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WIRELESS MULTIPLE ACCESS COMMUNICATION OVER COLLISION

FREQUENCY SHIFT KEYED CHANNELS

Chen Xia, Ph.D.

University of Nebraska, 2007

Advisor: Lance C. Pérez

A collision frequency shift keyed system (CFSK) using M -ary FSK signaling is

investigated. CFSK is a wireless multiple access system in which users access a

channel without cooperation. This results in collisions when users simultaneously

transmit signals in the same frequency band. However, analysis has shown that the

CFSK system has the potential to achieve greater capacities than binary multiple

access systems.

In this dissertation, bounds on the multiuser capacity of the noisy synchronous and

asynchronous CFSK channel are derived. Analytical models are designed for investi-

gating these capacity results. It is shown that the capacity of the noisy synchronous

CFSK channel is greater than the capacity of multiuser direct-squence (DS) and

frequency-hopping (FH) CDMA systems. The capacity of the asynchronous CFSK

channel is significantly high in the over-loaded case and this capacity is greater than

most asynchronous CDMA systems.

Multiuser detection on the CFSK channel is then investigated. Due to the ex-



tremely high complexity of the optimal multiuser detector, iterative multiuser de-

tectors are considered. Three simplified iterative multiuser detectors are derived,

the wide sense most probable (WSMP) combinations detector, the narrow sense most

probable (NSMP) combinations detector and the relaxation detector. The WSMP de-

tector utilizes the K-most probable combinations (K-MPC) and the k-most probable

frequencies (k-MPF) metric. Simulations show that these detectors can achieve near

single-user performance under a variety of load conditions. The relaxation detector,

in particular, offers excellent performance.

Randomly generated convolutional codes are considered for use in the CFSK sys-

tem. The choice of code parameters for different detectors and different transmission

rates are discussed. Simulation results show that with the proper choice of code pa-

rameters, it is possible to achieve performance near that of uniquely decodable codes.

In addition, the achieved rates surpass the rates for most CDMA systems.
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encouragement throughout this research. His kindest support is the most important

reason that I can complete this dissertation. Special thanks are given to my supervisor

committee for their valuable comments in the development of this dissertation.

I would like to thank Dr. Fan Jiang. I enjoy talking with him about error control

coding and the Houston Rockets. Also, thanks are given to all my labmates. They

bring me a fulfilling and fun experience in the MC2 lab. I learned a lot in talking with

Shuo Shen and Robert Sprick about sensor networks. I am grateful to Paul Kavan

who helped me setup my computer again and again. Also, it is fun to talk with Peter

Lavin about music.

At last, I owe a debt of gratitude to my dear family. My wife and my parents keep

on supporting me throughout these years. Their love is the warmest thing in my life

and provides me the motivation to complete my doctoral study.



DEDICATION

To my grandmother, Suqiong Li.



Contents

1 Introduction 1

1.1 Motivation for CFSK . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Theoretical Performance of the CFSK Channel 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Channel Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Synchronous Channel . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Asynchronous Channel . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Optimal Multiuser Detection . . . . . . . . . . . . . . . . . . . 21

2.3 Capacity of the Noisy Synchronous CFSK Channel with Intensity In-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Capacity of the Noiseless Asynchronous CFSK Channels . . . . . . . 26

2.5 Asynchronous Capacity: CFSK vs. CDMA . . . . . . . . . . . . . . . 30

i



3 Multiuser Detection over the CFSK Channel 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Optimal Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Iterative Multiuser Detection . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 MAP-Consensus Decoder . . . . . . . . . . . . . . . . . . . . . 42

3.4 Metric Simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 WSMP Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 K-Most Probable Combinations Metric . . . . . . . . . . . . . 48

3.5.2 k-Most Probable Frequencies Metric . . . . . . . . . . . . . . 50

3.6 The NSMP Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 The Relaxation Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.7.1 a priori Enumeration Polynomials . . . . . . . . . . . . . . . . 57

3.7.2 Channel Transition Enumeration Polynomials . . . . . . . . . 58

3.7.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . 62

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Performance of Multiuser Detection 66

4.1 Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Distance of the Super-Trellis Codes . . . . . . . . . . . . . . . . . . . 67

4.3 Suboptimality of Iterative Multiuser Detection . . . . . . . . . . . . . 70

4.3.1 Channel Interleavers . . . . . . . . . . . . . . . . . . . . . . . 74

ii



4.4 Performance of Simplified Metrics . . . . . . . . . . . . . . . . . . . . 77

4.5 EXIT Chart Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Code Design for the CFSK System 100

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Uniquely Decodable Block Codes . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Performance of UDBC’s . . . . . . . . . . . . . . . . . . . . . 106

5.3 Spectral Efficiency of the CFSK System . . . . . . . . . . . . . . . . 110

5.4 Choice of Code Parameters . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.1 Choice of Iterative Multiuser Detectors . . . . . . . . . . . . . 118

5.4.2 Choice of Bandwidth Expansion Factors . . . . . . . . . . . . 119

5.4.3 Choice of Code Memory . . . . . . . . . . . . . . . . . . . . . 121

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Conclusion 128

iii



List of Figures

1.1 Block diagram of a CFSK system. . . . . . . . . . . . . . . . . . . . . 3

1.2 A comparison of the sum rates of CDMA and CFSK systems. . . . . 5

2.1 Block diagram of a CFSK system. . . . . . . . . . . . . . . . . . . . . 13

2.2 Probability density functions for the received symbol energy on the

noisy synchronous CFSK channel at 8 dB. . . . . . . . . . . . . . . . 15

2.3 Probability density functions for the symbol received energy of the

noisy asynchronous CFSK channel at 8 dB. . . . . . . . . . . . . . . . 19

2.4 Exact capacities of the noisy synchronous CFSK channel with intensity

information at 6 dB, 8 dB and 12 dB. . . . . . . . . . . . . . . . . . . 25

2.5 The analytical model for the noiseless asynchronous CFSK channel

without intensity information. . . . . . . . . . . . . . . . . . . . . . . 27

2.6 Capacity of noiseless asynchronous CFSK channels. . . . . . . . . . . 31

2.7 Normalized capacity for noiseless asynchronous CFSK and CDMA sys-

tems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



3.1 A two-user super-trellis. . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 The consensus decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 A trellis searching for the patterns of combinations with the highest

Pdist in an 7-user, 8-frequency system. . . . . . . . . . . . . . . . . . . 53

3.4 An example of the Viterbi algorithm in a 4-user, 8-frequency system. 55

4.1 A T -user CFSK system. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 The random convolutional codes for 3 users. . . . . . . . . . . . . . . 71

4.3 Average BER performance of the 3-user, 4-frequency synchronous sys-

tem with component codes shown in Figure 4.2. . . . . . . . . . . . . 72

4.4 Component decoder for the ith user with channel interleavers. . . . . 75

4.5 Performance of the synchronous 3-user, 4-frequency system with chan-

nel interleavers and the component codes shown in Figure 4.2. . . . . 76

4.6 Average BER performance of a synchronous 8-frequency system with

rate 1/3, memory 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 The average BER performance of a synchronous 8-frequency system

with rate 1/3, memory 3 codes as a function of SNR. . . . . . . . . . 79

4.8 The convergence of 2-user iterative detection with rate 1/3, memory 6

codes at 7 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.9 Performance of a 3-user 4-frequency system with rate 1/2, memory 2

codes and different metrics. . . . . . . . . . . . . . . . . . . . . . . . 83

v



4.10 Performance of a 8-user 4-frequency system with rate 1/6, memory 4

codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Extrinsic information transfer analysis of the CFSK system. . . . . . 87

4.12 EXIT chart at 8 dB for optimal iterative detector and relaxation de-

tector with rate 2/6, memory 4 convolutional codes. . . . . . . . . . . 93

4.13 EXIT chart at 9 dB for optimal iterative detector, relaxation detector

and NSMP detector with rate 2/6, memory 4 convolutional codes. . . 94

4.14 BER performance of 4-frequency 4-user system with rate 2/6, memory

4 convolutional codes. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.15 BER performance of optimal iterative detector and relaxation detector

between 8 dB and 9 dB for 4-frequency 4-user system with rate 2/6,

memory 4 convolutional codes. . . . . . . . . . . . . . . . . . . . . . . 96

4.16 EXIT chart at 10 dB for optimal iterative detector, relaxation detec-

tor, NSMP detector and 4-MPC detector with rate 2/6, memory 4

convolutional code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.17 EXIT chart for NSMP+4-MPC detector with rate 2/6, memory 4 con-

volutional codes when SNR ≥ 11dB. . . . . . . . . . . . . . . . . . . 98

4.18 EXIT chart for rate 2/6 random convolutional codes with memory 4,

6 and 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vi



5.1 CFSK transmitter with a binary convolutional code concatenated with

a UDBC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Performance comparison between UDBC and random convolution codes

in a CFSK system with 2 frequencies, 7 users and transmission rate

1/8 bits/symbol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 BER performance for codes with transmission rate 1/8 bits/symbol. . 113

5.4 BER performance for codes with transmission rate 1. . . . . . . . . . 115

5.5 BER performance for codes with transmission rate 4. . . . . . . . . . 116

5.6 Comparison of spectral efficiencies for different detectors. The coding

scheme has Ω = 16 chips-symbo/bit, memory 4. . . . . . . . . . . . . 120

5.7 Spectral efficiencies for different bandwidth expansion factors with the

relaxation detector and memory 4 codes. . . . . . . . . . . . . . . . . 122

5.8 Comparison of spectral efficiencies for memory 4 and memory 8 codes

with relaxation detector when Ω = 8. . . . . . . . . . . . . . . . . . . 124

5.9 Comparison of spectral efficiencies for memory 4 and memory 8 codes

with relaxation detector when Ω = 16. . . . . . . . . . . . . . . . . . 125

5.10 Comparison of spectral efficiencies for memory 4 and memory 8 codes

with relaxation detector when Ω = 32. . . . . . . . . . . . . . . . . . 126

6.1 Achieved spectral efficiency at a BER of 10−4 for the CFSK system

and a variety of CDMA systems. . . . . . . . . . . . . . . . . . . . . 131

vii



List of Tables

2.1 Thresholds for detection of uj over the noiseless asynchronous CFSK

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Transition probabilities PU |X(uj|xj) for the noiseless asynchronous CFSK

channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 An a priori probability distribution for 4 users. . . . . . . . . . . . . . 49

3.2 Combinations considered by the 4-MPC and 2-MPF for user U (0). . . 50

3.3 Summary of channel metrics. . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Rate 1/8 concatenated codes for a 2-frequency 7-user system. . . . . . 107

5.2 Transmission rates as a function of Ω and M . . . . . . . . . . . . . . 111

6.1 Code schemes for simulations of the CFSK system given Figure 6.1. . 133

viii



List of Abbreviations and Symbols

aPEP a Priori enumeration polynomial

AWGN Additive white Gaussian noise

BER Bit error rate

CDMA Code division multiple access

CFSK Collision frequency shift-keyed

CTEP Channel transition enumeration polynomial

DS-SSMA Direct sequence spreading spectrum multiple access

FDMA Frequency division multiple access

FH-SSMA Frequency hop spreading spectrum multiple access

GSM Globe system for mobile communication

ix



IC Interference Cancellation

ID Iterative detection

K-MPC K most probable combinations

k-MPF k most probable frequencies

KS Kautz Singleton code

MAP Maximum a posteriori

MLSD Most likelihood sequence detection

NSMP Narrow sense most probable combinations

P.D.F. Probability density function

P.S.D. Power spectral density

RSC Recursive systematic convolutional code

RS Reed Solomon

SNR Signal to noise ratio

SSMA Spreading spectrum multiple access

TC Turbo Code

x



TCMA Trellis-coded multiple access

TDMA Time division multiple access

UDBC Uniquely decodable block code

UDC Uniquely decodable code

WSMP Wide sense most probable combinations

α Forward metric of MAP algorithm

A1 The a priori information input to the metric computation

A2 The a priori information input to the MAP decoders

A(W ) The distance enumerating function for a super-trellis code

Ad The number of code word pairs on the super-trellis with Hamming distance d

β Backward metric of MAP algorithm

C0 The set of all possible frequency combinations in computing the channel metric

of the 0th user

C
′
0 The set of most probable frequency combinations in computing the channel

metric of the 0th user in narrow sense or wide sense

xi



C
′′
0 A super set of C0 containing frequency combinations accord two Constraint 2

dmin Minimum distance of the super-trellis code

Dj Binary difference matrix in the jth iteration in the construction of UDBC

D̃ Binary difference matrix for the construction of binary UDBC

D̃∗ Non-binary difference matrix for the construction of non-binary UDBC

E1 The extrinsic information output from the metric computation

E2 The extrinsic information output from the MAP decoders

Es Symbol energy

Φ
(ik)
j Asynchronous phase for user U (ik) to transmit frequency fj

fj The jth frequency

f
(i)
ji

The frequency with index ji and transmitted by the ith user

F̄ Received frequency block consisting of frequency vectors from time 0 to T − 1

F̄t Received frequency block consisting of frequency vector at time t

F The set of M frequencies {f0, . . . , fM−1}

γ Branch transition probability for a symbol

xii



i Index, counting the users, range: 0 · · ·T − 1

j Index, counting the frequencies, range: 0 · · ·M − 1

K Number of combinations used in K-MPC or k-MPF

κ Spectral efficiency

Λ Real numbers between 0 and 1, i.e. λ = [0, 1] ∈ R

M Number of frequencies

MaPEP The number of multiplications needed for computing the aPEP in the relaxation

metric

MCTEP The number of multiplications needed for computing the CTEP in the relaxation

metric

N Length of a coding block

No Noise power defined as one-sided power spectrum

NNSMP The total of computation needed for NSMP in the first iteration

NaPEP The number of additions needed for computing the aPEP in the relaxation

metric

xiii



NCTEP The number of additions needed for computing the CTEP in the relaxation

metric

Ω Bandwidth expansion factor

p
(u)
ju

A priori probability for frequency fju for user Uu

P (u) A priori probability block for all frequencies of user Uu

P (F̄t|f (i)
ji

) The channel metric for the ith user that denotes the probability of the received

signal vector given that the ith user transmits the frequency f
(i)
ji

Pdist The distance between a frequency combination and the received signal vector

F̄t

PNSMP The channel measurement in searching the narrow sense most probable combi-

nations

PWSMP The channel measurement in searching the wide sense most probable combina-

tions

q Order of the Galois Field GF(2q).

Q The number of quantization levels in the function S

Qj Quantization level of frequency fj in the function S

xiv



ρj Received energy for frequency j

R Rate of the convolutional codes

Rc Transmission rate in bits/symbol achieved by a user

St The state of trellis at time t

s̄t The set of symbols sent by all the users at time t

ˆ̄st The set of symbols estimated for all the users at time t

S A function that maps a M -dimensional vector in ΛM to a subset of integers Ξ

Ξ A subset of integers

T Number of users

Tj(D) The channel transition enumeration polynomial for the frequency fj

T (D) The channel transition enumeration polynomial

Tmax The maximal umber of users to achieve the spectral efficiency for a given trans-

mission rate and number of frequencies

U (i) The ith user that access to the system

µj Multiplicity of frequency fj, denotes the number of transmissions on fj

xv



µ̄ Pattern of a frequency combination

µ̄max The pattern of the most probable frequency combination

v̂i Output symbol of the consensus decoder for the ith user

Vj(D) The a priori enumeration polynomial for frequency fj

V
(i)
j (D) The a priori enumeration polynomial for frequency fj of user U (i)

ξx The approximated in-phase component of the demodulation output

ξy The approximated quadrature component of the demodulation output

xvi



Chapter 1

Introduction

In the last several decades, the world has witnessed the rapid development and

widespread application of multiple access communication systems, especially in mo-

bile communication systems. A great deal of effort has been made to more efficiently

utilize the limited resources of the wireless channels in these systems.

In a multiple access system, multiple users communicate with a common receiver

over the same communication channel and the receiver recovers each user’s informa-

tion by allocating channel resources to different users. In frequency division multiple

access (FDMA) systems, time division multiple access (TDMA) systems [1], and code

division multiple access (CDMA) systems [2], different frequency bands, time slots

and code spaces are assigned to the users, respectively.

Many multiple access mobile communication systems are based on a philosophy

1
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that treats every user except for the current user of interest as unwanted noise, called

multiple access interference (MAI). These systems are called single-user receiver sys-

tems. The presence of MAI prevents these systems from more efficiently utilizing

the channel. Much research [3]-[8] has shown that the signals from other users are

useful and can be utilized to improve the performance and capacity of these systems.

Techniques that do this are generally called multiuser detection and a multiple access

system with multiuser detection is called a multiuser system. Instead of making the

signals uncorrelated, systems using multiuser detection attempt to manipulate the

correlation among the users’ signals.

Much research has focused on multiuser CDMA systems, even though another

category of multiple access systems based on collision-type channels has been shown

[10]-[14] to be more efficient. This dissertation focuses on the performance and design

of a particular multiple access system with a collision-type channel called collision

frequency shift-keying (CFSK). A diagram of a CFSK system is shown in Figure 1.1.

Suppose that there are T users accessing the system, each of whom generate and

transmit signals independently. Each transmitter uses M -ary FSK modulation and

all users share the same set of frequencies F denoted by

F = {f0, . . . , fM−1}.

Since there is no cooperation among the T users, collisions occur when two or more of

the users send the same frequency at the same time. At the receiver, a non-coherent
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detector outputs a vector F̄ denoted by

F̄ = [ρ0, ρ1, . . . , ρM−1]. (1.1)

If the entry ρj denotes the energy level of frequency fj, and thus indicates the number

of transmissions on this frequency, then the channel is called the CFSK channel with

intensity information. If ρj ∈ {0, 1}, where ρj = 1 when there is energy detected

on frequency fj, and ρj = 0 when there is no energy detected, then the channel

is called the CFSK channel without intensity information. The multiuser detector

performs multiuser detection on the vector F̄ , and outputs an estimate of each user’s

transmitted information.

Figure 1.1: Block diagram of a CFSK system.
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1.1 Motivation for CFSK

The high spectral efficiency of the CFSK channel provides the primary motivation for

investigating this system. Chang and Wolf [13] derived the capacity of the noiseless

T -user, M -frequency multiple-access channel with and without intensity information

in 1982. In [14], Grant and Schlegel compared the results of Chang and Wolf and the

capacity of a CDMA system given in [15, 16, 9]. This comparison is shown in Figure

1.2. Note that the number of chips in the CFSK system is defined as the number of

frequencies and the spreading factor is defined as the ratio of the number of chips to

the number of users.

The results in Figure 1.2 show that the CFSK channel with or without intensity

information has a higher sum rate, or capacity, than conventional CDMA and CDMA

with multiuser detection for moderate to large spreading factors. The sum rate is

defined as a summation of the maximal allowable transmission rates of all the users

that access the channel. In Figure 1.2, the capacity is normalized by the number of

chips so that this capacity is fair for all spreading factors. For large spreading factors,

the convergence of the two capacity curves for each system suggests that single user

detectors are sufficient. For low spreading factors, that is when a large number of

users are sharing the same bandwidth, the CFSK system with intensity information

has a greater capacity than both conventional CDMA and CDMA with multiuser

detection. However, the advantage of the CFSK system with intensity information
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is not as high as it is for moderate spreading factors. For the CFSK system without

intensity information, the capacity drops dramatically for low spreading factors, since

the “0 or 1” detection of each frequency causes a large loss of channel information in

heavily loaded systems. These results suggest that the CFSK channel with intensity

information has more potential than CDMA for achieving high information rates,

especially when the spreading factor is moderate, say, between 1 and 10.
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Figure 1.2: A comparison of the sum rates of CDMA and CFSK systems.
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In addition to increased multiuser capacity, there are many other attractive fea-

tures of the CFSK system with intensity information. First, it is resistant to the

near-far effect, as the receiver performs multiuser detection. The near-far effect oc-

curs when some interfering users have a much higher received power than the received

power from the user of interest. This can significantly degrade the performance of

a single-user detector since single-user detectors generally treat all the interfering

users’ signals as noise. With multiuser detection, the received signals from the inter-

fering users are utilized in detecting the information from the user of interest. Thus,

though the received power from the interfering users may be much higher than the

received power from the user of interest in multiuser detectors, the detection results

for interfering users can be helpful for the detection of the user of interest.

In [3], Verdú proved that the optimal multiuser detector in a CDMA system with

orthogonal spreading codes can provide perfect resistance to the near-far effect. That

is, the received power among the users maybe highly unbalanced, but the perfor-

mance of the detector is not affected by the near-far effect as long as the received

signal-noise-ratio (SNR) for each of the users is above a threshold. For suboptimal

multiuser detectors and non-orthogonal spreading codes, Verdú showed that the mul-

tiuser detector can still tolerate an imbalance in the received power to some extent.

Capacity results for the CFSK system show that the CFSK system with multiuser

detection is also resistant to the near-far effect.
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Second, because of the inherent frequency diversity of the CFSK system, its per-

formance over frequency selective-fading channels may be better than that of a con-

ventional multiple access system. In addition, the CFSK system may be resistant to

inter-symbol interference (ISI) since the individual frequency symbols can be chosen

to be longer than the delay spread of many fading channels. The reason for this is

that the detection is done in the frequency domain. If the delay spread of a frequency

symbol is longer than the delay spread of the fading channel, no symbol entirely over-

laps an adjacent symbol in the time domain. By choosing the appropriate sampling

time, the frequency spectrum of each individual frequency symbol can be recovered.

The third feature of the CFSK system is that the system can adjust the users’

transmission rates by simply changing the size of the modulation alphabet. Thus,

the CFSK system can be extended to a multi-rate system in which users use different

size alphabets. This feature makes the CFSK system very attractive in multimedia

applications over wireless networks, especially over ad hoc wireless networks with

various Quality of Service (QoS) requirements.

Finally, the non-binary nature of the CFSK system enables better bit error perfor-

mance than binary systems. In an uncoded single-user system, analytical results show

that the bit error rate (BER) of FSK modulation improves as the size of the alphabet

gets larger. This suggests that the CFSK system has the potential of achieving better

BER performance than systems using binary modulation schemes. Note that the im-
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provement in BER performance is at the cost of increased bandwidth. However, the

CFSK system with multiuser detection can achieve greater spectral efficiency than

other multiple access systems as shown in Figure 1.2, where the normalized sum rate

is equivalent to the spectral efficiency.

No implementation of the CFSK receiver exist so far to achieve a near capacity

rate and decent BER performance with low complexity. The optimal CFSK receiver

using maximum likelihood sequence detection (MLSD) has an exponential complex-

ity with the number of the users that is impractical [11]. Chang and Wolf’s code

design requires specific receiver structure that has poor BER performance on noisy

channels [13]. Grant and Schlegel designed a consensus receiver for the CFSK system

without intensity information that can not approach the capacity of the CFSK sys-

tem with intensity information [14]. In [17], the channel metric of the CFSK channel

with intensity information requires an iterative multiuser detector with exponential

complexity with the number of users that is impractical. Thus, efforts are made in

this dissertation to design simplified iterative multiuser detectors with near capacity

rate and decent BER performance.

1.2 Overview

This dissertation focuses on three important aspects of the the CFSK system: i) theo-

retical bounds on the channel capacity, ii) the design of multiuser detection techniques
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and iii) channel code design for the CFSK system with multiuser detection.

In Chapter 2, the performance of the CFSK channel under several channel condi-

tions is discussed. Previous results on the CFSK channel with intensity information

focus on the synchronized noiseless case [13]. In [9], capacity bounds for the noisy

CFSK channel without intensity information are derived. In Chapter 2 new capacity

bounds for the CFSK channel with intensity information under both synchronous

and asynchronous situations are derived. To obtain these capacity results, an op-

timal multiuser detector is assumed. These bounds show that the capacity of the

asynchronous CFSK channel is unaffected by the near-far effect or fading and the

capacity is above a constant level even when the system is over-loaded.

In Chapter 3, detection strategies for the CFSK channel are investigated. The

implementation of an optimal multiuser detector based on Maximum Likelihood Se-

quence Detection (MLSD) is discussed. It is shown that this approach is an NP-hard

problem, and thus impractical for applications. Iterative detection techniques are

proposed that provide a suboptimal solution for multiuser detection of the CFSK

channel with intensity information. In the iterative detectors, an optimal multiuser

channel metric that considers all the possible combinations of the users’ choices is

first derived. The complexity of this metric is an exponential function of the number

of users and is not practical for heavily loaded systems. As a result, further simplifi-

cations of the iterative multiuser channel metric are required. These simplifications
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reduce or enlarge the size of the set of the possible combinations of the users’ choices

such that the computational complexity is polynomial with the number of users.

In Chapter 4, the performance of several iterative multiuser detectors is studied.

The effectiveness of the metric simplifications given in Chapter 3 is shown via simu-

lation. EXIT analysis of the iterative detectors shows that multiaccess code design is

very important to achieving higher rates and to improve the system performance for

heavily loaded systems.

In Chapter 5, the design of multiacccess codes for the CFSK system is investigated.

Distance properties and unique decodability of multiaccess codes are defined. It is

shown that it is extremely difficult to find an effective method to construct uniquely

decodable multiaccess codes for the CFSK channel with intensity information. Thus,

randomly generated convolutional codes are used and are shown to be nearly unique

decodable. The choice of code parameters is investigated in detail. Simulation results

are presented to demonstrate that the random codes approach the performance of

nearly uniquely decodable codes.

In Chapter 6, performance comparisons of CFSK and CDMA, including DS/CDMA

and FH/CDMA, are given. The results show that the CFSK system has advantages

over the CDMA system in some cases. Finally, conclusions and comments for future

research are given.



Chapter 2

Theoretical Performance of the

CFSK Channel

2.1 Introduction

In [13], Chang and Wolf derived the capacity of the noiseless CFSK channel with

and without intensity information. Subsequently, Grant [9] derived an approximate

expression for the channel capacity of the noiseless CFSK channel without inten-

sity information and showed that it asymptotically approaches Chang and Wolf’s

result. Furthermore, Grant provided upper and lower bounds on the capacity of the

CFSK channel without intensity information in the presence of noise and undetected

interference. These results established a theoretical basis for the design of a multiple-

11
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access communication system over the CFSK channel. Grant, however, did not find

the capacity of the noisy CFSK channel with intensity information. Moreover, all of

the aforementioned capacity results are for synchronous systems, i.e, the symbols are

transmitted with the same phase. In many practical applications, synchronization is

hard to achieve.

In an asynchronous CFSK system the phase of the FSK signal sent by one user is

different from those sent by other users. Destructive interference of the signals from

different users makes it extremely difficult to estimate the number of users in each

frequency band. Thus, different capacity results for the asynchronous CFSK channel

are anticipated, especially for the case with intensity information.

In this chapter, mathematical models for the synchronous and asynchronous CFSK

channels are given that enable an analysis of the asynchronous CFSK system. In de-

riving the capacity results, an optimal multiuser detector is assumed. The capacities

of the CFSK channel with and without intensity information, in synchronous and

asynchronous scenarios, are then studied numerically. Finally, a comparison is made

between the capacity results for CFSK systems and CDMA systems.

2.2 Channel Models

For convenience of discussion, the diagram of the CFSK system described in Chapter

1 is reproduced in Figure 2.1. In this system, it is assumed that the received signal
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energy for each of the users at the receiver is Es. This assumption neglects the near-far

effect which will be discussed later. It is also assumed that each user must choose one

of the frequencies to transmit at each time since Chang and Wolf’s derived the sum

rates for the T -user M -frequency multiple access system based on this assumption

[13].

Figure 2.1: Block diagram of a CFSK system.

2.2.1 Synchronous Channel

Assuming that all users transmit with the same phase, the output signal of the de-

modulator on frequency fj is given by

xj = µj

√
Es cos(φj) + nx,

yj = µj

√
Es sin(φj) + ny,
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where µj is the number of users that transmit frequency fj, φj is the phase, and nx

and ny are Gaussian random variables with variance No

2
. Thus,

ρj = x2
j + y2

j (2.1)

is the detected output energy of the channel on frequency fj. When µj 6= 0, the

distribution of
√
ρj is a Rician distribution that can be approximated by

f√ρj
(ρ) ≈ 1

No

exp

(
−

(µj

√
Es −

√
ρ)2

No

)
. (2.2)

In [17] it is shown that this approximation is tight enough to investigate the capacity

of this channel. When µj = 0, the distribution of
√
ρj is given by the Rayleigh

distribution

f√ρj
(ρ) =

2
√
ρ

No

exp

(
− ρ

No

)
. (2.3)

The distributions in (2.2) and (2.3) are plotted in Figure 2.2 for µj = 0, 1, . . . , 5,

for a signal-to-noise ratio (SNR) of 8 dB. Clearly, the distributions of
√
ρj for one or

more transmissions are uniformly spaced along the
√
ρ axis. Thus, optimal detection

of the number of transmissions requires a series of thresholds that are uniformly

spaced along the
√
ρ axis, except for the threshold between 0 transmissions and 1

transmission.
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Figure 2.2: Probability density functions for the received symbol energy on the noisy

synchronous CFSK channel at 8 dB.
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2.2.2 Asynchronous Channel

For the asynchronous CFSK channel, the detector output for frequency j is given by

xj =
√
Es

∑µj

k=1 cos(φ
(ik)
j ) + nx,

yj =
√
Es

∑µj

k=1 sin(φ
(ik)
j ) + ny,

(2.4)

where φ
(ik)
j denotes the phase with which the ithk user transmits frequency fj. The

detected energy level for this channel is still given by (2.1). Since all users transmit

asynchronously and independently, the distribution of the phase φ
(ik)
j can be assumed

to be uniform between 0 and 2π, i.e.,

f
φ

(ik)

j

(φ) =


1
2π

0 ≤ φ ≤ 2π,

0 otherwise.

The following proposition gives a tight approximation on the distribution of asyn-

chronous signals for large number of users.

Proposition 2.2.1 When µj � 1, xj and yj can be approximated by two independent

Gaussian random variables: ξx ∼ N [0,
µjEs+No

2
] and ξy ∼ N [0,

µjEs+No

2
], respectively.

Proof: In the absence of Gaussian noise, the detector outputs are given by

xj =
√
Es

µj∑
k=1

cos(φ
(ik)
j ),

and

yj =
√
Es

µj∑
k=1

sin(φ
(ik)
j ).
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Assuming the phase φ
(ik)
j is uniformly distributed between 0 and 2π,

E(xj) = E
( µj∑

k=1

√
Es cos(φ

(ik)
j )

)
= 0,

and

E(yj) = E
( µj∑

k=1

√
Es sin(φ

(ik)
j )

)
= 0.

Since the phases of different users are independent, the variance of xj is given by

σ2(xj) = E(x2
j)

= E

(∑µj

k=1Es cos(φ
(ik)
j )2 + Es

∑µj

u=1

∑µj

k=1 cos(φ
(iu)
j ) cos(φ

(ik)
j )

)
=

∑µj

k=1EsE
(
cos(φ

(ik)
j )2

)
+ EsE

(∑µj

u=1

∑µj

k=1 cos(φ
(iu)
j ) cos(φ

(ik)
j )

)
=

∑µj

k=1EsE
(
cos(φ

(ik)
j )2

)
+ EsE

(∑µj

u=1 cos(φ
(iu)
j )

)
E
(∑µj

k=1 cos(φ
(ik)
j )

)
=

∑µj

k=1
Es

2

=
µjEs

2
.

Similarly, we have σ2(yj) =
µjEs

2
. Since the transmissions of the users are independent

and identically distributed, when µj is large, both xj and yj can be approximated

by Gaussian distributions by the central limit theorem with zero mean and variance

µjEs

2
.

The correlation between xj and yj is given by

E(xjyj) = E(

µj∑
u=1

µj∑
k=1

Es cos(φ
(iu)
j ) sin(φ

(ik)
j )) = 0.

In the limit of the number of users, xj and yj are Gaussian and the correlation E(xjyj)

is zero, so xj and yj are independent. If Gaussian noise with zero mean and variance
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No

2
is considered, the detector outputs in (2.4) can be approximated by Gaussian

distributions, with zero mean and variance
µjEs+No

2
. Denote the independent effective

Gaussian noises by ξx ∼ N (0,
µjEs+No

2
) and ξy ∼ N (0,

µjEs+No

2
). Then,

xj ≈ ξx,

and

yj ≈ ξy.

2

An immediate result from the proof is that

E(ρj) = E(x2
j + y2

j ) = µjEs +N0,

when xj and yj are independent. Thus, the distribution of
√
ρj for the noisy asyn-

chronous CFSK channel can be approximated by the Rayleigh distribution

f√ρj
(ρ) ≈

2
√
ρ

µjEs +No

exp

(
− ρ

µjEs +No

)
. (2.5)

The distribution in (2.5) is plotted in Figure 2.3 for µj = 0, . . . , 5 at an SNR of 8dB.

In Figure 2.3, the distributions are the same as for the synchronous case when µj = 0

and 1 , since there is no collision on frequency fj when µj is 0 or 1.

Based on the approximate distribution given in (2.5), the thresholds for the op-

timal detector of the noiseless asynchronous CFSK channel are shown in Table 2.1
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Figure 2.3: Probability density functions for the symbol received energy of the noisy

asynchronous CFSK channel at 8 dB.
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Table 2.1: Thresholds for detection of uj over the noiseless asynchronous CFSK

channel.

uj = 0
√
ρj = 0

uj = 1
√
ρj = 1

uj = 2
√
ρj ≤ 1.299,

√
ρj 6= 0, 1

uj = 3 1.299 <
√
ρj ≤ 1.547

uj = 4 1.547 <
√
ρj ≤ 1.759

uj = 5
√
ρj > 1.759

for the 5-user case. In this case, the distributions of
√
ρj are not uniformly spaced

along the
√
ρ axis and the curves of f√ρj

(ρ) significantly overlap each other when

µj ≥ 2. Though a series of thresholds on the
√
ρ axis can be found and the detector

can distinguish between different numbers of transmissions for µj ≥ 2, there will be

many detection errors on the asynchronous channel. If the number of transmissions

is not required, one can find a single threshold for
√
ρj that determines whether or

not at least a single transmission has occurred. For example, in the noiseless case, if

no energy is detected on the jth frequency, the detector outputs a 0, otherwise, the

detector outputs a 1 indicating a transmission has occurred.

Thus, for the CFSK channel, asynchronous transmission results in highly inac-

curate intensity information, but still indicates whether or not a transmission has
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occurred. It is reasonable to expect that the capacity of the asynchronous CFSK

channel without intensity information provides a lower bound for the channel with

intensity information. It is also expected that the capacity of the CFSK channel

without intensity information is not seriously affected by asynchronous transmission.

2.2.3 Optimal Multiuser Detection

Before presenting the capacity results, it is necessary to describe the optimal multiuser

detector used in the derivations. Let the signals sent by the users at time t be denoted

by

s̄t = [f
(0)
j0
, . . . , f

(T−1)
jT−1

], (2.6)

where f
(i)
ji

denotes that the ith user transmits frequency fji
. The sequence of sig-

nals received by the multiuser detector is given by [F̄0, . . . , F̄N−1], where F̄t for

t = 0, 1, . . . , N − 1 is of the form given by (1.1). The optimal multiuser detector

based on the maximum a posteriori criterion uses

ˆ̄st = argmaxs̄t
P (F̄0, . . . , F̄N−1|s̄t) (2.7)

to estimate the vector of signals transmitted by the users. To separate the users’

information from the received signal, an optimal coding scheme that uses uniquely

decodable channel codes [18, 19, 20] is assumed. In Chapter 3, details of the imple-

mentation of the optimal multiuser detector are discussed and code design is discussed

in Chapter 5.
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2.3 Capacity of the Noisy Synchronous CFSK Chan-

nel with Intensity Information

The size of the output alphabet from the noisy CFSK channel with intensity infor-

mation can be extremely large since the energy level output from the channel on each

frequency is proportional to the number of users. This makes computing the exact

capacity of the noisy CFSK channel with intensity information very complex when

the numbers of frequencies and users are large.

Let X and U be the input and output alphabets of the noisy channel and let M

be the number of frequencies. Each element of X and U is a 1×M vector in which

each entry denotes the number of transmissions on the corresponding frequency. For

all x ∈ X, let

x = {x1, x2, . . . , xM}.

Since x is the input to the noisy channel, it is straightforward to see that xj = µj for

j = 1, 2, . . . ,M . For all u ∈ U , let

u = {u1, u2, . . . , uM},

where uj is the number of transmissions detected on the jth frequency at the output

of the noisy channel.
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When M is small, it is possible to compute the exact capacity using

Cs,w = max
PX(x)

[
I(U ;X)big] = max

PX(x)

[
H(U)−H(U |X)

]
,

where the maximum is over the input distribution PX(x), H(U) is given by

H(U) =
∑
u∈U

−pU(u) log(pU(u)),

and the conditional entropy H(U |X) is given by

H(U |X) =
∑

u∈U,x∈X

pU,X(u, x)I(u|x)

=
∑

u∈U,x∈X

−pX(x)pU |X(u|x) log(pU |X(u|x)).

The probability of the output symbols can be computed using

pU(u) =
∑
x∈X

pX(x)pU |X(u|x).

The probability pU |X(u|x) is given by

pU |X(u|x) =
M−1∏
j=0

P (uj|xj),

where the channel transition probabilities P (uj|xj) for frequency fj can be computed

from the detector thresholds for the synchronous channel and the distributions in

(2.2) and (2.3).

It was proven in [13] that if all the users send the frequencies with equal probability

1
M

, then channel capacity can be achieved. In this case, the probability of an input
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symbol x is

pX(x) =

(
T

x1

)(
T − x1

x2

)
. . .

(
T − x1 − . . .− xM−1

xM

)
1

MT

=
T !

x1!x2! . . . xM !

1

MT
.

By exhaustively constructing the set of all input symbols X, the set U can also be

found.

When M and the number of users, T , are not very large, it is possible to construct

X and U by computer search. In Figure 2.4, the exact capacities are shown for SNR’s

of 6 dB, 8 dB and 12 dB. For high SNR’s, the capacity of the noisy channel approaches

the capacity of the noiseless channel. When there are 2 frequencies and 2 users, the

sum rate for the noiseless channel is less than 2 bits/channel use, the rate achieved

by the FDMA system with 2 frequencies and on-off keying signaling. This is because

that when Chang and Wolf computed this sum rate [13], they assumed that each

user must choose one of the frequencies to transmit at each time. When the number

of users is higher than the number of frequencies, more information can be obtained

from the collision of frequencies and thus the sum rates achieved by the CFSK system

is higher than that achieved by the FDMA system.
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Figure 2.4: Exact capacities of the noisy synchronous CFSK channel with intensity

information at 6 dB, 8 dB and 12 dB.
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2.4 Capacity of the Noiseless Asynchronous CFSK

Channels

It is interesting to study the noiseless asynchronous CFSK channel since it provides

an upper bound on the capacity of the noisy channel. In order to analyze the ca-

pacity of the noiseless asynchronous CFSK channel, the analytical model proposed

in Figure 2.5 is used. The asynchronous transmission and the non-coherent detection

at the receiver results in the non-coherent channel in Figure 2.5. By dropping the

intensity information, the non-zero intensity information from the non-coherent chan-

nel becomes 1 at the output of the second subchannel in Figure 2.5. In this model,

the optimal detector uses 0 for the threshold between 0 and 1 since the channel is

noiseless.

Following the data processing inequality [21],

Ca,w = max
PX(x)

[
I(U ;X)

]
≥ Ca,wo = max

PX(x)

[
I(V ;X)

]
, (2.8)

where Ca,w is the capacity of the noiseless asynchronous channel with intensity in-

formation and Ca,wo is the capacity of the noiseless asynchronous channel without

intensity information. For the asynchronous channel without intensity information,

it is clear that the noiseless capacity is equal to that in the synchronous case. In

the absence of noise, the synchronous and asynchronous channels without intensity

information behave exactly the same, since the signal energy can always be detected
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Figure 2.5: The analytical model for the noiseless asynchronous CFSK channel with-

out intensity information.

if there is at least one transmission over the channel regardless of whether or not the

transmissions are synchronous. For example, using the thresholds from Table 2.2.,

P (Inactive|Inactive) = P (uj = 0|xj = 0) = 1,

P (Active|Inactive) =
T∑

k=1

P (uj = k|xj = 0) = 0,

P (Active|Active) =
T−1∑
k=1

P (uj = k|xj = n) = 1,

and

P (Inactive|Active) = P (uj = 0|xj = n) = 0,

where 0 < n < M . Thus, Ca,wo in (2.8) is equal to the capacity of the noiseless

synchronous channel without intensity information that has been found in [13]. It is
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worth noting that the transition probabilities for the noiseless asynchronous channel

without intensity information are not affected by the near-far effect or fading.

To compute the capacity of the noiseless asynchronous CFSK channel with in-

tensity information, the channel transition probabilities p(uj|xj) are computed from

the distribution in (2.5) and the thresholds in Table 2.1. In Table 2.2, the channel

transition probabilities are given for the 5-user case.

Table 2.2: Transition probabilities PU |X(uj|xj) for the noiseless asynchronous CFSK

channel.

uj = 0 uj = 1 uj = 2 uj = 3 uj = 4 uj = 5

xj = 0 1.000 0 0 0 0 0

xj = 1 0 1.000 0 0 0 0

xj = 2 0 0 0.570 0.128 0.089 0.213

xj = 3 0 0 0.430 0.120 0.093 0.357

xj = 4 0 0 0.344 0.106 0.088 0.462

xj = 5 0 0 0.286 0.094 0.081 0.539

Unfortunately, it is extremely difficult to find the optimal input distributions

required to achieve the channel capacity since this is a T -dimensional optimization

problem. Consequently, in the following discussion specific distributions of the input

frequencies for the users are assumed in order to achieve a high sum rate. The sum



CHAPTER 2. THEORETICAL PERFORMANCE OF THE CFSK CHANNEL 29

rates obtained in this manner are lower bounds on the channel capacity.

In order to find a “good” distribution for the input frequencies, comparisons

are made between the asynchronous channels with and without intensity informa-

tion.When T � M , the number of transmissions of each frequency is large and the

distributions f√ρj
(ρ) significantly overlap each other. Thus, the intensity information

becomes less and less important and it is reasonable to assume that the capacity grows

in a similar manner as the channel without intensity information. Based on this, we

use the same input distributions that achieve capacity on the channel without inten-

sity information. When T ≤ M , all users use a uniform distribution, P (f
(i)
j ) = 1

M
,

and when T > M , all users use the same distribution that puts higher weight on

one of the frequencies and distributes the remaining weight evenly over the other

frequencies.

Given the input distribution, the corresponding sum rate can be found using

the same approach for the noisy synchronous channel with intensity information.

Figure 2.6 shows the resulting sum rates. It is clear from these results that the

channels with and without intensity information behave similarly when the number

of users is large. In particular, the sum rate approaches a constant non-zero level

as M increases. However, the capacity of the channel with intensity information is

much higher than that of the channel without intensity information. This is because

intensity information is useful even when the number of users is high.
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Take the 10-user case as an example. The distributions for 9 and 10 transmissions

overlap each other significantly and almost no useful information can be obtained

by distinguishing between 9 and 10 transmissions. However, the distributions for 1

transmission (or 2 transmissions) and 9 (or 10) transmissions are relatively far from

each other and useful information can be obtained by distinguishing the two cases.

Another observation from Figure 2.6 is that for a small number of users, the

capacities of the synchronous channel and the asynchronous channel are close to each

other. This is due to the fact that for a small number of users most of the frequencies

are occupied by 0, 1 or 2 transmissions and asynchronous transmission does not

significantly affect the receiver output.

2.5 Asynchronous Capacity: CFSK vs. CDMA

From the capacity bounds derived in this chapter, it can be concluded that the asyn-

chronous CFSK channel with intensity information offers good performance even in

over-loaded situations. In fact, the capacity approaches a non-zero value when the

number of users is much higher than the number of frequencies and thus promises non-

zero sum rates for all the users. The asynchronous channel with intensity information

allows a higher transmission rate than the channel without intensity information in

the over-loaded situation. Moreover, this rate will not go to zero under the near-far

effect or fading since the capacity of the channel without intensity information pro-
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Figure 2.6: Capacity of noiseless asynchronous CFSK channels.
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vides a lower bound for the channel with intensity information and the performance

of the channel without intensity information is robust under the near-far effect and

fading.

To determine the performance gain in practical applications, it is interesting to

compare the capacity results for the CFSK systems with those of CDMA systems in

the symbol asynchronous case. For a direct-sequence (DS) CDMA system, the single-

user capacity results derived in [15] assume symbol asynchronous transmission. For

the multiuser capacity provided in [9], synchronous transmission is assumed. Though

there is no explicit result given for the multiuser capacity for the asynchronous DS-

CDMA system, the results in [22] prove that for a symbol asynchronous (but chip

synchronous) DS-CDMA system, the capacity equals that of the symbol synchronous

system under the constraint that all the users have the same transmission power and

the optimality is achieved with a specific spreading code construction. Thus, the sum

capacity of the symbol synchronous multiuser DS-CDMA system provides an upper

bound for that of the asynchronous system.

For frequency-hopping (FH) CDMA systems, there is no result for the multiuser

capacity. The single-user capacity for the noiseless FH-CDMA system is first discussed

in [23], where slow frequency-hopping with M -ary modulation is assumed. In [24],

two types of FH-CDMA systems are discussed: on-off keying (OOK) and M -ary

frequency-shift-keying (MFSK). The single-user capacity results are extended to the
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symbol asynchronous noisy channel, and both the slow and fast FH-CDMA systems

are considered. It is shown that the fast FH-CDMA system with BFSK modulation

is more bandwidth efficient than a system with MFSK modulation for M > 2. Thus,

BFSK FH-CDMA is chosen for this comparison.

In Figure 2.7, capacity results are compared between the asynchronous CFSK

systems and the asynchronous CDMA systems according to the results given in [15,

9, 22, 24]. In this comparison, 5 is chosen as the chip number for simple computations.

The results show that the CFSK systems have the highest capacity for moderately

loaded systems. When the load is small, the OOK FH-CDMA system with single-

user detection is the most bandwidth efficient. For the highly load conditions, the

multiuser CDMA system has the highest capacity. However, this capacity can only

be achieved with a very special spreading code construction that is impractical in

heavily-loaded systems.

The CFSK system without intensity information also has a relative high capacity

over a wide range of loads. This capacity assumes uniquely decodable codes which

are very difficult to construct such codes in general. The performance of this system

with random codes is discussed in detail in Chapter 5. In Chapters 3 and 4, we focus

on the analysis of the synchronous CFSK system for ease of exposition and the results

are easily extended to the asynchronous CFSK system.
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Chapter 3

Multiuser Detection over the

CFSK Channel

3.1 Introduction

Multiuser detection is one of the most popular topics for contemporary multiple-

access systems, such as CDMA and TCMA, due to its significant performance gain

[3, 9, 11]. Most of the efforts in this area are contributed to developing simplified

multiuser detectors due to the prohibitively high complexity of optimal multiuser

detectors [25, 26, 12]. The iterative multiuser detectors have been shown to be an

effective method to achieve near optimal performance with reduced complexity [27, 6].

In [27], an optimal iterative multiuser detector for a synchronous coded CDMA

35
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system was proposed based on the a posteriori probability (APP) CDMA detec-

tor and a list of single-user APP channel decoders. This APP CDMA detector has

exponential complexity and is impractical. Thus, various form of iterative CDMA

detectors were developed [28, 29, 30, 31] in order to achieve near single-user perfor-

mance with practical complexity. In [28], the APP CDMA detector is replaced by an

interference canceler and a single-user minimum-mean square error (MMSE) filter.

The resulting detector achieves performance approaching that of the APP detector.

In [29, 30], a suboptimal maximum a posteriori (MAP) probability CDMA detector

was investigated whose complexity is linear with the number of users. Gamal, et al.

[31] proposed an iterative MMSE detector whose performance is better than all the

the above iterative multiuser detectors, and whose the complexity is polynomial with

the number of users.

From the analysis in Chapter 2, it is obvious that multiuser detection can provide

huge performance gains over the CFSK channel. Based on the principles of opti-

mal multiuser detection given in Section 2.2.3, a detector using maximal likelihood

sequence detection (MLSD) is introduced in this chapter. This receiver provides a

performance benchmark for the CFSK channel with intensity information. However,

the complexity of this detector is not practical and suboptimal detectors are required.

The optimal iterative multiuser detector for the CFSK system based on an optimal

iterative multiuser channel metric is discussed in [17]. Unfortunately, the proposed
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optimal metric has non-polynomial complexity. This chapter investigates simplifica-

tions to the optimal metric proposed in [17]. Several metrics are proposed and their

performance and complexity are evaluated.

3.2 Optimal Multiuser Detection

In principle, the CFSK system can be regarded as a single-user trellis-coded modula-

tion system, in which the single-user trellis is a super-trellis. The super-trellis can be

constructed from all the users’ trellis information as follows. The super-trellis code

takes the input bits of the users as input. The states of the users’ trellises are con-

catenated to form the state of the super-trellis. The output of the super-trellis is the

channel symbol output from the M -FSK modulator, which has the form of s̄t given

by (2.6). The optimal multiuser detection criterion given in (2.7) makes decisions on

the symbol vector s̄t at each stage by considering N trellis sections in the super-trellis.

Maximum likelihood sequence detection (MLSD) [11] can be used to implement the

optimal detector.

For example, a 2-user 4-frequency CFSK system is described by the super-trellis

in Figure 3.1. Each user uses a rate 1/2, memory 1 convolutional code. Thus, the

super-trellis code has 2 input bits and 4 states. The output is s̄t = [µ0, µ1, µ2, µ3],

where µj denotes the number of transmissions on frequency fj, and
∑3

j=0 µj = 2.

For decoding, the channel metric is the conditional probability of the received
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Figure 3.1: A two-user super-trellis.

signal vector F̄t given the trellis output s̄t,

P (F̄t|s̄t) =

(
1

No

)M M−1∏
j=0

e

(
−

(µj
√

Es−
√

ρj)2

N0

)
. (3.1)

Using this metric, an estimate of the symbol vector ˆ̄st can be made based on the

criterion given in (2.7). Assuming that the inputs to the super-trellis are equally

likely, MLSD can be implemented using the Viterbi algorithm [32].

A limitation of the MLSD detector is that the complexity of the super-trellis is

very high when there are a large number of users. Though the number of input bits

k and memory m of the super code increases linearly with the number of users, the

input alphabet and number of states increases exponentially with k and m. Thus,

the complexity of the super-trellis grows exponentially with the number of users. For

this reason, suboptimal detection using an iterative algorithm is necessary.
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3.3 Iterative Multiuser Detection

Unlike the optimal detector that has a single decoder structure that operates on the

super-trellis, the CFSK receiver with iterative detection is composed of two compo-

nents, the metric computation and a list of component decoders. As shown in Figure

3.2, the metric computation works on the received channel signal F̄t and a priori

information of the users’ transmitted symbols. Tentative information for the users’

symbols is output to the component decoders via a channel metric. Each user’s com-

ponent decoder operates on the channel metric and finds the optimal estimate of the

symbol f
(i)
ji

, the frequency fji
transmitted by user U (i). The soft information about

the symbol f
(i)
ji

is fed back to the metric computation as the a priori information for

the next iteration.

For the multiuser channel metric given in (3.1), there are MT channel metrics

to be computed at each stage of the super-trellis since each user has M choices of

frequencies and there are T users. This is obviously too complex for large system

applications. The component decoder in the iterative multiuser detector, however,

operates on a single user’s component trellis. For this trellis the channel metric is the

conditional probability of receiving the signal vector F̄t given that user U (i) transmits

frequency fji
, denoted by P (F̄t|f (i)

ji
).



CHAPTER 3. MULTIUSER DETECTION OVER THE CFSK CHANNEL 40

Let the set of users be

U = {U (0), U (1), . . . , U (T−1)}.

Assume user U (0) chooses frequency f
(0)
j0

. The choices of the other T − 1 users plus

f
(0)
j0

amount to the frequency combination

c0 = (f
(0)
j0
, f

(1)
j1
, . . . , f

(u)
ju
, . . . , f

(T−1)
jT−1

).

If user U (u) chooses frequency f
(u)
ju

with probability P (f
(u)
ju

), then the probability of

the frequency combination c0 given that user U (0) transmits on frequency f
(0)
j0

is

P (c0|f (0)
j0

) =
T−1∏
u=1

P (f
(u)
ju

). (3.2)

Given that user U (0) transmits f
(0)
j0

and the frequency combination c0 is transmitted

by the other T − 1 users, the multiplicity µj for frequency fj can be easily computed.

For synchronous transmission, the distribution of the received energy ρj for fj is

given by (2.2). If f
(0)
j0

and c0 are known, the probability distribution of ρj given is

P (ρj|c0, f (0)
j0

) =
1

N0

e

(
−

(µj
√

Es−
√

ρj)2

No

)
. (3.3)

If each frequency is transmitted independently, the probability of receiving signal F̄t

given f
(0)
j0

and c0 is

P (F̄t|c0, f (0)
j0

) =
( 1

No

)M
M−1∏
j=0

e

(
−

(µj
√

Es−
√

ρj)2

No

)
. (3.4)
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Let the set of all possible frequency combinations be C0. Then, the probability of the

received frequency vector F̄t given that U (0) transmits f
(0)
j0

can be computed as

P (F̄t|f (0)
j0

) =
∑

c0∈C0

P (c0|f (0)
i0

)P (F̄ |c0, f (0)
j0

). (3.5)

By substituting the probabilities in (3.2) and (3.4) into (3.5), the channel transition

probability of the CFSK channel with intensity information for synchronous trans-

mission is found to be

P (F̄t|f (0)
j0

) =
( 1

No

)M
M−1∑
i1=0

M−1∑
i2=0

. . .
M−1∑

iT−1=0

[
T−1∏
u=1

P (f
(u)
iu

)
M−1∏
j=0

e

(
−

(µj
√

Es−
√

ρj)2

No

)]
,

(3.6)

where iu is the index of the frequency for the uth user.

In Chapter 2, the mean of the received energy ρj for the noisy asynchronous

channel is shown to be ≈ µjE + No. Thus, for noiseless case, the average value for

√
ρj is given by

√
µjE, and the probability P (ρj|c0, f (0)

j0
) can be approximated from

(3.3) by

P (ρj|c0, f (0)
j0

) ≈ 1

No

e

(
−

(
√

µjEs−
√

ρj)2

No

)
.

As a result, the channel transition probability of the CFSK channel with intensity

information for asynchronous transmission is

P (F̄t|f (0)
j0

) ≈
( 1

No

)M
M−1∑
i1=0

M−1∑
i2=0

. . .

M−1∑
iT−1=0

[
T−1∏
u=1

P (f
(u)
ju

)
M−1∏
j=0

e

(
−

(
√

µjEs−
√

ρj)2

No

)]
.

(3.7)
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3.3.1 MAP-Consensus Decoder

Figure 3.2: The consensus decoder.

The consensus decoder shown in Figure 3.2 was first introduced in [14] and is

composed of the metric computation and a list of component decoders. The metric

computation takes the a priori information P (f
(i)
ji

) and the channel signal F̄t as input,

and computes the channel metric using (3.6) or (3.7). Note that in the first iteration

there is no available a priori information P (f
(i)
ji

) since the the component decoders

have not decoded anything. In this situation, the probabilities P (f
(i)
ji

) are initialized
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to P (f
(i)
ji

) = 1
M

.

The component decoders take the channel metric as input and operate on the

corresponding user’s trellis to obtain an estimate of the transmitted symbols and the

information bits. In order to compute the soft information as the a priori informa-

tion for the metric computation in the next iteration, a symbol-based maximum a

posteriori (MAP) decoding algorithm is used for the component decoders [33]. N

consecutive trellis sections are considered in the MAP algorithm. The received signal

from time 0 to the current stage t is denoted by F̄ t
0 and the current state of the trellis

is denoted by St. The trellis branches are labeled with output symbols f(t) at time t

that takes the value fj. The forward and backward recursions of the MAP algorithm

are then

αt(m) = P (St = m, F̄ t
0)

=

P
m
′

P
fj

γfj
(F̄t,m

′
,m)αt−1(m

′
)P

m

P
m
′

P
fj

γfj
(F̄t,m

′ ,m)αt−1(m′ )
,

and

βt(m) = P (F̄N−1
t+1 |St = m)

=

P
m
′

P
fj

γfj
(F̄t+1,m,m

′
)βt+1(m

′
)P

m

P
m
′

P
fj

γfj
(F̄t,m

′ ,m)αt(m
′ )
.

The branch transition probabilities, γfj
(F̄t,m

′
,m), can be calculated using

γfj
(F̄t,m

′
,m) = P (St = m, F̄t, f(t) = fj|St−1 = m

′
)

= P (F̄t|f(t) = fj, St−1 = m
′
, St = m)Q(f(t) = fj|St−1 = m

′
, St = m)

R(St = m|St−1 = m
′
).

At stage t, the joint probability of the previous state, the current state and the
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received signal sequence is given by

δt(m,m
′
) = P (St−1 = m

′
, St = m, F̄N−1

0 )

= αt(m
′
)γfj

(F̄t,m
′
,m)βt(m).

Note that the a posteriori probability of the symbols is

P (f(t) = fj|F̄N−1
0 ) =

P (f(t) = fj, F̄
N−1
0 )

P (F̄N−1
0 )

.

By normalization, the value P (F̄N−1
0 ) is cancelled out from the above probability.

Finally, the a posteriori probabilities can be written as

P (f(t) = fj|F̄N−1
0 ) = Λt(fj)

= P (f(t) = fj, F̄
N−1
0 )

=
∑

(m′ ,m)∈B(fj)
δt(m,m

′
)

=
∑

(m′ ,m)∈B(fj)
αt(m

′
)γfj

(F̄t,m
′
,m)βt(m).

The set B(fj) denotes the set of branch transitions from state m
′
to m with output

symbol fj. The final decision on the symbols is made by choosing the symbol fj with

the highest value for Λt(fj). For user U (i), the a posteriori information P (f(t) =

fj|F̄N−1
0 ) is fed back to the metric computation as the a priori information P (f

(i)
ji

)

for the next iteration.

3.4 Metric Simplification

When computing the channel metric P (F̄t|f (0)
j0

) given in (3.5), the summation is over

the set C0 of all possible frequency combinations. Since each of the T − 1 other
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users has M possible frequencies to choose from, there are MT−1 possible frequency

combinations in the set C0. Thus, the computational complexity of P (F̄t|f (0)
j0

) is

O(MT−1), which increases exponentially with the number of users T . This computa-

tional complexity is impractical and a metric with a reduced complexity is critical to

the implementation and application of the CFSK system.

To simplify the channel metrics of (3.6) and (3.7), a natural thought is to consider a

subset of the combination set C0. In general, the probabilities of most of the frequency

combinations become small after many iterations . It is unlikely that omitting these

combinations in the set C0 will introduce serious errors into the metric. One method

for simplifying the metric P (F̄t|f (0)
j0

) is to only consider the K(T ) most probable

frequency combinations in the set C0, where K(T ) is a polynomial function of T .

Denote such a set of K(T ) combinations by C
′
0, then (3.5) becomes

P (F̄t|f (0)
j0

) ≈
∑

c0∈C
′
0

P (c0|f (0)
j0

)P (F̄t|c0, f (0)
j0

). (3.8)

When searching for the most probable combinations, if the channel measurement is

given by

PNSMP =
( 1

No

)M
T−1∏
u=1

P (f
(u)
iu

)
M−1∏
j=0

e

(
−

(µj
√

Es−
√

ρj)2

N0

)
, (3.9)

the simplified metric is called a “Narrow-Sense Most Probable” (NSMP) metric since

it considers both the a priori probability of the combination and the distance between
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the combination and the received signal. If the channel measurement is

PWSMP =
T−1∏
u=1

P (f
(u)
iu

), (3.10)

the simplified metric is called a “Wide-Sense Most Probable” (WSMP) metric since

it ignores the channel information. For NSMP metric, a brute force computation that

requires computation of all the MT−1 combinations is necessary. There are methods

for computing the WSMP metric with polynomial complexity.

In both cases, the a priori probability P (f
(u)
iu

) is unavailable in the first iteration

and is initialized to 1
M

. Thus, the a posteriori information output by the first itera-

tion is suboptimal and the error propagates to later iterations. This results in poor

performance for the iterative multiuser detector, especially when the system is highly

loaded. To solve this problem, an NSMP metric can be applied in the first iteration.

Since, as shown in Section 3.6, NSMP in the first iteration is computationally simple.

For the CFSK channel with intensity information, another simplified metric based

on an entirely different philosophy can be derived. Due to the structure of the CFSK

system, the metrics given in (3.6) and (3.7) are subject to the following constraint.

Constraint 1 Each user can send one and only one frequency at a time.

If this constraint is loosened and each user is allowed to transmit more than one

frequency at a time, then a relaxed constraint is



CHAPTER 3. MULTIUSER DETECTION OVER THE CFSK CHANNEL 47

Constraint 2 There must be T and only T transmissions over all the frequencies at

a time.

Under this constraint there are more then MT−1 frequency combinations. A relax-

ation metric, which satisfies Constraint 2 but not Constraint 1, can be derived by

considering the distributions of the users’ a priori information.

In the following discussions, WSMP metrics with linear complexity are discussed

first. Then, an NSMP metric based on (3.9) is proposed, which has low complexity in

the first iteration. Finally, a relaxation metric is proposed that depends on the com-

putation of a priori enumeration polynomials and the channel transition enumeration

polynomials.

3.5 WSMP Metrics

The WSMP metrics are based on the approximation given in (3.8) and using the

subset C
′
0 using the channel measurement PWSMP given in (3.10). In this section, two

methods are proposed to construct subsets C
′
0 that has a size linear with the number

of users, T .
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3.5.1 K-Most Probable Combinations Metric

In computing the K-Most Probable Combinations (K-MPC) metric, the subset of

the frequency combinations, C
′
0, is of size K. In choosing C

′
0, the most probable

combination occurs when all T − 1 users choose their most probable frequency based

on P (f
(i)
ji

). The other combinations in C
′
0 are formed by choosing the most probable

frequency for T − 2 users and the second most probable frequency for one user. To

decide which user can choose the less probable frequency, all T − 1 users are sorted

according to their probabilities.

A combination is constructed by picking the first frequency from the list, which

belongs to, say, user U (i). For the other T − 2 users, the most probable frequency

is chosen. For the second combination, the second frequency from the sorted list is

chosen, which belongs to, say, user U (j). For the other T −2 users, the most probable

frequency is chosen. This procedure is repeated until all K frequency combinations

are obtained. Since there are M possible frequencies for each user, the list of the less

probable frequencies can have at most (T − 1)(M − 1) frequencies. So, the maximal

value of K in the K-MPC metric is

Kmax = 1 + (T − 1)(M − 1). (3.11)

In this case, M of each user’s frequencies are considered in constructing the combi-

nations.



CHAPTER 3. MULTIUSER DETECTION OVER THE CFSK CHANNEL 49

When one of the users has several frequencies whose probabilities are higher than

the highest probability of other users’ frequencies, then the resulting combinations

will be biased to this user. In this case, this metric will degrade the performance of the

iterative detector. For example, an a priori probability distribution for 4 users is given

in Table 3.1. We wish to find the K = 4 most probable combinations. To compute

P (F̄t|f (0)
j0

) for user U (0), the frequency combinations obtained using the 4-MPC metric

are given in Table 3.2. From these results, it is found that four frequencies of U (1)

are chosen while only one frequency is chosen for U (2) and U (3). This is because for

U (1) frequencies f0, f1, f3, and f5 are much more probable than f2, f4, f6, and f7.

As a result, the value of P (F̄t|f (0)
j0

) is biased toward U (1). In other words, U (1) will

interfere with the detection results of the other users.

Table 3.1: An a priori probability distribution for 4 users.

P (f
(i)
0 ) P (f

(i)
1 ) P (f

(i)
2 ) P (f

(i)
3 ) P (f

(i)
4 ) P (f

(i)
5 ) P (f

(i)
6 ) P (f

(i)
7 )

U(0) 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0

U(1) 0.25 0.27 0 0.23 0 0.25 0 0

U(2) 0.2 0.1 0.06 0.15 0.13 0.17 0.1 0.1

U(3) 0 0.15 0.3 0.22 0.1 0.08 0 0.15
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3.5.2 k-Most Probable Frequencies Metric

In the k-Most Probable Frequencies (k-MPF) metric, k frequencies with the highest

probabilities for each of the T − 1 users are considered in constructing the set C
′
0.

One of the combinations in C
′
0 is the one where all T − 1 users choose their most

probable frequency. For other combinations, T − 2 users choose their most probable

frequency and the last user may choose the second, third, and up to the kth most

probable frequency. In the k-MPF metric, each of the T − 1 users has k − 1 chances

to choose a frequency other than the most probable one. The relationship between

the size of C
′
0 and T is

K(T ) = 1 + (T − 1)(k − 1). (3.12)

Note that when k is equal to the number of frequencies M , the k-MPF metric is the

same as the K-MPC metric with K is equal to Kmax.

The k-MPF metric is not biased towards a particular user, since k frequencies

for each user are considered. However, considering the channel measurement given in

Table 3.2: Combinations considered by the 4-MPC and 2-MPF for user U (0).

c0 c1 c2 c3

Users U(1) U(2) U(3) U(1) U(2) U(3) U(1) U(2) U(3) U(1) U(2) U(3)

4-MPC f1 f0 f2 f0 f0 f2 f5 f0 f2 f3 f0 f2

2-MPF f1 f0 f2 f0 f0 f2 f1 f5 f2 f1 f0 f3
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(3.10), the combinations obtained using the k-MPF metric may not be the most prob-

able combinations. Hence, when the same number of combinations are considered,

the k-MPF metric will perform worse than the K-MPC metric.

When computing P (F̄t|f (0)
j0

) for U (0) from the distribution given in Table 3.1, the

frequency combinations obtained using the 2-MPF metric are given in Table 3.2. It

can be observed that although U (1) has higher probabilities for frequencies f0, f1, f3

and f5, the C ′
0 is unbiased since each user has two distinct frequencies considered.

3.6 The NSMP Metric

The WSMP metrics described described in the previous section depend solely on the a

priori information of the frequency combinations, and therefore introduce significant

error in the first iteration since no a priori information is available. On the other hand,

the NSMP metric is effective in the first iteration because the second product in (3.9)

can provide a measurement for the most probable combinations. This measurement

is given by

Pdist =
( 1

N0

)M
M−1∏
j=0

e

(
−

(µj
√

Es−
√

ρj)2

N0

)
, (3.13)

which measures the distance between a particular frequency combination and the

received signal.



CHAPTER 3. MULTIUSER DETECTION OVER THE CFSK CHANNEL 52

Define the pattern of a frequency combination by the vector

µ̄ = [µ0, . . . , µM−1],

where µj is the number of users that choose fj. Assume that the pattern for the com-

bination with the highest channel measurement Pdist is known. Denote this pattern

by µ̄max and let Cµ̄max be the subset of all the combinations with the pattern µ̄max.

Then, the size of Cµ̄max is given by

|Cµ̄max | =

(
(T − 1)

µ0

)(
(T − 1− µ0)

µ1

)
. . .

(
(T − 1− µ0 − µ1 − . . .− µM−1)

µM−1

)
=

(T − 1)!

µ0!(T − 1− µ0)!

(T − 1− µ0)!

µ1!(T − 1− µ0 − µ1)!

. . .
(T − 1− µ0 − µ1 − . . .− µM−2)!

µM−1!(T − 1− µ0 − µ1 − . . .− µM−1)!

=
(T − 1)!

µ0!µ1! . . . µM−1!
, (3.14)

where (T − 1− µ0 − µ1 − . . .− µM−1)! = 0! = 1. Thus, the channel metric computed

using NSMP in the first iteration is given by

P (F̄t|f (0)) = |Cµ̄max |PNSMP = |Cµ̄max |
(

1

M

)T−1

Pdist, (3.15)

assuming that the a priori probabilities are initialized to 1
M

.

In order to find the pattern with the highest Pdist, a procedure where each of the

T − 1 users pick one of the the M possible frequencies is considered and there are M

stages in this procedure. At the jth stage, there are µj users that choose the frequency

fj. At each stage, if there are i users that have made their choices, then the procedure
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is in state Si. The procedure always starts from state S0. There are at most T − 1

users that choose a frequency in state S0 since no user has made any choice yet. So,

state S0 can connect to any state between S0 and state ST−1. Similarly, in state Si,

there are at most T −1− i users that choose a frequency. Hence, state Si can connect

to any state between Si and ST−1. For state ST−1, since all the T −1 users have made

their choices, no user can choose the frequency in the current stage and state ST−1

can only connect to state ST−1.

0
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6

f f f f f0

0

0
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Figure 3.3: A trellis searching for the patterns of combinations with the highest Pdist

in an 7-user, 8-frequency system.

With the states and stages defined above, a trellis can be constructed for the
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frequency choosing procedure. In Figure 3.3, a trellis of an 7-user, 8-frequency system

is shown. The purpose is to find the combination for computing (3.13) and (3.15).

There are 7 states and 8 stages in Figure 3.3. At the jth stage, if the state is Si and

µj users choose frequency fj, then the next state is Si+µj
. The trellis starts in state

S0 since no user has made a choice and the trellis ends up with state S6 since all 6

users are supposed to have made their choices after considering all the M frequencies.

The goal is to use the trellis and the Viterbi algorithm [32] to find the combination,

or path, with the highest Pdist. Note that Pdist can be rewritten as

Pdist =

{
1

No

e

(
− (µ0

√
Es−

√
ρ0)2

No

)}{
1

No

e

{
(µ1

√
Es−

√
ρ1)2

No

)}

. . .

{
1

No

e

(
−

(µM−1
√

Es−
√

ρM−1)2

No

)}
. (3.16)

To compute P (F̄t|f (0)
j0

), the branch metric for µj = τ at the jth stage is

m(j, τ) =
1

No

e

(
−

(τ
√

Es−
√

ρj)2

No

)
(3.17)

when f
(0)
j0
6= fj. Otherwise, the branch metric is computed as

m(j, τ) =
1

No

e

(
−

((τ+1)
√

Es−
√

ρj)2

No

)
. (3.18)

Figure 3.4 presents an example of the procedure on a trellis of a 4-user 8-frequency

system. This procedure finds a path through the trellis with the highest Pdist so that

the channel transition probability P (F̄t|f (0)
j0

) given in (3.15) can be computed.



CHAPTER 3. MULTIUSER DETECTION OVER THE CFSK CHANNEL 55

The Viterbi algorithm finds the path with the highest Pdist and the µj’s corre-

sponding to the branches of the path give the pattern of the combination. In Figure

3.4, the resulting pattern is

µ̄max = {0, 1, 1, 0, 0, 0, 1, 0}. (3.19)

By (3.14), the number of combinations with the pattern µ̄max in (3.19) is 6. In the first

iteration of the MAP-consensus decoder, the a priori probability P (f
(u)
iu

) is initialized

to 1/M = 0.125 and the P (F̄t|f (0)
i0

) can be computed using (3.15).
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Figure 3.4: An example of the Viterbi algorithm in a 4-user, 8-frequency system.

For the trellis in Figure 3.4, the Viterbi algorithm requires i+1 multiplications and

comparisons for each state Si and there are
∑T

i=1 i multiplications and comparisons
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at each stage. Since there are M stages, the total computation needed for the NSMP

is

NNSMP = M

T∑
i=1

i = M
T (T + 1)

2
,

and the computational complexity is polynomial in T . This is also the computational

complexity for NSMP in the first iteration.

To implement NSMP in later iterations, both the a priori information (PWSMP

in (3.10)) and the distance product (Pdist in (3.16)) of the combinations need to be

considered in the construction of Cµ̄max , since the a priori probabilities P (f
(i)
ji

) are

not uniformly distributed. When computing the NSMP metric using

P (F̄t|f (0)
j0

) =
∑

c0∈Cµ̄max

PNSMP =
∑

c0∈Cµ̄max

PWSMPPdist, (3.20)

the subset Cµ̄max needs to be constructed now requires one to check the patterns of

all frequency combinations in the set C0. As a result, the computational complexity

is now O(MT−1). Furthermore, the size of the subset Cµ̄max very large. Due to the

computational complexity of NSMP in later iterations is high it is recommended

that K-MPC or k-MPF be used in subsequent iterations. These hybrid metrics are

denoted by NSMP+K-MPC or NSMP+k-MPF.
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3.7 The Relaxation Metric

The relaxation metric constructs a super-set, C
′′
0 , of the set of all possible frequency

combinations using Constraint 2. This is different from the NSMP and WSMP met-

rics that explicitly reduce the number of frequency combinations. Instead, the re-

laxation metric increases the number of combinations, but reduces the complexity of

the associated computation. Constructing C ′′
0 is simplified through the use of a pri-

ori enumeration polynomials and channel transition enumeration polynomials. The

simplified channel metric is

P (F̄t|f (0)
j0

) ≈
∑

c0∈C
′′
0

P (c0|f (0)
j0

)P (F̄t|c0, f (0)
j0

).

3.7.1 a priori Enumeration Polynomials

To compute the metric P (F̄t|f (0)
j0

), all the T − 1 other users need to be considered.

For these users, define the a priori enumeration polynomial of frequency fj by

Vj(D) = 1 + vj,1D + . . .+ vj,TD
T−1,

where the coefficient vj,u denotes the a priori probability that there are u users

that transmit frequency fj. For each user, initialize a list of a priori enumeration

polynomials V
(i)
j (D), where

V
(i)
j (D) = 1 + P (f

(i)
j )D. (3.21)
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Now, the polynomial Vj(D) can be computed as

Vj(D) =
T−1∏
i=1

V
(i)
j (D). (3.22)

This polynomial has degree T − 1.

3.7.2 Channel Transition Enumeration Polynomials

Observing the product given in (3.4), the distance between the received signal and a

frequency combination involving the jth frequency is

mj(u) = P (ρj|c0, f (0)
j0

) =
1

No

e
(u
√

Es−
√

ρj)2

No .

When j 6= j0, the channel transition enumeration polynomial for the jth frequency is

Tj(D) = mj(0) + vj,1mj(1)D + . . .+ vj,T−1mj(T − 1)DT−1 (3.23)

Otherwise, the enumeration polynomial is

Tj(D) = mj(1)D + vj,1mj(2)D
2 + . . .+ vj,T−1mj(T )DT . (3.24)

For all M frequencies, the channel transition enumeration polynomial can be obtained

by taking terms with degree T from the product
∏M−1

j=0 Tj(D). Note that this product

may contain terms with Du for u 6= T . Based on Constraint 2, only T transmissions

are allowed at each time and thus the enumeration polynomial should only contain

terms with degree equal to T , i.e., T (D) is of the form

T (D) = tTD
T . (3.25)
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The relaxation metric is now simply

P (F̄t|f (0)
j0

) ≈ tT . (3.26)

A 3-user, 3-frequency system is considered here to illustrate this metric. The goal

is to compute the channel metric P (F̄t|f (0)
j0

), where f
(0)
j0

= f0. To compute the a priori

enumeration polynomials, the list of initial enumeration polynomials is first given in

(3.21). Then, for frequency fj, the convolution between U (1) and U (2) is given by

Vj(D) = V
(1)
j × V

(2)
j

=
(
1 + P (f

(1)
j )
)(

1 + P (f
(2)
j )
)
.

This computation can be separated into three terms:

• Term 1: 1× 1.

• Term 2: 1× P (f
(2)
j ) + P (f

(1)
j )× 1.

• Term 3: P (f
(1)
j )P (f

(2)
j ),

and the result of the convolution is

Vj(D) = 1 +
[
P (f (1)

j ) + P (f (2)
j )
]
D + P (f (1)

j )P (f (2)
j )D2.

The channel transition enumeration polynomial for frequency f0 is computed using

(3.24) which results in

T0(D) = m0(1)D +
[
P (f

(1)
0 ) + P (f

(2)
0 )
]
m0(2)D

2

+P (f
(1)
0 )P (f

(2)
0 )m0(3)D

3.
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For j 6= 0, the computation is given by (3.23) which results in

Tj(D) = mj(0) +
[
P (f

(1)
j ) + P (f

(2)
j )
]
mj(1)D

+P (f
(1)
j )P (f

(2)
j )mj(2)D

2.

To compute T (D) in (3.25), two convolutions are required. The first convolution is

between T0(D) and T1(D). Ignoring terms with degree greater than 3, the result

consists of three terms

• Term 1: m0(1)×m1(0).

• Term 2:

m0(1)×
(
P (f

(1)
1 ) + P (f

(2)
1 )

)
m1(1)

+

(
P (f

(1)
0 ) + P (f

(2)
0 )

)
m0(2)×m1(0).

• Term 3:

m0(1)× P (f
(1)
1 )P (f

(2)
1 )m1(2)

+

(
P (f

(1)
0 ) + P (f

(2)
0 )

)
m0(2)×

(
P (f

(1)
1 ) + P (f

(2)
1 )

)
m1(1)

+P (f
(1)
0 )P (f

(2)
0 )m0(3)×m1(0).

Since terms with degree greater than 3 in the above convolution will result in terms

with degree greater than 3 in later convolutions, they are expurgated from the result.
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The result of the expurgated convolution is

T0(D)× T1(D) = m0(1)m1(0)D +

((
P (f

(1)
1 ) + P (f

(2)
1 )

)
m0(1)m1(1)

+

(
P (f

(1)
0 ) + P (f

(2)
0 )

)
m0(2)m1(0)

)
D2

+

(
P (f

(1)
1 )P (f

(2)
1 )m0(1)m1(2)

+

(
P (f

(1)
0 )P (f

(1)
1 ) + P (f

(1)
0 )P (f

(2)
1 )

+P (f
(2)
0 )P (f

(1)
1 ) + P (f

(2)
0 )P (f

(2)
1 )

)
m0(2)m1(1)

+P (f
(1)
0 )P (f

(2)
0 )m0(3)m1(0)

)
D3.

The second convolution is between T0(D)× T1(D) and T2(D). Since the suboptimal

metric only needs the third term of T (D), it is only necessary to compute

m0(1)m1(0)× P (f
(1)
2 )P (f

(2)
2 )m2(2) +

((
P (f

(1)
1 ) + P (f

(2)
1 )

)
m0(1)m1(1)

+

(
P (f

(1)
0 ) + P (f

(2)
0 )

)
m0(2)m1(0)

)
×
(
P (f

(1)
2 ) + P (f

(2)
2 )

)
m2(1)

+

(
P (f

(1)
1 )P (f

(2)
1 )m0(1)m1(2) +

(
P (f

(1)
0 )P (f

(1)
1 )

+P (f
(1)
0 )P (f

(2)
1 ) + P (f

(2)
0 )P (f

(1)
1 ) + P (f

(2)
0 )P (f

(2)
1 )

)
m0(2)m1(1)

+P (f
(1)
0 )P (f

(2)
0 )m0(3)m1(0)

)
×m2(0).
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Taking this term from this T (D), the suboptimal metric is given by

P (F̄t|f (0)
0 ) ≈ P (f

(1)
0 )P (f

(2)
0 )m0(3)m1(0)m2(0)

+P (f
(1)
1 )P (f

(2)
1 )m0(1)m1(2)m2(0) + P (f

(1)
2 )P (f

(2)
2 )m0(1)m1(0)m2(2)

+

(
P (f

(1)
1 )P (f

(2)
2 ) + P (f

(2)
1 )P (f

(1)
2 )

)
m0(1)m1(1)m2(1)

+

(
P (f

(1)
0 )P (f

(2)
2 ) + P (f

(2)
0 )P (f

(1)
2 )

)
m0(2)m1(0)m2(1)

+

(
P (f

(1)
0 )P (f

(2)
1 ) + P (f

(2)
0 )P (f

(1)
1 )

)
m0(2)m1(1)m2(0)

+

(
P (f

(1)
1 )P (f

(1)
2 ) + P (f

(2)
1 )P (f

(2)
2 )

)
m0(1)m1(1)m2(1)

+

(
P (f

(1)
0 )P (f

(1)
2 ) + P (f

(2)
0 )P (f

(2)
2 )

)
m0(2)m1(0)m2(1)

+

(
P (f

(1)
0 )P (f

(1)
1 ) + P (f

(2)
0 )P (f

(2)
1 )

)
m0(2)m1(1)m2(0).

It is obvious that the sum of the first 6 terms in the above expression is equivalent

to the optimal metric. The suboptimality comes from the last 3 terms, which satisfy

Constrain 2 but do not satisfy Constraint 1. After a few iterations, most of the a

priori information P (f
(i)
j ) goes to 0 for the ith user. The product

∏n
j=m P (f

(i)
j ) also

goes to 0 for m < n, m < M and n < M . Thus, the suboptimal metric will approach

the optimal iterative metric after many iterations.

3.7.3 Computational Complexity

As the previous example shows, the products given in (3.22) and (3.25) can be im-

plemented by a convolution of polynomials. For the a priori enumeration polynomial

given in (3.22), each factor polynomial has 2 terms and the highest degree is 1. The
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multiplication of these factor polynomials can be implemented by T −2 convolutions.

In general, the ith convolution results in i + 2 steps. The first and the last step of

each convolution only need 1 multiplication and no addition. For each of the other i

steps, there are 2 multiplications and 1 addition. Thus, the number of multiplications

required of the a priori enumeration polynomial (aPEP) Vj(D) is

MaPEP =
T−2∑
i=1

(1 + 1 + 2i) = (T + 1)(T − 2),

and the number of additions required is

NaPEP =
T−2∑
i=1

i =
(T − 1)(T − 2)

2
.

Since there are M frequencies, we have to compute M polynomials as given in (3.22).

For the channel transition enumeration polynomial (CTEP) given in (3.25), there

are M factors, and M − 1 convolutions are required. All the factors have T terms,

among which M − 1 factors have highest degree T − 1 and one factor has highest

degree T . For the M − 1 convolutions, the first M − 2 will result in T terms since

terms with degree higher than T do not have to be considered. For the ith term, i

multiplications and i−1 additions are required. Consider the result given in (3.25), the

last convolution results in only one term, which has the degree T and T multiplications

and T − 1 additions are required. Thus, the number of multiplications required for

all the convolutions is

MCTEP = (M − 2)
T∑

i=1

i+ T =
(M − 2)(1 + T )T

2
+ T,
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and the number of additions required for all the convolutions is

NCTEP = (M − 2)
∑T

i=1(i− 1) + T − 1

= (M−2)(T−1)T
2

+ T − 1.

Finally, in order to compute the new metric given in (3.26), the total number of

multiplications required is

Mmetric = M ×MaPEP +MCTEP

= M(T + 1)(T − 2) + (M−2)(1+T )T
2

+ T,

and the total number of additions required is

Nmetric = M ×NaPEP +NCTEP

= M (T−1)(T−2)
2

+ (M−2)(T−1)T
2

+T − 1.

The complexity for the suboptimal relaxation metric is O(MT 2), which is much lower

than the complexity of the optimal metric (O(MT−1)).

3.8 Summary

A summary of the channel metrics discussed in this chapter and their properties is

given in Table 3.3. The optimal metric will provide the best performance for the

CFSK system but has the highest computational complexity. The simplified channel

metrics provide a tradeoff between performance and computational complexity. In the
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next chapter, the performance of these metrics is studied via analysis and computer

simulation.

Table 3.3: Summary of channel metrics.

Metric Name Metric Sim-

plification

Set of Frequency Combinations Computation Complexity

Optimal The set of all possible frequency combinations, C0, over the

CFSK channel.

O(MT−1)

K-MPC WSMP Subset C
′
0 ⊂ C0 constructed according to the channel mea-

surement PWSMP =
QT−1

u=1 P (f
(u)
iu

).

K

k-MPF WSMP Subset C
′
0 ⊂ C0 constructed according to the channel mea-

surement PWSMP =
QT−1

u=1 P (f
(u)
iu

).

1 + (T − 1)(k − 1)

NSMP Subset Cµ̄max ⊂ C0 constructed according to the chan-

nel measurement PNSMP = PWSMPPdist and Pdist =

QM−1
j=0 e

“
−

(µj
√

Es−
√

ρj)2

N0

”
.

O(MT2) in the 1st iteration,

O(MT−1) in subsequent itera-

tions

NSMP+K-

MPC

Hybrid Subset Cµ̄max ⊂ C0 constructed according to the channel

measurement PNSMP for the 1st iteration, C
′
0 ⊂ C0 con-

structed according to PWSMP for subsequent iterations.

O(MT2) in the 1st iteration, K

in subsequent iterations

NSMP+k-

MPF

Hybrid Subset Cµ̄max ⊂ C0 constructed according to the channel

measurement PNSMP for the 1st iteration, C
′
0 ⊂ C0 con-

structed according to PWSMP for subsequent iterations.

O(MT2) in the 1st iteration,

1+(T −1)(k−1) in subsequent

iterations

Relaxation Superset C
′′
0 ⊃ C0 constructed according to Constraint 2 O(MT2)



Chapter 4

Performance of Multiuser

Detection

4.1 Induction

The performance of the multiuser detectors discussed in Chapter 3 is studied in this

chapter, primarily via computer simulation. The distance of the super-trellis code is

used as a metric to analyze the performance of the multiuser detectors. A comparison

is made between MLSD and the optimal iterative detector based on this metric.

The performance of the simplified metrics derived in Chapter 3 is then studied us-

ing simulation results and the distance metric. Finally, EXIT chart analysis between

the multiuser detector and the channel decoders is used for performance analysis and

66
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code design.

4.2 Distance of the Super-Trellis Codes

The performance of the CFSK system is strongly influenced by the distance properties

of the super-trellis code. In Section 3.2, a super-trellis code was given for an example

of 2 users. In order to discuss the distance property of the super-trellis code, the

notation introduced in Figure 4.1 are needed. The convolutional encoder CCi takes

the binary sequence v̄i as inputs and outputs the binary sequence ūi, where

v̄i = {vi,0, vi,1, . . .},

and

ūi = {ui,0, ui,1, . . .},

for 0 ≤ i ≤ T − 1. Each code sequences is mapped to a sequence of M -ary FSK

signals f̄ (i). Let the length of each coding block be N , then the transmitted signal

sequence f̄ (i) is denoted as

f̄ (i) = {f (i)
0 , f

(i)
1 , . . . , f

(i)
N−1},

where f
(i)
t denotes the frequency in the ith sequence at time t. For any integer q,

assume that each q-tuple of coded bits is mapped to a frequency. Then, M = 2q and

f
(i)
t are over GF (2q) for i ∈ {0, . . . , T − 1} and 0 ≤ t ≤ N − 1.
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The adder in Figure 4.1 results in the super-trellis code sequence

R̄ = {r̄0, r̄1, . . . , r̄N−1},

where r̄t is an M -tuple

r̄t = [µt,0, µt,1, . . . , µt,M−1].

The value µt,j denotes the number of transmissions on frequency fj by all users at

time t, where j ∈ GF (2q). For a T -user system,
∑M−1

j=0 µt,j = T . The set of all

super-trellis code sequences is denoted by R.

Figure 4.1: A T -user CFSK system.

Definition 1 The hamming distance between two super-trellis code sequences R̄ and

R̄′ is the number of positions in which r̄t 6= r̄
′
t. Note that r̄t 6= r̄

′
t whenever µt,j 6= µ

′
t,j
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for any 0 ≤ j ≤M − 1.

The hamming distance of a super-trellis code is different from that of the convo-

lutional codes in that the super-trellis code is nonlinear. Since the addition in Figure

4.1 is not over the Galois Field GF(2q), the hamming distance between any two code

sequences in R is not equal to the distance between the sum of these two sequences

and the all zero sequence.

Definition 2 The minimum distance dmin of a super-trellis code of length N is the

minimum hamming distance between any two length N code sequences R̄ and R̄′.

We can now introduce the notion of uniquely decodable codes for the CFSK system

with intensity information.

Definition 3 A uniquely decodable code maps a input sequence into a unique output

sequence.

Proposition 1 The super-trellis code corresponding to the CFSK system with inten-

sity information has dmin 6= 0, if and only if the super-trellis is uniquely decodable.

Definition 4 The distance enumerating function for a super-trellis code is

A(W ) =
N∑

d=dmin

AdW
d,

where Ad is the number of code word pairs r̄, r̄′ ∈ R with hamming distance between

r̄ and r̄′ equal to d.

According to Proposition 1, the super-trellis code is uniquely decodable if A0 = 0.
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4.3 Suboptimality of Iterative Multiuser Detection

The suboptimality of the iterative multiuser detector is measured relative to the

optimal multiuser detector implemented with MLSD. The optimal iterative multiuser

detector implements the metric computation given in (3.6). A 3-user, 4-frequency

synchronous CFSK system with intensity information is simulated. The channel

codes are randomly generated convolutional codes with rate 1/2 and memory 2. Each

coding block is of length 12. Figure 4.2 shows the codes generated for the three users.

A careful study of the super-trellis code constructed from these component codes

reveals that it is not uniquely decodable. For example, if the input to the super-trellis

is

v̄0 = {111101001110},

v̄1 = {110000010100},

and

v̄2 = {111111001110},

then the output is

R̄ = {[0012], [0021], [1011], [0120], [1110], [1002], [2100], [1110], [0111], [0021], [1011], [3000]}.

(4.1)

The set of inputs

v̄0 = {111101011010},
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v̄1 = {110000010100},

and

v̄2 = {111111011100},

also result in the transmitted sequence of (4.1). So, this super-trellis code is not

uniquely decodable.

Figure 4.2: The random convolutional codes for 3 users.

This system was simulated and the results are shown in Figure 4.3. 5000 infor-

mation bit errors are counted for each user. For the iterative detector, 16 iterations

are used.

Both bit error rate (BER) curves shown in Figure 4.3 consist of a waterfall region

and an error floor region. The suboptimality of the iterative multiuser detector is

reflected in both the waterfall region and the error floor region. In the waterfall

region, the iterative detector has a smaller slope, which results in a gap of about 1

dB when the BER is 10−1 and above 2 dB when the BER is 5× 10−2. The error floor

of the iterative detector is much higher than that of MLSD.
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Figure 4.3: Average BER performance of the 3-user, 4-frequency synchronous system

with component codes shown in Figure 4.2.
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The BER performance of the MLSD provides a lower bound for the iterative

detector and is closely related to the distance spectrum of the super-trellis code as

described by the distance enumerating function A(W ). In [34], Pérez, et al., inves-

tigated the distance spectrum for turbo codes, and provided an explanation for the

waterfall and error floor regions of their performance curves. A similar explanation

exists for the CFSK system.

First, the error floor is caused by the low distance between codewords of the super-

trellis code. The level of the error floor is decided by the value of Admin
. If the Ad’s

for small distances have large values, then the error floor is relatively high. When the

super-trellis code is not uniquely decodable, dmin = 0 and A0 6= 0. In this case, an

error floor exists in the BER performance of the CFSK system because there are two

paths through the super-trellis with the same transmitted sequence R̄. The larger

A0 is, the higher the error floor will be. In Figure 4.3, it can be observed that the

error floor of MLSD has a slope approaching zero since the super-trellis code is not

uniquely decodable. The fact that the error floor occurs at ≈ 4 × 10−4 implies that

A0 has a relatively small value.

The waterfall region is a consequence of the density of the distance spectrum. If the

distance spectrum of the super-trellis code is sparse for low and moderate distances,

then the waterfall is steep. A sparse distance spectrum means that the Ad’s have small

values for small values of d. On the other hand, the distance spectrum is dense when
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Ad’s have large values. The waterfall region for MLSD in Figure 4.3 has a relatively

small slope, which implies that the distance spectrum is likely to be dense. This

suggests that choosing component codes that result in a sparse distance spectrum

may result in better performance in the waterfall region. In subsequent discussions

on channel interleavers and code design, this observation is shown to be correct.

It is a somewhat surprising that the error floor for the iterative detector is so

much higher than that of MLSD, since the two BER curves are based on the same

distance spectrum and the level of the error floor is largely determined by Admin
.

The reason for this difference is that multiuser interference is introduced during the

iterative detection. For the initial iterations, the soft information on the symbols

is not accurate, and this information is exchanged among the users, which leads to

multiuser interference. This amounts to introducing an additional noise into the

system.

4.3.1 Channel Interleavers

In [35], the random channel interleavers were introduced to reduce the level of corre-

lation among the users’ channel codes for a Trellis-Coded Multiple-Access (TCMA)

system similar to the CFSK system. In an attempt to improve the distance properties

of the super-trellis code, symbol-based pseudorandom channel interleavers, denoted

by Πi, are introduced for each user after the M -FSK modulator. The interleavers
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randomly permute the symbols within a block of length N . At the receiver, the

users’ component decoders need to be modified, as shown in Figure 4.4, so that the

component decoder knows all the users’ interleavers.

Figure 4.4: Component decoder for the ith user with channel interleavers.

In general, the size of the interleaver equals the length of the coding block, N ,

but interleaver size can affect performance. In Figure 4.5, the performance of the

synchronous 3-user, 4-frequency system is shown with different interleaver sizes. As

the size of the interleaver increases, the BER performance improves.

From the distance spectrum perspective, the interleavers make the distance spec-

trum of the super-trellis code sparse, and reduce the multiplicities Ad for small dis-

tances. Thus, the BER curve becomes steeper in the waterfall region and the error

floor is lowered. At some point, increasing the size of the interleaver does not con-

tinue to improve performance. In Figure 4.5, when the interleaver size is increased

from 1000 to 10000, the performance improvement is negligible, in contrast to the

significant improvement that occurs when the interleaver size is increased from 250
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to 1000.

The use of channel interleavers also increases the memory of the super-trellis by a

factor of N , the size of the interleaver, and makes the implementation of MLSD im-

practical. Thus, the performance of the MLSD with channel interleavers is not shown

in Figure 4.5. It is interesting that the performance of the iterative detector with

channel interleavers is better than the performance of MLSD without interleavers.

Channel interleavers are used for the remainder of this work.
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Iterative Detector, interleaver size 50

Iterative Detector, interleaver size 250

Iterative Detector, interleaver size 1000

Iterative Detector, interleaver size 10000

Figure 4.5: Performance of the synchronous 3-user, 4-frequency system with channel

interleavers and the component codes shown in Figure 4.2.
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4.4 Performance of Simplified Metrics

The BER performance of the K-MPC and k-MPF metrics is now studied in a syn-

chronous system using rate 1/3 codes with memory 6 and 8 frequencies. The number

of users is varied from 1 to 4, and the corresponding spreading factor changes from 8

to 2, respectively. The code block length is 250 symbols and 16 iterations are used.

Figure 4.6 shows the results for a two-user system and it is clear that 2-MPC and

2-MPF have the same performance since the frequency combinations considered by

these two metrics are exactly the same.

For the 4-user system, 22 combinations are used for K-MPC and k-MPF. Since

T is 4 and M is 8. Kmax is 22 according to (3.11) and this is the maximum number

of combinations. From (3.12), k = 8 should be used when K = 22. Since K = Kmax,

K-MPC and k-MPF are exactly the same. Thus, 22-MPC and 8-MPF have the same

performance for the 4-user case. To compare K-MPC and k-MPF further, results

are shown in Figure 4.7 for synchronous 8-frequency systems with rate 1/3, memory

3 codes. The results show that the performance of K-MPC and k-MPF are very

similar when the number of frequency combinations considered by the two metrics is

the same. For this reason, only K-MPC will be considered in later discussions.

In general single-user performance provides a lower bound for the performance of

multiuser detection systems and the single-user performance is shown in Figure 4.6.

The performance of the iterative detector with the optimal metric is also given. For
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Figure 4.6: Average BER performance of a synchronous 8-frequency system with rate

1/3, memory 6.



CHAPTER 4. PERFORMANCE OF MULTIUSER DETECTION 79

0 2 4 6 8 10 12 14 16
10!6

10!5

10!4

10!3

10!2

10!1

100

Eb / No (dB)

BE
R

 

 

1!user OPT
2!user OPT
2!user 2!MPF
2!user 2!MPC
2!user 4!MPF
2!user 4!MPC
2!user 8!MPF
2!user 8!MPC
4!user OPT
4!user 2!MPF
4!user 4!MPC
4!user 4!MPF
4!user 10!MPC
4!user 8!MPF
4!user 22!MPC

Figure 4.7: The average BER performance of a synchronous 8-frequency system with

rate 1/3, memory 3 codes as a function of SNR.



CHAPTER 4. PERFORMANCE OF MULTIUSER DETECTION 80

the 2-user case, the iterative detector with the optimal metric is within 1dB of the

single-user performance. For the 4-user case, the optimal iterative detector is 2dB

worse than the single-user performance. In both systems, no error floor is observed

in the simulation results. Compared with the optimal iterative multiuser detector,

K-MPC and k-MPF are highly suboptimal and the waterfall region can hardly be

distinguished from the error floor. In order to improve this performance, the NSMP

metric is used in the first iteration. For the 2-user case, the performance of NSMP+2-

MPC is the same as the optimal metric. For the 4-user case, the performance of

NSMP+22-MPC is improved to within 1dB of the optimal metric. In both cases, no

error floor is observed.

In order to investigate the improvement due to the use of the NSMP metric in the

first iteration in a more detailed manner, the convergence behavior of the iterative

detector is studied for the 2-user, 8-frequency system with rate 1/3, memory 6 codes

at 7 dB. The convergence behavior of this system is shown in Figure 4.8. In the first

iteration, the BER of 2-MPC and 2-MPF is much higher than the BER of the optimal

metric. The poor performance in first iteration of the 2-MPC and 2-MPF metrics

results in significant multiuser interference in subsequent iterations, and limits the

performance. When the NSMP metric is used in the first iteration, the BER converges

to that given by the optimal metric and the convergence is faster than the system

without using NSMP metric.
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Figure 4.8: The convergence of 2-user iterative detection with rate 1/3, memory 6

codes at 7 dB.
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To investigate the performance of the simplified metrics under high loads, a 3-

user, 4-frequency system is simulated with rate 1/2, memory 2 convolutional codes.

This results in a spreading factor of 1.33. Figure 4.9 shows the performance of this

system with different metrics, including the relaxation metric. The results show that

the relaxation metric has performance very close to the optimal metric. For both

the optimal metric and the relaxation metric, the performance is within 1dB of the

single user performance. For the 3-MPC metric, the iterative detector diverges and

the performance is flat. This behavior is explained by the EXIT chart analysis in

Section 4.5. The NSMP+3-MPC detector has an error floor above 10−3. If NSMP is

used in all the iterations, there is a 4dB loss compared to the optimal metric.

The relaxation metric still performs well for an overloaded system with 8 users 4

frequencies as shown in Figure 4.10. In this simulation, the code rate is 1/6 and 2

coded bits are mapped to a frequency. The resulting spreading factor is 0.5. The per-

formance of the optimal iterative detector cannot be simulated due to its complexity.

The performance of the relaxation detector approaches the single user performance,

which implies that the performance is close to the optimal metric. The performance

using the NSMP metric in all the iterations is also given in Figure 4.10 and is more

than 3dB worse than the single user performance. The sum rate for this simulation

is 2.67 bits per channel use, where the sum rate is defined by

Rsum = T
k

n
log2M, (4.2)
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Figure 4.9: Performance of a 3-user 4-frequency system with rate 1/2, memory 2

codes and different metrics.
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where k/n is the rate of the convolutional codes. This is 35% of the channel capacity[13]

and is higher than all known results for DS/CDMA systems with iterative multiuser

detection [36, 28, 29, 30, 37, 38, 27, 31, 5, 6]. In Chapter 6, detailed rate comparisons

will be made between the CFSK system and CDMA systems.
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Figure 4.10: Performance of a 8-user 4-frequency system with rate 1/6, memory 4

codes.
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4.5 EXIT Chart Analysis

Extrinsic information transfer chart (EXIT chart) analysis, first proposed by ten

Brink [39, 40, 41], is known to be an effective approach for predicting the convergence

behavior of iterative decoders, including the SNR convergence threshold and the onset

of the waterfall region. This approach has been successfully extended to DS/CDMA

[42, 43] and TCMA systems [44] to predict the convergence of different iterative

multiuser detectors and to provide direction for code design.

The non-binary nature of the CFSK system limits the application of the EXIT

chart analysis because the statistics and computation of the multi-dimensional ex-

trinsic information is fairly complex. In [45], Grant proposed a feasible approach to

analyze non-binary iterative decoding of serial concatenated convolutional codes using

EXIT charts. This approach is adopted here for the EXIT chart analysis of iterative

multiuser detection in the CFSK system. For a system with a small number of users

and frequencies, simulation results show that this approach is precise in predicting

the performance of the iterative detector.

The system model for the EXIT analysis of the CFSK system is shown in Figure

4.11. At the transmitter, user U (i) transmits symbol f
(i)
j that results in the received

signal F̄ . The a priori information of the transmitted symbols of user U (i) is given
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in the vector of probabilities

A
(i)
1 = [p(f

(i)
0 ), p(f

(i)
1 ), . . . , p(f

(i)
M−1)],

where the subscript “1” denotes that this a priori information is input to the metric

computation block in Figure 4.11. The metric computation uses this a priori infor-

mation to compute the extrinsic information. For user U (i), the extrinsic information

is given by the vector

E
(i)
1 = [p(F̄ |f (i)

0 ), p(F̄ |f (i)
1 ), . . . , p(F̄ |f (i)

M−1)], (4.3)

where the subscript “1” denotes that this extrinsic information is output from the

metric computation. Similarly, the a priori information input to the ith MAP decoder

is denoted by A
(i)
2 and the output extrinsic information from the ith MAP decoder

is denoted by E
(i)
2 . Assuming that random symbol-based channel interleavers and

deinterleavers with very long interleaving blocks are placed between the metric com-

putation and the MAP decoders, as shown in Figure 4.11, then A
(i)
1 is independent

of Ei
2 and A

(i)
2 is independent of E

(i)
1 .

Let A
(i)
1 ∈ A1, where A1 is the ensemble of A

(i)
1 ’s for i ∈ {0, 1, . . . , T − 1}.

Let f
(i)
ji

∈ F = {f0, . . . , fM−1}. Then, the mutual information between A1 and

F , I(F , A1), depends on the joint distribution ψF ,A1(f, a). The mutual information

can be computed as

IA1 = I(F , A1) =
∑
f∈F

∫
a∈A1

ψF ,A1(f, a)log
ψF ,A1(x, a)∑

u∈F ψF ,A1(u, a)
∫

α∈A1
ψF ,A1(f, α)dα

da.
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Figure 4.11: Extrinsic information transfer analysis of the CFSK system.

Let E
(i)
1 ∈ E1, where E1 is the ensemble of E

(i)
1 ’s for i ∈ {0, 1, . . . , T − 1}. Then, the

mutual information between E1 and the transmitted symbol is computed as

IE1 = I(F , E1) =
∑
f∈F

∫
e∈E1

ψF ,E1(f, e)log
ψF ,E1(f, e)∑

u∈F ψF ,E1(u, e)
∫

ε1∈E1
ψF ,E1(f, ε)dε

de,

(4.4)

where ψF ,E1(f, e) is the joint distribution of F and E1. As a result, the mapping

between IA1 and IE1 satisfies

IE1 = η(IA1),

which is known as the extrinsic information transfer function. The plot of IE1 versus

IA1 is the EXIT chart for the metric computation. Likewise, the EXIT chart of the
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MAP decoders is defined by

IE2 = η(IA2),

which shows the relationship between IA2 = I(F , A2) and I(F , E2).

To compute the mutual information I(F , A1), the distribution of the values of

p(f
(i)
j ) needs to be known. Discussions in [41, 45] show that this distribution can be

controlled to generate different levels of IA1. The approach is based on the assumption

that the coded bit symbols are independent within each coding block, and their

probabilities follow the Gaussian distribution. Using symbol-based interleavers, this

assumption can be satisfied asymptotically.

The probabilities P (f
(i)
j ) are generated in the following manner. Suppose f

(i)
j = fj

is transmitted, then a q-tuple binary sequence b̄j is obtained through naturally binary

mapping of the frequency index j. After adding Gaussian noise to each bit of b̄j, an

observation of b̄j over the binary-input Gaussian channel is generated. The probability

P (f
(i)
j ) is then computed by measuring the Euclidean distance between b̄j and its

observation. Over the binary channel, the level of the Gaussian noise is controlled

using the relationship σA = J−1(IA) [41]. For the CFSK system, IA = I(F , A1)/q

and σA is computed as

σA = J−1(I(F , A1)/q). (4.5)

With P (f
(i)
j ) as inputs the corresponding mutual information I(F , E1) can be mea-

sured at the output of the metric computation using (4.4).
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This requires a measurement of the joint distribution ψF ,E1(f, e1) where e1 ∈ E1

has the form of (4.3) and is multi-dimensional. It is extremely complicated to compute

the integral in (4.4). In [45], a function, S : ΛM 7→ Ξ, is introduced to map a vector

of real numbers to a scalar where Λ ⊂ R is the set of real numbers between 0 and 1

and Ξ is a subset of integers. The function S requires Q-level quantization over each

dimension of e1 such that the quantized level of the jth dimension is Qj. Then, the

mapping is defined as

S(e1) =
M−1∑
j=0

QjbQjc, (4.6)

The map S is nearly one-to-one given enough quantization levels. I(F , E1) can then

be approximated by I(F ,Ξ). Since S(e1) is a scaler, it is simple to obtain the joint

distribution ψF ,Ξ(f, S(e1)) and to compute I(F , S(e1)) using

IE1 ≈ I(F ,Ξ) =
∑
f∈F

∑
s∈Ξ

ψF ,Ξ(f, s)log
ψF ,Ξ(f, s)∑

u∈F ψF ,Ξ(u, s)
∑

ξ∈Ξ ψF ,Ξ(f, ξ)
, (4.7)

The number of possible values of S(e1) given in (4.6) increases exponentially as

the number of frequencies M increases. Thus, to obtain sufficient statistics on S(e1),

such that the joint distribution ψF ,Ξ(f, S(e1)) is precise enough, requires the length

of the coding block to increase exponentially with M . Thus, later discussions will

be limited to systems with a small number of frequencies so that the EXIT chart

analysis is precise.

A 4-user, 4-frequency CFSK system with rate 2/6 and memory 6 random convo-

lutional codes is now analyzed. For FSK modulation, 2 coded bits are mapped to a
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frequency. From (4.6), a large value of Q results in a more precise mapping but will

also increase the complexity and lead to the choice of a long coding block. 15-level

quantization is considered here, and the length of each coding block is 60000.

In Figure 4.12, the EXIT curves of the optimal iterative multiuser detector and

the relaxation detector are shown for an SNR of 8 dB. The results show that the

EXIT curve of the code crosses with the EXIT curves of both detectors. This implies

that the two detectors do not converge at 8 dB. In Figure 4.13, the EXIT curves of

the two detectors at 9 dB do not cross with the curve of the code. Thus, the two

detectors converge at 9 dB. The BER performance of the system is shown in Figure

4.14 and it is clear that the optimal iterative detector and the relaxation detector

converge after 8 dB.

An interesting result in the EXIT charts in Figure 4.12 is that the relaxation

detector is even better than the optimal iterative detector when the input a priori

information is poor. To observe this, the BER performance of the optimal iterative

detector and the relaxation detector between 8 dB and 9 dB is shown in Figure 4.15.

This figure shows that the relaxation detector converges starting at 8.1dB, whereas

the optimal iterative detector starts to converge at 8.5 dB.

In Figure 4.13, the EXIT curve of the NSMP detector is also given and it can

be seen to be worse than those of the optimal iterative detector and the relaxation

detector. The results in Figure 4.13 show that NSMP detector does not converge at 9
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dB. When the SNR is increased to 10 dB, the EXIT chart given in Figure 4.16 shows

that NSMP will converge. This result is consistent with the BER performance given

in Figure 4.14, where the waterfall region of the NSMP detector starts after 9 dB.

The EXIT curve of the 4-MPC detector given in Figure 4.16 shows that the 4-

MPC detector does not converge at 10 dB. When the SNR keeps increasing, the

improvement of the 4-MPC detector is small as shown in Figure 4.17. Thus, the

4-MPC detector never converges even when the SNR ≥ 16 dB. If NSMP is used in

the first iteration, the values of IE1 is shown as triangles in Figure 4.17. At 11 dB,

the value of IE1 for NSMP in the first iteration is higher than the intersection of the

4-MPC curve and the code curve. Thus, the NSMP+4-MPC detector converges after

11 dB. The BER performance for NSMP+4-MPC in Figure 4.14 is consistent with

the EXIT analysis.

Finally, the complexity of the convolutional codes is investigated using the EXIT

chart analysis. In Figure 4.18, the EXIT curves of codes with rate 2/6 and memory

4, memory 6 and memory 8 are compared. The results show that large memory codes

have small values for IE2 when the input a priori information IA2 is small. For high

IA2 values, the codes with large memories have large values for IE2. Thus, a system

using large memory codes is less likely to converge than one with small memory codes.

This is consistent with the conclusions given in [41, 45]. In later discussions on code

design in Chapter 5, this problem is investigated in detail.
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4.6 Conclusion

The simulation results in this chapter show that the relaxation metric provides the

best performance among the simplified metrics. The BER performance of the relax-

ation metric is close to that of the optimal iterative metric. With the NSMP metric

in the first iteration, the performance of the WSMP metrics is significantly improved.

NSMP+K-MPC and NSMP+k-MPF metrics have low complexity and can be used

when the code rate is low. EXIT chart analysis is an effective method to predict the

convergence of the iterative detectors.
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Figure 4.12: EXIT chart at 8 dB for optimal iterative detector and relaxation detector

with rate 2/6, memory 4 convolutional codes.
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Chapter 5

Code Design for the CFSK System

5.1 Introduction

An important aspect in the design of the CFSK system is the choise of the users’ codes.

These codes provide diversity so that the users can be distinguished at the receiver

when collisions happen on the channel. Based on the discussion of the distance

spectrum of the super-trellis code in Chapters 3 and 4, it is desirable that the codes

be uniquely decodable. The earliest definition of uniquely decodable codes can be

found in [18]-[20] for the binary adder channel. Subsequently, there have been many

constructions of uniquely decodable codes for the binary adder and real adder channels

[46]-[55]. Most of these efforts focus on improving the sum rates, Rsum, achieved by

the multiuser code, though some efforts were also made to improve the error correcting

100
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capability of the codes [46, 49, 51]. Strong error correcting ability generally requires

sacrificing the sum rates of the codes ,and, in generally it is very difficult to achieve

both high sum rate and strong error correcting ability.

Due to the M -ary FSK modulator, non-binary codes may be of more interest for

the CFSK system. However, the construction of non-binary uniquely decodable codes

is more complicated. The constructions for binary channels can be extended to the

non-binary channel [13, 56, 50, 57], but these constructions usually require a special

decoder structure, which is not compatible with iterative multiuser detectors. An

alternative is to ask if there are random codes that are not uniquely decodable, but

for which the error floor introduced by the non-unique decodability is low enough for

practical applications. Random codes with these properties will be called uniquely

decodable codes.

Code design for the CFSK system begins with the uniquely decodable block codes

constructed by Chang and Wolf [13]. This construction is of interest since the sum

rate of this construction approaches the capacity bound of the CFSK channel with

intensity information as the spreading factor approaches 0. The weakness of these

codes is that they cannot be decoded by the iterative detector and dmin = 1 for

any block length. In order to use these codes in the iterative multiuser detector

and to improve the overall error correction capability, a coding scheme is proposed

that concatenates convolutional codes with Chang and Wolf’s codes. A comparison
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between this concatenation scheme and random codes shows that it is possible for

the random codes to achieve nearly unique decodability. The random codes have

additional superior properties compared to uniquely decodable block codes. This

leads to a search of the encoding parameters for random codes such that the code set

is nearly uniquely decodable and high spectral efficiency is achieved.

5.2 Uniquely Decodable Block Codes

In [46], Chang and Weldon proposed an iterative construction for uniquely decodable

block codes (UDBC) on the binary memoryless T -user adder channel. Chang and Wolf

[13] extended this construction to nonbinary UDBC’s on the T -user, M -frequency

channel with intensity information. The iterative construction begins with the binary

case, where the codes are expressed in the form of a difference matrix D̃. Before the

construction, the difference matrix is initialized as D̃0 = [1]. The iteration is then

D̃i =


D̃i−1 D̃i−1

D̃i−1 −D̃i−1

Ii−1 Oi−1

 , (5.1)

where the matrix D̃i has 2i columns. In (5.1), Ii−1 and Oi−1 are the identity matrix

and zero matrix, respectively, with dimension 2i−1×2i−1. As a result, D̃i has (i+2)2i−1

rows. Each element of D̃i belongs to {0, 1,−1}. For the binary case, each row of D̃i

represents the difference vector of two codewords from a user’s code. For example,



CHAPTER 5. CODE DESIGN FOR THE CFSK SYSTEM 103

the second row of D1 is (1,−1) and two codewords, (1, 0) and (0, 1) result in this

difference vector. Thus, the matrix D̃i represents a set of codes for (i+ 2)2i−1 users,

and each code contains two codewords. In [46], it was proven that this set of codes is

uniquely decodable.

The extension of D̃i to the non-binary case is straightforward. Let Pi = (i+2)2i−1

be the number of rows in D̃i. Choose any value a such that a ≥ Pi(M −1)+1, where

M is the size of the alphabet, i.e., the number of frequencies in CFSK. Then, as

shown in [13], the matrix Di is the difference matrix of a uniquely decodable code set

for Pi(M − 1) users with block length 2i, where

Di =



D̃i

aD̃i

a2D̃i

. . .

aM−2D̃i


.

As an example, a set of uniquely decodable codes for a 6-user, 3-frequency system is
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constructed from D̃1 by choosing a = 7. The result is

C0 = {(1, 1), (0, 0)},

C1 = {(1, 0), (0, 1)},

C2 = {(1, 0), (0, 0)},

C3 = {(7, 7), (0, 0)},

C4 = {(7, 0), (0, 7)},

C5 = {(7, 0), (0, 0)}



.

To use this code set in the CFSK system, the signal mapping
0 → f0,

1 → f1,

7 → f2


is used which results in following nonbinary UDBC

C0 = {(f1, f1), (f0, f0)},

C1 = {(f1, f0), (f0, f1)},

C2 = {(f1, f0), (f0, f0)},

C3 = {(f2, f2), (f0, f0)},

C4 = {(f2, f0), (f0, f2)},

C5 = {(f2, f0), (f0, f0)}



. (5.2)

The uniquely decodable code set given in (5.2) does not offer significant error

correction capability since, for example, the Hamming distance for C5 is only 1.
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Practical applications require strong error correction capability for each user’s channel

code to combat the multiuser interference introduced by the suboptimal multiuser

detectors. Also, iterative detectors work better with codes with a trellis structure

that cannot be provided by the above construction. This suggests a concatenation a

convolutional code with the UDBC as shown in Figure 5.1.

The coded sequence from the convolutional code is encoded by the UDBC. Since

there are two codewords in each user’s UDBC and each codeword can represent 1

bit, each bit of the coded sequence output by the convolutional code is mapped

to a codeword in the UDBC set. In Figure 5.1, an example is given for the code

C0. The encoding rule for the UDBC is that 0 is mapped to the codeword (1, 1)

and 1 is mapped to the codeword (0, 0). For M -FSK modulation, the symbol 1 is

mapped to frequency f1 and 0 is mapped to frequency f0. Note that the symbol-based

interleaver is optional. The “symbol” here is defined by the coded bits output by the

convolutional encoder, which corresponds to a sequence of 2i frequencies. Hence,

the interleaver operates on the unit of 2i-tuple frequencies. This guarantees that the

sequence of frequencies is uniquely decodable. Given that the convolutional code is

Symbol!based1 0 0f={f  f  f  f  ...} f={... ... f  f  ... ... f  f  ...}0 0 1 1
’

u Convolutional
Code

v={01...}
UDBC

c={1100....}
M!FSK

Interleaver
1

Figure 5.1: CFSK transmitter with a binary convolutional code concatenated with a

UDBC.
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rate k/n, the rate of the concatenated code is k/n2i.

The concatenated code defined above can be regarded as a non-binary trellis

code that is non-linear due to the non-linearity of the UDBC. Its performance is

decided by the distance properties of the super-trellis defined in Chapter 4. Since, by

construction, the code is uniquely decodable, the super-trellis must have the property

that dmin > 0 and A0 = 0. Thus, it can be anticipated that the BER performance

will have a low error floor. The waterfall region is decided by the first several terms

of the code’s distance spectrum. A theoretical analysis of the distance spectrum is

extremely difficult for these codes due to the non-binary nature and the large number

of users. In the following discussions, the performance of this scheme is investigated

through simulation and a comparison is made between the concatenated codes and

random convolutional codes.

5.2.1 Performance of UDBC’s

In order to investigate the performance of the UDBC’s in the concatenated scheme,

a 2-frequency, 7-user system is simulated. To generate the UDBC from the iterative

construction, 2 iterations are used which results in a length of 4. Rate 1/2, memory

3 convolutional codes are used for the inner codes and the overall concatenated codes

have rate 1/8. Details about the concatenated codes are given in Table 5.1. Random

channel interleavers with a block length of 4000 symbols are also used. The iterative
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detector uses 32 iterations with the relaxation metric. The results, shown in Figure

5.2, manifest no error floor and the waterfall region spans SNR’s from 6 dB to 14 dB.

This implies that the distance spectrum of the super-trellis code is not sparse.

Table 5.1: Rate 1/8 concatenated codes for a 2-frequency 7-user system.

Convolutional code output

0 1

UDBC output 2-FSK output UDBC output 2-FSK output

User 0 1111 f1f1f1f1 0000 f0f0f0f0

User 1 1010 f1f0f1f0 0101 f0f1f0f1

User 2 1010 f1f0f1f0 0000 f0f0f0f0

User 3 1100 f1f1f0f0 0011 f0f0f1f1

User 4 1001 f1f0f0f1 0110 f0f1f1f0

User 5 1000 f1f0f0f0 0001 f0f0f0f1

User 6 1000 f1f0f0f0 0000 f0f0f0f0

For comparison, the BER performance for a 2-frequency, 7-user system with rate

1/8, memory 3 random convolutional codes is also shown in Figure 5.2. In this case,

each coded bit is mapped to a frequency and the rate of the system is 1/8. All others

parameters are the same as those for the concatenated scheme. The waterfall region
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Figure 5.2: Performance comparison between UDBC and random convolution codes

in a CFSK system with 2 frequencies, 7 users and transmission rate 1/8 bits/symbol.
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of this scheme is sharp, though it starts later than the concatenated scheme and no

error floor can be observed. This implies that the distance spectrum of the random

codes has some superior properties compared with the concatenated scheme.

First, random codes with low rates can provide very low Ad values for the super-

trellis code when d is small. This results in a low error floor comparable to the UDBC

scheme. Second, random codes generally have a sparse distance spectrum that results

in a sharp waterfall region. Thus, random codes generally have much better BER per-

formance than the concatenated scheme for low and moderate SNR’s. Additionally,

the most efficient application of Chang and Wolf’s codes is in low spreading factor,

highly loaded systems. The reason for this is that the rate of the code for each user

is extremely low (1/2i) and a high sum rate can only be achieved by accommodating

a large number of users in the system. On the other hand, for random codes, high

efficiency can be achieved for any spreading factor given the proper choice of the code

parameters. It is possible to achieve high sum rates and approach the capacity bound

of the CFSK channel with the random codes over a wide range of spreading factors.

Motivated by the superiority of the random codes over the concatenation scheme

using UDBC’s, the remainder of this chapter investigates the application of random

codes in the CFSK system. Since the random codes are not constructed, the study

emphasizes the choice of the code parameters that achieves the highest spectral effi-

ciency.
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5.3 Spectral Efficiency of the CFSK System

Let R be the rate of the convolutional codes used in the CFSK system, and let Rc be

the transmission rate of the system in bits/symbol. Then, the bandwidth expansion

factor of the system is defined (similar to that of CDMA systems [43]) as

Ω =
M

Rc

, (5.3)

in chips×symbols/bit. In the CFSK system, the number of chips is the number of

frequencies. For a fixed bandwidth expansion factor Ω and transmission rate Rc,

it is possible to find the maximal number of users that can be accommodated in

the system. Denote this maximal number of users by Tmax(Ω, Rc), then the spectral

efficiency of the system is given by

K =
Tmax(Ω, Rc)

Ω
=
Tmax(Ω, Rc)Rc

M
,

in bits/symbol/chip.

To calculate the spectral efficiency of the system, the maximal number of users,

Tmax(Ω, Rc), needs to be found for a given Ω and M . With fixed Ω and M values,

the transmission rate Rc can be computed by (5.3). In Table 5.2, specific Ω and M

values, and the corresponding Rc values are given, where each q = log2M coded bits

are mapped to a frequency. The rates for the corresponding convolutional codes, R,

can be computed as

R =
Rc

q
.
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In Table 5.2, the R value is given in parenthesis below the corresponding transmission

rate Rc. In order to determine the effects of code memory on the performance of the

multiuser detector, both memory 4 and 8 codes were simulated.

Table 5.2: Transmission rates as a function of Ω and M .

Ω M = 2 M = 4 M = 8 M = 16 M = 32 M = 64 M = 128

8 1/4 1/2 1 2 4

(1/4) (1/4) (1/3) (2/4) (4/5)

16 1/8 1/4 1/2 1 2 4

(1/8) (1/8) (1/6) (1/4) (2/5) (4/6)

32 1/16 1/8 1/4 1/2 1 2 4

(1/16) (1/16) (1/12) (1/8) (1/5) (2/6) (4/7)

One approach to determine the maximal number of users Tmax is through the

EXIT chart analysis discussed in Chapter 4. However, EXIT chart analysis can only

provide information about the convergence of the iterative detector. The maximal

number of users determined in this manner only provides an upper bound on the

number of users for which the detector will converge. When there are many users,

the super-trellis code may have a low dmin and thus a very high error floor. In order

to observe the convergence and error floor simultaneously, a better approach is to find

Tmax by setting a threshold on the error floor and simulating the BER performance
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with increasing numbers of users and fixed Ω and Rc values.

In order to be able to observe the error floor, the SNR should be set high, since the

error floor has small slope and always extends to the high SNR region. In searching

for Tmax, the SNR is set to 16 dB. A BER of 10−3 is chosen as the threshold delineating

whether or not the iterative multiuser detector converges with a low error floor.

Random channel interleavers are used for each user. The spectral efficiencyK can then

be computed from Ω and Tmax and the relationship between the spectral efficiency K

and the rates Rc is determined. This relationship provides insight for choice of the

code parameters and detector approaches.

5.4 Choice of Code Parameters

The choice of code rates affects the convergence of the iterative detector and thus the

water fall region. The choice of the code memory affects convergence. EXIT chart

analyses in the Section 4.5 showed that increasing the memory of the component codes

makes the convergence of iterative decoding more difficult and delays convergence.

In Figure 5.3, the BER performance of codes with transmission rate 1/8 are given

for different memories and number of frequencies. The 7-user system converges after

8 dB with 2 frequencies and code memory 4. However, when the code memory is

increased to 8, the convergence is delayed to 16 dB.

Convergence is also be related to the number of frequencies. For example, as shown
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in Figure 5.3, when the number of frequencies is increased from 2 to 4, convergence

begins several dB earlier. Using more frequencies also improves convergence and the

waterfall region for system with rates of 1 and 4 as shown in Figures 5.4 and 5.5,

respectively.
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7 users, 2 frequencies, memory 4

7 users, 2 frequencies, memory 8

8 users, 2 frequencies, memory 4

7 users, 4 frequencies, memory 4

Figure 5.3: BER performance for codes with transmission rate 1/8 bits/symbol.

The level of the error floor is decided by the multiplicities Ad values for small

d’s, especially A0. Intuitively, a larger alphabet can improve the distance properties
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of the super-trellis code since the chance that two paths though the trellis have the

same output sequence is reduced by using a larger alphabet. Thus, for a given rate,

increasing the number of frequencies may also lower the error floor. An example of

this is shown in Figure 5.5, for a system with a transmission rate of 4. For the 3-user

system with 64 frequencies and code memory 4, the error floor is around 4 × 10−3.

When the number of frequencies is increased to 128, the error floor is lowered to

1.2× 10−3.

Increasing the code memory negatively affects the convergence of the detector,

due to the huge increase in the number of code paths through the super-trellis, but

distance properties are improved. Thus, the error floor can be lowered by increasing

the code memory provided the iterative detector converges. Figure 5.5 shows that

the convergence for code memory 8 begins at 6 dB, which is much later than the 2

dB convergence for code memory 4. However, the error floor for the memory 8 codes

is so much lower than that of the memory 4 codes that it cannot be observed in the

simulation.

It is clear that tradeoffs are involved in the choice of code parameters to achieve

high spectral efficiency. To investigate these tradeoffs further, transmission rates are

divided into three regions. The low rate region is for rate below 0.5 and the results

in Figure 5.3 belong to this region. The middle rate region is for rates between 0.5

and 2 and the results in Figure 5.4 belong to this region. The high rate region is for
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Figure 5.4: BER performance for codes with transmission rate 1.
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Figure 5.5: BER performance for codes with transmission rate 4.
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rate above 2 and the results in Figure 5.5 belong to this region.

As previously defined, the value Tmax is the largest number of users that achieves a

BER below 10−3. Let Tconv be the largest number of users for which the the iterative

detector converges, as determined through EXIT chart analysis. The relationship

between Tmax and Tconv in the three rate regions is different. For low transmission

rates, as shown in Figure 5.3, the error floor is low enough that it is difficult to observe

in the simulations and the system performance is dominated by the convergence of the

iterative detector.Thus, we conjecture that in the low rate region Tmax = Tconv. From

the simulations, when the number of users is increased to 8, the iterative detector

does not converge so Tmax = Tconv = 7 in this case.

When the transmission rate is in the middle region, both the error floor and

detector convergence will affect the performance. In Figure 5.4, the BER is shown for

several systems with a transmission rate 1. With 16 frequencies and codes of memory

4, increasing the number of users is increased from 15 to 16 introduces an error floor

above 10−2. Obviously, the value of Tconv for this rate is no less than 16. However,

since the error floor for the 16-user system is higher than 10−3, the Tmax < 16 and

we conclude that Tmax = 15. Thus, in this region of transmission rates, it is possible

that Tmax < Tconv.

When the transmission rate is high enough, the error floor will dominate the

system performance. In this case, the number of users can be fairly high and the
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detector will still converge, but the error floor may also be high. In this region,

Tmax < Tconv. In Figure 5.5, the 4-user system converges at low SNR, which implies

that Tconv > 4. However, the error floor is higher than 10−2 for 4 users so the value

of Tmax has to be less than 4. The 3-users system has an error floor around 10−3, and

we conclude that Tmax = 3.

5.4.1 Choice of Iterative Multiuser Detectors

In Figure 5.6, the spectral efficiency K is compared for different detector approaches

for codes with memory 4. It can be observed that the relaxation approach has the

highest spectral efficiency and the K-MPC approach has the lowest spectral efficiency.

By using NSMP in the first iteration, the system performance is slightly improved

over the K-MPC metric. The gap between the curves is the largest for moderate

transmission rates. For very low or high transmission rates, the differences between

the detectors are small. When the transmission rate tends to zero, the increase in

the number of users cannot compensate for the rate loss and the spectral efficiency

tends to zero for all of the detectors. For high transmission rates, the user diversity

provided by the codes becomes weak since Ad is high for small values of d. The error

floor dominates the system performance in this case and the system can only allow

a small number of users. High transmission rates can be achieved by using a large

set of frequencies, but the spectral efficiency of the system will tend to zero for all



CHAPTER 5. CODE DESIGN FOR THE CFSK SYSTEM 119

detectors.

The highest spectral efficiency is achieved using the relaxation metric in the middle

region of the transmission rates. For Rc between 0.1 and 0.3 bits / symbol, the

performance of the NSMP+K-MPC metric is very close to that of the relaxation

metric. Considering the increased computational complexity of the relaxation metric,

NSMP+K-MPC is recommended in this rate region. For extremely high transmission

rates, since all the detectors perform similarly, K-MPC is the best choice due to its

low complexity.

5.4.2 Choice of Bandwidth Expansion Factors

In Figure 5.7, the spectral efficiency for the relaxation metric is compared for Ω = 8,

Ω = 16 and Ω = 32. In the low rate region that Rc < 0.5, there is a tendency for the

spectral efficiency of high Ω values to be higher than that of low Ω values. Note that,

for a given transmission rate, higher Ω values are achieved by increasing the number

of frequencies. The increase in frequencies improves the convergence of the iterative

detector. In the low rate region, convergence dominates the system performance and

increasing the number of frequencies will increase Tconv. As discussed previously, this

increase in the number of users will not introduce a high error floor for these rates

and Tmax = Tconv. As a result, the increase of Tmax is even faster than the increase in

the number of frequencies and the spectral efficiency is increased.
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Figure 5.6: Comparison of spectral efficiencies for different detectors. The coding

scheme has Ω = 16 chips-symbo/bit, memory 4.
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For moderate transmission rates that 0.5 < Rc < 1.5, it can be observed that

the spectral efficiency for high Ω values is lower than that for low Ω values. This

implies that with the same transmission rate, the increase in Tmax is slower than the

increase in the number of frequencies. As a result, the spectral efficiency decreases as

the number of frequencies increases. The reason behind this is that both convergence

and the error floor affect the system performance. Thus, the increase in the number

of users will increase the error floor, which cancels the improvement obtained by

increasing the number of frequencies.

For very high transmission rates that Rc > 2, spectral efficiency with high Ω values

is also higher. This is because the error floor dominates the system performance in this

region. Increasing the number of frequencies may lower the error floor significantly

and allow more users in the system. Note that Tmax < Tconv in this region and as

long the number of users is less than Tconv, Tmax will increase. Moreover, increasing

in the number of frequencies may also increase Tconv. Thus, the increase in Tmax is

faster than the increase in the number of frequencies and the spectral efficiency is

improved.

5.4.3 Choice of Code Memory

To investigate the influence of code memory on the iterative detector, comparisons

are made between memory 4 codes and memory 8 codes in Figures 5.8, 5.9 and 5.10,
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Figure 5.7: Spectral efficiencies for different bandwidth expansion factors with the

relaxation detector and memory 4 codes.
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for Ω = 8, Ω = 16 and Ω = 32, respectively.

In Figure 5.8, it can be seen that the spectral efficiency is lower for higher code

memory unless Rc > 4. For Rc<4, convergence will dominate the system performance

due to the small value of Ω and thus Tmax = Tconv. Since increasing code memory

decreases the value of Tconv, Tmax is also decreased and the sprectral efficiency is low-

ered. For very high transmission rates, the error floor starts to dominate the system

performance and increasing code memory helps lower the error floor. Thus, Tmax can

be increased, provided it is lower than Tconv, to increase the spectral efficiency.

When Ω increases, the rate region dominated by convergence will shift to lower

rates. When Ω = 16, Figure 5.9 shows that the gap between the memory 4 and

the memory 8 curves becomes smaller. This implies that convergence becomes less

dominant in the moderate rate region that 0.5 < Rc < 1.5. On the other hand, the

error floor starts to affect the performance in this region. If Ω is increased to 32,

increasing the code memory may even increase the spectral efficiency for moderate

transmission rates. This is reasonable since the error floor already dominates the

system performance in this region.

5.5 Conclusions

Due to the difficulty in constructing uniquely decodable codes for the CFSK system

with a large number of users, the performance of randomly generated convolutional
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Figure 5.8: Comparison of spectral efficiencies for memory 4 and memory 8 codes

with relaxation detector when Ω = 8.
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Figure 5.9: Comparison of spectral efficiencies for memory 4 and memory 8 codes

with relaxation detector when Ω = 16.
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Figure 5.10: Comparison of spectral efficiencies for memory 4 and memory 8 codes

with relaxation detector when Ω = 32.
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codes was studied. Based on spectral efficiency, it can be concluded that coding

schemes with a large number of frequencies improve the convergence of the iterative

detector. Also, simulation results show that the error floor can be lowered by using

more frequencies. However, the spectral efficiency will be reduced due to the increase

in the number of frequencies. It was also shown that increasing the code memory

lowers the error floor at the expense of increasing the difficulty of convergence.

In general, for low transmission rates, coding schemes with a large number of fre-

quencies and large code memories will increase the spectral efficiency. For moderate

transmission rates, increasing the number of frequencies and the code memory be-

comes less efficient and coding schemes with a small frequency set and code memory

are recommended. For high transmission rates, coding schemes with a large number

of frequencies and large code memory become efficient again.

The conclusion with respect to code memory is significant since it makes it possible

to use the most powerful channel codes, such as turbo codes [58] and Low Density

Parity Check (LDPC) codes [59]. It is well known that these codes can achieve near

capacity performance on the AWGN channel. However, due to their large memory,

it is hard for the iterative detector to converge even when the system is not heavily

loaded. As proposed in Figure 5.10, when a large number of frequencies is used, it is

still possible for large memory codes to converge for moderate and high rates. The

use of turbo codes and LDPC codes in the CFSK system needs further study.



Chapter 6

Conclusion

This dissertation investigates capacity bounds, detection techniques and code design

for the CFSK system. Capacity bounds show that, for synchronous transmission,

the CFSK system with intensity information is superior to both the CFSK system

without intensity information and CDMA systems. For the asynchronous case, the

simulations show that the two CFSK system perform similarly and the capacity of the

CFSK system with intensity information tends to a constant level when the system

is overloaded. A comparison between the CFSK system and CDMA systems shows

that the CFSK system is superior for almost all system parameters and configurations.

This result is the primary motivation for investigating the CFSK system with intensity

information. Despite its theoretical advantages, practical CFSK implementations

have been elusive.

128
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The capacity results for the CFSK systems clearly show that multiuser detection

is the key to system performance. Here, attention is focused on the system with

intensity information due to its increased capacity. The optimal multiuser detector

has a computational complexity that increases exponentially with the number of users

and thus is impractical for real applications. For this reason, suboptimal multiuser

detection methods with iterative techniques are investigated.

The optimal iterative multiuser detector is based on an iterative channel metric

with complexity O(MT−1), which is still impractical and further simplification ap-

proaches are proposed. The K-MPC and K-MPF metrics simplify the channel met-

ric by considering a subset of the possible frequency combinations with high a priori

information. The complexity of these metrics is linear with the number of users, and

are thus appealing for real applications. However, since no channel information is

considered in these metrics, their use leads to serious performance degradation. An

improvement to these metrics is to consider both the a priori information of the fre-

quency combinations and the channel information. This is called the narrow sense

most probable combinations (NSMP) approach.

Further improvement is achieved by using the relaxation metric that considers

an enlarged set of frequency combinations by assuming a relaxed constraint on the

frequency combinations possible over the CFSK channel. This metric has low com-

plexity and the performance of the relaxation metric is very close to that of the
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optimal iterative metric.

Simulation results show that the iterative multiuser detectors raise the BER error

floor. By using random symbol-based channel interleavers, the error floor can be

lowered. The performance of the various detectors is also studied using the EXIT

chart analysis. This analysis shows that the relaxation approach converges faster

than the optimal iterative detector. EXIT analysis gives some insights into code

design as well. For example, large code memory prevents convergence and low code

rate improves convergence.

With respect to the channel codes in the CFSK system, random convolutional

codes are compared to the uniquely decodable codes. Simulation results show that

for low transmission rates, the BER performance of random codes is significantly

better than Chang and Wolf’s uniquely decodable block codes.

The coding parameters for the random codes is studied by considering spectral

efficiency. The highest spectral efficiency can be achieved for both low transmission

rates and high transmission rates by using large memory codes and a large number

of frequencies. For moderate transmission rates, it is better to use small code mem-

ory and a small number of frequencies. With respect to complexity, the relaxation

approach should be used for moderate transmission rates, the NSMP+K-MPC ap-

proach should be used for low transmission rates and the K-MPC approach should

be used for high transmission rates.
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Figure 6.1: Achieved spectral efficiency at a BER of 10−4 for the CFSK system and

a variety of CDMA systems.
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The final question is how the CFSK system compares to other multiple access

systems. In Figure 6.1, the highest spectral efficiencies achieved in simulations by

different detectors for the CFSK system are compared with the normalized capacity

bounds. This figure shows that all of the CFSK detectors achieve spectral efficiencies

higher than the normalized capacity of multiuser CDMA systems when the spreading

factor is greater than 2 chips/user. When the spreading factor is between 0.6 and

1.5 chips/user, the relaxation detector and the NSMP detector have higher spectral

efficiencies than the normalized capacity of the single-user CDMA system.

A series of simulations were performed for the CFSK system, and are shown in

Figure 6.1 as green triangles. Details on these points are given in the Table 6.1. For

comparison, actual rates achieved by DS/CDMA systems with iterative multiuser

detection are shown in Figure 6.1 as black dots [5]-[6], [27]-[31], [36]-[38]. The results

show that the spectral efficiency achieved by DS/CDMA systems is lower than those

achieved by the CFSK system. To achieve a BER of 10−4, DS/CDMA systems gener-

ally require a lower SNR than that required by the CFSK system. The high spectral

efficiency achieved by the CFSK systems using practical iterative detector makes it

an attractive alternative for some systems.
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Table 6.1: Code schemes for simulations of the CFSK system given Figure 6.1.

number T M code spreading factor Rsum percent of capacity

1 12 64 rate 1 5.30 12.00 24.05%

GF (2) → GF (64) C

2 3 8 rate 1/2 2.67 4.50 57.13 %

GF (8) → GF (8) CC

3 5 8 rate 1/2 1.60 5.00 47.82 %

GF (4) → GF (8) CC

4 3 4 rate 1 1.33 3.00 49.00 %

GF (1) → GF (4) CC

5 8 8 rate 1 1.00 2.67 51.87 %

GF (2) → GF (8) CC

6 11 8 rate 1/2 0.73 5.50 38.09 %

GF (2) → GF (8) CC

7 7 4 rate 1/3 0.57 2.33 36.73 %

GF (2) → GF (4) CC

8 6 3 rate 2/3 binary CC 0.50 2.00 46.49 %

+ length 2 UDBC

9 14 3 rate 2/3 binary CC 0.21 2.33 42.18 %

+ length 4 UDBC
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