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Low-density parity-check codes are commonly decoded using iterative message-

passing decoders, such as the min-sum and sum-product decoders. Computer sim-

ulations demonstrate that these suboptimal decoders are capable of achieving low

probability of bit error at signal-to-noise ratios close to capacity. However, current

methods for analyzing the behavior of the min-sum and sum-product decoders fails to

produce usable bounds on the probability of bit error. Thus, the resulting probability

of bit error when using these decoders remains largely unknown for signal-to-noise ra-

tios beyond the reach of simulation. For this reason, it is worth considering alternative

methods for decoding low-density parity-check codes.

New methods for decoding low-density parity-check codes, known as finite tree-

based decoders, are presented as alternative decoders for low-density parity-check

codes. The goal of the finite tree-based decoders is to achieve probability of bit error

comparable to that of the min-sum and sum-product decoders, while allowing for

computationally tractable performance analysis. Finite tree-based decoding requires

the construction of finite trees derived from the Tanner graph of the low-density

parity-check code. The resulting size of the finite trees allows for current analytical



techniques, such as deviation bounds and density evolution, to be used to predict

the probability of bit error of finite tree-based decoding of short-to-moderate length

low-density parity-check codes. Simulation results show that finite tree-based de-

coders are capable of outperforming current iterative decoders at high signal-to-noise

ratios. Examples are also given where finite tree-based decoding provably approaches

maximum-likelihood performance as the signal-to-noise ratio grows large.

A new method is also presented for lower bounding the minimum distance of low-

density parity-check codes. This new lower bound is used as a cost criteria for the

construction of low-density parity-check codes with both large girth and minimum-

distance properties. Codes generated with this new construction technique are shown

in simulations to outperform codes generated with the progressive edge-growth algo-

rithm, using both iterative decoding and finite tree-based decoding.
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Chapter 1

Introduction

In 1948, Claude E. Shannon published “A Mathematical Theory of Communication”

[1] and sparked the beginning of the field of information theory. Prior to Shannon’s

work, increasing the reliability of communication over a noisy channel was most com-

monly done by dedicating more power to the transmitter to increase the signal-to-

noise ratio (SNR). Shannon’s noisy-channel coding theorem showed that, for a given

channel, there exist channel codes capable of achieving arbitrarily low error rates

as long as the rate of the code was below the channel capacity. Channel codes that

achieve a probability of bit error below 10−5 at SNR only slightly above the minimum,

as defined by Shannon, are often referred to as capacity-achieving codes. Unfortu-

nately, Shannon failed to provide a method for constructing usable capacity-achieving

channel codes.

1
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Some of the first channel codes to be used were binary Hamming codes, introduced

in 1950 by Hamming [2]. Hamming codes use binary generator matrices for encoding

information sequences and binary parity-check matrices for decoding. While far from

capacity-achieving codes, Hamming codes are nonetheless effective in dealing with

channel errors for short block lengths. The minimum-distance properties of Ham-

ming codes combined with the hard-decision syndrome decoder makes it possible to

efficiently detect, and sometimes correct, bit errors introduced by the channel.

Shortly after the introduction of Hamming codes, convolutional codes were de-

veloped by Elias in 1955 [3]. Unlike Hamming codes, convolutional codes generate

codewords by convolving short binary sequences with the information bits. The bi-

nary numbers in the generating sequence are often referred to as the memory ele-

ments. Convolutional codes with a large number of memory elements, or simply large

memory, have the potential for increased minimum distance when compared to convo-

lutional codes with small memory. Minimum distance refers to the minimum number

of non-zero elements in any codeword, excluding the codeword consisting of all zeros.

Codes with large minimum distance are known to have a lower probability of bit error

at high SNR, when decoded with maximum likelihood decoding. The structure of con-

volutional codes makes them very efficient for encoding information sequences of any

given length. However, it was not until 1967 that soft-decision maximum-likelihood

decoding of convolutional codes became possible with the introduction of the Viterbi
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decoder [4]. While both Hamming codes and convolutional codes are efficient for en-

coding and decoding short block length codes, the computational complexity of their

respective decoders made them impractical for larger block lengths.

Fourteen years after Shannon proved the existence of capacity-achieving codes,

Gallager [5] discovered low-density parity-check (LDPC) codes. Gallager was able to

prove that LDPC codes are capable of capacity-achieving performance. However, due

to the limitations of computers at the time of their discovery, it was impractical to

simulate the encoding and decoding of large block length LDPC codes. Therefore,

nobody was able to demonstrate the exceptional performance of LDPC codes with

large block lengths, and they were largely forgotten for the next three decades.

In 1993, there was a breakthrough in the field of channel coding when C. Berrou,

A. Glavieux, and P. Thitimajshima discovered a class of near-capacity achieving codes

known as turbo codes [6]. Unlike LDPC codes, the discovery of turbo codes came

with simulations demonstrating their exceptionally low probability of bit error at

SNRs close to Shannon’s capacity bound. A fundamental innovation of turbo codes

was the use of a suboptimal, soft-decision iterative decoder. Prior to the introduction

of turbo codes, suboptimal iterative decoders were not commonly used in the field of

channel coding.

In 1996, D. J. C. MacKay and R. M. Neal revisited LDPC codes [7]. By using

existing methods for suboptimal iterative decoding [8], they were able to demonstrate
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through simulations that LDPC codes are also capable of achieving near-capacity

performance. Since then, LDPC codes have surpassed turbo codes in terms of both

research activity and application. In 2003, an LDPC code was chosen over a turbo

code for digital video broadcasting - satellite 2nd generation (DVB-S2) systems [9].

The LDPC code was chosen for two reasons. First, the LDPC code uses a lower-

complexity decoder than turbo codes. Second, turbo codes exhibit a phenomenon

known as an error floor where, at some frequently unknown SNR, the performance

becomes dominated by the relatively small minimum distance of the code and the bit

error rate decreases much more slowly with increasing channel SNR.

Since the discovery of turbo codes and the rediscovery of low-density parity-check

codes, a great deal of research has been devoted to understanding the behavior of their

suboptimal iterative decoders. The Turbo decoder is a message-passing algorithm

that utilizes the well-known BCJR algorithm [10]. Turbo codes are encoded with a

parallel concatenation of component convolutional codes, and the BCJR algorithm is

used to minimize the probability of bit error of each component code. During turbo

decoding, the BCJR outputs are passed between the component decoders. Though

there is no guarantee of an optimal output using the turbo decoder, the behavior

of turbo decoding as the SNR grows large can be closely approximated by assuming

that the output of the turbo decoder is the same as that of the maximum-likelihood

decoder [11]. Turbo decoding performance often has a poor probability of bit error at
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high SNR due to the existence of error floors. Therefore, turbo codes are not suitable

for applications requiring exceptionally low error rates.

The two best known decoders for low-density parity-check codes are the sum-

product (SP) decoder (also known as the belief propagation decoder) and the min-

sum (MS) decoder. These two decoders are optimal for codes whose Tanner graph

[12] representation is a tree. MS decoding is optimal in the sense that it minimizes the

codeword error probability on the tree, and SP decoding is optimal in the sense that

it minimizes the bit error probability on the tree [13]. Unfortunately, codes whose

Tanner graphs are trees have inherently poor distance spectrums due to the existence

of leaf nodes, and are not suitable for applications requiring a low probability of bit

error. For this reason, it is necessary to consider codes whose graphical realizations

contain cycles and are thus not trees. The MS and SP decoders are no longer optimal

on codes whose graphical representations contain cycles. In addition, performance

analysis is difficult when the Tanner graph of an LDPC code contains cycles.

In his dissertation, Wiberg [13] introduced the computation tree as an exact model

for the sum-product and min-sum decoders after a finite number of iterations, even

in situations where the Tanner graph of the low-density parity-check code contains

cycles. Therefore, in theory the computation tree enables one to analyze the perfor-

mance of the SP and MS decoders after any number of iterations. However, regardless

of the block length of the code, the size of the computation tree grows exponentially
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with the check node and variable node degrees of the LDPC code, thus making anal-

ysis intractable even after just a small number of iterations.

It is not computationally tractable to obtain an accurate probability of bit error

for SP and MS decoding over all ranges of SNR using computer simulations. Therefore

analytical results are needed to estimate the probability of bit error at SNR where

simulations are incapable of providing an estimate. However, even with the benefit

of modern methods for characterizing the error patterns of iterative decoders [14],

the behavior of the MS and SP decoders remain largely a mystery to the coding

community.

Current methods for decoding low-density parity-check codes are difficult to an-

alyze. Thus, it is of interest to formulate an alternative decoder whose performance

is comparable to that of the SP and MS decoders, but which allows for tractable

performance analysis. For applications that require near-error-free performance it is

necessary to accurately predict or upper bound the performance beyond the range

of computer simulations. Finite tree-based decoding methods are introduced in this

dissertation as alternatives to current suboptimal, iterative decoders in an effort to

create LDPC decoders that allow for tractable performance analysis.

Each of the finite tree-based decoding methods presented includes both a finite

tree construction and a finite tree decoder. Several different methods for finite tree

construction are introduced and examined in this dissertation, including extrinsic tree
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construction [15, 16]. Each of the new finite tree construction methods builds trees

based on the Tanner graph of a given LDPC code, and the trees are constructed prior

to decoding. It is important to note that, for a given code, it is only necessary to per-

form the finite tree construction once. After the finite tree construction is complete,

the finite tree decoder operates on the trees using channel output information. The

construction of the finite trees is done with the goal of minimizing the probability of

a bit error at the root node, with the knowledge that they will be operated on by

the finite tree decoder. In addition to minimizing the probability of a bit error, finite

tree construction methods also attempt to minimize the number of nodes necessary

to achieve a given probability of bit error at the root node. Simulations demonstrate

that the new finite tree-based decoders are capable of outperforming existing iterative

decoders at high SNR.

In this dissertation, upper bounds are given on the probability of bit error for

finite tree-based decoding of codes with short-to-moderate block length (N ≤ 1500)

and fixed variable node and check node degrees. Existing methods for analyzing and

upper bounding the performance of MS and SP decoding of LDPC codes, after only a

small number of iterations, are applied to the finite tree-based decoders. For example,

on a finite tree with a small enough number of nodes, Wiberg’s notion of deviations

can be used to compute upper bounds on the performance of finite tree-based decoders

even when the finite trees contain more than one copy of the same variable node. In
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the special case where there is a maximum of one copy of each variable node in the

finite tree, density evolution [17, 18] can be used to compute the exact probability of

bit error of finite tree-based decoders.

There are several existing methods for constructing low-density parity-check codes.

Some of the best known methods [19] create codes with a desirable cycle structure in

the Tanner graph. Here, a new method referred to as independent tree-based LDPC

(ITB LDPC) construction is presented. ITB LDPC codes are iteratively constructed

with the goal of increasing the lower bound on the minimum distance. Instead of

using existing methods for obtaining lower bounds on the minimum distance, a new

finite tree-based method for lower bounding the minimum distance is derived. It is

shown that the new ITB LDPC codes perform better in terms of both probability of

bit error and word error than codes constructed with existing methods, using both

iterative decoders and finite tree-based decoders. Simulations using finite tree-based

decoding of ITB LDPC codes demonstrate improved performance when compared

to the decoding of LDPC codes generated using existing methods. In one example,

a finite tree-based construction method detects the minimum-weight codeword in a

code of dimension fifty, and as a consequence the finite tree decoder provably achieves

the bit error rate performance of a maximum-likelihood decoder as the SNR grows

large.

In summary, this dissertation derives several novel methods for decoding low-
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density parity-check codes. Each of the new finite tree-based decoding methods con-

structs finite trees derived from the original Tanner graph of the code before the

finite tree decoder operates on the trees. The trees are constructed with the goal of

minimizing the probability of bit error at the root node. The trees are also limited

in size, thus allowing tractable performance analysis even at SNRs beyond the reach

of simulation. A new method is also introduced for constructing LDPC codes that

perform well with finite tree-based decoders. Simulations are presented that demon-

strate that finite tree-based decoders can outperform MS decoding at high channel

SNRs. Examples are also given where finite tree-based decoding provably achieves

maximum-likelihood decoding probability of bit error as the channel SNR grows large.

Chapter 2 provides much of the necessary background information for understand-

ing the finite tree-based decoders. Several existing decoders are discussed, along with

different methods for analyzing the error mechanisms of these decoding algorithms.

With the necessary background in place, motivation for finite tree-based decoding is

given at the end of Chapter 2. In Chapter 3, several methods for finite tree-based

decoding are introduced. Chapter 3 concludes with the examination of two different

analytical methods that can be used to predict the performance of finite-tree based

decoding. Chapter 4 focuses on the design of low-density parity-check codes that

perform well with finite tree-based decoders. A new lower bound on the minimum

distance based upon finite trees is introduced. The new lower bound is then utilized
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to construct parity-check matrices that perform well with finite tree-based decoders.

Finally, Chapter 5 concludes with some discussion and suggestions for future research.



Chapter 2

Background

The near-capacity performance of low-density parity-check codes was first demon-

strated with efficient decoding algorithms like min-sum (MS) and sum-product (SP).

These two decoding algorithms take advantage of the sparseness of the parity-check

matrices of LDPC codes, since the complexity of the MS and SP algorithms scales in

proportion to the number of binary 1’s in the parity-check matrix. However, due to

the sub-optimality of the MS and SP decoders, new decoding algorithms for LDPC

codes have been created along with variations of the SP and MS decoders in an at-

tempt to improve their performance. In this chapter, several methods for decoding

LDPC codes are reviewed along with existing techniques for performance analysis.

This chapter begins with a definition of the binary-input, additive white Gaus-

sian noise (BIAWGN) channel. The BIAWGN channel model is assumed throughout

11
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this dissertation. After introducing the channel model, the necessary background on

the graphical representation of LDPC codes is given. Next, several known decoding

algorithms for LDPC codes on the BIAWGN channel are discussed. These include

the maximum-likelihood (ML), linear programming (LP), MS, and SP decoding algo-

rithms. Several existing models for understanding the error mechanisms of iterative

decoders are then considered. These include stopping sets, trapping sets, and devia-

tions on the computation tree. Density evolution is then examined as a method for

estimating the performance of code ensembles. Finally, a summary of the current

state of research in this area is given along with a discussion of the motivation for

finite tree-based decoding.

2.1 Channel Coding Over the Binary-Input Addi-

tive White Gaussian Noise Channel

A system diagram with channel coding over the binary-input, additive white Gaussian

noise channel is given in Figure 2.1. A vector u ∈ F
K
2 of K information bits is gener-

ated by the binary source. The binary source is assumed to be memoryless, which is

often the result of source coding (data compression), and therefore all information se-

quences in F
K
2 are equally probable. A binary K×N generator matrix G may be used

by the channel encoder to map the information bits u to a codeword c ∈ F
N
2 , where
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Figure 2.1: System diagram for channel coding over the BIAWGN channel.

N is the block length of the code. If the matrix G is full-rank, the rate of the code is

R = K
N

. The mapping from information bits to codeword is done through the matrix

multiplication c = uG. It is assumed that G is of the form G =
[

IK×K : PK×(N−K)

]

,

where IK×K is an identity matrix of size (K × K). This particular form makes it

is easy to extract the information bits from the codeword, since (c1, . . . , cK) = u.

Generator matrices with this form are referred to as systematic generator matrices.

Before a codeword c ∈ C is transmitted over the channel, it is mapped to a
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modulated vector via the transformation

xi = m(ci) = (2ci − 1),

for all i = 1, . . . , N . The received signal vector y ∈ R
N is given by

y = x + n,

where n ∈ R
N is the noise vector. The noise is assumed to be additive white Gaussian

noise (AWGN) with zero mean and variance σ2. An estimate ĉ of the transmitted

codeword c is derived from the received vector y at the channel decoder. Since

the generator matrix is systematic, the estimated information bits are simply û =

(ĉ1, . . . , ĉK). Finally, the information bits are passed to the sink.

As mentioned earlier, the assumption is made throughout this dissertation that

the information sequences u ∈ F
K
2 are equiprobable. Since there is a one-to-one

mapping between information sequences and codewords, all codewords in the code C

are equiprobable as well. Therefore, P (ci) = P (cj) for all ci, cj ∈ C, where P (ci) is

the probability that codeword ci is transmitted.
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2.2 Low-Density Parity-Check Matrices and Tan-

ner Graphs

From the generator matrix G, it is possible to derive an (N − K) × N parity-

check matrix H for the code. A parity-check matrix of a code C is any matrix

H , such that HcT = 0 for all c ∈ C. A systematic parity-check matrix H =

[

(PK×(N−K))
T : I(N−K)×(N−K)

]

, where (PK×(N−K))
T is the transpose of PK×(N−K),

can easily be obtained from a systematic generator matrix G.

Low-density parity-check codes are often defined by their parity-check matrix H .

In particular, LDPC codes are a class of codes with sparse parity-check matrices. A

sparse parity-check matrix is any binary matrix that contains more binary 0’s than

binary 1’s. A (dV , dF )-regular LDPC code is one that has a fixed number dV of binary

1’s in each column of the parity-check matrix and some fixed number dF of binary

1’s in each row of the parity-check matrix. These LDPC codes are often referred to

as (dV , dF )-regular LDPC codes. An example of a small (2, 3)-regular LDPC code of

length N = 6 and dimension K = 3 is given by the parity-check matrix

H(2,3) =

























1 1 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 1 1

























. (2.1)
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The parity-check matrix of a length N , dimension K code must contain at least

(N −K) rows, since the kernel of G has dimension (N − K). However, it is possible

for the parity-check matrix to contain more than (N − K) rows. Therefore, the

number of rows in the parity-check matrix is denoted by M , where M ≥ (N − K).

At the time when Gallager discovered low-density parity-check codes [5], he was

also able to provide simulation results using his own suboptimal iterative decoders.

However, due to the limitations of the processing speed of computers at the time, he

was not able to demonstrate the near-capacity performance that LDPC codes were

capable of achieving. While the performance capabilities of LDPC codes were not

witnessed until much later, the introduction of Tanner graphs was arguably the next

most important development in the study of LDPC codes.

In 1981, Tanner introduced a bipartite graphical representation of low-density

parity-check matrices known as the Tanner graph [12]. The use of Tanner graphs as a

graphical interpretation of LDPC codes lead researchers to consider the use of existing

iterative message-passing algorithms to decode LDPC codes [13, 7], thus resulting in

the rediscovery of LDPC codes. Since the rediscovery of LDPC codes, Tanner graphs

have been used in the application of graph theory towards encoding, decoding, and

code design for LDPC codes.

In order to construct a Tanner graph from a parity-check matrix, each column i in

the parity-check matrix is assigned to a corresponding variable node vi in the Tanner
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graph, and each row j is assigned to a corresponding check node fj in the Tanner

graph. The set of all variable nodes is V , and the set of all check nodes is F . There

is an edge ei,j between variable node vi and check node fj in the Tanner graph if and

only if the entry in H at the intersection of the jth row and ith column is a binary

1. The Tanner graph T = (V ∪ F, E) is thus defined by the set of variable nodes V ,

the set of check nodes F , and the set of edges E. The Tanner graph corresponding

to the parity-check matrix H(2,3) (given by equation (2.1)) is shown in Figure 2.2.

v1 v2 v3 v4 v5 v6

f1 f2 f3 f4

Figure 2.2: Tanner graph of a (2, 3)-regular LDPC code.

In this chapter, Tanner graphs and other graphical representations of low-density

parity-check codes derived from Tanner graphs are used to model iterative decoders

and understand their behavior. Four decoding algorithms used to decode low-density

parity-check codes are examined in this chapter: maximum likelihood, linear pro-

gramming, min-sum, and sum-product. After examining the decoding algorithms,
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some existing methods for analyzing their performance are also discussed.

2.3 Maximum Likelihood Decoding

Maximum likelihood (ML) decoding chooses the modulated codeword x that maxi-

mizes the probability that the channel output y was received given that x was sent.

The ML decoder output x̂, is given by

x̂ = arg max
x∈m(C)

PY|X(y|x), (2.2)

where PY|X(y|x) is the probability that the vector y is the channel output, given that

the modulated codeword x was transmitted. When using soft-decision decoding over

the AWGN channel, it is necessary to use an alternative formulation of ML decoding,

since yi ∈ R
N is a real number vector from a continuous probability distribution.

Thus, it is not possible to deal directly with the probability distribution PY|X(y|x)

during decoding, becase PY|X(yi|xj) = 0 for all yi ∈ R
N and xj ∈ m(C).

A more convenient formulation of the maximum likelihood decision criterion comes

in the form of the log-likelihood ratio (LLR). An alternative realization of Equation

(2.2) shows how the decoding problem can be reformulated as a minimization of the

LLR cost function. When the channel is assumed to be memoryless, Equation (2.2)

can be re-written as

x̂ = arg max
x∈m(C)

N
∏

i=1

PY |X(yi|xi).
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Since maximizing the probability is equivalent to maximizing the natural log of the

probability,

x̂ = arg max
x∈m(C)

log

(

N
∏

i=1

PY |X(yi|xi)

)

= arg max
x∈m(C)

N
∑

i=1

log
(

PY |X(yi|xi)
)

.

Each xi is equal to either +1 or −1, and m−1(xi) is a single binary variable where

either m−1(xi) = 0 or m−1(xi) = 1. Therefore, the log of the probability can be

separated into two distinct components given by

x̂ = arg max
x∈m(C)

N
∑

i=1

(

log
(

PY |X(yi| − 1)
)

(1 − m−1(xi)) + log
(

PY |X(yi|1)
)

m−1(xi)
)

= arg max
x∈m(C)

N
∑

i=1

(

log
(

PY |X(yi| − 1)
)

+
(

log
(

PY |X(yi|1)
)

− log
(

PY |X(yi| − 1)
))

m−1(xi)
)

.

The additive term log
(

PY |X(yi| − 1)
)

is independent of the value of xi, and thus it

does not impact the maximization. Removing log
(

PY |X(yi| − 1)
)

and combining the

remaining two probabilities into the same logarithm results in

x̂ = arg max
x∈m(C)

N
∑

i=1

(

log
(

PY |X(yi|1)
)

− log
(

PY |X(yi| − 1)
))

m−1(xi)

= arg max
x∈m(C)

N
∑

i=1

log

(

PY |X(yi|1)

PY |X(yi| − 1)

)

m−1(xi).

Finally, after scaling the argument by (−1) and changing the decision rule from a

maximization to a minimization, ML decoding can be realized as the cost minimiza-
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tion

x̂ = arg min
x∈m(C)

N
∑

i=1

log

(

PY |X(yi| − 1)

PY |X(yi|1)

)

m−1(xi) (2.3)

= m−1

(

arg min
c∈C

N
∑

i=1

λici

)

, (2.4)

where λi =
PY |X(yi|−1)

PY |X(yi|1) is the log-likelihood ratio (LLR) obtained from the channel

output yi. Thus, the codeword estimate obtained from ML decoding is the one that

minimizes the cost function

ĉ = arg min
c∈C

N
∑

i=1

λici. (2.5)

Performing brute-force maximum-likelihood decoding requires that every code-

word c ∈ C be considered by the decoder. In order to evaluate the LLR cost of

each codeword, the decoder needs to perform 2KN symbol-wise comparisons, where

K is the dimension of the binary code C. While this is practical for codes with small

dimension K, it quickly becomes computationally intractable for codes with larger

dimension. For example, a relatively small code with dimension K = 40 requires

8.8 × 1013 symbol-wise comparisons to perform brute-force ML decoding after a sin-

gle codeword transmission. Therefore, alternative algorithms are necessary to decode

codes with large block length and dimension.
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2.4 Linear Programming Decoding

One alternative to maximum likelihood decoding of low-density parity-check codes

was introduced by Feldman in 2001, in the form of linear programming (LP) decoding

[20]. The LP decoder is based on a set of linear inequalities derived from the rows

of the parity-check matrix H of the code. For each row j in the parity-check matrix,

let Ej = {S ⊆ N(j) : |S| odd } be the collection of all sets S of column indices in

N(j) = {i|hj,i = 1} with odd cardinality, where hj,i is the binary entry in H at the

intersection of the jth row and the ith column. Also, let S̄ = {i ∈ N(j)|i /∈ S} be the

set of all column indices in N(j), but not in S. For each row j in the parity-check

matrix H , the output ĉ of the LP decoder must satisfy the inequality

∑

i∈S

ĉi +
∑

i∈S̄

(1 − ĉi) ≤ |N(j)| − 1 (2.6)

for each S ∈ Ej. The inequality given by 2.6 forces ĉ to satisfy each of the parity-check

equations in H when ĉ is binary. Each bit estimate ĉi must also be in the range

0 ≤ ĉi ≤ 1. (2.7)

An important property of the set of linear inequalities derived from (2.6) and (2.7)

is that all codewords in C satisfy each inequality with equality. The set of linear

inequalities given in (2.6) and (2.7) are used in conjunction with a cost function to

be minimized, given by
N
∑

i=1

λici, (2.8)
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to form a complete linear program. Finally, using linear optimization techniques such

as the well-known simplex algorithm [21], a solution is obtained that has minimal

cost and is within the bounds defined by the set of inequalities.

If the solution to the inequalities is restricted to integer vectors x̂ ∈ F
N
2 , then

the optimization problem is called an integer linear program. The set of solutions

to the integer linear program defined by (2.6), (2.7), and (2.8) is equal to the set of

codewords. Since the cost function given in (2.8) is the same as the ML cost function

given in (2.5), the output of the integer linear program is always the same as the

output of ML decoding. Unfortunately, integer linear programming problems are non-

deterministic polynomial-time hard, meaning that it is not possible to solve integer

linear programs using an algorithm that runs in polynomial-time [20]. Therefore,

allowing non-integer solutions is required to make LP decoding practical for large

codes.

The complete set of vectors x̂ ∈ R
N that satisfy (2.6) and (2.7) is known as

the fundamental polytope, and the vertices of the fundamental polytope adequately

represents all possible optimal solutions to the linear program. Although vertices in

the fundamental polytope do not always correspond to codewords, each codeword in

C corresponds to a unique vertex in the fundamental polytope.

As pointed out by Feldman [20], linear programming decoding has the maximum

likelihood certificate. The ML certificate guarantees that if the LP decoder outputs
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a codeword, it is the ML codeword. This is straightforward, since the cost function

minimized by the LP decoder is the same as the cost function minimized by the ML

decoder. Since each codeword is a vertex of the fundamental polytope, a codeword

chosen by the LP decoder must have cost less than or equal to the cost of all other

codewords.

The primary disadvantage of the non-integer linear programming decoder is that

the outputs are not restricted to codewords. Vertices of the fundamental polytope

are referred to as linear programming pseudocodewords. Many times, there exist LP

pseudocodewords that do not correspond to codewords, and these are referred to as

non-codeword linear programming pseudocodewords. Since the LP decoder has the

ML certificate, non-codeword LP pseudocodewords are the only type of output that

results in an LP decoder error in situations where the transmitted codeword is the

ML codeword.

An effort to establish a connection between the linear programming decoder and

other known iterative decoders resulted in an alternative formulation of the linear pro-

gramming decoder known as the graph-cover decoder [22]. This formulation shows

that the outputs of the LP decoder can each be realized as a graph-cover configura-

tion, or a graph-cover pseudocodeword. Furthermore, it is shown that a graph-cover

pseudocodeword corresponding to the output of the LP decoder is always included in

the set of optimal outputs of the graph-cover decoder. Since graph-covers are locally



24

identical to the Tanner graph, there is an intuitive connection between the output

of graph cover decoding and the outputs of local algorithms like the MS and SP

decoders. Relationships between graph-cover pseudocodewords and the MS decoder

outputs have recently been established [14], [23], [24]. However, there remain many

open questions regarding connections between the LP decoder and existing iterative

decoders.

Using linear programming to decode low-density parity-check codes is still a rela-

tively new concept. In practice, the LP decoder offers similar bit error and word error

performance when compared to the MS and SP decoders. However, the complexity

of the LP decoder is much higher than the MS and SP decoders due to the need to

solve large sets of linear equations. For this reason, the MS and SP decoders are

considered to be more practical methods for decoding LDPC codes.

2.5 Min-Sum Decoding

The min-sum decoder is a low-complexity, sub-optimal iterative decoder that can

be used to decode low-density parity-check codes. Given a particular parity-check

matrix, the MS decoder operates by passing messages between the check nodes and

the variable nodes along the edges of the Tanner graph of the code. Wiberg [13] shows

that the MS decoder is equivalent to the ML decoder when operating on a code whose

corresponding Tanner graph is a tree. When the Tanner graph of the code contains
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cycles, the MS decoder output is no longer guaranteed to match the ML decoder

output. Though provably suboptimal, its performance is still comparable to the best

known decoders of LDPC codes, and it has very low complexity when compared to

other soft-decision decoders of LDPC codes.

Before introducing the min-sum decoder, some additional notation must be in-

troduced. The set of neighbors of check node fi in the Tanner graph is denoted

N(fi) = {vj|hi,j = 1}, and similarly the set of neighbors of variable node vi in the

Tanner graph is denoted N(vi) = {fj |hj,i = 1}. To denote the set of neighbors of

check node fi excluding variable node vj, the notation N(fi)\vj is used. Similarly,

the set of neighbors of variable node vj excluding check node fi is denoted N(vj)\fi.

During MS decoding, messages are passed between neighboring check nodes and vari-

able nodes along the edges of the Tanner graph. Messages from check node fi to

variable node vj ∈ N(fi) are denoted by mfi→vj
, and messages from variable node vi

to check node fj ∈ N(vi) are denoted mvi→fj
. Given a modulated codeword x sent

by the transmitter, a channel output y available at the receiver, and a maximum

number of iterations ℓmax, the steps for MS decoding are given in Algorithm 2.5.1.

Algorithm 2.5.1 (Min-Sum Decoding).

Step 0: Initialization

Set the number of iterations to ℓ = 0. For all messages mvi→fj
, set

mvi→fj
= λi =

PY |X(yi|−1)

PY |X(yi|1) = −2
σ2 yi.
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Step 1: Variable Node to Check Node

Set ℓ = ℓ + 1. For all messages mfi→vj
, set

mfi→vj
=





∏

vk∈N(fi)\vj

sgn(mvk→fi
)





(

minvk∈N(fi)\vj
|mvk→fi

|
)

.

Step 2: Check Node to Variable Node

For all messages mvi→fj
, set

mvi→fj
= λi +

∑

k∈N(vi)\j
mfk→vi

.

Step 3: Check Stop Criteria

For all mvi
, set

mvi
= λi +

∑

k∈N(vi)

mfk→vi
.

For all ĉi, set

ĉi =



















0 if mvi
> 0

1 if mvi
< 0

.

If H ĉT = 0 or ℓ ≥ ℓmax, stop decoding, otherwise return to Step 1.

In practice, the min-sum decoder does not always output a codeword. It has been

shown that when the MS decoder does not output a codeword after a large number

(> 200) of iterations has been performed, the output is often trapped in a repeating

sequence of two or more non-codeword outputs [14].
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One of the primary strengths of the min-sum decoder is the relatively small number

of operations performed during each iteration. During each iteration, the messages

mvi→fj
and mfj→vi

must be computed for each binary 1 in the parity-check matrix.

For a (dV , dF )-regular LDPC code, there are (N × dV ) = (M × dF ) binary 1’s in the

parity-check matrix. When the degree of the nodes and the number of iterations is

fixed, the complexity of MS decoding scales linearly with the length N of the code.

In addition to only requiring a small number of operations, the min-sum decoder

has two other important strengths: the simplicity of the operations and the lack of the

need for channel estimation. The first strength is a result of the fact that addition

and minimization are the two primary operations performed by the MS decoder.

These operations can both be performed very quickly and efficiently in hardware. In

regards to the second strength, it is not necessary to know the channel SNR during

MS decoding since minimizations are not affected by scale factors. Thus, the channel

LLR can be scaled from − 2
σ2 y to −y and the output of the MS decoder will remain

unchanged. This simplification removes the burden of channel estimation at the

receiver.

2.6 Sum Product Decoding

Similar to the min-sum decoder, the sum-product decoder is an efficient, iterative,

sub-optimal decoder that can be used to decode low-density parity-check codes. The
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SP decoder, also known as the belief propagation decoder, was introduced by Pearl [8]

in 1988. Whereas the MS decoder outputs the ML codeword when decoding an LDPC

code whose Tanner graph is a tree, the SP decoder outputs the highest probability

binary assignment to each variable node when considering all codewords on the tree.

In other words, the MS decoder minimizes the probability of word error on trees and

the SP decoder minimizes the probability of bit error on trees.

Given a modulated codeword x sent by the transmitter, a channel output y avail-

able at the receiver, and a maximum number of iterations ℓmax, the steps for SP

decoding are given in Algorithm 2.6.1.

Algorithm 2.6.1 (Sum-Product Decoding).

Step 0: Initialization

Set the number of iterations to ℓ = 0. For all messages mvi→fj
, set

mvi→fj
= λi =

PY |X(yi|−1)

PY |X(yi|1) = −2
σ2 yi.

Step 1: Variable Node to Check Node

Set ℓ = ℓ + 1. For all messages mfi→vj
, set

mfi→vj
= 2 · tanh−1





∏

vk∈N(fi)\vj

tanh
(mvk→fi

2

)



 .

Step 2: Check Node to Variable Node

For all messages mvi→fj
, set

mvi→fj
= λi +

∑

k∈N(vi)\j
mfk→vi

.
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Step 3: Check Stop Criteria

For all mvi
, set

mvi
= λi +

∑

k∈N(vi)

mfk→vi
.

For all ĉi, set

ĉi =



















0 if mvi
> 0

1 if mvi
< 0

.

If H ĉT = 0 or ℓ ≥ ℓmax, stop decoding, otherwise return to Step 1.

When compared to the min-sum decoder, the sum-product decoder is not as com-

putationally efficient. One reason for this is that the SP decoder requires the computa-

tion of the hyperbolic tangent and the inverse hyperbolic tangent. Current software

implementations of these two operations requires that these functions be stored in

tabular form in memory. In addition to the increase in memory storage requirements,

a table look-up is required each time a hyperbolic tangent or an inverse hyperbolic

tangent is needed. The second reason the SP decoder is not as efficient as the MS

decoder is that the decoder requires a reliable channel estimate. Unlike the MS de-

coder, the SP decoder does not allow for the LLR ratio to be scaled without changing

the decoder output. This is because the hyperbolic tangent is sensitive to scaling

whereas minimizations are not.
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Neither the min-sum decoder or the sum-product decoder is guaranteed to output

a codeword if the Tanner graph of the low-density parity-check code contains cy-

cles. For this reason, non-codeword outputs are possible with both decoders. Many

attempts have been made to characterize these non-codeword outputs, and explain

what causes them to occur. Two existing explanations for the non-codeword outputs

of iterative decoders are stopping sets and trapping sets.

2.7 Stopping Sets

The notion of stopping sets was first introduced by Forney et al. [25] in 2001. Two

years later, a formal definition of stopping sets was given by Changyan et al. [26].They

demonstrated that the bit and word error probabilities of iteratively decoded LDPC

codes on the binary erasure channel (BEC) can be determined exactly from the stop-

ping sets of the parity-check matrix.

Definition 2.7.1 (Stopping Sets [26]). A stopping set S is a subset of the set of

variable nodes V , such that any check node connected to a variable node contained in

S is connected to at least two variable nodes in S.

A small example of a stopping set is given in Figure 2.3. Consider the sub-

set S = {v1, v2, v3, v4} of the set of variable nodes V . There are five check nodes

{f1, f2, f3, f4, f5} connected to the set S, and each of them is connected to S at least
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two times. Note that only f2 is connected to the set S an odd number of times. If

each of the check nodes is connected to S an even number of times, S corresponds

to a codeword support set where each bit in S can be flipped without changing the

overall parity of any of the check nodes.

v1 v2 v3 v4

f1 f2 f3 f4 f5

'
&

$
%

S

Figure 2.3: Example of a stopping set in the Tanner graph of an LDPC code.

The intuition behind stopping sets begins with an understanding of iterative

message-passing decoders. Information given to a specific variable node from a neigh-

boring check node is derived from all other variable nodes connected to that check

node. Consider two variable nodes vi, vj ∈ N(fk), where both variable nodes contain

an erasure. In this case, each of the sets N(fk)\vi and N(fk)\vj contains at least

one erasure, thus making it impossible for the check node fk to determine the parity
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of either set. For this reason, none of the check nodes connected to a stopping set

is capable of resolving erasures if each variable node contained in the stopping set

begins with an erasure from the channel.

Work relating linear programming pseudocodewords to stopping sets for the bi-

nary erasure channel [25], and both the binary symmetric channel (BSC) and the

additive white Gaussian noise channel [27], has revealed a relationship between linear

programming pseudocodewords and the size of stopping sets. Although stopping sets

have a strong relationship with LP pseudocodewords, the performance of neither the

MS decoder or the SP decoder on the BSC and AWGN channels can be predicted

using stopping sets alone.

2.8 Trapping Sets

Trapping sets were first introduced by MacKay and Postol [28] to provide an expla-

nation for the weaknesses of algebraically constructed low-density parity-check codes.

They define trapping sets as follows.

Definition 2.8.1 (Trapping Sets [28]). Consider a length N code with parity-check

matrix H, and let T ⊆ {1, . . . , N} be a set containing |T | = t coordinates. Consider

a binary vector y with 1’s in the coordinates of T and 0’s elsewhere. If the syndrome

s = Hy has Hamming weight wt, the set T is referred to as a (t, wt) trapping set.
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Consider the trapping set shown in Figure 2.4, where the set T = {1, 2, 3, 4}

corresponds with a set of variable nodes {v1, v2, v3, v4} in the Tanner graph of the

parity-check matrix H . There are four variable nodes in the set, so t = 4, and if

all variable nodes are set to a binary 1, only check nodes f2 and f3 are connected

to an odd number of binary 1’s, so the syndrome s has Hamming weight equal to 2.

Therefore, this set of variable nodes defines a (4, 2) trapping set.

v1 v2 v3 v4

f1 f2 f3 f4 f5

'
&

$
%

(4, 2) Trapping Set

Figure 2.4: Example of a (4, 2) trapping set in the Tanner graph of an LDPC code.

It is important to note that any set of variable nodes can be considered a trapping

set defined by some set of parameters, and the significance of trapping sets varies

greatly depending on the parameters (t, wt). Consider transmission of the all-zeros

codeword over a BSC with crossover probability pBSC = P (yi = 1|xi = 0) = P (yi =
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0|xi = 1) < 0.5. The channel output y is more likely if the Hamming weight of y

is t < N
2
. Therefore, using reasonable channel assumptions, the vector y is expected

to contain more binary 0’s than binary 1’s. Additionally, if the syndrome has a

low Hamming weight wt, then only a small number of parity-checks are capable of

detecting the error. Trapping sets with small t and small wt are thought to be

particularly problematic to iterative decoders.

In [29], trapping sets are examined for different decoders on the binary erasure

channel, binary symmetric channel, and the additive white Gaussian noise channel.

Whereas stopping sets can be used to precisely determine the probability of error on

the BEC, trapping sets appear to cause errors on the AWGN channel. Richardson [29]

uses the parameters and multiplicity of various problematic trapping sets to estimate

the error floor of LDPC codes at bit error rates where simulations are not feasible.

Unfortunately, the somewhat vague definition of problematic trapping sets makes it

difficult to use them for performance analysis.

2.9 Computation Trees and Deviations

In his 1996 dissertation, Wiberg [13] presented groundbreaking analytical results with

respect to iterative decoding of low-density parity-check codes. He provided extensive

analysis of both the MS and SP decoders by introducing a model of iterative decoding

known as the computation tree. Wiberg showed that the MS decoder minimizes the
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probability of word error when decoding a code whose Tanner graph is a tree, while

for the same type of code the SP decoder minimizes the probability of bit error.

In addition to introducing computation trees, Wiberg also introduced the concept

of deviations. Wiberg proved that deviations on the computation tree with negative

cost are required in order for errors to occur during MS and SP decoding. Because of

the importance of computation trees and deviations in understanding finite tree-based

decoding, they are examined in detail in this section.

Consider a low-density parity-check code represented by a Tanner graph T =

(V ∪F, E). A computation tree rooted at variable node vi after ℓ iterations is denoted

R
(ℓ)
vi . In order to construct a computation tree from the Tanner graph, a variable node

vi is placed at the top level (root) of a descending tree. To construct the next level

in the tree directly below vi, each of vi’s neighbors in N(vi) is added to this level and

connected to vi. This process continues level-by-level, where nodes in the previous

level are used to determine nodes on next level, while maintaining that each node

in the computation tree has the same set of neighbors as its corresponding node in

the Tanner graph. For example, if variable node vj on the last completed level is

connected to check node fk on the level above it, then all check nodes in N(vj)\fk

must appear on the next level and be connected to vj , thereby ensuring that vj is

connected to exactly one copy of each check node in N(vj).

Figure 2.5 gives an example of a small Tanner graph, and its corresponding com-
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putation tree rooted at v1 after two iterations. Nodes at the bottom level of the

computation tree are referred to as leaf nodes. Notice that the leaf nodes are the

only nodes in the computation tree that are not connected to a copy of each of their

neighbors in the original Tanner graph.

v1

v2

v3

f1

f2

f3

(a) Tanner graph

v1

v2 v3 v2 v3 v2 v3

v1v3v1v3 v1v2v1v2 v1v3v1v3 v1v2v1v2 v1v3v1v3 v1v2v1v2

f1 f2 f3

f3f2 f3f2 f3f1 f3f1 f2f1 f2f1

(b) Computation tree

Figure 2.5: Computation tree of a simple repetition code after ℓ = 2 iterations.

Computation trees are precise models for analyzing the performance and behavior

of min-sum and sum-product decoding for a finite set of iterations. Each of these

decoders can be perfectly modeled after ℓ iterations by constructing N different com-

putation trees that contain 2ℓ + 1 levels of nodes including the root node. The N

computation trees are each rooted at a different variable node from the original Tan-

ner graph. Then, for every variable node vi in each computation tree, the LLR cost

γi is assigned to that variable node. At this point, MS or SP decoding operations can
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be performed from the leaf nodes up to the root node. The final cost at each of the

root nodes determines the binary estimate of the transmitted codeword computed by

the decoder. Because the MS and SP decoders are optimal on Tanner graphs that

are trees, the MS and SP decoders are optimal on each of the computation trees

derived from the Tanner graph. MS chooses the least cost valid configuration on the

tree, where a valid configuration refers to any assignment of binary numbers to the

variable nodes such that each check node is adjacent to an even number of variable

nodes assigned to a binary 1. The SP decoder, on the other hand, chooses the value

at the root node that has the highest probability over all valid configurations.

Although the computation tree model is precise, after a small number of iterations

it becomes impractical to analyze the performance of specific codes by considering

all valid configurations on the computation tree. The number of valid configurations

on the computation tree can be computed by treating the computation tree as a

Tanner graph. In order to define a Tanner graph given the computation tree, treat

all check nodes and variable nodes in the computation tree separately. For example,

if multiple copies of variable node v1 are distributed throughout the computation

tree, each copy is treated as a distinct variable node. After regarding each variable

node in the computation tree as distinct, one can show that each check node on

the computation tree corresponds to a linearly independent parity-check equation. If

there are
∣

∣

∣
R

(ℓ)
vi (V )

∣

∣

∣
variable nodes and

∣

∣

∣
R

(ℓ)
vi (F )

∣

∣

∣
check nodes on a computation tree
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rooted at variable node vi after ℓ iterations, then there are a total of 2

˛

˛

˛

R
(ℓ)
vi

(V )
˛

˛

˛

−
˛

˛

˛

R
(ℓ)
vi

(F )
˛

˛

˛

valid configurations on the tree. On a (dV , dF )-regular LDPC code, the number of

variable nodes after ℓ iterations is given by

∣

∣R(ℓ)
vi

(V )
∣

∣ = 1 +
ℓ−1
∑

i=0

dV (dF − 1)
(

((dV − 1)(dF − 1))i
)

(2.9)

and the number of check nodes is given by

∣

∣R(ℓ)
vi

(F )
∣

∣ =
ℓ−1
∑

i=0

dV

(

((dV − 1)(dF − 1))i
)

.

To illustrate the growth rate in the number of valid configurations on the compu-

tation tree, consider an LDPC code where each variable node has degree dV = 3 and

each check node has degree dF = 6. These commonly used code parameters define

what is known as a (3, 6)-regular LDPC code. Table 2.1 shows the number of variable

nodes given by

∣

∣R(ℓ)
vi

(V )
∣

∣ = 1 +

ℓ−1
∑

i=0

15(10i),

the number of checks nodes given by

∣

∣R(ℓ)
vi

(F )
∣

∣ =

ℓ−1
∑

i=0

3 · 10i,

and the corresponding number of valid configurations on the computation tree after

1, 2, and 3 iterations. Note that the growth rate is not affected by the block length

of the code.
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Iterations Variable Nodes Check Nodes Configurations

1 16 3 8192

2 166 33 ≈ 1040

3 1666 333 ≈ 10401

Table 2.1: The number of nodes and valid configurations on the computation tree of

a (3, 6)-regular LDPC code.

Table 2.1 illustrates the computational complexity associated with considering

each valid configuration on the computation tree. In light of this, Wiberg [13] derived

a simplified bound on the performance of MS decoding operating on a particular

computation tree. In order to obtain this bound, Wiberg introduced the concept of

deviations on the computation tree. A deviation is any set of variable nodes on the

computation tree satisfying the following three conditions.

1. Each check in the computation tree is adjacent to either two or zero variable

nodes in the deviation set.

2. A deviation set must contain the root node of the computation tree.

3. No proper and non-empty subset of variable nodes in the deviation form a valid

configuration on the computation tree.

Figure 2.6 shows an example of a deviation on the computation tree given in Figure
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2.5(b). The larger blue variable nodes are contained in the deviation, whereas the

smaller red nodes are not.

v1

v2 v3 v2 v3 v2 v3

v1 v3 v1 v3 v1 v2 v1 v2 v1 v3 v1 v3 v1 v2 v1 v2 v1 v3 v1 v3 v1 v2 v1 v2

f1 f2 f3

f3f2 f3f2 f3f1 f3f1 f2f1 f2f1

Figure 2.6: Example of a deviation on the computation tree.

Wiberg uses the set of deviations on the computation tree to derive an upper

bound on the performance of the min-sum decoder. It is necessary, but not sufficient,

for at least one deviation δ in the set of all deviations ∆ to have negative cost in

order for an error to occur at the root node. This condition assumes that the all-

zeros codeword was transmitted over the channel. The cost of the deviation, denoted

by G(δ), can be found by summing the LLR cost of each of the nodes in the support
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of the deviation. The cost of a deviation is given by

G(δ) =
∑

vi∈δ

γi,

where copies of vi ∈ δ are counted as many times as they appear in the deviation. A

necessary, but not sufficient, condition for an error to occur on the computation tree

rooted at variable node vi is

min
δ∈∆

G(δ) < 0.

Using this condition, a bound can be derived on the probability that the minimum-

cost configuration on the computation tree contains a binary 1 at the root node. This

bound is

P (vi = 1) ≤ P (min
δ∈∆

G(δ) < 0)

≤
⋃

δ∈∆

P (G(δ) < 0)

which can be further loosened to

P (vi = 1) ≤
∑

δ∈∆

P (G(δ) < 0) (2.10)

by using the union bound.

Wiberg [13] shows that the bound given by (2.10) can be used to predict the

performance of min-sum decoding of infinite-length codes after a specific number of

iterations. Wiberg begins by assuming that the computation trees have no repeated
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nodes. This assumption simplifies the weight enumerators of the deviations for reg-

ular LDPC codes. Wiberg also shows that (2.10) can be used to bound MS decoder

performance when there are multiple copies of each variable node in the tree. Thus,

in theory, Wiberg’s deviation bound can be used to bound the performance of MS

decoding of finite codes. The following proposition shows that the number of devi-

ations grows exponentially with dV , thus making it computationally intractable to

enumerate the deviations even after a small number of iterations.

Proposition 2.9.1. Let R
(ℓ)
vi be the computation tree of a (dV , dF )-regular LDPC

code, rooted at variable node vi after ℓ iterations. Then, the number of deviations

that exist on R
(ℓ)
vi is

(dF − 1)
Pℓ

i=1 dV (dV −1)i−1

. (2.11)

Proof. By the definition of a deviation, we must assign the root node vi to a binary

1. Each of the dV check nodes immediately below vi must assign exactly one of the

their (dF −1) child variable nodes to a binary 1. Thus, there are a total of (dF −1)dV

deviations after one iteration. In addition, there are exactly dV leaf nodes in the

support of each deviation after one iteration.

Each of the previous dV leaf nodes gets connected to (dV − 1) check nodes after

two iterations. Each of these check nodes assigns one of their (dF − 1) child variable

nodes to a binary 1. Therefore, for each deviation after one iteration there are (dF −

1)dV (dV −1) different deviations after two iterations. This brings the total number of
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deviations to (dF −1)dV (dF −1)dV (dV −1) = (dF −1)(dV )2 after two iterations. The total

number of leaf nodes in the support of the deviation after two iterations is dV (dV −1).

Following this pattern, the dV (dV − 1) variable nodes in support of the deviation

after two iterations branchs out to dV (dV −1)2 check nodes. There are (dF−1)dV (dV −1)2

ways of assigning the leaf nodes to the support of the previous deviation. This brings

the total number of deviations to (dF −1)(dV )2(dF −1)dV (dV −1)2 = (dF −1)(dV )3−(dV )2+dV

after three iterations.

After ℓ iterations, the dV (dV −1)ℓ−2 old leaf nodes in the support of the deviation

branch out to dV (dV − 1)ℓ−1 new leaf nodes in the support of the deviation. There

are (dF − 1)dV (dV −1)ℓ−1
ways of assigning the support to the previous deviation, and

the total number of deviations after ℓ iterations is

ℓ
∏

i=1

(dF − 1)dV (dV −1)i−1

= (dF − 1)
Pℓ

i=1 dV (dV −1)i−1

The number of deviations on the computation tree of a (3, 6)-regular low-density

parity-check code is given in Table 2.2 for iterations 1 through 5. Even after only a

small number of iterations, it becomes impractical to enumerate each of the deviations

in order to compute the upper bound on the probability of bit error of the root variable

node of the computation tree.

Using computation trees, Wiberg provided a precise model of the behavior of
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Iterations # of Deviations

1 125

2 1,953,125

3 4.7684 × 1014

4 2.8422 × 1031

5 1.0097 × 1065

Table 2.2: Number of deviations at iterations 1-5 for a (3, 6)-regular LDPC code.

the min-sum and sum-product decoders. Unfortunately, the size of the computation

trees and the number of configurations on them grows too large for practical analysis.

Deviations provide a simplified approach to the analysis of computation trees, but the

number of deviations also grows exponentially with the number of iterations. Thus, it

is still of interest to find a tractable method for computing bounds on the performance

of iterative decoders.

2.10 Density Evolution

Density evolution takes a different approach than stopping sets and trapping sets

to analyzing the performance of iterative decoders of low-density parity-check codes.

Stopping sets and trapping sets attempt to explain the error mechanisms of iterative



45

decoders with finite codes, but neither approach leads to analytical results for the SP

or MS decoder operating on LDPC codes transmitted over the BIAWGN channel. As

an alternative to stopping sets and trapping sets, computation trees and the notion of

deviations lead to proven upper bounds on the performance of MS decoding. However,

as shown in Section 2.9, analysis of computation trees quickly becomes computation-

ally intractable after only a small number of iterations. Thus, tractable analysis of

MS and SP decoding of finite-length LDPC codes remains an open problem.

Density evolution is a method for analyzing the performance capabilities of infinite-

length low-density parity-check codes with iterative message-passing decoders [17, 18].

Shannon’s capacity bound [1] was also computed under the assumption of infinite-

length codes. However, unlike Shannon’s capacity bound, density evolution takes into

account the structure of the parity-check matrix of the code and the corresponding

iterative decoder.

In Section 2.10.1, background is provided regarding the probability distribution of

messages passed between nodes during sum-product decoding. Section 2.10.2 shows

how density evolution can be used to track the changing probability distributions

with each iteration of iterative decoding.



46

2.10.1 Message Distributions

Assuming a binary-input, additive white Gaussian noise channel, each received value

yi, 1 ≤ i ≤ N , can be described by its probability density function (PDF) or the

associated cumulative distribution function (CDF). If xi = +1, the PDF of yi can

be realized as a Gaussian distribution centered at +1 with a standard deviation of σ

derived from the channel SNR. The LLR λi can be similarly modeled by its PDF.

Using sum-product decoding, messages mf→v get added together during each iter-

ation. It is possible to obtain the probability distribution of the sum of these messages,

since the PDF of the sum of independent random variables is the convolution of their

individual PDFs. The distribution of all messages mv→f at the ℓth iteration is given

by Pℓ, and the sum of two messages has a PDF given by Pℓ ⋆ Pℓ = P⋆2
ℓ , where ⋆ de-

notes convolution. The convolution makes it possible to obtain mv→f from previous

values of mf→v.

Now, consider the map γ : [−∞, +∞] → GF(2) × [0, +∞] defined by

γ := (γ1(x), γ2(x)) :=
(

sgn(x),− ln
(

tanh
∣

∣

∣

x

2

∣

∣

∣

))

,

where

sgn(x) =



















0 if x ≥ 0

1 if x < 0

.

The messages in sum-product decoding are first passed from variable node to check

node and then back from check node to variable node. The update equation in Step
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1 of the SP decoder given by Algorithm 2.6.1 can be rewritten using γ as

mfi→vi
= γ−1





∑

vj∈N(fi)\{vi}
γ
(

mvj→fi

)



 .

Note that the product has been replaced by a sum, since the γ function maps to the

natural logarithm while preserving sign. A formulation of the PDF of γ (mv→f ) would

allow for the PDF of mf→v to be computed using convolution. In order to obtain the

PDF of γ (mv→f ), the Γ function is used. The details of the Γ and Γ−1 functions can

be found in [18].

2.10.2 Evolution of Message Distributions

Assume sum-product decoding is used with a low-density parity-check code with in-

finite block length, and all the cycles in the Tanner graph are also infinite in length.

These assumptions allow all messages passed within the Tanner graph to be indepen-

dent. Furthermore, by characterizing LDPC codes based upon a probabilistic model

of their check and variable node degrees, it is possible to greatly simplify the analysis

of the evolution of the message PDFs. This probabilistic model requires that the

Tanner graph of the LDPC code satisfies two conditions. First, it has a fraction of

edges connected to variable nodes of degree i given by ηi. Secondly, it has a fraction

of edges connected to check nodes of degree i given by ρi. The pair of vectors η and

ρ are called the degree profiles of the LDPC code. Note that the degree profiles define

an ensemble of LDPC codes instead of a particular LDPC code.
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The distribution of mf→v at iteration ℓ is denoted by Qℓ, and the distribution of

mv→f is Pℓ. The update equations for the distributions are

Qℓ = Γ−1

(

∑

i≥2

ρi(Γ(Pℓ−1))
⋆(i−1)

)

, (2.12)

and

Pℓ = P0 ⋆
∑

i≥2

ηi(Qℓ)
⋆(i−1) (2.13)

which are consistent with the update equations from the SP decoder. Density evolu-

tion begins by computing Qℓ using equation (2.12) after initializing Pℓ−1 = P0.

Density evolution can be used to obtain the exact probability of bit error for sum-

product decoding of an infinite-length low-density parity-check code with infinite-

length cycles. To obtain the exact probability of a bit error at a given SNR, equations

(2.12) and (2.13) must be repeated in sequence an infinite number of times to obtain

P∞. However, a good estimate of the probability of a bit error can be obtained by

picking a sufficiently large number of iterations ℓ.

Density evolution is commonly used as a design tool for finding degree profiles that

result in low-density parity-check codes with the potential for low bit error rates at

signal-to-noise ratios close to capacity. Unfortunately, since density evolution assumes

an infinite block length, it is only capable of providing an estimate of the performance

of finite LDPC codes with finite-length cycles. However, as will be shown in Section

3.6.2, density evolution can be used to obtain the exact probability of bit error of

finite tree-based decoding methods under certain conditions.
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2.11 Problem Statement and Related Work

This chapter has examined several methods already in the literature for decoding

low-density parity-check codes and analyzing the performance of the decoders. Since

their rediscovery, LDPC codes have attracted great interest in the field of coding

theory. Along with Turbo codes, they are one of the few classes of codes that is

capable of demonstrating near-capacity performance. The SP and MS decoders have

emerged as the two most popular iterative decoders used for LDPC codes. However,

the lack of proven analytical results on the decoding performance of the SP and MS

decoders makes it difficult to accurately predict their performance. While computer

simulations are capable of providing an estimate of the decoder performance for a

limited range of SNRs, analytical results are required to predict the performance over

the entire range of SNRs.

Several current methods for analyzing the behavior and error mechanisms of iter-

ative decoding have been discussed in this chapter. These methods include stopping

sets, trapping sets, density evolution, and computation tree analysis. Unfortunately,

none of these methods is capable of providing an upper bound on the decoding per-

formance of MS or SP decoding over the BIAWGN channel. The current state of

research in the area of low-density parity-check codes indicates that there is a need

for a decoding technique that allows for computationally tractable performance anal-

ysis.
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Rather than attempting to derive new upper bounds for the min-sum and sum-

product decoders, this dissertation presents several new finite tree-based construction

methods for which upper bounds, and in one special case exact analytical results,

can be computed. Finite tree construction methods and the finite tree decoder are

presented and examined in this dissertation as an alternative to the MS and SP

decoders, with the following two primary goals:

1. Achieve bit error rates comparable to those of current iterative decoders, such

as the MS and SP decoders.

2. Maintain a simple enough graphical representation of the decoder to allow for

practical analysis and bounds.

A decoding method capable of achieving these two goals could provide great benefits

to current and future applications of LDPC codes. The expected probability of bit

error of LDPC codes could be accurately predicted beyond the reach of computer

simulations. In systems where bit errors cannot be tolerated, near-error-free perfor-

mance with a probability of bit error below 10−20 could be guaranteed for specific

ranges of SNR. In addition, analytical results could allow for new methods of LDPC

code construction, where codes are designed to perform well at high SNR.

This dissertation presents alternative methods for decoding low-density parity-

check codes. In particular, all the methods presented in Chapter 3 operate on finite
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trees based upon the Tanner graph. Two existing methods for decoding LDPC codes,

namely the tree-pruning decoder and the self-correcting min-sum decoder, can also

be modeled as decoders that operate on finite trees based upon the Tanner graph.

In [30], tree-pruning decoding is presented for codes represented by graphs, e.g.,

low-density parity-check codes. The tree-pruning decoder is motivated by the results

presented by Weitz [31], proving that there exists a way to prune a computation tree

such that the probability of error at the root node approaches that of maximum a

posteriori decoding on the Tanner graph, when using the SP decoder on the tree.

Trees generated using this method are referred to as self-avoiding walk (SAW) trees.

Unfortunately, the size of SAW trees grows exponentially with the size of the original

Tanner graph T . For this reason, in [30] the authors are forced to apply further trun-

cation to the SAW trees to make the tree-pruning decoder computationally tractable

for LDPC codes. Unfortunately, this truncation eliminates the guaranteed perfor-

mance advantages of using the un-truncated SAW tree. Due to rate of increase in

the computational complexity of the resulting trees, the results of [30] are limited to

simulations using very small block-length LDPC codes.

In 2008, Savin introduced the self-correcting min-sum (SCMS) decoder [32]. The

SCMS decoder utilizes a simple modification to the MS decoder in order to improve

its performance. In simulations, the SCMS decoder demonstrates performance within

0.1 dB of the SP decoder at bit error rates below 10−6. The SCMS decoder modifies
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regular MS decoding by setting the message mvi→fj
to zero if it changes signs on

consecutive iterations. By setting this variable-to-check message to zero, all check

node messages mfj→vk
where vk 6= vi will be set to zero at the next iteration.

With the computation tree interpretation of decoding in mind, setting a check

node message to zero is equivalent to eliminating the check node and all of its de-

scendants from the computation tree. From this point of view, SCMS is essentially

performing regular MS operations on a modified computation tree with the result

being a greatly reduced probability of error at the root node. Unfortunately, the

structure of the modified computation tree depends on the specific channel output

vector, thus making it difficult to characterize the modified computation trees under

the assumption of random channel noise.

Both tree-pruning decoding and self-correcting min-sum decoding demonstrate

some of the advantages of decoding low-density parity-check codes using finite, modi-

fied computation trees. Unfortunately, the trees produced with SCMS grow at nearly

the same rate as computation trees, and they can only be constructed and analyzed

after a very small number of iterations. Additionally, the tree-pruning decoder pro-

duces finite trees that only allow for construction and analysis using small block length

codes where N < 50.

Chapter 3 introduces and examines several different finite tree-based decoding

methods, and shows how to obtain bounds and analytical results on the performance
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of these new decoders. Chapter 4 presents a new method for constructing LDPC

codes designed to perform well with finite tree-based decoders. When compared to

an existing method of code construction, the new method produces LDPC codes

that not only have improved cycle structure, but also have higher minimum distance

properties as measured with a new lower bound on the minimum distance of the code.



Chapter 3

Finite Tree-Based Decoding

Current methods for decoding low-density parity-check codes are capable of achieving

exceptionally low bit error rates in computer simulations. However, the behavior

of the MS and SP decoders remains largely a mystery at error rates below those

achievable in simulations. Applications like hard disc drive storage, where near error-

free performance is desired, demand a decoding solution with guaranteed performance

at error rates below the simulation capabilities of computers. Thus, the lack of

performance bounds for MS and SP decoding prevents their usage in applications

requiring exceptionally low bit error rate.

Computation trees are a precise model for the behavior of the min-sum and sum-

product decoders. Unfortunately, as demonstrated in Section 2.9, analysis using

computation trees quickly becomes intractable after only a small number of iterations.

54
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In addition to being difficult to analyze, the differences between computation trees and

the Tanner graph of an LDPC code are such that the optimal configurations on the

two graphs do not always coincide. Example 3.0.1 demonstrates a situation where the

ML decoder output on the Tanner graph does not equal the MS/ML decoder output

on the computation tree.

Example 3.0.1. Consider an LDPC code with the Tanner graph shown in Figure

v1 v2 v3 v4 v5 v6 v7

f1 f2 f3 f4 f5

Figure 3.1: Tanner graph of a length N = 7, dimension K = 3 LDPC code.

3.1. After ℓ = 2 iterations, the computation tree rooted at variable node v1 is shown

by the graph in Figure 3.2. Assume that the channel output at SNR = 5.0 dB results

in a LLR cost vector given by

λ = (+0.3,−0.1, +1.3, +1.0,−0.1, +1.1, +1.4).

The ML decoder considers all codewords c ∈ C and outputs the codeword that mini-

mizes

ĉ = arg min
c∈C

N
∑

i=1

λici.
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v1

v2 v3 v4 v5

v5 v6 v7 v6 v7 v2 v6 v7

f1 f2

f3f5 f4 f5

Figure 3.2: Computation tree rooted at variable node v1 after ℓ = 2 iterations.

In this example, the ML decoder outputs the codeword (0, 0, 0, 0, 0, 0, 0). However,

the minimum-cost configuration on the computation tree rooted at v1 does not co-

incide with maximum-likelihood valid configuration on the Tanner graph. Instead,

the minimum-cost configuration shown in Figure 3.2 corresponds to the codeword

(1, 1, 0, 0, 1, 0, 0), and the MS decoder outputs a binary 1 at the root node v1. In Fig-

ure 3.2, the large blue variable nodes are assigned to a binary 1, and the small red

variable nodes are assigned a binary 0. Although there are a total of seven compu-

tation trees needed to compute the output of the MS decoder after ℓ = 2 iterations,

the computation tree rooted at variable node v1 sufficiently demonstrates the difference

between the ML decoder output and optimal valid configurations on computation trees.

Example 3.0.1 demonstrates that it is possible for min-sum decoding, after a fixed

number of iterations, to have a different output than the maximum-likelihood decoder.
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Therefore, in order to model the behavior of the MS decoder, valid configurations on

the computation tree need to be considered. In Section 2.9, it was shown that the

performance of MS decoding can be bounded by considering only the weights of

the deviations on the computation tree. In fact, if MS decoding performance is to

approximate that of ML decoding, the weight distribution of the deviations on the

computation tree should resemble the weight distribution of the codewords in the

code.

A histogram of codeword weights is given in Figure 3.3(a) for a length N = 20,

dimension K = 10, (2, 4)-regular LDPC code. From these weights, the performance

of ML decoding could be upper bounded using the union bound. Figures 3.3 and

3.4 also show the weight distribution of the deviations on the computation tree after

iterations 1 through 6. Notice that as the number of iterations increases, the weight

distribution of deviations on the computation tree begins to resemble that of the

codeword weights. The evolution of the deviation weight histogram suggests that the

weight distribution of the deviations might eventually resemble that of the codewords

as the number of iterations increases.

Figure 3.5 shows the codeword weights and deviation weights for a length N = 20,

dimension K = 10, (3, 6)-regular LDPC code after iterations 1 and 2. Unfortunately,

it is not computationally feasible to enumerate the deviations for more than two

iterations for the (3, 6)-regular LDPC code, since after three iterations there are
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4.7684 × 1014 deviations on the computation tree. Therefore, though the histogram

of the weight distribution of deviations is an effective tool for visualizing the distance

properties of computation trees, it is not practical beyond a few iterations.

In Figures 3.3 through Figure 3.5, the evolution of deviation weights was shown

on the computation tree modeling the min-sum decoder. The computation trees grow

systematically with each additional iteration, and with no regard to the structure of

the valid configurations that are allowed on the tree. Therefore, there is no guarantee

that the valid configurations on the computation tree will correspond with codewords

after any number of iterations. It is also uncertain whether or not the valid configu-

rations will be problematic to the MS decoder. For example, if a valid configuration

has weight lower than the minimum weight codeword, the MS decoder will perform

worse than the ML decoder as SNR grows large.

This dissertation presents finite tree-based decoders as an alternative method

for decoding LDPC codes. The goal of finite tree-based decoders is to provide a

method for decoding LDPC codes that performs comparably to existing iterative

decoders, while having predicable performance at very low error rates in the form of

computationally tractable analytical expressions or bounds. Unlike the MS decoder,

finite tree-based decoding aims to create finite trees while maintaining control over

the valid configurations that are possible on the finite trees.

In this chapter, several novel finite tree-based decoders are introduced and their
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(c) 2 Iterations

Figure 3.3: Codeword and deviation weight histograms for a length N = 20, dimen-

sion K = 10, (2, 4)-regular LDPC code for iterations 1 and 2.
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(d) 6 Iterations

Figure 3.4: Deviation weight histograms for a length N = 20, dimension K = 10,

(2, 4)-regular LDPC code for iterations 3 through 6.

performance analysis examined. In Section 3.1, motivation for finite tree-based de-

coding is given in the form of iteratively constructed trees. The iterative algorithm for

building trees node-by-node shows how including parts of the tree can either increase
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Figure 3.5: Codeword and deviation weight histograms for a length N = 20, dimen-

sion K = 10, (3, 6)-regular LDPC code or iterations 1 and 2.
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or decrease the probability of error at the root node. It is also demonstrated that

different tree structures are desirable at different SNRs. In Section 3.2, independent

trees are introduced as a primitive method for generating finite trees with desirable

analytical properties. Two more sophisticated methods for constructing finite trees,

known as extrinsic tree construction and deviation path-forcing tree construction,

are then introduced in Section 3.3 and Section 3.5, respectively. Section 3.6 con-

cludes the chapter with a discussion of techniques that can be used to upper bound

the probability of bit error for finite tree decoders. Finally, techniques for deriving

exact performance curves using density evolution are examined and applied to the

independent trees introduced in Section 3.2.

3.1 Iterative Tree Construction

This section presents a method for iteratively constructing trees based on the Tanner

graph of a low-density parity-check code. The goal of iterative tree building is to

construct finite trees with a low probability of error at the root node of the tree. The

first step in the iterative tree building process is to fix the channel SNR. With the

channel SNR fixed, the procedure for iterative tree building is given by Algorithm

3.1.1.

Algorithm 3.1.1 (Iterative Tree Construction).
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for i = 1, . . . , N

− Root the tree at variable node vi.

− Set the level of the tree to ℓ = 0.

− Set the current probability of error at the root node to Pb,vi
= 1.0.

while one or more variable nodes exist in level ℓ of the tree.

for each variable node vk in the tree at level ℓ.

if check node fj ∈ N(vk) is not the parent node of vk.

−Connect fj to vk, and connect variable nodes vl ∈ N(fj)\vk

to fj at level ℓ + 1.

−Perform simulations to obtain a new estimate of the probability

of error at the root node.

if the new probability is less than Pb,vi
.

−Keep fj and its corresponding child variable nodes.

−Set Pb,vi
equal to the new probability of error at the root node.

else

−Eliminate fj and its corresponding variable nodes.

end

ℓ = ℓ + 1.

end

end
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In order to obtain an estimate of the probability of error at the root node, decoding

must be performed on the tree. The first step to decoding on the tree is to assign LLR

costs to each of the variable nodes in the iteratively constructed tree. Then, using the

same variable node and check node operations as the MS decoder [13], the decoding

operations are performed from the leaf nodes of the tree up to the root node. The

decoding process is given in Algorithm 3.1.2.

Algorithm 3.1.2 (Finite Tree Decoding). The message mvi
at each leaf node in the

tree is initialized to the LLR cost λi assigned to that node. Let C(f) denote the child

nodes of check node f , and let C(v) be the child nodes of variable node v. At each

check node, the message

mfi
=





∏

vk∈C(fi)

sgn(mvk
)





(

min
vk∈C(fi)

|mvk
|
)

is computed from the costs of its child node(s). Next, the variable node message

mvi
= λi +

∑

fk∈C(vi)

mfk

is computed from the check node message(s) of its children. These two steps are

performed at every check node and variable node from the lowest nodes in the tree

up toward the root node. This process continues until the message mvroot has been

computed at the root node of the tree. The message obtained at the root node represents

the difference in cost between the minimum-cost configuration assigning a binary 0

at the root node and the minimum-cost configuration assigning a binary 1 at the root



65

node. This final cost is then quantized using

ĉroot =



















0 if mvroot > 0

1 if mvroot ≤ 0

to determine the decoded binary value of the root node. The set of binary root node

values assigned to each of the trees is the final codeword estimate given by the decoder.

Note that the finite tree decoder is the decoder used with all methods of finite tree

construction presented in this dissertation. Also note that the finite tree decoder uses

the MS cost criteria instead of the SP cost criteria. There are two primary reasons

for choosing the MS cost criteria. The first reason is that it negates the need for

channel estimation at the decoder, thus reducing the complexity of the decoder. The

second reason is related to the connection between the MS decoder and deviations,

since the MS decoder calculates the cost difference between choosing and not choosing

the minimum-cost deviation on the computation tree. In addition, the MS decoder

is guaranteed to choose the minimum-cost valid configuration on the computation

tree, whereas the SP decoder may choose a configuration that does not satisfy all the

checks on the computation tree, and thus is not a valid configuration. Now, consider

the following example illustrating the iterative construction of a tree based upon the

Tanner graph of a LDPC code.

Example 3.1.3. Iterative tree construction is used to build a tree derived from the

Tanner graph given in Figure 3.6, and the tree chosen for this example is the one
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rooted at variable node v2. This example begins with iterative tree construction that

utilizes finite tree decoder simulation results where the channel SNR is fixed at 0.0

dB. The effect of changing the SNR is shown later in this example.

v1 v2 v3 v4 v5 v6 v7

f1 f2 f3 f4 f5 f6

Figure 3.6: Tanner graph of a length N = 7, dimension K = 2 LDPC code.

Figure 3.7 illustrates each step of the tree building process for this example. To

begin the construction, the tree is rooted at variable node v2. This is referred to as Step

0 in the tree building process. The probability of error at the root node is simulated,

given that the all-zeros codeword was sent. The probability of error at the root node

for each step is given in Table 3.1.

Once the root node has been set, and a minimum probability of error has been

established, the next step in the iterative tree building process is to add check node f1

below the root node. Check node f1 is added to the tree since f1 ∈ N(v2). In addition

to adding f1 to the tree, all other variable nodes in N(f1)\v2 are added to the tree

below f1. In this example, only variable node v1 ∈ N(f1)\v2 is added to the tree
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and connected to f1. With the new check node added to the tree along with its child

variable node, the probability of error is once again simulated. Here, the probability of

error at the root node is reduced from Pb,v2 = 0.4496917980 to Pb,v2 = 0.1428583711,

so the additional check node and corresponding variable nodes are retained in the tree.

In Steps 2 through 4 additions to the tree are retained since Pb,v2 decreases at each

of these steps. In Steps 5 through 7, the additions to the tree are not retained since

they would result in an increase in Pb,v2. Finally, since no additions were made at

the lowest level in the tree, the iterative tree construction is compete.

Step Pb,v2 Minimum Pb,v2 Added

0 0.4496917980 0.4496917980 Yes

1 0.1428583711 0.1428583711 Yes

2 0.1272847652 0.1272847652 Yes

3 0.1047076583 0.1047076583 Yes

4 0.1033010930 0.1033010930 Yes

5 0.1044096351 0.1033010930 No

6 0.1088432968 0.1033010930 No

7 0.1109668538 0.1033010930 No

Table 3.1: Probability of bit error Pb,v2 at the root node for steps 1 through 7 during

the construction of the tree rooted at v2 for an SNR = 0.0 dB.
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v2

(a) Step 0

v1

v2

f1

(b) Step 1

v1

v2

v3 v4

f1 f3

(c) Step 2

v1
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v3 v4

v3

f1 f3

f2

(d) Step 3

v1

v2

v3

v4

v3 v1

f1 f3

f2 f2

(e) Step 4

v1

v2

v3 v4

v3 v1 v5 v6

f1 f3

f2 f2 f4

(f) Step 5

v1

v2

v3

v4

v3
v1

v2 v4

f1 f3

f2 f2

f3

(g) Step 6

v1

v2

v3

v4

v3

v1

v3 v4

f1 f3

f2 f2

f3

(h) Step 7

Figure 3.7: Iterative construction of a tree rooted at v2 for SNR = 0.0 dB.

Recall that the previous tree building was performed at SNR = 0.0 dB. A new tree

building process is performed at SNR = 9.0 dB, and the results for the tree rooted at
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v2 are given in Figure 3.8 and Table 3.2. Note that the trees developed at low and

high SNR are significantly different from each other.

Step Pb,v2 Minimum Pb,v2 Added

0 0.0331305835 0.0331305835 Yes

1 0.0012862213 0.0012862213 Yes

2 0.0002069710 0.0002069710 Yes

3 0.0002382885 0.0002069710 No

4 0.0003455956 0.0002069710 No

5 0.0001275513 0.0001275513 Yes

6 0.0001227266 0.0001227266 Yes

7 0.0001134427 0.0001134427 Yes

8 0.0001130205 0.0001130205 Yes

9 0.0001115520 0.0001115520 Yes

10 0.0001123801 0.0001115520 No

11 0.0001119743 0.0001115520 No

Table 3.2: Probability of bit error Pb,v2 at the root node for steps 1-10 during the

construction of the tree rooted at v2 for an SNR = 9.0 dB.

Using Algorithm 3.1.1, trees are constructed iteratively based upon the simulated

probability of error at each step. This leads to the question: “How accurate does the
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Figure 3.8: Iterative construction of a tree rooted at v2 for an SNR = 9.0 dB.



71

probability of error have to be to build the finite trees?” If the probability of error

is not accurate and an error is made in the early stages of the tree building, this

can cause the tree to be drastically different than what was intended. Example 3.1.4

illustrates how inaccuracies in the probability of a bit error can affect the tree.

Example 3.1.4. Consider a length N = 40 (3, 6)-regular LDPC code. Algorithm

3.1.1 is used to construct a tree rooted at variable node v1 for SNR = 5.0 dB. Table

3.3 shows the minimum number of bit errors that occured during simulations while

building the tree at each step, along with the minimum Pb,v1 encountered during the

building process and also the value of Pb,v1 estimated during a simulation of the final

tree where 20,000 bit errors were counted.

Example 3.1.4 indicates that a large number of bit errors need to be simulated in

order to obtain a high level of confidence that the check node and its child variable

node(s) should or should not be retained at each step. Instead of fixing the number of

bit errors counted in simulations, it is possible to use the statistics of the simulation to

adaptively change the required number of bit errors. An adaptive simulation method

using confidence intervals is now examined in detail.

It is possible to use statistics to compute the confidence that the actual probability

of error has increased or decreased after a specific number of bit errors has been

counted in simulations. In order to establish statistical confidence, bit error statistics

are recorded while the simulations take place.
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Bit Errors Simulated Minimum Pb,v1 during building Final Pb,v1 Variable Nodes

25 0.0033552544 0.0056401738 66

50 0.0025213051 0.0040533668 116

100 0.0019811396 0.0028328805 151

250 0.0027112910 0.0032020134 111

500 0.0031489914 0.0036082678 96

1000 0.0027901551 0.0030695035 131

2000 0.0025202089 0.0026876337 191

4000 0.0023306615 0.0024206347 246

8000 0.0021044342 0.0021926407 351

Table 3.3: Final probability of bit error Pb,v1 at the root node for SNR = 5.0 dB after

construction of the tree rooted at v1 using different bit error thresholds for estimating

Pb,v1 .

While performing simulations, an estimate X of the expected mean bit error

probability µX is obtained. The law of large numbers states that the estimated mean

will approach the expected mean as the sample size approaches infinity. However,

since it is impossible to obtain an infinite number of samples, a confidence level will

be established based upon the number of samples available at any given time. If

there are n samples available from the random variable X, and it is assumed that
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the random variable X has a normal distribution, only two statistics are needed to

establish confidence that X is within a certain range of the true mean µX . The first

statistic is the sample mean given by

X =
1

n

n
∑

i=1

xi,

where n is the number of samples available. The other necessary statistic is the

sample variance, given by

S2
X =

1

n − 1

n
∑

i=1

(xi − X)2.

Since it is impossible to obtain the true variance of the random variable, it is common

to treat the sample variance as the true variance after a sufficient number of samples

has been obtained. In this application, after at least 100 samples have been obtained,

the sample variance is assumed to be equal to the true variance. With the assumption

that σ2 ≈ S2
X , a level of confidence can be established about the true mean µX given

a set of samples from the random variable X. If a set of n samples is obtained, it is

of interest to know the probability that X is within a distance τ from the true mean

µX . This probability is given by

P (µX − τ < X < µX + τ) =

∫ µX+τ

µX−τ

1
√

2πS2
X/n

e
−x2

2S2
x

/n dx,

where the variance S2
X is inversely scaled by the number of samples n to obtain the

variance
S2

X

n
of the mean X. This expression can be simplified by moving the mean



74

to zero and recognizing the symmetry of the Gaussian distribution. The simplified

expression is given by

P (µX − τ < X < µX + τ) = 2

∫ τ

0

1
√

2πS2
X/n

e
−x2

2S2
x

/n dx. (3.1)

Using the expression given by equation (3.1), it is possible to implement a new

criteria for iterative tree building where an adaptive number of simulations is per-

formed before each new addition to the tree is included or discarded. For example,

requiring a 95% certainty that any new addition to the tree would either increase or

decrease the existing probability of error at the root node requires that the new mean

probability of error is at least 2.24 standard deviations above or below the existing

probability of error.

Bit Errors Simulated Minimum Pb,v1 during building Final Pb,v1 Variable Nodes

8000 0.0021044342 0.0021926407 351

Adaptive (99.73%) 0.0014652347 0.0014688394 397

Table 3.4: Final probability of bit error Pb,v1 at the root node for SNR = 5.0 dB after

construction of the tree rooted at v1 using 8000 bit errors and the adaptive criteria

for estimating Pb,v1 .

Table 3.4 compares the results of iterative tree building using 8000 bit errors

and the new adaptive criteria. During construction using the adaptive criteria it



75

is required that there is a 99.73% probability that the addition of a check node

and its child variable nodes decreases the existing probability of error at the root

node. Statistical confidence was limited to 99.73% due to computational complexity

associated with requiring higher levels of confidence, as higher levels of confidence

always require an increase in the number of samples. Using the adaptive criteria

with 99.73% confidence, the final probability of error at the root node of the tree is

significantly improved when using the adaptive criteria.

It is worthwhile to compare the results of finite tree decoding on iterative trees

to those of min-sum decoding of v1 from the same N = 40 (3, 6)-regular LDPC code.

Results of MS decoding are given in Table 3.5. The MS decoder can be modeled by

the computation tree and the number of variable nodes in the computation tree is

shown for each iteration. At four iterations, the computation tree of the MS decoder

uses far more variable nodes than the tree built using the adaptive criteria. Even

though the MS decoder uses far more variable nodes, the probability of bit error of

the MS decoder and finite tree decoding on iterative trees are very close. The excess

of nodes in the computation tree without decreased error rates indicates that, in this

example, there is a weakness in the graphical structure of the computation trees. It

takes more than 10 iterations for the MS decoder to show significant performance

advantages over finite tree decoding on iterative trees using the adaptive criteria.

These results show that, with a fixed number of variable nodes, finite trees can be
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designed with improved bit error rates when compared to computation trees.

Iterations Pb,v1 Variable Nodes

1 0.008333263919 16

2 0.003102959367 166

3 0.001689280500 1666

4 0.001411635778 16666

10 0.001327487058 ≈ 1.666 × 1010

20 0.000760487514 ≈ 1.666 × 1020

40 0.000504333235 ≈ 1.666 × 1040

80 0.000340443716 ≈ 1.666 × 1080

160 0.000273044687 ≈ 1.666 × 10160

Table 3.5: Minimum Pb,v1 .

Experimental results with iterative tree building indicate a weakness in standard

computation trees at finite iterations. With this weakness in mind, the primary goal

of finite tree-based decoding is to develop a systematic method for constructing the

finite trees. The trees must be small enough in size to allow for performance analysis,

while maintaining performance comparable to the MS decoder.
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3.2 Independent Tree Construction

Computation trees are used to create an exact model of the behavior of the min-

sum and sum-product decoders. However, they are difficult to analyze when they

contain multiple copies of the same variable node. With multiple copies of the same

variable node in the computation tree, it is possible for a valid configuration on a

computation tree to also include multiple copies of the same variable node. When

this happens, the probability that the decoder is more likely to choose that particular

valid configuration over a configuration that assigns all-zeros to the variable nodes is

no longer simply a function of the number of variable nodes in the valid configuration.

Instead, each variable node in the valid configuration must be considered along with

the number of times it appears within the configuration. As shown in Section 2.9,

this becomes computationally intractable as the computation tree grows large.

As shown in the following construction method, independent trees can be designed

to include at most one copy of each variable node. Trees with this property assign

independent channel information to each variable node during decoding. As shown

later in this chapter, the fact that only one copy of each variable node is included in

the independent tree also makes it possible to compute a precise probability of error

at the root node.

The first step of independent tree (IT) decoding for a given code is to build an

independent tree rooted at each variable node in the code. The process for building
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the independent trees is given in Algorithm 3.2.1.

Algorithm 3.2.1 (Independent Tree Construction).

for i = 1, . . . , N

Root the tree at variable node vi, and set the level of the tree to ℓ = 0.

while one or more variable nodes exist in level ℓ of the independent tree.

for each variable node vk in the independent tree at level ℓ

(a) If check node fj ∈ N(vk) is not the parent node of vk,

connect fj to vk, and connect all other variable nodes

vl ∈ N(fj)\vk to fj at level ℓ + 1.

(b) If no other copy of variable node vl ∈ N(fj)\vk already exists in

the independent tree, keep fj and its corresponding child

variable nodes. Otherwise, eliminate fj and its corresponding

variable nodes from the independent tree.

end

ℓ = ℓ + 1.

end

end

Independent trees are constructed prior to decoding and their size and structure

do not change during decoding. Decoding is performed by first assigning LLR costs

to each of the variable nodes in the independent tree. Then operations are performed
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from the leaf nodes to the root node using the finite tree decoder given in Algorithm

3.1.2. The following example demonstrates the guaranteed error correcting capability

of the independent tree decoder and compares it to the probability of error using

maximum-likelihood decoding.

Example 3.2.2. Consider a length N = 7, dimension K = 2 low-density parity-check

code C consisting of the following set of codewords.

C =

{

(0000000), (1110000), (0000111), (1110111)

}

The probability that the ML decoder outputs a different codeword than the one that

was transmitted can be determined by first visualizing the code in two dimensions.

With the first three coordinates of the code mapped to the x-axis and the last three

coordinates mapped to the y-axis, the code can be visualized as shown in Figure 3.9.

From this two-dimensional visualization of the code it is easy to establish optimal

decision boundaries between the codeword points at x = 0.5 and y = 0.5.

Since the code is linear, and assuming that each codeword is equiprobable, the

probability of error can be computed assuming the all-zeros codeword (0000000) was

transmitted. A codeword error using the ML decoder occurs when at least one of

the other three codewords has lower cost than the all-zeros codeword, as computed by

equation (2.5). In particular, it is easy to visualize in Figure 3.9 that if either the first

three coordinates or the last three coordinates of the code have lower cost when decoded
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Figure 3.9: Two-dimensional visualization of the length N = 7 dimension K = 2

LDPC code.

to (111) as opposed to (000), an ML decoder error will occur. This corresponds to the

condition that either
3
∑

i=1

λi < 0

or
7
∑

i=5

λi < 0.
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On the AWGN channel with variance σ2, this condition reduces to

0 >
3
∑

i=1

log







1√
2πσ2

e
−(yi+1)2

2σ2

1√
2πσ2

e
−(yi−1)2

2σ2







=
3
∑

i=1

log

(

e
−(yi+1)2+(yi−1)2

2σ2

)

(3.2)

=

3
∑

i=1

−2yi

σ2

or
7
∑

i=5

−2yi

σ2
< 0 (3.3)

Since ML decoding is only interested in the argument that minimizes cost, the condi-

tions of (3.2) and (3.3) can be simplified to

3
∑

i=1

yi > 0

and
7
∑

i=5

yi > 0.

Since the all-zeros codeword was transmitted, each coordinate ci = 0 is modulated and

transmitted as xi = m(ci) = −1. The probability that a single yi is greater than zero

is given by

P (yi > 0) =

∫ ∞

0

1√
2πσ2

e
−(y+1)2

2σ2 dy

where yi is a Gaussian random variable with mean µyi
= −1 and variance σ2. The
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probability that the sum of three yi’s is greater than 0 is given by

P (yi + yj + yk > 0) =

∫ ∞

0

1
√

2π(3σ2)
e

−(y+3)2

2(3σ2) dy,

since yi, yj, and yk are independent Gaussian variables. Finally, a decoding error

occurs at each bit c1, c2, c3, c5, c6, and c7 with the same probability

Pb,c1 = Pb,c2 = Pb,c3 = Pb,c5 = Pb,c6 = Pb,c7 =

∫ ∞

0

1
√

2π(3σ2)
e

−(y+3)2

2(3σ2) dy

when using ML decoding. Furthermore, Pb,c4 = 0 because none of the codewords have

non-zero values at bit position c4. The overall probability of word error using ML

decoding is given by

Pw = 2

∫ ∞

0

1
√

2π(3σ2)
e

−(y+3)2

2(3σ2) dy −
(

∫ ∞

0

1
√

2π(3σ2)
e

−(y+3)2

2(3σ2) dy

)2

.

Now, consider the following parity-check matrix for the length N = 7, dimension

K = 2 LDPC code where c ∈ C if and only if Hc = 0,

H =









































1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 1









































.

The Tanner graph representation of H is shown in Figure 3.6. For each variable node,

an independent tree is shown in Figures 3.10 and 3.11. Applying independent tree
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decoding as given in Algorithm 3.1.2 ensures that the minimum-cost configuration on

each independent tree is chosen. The independent trees each define a code consisting of

all valid configurations on their respective independent trees. The codes corresponding

to each of the independent trees are shown below, with the root node highlighted in

red. Independent trees rooted at v1 and v7 define permutation equivalent codes, and

thus only the code on the independent tree rooted at v1 is given. The independent trees

rooted at v2, v3, v5, and v6 also define permutation equivalent codes, so only the code

on the independent tree rooted at v2 is given.

Cv1 =

{

(111), (000)

}

Cv2 =































(0000000), (0000111), (0011010),

(0011101), (1110000), (1110111),

(1101010), (1101101)































Cv4 =































(0000000), (1110111), (1110000),

(0000111), (0011100), (1101100),

(1101011), (0011011)































The probability of error at the root node of each independent tree can be determined

by computing the probability of choosing any valid configuration on the independent

tree where the root node is equal to a binary 1. The probability that either v1 or v7 is
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Figure 3.10: Independent trees rooted at v1, v2, v3, and v4 for the LDPC code.
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Figure 3.11: Independent trees rooted at v5, v6, and v7 for the LDPC code.

decoded to a binary 1 is given by

Pb,v1 = Pb,v7 =

∫ ∞

0

1
√

2π(3σ2)
e

−(y+3)2

2(3σ2) dy.

The probability of error for bits v2, v3, v4, v5, and v6 is more difficult to derive. Each

of the independent trees has four valid configurations where the root node is equal to
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a binary 1. The probability of error for bits v2, v3, v5, and v6 is given by

Pb,v2 = Pb,v3 = Pb,v5 = Pb,v6 = Pr

(

8
⋃

i=5

Ei

)

(3.4)

where Ei is the event that a valid configuration, given by ςv2,i, on the independent tree

rooted at v2 has minimum cost on the independent tree. The set of events {E1, . . . , E4}

corresponds to the independent tree decoder outputting a value of 1 at the root node of

the trees rooted at v2, v3, v5, and v6. In order for the valid configuration ςv2,i to have

minimum cost on the independent tree, it is necessary for the cost of choosing ςv2,i

to be less than the cost of choosing the all-zeros configuration ςv2,1. Therefore, the

expression given in equation (3.4) can be loosened to an upper bound on the probability

of root node error given by

Pb,v2 = Pb,v3 = Pb,v5 = Pb,v6 ≤ Pr

(

8
⋃

i=5

Bi

)

(3.5)

where Bi is the event that ςv2,i has cost less than ςv2,1. Using the union bound, (3.5)

can be further relaxed to

Pb,v2 = Pb,v3 = Pb,v5 = Pb,v6 ≤
8
∑

i=5

Pr (Bi) .

The probability of each event Bi can be found by using the Hamming weight of the

valid configuration ςv2,i, denoted by w(ςv2,i). Since ςv2,i and ςv2,1 differ in exactly

w(ςv2,i) places, the probability that ςv2,i has cost less than ςv2,1 is

Pr(Bi) =

∫ ∞

0

1
√

2π(w(ςv2,i)σ2)
e

−(y+w(ςv2,i))
2

2(3σ2) dy.
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Thus the probability of error at the root node of the independent trees rooted at v2,

v3, v5, and v6 is upper-bounded by

Pb,(v2,v3,v5,v6) ≤
8
∑

i=5

∫ ∞

0

1
√

2π(w(ςv2,i)σ2)
e

−(y+w(ςv2,i))
2

2(3σ2) dy

=

∫ ∞

0

1
√

2π(3σ2)
e

−(y+3)2

2(3σ2) dy +

∫ ∞

0

1
√

2π(4σ2)
e

−(y+4)2

2(4σ2) dy

+

∫ ∞

0

1
√

2π(5σ2)
e

−(y+5)2

2(5σ2) dy +

∫ ∞

0

1
√

2π(6σ2)
e

−(y+6)2

2(6σ2) dy.

Similarly, the probability of error at the root node of the independent tree for v4

is upper bounded by

Pb,v4 ≤
8
∑

i=5

∫ ∞

0

1
√

2π(w(ςv2,i)σ2)
e

−(y+w(ςv2,i))
2

2(3σ2) dy

=

∫ ∞

0

1
√

2π(3σ2)
e

−(yi+3)2

2(3σ2) dy + 2

(

∫ ∞

0

1
√

2π(4σ2)
e

−(y+4)2

2(4σ2) dy

)

+

∫ ∞

0

1
√

2π(5σ2)
e

−(y+5)2

2(5σ2) dy.

Figure 3.12 shows the exact probability of error for maximum-likelihood decoding

for variable nodes v1, v2, v3, v5, v6, and v7. The exact probability of error for variable

nodes v1 and v7 using finite tree decoding on independent trees is identical to that of

ML decoding, and is denoted ML(123567)/IT(17) in Figure 3.12. The upper bound

on the probability of error for variable nodes v2, v3, v4, v5, and v6 using finite tree

decoding on independent trees is denoted IT(2356):UB, and is also shown in Figure

3.12. As the SNR becomes large, the performance of IT decoding approaches that

of ML decoding for variable nodes v2, v3, v5, and v6. This is because high-weight
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valid configurations on the independent trees become less likely to cause errors at high

SNR, and the bound is dominated by the minimum-weight valid configurations on the

independent trees. It is worth noting that, while variable node v4 has the highest upper

bound on the probability of error, denoted IT 4:UB in Figure 3.12, using finite tree

decoding on the independent tree, the probability of error using ML decoding is zero

since all of the codewords in C have a binary 0 in the fourth coordinate.
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IT (2356): UB
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Figure 3.12: Probability of bit error for ML and IT decoding of the length N = 7,

dimension K = 2 code.
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Figure 3.13: Probability of bit error for several rate K
N

= 1
2
, (3, 6)-regular LDPC

codes decoded with the finite tree decoder on independent trees and the MS decoding

performance of a length N = 10000, (3, 6)-regular LDPC code.

The results of Example 3.2 demonstrate a weakness in the independent tree con-

struction process. While some variable nodes are decoded with asymptotically ML

performance, others are not. Achieving asymptotic ML decoder performance requires

that each tree has minimum-weight deviations with weight equal to the minimum-

weight codeword in C involving the root node. While the performance of finite tree
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decoding on independent trees is reasonable for codes with short block length, such as

the one used in Example 3.2, it is much worse than the performance of MS decoding

for larger LDPC codes. Figure 3.13 shows the performance of finite tree decoding on

independent trees for several rate K
N

= 1
2
, (3, 6)-regular LDPC codes. MS decoding

performance of a length N = 10,000 LDPC code outperforms finite tree decoding

on independent trees with lengths up to N = 100,000 by approximately 1.75 dB at

Pb = 10−4. This performance gap might be attributed to the fact that the indepen-

dent trees often contain less than 80% of the variable nodes in the Tanner graph, and

less than 70% of the check nodes in the Tanner graph when constructed from large

(3, 6)-regular LDPC codes. Therefore, not all the available channel information is

used to decode each bit.

Recall that the goal of decoding on trees is to have performance comparable to

that of current iterative decoders. Therefore, a new approach to tree construction is

needed to make finite tree decoding competitive with current iterative decoders.

3.3 Extrinsic Tree Construction

Independent trees are restricted to only allow one copy of each variable node to

appear in the tree. Since the variable nodes are each affected by independent channel

noise, this restriction guarantees that each addition to the independent tree either

increases or maintains the weight of all existing deviations. However, it is possible
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that additional copies of a node would increase the minimum deviation weight.

A new method for building finite trees, called extrinsic tree construction, is now

studied. This new construction method aims to construct finite trees with high

minimum-weight deviations. Much like iterative tree construction, the nodes are

added to the tree using a decision criteria directly related to the probability of error

at the root node. Whereas the decisions made during iterative tree construction were

SNR dependent, the decisions made during extrinsic tree construction are not SNR

dependent. Extrinsic tree construction focuses only on low-weight deviations on the

tree, aiming to minimize the error rates as SNR grows large. While independent trees

are also built with the goal of maximizing the minimum deviation weight, extrinsic

trees allow multiple copies of variable nodes to appear in the tree if they increase

the weight of the minimum-weight deviations or decrease their multiplicity. The pro-

cess for building extrinsic trees rooted at each variable node in the code is given by

Algorithm 3.3.1.

Algorithm 3.3.1 (Extrinsic Tree Construction).

for i = 1, . . . , N

− Root the tree at variable node vi.

− Set the level of the tree to ℓ = 0.

− Set the minimum-weight deviation to weight 1.0 with multiplicity 1.

while one or more variable nodes exist in level ℓ of the tree.
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for each variable node vk in the extrinsic tree at level ℓ.

if check node fj ∈ N(vk) is not the parent node of vk.

−Connect fj to vk, and connect all other variable nodes

vl ∈ N(fj)\vk to fj at level ℓ + 1.

−Find the weight and multiplicity of all deviations.

for m = 1, . . . ,W

if the mth smallest deviation weight is increased, or kept

the same with decreased multiplicity

−Keep fj and its corresponding child variable nodes.

−Exit for loop.

if the mth smallest deviation weight is decreased, or kept

the same with increased multiplicity

−Eliminate fj and its corresponding variable nodes

−Exit for loop.

if the mth smallest deviation weight and multiplicity are

kept the same and m = W

−Eliminate fj and its corresponding variable nodes

end

end

ℓ = ℓ + 1.



93

end

end

The maximum number of deviation weights used by Algorithm 3.3.1 to make

a decision is denoted by W. The addition of a check node and its corresponding

variable nodes does not always change the weight of the minimum-weight deviation

or its multiplicity, so additional deviation weights beyond the minimum can be used

to determine if the additional nodes increase or decrease the weight and multiplicity

of higher-weight deviations.

When using the extrinsic tree construction algorithm, it is possible for multiple

copies of an arbitrary variable node vk to appear in the extrinsic tree. In this case,

after extrinsic tree construction the log-likelihood ratio (LLR) cost λk is split evenly

among each of the copies of variable node vk. Figure 3.14 shows an example where

there are three copies of variable node v2 in the tree. In this case, a scaled LLR cost

of λ2

3
is assigned to each copy of v2. All other variable nodes with only a single copy

in the tree are assigned an unscaled LLR cost. Note that, although each copy of v2

appears on the same level in Figure 3.14, the LLR cost is scaled by the total number

of copies of v2 in the extrinsic tree regardless of what level the variable node appear

on.

Justification for evenly splitting the cost among the copies of the variable node

comes from an examination of deviation weight. First, consider the BIAWGN channel
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(b) Distributing the cost of v2 between all three copies.

Figure 3.14: Example of extrinsic tree cost scaling among multiple copies of the same

node.

where the LLR cost reduces to λ = − 2
σ2 y. Now, consider a deviation consisting of

the set of variable nodes {v1, . . . , vω}, where there are ai copies of each variable node

vi in the deviation, and bi copies of each variable node vi in the entire extrinsic tree.

The probability that each node in the deviation was transmitted over the channel as
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a −1 and that the deviation has cost

ω
∑

i=1

ai

bi

(− 2

σ2
yi) < 0,

can be found by computing the probability that a sample of a Gaussian random

variable with distribution

N
(

ω
∑

i=1

ai

bi

,

ω
∑

i=1

(
ai

bi

σ)2

)

is less than zero. This random variable can be rescaled resulting in the distribution

given by
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(3.6)

is precisely the deviation weight used when constructing the extrinsic tree.

To understand why each variable vi is assigned a log-likelihood ratio cost scaled by

1
bi

, consider a deviation where the set of variable nodes {v1, . . . , vω} corresponds with

the binary 1’s of a codeword on the original Tanner graph, and the set {a1, . . . , aω} =

{b1, . . . , bω} corresponds to the number of copies of each variable node in the extrinsic

tree contained in the deviation. Deviations where the set of variable nodes {v1, . . . , vω}

correspond with the binary 1’s of a codeword are referred to as codeword deviations.
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The weight of a codeword deviation reduces to ω2

ω
= ω, since ai

bi
= 1 for all i. Thus,

the probability of a codeword deviation error can be found using the Hamming weight

of the codeword, and is equal to the corresponding codeword error probability using

maximum likelihood (ML) decoding.

The following example demonstrates the extrinsic tree construction process for

the length 7, dimension 3 LDPC code whose Tanner graph is given in Figure 3.1.

This example considers the extrinsic tree rooted at variable node v1. After rooting

the extrinsic tree, there is only one deviation and its weight is 1.0. Figure 3.15(a)

shows the extrinsic tree with a completed Level 1 of check nodes and variable nodes.

Check node f1 with child variable nodes v2 and v3 is added to the tree below the

root node because the minimum deviation weight is increased from 1.0 to 2.0 with a

multiplicity of 2. Then, check node f2 with child variable nodes v4 and v5 is added

to the extrinsic tree since this increases the minimum deviation weight from 2.0 to

3.0 with a multiplicity of 4. Because variable node v1 is only connected to two check

nodes in the Tanner graph, Level 1 is complete.

A completed Level 2 of the extrinsic tree is shown in Figure 3.15(b). The con-

struction of Level 2 begins with check node f5 and its child variable nodes v5, v6,

and v7. Check node f5 is not added to the extrinsic tree because this would decrease

the minimum deviation weight from 3.0 to 2.78. Next, check node f3 and variable

node v6 are added to the extrinsic tree since they maintain the minimum deviation
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weight at 3.0, and decrease the multiplicity of the deviations with weight equal to 3.0

from 4 to 2. Check node f4 and variable node v7 are also added since they decrease

the multiplicity of weight 3.0 deviations from 2 to 1. Finally, check node f5 and

child variable nodes v2, v6, and v7 are not added because, although they maintain the

minimum deviation weight at 3.0, they do not decrease the multiplicity.

The minimum-weight deviation includes variable nodes v1, v2, and v5, which are on

Levels 0, 1, and 1, respectively. Therefore, no variable nodes will be added to Level 3

since additional variable nodes will have no effect on the current weight or multiplicity

of the minimum-weight deviation including v1, v2, and v5. The final extrinsic tree

rooted at variable node v1 is given in Figure 3.15(b). Note that the minimum-weight

codeword in C in which v1 is involved corresponds with the minimum-weight deviation

on the extrinsic tree, so the probability of bit error approaches that of ML decoding

as the SNR gets large.

Figure 3.16 shows the decoding performance of finite tree decoding on extrinsic

trees with W = 1 and W = 2 and compares it to min-sum decoding at iterations

2 and 400 on a (3, 6)-regular low-density parity-check code with length N = 40 and

dimension K = 20. The extrinsic trees constructed for this code average A = 50.5

variable nodes per tree when W = 1 and A = 56.3 variable nodes per tree when

W = 2, and the maximum depth of the extrinsic trees is ℓ = 3. Computation trees

modeling MS after 2 iterations each have 166 variable nodes, yet the bit error rates
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Figure 3.15: Extrinsic tree rooted at variable node v1.

for finite tree-based decoding on extrinsic trees are lower for all SNR tested above

8 dB. Finite tree decoding probability of bit error is lower than that of MS with

400 iterations for SNRs above 9.5 dB. The upper bound on the probability of bit

error of finite tree decoding of extrinsic trees is also given in Figure 3.16. The upper

bound is computed enumerating all of the deviations and using equation (2.10). At

SNRs above 9.5 dB, the performance of finite tree decoding on extrinsic trees is very

closely predicted by the upper bound. Using the upper bound, it is shown in Figure

3.16 that the performance can be guaranteed at bit error rates well below the reach

of simulations. It is worth noting that extrinsic tree construction for both W = 1

and W = 2 yielded deviations with minimum-weight equal to 2.0 among all the

extrinsic trees. The two trees rooted at variable nodes v21 and v26 contained the
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Figure 3.16: Probability of bit error for a (3,6)-regular (40,20) LDPC code decoded

with the finite tree decoder on extrinsic trees with W = 1 and W = 2 and the MS

decoder after 2 and 400 iterations.
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weight 2.0 deviations, and the set of coordinates {21, 26} also forms a codeword in

C. Therefore, finite tree decoding performance on the extrinsic trees will approach

ML decoding performance at high SNRs.
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Figure 3.17: Probability of bit error for a (3,5)-regular (50,20) LDPC code decoded

with the finite tree decoder on extrinsic trees with W = 1 and W = 2 and the MS

decoder with 400 iterations.

Figure 3.17 shows the results of finite tree decoding on extrinsic trees with W = 1
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and W = 2 and compares it to min-sum decoding at 400 iterations on a (3, 5)-regular

low-density parity-check code with length N = 50 and dimension K = 20. Using

this code, the performance of finite tree decoding on extrinsic trees shows noticeable

improvement in both simulated probability of bit error and upper bounds when using

W = 2 instead of W = 1. This is because the minimum-weight deviation was 3.74

among the extrinsic trees when W = 1 and 3.91 when W = 2. Simulations were

performed down to a probability of bit error of 10−9 with MS decoding and finite

tree decoding on extrinsic trees with W = 2. The current slope of the two simulated

bit error rates suggests that they will intersect between the probability of bit errors

10−10 and 10−11.

Figure 3.18 shows the decoding performance of finite tree decoding on extrinsic

trees with W = 1 and W = 2 and compares it to min-sum decoding at 400 iterations

on an irregular low-density parity-check code with length N = 40 and dimension

K = 20. The variable and check node degrees were chosen using the rate K
N

=

1
2

degree distributions given in [18] with maximum variable node degree equal to

four. The (40, 20) irregular code has six check nodes with degree five and fourteen

check nodes with degree six. The code also has twenty-two variable nodes of degree

two, two variable nodes of degree three, and sixteen variable nodes of degree four.

Improvements in bit error rates at high SNRs are shown when using W = 2 instead

of W = 1. However, both fail to come close to the probability of bit error of MS
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Figure 3.18: Probability of bit error for an irregular (40,20) LDPC code decoded with

the finite tree decoder on extrinsic trees with W = 1 and W = 2 and the MS decoder

with 400 iterations.

decoding. During extrinsic tree construction, lower minimum-weight deviations are

observed for extrinsic trees rooted at degree two variable nodes than degree four

variable nodes.

The results shown in Figure 3.16 show that finite tree decoding on extrinsic trees
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is capable of outperforming min-sum decoding at high SNR. Figure 3.17 also shows

promising performance at high SNR, and Figure 3.18 shows considerably worse per-

formance than MS decoding over all simulated SNRs. These results suggest that finite

tree decoding on extrinsic trees is capable of better performance when using regular

LDPC codes.

The performance of finite tree decoding on extrinsic trees is noticeably worse

than MS decoding at lower SNRs. However, by increasing W, it is shown that the

performance of finite tree decoding improves in each of the simulations. Since the

extrinsic tree construction of Algorithm 3.3.1 is designed to obtain high minimum-

weight deviations, it is not surprising that good performance is observed at high

SNR. At low SNR the probability of bit error is not always determined by the low-

weight deviations. Since only the W lowest deviation weights are addressed by the

construction given in Algorithm 3.3.1, it is not surprising that the performance of

finite tree decoding on extrinsic trees suffers at low SNRs. While increasing W is

shown to improve the performance of finite tree decoding on extrinsic trees, it also

results in a significant increase in the computational complexity of the extrinsic tree

construction. This is because an increase in W results in more variable nodes being

included in the extrinsic trees, thus causing an increase in the number of deviations

and deviation weights that are computed by Algorithm 3.3.1. Simulation results given

in this section were limited to block length N ≤ 50 in order to limit the time duration
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of extrinsic tree construction.

While it is feasible to construct extrinsic trees for block length N = 40 and

N = 50 low-density parity-check codes, like the ones whose simulation results are

given in Figures 3.16, 3.17, and 3.18, the number of deviations in the extrinsic trees

causes the complexity of Algorithm 3.3.1 to grow exponentially with the number

of variable nodes currently in the extrinsic tree. For this reason, it is worthwhile

to consider properties related to independent trees and extrinsic trees that could

potentially lead to simplified construction techniques or alternative methods for finite

tree-based construction.

3.4 Properties of Independent and Extrinsic Trees

Independent trees and extrinsic trees are built node-by-node using Algorithms 3.2.1

and Algorithm 3.3.1, respectively. This section examines some of the properties of

independent and extrinsic trees. First, Proposition 3.4.1 gives an upper bound on the

depth of independent trees.

Proposition 3.4.1. The maximum depth ℓmax of an independent tree built according

to Algorithm 3.2.1, for a (dV , dF )-regular LDPC code of length N , satisfies

ℓmax ≤
⌊

N − 1

dF − 1

⌋

.

Proof. Use the following construction method to build an independent tree with a
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minimal number of nodes per level. Starting at the root node, there is one variable

node in the tree at level ℓ = 0. The root node connects to one check node, and this

check node has dF − 1 child variable nodes at level ℓ = 1. There are now a total of

dF variable nodes in the tree. Continue by adding a single check node below only

one of the variable nodes on level ℓ = 1. The dF − 1 child variable nodes get added

to the tree at level ℓ = 2. There are a total of 1 + 2(dF − 1) variable nodes in the

tree. If this construction continues, there will be 1 + ℓ(dF − 1) variable nodes in the

tree after ℓ levels have been added. Each level of variable nodes must be connected

to at least one check node on the next level in order for the tree to continue growing.

Since the construction method only allows one connection from each level of variable

nodes to the a single check node below, the resulting tree contains a minimal number

of variable nodes per level. Since each of the N variable nodes appears in the tree at

most once, we know 1 + ℓ(dF − 1) ≤ N , i.e. ℓ ≤ N−1
dF−1

. Because ℓ is an integer, we

have ℓ ≤
⌊

N−1
dF−1

⌋

as desired.

Proposition 3.4.1 shows that there is a limit to the depth of independent trees

that can be computed using the node degrees of a regular low-density parity-check

code. The depth of independent trees is important because operations on finite trees

can be performed in parallel, as long as they are on the same level. Therefore, the

time required to perform finite tree decoding is not limited by the number of nodes
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in the finite tree, but instead it is limited by the maximum number of levels in the

finite tree.

The weight of deviations on an independent tree of a (dV , dF )-regular low-density

parity-check code is upper bounded in Proposition 3.4.2.

Proposition 3.4.2. Consider an independent tree constructed using Algorithm 3.2.1

for a (dV , dF )-regular LDPC code of length N . The weight of any deviation δ on this

tree satisfies

w(δ) ≤ 1 +

⌊

N − 1

dF − 1

⌋

.

Proof. The maximum number of variable nodes that can be in the independent tree is

N . There are dF −1 child variable nodes for each check node in the independent tree.

With the exception of the root node, each variable node in the independent tree has

exactly one parent check node. Therefore, there can be a maximum of ⌊ N−1
dF−1

⌋ check

nodes in the independent tree. Each check node can be adjacent to a maximum of

two variable nodes in the deviation. One of the two is the parent variable node, and

the other is one of the child variable nodes. There is a maximum of one child variable

node for each of the
⌊

N−1
dF−1

⌋

check nodes that can be contained in the deviation.

Including the root node, the maximum weight of the deviation is 1 +
⌊

N−1
dF−1

⌋

.

Propositions 3.4.1 and 3.4.2 upper bound the depth of the independent trees and

the weight of the deviations on independent trees for (dV , dF )-regular low-density
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parity-check codes. These two properties help to establish a better understanding of

independent trees. Proposition 3.4.1 leads to a limitation on the time required to

perform finite tree decoding in independent trees, and Proposition 3.4.2 provides a

limitation on the achievable probability of bit error at high SNR. Next, a property of

finite trees is examined when making modifications to independent tree construction.

In particular, it is shown that there are theoretical advantages to limiting the number

of copies of each variable node in the finite trees to two or less.

While constructing independent trees using Algorithm 3.2.1, each additional check

node and its child variable nodes that are added to the tree are guaranteed not

to decrease the weight of any existing deviations on the independent tree. This is

because deviation weight can not be decreased until more than one copy of the same

variable node appears in the independent tree. However, it may be advantageous

to include additional copies of a variable node in finite trees, as indicated by the

performance of finite tree decoding on extrinsic trees. In Proposition 3.4.3, the effect

of simultaneously adding multiple copies of the same variable node to a finite tree is

examined.

Proposition 3.4.3. Let ∆ℓ be the set of deviations that exist on a finite tree after ℓ

levels of check nodes and variable nodes have been added below the root node. Assume

that some variable node v does not currently exist in the finite tree, and that there are

a maximum of 2 copies of each variable node in the finite tree. Adding k > 0 copies
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of variable node v, and scaling the cost of each by 1
k
, at level ℓ + 1 can not decrease

the weight of an existing deviation in ∆ℓ, assuming none of the new variable nodes

connected to the parent check nodes of vi previously existed in the finite tree.

Proof. Assume that a deviation δ ∈ ∆ℓ has deviation weight w(δ). Suppose that by

adding multiple copies of v at level ℓ+1, the deviation weight w(δ) has been decreased

to w(δnew). The formula for the original deviation weight is given by

w(δ) =
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where bi is the number of copies of variable node vi in the finite tree, and ai is the

number of copies of vi in the deviation δ. Since there are a maximum of two copies

of each variable node in the finite tree, 1 ≤ ai ≤ bi ≤ 2. The new deviation weight is

given by

w(δnew) =
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where aω+1 is the number of copies of variable node v in the deviation δnew and

bω+1 = k is the number of copies of variable node v in the new finite tree. In order

for the weight to decrease we must have
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Squaring both sides and cross-multiplying results in the inequality

(

a1

b1

+ . . . +
aω

bω

)2(
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1

b2
1

+ . . . +
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Regrouping yields
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which simplifies to
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by subtracting common terms and dividing both sides by aω+1
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. Next, dividing both
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The inequality is still satisfied when 1 is subtracted from the right side, and so
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Dividing both sides of the inequality by 2
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results in
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ω
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. (3.7)

Since ai

bi
≥ 1

2
for i = 1, . . . , ω, each term 2

(

a2
i

b2i

)

is at least ai

bi
. Therefore, the left side

of the inequality given by 3.7 is less than or equal to one, and since bω+1

aω+1
≥ 1, we have

a contradiction. Therefore, the weight of δnew can not be less than the weight of δ.
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Proposition 3.4.3 implies that finite trees can be constructed with deviation weights

that are guaranteed to increase even with multiple copies of the same variable node

in the deviation. Although the construction method would only require a slight mod-

ification to Algorithm 3.2.1, the weight of each deviation would still need to be found

using brute-force methods at the end of the tree construction in order to upper bound

the probability of bit error at the root nodes. An alternative construction for finite

trees is given in Section 3.5. This new construction results in a much more efficient

way to enumerate the deviations in the trees.

3.5 Deviation Path-Forcing Trees

This section introduces a new method for building trees called deviation path-forcing

trees (DPFTs). The DPFTs are designed to produce trees with deviations that are

simple to enumerate. More specifically, the DPFT structure enables a simple calcu-

lation of the weight and multiplicity of each deviation.

The process for building deviation path-forcing trees rooted at a variable node is

as follows.

Algorithm 3.5.1 (Deviation Path-Forcing Tree Construction).

for i = 1, . . . , N

− Root the tree at variable node v.
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− Set the level of the tree to ℓ = 0.

while one or more variable nodes exist in level ℓ of the tree

for each variable node vk contained in level ℓ of the DPFT

if check node fj ∈ N(vk) is not the parent node of vk, and vk

currently has no children in the DPFT

−Connect fj to vk and connect variable nodes vl ∈ N(fj)\vk

to fj at level ℓ + 1.

if none of the children vl ∈ N(fj)\vk are ancestors of fj

−Keep fj and its corresponding variable nodes.

else

−Eliminate fj and its corresponding variable nodes.

end

ℓ = ℓ + 1.

end

end

After building each of the deviation path-forcing trees, log-likelihood ratio costs

are assigned to each variable node in the DPFTs. Algorithm 3.1.2 is then used to

obtain an output for each of the root nodes. Note that, unlike the construction given

in Algorithm 3.3.1, the LLR costs assigned to the variable nodes during finite tree

decoding on DPFTs are unscaled.
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There are two important properties regarding deviation path-forcing trees that

are worth discussing. The first property is that every variable node in the DPFT is

connected to two check nodes, except the root node and the leaf nodes, each of which

is connected to only one check node. This property forces all deviations in the tree

to be paths from the root node to the leaf node. Therefore, every leaf node in the

DPFT defines exactly one deviation. As a consequence, enumerating deviations on

the DPFTs is straightforward once the trees are constructed.

The second key property of deviation path-forcing trees is the fact that each node

contained in a given deviation is distinct. This property is a consequence of step

2(b) in the DPFT construction process. Since each variable node in the deviation is

unique, the weight of each deviation is proportional to the level at which the root

node of the deviation appears. Example 3.5.2 demonstrates the performance of the

DPFT construction.

Example 3.5.2. A single deviation path-forcing tree has been constructed for a length

N = 40 (3, 6)-regular low-density parity-check code rooted at variable node v1. The

size of the DPFT grows large as the depth of the tree is allowed to increase. However,

once any path in the DPFT is terminated at a leaf node the minimum-weight deviation

has already been established. Table 3.6 shows the deviation weights and multiplicities

on the DPFT with varying maximum depths. Once the maximum depth of the DPFT

is greater than or equal to ℓ = 3, the minimum deviation weight does not increase
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beyond 4.

Max Depth (ℓ) |w(δ) = 1| |w(δ) = 2| |w(δ) = 3| |w(δ) = 4| |w(δ) = 5| |w(δ) = 6| |w(δ) = 7|

0 1 0 0 0 0 0 0

1 0 5 0 0 0 0 0

2 0 0 25 0 0 0 0

3 0 0 0 125 0 0 0

4 0 0 0 6 595 0 0

5 0 0 0 6 65 2650 0

6 0 0 0 6 65 397 11, 265

Table 3.6: Deviation weight and multiplicity for different maximum depths of the

DPFT rooted at v1 for the N = 40, (3, 6)-regular LDPC code.

Example 3.5.2 shows that the minimum-weight deviations on deviation path-

forcing trees are established once a single leaf node is created. If the leaf node is

established at level ℓ, additional nodes at level ℓ can decrease the number of devi-

ations with weight ℓ + 1, but can not increase the minimum weight. Figure 3.19

shows the performance of finite tree decoding on DPFTs with maximum depths of

ℓ = 2, 3, 4 and 5 and compares it to MS decoding at 400 iterations on a (3, 6)-regular

LDPC code with length N = 40 and dimension K = 20. The simulation results and

upper bounds show steady improvement with increasing ℓ in the probability of bit

error of finite tree decoding on DPFTs between SNRs of 5.0 dB and 12.0 dB. After

ℓ = 1, leaf nodes are established on the DPFTs rooted at variable nodes v21 and v26,

so it is not surprising that increases in ℓ do not improve the performance at high
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Figure 3.19: Probability of bit error for a (3,6)-regular (40,20) LDPC code decoded

with the finite tree decoder on DPFTs with ℓ = 2, 3, 4 and 5 and the MS decoder

with 400 iterations.

SNRs. However, by increasing ℓ more of the low-weight deviations are converted to

higher-weight deviations, thus decreasing the probability of bit error at lower SNRs.

The performance of finite tree decoding on deviation path-forcing trees with a

maximum depth of ℓ = 2, 3, 4 and 5 and min-sum decoding at 400 iterations are given
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Figure 3.20: Probability of bit error for a (3,5)-regular (50,20) LDPC code decoded

with the finite tree decoder on DPFTs with ℓ = 2, 3, 4 and 5 and the MS decoder

with 400 iterations.

in Figure 3.20 for a (3, 5)-regular low-density parity-check code with length N = 50

and dimension K = 20. Once again, lower bit error rates are achieved by increasing

the maximum depth of the DPFT at SNRs between 5.0 dB and 11.0 dB. Leaf nodes

are established after ℓ = 2, resulting in weight 3.0 deviations. Compared to the
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results given in Figure 3.17 for finite tree decoding on extrinsic trees for the same

length N = 50, dimension K = 20 LDPC code, the results are noticeably worse due

to a drop in the weight of the minimum-weight deviation from 3.91 to 3.0.
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Figure 3.21: Probability of bit error for a irregular (40,20) LDPC code decoded with

the finite tree decoder on DPFTs with ℓ = 2, 3, 4 and 5 and the MS decoder with 400

iterations.

Finally, simulations of finite tree decoding on deviation path-forcing trees with
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maximum depths of ℓ = 2, 3, 4 and 5 are given in Figure 3.21 along with min-sum

decoding with 400 iterations on an irregular low-density parity-check code with length

N = 40 and dimension K = 20. Similar improvements are demonstrated at SNRs be-

tween 4.5 dB and 11.0 dB. During the DPFT construction, leaf nodes are established

after depth ℓ = 1, thus resulting in deviations with weight equal to 2.0. The perfor-

mance of finite tree decoding of this irregular code is much worse than MS decoding

performance and worse than the performance of finite tree decoding on extrinsic trees,

as shown in Figure 3.18.

In Figure 3.19, the performance appears to be promising for finite tree decoding

on deviation path-forcing trees. However, the method for constructing the DPFTs

makes them computationally intractable for large codes with large minimum distance.

Consider the number of deviations in a DPFT of depth ℓ, where the weight of a

minimum-weight deviation on the DPFT is greater than or equal to ℓ. The number

of deviations, and correspondingly the number of leaf nodes, on the DPFT can be

derived from equation (2.11), and is given by (dF − 1)ℓ. For a typical (3, 6)-regular

LDPC code, the number of deviations and leaf nodes is given in Table 3.7. Since each

node in the DPFTs must be stored in memory, the algorithm requires vast amounts

of memory when the depth of the DPFTs, and correspondingly, the minimum-weight

of the deviations increases.
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DPFT Depth (ℓ) Deviations/Leaf Nodes

0 1

1 5

2 25

3 125

4 625

5 3125

10 9, 765, 625

15 30, 517, 578, 125

Table 3.7: Number of deviations/leaf nodes on the DPFT of a (3, 6)-regular LDPC

code with varying minimum depths, when the minimum-weight deviation has weight

greater than or equal to ℓ.

3.6 Finite Tree-Based Decoder Bounds

3.6.1 Deviation Bounds

The multiplicity of the deviations, given by equation (2.11), can be used to compute

an upper bound on the probability of error of min-sum decoding after a finite number

of iterations. Wiberg demonstrated that the probability of error at the root node,
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denoted Pe, can be bounded by

Pe ≤
⋃

δi∈∆

P (Bi),

where ∆ is the set of all deviations and Bi is the event that deviation δi has negative

cost. This bound can be loosened to

Pe ≤
∑

δi∈∆

P (Bi). (3.8)

using the union bound. In the computation tree of a regular LDPC code, all deviations

have the same weight w(δ). So, (3.8) can be computed as

Pe ≤ |∆|
∫ ∞

0

1
√

2π(w(δ)σ2)
e

−(y+w(δ))2

2(w(δ)σ2) dy. (3.9)

Figure 3.22 shows the upper bound on the probability of error at the root node

for various rate K
N

= 1
2

codes after two iterations. Because the summation in (3.8)

is used to obtain the bound of (3.9) instead of the true union, the accuracy of the

upper bound suffers at lower SNR. In order to tighten the bound, the overlapping

regions between the events in the summation should be removed. In the bound of

(3.9), the probability P (Bi) that a deviation δi has cost less than zero is added to

the probability P (Bj) that a deviation δj has cost less than zero. However, these two

events may have an intersecting probability P (Bi ∩ Bj) that should be subtracted

from the summation in order to achieve a tighter bound. The probability of this

intersection can be rewritten as

P (Bi ∩ Bj) = P (Bi)P (Bj|Bi).



120

0 1 2 3 4 5 6 7 8 9 10
10

−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
20

10
30

p b

E
b
/N

0

 

 
d

V
 = 3, d

F
 = 6, Girth = 10

d
V
 = 4, d

F
 = 8, Girth = 10

d
V
 = 5, d

F
 = 10, Girth = 10

d
V
 = 6, d

F
 = 12, Girth = 10

Figure 3.22: Deviation bound on various rate 1/2 codes after two iterations.

It is easy to compute P (Bi) numerically using only the weight w(δi) of the deviation

δi. However, the conditional probability P (Bj|Bi) is not as easy to compute, since

the deviations δi and δj share only a fraction of their nodes. The set of shared nodes

are denoted by δi∩j . The shared variable nodes in δi∩j have a cost distribution of

N (w(δi∩j), w(δi∩j)σ
2), while the variable nodes that are not shared, denoted δi−i∩j

and δj−i∩j , both have a cost distribution of N (δi−i∩j , σ
2).

Since the integral of the normal distribution is often calculated numerically, the

value of P (Bi ∩ Bj) is also calculated numerically. The first step in the numerical
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calculation of P (Bi ∩ Bj) is breaking up the intersecting region into the summation

P (Bi∩Bj) =
0

X

k=−∞

P (G(δi) = k)
∞

X

l=−∞

P

„

G(δi∩j) =
k

2
− l

«

P

„

G(δi−i∩j) =
k

2
+ l

«

P

„

G(δj−i∩j) +
k

2
− l < 0

«

(3.10)

where the first summation considers each individual value of the cost G(δi) in the

region Bi. The second summation in (3.10) determines the probability of each com-

bination of costs G(δi∩j) and G(δi−i∩j) that add up to k, and then multiplies this by

the probability that G(δj−i∩j) + G(δi∩j) still results in a negative cost.

Equation (3.10) gives an expression for the probability of intersecting regions

between two deviations. It is now necessary to find the number and weight of the

intersecting regions between the deviations on a given tree. A deviation δi of weight

w(δi) on the computation tree includes many leaf nodes. If leaf node vi has dF −

2 neighboring leaf nodes, then there are precisely dF − 2 other deviations on the

computation tree that include w(δi) − 1 of the same variable nodes in δi, excluding

variable node vi. Instead, the other deviations include one of vi’s neighboring leaf

nodes. This situation is true for every leaf node in deviation δi, of which there are

dV (dV − 1)ℓ−1 after ℓ iterations. Therefore, there are a total of (dF − 2)dV (dV − 1)ℓ−1

deviations that share all but one variable node with δi. This is true for every deviation

on the tree. Therefore, there is a total of

(dF − 1)
Pℓ

i=1 dV (dV −1)i−1

(

(dF − 2)dV (dV − 1)ℓ−1

2

)
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= |∆|
(

(dF − 2)dV (dV − 1)ℓ−1

2

)

,

unordered pairs of deviations that only differ by one variable node. If the intersecting

regions of each pair of deviations that only differ by one variable node are subtracted

from the bound of (3.9), the result is

|∆|
∫ ∞

0

1
√

2π(w(δ)σ2)
e

−(y+w(δ))2

2(w(δ)σ2) dy − P (Bi ∩ Bj)|∆|
(

(dF − 2)dV (dV − 1)ℓ−1

2

)

,

(3.11)

where event Bi and event Bj represent deviations of weight w(δ) that only differ by

one variable node.

The expression given in (3.11) is not an upper bound on the probability of error at

the root node, because intersecting events where deviations differ by more than one

variable node are not subtracted. This expression is also not a lower bound obtained

by subtracting the intersection of all pairs of deviations, as would be generated using

the Bonferroni inequalities. Instead, (3.11) subtracts some intersecting events, but it

also includes overlap between triplets of events that needs to be added back into the

expression in order to make it an upper bound. In order to find all the three-way

intersections that need to be added back to the expression, consider all the two-

way intersections that deviation δi is involved in. The deviation δi is involved in

(dF − 2)dV (dV − 1)ℓ−1 intersections with other deviations that gets subtracted using

(3.11). Thus, there are
(

(dF−2)dV (dV −1)ℓ−1

2

)

three-way intersections for each deviation

in ∆ that need to be added back to the expression in (3.11) to make it a true upper
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bound.

In each of these intersections, the deviation δi and two other deviations are con-

sidered. Deviation δi differs from the other two deviations by only one variable node,

while the other two deviations differ by exactly two variable nodes. Therefore, the

intersection between these two variable nodes is not subtracted in (3.11), and does

not need to be added back into the expression. The probability of events Bi, Bj, and

Bk occurring at the same time is given by

P (Bi ∩ Bj ∩Bk) =
0

X

k=−∞

P (G(δi) = k)
∞
X

l=−∞

P

„

G(δi∩j ) =
k

2
− l

«

P

„

G(δi−i∩j ) =
k

2
+ l

«

P

„

G(δj−i∩j ) +
k

2
− l < 0

«

(3.12)

The resulting upper bound computed after subtracting intersecting regions of pairs

of deviations, and adding back intersecting regions of triplets of deviations, is given

by

Pe ≤ |∆|
Z ∞

0

1
p

2π(w(δ)σ2)
e

−(y+w(δ))2

2(w(δ)σ2) dy − P (Bi ∩ Bj)|∆|
„

(dF − 2)dV (dV − 1)ℓ−1

2

«

+ P (Bi ∩ Bj ∩ Bk)|∆|
„

(dF −2)dV (dV −1)ℓ−1

3

«

.

Unfortunately, the complexity of upper bound makes it difficult to compute. Addi-

tionally, the upper bound makes the assumption that the finite tree is a computation

tree with only one copy of each variable node. Under the same assumption, Sec-

tion 3.6.2 demonstrates how precise analytical results can be obtained using density
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evolution.

3.6.2 Density Evolution on Independent Trees

Density evolution was first introduced as an analytical technique for analyzing sum-

product decoding of low-density parity-check codes [17] [18]. Shortly afterwards, a

technique was developed for density evolution of MS decoding of LDPC codes [33].

This section examines density evolution applied to MS decoding and shows how this

technique can be used to obtain exact analytical results for finite tree-based decoding

when independent trees are built using Algorithm 3.2.1.

In order to visualize the behavior of the min-sum decoder, messages are interpreted

as being passed from the leaf nodes up the computation tree to the root node. The

message computed at the lowest level of check nodes is

mfi→vj
=





∏

vk∈N(fi)\vj

sgn(− 2

σ2
yk)





(

min
vk∈N(fi)\vj

| − 2

σ2
yk|
)

,

which can be simplified to

mfi→vj
=





∏

vk∈N(fi)\vj

sgn(−yk)





(

min
vk∈N(fi)\vj

|yk|
)

,

since only minimizations and summations are used by the MS decoder. The follow-

ing two assumptions make density evolution possible. The first is that the all-zeros

codeword was transmitted, and the second is that there is at most one copy of each
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variable node on the computation tree. The second condition is known to be true for

independent trees.

The cumulative distribution function (CDF) of each codeword coordinate −yi,

1 ≤ i ≤ N , received from the channel is Gaussian with mean µ = +1 and variance

σ2 = K×10
SNR
10

2N
. To be consistent with density evolution of the SP decoder discussed in

Section 2.10, the probability density function (PDF) corresponding to the CDF of the

channel output is denoted as P0. Assuming that the LDPC code is (dV , dF )-regular,

then the CDF of mfi→vj
is computed as follows.

To calculate the cumulative distribution function of mfi→vj
, the positive and nega-

tive portions are split into two regions. First, consider the probability P (mfi→vj
≤ τ),

when τ < 0. The cost from each leaf node vk ∈ N(fi)\vj must have absolute value

|yk| ≥ |τ |. There must also be an odd number of −yk < 0. Given that τ < 0, the

CDF of mfi→vj
is computed from the probability

P (mfi→vj
≤ τ) =

∑

{odd α | 1≤α≤(dF −1)}

(

dF − 1

α

)

P (−yk ≤ τ)αP (−yk ≥ −τ)dF −1−α.

(3.13)

Next, consider the case when τ ≥ 0. In this case it is easier to first compute the

probability P (mfi→vj
≥ τ). To satisfy the condition that mfi→vj

≤ τ , there must be

an even number (including zero) of −yk < 0. Given that τ ≥ 0, the CDF of mfi→vj



126

is computed from the probability

P (mfi→vj
≤ τ) = 1 −





∑

{even α | 0≤α≤(dF −1)}

(

dF − 1

α

)

P (−yk ≤ −τ)αP (−yk ≥ τ)dF −1−α



.

(3.14)

Equations (3.13) and (3.14) are used to compute P (mfi→vj
≤ τ) for each τ ∈ R, thus

resulting in the CDF of mfi→vj
. Given the CDF of mfi→vj

, the PDF of mfi→vj
is

obtained by taking the derivative of the CDF. The PDF of mfi→vj
is denoted Q0.

The next message sent up the computation tree, from check nodes to variable

nodes, by the min-sum decoder is

mvi→fj
= −yi +

∑

k∈N(vi)\j
mfk→vi

.

The PDF of mvi→fj
is given by

P1 = P0 ⋆ Q⋆(dV −1)
0 ,

where ⋆ denotes a convolution. For any 1 ≤ i < ℓ, where ℓ is the number of iterations,

Qi can be computed from equations (3.13) and (3.14) after substituting the CDF of

−yi with the CDF corresponding to Pi. For any i ≤ (ℓ − 1), the PDF Pi can be

computed using

Pi = P0 ⋆ Q⋆(dV −1)
i−1 .

The PDF of Pℓ, the final PDF of the output of the MS decoder, can be computed

using

Pℓ = P0 ⋆ Q⋆(dV )
ℓ−1 .
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The exact probability of error at the root node can be found by integrating Pℓ over

all negative costs.
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(g) PDF and CDF of the root node: P3

Figure 3.23: PDF and CDF of the messages passed during min-sum decoding of a

(3, 6)-regular LDPC code at SNR = 3dB for three iterations.
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Figure 3.24: PDF and CDF of the messages passed during min-sum of a (3, 6)-regular

LDPC code at SNR = 0dB for three iterations.

Example 3.6.1. In this example, decoding of (3, 6)-regular low-density parity-check

codes with min-sum is examined when the all-zeros codeword is transmitted over an

additive white Gaussian noise channel with SNR = 3dB. Figure 3.23 shows the PDFs

and CDFs of the messages passed by the MS decoder from the leaf nodes up to the

root node during all three iterations. The full progression of the PDF’s and CDF’s

is shown in Figure 3.23(g). At an SNR = 3dB, more iterations cause the PDF and

CDF of P to move to the right and result in a decreased probability of error at the

root node.

While additional iterations decreased the probability of error at SNR = 3dB, this
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is not always the case. Figure 3.24 shows the results of density evolution on the same

code at SNR = 0dB. Here, the probability of error actually increases as more iterations

are performed. After one iteration the probability of error is Pb = 0.1092. After three

iterations the probability of error is Pb = 0.1117.
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Figure 3.25: Density evolution results for (3, 6)-regular LDPC codes decoded with

the min-sum decoder.

Figure 3.25 shows the probability of error after each iteration up to 30 for the
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min-sum decoder operating on a (3, 6)-regular low-density parity-check code. Each

new iteration decreases the probability of error when the SNR is at least 1.77dB. The

capacity of MS decoding can be computed by performing density evolution for a large

number of iterations while tracking the probability of bit error curves to see if the

probability increases or decreases with increasing iterations. For (3, 6)-regular LDPC

codes the capacity of MS decoding is approximately 1.77dB.

When independent trees are constructed using Algorithm 3.2.1, density evolution

can be used to compute the exact probability of bit error at the root node. This is

because each node is only allowed to appear once in the independent tree. Therefore,

all the messages passed up from the leaf nodes to the root nodes are independent.

Figure 3.26 shows the independent tree rooted at v0 for a rate 1
2
, length N = 200

LDPC code. In this example, 143 of the 200 variable nodes appear in the independent

tree. Using this independent tree, simulation results of finite tree-based decoding are

given along with the results of density evolution in Figure 3.27. The analytical results

of density evolution accurately predict the performance of finite tree-based decoding

on the independent tree for all simulated SNR. One advantage of density evolution,

as seen in this example, is its ability to obtain the exact probability of bit error far

beyond the reach of simulation. In Figure 3.27, a probability of bit error of nearly

10−15 is predicted for SNR = 11.0 dB.

It has been shown that density evolution can be used to predict the performance of
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v0

f7
f49

f73

Figure 3.26: Finite tree-based decoding of an independent tree rooted at v0 of a rate

1
2
, length N = 200 LDPC code.
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Figure 3.27: Density evolution and simulation results for finite tree-based decoding

on the independent tree rooted at v0 of a rate 1
2
, length N = 200 LDPC code.

finite tree decoding on independent trees. Unfortunately, as shown in Figure 3.13, the

probability of bit error of finite tree decoding on independent trees is not competitive

with MS decoding for codes up to length N = 100,000. Although independent trees

may not be useful for decoding, it is shown in the next chapter that they can be

used for creating bounds on the minimum distance and also as tools for constructing
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LDPC codes with desirable properties.

3.7 Conclusion

In this chapter, finite tree decoding along with several new methods for constructing

finite trees have been presented. Each of the finite tree construction methods presents

a tradeoff between complexity and probability of bit error when decoded using finite

tree decoding. Independent trees are very simple to construct, even for codes with

block length as large as N = 100,000. However, they result in poor bit error rates

when compared to MS decoding for much shorter block length.

Extrinsic tree construction enumerates each of the deviations on the extrinsic

trees, and thus the complexity of construction grows exponentially with the number

of variable nodes in the tree. For codes with block lengths N ≤ 50, the bit error rates

are comparable to, and sometimes exceed, those of MS decoding. Results of finite

tree decoding on extrinsic trees shows that LDPC codes with smaller, regular node

degrees appear to perform better than irregular LDPC codes.

Finally, deviation path-forcing tree construction produces trees that are very sim-

ple to analyze. This is because the weight of a deviation is equal to ℓ + 1 if the

lone leaf node in the deviation appears in level ℓ. The performance of finite tree

decoding on DPFTs is in between that of independent trees and extrinsic tree in all

the presented simulations. Unfortunately, the number of variable nodes in DPFTs
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grows exponentially with the minimum weight of its deviations. This makes DPFTs

impractical for use with high minimum-distance LDPC codes.

After considering each of the finite tree construction methods, extrinsic tree con-

struction appears to offer the greatest potential for decoding low-density parity-check

codes as the block length increases beyond those presented in this chapter. This is

because independent trees have unacceptable bit error rates compared to MS decod-

ing, and DPFTs are not computationally tractable to construct for codes with high

minimum distance.

The process of constructing extrinsic trees involves computing the set of all devi-

ations and their corresponding deviation weights on each of the extrinsic trees. This

makes it straightforward to compute Wiberg’s deviation bound on the performance

of finite tree decoding on the extrinsic trees. However, codes with typical variable

and check node degrees, such as the (3, 6)-regular LDPC code, have a large number of

deviations in the extrinsic trees of LDPC codes with block length N = 40. It is thus

necessary to use LDPC codes of smaller variable and check node degree in order to

allow for computationally tractable extrinsic tree construction for large block length

codes.

Chapter 4 analyzes the properties of low-density parity-check codes with respect to

variable and check node degrees, block length, minimum distance, and the complexity

of extrinsic tree construction. It is shown that by carefully choosing the degrees of the
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variable nodes and check nodes, short-to-moderate block-length codes can be created

that allow for finite tree decoding on extrinsic trees. A new method for constructing

LDPC codes using independent trees is also introduced. Codes generated using this

new construction offer performance advantages over those generated using an existing

construction method.



Chapter 4

Code Design for Finite Tree-Based

Decoding

Since the rediscovery of low-density parity-check codes, several different methods have

been devised for constructing codes that perform well with iterative decoders. One

property of LDPC codes considered to be important to the performance of itera-

tive decoders is the girth [19]. The girth of an LDPC code, denoted by G, is the

length of the shortest cycle in the corresponding Tanner graph of the LDPC code.

A large girth allows more iterations to be performed before the information propa-

gated between nodes in the Tanner graph begins to reinforce itself. The phenomenon

of self-reinforcement can be visualized as multiple copies of the same variable node

appearing in a computation tree, thus making it possible for a valid configuration on

136
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the computation tree to have its LLR cost affected more by some variable nodes than

others. One method of constructing LDPC codes, known as the progressive edge-

growth (PEG) algorithm, takes a set of variable node degrees and check node degrees

and attempts to maximize the girth of the resultant Tanner graph [19]. Modifications

to the PEG algorithm have been developed to improve the probability of bit error of

irregular LDPC codes at high SNR [34] [35].

This chapter begins by introducing the progressive edge-growth algorithm and

examining properties of low-density parity-check codes in Section 4.1. In particular,

the relationship between block length, minimum distance, and girth is examined in

detail. Understanding the relationships between these different code parameters is

necessary for constructing LDPC codes with desirable properties.

As shown in [19], the girth of the Tanner graph of a low-density parity-check

code provides a lower bound on the minimum distance of the code. A new bound

on minimum distance of LDPC codes, known as the independent tree-based (ITB)

lower bound, is presented in Section 4.2. The ITB lower bound involves constructing

independent trees rooted at each variable node in the LDPC code. The minimum-

weight valid configuration on each independent tree can be easily determined, and

serves as a lower bound on the minimum-weight codeword that each variable node is

involved in. The set of lower bounds for each variable node easily extends to a lower

bound on the minimum distance over the entire LDPC code. The ITB lower bound
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on minimum distance is proven to be greater than or equal to the lower bound on the

minimum distance of LDPC codes derived from the girth of the code.

A new method is presented in Section 4.3 for constructing independent tree-based

low-density parity-check (ITB LDPC) codes by iteratively improving the independent

tree-based lower bound on the minimum distance. The new ITB LDPC codes have

improved girth profiles and minimum distance bounds when compared to PEG LDPC

codes. In addition, simulations indicate that the ITB LDPC codes have lower bit error

rates at high SNR with iterative decoding methods.

In Section 4.4, the performance of finite tree decoding on extrinsic trees is ex-

amined on low-density parity-check codes with regular check node degree dF = 3.

Analysis shows that ITB LDPC codes with check node degree dF = 3 have better

minimum-distance properties than PEG LDPC codes with check node degree dF = 3,

thus resulting in lower bit error rates at high SNR. Examples are also given where

finite tree decoding of extrinsic trees with dF = 3 have bit error rates that approach

ML decoding as the SNR grows large.
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4.1 Code Construction and Code Properties from

Computation Trees

One of the most effective methods for constructing low-density parity-check codes is

the progressive edge-growth algorithm. The goal of PEG LDPC code construction is

to create codes that have large girth [19]. Not only does large girth result in desirable

minimum-distance properties, it also benefits iterative decoding by increasing the

minimum weight of the deviations in the computation tree after a small number of

iterations has been performed. The relationship between girth and minimum distance

is examined in detail later in this section.

The procedure for constructing progressive edge-growth low-density parity-check

codes involves sequentially adding edges to the Tanner graph for each of the variable

nodes. The PEG construction begins with the block length N , the number of parity

checks M , and the set of variable node degrees {dv1 , dv2, . . . , dvN
}. For each candidate

edge connecting a variable node and a check node, the cycle that the edge induces on

the Tanner graph is chosen to have maximum length. The method for constructing

PEG LDPC codes is given in Algorithm 4.1.1. Note that R
ℓ

vi
(F ) and R

ℓ

vi
(V ) refer to

the check nodes and variable nodes that do not appear in the computation tree Rℓ
vi

.
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Algorithm 4.1.1 (Progressive Edge-Growth [19]).

for i = 1, . . . , N

for j = 1, . . . , dvi

if j = 1

−Add an edge connecting vi to a random check node

ck ∈ F such that dck
= min

c∈F
dc. Set dck

= dck
+ 1.

else

−Expand the computation tree from variable node vi down to depth ℓ, such

that R
ℓ

vi
(F ) 6= ∅ and R

ℓ+1

vi
(F ) = ∅, or |Rℓ

vi
(F )| = |Rℓ+1

vi
(F )| < M .

−Add an edge connecting vi to a random check node ck ∈ Rℓ
vi

(F ),

such that dck
= min

ck∈Rℓ
vi

(F )
dck

. Set dck
= dck

+ 1.

end

end

It should be noted that the code construction given in Algorithm 4.1.1 does not

guarantee that each check node has degree dF . However, if check node regularity is

desired, a minor modification to the construction can force the check node degrees to

be regular. If, at level ℓ, the minimum check node degree is greater than dF , set ℓ = ℓ−

1. Then randomly select a check node ck ∈ R
ℓ

vi
(F ) with degree dck

= min
ck∈R

ℓ
vi

(F )
dck

.
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This process of reducing ℓ may be done recursively until min
ck∈R

ℓ
vi

(F )
dck

≤ dF . It

is shown in Section 4.3 that this modification has very little effect on the girth and

performance of PEG LDPC codes.
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Figure 4.1: Probability of bit error for MS decoding of (3,6)-regular LDPC codes

constructed randomly and with the PEG algorithm.

The benefits of progressive edge-growth are most noticeable at short-to-moderate

block lengths (N ≤ 1500), since randomly constructed low-density parity-check codes

are capable of achieving near-capacity performance as the block length gets large.
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Figure 4.1 shows the performance of several LDPC codes, generated both randomly

and using the PEG algorithm, with MS decoding. The improvement in the probability

of bit error is most pronounced at block length N = 150, and less significant at block

lengths N = 300 and N = 600. In addition, the advantage of using PEG LDPC codes

over random LDPC codes is most noticeable at low bit error rates.

In order to understand the reason for the performance gains, it is necessary to

explore the effects of large girth on LDPC codes. An examination of the relationship

between girth and block length shows that, after fixing the rate of the code and the

variable node and check node degrees, longer LDPC codes have potential for larger

girth than shorter LDPC codes. Furthermore, girth has a known relationship with the

minimum distance of LDPC codes. This section provides a detailed examination of

the relationship between girth, block length, and minimum distance for LDPC codes

with regular variable node degrees and check node degrees.

Large girth in the Tanner graph of low-density parity-check codes results in lower

bit error rates during the first few iterations of min-sum and sum-product decoding.

This is because large girth allows the computation trees to have more levels below

the root node, and hence more iterations, before encountering the same variable

node more than once. To understand how girth restricts multiple copies of a single

variable node from appearing on a computation tree, first consider the set of all non-

backtracking walks on a computation tree of depth ℓ. The maximum length of any
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non-backtracking walk in the set is 4ℓ; it starts at one of the leaf nodes of the tree,

makes its way through the root node, and finishes at a different leaf node. If the

girth of a Tanner graph is G > 4ℓ, it is impossible to have more than one copy of the

same variable node on the computation tree after ℓ iterations, since any two nodes

on the computation tree are connected via a non-backtracking walk. Gallager [5]

used an idea similar to this to derive a lower bound on the required block length N

necessary to achieve girth G for (dV , dF )-regular LDPC codes. Since girth determines

the maximum number of iterations such that no variable node appears more than

once on the computation tree, the number of variable nodes in that computation tree

is the minimum block length necessary to achieve that girth.

Proposition 4.1.2 (Gallager, [5]). Given a (dV , dF )-regular low-density parity-check

code, a block length of

N ≥ 1 + dV (dF − 1)

(

b−1
∑

i=0

((dV − 1)(dF − 1))i

)

(4.1)

is required to achieve girth G = 4b + 2, where b is an integer.

A modification of Proposition 4.1.2 is now given to take into account girths of length

G = 4b, where b is an integer.

Proposition 4.1.3 (Gallager, [5]). Given a (dV , dF )-regular low-density parity-check

code, a block length

N ≥ dF

(

b−1
∑

i=0

((dV − 1)(dF − 1))i

)

(4.2)
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is required to achieve girth G = 4b, where b is an integer.

Figure 4.2 shows the lower bounds given by (4.1) and (4.2) on the required block

length for a given girth for three different degree profiles for rate K
N

= 1
2

codes.

The minimum required block length grows exponentially with the girth for all given

variable node and check node degrees. Codes with higher variable node and check

node degrees require longer block lengths to achieve the same girth as codes with

lower node degrees. However, while girth is an important property of LDPC codes,

it is its relationship to low bit error rates that is most important to the performance

of iterative decoders. Therefore, it is not sufficient to limit the examination to the

relationship between girth and block length.

Girth can also be used to lower bound the minimum distance of a low-density

parity-check code. To do so, it is first necessary to examine deviations on the compu-

tation tree. Given a computation tree that contains at most one copy of each variable

node, the weight of the deviations can be easily determined. Unlike the total number

of variable nodes in the computation tree, the deviation weight is dependent only on

the degrees of the variable nodes. It is possible to bound the deviation weights of

irregular LDPC codes, but for LDPC codes with regular variable node degree, it is

possible to derive exact expressions for deviation weights. The deviation weight on

the computation trees of LDPC codes with regular variable node degree dV is given

by Proposition 4.1.5.
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Figure 4.2: Lower bound on block length necessary to achieve a given girth for dif-

ferent variable and check node degrees.

Proposition 4.1.4 (Tanner, [12]). After ℓ ≤ G−2
4

iterations, the weight of each de-

viation δℓ on the computation tree of a (dV , dF )-regular low-density parity-check code

is

w(δℓ) = 1 + dV

(

ℓ
∑

i=1

(dV − 1)i−1

)

. (4.3)

The minimum-weight deviation on a computation tree rooted at variable node vi

serves as a lower bound on the minimum-weight codeword involving vi. Thus, since

girth can be used to determine the weight of the deviations when ℓ ≤ G−2
4

, girth also
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provides a lower bound on the minimum-weight codeword involving vi. The set of

minimum-weight codewords involving each of the variable nodes extends to a lower

bound on the minimum distance of the code.

Proposition 4.1.5 (Tanner, [12]). The minimum distance dmin of a (dV , dF )-regular

low-density parity-check code satisfies

dmin ≥ w(δℓmax) (4.4)

where ℓmax = G−2
4

, and δℓmax is a deviation on the computation tree after ℓmax itera-

tions.

A similar result is given to compute a lower bound on the minimum-weight codeword

when G
2

is even.

Proposition 4.1.6 (Tanner, [12]). If G
2

is even, then the minimum distance dmin of

a (dV , dF )-regular low-density parity-check code satisfies

dmin ≥ 1 + dV





⌊G−2
4

⌋
∑

i=1

(dV − 1)i−1



+ (dV − 1)⌊
G−2

4
⌋. (4.5)

Figure 4.3 shows the lower bounds given by (4.4) and (4.5) on the minimum

distance of low-density parity-check codes with variable node degrees of dV = 2,

3, and 4. Codes with dV = 2 are cycle codes, and have minimum distance lower

bounds that grow linearly with girth. Alternatively, codes with dV = 3 and 4 have

minimum distance lower bounds that grow exponentially with girth. Comparing
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Figure 4.3: Lower bound on the minimum-weight codeword for a given girth for

different variable node degrees.

Figure 4.2 and Figure 4.3, the relationships between girth, block length, and minimum

distance can be further understood. For example, in order to guarantee a minimum

distance of dmin = 100 for a rate K
N

= 1
2
, (3, 6)-regular LDPC code, the girth needs

to be at least G = 22. To achieve this girth requires a block length of at least

N = 200, 000. If a (4, 8) regular LDPC code is used, it takes a girth of at least

G = 18 to guarantee dmin ≥ 100. This girth requires the block length of the code to

be at least N = 300, 000. These results indicate that codes of a given block length
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have similar minimum distance limitations regardless of their variable node degrees

and check node degrees. Therefore, since the complexity of iterative decoders grows

linearly with the degree of the variable/check nodes, LDPC codes with lower degrees

are preferable to those with higher degrees.

In this section, it has been shown that girth can be used to bound the block

length and minimum distance of low-density parity-check codes with specific variable

node and check node degrees. However, it is possible to derive tighter bounds on the

minimum distance of specific LDPC codes. In Section 4.2, a new method is presented

for bounding the minimum distance of LDPC codes using the notion of independent

trees introduced in Section 3.2.

4.2 Independent Tree-Based Lower Bounds on the

Minimum Distance

A new method for lower bounding the minimum distance of low-density parity-check

codes is presented in this section. In contrast to the bounds presented in Section 4.1,

independent trees are used instead of computation trees. However, the method of

bounding the minimum-weight codewords via deviations is still utilized.

The independent tree-based lower bounding method begins with the construc-

tion of independent trees rooted at each variable node in the code using Algorithm
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3.2.1. To obtain a lower bound on the minimum-weight codeword that the root node

of each independent tree is involved in, the minimum-weight deviation on the inde-

pendent trees is found. As seen in Section 4.1 the minimum-weight deviation on a

regular computation tree can be found from the girth of a (dV , dF )-regular LDPC

code using the bounds of (4.4) and (4.5). However, independent trees constructed

using Algorithm 3.2.1 have a more complex structure than computation trees, and

the minimum-weight deviation can not be computed using simply the girth and node

degrees. A computationally efficient way to determine the minimum-weight deviation

on the independent tree is to assign a cost of λ = +1.0 to all the variable nodes, and

then to use the finite tree decoder of Algorithm 3.1.2 to obtain an output at the root

node. The resulting cost output at the root node will be the Hamming weight of

the minimum-weight deviation on the independent tree, denoted dITB-min. In sum-

mary, there are four steps to obtaining the ITB lower bound on the minimum-weight

codeword that each variable node is involved in.

1. Construct N independent trees using Algorithm 3.2.1.

2. Assign each variable node in each independent tree a cost of λ = +1.0.

3. Perform finite tree decoding using Algorithm 3.1.2.

4. For each independent tree, the decoder output at the root node is a lower bound

dITB-min on the minimum-weight codeword in which the root node is involved.
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Proposition 4.2.1 establishes that the minimum-weight deviation on the indepen-

dent tree has a Hamming weight that is greater than or equal to the minimum-weight

deviation determined from the girth and node degrees of the LDPC code.

Proposition 4.2.1. Given a parity-check matrix H with girth G, the independent

tree-based lower bound dITB-min for any variable node vi is greater than or equal to the

lower bounds given by (4.4) and (4.5).

Proof. Assume that the independent tree-based lower bound dITB-min is lower than

the bound obtained from (4.4). If G
2

is odd, this implies that a variable node appears

more than once in the independent tree during the construction of some level ℓ ≤ G−2
4

.

Since the length of any path from one node to another in the independent tree after

ℓ ≤ G−2
4

levels is less than or equal to G − 2, no variable nodes could have been

eliminated, because they would appear on the independent tree for the first time.

Thus, the minimum distance bound dITB-min must be greater than or equal to that

given by (4.4) when G
2

is odd.

Now assume that the G
2

is even, and dITB-min is less than the bound obtained

from (4.5). This implies that one node appears more than once before or during the

consideration of the first ((dF − 1)(dV − 1))⌊
G−2

4
⌋ check nodes of level ℓ = ⌊G−2

4
⌋ + 1

in the independent tree. This requires that there is a path from a variable node to

a copy of itself of length G − 2 or less, which is not possible since that implies that

the girth is less than G. Thus, the minimum distance bound dITB-min must also be
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greater than or equal to that given by (4.5) when G
2

is even.

Recall that progressive edge-growth low-density parity-check codes are constructed

using girth as a metric for determining the connections between variable nodes and

check nodes, and the bounds given by (4.4) and (4.5) show that improving girth can

improve minimum distance. Proposition 4.2.1 shows that the ITB lower bound is as

tight or tighter than the bounds given by (4.4) and (4.5). Therefore,it is reasonable to

suggest that the ITB lower bounds can be used to create LDPC codes with improved

minimum-distance properties when compared to PEG LDPC codes. In Section 4.3,

the ITB lower bound is used as a metric for iteratively constructing LDPC codes with

increasing lower bounds on the minimum distance.

4.3 Independent Tree-Based Low-Density Parity-

Check Code Construction

This section presents a new method of code construction called the independent

tree-based low-density parity-check (ITB LDPC) construction. Current methods for

constructing LDPC codes, such as the PEG algorithm, build codes by creating a set

of edges one-by-one and then keeping the edges fixed. A potential problem with using

this approach is that edges created early on in the process are created for a different
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graph than edges created later in the process. For this reason, the ITB LDPC code

construction begins with a randomly constructed LDPC code that has the desired

number of variable nodes N , check nodes M , and variable and check node degrees.

The ITB LDPC code construction then proceeds by shuffling edge connections be-

tween variable nodes and check nodes, while maintaining their respective degrees.

The benefit of using this approach is that the effect of changing edge connections can

be observed over the entire graph at each step.

Algorithm 4.3.1 presents independent tree-based low-density parity-check code

construction. The construction makes use of the ITB lower bound presented in Section

4.2.

Algorithm 4.3.1 (ITB LDPC Code Construction). Begin with a randomly con-

structed LDPC code that has the desired number of variable nodes N , check nodes M ,

and variable and check node degrees.

while at least one edge has been switched

for all pairs of edges ei, ej ∈ E where the variable nodes connected to ej and

ei are not connected to any of the same check nodes

−Exchange the check nodes that edge ei and ej are connected to,

keeping the variable node connections the same.

−Using Algorithm 3.2.1, build N independent trees and determine

the minimum-weight deviation on each.
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if the minimum-weight deviation of the set of all the

independent trees increases

−Keep the switch.

else if the minimum-weight deviation of the set of all the

independent trees is the same with decreased multiplicity

−Keep the switch.

else if the minimum-weight deviation of the independent trees is

the same with the same multiplicity, yet the mean weight

of the minimum-weight deviations has increased

−Keep the switch.

else

−Undo the switch.

end

end

end

While this construction uses the independent tree construction given in Algorithm

3.2.1, any of the tree constructions presented in Chapter 3 could be used as long as it

is possible to compute the minimum-weight deviation on each tree. The independent

tree construction was chosen because it is simple to compute the minimum-weight
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deviation when there is a maximum of one copy of each variable node in the tree.

In practice, the independent tree-based low-density parity-check code construc-

tion has a much higher computational complexity than progressive edge-growth. For

each set of edges that are switched, an independent tree rooted at each variable node

is constructed, and the minimum-weight valid configuration on that independent tree

is found. Assuming there are no 4-cycles, there are dV N edges that can be switched

with dV (N − (1 + dV (dF − 1))) other edges. For each edge switch, N trees are built

with a maximum of N nodes per tree. The computational complexity of the inde-

pendent tree-based construction method scales linearly with the number of variable

nodes in the trees, as does performing finite tree decoding on the independent trees

to determine the weight of the minimum-weight valid configuration. The overall com-

plexity of the independent tree-based code construction algorithm is O(d2
V N4). Note

that parallel operations could reduce the complexity by a factor of N since it is not

necessary for the independent trees to be constructed sequentially.

In the following simulation results, the sum-product decoder is used to decode

all random, progressive edge-growth, and independent tree-based low-density parity-

check codes. The SP decoder operates on real-valued (double floating point precision)

channel outputs for a maximum of 80 iterations. The SP decoder with 80 iterations

was chosen for this example to allow for direct comparisons with the PEG LDPC

code results given in [19].
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Block Code Min Avg. Min ITB Avg. ITB
Length Type G G Lower Bound Lower Bound

N = 200

Random 4 5.32 2 4.15

PEG 6 7.79 4 5.88

ITB 6 7.84 6 6.24

N = 504

Random 4 5.84 2 5.27

PEG 8 8.00 6 7.50

ITB 8 8.01 7 8.07

N = 1008

Random 4 6.77 3 6.69

PEG 8 9.34 7 9.58

ITB 8 9.96 9 9.98

Table 4.1: Girth and ITB lower bound statistics for (3, 6)-regular LDPC codes with

block lengths of N = 200, N = 504, and N = 1008.

Table 4.1 shows both the girth and independent tree-based lower bound statistics

for each variable node in random, progressive edge-growth, and independent tree-

based (3, 6)-regular low-density parity-check codes with block lengths of N = 200,

N = 504, and N = 1008. The minimum girth among all the variable nodes is given

along with the average girth over all the variable nodes. Table 4.1 also shows the

minimum ITB lower bound among all the variable nodes along with the average ITB
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lower bound over all the variable nodes.
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Figure 4.4: Independent tree-based lower bound on the minimum distance for each bit

of a random code, PEG LDPC code, and ITB LDPC code with N = 200, M = 100,

dV = 3, and dF = 6.

Figure 4.4 gives a graphical representation of the independent tree-based mini-

mum distance bound for each variable node of random, progressive edge-growth, and

independent tree-based low-density parity-check codes with parameters N = 200,

M = 100, dV = 3, dF = 6. The results of SP decoding of each type of LDPC code

are shown in Figure 4.5. Simulations indicate that both PEG and ITB codes perform
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Word: N=200 Random
Word: N=200 PEG
Word: N=200 ITB
Bit: N=200 Random
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Figure 4.5: Performance of a random LDPC code, PEG LDPC code, and ITB LDPC

code with parameters N = 200, M = 100, dV = 3, and dF = 6 with SP decoding for

80 iterations.

significantly better than the random LDPC code at high SNR. This is expected, since

the random code has minimum ITB lower bounds of just dITB-min ≥ 2, while the PEG

LDPC codes and ITB LDPC codes have minimum ITB lower bounds of dITB-min ≥ 4

and dITB-min ≥ 6, respectively. The PEG and ITB simulations show similar perfor-

mance until 4.5 dB, at which point the ITB LDPC code begins to outperform the
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PEG LDPC code. The results indicate that there is a correlation between a code’s

ITB lower bound and the bit error rates at high SNR when using the SP decoder.

50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

d m
in

(a) Random LDPC

50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

d m
in

(b) PEG LDPC

50 100 150 200 250 300 350 400 450 500
2

4

6

8

10

d m
in

(c) ITB LDPC

Figure 4.6: Independent tree-based lower bound on the minimum distance for each

bit of a random LDPC code, PEG LDPC code, and ITB LDPC code with N = 504,

M = 252, dV = 3, and dF = 6.

Table 4.1, Figure 4.6, and Figure 4.7 show similar results for low-density parity-

check codes with N = 504, M = 252, dV = 3, and dF = 6. At SNRs greater than 3.0

dB the ITB LDPC code with minimum ITB lower bounds of dITB-min ≥ 7 begins to

outperform the random and PEG LDPC codes with dITB-min ≥ 2 and dITB-min ≥ 6,
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Figure 4.7: Performance of a random LDPC code, PEG LDPC code, and ITB LDPC

code with parameters N = 504, M = 252, dV = 3, and dF = 6 with SP decoding for

80 iterations.

respectively.

Finally, Table 4.1, Figure 4.8, and Figure 4.9 once again show similar results for

low-density parity-check codes with N = 1008, M = 504, dV = 3, and dF = 6. At

SNRs greater than 2.5 dB the ITB LDPC code with dITB-min ≥ 9 begins to noticeably
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Figure 4.8: Independent tree-based lower bound on minimum distance for each bit

of a random LDPC code, PEG LDPC code, and ITB LDPC code with N = 1008,

M = 504, dV = 3, and dF = 6.

outperform the random and PEG LDPC codes with dITB-min ≥ 3 and dITB-min ≥ 7,

respectively.

The simulation results given in this section indicate that there is a strong correla-

tion between higher independent tree-based lower bounds and improved performance

at high SNR. Each of the ITB LDPC codes was constructed to have large ITB lower

bounds. An unintended side-effect of the construction was the creation of LDPC
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Figure 4.9: Performance of a random LDPC code, PEG LDPC code, and ITB LDPC

code with parameters N = 1008, M = 504, dV = 3 and dF = 6 using SP decoding

for 80 iterations.

codes with superior girth characteristics. While none of the ITB LDPC codes has

higher minimum girth than the PEG LDPC codes, improvements are seen in the

mean girths among all variable nodes for each of the codes in Table 4.1.

In Section 4.2, a new independent tree-based method for lower bounding the
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minimum distance of low-density parity-check code was presented. The ITB lower

bound was utilized in the iterative construction of ITB LDPC codes. Simulations

show that the new codes outperform random and PEG LDPC codes with identical

variable and check node degree profiles using the SP decoder. In Section 4.4, LDPC

codes with check node degree dF = 3 are examined, and the benefits of ITB LDPC

codes over PEG LDPC codes with dF = 3 are shown using finite tree decoding on

extrinsic trees.

4.4 LDPC Codes with Check Degree Three

The set of valid configurations on finite trees can be used to bound the probability of

bit error at the root node. Consider a finite tree where the set of valid configurations

coincides exactly with the set of codewords of an LDPC code C. More precisely,

suppose there is a bijective function mapping the set of codewords C to the set of

valid configurations on the finite tree, such that the codewords consist of the same

variable nodes and have the same weight as the valid configurations to which they

are mapped. Under these conditions, the bit error rate of finite tree decoding will be

identical to that of ML decoding.

Unfortunately, it is often not possible for all configurations on the finite tree to

coincide with codewords in C, since the variable nodes close to and including the leaf

nodes of finite trees have a high degree of freedom. For example, on any set of k leaf
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nodes connected to the same check node are 2k−1 configurations that will satisfy the

check node above it, regardless of the assignments to the rest of the variable nodes in

the finite tree. A finite tree that has two or more leaf nodes connected to the same

check node has a valid configuration with Hamming weight less than or equal to two.

Thus, for a typical LDPC code with dmin > 2, it is likely impossible to make the valid

configurations on a finite tree coincide with the set of codewords C.

While it is likely not possible to get all valid configurations on finite trees to match

those of the corresponding code, it might instead be possible to design a finite tree

with correspondences between codewords in C that involve a variable node vi and the

deviations in a finite tree rooted at vi.

Proposition 4.4.1. Consider a minimum-weight codeword cmin in the code C. With-

out loss of generality, let {v1, . . . , vj} be the support of cmin. Also, let the set {f1, . . . , fk}

include all check nodes in the Tanner graph with at least one edge connected to the

set of variable nodes {v1, . . . , vj}. Assume that a single check node fm ∈ {f1, . . . , fk}

is connected to more than two variable nodes in the set {v1, . . . , vj}. If a finite tree

includes check node fm, it is not possible for cmin to project itself as a deviation in

the finite tree.

Proof. In order to project the codeword cmin onto a finite tree, each variable node in

the set {v1, . . . , vj} is set to one on the finite tree, and each variable node not in the

set {v1, . . . , vj} is set to zero on the finite tree. Check node fm is in the finite tree,
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which means that all of its neighboring variable nodes in the Tanner graph are also

neighbors in the finite tree. Since fm is connected to the set {v1, . . . , vj} more than

two times, there will be more than two variable nodes connected to fm in the finite

tree that are set to one. Since deviations have a maximum of two variable nodes set

to a binary one connected to a given check node in the finite tree, it is not possible

for cmin to project itself as a deviation in the finite tree.

Proposition 4.4.1 provides reason to believe that parity-check matrices limited to

check node degree dF = 3 have inherent advantages with respect to matching devia-

tions on finite trees with codewords in the code C. Proposition 4.4.1 also highlights

the difficulty in matching up deviations with codewords when there are check nodes

with degree df ≥ 4. When a check node has degree df ≥ 4, it is possible that a

codeword in the code has support from four or more of the variable nodes connected

to the check node, and it is thus impossible to project the codeword as a deviation on

the finite tree. One method for avoiding this scenario is to require that all the check

nodes in the code have degree df ≤ 3.

All finite trees have exactly two kinds of configurations that assign the root node

to a binary 1: deviations, and disjoint configurations where exactly one of the config-

urations is a deviation. A disjoint configuration is a valid configuration on the finite

tree where exactly the set of variable nodes Vi on the finite tree are assigned to a

binary 1, such that there exist valid configurations Vj and Vk where Vj

⋃

Vk = Vi and
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Vj

⋂

Vk = ∅. On a finite tree with all degree-three check nodes, no check node on the

finite tree can be connected to variable nodes from both Vj and Vk. The significance

of this is that when codewords are projected onto finite trees with all degree-three

check nodes they only appear as disjoint configurations on the finite tree if they are

disjoint configurations on the Tanner graph. Thus, minimum-weight codewords in

C can always be projected to deviations on finite trees with only degree-three check

nodes. If the minimum-weight codeword in C is projected to the minimum-weight

deviation on the finite tree, the bit error rate of finite tree decoding will approach

that of ML decoding as the SNR grows large.

Extrinsic tree construction requires that the weight of each deviation is found at

each step. As shown in Section 2.9, the number of deviations grows exponentially with

the size of the computation trees. Since extrinsic trees are identical to computation

trees at levels 0 ≤ ℓ ≤ G−2
4

, (2.9) and (2.11) can be used to analyze the growth rate

in the number of deviations for trees that include a given number of variable nodes.

Figure 4.10 shows the number of deviations given the number of variable nodes in

computation trees of depth ℓ for rate K
N

= 1
4

LDPC codes. Results are given for

codes with regular check node degrees dF = 3, 4, 5, 6, and 7. The results indicate

that the code with check node degree dF = 3 has the smallest number of deviations

per variable node. Note that even LDPC codes with check node degree dF = 3 have

computation trees with an exponential increase in the number of deviations as the
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Figure 4.10: The number of deviations versus the number of variable nodes in a

computation tree of depth ℓ for rate K
N

= 1
4

LDPC codes with varying check node

degrees.

number of variable nodes increases. Therefore, due to the necessity of brute-force

deviation enumeration, even codes with small check node degrees must have short-

to-moderate block lengths to allow for extrinsic tree construction.

Figure 4.10 provides a good indication of the block lengths for which extrinsic

tree construction is computationally feasible. While the structure of extrinsic trees is

not the same as the structure of computation trees, given their similarities it is not
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unreasonable to assume a similar growth rate in the number of deviations per variable

node. Under this assumption, if the number of deviation weights computed during

extrinsic tree construction were limited to 109, it may not be possible to construct

extrinsic trees for rate K
N

= 1
4

LDPC codes with dF = 3 and block lengths N ≥ 1500.

For rate 1
4

LDPC codes with dF = 4 the block length would be limited to N ≤ 350.

Recall that the goal of finite-tree decoding on extrinsic trees is to perform well

at high signal-to-noise ratios by creating finite trees with large minimum-weight de-

viations. Codes with all degree-three check nodes have a natural correspondence

between deviations and valid configurations on finite trees. Additionally, as seen in

Figure 4.10, the number of deviation weights that need to be computed is significantly

less for codes with dF = 3 compared to codes with higher check node degree. For

these two reasons, the performance of finite tree decoding on extrinsic trees using

LDPC codes with dF = 3 is further examined.

To create a full-rank parity-check matrix with check node degree dF = 3, it is

necessary to have an average variable node degree 1
N

N
∑

i=1

dvi
< 3, so that there are

less rows than columns. Another important restriction on the variable node degree

dvi
of any variable node vi is that the degree satisfies the condition dvi

≥ 2. A

variable node with degree one is incapable of passing extrinsic information in the

graph, since it will always appears as a leaf in the computation tree. Therefore, only

parity-check matrices with dF = 3, dvi
≥ 2 for all i = 1, . . . , N , and 1

N

N
∑

i=1

dvi
< 3
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are considered. Given these constraints, it is possible to have variable node degrees

where dvi
> 3. However, an extensive search would be required to find optimal degree

profiles. The results given in Section 3.3 indicate that a high degree of irregularity

among the variable node degrees results in poor finite tree decoding performance. For

this reason, LDPC codes in this section are chosen to have variable node degrees as

close to regular as possible, with 2 ≤ dvi
≤ 3 for all i = 1, . . . , N .
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Figure 4.11: Probability of bit error of length N=210 PEG LDPC codes with dimen-

sion K=70, 65, 60, 55, 50, 45, 40, and 35 and MS decoding.

The restriction of dF = 3, and 2 ≤ dvi
≤ 3 for all i = 1, . . . , N allows for a
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range of rates given by 2
3
≤ K

N
< 1. Given these constraints, Figure 4.11 shows the

performance of various PEG LDPC codes with length N = 210 and MS decoding.

The length was chosen arbitrarily, since the rate of the code is the variable of interest

in this example. Notice that the dimension K = 70 PEG LDPC code has the highest

probability of bit error. This can be attributed to the fact that all variable nodes

have degree dF = 2, making the K = 70 code a cycle code. Cycle codes are known to

have poor minimum distance properties [36]. As the dimension of the code decreases

to K = 50, there are sixty variable nodes with degree three and the performance is

approximately 1.25 dB better than the cycle code at Pb = 10−5. As the dimension

continues to decrease below K = 50, the performance gets worse again. This is not

surprising since, as the dimension of the code approaches K = 1, the capacity of the

LDPC code will approach that of an uncoded transmission. As seen in Figure 4.13,

rate K
N

= 50
210

= 0.2381 codes perform as good as or better than codes with other rates

for this block length. For this reason, codes with check node degree dF = 3 and rates

close to K
N

= 0.2381 are further examined.

Recall that Proposition 4.4.1 suggests that check node degree dF = 3 codes should

have better performance with finite tree decoding on extrinsic trees at high SNR than

codes with higher check node degree. Figure 4.13 shows that the choice of dF = 3

is also preferable to dF = 4 and dF = 5 for MS decoding of rate K
N

= 0.2381 PEG

LDPC codes with block lengths N = 210 and N = 1050. At Pb = 10−4, the check
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Figure 4.12: Probability of bit error of rate K
N

= 0.2381 PEG LDPC codes with check

node degrees dF = 3, dF = 4, and dF = 5 with block lengths of N=210 and N=1050

and MS decoding.

node degree dF = 3, length N = 1050 PEG LDPC code is over 1.0 dB better than

the dF = 4, N = 1050 code and 2.0 dB better than the dF = 5, N = 1050 code.

Theoretical analysis can also be used to compare the performance capabilities of

rate K
N

= 0.2381 codes with check node degree dF = 3, dF = 4, and dF = 5 as

the SNR grows large. Figure 4.13 plots of the lower bound on block length N given

by (4.1) versus the lower bound on the minimum distance dmin given by (4.4). The
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Figure 4.13: Theoretical and experimental lower bounds on the minimum distance as

a function of block length for dF = 3, dF = 4, and dF = 5 rate K
N

= 0.2381 codes.

theoretical results suggest that using dF = 3 codes is preferable for block lengths of

N ≤ 300. At block lengths of 300 < N ≤ 2000, using dF = 4 codes is preferable, and

for N > 2000 the dF = 5 codes should have better performance as the SNR grows

large.

Figure 4.13 also shows the parameters of real codes generated using the progressive

edge-growth algorithm. The PEG LDPC codes with dF = 3, 4, and 5 were generated

for various block lengths. Then, a lower bound on the minimum distance is obtained
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for each variable node in the code. Instead of simply using the girth of the code, the

ITB lower bound is computed for each variable node. The results in Figure 4.13 show

the mean dITB-min over all variable nodes.

The experimental results shown in Figure 4.13 are similar to the theoretical results,

in terms of the relative parameters of the three code types. They suggest that using

dF = 3 codes is preferable for block lengths of N ≤ 400. At block lengths of 400 <

N ≤ 1000, using a dF = 4 codes is preferable, and for N > 1000 the dF = 5 codes

should have better performance as the SNR grows large.

Note that the theoretical and experimental results presented in Figure 4.13 indi-

cate that dF = 4 codes are preferable to dF = 3 codes at block length N = 1050 as

the SNR grows large. Despite the theoretical and experimental results given in Figure

4.13, the simulations shown in Figure 4.4.1 indicate that the dF = 3, N = 1050 code

performs much better than the dF = 4 and dF = 5 codes for Pb ≥ 10−4. It is possible

that the performance of the dF = 4 and dF = 5 LDPC codes have better performance

at higher SNR, since the simulation results presented in Figure 4.4.1 are limited to

Pb ≥ 10−5.

This section has examined the properties of low-density parity-check codes with

check nodes of degree three. Both theoretical and experimental results show that

short-to-moderate block length (N ≤ 1500) LDPC codes with check degree dF = 3

have advantages over similar codes with higher check node degrees. One of the most
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important advantages, with regards to finite tree decoding, is the natural correspon-

dence between codewords in C and deviations on finite trees with dF = 3. Other

advantages include a slower growth rate in the number of deviations per variable

node in the finite tree, and higher ITB lower bounds on the minimum distance for

fixed block length LDPC codes. Section 4.5 presents simulation results and extrin-

sic tree properties of various LDPC codes with check node degree dF = 3. The

advantages of using ITB LDPC codes over PEG LDPC codes are also shown.

4.5 Finite Tree Decoding on Extrinsic Trees using

LDPC Codes with Check Degree Three

Finite tree decoding on extrinsic trees has been used to decode a block length N = 210,

dimension K = 50 progressive edge-growth low-density parity-check code with regular

check node degree dF = 3. Since the goal of finite tree decoding on extrinsic trees is

to perform well at high SNR, it is sufficient to obtain the minimum-weight deviation

on the extrinsic trees in order to predict the probability of bit error of finite tree

decoding on extrinsic trees as the SNR grows large.

Table 4.2 shows the mean of the minimum-weight deviations on extrinsic trees

rooted at variable nodes of degree dV = 2 and 3. The extrinsic tree construction

was performed using W = 1, 2, and 3. The overall mean of the minimum-weight
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Weights Mean Min-Weight Mean Min-Weight Mean Min-Weight # of Best
Checked Deviation (dv = 2) Deviation (dv = 3) Deviation (All) Trees

W = 1 10.9815 13.7930 11.7848 4

W = 2 11.8340 14.2348 12.5199 30

W = 3 12.2157 14.4794 12.8625 159

Table 4.2: Mean minimum-weight deviations on the extrinsic tree for the length

N = 210, dimension K = 50, check node degree dF = 3 LDPC code.

deviations for extrinsic trees rooted at all variable nodes is also given, along with the

number of times that each of the three methods resulted in the extrinsic tree rooted

at a particular variable node with the highest minimum-weight deviation, given by

“# of Best Trees”. Two key observations can be made from the results given in

Table 4.2. First, extrinsic trees rooted at variable nodes with degree two have lower

minimum-weight deviations than extrinsic trees rooted at variable nodes of degree

three. Second, increasing W, the number of deviation weights tracked, also increases

the minimum-weight of deviations on the extrinsic trees.

Two graphical depictions of the minimum-weight deviations are given in Figures

4.14 and 4.15. The bar plot in Figure 4.14 shows each individual minimum-weight

deviation on the extrinsic trees. An important observation from Figure 4.14 is that

there are exactly ten extrinsic trees that have a minimum-weight deviation with
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Figure 4.14: Bar graph of the minimum deviation weights on the extrinsic tree for

the length N = 210, dimension K = 50, check node degree dF = 3 LDPC code.



176

weight equal to ten when using extrinsic tree construction with W = 3 . After

further investigation, it has been determined that the minimum-weight deviations on

each of these trees corresponds with a codeword of Hamming weight ten in the code.

This is easily determined by checking the parity of the bits involved in each of the

ten deviations. From this observation come two important conclusions: First, the

minimum-weight codeword in the code has Hamming weight equal to ten, and second

the probability of bit error of finite tree decoding on extrinsic trees with W = 3

approaches that of ML decoding as the SNR grows large.

The histograms given in Figure 4.15 show that finite tree decoding of extrinsic

trees with W = 1 and W = 2 does not approach maximum-likelihood performance

as the signal-to-noise ratio gets large, like finite tree decoding of extrinsic trees with

W = 3. This is because there are extrinsic trees with minimum-weight deviations

that have weight less than ten when W = 1 and when W = 2. It should also be noted

that, in Figure 4.15, the entire distribution of minimum-weight deviations appears to

shift to the right with each additional deviation weight that is tracked during extrinsic

tree construction.

Minimum-weight deviations obtained from extrinsic tree construction of an inde-

pendent tree-based low-density parity-check code are given in Table 4.3. Compared to

the PEG LDPC results, the ITB LDPC results demonstrate a 0.5082 improvement in

the mean minimum-weight deviations over all extrinsic trees rooted at degree dV = 2
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Figure 4.15: Histograms of the minimum deviation weights on the extrinsic trees of

a length N = 210, dimension K = 50, check node degree dF = 3 PEG LDPC code.
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Code: Weights Mean Min-Weight Mean Min-Weight Mean Min-Weight
Checked Deviation (dv = 2) Deviation (dv = 3) Deviation (All)

PEG: W = 3 12.2157 14.4794 12.8625

ITB: W = 3 12.7239 14.6544 13.2754

Table 4.3: Mean minimum-weight deviations on the extrinsic tree for the length

N = 210, dimension K = 50, check node degree dF = 3 LDPC code generated with

ITB LDPC code construction.

variable nodes. On the other hand, the extrinsic trees rooted at degree dV = 3 vari-

able nodes only had a 0.1750 improvement in the mean minimum-weight deviations.

Figure 4.16 shows a histogram of the minimum-weight deviations for ET decoding of

the ITB LDPC code. Notice that the overall minimum-weight deviation over all the

extrinsic trees has weight 10.7561.

Figure 4.17 shows the bit error rates of finite tree decoding on extrinsic trees

for both the progressive edge-growth and independent tree-based low-density parity-

check codes. The performance improvement gained by increasing W for the PEG

LDPC code is evident. The performance gain obtained by using the ITB LDPC

code is also clear in Figure 4.17. As expected, the performance gains are greatest at

high SNR due to the increase in the overall minimum-weight deviation from 10.0 to

10.7561. It is worth noting that the weight 10.7561 deviation does not correspond to
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Figure 4.16: Histogram of the minimum deviation weights on the extrinsic trees with

W = 3 of a length N = 210, dimension K = 50, check node degree dF = 3 ITB and

PEG LDPC code.

a codeword in the original code. Therefore, finite tree decoding of extrinsic trees with

W = 3 does not achieve ML decoding performance as the SNR grows large. However,

by increasing W, the minimum-weight deviation would likely increase much like it

was shown to in Figures 4.14 and 4.15.

The results of finite tree decoding on extrinsic trees and min-sum decoding of

length N = 1050 ITB LDPC codes with K = 325, K = 300, and K = 275 are given

in Figures 4.18, 4.19, and 4.20. The minimum-weight deviation among the extrinsic

trees of both dimension K = 325 and K = 300 ITB LDPC codes is twelve. Each of

these codes contains codewords of weight twelve. Therefore, the performance of finite

tree decoding on the extrinsic trees approaches ML performance as the SNR gets large.

The minimum-weight deviation among the extrinsic trees for the dimension K = 275

ITB LDPC codes is fourteen. This code contains a single codeword of weight fourteen.
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Figure 4.17: Probability of bit error of finite tree decoding on extrinsic trees of a

length N = 210, dimension K = 150, check node degree dF = 3 PEG LDPC code

and a ITB LDPC code.

Therefore, the performance of finite tree decoding on the extrinsic trees of the K = 275

code also approaches ML performance as the SNR gets large. Unlike the K = 325

and K = 300 codes, which only need W = 3, the code with dimension K = 275

requires W = 6 to achieve ML performance as SNR gets large. This is likely due to

the higher minimum weight deviation on the extrinsic trees. While the performance

of finite tree decoding on extrinsic trees is worse than that of MS decoding over all
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simulated SNR, the simulated bit error rate of MS decoding decreases at a slower

rate at SNRs greater than 6.0 dB, suggesting that the performance of MS decoding

might be surpassed at higher SNR.
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Figure 4.18: Probability of bit error of finite tree decoding on extrinsic trees with

W = 3 and MS decoding of a length N = 1050, dimension K = 325, check node

degree dF = 3 ITB LDPC code.

This section examined the properties and bit error rates of low-density parity-
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Figure 4.19: Probability of bit error of finite tree decoding on extrinsic trees with

W = 3 and MS decoding of a length N = 1050, dimension K = 300, check node

degree dF = 3 ITB LDPC code.

check codes with check node degree dF = 3. Analysis of extrinsic tree construction of

LDPC codes shows that, in some cases, the construction makes it possible to identify

minimum-weight codewords in the code. In general, identifying the minimum-weight

of LDPC codes is a difficult problem, since brute-force methods require that the
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Figure 4.20: Probability of bit error of finite tree decoding on extrinsic trees with

W = 3 and MS decoding of a length N = 1050, dimension K = 275, check node

degree dF = 3 ITB LDPC code.

weight of each of the 2K codewords is checked. After extrinsic tree construction,

if the minimum-weight deviation over all extrinsic trees is equal to the minimum

distance of the LDPC code, the bit error rate of finite tree decoding on the extrinsic

trees approaches that of ML decoding as the SNR grows large.
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Recall the two primary goals of finite tree decoding on extrinsic trees: 1) Allow for

tractable performance analysis, and 2) achieve bit error rates comparable to iterative

decoders like MS and SP at high SNR. Since ML decoding is optimal, it is not possible

for iterative decoders to achieve better performance than ML decoding. Therefore,

when finite tree decoding on extrinsic trees has bit error rates approaching that of

ML decoding at high SNR, it is certain that this performance also approaches or

exceeds that of iterative decoders like the MS decoder at high SNR. Therefore, by

combining the use of deviation-based upper bounds and a resulting bit error rates

that approaches that of ML decoding as the SNR gets large, finite tree decoding on

extrinsic trees is capable of achieving both goals.



Chapter 5

Conclusion

Wiberg laid the foundation for future analysis of the min-sum and sum-product de-

coders by introducing the concept of computation trees and deviations[13]. He proved

that the probability of bit error at the root node of a computation tree can be accu-

rately predicted at high SNR using only the weight of the deviations. Unfortunately,

as shown in Section 2.9, the use of deviations to bound the performance of the MS

and SP decoders becomes computationally intractable after just a small number of

iterations. While several methods have since been developed to estimate the error

rates of the MS and SP decoder [25, 26, 28, 29, 17, 18], none are capable of producing

bounds on their performance for finite codes used on the BIAWGN channel. This lack

of performance bounds on MS and SP decoding makes it impossible to guarantee bit

error rates beyond the reach of simulations. This uncertainty has inhibited the use

185
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of LDPC codes in applications requiring exceptionally low bit error rates.

In this dissertation, finite tree-based decoding is introduced as an alternative

method for decoding low-density parity-check codes. While the computation trees

modeling MS and SP decoding quickly grow too large to allow for performance

bounds, the number of nodes used in finite tree-based decoding is kept small enough

to allow for performance bounds. The two goals of finite tree-based decoding are to

allow for tractable performance bounds, and to have bit error rates comparable to

that of current iterative decoders, such as MS and SP. The two steps of finite tree-

based decoding are the construction of the finite trees and the decoding on the finite

trees.

In Chapter 3, several new methods for constructing finite trees were given, along

with a single method for decoding on the finite trees. The following four methods

for constructing finite trees for LDPC codes were given: iterative tree construction,

independent tree construction, extrinsic tree construction, and deviation path-forcing

tree construction. Iterative tree construction builds trees based upon the simulated

error rate at a specific SNR. Finite tree decoding on iterative trees shows improvement

over MS decoding after a small number of iterations, and demonstrates that decoding

on smaller trees can achieve similar error rates compared to much larger computation

trees. However, the method for constructing iterative trees relies on the assumption

that the simulated probability of bit error at the root node is accurate. Even when
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using an adaptive method for establishing statistical confidence in the construction,

the iterative trees have noticeably worse error rates when compared to MS after a

large number of iterations.

Independent trees are the simplest among the four to construct, and the exact per-

formance can be determined using density evolution. Despite these two advantages,

simulations show that finite tree decoding on independent trees has much higher error

rates than MS decoding. Extrinsic tree construction requires brute-force deviation

enumeration for each set of nodes added to the tree. Therefore, the complexity of

extrinsic tree construction is much higher than independent tree construction. How-

ever, simulations show that the performance of finite tree decoding on extrinsic trees

is capable of competing with MS decoding at high SNR. Finally, DPFT construction

provides a simplified method of construction when compared to extrinsic tree con-

struction. In addition, the enumeration of all the deviations on the DPFTs is very

straightforward once the trees are constructed. Unfortunately, the size of the DPFTs

is such that they consume an exponentially increasing amount of computer memory

as the minimum weight of the deviations increases.

In Chapter 4, low-density parity-check code properties are examined and a new

method for bounding the minimum distance is introduced. This new lower bound

on the minimum distance is used as a cost criteria for ITB LDPC code construction.

The ITB LDPC codes are shown to perform better than PEG LDPC codes when
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using existing iterative decoders. Codes with check node degree dF = 3 are examined

in detail, and are shown to have theoretical benefits with regards to finite tree-based

decoding, due to the natural correspondence between deviations and codewords on

finite trees with maximum check node degree dF = 3. Simulations of PEG LDPC

codes and ITB LDPC codes are given for finite tree decoding using codes of length

N = 210 and N = 1050. The simulations show improved bit error rates for ITB LDPC

codes when compared to PEG LDPC codes. Additionally it is shown that, with some

codes, the performance of finite tree decoding on extrinsic trees will approach that of

ML decoding as SNR increases. This property is a result of the minimum deviation

weight among all the extrinsic trees being equal to the weight of the minimum-weight

codeword in the LDPC code.

Therefore, finite tree decoding on extrinsic trees is capable of accomplishing both

of the original goals of this dissertation: 1) Performance that competes with iterative

decoders, and 2) performance that allows for tractable analysis. Tractable analysis

comes from the fact that the set of deviations, computed during extrinsic tree con-

struction, is used to upper bound the bit error rates. Additionally, ML performance

at high SNR ensures that the performance of finite tree decoding on extrinsic trees is

comparable to existing decoders like MS and SP at high SNR.

There are several avenues of research that might lead to improvements to the

finite tree-based decoders presented in this dissertation. For example, the addition
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of redundant rows to the parity check matrix has been shown to result in lower bit

error rates for finite tree decoding on extrinsic trees [16]. Extrinsic tree construction

could be modified to use the redundant nodes only in situations where low-weight

deviations would otherwise be created. The problem with using redundant rows

is that a systematic way of creating redundant rows that benefit finite tree-based

decoders is not yet known.

The brute-force method of enumerating deviations and their weights contributes

heavily to the complexity of extrinsic tree construction. Therefore, more efficient

methods for enumerating the deviations on finite trees would greatly reduce the com-

plexity of construction. Memory storage can also be a concern with finite tree-based

decoders. However, portions of the N finite trees are likely to be identical. Thus,

if there were a way of grouping together portions of finite trees that are identical,

the memory required to store the finite trees could be significantly reduced. It might

also be possible to improve upon the method of scaling the LLR cost among variable

nodes presented in Section 3.3. Instead of scaling the cost by the total number of

copies in the tree, it might be better to scale by the maximum number of copies that

can appear in the same deviation.

Simulations have shown that the min-sum decoder often outperforms finite tree-

based decoders at low SNR. Therefore, the creation of a hybrid decoder that uses

both MS decoding and finite tree decoding on extrinsic trees may result in a decoder
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with excellent performance at both low and high SNRs. Unlike MS or SP decoding

by themselves, this hybrid decoder would have guaranteed performance beyond the

reach of simulations. One way of creating the hybrid decoder might be to use finite

tree decoding on extrinsic trees only if MS or SP decoding fails to output a codeword.

However, this relies on the assumption that MS and SP decoding never output a

codeword unless it is the ML codeword, which is not always true. Another way of

creating the hybrid decoder might be to decode with finite tree decoding on extrinsic

trees first, and if this fails to produce a codeword, use the MS and SP decoders as

a backup. In this way, the bounded performance of finite tree decoding on extrinsic

trees would be preserved.
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“Analysis of connections between pseudocodewords,” IEEE Transactions on

Information Theory, vol. IT-55, no. 9, pp. 4099–4107, September 2009.

[24] P. O. Vontobel, “Symbolwise graph-cover decoding: Connecting sum-product

algorithm decoding and bethe free energy minimization,” in Proceedings of the

46th Annual Allerton Conference on Communication, Control, and Computing,

September 2008.



195

[25] G. D. Forney, Jr., R. Koetter, F. R. Kschischang, and A. Reznik, “On the

effective weights of pseudocodewords for codes defined on graphs with cycles,”

in Codes, systems, and graphical models (Minneapolis, MN, 1999), vol. 123 of

IMA Vol. Math. Appl., pp. 101–112. Springer, New York, 2001.

[26] D. Changyan, D. Proetti, I. E. Telatar, T. J. Richardson, and R. L. Urbanke,

“Finite length analysis of low-density parity-check codes on the binary erasure

channel,” IEEE Transactions on Information Theory, vol. 48, pp. 1570–1579,

June 2002.

[27] C. Kelley, D. Sridhara, J. Xu, and J. Rosenthal, “Pseudocodeword weights and

stopping sets,” in Proceedings of the 2004 IEEE International Symposium on

Information Theory, Chicago, IL, Jun.-Jul. 27-3 2004, p. 150.

[28] D. J. C. MacKay and M. Postol, “Weaknesses of Margulis and Ramanujan-

Margulis low-density parity-check codes,” Electronic Notes in Theoretical Com-

puter Science, 2003.

[29] T. Richardson, “Error floors of LDPC codes,” in Proceedings of the 41st Allerton

Conference on Communications, Control, and Computing, Monticello, Illinois,

October 2003.
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