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In this thesis, we study wireless communications and cognitive radio transmis-

sions under quality of service (QoS) constraints and channel uncertainty. Initially,

we focus on a time-varying Rayleigh fading channel and assume that no prior

channel knowledge is available at the transmitter and the receiver. We investigate

the performance of pilot-assisted wireless transmission strategies. In particular,

we analyze different channel estimation techniques, including single-pilot min-

imum mean-square-error (MMSE) estimation, and causal and noncausal Wiener

filters, and analyze efficient resource allocation strategies. Subsequently, we study

the training-based transmission and reception schemes over a priori unknown,

Rayleigh fading relay channels in which the fading is modeled as a random pro-

cess with memory. In the second part of the thesis, we study the effective capacity

of cognitive radio channels in order to identify the performance in the presence

of statistical quality of service (QoS) constraints. The cognitive radio users are as-

sumed to initially perform channel sensing to detect the activity of primary users

and then transmit the data at two different average power levels depending on

the presence or absence of active primary users. We conduct the performance

analysis in both single-band and multi-band environments in the presence of in-

terference constraints. Later, we consider a cognitive radio system in which the



cognitive secondary users operate under channel uncertainty and QoS constraints,

and perform both channel estimation and sensing. In this setting, we analyze the

effective capacity and determine efficient power and rate allocation policies. Fi-

nally, we study cognitive multiple-input multiple-output (MIMO) channels in the

low-power regime, and investigate the energy efficiency.
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1

Chapter 1

Introduction

1.1 Channel Conditions Affecting Quality of

Wireless Communications

One of the key characteristics of wireless communications that most greatly im-

pact system design and performance is the time-varying nature of the channel

conditions, experienced due to mobility and changing physical environment. This

has led mainly to three lines of work in the performance analysis of wireless sys-

tems. A considerable amount of effort has been expended in the study of cases

in which the perfect channel state information (CSI) is assumed to be available

at either the receiver or the transmitter or both. With the perfect CSI available at

the receiver, the authors in [25] and [49] studied the capacity of fading channels.

The capacity of fading channels is also studied in [32] and [31] with perfect CSI

at both the receiver and the transmitter. A second line of work has considered

fast fading conditions, and assumed that neither the receiver nor the transmitter

is aware of the channel conditions (see e.g., [79], [55], [64]). On the other hand,
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most practical wireless systems attempt to learn the channel conditions but can

only do so imperfectly. Hence, it is of great interest to study the performance

when only imperfect CSI is available at the transmitter or the receiver. When the

channel is not known a priori, one technique that provides imperfect receiver CSI

is to employ pilot signals in the transmission to estimate the channel.

1.2 Pilot-Assisted Transmission

Pilot-Assisted Transmission (PAT) multiplexes known training signals with the

data signals. These transmission strategies and pilot symbols known at the re-

ceiver can be used for channel estimation, receiver adaptation, and optimal de-

coding [68]. One of the early studies has been conducted by Cavers in [17], [18]

where an analytical approach to the design of PATs is presented. [78] has shown

that the data rates are maximized by periodically embedding pilot symbols into

the data stream. The more pilot symbols are transmitted and the more power is

allocated to the pilot symbols, the better estimation quality we have, but the more

time for transmission of data is missed and the less power we have for data sym-

bols. Hassibi and Hochwald [37] has optimized the power and duration of train-

ing signals by maximizing a capacity lower bound in multiple-antenna Rayleigh

block fading channels. Adirredy et al. [78] investigated the optimal placement

of pilot symbols and showed that the periodical placement maximizes the data

rates. In general, the amount, placement, and fraction of pilot symbols in the data

stream have considerable impact on the achievable data rates. An overview of

pilot-assisted wireless transmission techniques is presented in [68].

In [56], considering adaptive coding of data symbols without requiring feed-

back to the transmitter, Abou-Faycal et al. studied the data rates achieved with
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PSAM over Gauss-Markov Rayleigh fading channels. In their studies, the train-

ing period is optimized by maximizing the achievable rates. The authors in [1]

also considered pilot symbol-assisted transmission over Gauss-Markov Rayleigh

channels and analyzed the optimal power allocation among data symbols while

the pilot symbol has fixed power. They have shown that the power distribution

has a decreasing character with respect to the distance to the last sent pilot, and

that data power adaptation improves the rates. The authors in [70] considered

a similar setting and analyzed training power adaptation but assumed that the

power is uniformly distributed among data symbols.

Ohno and Giannakis [60] considered general slowly-varying fading processes.

Employing a noncausal Wiener filter for channel estimation at the receiver, they

obtained a capacity lower bound and optimized the spacing of training symbols

and training power. Baltersee et al. in [14] and [13] have also considered us-

ing a noncausal Wiener filter to obtain a channel estimate, and they optimized

the training parameters by maximizing achievable rates in single and multiple

antenna channels.

Furthermore, cooperative wireless communications has attracted much inter-

est. Cooperative relay transmission techniques have been studied in [47] and

[46] where Amplify-and-Forward (AF) and Decode-and-Forward (DF) models are

considered. However, most of the studies have assumed that the channel condi-

tions are perfectly known at the receiver and/or transmitter. In one of the recent

studies, Wang et al. [16] considered wireless sensory relay networks where the

conditions of the channels are learnt imperfectly only by the relay nodes.
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1.3 Cognitive Radio

With the rapid growth in the wireless networks in the last two decades, the

scarcity in spectrum has become a serious problem for spectrum sharing, since

much of the prime wireless spectrum has been allocated for specific applications.

However, recent measurements show that the licensed spectrum is severely under-

utilized. This has caused significant interest in using the spectrum dynamically

by exploring the empty spaces in the spectrum without disturbing the primary

users. In such systems, in order to avoid the interference to the primary users, it

is very important for the cognitive secondary users (SUs) to detect the activity of

the primary users. When the primary users are active, the secondary user should

either avoid using the channel or transmit at low power in order not to exceed the

noise power threshold of the primary users, whereas the SUs can use the chan-

nel without any constraints when the channel is free of the primary users. An

overview of cognitive radio systems and the challenges in this area can be found

in [39], [87] and [66].

With the above-mentioned motivation, recent years have witnessed a large

body of work on channel sensing and dynamic spectrum sharing. Dynamically

sharing the spectrum in the time-domain by exploiting whitespace between the

bursty transmissions of a set of users, represented by an 802.11b based wireless

LAN (WLAN), is considered by the authors in [27], where a model that describes

the busy and idle periods of a WLAN is considered. The authors in [40], [86] and

[22] focused on the problem of maximally utilizing the spectrum opportunities in

cognitive radio networks with multiple potential channels and developed an op-

timal strategy for opportunistic spectrum access. In [45], Kim and Shin modeled

the primary users’ usage pattern of the channels as semi-Markov processes and
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used a two-state transition model for each channel. They addressed the optimiza-

tion of the sensing-period to achieve the maximum discovery of opportunities for

cognitive users, and also the optimization of the sensing sequence of channels to

minimize delay in locating an idle channel.

Cognitive operation is also studied from an information-theoretic perspective

with the goal of identifying the fundamental performance limits (see e.g. [73], [23],

[61] and [42]). In [73], the capacity of opportunistic secondary communication

over a spectral pool of two independent channels is explored and it is shown that

the benefits of spectral pooling are lost in dynamic spectral environments. In

[23], [61] and[42], cognitive radio channel is modeled as an interference channel

in which the cognitive transmitter has side information about the primary user’s

transmission. In [23], an achievable rate region for such a cognitive radio channel

is constructed using information-theoretic arguments.

1.4 Spectrum Sensing

Note that spectrum sensing, which is crucial in the detection of the presence

of primary users and hence in interference management, also induces a cost in

terms of reduced time for data transmission. Motivated by this fact, the authors

in [50] studied the tradeoff between channel sensing and throughput considering

the Shannon capacity as the throughput metric. They formulated an optimiza-

tion problem and identified the optimal sensing time which yields the highest

throughput while providing sufficient protection in terms of interference to the

primary users.

Initially, before using the channel, SUs have to detect the activities of the pri-

mary users. Among different channel detection techniques, sensing-based access
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to the channel is favored because of its low employment cost and compatibility

with the legacy of licensed systems [29]. The authors in [86] and [22] developed

an optimal strategy for opportunistic spectrum access. Moreover, the authors

in [40] focused on the optimal sensing order problem in multi-channel cognitive

medium access control with opportunistic transmission, and studied the problem

of maximally utilizing the spectrum opportunities in cognitive radio networks

with multiple potential channels.

1.5 Effective Capacity

The maximum throughput levels achieved in wireless systems operating under

such statistical QoS constraints can be identified through the notion of effective

capacity. The effective capacity is defined in [83] as the maximum constant ar-

rival rate that a given time-varying service process can support while meeting

the QoS requirements. Effective capacity is defined as a dual concept to effective

bandwidth which characterizes the minimum amount of constant transmission

rate required to support a time-varying source in the presence of statistical QoS

limitations [19]. The application and analysis of effective capacity in various set-

tings have attracted much interest. In [52], [76], [75] and [74], authors focused on

the problem of resource allocation in the presence of statistical QoS constraints.

In [36], energy efficiency is investigated under QoS constraints by analyzing the

normalized effective capacity in the low-power and wideband regimes. Moreover,

we would like to note reference [71] which has also considered a cognitive radio

system with buffer constraints. In this work, Simeone et al. followed a different

approach and investigated the maximum throughput that can be achieved while

keeping the queues at the primary and secondary transmitters stable.
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1.6 Interference Constraints and Spectrum

Utilization

In [12], Asghari and Aissa, under constraints on the average interference caused

at the licensed user over Rayleigh fading channels, studied two adaptation poli-

cies at the secondary user’s transmitter in a cognitive radio system one of which

is variable power and the other is variable rate and power. They maximized the

achievable rates under the above constraints and the bit error rate (BER) require-

ment in m-ary quadrature amplitude modulation (MQAM). The authors in [57]

derived the fading channel capacity of a secondary user subject to both average

and peak received-power constraints at the primary receiver. In addition, they

obtained optimum power allocation schemes for three different capacity notions,

namely, ergodic, outage, and minimum-rate. Ghasemi et al. in [28] studied the

performance of spectrum-sensing radios under channel fading. They showed that

due to uncertainty resulting from fading, local signal processing alone may not

be adequate to meet the performance requirements. Therefore, to remedy this

uncertainty they also focused on the cooperation among SUs and the tradeoff

between local processing and cooperation in order to maximize the spectrum uti-

lization. Furthermore, the authors in [50] focused on the problem of designing

the sensing duration to maximize the achievable throughput for the secondary

network under the constraint that the primary users are sufficiently protected.

They formulated the sensing-throughput tradeoff problem mathematically, and

use energy detection sensing scheme to prove that the formulated problem in-

deed has one optimal sensing time which yields the highest throughput for the

secondary network. Moreover, Poor et al. introduced a novel wideband spectrum

sensing technique, called as multiband joint detection in [67], that jointly detects
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the signal energy levels over multiple frequency bands rather than considering

one band at a time, which is proposed to be efficient in improving the dynamic

spectrum utilization and reducing interference to the primary users.

1.7 Quality of Service Constraints in Cognitive

Radio Systems

As described before, issues regarding channel sensing, spectrum sharing and

throughput in cognitive radio networks have been extensively studied recently

(see also, for instance, [24]). However, another critical concern of providing QoS

guarantees over cognitive radio channels has not been sufficiently addressed yet.

In many wireless communication systems, providing certain QoS assurances is

crucial in order to provide acceptable performance and quality. However, this

is a challenging task in wireless systems due to random variations experienced

in channel conditions and random fluctuations in received power levels and sup-

ported data rates. Hence, in wireless systems, generally statistical, rather than

deterministic, QoS guarantees can be provided. Note that the situation is further

exacerbated in cognitive radio channels in which the access to the channel can

be intermittent or transmission occurs at lower power levels depending on the

activity of the primary users. Furthermore, cognitive radio can suffer from errors

in channel sensing in the form of false alarms. Hence, it is of paramount inter-

est to analyze the performance of cognitive radio systems in the presence of QoS

limitations in the form of delay or buffer constraints.

As discussed above, the central challenge for the cognitive SUs is to control

their interference levels. In general, interference management needs to be per-



9

formed under uncertainty as channel sensing done by the SUs may result in false

alarms and miss-detections. In such an interference limited scenario, cognitive

SUs should also satisfy their own QoS requirements by transmitting at high rates

and limiting the delay experienced by the data in the buffers. This, too, has to

be achieved under channel uncertainty since wireless channel conditions, which

vary over time randomly due to mobility and changing environment, can only

be estimated imperfectly through training techniques. Note also that providing

QoS guarantees is especially more challenging for SUs as they have to take into

account both the changing channel conditions and varying primary user activity.

These considerations are critical for the successful deployment of cognitive radio

systems in practice.

In many wireless systems, it is very important to provide reliable communi-

cations while sustaining a certain level of QoS under time-varying channel con-

ditions. These considerations have led to studies that investigate the cognitive

radio performance under QoS constraints. Musavian and Aissa in [59] considered

variable-rate, variable-power MQAM modulation employed under delay QoS con-

straints over spectrum-sharing channels. As a performance metric, they used the

effective capacity to characterize the maximum throughput under QoS constraints.

They assumed two users sharing the spectrum with one of them having a primary

access to the band. The other, known as secondary user, is constrained by inter-

ference limitations imposed by the primary user. Considering two modulation

schemes, continuous MQAM and discrete MQAM with restricted constellations,

they obtained the effective capacity of the secondary user’s link, and derived the

optimum power allocation scheme that maximizes the effective capacity in each

case. Additionally, in [58], they proposed a QoS constrained power and rate al-

location scheme for spectrum sharing systems in which the SUs are allowed to
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use the spectrum under an interference constraint by which a minimum-rate of

transmission is guaranteed to the primary user for a certain percentage of time.

Moreover, applying an average interference power constraint which is required to

be fulfilled by the secondary user, they obtained the maximum arrival-rate sup-

ported by a Rayleigh block-fading channel subject to satisfying a given statistical

delay QoS constraint. We note that in these studies on the performance under

QoS limitations, channel sensing is not incorporated into the system model. As

a result, adaptation of the cognitive transmission according to the presence or

absence of the primary users is not considered.

1.8 Cognitive MIMO Radio Systems

It is known that having multiple antenna at the receiver and the transmitter

can improve the performance levels and can provide large increases in terms of

throughput and reliability of data transmission. Therefore, there has been much

interest in understanding and analyzing the MIMO channels, and many compre-

hensive studies have been conducted, and considerable effort and time have been

expended [30], [77]. In most of the studies, ergodic Shannon capacity formula-

tions are considered as the objective functions [54], [53], [69]. The authors, in [54]

and [53], provided the analytical characterizations of the impacts on the multiple-

antenna capacity of several features that fall outside the standard antenna model.

Furthermore, focusing on a different approach in understanding MIMO channels,

the author in [33] investigated MIMO systems in the presence of statistical queu-

ing constraints which is not captured by Shannon’s formulation.

Furthermore, recently cognitive MIMO radio models were also considered

since MIMO cognitive models can provide much better performance levels for
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the SUs. Modeling a channel setting with a single licensed user and a single

cognitive user, that is equivalent to an interference channel with degraded mes-

sage sets, the authors in [72] focused on the fundamental limits of operation of a

MIMO cognitive radio network, and they showed that under certain conditions,

the achievable region is optimal for a portion of the capacity region that includes

sum capacity. Considering three scenarios, namely when the secondary trans-

mitter has complete, partial, or no knowledge about the channels to the primary

receivers, they aimed to maximize the throughput of the SU, while keeping the

interference temperature at the primary receivers below a certain threshold [43].

Furthermore, in [26], the authors proposed a practical CR transmission strategy

consisting of three major stages, namely, environment learning that applies blind

algorithms to estimate the spaces that are orthogonal to the channels from the

primary receiver, channel training that uses training signals applies the linear-

minimum-mean-square-error (L-MMSE)-based estimator to estimate the effective

channel, and data transmission. Considering imperfect estimations in both learn-

ing and training stages they derived a lower bound on the ergodic capacity that

is achievable for the CR in the data-transmission stage. It was also shown in

[62] that the asymptotes of the achievable transmission rates of the opportunistic

(secondary) link are obtained in the regime of large numbers of antennas. An-

other study of cognitive MIMO channels was considered in [85]. Recently, the au-

thors in [41] considered the maximization of the effective capacity in a single-user

multi-antenna system with covariance knowledge, and Liu et al. in [51] studied

the effective capacity of a class of multiple-antenna wireless systems subject to

Rayleigh flat fading.
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1.9 Overview

In this thesis, we considered training and data transmission in arbitrarily corre-

lated fading channels (i.e., fading channels with memory). We jointly optimized

training period, and data and training power allocations by maximizing the input-

output mutual information. Furthermore, we characterized achievable rates and

energy-per-bit requirements by using optimal training parameters. We employed

both single-pilot MMSE estimators and Wiener filter estimators to learn the chan-

nel in time-selective Rayleigh fading channels. We showed that achievable rates

obtained using causal and noncausal Wiener filters are almost same at high signal-

to-noise ratio (SNR) values. We analyzed fast fading channels and investigated

the impact upon the performance of aliasing due to under-sampling of the chan-

nel. We identified the performance limits of imperfectly known relay channels.

Moreover, we constructed a cognitive radio channel model, and considered

both channel sensing and data transmission. Initially considering interference

management and CSI at receiver, we set secondary users with two transmission

power levels and rates. We studied energy detection methods and found proba-

bility of false alarm and misdetection. We identified a state-transition model by

comparing transmission rates with instantaneous channel capacity values. We

determined effective capacity of cognitive radio transmission by incorporating

channel sensing results. We identified performance in the presence of statistical

QoS constraints. We investigated interactions among effective capacity, QoS con-

straints, channel sensing duration, and channel detection threshold. Furthermore,

considering perfect CSI at both the receiver and the transmitter, we obtained opti-

mal power adaptation policies that maximize effective capacity. We incorporated

multiband channel sensing. We identified optimal criterion to select a transmis-
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sion channel out of the available channels. We imposed an average interference

power to protect primary users. We obtained optimal transmission policies un-

der average interference power constraint. Modeling activities of primary users

as first order Markov process and imposing both average and peak power con-

straints, we used pilot symbols to eliminate channel uncertainty. Finally, we fo-

cused on cognitive MIMO under QoS constraints in low-power regime.

The organization of the rest of the thesis is as follows:

In Chapter 2, considering that no prior channel knowledge is available at the

transmitter and the receiver, we focus on a time-varying Rayleigh fading chan-

nel. The channel is modeled by a Gauss-Markov model. Pilot symbols which

are known by both the transmitter and the receiver are transmitted with a pe-

riod of T symbols. In this setting, we seek to jointly optimize the training period,

training power, and data power allocation by maximizing achievable rates. This

chapter, as a conference paper, appeared in IEEE International Conference on

Communications (ICC) in 2007 [4]. In Chapter 3, we study training-based trans-

mission and reception schemes over a-priori unknown, time-selective Rayleigh

fading channels. Since causal operation is crucial in real-time, delay-constrained

applications, we consider the use of causal, as well as noncausal, Wiener filters

for channel estimation. We optimize the training parameters by maximizing a

capacity lower bound. Although the treatment is general initially, we concentrate

on the Gauss-Markov channel model for numerical analysis. As another contri-

bution, we analyze fast fading channels and the impact upon the performance

of aliasing due to under-sampling of the channel. The results in this chapter, as

a conference paper, appeared in 9th IEEE International Workshop on Signal Pro-

cessing Advances in Wireless Communications (SPAWC) in 2008 [6]. In Chapter

4, we study the training-based transmission and reception schemes over a priori
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unknown, Rayleigh fading relay channels in which the fading is modeled as a

random process with memory. Unknown fading coefficients of the channels are

estimated at the receivers with the assistance of the pilot symbols. We consider

two channel estimation methods: single-pilot MMSE estimation and noncausal

Wiener filter estimation. We study AF and DF relaying techniques with two dif-

ferent transmission protocols. We obtain achievable rate expressions and optimize

the training parameters by maximizing these expressions. We concentrate on the

Gauss-Markov and lowpass fading processes for numerical analysis. This chapter,

as a conference paper, appeared at the 42nd Annual Conference on Information

Sciences and Systems (CISS) in 2008 [5].

In Chapter 5, we study the effective capacity of cognitive radio channels in or-

der to identify the performance in the presence of statistical QoS constraints. The

cognitive radio is assumed to initially perform channel sensing to detect the ac-

tivity of primary users and then transmit the data at two different average power

levels depending on the presence or absence of active primary users. More specif-

ically, we identify a state-transition model for cognitive transmission by compar-

ing the transmission rates with the instantaneous channel capacity values, and

incorporating the sensing decision and its correctness into the model, and we de-

termine the effective capacity of cognitive transmission and provide a tool for the

performance analysis in the presence of statistical QoS constraints. Furthermore,

we investigate the interactions between the effective capacity, QoS constraints,

channel sensing duration, and channel detection threshold through numerical

analysis. We analyze both fixed-power/fixed-rate transmission schemes and vari-

able schemes by considering different assumptions on the availability of CSI at the

transmitter. We quantify the performance gains through power and rate adapta-

tion. This chapter, as a journal paper, appeared in IEEE Transactions on Wireless
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Communications in 2010 [2], and, as conference papers, appeared in the Proceed-

ings of the IEEE Global Communications Conference (Globecom) in 2009 [10] and

IEEE Wireless Communications and Networking Conference (WCNC) in 2010 [8].

In Chapter 6, we study the effective capacity of cognitive radio channels where

the cognitive radio detects the activity of primary users in a multiband environ-

ment and then performs the data transmission in one of the transmission channels.

Both the secondary receiver and the secondary transmitter know the fading coeffi-

cients of their own channel, and of the channel between the secondary transmitter

and the primary receiver. The cognitive radio has two power allocation policies

depending on the activities of the primary users and the sensing decisions. More

specifically, we consider a scenario in which the cognitive system employs multi-

channel sensing and uses one channel for data transmission thereby decreasing

the probability of interference to the primary users. We identify a state-transition

model for cognitive radio transmission in which we compare the transmission

rates with instantaneous channel capacities, and also incorporate the results of

channel sensing. We determine the effective capacity of the cognitive channel

under limitations on the average interference power experienced by the primary

receiver. We identify the optimal criterion to select the transmission channel out

of the available channels and obtain the optimal power adaptation policies that

maximize the effective capacity. We analyze the interactions between the effective

capacity, QoS constraints, channel sensing duration, channel detection threshold,

detection and false alarm probabilities through numerical techniques. This chap-

ter, as a conference paper, appeared in Proceedings of IEEE ICC in 2010 [11].

In Chapter 7, considering that no prior channel knowledge is available at the

secondary transmitter and the secondary receiver, we study the effective capac-

ity of cognitive radio channels in order to identify the performance limits under
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channel uncertainty and QoS constraints. Below, we delineate the operation of the

cognitive SUs. We assume that, following channel sensing, SUs perform channel

estimation to learn the channel conditions. Due to interactions and interdepen-

dencies between channel sensing and estimation, we are faced with a challenging

scenario. For instance, not detecting the activities of primary users reliably can

lead to degradations in the estimation of the channel conditions, e.g., if the pri-

mary users are active but detected as idle, the quality of the channel estimate

will deteriorate. After performing the sensing and estimation tasks, SUs initiate

the data transmission phase. We assume that SUs operate under QoS constraints

in the form of limitations on the buffer length. In order to identify the maxi-

mum throughput under such constraints, we employ the effective capacity as a

performance metric [83]. The activity of primary users is modeled as a two-state

Markov process1. In this setting, we jointly optimize the training symbol power,

data symbol power and transmission rates. This chapter, as a journal paper, has

been submitted to IEEE Transactions on Wireless Communications for the second

round [3], and, as conference paper, appeared in Proceedings of the IEEE Globe-

com in 2010 [7].

In Chapter 8, we focus on cognitive MIMO scenario under the QoS constraints.

In particular, we consider the low-power regime and identify the impact of QoS

limitations on the performance. Note that in reference [33], the author analyzed

the MIMO wireless communications under QoS constraints, but the difference is

that we’ve investigated the cognitive MIMO case with the presence of interfer-

ence from the primary users, and we consider two different transmission policies

1 In addition to having the assumption of no prior channel knowledge and explicitly con-
sidering channel estimation, Markovian modeling of primary user activity constitutes another
significant departure from the setting considered in [11] where primary user activity is assumed
to vary independently from one frame to another.
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depending on the activities of primary users. Furthermore, in this chapter, we

consider a general cognitive MIMO link model where fading coefficients have ar-

bitrary distributions and are correlated. Not only the channel fading coefficients

but also the received interference variables have arbitrary distributions and are

possibly correlated. We assume that the secondary transmitter and receiver have

perfect CSI. This chapter, as a conference paper, appeared in IEEE WCNC in 2011

[9].
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Chapter 2

Training Optimization for

Gauss-Markov Rayleigh Fading

Channels

In this chapter, pilot-assisted transmission over Gauss-Markov Rayleigh fading

channels is considered. A simple scenario, where a single pilot signal is trans-

mitted every T symbols and T − 1 data symbols are transmitted in between the

pilots, is studied. First, it is assumed that binary phase-shift keying (BPSK) mod-

ulation is employed at the transmitter. With this assumption, the training pe-

riod, and data and training power allocation are jointly optimized by maximizing

an achievable rate expression. Achievable rates and energy-per-bit requirements

are computed using the optimal training parameters. Secondly, a capacity lower

bound is obtained by considering the error in the estimate as another source of ad-

ditive Gaussian noise, and the training parameters are optimized by maximizing

this lower bound.
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2.1 Channel Model

We consider the following model in which a transmitter and a receiver are con-

nected by a time-varying Rayleigh fading channel,

yk = hkxk + nk k = 1, 2, 3, . . . (2.1)

where yk is the complex channel output, xk is the complex channel input, hk and nk

are the fading coefficient and additive noise component, respectively. We assume

that hk and nk are independent zero mean circular complex Gaussian random

variables with variances σ2
h and σ2

n, respectively. It is further assumed that xk is

independent of hk and nk.

While the additive noise samples {nk} are assumed to form an independent

and identically distributed (i.i.d.) sequence, the fading process is modeled as a

first-order Gauss-Markov process, whose dynamics is described by

hk = αhk−1 + zk 0 ≤ α ≤ 1, k = 1, 2, 3, . . . , (2.2)

where {zk}’s are i.i.d. circular complex Gaussian variables with zero mean and

variance equal to (1-α2)σ2
h . In the above formulation, α is a parameter that con-

trols the rate of the channel variations between consecutive transmissions. For

instance, if α = 1, fading coefficients stay constant over the duration of transmis-

sion, whereas, when α = 0, fading coefficients are independent for each symbol.

For bandwidths in the 10 kHz range and Doppler spreads of the order of 100 Hz,

typical values for α are between 0.9 and 0.99 [56].
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2.2 Pilot Symbol-Assisted Transmission

We consider pilot-assisted transmission where periodically embedded pilot sym-

bols, known by both the sender and the receiver, are used to estimate the fading

coefficients of the channel thereby enabling us to track the time-varying channel.

We assume the simple scenario where a single pilot symbol is transmitted every

T symbols while T − 1 data symbols are transmitted in between the pilot symbols.

The following average power constraint,

1

T

(l+1)T−1

∑
k=lT

E
[
|xk|2

]
≤ P l = 0, 1, 2, . . . , (2.3)

is imposed on the input. Therefore, the total average power allocated to pilot and

data transmission over a duration of T symbols is limited by PT.

Communication takes place in two phases. In the training phase, the pilot

signal is sent and the channel output is given by

ylT = hlT

√
Pt + nlT l = 0, 1, 2, 3, . . . (2.4)

where Pt is the power allocated to the pilot symbol. The fading coefficients are

estimated via MMSE estimation, which provides the following estimate:

ĥlT =

√
Ptσ

2
h

Ptσ
2
h + σ2

n

ylT. (2.5)

Following the transmission of the training symbol, data transmission phase starts

and T − 1 data symbols are sent. Since a single pilot symbol is transmitted, the

estimates of the fading coefficients in the data transmission phase are obtained as



21

follows:

ĥk =

√
Ptσ

2
h

Ptσ
2
h + σ2

n

αk−lTylT lT + 1 < k ≤ (l + 1)T − 1. (2.6)

Now, we can express the fading coefficients as

hk = ĥk + h̃k (2.7)

where h̃k is the estimation error. Consequently, the input-output relationship in

the data transmission phase can be written as

yk = ĥkxk + h̃kxk + nk lT + 1 < k ≤ (l + 1)T − 1. (2.8)

Note that ĥk and h̃k for lT + 1 < k < (l + 1)T are uncorrelated zero-mean circu-

larly symmetric complex Gaussian random variables with variances

σ2
ĥk
=

Ptσ
4
h

Ptσ
2
h + σ2

n

(αk−lT)2, (2.9)

and

σ2
h̃k

= σ2
h −

Ptσ
4
h

Ptσ
2
h + σ2

n

(αk−lT)2, (2.10)

respectively.
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2.3 Optimal Power Distribution and Training Period

for BPSK Signals

2.3.1 Problem Formulation

In this section, we consider that BPSK is employed at the transmitter to send the

information. Since our main goal is to optimize the training parameters and iden-

tify the optimal power allocation, BPSK signaling is adopted due to its simplicity.

In the kth symbol interval, the BPSK signal can be represented by two equiprob-

able points located at xk,1 =
√

Pd,k and xk,2 = −√Pd,k on the constellation map.

Note that Pd,k is the average power of the BPSK signal in the kth symbol interval.

In this interval, the input-output mutual information conditioned on the value ylT

is given by

Ik(xk; yk|ylT = y∗lT) =
1

2

∫
pyk |xk

(y|xk,1) log
pyk |xk

(y|xk,1)

pyk
(y)

dy

+
1

2

∫
pyk |xk

(y|xk,2) log
pyk|xk

(y|xk,2)

pyk
(y)

dy (2.11)

where

pYk|Xk
(yk|xk) =

1

π(σ2
h̃k
|xk|2 + σ2

n)
exp

(
−|yk − ĥkxk|2
σ2

h̃k
|xk|2 + σ2

n

)

and

pyk
(yk) =

1

2
pyk |xk

(yk|xk,1) +
1

2
pyk|xk

(yk|xk,2).
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We consider the following achievable rate expression, which acts as a lower bound

to the channel capacity:

IL (T, Pt, Pd) = E

[
1

T

(l+1)T−1

∑
k=lT+1

Ik(xk; yk|ylT = y∗lT)

]
(2.12)

=
1

T

(l+1)T−1

∑
k=lT+1

E [Ik(xk; yk|ylT = y∗lT)] (2.13)

where the expectation is with respect to ylT, and y∗lT is a realization of the ran-

dom variable ylT. Note that the achievable rate is expressed as a function of the

training period, T; power of the pilot signal, Pt; and the power allocated to T − 1

data symbols transmitted in between the pilot symbols, which is described by the

following vector

Pd = [Pd,1, Pd,2, ..., Pd,T−1] . (2.14)

Our goal is to solve the joint optimization problem

(T∗, P∗
t , P∗

d) = arg max
T,Pt,Pd

Pt+∑
T−1
k=1 Pd,k≤PT

IL(T, Pt, Pd) (2.15)

and obtain the optimal training period, and optimal data and pilot power alloca-

tions. Since it is unlikely to reach to closed-form solutions, we have employed

numerical tools to solve (2.15).

2.3.2 Numerical Results

In this section, we summarize the numerical results. Figure 2.1 plots the data

rates achieved with optimal power allocations as a function of the training pe-



24

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Period T

D
at

a 
R

at
e(

N
at

s/
C

ha
nn

el
 U

se
)

α=0.99

α=0.90

α=0.80

α=0.70

Figure 2.1: Achievable data rates vs. training period T for α = 0.99, 0.90, 0.80, and
0.70. SNR = P

σ2
n
= 0 dB

riod for different values of α. The power level is kept fixed at P = σ2
n = 1. It

is observed that the optimal values of the training period, T, are 23, 7, 4, and 4

for α = 0.99, 0.90, 0.80, and 0.70, respectively. Note that the optimal T and op-

timal data rate are decreasing with the decreasing α. This is expected because

the faster the channel changes, the more frequently the pilot symbols should be

sent. This consequently reduces the data rates which are already adversely af-

fected by the fast changing and imperfectly known channel conditions. Figures

2.2 and 2.3 are the bar graphs providing the optimal training and data power al-

location when the training period is at its optimal value. In the graphs, the first

bar corresponds to the power of the training symbol while the remaining bars
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Figure 2.2: Optimal power distribution among the pilot and data symbols when
α = 0.99 and SNR = 0 dB. The optimal period is T = 23.

provide the power levels of the data symbols. We immediately observe from both

figures that the data symbols, which are farther away from the pilot symbol, are

allocated less power since channel gets noisier for these symbols due to poorer

channel estimates. Moreover, comparing Fig. 2.2 and Fig. 2.3, we see that having

a longer training period enables us to put more power on the pilot signal and

therefore have better channel estimates. We also note that if α is small as in Fig.

2.3, the power of the data symbols decreases faster as they move away from the

pilot symbol. From these numerical results, it is evident that α greatly affects the

optimal power allocation and optimal T. Fig. 2.4 gives the power distribution

when α = 0.90 and T = 23. Note that this value of the training period is subopti-
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Figure 2.3: Optimal power distribution among the pilot and data symbols when
α = 0.90 and SNR = 0 dB. The optimal period is T = 7.

mal. The inefficiency of this choice is apparent in the graph. Since the channel is

changing relatively fast and the quality of the channel estimate deteriorates rather

quickly, data symbols after the 15th symbol interval are given little or no power,

leading to a considerable loss in data rates.

In systems with scarce energy resources, energy required to send one informa-

tion bit, rather than data rates, is a suitable metric to measure the performance.

The least amount of normalized bit energy required for reliable communications

is given by

Eb

N0
=

SNR

C(SNR)
(2.16)
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Figure 2.4: Optimal power distribution among the pilot and data symbols when
α = 0.90 and SNR = 0 dB. The suboptimal period is T = 23.

where C(SNR) is the channel capacity in bits/symbol. In our setting, the bit

energy values found from

Eb

N0
=

SNR

IL(T∗, P∗
t , P∗

d)
(2.17)

provide an upper bound on the values obtained from (2.16), and also gives us

indications on the energy efficiency of the system. Fig. 2.5 plots the required

bit energy values as a function of the SNR. The bit energy initially decreases as

SNR decreases and achieves its minimum value at approximately SNR= −5.5 dB

below which the bit energy requirement starts increasing. Hence, it is extremely

energy inefficient to operate below SNR= −5.5 dB. In general, one needs to op-

erate at low SNR levels for improved energy efficiency. From Fig. 2.6, which



28

−8 −7 −6 −5 −4 −3 −2 −1 0
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

SNR dB

E
b/N

0

Figure 2.5: Bit energy Eb
N0

vs. SNR dB when α = 0.99.

plots the optimal training period, T, as a function of the SNR, we observe that T

increases as SNR decreases. Hence, training is performed less frequently in the

low SNR regime. Fig. 2.7 provides the pilot and data power allocation when SNR

= −7 dB, α = 0.99, and T = 65. It is interesting to note that although T is large,

a considerable portion of the available time slots are not being used for transmis-

sion. This approach enables the system to put more power on the pilot symbol

and nearby data symbols. Hence, although the system trains and transmits less

frequently, a more accurate channel estimate is obtained and used in return.
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Figure 2.6: Optimal training period T vs. SNR for α = 0.99, 0.90, 0.80, and 0.70.

2.4 Low Complexity Training Optimization

Recall that the input-output relationship in the data transmission phase is given

by1

yk = ĥkxk + h̃kxk + nk k = 1, 2, . . . , T − 1. (2.18)

In the preceding section, we fixed the modulation format and computed the input-

output mutual information achieved in the channel (2.18). In this section, we

pursue another approach akin to that in [37]. We treat the error in the channel

1It is assumed that a single pilot signal is transmitted at k = 0.
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Figure 2.7: Optimal power distribution for the pilot and data symbols when α =
0.99 and SNR = −7 dB. The optimal period is T = 65.

estimate as another source of additive noise and assume that

wk = h̃kxk + nk (2.19)

is zero-mean Gaussian noise with variance

σ2
wk

= σ2
h̃k

Pd,k + σ2
n. (2.20)

where Pd,k = E[|xk|2] is the average power of the symbol xk and σ2
h̃k

is given in

(2.10). Since the Gaussian noise is the worst case noise [37], the capacity of the



31

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Period T

D
at

a 
R

at
e(

N
at

s/
C

ha
nn

el
 U

se
)

α=0.99

α=0.90

α=0.80

α=0.70

Figure 2.8: Achievable data rates vs. training period T for α = 0.99, 0.90, 0.80, and
0.70. SNR = 5 dB

channel

yk = ĥkxk + wk k = 1, 2, . . . (2.21)
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is a lower bound to the capacity of the channel given in (2.18). An achievable rate

expression for channel (2.21) is

Iworst = max
T,Pt

max
x

E[|x|2]≤PT−Pt

1

T

T−1

∑
k=1

Ik(xk; yk|ĥk) (2.22)

= max
T,Pt

max
Pd,

Pd,k≥0 ∀k

∑
T−1
k=1 Pd,k≤PT−Pt

1

T

T−1

∑
k=1

max
xk

E[|xk|2]≤Pd,k

Ik(xk; yk|ĥk) (2.23)

= max
T,Pt,Pd,

∑
T−1
k=1 Pt+Pd,k≤PT

1

T

T−1

∑
k=1

E


log


1 +

σ2
ĥk

Pd,k

σ2
h̃k

Pd,k + σ2
n

|ξ|2



 . (2.24)

In (2.22), x = (x1, x2, . . . , xT−1) denotes the vector of T − 1 input symbols, and the

inner maximization is over the space of joint distribution functions of x. (2.23) is

obtained by observing that once the data power distribution is fixed, the maxi-

mization over the joint distribution can be broken down into separate maximiza-

tion problems over marginal distributions. (2.24) follows from the fact that Gaus-

sian input maximizes the mutual information I(xk; yk|ĥk) when the channel in

consideration is (2.21). Note that in (2.24), ξ is a zero mean, unit variance, cir-

cular complex Gaussian random variable, and the expectation is with respect to

ξ. We can again numerically solve the above optimization and Fig. 2.8 plots the

achievable data rates with optimal power allocation as a function of T for differ-

ent values of α when SNR = 5 dB. An even simpler optimization problem results

if we seek to optimize the upper bound

1

T

T−1

∑
k=1

E


log


1 +

σ2
ĥk

Pd,k

σ2
h̃k

Pd,k + σ2
n

|ξ|2



 ≤ 1

T

T−1

∑
k=1

log


1 +

σ2
ĥk

Pd,k

σ2
h̃k

Pd,k + σ2
n


 , (2.25)
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Figure 2.9: Achievable data rates for BPSK signals vs.training period T for α =
0.90. SNR = 0 dB.

which is obtained by using the Jensen’s inequality and noting that E[|ξ|2 ] = 1. In

this case, the optimization problem becomes

max
T,Pt,Pd,

∑
T−1
k=1 Pt+Pd,k

≤PT

1

T

T−1

∑
k=1

log


1 +

σ2
ĥk

Pd,k

σ2
h̃k

Pd,k + σ2
n


 = max

T,Pt,Pd,

∑
T−1
k=1 Pt+Pd,k

≤PT

1

T
log




T−1

∏
k=1


1 +

σ2
ĥk

Pd,k

σ2
h̃k

Pd,k + σ2
n




 .

(2.26)
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Figure 2.10: Achievable data rates for BPSK signals vs. α for T = 6 and 10. SNR =
0 dB. ”+ and solid line” and ”+ and dotted line” are plotting rates achieved with
power allocation from (2.27) and (2.15), respectively, when T = 10. ”o and solid
line” and ”o and dotted line” are plotting rates achieved with power allocation
from (2.27) and (2.15), respectively, when T = 6.

Since logarithm is a monotonically increasing function, the optimal training and

data power allocation for fixed T can be found by solving

max
Pt,Pd

∑
T−1
k=1 Pt+Pd,k≤PT

T−1

∏
k=1


1 +

σ2
ĥk

Pd,k

σ2
h̃k

Pd,k + σ2
n


 . (2.27)

It is very interesting to note that the optimal power distribution found by solv-

ing (2.27) is very similar to that obtained from (2.15) where BPSK signals are

considered. Figure 2.9 plots the achievable data rates as a function of training pe-
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riod when BPSK signals are employed for transmission. Hence, the data rates are

computed using (2.12). In the figure, the solid line shows the data rates achieved

with power distribution found from (2.15) while the dashed line corresponds to

rates achieved with power allocation obtained from (2.27). Note that both curves

are very close and the training period is maximized at approximately the same

value.

Fig. 2.10 plots the achievable rates for BPSK signals as a function of the pa-

rameter α for T = 6 and 10. The power distribution is again obtained from both

(2.27) and (2.15). We again recognize that the loss in data rates is negligible when

(2.27) is used to find the power allocation.

2.5 Conclusion

We have studied the problem of training optimization in pilot-assisted wireless

transmissions over Gauss-Markov Rayleigh fading channels. We have considered

a simple scenario where a single pilot is transmitted every T symbols for channel

estimation and T − 1 data symbols are transmitted in between the pilot symbols.

MMSE estimation is employed to estimate the channel. We have jointly optimized

the training period, T, and data and training power distributions by maximizing

achievable rate expressions. We have provided numerical results showing the op-

timal parameters, power distributions, and maximized achievable rates. We have

also studied the energy efficiency of pilot-assisted transmissions by analyzing the

energy-per-bit requirements.



36

Chapter 3

Pilot-Symbol-Assisted

Communications with Noncausal and

Causal Wiener Filters

In this chapter, pilot-assisted transmission over time-selective flat fading channels

is studied. It is assumed that noncausal and causal Wiener filters are employed at

the receiver to perform channel estimation with the aid of training symbols sent

periodically by the transmitter. For both filters, the variances of estimate errors are

obtained from the Doppler power spectrum of the channel. Subsequently, achiev-

able rate expressions are provided. The training period, and data and training

power allocations are jointly optimized by maximizing the achievable rate expres-

sions. Numerical results are obtained by modeling the fading as a Gauss-Markov

process. The achievable rates of causal and noncausal filtering approaches are

compared. For the particular ranges of parameters considered in this chapter, the

performance loss incurred by using a causal filter as opposed to a noncausal filter

is shown to be small. The impact of aliasing that occurs in the undersampled

version of the channel Doppler spectrum due to fast fading is analyzed. Finally,
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energy-per-bit requirements are investigated in the presence of noncausal and

causal Wiener filters.

3.1 Channel Model

The time-selective Rayleigh channel is modeled as

yk = hkxk + nk k = 1, 2, 3, . . . (3.1)

where yk is the complex channel output, xk is the complex channel input, {nk}
is assumed to be a sequence of i.i.d. zero-mean Gaussian random variables with

variance σ2
n, and {hk} is the sequence of fading coefficients. {hk} is assumed to

be a zero-mean stationary Gaussian random process with power spectral density

Sh(e
jw). It is further assumed that xk is independent of hk and nk. While both

the transmitter and the receiver know the channel statistics, neither has prior

knowledge of instantaneous realizations of the fading coefficients. Note that the

discrete-time model is obtained by sampling the received signal every Ts seconds.

3.2 Pilot Symbol-Assisted Transmission and

Reception

We consider pilot-assisted transmission where periodically inserted pilot symbols,

known by both the sender and the receiver, are used to estimate the fading coeffi-

cients of the channel using a Wiener filter. We assume the simple scenario where

a single pilot symbol is transmitted every M symbols while M − 1 data symbols

are transmitted in between the pilot symbols. We consider the following average
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power constraint

1

M

(l+1)M−1

∑
k=lM

E
[
|xk|2

]
≤ P l = 0, 1, 2, . . . (3.2)

on the input. Therefore, the total average power allocated to the pilot and data

transmission over a duration of M symbols is limited by MP.

Communication takes place in two phases. In the training phase, the transmit-

ter sends pilot symbols and the receiver estimates the channel coefficients. In this

phase, the channel output is given by

ylM = hlM

√
Pt + nlM (3.3)

where Pt is the power allocated to the pilot symbol. In the data transmission

phase, data symbols are transmitted. In this phase, the input-output relationship

can be written as

yk = ĥkxk + h̃kxk + nk lM < k ≤ (l + 1)M − 1 (3.4)

where ĥk and h̃k are the estimated channel coefficient and the error in the estimate

at sample time k, respectively. Note that ĥk and h̃k for lM < k ≤ (l + 1)M − 1 are

uncorrelated zero-mean circularly symmetric complex Gaussian random variables

with variances σ2
ĥk

and σ2
h̃k

, respectively.

3.3 Achievable Rates

For the estimation of the fading coefficients, we assume that a Wiener filter, which

is the optimum linear estimator in the mean-square sense, is employed at the
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receiver. Note that since pilot symbols are sent with a period of M, the channel

is sampled every MTs seconds. Therefore we have to consider the under-sampled

version of the channel’s Doppler spectrum which is given by

Sh,m(e
jw) =

1

M

M−1

∑
k=0

ejm(w−2πk)/MSh

(
ej(w−2πk)/M

)
. (3.5)

Also shown in [60], it can easily be seen from [44] that the channel MMSE for the

noncausal Wiener filter at time Ml + m is given by

σ2
h̃Ml+m

= σ2
h −

1

2π

∫ π

−π

Pt|Sh,m(e
jw)|2

PtSh,0(e
jw) + σ2

n

dw (3.6)

where Pt again denotes the power allocated to one pilot symbol. On the other

hand, from [44], we can also easily find that the channel MMSE at time Ml + m

for the causal Wiener filter is given by

σ2
h̃Ml+m

= σ2
h −

1

2π

∫ π

−π

Pt|Sh,m(e
jw)|2

PtSh,0(ejw) + σ2
n

dw +
1

2π

∫ π

−π

Pt

re

∣∣∣∣∣

{
Sh,m(e

jw)

L∗(ejw)

}

−

∣∣∣∣∣

2

dw (3.7)

where L∗(ejw) is obtained from the canonical factorization of the channel output’s

sampled power spectral density at m = 0, which is given by

PtSh,0(e
jw) + σ2

n = reL(ejw)L∗(ejw). (3.8)

The operators {}+ and {}− yield the causal and the anti-causal part of the func-

tion to which they are applied, respectively. Note that, using the orthogonality

principle, we have

σ2
ĥMl+m

= σ2
h − σ2

h̃Ml+m
(3.9)
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where σ2
ĥMl+m

is the variance of the channel estimate at time Ml + m. Similarly as

in [4], treating the error in (3.4) as another source of additive noise and assuming

that

wk = h̃kxk + nk (3.10)

is zero-mean Gaussian noise with variance

σ2
wk

= σ2
h̃k

Pm + σ2
n (3.11)

we obtain the following lower bound on the channel capacity:

C ≥ 1

M

M−1

∑
m=1

E



log


1 +

Pmσ2
ĥm

Pmσ2
h̃m

+ σ2
n

|ξ|2




 (3.12)

where ξ is a zero-mean, unit-variance, circularly symmetric complex Gaussian

random variable and Pm = E
[|xMl+m|2

]
denotes the power of the mth data symbol

after the pilot symbol. Note that the error variance σ2
h̃Ml+m

depends in general on

m and hence the location of the data symbol with respect to the pilot symbol.

However, if the fading slowly varies and the channel is sampled sufficiently fast,

we can satisfy 2π fD ≤ π/M where fD is the maximum Doppler frequency of

the channel. In this case, M ≤ 1
2 fD

. We can see from the Nyquist’s Theorem

that there is no aliasing in the under-sampled version of the channel’s Doppler

spectrum, and hence |Sh,m(e
jw)| = |Sh,0(e

jw)| = |Sh(e
jw/M)|/M, for m ∈ [1, M − 1]

and −π ≤ w ≤ π. Therefore, (3.6) reduces to

σ2
h̃Ml+m

= σ2
h −

1

2π

∫ π

−π

Pt|Sh,0(e
jw)|2

PtSh,0(ejw) + σ2
n

dw

= σ2
h −

1

2π

∫ π/M

−π/M

Pt|Sh(e
jw)|2

PtSh(ejw) + Mσ2
n

dw = σ2
h̃
, (3.13)
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and also (3.7) can be expressed as

σ2
h̃Ml+m

= σ2
h −

1

2π

∫ π

−π

Pt|Sh,0(e
jw)|2

PtSh,0(e
jw) + σ2

n

dw +
1

2π

∫ π

−π

Pt

re

∣∣∣∣∣

{
Sh,0(e

jw)

L∗(ejw)

}

−

∣∣∣∣∣

2

dw

= σ2
h −

1

2π

∫ π/M

−π/M

Pt|Sh(e
jw)|2

PtSh(e
jw) + Mσ2

n

dw +
1

2π

∫ π/M

−π/M

Pt

Mr f

∣∣∣∣∣

{
Sh(e

jw)

F∗(ejw)

}

−

∣∣∣∣∣

2

dw

= σ2
h̃
, (3.14)

where

PtSh(e
jw)

M
+ σ2

n = r f F(ejw)F∗(ejw). (3.15)

Therefore, under this assumption, the error variances become independent of

m. Since the estimate quality is the same for each data symbol regardless of its

position with respect to the pilot symbol, uniform power allocation among the

data symbols is optimal and we have

Pm =
MP − Pt

M − 1
= P0. (3.16)

Then, we can rewrite (3.12) as

C ≥ M − 1

M
E

{
log

(
1 +

P0σ2
ĥ

P0σ2
h̃
+ σ2

n

|ξ|2
)}

. (3.17)
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3.4 Optimizing Training Parameters in

Gauss-Markov Channels

In this section, we assume that the fading process is modeled as a first-order

Gauss-Markov process, whose dynamics is described by

hk = αhk−1 + zk 0 ≤ α ≤ 1 k = 1, 2, 3, . . . (3.18)

where {zk} are i.i.d. circular complex Gaussian variables with zero mean and

variance equal to (1 − α2)σ2
h . The power spectral density of the Gauss-Markov

process with variance σ2
h is given by

Sh(e
jw) =

(1 − α2)σ2
h

1 + α2 − 2α cos(w)
. (3.19)

Note that Sh(e
jw) in (3.19) is not bandlimited and hence the condition 2π fD ≤

π/M can only be satisfied when M = 1 which is not a viable strategy. How-

ever if the fading is slowly-varying and hence the value of α is close to 1, the

Doppler spectrum Sh(e
jw) decreases sharply for large frequencies and most of the

energy is accumulated at low Doppler frequencies. Figure 3.1 plots Sh(e
jw) for

α = 0.99, 0.95, and 0.90, and verifies the above claim. We can easily find that

the frequency ranges [−π/49, π/49], [−π/9, π/9] and [−π/4, π/4] contain more

than 90 % of the power when α = 0.99, 0.95, and 0.90, respectively. Hence, if

M ≤ 49, 9, and 4, respectively, in these cases, the impact of aliasing will be neg-

ligible. Otherwise, ignoring the effect of aliasing will decrease the error variance

and hence the achievable rates under this assumption will be higher than those

obtained when aliasing is considered.
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Figure 3.1: The power spectral density of Gauss-Markov channels for α = 0.99,
0.95, and 0.90 when σ2

h = 1.

In the Gauss-Markov model, the error variance for the noncausal Wiener filter

can easily be obtained from (3.6). In order to obtain the error variance for the

causal filter in the absence of aliasing, we have to perform the canonical factoriza-

tion. We begin with rewriting (3.8) as

PtSh(e
jw/M)

M
+ σ2

n = r f F(ejw/M)F∗(ejw/M) (3.20)

where

F(ejw) =
1 − ue−jw

1 − αe−jw
.
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From (3.20), we can deduce that

c + σ2
nα(ejw/M + e−jw/M) = r f (1 + u) + r f u(ejw/M + e−jw/M) (3.21)

where

c =
Pt

M
(1 − α2)σ2

h + (1 + α2)σ2
n.

From (3.21), we can write

r f =
c +

√
c2 − 4α2σ4

n

2
and u =

ασ2
n

r f
(3.22)

where 0 < u < 1 and r f > 0. After the canonical factorization, we can write

Sh(e
jw/M)

F∗(ejw/M)
=

(1 − α2)σ2
h

(1 − αe−jw/M)(1 − αejw/M)

1 − α ejw/M

1 − uejw/M

=
(1 − α2)σ2

h

(1 − αe−jw/M)(1 − uejw/M)
(3.23)

= B

[
uα

ejw/M − α
− 1

ejw/M − 1/u

]
(3.24)

where

B = − (1 − α2)σ2
h

u(1 − uα)
.

The anti-causal part can be written as

{
Sh(e

jw/M)

F∗(ejw/M)

}

−
=

(1 − α2)σ2
h u

(1 − uα)

ejw/M

(1 − uejw/M)
. (3.25)

After making a change of variables, we have

{
Sh(e

jw)

F∗(ejw)

}

−
=

(1 − α2)σ2
h u

(1 − uα)

ejw

(1 − uejw)
. (3.26)



45

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Period, M

D
at

a 
R

at
e 

(N
at

s/
C

ha
nn

el
 U

se
)

snr=0 dB
snr=0 dB
snr=5 dB
snr=5 dB
snr=10 dB
snr=10 dB
snr=20 dB
snr=20 dB

Figure 3.2: Achievable rates when α = 0.99 for SNR = 0, 5, 10, and 20 dB. The
dotted lines provide rates when aliasing is taken into account, and the solid lines
give the rates when aliasing is ignored.

3.5 Numerical Results

3.5.1 Optimal Parameters and Effects of Aliasing

In this section, we present our numerical results. Initially, we consider noncausal

Wiener filtering and jointly optimize the training period, and data and pilot sym-

bol power allocation. Moreover, we study the effects of aliasing in the under-

sampled channel Doppler spectrum. In Figure 3.2, we plot the achievable rates as

a function of the training period when α = 0.99, i.e., when the channel is changing

very slowly, for SNR values of 0, 5, 10 and 20 dB. In this figure, plotted curves are

obtained with optimal pilot and data power allocation. The dotted lines give the
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Figure 3.3: Achievable rates when α = 0.90 for SNR = 0, 5, 10, and 20 dB. The
dotted lines provide rates when aliasing is taken into account, and the solid lines
give the rates when aliasing is ignored.

data rates obtained when aliasing is taken into account. Solid lines show the rates

when aliasing is ignored. As seen in Fig. 3.2, when SNR is small, the difference

between the dotted and solid lines is negligible. As SNR increases, the difference

between the lines is also increasing. From this, we can conceive that the effect

of aliasing is more dominant with increasing SNR. When α = 0.99 and aliasing

is taken into account, the optimal training periods are 16, 15, 12 and 7 for SNR

values of 0, 5, 10 and 20 dB, respectively. On the other hand, when aliasing is

ignored, we have optimal values as 25, 21, 16 and 8. Hence, the optimal training

period decreases as SNR increases and aliasing is considered.
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Figure 3.4: The optimal power distribution among the pilot and data symbols
when α = 0.99 and SNR = 0 dB. The optimal period is 16.

In Figure 3.3, we plot the achievable rates when α = 0.90. Comparing Fig.s

3.2 and 3.3, we observe that aliasing has a more significant impact as α decreases.

This is expected since aliasing increases in a faster changing channel and hence

ignoring aliasing provides a looser upper bound. When α = 0.90 and aliasing is

taken into account, the optimal training periods are 7, 6, 5 and 4 for SNR values

of 0, 5, 10 and 20 dB, respectively. When aliasing is ignored, the optimal values

are 5, 5, 4 and 4, respectively. As before, the optimal period is decreasing and the

effect of aliasing is increasing with the increasing SNR.

Figure 3.4 and Figure 3.5 are the bar graphs providing the optimal training

and data power allocation for α = 0.99 and 0.90, respectively, when the training
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Figure 3.5: The optimal power distribution among the pilot and data symbols
when α = 0.90 and SNR = 0 dB. The optimal period is 5.

period is at its optimal value. In the graphs, the first and the last bars give the

power of the pilot symbols and the ones in between represent the data symbol

power levels. These bar graphs are obtained when the effect of aliasing on the

channel estimation is taken into account. We can immediately observe from both

graphs that the data symbols farther away from the pilot symbols are allocated

less power because the error in the estimation increases with the distance to the

pilot symbols. In Fig. 3.4, the decrease in the allocated power is small since

the channel is very slowly varying and estimate error is almost independent of

m. On the other hand, the decrease is more obvious when the channel changes

faster as evidenced in Fig. 3.5. Furthermore, comparing Figs. 3.4 and 3.5, we see
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Figure 3.6: Achievable rates vs. training period when noncausal and causal filters
are employed at the receiver. α = 0.99 and SNR = 0, 5, 10, and 20 dB. The red
lines give the rates when a noncausal filter is used and the blue lines show the
rates when a causal filter is used.

that when the training period value is high, more power is allocated to the pilot

symbol, enabling the system to track the channel more accurately.

3.5.2 Causal Filter Performance in the Absence of Aliasing

In this section, we study the performance when a causal Wiener filter is employed

at the receiver. Since it is rather difficult to obtain the canonical factorization of

arbitrary spectrum, we only consider cases in which the channel is slowly varying

and the aliasing effect can be ignored. In Figure 3.6, we plot the achievable rates

as a function of the training period for α = 0.99 when noncausal and causal
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Figure 3.7: Achievable rates vs. SNR when noncausal and causal filters are em-
ployed at the receiver. α = 0.99. The dashed line gives the rate when a noncausal
filter is used and the solid line shows the rate when a causal filter is used.

Wiener filters are used. We compare the results when SNR = 0, 5, 10 and 20

dB. The dotted lines provide the rates for the case of the causal filter and the

solid lines show the results for the case of the noncausal filter. We observe that

the optimal training periods are 44, 29, 19 and 9 for the causal filter when SNR

= 0, 5, 10 and 20, respectively. For the noncausal filter, the optimal periods are

25, 21, 16 and 8 for the same SNR values. We observe from the plots that the

performance of causal and noncausal filters are very close. In Figure 3.7, we plot

the achievable rates as a function of SNR at optimal periods obtained by using

causal and noncausal filters. Again the performances are very similar. Moreover,

after 45 dB, the rates are the same for both filters. Therefore, for the ranges of



51

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

E
b/N

0

SNR dB

causal
noncausal

Figure 3.8: Bit energy Eb
N0

vs. SNR dB when α = 0.99.

parameters considered in these figures, causal filter should be preferred over the

noncausal one.

In systems where energy is at a premium, the energy required to send one

bit of information is a metric that can be adopted to measure the efficiency of

the system. The least amount of normalized bit energy required for reliable com-

munications is given by Eb
N0

= SNR
C(SNR)

where C(SNR) is the channel capacity in

bits/symbol. In our setting, we use the achievable rates and analyze the required

bit energy levels. In Figure 3.8, we plot the bit energy levels. The dashed and solid

lines show the results for causal and noncausal filters. Note that the minimum

bit energies are achieved at SNR = −4 dB and −3 dB for noncausal and causal

filters, respectively. Operating below these SNR levels should be avoided as it
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Figure 3.9: Optimal period vs. SNR dB for causal and noncausal filters when
α = 0.99.

only increases the required energy per bit. Figure 3.9 shows the optimal train-

ing period values as a function of SNR for both filters. Interestingly, the optimal

period is increasing as SNR decreases for the causal filter while it first increases

and then decreases when the noncausal filter is used. Since both past and future

pilots are used when a noncausal filter is employed, having large training periods

will diminish the benefits of future pilots especially for the data symbols in the

middle. Therefore, this option is avoided in this case. On the other hand, having

a larger period in the causal filter case enables the system to put more power to

the pilot by not using data symbol slots farther away from the pilot and hence

to obtain more accurate channel estimates. In both filters, as SNR increases the
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optimal period value stays constant at 5.

3.6 Conclusion

We have studied pilot-assisted communications when causal and noncausal Wiener

filters are employed at the receiver for channel estimation. We have obtained

achievable rate expressions by finding the error variances in both cases. Subse-

quently, we have jointly optimized the training period and power, and data power

levels. We have analyzed the effects of aliasing on the data rates in Gauss-Markov

Rayleigh fading channels when noncausal filters are used. We have provided

numerical results showing the optimal parameters. We have compared the perfor-

mances of causal and noncausal Wiener filters at different SNR values. We have

also studied the energy-efficiency of pilot-assisted modulation with both filters.
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Chapter 4

Achievable Rates and Training

Optimization for Fading Relay

Channels with Memory

In this chapter, transmission over time-selective, flat fading relay channels is stud-

ied. It is assumed that channel fading coefficients are not known a priori. Trans-

mission takes place in two phases: network training phase and data transmission

phase. In the training phase, pilot symbols are sent and the receivers employ

single-pilot MMSE estimation or noncausal Wiener filter to learn the channel. AF

and DF techniques are considered in the data transmission phase and achievable

rate expressions are obtained. The training period, and data and training power

allocations are jointly optimized by using the achievable rate expressions. Numer-

ical results are obtained considering Gauss-Markov and lowpass fading models.

Achievable rates are computed and energy-per-bit requirements are investigated.

The optimal power distributions among pilot and data symbols are provided.
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4.1 Channel Model

We consider a three-node-relay network which consists of one source node, one

relay node and one destination node. Source-destination, source-relay and relay-

destination channels are modeled as Rayleigh fading channels with fading coef-

ficients denoted by hsd ∼ CN (0, σ2
sd), hsr ∼ CN (0, σ2

sr) and hrd ∼ CN (0, σ2
rd)

1,

respectively. Each channel is independent of others and exhibits memory with an

arbitrary correlation structure. Hence {hsd}, {hsr}, and {hrd} are assumed to be

mutually independent Gaussian random processes with power spectral densities

Shsd
(ejw), Shsr

(ejw) and Shrd
(ejw), respectively. In this relay network, information

is sent from the source to the destination with the aid of the relay. Transmission

takes place in two phases: network training phase and data transmission phase.

Over a duration of M symbols, the source and the relay are subject to the follow-

ing power constraints:

‖xs,t‖2 + E{‖xs‖2} ≤ MPs and ‖xr,t‖2 + E{‖xr‖2} ≤ MPr (4.1)

where xs,t and xr,t are the source and relay pilot vectors, respectively, and xs and

xr are the data vectors sent by the source and the relay, respectively.

4.2 Network Training Phase

In the network training phase, source and relay send pilot symbols in nonoverlap-

ping intervals with a period of M symbols to facilitate channel estimation at the

receivers. In a block of M symbols, transmission takes place in the following or-

1x ∼ CN (m, σ2) is used to denote that x is a proper complex Gaussian random variable with
mean m and variance σ2.
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der. First, the source sends a single pilot symbol xs,t, and the relay and destination

receive

yr,t = hsrxs,t + nr and yd,t = hsdxs,t + nd, (4.2)

and estimates hsr and hsd, respectively. Then, transmission enters the data trans-

mission phase, and source sends an (M − 2)/2-dimensional data vector that is

again received by the relay and destination terminals. Next, only the relay sends

a single pilot symbol xr,t, and the signal received at the destination node is

yr
d,t = hrdxr,t + nr

d, (4.3)

which is used by the destination to estimate hrd. In (4.2) and (4.3), nr, nd, and nr
d

are assumed to be i.i.d. zero mean Gaussian random variables with variance σ2
n,

modeling the additive thermal noise present at the receivers. In the remaining

duration of (M − 2)/2 symbols, transmission again enters the data transmission

phase. In this case, the relay transmits an (M − 2)/2 dimensional data vector

to the destination while the source either becomes silent or continues its trans-

mission depending on the cooperation protocol. This order of transmission is

repeated for the next block of M symbols.

As noted before, we consider two channel estimation methods. In the first

method, only a single pilot symbol is used to obtain the MMSE estimate of the

channel fading coefficients. As described in [35], MMSE estimates of the fading
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coefficients and the variances of the estimate errors are given as follows2:

ĥsr =
σ2

sr

√
Pxs,t

σ2
srPxs,t + σ2

n
yr,t, σ2

h̃sr
=

σ2
srσ2

n

σ2
srPxs,t + σ2

n
(4.4)

ĥsd =
σ2

sd

√
Pxs,t

σ2
sdPxs,t + σ2

n

yd,t, σ2
h̃sd

=
σ2

sdσ2
n

σ2
sdPxs,t + σ2

n

(4.5)

ĥrd =
σ2

rd

√
Pxr,t

σ2
rdPxr,t + σ2

n

yr
d,t, σ2

h̃rd
=

σ2
rd σ2

n

σ2
rdPxs,t + σ2

n

(4.6)

where Pxs,t and Pxr,t are the power of the pilot symbols sent by the source and the

relay, respectively, and yr,t ∼ CN (0, σ2
srPxs,t + σ2

n), yd,t ∼ CN (0, σ2
sdPxs,t + σ2

n) and

yr
d,t ∼ CN (0, σ2

rdPxr,t + σ2
n).

In the second method, we employ the noncausal Wiener filter which is the

optimum linear estimator in the mean-square sense. The Wiener filter is employed

at both the relay and the destination. Note that since pilot symbols are sent with

a period of M symbols, the channels are sampled every MTs seconds, where Ts

is the sampling time. As described in [6], we have to consider the undersampled

versions of the Doppler spectrums of the fading coefficients, which are given by

Shsr,m(e
jw) =

1

M

M−1

∑
k=0

ejm(w−2πk)/MShsr

(
ej(w−2πk)/M

)
(4.7)

Shsd,m(e
jw) =

1

M

M−1

∑
k=0

ejm(w−2πk)/MShsd

(
ej(w−2πk)/M

)
(4.8)

Shrd ,m(e
jw) =

1

M

M−1

∑
k=0

ejm(w−2πk)/MShrd

(
ej(w−2πk)/M

)
. (4.9)

Then, the channel MMSE variances for the noncausal Wiener filter at time Ml + m

2ĥ and h̃ are used to denote the estimate and error in the estimate of h, respectively. Hence,

we can write h = ĥ + h̃.
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are given by [44]

σ2
h̃sr
(Ml + m) = σ2

sr −
1

2π

∫ π

−π

Pxs,t |Shsr ,m(e
jw)|2

Pxs,tShsr ,0(e
jw) + σ2

n

dw (4.10)

σ2
h̃sd
(Ml + m) = σ2

sd −
1

2π

∫ π

−π

Pxs,t |Shsd,m(e
jw)|2

Pxs,tShsd,0(e
jw) + σ2

n

dw (4.11)

σ2
h̃rd
(Ml + m) = σ2

rd −
1

2π

∫ π

−π

Pxr,t |Shrd,m(e
jw)|2

Pxr,tShrd,0(e
jw) + σ2

n

dw (4.12)

for l = 0, 1, 2, . . . and m = 0, 1 . . . (M − 1).

After obtaining the estimates, we can express the fading coefficients as

hsr(Ml + m) = ĥsr(Ml + m) + h̃sr(Ml + m)

hsd(Ml + m) = ĥsd(Ml + m) + h̃sd(Ml + m)

hrd(Ml + m) = ĥrd(Ml + m) + h̃rd(Ml + m). (4.13)

4.3 Data Transmission Phase

Note that as described in the previous section, within a block of M symbols, two

symbol durations are allocated for channel training while data transmission is

performed in the remaining portion of the time. We assume that relay operates

in half-duplex mode. Hence, the relay first listens and then transmits to the desti-

nation. We consider two transmission protocols: non-overlapped and overlapped

transmissions.
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4.3.1 Non-overlapped Case

In this protocol, the source and relay send data symbols in nonoverlapping inter-

vals. The source, after sending the pilot symbol, sends its (M − 2)/2 data symbols

received by the relay and the destination as3

yr,d(m) = hsr(m)xs,d(m) + nr(m)

and

yd,d(m) = hsd(m)xs,d(m) + nd(m) m = 2, . . .
M

2
. (4.14)

Next, the source stops transmission, and the relay sends first its pilot symbol and

then (M− 2)/2 data symbols which are generated from yr,d = [yr,d(2), . . . , yr,d(M/2)].

Thus the destination receives

yd,d(j) = hrd(j)xr,d(j) + nd(j) j = m + M/2 (4.15)

where again m = 2, . . . , M/2. After substituting (4.13) into (4.14) and (4.15), we

obtain

yr,d(m) = ĥsr(m)xs,d(m) + h̃sr(m)xs,d(m) + nr(m) (4.16)

yd,d(m) = ĥsd(m)xs,d(m) + h̃sd(m)xs,d(m) + nd(m)

yd,d(j) = ĥrd(j)xr,d(j) + h̃rd(j)xr,d(j) + nd(j)

where m = 2, . . . , M/2 and j = m + M/2.

3Since we consider transmission in a block of M symbols, we drop the block index for the sake
of simplicity and use m instead of using Ml + m.
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4.3.2 Overlapped Case

In this protocol, the source continues its transmission while the relay is sending

its data symbols. The source becomes silent only when the relay is sending the

pilot symbol. Therefore, the received signals in the data transmission phase can

be written as

yr,d(m) = hsr(m)xs,d(m) + nr(m) (4.17)

yd,d(m) = hsd(m)xs,d(m) + nd(m)

yd,d(j) = hsd(j)xs,d(j) + hrd(j)xr,d(j) + nd(j)

where m = 2, ..., M/2 and j = m + M/2. Similarly as in the non-overlapped case,

we can integrate the estimation results to (4.17) and write

yr,d(m) = ĥsr(m)xs,d(m) + h̃sr(m)xs,d(m) + nr(m) (4.18)

yd,d(m) = ĥsd(m)xs,d(m) + h̃sd(m)xs,d(m) + nd(m)

yd,d(j) = ĥsd(j)xs,d(j) + h̃sd(j)xs,d(j) + ĥrd(j)xr,d(j) + h̃rd(j)xr,d(j) + nd(j).

4.4 Achievable Rates for AF Relaying

In this section, we consider the AF relaying scheme in which the relay sends to

the destination simply the scaled version of the signal received from the source.
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An achievable rate expression for the AF relaying scheme is given by

IAF =
1

M

M/2

∑
m=2

sup
pxs,d

I

(
xs,d(m); yd,d(m), yd,d(m + M/2)

∣∣∣ĥsr(m), ĥsd(m), ĥsd(m + M/2), ĥrd(m + M/2)

)

(4.19)

where {xs,d(m)} are components of the transmitted signal vector xs,d, and {yd,d(m)}
and {yd,d(m + M/2)} are the components of the (M − 2)-dimensional received

signal yd,d = [yd,d(2), . . . , yd,d(M/2), yd,d(M/2 + 2), . . . , yd,d(M)], respectively.

Note that the above formulation supposes that the destination node also knows

{ĥsr}. Hence, it is assumed that these estimates are reliably forwarded by the re-

lay to the destination using reliable low rate links. A lower bound on IAF can be

obtained by assuming similarly as in [37] that the estimation errors are additional

sources of worst-case Gaussian noise. We define the new noise random variables

in non-overlapped and overlapped cases as

zr,d(m) = h̃sr(m)xs,d(m) + nr(m)

zd,d(m) = h̃sd(m)xs,d(m) + nd(m)

zd,d(j) = h̃rd(j)xr,d(j) + nd(j)

(4.20)

and

zr,d(m) = h̃sr(m)xs,d(m) + nr(m)

zd,d(m) = h̃sd(m)xs,d(m) + nd(m)

zd,d(j) = h̃sd(j)xs,d(j) + h̃rd(j)xr,d(j) + nd(j)

(4.21)

respectively. By assuming that the new noise components are Gaussian random
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variables and using techniques similar to those in [84], we can obtain the following

worst-case achievable rate expression for the non-overlapped case:

Inonover =
1

M
Ewsr,wsd,wrd

M/2

∑
m=2

log
(
1 + a1,m + f (b1,m, c1,j)

)
(4.22)

where

a1,m =
Pxs,d(m)σ

2
ĥsd(m)

σ2
zd,d(m)

|wsd|2, b1,m =
Pxs,d(m)σ

2
ĥsr(m)

σ2
zr,d(m)

|wsr|2, (4.23)

c1,j =
Pxr,d(j)σ

2
ĥrd(j)

σ2
zd,d(j)

|wrd|2, f (x, y) =
xy

1 + x + y

and wsd ∼ CN (0, 1), wsr ∼ CN (0, 1), wrd ∼ CN (0, 1). Pxs,d(m) and Pxr,d(j) are the

powers of the mth source symbol and jth relay symbol, respectively, and σ2
ĥsr(m)

=

σ2
sr − σ2

h̃sr(m)
, σ2

ĥsd(m)
= σ2

sd − σ2
h̃sd(m)

, σ2
ĥrd(m)

= σ2
rd − σ2

h̃rd(m)
. Finally, note that j =

m + M/2.

Similarly, we can find the following achievable rate expression for the over-

lapped case:

Iover =
1

M
Ewsr,wsd,wrd

M/2

∑
m=2

log
(
1 + a2,m + f (d2,m, c2,j) + q(a2,m , b2,j, c2,j, d2,m)

)
(4.24)

where

a2,m =
Pxs,d(m)σ

2
ĥsd(m)

σ2
zd,d(m)

|wsd|2, b2,j =
Pxs,d(j)σ

2
ĥsd(j)

σ2
zd,d(j)

|wsd|2, (4.25)

c2,j =
Pxs,d(m)σ

2
ĥsr(m)

σ2
zr,d(m)

|wsr|2, d2,m =
Pxr,d(j)σ

2
ĥrd(j)

σ2
zd,d(j)

|wrd|2

and q(a, b, c, d) = (1+a)b(1+c)
1+c+d and j = m + M/2.
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4.5 Achievable Rates for DF Relaying

The repetition coding and the parallel coding are two possible coding techniques

used in DF schemes [47]. First, we consider the repetition coding, and for this

case the achievable rate is given by

IRC =
1

M

M/2

∑
m=2

sup
pxs

{
min

[
I(xs,d(m); yr,d(m)|ĥsr(m)),

I(xs,d(m); yd,d(m), yd,d(m + M/2)|ĥsd(m), ĥsd(m + M/2), ĥrd(m + M/2))
]}

(4.26)

Employing the techniques used in the AF non-overlapped scheme, we obtain the

following achievable rate expression for non-overlapped DF with repetition cod-

ing:

Inonover,rc =
1

M
Ewsr,wsd,wrd ∑

m

min(I1, I2) (4.27)

where

I1 = log [1 + b1,m] , I2 = log
[
1 + a1,m + c1,j

]
,

and a1,m, b1,m and c1,j are given in (4.23). For the overlapped case of the DF repeti-

tion coding, (4.27) holds with I1 and I2 defined as

I1 = log
[
1 + c2,j

]
, I2 = log

[
1 + a2,m + b2,j + d2,m + a2,mb2,j

]

where a2,m, b2,j, c2,j, and d2,m are given in (4.25).
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Figure 4.1: The optimal achievable rates vs. SNR for the Gauss-Markov fading
model (α = 0.99) and different relaying techniques. σ2

sd = 1, σ2
sr = 16 and σ2

rd = 16.
(S: single-pilot estimation. W: Wiener filter.)

When we employ the parallel coding, we have

IPC =
1

M

M/2

∑
m=2

sup
Pxs ,Pxr

{
min

[
I(xs,d(m); yr,d(m)|ĥsr(m)),

I(xs,d(m); yd,d(m)|ĥsd(m)) + I(xr,d(m + M/2); yd,d(m + M/2)|ĥrd(m + M/2))
]}

.

(4.28)

Similarly, we can find, for the nonoverlapping case, an achievable rate expression

given by

Inonover,pc =
1

M
Ewsr,wsd,wrd ∑

m

min(I1, I2) (4.29)
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Figure 4.2: The optimal achievable rates vs. SNR for the lowpass fading model
when noncausal Wiener filter is employed. σ2

sd = 1, σ2
sr = 4 and σ2

rd = 4.

where

I1 = log(1 + b1,m), I2 = log(1 + a1,m) + log(1 + c1,j).

4.6 Optimizing Training Parameters

In this section, we consider two particular fading processes. In the first case,

fading is modeled as a first-order Gauss-Markov process whose dynamics is de-

scribed by

hk = αhk−1 + zk 0 ≤ α ≤ 1 k = 1, 2, 3, . . .
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where {zk} are i.i.d. circular complex Gaussian variables with zero mean and

variance equal to (1-α2)σ2
h . In the above formulation, α is a parameter that controls

the rate of the channel variations between consecutive transmissions. The power

spectral density of the Gauss-Markov process with variance σ2
h is given by

Sh(e
jw) =

(1 − α2)σ2
h

1 + α2 − 2α cos(w)
. (4.30)

We also model the fading as a lowpass Gaussian process whose power spectral

density is given by

Sh(e
jw) =





σ2
h

2 fd
, for |w| < wd

0, otherwise

(4.31)

where wd = 2π fd is the maximum Doppler spread in radians.

In Gauss-Markov channels, it is difficult to find a closed-form expression for

the variance of the estimate error when Wiener filter is used, because the channel’s

spectrum is not band limited. Therefore, there is always aliasing in the undersam-

pled Doppler spectrums, which causes an increase in the variance of the error.

On the other hand, when fading is modeled as a lowpass process, we can find a

explicit solution for the error variance, and we can express it as

σ2
h̃
=

σ2
h σ2

n

Px,tσ
2
h + σ2

n

.

In the lowpass case, if the channel is sampled sufficiently fast (i.e., M <
1

2 fd
), there

is no aliasing and the power is distributed equally among data symbols. However,

note that the power allocated to the data symbols of the source is not equal to the

power allocated to the data symbols of the relay. In general, if there is aliasing or

a single pilot is used for estimation, the power allocated to the data symbols will
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differ depending on their distance to the pilot signals.

Having obtained achievable rate expressions, our next goal is to jointly opti-

mize training period M, training power, and power allocated to the data symbols.

4.7 Numerical Results

In this section, we present numerical optimization results. In Figure 4.1, we plot

the optimal achievable rates with respect to SNR for different relaying protocols

by using two different methods of channel estimation. Fading is assumed to be

a Gauss-Markov process. The solid lines indicate the optimal data rates obtained

when noncausal Wiener filter is used, whereas the dashed lines show the optimal

data rates obtained when a single pilot symbol is used for estimation. The rates

are optimal in the sense that they are obtained with optimal training parameters

and optimal power allocations. We can see that at low SNR values, DF provides

higher rates and parallel non-overlapped DF scheme is the most efficient one.

As expected, Wiener filter performance is better than that of the estimation that

uses a single pilot. Moreover, at low SNR values non-overlapped and overlapped

relaying schemes give the same optimal results, and optimal power distributions

among data and pilot symbols are the same for both. Note that DF repetition Non-

overlapped and Overlapped schemes do not give the same result when Wiener

Filter is used for estimation. On the other hand, at high SNR values, we see a

significant increase in the data rate of AF overlapped scheme compared to the

other schemes.

In Figure 4.2, we plot the optimal data rates when we estimate the lowpass

fading process using a noncausal Wiener filter. The channel variances are σ2
sd =

1, σ2
sr = 4 and σ2

rd = 4. Conclusions similar to that given for Fig. 4.1 are drawn
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Figure 4.3: Normalized bit energies Eb
N0

vs. SNR for the lowpass fading model

when noncausal Wiener filter is employed. σ2
sd = 1, σ2

sr = 4 and σ2
rd = 4.

again. In Fig. 4.3, the bit energy normalized by the noise variance, Eb
N0

, is plotted

as a function of SNR. In all cases, we observe that minimum bit energy is achieved

at a nonzero SNR value. If SNR is further decreased, higher bit energy values are

required and hence, operation at these very low SNRs should be avoided.

In Figure 4.4, we plot the optimal data rates as a function of the training pe-

riod, M, when SNR = 0 dB for different relaying schemes and different channel

variances. Single-pilot-symbol estimation is employed. Since a relatively low SNR

value is considered, AF non-overlapped and AF overlapped schemes provide low-

est rates. The highest performance is obtained when DF parallel non-overlapped

scheme is used.
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Markov fading model. Single-pilot MMSE estimation is employed. The dashed
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rd = 4 and solid lines are obtained

when σ2
sd = 1, σ2
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rd = 16

In Fig. 4.5, power allocated to the pilot and data symbols is plotted when

Gauss-Markov channel is considered and AF non-overlapped scheme is employed.

The first half of the bars shows the power allocated to the source symbols and the

rest shows the power allocated to the relay symbols. The first bar of the each

group gives the power of the pilot symbols. Note that these power distributions

are obtained when the period is at its optimal value when SNR=0 dB. The optimal

period is 30 when σ2
sd = 1, σ2

sr = 4, σ2
rd = 4. In Figure 4.6, the optimal power

distribution is displayed when noncausal Wiener filter is used for estimation at

SNR = 0 dB. Note that the optimal period is 12.
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Figure 4.5: Optimal power distribution among the pilot and data symbols when
σ2

sd = 1, σ2
sr = 4, σ2

rd = 4, SNR = 0 dB. Fading is a Gauss-Markov process with
α = 0.99. Single-pilot MMSE estimation is employed. The optimal period is
M = 30. Note that the first 15 symbols belong to the source and the last 15 bars
belong to the relay

4.8 Conclusion

We have studied transmission over imperfectly-known relay channels. The chan-

nels are learned using single-pilot MMSE estimation or noncausal Wiener fil-

ter. We have obtained achievable rate expressions for both AF and DF relaying

schemes. Subsequently, we have jointly optimized the training period and power,

and data power levels in Gauss-Markov and lowpass fading models. We have

compared the performances of different relaying techniques at different SNR val-

ues and different channel variances.
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Figure 4.6: Optimal power distribution among the pilot and data symbols when
σ2

sd = 1, σ2
sr = 16, σ2

rd = 16, SNR = 0 dB. Fading is a Gauss-Markov process with
α = 0.99. Wiener filter is employed. The optimal period is M = 12. Note that the
first 6 symbols belong to the source and the last 6 bars belong to the relay
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Chapter 5

Effective Capacity Analysis of

Cognitive Radio Channels for

Quality of Service Provisioning

In this chapter, the performance of cognitive radio systems is studied when the

SUs operate under statistical QoS constraints. In the cognitive radio channel

model, SUs initially perform channel sensing, and then engage in data transmis-

sion at two different average power levels depending on the channel sensing re-

sults. A state transition model is constructed to model this cognitive transmission

channel. Statistical QoS constraints are imposed as limitations on buffer violation

probabilities. Effective capacity of the cognitive radio channel, which provides the

maximum throughput under such QoS constraints, is determined. This analysis

is conducted for fixed-power/fixed-rate, fixed-power/variablerate, and variable-

power/variable-rate transmission schemes under different assumptions on the

availability of CSI at the transmitter. The interactions and tradeoffs between the

throughput, QoS constraints, and channel sensing parameters (e.g., sensing dura-

tion and threshold, and detection and false alarm probabilities) are investigated.
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The performances of fixed-rate and variable-rate transmission methods are com-

pared in the presence of QoS limitations. It is shown that variable schemes out-

perform fixed-rate transmission techniques if the detection probabilities are high.

Performance gains through adapting the power and rate are quantified and it is

shown that these gains diminish as the QoS limitations become more stringent.

5.1 System and Cognitive Channel Model

We consider a cognitive radio channel model in which a secondary transmitter

attempts to send information to a secondary receiver possibly in the presence of

primary users. Initially SUs perform channel sensing, and then depending on the

primary users’ activity, the secondary transmitter selects its transmission power

and rate, i.e., when the channel is busy, the average symbol power is P1 and the

rate is r1, and when the channel is idle, the average symbol power is P2 and the

rate is r2. For instance, if P1 = 0, the secondary transmitter stops transmission in

the presence of an active primary user. In the above model, the transmission rates

r1 and r2 can be fixed or time-varying depending on whether the transmitter has

CSI or not. Moreover, in general we assume P1 < P2.

We assume that the data generated by the source is initially stored in the data

buffer before being transmitted in frames of duration T seconds over the cognitive

wireless channel. During transmission, the discrete-time channel input-output

relation in the ith symbol duration is given by

y(i) = h(i)x(i) + n(i) i = 1, 2, . . . (5.1)

if the primary users are absent. On the other hand, if primary users are present



74

in the channel, we have

y(i) = h(i)x(i) + sp(i) + n(i) i = 1, 2, . . . (5.2)

Above, x(i) and y(i) denote the complex-valued channel input and output, respec-

tively. We assume that the bandwidth available in the system is B and the channel

input is subject to the following average energy constraints: E{|x(i)|2} ≤ P1/B

and E{|x(i)|2} ≤ P2/B for all i, when the channel is busy and idle, respectively.

Since the bandwidth is B, symbol rate is assumed to be B complex symbols per sec-

ond, indicating that the average power of the system is constrained by P1 or P2. In

(5.1) and (5.2), h(i) denotes the fading coefficient between the cognitive transmitter

and the receiver. The fading coefficients can have arbitrary marginal distributions

but they are assumed to have finite variances, i.e., E{|h(i)|2} = E{z(i)} = σ2
h < ∞.

Note that, here and throughout the chapter, we have denoted the magnitude-

square of the fading coefficients by z(i) = |h(i)|2. Finally, we consider a block-

fading channel model and assume that the fading coefficients stay constant for a

block of duration T seconds and change independently from one block to another.

In (5.2), sp(i) represents the sum of the active primary users’ faded signals

arriving at the secondary receiver. In the input-output relations (5.1) and (5.2), n(i)

models the additive thermal noise at the receiver, and is a zero-mean, circularly

symmetric, complex Gaussian random variable with variance E{|n(i)|2} = σ2
n for

all i. We further assume that {ni} is an i.i.d. sequence.
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5.2 Channel Sensing

We assume that the first N seconds of the frame duration T is allocated to sense

the channel. If the transmission strategies of the primary users are not known,

energy-based detection methods are well-suited for the detection of the activities

of primary users. The channel sensing can be formulated as a hypothesis testing

problem between the noise n(i) and the signal sp(i) in noise. Noting that there

are NB complex symbols in a duration of N seconds, this can mathematically be

expressed as follows:

H0 : y(i) = n(i), i = 1, . . . , NB

H1 : y(i) = sp(i) + n(i), i = 1, . . . , NB.

(5.3)

We assume that sp(i) has a circularly symmetric complex Gaussian distribution

with zero-mean and variance σ2
sp

. Note that this is an accurate assumption if

the signals are being received in a rich multipath environment or the number of

active primary users is large. Moreover, if, for instance the primary users are

employing phase or frequency modulation, sp(i) in the presence of even a single

primary user in flat Rayleigh fading will be Gaussian distributed1. As in [50], we

further assume that the signal samples {sp(i)} are independent and identically

distributed. Under these assumptions, the optimal Neyman-Pearson detector for

the above hypothesis problem is given by [63]

Y =
1

NB

NB

∑
i=1

|y(i)|2 ≷H1
H0

λ (5.4)

1Note that zero-mean, circular, complex Gaussian distributions are invariant under rotation.
For instance, if the fading coefficient h is zero-mean, circularly symmetric, complex Gaussian
distributed, then so is hejφ for any random φ.
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where λ is the detection threshold. We can immediately conclude that the test

statistic Y is chi-square distributed with 2NB degrees of freedom. In this case, the

probabilities of false alarm and detection can be established as follows:

Pf = Pr(Y > λ|H0) = 1 − P

(
NBλ

σ2
n

, NB

)
(5.5)

Pd = Pr(Y > λ|H1) = 1 − P

(
NBλ

σ2
n + σ2

sp

, NB

)
(5.6)

where P(x, a) denotes the regularized lower gamma function and is defined as

P(x, a) = γ(x,a)
Γ(a)

where γ(x, a) is the lower incomplete gamma function and Γ(a)

is the Gamma function.

Above, we have considered an i.i.d. scenario. If {sp(i)} are correlated and if

the correlation structure is known by the cognitive users, then the optimal detec-

tor computes, as the test statistic, the quadratic form y†Ky where y is the vector

of NB received signal samples {y(i)}NB
i=1, and K is a matrix that depends on the

covariance matrix of the primary user signal samples {sp(i)}N
i=1 [63, Case III.B.4].

If {sp(i)} are identically distributed, then the false alarm and detection probabil-

ities are again expressed in terms of the regularized lower gamma function and

are in the same form as in (5.5) and (5.6) (see [63, Equation III.B.96]).

In the hypothesis testing problem given in (5.3), another approach is to con-

sider Y as Gaussian distributed, which is accurate if NB is large [50]. In this case,

the detection and false alarm probabilities can be expressed in terms of Gaussian

Q-functions. We would like to note the rest of the analysis in the chapter does not

depend on the specific expressions of the false alarm and detection probabilities.

However, numerical results are obtained using (5.5) and (5.6).
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5.3 State Transition Model and Effective Capacity

with CSI at the Receiver only

In this section, we assume that the receiver has perfect CSI and hence perfectly

knows the instantaneous values of {h[i]} while the transmitter has no such knowl-

edge. Not knowing the channel conditions, the transmitter sends the information

at fixed rates. More specifically, the transmission rate is fixed at r1 bits/s in the

presence of active primary users while the transmission rate is r2 bits/s when the

channel is idle. In this section, we initially construct a state-transition model for

cognitive transmission by considering the cases in which the fixed transmission

rates are smaller or greater than the instantaneous channel capacity values, and

also incorporating the sensing decision and its correctness. In particular, if the

fixed rate is smaller than the instantaneous channel capacity, we assume that re-

liable communication is achieved and the channel is in the ON state. Otherwise,

we declare that outage has occurred and the channel is in the OFF state. Note that

information has to be retransmitted in such a case. In the following, we provide

a detailed description of the state transition model. Subsequently, we identify,

through effective capacity, the maximum throughput that can be achieved in the

described state-transition model when the system is subject to QoS constraints.

5.3.1 State Transition Model

Regarding the decision of channel sensing and its correctness, we have the follow-

ing four possible scenarios:

1. Channel is busy, detected as busy (correct detection),

2. Channel is busy, detected as idle (miss-detection),
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3. Channel is idle, detected as busy (false alarm),

4. Channel is idle, detected as idle (correct detection).

In each scenario, we have two states, namely ON and OFF, depending on whether

or not the fixed-transmission rate exceeds the instantaneous channel capacity. In

order to identify these states, we have to first determine the instantaneous chan-

nel capacity values. Note that if the channel is detected as busy, the secondary

transmitter sends the information with power P1. Otherwise, it transmits with a

larger power, P2. Considering the interference sp caused by the primary users as

additional Gaussian noise, we can express the instantaneous channel capacities in

the above four scenarios as follows:

C1 = B log2(1 + SNR1z(i)) (channel busy, detected busy) (5.7)

C2 = B log2(1 + SNR2z(i)) (channel busy, detected idle) (5.8)

C3 = B log2(1 + SNR3z(i)) (channel idle, detected busy) (5.9)

C4 = B log2(1 + SNR4z(i)) (channel idle, detected idle). (5.10)

where SNRi for i = 1, 2, 3, 4 denotes the average SNR values in each possible

scenario. These SNR expressions are

SNR1 =
P1

B
(

σ2
n + σ2

sp

) , SNR2 =
P2

B
(

σ2
n + σ2

sp

) ,

SNR3 =
P1

Bσ2
n

, and SNR4 =
P2

Bσ2
n

. (5.11)

Note that in scenarios 1 and 3, the channel is detected as busy and hence the

transmission rate is r1. On the other hand, the transmission rate is r2 in scenarios

2 and 4. If these fixed rates are below the instantaneous capacity values, i.e., when
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r1 < C1, C3 or r2 < C2, C4, the cognitive transmission is considered to be in the

ON state and reliable communication is achieved at these rates. On the other

hand, when r1 ≥ C1, C3 or r2 ≥ C2, C4, outage occurs and the transmission is in

the OFF state. In this state, reliable communication is not attained, and hence, the

information has to be resent. It is assumed that a simple automatic repeat request

(ARQ) mechanism is incorporated in the communication protocol to acknowledge

the reception of data and to ensure that erroneous data is retransmitted. This

state-transition model with 8 states is depicted in Figure 5.1 where the labels of

the states are placed on the bottom-right corner. In states 1, 3, 5, and 7, the

transmission is in the ON state, and r1(T − N) bits in states 1 and 5, and r2(T − N)

bits in states 3 and 7 are transmitted and successfully received2. The effective

transmission rate is zero in the OFF states.

Next, we determine the state-transition probabilities. We use pij to denote the

transition probability from state i to state j. Due to the block fading assumption,

state transitions occur every T seconds. When the channel is busy and detected

as busy, the probability of staying in the ON state, which is topmost ON state in

Fig. 5.1, is expressed as follows:

p11 = ρPd P{r1 < C1(i + TB) | r1 < C1(i)} = ρPd P{z(i + TB) > α1 | z(i) > α1}
(5.12)

where

α1 =
2

r1
B − 1

SNR1
, (5.13)

2Note that the transmission stays in each state for the frame duration of T seconds. However,
since N seconds are allocated to channel sensing, data transmission occurs over a duration of
T − N seconds.
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Figure 5.1: State transition model for the cognitive radio channel. The numbered
label for each state is given on the bottom-right corner of the box representing the
state.
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ρ is the prior probability of channel being busy, and Pd is the probability of de-

tection as defined in (5.6). Note that (5.12) is obtained under the assumption that

the primary user activity is independent from frame to frame, leading to the ex-

pression which depends only on the prior probability ρ. Note further that p11 in

general depends on the joint distribution of (z(i + TB), z(i)). However, since fad-

ing changes independently from one block to another in the block-fading model,

we can further simplify p11 and write it as

p11 = ρPdP{z[i + TB] > α1} = ρPdP{z > α1}

from which we can immediately see that the transition probability p11 does not

depend on the original state. Hence, due to the block fading assumption, we can

express

pi1 = p1 = ρPdP{z > α1} for i = 1, 2, . . . , 8. (5.14)

Similarly, the remaining transition probability expressions become

pi2 = p2 = ρPdP{z < α1}, pi3 = p3 = ρ(1 − Pd)P{z > α2},

pi4 = p4 = ρ(1 − Pd)P{z < α2}, pi5 = p5 = (1 − ρ)Pf P{z > α3},

pi6 = p6 = (1 − ρ)Pf P{z < α3}, pi7 = p7 = (1 − ρ)(1 − Pf )P{z > α4},

pi8 = p8 = (1 − ρ)(1 − Pf )P{z < α4} for i = 1, 2, . . . , 8.

(5.15)

where α2 = 2
r2
B −1

SNR2
, α3 = 2

r1
B −1

SNR3
, α4 = 2

r2
B −1

SNR4
, and Pf is the false alarm probability.
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Now, the 8 × 8 state transition probability matrix can be expressed as

R =




p1,1 p1,2 . . p1,8

. . . . .

. . . . .

p8,1 p8,2 . . p8,8




=




p1 p2 . . p8

. . . . .

. . . . .

p1 p2 . . p8




. (5.16)

Note that the rows of R are identical, and therefore R is a matrix of unit rank.

5.3.2 Effective Capacity

In this section, we identify the maximum throughput that the cognitive radio

channel with the aforementioned state-transition model can sustain under statisti-

cal QoS constraints imposed in the form of buffer or delay violation probabilities.

Wu and Negi in [83] defined the effective capacity as the maximum constant ar-

rival rate that can be supported by a given channel service process while also

satisfying a statistical QoS requirement specified by the QoS exponent θ. If we

define Q as the stationary queue length, then θ is defined as the decay rate of the

tail distribution of the queue length Q:

lim
q→∞

log P(Q ≥ q)

q
= −θ. (5.17)

Hence, we have the following approximation for the buffer violation probabil-

ity for large qmax : P(Q ≥ qmax) ≈ e−θqmax. Therefore, larger θ corresponds to

more strict QoS constraints, while the smaller θ implies looser constraints. In

certain settings, constraints on the queue length can be linked to limitations

on the delay and hence delay-QoS constraints. It is shown in [51] that P{D ≥
dmax} ≤ c

√
P{Q ≥ qmax} for constant arrival rates, where D denotes the steady-
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state delay experienced in the buffer. In the above formulation, c is a positive

constant, qmax = admax and a is the source arrival rate. Therefore, effective ca-

pacity provides the maximum arrival rate when the system is subject to statisti-

cal queue length or delay constraints in the forms of P(Q ≥ qmax) ≤ e−θqmax or

P{D ≥ dmax} ≤ c e−θa dmax/2, respectively. Since the average arrival rate is equal

to the average departure rate when the queue is in steady-state [21], effective

capacity can also be seen as the maximum throughput in the presence of such

constraints.

In practical applications, the value of θ depends on the statistical characteriza-

tion of the arrival and service processes, bounds on delay or buffer lengths, and

target values of the delay or buffer length violation probabilities. In [74], Tang

and Zhang described a methodology to determine the value of θ (see [74, Section

III.B]), and also provided numerical and simulation results that demonstrate how

the effective capacity formulation can be used to solve a resource allocation prob-

lem in audio and video applications to satisfy given QoS requirements (see [74,

Section IV]).

The effective capacity for a given QoS exponent θ is given by

− lim
t→∞

1

θt
loge E{e−θS(t)} = −Λ(−θ)

θ
(5.18)

where Λ(θ) = limt→∞
1
t loge E{eθS(t)} is a function that depends on the loga-

rithm of the moment generating function of S(t), S(t) = ∑
t
k=1 r(k) is the time-

accumulated service process, and {r(k), k = 1, 2, . . . } is defined as the discrete-

time, stationary and ergodic stochastic service process. Note that the service rate

is r(k) = r1(T − N) if the cognitive system is in state 1 or 5 at time k. Simi-

larly, the service rate is r(k) = r2(T − N) in states 3 and 7. In all the OFF states,
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fixed transmission rates exceed the instantaneous channel capacities and reliable

communication is not possible. Therefore, the service rates in these states are

effectively zero.

In the next result, we provide the effective capacity for the cognitive radio

channel and state transition model described in the previous section.

Theorem 1 For the cognitive radio channel with the state transition model given in

Section 5.3.1, the normalized effective capacity in bits/s/Hz is given by

RE(SNR, θ) = max
r1,r2≥0

− 1

θTB
loge

{
(p1 + p5)e

−(T−N)θr1 + (p3 + p7)e
−(T−N)θr2

+ p2 + p4 + p6 + p8

}
(5.19)

where T is the frame duration over which the fading stays constant, N is the sensing

duration, r1 and r2 are fixed transmission rates, and pi for i = 1, . . . , 8 are the transition

probabilities expressed in (5.14)–(5.15).

Proof: See Appendix A. �

One of the key steps in obtaining the effective capacity expression in (5.19) is

the observation that the matrix R is of unit rank, which arises due to the assump-

tions that the primary user activity and fading are changing independently from

frame to frame. On the other hand, having a correlation structure would lead to

a practically more appealing model that takes into account the bursty nature of

these processes. We note that in treating such a model, the general structure of

the formulations will be preserved. For instance, when the primary user activity

and fading are modeled as Markov processes, the only change occurs in the tran-

sition probability matrix R which is no longer of unit rank. In this case, effective
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Figure 5.2: Effective Capacity and Pf − Pd v.s. Channel Detection Threshold λ.
θ = 0.01.

capacity can be expressed in terms of sp(φ(θ)R), the maximum of the absolute

values of the eigenvalues of the matrix φ(θ)R.

We would like to note that the effective capacity expression in (5.19) is obtained

for a given sensing duration N, detection threshold λ, and QoS exponent θ. In

the next section, we investigate the impact of these parameters on the effective

capacity through numerical analysis.

5.3.3 Numerical Results

In this section, we present the numerical results. While the above analysis is valid

for any fading distribution with finite variance, we assume in the numerical re-

sults that the fading coefficients are zero-mean Gaussian random variables with

unit variance. Hence, we consider a Rayleigh fading environment. In Figure 5.2,

we plot the effective capacity as a function of the detection threshold value λ for

different sensing durations N. At the same time, we compare the false alarm and
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detection probabilities. The channel bandwidth is 100 kHz. We assume that the

duration of the block is T = 0.1 seconds. The average input SNR values when

the channel is detected correctly are SNR1 = 0 dB and SNR4 = 10 dB for busy

and idle channels, respectively. The QoS exponent is θ = 0.01. The channel is

assumed to be busy with an average probability of ρ = 0.1. As we see in Fig. 5.2,

the effective capacity is increasing with increasing λ. However, at the same time,

as λ increases, the probabilities of false alarm and detection are getting smaller.

For instance, when λ ≈ 1, the false alarm probabilities start diminishing, which in

turn increases the effective capacity values significantly. If λ is increased beyond

2, we observe that the detection probabilities start decreasing, causing increasing

disturbance to the primary users. But, since the secondary user assumes that the

channel is idle in the case of miss detection and transmits at a higher power level,

we again see an increase in the effective capacity. Therefore, this increase occurs

at the cost of increased interference to the primary users, which can be limited

by imposing a lower bound on the detection probability. In Fig. 5.2, we further

observe that as the duration of channel sensing N increases, the false alarm and

detection probabilities decrease with sharper slopes. On the other hand, we note

that having a larger N decreases the effective capacity values outside the range of

λ values at which transitions in the false alarm and detection probabilities occur.

This is due to the fact that as N increases, less time is available for data transmis-

sion. Finally, we remark that if the threshold value λ is taken between 1.2 and

1.7, the probabilities of false alarm and detection are 0 and 1, respectively, and the

channel effective capacity is approximately 0.052 bits/sec/Hz. Such a favorable

situation arises because of the large number of samples NB used for channel sens-

ing. If B or N is decreased significantly, false alarm and detection probabilities

decrease with much smaller slopes, avoiding the possibility of realizing the above
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Figure 5.3: Effective Capacity and Pf − Pd v.s. Channel Detection Threshold λ.
θ = 1.

favorable scenario.

In Figure 5.3, all parameters other than θ are kept the same as the ones used

in Fig. 5.2 while the QoS exponent is increased to θ = 1. Note that since the

false alarm and detection probabilities do not depend on θ, we have the same

results as in Fig. 5.2. Additionally, similar trends are observed in the effective

capacity curves. However, since higher θ values mean more strict QoS limitations,

we observe much smaller effective capacity values in Fig. 5.3.

In Figure 5.4, we plot the effective capacity as a function of the channel sens-

ing duration, where we consider three different values of the channel detection

threshold. The input SNR values are the same as the ones used in the previous

figures and θ = 0.01. We observe that when λ = 0.4 and hence the threshold is

small, both the false alarm and detection probabilities are high. Since false alarms

happen frequently, effective capacity is small and gets smaller with increasing N.

On the other hand, if λ = 2.2, false alarm and detection probabilities are low and
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decrease with increasing N. Hence, the secondary transmitter frequently assumes

that the channel is idle and transmits with high power. As a result, the effective

capacity is high. However, as remarked before, high interference is caused to the

primary users. We further note that the effective capacity achieves its maximum

value at N ≈ 0.0035 above which the effective capacity starts decreasing as less

time is allocated to data transmission. When λ = 1.35, detection probabilities ap-

proach 1 and false alarm probabilities decrease to zero with increasing N. Hence,

the channel is sensed reliably and disturbance to primary users is minimal. On

the other hand, the effective capacity is smaller than that achieved when λ = 2.2.

In Figure 5.5, we plot the optimal transmission rates r1 and r2 with which the

data is sent through the channel when the channel is busy and idle, respectively,

as a function of the channel sensing duration N for different values of channel

occupancy probability ρ. We set λ = 1.35. As we can see, the optimal transmis-

sion rates r2 for different values of ρ converge when the detection probability is
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1. Similarly, the optimal transmission rates r1 for different values of the channel

occupation probabilities converge when the false alarm probability is 0. Hence,

the optimal rates are independent of ρ when the false alarm and detection proba-

bilities are 0 and 1, respectively.

In Figure 5.6, with the assumption that the primary users’ activities are known

perfectly (i.e., there is no sensing error), we display the effective capacity and opti-

mal data transmission rates obtained at different channel occupation probabilities

ρ as a function of the QoS exponent θ. In the upper part of the figure, we notice

that the effective capacity is decreasing with increasing θ and increasing primary

user activity in the channel. We also observe that as θ increases and hence more

strict QoS are imposed, the sensitivity of the effective capacity to ρ decreases. In

the lower part of Fig. 5.6, we plot the optimal data transmission rates. The dashed

line shows the rates when the channel is empty whereas the solid line gives the

rates used when the channel is occupied by the primary users. Here, we observe

that while the optimal data transmission rates are decreasing with increasing θ,

they are independent of ρ and hence the primary users’ activity in the channel.

5.4 State Transition Model and Effective Capacity

with CSI at Both the Receiver and Transmitter

In this section, we assume that both the transmitter and the receiver have perfect

CSI, and hence perfectly know the instantaneous values of {h[i]}3. With this as-

3Channel knowledge can be acquired at the receiver through training-based transmission
schemes and can be fed back to the transmitter. In general, these operations require additional
resources. However, the cost of channel estimation and feedback is not addressed in this chapter
to simplify the analysis. We would like to refer to [65] where estimation schemes are explicitly
considered and effective capacity is investigated in the presence of imperfect channel knowledge.
Moreover, we would like to note that the assumption of perfect CSI is accurate in slow-fading
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sumption, as a major difference from Section 5.3, we now allow the transmitter

to adapt its rate and power with respect to the channel conditions. In partic-

ular, we assume that the transmitter sends the information at the rate that is

equal to the instantaneous channel capacity value, and employs the normalized

power adaptation policies µ1(θ, z(i)) = P1(θ,z(i))

P1
when the channel is busy, and

µ2(θ, z(i)) = P2(θ,z(i))

P2
when the channel is idle. Note that the power adaptation

schemes are normalized by the average power constraints P1 and P2, and they

depend on the QoS exponent θ and the instantaneous channel state z(i) = |h(i)|2 .

Note further that the power adaptation policies need to satisfy the average power

constraints:

Ez{µ1(θ, z))} =
∫ ∞

0
µ1(θ, z)) f (z)dz ≤ 1

and

Ez{µ2(θ, z))} =
∫ ∞

0
µ2(θ, z)) f (z)dz ≤ 1 (5.20)

where f (z) denotes the probability density function (pdf) of z = |h|2.

5.4.1 State Transition Model

With respect to the decision of channel sensing, we still have the four possible

channel scenarios outlined at the beginning of Section 5.3.1. Below, we first spec-

ify the instantaneous capacity values (denoted by C) and the transmission rates

(denoted by r) used by the transmitter in each possible scenario together with the

state in which the channel is, and then we provide a detailed description of the

scenarios. In this chapter, we assume that the channel fading coefficients stay constant over a
duration of TB symbols. Hence, close-to-perfect CSI can be obtained when TB is large.
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channel states:

1. Channel is busy and is detected as busy. C1(i) = B log2(1+µ1(θ, z(i))z(i)SNR1)

and r1(i) = C1(i). The channel is ON.

2. Channel is busy but is detected as idle. C2(i) = B log2(1+µ2(θ, z(i))z(i)SNR2)

and r2(i) > C2(i). The channel is OFF.

3. Channel is idle but is detected as busy. C3(i) = B log2(1+µ1(θ, z(i))z(i)SNR3)

and r1(i) < C3(i) The channel is ON.

4. Channel is idle and is detected as idle. C4(i) = B log2(1+µ2(θ, z(i))z(i)SNR4)

and r2(i) = C4(i). The channel is ON.

SNR expressions above are the same as that defined in (5.11). Note that, in con-

trast to the analysis in Section 5.3.1, we in this section have only one state (either

ON or OFF) for each scenario. We now describe these states. If the channel is

detected as busy, the secondary transmitter sends the data at the instantaneous

rate

r1(i) = B log2(1 + µ1(θ, z(i))z(i)SNR1) (5.21)

where µ1(θ, z(i)) is the power adaptation policy in this case. Depending on the

channel’s true state being busy or idle (scenarios 1 or 3 above), r1(i) is either

equal to the instantaneous channel capacity as in scenario 1 or less than that as in

scenario 3. Hence, in both cases, reliable transmission can be attained at the rate

of r1(i), and the channels are ON. When the channel is detected as idle, the data

transmission rate is

r2(i) = B log2(1 + µ2(θ, z(i))z(i)SNR4). (5.22)
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If the channel is actually idle, r2(i) is equal to the instantaneous channel capacity,

and therefore the channel is in the ON state as in scenario 4. On the other hand,

if the channel is busy but detected as idle as in scenario 2 above, r2(i) is greater

than the channel capacity because the transmitter does not take into account the

interference caused by the primary users. Hence, this becomes the only case in

which the channel is in the OFF state. Similarly as before, we assume that outage

occurs in this state and reliable transmission can not be provided. The information

has to be resent with the assistance of an ARQ mechanism.

In summary, we have three ON states and one OFF state under the assump-

tions of this section. These states correspond to states 1, 4, 5, and 7 of Fig. 5.1.

Therefore, the state transition model in this section can be obtained by keeping

these states and eliminating states 2, 3, 6, and 8 in the state-transition model in

Fig. 5.1. Note that as another major difference from the state-transition model

in Section 5.3.1, the transmission rates in each state are now random processes.

Therefore, in this new model, the transition probabilities depend only on the de-

tection probabilities and the prior probability of channel being busy, ρ. These

probabilities can be expressed as

pi1 = p1 = ρPd, pi4 = p4 = ρ(1 − Pd), pi5 = p5 = (1 − ρ)Pf ,

and

pi7 = p7 = (1 − ρ)(1 − Pf ), (5.23)

for i = 1, 4, 5, and 7.
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5.4.2 Effective Capacity

The following result provides the effective capacity expression when the transmit-

ter, having perfect CSI, employs rate and power adaptation during transmission.

Theorem 2 For the cognitive radio channel with power and rate adaptation at the trans-

mitter and with the state transition model described in Section 5.4.1, the normalized

effective capacity in bits/s/Hz is given by

RE(SNR, θ) = max
µ1(θ,z):Ez{µ1(θ,z)}≤1
µ2(θ,z):Ez{µ2(θ,z)}≤1

− 1

θTB
loge

[ (
ρPd + (1 − ρ)Pf

)
Ez{e−(T−N)θr1}

+ (1 − ρ)(1 − Pf )Ez{e−(T−N)θr2}+ ρ(1 − Pd)

]

(5.24)

where the expectations are with respect to z, and r1 = B log2(1 + µ1(θ, z)zSNR1) and

r2 = B log2(1 + µ2(θ, z)zSNR4).

Proof: See Appendix B. �

Having obtained the expression for the effective capacity, we now derive the

optimal power adaptation strategies that maximize the effective capacity.

Theorem 3 The optimal power adaptation policies that maximize the effective capacity

are given by

µ1(θ, z) =





1
SNR1

(
1

γ
1

a+1
1

1

z
a

a+1
− 1

z

)
, z > γ1

0, otherwise

(5.25)
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and

µ2(θ, z) =





1
SNR4

(
1

γ
1

a+1
2

1

z
a

a+1
− 1

z

)
, z > γ2

0, otherwise.

(5.26)

where a = (T − N)Bθ/ loge 2. γ1 and γ2 are the threshold values in the power adapta-

tion policies and they can be found from the average power constraints in (5.20) through

numerical techniques.

Proof: See Appendix C. �

The optimal power allocation schemes identified in Theorem 3 are similar to

that given in [76]. However, in the cognitive radio channel, we have two allocation

schemes depending on the presence or absence of active primary users. Note that

the optimal power allocation in the presence of active users, µ1(θ, z(i)) = P1(θ,z(i))

P1
,

has to be performed under a more strict average power constraint since P1 < P2.

Note also that under certain fading conditions, we might have µ1(θ, z(i)) > P1,

causing more interference to the primary users. Therefore, it is also of interest to

apply only rate adaptation and use fixed-power transmission in which case we

have µ1(θ, z(i)) = µ2(θ, z(i)) = 1. We can immediately see from the result of

Theorem 2 that the effective capacity of fixed-power/variable-rate transmission is

RE(SNR, θ) = − 1

θTB
loge

[ (
ρPd + (1 − ρ)Pf

)
Ez{e−(T−N)θr1}

+ (1 − ρ)(1 − Pf )Ez{e−(T−N)θr2}+ ρ(1 − Pd)

]
(5.27)

where r1 = B log2(1 + zSNR1) and r2 = B log2(1 + zSNR4).
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5.4.3 Numerical Results

In Figure 5.7, we plot the effective capacities of the three transmission schemes,

namely, fixed-power/fixed-rate transmission (solid line), variable-power/variable-

rate transmission (dashed-line), and fixed-power/variable-rate transmission (dotted-

line), discussed heretofore in the chapter, as a function of the detection threshold

λ. We note that the optimal power adaptation is employed in the variable-power

scheme. In this figure, all the parameters are the same as in Fig. 5.2 discussed

in Section 5.3. Hence, θ = 0.01. When we compare variable-rate/variable-power

and variable-rate/fixed-power schemes, we immediately notice, as expected, that

variable-rate/variable-power outperforms the latter one for all λ values. However,

the difference in the effective capacity values reduces as λ is increased beyond

≈ 2 where detection probability starts diminishing. Additionally, we observe

that for λ ≥ 2, fixed-rate/fixed-power scheme starts outperforming the variable

schemes. Note that when the detection probability is small, miss-detections occur

frequently. In variable schemes, recall that the transmission enters the OFF state

in cases of miss-detection in which the channel is detected as idle but is actually

busy, and hence a degradation in the performance is expected. This is also the

reason for why the effective capacity of the variable schemes is decreasing for λ

values greater than 1.5 where the detection probability has also started getting

smaller than 1. Note that this is in stark contrast to the behavior exhibited by the

fixed-rate/fixed-power scheme. We finally note that the variable schemes perform

better than the fixed-rate/fixed-power transmission when the detection probabil-

ities are relatively high (or equivalently when λ <≈ 2), and also as before, an

decrease in the false alarm probability increases the rates.

Figure 5.8 plots the effective capacities of different transmission schemes as a
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function of the QoS exponent θ under the assumption of perfect channel detection

i.e., the probability of false alarm is 0 and the probability of detection is 1. As

expected, effective capacity values are decreasing with increasing θ values. Since

the plot is obtained under perfect channel sensing, the transmission strategy with

variable power and rate outperforms the other two schemes for all θ values. On

the other hand, we interestingly note that the gains attained through adapting the

power and rate tend to diminish with increasing θ. Hence, QoS constraints have

a significant impact in this respect.

5.5 Conclusion

In this chapter, we have analyzed the effective capacity of cognitive radio chan-

nels in order to identify the performance levels and to determine the interactions

between throughput and channel sensing parameters in the presence of QoS con-

straints. We have initially constructed a state-transition model for cognitive trans-

mission and then obtained expressions for the effective capacity. This analysis

is conducted for fixed-power/fixed-rate, fixed-power/variable-rate, and variable-

power/variable-rate transmission schemes under different assumptions on the

availability of CSI at the transmitter. Through numerical results, we have investi-

gated the impact of channel sensing duration and threshold, detection and false

alarm probabilities, and QoS limitations on the throughput. Several insightful

observations are made. We have noted that the effective capacity in general in-

creases with decreasing false alarm probabilities. On the other hand, we have

remarked that diminishing detection probabilities have a different effect in fixed-

rate and variable-rate schemes. We have seen that variable schemes outperform

fixed-rate transmission methods if the detection probabilities are sufficiently high.
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Otherwise, fixed-power/fixed-rate transmission should be preferred. We have ob-

served that both the effective capacity and transmission rates get smaller with

increasing θ. We have also noted that the gains through adapting rate and power

diminish as θ increases and hence QoS constraints become more stringent.
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Chapter 6

Cognitive Radio Transmission under

QoS Constraints and Interference

Limitations

In this chapter, the performance of cognitive transmission under QoS constraints

and interference limitations is studied. Cognitive SUs are assumed to initially

perform sensing over multiple frequency bands (or equivalently channels) to de-

tect the activities of primary users. Subsequently, they perform transmission in

a single channel at variable power and rates depending on the channel sensing

decisions and the fading environment. A state transition model is constructed

to model this cognitive operation. Statistical limitations on the buffer lengths are

imposed to take into account the QoS constraints of the cognitive SUs. Under

such QoS constraints and limitations on the interference caused to the primary

users, the maximum throughput is identified by finding the effective capacity of

the cognitive radio channel. Optimal power allocation strategies are obtained

and the optimal channel selection criterion is identified. The intricate interplay
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between effective capacity, interference and QoS constraints, channel sensing pa-

rameters and reliability, fading, and the number of available frequency bands is

investigated through numerical results.

6.1 Cognitive Channel Model and Channel Sensing

In this chapter, we consider a cognitive radio system in which SUs sense M chan-

nels and choose one channel for data transmission. We assume that channel sens-

ing and data transmission are conducted in frames of duration T seconds. In

each frame, N seconds is allocated for channel sensing while data transmission

occurs in the remaining T − N seconds. Transmission power and rate levels de-

pend on the primary users’ activities. If all of the channels are detected as busy,

transmitter selects one channel with a certain criterion, and sets the transmission

power and rate to Pk,1(i) and rk,1(i), respectively, where k ∈ {1, 2, . . . , M} is the

index of the selected channel and i = 1, 2, . . . denotes the time index. Note that if

Pk,1(i) = 0, transmitter stops sending information when it detects primary users

in all channels. If at least one channel is sensed to be idle, data transmission is

performed with power Pk,2(i) and at rate rk,2(i). If multiple channels are detected

as idle, then one idle channel is selected again considering a certain criterion.

The discrete-time channel input-output relation between the secondary trans-

mitter and receiver in the ith symbol duration in the kth channel is given by

yk(i) = hk(i)xk(i) + nk(i) i = 1, 2, . . . , (6.1)

if the primary users are absent. On the other hand, if primary users are present
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in the channel, we have

yk(i) = hk(i)xk(i) + sk,p(i) + nk(i) i = 1, 2, . . . , (6.2)

where xk(i) and yk(i) denote the complex-valued channel input and output, re-

spectively. In (6.1) and (6.2), hk(i) is the channel fading coefficient between the cog-

nitive transmitter and the receiver. We assume that hk(i) has a finite variance, i.e.,

σ2
hk

< ∞, but otherwise has an arbitrary distribution. We define zk(i) = |hk(i)|2.

We consider a block-fading channel model and assume that the fading coefficients

stay constant for a block of duration T seconds and change from one block to an-

other independently in each channel. In (6.2), sk,p(i) represents the active primary

user’s faded signal arriving at the secondary receiver in the kth channel, and has

a variance σ2
sk,p

(i). nk(i) models the additive thermal noise at the receiver, and is

a zero-mean, circularly symmetric, complex Gaussian random variable with vari-

ance E{|nk(i)|2} = σ2
nk

for all i. We assume that the bandwidth of the kth channel

is Bk.

In the absence of detailed information on primary users’ transmission policies,

energy-based detection methods are favorable for channel sensing. Knowing that

wideband channels exhibit frequency selective features, we can divide the band

into channels and estimate each received signal through its discrete Fourier trans-

form (DFT) [67]. The channel sensing can be formulated as a hypothesis testing

problem between the noise nk(i) and the signal sk,p(i) in noise. Noting that there

are NBk complex symbols in a duration of N seconds in each channel with band-

width Bk, the hypothesis test in channel k can mathematically be expressed as
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follows:

Hk,0 : yk(i) = nk(i), i = 1, . . . , NBk

Hk,1 : yk(i) = sk,p(i) + nk(i), i = 1, . . . , NBk.

(6.3)

For the above detection problem, the optimal Neyman-Pearson detector is given

by [63]

Yk =
1

NBk

NBk

∑
i=1

|yk(i)|2 ≷
Hk,1

Hk,0
γk. (6.4)

We assume that sk,p(i) has a circularly symmetric complex Gaussian distribution

with zero-mean and variance σ2
sk,p

. Assuming further that {sk,p(i)} are i.i.d., we

can immediately conclude that the test statistic Yk is chi-square distributed with

2NBk degrees of freedom. In this case, the probabilities of false alarm and detec-

tion can be established as follows:

Pk, f = Pr(Yk > γk|Hk,0) = 1 − P

(
NBkγk

σ2
nk

, NBk

)
(6.5)

Pk,d = Pr(Yk > γk|Hk,1) = 1 − P

(
NBkγk

σ2
nk
+ σ2

sk,p

, NBk

)
(6.6)

where P(x, a) denotes the regularized lower gamma function and is defined as

P(x, a) = γ(x,a)
Γ(a)

where γ(x, a) is the lower incomplete gamma function and Γ(a) is

the Gamma function. In Figure 6.1, the probability of detection, Pd, and the proba-

bility of false alarm, Pf , are plotted as a function of the energy detection threshold,

γ, for different values of channel detection duration. Note that the bandwidth is

B = 10kHz and the block duration is T = 0.1s. We can see that when the detection

threshold is low, Pd and Pf tend to be 1, which means that the secondary user, al-

ways assuming the existence of an active primary user, transmits with power P1(i)

and rate r1(i). On the other hand, when the detection threshold is high, Pd and
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Figure 6.1: Probability of Detection Pd and False Alarm Pf vs. Energy Detection
Threshold

Pf are close to zero, which means that the secondary user, being unable to detect

the activity of the primary users, always transmits with power P2(i) and rate r2(i),

possibly causing significant interference. The main purpose is to keep Pd as close

to 1 as possible and Pf as close to 0 as possible. Therefore, we have to keep the

detection threshold in a reasonable interval. Note that the duration of detection is

also important since increasing the number of channel samples used for sensing

improves the quality of channel detection.

In the hypothesis testing problem in (6.3), another approach is to consider Yk

as Gaussian distributed, which is accurate if NBk is large [50]. In this case, the

detection and false alarm probabilities can be expressed in terms of Gaussian Q-
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functions. We would like to note the rest of the analysis in the chapter does not

depend on the specific expressions of the false alarm and detection probabilities.

However, numerical results are obtained using (6.5) and (6.6).

6.2 State Transition Model

We assume that both the secondary receiver and transmitter have perfect CSI,

and hence perfectly know the realizations of the fading coefficients {hk(i)}. We

further assume that the wideband channel is divided into channels, each with

bandwidth that is equal to the coherence bandwidth Bc. Therefore, we henceforth

have Bk = Bc. With this assumption, we can suppose that independent flat fading

is experienced in each channel. In order to further simplify the setting, we con-

sider a symmetric model in which fading coefficients are identically distributed in

different channels. Moreover, we assume that the background noise and primary

users’ signals are also identically distributed in different channels and hence their

variances σ2
n and σ2

sp
do not depend on k, and the prior probabilities of each chan-

nel being occupied by the primary users are the same and equal to ρ. In channel

sensing, the same energy threshold, γ, is applied in each channel. Finally, in this

symmetric model, the transmission power and rate policies when the channels are

idle or busy are the same for each channel. Due to the consideration of a symmet-

ric model, we in the subsequent analysis drop the subscript k in the expressions

for the sake of brevity.

First, note that we have the following four possible scenarios considering the

correct detections and errors in channel sensing:

Scenario 1: All channels are detected as busy, and channel used for transmission

is actually busy.
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Scenario 2: All channels are detected as busy, and channel used for transmission

is actually idle.

Scenario 3: At least one channel is detected as idle, and channel used for trans-

mission is actually busy.

Scenario 4: At least one channel is detected as idle, and channel used for trans-

mission is actually idle.

In each scenario, we have one state, namely either ON or OFF, depending on

whether or not the instantaneous transmission rate exceeds the instantaneous

channel capacity. Considering the interference sp(i) caused by the primary users

as additional Gaussian noise, we can express the instantaneous channel capacities

in the above four scenarios as follows:

Scenario 1: C1(i) = Bc log2(1 + SNR1(i)).

Scenario 2: C2(i) = Bc log2(1 + SNR2(i)).

Scenario 3: C3(i) = Bc log2(1 + SNR3(i)).

Scenario 4: C4(i) = Bc log2(1 + SNR4(i)).

Above, we have defined

SNR1(i) =
P1(i)z(i)

Bc

(
σ2

n + σ2
sp

) , SNR2(i) =
P1(i)z(i)

Bcσ2
n

,

SNR3(i) =
P2(i)z(i)

Bc

(
σ2

n + σ2
sp

) , SNR4(i) =
P2(i)z(i)

Bcσ2
n

. (6.7)

Note that z(i) = |h(i)|2 denotes the fading power. In scenarios 1 and 2, the

secondary transmitter detects all channels as busy and transmits the information
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at rate

r1(i) = Bc log2 (1 + SNR1(i)) . (6.8)

On the other hand, in scenarios 3 and 4, at least one channel is sensed as idle and

the transmission rate is

r2(i) = Bc log2 (1 + SNR4(i)) , (6.9)

since the transmitter, assuming the channel as idle, sets the power level to P2(i)

and expects that no interference from the primary transmissions will be experi-

enced at the secondary receiver (as seen by the absence of σ2
sp

in the denominator

of SNR4).

In scenarios 1 and 2, transmission rate is less than or equal to the instantaneous

channel capacity. Hence, reliable transmission at rate r1(i) is attained and channel

is in the ON state. Similarly, the channel is in the ON state in scenario 4 in which

the transmission rate is r2(i). On the other hand, in scenario 3, transmission

rate exceeds the instantaneous channel capacity (i.e., r2(i) > C3(i)) due to miss-

detection. In this case, reliable communication cannot be established, and the

channel is assumed to be in the OFF state. Note that the effective transmission

rate in this state is zero, and therefore information needs to be retransmitted. We

assume that this is accomplished through a simple ARQ mechanism.

For this cognitive transmission model, we initially construct a state transition

model. While the ensuing discussion describes this model, Figure 6.2 provides

a depiction. As seen in Fig. 6.2, there are M + 1 ON states and 1 OFF state.

The single OFF state is the one experienced in scenario 3. The first ON state,

which is the top leftmost state in Fig. 6.2, is a combined version of the ON

states in scenarios 1 and 2 in both of which the transmission rate is r1(i) and the
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Figure 6.2: State transition model for the cognitive radio channel. The numbered
label for each state is given on the lower-right corner of the box representing the
state.

transmission power is P1(i). Note that all the channels are detected as busy in

this first ON state. The remaining ON states labeled 2 through (M + 1) can be

seen as the expansion of the ON state in scenario 4 in which at least one channel

is detected as idle and the channel chosen for transmission is actually idle. More

specifically, the kth ON state for k = 2, 3, . . . , M + 1 is the ON state in which k − 1

channels are detected as idle and the channel chosen for transmission is idle. Note

that the transmission rate is r2(i) and the transmission power is P2(i) in all ON

states labeled 2 through (M + 1).

Next, we characterize the state transition probabilities. State transitions occur

every T seconds. We can easily see that the probability of staying in the first ON

state, in which all channels are detected as busy, is expressed as follows:

p11 = αM (6.10)
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where α = ρPd + (1 − ρ) Pf is the probability that channel is detected as busy,

and Pd and Pf are the probabilities of detection and false alarm, respectively as

defined in (6.6). Recall that ρ denotes the probability that a channel is busy (i.e.,

there are active primary users in the channel). It is important to note that the tran-

sition probability in (6.10) is obtained under the assumptions that the primary

user activity is independent among the channels and also from one block to an-

other. Indeed, under the assumption of independence over the blocks, the state

transition probabilities do not depend on the originating state and hence we have

p11 = p21 = · · · = p(M+1)1 = p(M+2)1 = αM , p1 (6.11)

where we have defined p1 = pi1 for all i = 1, 2, . . . , M + 2. Similarly, we can

obtain for k = 2, 3, . . . , M + 1,

p1k = p2k = · · · = p(M+1)k = p(M+2)k = P

(
(k − 1) out of M

channels are
detected as idle

and
the channel chosen

for transmission
is actually idle

)

(6.12)

=




M

k − 1


 αM−k+1(1 − α)k−1

︸ ︷︷ ︸
probability that (k − 1) out of M channels

are detected as idle

× (1 − ρ)(1 − Pf )

1 − α︸ ︷︷ ︸
probability that the channel chosen for

transmission is actually idle
given that it is detected as idle

(6.13)

=
M!

(M − k + 1)!(k − 1)!
αM−k+1 (1 − α)k−2 (1 − ρ)

(
1 − Pf

)
(6.14)

, pk (6.15)
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Now, we can easily observe that the transition probabilities for the OFF state are

p1(M+2) = p2(M+2) = · · · = p(M+1)(M+2) = p(M+2)(M+2) (6.16)

= 1 −
M+1

∑
k=1

p1k

=
M

∑
k=1

M!

(M − k)!k!
αM−k (1 − α)k−1 ρ(1 − Pd)

, pM+2. (6.17)

Then, we can easily see that the (M + 2) × (M + 2) state transition probability

matrix can be expressed as

R =




p1,1 . . p1,M+2

. .

. .

pM+2,1 . . pM+2,M+2




=




p1 . . pM+2

. .

. .

p1 . . pM+2




Note that R has a rank of 1. Note also that in each frame duration of T seconds,

r1(k)(T − N) bits are transmitted and received in state 1, and r2(k)(T − N) bits are

transmitted and received in states 2 through M + 1, while the transmitted number

of bits is assumed to be zero in state M + 2.

6.3 Interference Power Constraints

In this section, we consider interference power constraints to limit the transmis-

sion powers of the SUs and provide protection to primary users. In particular, we

assume that the transmission power of the SUs is constrained in such a way that

the average interference power on the primary receiver is limited.
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Note that interference to the primary users is caused in scenarios 1 and 3. In

scenario 1, the channel is busy, and the secondary user, detecting the channel

as busy, transmits at power level P1. Consequently, the instantaneous interfer-

ence power experienced by the primary user is P1zsp where zsp = |hsp(i)|2 is the

magnitude-square of the fading coefficient of the channel between the secondary

transmitter and the primary user. Note also that the probability of being in sce-

nario 1 (i.e., the probability of detecting all channels busy and having the chosen

transmission channel as actually busy) is αM−1ρPd, as can be easily seen through

an analysis similar to that in (6.13).

In scenario 3, the secondary user, detecting the channel as idle, transmits at

power P2 although the channel is actually is busy. In this case, the instantaneous

interference power is P2zsp. Since we consider power adaption, transmission

power levels P1 and P2 in general vary with zsp and also with z, which is the

power of the fading coefficient between the secondary transmitter and secondary

receiver in the chosen transmission channel. Hence, in both scenarios, the instan-

taneous interference power levels depend on both zsp and z whose distributions

depend on the criterion with which the transmission channel is chosen and the

number of available channels from which the selection is performed. For this rea-

son, it is necessary in scenario 3 to separately consider the individual cases with

different number of idle-detected channels. We have M such cases. For instance,

in the kth case for k = 1, 2, . . . , M, we have k channels detected as idle and the

channel chosen out of these k channels is actually busy. The probability of the kth

case can be easily found to be M!
(M−k)!k!

αM−k (1 − α)k−1 ρ(1 − Pd).

Following the above discussion, we can now express the average interference



112

constraints as follows:

αM−1ρPd︸ ︷︷ ︸
probability

of
scenario 1

E
{

P1zsp

}
︸ ︷︷ ︸

average
interference

in
scenario 1

+
M

∑
k=1

M!

(M − k)!k!
αM−k (1 − α)k−1 ρ(1 − Pd)

︸ ︷︷ ︸
probability of the kth case of scenario 3

Ek

{
P2zsp

}
︸ ︷︷ ︸

average
interference

in the kth case
of scenario 3

≤ Iavg

(6.18)

Note from above that Iavg is the constraint on the interference averaged over the

distributions of z and zsp (through the expectations), and also averaged over the

probabilities of different scenarios and cases. It is important to note that the term

Ek

{
P2zsp

}
, as discussed above, depends in general on the number of idle-detected

channels, k. This dependence is indicated through the subscript k.

In a system with more strict requirements on the interference, the following

individual interference constraints can be imposed:

E
{

P1zsp

}
≤ I0 and Ek

{
P2zsp

}
≤ Ik for k = 1, 2, . . . , M. (6.19)

If, for instance, I0 = I1 = I2 = . . . = IM, then interference averaged over fading

is limited by the same constraint regardless of which scenario is being realized.

As considered in [58], by appropriately choosing the values of I0 and Ik in (6.19),

we can provide primary users a minimum rate guarantee for a certain percent-

age of the time in a Rayleigh fading environment through the following outage
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constraints:

Pr

{
log2

(
1 +

Pprizp(i)

P1(i)zsp(i) + σ2
np

Bc

)
≤ Rmin

}
≤ Pout

1 , (6.20)

Pr

{
log2

(
1 +

Pprizp(i)

P2(i)zsp(i) + σ2
np

Bc

)
≤ Rmin

}
≤ Pout

2,k , for k = 1, 2, . . . , M.

(6.21)

Pout
1 and Pout

2,k can be seen as the outage constraints in scenario 1 and in the kth

case of scenario 3, respectively. In the above formulations, Rmin is the required

minimum transmission rate to be provided to the primary users with outage

probabilities Pout
1 and Pout

2,k , and zp(i) = |hp(i)|2 where hp is the fading coefficient

of the channel between the primary transmitter and primary receiver. σ2
np

is the

variance of the zero-mean, circularly symmetric, complex Gaussian thermal noise

at the primary receiver. Ppri is the transmission power of the primary transmitter.

Under the assumption that zp is an exponential random variable (i.e., we have

a Rayleigh fading channel between the primary transmitter and receiver), the

outage probability in (6.20) can be expressed as follows:

Pr

{
log2

(
1 +

Pprizp(i)

P1(i)zsp(i) + σ2
np

Bc

)
≤ Rmin

}

= Pr

{
zp ≤ 2Rmin − 1

Ppri

(
P1(i)zsp(i) + σ2

np
Bc

)}

(6.22)

= E

{
1 − e

− 2Rmin−1
Ppri

(P1(i)zsp(i)+σ2
np Bc)

}
(6.23)

≤ 1 − e
− 2Rmin−1

Ppri

(
E{P1(i)zsp(i)}+σ2

np Bc

)

(6.24)
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where (6.23) is obtained by performing integration with respect to the probability

density function (pdf) of zp in the evaluation of the probability expression in (6.22).

As a result, the expectation in (6.23) is with respect to the remaining random

components P1 and zsp. Finally, the inequality in (6.24) follows from the concavity

of the function 1 − e−x and Jensen’s inequality. From (6.24), we can immediately

see that if we impose

E
{

P1zsp

} ≤ Φ1 = − loge

(
1 − Pout

1

)

2Rmin−1
Ppri

− σ2
np

Bc, (6.25)

then the constraint in (6.20) will be satisfied. A similar discussion follows for

(6.21) as well.

In the subsequent parts of the chapter, we assume that an average interference

power constraint in the form given in (6.18) is imposed.

6.4 Effective Capacity

In this section, we identify the maximum throughput that the cognitive radio

channel with the aforementioned state-transition model can sustain under inter-

ference power constraints and statistical QoS limitations imposed in the form of

buffer or delay violation probabilities. Recall that the effective capacity for a given

QoS exponent θ is given by

− lim
t→∞

1

θt
loge E{e−θS(t)} = −Λ(−θ)

θ
(6.26)

where S(t) = ∑
t
k=1 r(k) is the time-accumulated service process, and {r(k), k =

1, 2, . . . } is defined as the discrete-time, stationary and ergodic stochastic service
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process. Note that Λ(θ) is the asymptotic log-moment generating function of S(t),

and is given by

Λ(θ) = lim
t→∞

1

t
log E

[
eθS(t)

]
. (6.27)

The service rate according to the model described in Section 6.2 is r(k) = r1(k)(T −
N) if the cognitive system is in state 1 at time k. Similarly, the service rate is

r(k) = r2(k)(T − N) in the states between 2 and M + 1. In the OFF state, instanta-

neous transmission rate exceeds the instantaneous channel capacity and reliable

communication can not be achieved. Therefore, the service rate in this state is

effectively zero.

In the next result, we provide the effective capacity for the cognitive radio

channel and state transition model described in the previous section.

Theorem 4 For the cognitive radio channel with the state transition model given in

Section 6.2, the normalized effective capacity (in bits/s/Hz) under the average interference

power constraint (6.18) is given by

RE(SNR, θ) =− 1

θTBc
max

αM−1ρPdE{P1zsp}
+ ∑

M
k=1 αM−k(1−α)k−1ρ(1−Pd)

M!
(M−k)!k!

Ek{P2zsp}
≤Iavg

loge

(
p1E

{
e−(T−N)θr1

}

+
M

∑
k=1

pk+1Ek

{
e−(T−N)θr2

}
+ pM+2

)
. (6.28)

Above, pk for k = 1, 2, . . . , M + 2 denote the state transition probabilities defined in

(6.11), (6.15), and (6.17) in Section 6.2. Note also that the maximization is with respect

to the power adaptation policies P1 and P2.

Remark: In the effective capacity expression (6.28), the expectation E
{

P1zsp

}

in the constraint and E
{

e−(T−N)θr1

}
are with respect to the joint distribution of
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(z, zsp) of the channel selected for transmission when all channels are detected

busy. The expectations Ek

{
P2zsp

}
and Ek

{
e−(T−N)θr2

}
are with respect to the

joint distribution of (z, zsp) of the channel selected for transmission when k chan-

nels are detected as idle.

Proof: See Appendix D. �

We would like to note that the effective capacity expression in (6.28) is ob-

tained for a given sensing duration N, detection threshold γ, and QoS exponent

θ. In the next section, we investigate the impact of these parameters on the effec-

tive capacity through numerical analysis. Before the numerical analysis, we first

identify below the optimal power adaptation policies that the SUs should employ.

Theorem 5 The optimal power adaptations for the SUs under the constraint given in

(6.18) are

P1 =





µ1
z

[(
z

zspβ1λ

) 1
c+1 − 1

]
, z

zsp
≥ β1λ

0, otherwise

, (6.29)

and

P2 =





µ2
z

[(
z

zspβ2λ

) 1
c+1 − 1

]
, z

zsp
≥ β2λ

0, otherwise

, (6.30)

where µ1 = Bc(σ2
n + σ2

sp
), µ2 = σ2

nBc, c = Bc(T − N)θ/ loge 2, β1 =
µ1ρPd

cα and

β2 =
ρ(1−Pd)µ2

c(1−ρ)(1−Pf )
. λ is a parameter whose value can be found numerically by satisfying

the constraint (6.18) with equality.

Proof: See Appendix E. �

Now, using the optimal transmission policies given in (6.29) and (6.30), we can



117

express the effective capacity as follows:

RE(SNR, θ) =− 1

θTBc
loge

(
p1Eβ1λ

{(
z

zspβ1λ

)− c
c+1

}

+
M

∑
k=1

pk+1Ek,β2λ

{(
z

zspβ2λ

)− c
c+1

}
+ pM+2

)
. (6.31)

Above, the subscripts β1λ and β2λ in the expectations denote that the lower

limits of the integrals are equal these values and not to zero. For instance,

Eβ1λ

{(
z

zspβ1λ

)− c
c+1

}
=
∫ ∞

β1λ

(
x

β1λ

)− c
c+1

f z
zsp
(x) dx.

Until now, we have not specified the criterion with which the transmission

channel is selected from a set of available channels. In (6.31), we can easily ob-

serve that the effective capacity depends only on the channel power ratio z
zsp

, and

is increasing with increasing z
zsp

due to the fact that the terms
(

z
zspβ1λ

)− c
c+1

and
(

z
zspβ2λ

)− c
c+1

are monotonically decreasing functions of z
zsp

. Therefore, the crite-

rion for choosing the transmission band among multiple busy bands unless there

is no idle band detected, or among multiple idle bands if there are idle bands

detected should be based on this ratio of the channel gains. Clearly, the strategy

that maximizes the effective capacity is to choose the channel (or equivalently

the frequency band) with the highest ratio of z
zsp

. This is also intuitively appeal-

ing as we want to maximize z to improve the secondary transmission and at the

same time minimize zsp to diminish the interference caused to the primary users.

Maximizing z
zsp

provides us the right balance in the channel selection.

We define x = maxi∈{1,2,...,M}
zi

zsp,i
where zi

zsp,i
is the ratio of the gains in the ith

channel. Assuming that these ratios are independent and identically distributed
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in different channels, we can express the pdf of x as

fx(x) = M f z
zsp
(x)
[

F z
zsp

(x)
]M−1

, (6.32)

where f z
zsp

and F z
zsp

are the pdf and cumulative distribution function (cdf), respec-

tively, of z
zsp

, the gain ratio in one channel. Now, the expectation Eβ1λ

{(
z

zspβ1λ

)− c
c+1

}
,

which arises under the assumption that all channels are detected busy and the

transmission channel is selected among these M channels, can be evaluated with

respect to the distribution in (6.32).

Similarly, we define xk = maxi∈{1,2,...,k}
zi

zsp,i
for k = 1, . . . , M. The pdf of xk can

be expressed as follows:

fxk
(x) = k f z

zsp
(x)
[

F z
zsp

(x)
]k−1

k = 1, 2, . . . , M. (6.33)

The expectation Ek,β2λ

{(
z

zspβ2λ

)− c
c+1

}
can be evaluated using the distribution

in (6.33). Finally, after some calculations, we can write the effective capacity in

integral form as

RE (SNR, θ) =− 1

θTBc
loge

{
MαM

∫ ∞

β1λ
f z

zsp
(x)
[

F z
zsp
(x)
]M−1

[
β1λ

x

] c
c+1

dx

+ (1 − ρ)(1 − Pf )M
∫ ∞

β2λ
f z

zsp
(x)
[

α + (1 − α)F z
zsp

(x)
]M−1

[
β2λ

x

] c
c+1

dx

+ pM+2

}
. (6.34)
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6.5 Numerical Results

In this section, we present numerical results for the effective capacity as a func-

tion of the channel sensing reliability (i.e., detection and false alarm probabilities)

and the average interference constraints. Throughout the numerical results, we

assume that QoS parameter is θ = 0.1, block duration is T = 1s, channel sensing

duration is N = 0.1s, and the prior probability of each channel being busy is

ρ = 0.1.

Before the numerical analysis, we first provide expressions for the probabilities

of operating in each one of the four scenarios described in Section 6.2. These

probabilities are also important metrics in analyzing the performance. We have

P{secondary system is in scenario 1} = PS1

= αM−1ρPd,

P{secondary system is in scenario 2} = PS2

= αM−1(1 − ρ)Pf ,

P{secondary system is in scenario 3} = PS3

=
M

∑
k=1




M

k


 αM−k(1 − α)k

︸ ︷︷ ︸
probability that at least one
channel is detected as idle

ρ(1 − Pd)

1 − α︸ ︷︷ ︸
probability that

the channel chosen
for transmission
is actually busy
given that it is

detected as idle

=
(1 − αM)ρ(1 − Pd)

1 − α
,

P{secondary system is in scenario 4} = PS4

=
(1 − αM)(1 − ρ)(1 − Pf )

1 − α
. (6.35)
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Figure 6.3: Probability of different scenarios vs. probability of detection Pd for
different number of channels M.

In Figure 6.3, we plot these probabilities as a function of the detection proba-

bility Pd for two cases in which the number of channels is M = 1 and M = 10,

respectively. As expected, we observe that PS1
and PS2

decrease with increasing

M. We also see that PS3
and PS4

are assuming small values when Pd is very close

to 1. Note from Fig. 6.1 that as Pd approaches 1, the false alarm probability Pf

increases as well.

6.5.1 Rayleigh Fading

The analysis in the preceding sections apply for arbitrary joint distributions of z

and zsp under the mild assumption that the they have finite means (i.e., fading has



121

finite average power). In this subsection, we consider a Rayleigh fading scenario

in which the power gains z and zsp are exponentially distributed. We assume that

z and zsp are mutually independent and each has unit-mean. Then, the pdf and

cdf of z
zsp

can be expressed as follows:

f z
zsp

(x) =
1

(x + 1)2
x ≥ 0 and F z

zsp
(x) =

x

x + 1
x ≥ 0. (6.36)

In Fig. 6.4, we plot the effective capacity vs. probability of detection, Pd, for

different number of channels when the average interference power constraint nor-

malized by the noise power is Īavg(dB) = 10 log10

(
Iavg

σ2
np Bc

)
= 0dB, where σ2

np
is

the noise variance at the primary user. We observe that with increasing Pd, the

effective capacity is increasing due to the fact more reliable detection of the ac-

tivity primary users leads to fewer miss-detections and hence the probability of

scenario 3 or equivalently the probability of being in state M + 2, in which the

transmission rate is effectively zero, diminishes. We also interestingly see that the

highest effective capacity is attained when M = 1. Hence, SUs seem to not benefit

from the availability of multiple channels. This is especially pronounced for high

values of Pd. Although several factors and parameters are in play in determin-

ing the value of the effective capacity, one explanation for this observation is that

the probabilities of scenarios 1 and 2, in which the SUs transmit with power P1,

decrease with increasing M, while the probabilities of scenarios 3 and 4 increase

as seen in (6.35). Note that in scenario 3, no reliable communication is possible

and transmission rate is effectively zero. In Fig. 6.5, we display similar results

when Īavg = −10dB. Hence, SUs operate under more stringent interference con-

straints. In this case, we note that M = 2 gives the highest throughput while the

performance with M = 1 is strictly suboptimal.
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Figure 6.4: Effective capacity vs. probability of detection Pd for different number
of channels M when Īavg = 0 dB.

In Fig. 6.6, we show the effective capacities as a function Īavg (dB) for different

values of M when Pd = 0.9 and Pf = 0.2. Confirming our previous observation,

we notice that as the interference constraint gets more strict and hence Īavg be-

comes smaller, a higher value of M is needed to maximize the effective capacity.

For instance, M = 10 channels are needed when Īavg < −30dB. On the other hand,

for approximately Īavg > −6dB, having M = 1 gives the highest throughput.

Above, we have remarked that increasing the number of available channels

from which the transmission channel is selected provides no benefit or can even

degrade the performance of SUs under certain conditions. On the other hand,

it is important to note that increasing M always brings a benefit to the primary
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Figure 6.5: Effective capacity vs. probability of detection Pd for different number
of channels M when Īavg = −10 dB.

users in the form of decreased probability of interference. In order to quantify this

type of gain, we consider below the probability that the channel selected for trans-

mission is actually busy and hence the primary user in this channel experiences

interference:

Pint = P

(
channel selected
for transmission
is actually busy

)
=P

(
channel selected
for transmission
is actually busy

and all channels are
detected as busy

)

+ P

(
channel selected
for transmission
is actually busy

and at least one channel
is detected as idle

)
(6.37)

=PS1
+ PS3

(6.38)

=ρ
1 − αM − Pd + PdαM−1

1 − α
. (6.39)
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Figure 6.6: Effective capacity vs. Īavg for different values of M when Pd = 0.9 and
Pf = 0.2 in the Rayleigh fading channel.

Note that Pint depends on Pd and also Pf through α = ρPd + (1 − ρ)Pf . It can

be easily seen that this interference probability Pint decreases with increasing M

when Pd > Pf . As M goes to infinity, we have limM→∞ Pint = ρ 1−Pd
1−α . Indeed, in

this asymptotic regime, Pint becomes zero with perfect detection (i.e., with Pd = 1).

Note that SUs transmit (if P1 > 0) even when all channels are detected as busy. As

M → ∞, the probability of such an event vanishes. Also, having Pd = 1 enables

the SUs to avoid scenario 3. Hence, interference is not caused to the primary

users.

In Fig. 6.7, we plot Pint vs. the detection probability for different values of M.

We also display how the false alarm probability evolves as Pd varies from 0 to 1.
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It can be easily seen that while Pint = ρ when M = 1, a smaller Pint is achieved for

higher values of M unless Pd = 1. On the other hand, as also discussed above, we

immediately note that Pint monotonically decreases to 0 as Pd increases to 1 when

M is unbounded (i.e., M → ∞).

6.5.2 Nakagami Fading

Nakagami fading occurs when multipath scattering with relatively large delay-

time spreads occurs. Therefore, Nakagami distribution matches some empirical

data better than many other distributions do. With this motivation, we also con-

sider Nakagami fading in our numerical results. The pdf of the Nakagami-m

random variable y = |h| is given by fy(y) =
2

Γ(m)

(
m

2σ2
y

)m

y2m−1e
−my2

2σ2
y where m is

the number of degrees of freedom. If both zsp and z have the same number of

degrees of freedom, we can express the pdf of x = z
zsp

as follows:

fx(x) =
Γ(2m)xm−1

(x + 1)2mΓ(m)2
. (6.40)

Note also that Rayleigh fading is a special case of Nakagami fading when m = 1.

In our experiments, we consider the case in which m = 3. Now, we can express

the cdf of x for m = 3 as

Fx(x) = 1 +
15

(x + 1)4
− 10

(x + 1)3
− 6

(x + 1)4
. (6.41)

In Fig. 6.8, we plot effective capacity vs. Īavg (dB) for different values of M when

Pd = 0.9 and Pf = 0.2. Here, we again observe results similar to those in Fig. 6.6.

We obtain higher throughput by sensing more than one channel in the presence

of strict interference constraints on cognitive radios.
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Figure 6.7: Pint vs. correct detection probability Pd for different number of chan-
nels M in the upper figure. False alarm probability Pf vs. correct detection
probability Pd in the lower figure.

6.6 Conclusion

In this chapter, we have studied the performance of cognitive transmission under

QoS constraints and interference limitations. We have considered a scenario in

which SUs sense multiple channels and then select a single channel for transmis-

sion with rate and power that depend on both sensing decisions and fading. We

have constructed a state transition model for this cognitive operation. We have

meticulously identified possible scenarios and states in which the SUs operate.

These states depend on sensing decisions, true nature of the channels’ being busy

or idle, and transmission rates being smaller or greater than the instantaneous
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Figure 6.8: Effective capacity vs. Īavg for different values of M when Pd = 0.9 and
Pf = 0.2 in the Nakagami-m fading channel with m = 3.

channel capacity values. We have formulated and imposed an average interfer-

ence constraint on the SUs. Under such interference constraints and also statistical

QoS limitations in the form of buffer constraints, we have obtained the maximum

throughput through the effective capacity formulation. Therefore, we have effec-

tively analyzed the performance in a practically appealing setting in which both

the primary and SUs are provided with certain service guarantees. We have deter-

mined the optimal power adaptation strategies and the optimal channel selection

criterion in the sense of maximizing the effective capacity. We have had several

interesting observations through our numerical results. We have shown that im-

proving the reliability of channel sensing expectedly increases the throughput.
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We have noted that sensing multiple channels is beneficial only under relatively

strict interference constraints. At the same time, we have remarked that sensing

multiple channels can decrease the chances of interfering with a primary user.
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Chapter 7

Performance Analysis of Cognitive

Radio Systems under QoS

Constraints and Channel Uncertainty

In this chapter, performance of cognitive transmission over time-selective flat fad-

ing channels is studied under QoS constraints and channel uncertainty. Cognitive

SUs are assumed to initially perform channel sensing to detect the activities of

the primary users, and then attempt to estimate the channel fading coefficients

through training. Energy detection is employed for channel sensing, and differ-

ent MMSE estimation methods are considered for channel estimation. In both

channel sensing and estimation, erroneous decisions can be made, and hence,

channel uncertainty is not completely eliminated. In this setting, performance

is studied and interactions between channel sensing and estimation are investi-

gated. Following the channel sensing and estimation tasks, SUs engage in data

transmission. Transmitter, being unaware of the channel fading coefficients, is as-

sumed to send the data at fixed power and rate levels that depend on the channel
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sensing results. Under these assumptions, a state-transition model is constructed

by considering the reliability of the transmissions, channel sensing decisions and

their correctness, and the evolution of primary user activity which is modeled as

a two-state Markov process. In the data transmission phase, an average power

constraint on the SUs is considered to limit the interference to the primary users,

and statistical limitations on the buffer lengths are imposed to take into account

the QoS constraints of the secondary traffic. The maximum throughput under

these statistical QoS constraints is identified by finding the effective capacity of

the cognitive radio channel. Numerical results are provided for the power and

rate policies.

7.1 Cognitive Channel Model

We consider a cognitive channel model in which a secondary transmitter sends

information to a secondary receiver. Initially, the SUs perform channel sensing.

Then, depending on the channel sensing results, the secondary transmitter selects

pilot symbol and data transmission power policy. Note that the pilot symbol is

used for the estimation of the channel fading coefficients. We assume that channel

sensing, channel estimation, and data transmission are performed in frames of to-

tal duration T seconds. In each frame, the first N seconds is allocated for channel

sensing. Following the channel sensing, a single pilot symbol is employed to en-

able the secondary receiver to estimate the channel fading coefficient. Then, data

transmission is performed. The allocation of the frame duration to these tasks is

depicted in Figure 7.1.

Pilot symbol and data symbol powers, and transmission rates depend on the

channel sensing results, i.e., if the channel is sensed to be busy (correct detection
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Figure 7.1: Transmission frame consisting of channel sensing, channel training
and data transmission. Total frame duration is T. First N seconds is allocated
to channel sensing. Following channel sensing, a single pilot symbol is sent in
the training phase. Under the assumption that the symbol rate is B complex
symbols per second, a single pilot has a duration of 1/B seconds, where B denotes
the bandwidth. The remaining time of T − N − 1/B seconds is used for data
transmission.

of busy case or false alarm), the average transmission power and transmission

rate are set to P1 and r1, respectively. If, on the other hand, the channel is sensed

to be idle (misdetection or correct detection of idle case), the average transmission

power and transmission rate are set to P2 and r2, respectively. Note that if P1 =

0, the secondary transmitter stops the transmission when the primary users are

sensed to be active.

The discrete-time channel input-output relation between the secondary trans-

mitter and receiver in the ith symbol duration is given by

yi = hixi + ni i = 1, 2, ..., (7.1)

if the primary users are inactive. On the other hand, if the primary users are
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using the channel, we have

yi = hixi + ni + si i = 1, 2, ..., (7.2)

where xi and yi denote the complex-valued channel input and output, respectively.

In (7.1) and (7.2), hi represents the fading coefficient between the secondary trans-

mitter and receiver. The fading coefficients are zero-mean, circularly symmetric,

complex Gaussian distributed with variance E{|hi|2} = σ2
h . In (7.1) and (7.2),

{ni} is a sequence of additive thermal random noise samples at the secondary

receiver, that are zero-mean, circularly symmetric, complex Gaussian distributed

with variance E{|ni |2} = σ2
n for all i. In (7.2), si denotes the sum of active primary

users’ faded signals arriving at the secondary receiver. We denote the variance of

si as σ2
s . Note also that since the bandwidth is B, symbol rate is assumed to be B

complex symbols per second.

We consider block-fading and assume that the fading coefficients {hi} stay

constant within each frame of T seconds and change independently from one

frame to another. We also assume that the activity of the primary users stay the

same in each frame. However, a two-state Markov model is employed to model

the transitions of the activity of the primary users between the frames.

7.2 Channel Sensing

Energy-detection methods are considered to be well-suited for channel sensing

if the transmission policies of primary users are not known. We can formulate

the channel sensing as a hypothesis testing problem between the noise ni and the

signal si in noise. Since the bandwidth is B, there are NB complex symbols in a
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duration of N seconds. Now, the hypothesis testing problem can mathematically

be expressed as follows:

H0 : yi = ni, i = 1, 2, ..., NB

H1 : yi = ni + si, i = 1, 2, ..., NB.

(7.3)

We assume that si has a circularly symmetric complex Gaussian distribution1 with

zero-mean and variance σ2
s . Furthermore, as in [50], we assume that the signal

samples {si} are i.i.d.. Under these assumptions, the optimal Neyman-Pearson

detector for the above hypothesis problem is given by [63]

Y =
1

NB

NB

∑
i=1

|yi|2 ≷H1
H0

λ (7.4)

where λ is the detection threshold. Observing that Y is chi-squared distributed

with 2NB degrees of freedom, we can establish the probabilities of false alarm

and detection as follows:

Pf = Pr{Y > λ | H0} = 1 − P

(
NBλ

σ2
n

, NB

)
(7.5)

Pd = Pr{Y > λ | H1} = 1 − P

(
NBλ

σ2
n + σ2

s
, NB

)
(7.6)

where P(x, y) denotes the regularized gamma function and is defined as P(x, y) =

γ(x,y)
Γ(y)

where γ(x, y) is the lower incomplete gamma function and Γ(y) is the

Gamma function.

Above, we have considered an i.i.d. scenario. If {si} are correlated and if the

1Note that if the signals are being received in a rich multipath environment or the number of
active primary users is large, the simplifying Gaussian assumption for the distribution of si has
high accuracy. Moreover, if, for example the primary users are employing frequency or phase
modulation, si in the presence of even a single primary user in flat fading Rayleigh channel will
be Gaussian distributed.
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correlation structure is known by the cognitive users, then the optimal detector

computes, as the test statistic, the quadratic form y†Ky where y is the vector

of NB received signal samples {yi}NB
i=1, and K is a matrix that depends on the

covariance matrix of the primary user signal samples {si}N
i=1 [63, Case III.B.4]. If

{si} are identically distributed, then the false alarm and detection probabilities

are again expressed in terms of the regularized lower gamma function and are in

the same form as in (7.5) and (7.6) (see [63, Equation III.B.96]).

In the hypothesis testing problem given in (7.3), another approach is to con-

sider Y as Gaussian distributed, which is accurate if NB is large [50]. In this case,

the detection and false alarm probabilities can be expressed in terms of Gaussian

Q-functions. We would like to note that the rest of the analysis in the chapter

does not depend on the specific expressions of the false alarm and detection prob-

abilities. However, numerical results are obtained using (7.5) and (7.6).

A similar hypothesis-testing formulation for channel sensing is also studied in

[2] and is provided in this chapter as well for the completeness of the discussion.

7.3 Pilot Symbol-Assisted Transmission

After channel sensing is performed, the secondary transmitter sends the pilot

symbol to enable the receiver to estimate the channel fading coefficient. In this

section, we consider several channel estimation methods. As emphasized earlier,

channel estimation has dependence on channel sensing results. Regarding the

channel sensing result and its correctness, we have the following four possible

scenarios:

1. Scenario 1: Channel is busy, detected as busy (correct detection),
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2. Scenario 2: Channel is busy, detected as idle (miss-detection),

3. Scenario 3: Channel is idle, detected as busy (false alarm),

4. Scenario 4: Channel is idle, detected as idle (correct detection).

Note that the secondary transmitter sends data with average power P1 if the

channel is sensed as busy, whereas the transmitter sends data with average power

P2 if the channel is detected to be idle. Since fading stays constant in each frame,

it is enough to send only one pilot symbol in each frame2. Therefore, the first N

seconds of a frame duration T seconds is spared to sense the channel, a single

pilot symbol is sent following channel sensing, and (T − N)B − 1 data symbols

are transmitted after the pilot symbol3. In each frame, the average input power is

1

T

(l+1)TB−1

∑
i=(lT+N)B

E

{
|xi|2

}
= P1 l = 0, 1, 2, ..., (7.7)

when activity is sensed in the channel, whereas the average input power is

1

T

(l+1)TB−1

∑
i=(lT+N)B

E

{
|xi|2

}
= P2 l = 0, 1, 2, ..., (7.8)

when the channel is sensed to be idle. Above, l denotes the frame index. From

the average power constraints, we see that the total energy allocated to the pilot

and data symbols is limited in one frame by TP1 or TP2 when the channel is busy

or idle, respectively.

2Since MMSE estimation depends only on the pilot power and not on the number of pilot
symbols, a single pilot symbol with optimized power is sufficient.

3Since the symbol rate is B symbols per second, we have (T − N)B symbols in a duration
of T − N seconds. Among these symbols, the first symbol is a pilot symbol and the remaining
(T − N)B − 1 symbols are the data symbols.
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We assume that, depending on the the capabilities of the transmitters and the

energy resources they are equipped with, there exists peak constraints on the

average powers, e.g.,

P1 ≤ Ppeak and P2 ≤ Ppeak. (7.9)

Additionally, note that the secondary transmitter transmits with an average

power P1 in scenario 1 and with an average power P2 in scenario 2. In both

scenarios, primary users are active in the channel and experience interference

due to the transmission of the SUs. In order to limit the interference and protect

the primary users, we impose the following constraint on P1 and P2:

PdP1 + (1 − Pd)P2 ≤ Pavg (7.10)

where Pd is the probability of detection and (1 − Pd) is the probability of miss-

detection, and Pd and 1 − Pd can be regarded as the probabilities of scenarios

1 and 2, respectively. In the following, we describe how Pavg can be related to

the interference constraints. Let us denote the fading coefficient between the

secondary transmitter and primary receiver as hsp. Now, the average interference

experienced by the primary user can be expressed as

E{PdP1|hsp|2 + (1 − Pd)P2|hsp|2} =
(

PdP1 + (1 − Pd)P2

)
E{|hsp|2} ≤ Iavg (7.11)

where Iavg can be regarded as the average interference constraint. We assume

that the realizations of hsp are not known at the secondary transmitter and hence

the secondary transmitter cannot adapt its transmission according to hsp. How-

ever, if the statistics of hsp (e.g., the mean of |hsp|2 is known), then the secondary
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transmitter can choose Pavg =
Iavg

E{|hsp|2} in order to satisfy (7.11).

Finally, we would like to note that in the perfect detection case in which Pd = 1,

there are no miss-detections and (7.10) specializes to P1 ≤ Pavg. Hence, expectedly,

only P1, which is the transmission power when the channel is sensed as busy,

is affected by the interference constraints, and we have P2 ≤ Ppeak. If Pd < 1,

miss-detections should also be considered. In such cases, the SUs do not detect

the active primary users and transmit at power P2. Hence, P2 should also be

considered in interference control as formulated in (7.10).

7.3.1 Training Phase

In the channel training phase, the pilot symbol power is set depending on the

sensing result. If the channel is detected as busy, the power of pilot symbol is set

to Ptb = ηP1T. On the other hand, the pilot power is Pti = ηP2T when no activity

is detected. η is the fraction of the total power allocated to the pilot symbol.

For the scenarios described at the beginning of this section, the corresponding

received signals in the training phase are given by the following:

1. Scenario 1: y(lT+N)B = hl

√
Ptb + n(lT+N)B + s(lT+N)B,

2. Scenario 2: y(lT+N)B = hl

√
Pti + n(lT+N)B + s(lT+N)B,

3. Scenario 3: y(lT+N)B = hl

√
Ptb + n(lT+N)B,

4. Scenario 4: y(lT+N)B = hl

√
Pti + n(lT+N)B.

Above, hl denotes the channel fading coefficients in the lth block. The fading

coefficients are estimated via MMSE estimation, which provides the following
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estimates for each scenario:

Scenario 1: ĥl,m−mmse =

√
Ptbσ2

h

Ptbσ2
h + σ2

n + σ2
s

y(lT+N)B, (7.12)

Scenario 2: ĥl,m−mmse =

√
Ptiσ

2
h

Ptiσ
2
h + σ2

n

y(lT+N)B, (7.13)

Scenario 3: ĥl,m−mmse =

√
Ptbσ2

h

Ptbσ2
h + σ2

n + σ2
s

y(lT+N)B, (7.14)

Scenario 4: ĥl,m−mmse =

√
Ptiσ

2
h

Ptiσ
2
h + σ2

n

y(lT+N)B. (7.15)

From above, we see that the estimate expressions in scenarios 1 and 3 in which

the channel is detected as busy are the same. So are the expressions in scenarios 2

and 4 in which the channel is detected as idle. Hence, the receiver has two estima-

tion rules depending on whether the channel is sensed as busy or idle. Note that

the MMSE formulation is obtained under the assumption that the primary users’

signal s is Gaussian distributed with mean zero and variance σ2
s . It is also impor-

tant to note that the above MMSE estimates are affected by the channel sensing

results. For instance, in scenario 2, the channel is busy but the receiver senses the

channel as idle. Based on this sensing result, the receiver assumes that the noise

variance is σ2
n rather than the actual value σ2

n + σ2
s , and multiplies the observa-

tion y(lT+N)B by
√

Ptiσ
2
h

Ptiσ
2
h+σ2

n
instead of

√
Ptiσ

2
h

Ptiσ
2
h+σ2

n+σ2
s
. Hence, in the computation of the

MMSE estimate, the receiver treats its channel sensing decision as the true deci-

sion. Hence, if the sensing decision is erroneous, the MMSE estimate is obtained

for a mismatched channel. For this reason, we call these estimates as mismatched

MMSE estimates and use the subscript m − mmse. Note that from the receiver’s

perspective, the variance of the noise is random taking two possible values, σ2
n

and σ2
n + σ2

s . In the presence of uncertainty in the noise statistics, the true MMSE
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estimate is given by the following result.

Theorem 6 Given the channel sensing decision and the observation y in the training

phase, the receiver obtains the MMSE estimate through the following formulation:

ĥmmse = E{h|y} = Pr{σ2 = σ2
n | y}

√
Ptσ

2
h

Ptσ
2
h + σ2

n

y + Pr{σ2

= σ2
n + σ2

s | y}
√

Ptσ
2
h

Ptσ
2
h + σ2

n + σ2
s

y (7.16)

where

Pr{σ2 = σ2
n | y} =

Pr{σ2 = σ2
n} f (y|σ2 = σ2

n)

f (y)

and similarly

Pr{σ2 = σ2
n + σ2

s | y} =
Pr{σ2 = σ2

n + σ2
s } f (y|σ2 = σ2

n + σ2
s )

f (y)
.

In the above formulation, we have

Pr{σ2 = σ2
n} =





aPf

aPf+bPd
if the channel is detected busy

a(1−Pf )

a(1−Pf )+b(1−Pd)
if the channel is detected idle

(7.17)

Pr{σ2 = σ2
n + σ2

s } =





bPd
aPf+bPd

if the channel is detected busy

b(1−Pd)
a(1−Pf )+b(1−Pd)

if the channel is detected idle
(7.18)

f (y|σ2 = σ2
n) =

1

π(Ptσ
2
h + σ2

n)
e
− |y|2

Ptσ2
h
+σ2

n (7.19)

f (y|σ2 = σ2
n + σ2

s ) =
1

π(Ptσ
2
h + σ2

n + σ2
s )

e
− |y|2

Ptσ2
h
+σ2

n+σ2
s (7.20)

f (y) = Pr{σ2 = σ2
n} f (y|σ2 = σ2

n)

+ Pr{σ2 = σ2
n + σ2

s } f (y|σ2 = σ2
n + σ2

s ) (7.21)
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Figure 7.2: Two-state Markov model for the primary user activity.

In (7.17) and (7.18), Pd and Pf denote the detection and false-alarm probabilities, respec-

tively, and a and b are the transition probabilities in the two-state Markov model of the

primary user activity (depicted in Fig. 7.2 and described in detail in Section 7.4). Note

also that Pt denotes the power of the pilot symbol and is equal to Ptb if the channel is

detected busy and equal to Pti is the channel if detected idle.

Proof: See Appendix F. �

It can be immediately seen that as in the mismatched MMSE case, we again

have two estimation rules depending on the channel sensing result. Note that

the statistical characterization (e.g., finding the variance or more generally the

distribution) of the MMSE estimate in Theorem 6 is a difficult task and can only

be done through numerical analysis. It is also computationally intensive for the

receiver to obtain this estimate. Another strategy is to obtain the linear MMSE
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estimate. Note that given the observation y, the linear MMSE estimate is given by

ĥl−mmse =
E{hy∗}
E{|y|2}y

=

√
Ptσ

2
h

E{|y|2}y (7.22)

=

√
Ptσ

2
h

Pr{σ2 = σ2
n}E{|y|2 | σ2 = σ2

n}+ Pr{σ2 = σ2
n + σ2

s }E{|y|2 | σ2 = σ2
n + σ2

s }
y

=

√
Ptσ

2
h

Pr{σ2 = σ2
n}(Ptσ

2
h + σ2

n) + Pr{σ2 = σ2
n + σ2

s }(Ptσ
2
h + σ2

n + σ2
s )

y (7.23)

where Pr{σ2 = σ2
n} and Pr{σ2 = σ2

n + σ2
s } are given in (7.17) and (7.18). Similarly,

as in Theorem 6, Pt is either equal to Ptb or Pti depending whether the channel is

detected as busy or idle.

It is interesting to note that if channel sensing results are perfect, i.e., Pd = 1

and Pf = 0, all estimation methods discussed above converge.

7.3.2 Data Transmission Phase

Now, we can express the fading coefficients as follows

hl = ĥl + h̃l (7.24)

where h̃l is the estimation error. Consequently, the input-output relationship in

the data transmission phase of the lth frame can be written as

yi = ĥl xi + h̃l xi + ni + si (lT + N)B + 1 ≤ i ≤ (l + 1)TB − 1 (7.25)
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if the channel is busy, and

yi = ĥl xi + h̃l xi + ni (lT + N)B + 1 ≤ i ≤ (l + 1)TB − 1 (7.26)

if the channel is idle.

Note that the mismatched MMSE estimates in (7.12) – (7.15) and linear MMSE

estimate in (7.23) can be written as ĥ = Ky where K is a constant that depends on

the channel sensing result and y is the received signal in the training phase. Since

y is a Gaussian random variable, ĥl and h̃l are zero-mean circularly symmetric

complex Gaussian random variables in these cases. The variance of the channel

estimates is σ2
ĥ
= K2

E{|y|2}. In particular, we have the following variance expres-

sions for the mismatched MMSE estimates in different scenarios:

Scenario 1: σ2
ĥl,m−mmse

=
Ptbσ4

h

Ptbσ2
h + σ2

n + σ2
s

,

Scenario 2: σ2
ĥl,m−mmse

=
Ptiσ

4
h(

Ptiσ
2
h + σ2

n

)2

(
Ptiσ

2
h + σ2

n + σ2
s

)
,

Scenario 3: σ2
ĥl,m−mmse

=
Ptbσ4

h(
Ptbσ2

h + σ2
n + σ2

s

)2

(
Ptbσ2

h + σ2
n

)
,

Scenario 4: σ2
ĥl,m−mmse

=
Ptiσ

4
h

Ptiσ
2
h + σ2

n

.

In all scenarios, the variance of the estimation error in both mismatch and linear

MMSE can be written as

σ2
h̃l
= (1 − 2K

√
Pt)σ

2
h + σ2

ĥl
. (7.27)

Again, Pt is either Ptb or Pti depending on whether the channel is sensed as busy

or idle, respectively. In true MMSE, since the estimate and error are uncorrelated,
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we have σ2
h̃l
= σ2

h − σ2
ĥl

.

7.4 State Transition Model

In this section, we construct a state-transition model for cognitive transmission. In

order to identify this model, we first consider the transmission rates that can be

supported by the channel. In the presence of channel uncertainty, it is generally

difficult to characterize the channel capacity, which is the maximum transmission

rate at which reliable communications can be established [34]. Therefore, most

studies work with lower bounds on the channel capacity. One common technique

employed in deriving an achievable rate expression is to regard the error in the

channel estimate as another source of Gaussian noise. Since Gaussian noise is

the worst uncorrelated noise, this assumption leads to a lower bound [37]. On

the other hand, the achievable rate expressions obtained using this approach are

good measures of the rates supported in communication systems that operate as

if the channel estimate were perfect (i.e., in systems where Gaussian codebooks

designed for known channels are used, and scaled nearest neighbor decoding is

employed at the receiver) [48].

Considering the channel estimation results and interference s caused by the

primary users, we have the following achievable rate expressions as lower bounds
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to the instantaneous channel capacities in the above four scenarios:

Scenario 1: R1 =
(T − N)B − 1

T
log
(

1 + SNR1|wl|2
)

Scenario 2: R2 =
(T − N)B − 1

T
log
(

1 + SNR2|wl|2
)

Scenario 3: R3 =
(T − N)B − 1

T
log
(

1 + SNR3|wl|2
)

Scenario 4: R4 =
(T − N)B − 1

T
log
(

1 + SNR4|wl|2
)

(7.28)

where

SNR1 =
Pdbσ2

ĥl

Pdbσ2
h̃1
+ σ2

n + σ2
s

, SNR2 =
Pdiσ

2
ĥl

Pdiσ
2
h̃2
+ σ2

n + σ2
s

SNR3 =
Pdbσ2

ĥl

Pdbσ2
h̃3
+ σ2

n

, and SNR4 =
Pdiσ

2
ĥl

Pdiσ
2
h̃4
+ σ2

n

.

(7.29)

These lower bounds are obtained by assuming that h̃l xi and si are Gaussian dis-

tributed which is the worst-case noise. Above, we have defined ĥl = wlσĥl
. Note

that wl is a standard complex Gaussian random variable with zero mean and unit

variance, i.e., wl ∼ CN (0, 1), in mismatched and linear MMSE. Hence, zl = |wl|2

has an exponential distribution with mean 1. Pdb and Pdi are the data symbols

powers when the channel is busy and idle, respectively, and they can be written

as

Pdb =
P1T − Ptb

(T − N)B − 1
and Pdi =

P2T − Pti

(T − N)B − 1
. (7.30)

While the receiver attempts to learn the channel through training, we assume

that the transmitter is unaware of the channel conditions and transmits the infor-

mation at fixed rates r1 and r2, depending on the channel being sensed as busy or

idle, respectively. Therefore, the transmission rate is r1 in scenarios 1 and 3, and
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r2 in scenarios 2 and 4. If these rates are below the achievable rate expressions

provided in (7.28), i.e., if r1 < R1, R3 or r2 < R2, R4, the transmission is considered

to be in the ON state and reliable communication is achieved at these rates. On

the other hand, if r1 ≥ R1, R3 or r2 ≥ R2, R4, then we assume that outage occurs

and reliable communication can not be achieved. In such a case, the channel is in

the OFF state. To ensure the reception of correct data, a simple ARQ mechanism

needs to be incorporated in the communication protocol in the OFF state.

From the above discussion, we see that in each scenario we have two states,

namely ON and OFF, depending on whether or not the fixed-transmission rate ex-

ceeds the instantaneous rate that the channel can support. Therefore, overall we

have eight states. Fig. 5.1 depicts the state transition model for the cognitive ra-

dio transmission considering all possible scenarios related to the channel sensing

decisions and their correctness, and the reliability of the transmissions. The labels

for the states are provided on the bottom-right corner of the box representing the

state.

The transition probabilities in this state-transition model depend on the chan-

nel fading coefficients, the fixed transmission rates, and the primary user activity.

Recall that we consider block-fading and assume that the fading coefficients stay

constant throughout the frame and change independently from one frame to an-

other. We also assume that primary user activity does not change within each

frame. However, we employ a two-state Markov model to describe the transition

of the primary user activity between the frames. This Markov model is depicted

in Fig. 7.2. Busy state indicates that the channel is occupied by the primary

users, and idle state indicates that there is no primary user present in the channel.

Probability of transitioning from busy state to idle state is denoted by a, and the

probability of transitioning from idle state to busy state is denoted by b. Note
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that, by our assumption, state transitions happen every T seconds, which is the

frame duration.

Next, we determine the state transition probabilities. Let us first consider

in detail the probability of staying in the topmost ON state in Fig. 5.1. This

probability, denoted by p11, is given by

p11 = Pr
{

channel is busy and is detected busy,

and r1 < R1(l) in the lth frame

∣∣∣ channel is busy and is detected busy,

and r1 < R1(l − 1) in the (l − 1)th frame

}
(7.31)

= Pr
{

channel is busy

in the lth frame

∣∣∣ channel is busy

in the (l − 1)th frame

}
× Pr

{
channel is detected busy

in the lth frame

∣∣∣ channel is busy

in the lth frame

}

× Pr {r1 < R1(l) | r1 < R1(l − 1)} (7.32)

= (1 − a) Pd Pr {r1 < R1(l) | r1 < R1−1(l)} (7.33)

= (1 − a) Pd Pr {zl > α1 | zl−1 > α1} (7.34)

= (1 − a) Pd Pr {zl > α1} (7.35)

= (1 − a) Pd Pr {z > α1} (7.36)

where

α1 =
2

r1T

(T−N)B−1 − 1

SNR1
, (7.37)

Pd is the probability of detection in channel sensing, r1 is the fixed transmission

rate in scenario 1, and R1(l) denotes the achievable rate expression in scenario 1

in the lth frame. Above, (7.32) is obtained by using the chain rule of probability4

and noting the following facts. Channel being busy in the lth frame depends

only on channel being busy in the (l − 1)th frame and not on the other events

in the condition. Moreover, since channel sensing is performed individually in

each frame without any dependence on the channel sensing decision and primary

4Consider the events A, B, C, and D. Using the chain rule, the conditional probability
Pr(A

⋂
B
⋂

C
⋂ | D) can be written as Pr(A

⋂
B
⋂

C
⋂ | D) = Pr(A | D)× Pr(B | A

⋂
D)× Pr(C |

A
⋂

B
⋂

D).
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user activity in the previous frame, channel being detected as busy in the lth

frame depends only on the event that the channel is actually busy in the lth frame.

Finally, the event {r1 < R1(l)} is related to the channel fading coefficients and

hence possibly depends on the event {r1 < R1(l − 1)} through the dependence

of fading coefficients between frames. (7.33) follows by realizing that the first

probability in (7.32) is equal to (1− a), the probability of staying in the busy state

in the Markov model given for primary user activity, and noticing that the second

probability is equal to Pd, the detection probability in channel sensing. (7.34) is

obtained by noting that the event {r1 < R1(l) = (T−N)B−1
T log

(
1 + SNR1|wl |2

)
}

is equivalent to the event {zl > α1} where zl = |wl|2 and α1 is defined in (7.37).

(7.35) follows from the fact that zl and zl−1 are independent due to the block-

fading assumption. Finally, (7.36) is obtained by noting that fading coefficients

and their estimates are identically distributed in each frame and hence the index

l in zl can be dropped.

Similarly, the probabilities for transitioning from any state to state 1 (topmost

ON state) can be expressed as

pb1 = p11 = p21 = p31 = p41 = (1 − a)Pd Pr {z > α1} ,

pi1 = p51 = p61 = p71 = p81 = bPd Pr {z > α1} .

(7.38)

Note that we have common expressions for the transition probabilities in cases in

which the originating state has a busy channel (i.e., states 1, 2, 3, and 4) and in

cases in which the originating state has an idle channel (i.e., states 5, 6, 7, and 8).

In a similar manner, the remaining transition probabilities are given by the

following:
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For all b ∈ {1, 2, 3, 4} and i ∈ {5, 6, 7, 8},

pb2 = (1 − a)Pd Pr {z ≤ α1} , pi2 = bPd Pr {z ≤ α1} ,

pb3 = (1 − a)(1 − Pd)Pr {z > α2} , pi3 = b(1 − Pd)Pr {z > α2} ,

pb4 = (1 − a)(1 − Pd)Pr {z ≤ α2} , pi4 = b(1 − Pd)Pr {z ≤ α2} ,

pb5 = aPf Pr {z > α3} , pi5 = (1 − b)Pf Pr {z > α3} ,

pb6 = aPf Pr {z ≤ α3} , pi6 = (1 − b)Pf Pr {z ≤ α3} ,

pb7 = a(1 − Pf )Pr {z > α4} , pi7 = (1 − b)(1 − Pf )Pr {z > α4} ,

pb8 = a(1 − Pf )Pr {z ≤ α4} , pi8 = (1 − b)(1 − Pf )Pr {z ≤ α4} ,

(7.39)

where α2 = 2

r2T
(T−N)B−1−1

SNR2
, α3 = 2

r1T
(T−N)B−1−1

SNR3
, and α4 = 2

r2T
(T−N)B−1−1

SNR4
. Note that since

b ∈ {1, 2, 3, 4} is the index of the states with busy channels, we above have, for

instance, pb2 = p12 = p22 = p32 = p42.

Now, we can easily see that the 8 × 8 state transition matrix can be expressed

as

R =




p1,1 . . p1,8

. .

p4,1 . . p4,8

p5,1 . . p5,8

. .

p8,1 . . p8,8




=




pb1 . . pb8

. .

pb1 . . pb8

pi1 . . pi8

. .

pi1 . . pi8




. (7.40)

Note that R has a rank of 2. Finally, we also note that Tr1 and Tr2 bits are trans-

mitted and received in the ON states 1 and 5, and 3 and 7, respectively, while the

transmitted number of bits is assumed to be zero in the OFF states (i.e., in states

2, 4, 6, and 8).
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7.5 Effective Capacity

In this section, we identify the maximum throughput that the cognitive radio

channel with the aforementioned state-transition model can sustain under statisti-

cal QoS constraints imposed in the form of buffer or delay violation probabilities.

Recall that the effective capacity for a given QoS exponent θ is given by

− lim
t→∞

1

θt
loge E{e−θS(t)} , −Λ(−θ)

θ
(7.41)

where Λ(θ) = limt→∞
1
t loge E{eθS(t)} is a function that depends on the loga-

rithm of the moment generating function of S(t), S(t) = ∑
t
k=1 r(k) is the time-

accumulated service process, and {r(k), k = 1, 2, . . . } is defined as the discrete-

time, stationary and ergodic stochastic service process. Note that the service rate

is r(k) = Tr1 if the cognitive system is in state 1 or 5 at time k. Similarly, the ser-

vice rate is r(k) = Tr2 in states 3 and 7. In all the OFF states, fixed transmission

rates exceed the instantaneous achievable rates, and outage occurs. Therefore, the

service rates in these states are effectively zero.

In the next result, we provide the effective capacity for the cognitive radio

channel and state transition model described in the previous section.
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Theorem 7 For the cognitive radio channel with the state transition model given in

Section 7.4, the normalized effective capacity in bits/s/Hz is given by

RE(SNR, θ) = max
r1,r2≥0

P1≤Ppeak and P2≤Ppeak

PdP1+(1−Pd)P2≤Pavg

− 1

θTB
loge

1

2

[
(pb1 + pi5)e

−θTr1 + (pb3 + pi7)e
−θTr2 + pb2 + pb4 + pi6 + pi8

]

+
1

2

{[
(pb1 − pi5)e

−θTr1 + (pb3 − pi7)e
−θTr2 + pb2 + pb4 − pi6 − pi8

]2

+ 4
(

pi1e−θTr1 + pi3e−θTr2 + pi2 + pi4

) (
pb5e−θTr1 + pb7e−θTr2 + pb6 + pb8

)} 1
2

(7.42)

where T is the frame duration over which the fading stays constant, r1 and r2 are fixed

transmission rates, and pbk and pik for k = 1, . . . , 8, b = 1, 2, 3, 4, and i = 5, 6, 7, 8 are

the transition probabilities expressed in (7.38) and (7.39).

Proof: See Appendix G. �

7.6 Numerical Results

In this section, we present the numerical results. In our simulations, we assume

that the fading coefficients are zero-mean Gaussian random variables with unit

variance, σ2
h = 1. Note also that in all of the simulations we assume T = 0.1

seconds, N = 0.01 seconds, B = 1000 Hz, σ2
n = 1, σ2

s = 1, θ = 0.1, a = 0.9,

b = 0.1, and η = 0.1. Unless stated otherwise, we assume in the numerical results

that mismatch MMSE with estimates given in (7.12) – (7.15) is employed in the

training phase. Moreover, we set Ppeak = 10 dB.
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Figure 7.3: Upper Figure: Effective capacity vs. detection probability Pd for differ-
ent values of P̄avg. Lower Figure: False alarm probability Pf vs. Pd.

In Figure 7.3, we display the optimal effective capacity as a function of the

probability of detection, Pd, for different values of Pavg. As expected, with increas-

ing Pavg, the effective capacity value increases. Note also that probability of false

alarm Pf is displayed in the second half of Fig. 7.3. It is clear that the maximum

effective capacity values are obtained when Pd is close to 0.9. As Pd further in-

creases and approaches 1, we notice in the lower plot in Fig. 7.3 that false-alarm

probability increases to 1 as well. Hence, the SUs start to regard the channel busy

all the time and performance degradations are experienced because of not being

able to take advantage of idle channel states. In Fig. 7.4, the optimal values of P1

and P2 for different values of Pavg are displayed again as a function of Pd. Recall
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Figure 7.4: Optimal values of P̄1 and P̄2 vs. detection probability Pd for different
values of P̄avg.

that P1 and P2 are the transmission power levels when the channel is sensed as

busy and idle, respectively. First, we note that generally the power levels increase

with increasing detection probability values. Also, we see in the figure that P2 is

generally larger than P1. Hence, more power is allocated to cases in which the

channel is detected as idle. As Pd increases, we note from (7.10) that the constraint

on P2 relaxes since P2 is multiplied by a smaller weight (1 − Pd). Consequently,

P2 increases. Indeed, as Pd → 1, the only constraint on P2 is P2 ≤ Ppeak = 10 dB.

Hence, the optimal value is P2 = Ppeak, and we actually observe in the figure that

all P2 curves converge to 10 dB as Pd approaches 1. On the other hand, as Pd → 1,

(7.10) becomes P1 ≤ Pavg. Since Pavg < Ppeak = 10 dB, the only active constraint
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Figure 7.5: Optimal values of r1 and r2 vs. detection probability Pd for different
values of P̄avg.

on P1 is P1 ≤ Pavg and it is noted in the figure that P1 approaches the optimal

value Pavg as Pd increases to 1. On the other hand, we interestingly observe that

for relatively low values of Pavg (e.g., Pavg = 0, 2 dB), we have P1 = 0 if Pd is be-

low a certain threshold. Hence, no transmission is performed when the channel

is sensed as busy. As Pd further decreases and approaches 0, the SUs always miss

the primary user activities, and (7.10) becomes P2 ≤ Pavg, which is, similarly as

discussed above, is the only active constraint for P2. Indeed, P2 curves approach

the corresponding Pavg values as Pd → 0.

In Fig. 7.5, we show the optimal fixed transmission rates r1 and r2 as a function

of Pd for different values of Pavg. Note that the optimal transmission rates are
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Figure 7.6: Effective capacity vs. η, the fraction of total power allocated to the
pilot symbol, for different values of P̄avg.

obtained at optimal power levels. We observe that r2, the transmission rate when

the channel is detected as idle, is larger than r1. In general, we note similar trends

as in Fig. 7.4.

In Fig. 7.6, we plot the effective rate as a function of η, the fraction of the total

power allocated to the pilot symbol. We again consider three different average

power levels. When the average power levels are 0, 2, and 5 dB, the optimal

fractions are η = 0.16, 0.14, and 0.11, respectively. In this figure, we have Pd = 0.92

and Pf = 0.24. Hence, these are the optimal training power levels in the presence

of channel sensing errors. In Fig. 7.7, the optimal transmission rates are plotted

as a function of η. It is observed that at all average power levels, the optimal
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Figure 7.7: Optimal values of r1 and r2 vs. η, the fraction of total power allocated
to the pilot symbol, for different values of P̄avg.

transmission rate when the channel is sensed to be idle, i.e., r2, is higher than the

optimal transmission rate when the channel is detected as busy, i.e., r1. In Fig. 7.8,

P1 and P2 are plotted as a function of η. It is observed that P2 is higher than P1

at all average power levels and for all values of η. Note that the optimal power

distributions are obtained for constant Pd and Pf . Finally, we plot in Fig. 7.9 η

vs. Pd, and observe that the fraction of power allocated to training increases with

increasing Pd.

Heretofore in the numerical results, we have assumed that mismatched MMSE

is employed at the receiver. In Figures 7.10 and 7.11, we compare the effective ca-

pacity values obtained using mismatched MMSE and linear MMSE techniques.
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Figure 7.8: Optimal values of P̄1 and P̄2 vs. η, the fraction of total power allocated
to the pilot symbol, for different values of P̄avg.

In Fig. 7.10, we plot the effective capacity vs. Pavg curve. We notice that linear

MMSE provides a slightly better performance for low Pavg. The performance gap

vanishes as Pavg increases. In Fig. 7.11, a similar conclusion is also reached. In

this figure, we also observe that linear MMSE provides gains especially when the

detection probability Pd is high. Note that this is another interesting observation

indicating the strong interactions between channel sensing and channel estima-

tion.
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7.7 Conclusion

In this chapter, we have analyzed the effective capacity of cognitive radio chan-

nels in the presence of QoS constraints, channel uncertainty, and transmission

power limitations. We have considered a system model in which the cognitive

SUs initially perform channel sensing and estimation, and subsequently transmit

data. Channel sensing is done through energy detection and is formulated as a

hypothesis testing problem. We have considered different estimation techniques,

namely, mismatched MMSE, linear MMSE, and MMSE, in the training phase. In

this setting, we have identified the interactions between channel sensing and es-

timation. In particular, we have noted that sensing errors lead to degradations
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Figure 7.10: Effective Capacity vs. P̄avg when m − mmse and l − mmse estimation
techniques are employed.

in the estimation results. We have also shown that imperfections in sensing com-

plicate MMSE estimation, and suboptimal techniques such as mismatched and

linear MMSE enable tractable analysis.

In the data transmission phase, we have assumed that the transmitter, not be-

ing aware of the channel conditions, send the data at fixed power and rate. We

have further assumed that these transmission parameters depend on whether the

channel is sensed as busy or idle. For this cognitive operation, we have con-

structed a state-transition model by considering the reliability of the transmis-

sions, channel sensing decisions and their correctness, and the evolution of pri-

mary user activity which is modeled as a two-state Markov process. We have
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Figure 7.11: Effective capacity vs. detection probability Pd for different values of
P̄avg when m − mmse and l − mmse estimation techniques are employed.

formulated the transition probabilities in this model. Then, for the constructed

state-transition model, we have obtained an expression for the effective capacity

and identified the maximum throughput in the presence of buffer constraints. We

have performed a numerical analysis and shown the impact of several parame-

ters such as detection and false probabilities, average power constraints, training

power value, on the performance. We have determined the optimal transmission

power and rate levels. We have also compared the performances of linear and

mismatched MMSE estimation methods.



160

Chapter 8

On the Transmission Capacity Limits

of Cognitive MIMO Channels

In this chapter, throughput of cognitive MIMO systems operating under QoS con-

straints is studied. It is assumed that transmission power and the covariance of the

input signal vector are varied depending on the sensed activities of primary users

in the system. Considering the reliability of the transmission and channel sensing

results, a state-transition model is provided. Effective capacity is determined, and

expressions for the first and second derivatives of the effective capacity are ob-

tained at SNR=0. The minimum bit energy requirements in the presence of QoS

limitations are identified.

8.1 Channel Model and Power Constraint

We consider a cognitive MIMO channel model and assume that the secondary

transmitter and receiver are equipped with M and N antennas, respectively. In a
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flat fading channel, we can express the channel input-output relation as

y = Hx + n + s (8.1)

if the primary users are active in the channel, and as

y = Hx + n (8.2)

if the primary users are absent. Above, x denotes the M × 1−dimensional trans-

mitted signal vector, and y denotes the N × 1−dimensional received signal vector.

In (8.1) and (8.2), n is an N × 1−dimensional zero-mean Gaussian random vector

with a covariance matrix E{nn†} = σ2
nI where I is the identity matrix. In (8.1), s is

an N × 1−dimensional vector of the sum of active primary users’ faded signals ar-

riving at the secondary receiver. Considering that the vector s can have correlated

components, we express its covariance matrix as E{ss†} = Nσ2
s Ks where σ2

s is the

variance of each component of s and tr(Ks) = 1. Finally, in (8.1) and (8.2), H de-

notes the N × M dimensional random channel matrix whose components are the

fading coefficients between the corresponding antennas at the secondary trans-

mitting and receiving ends. We consider a block-fading scenario and assume that

the realization of the matrix H remains fixed over a block duration of T seconds

and changes independently from one block to another.

We assume that the SUs initially perform channel sensing to detect the activ-

ities of primary users, and then depending on the channel sensing results, they

choose the transmission strategy. More specifically, if the channel is sensed as

busy, the transmitted signal vectors is x1. Otherwise, the signal is x2. In order

to control the interference caused to the primary users, the average transmission
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power levels can be different. The average energy constraint on the channel input

is

E{||x1||2} ≤ P1

B
(8.3)

if the channel is sensed as busy. On the other hand, if the channel is detected to

be idle, the energy constraint becomes

E{||x2||2} ≤ P2

B
. (8.4)

In (8.3) and (8.4), B is the bandwidth of the system.

Directionality of the transmitted signal vectors might also be different depend-

ing on the channel sensing results. We define the normalized input covariance

matrix of x1

Kx1
=

E{x1x†
1}

P1/B
(8.5)

if the channel is busy, and x2 as

Kx2 =
E{x2x†

2}
P2/B

(8.6)

if the channel is idle. Note that the trace of normalized covariance matrices are

bounded by

tr(Kx1
) ≤ 1 (8.7)

and

tr(Kx2) ≤ 1. (8.8)

We consider a practical scenario in which errors such as miss-detections and

false-alarms possibly occur in channel sensing. We denote the correct-detection

and false-alarm probabilities by Pd and Pf , respectively. We note the following
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two cases. When the primary users are active and this activity is sensed correctly

(which happens with probability Pd), then the SUs transmit with average power

P1. On the other hand, if the primary user activity is missed in sensing (which

occurs with probability 1− Pd), the SUs send the information with average power

P2. In both cases, primary users experience interference. In order to limit the

average interference, we impose the following power constraint

PdP1 + (1 − Pd)P2 ≤ P. (8.9)

Now, we define the average SNR as

snr =
E{||x||2}
E{||n||2} =

P

NBσ2
n

(8.10)

where E{||x||2} = PdE{||x1||2}+ (1 − Pd)E{||x2||2}. Also, we assume P1 = µP

and P2 = νP where µ and ν are some positive numbers, and rewrite (8.9) as

PdµP + (1 − Pd)νP ≤ P, (8.11)

and we obtain

Pdµ + (1 − Pd)ν ≤ 1. (8.12)

Note that, to maximize the channel throughput, we have to choose optimal µ and

ν values.
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8.2 State Transition Model and Channel Throughput

Metrics

8.2.1 State Transition

We assume that both the secondary transmitter and receiver have perfect CSI

and hence perfectly know the instantaneous values of {H} in each transmission

block. More specifically, the secondary transmitter sends the information with

optimized data vectors. Moreover, depending on channel sensing results and

their correctness, we have four scenarios:

1. Channel is busy, detected as busy (correct detection),

2. Channel is busy, detected as idle (miss-detection),

3. Channel is idle, detected as busy (false alarm),

4. Channel is idle, detected as idle (correct detection).

Using the notation E{(s + n)(s + n)†} = E{ss†} + E{nn†} = σ2
nKz where

tr(Kz) = N(σ2
s +σ2

n)

σ2
n

, we can express the instantaneous channel capacities in the

above four scenarios as follows:

C1 = B max
Kx1

�0

tr(Kx1
)≤1

log2 det

[
I +

µP

Bσ2
n

HKx1
H†K−1

z

]

= B max
Kx1

�0

tr(Kx1
)≤1

log2 det
[
I + µNsnrHKx1

H†K−1
z

]
,



165

C2 = B max
Kx2

�0

tr(Kx2
)≤1

log2 det

[
I +

νP

Bσ2
n

HKx2H†K−1
z

]

= B max
Kx2

�0

tr(Kx2
)≤1

log2 det
[
I + νNsnrHKx2H†K−1

z

]
,

C3 = B max
Kx1

�0

tr(Kx1
)≤1

log2 det

[
I +

µP

Bσ2
n

HKx1
H†

]

= B max
Kx1

�0

tr(Kx1
)≤1

log2 det
[
I + µNsnrHKx1

H†
]

,

C4 = B max
Kx2

�0

tr(Kx2
)≤1

log2 det

[
I +

νP

Bσ2
n

HKx2H†

]

= B max
Kx2

�0

tr(Kx2
)≤1

log2 det
[
I + νNsnrHKx2H†

]
. (8.13)

We note that since Kz is a positive definite matrix and its eigenvalues are greater

than or equal to 1, K−1
z is a positive definite matrix with eigenvalues 1 ≥ λi ≥

σ2
n

N(σ2
n+σ2

s )
.

The secondary transmitter is assumed to send the data at two different rates

depending on the sensing results. If the channel is detected as busy, the transmis-

sion rate is

r1 = B max
Kx1

�0

tr(Kx1
)≤1

log2 det
[
I + µNsnrHKx1

H†K−1
z

]
, (8.14)

and if the channel is detected as idle, the transmission rate is

r2 = B max
Kx2

�0

tr(Kx2
)≤1

log2 det
[
I + νNsnrHKx2H†

]
. (8.15)
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Figure 8.1: State transition model for the cognitive radio channel. The numbered
label for each state is given on the bottom-right corner of the box representing the
state.

Furthermore, note that in scenarios 1 and 4, transmission occurs at the rate of

instantaneous channel capacity, i.e., r1 = C1 in scenario 1 and r2 = C4 in scenario

4. In scenario 3, the transmission rate is less than the capacity, i.e., r1 ≤ C3,

and in scenario 2, we have the transmission rate exceeding the channel capacity,

i.e., r2 > C2, that is because sensing has not detected the active primary users

successfully and their interference on the SUs’ signals are not taken into account.

In all scenarios except 2, communication is performed reliably. Hence, the

transmission rate is effectively zero, and retransmission is required in Scenario

2. These four scenarios or equivalently states are depicted in Figure 8.1. As

described above, the channel is ON in states 1, 3, and 4 and OFF in state 2.
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Figure 8.2: Two-state Markov model for the primary user activity.

Next, we determine the state-transition probabilities. We use pij to denote the

transition probability from state i to state j as seen in Fig. 8.1. Due to the block

fading assumption, state transitions occur every T seconds. We also assume that

primary user activity does not change within each frame. And, we consider a two-

state Markov model to describe the transition of the primary user activity between

the frames. This Markov model is depicted in Figure 8.2. Busy state indicates

that the channel is occupied by the primary users, and idle state indicates that

there is no primary user present in the channel. Probability of transitioning from

busy state to idle state is denoted by a, and the probability of transitioning from

idle state to busy state is denoted by b. Note that, by our assumption, state

transitions happen every T seconds, which is the frame duration. Let us first

consider in detail the probability of staying in the topmost ON state in Fig. 8.1.
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This probability, denoted by p11, is given by

p11 = P
{

channel is busy and is detected busy

in the lth frame

∣∣∣ channel is busy and is detected busy

in the (l − 1)th frame

}
(8.16)

= P
{

channel is busy

in the lth frame

∣∣∣ channel is busy

in the (l − 1)th frame

}
× P

{
channel is detected busy

in the lth frame

∣∣∣ channel is busy

in the lth frame

}

= (1 − a)Pd (8.17)

where Pd is the probability of detection in channel sensing. Channel being busy in

the lth frame depends only on channel being busy in the (l − 1)th frame and not on

the other events in the condition. Moreover, since channel sensing is performed

individually in each frame without any dependence on the channel sensing deci-

sion and primary user activity in the previous frame, channel being detected as

busy in the lth frame depends only on the event that the channel is actually busy

in the lth frame.

Similarly, the probabilities for transitioning from any state to state 1 (topmost

ON state) can be expressed as

pb1 = p11 = p21 = (1 − a)Pd and pi1 = p31 = p41 = bPd. (8.18)

Note that we have common expressions for the transition probabilities in cases in

which the originating state has a busy channel (i.e., states 1 and 2) and in cases in

which the originating state has an idle channel (i.e., states 3 and 4).

In a similar manner, the remaining transition probabilities are given by the

following:

For all b ∈ {1, 2} and i ∈ {3, 4},
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pb2 = (1 − a)(1 − Pd), and pi2 = b(1 − Pd),

pb3 = aPf , and pi3 = (1 − b)Pf ,

pb4 = a(1 − Pf ), and pi4 = (1 − b)(1 − Pf ).

(8.19)

Now, we can easily see that the 4 × 4 state transition matrix can be expressed

as

R =




p11 . . p14

p21 . . p24

p31 . . p34

p41 . . p44




=




pb1 . . pb4

pb1 . . pb4

pi1 . . pi4

pi1 . . pi4




. (8.20)

8.2.2 Effective Capacity

Recall that the effective capacity for a given QoS exponent θ is given by

− lim
t→∞

1

θt
loge E{e−θS(t)} = −Λ(−θ)

θ
(8.21)

where Λ(θ) = limt→∞
1
t loge E{eθS(t)} is a function that depends on the loga-

rithm of the moment generating function of S(t), S(t) = ∑
t
k=1 r(k) is the time-

accumulated service process, and {r(k), k = 1, 2, . . . } is defined as the discrete-

time, stationary and ergodic stochastic service process. Note that the service rate

in each transmission block is r(k) = Tr1 if the cognitive system is in Scenario 1 or

3 at time k. Similarly, the service rate is r(k) = Tr2 in Scenario 4. In the OFF state

in Scenario 2, the service rate is effectively zero.

Considering the effective rates in each scenario and the probabilities of the
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scenarios, we can write the following theorem.

Theorem 8 For the cognitive radio channel with the aforementioned state transition

model , the normalized effective capacity in bits/s/Hz/dimension is given by

CE(snr, θ) = max
µ,ν≥0

Pdµ+(1−Pd)ν≤1

− 1

θTBN
loge E

{
1

2

[
(pb1 + pi3) e−θTr1 + pi4e−θTr2 + pb2

]

+
1

2

{ [
(pb1 − pi3) e−θTr1 − pi4e−θTr2 + pb2

]2

+ 4
(

pi1e−θTr1 + pi2

) (
pb3e−θTr1 + pb4e−θTr2

)}1/2
}

(8.22)

where T is the frame duration over which the fading stays constant, r1 and r2 are the

transmission rates, and {pb1,b2,b3,b4,i1,i2,i3,i4} are the state transition probabilities.

Proof: See Appendix H. �

Note that above we have assumed that H and Kz are perfectly known at the

transmitter. If, on the other hand, only statistical information related to H are

known at the transmitter, then the input covariance matrix can be chosen to max-

imize the effective capacity. In that case, the normalized effective capacity will be
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expressed as

CE(snr, θ) = max
µ,ν≥0

Pdµ+(1−Pdν≤1

max
Kx1

,Kx2
�0

tr(Kx1
),tr(Kx2

)≤1

− 1

θTBN
loge E

{
1

2
[(pb1 + pi3) Θr1

+ pi4Θr2 + pb2]

+
1

2

{
[(pb1 − pi3)Θr1

− pi4Θr2 + pb2]
2

+ 4 (pi1Θr1
+ pi2) (pb3Θr1

+ pb4Θr2)

}1/2
}

bits/s/Hz/dimension

(8.23)

where Θr1
= e−θTB log2 det[I+µNsnrHKx1

H†K−1
z ] and Θr2 = e−θTB log2 det[I+νNsnrHKx2

H†].

For given input covariance matrices Kx1
and Kx2 , and for given µ and ν, we

express the effective rate as

RE(P1, P2, θ) = − 1

θTBN
loge E

{
1

2
[(pb1 + pi3) Θr1

+ pi4Θr2 + pb2]

+
1

2

{
[(pb1 − pi3) Θr1

− pi4Θr2 + pb2]
2

+ 4 (pi1Θr1
+ pi2) (pb3Θr1

+ pb4Θr2)

}1/2
}

bits/s/Hz/dimension.

(8.24)
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8.2.3 Ergodic Capacity

As θ vanishes, the QoS constraints become loose and it can be easily verified that

the effective capacity approaches the ergodic channel capacity, i.e.,

lim
θ→0

CE(snr, θ) =
1

N(a + b)
max
µ,ν≥0

Pdµ+(1−Pd)ν≤1

max
Kx1

,Kx2
�0

tr(Kx1
),tr(Kx2

)≤1

E

{
(bPd + aPf )det

[
I + µNsnrHKx1

H†K−1
z

]
+ a(1 − Pf )det

[
I + νNsnrHKx2H†

] }
.

(8.25)

Note that in the ergodic capacity expression (8.25), the maximum ergodic capacity

achieved in Scenario 2 is 0, because the SUs don’t know that primary users are

active in the channel, and then the maximum capacity aimed can not be realized.

8.3 Effective Capacity in the Low-Power Regime

8.3.1 First and Second Derivative of the Effective Capacity

In this section, we study the effective capacity in the low-SNR regime and in-

vestigate the impact of the QoS constraints. First, we consider the following

second-order expansion of the effective capacity under different assumptions on

the degree of channel state information:

CE(snr, θ) = ĊE(0, θ)snr + C̈E(0, θ)
snr2

2
+ o(snr2) (8.26)

where ĊE(0, θ) and C̈E(0, θ) denote the first and second derivatives of the effective

capacity with respect to SNR at SNR=0.
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We define a new function

f (snr, θ) =
1

2

[
(pb1 + pi3) e−θTr1 + pi4e−θTr2 + pb2

]
+

1

2
×

{[
(pb1 − pi3) e−θTr1 − pi4e−θTr2 + pb2

]2
+ 4

(
pi1e−θTr1 + pi2

) (
pb3e−θTr1 + pb4e−θTr2

)}1/2

︸ ︷︷ ︸
χ

,

(8.27)

and we can write the effective rate as

RE(snr, θ) = D loge E [ f (snr, θ)] (8.28)

where D = − 1
θTBN . The derivative of the effective rate will be

ṘE(snr, θ) =
D

E [ f (snr, θ)]
E
[

ḟ (snr, θ)
]

(8.29)

where

ḟ (snr, θ) = −θTα(snr, θ)ṙ1e−θTr1 − θTβ(snr, θ)ṙ2e−θTr2 , (8.30)

and

α(snr, θ) =
1

2
(pb1 + pi3) +

(pb1 − pi3)
[
(pb1 − pi3)e

−θTr1 − pi4e−θTr2 + pb2

]

2χ

+
pi1

(
pb3e−θTr1 + pb4e−θTr2

)
+ pb3

(
pi1e−θTr1 + pi2

)

χ

and β(snr, θ) = 1
2 pi4 −

pi4

[
(pb1−pi3)e

−θTr1−pi4e−θTr2+pb2

]

2χ +
pb4(pi1e−θTr1+pi2)

χ . Note that

we can write r1 and r2 as

r1 =
B

loge 2 ∑
i

loge [1 + µNsnrλi(Φ1)] (8.31)
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and

r2 =
B

loge 2 ∑
i

loge [1 + νNsnrλi(Φ2)] (8.32)

where Φ1 = HKx1
H†K−1

z and Φ2 = HKx2H†, and λi is the eigenvalue of the

matrices given in the parentheses. Now, we can write the derivatives of r1 and r2

as

ṙ1 =
B

loge 2 ∑
i

µNλi(Φ1)

1 + µNsnrλi(Φ1)
(8.33)

and

ṙ2 =
B

loge 2 ∑
i

νNλi(Φ2)

1 + νNsnrλi(Φ2)
. (8.34)

Noting that the function f (snr, θ) evaluated at SNR=0 is 1, i.e., f (0, θ) = 1, and

α(0, θ) and β(0, θ) are constant values which we denote as ᾱ and β̄, respectively,

we can easily see that the value of the first derivative of the effective rate at SNR=0

is

ṘE(0, θ) =
1

loge 2
E
[
ᾱµtr{Φ1}+ β̄νtr{Φ2}

]
. (8.35)

Note that by definition, Kx1
and Kx2 are positive semi-definite Hermitian ma-

trices. As Hermitian matrices, Kx1
and Kx2 can be written as follows

Kx1
= U1Λ1U†

1 =
M

∑
i=1

λ1,iu1,iu
†
1,i (8.36)

and

Kx2 = U2Λ2U†
2 =

M

∑
i=1

λ2,iu2,iu
†
2,i (8.37)

where U1 and U2 are the unitary matrices, {u1,i} and {u2,i} are the column vectors

of U1 and U2, respectively. Λ1 and Λ2 are the real diagonal matrices with diagonal

components {λ1,i} and {λ2,i}, respectively. Since Kx1
and Kx2 are positive semi-

definite, we have λ1,i ≥ 0 and λ2,i ≥ 0. Furthermore, since all the available
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energy should be used for transmission, we have tr(Kx1
) = ∑

M
i=1 λ1,i = 1 and

tr(Kx2) = ∑
M
i=1 λ2,i = 1.

Now, we can write

ṘE(0, θ) =
1

loge 2
E

[
ᾱµtr(HKx1

H†K−1
z ) + β̄νtr(HKx2H†)

]

=
1

loge 2
E

[
ᾱµtr(HKx1

H†UzΛzU†
z) + β̄νtr(HKx2H†)

]

=
1

loge 2
E

[
ᾱµtr(Λ1/2

z U†
zHKx1

H†UzΛ1/2
z ) + β̄νtr(HKx2H†)

]

=
1

loge 2

M

∑
i=1

{
λ1,iᾱµE[tr(Λ1/2

z U†
zHu1,iu

†
1,iH

†UzΛ1/2
z )] + λ2,i β̄νE[tr(Hu2,iu

†
2,iH

†)]

}

=
1

loge 2

M

∑
i=1

{
λ1,iᾱµE[tr(u†

1,iH
†UzΛ1/2

z Λ1/2
z U†

zHu1,i)] + λ2,i β̄νE[tr(u†
2,iH

†Hu2,i)]

}

=
1

loge 2

M

∑
i=1

{
λ1,iᾱµE[tr(u†

1,iH
†K−1

z Hu1,i)] + λ2,i β̄νE[tr(u†
2,iH

†Hu2,i)]

}

≤ 1

loge 2

{
ᾱµE

[
λmax(H

†K−1
z H)

]
+ β̄νE

[
λmax(H

†H)
] }

(8.38)

where λmax(H
†K−1

z H) and λmax(H
†H) denote the maximum eigenvalues of the

matrices H†K−1
z H and H†H. The upper bound in (8.38) can be achieved by choos-

ing the normalized input covariance matrices as

Kx1
= u1u†

1 (8.39)

and

Kx2 = u2u†
2 (8.40)

where u1 and u2 are the unit-norm eigenvectors that correspond to the maximum
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eigenvalues λmax(H
†K−1

z H) and λmax(H
†H). This lets us conclude that

ĊE(0, θ) =
1

loge 2

{
ᾱµE

[
λmax(H

†K−1
z H)

]
+ β̄νE

[
λmax(H

†H)
] }

. (8.41)

It is worth to mention the multiplicities of λmax(H
†K−1

z H) and λmax(H
†H)

which are l1 ≥ 1 and l2 ≥ 1, and input-covariance matrices can be given in the

following forms:

Kx1
=

l1

∑
i=1

κ1iu1,iu
†
1,i (8.42)

and

Kx2 =
l2

∑
i=1

κ2iu2,iu
†
2,i (8.43)

where κ1i, κ2i ∈ [0, 1] and ∑
l1
i=1 κ1i = 1 and ∑

l2
i=1 κ2i = 1, and {u1,i} and {u2,i}

are the orthonormal eigenvectors that span the maximal-eigenvalue eigenspaces

of H†K−1
z H and H†H, respectively. As for the second derivative, we differentiate

ṘE(snr, θ) in (8.29) with respect to SNR once more. However, mathematically it

is tractable, and it is hard to obtain a definite solution. Therefore, we will consider

a special case where a + b = 1. Now, we obtain

R̈E(snr, θ) =
D

E [ f (snr, θ)]
E
[

f̈ (snr, θ)
]− D

E2 [ f (snr, θ)]
E

2
[

ḟ (snr, θ)
]

(8.44)

where

ḟ (snr, θ) = −θT(aPf + bPd)ṙ1e−θTr1 − θTa(1 − Pf )ṙ2e−θTr2 (8.45)
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and

f̈ (snr, θ) =θ2T2(bPd + aPf )ṙ
2
1e−θTr1 + θ2T2a(1 − Pf )ṙ

2
2e−θTr2

− θT(bPd + aPf )r̈1e−θTr1 − θTa(1 − Pf )r̈2e−θTr2 . (8.46)

Now, we can write the second derivatives of r1 and r2 as

r̈1 = − B

loge 2 ∑
i

µ2N2λ2
i (Φ1)

[1 + µNsnrλi(Φ1)]
2

(8.47)

and

r̈2 = − B

loge 2 ∑
i

ν2N2λ2
i (Φ2)

[1 + νNsnrλi(Φ2)]
2

. (8.48)

We can easily see that when SNR goes to 0, we can express the first and second

derivatives of f (snr, θ)

ḟ (0, θ) = − (bPd + aPf )θTBNµ

loge 2
tr{Φ1} −

a(1 − Pf )θTBNν

loge 2
tr{Φ2} (8.49)

and

f̈ (0, θ) =
ℓ1θTBN2µ2

loge 2
tr{Φ†

1Φ1}+
ℓ2θTBN2ν2

loge 2
tr{Φ†

2Φ2}

+
ℓ1θ2T2B2N2µ2

log2
e 2

tr2{Φ1}+
ℓ2θ2T2B2N2ν2

log2
e 2

tr2{Φ2}, (8.50)

and ℓ1 = (bPd + aPf ) and ℓ2 = a(1 − Pf ). We know f (0, θ) = 1. Then, we write

R̈(0, θ) =
1

θTBN

{
E

2
[

ḟ (0, θ)
]
− E

[
f̈ (0, θ)

]}
. (8.51)
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We can easily verify that

E {tr(Φ1)} = E

{
tr(HKx1

H†K−1
z )
}
= E

{
λmax(H

†K−1
z H)

}
(8.52)

E {tr(Φ2)} = E

{
tr(HKx2H†)

}
= E

{
λmax(H

†H)
}

(8.53)

and

E

{
tr(Φ†

1Φ1)
}
= E

{
tr(K−1

z HKx1
H†HKx1

H†K−1
z )
}

= E

{
tr(K−1

z K−1
z HKx1

H†HKx1
H†)

}
(8.54)

≥ E

{
tr(K−1

z HKx1
H†K−1

z HKx1
H†)

}
(8.55)

= E

{
l1

∑
i,j

κ1iκ1jtr(K
−1
z Huiu

†
i H†K−1

z Huju
†
j H†)

}
(8.56)

= E

{
l1

∑
i

κ2
1itr(K

−1
z Huiu

†
i H†K−1

z Huiu
†
i H†)

}
(8.57)

= E

{
l1

∑
i

κ2
1iλmax(H

†K−1
z H)tr(K−1

z Huiu
†
i H†)

}
(8.58)

= E

{
l1

∑
i

κ2
1iλmax(H

†K−1
z H)tr(u†

i H†K−1
z Hui)

}
(8.59)

= E

{
l1

∑
i

κ2
1iλ

2
max(H

†K−1
z H)

}
(8.60)

= E

{
λ2

max(H
†K−1

z H)
l1

∑
i

κ2
1i

}
(8.61)

≥ 1

l1
E

{
λ2

max(H
†K−1

z H)
}

(8.62)

where (8.55) comes from the fact that if A, B ∈ Mn are Hermitian, tr(AB)2 ≤
tr(A2B2) [38, Chap. 4, Problem 4.1.11]. (8.56) and (8.57) follow from the fact

that {u1i} are the eigenvectors that correspond to λmax(H
†K−1

z H) and hence
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u†
1,iH

†K−1
z Hu1,j = 0 if i 6= j, which comes from the orthonormality of {u1,i}.

Finally, (8.62) follows from the properties that κ1i ∈ [0, 1] and ∑
l1
i=1 κ1i = 1, and

the fact that ∑
l1
i=1 κ2

1i is minimized by choosing κ1i =
1
l1

, that leads us to the lower

bound ∑
l1
i=1 κ2

1i ≥ 1
l1

. Same procedure can be applied to E
{

tr(Φ†
2Φ2)

}
, and we

can easily see that

E

{
tr(Φ†

2Φ2)
}
= E

{
tr(HKx1

H†HKx1
H†)

}

= E

{
l2

∑
i,j

κ2,iκ2,jtr(Hu2,iu
†
2,iH

†Hu2,ju
†
2,jH

†)

}
(8.63)

= E

{
l2

∑
i

κ2
2,itr(Hu2,iu

†
2,iH

†Hu2,iu
†
2,iH

†)

}
(8.64)

= E

{
l2

∑
i

κ2
2,iλmax(H

†H)tr(Hu2,iu
†
2,iH

†)

}
(8.65)

= E

{
l2

∑
i

κ2
2,iλmax(H

†H)tr(u†
2,iH

†Hu2,i)

}
(8.66)

= E

{
l2

∑
i

κ2
2,iλ

2
max(H

†H)

}
(8.67)

= E

{
λ2

max(H
†H)

l2

∑
i

κ2
2,i

}
(8.68)

≥ 1

l2
E

{
λ2

max(H
†H)

}
(8.69)
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Now, we can write the second derivative of effective rate as

R̈E(0, θ) =
1

θTBN

{
E

2

[
ℓ1θTBNµ

loge 2
tr(Φ1) +

ℓ2θTBNν

loge 2
tr(Φ2)

]

− E

[
ℓ1θ2T2B2N2µ2

log2
e 2

tr2(Φ1) +
ℓ2θ2T2B2N2ν2

log2
e 2

tr2(Φ2)

]

− E

[
ℓ1θTBN2µ2

loge 2
tr(Φ†

1Φ1) +
ℓ2θTBN2ν2

loge 2
tr(Φ†

2Φ2)

]}
(8.70)

=
θTBN

log2
e 2

E
2 [ℓ1µtr(Φ1) + ℓ2νtr(Φ2)]

− θTBN

log2
e 2

E

[
ℓ1µ2tr2(Φ1) + ℓ2ν2tr2(Φ2)

]

− N

loge 2
E

[
ℓ1µ2tr(Φ†

1Φ1) + ℓ2ν2tr(Φ†
2Φ2)

]
(8.71)

≤ θTBN

log2
e 2

E
2
[
ℓ1µλmax(H

†K−1
z H) + ℓ2νλmax(H

†H)
]

− θTBN

log2
e 2

E

[
ℓ1µ2λ2

max(H
†K−1

z H) + ℓ2ν2λ2
max(H

†H)
]

− N

loge 2
E

[
ℓ1µ2λ2

max(H
†K−1

z H)

l1
+

ℓ2ν2λ2
max(H

†H)

l2

]
= C̈E(0, θ) (8.72)

8.3.2 Energy Efficiency in the Low-Power Regime

Now, we can analyze the energy efficiency in the low-power regime using the

expressions for the first and second derivatives. The minimum bit energy under

QoS constraints is given by [81]

Eb

N0min

= lim
snr→0

snr

CE(snr)
=

1

ĊE(0)
. (8.73)
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At Eb
N0min

, the slope S0 of the spectral efficiency versus Eb/N0 (in dB) curve is

defined as [81]

S0 lim
Eb
N0

↓ Eb
N0 min

CE

(
Eb
N0

)

10 log10
Eb
N0

− 10 log10
Eb
N0 min

10 log10 2. (8.74)

Considering the expression for normalized effective capacity, the wideband slope

can be found from [81]

S0 =
2
[
ĊE(0)

]2

−C̈E(0)
loge 2 bits/s/Hz/(3 dB)/receive antenna. (8.75)

Applying the results (8.41) and (8.72) to the above formulation, we obtain

Eb

N0 min
=

loge 2

ℓ1µE

[
λmax(H

†K−1
z H)

]
+ ℓ2νE

[
λmax(H

†H)
] (8.76)

S0 =
2E

2 [ℓ1µα + ℓ2νβ]

θTBN {E [ℓ1µ2α2 + ℓ2ν2β2]− E2 [ℓ1µα + ℓ2νβ]}+ NE

[
ℓ1µ2α2

l1
+

ℓ2ν2β2

l2

]
loge 2

(8.77)

where α = λmax(H
†K−1

z H) and β = λmax(H
†H).

When we have equal power allocation, i.e., Kx = 1
M I, and with the assumption

that s with dimension N × 1 is a zero-mean Gaussian random vector with a co-

variance matrix E{ss†} = σ2
s I where I is the identity matrix, it can be immediately

seen from (8.76) and (8.77) that

Eb

N0 min
=

loge 2(
ℓ1µ

σ2
s
+ ℓ2ν

)
E

[
tr(H†H)

] (8.78)
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S0 =
2
(
ℓ1µ

σ2
s
+ ℓ2ν

)2
E

2
[

tr(H†H)
]

Ω
(8.79)

where

Ω =θTBN

{[
ℓ1µ2

σ4
s

+ ℓ2ν2

]
E

[
tr2(H†H)

]
−
[
ℓ1µ

σ2
s
+ ℓ2ν

]2

E
2
[
tr(H†H)

]}

+ N

[
ℓ1µ2

σ4
s

+ ℓ2ν2

]
E

[
tr
(
(H†H)2

)]
loge 2.

Now, assuming that H has independent zero-mean unit-variance complex Gaus-

sian random entries, we have [54]

E

[
tr(H†H)

]
= NM, E

[
tr2(H†H)

]
= NM(NM + 1),

E

[
tr
(
(H†H)2

)]
= NM(N + M). (8.80)

Using these facts, we can write the following minimum bit energy and wideband

slope expressions for the uniform power allocation case

Eb

N0min

=
loge 2(

ℓ1µ

σ2
s
+ ℓ2ν

)
NM

(8.81)

S0 =
2
(
ℓ1µ

σ2
s
+ ℓ2ν

)2
M2

Υ
(8.82)

where

Υ =θTB

{[
ℓ1µ2

σ4
s

+ ℓ2ν2

]
M(NM + 1)−

[
ℓ1µ

σ2
s
+ ℓ2ν

]2

M2

}

+

[
ℓ1µ2

σ4
s

+ ℓ2ν2

]
M(N + M) loge 2
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Figure 8.3: Effective Rate and ν v.s. µ for different Decay Rate, θ, values.

8.4 Numerical Results

In this section, we numerically show the results obtained in the previous sections.

In our simulations, we consider the i.i.d. Rayleigh fading channel where the vari-

ables of the channel matrix H are i.i.d. zero-mean, unit variance, circularly sym-

metric Gaussian random variables. Moreover, we assume that input covariance

matrix is Kx = 1
M I and that variables of received signal coming from primary

users are i.i.d. and have a variance σ2
s so that Kz = σ2

s +σ2
n

σ2
s

I. As the objective
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function we consider the effective rate which is given as

RE(snr, θ) = − 1

θTB
logeE

{
ℓ1e

−θTB log2 det

[
I+

µNσ2
n

M(σ2
s +σ2

n)
snrHH†

]

+ ℓ2e−θTB log2 det[I+ νN
M snrHH†] + ρ(1 − Pd)

}
bits/Hz/s.

(8.83)

With these assumptions, it will be easy to calculate the effective rate by using ex-

pression for the moment generating function of instantaneous mutual information

given by Wang and Giannakis in [82, Theorem 1]. After adopting this expression

into our effective rate formulation (8.83), we obtain

RE(snr, θ) = − 1

θTB
loge

{
[bPd + aPf ]

det
[
G
(

θ,
µσ2

nsnr

σ2
s +σ2

n

)]

∏
k
i=1 Γ(d + i)

+ a(1 − Pf )
det [G (θ, νsnr)]

∏
k
i=1 Γ(d + i)

+ b(1 − Pd)

}
bits/Hz/s (8.84)

where k = min(M, N), d = max(M, N) − min(M, N), and Γ(.) is the Gamma

function. Here, G(θ, snr) is a k × k Hankel matrix whose (m, n)th component is

gm,n =
∫ ∞

0

(
1 +

N

M
snrz

)−θTB log2 e

zm+n+d−2e−zdz m,n=1,2,...,k. (8.85)

In our simulations, we assume T = 0.1sec., B = 100Hz, σ2
n = σ2

s = 1, b = 0.1,

a = 0.9, Pd = 0.92 and Pf = 0.21. In Figure 8.3, we plot the effective transmis-

sion rate as a function of µ for different decay rate values θ. As expected, with

increasing decay rate the effective rate is decreasing. The course of the maxi-

mum effective rate as a function of µ is moving towards the high values of µ

with increasing decay rate values, which means that more power is allocated for
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Figure 8.4: Effective Rate v.s. Decay Rate, θ for different Number of Antennas, M.

the case when the primary users are active when there are more stringent buffer

constraints. Note that the number of transmit and receive antennas are 1 and 1,

respectively, and SNR=0 dB. In Figure 8.4, we plot the effective rate as a function

of decay rate θ for different values of transmit and receive antennas when, again,

SNR=0 dB. Due to increasing buffer constraint levels, the effective rate is decreas-

ing for all antenna cases, and at high θ values, the increase due to more number

of antennas in effective rate is considerably decreasing and becoming same for all

cases. In Figure 8.5 and Figure 8.6, we display the effective rate as a function of

SNR for different values of decay rates. In Fig. 8.5 the number of antennas at

both receiver and transmitter ends is 1, whereas in Fig. 8.6 it is 3 at both ends. It

can be easily observed that at high SNR values, the number of antennas does not
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Figure 8.5: Effective Rate v.s. snr for different values of Decay Rate, θ M = 1.

improve the effective transmission rates. On the other hand, at lower SNR values,

the number of antennas gains importance. At stringent delay constraints, using

more antennas at lower SNR values is more beneficial for the SUs under power

limitations.

8.5 Conclusion

In this chapter, we investigated the performance levels of cognitive MIMO wire-

less communication systems under queuing and delay constraints. We considered

the effective rate as our objective performance metric and studied in the low-

power regime. We obtained the expressions for the first and second derivatives
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of effective capacity. We observe that the first derivative does not depend on the

decay rate but it is affected by the power allocation rates for the cases when the

channel is busy and the case when the channel is idle. On the other hand, the

second derivative is a function of decay rate θ. We also demonstrated the mini-

mum bit energy requirements under the QoS constraints. Finally, we displayed

the numerical results that show the course of effective transmission rate.
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Appendix A

Proof of Theorem 1

In [20, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge sp(φ(θ)R) (A.1)

where sp(φ(θ)R) is the spectral radius (i.e., the maximum of the absolute values of

the eigenvalues) of the matrix φ(θ)R, R is the transition matrix of the underlying

Markov process, and φ(θ) = diag(φ1(θ), . . . , φM(θ)) is a diagonal matrix whose

components are the moment generating functions of the processes in M states.

The rates supported by the cognitive radio channel with the state transition model

described in the previous section can be seen as a Markov modulated process and

hence the setup considered in [20] can be immediately applied to our setting. Note

that the transmission rates are non-random and fixed in each state in the cogni-

tive channel. More specifically, the possible rates are r1(T − N), r2(T − N), and 0

for which the moment generating functions are eθr1(T−N), eθr2(T−N), and 1, respec-

tively. Therefore, we have φ(θ) = diag{e(T−N)θr1 , 1, e(T−N)θr2, 1, e(T−N)θr1 , 1, e(T−N)θr2 , 1}.
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Then, using (5.16), we can write

φ(θ)R =




φ1(θ)p1 . . . φ1(θ)p8

φ2(θ)p1 . . . φ2(θ)p8

φ3(θ)p1 . . . φ3(θ)p8

. . . . .

φ8(θ)p1 . . . φ8(θ)p8




=




e(T−N)θr1 p1 . . . e(T−N)θr1 p8

p1 . . . p8

e(T−N)θr2 p1 . . . e(T−N)θr2 p8

. . . . .

p1 . . . p8




(A.2)

Since φ(θ)R is a matrix with unit rank, we can readily find that

sp(φ(θ)R) = trace(φ(θ)R)

= φ1(θ)p1 + ... + φ8(θ)p8 (A.3)

= (p1 + p5)e
(T−N)θr1 + (p3 + p7)e

(T−N)θr2 + p2 + p4 + p6 + p8. (A.4)

Then, combining (A.4) with (A.1) and (5.18), we obtain the expression inside the

maximization on the right-hand side of (5.19). Note that this expression is the

effective capacity for given values of fixed transmission rates r1 and r2, and can

be maximized by choosing the optimal values of r1 and r2. This maximization

leads to the effective capacity formula given in (5.19).
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Appendix B

Proof of Theorem 2

The proof is very similar to the proof of Theorem 1. The only differences are

that we now have four states and the service processes (or equivalently the trans-

mission rates) are random processes that depend on z. As described in Section

5.4.1, the rates are r1(i) in states 1 and 5, r2(i) in state 7, and zero in state 4.

Therefore, the corresponding moment generating functions are φ1(θ) = φ5(θ) =

Ez{e(T−N)θr1}, φ7(θ) = Ez{e(T−N)θr2}, and φ4(θ) = 1, where the expectations are

with respect to z. Using the same approach as in the proof of Theorem 1, we can

easily find that

Λ(θ)

θ
=

1

θ
loge

[
(p1 + p5)Ez{e(T−N)θr1}+ p7Ez{e(T−N)θr2}+ p4

]
(B.1)

=
1

θ
loge

[
(ρPd + (1 − ρ)Pf )Ez{e(T−N)θr1}+ (1 − ρ)(1 − Pf )Ez{e(T−N)θr2}

+ ρ(1 − Pd)

]
. (B.2)

Combining the expression in (B.2) with (5.18), and maximizing over all possible

power adaptation schemes leads to (5.24).
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Appendix C

Proof of Theorem 3

Since logarithm is a monotonic function, the optimal power adaptation policies

can also be obtained from the following minimization problem

min
µ1(θ,z):Ez{µ1(θ,z)}≤1
µ2(θ,z):Ez{µ2(θ,z)}≤1

(
ρPd + (1 − ρ)Pf

)
Ez{e−(T−N)θr1}+ (1 − ρ)(1 − Pf )Ez{e−(T−N)θr2}.

(C.1)

It is clear that the objective function in (C.1) is strictly convex and the constraint

functions in (5.20) are linear with respect to µ1(θ, z) and µ2(θ, z) [76, Appendix

I]. Then, forming the Lagrangian function and setting the derivatives of the La-

grangian with respect to µ1(θ, z) and µ2(θ, z) equal to zero, we obtain

{
λ1 − aSNR1z

[
ρPd + (1 − ρ)Pf

]
[1 + µ1(θ, z)zSNR1]

−a−1
}

f (z) = 0 (C.2)

{
λ2 − aSNR4z (1 − ρ)

(
1 − Pf

)
[1 + µ2(θ, z)zSNR4]

−a−1
}

f (z) = 0 (C.3)

where λ1 and λ2 are the Lagrange multipliers. Defining γ1 = λ1

[ρPd+(1−ρ)Pf ]aSNR1

and γ2 = λ2

(1−ρ)(1−Pf)aSNR4
, and solving (C.2) and (C.3), we obtain optimal power
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policies given in (5.25) and (5.26). Since in general all available transmission power

should be used, the values of the Lagrange multipliers λ1 and λ2 and hence the

values of γ1 and γ2 can be numerically obtained from the relations Ez{µ1(θ, z)} =

1 and Ez{µ2(θ, z)} = 1.
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Appendix D

Proof of Theorem 4

In [20, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge sp(φ(θ)R) (D.1)

where sp(φ(θ)R) is the spectral radius (i.e., the maximum of the absolute values of

the eigenvalues) of the matrix φ(θ)R, R is the transition matrix of the underlying

Markov process, and φ(θ) = diag(φ1(θ), . . . , φM+2(θ)) is a diagonal matrix whose

components are the moment generating functions of the processes in given states.

The rates supported by the cognitive radio channel with the state transition model

described in the previous section can be seen as a Markov modulated process

and hence the setup considered in [20] can be immediately applied to our setting.

Since the processes in the states are time-varying transmission rates, we can easily

find that

φ(θ) = diag
{

E
{

e(T−N)θr1

}
, E1

{
e(T−N)θr2

}
, . . . , EM

{
e(T−N)θr2

}
, 1
}

. (D.2)

Then, we have
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φ(θ)R =




φ1(θ)p1 . . φ1(θ)pM+2

. .

. .

φM+2(θ)p1 . . φM+2(θ)pM+2




.

Since φ(θ)R is a matrix with unit rank, we can readily find that

sp(φ(θ)R) =trace
(

φ(θ)R
)

=φ1(θ)p1 + φ2(θ)p2 + · · ·+ φM+1(θ)pM+1 + φM+2(θ)pM+2 (D.3)

=p1E
{

e(T−N)θr1

}
+ p2E1

{
e(T−N)θr2

}
+ · · ·+ pM+1EM

{
e(T−N)θr2

}

+ pM+2. (D.4)

Then, combining (D.4) with (D.1) and (6.26), normalizing the expression with TBc

in order to have the effective capacity in the units of bits/s/Hz, and consider-

ing the maximization over power adaptation policies, we reach to the effective

capacity formula given in (6.28).
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Appendix E

Proof of Theorem 5

Since logarithm is a monotonic function, the optimal power adaptation policies

can also be obtained from the following minimization problem:

min
αM−1ρPdE{P1zsp}

+∑
M
k=1 αM−k(1−α)k−1ρ(1−Pd)

M!
(M−k)!k!

Ek{P2zsp}
≤Iavg

p1E
{

e−(T−N)θr1

}
+

M

∑
k=1

pk+1Ek

{
e−(T−N)θr2

}

(E.1)

It is clear that the objective function in (E.1) is strictly convex and the constraint

function in (6.18) is linear with respect to P1 and P2
1. Then, forming the La-

grangian function and setting the derivatives of the Lagrangian with respect to P1

and P2 equal to zero, we obtain:

[
λρPdzsp

α
− cz

µ1

(
1 +

zP1

µ1

)−c−1
]

αM f(z, zsp) = 0 (E.2)

1Strict convexity follows from the strict concavity of r1 and r2 in (6.8) and (6.9) with respect to
P1 and P2 respectively, strict convexity of the exponential function, and the fact that the nonnega-
tive weighted sum of strictly convex functions is strictly convex [15, Section 3.2.1].
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and

[
λρ(1 − Pd)zsp −

c(1 − ρ)(1 − Pf )z

µ2

(
1 +

zP2

µ2

)−c−1
]
×

M

∑
k=1

αM−k(1 − α)k−1 M!

(M − k)!k!
fk(z, zsp) = 0 (E.3)

where λ is the Lagrange multiplier. Above, f(z, zsp) denotes the joint distribution

of (z, zsp) of the channel selected for transmission when all channels are detected

busy. Hence, in this case, the transmission channel is chosen among M channels.

Similarly, fk(z, zsp) denotes the joint distribution when k channels are detected

idle, and the transmission channel is selected out of these k channels. Defining

β1 = µ1ρPd
cα and β2 = ρ(1−Pd)µ2

c(1−ρ)(1−Pf )
, and solving (E.2) and (E.3), we obtain the

optimal power policies given in (6.29) and (6.30).
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Appendix F

Proof of Theorem 6

In the cognitive scenario we are considering, the signal received by the receiver in

the training phase is

y =





√
Pth + n + s if the channel is busy

√
Pth + n if the channel is idle

. (F.1)

Note that we assume that n and s are independent complex Gaussian random

variables with zero-mean and variances σ2
n and σ2

s , respectively. Therefore, the

variance of the noise component1 is either σ2
n + σ2

s or σ2
n, depending on whether

the channel is busy or idle. Since the receiver does not perfectly know the state

of the primary user activity and only has a guess through channel sensing, the

noise variance, σ2, is random taking two values: σ2
n + σ2

s and σ2
n. Now, the MMSE

1Noise component is n + s when the channel is busy, and n when the channel is idle.
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estimate in the presence of uncertainty in the noise statistics is obtained as follows:

ĥmmse = E{h|y} (F.2)

= P(σ2 = σ2
n | y)E{h | y, σ2 = σ2

n}+ P(σ2 = σ2
n + σ2

s | y)E{h | y, σ2 = σ2
n + σ2

s }
(F.3)

= P{σ2 = σ2
n | y}

√
Ptσ

2
h

Ptσ
2
h + σ2

n

y + P{σ2 = σ2
n + σ2

s | y}
√

Ptσ
2
h

Ptσ
2
h + σ2

n + σ2
s

y. (F.4)

Above, (F.3) is obtained by using the following property of conditional expec-

tation: E{X | Y} = E{E{X | Y, Z} | Y} where the outer expectation on the

right-hand side is with respect to the conditional distribution of Z given Y. In

our setting, Z is the noise variance. Hence, the above formulation indicates that

we can find the MMSE estimate by evaluating the average of the MMSE esti-

mates with fixed noise variances with respect to the conditional distribution of

the noise variance given the observation. This is indeed what is done in (F.3).

(F.4) is obtained by noting that once the noise variance is fixed, the MMSE es-

timates in a Gaussian setting are given by E{h | y, σ2 = σ2
n} =

√
Ptσ

2
h

Ptσ
2
h+σ2

n
y and

E{h | y, σ2 = σ2
n + σ2

s } =
√

Ptσ
2
h

Ptσ
2
h+σ2

n+σ2
s
y.

Next, we provide the expressions for the conditional probabilities using Bayes’

rule:

P{σ2 = σ2
n | y} =

P{σ2 = σ2
n} f (y|σ2 = σ2

n)

f (y)

and

P{σ2 = σ2
n + σ2

s | y} =
P{σ2 = σ2

n + σ2
s } f (y|σ2 = σ2

n + σ2
s )

f (y)
.
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Given the value of the noise variance σ2, y is conditionally Gaussian distributed

with zero mean and variance σ2, as can be immediately seen from the relations

in (F.1). These conditional Gaussian distributions are provided in (7.19) and (7.20)

in Section 7.3.1. f (y) is the average of the conditional distributions and hence

is given by (7.21). The prior probability of the noise variance depends on the

channel sensing result. For instance, let us assume that the channel is detected as

busy. Then,

P{σ2 = σ2
n} = P{channel

is idle | channel
is detected busy} (F.5)

=
P{channel

is idle }P{ channel is
detected busy | channel

is idle }
P{ channel is

detected busy}
(F.6)

=
P{channel

is idle }P{ channel is
detected busy | channel

is idle }
P{channel

is idle }P{ channel is
detected busy | channel

is idle }+ P{channel
is busy}P{ channel is

detected busy | channel
is busy}

(F.7)

=
a

a+b Pf

a
a+b Pf +

b
a+b Pd

(F.8)

=
aPf

aPf + bPd
(F.9)

Note that having σ2 = σ2
n means that there are no primary users in the channel

and hence channel is idle. By our assumption, channel is detected as busy. There-

fore, P{σ2 = σ2
n} is equal to the conditional probability P{channel

is idle | channel
is detected busy}.

Then, the expression in (F.9) is obtained by noting that P{channel
is idle } = a

a+b and

P{channel
is busy} = b

a+b , which can be derived easily from the two-state Markov chain

used for primary user activity, and by realizing that P{ channel is
detected busy | channel

is idle } is the

false alarm probability Pf and P{ channel is
detected busy | channel

is busy} is the detection probability

Pd. The expressions in (7.17) and (7.18) for the other cases are obtained using a

similar approach.
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Appendix G

Proof of Theorem 7

In [20, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge sp(φ(θ)R) (G.1)

where sp(φ(θ)R) is the spectral radius or the maximum of the absolute values of

the eigenvalues of the matrix φ(θ)R, R is the transition matrix of the underlying

Markov process, and φ(θ) = diag(φ1(θ), . . . , φM(θ)) is a diagonal matrix whose

components are the moment generating functions of the processes in M states

(M = 8 in our case). The rates supported by the cognitive radio channel with the

state transition model described in the previous section can be seen as a Markov

modulated process and hence the setup considered in [20] can be immediately

applied to our setting. Note that the transmission rates are non-random and fixed

in each state in the cognitive channel. More specifically, the possible rates are

Tr1, Tr2, and 0 for which the moment generating functions are eθTr1 , eθTr2 , and

1, respectively. Therefore, we have φ(θ) = diag{eθTr1 , 1, eθTr2 , 1, eθTr1 , 1, eθTr2 , 1}.
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Then, using (7.40), we can write

φ(θ)R =




φ1(θ)pb1 . . φ1(θ)pb8

. .

φ3(θ)pb1 . . φ3(θ)pb8

φ4(θ)pb1 . . φ4(θ)pb8

φ5(θ)pi1 . . φ5(θ)pi8

. .

φ8(θ)pi1 . . φ8(θ)pi8




. (G.2)

Since φ(θ)R is a matrix with rank 2, we can readily find that [80]

sp(φ(θ)R) =
1

2

[
φ1(θ)pb1 + ... + φ4(θ)pb4 + φ5(θ)pi5 + ... + φ8(θ)pi8

]

+
1

2

{[
φ1(θ)pb1 + ... + φ4(θ)pb4 − φ5(θ)pi5 − ... − φ8(θ)pi8

]2

+ 4
(

φ1(θ)pi1 + ... + φ4(θ)pi4

)(
φ5(θ)pb5 + ... + φ8(θ)pb8

)} 1
2

=
1

2

[
(pb1 + pi5)e

θTr1 + (pb3 + pi7)e
θTr2 + pb2 + pb4 + pi6 + pi8

]

+
1

2

{[
(pb1 − pi5)e

θTr1 + (pb3 − pi7)e
θTr2 + pb2 + pb4 − pi6 − pi8

]2

+ 4

(
pi1eθTr1 + pi3eθTr2 + pi2 + pi4

)(
pb5eθTr1 + pb7eθTr2 + pb6 + pb8

)} 1
2

.

(G.3)

Then, combining (G.3) with (G.1) and (7.41), we obtain the expression inside the

maximization on the right-hand side of (7.42). Note that this expression is the

effective capacity for given values of fixed transmission rates r1 and r2 and of
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average power levels P1 and P2, and can be maximized by choosing the optimal

values of r1 and r2 over the optimized power allocation policy. This maximization

leads to the effective capacity formula given in (7.42). Note also that we have

normalized the effective capacity expression in (7.42) by TB to have it in the units

of bits/s/Hz.
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Appendix H

Proof of Theorem 8

In [20, Chap. 7, Example 7.2.7], it is shown for Markov modulated processes that

Λ(θ)

θ
=

1

θ
loge sp(φ(θ)R) (H.1)

where sp(φ(θ)R) is the spectral radius (i.e., the maximum of the absolute values

of the eigenvalues) of the matrix φ(θ)R, R is the transition matrix of the under-

lying Markov process, and φ(θ) = diag(φ1(θ), . . . , φM(θ)) is a diagonal matrix

whose components are the moment generating functions of the processes in M

states. The rates supported by the cognitive radio channel with the state transition

model described above can be seen as a Markov modulated process and hence the

setup considered in [20] can be immediately applied to our setting. Note that the

transmission rates are random in each state in the cognitive channel. Therefore,

the corresponding moment generating functions are φ1(θ) = φ3(θ) = E{eTθr1},
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φ4(θ) = E{eTθr2} and φ2(θ) = 1. Then, using (8.20), we can write

φ(θ)R =




φ1(θ)pb1 . . φ1(θ)pb4

φ2(θ)pb1 φ2(θ)pb4

φ3(θ)pi1 φ3(θ)pi4

φ4(θ)pi1 . . φ4(θ)pi4




=




E{eTθr1}pb1 . . E{eTθr1}pb4

pb1 . . pb4

E{eTθr1}pi1 E{eTθr1}pi4

E{eTθr2}pi1 E{eTθr2}pi4




(H.2)

Since φ(θ)R is a matrix with rank 2, we can readily find that

sp(φ(θ)R) =trace(φ(θ)R)

=
1

2
{φ1(θ)pb1 + φ2(θ)pb2 + φ3(θ)pi3 + φ4(θ)pi4}

+
1

2

{
[φ1(θ)pb1 + φ2(θ)pb2 − φ3(θ)pi3 − φ4(θ)pi4]

2

+ 4 (φ1(θ)pi1 + φ2(θ)pi2) (φ3(θ)pb3 + φ4(θ)pb4)
}1/2

=
1

2

{
(pb1 + pi3)E{eTθr1}+ pi4E{eTθr2}+ pb2

}

+
1

2

{[
(pb1 − pi3)E{eTθr1} − pi4E{eTθr2}+ pb2

]2

+ 4
(

pi1E{eTθr1}+ pi2

) (
pb3E{eTθr1}+ pb4E{eTθr2}

)}1/2

. (H.3)

Then, combining (H.3) with (H.1) and (8.21), we obtain the expression inside the

maximization on the right-hand side of (8.22).
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