87.1 3.45 0.285   29.67 24.8235 83.6653% 

0.9 8.15 86.7 3.475 0.276   28.32125 23.9292 84.4920% 

0.95 2.18 26.2 3.452 0.081   7.52536 2.1222 28.2006% 

 

The MPPT Control 

The MPPT system is also tested over a variety of situations.  The algorithm is 

implemented by connecting one panel to the quasi-double-boost converter.  The duty 

cycle of this converter is controlled by the Arduino microcontroller that is fed 

information by the LabView data acquisition system.  A second, duplicate panel is them 

connected to a fixed resistance directly.  The value of this resistance is set so that the 

panel will be able to output the maximum power as described in the PV panel manual 

(Appendix 1).  The resistance is calculated by taking the rated voltage at maximum 
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power (VMP) of the panel (36.1 V) and dividing it by the rated current at maximum 

power (IMP) of the panel (4.85 A).  This gives a resistance of 7.44 Ω.  The resistor 

connected to the second panel has a resistance of 6.3 Ω at room temperature.  

Resistance rises with increased temperature, and the current through a resistor 

produces heat thereby raising the temperature of the resistor.  The 6.3 Ω resistor 

measures out to 7.36 Ω while under a load current of 4.85 A, making it ideal for use with 

this specific PV panel. 

The LabView system that sends the information to the microcontroller to run the 

MPPT system also records the information about voltage and current output from each 

panel.  These values for each panel are then multiplied together to obtain the power 

output of each panel to compare against one another.  The voltage is measured using a 

precision resistor divider network to lower the voltage down to an acceptable level to 

measure with the data acquisition system.  The currents of both panels are measured in 

the ground loop (the line connecting the ground of the panel to the ground of the 

resistor bank) using the voltage drop across a precision current sensing resistor of 0.1 Ω.  

The first MPPT test is preformed on a cloudy overcast day.  A day like this is 

where the MPPT algorithm should best outperform the fixed resistance.  This is because 

of two reasons, the first being that the fixed resistance is set to obtain the most power 

on a sunny day as recommended by the PV panel manual (Appendix 1).  When clouds 

are present the fixed resistance cannot compensate for them as the algorithm should be 

able to.  Secondly the algorithm should be able to adjust slightly to compensate for the 
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differing thickness of each passing cloud in order to obtain the highest power output at 

any point in time. 

The results from this test can be seen in Figure 27.  The PV panel connected to 

the MPPT system clearly has the advantage over the system with the fixed resistance.  

The fixed resistance panel’s output is dependent on how much sunlight is getting 

through the clouds and only that.  The fixed resistance cannot change the power point 

the panel is currently operating at to ensure maximum power output.  The converter 

can be adjusted by the algorithm to compensate for the clouds.  This can clearly be seen 

in the first seconds of the power output of the panel with the MPPT system.  Here the 

power is initially lower at 20.5 W when the controller is first turned on, however the 

algorithm quickly searched out the MPP and allows the panel to operate there (about 30 

W).  Over the same timeframe the panel with the fixed resistances output increased 

from 3.5 to 4.75 W.  Figure 27 also shows that the MPPT algorithm does work even 

under rapidly changing conditions.  As the irradiance increases on the panel with the 

fixed resistance, causing more power output the algorithm also follows this increase in 

irradiance.  The algorithm then also follows the decrease of irradiance towards the end 

of the data in Figure 27.  
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Figure 27. Comparison of the power output of the PV panel with the proposed converter and MPPT control 

system with the PV panel connected directly to a fixed resistance on a cloudy day. 

 

The next MPPT test preformed was at the time just before sunset, when the sun 

was low in the western sky.  This test again showed the effectiveness of the algorithm 

but also shows some flaws that it has.  The results of this test can be seen in Figure 28.  
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In the very first few seconds of Figure 28 the algorithm can be seen turning on and 

quickly finding the MPP of the PV panel.  From that point on, the power steadily 

decreases as the sun goes down.  As this is happening the power output by the panel 

connected to the converter and controlled by the algorithm never drops below the 

power output by the panel with a fixed resistance. 

What is most noticeable about Figure 28 is at about 550 seconds in when the 

power output by the MPPT panel falls from 2.5 W to about 0.25 W.  This is because at 

this low of light condition the algorithm is running the converter at the very extremes of 

its duty cycle range, in this case very close to 0.05.  This drop in power happens when 

the converter is operating at a duty cycle of 5% and tries to climb even lower.  As 

protection for the converter the algorithm is never allowed to set the duty cycle greater 

than 95% or lower than 5%.  When the duty cycle tries to exceed one of these values it 

is reset to a value of 50%.  After the reset occurs the algorithm again searches out the 

MPP of the PV panel.  Once the system finds the MPP it is able to hold there for a little 

while before being reset again.  The system finds the MPP and then resets once more 

before the sun goes down too far to give off any measurable power.  This reset 

condition could be corrected by letting the algorithm hold the duty cycle at 5% but not 

allow it to go any lower thereby allowing the system to work without a reset.  However 

this would also allow for more chance of the circuit being damaged by certain 

unforeseen conditions.  If wires from two separate  panels come into contact and short 

out it would be much better for the circuit if it was forced to reset to a 50% duty cycle 
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rather than running at a constant 95% with all the power from both panels constantly 

flowing through it, damaging the circuit and maybe the load. 

 

Figure 28.  Comparison of the power output of the PV panel with the proposed converter and MPPT control 

system with the PV panel connected directly to a fixed resistance at sunset. 
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The final MPPT test can be seen in Figure 29.  In this figure the system is ran for 

almost a full day when there was almost no clouds in the sky.  A system reset as 

described above can again be seen in the very beginning of this graph.  The figure also 

shows the same results seen in the figures above where there is a great improvement 

when using the system compared to using a fixed resistance.  A notable aspect of this 

figure is how much of an improvement there is when the system is at maximum power 

output when the sun is at its highest point in the sky.  This large improvement is due to 

the test being performed during a winter month.  In the winter months the sun is at a 

lower angle in the sky so it is not hitting the PV panel dead on.  This causes less light to 

be absorbed within the panel than would be during a summer month.  The lower light 

absorption due to the angle can also be seen in that the maximum power output barely 

exceeds 100 watts when both panels are rated at 175 watts.  During a summer month 

when the sun is hitting the panel directly and the PV panel is outputting the maximum 

rated power these two curves should be identical at the peak point.  This is because the 

fixed resistance is implemented according to the values of voltage and current at 

maximum power.  While the MPPT circuit could perform better during all other times of 

the day, it would have the same performance as the fixed resistance over the time when 

the panel is operating at its rated power output.  The values of voltage and current at 

maximum power are finite and cannot be exceeded by the tracking circuit.   
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Figure 29.  MPPT Comparison of the power output of the PV panel with the proposed converter and MPPT 

control system with the PV panel connected directly to a fixed resistance over a full sunny day. 
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Current-Sensorless MPPT Control 

The next experiment is to test the effectiveness of the proposed current-

sensorless MPPT system.  It utilizes the voltage ripple of the input capacitor to calculate 

the input current of the converter through equations (4-5) and (4-6).  Figure 30 shows 

the current estimation result, where the estimated value closely follows the actual 

current value.  The maximum estimation error is less than 0.2 A, which indicates that the 

maximum error of the power estimation is less than 8 W for the converter.  

 

Figure 30.  The current estimation results. 

 

Using the estimated current, the MPPT tracking performance in a high radiation 

condition is shown in Figure 31. The initial duty ratio is set low so that the tracking 
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begins from the high-voltage side of the P-V curve of the PV panel.  The output power of 

the PV system continuously increases under the control of the current-sensorless MPPT 

algorithm.  In the end, the output power reaches a value that is much higher than the 

initial value, as shown in Figure 31.  

 

Figure 31.  The MPPT result in high radiation (sunny) conditions. 

 

Figure 32.  The MPPT results in low radiation (cloudy) conditions. 
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Figure 32 compares the power output of the PV panel connected to a fixed load 

of 330 Ω through the quasi-double-boost converter with MPPT control against a second 

identical panel connected directly to a fixed load without the converter.  This test was 

done in low radiation conditions to show the effectiveness of the system for all 

operating conditions.  Figure 32 shows that the output power of the PV panel with the 

tracking system is much more than that without the MPPT, which confirms the 

effectiveness of using the current-sensorless MPPT control.  
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Chapter 7:  Conclusions, Contributions, and Recommendation for 

Future Work 

In order to maintain the highest power output from a PV panel at all times a high 

efficiency converter coupled with a MPPT system must be used.  In this research a high-

efficiency quasi-double-boost DC/DC converter was designed and implemented.  A fast 

reacting and accurate MPPT algorithm was implemented to control the converter and 

make sure the PV panel is always outputting the maximum power available at a given 

time.  Results are presented showing the output power improvement over a standard 

panel with a fixed load.  Three separate current sensing and sensorless methods are 

presented to ensure the entire system operates with the highest possible efficiency.   

In future work it is recommended that all three current sensing technologies be 

implemented with identical converters and PV panels, so they can truly be tested 

against one another.  If the experiment could be ran for an extended period of time with 

the converter, microcontroller and all voltage regulators needed for the microcontroller 

and the current sensing technologies being powered off the PV panel then the overall 

efficiency of each system could be realized.   
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Appendix 1 - BP Solar Panel Model SX 3175 
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Appendix 2 - MATLAB Simulink Models 

The PV Panel Model 

 

 

  



 

 

74 

 

7
4

 

The Converter Model 
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The MPPT Control Block 
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The MPPT Code 

function [Voltage,Power_P,Power,Freq,Test,Duty,Count]= 

fcn(Power_Prev,... 
    SV_Prev,Solar_V,Current,O_Freq,Change,Duty_I,T) 

  
    Power = Solar_V * Current; 
    Duty = Duty_I;  
    Freq = O_Freq; 
    Count = T + 1;  
    rate = 0.001;                
    Power_P = Power_Prev; 
    Voltage = SV_Prev; 
    if Count == 1e4 
    %*************************MPPT********************** 
        if abs(1-Power/Power_Prev) <= rate 
        else           
            if (Duty > 0.1 && Duty < 0.95) 
                if Power>Power_Prev 
                    if Solar_V>SV_Prev 
                        Duty = Duty - Change; 
                    else 
                        Duty = Duty + Change; 
                    end 
                else 
                    if Solar_V>SV_Prev 
                        Duty = Duty + Change; 
                    else 
                        Duty = Duty - Change; 
                    end 
                end 
            else 
                Duty = .7; 
            end 
            Power_P = Power;  
            Voltage = Solar_V; 
        end 
        Count = 0; 
    %***********************END MPPT********************** 
    end  
end 

  



77 

 

 

 

Code for Artificial Neural Network 

clear; 
clc; 
Volt = xlsread('New_Data.xlsx', 'Q:Q'); 
Current = xlsread('New_Data.xlsx', 'O:O'); 
Duty = xlsread('New_Data.xlsx', 'R:R'); 
Vin = xlsread('New_Data.xlsx', 'P:P'); 
Num_Nu = 3; 
Num_Inp = 3; 
Gg = 0.42; 
Gm = 0.3; 
Dv = zeros(1,Num_Nu); 
Dv_prev = zeros(Num_Nu,1); 
Dw = zeros(Num_Nu,Num_Inp); 
Dw_prev = zeros(Num_Nu,Num_Inp); 
i_wgt = [0.0292;0.6006;0.7162;]; 
runs = 27264; 

  
for (i = 1:Num_Nu) 
    for (j = 1:Num_Inp) 
        w(i,j) = rand(); 
    end 
end 
for (i = 1:Num_Nu) 
    v(i,1) = i_wgt(i,1); 
end 
for (ep = 1:runs)  
    E = 0; 
    yh = 0; 
    Z = Volt(ep); 
    D = Duty(ep); 
    G = Vin(ep); 
    C = Current(ep); 
%     T = rand(); 
    x = [1;Z;D];     
    a = w*x; 
    d = 1.0 ./ (1.0 + exp(-a)); 
    for (i = 1:Num_Nu) 
        yh = yh + d(i)*v(i); 
    end 
    y = Current(ep); 
    ey = y - yh;     
    ea = (v.*ey) .* (d.*(1-d));      
    E = .5*abs(ey).*abs(ey);     
    MSE(ep) = E; 
    EP(ep) = (ep);    
    Dv = (Gg*ey).*d + Gm.*Dv_prev;     
    Dv_prev = Dv;     
    Dw = (Gg*ea)*x' + Gm.*Dw_prev;     
    Dw_prev = Dw; 
    v = v + Dv; 
    w = w + Dw;    
end 
semilogy(EP,MSE,'r','LineWidth',2) 
xlabel 'Training Step' 
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ylabel 'MSE' 
title 'Mean Square Error vs Training Steps' 
legend('MSE') 
grid on 
figure; 
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Code to Test the Results of Training the Artificial Neural Network 

EP = 0;MSE = 0;ZT = 0;ep = 0;YA = 0;YH = 0; 
Num_of_Test = 13632; 
for (ep = 1:Num_of_Test)  
    E = 0; 
    yh = 0; 
    Z = Volt(ep); 
    D = Duty(ep); 
    x = [1;Z;D]; 
    a = w*x; 
    d = 1.0 ./ (1.0 + exp(-a)); 
    for (i = 1:Num_Nu) 
        yh = yh + d(i)*v(i); 
    end 
    y = Current(ep); 
    ey = y - yh; 
    ea = (v.*ey) .* (d.*(1-d)); 
    E = .5*abs(ey).*abs(ey); 
    MSE(ep) = E; 
    EP(ep) = (ep); 
    YA(ep) = y; 
    YH(ep) = yh; 
    ZT(ep) = G; 
end 
figure; 
subplot(2,1,1) 
semilogy(ZT,MSE,'gx','LineWidth',2) 
xlabel 'Solar Voltage (V)' 
ylabel 'MSE' 
title 'Solar Voltage vs Mean Square Error' 
legend('MSE') 
grid on 

  
subplot(2,1,2) 
plot(ZT,YA,'ro','LineWidth',2) 
hold on; 
plot(ZT,YH,'bx','LineWidth',2) 
xlabel 'Solar Voltage (V)' 
ylabel 'Actual/Estimated Current (A)' 
title 'I-V Curve' 
legend('Actual Current', 'Estimated Current') 
grid on 
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Appendix 3 - MPPT Code Implemented in the Arduino 

int maxDuty = 800; 
long csPin = A0; 
long vsPin = A2; 
int numberAnalogReads; 
int duty; 
long prevPower; 
long prevVoltage; 

  

  
void setup() 
{ 
    Serial.begin(9600); 
    TCCR1A = 242;  
    TCCR1B = 25;   
    ICR1 = maxDuty;  
    OCR1A = 400;   
    OCR1B = maxDuty;   
    DDRB = _BV(PB1) | _BV(PB2); 
    pinMode (csPin, INPUT);  
    pinMode (vsPin, INPUT); 
    int numberAnalogReads = 2; 
    int duty = 400; 
    long prevPower = 0; 
    long prevVoltage = 0; 
} 

  
void loop()  
{ 
        duty = OCR1A; 
    long current = readAndAvgC(); 
    long voltage = readAndAvgV(); 
    long power = current * voltage; 
    if (abs(power - prevPower) > 500) 
    { 
        algorithm (voltage, power); 
    } 
    delayMore (); 
} 

  
// Subroutines 

  
long readAndAvgC () 
{ 
    long reading = 0; 
    long temp = 0; 
        for (int x = 0; x <= 0; x++) 
        { 
                delay(400); 
            temp = analogRead(csPin); 
                delay(50); 
            temp = temp + analogRead(csPin); 
            delay(50); 
                temp = temp + analogRead(csPin); 
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            delay(50);       
                temp = temp + analogRead(csPin); 
            delay(50); 
                temp = temp + analogRead(csPin); 
            delay(50); 
                temp = temp + analogRead(csPin); 
            delay(50); 
        } 
    reading = temp / 6; 
    return reading; 
} 

  
long readAndAvgV () 
{ 
    long reading = 0; 
    long temp = 0; 
        for (int x = 0; x <= 0; x++) 
        { 
                delay(0); 
            temp = analogRead(vsPin); 
            delay(50); 
                temp = temp + analogRead(vsPin); 
            delay(50); 
                temp = temp + analogRead(vsPin); 
            delay(50); 
                temp = temp + analogRead(vsPin); 
            delay(50); 
                temp = temp + analogRead(vsPin); 
            delay(50); 
                temp = temp + analogRead(vsPin); 
            delay(50);       
        } 
    reading = temp / 6; 
return reading; 
} 

  
void algorithm (long voltage, long power) 
{ 
            if (duty > 40 && duty < 760) 
            { 
                if (power>prevPower) 
                { 
                    if (voltage<(prevVoltage+10))//> 
                    { 
                        OCR1A = OCR1A - 4; 
                    } 
                    else 
                    { 
                        OCR1A = OCR1A + 4; 
                    } 
                } 
                else 
                { 
                    if (voltage<(prevVoltage+10))//> 
                    { 
                        OCR1A = OCR1A + 4; 
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                    } 
                    else 
                    { 
                        OCR1A = OCR1A - 4; 
                    } 
                } 
            } 
            else 
            { 
                OCR1A = 400; 
            } 
            prevPower = power;  
            prevVoltage = voltage; 
return; 
} 

  
void delayMore () 
{ 
        delay(1000); 
return; 
} 
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Appendix 4 - LabVIEW Data Acquisition System 
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