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In this thesis, cooperative wireless communication strategies are studied in the

presence of channel uncertainty and physical-layer security considerations. Ini-

tially, achievable rates and resource allocation strategies for imperfectly-known

fading relay channels are investigated. Amplify-and-forward (AF) and decode-

and-forward (DF) relaying schemes with different degrees of cooperation are con-

sidered. The corresponding achievable rate expressions are obtained and efficient

resource allocation strategies are identified. Then, the analysis is extended to two-

way decode-and-forward (DF) fading relay channels. In the second part of the

thesis, the concentration is on wireless information-theoretic security. First, col-

laborative beamforming schemes for both DF and AF relaying are studied under

secrecy constraints. The optimal selection of the beamforming vector is formu-

lated as a semidefinite programming problem and an iterative algorithm is pro-

posed to numerically obtain the optimal beamforming structure and maximize

the secrecy rates. In addition, for DF relaying, the worst-case robust beamform-

ing design is identified when channel state information (CSI) is imperfect but

bounded, and the statistical robust beamforming design based upon minimum

non-outage probability criterion is analyzed. Collaborative relay beamforming

for secure broadcasting is subsequently investigated. Novel DF-based null space



beamforming schemes are proposed and the optimality of these schemes is in-

vestigated by comparing them with the outer bound secrecy rate region. Then,

information-theoretic security in cognitive radios is explored. AF relay beamform-

ing designs in the presence of an eavesdropper and a primary user are studied and

compared with sub-optimal null space beamforming schemes. Secrecy capacity

limits and optimal power allocation of opportunistic spectrum-sharing channels

in fading environments are investigated. Finally, secrecy rates are analyzed over

weak Gaussian interference channels for different transmission schemes.
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Chapter 1

Introduction

1.1 Cooperative Wireless Communications

In wireless communications, deterioration in performance is experienced due to

various impediments such as interference, fluctuations in power due to reflections

and attenuation, and randomly-varying channel conditions caused by mobility

and changing environment. Recently, cooperative wireless communications has

attracted much interest as a technique that can mitigate these degradations and

provide higher rates or improve the reliability through diversity gains. The relay

channel was first introduced by van der Meulen in [68], and initial research was

primarily conducted to understand the rates achieved in relay channels [13] [19].

More recently, diversity gains of cooperative transmission techniques have been

studied in [62] [40][39]. In [40], several cooperative protocols have been proposed,

with amplify-and-forward (AF) and decode-and-forward (DF) being the two basic

relaying schemes. The performance of these protocols are characterized in terms

of outage events and outage probabilities. In [55], three different time-division AF

and DF cooperative protocols with different degrees of broadcasting and receive
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collision are studied. Resource allocation for relay channel and networks has been

addressed in several studies (see e.g., [31][25][74][44][43][57]). In [31], upper and

lower bounds on the outage and ergodic capacities of relay channels are obtained

under the assumption that the channel side information (CSI) is available at both

the transmitter and receiver. Power allocation strategies are explored in the pres-

ence of a total power constraint on the source and relay. In [25], under again

the assumption of the availability of CSI at the receiver and transmitter, optimal

dynamic resource allocation methods in relay channels are identified under to-

tal average power constraints and delay limitations by considering delay-limited

capacities and outage probabilities as performance metrics.

Another important concern in wireless communications is the efficient use of

limited energy resources. Hence, the energy required to reliably send one bit is a

metric that can be adopted to measure the performance. Generally, energy-per-bit

requirement is minimized, and hence the energy efficiency is maximized, if the

system operates in the low-SNR regime. In [69], Verdu has analyzed the trade-

off between the spectral efficiency and bit energy in the low-SNR regime for a

general class of channels. As argued in [69], two key performance measures in

the low-power regime are the minimum energy per bit Eb
N0 min

required for reli-

able communication and the slope of the spectral efficiency versus Eb
N0

curve at
Eb
N0 min

. Caire et al. in [9] employed these two measures to study the multiple

access, broadcast, and interference channels in the low-power regime. By compar-

ing the performance of TDMA and superposition schemes, they concluded that

the growth of TDMA-achievable rates with energy per bit is suboptimal except

in some special cases. In [74], resource allocation schemes in relay channels are

studied in the low-power regime when only the receiver has perfect CSI. Liang

et al. in [44] investigated resource allocation strategies under separate power con-
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straints at the source and relay nodes, and showed that the optimal strategies

differ depending on the channel statics and the values of the power constraints.

A spectrally efficient relaying technique named two-way relaying has been pro-

posed in [61] and [41], in which two nodes are able to exchange information via

the help of a relay node. Two-way relaying method consists of two phases: the

multiple access (MAC) phase in which the source nodes simultaneously transmit

their data to the relay, and the broadcast (BC) phase in which the relay forwards

the received signal to the sources. One key technique in two-way relaying is in-

terference cancelation in which the source nodes subtract their own forwarded

signals from the received signal. However, perfect interference cancelation re-

quires perfect knowledge of the channel conditions and most work on two-way

relay channels have assumed the availability of perfect channel side information

at the receivers.

1.2 Imperfectly-Known Channel Conditions

As noted above, studies on relaying and cooperation are numerous. How-

ever, most work has assumed that the channel conditions are perfectly known at

the receiver and/or transmitter sides. Especially in mobile applications, this as-

sumption is unwarranted as randomly-varying channel conditions can be learned

by the receivers only imperfectly. Moreover, the performance analysis of coop-

erative schemes in such scenarios is especially interesting and called for because

relaying introduces additional channels and hence increases the uncertainty in

the model if the channels are known only imperfectly. Recently, Wang et al. in

[71] considered pilot-assisted transmission over wireless sensory relay networks,

and analyzed scaling laws achieved by the amplify-and-forward scheme in the
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asymptotic regimes of large nodes, large block length, and small signal-to-noise

ratio (SNR) values. In this study, the channel conditions are being learned only by

the relay nodes. In [20] and [58], estimation of the overall source-relay-destination

channel is addressed for amplify-and-forward relay channels. In [20], Gao et al.

considered both the least squares (LS) and minimum-mean-square error (MMSE)

estimators, and provided optimization formulations and guidelines for the design

of training sequences and linear precoding matrices. In [58], under the assump-

tion of fixed power allocation between data transmission and training, Patel and

Stüber analyzed the performance of linear MMSE estimation in relay channels. In

both [20] and [58], the training design is studied in an estimation-theoretic frame-

work, and mean-square errors and bit error rates, rather than the achievable rates,

are considered as performance metrics. Performance analysis and resource alloca-

tion strategies have not been sufficiently addressed for imperfectly-known relay

channels in an information-theoretic context by considering rate expressions. We

note that Avestimehr and Tse in [5] studied the outage capacity of slow fading

relay channels. They showed that Bursty Amplify-Forward strategy achieves the

outage capacity in the low SNR and low outage probability regime. Interestingly,

they further proved that the optimality of Bursty AF is preserved even if the re-

ceivers do not have prior knowledge of the channels. The training design for the

two-way amplify-and-forward (AF) relaying was recently studied in [33] and [32].

In [32], the authors derived lower bounds on the training-based individual rates

and sum-rate. Given the total transmit power constraint, they investigated the

optimal power allocation between the two terminals and the relay.
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1.3 Physical-Layer Security

The broadcast nature of wireless transmissions allows for the signals to be

received by all users within the communication range, making wireless commu-

nications vulnerable to eavesdropping. The problem of secure transmission in

the presence of an eavesdropper was first studied from an information-theoretic

perspective in [73] where Wyner considered a wiretap channel model. Wyner

showed that secure communication is possible without sharing a secret key if the

eavesdropper’s channel is a degraded version of the main channel, and identified

the rate-equivocation region and established the secrecy capacity of the degraded

discrete memoryless wiretap channel. The secrecy capacity is defined as the maxi-

mum achievable rate from the transmitter to the legitimate receiver, which can be

attained while keeping the eavesdropper completely ignorant of the transmitted

messages. Later, Wyner’s result was extended to the Gaussian channel in [42] and

recently to fading channels in [43] and [24]. In addition to the single antenna case,

secrecy in multi-antenna models is addressed in [64] and [36]. One particular

result in [64] and [36] that is related to our study is that for the multiple-input

single-output (MISO) secrecy channel, the optimal transmitting strategy is beam-

forming based on the generalized eigenvector of two matrices that depend on the

channel coefficients. Regarding multiuser models, Liu et al. [45] presented inner

and outer bounds on secrecy capacity regions for broadcast and interference chan-

nels. The secrecy capacity of the multi-antenna broadcast channel is obtained in

[46]. Bloch et al. in [7] discussed the theoretical aspects and practical schemes for

wireless information-theoretic security.

Having multiple antennas at the transmitter and receiver has multitude of

benefits in terms of increasing the performance, and provides the potential to
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improve the physical-layer security as well. Additionally, it is well known that

even if they are equipped with single-antennas individually, users can cooperate

to form a distributed multi-antenna system by performing relaying [40][55][37].

When channel side information (CSI) is exploited, relay nodes can collaboratively

work similarly as in a multiple-input multiple-output (MIMO) system to build

a virtual beam towards the receiver. Relay beamforming research has attracted

much interest recently (see e.g., [35][86][34][56][87] and references therein). The

optimal power allocation at the relays has been addressed in [86] and [34] when

instantaneous CSI is known. In [56], the problem of distributed beamforming in

a relay network is considered with the availability of second-order statistics of

CSI. Most recently, Zheng et al. [87] have addressed the robust collaborative re-

lay beamforming design by optimizing the weights of amplify-and-forward (AF)

relays. They maximize the worst-case signal-to-noise ratio (SNR) assuming that

CSI is imperfect but bounded. Transmit beamforming and receive beamforming

strategies have been studied extensively for over a decade. A recent tutorial paper

[21] provides an overview of advanced convex optimization approaches to both

transmit, receive and network beamforming problems, and includes a comprehen-

sive list of references in this area.

Cooperative relaying under secrecy constraints was also recently studied in

[17][18][16][3] . In [17], a decode-and-forward (DF) based cooperative protocol is

considered, and a beamforming system is designed for secrecy capacity maximiza-

tion or transmit power minimization. For amplify-and-forward (AF), suboptimal

closed-form solutions that optimize bounds on secrecy capacity are proposed in

[18]. However, in those studies, the analysis is conducted only under total relay

power constraints and perfect CSI assumption.
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1.4 Cognitive Radio

The need for the efficient use of the scarce spectrum in wireless applications has

led to significant interest in the analysis of cognitive radio systems. One possible

scheme for the operation of the cognitive radio network is to allow the secondary

users to transmit concurrently on the same frequency band with the primary users

as long as the resulting interference power at the primary receivers is kept below

the interference temperature limit [29]. Note that interference to the primary users

is caused due to the broadcast nature of wireless transmissions, which allows the

signals to be received by all users within the communication range. A signifi-

cant amount of work has been done to study the transmitter design under such

interference constraints, e.g., in [22] and [54] for the fading channel, in [85] for

the multiple-input multiple-output (MIMO) channel, in [51] for the relay chan-

nel. Although cognitive radio networks are also susceptible to eavesdropping, the

combination of cognitive radio channels and information-theoretic security has

received little attention. Very recently, Pei et al. in [59] studied secure communi-

cation over multiple input, single output (MISO) cognitive radio channels. In this

work, finding the secrecy-capacity-achieving transmit covariance matrix under

joint transmit and interference power constraints is formulated as a quasiconvex

optimization problem.

1.5 Overview of the Thesis and Contributions

In this thesis, we initially explore achievable rates and resource allocation

strategies for imperfectly-known fading relay channels. Then, we focus on secure

communication at the physical layer. Specially, we investigate the collaborative
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use of relays to form a beamforming system and provide physical-layer security.

The organization of the rest of the thesis is as follows:

In Chapter 2, achievable rates and resource allocation strategies for imperfectly-

known fading relay channels are studied. It is assumed that communication starts

with the network training phase in which the receivers estimate the fading coef-

ficients of the channels. In the data transmission phase, amplify-and-forward

and decode-and-forward relaying schemes with different degrees of cooperation

are considered, and the corresponding achievable rate expressions are obtained.

Three resource allocation problems are addressed: 1) power allocation between

data and training symbols; 2) time/bandwidth allocation to the relay; 3) power

allocation between the source and relay in the presence of total power constraints.

The achievable rate expressions are employed to identify efficient resource allo-

cation strategies. Several observations with important practical implications are

made. It is noted that unless the source-relay channel quality is high, coopera-

tion is not beneficial and noncooperative direct transmission should be preferred

at high signal-to-noise ratio (SNR) values when amplify-and-forward or decode-

and-forward with repetition coding is employed as the cooperation strategy. On

the other hand, relaying is shown to generally improve the performance at low

SNRs. Additionally, transmission schemes in which the relay and source transmit

in non-overlapping intervals are seen to perform better in the low-SNR regime. Fi-

nally, through a bit energy analysis, it is noted that care should be exercised when

operating at very low SNR levels, as energy efficiency significantly degrades be-

low a certain SNR threshold value. This chapter, as a journal paper, appeared in

EURASIP Journal on Wireless Communications and Networking in 2009 [75], and,

as conference papers, appeared in the Proceedings of Annual Allerton Conference

on Communication, Control and Computing in 2007 [76] and IEEE International



9

Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

in 2008 [77].

In Chapter 3, achievable rates and resource allocation strategies for imper-

fectly known two-way relay fading channels are studied. Decode-and-forward

(DF) relaying is considered. It is assumed that communication starts with the

network training phase in which the users and the relay estimate the fading co-

efficients, albeit imperfectly. Subsequently, data transmission is performed in

multiple-access and broadcast phases. In both phases, achievable rate regions are

identified by treating the terms that arise due to channel estimation errors and

imperfect interference cancelation as Gaussian distributed noise components. The

achievable rate region of the two-way relay channel is given by the intersection of

the achievable rate regions of multiple-access and broadcast phases. The impact

of several training and transmission parameters (such as training power levels,

time/bandwidth allocated to the multiple access and broadcast phases, and relay

power allocation parameter) on the achievable rate regions and sum rates is inves-

tigated. This chapter, as a conference paper, appeared in the Proceedings of IEEE

International Symposium on Information Theory (ISIT) in 2011 [81].

In Chapter 4, collaborative use of relays to form a beamforming system and

provide physical-layer security is investigated. In particular, decode-and-forward

(DF) and amplify-and-forward (AF) relay beamforming designs under total and

individual relay power constraints are studied with the goal of maximizing the

secrecy rates when perfect channel state information (CSI) is available. In the DF

scheme, the total power constraint leads to a closed-form solution, and in this

case, the optimal beamforming structure is identified in the low and high signal-

to-noise ratio (SNR) regimes. The beamforming design under individual relay

power constraints is formulated as an optimization problem which is shown to be
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easily solved using two different approaches, namely semidefinite programming

and second-order cone programming. A simplified and suboptimal technique

which reduces the computational complexity under individual power constraints

is also presented. In the AF scheme, not having analytical solutions for the opti-

mal beamforming design under both total and individual power constraints, an

iterative algorithm is proposed to numerically obtain the optimal beamforming

structure and maximize the secrecy rates. Finally, robust beamforming designs in

the presence of imperfect CSI are investigated for DF-based relay beamforming,

and optimization frameworks are provided. This chapter, as conference papers,

appeared in the Proceedings of the IEEE International Conference on Communi-

cation (ICC) in 2010 [78] and the 44th Annual Conference on Information Sciences

and Systems in 2010. [80]

In Chapter 5, collaborative use of relays to form a beamforming system with

the aid of perfect channel state information (CSI) and to provide secure commu-

nication between a transmitter and two receivers is investigated. In particular, we

describe decode-and-forward based null space beamforming schemes and opti-

mize the relay weights jointly to obtain the largest secrecy rate region. Further-

more, the optimality of the proposed schemes is investigated by comparing them

with the outer bound secrecy rate region. This chapter, as a conference paper, ap-

peared in the Proceedings of the IEEE Wireless Communications and Networking

Conference (WCNC) in 2010 [79].

In Chapter 6, a cognitive relay channel is considered, and amplify-and-forward

(AF) relay beamforming designs in the presence of an eavesdropper and a primary

user are studied. Our objective is to optimize the performance of the cognitive

relay beamforming system while limiting the interference in the direction of the

primary receiver and keeping the transmitted signal secret from the eavesdropper.
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We show that under both total and individual power constraints, the problem be-

comes a quasiconvex optimization problem which can be solved by interior point

methods. We also propose two sub-optimal null space beamforming schemes

which are obtained in a more computationally efficient way. This chapter, as a

conference paper, appeared in the Proceedings of the 45th Annual Conference on

Information Sciences and Systems (CISS) in 2011 [82].

In Chapter 7, we consider a scenario in which a secondary user is operating

in the presence of both a primary user and an eavesdropper. Hence, the sec-

ondary user has both interference limitations and security considerations. In such

a scenario, we study the secrecy capacity limits of opportunistic spectrum-sharing

channels in fading environments and investigate the optimal power allocation for

the secondary user under average and peak received power constraints at the pri-

mary user with global channel side information (CSI). Also, in the absence of the

eavesdropper’s CSI, we study optimal power allocation under an average power

constraint and propose a suboptimal on/off power control method.

In Chapter 8, we study the secrecy rates over weak Gaussian interference chan-

nels for different transmission schemes. We focus on the low-SNR regime and

obtain the minimum bit energy Eb
N0 min

values, and the wideband slope regions

for both TDMA and multiplexed transmission schemes. We show that secrecy

constraints introduce a penalty in both the minimum bit energy and the slope

regions. Additionally, we identify under what conditions TDMA or multiplexed

transmission is optimal. Finally, we show that TDMA is more likely to be optimal

in the presence of secrecy constraints.
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Chapter 2

Achievable Rates and Resource

Allocation Strategies for

Imperfectly-Known Fading Relay

Channels

In this chapter, we study the imperfectly-known fading relay channels. We

assume that transmission takes place in two phases: network training phase and

data transmission phase. In the network training phase, a-priori unknown fading

coefficients are estimated at the receivers with the assistance of pilot symbols.

Following the training phase, AF and DF relaying techniques are employed in the

data transmission. Our contributions in this chapter are the following:

1. We obtain achievable rate expressions for AF and DF relaying protocols with

different degrees of cooperation, ranging from noncooperative communica-

tions to full cooperation. We provide a unified analysis that applies to both
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overlapped and non-overlapped transmissions of the source and relay. We

note that achievable rates are obtained by considering the ergodic scenario

in which the transmitted codewords are assumed to be sufficiently long to

span many fading realizations.

2. We identify resource allocation strategies that maximize the achievable rates.

We consider three types of resource allocation problems:

a) power allocation between data and training symbols;

b) time/bandwidth allocation to the relay;

c) power allocation between the source and relay if there is a total power

constraint in the system.

3. We investigate the energy efficiency in imperfectly-known relay channels by

finding the bit energy requirements in the low-SNR regime.

The organization of the rest of the chapter is as follows. In Section 2.1, we

describe the channel model. Network training and data transmission phases are

explained in Section 2.2. We obtain the achievable rate expressions in Section 2.3

and study the resource allocation strategies in Section 2.4. We discuss the energy

efficiency in the low-SNR regime in Section 2.5. Finally, we provide conclusions

in Section 2.6. The proofs of the achievable rate expressions are relegated to the

Appendix.

2.1 Channel Model

We consider a three-node relay network which consists of a source, desti-

nation, and a relay node. This relay network model is depicted in Figure 2.1.
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Figure 2.1: Three-node relay network model

Source-destination, source-relay, and relay-destination channels are modeled as

Rayleigh block-fading channels with fading coefficients denoted by hsd, hsr, and

hrd, respectively for each channel. Due to the block-fading assumption, the fad-

ing coefficients hsr ∼ CN (0, σsr
2), hsd ∼ CN (0, σsd

2), and hrd ∼ CN (0, σrd
2) stay

constant for a block of m symbols before they assume independent realizations

for the following block1. In this system, the source node tries to send information

to the destination node with the help of the intermediate relay node. It is as-

sumed that the source, relay, and destination nodes do not have prior knowledge

of the realizations of the fading coefficients. The transmission is conducted in two

phases: network training phase in which the fading coefficients are estimated at the

receivers, and data transmission phase. Overall, the source and relay are subject to

the following power constraints in one block:

|xs,t|2 + E{∥xs∥2} ≤ mPs, (2.1)

|xr,t|2 + E{∥xr∥2} ≤ mPr, (2.2)
1x ∼ CN (d, σ2) is used to denote a proper complex Gaussian random variable with mean d

and variance σ2.
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Figure 2.2: Transmission structure in a block of m symbols.

where xs,t and xr,t are the training symbols sent by the source and relay, respec-

tively, and xs and xr are the corresponding source and relay data vectors. The pilot

symbols enable the receivers to obtain the minimum mean-square error (MMSE)

estimates of the fading coefficients. Since MMSE estimates depend only on the to-

tal training power but not on the training duration, transmission of a single pilot

symbol is optimal for average-power limited channels. The transmission structure

in each block is shown in Fig. 2.2. As observed immediately, the first two sym-

bols are dedicated to training while data transmission occurs in the remaining

duration of m − 2 symbols. Detailed description of the network training and data

transmission phases is provided in the following section.

2.2 Network Training and Data Transmission

2.2.1 Network Training Phase

Each block transmission starts with the training phase. In the first symbol

period, source transmits the pilot symbol xs,t to enable the relay and destination

to estimate the channel coefficients hsr and hsd, respectively. The signals received

by the relay and destination are
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yr,t = hsrxs,t + nr, and yd,t = hsdxs,t + nd, (2.3)

respectively. Similarly, in the second symbol period, relay transmits the pilot

symbol xr,t to enable the destination to estimate the channel coefficient hrd. The

signal received by the destination is

yd,r,t = hrdxr,t + nd,r. (2.4)

In the above formulations, nr ∼ CN (0, N0), nd ∼ CN (0, N0), and nd,r ∼ CN (0, N0)

represent independent Gaussian random variables. Note that nd and nd,r are

Gaussian noise samples at the destination in different time intervals, while nr is

the Gaussian noise at the relay.

In the training process, it is assumed that the receivers employ minimum

mean-square-error (MMSE) estimation. We assume that the source allocates δs

fraction of its total power mPs for training while the relay allocates δr fraction of

its total power mPr for training. As described in [26], the MMSE estimate of hsr is

given by

ĥsr =
σ2

sr
√

δsmPs

σ2
srδsmPs + N0

yr,t, (2.5)

where yr,t ∼ CN (0, σ2
srδsmPs + N0). We denote by h̃sr the estimate error which is a

zero-mean complex Gaussian random variable with variance var(h̃sr) =
σ2

sr N0
σ2

srδsmPs+N0
.

Similarly, for the fading coefficients hsd and hrd, we have the following estimates
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and estimate error variances:

ĥsd =
σ2

sd
√

δsmPs

σ2
sdδsmPs + N0

yd,t, yd,t ∼ CN (0, σ2
sdδsmPs + N0), var(h̃sd) =

σ2
sdN0

σ2
sdδsmPs + N0

,

(2.6)

ĥrd =
σ2

rd
√

δrmPr

σ2
rdδrmPr + N0

yd,r,t, yd,r,t ∼ CN (0, σ2
rdδrmPr + N0), var(h̃rd) =

σ2
rdN0

σ2
rdδrmPr + N0

.

(2.7)

With these estimates, the fading coefficients can now be expressed as

hsr = ĥsr + h̃sr, hsd = ĥsd + h̃sd, hrd = ĥrd + h̃rd. (2.8)

2.2.2 Data Transmission Phase

As discussed in the previous section, within a block of m symbols, the first two

symbols are allocated to network training. In the remaining duration of m − 2

symbols, data transmission takes place. Throughout the chapter, we consider sev-

eral transmission protocols which can be classified into two categories depend-

ing on whether or not the source and relay simultaneously transmit information:

non-overlapped and overlapped transmissions. Since the practical relay node usually

cannot transmit and receive data simultaneously, we assume that the relay works

under half-duplex constraint. Hence, the relay first listens and then transmits. We

introduce the relay transmission parameter α and assume that α(m − 2) symbols

are allocated for relay transmission. Hence, α can be seen as the fraction of to-

tal time or bandwidth allocated to the relay. Note that the parameter α enables

us to control the degree of cooperation. In non-overlapped transmission proto-

col, source and relay transmit over non-overlapping intervals. Therefore, source
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transmits over a duration of (1 − α)(m − 2) symbols and becomes silent as the

relay transmits. On the other hand, in overlapped transmission protocol, source

transmits all the time and sends m − 2 symbols in each block.

We assume that the source transmits at a per-symbol power level of Ps1 when

the relay is silent, and Ps2 when the relay is in transmission. Clearly, in non-

overlapped mode, Ps2 = 0. On the other hand, in overlapped transmission, we

assume Ps1 = Ps2. Noting that the total power available after the transmission of

the pilot symbol is (1 − δs)mPs, we can write

(1 − α)(m − 2)Ps1 + α(m − 2)Ps2 = (1 − δs)mPs. (2.9)

The above assumptions imply that power for data transmission is equally dis-

tributed over the symbols during the transmission periods. Hence, in non-overlapped

and overlapped modes, the symbol powers are Ps1 = (1−δs)mPs
(1−α)(m−2) and Ps1 = Ps2 =

(1−δs)mPs
(m−2) , respectively. Furthermore, we assume that the power of each symbol

transmitted by the relay node is Pr1, which satisfies, similarly as above,

α(m − 2)Pr1 = (1 − δr)mPr. (2.10)

Next, we provide detailed descriptions of non-overlapped and overlapped coop-

erative transmission schemes.

2.2.2.1 Non-overlapped transmission

We first consider the two simplest cooperative protocols: non-overlapped AF

where the relay amplifies the received signal and forwards it to the destination,

and non-overlapped DF with repetition coding where the relay decodes the message,
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Figure 2.3: Transmission structure and order in the data transmission phase for
different cooperation schemes.

re-encodes it using the same codebook as the source, and forwards it. In these

protocols, since the relay either amplifies the received signal, or decodes it but

uses the same codebook as the source when forwarding, source and relay should

be allocated equal time slots in the cooperation phase. Therefore, before coopera-

tion starts, we initially have direct transmission from the source to the destination

without any aid from the relay over a duration of (1 − 2α)(m − 2) symbols. In

this phase, source sends the (1 − 2α)(m − 2)-dimensional data vector xs1 and the
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received signal at the destination is given by

yd1 = hsdxs1 + nd1. (2.11)

Subsequently, cooperative transmission starts. At first, the source transmits the

α(m − 2)-dimensional data vector xs2 which is received at the relay and the desti-

nation, respectively, as

yr = hsrxs2 + nr, and yd2 = hsdxs2 + nd2. (2.12)

In (2.11) and (2.12), nd1 and nd2 are independent Gaussian noise vectors com-

posed of independent and identically distributed (i.i.d.), circularly symmetric,

zero-mean complex Gaussian random variables with variance N0, modeling the

additive background noise at the transmitter in different transmission phases.

Similarly, nr is a Gaussian noise vector at the relay, whose components are i.i.d.

zero-mean Gaussian random variables with variance N0. For compact representa-

tion, we denote the overall source data vector by xs = [xT
s1 xT

s2]
T, and the signal

received at the destination directly from the source by yd = [yT
d1 yT

d2]
T where T

denotes the transpose operation. After completing its transmission, the source

becomes silent, and the relay transmits an α(m − 2)-dimensional symbol vector xr

which is generated from the previously received yr [40] [39]. Now, the destination

receives

yd,r = hrdxr + nd,r. (2.13)
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After substituting the estimate expressions in (2.8) into (2.11)–(2.13), we have

yd1 = ĥsdxs1 + h̃sdxs1 + nd1, yr = ĥsrxs2 + h̃srxs2 + nr, yd2 = ĥsdxs2 + h̃sdxs2 + nd2,

(2.14)

yd,r = ĥrdxr + h̃rdxr + nd,r. (2.15)

Note that we have 0 < α ≤ 1/2 for AF and repetition coding DF. Therefore, α =

1/2 models full cooperation while we have noncooperative communications as

α → 0. It should also be noted that α should in general be chosen such that α(m −

2) is an integer. The transmission structure and order in the data transmission

phase of non-overlapped AF and repetition DF are depicted Fig. 2.3.a, together

with the notation used for the data symbols sent by the source and relay.

For non-overlapped transmission, we also consider DF with parallel channel

coding, in which the relay uses a different codebook to encode the message. In this

case, the source and relay do not have to be allocated the same duration in the

cooperation phase. Therefore, source transmits over a duration of (1 − α)(m − 2)

symbols while the relay transmits in the remaining duration of α(m − 2) symbols.

Clearly, the range of α is now 0 < α < 1. In this case, the input-output relations are

given by (2.12) and (2.13). Since there is no separate direct transmission, xs2 = xs

and yd2 = yd in (2.12). Moreover, the dimensions of the vectors xs, yd, yr are now

(1 − α)(m − 2), while xr and yd,r are vectors of dimension α(m − 2). Fig. 2.3.b

provides a graphical description of the transmission order for non-overlapped

parallel DF scheme.
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2.2.2.2 Overlapped transmission

In this category, we consider a more general and complicated scenario in

which the source transmits all the time. We study AF and repetition DF, in which

we, similarly as in the non-overlapped model, have unaided direct transmission

from the source to the destination in the initial duration of (1 − 2α)(m − 2) sym-

bols. Cooperative transmission takes place in the remaining duration of 2α(m− 2)

symbols. Again, we have 0 < α ≤ 1/2 in this setting. In these protocols, the input-

output relations are expressed as follows:

yd1 = hsdxs1 + nd1, yr = hsrxs2 + nr, yd2 = hsdxs2 + nd2,

and yd,r = hsdx′s2 + hrdxr + nd,r. (2.16)

Above, xs1, xs2, x′s2, which have respective dimensions of (1 − 2α)(m − 2), α(m −

2) and α(m − 2), represent the source data vectors sent in direct transmission,

cooperative transmission when relay is listening, and cooperative transmission

when relay is transmitting, respectively. Note again that the source transmits all

the time. xr is the relay’s data vector with dimension α(m− 2). yd1, yd2, yd,r are the

corresponding received vectors at the destination, and yr is the received vector at

the relay. The input vector xs now is defined as xs = [xT
s1, xT

s2, x′Ts2 ]
T and we again

denote yd = [yT
d1 yT

d2]
T. If we express the fading coefficients as h = ĥ + h̃ in (2.16),

we obtain the following input-output relations:

yd1 = ĥsdxs1 + h̃sdxs1 + nd1, yr = ĥsrxs2 + h̃srxs2 + nr, yd2 = ĥsdxs2 + h̃sdxs2 + nd2,

(2.17)

and yd,r = ĥsdx′s2 + ĥrdxr + h̃sdx′s2 + h̃rdxr + nd,r. (2.18)
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A graphical depiction of the transmission order for overlapped AF and repetition

DF is given in Fig. 2.3.c.

Finally, the list of notations used throughout the chapter is given in Table 2.1.

and 2.2

Table 2.1: List of Notations
hsd source-destination channel fading coefficient
hsr relay-destination channel fading coefficient
hrd relay-destination channel fading coefficient
ĥ· estimate of the fading coefficient h·
h̃· error in the estimate of the fading coefficient h·
σ2 variance of random variables
N0 variance of Gaussian random variables due to thermal noise
m number of symbols in each block

mPs total average power of the source in each block of m symbols
mPr total average power of the relay in each block of m symbols
δs fraction of total power allocated to training by the source
δr fraction of total power allocated to training by the relay

xs,t pilot symbol sent by the source
xr,t pilot symbol sent by the relay
nd additive Gaussian noise at the destination in the interval in which the source

pilot symbol is sent
nr additive Gaussian noise at the relay in the interval in which the source pilot

symbol is sent
nd,r Gaussian noise at the destination in the interval in which the relay pilot symbol

is sent
yd,t received signal at the destination in the interval in which the source pilot symbol

is sent
yd,t received signal at the relay in the interval in which the source pilot symbol is

sent
yd,r,t received signal at the destination in the interval in which the relay pilot symbol

is sent
Ps1 power of each source symbol sent in the interval in which the relay is not trans-

mitting
Ps2 power of each source symbol sent in the interval in which the relay is transmit-

ting
Pr1 power of each relay symbol
α fraction of time/bandwidth allocated to the relay
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Table 2.2: List of Notations continued
xs1 (1− 2α)(m− 2)-dimensional data vector sent by the source in the noncooperative

transmission mode
xs2 data vector sent by the source when the relay is listening. The dimension is

α(m − 2) for AF and repetition DF, and (1 − α)(m − 2) for parallel DF
x′s2 α(m − 2)-dimensional data vector sent by the source when the relay is transmit-

ting
xr α(m − 2)-dimensional data vector sent by the relay

nd1 (1 − 2α)(m − 2)-dimensional noise vector at the destination in the noncoopera-
tive transmission mode

nd2 noise vector at the destination in the interval when the relay is listening. The
dimension is α(m − 2) for AF and repetition DF, and (1 − α)(m − 2) for parallel
DF

nd,r α(m − 2)-dimensional noise vector at the destination in the interval when the
relay is transmitting

nr noise vector at the relay. The dimension is α(m − 2) for AF and repetition DF,
and (1 − α)(m − 2) for parallel DF

yd1 (1 − 2α)(m − 2)-dimensional received vector at the destination in the noncoop-
erative transmission mode

yd2 received vector at the destination in the interval when the relay is listening. The
dimension is α(m − 2) for AF and repetition DF, and (1 − α)(m − 2) for parallel
DF

yd,r α(m − 2)-dimensional received vector at the destination in the interval when the
relay is transmitting

yr received vector at the relay. The dimension is α(m − 2) for AF and repetition DF,
and (1 − α)(m − 2) for parallel DF

2.3 Achievable Rates

In this section, we provide achievable rate expressions for AF and DF relaying

in both non-overlapped and overlapped transmission scenarios in a unified fash-

ion. Achievable rate expressions are obtained by considering the estimate errors

as additional sources of Gaussian noise. Since Gaussian noise is the worst uncor-

related additive noise for a Gaussian model [28, Appendix] [67], achievable rates

given in this section can be regarded as worst-case rates.

We first consider AF relaying scheme. The capacity of the AF relay channel is
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the maximum mutual information between the transmitted signal xs and received

signals yd and yd,r given the estimates ĥsr, ĥsd, ĥrd:

CAF = sup
pxs (·)

1
m

I(xs; yd, yd,r|ĥsr, ĥsd, ĥrd). (2.19)

Note that this formulation presupposes that the destination has the knowledge of

ĥsr. Hence, we assume that the value of ĥsr is forwarded reliably from the relay to

the

destination over low-rate control links. In general, solving the optimization

problem in (2.19) and obtaining the AF capacity is a difficult task. Therefore,

we concentrate on finding a lower bound on the capacity. A lower bound is

obtained by replacing the product of the estimate error and the transmitted signal

in the input-output relations with the worst-case noise with the same correlation.

Therefore, we consider in the overlapped AF scheme

zd1 = h̃sdxs1 +nd1, zr = h̃srxs2 +nr, zd2 = h̃sdxs2 +nd2, zd,r = h̃sdx′s2 + h̃rdxr +nd,r,

(2.20)

as noise vectors with covariance matrices

E{zd1z†
d1} = σ2

zd1
I = σ2

h̃sd
E{xs1x†

s1}+ N0I, E{zrz†
r} = σ2

zr I = σ2
h̃sr

E{xs2x†
s2}+ N0I,

(2.21)

E{zd2z†
d2} = σ2

zd2
I = σ2

h̃sd
E{xs2x†

s2}+ N0I,

E{zd,rzd,r
†} = σ2

zd,r
I = σ2

h̃sd
E{x′s2x′†s2}+ σ2

h̃rd
E{xrx†

r}+ N0I. (2.22)

Above, x† denotes the conjugate transpose of the vector x. Note that the expres-

sions for the non-overlapped AF scheme can be obtained as a special case of
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(2.20)–(2.22) by setting x′s2 = 0.

An achievable rate expression RAF is obtained by solving the following opti-

mization problem which requires finding the worst-case noise:

CAF > RAF = inf
pzd1 (·),pzr (·),pzd2 (·),pzd,r (·)

sup
pxs (·)

1
m

I(xs; yd, yd,r|ĥsr, ĥsd, ĥrd). (2.23)

The following results provides a general formula for RAF, which applies to both

non-overlapped and overlapped transmission scenarios.

Theorem 1 An achievable rate for AF transmission scheme is given by

RAF =
1
m

Ewsd,wrd,wsr

{
(1 − 2α)(m − 2) log(1 +

Ps1|ĥsd|2
σ2

zd1

) + (m − 2)α log

(
1 +

Ps1|ĥsd|2
σ2

zd2

+ f
(

Ps1|ĥsr|2
σ2

zr

,
Pr1|ĥrd|2

σ2
zd,r

)
+ q
(

Ps1|ĥsd|2
σ2

zd2

,
Ps2|ĥsd|2

σ2
zd,r

,
Ps1|ĥsr|2

σ2
zr

,
Pr1|ĥrd|2

σ2
zd,r

))}
(2.24)

where f (.) and q(.) are defined as f (x, y) = xy
1+x+y and q(a, b, c, d) = (1+a)b(1+c)

1+c+d .

Furthermore,

Ps1|ĥsd|2
σ2

zd1

=
Ps1|ĥsd|2

σ2
zd2

=
Ps1δsmPsσ

4
sd

Ps1σ2
sdN0 + (σ2

sdδsmPs + N0)N0
|wsd|2 (2.25)

Ps1|ĥsr|2
σ2

zr

=
Ps1δsmPsσ

4
sr

Ps1σ2
srN0 + (σ2

srδsmPs + N0)N0
|wsr|2 (2.26)

Pr1|ĥ2
rd|

σ2
zd,r

=
Pr1δrmPrσ4

rd(σ
2
sdδsmPs + N0)|wrd|2

A
(2.27)

Ps2|ĥ2
sd|

σ2
zd,r

=
Ps2δsmPsσ

4
sd(σ

2
rdδrmPr + N0)|wsd|2

A
(2.28)

where A = Ps2σ2
sdN0(σ

2
rdδrmPr + N0) + Pr1σ2

rdN0(σ
2
sdδsmPs + N0) + N0(σ

2
sdδsmPs +
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N0)(σ
2
rdδrmPr + N0). In the above equations and henceforth, wsr ∼ CN (0, 1), wsd ∼

CN (0, 1), wrd ∼ CN (0, 1) denote independent, standard Gaussian random variables.

The above formulation applies to both overlapped and non-overlapped cases. Recalling

(2.9), if we assume in (2.24)–(2.28) that

Ps1 =
(1 − δs)mPs

(m − 2)(1 − α)
and Ps2 = 0, (2.29)

we obtain the achievable rate expression for the non-overlapped AF scheme. Note that if

Ps2 = 0, the function q(·, ·, ·, ·) = 0 in (2.24). For overlapped AF, we have

Ps1 = Ps2 =
(1 − δs)mPs

m − 2
. (2.30)

Moreover, we know from (2.10) that

Pr1 =
(1 − δr)mPr

(m − 2)α
. (2.31)

Proof : See Appendix A.

Next, we consider DF relaying scheme. In DF, there are two different cod-

ing approaches [39], namely repetition coding and parallel channel coding. We

first consider repetition channel coding scheme. The following result provides

achievable rate expressions for both non-overlapped and overlapped transmission

scenarios.

Theorem 2 An achievable rate expression for DF with repetition channel coding trans-

mission scheme is given by

RDFr =
(1 − 2α)(m − 2)

m
Ewsd

{
log

(
1 +

Ps1|ĥsd|2
σ2

zd1

)}
+

(m − 2)α
m

min{I1, I2}

(2.32)
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where

I1 = Ewsr

{
log

(
1 +

Ps1|ĥsr|2
σ2

zr

)}
, and (2.33)

I2 = Ewsd,wrd

{
log

(
1 +

Ps1|ĥsd|2
σ2

zd2

+
Pr1|ĥrd|2

σ2
zd,r

+
Ps2|ĥsd|2

σ2
zd,r

+
Ps1|ĥsd|2

σ2
zd2

Ps2|ĥsd|2
σ2

zd,r

)}
.

(2.34)

Ps1|ĥsd|2
σ2

zd1
, Ps1|ĥsd|2

σ2
zd2

, Ps1|ĥsr|2
σ2

zr
, Ps2|ĥsd|2

σ2
zd,r

, Pr1|ĥrd|2
σ2

zd,r
have the same expressions as in (2.25)–(2.28).

Ps1, Ps2 and Pr1 are given in (2.29)–(2.31).

Proof : See Appendix B.

Finally, we consider DF with parallel channel coding and assume that non-

overlapped transmission scheme is adopted. From [43, Equation (6)], we note

that an achievable rate expression is given by

min{(1 − α)I(xs; yr|ĥsr), (1 − α)I(xs; yd|ĥsd) + αI(xr; yd,r|ĥrd)}.

Note that we do not have separate direct transmission in this relaying scheme. Us-

ing similar methods as in the proofs of Theorems 1 and 2, we obtain the following

result. The proof is omitted to avoid repetition.

Theorem 3 An achievable rate of non-overlapped DF with parallel channel coding scheme

is given by

RDFp = min

{
(1 − α)(m − 2)

m
Ewsr

{
log

(
1 +

Ps1|ĥsr|2
σ2

zr

)}
,
(1 − α)(m − 2)

m

Ewsd

{
log

(
1 +

Ps1|ĥsd|2
σ2

zd2

)}
+

α(m − 2)
m

Ewrd

{
log

(
1 +

Pr1|ĥrd|2
σ2

zd,r

)}}
(2.35)
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Figure 2.4: δr vs. σrd for different values of Pr when m = 50.

where Ps1|ĥsd|2
σ2

zd2
, Ps1|ĥsr|2

σ2
zr

, and Pr1|ĥrd|2
σ2

zd,r
are given in (2.25)-(2.27) with Ps1 and Pr1 defined in

(2.29) and (2.31). �

2.4 Resource Allocation Strategies

Having obtained achievable rate expressions in Section 2.3, we now identify re-

source allocation strategies that maximize these rates. We consider three resource

allocation problems: 1) power allocation between training and data symbols; 2)

time/bandwidth allocation to the relay; 3) power allocation between the source

and relay under a total power constraint.
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We first study how much power should be allocated for channel training. In

non-overlapped AF, it can be seen that δr appears only in Pr1|ĥrd|2
σ2

zd,r
in the achievable

rate expression (2.24). Since f (x, y) = xy
1+x+y is a monotonically increasing func-

tion of y for fixed x, (2.24) is maximized by maximizing Pr1|ĥrd|2
σ2

zd,r
. We can maximize

Pr1|ĥrd|2
σ2

zd,r
by maximizing the coefficient of the random variable |wrd|2 in (2.27), and

the optimal δr is given below:

δ
opt
r =

−mPrσ2
rd − αmN0 + 2αN0 +

√
B

mPrσ2
rd(−1 + αm − 2α)

. (2.36)

Where B = α(m − 2)(m2Prσ2
rdαN0 + m2P2

r σ4
rd + αmN2

0 + mPrσ2
rdN0 − 2mPrσ2

rdαN0 −

2N0α). Optimizing δs in non-overlapped AF is more complicated as it is related

to all the terms in (2.24), and hence obtaining an analytical solution is unlikely.

A suboptimal solution is to maximize Ps1|ĥsd|2
σ2

zd1
and Ps1|ĥsr|2

σ2
zr

separately, and obtain

two solutions δ
subopt
s,1 and δ

subopt
s,2 , respectively. Note that expressions for δ

subopt
s,1 and
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δ
subopt
s,2 are exactly the same as that in (2.36) with Pr and α replaced by Ps and (1 −

α), and σrd replaced by σsd in δ
subopt
s,1 and replaced by σsr in δ

subopt
s,2 . When the source-

relay channel is better than the source-destination channel and the fraction of time

over which direct transmission is performed is small, Ps1|ĥsr|2
σ2

zr
is a more dominant

factor and δ
subopt
s,2 is a good choice for training power allocation. Otherwise, δ

subopt
s,1

might be preferred. Note that in non-overlapped DF with repetition and parallel

coding, Pr1|ĥrd|2
σ2

zd,r
is the only term that includes δr. Therefore, similar results and

discussions apply. For instance, the optimal δr has the same expression as that

in (2.36). Figure 2.4 plots the optimal δr as a function of σrd for different relay

power constraints Pr when m = 50 and α = 0.5. It is observed in all cases that the

allocated training power monotonically decreases with improving channel quality

and converges to
√

α(m−2)−1
αm−2α−1 ≈ 0.169 which is independent of Pr.

In overlapped transmission schemes, both δs and δr appear in more than one

term in the achievable rate expressions. Therefore, we resort to numerical results

to identify the optimal values. Figures 2.5 and 2.6 plot the achievable rates as a

function of δs and δr for overlapped AF. In both figures, we have assumed that

σsd = 1, σsr = 2, σrd = 1 and m = 50, N0 = 1, α = 0.5. While Fig. 2.5 considers

high SNRs (Ps = 50 and Pr = 50), we assume that Ps = 0.5 and Pr = 0.5 in

Fig. 2.6. In Fig. 2.5, we observe that increasing δs will increase achievable rate

until δs ≈ 0.1. Further increase in δs decreases the achievable rates. On the other

hand, rates always increase with increasing δr, leaving less and less power for

data transmission by the relay. This indicates that cooperation is not beneficial

in terms of achievable rates and direct transmission should be preferred. On the

other hand, in the low-power regime considered in Fig. 2.6, the optimal values of

δs and δr are approximately 0.18 and 0.32, respectively. Hence, the relay in this

case helps to improve the rates.
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Figure 2.6: Overlapped AF achievable rates vs. δs and δr when Ps = Pr = 0.5

Next, we analyze the effect of the degree of cooperation on the performance

in AF and repetition DF. Figures 2.7 and 2.8 plot the achievable rates as a func-

tion of α which gives the fraction of total time/bandwidth allocated to the relay.

Achievable rates are obtained for different channel qualities given by the standard

deviations σsd, σsr, and σrd of the fading coefficients. We observe that if the input

power is high, α should be either 0.5 or close to zero depending on the channel

qualities. On the other hand, α = 0.5 always gives us the best performance at

low SNR levels regardless of the channel qualities. Hence, while cooperation is

beneficial in the low-SNR regime, noncooperative transmissions might be optimal

at high SNRs. We note from Fig. 2.7 in which Ps = Pr = 50 that cooperation starts
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being useful as the source-relay channel variance σ2
sr increases. Similar results

are also observed if overlapped DF with repetition coding is considered. Hence,

the source-relay channel quality is one of the key factors in determining the use-

fulness of cooperation in the high SNR regime. At the same time, additional

numerical analysis has indicated that if SNR is further increased, noncooperative

direct transmission tends to outperform cooperative schemes even in the case in

which σsr = 10. Hence, there is a certain relation between the SNR level and

the required source-relay channel quality for cooperation to be beneficial. The

above conclusions apply to overlapped AF and DF with repetition coding. In

contrast, numerical analysis of non-overlapped DF with parallel coding in the

high-SNR regime has shown that cooperative transmission with this technique

provides improvements over noncooperative direct transmission. A similar result

will be discussed later in this section when the performance is analyzed under

total power constraints.

In Fig. 2.8 in which SNR is low (Ps = Pr = 0.5), we see that the highest achiev-

able rates are attained when there is full cooperation (i.e., when α = 0.5). Note

that in this figure, overlapped DF with repetition coding is considered. If over-

lapped AF is employed as the cooperation strategy, we have similar conclusions

but it should also be noted that overlapped AF achieves smaller rates than those

attained by overlapped DF with repetition coding.

In Fig. 2.9, we plot the achievable rates of DF with parallel channel coding,

derived in Theorem 3, when Ps = Pr = 0.5. We can see from the figure that the

highest rate is obtained when both the source-relay and relay-destination chan-

nel qualities are higher than that of the source-destination channel (i.e., when

σsd = 1, σsr = 4, σrd = 4). Additionally, we observe that as the source-relay

channel improves, more resources need to be allocated to the relay to achieve
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Figure 2.7: Overlapped AF achievable rate vs. α when Ps = Pr = 50, δs = δr = 0.1,
m = 50.

the maximum rate. We note that significant improvements with respect to di-

rect transmission (i.e., the case when α → 0) are obtained. Finally, we can see

that when compared to AF and DF with repetition coding, DF with parallel chan-

nel coding achieves higher rates. On the other hand, AF and repetition coding DF

have advantages in the implementation. Obviously, the relay, which amplifies and

forwards, has a simpler task than that which decodes and forwards. Moreover, as

pointed out in [38], if AF or repetition coding DF is employed in the system, the

architecture of the destination node is simplified because the data arriving from

the source and relay can be combined rather than stored separately.

In certain cases, source and relay are subject to a total power constraint. Here,
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Figure 2.8: Overlapped DF with repetition coding achievable rate vs. α when
Ps = Pr = 0.5, δs = δr = 0.1, m = 50.

we introduce the power allocation coefficient θ, and total power constraint P. Ps

and Pr have the following relations: Ps = θP, Pr = (1− θ)P, and hence Ps + Pr = P.

Next, we investigate how different values of θ, and hence different power alloca-

tion strategies, affect the achievable rates. Analytical results for θ that maximizes

the achievable rates are difficult to obtain. Therefore, we again resort to numerical

analysis. In all numerical results, we assume that α = 0.5 which provides the max-

imum of degree of cooperation. First, we consider the AF. The fixed parameters

we choose are P = 100, N0 = 1, δs = 0.1, δr = 0.1. Fig. 2.10 plots the achievable

rates in the overlapped AF transmission scenario as a function of θ for different

channel conditions, i.e., different values of σsr, σrd, and σsd. We observe that the

best performance is achieved as θ → 1. Hence, even in the overlapped scenario,



36

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α

A
ch

ie
va

bl
e 

R
at

es
 (

bi
ts

/s
ym

bo
l)

σ
sd

=1 σ
sr

=10 σ
rd

=2

σ
sd

=1 σ
sr

=6 σ
rd

=3

σ
sd

=1 σ
sr

=4 σ
rd

=4

σ
sd

=1 σ
sr

=2 σ
rd

=1

Figure 2.9: Non-overlapped DF parallel coding achievable rate vs. α when Ps =
Pr = 0.5, δs = δr = 0.1, m = 50.

all the power should be allocated to the source and direct transmission should be

preferred at these high SNR levels. Note that if direct transmission is performed,

there is no need to learn the relay-destination channel. Since the time allocated

to the training for this channel should be allocated to data transmission, the real

rate of direct transmission is slightly higher than the point that the cooperative

rates converge as θ → 1. For this reason, we also provide the direct transmission

rate separately in Fig. 2.10. Further numerical analysis has indicated that direct

transmission outperforms non-overlapped AF, overlapped and non-overlapped

DF with repetition coding as well at this level of input power. On the other hand,

in Fig. 2.11 which plots the achievable rates of non-overlapped DF with parallel
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Figure 2.10: Overlapped AF achievable rate vs. θ. P = 100, m = 50.

coding as a function of θ, we observe that direct transmission rate, which is the

same as that given in Fig. 2.10, is exceeded if σsr = 10 and hence the source-

relay channel is very strong. The best performance is achieved when θ ≈ 0.7 and

therefore 70% of the power is allocated to the source.

Figs. 2.12 and 2.13 plot the non-overlapped achievable rates when P = 1. In all

cases, we observe that performance levels higher than that of direct transmission

are achieved unless the qualities of the source-relay and relay-destination chan-

nels are comparable to that of the source-destination channel (e.g., σsd = 1, σsr =

2, σrd = 1). Moreover, we note that the best performances are attained when the

source-relay and relay-destination channels are both considerably better than the

source-destination channel (i.e., when σsd = 1, σsr = 4, σrd = 4). As expected, high-
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Figure 2.11: Non-overlapped Parallel coding DF rate vs. θ. P = 100, m = 50.

est gains are obtained with parallel coding DF although further numerical analy-

sis has shown that repetition coding incur only small losses. Finally, Fig. 2.14 plot

the achievable rates of overlapped AF when P = 1. Similar conclusions apply also

here. However, it is interesting to note that overlapped AF rates are smaller than

those achieved by non-overlapped AF. This behavior is also observed when DF

with repetition coding is considered. Note that in non-overlapped transmission,

source transmits in a shorter duration of time with higher power. This signaling

scheme provides better performance as expected because it is well-known that

flash signaling achieves the capacity in the low-SNR regime in imperfectly known

channels [69].

Table 2.3 below summarizes the conclusions drawn and insights gained in
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Figure 2.12: Non-overlapped AF achievable rate vs. θ. P = 1, m = 50.

this section on the performance of different cooperation strategies and resource

allocation schemes in the high- and low-SNR regimes.

2.5 Energy Efficiency

Our analysis has shown that cooperative relaying is generally beneficial in the

low-power regime, resulting in higher achievable rates when compared to direct

transmission. In this section, we provide an energy efficiency perspective and

remark that care should be exercised when operating at very low SNR values.

The least amount of energy required to send one information bit reliably is given
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Table 2.3:

High-SNR
Regime

• Cooperation employing overlapped AF or DF with repetition
coding is beneficial only if the source-relay channel quality
is high enough. If this is not the case or SNR is very high,
noncooperative direct transmission should be employed.

• Cooperation using non-overlapped DF with parallel coding
provides improvements over the performance of noncoop-
erative direct transmission, and achieves higher rates than
those attained by overlapped AF and DF with repetition cod-
ing.

• If the system is operating under total power constraints, all
the power should be allocated to the source and hence di-
rect transmission should be preferred over overlapped and
non-overlapped AF, and overlapped and non-overlapped DF
with repetition coding.

• Under total power constraints, only non-overlapped DF with
parallel coding outperforms noncooperative direct transmis-
sion when the source-relay channel is strong.

Low-SNR
Regime

• Cooperation is generally beneficial.

• The strengths of both the source-relay and relay-
destination channels are important factors.

• Non-overlapped DF with parallel coding achieves the high-
est performance levels. In general, non-overlapped trans-
mission methods should be preferred. Also, DF provides
higher gains over AF.

• Under total power constraints, highest gains over nonco-
operative direct transmission are attained when both the
source-relay and relay-destination channels are consider-
ably stronger than the source-destination channel.

• Under total power constraints, noncooperative direct trans-
mission should be preferred if the qualities of both the
source-relay and relay-destination channels are compara-
ble to that of the source-destination channel.
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Figure 2.13: Non-overlapped Parallel coding DF rate vs. θ. P = 1, m = 50.

by2 Eb
N0

= SNR
C(SNR) where C(SNR) is the channel capacity in bits/symbol. In our

setting, the capacity will be replaced by the achievable rate expressions and hence

the resulting bit energy, denoted by Eb,U
N0

, provides the least amount of normalized

bit energy values in the worst-case scenario and also serves as an upper bound

on the achievable bit energy levels in the channel.

We note that in finding the bit energy values, we assume that SNR = P/N0

where P = Pr + Ps is the total power. The next result provides the asymptotic

behavior of the bit energy as SNR decreases to zero.

Theorem 4 The normalized bit energy in all relaying schemes grows without bound as
2Note that Eb

N0
is the bit energy normalized by the noise power spectral level N0.
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Figure 2.14: Overlapped AF achievable rate vs. θ. P = 1, m = 50.

the signal-to-noise ratio decreases to zero, i.e.,

Eb,U

N0

∣∣∣∣
R=0

= lim
SNR→0

SNR
R(SNR)

=
1

Ṙ(0)
= ∞. (2.37)

Proof : Ṙ(0) is the derivative of R with respect to SNR as SNR → 0. The key point

to prove this theorem is to show that when SNR → 0, the mutual information

decreases as SNR2, and hence Ṙ(0) = 0. This can be easily shown because when

P → 0, in all the terms , Ps1|ĥsd|2
σ2

zd1
, Ps1|ĥsd|2

σ2
zd2

, Ps1|ĥsr|2
σ2

zr
, Ps2|ĥsd|2

σ2
zd,r

and Pr1|ĥrd|2
σ2

zd,r
in Theorems 1-3,

the denominator goes to a constant while the numerator decreases as P2. Hence,

these terms diminish as SNR2. Since log(1 + x) = x + o(x) for small x, where

o(x) satisfies limx→0
o(x)

x = 0, we conclude that the achievable rate expressions
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also decrease as SNR2 as SNR vanishes. �

Theorem 4 indicates that it is extremely energy-inefficient to operate at very

low SNR values. We identify the most energy-efficient operating points in numer-

ical results. We choose the following numerical values for the fixed parameters:

δs = δr = 0.1, σsd = 1, σsr = 4, σrd = 4, α = 0.5, and θ = 0.6. Fig. 2.15 plots

the bit energy curves as a function of SNR for different values of m in the non-

overlapped AF case. We can see from the figure that the minimum bit energy,

which is achieved at a nonzero value of SNR, decreases with increasing m and

is achieved at a lower SNR value. Fig. 2.16 shows the minimum bit energy for

different relaying schemes with overlapped or non-overlapped transmission tech-

niques. We observe that the minimum bit energy decreases with increasing m in
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all cases . We realize that DF is in general much more energy-efficient than AF.

Moreover, we note that employing non-overlapped rather than overlapped trans-

mission improves the energy efficiency. We further remark that the performances

of non-overlapped DF with repetition coding and parallel coding are very close.

2.6 Conclusion

In this chapter, we have studied the imperfectly-known fading relay channels.

We have assumed that the source-destination, source-relay, and relay-destination

channels are not known by the corresponding receivers a priori, and transmis-

sion starts with the training phase in which the channel fading coefficients are
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learned with the assistance of pilot symbols, albeit imperfectly. Hence, in this

setting, relaying increases the channel uncertainty in the system, and there is in-

creased estimation cost associated with cooperation. We have investigated the

performance of relaying by obtaining achievable rates for AF and DF relaying

schemes. We have considered both non-overlapped and overlapped transmission

scenarios. We have controlled the degree of cooperation by varying the parameter

α. We have identified resource allocation strategies that maximize the achievable

rate expressions. We have observed that if the source-relay channel quality is low,

then cooperation is not beneficial and direct transmission should be preferred

at high SNRs when amplify-and-forward or decode-and-forward with repetition

coding is employed as the cooperation strategy. On the other hand, we have seen

that relaying generally improves the performance at low SNRs. We have noted

that DF with parallel coding provides the highest rates. Additionally, under to-

tal power constraints, we have studied power allocation between the source and

relay. We have again pointed out that relaying degrades the performance at high

SNRs unless DF with parallel channel coding is used and the source-relay channel

quality is high. The benefits of relaying is again demonstrated at low SNRs. We

have noted that non-overlapped transmission is superior compared to overlapped

one in this regime. Finally, we have considered the energy efficiency in the low-

power regime, and proved that the bit energy increases without bound as SNR

diminishes. Hence, operation at very low SNR levels should be avoided. From

the energy efficiency perspective, we have again observed that non-overlapped

transmission provides better performance. We have also noted that DF is more

energy efficient than AF.
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Chapter 3

An Achievable Rate Region for

Imperfectly-Known Two-Way Relay

Fading Channels

In this chapter, we investigate the training-based achievable rate region of the

decode-and-forward (DF) two-way relaying scheme. We note that the DF strategy

has certain advantages over AF. In AF, due to the need to estimate the cascade

of the channels in non-Gaussian noise, performing minimum mean-square-error

(MMSE) estimation is often not feasible and suboptimal linear MMSE estimates

are employed. In addition, noise forwarding in AF is a factor that can lead to

losses in performance unless the signal-to-noise ratio is high enough. Moreover,

degrees of freedom in transmission might be limited in AF schemes since the

MAC and BC phases of the transmission are necessarily of equal duration. At the

same time, it should be noted that DF requires a more complicated operation at

the relay, and training in DF mode takes a duration of three symbols instead of

two as required in AF.
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Figure 3.1: three-node two-way relay network which consists of user nodes A
and B

3.1 Channel Model

We consider a three-node two-way relay network which consists of user nodes

A and B, and a relay node R. Channels between A and R , R and B are modeled as

Rayleigh block-fading channels with fading coefficients denoted by har and hrb, re-

spectively. We further assume that there is no direct link between user A and user

B. Due to the block-fading assumption, the fading coefficients1 har ∼ CN (0, σ2
ar),

and hbr ∼ CN (0, σ2
br) stay constant for a block of m symbols before they assume

independent realizations for the following block. In this system, user nodes A and

B send data to each other with the assistance of the intermediate relay node. It is

assumed that none of the nodes has prior knowledge of the instantaneous realiza-

tions of the fading coefficients, and the transmission is conducted in two phases:

network training phase in which pilot symbols are transmitted and the fading co-

efficients are estimated at the receivers, and data transmission phase. Over these

phases, the source and relay nodes are subject to the following average power
1x ∼ CN (d, σ2) is used to denote a proper complex Gaussian random variable with mean d

and variance σ2.
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constraints:

∥xa,t∥2 + E{∥xa∥2} ≤ mPa, (3.1)

∥xb,t∥2 + E{∥xb∥2} ≤ mPb, (3.2)

∥xr,t∥2 + E{∥xr∥2} ≤ mPr, (3.3)

where xa,t, xb,t and xr,t are the training signal vectors of users A and B, and the

relay R, respectively, and xa, xb and xr are the corresponding data transmission

vectors.

3.2 Training and Data Transmission Phases and

Achievable Rate Regions

3.2.1 Network Training Phase

Each block transmission starts with the training phase. In the first symbol

period, user A transmits a pilot symbol to enable the relay to estimate channel

coefficient har. In the average power limited case, sending a single pilot is optimal

because instead of increasing the number of pilot symbols, a single pilot with

higher power can be used. The signal received by the relay is

yar,t, = harxa,t + nr. (3.4)

Similarly, in the second symbol period, user B transmits a pilot symbol to enable

the relay to estimate channel coefficient hbr. The signal received by the relay is

ybr,t, = hbrxb,t + nr. (3.5)
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In the third symbol period, relay transmits a pilot symbol to enable user A to

estimate the fading coefficient hra and user B to estimate hrb. The signals received

at A and B, respectively, are

ya,t = hraxr,t + na, and (3.6)

yb,t = hrbxr,t + nb. (3.7)

In the above formulations, nr ∼ CN (0, N0), na ∼ CN (0, N0) and nb ∼ CN (0, N0)

represent independent Gaussian noise samples at the relay and the user nodes.

Notice also in (3.6) and (3.7) that we have denoted the fading coefficients expe-

rienced when the relay transmits to the users as hra and hrb rather than har and

hbr, which are the fading coefficients when the users transmit to the relay. It is

important to note that although we implicitly assume channel reciprocity and con-

sider that statistically the same fading is experienced in the uplink (user-to-relay)

and downlink (relay-to-user) transmissions, this assumption is not required in the

analysis and different fading conditions can be considered in the downlink and

uplink. Hence, for more generality, we opted to choose different notations for the

fading coefficients.

In the training process, it is assumed that the receivers employ minimum

mean-square error (MMSE) estimation. Let us assume that the user A allocates

δa of its total power for training, user B allocates δb of its total power for training

while the relay allocates δr of its total power for training. As described in [26], the

MMSE estimate of har is given by

ĥar =
σ2

ar
√

δamPa

σ2
arδamPa + N0

yar,t, (3.8)
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where yar,t ∼ CN (0, σ2
arδamPa + N0). We denote by h̃ar the estimate error which is

a zero-mean complex Gaussian random variable with variance

var(h̃ar) =
σ2

arN0

σ2
arδamPa + N0

. (3.9)

Similarly, we have

ĥbr =
σ2

br
√

δbmPb

σ2
brδbmPb + N0

ybr,t,

ybr,t ∼ CN (0, σ2
brδbmPb + N0), (3.10)

var(h̃br) =
σ2

brN0

σ2
brδbmPb + N0

. (3.11)

ĥra =
σ2

ra
√

δrmPr

σ2
raδrmPr + N0

ya,t,

ya,t ∼ CN (0, σ2
raδrmPr + N0), (3.12)

var(h̃ra) =
σ2

raN0

σ2
raδrmPr + N0

, (3.13)

ĥrb =
σ2

rb
√

δrmPr

σ2
rbδrmPr + N0

yb,t,

yb,t ∼ CN (0, σ2
rbδrmPr + N0), (3.14)

var(h̃rb) =
σ2

rbN0

σ2
rbδrmPr + N0

. (3.15)

With these estimates, the fading coefficients can now be expressed as

har = ĥar + h̃ar, (3.16)
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hbr = ĥbr + h̃br, (3.17)

hra = ĥra + h̃ra. (3.18)

hrb = ĥrb + h̃rb. (3.19)

3.2.2 Data Transmission Phase

The practical relay node usually cannot transmit and receive data simultane-

ously. Thus, we assume that the relay works under half-duplex constraint. As

discussed in the previous section, within a block of m symbols, the first three

symbols are allocated for channel training. In the remaining duration of m − 3

symbols, data transmission takes place. As usual, two-way relaying can be di-

vided into two phases. The first one is usually called the multiple access (MAC)

phase in which the users simultaneously transmit their messages to the relay. The

second phase is called the broadcast phase (BC) in which the relay transmits to

both users. We introduce the MAC transmission parameter α and assume that

a duration of α(m − 3) symbols is allocated for users’ transmission to the relay.

Hence, α can be seen as the fraction of total time (or bandwidth) dedicated to the

MAC phase. The remaining duration of (1 − α)(m − 3) symbols is to be used in

the broadcast phase.

3.2.2.1 Multiple Access Phase

In the multiple access phase of the bidirectional relaying protocol, nodes A and

B simultaneously transmit independent messages ma and mb with rates Ra and

Rb to the relay node. Thereby, the message ma from node A is intended for node

B and vice versa for message mb. Then, the input-output relation in the multiple
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access channel is given by

yr = harxa + hbrxb + nr (3.20)

= ĥarxa + ĥbrxb + h̃arxa + h̃brxb + nr (3.21)

where the data transmission vectors xa and xb are assumed to be composed of

independent random variables with equal energy. Hence, the corresponding co-

variance matrices are

E{xax†
a} = P′

a I =
(1 − δa)mPa

(m − 3)α
I, (3.22)

E{xbx†
b} = P′

b I =
(1 − δb)mPb
(m − 3)α

I. (3.23)

Using the same techniques described in [75], we can show that capacity lower

bounds can be obtained when the channel estimation error is assumed to be an-

other source of Gaussian noise. This is due to the fact that Gaussian noise is the

worst uncorrelated noise for the Gaussian model. Now, we can write the new

noise vector as

zr = h̃arxa + h̃brxb + nr. (3.24)

The covariance matrix of this noise vector can be expressed as

E{zrzr
†} = σ2

zr I = σ2
h̃ar

E{xax†
a}+ σ2

h̃br
E{xbx†

b}+ N0I. (3.25)

Using the approach employed in [75], we can obtain the worst-case achievable
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rate region of the MAC phase as follows:

RMAC := {[Ra, Rb] ∈ R2
+ : Ra ≤ Rm

a , Rb ≤ Rm
b ,

Ra + Rb ≤ RMAC
∑ } (3.26)

with the individual and sum-rate upper bounds given by

Rm
a = E

[
α(m − 3)

m
log

(
1 +

P′
a|ĥar|2
σ2

zr

)]
(3.27)

Rm
b = E

[
α(m − 3)

m
log

(
1 +

P′
b|ĥbr|2

σ2
zr

)]
(3.28)

RMAC
∑ = E

[
α(m − 3)

m
log

(
1 +

P′
a|ĥar|2
σ2

zr

+
P′

b|ĥbr|2

σ2
zr

)]
(3.29)

where P′
a|ĥar|2
σ2

zr
and P′

b|ĥbr|2
σ2

zr
are given on the next page in (3.30) and (3.31)

P′
a|ĥar|2
σ2

zr

=
δa(1 − δa)σ4

arm2P2
a (σ

2
brδbmPb + N0)|w2

ar|
C

(3.30)

P′
b|ĥbr|2

σ2
zr

=
δb(1 − δb)σ

4
brm2P2

b (σ
2
arδamPa + N0)|w2

br|
C

(3.31)

Where C = σ2
arN0(1 − δa)mPa(σ2

brδbmPb + N0) + +σ2
brN0(1 − δb)mPb(σ

2
arδamPa +

N0)+ N0(m− 3)α(σ2
arδamPa + N0)(σ

2
brδbmPb + N0) in which we have defined war ∼



54

CN (0, 1) and wbr ∼ CN (0, 1). Since RMAC is a pentagon, it can be completely de-

scribed by five vertices. The two vertices where the individual rate constraints

intersect with the sum-rate constraint are

va ∑ := [Rm
a , Ra ∑

b ] and vb ∑ := [Rb ∑
a , Rm

b ] (3.32)

where

Ra ∑
b = RMAC

∑ − Rm
a (3.33)

= E

[
α(m − 3)

m
log

(
1 +

P′
b|ĥbr|2

σ2
zr + P′

a|ĥar|2

)]
, (3.34)

Rb ∑
a = RMAC

∑ − Rm
b (3.35)

= E

[
α(m − 3)

m
log

(
1 +

P′
a|ĥar|2

σ2
zr + P′

b|ĥbr|2

)]
. (3.36)

3.2.2.2 Broadcast Phase

In the succeeding BC phase of duration (1 − α)(m − 3) symbols, the relay

forwards the previously received message ma to node B and message mb to node

A. Similarly as for the source transmission vectors, we assume that the relay

vector xr has independent components with equal energy. Hence, the covariance

matrix of the relay transmission vector is

E{xrx†
r} = P′

r I =
(1 − δr)mPr

(m − 3)(1 − α)
I. (3.37)

In this chapter, we consider the superposition encoding strategy. Therefore, the

messages ma and mb are separately encoded as for the point-to-point Gaussian

channel. Then, the vector transmitted from the relay node obtained with superpo-
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sition encoding can be expressed as

xr = wa + wb, (3.38)

where the vectors wa and wb correspond to the codewords of the messages ma

and mb, respectively. Note that E{∥xr∥2} = E{∥wa∥2}+ E{∥wb∥2}. Let β1 and

β2 denote the proportion of relay transmit power P′
r used for the codewords wa

and wb, respectively. Hence, E{∥wa∥2} = β1P′
r and E{∥wb∥2} = β2P′

r . Then, the

simplex

[β1, β2] ∈ [0, 1]× [0, 1] : β1 + β2 ≤ 1 (3.39)

characterizes the set of feasible relay power distributions that satisfy the relay

transmit power constraint.

Now, the signals received at nodes A and B can be expressed as

yk = hrkxr + nk for k = a, b (3.40)

= ĥrkwa + ĥrkwb + h̃rkxr + nk. (3.41)

= ĥrkwa + ĥrkwb + zk (3.42)

where we have defined

zk = h̃rkxr + nk (3.43)

as the effective noise vector with covariance matrix

E{zkzk
†} = σ2

zk
I = σ2

h̃rk
E{xrx†

r}+ N0I. (3.44)
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Note that the user nodes A and B know their own transmitted codewords wa

and wb, respectively. Moreover, through the network training phase, they are

equipped with the channel estimate ĥrk. Hence, they can suppress the interfer-

ence due to their own messages, and the signals at nodes A and B can now be

expressed, respectively, as

ya = ĥrkwb + zk, and (3.45)

yb = ĥrawa + zk. (3.46)

It should also be noticed that due to the presence of channel estimation errors, self-

interference cannot be canceled perfectly. The residual interference components

h̃rkwa at node A and h̃rkwb at node B are incorporated into the noise term zk.

Now, assuming superposition encoding at the relay and self-interference sup-

pression at the receiver nodes, and regarding the noise component, which in-

cludes the residual interference terms and the background noise, as Gaussian

distributed, we can easily see that the worst-case achievable rate region of the BC

phase is given by

RBC := {[Ra, Rb] ∈ R2
+ : Ra ≤ Rb

a(β1), Rb ≤ Rb
b(β2)} (3.47)

where

Rb
a = E

[
(1 − α)(m − 3)

m
log

(
1 +

P′
r β1|ĥrb|2

σ2
zb

)]
(3.48)

Rb
b = E

[
(1 − α)(m − 3)

m
log

(
1 +

P′
r β2|ĥra|2

σ2
za

)]
(3.49)
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with

P′
r |ĥrb|2
σ2

zb

=
δr(1 − δr)σ4

rbm2P2
r |w2

rb|
σ2

rbN0(1 − δr)mPr + N0(m − 3)(1 − α)(σ2
rbδrmPr + N0)

P′
r |ĥra|2
σ2

za

=
δr(1 − δr)σ4

ram2P2
r |w2

ra|
σ2

raN0(1 − δr)mPr + N0(m − 3)(1 − α)(σ2
raδrmPr + N0)

.

Above, wra ∼ CN (0, 1) and wrb ∼ CN (0, 1).

On the boundary of the BC achievable region RBC, we have β1 + β2 = 1. Let

us set β1 = β and β2 = 1 − β. Now, any point on the boundary can be achieved

by varying β from 0 to 1. Of particular interest is the value of β that achieves

the maximum sum rate Rb
∑ := max[Ra,Rb]∈RBC

Ra + Rb in the broadcast phase. In

general, it is difficult to analytically determine the sum-rate-maximizing value

of β for the cases in which β is kept fixed by the relay for different channel

realizations. On the other hand, if the relay knows the channel estimates ĥra

and ĥrb of the source nodes, then it can adapt β to these estimates in each block.

For this case, we can find the optimal β∗ value, which maximizes the sum rate, in

closed-form as follows:

β∗ =



0 if 1
2 +

1
2P′

r

(
σ2

za
|ĥra|2

− σ2
zb

|ĥrb|2

)
< 0

1
2 +

1
2P′

r

(
σ2

za
|ĥra|2

− σ2
zb

|ĥrb|2

)
if 0 ≤ 1

2 +
1

2P′
r

(
σ2

za
|ĥra|2

− σ2
zb

|ĥrb|2

)
≤ 1

1 if 1
2 +

1
2P′

r

(
σ2

za
|ĥra|2

− σ2
zb

|ĥrb|2

)
> 1
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3.2.2.3 Achievable Rate Region for Two-Way Relay Channel

The worst-case achievable rate region of the two-way decode-and-forward

relaying scheme considered in this chapter is given by the intersection of the rate

regions of the multiple-access and broadcast phases:

R(α) := RMAC
∩

RBC. (3.50)

3.3 Numerical Results and Discussions

The achievable rate regions obtained in the previous section depend on several

parameters, such as the fractions of power allocated to training δa, δb, and δr;

the fraction of time allocated to the MAC phase α; the relay power allocation

parameter β; the coherence block length m; and the fading variances σ2. Other

than some special cases as seen in the discussion of the sum-rate-maximizing

value of β above, finding closed-form expressions for the optimized values of

training and data transmission parameters seems unlikely in general scenarios.

For this reason, we resort to numerical methods in order to identify the impact of

these parameters.

In Figure 3.2, we plot the achievable rate regions of the multiple access and

broadcast phases of two-way relaying for different values of α when the other

parameters are Pa = Pb = Pr = 1, m = 50, σra = σar = σbr = σrb = 1, δa =

δb = δr = 0.1. It can be easily seen that the MAC region expands and BC region

shrinks, as expected, as the value of α is increased. Hence, for small values of

α, MAC region dictates the achievable rate region of two-way relaying while BC

region does so for larger α. In Figs. 3.3 and 3.4, we plot the sum rate of users A

and B as a function of α for high and lower SNR values, respectively. In both cases,
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Figure 3.2: Achievable Rate Region for different values of α when Pa = Pb = Pr =
1, m = 50, σra = σar = σbr = σrb = 1, δa = δb = δr = 0.1.

the optimal α value is around 0.55, indicating that when sum rate is concerned,

equal time/bandwidth allocation between multiple access and broadcast phases

is not necessarily optimal.

Next, we investigate how much power needs to be spent on training to maxi-

mize the sum rate. For simplification, we assume all nodes spend the same ratio

of power for training, i.,e. δa = δb = δr = δ. In Fig. 3.5, sum rate is plotted as a

function of this common δ value. We observe that the optimal fraction of power

allocated for training is around 0.2. Further increase in training power leads to a

decrease in the overall throughput as it diminishes the available power for data

transmission.
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Figure 3.3: Sum rate vs. α with Pa = Pb = Pr = 10, m = 50, σra = σar = 1, σbr =
σrb = 2, δa = δb = δr = 0.1.

Finally, in Fig.3.6, we provide the sum rate curve as a function of the relay

power Pr. We see that the sum rate saturates as the relay power is increased be-

yond some threshold. This is mainly because of the fact that MAC phase becomes

the bottleneck of the whole system for large relay power levels.
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Figure 3.4: Sum rate vs. α with Pa = Pb = Pr = 1, m = 50, σra = σar = 1, σbr =
σrb = 2, δa = δb = δr = 0.1.
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Chapter 4

Collaborative Relay Beamforming for

Secrecy

In this chapter, we investigate the collaborative relay beamforming under se-

crecy constraints in the presence of both total and individual power constraints

with the assumptions of perfect and imperfect channel knowledge.

More specifically, our contributions in this chapter are as follows:

1. In DF, under total power constraints, we analytically determine the beam-

forming structure in the high- and low-SNR regimes.

2. In DF, under individual power constraints, not having analytical solutions

available, we provide an optimization framework to obtain the optimal beam-

forming that maximizes the secrecy rate. We use the semidefinite relaxation

(SDR) approach to approximate the problem as a convex semidefinite pro-

gramming (SDP) problem which can be solved efficiently. We also provide

an alternative method by formatting the original optimization problem as

a convex second-order cone programming (SOCP) problem that can be ef-
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ficiently solved by interior point methods. Also, we describe a simplified

suboptimal beamformer design under individual power constraints.

3. In AF, we first obtain an expression for the achievable secrecy rate, and then

we show that the optimal beamforming solution that maximizes the secrecy

rate can be obtained by semidefinite programming with a two dimensional

search for both total and individual power constraints.

4. Two robust beamforming design methods for DF relaying are described in

the case of imperfect CSI.

The organization of the rest of the chapter is as follows. In Section 4.1, we

describe the channel model and study the beamforming design for DF relaying

under secrecy constraints. Beamforming for AF relaying is investigated in Section

4.2. In Section 4.3, robust beamforming design in the case of imperfect CSI is

studied. Numerical results for the performance of different beamforming schemes

are provided in Section 4.4. Finally, we conclude in Section 4.5.

4.1 Decode-and-Forward Relaying

We consider a communication channel with a source S, a destination D, an

eavesdropper E, and M relays {Rm}M
m=1 as depicted in Figure 4.1. In this model,

the source S tries to transmit confidential messages to destination D with the help

of the relays while keeping the eavesdropper E ignorant of the information. We

assume that there is no direct link between S and D, and S and E. Hence, initially

messages transmitted by the source are received only by the relays. Subsequently,

relays work synchronously and multiply the signals with complex weights {wm}

and produce a virtual beam point to the destination. We denote the channel coeffi-
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Figure 4.1: Channel Model

cient between the source S and the mth relay Rm as gm ∈ C, the channel coefficient

between Rm and the destination D as hm ∈ C, and the channel coefficient between

Rm and eavesdropper E as zm ∈ C.

It is obvious that our channel is a two-hop relay network. In the first hop, the

source S transmits xs to the relays with power E[|xs|2] = Ps. The received signal

at Rm is given by

yr,m = gmxs + ηm (4.1)

where ηm is the background noise that has a complex, circularly symmetric Gaus-

sian distribution with zero mean and variance of Nm.

In the second hop, we employ decode-and-forward transmission scheme. In

this scheme, each relay first decodes the message xs and normalizes it as x′s =

xs/
√

Ps. Subsequently, the normalized message is multiplied by the weight factor

wm by the mth relay to generate the transmitted signal xr = wmx′s. The output
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power of the mth relay Rm is given by

E[|xr|2] = E[|wmx′s|2] = |wm|2. (4.2)

The received signals at the destination D and eavesdropper E are the superposi-

tions of the signals transmitted from the relays. These signals can be expressed,

respectively, as

yd =
M

∑
m=1

hmwmx′s + n0 = h†Wx′s + n0, and (4.3)

ye =
M

∑
m=1

zmwmx′s + n1 = z†Wx′s + n1 (4.4)

where n0 and n1 are the Gaussian background noise components at D and E,

respectively, with zero mean and variance N0. Additionally, we have defined

h = [h∗1 , ....h∗M]T, z = [z∗1 , ....z∗M]T, and W = [w1, ...wM]T where superscript ∗ de-

notes conjugate operation, and (·)T and (·)† denote the transpose and conjugate

transpose, respectively, of a matrix or vector. The metrics of interest are the re-

ceived SNR levels at D and E, which are given, respectively, by

Γd =
|∑M

m=1 hmwm|2
N0

and Γe =
|∑M

m=1 zmwm|2
N0

. (4.5)

It is well-known that given the channel coefficients, the secrecy rate Rs over the

channel between the relays and destination is (see e.g., [42])

Rs = I(x′s; yd)− I(x′s; ye) (4.6)

= log(1 + Γd)− log(1 + Γe) (4.7)

= log

(
N0 + |∑M

m=1 hmwm|2

N0 + |∑M
m=1 zmwm|2

)
(4.8)
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where I(·; ·) denotes the mutual information, and x′s is Gaussian distributed with

zero-mean and E[|x′s|2] = 1. Coding strategies that achieve the secrecy rates in-

volve randomization at the encoder to introduce uncertainty to the eavesdropper.

Secrecy coding techniques are discussed in detail in [73][42][15][24]. Practical

coding schemes for secure communications have been studied in [49] and [66] for

certain special cases of the wiretap channel. It is important to note that we assume

in the decode-and-forward scenario that the relays use the same secrecy codebook

and transmit the same signal x′s simultaneously. We further note that we through-

out the text are interested in beamforming vectors that satisfy for given channel

coefficients the inequality, N0 + |∑M
m=1 hmwm|2 > N0 + |∑M

m=1 zmwm|2. If there are

no such beamforming vectors and the ratio inside the logarithm in (4.8) is less

than 1, then the secrecy rate, by definition, is zero meaning that secure transmis-

sion cannot be established. The beamforming vectors which lead to zero secrecy

capacity are not of interest.

In this section, we address the joint optimization of {wm} and hence identify

the optimum collaborative relay beamforming (CRB) direction that maximizes

the secrecy rate given in (4.8). Initially, we assume that the perfect knowledge

of the channel coefficients is available. Later, in Section 4.3, we address the case

in which the channel coefficients are only imperfectly known. We would like

to also remark that the secrecy rate expression in (4.8) in a fading environment

represents the instantaneous secrecy rate for given instantaneous values of the

channel fading coefficients. Hence, in such a case, our formulation considers the

optimization of {wm} in order to maximize the instantaneous secrecy rates.
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4.1.1 Optimal Beamforming under Total Power Constraints

In this section, we consider a total relay power constraint in the following

form: ||W||2 = W†W ≤ PT. The optimization problem can now be formulated as

follows:

Rs(h, z, PT) = max
W†W≤PT

log

(
N0 + |∑M

m=1 hmwm|2

N0 + |∑M
m=1 zmwm|2

)

= log max
W†W≤PT

N0 + |∑M
m=1 hmwm|2

N0 + |∑M
m=1 zmwm|2

(4.9)

= log max
W†W≤PT

W†(N0
PT

I + hh†)W

W†(N0
PT

I + zz†)W
(4.10)

= log max
W†W≤PT

W†(N0I + PThh†)W
W†(N0I + PTzz†)W

(4.11)

= log λmax(N0I + PThh†, N0I + PTzz†) (4.12)

where λmax(A, B) is the largest generalized eigenvalue of the matrix pair (A, B) 1.

Hence, the maximum secrecy rate in (4.12) is achieved by the optimal beamform-

ing vector

Wopt = ςu (4.13)

where u is the eigenvector that corresponds to λmax(N0I + PThh†, N0I + PTzz†)

and ς is chosen to ensure W†
optWopt = PT. Note that in the first-hop of the channel

model, the maximum rate we can achieve is

R1 = min
m=1,...,M

log
(

1 +
|gm|2Ps

Nm

)
. (4.14)

1For a Hermitian matrix A ∈ Cn×n and positive definite matrix B ∈ Cn×n, (λ, ψ) is referred to
as a generalized eigenvalue – eigenvector pair of (A, B) if (λ, ψ) satisfy Aψ = λBψ [23].
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Since we want all relays to successfully decode the signal transmitted from the

source in the DF scenario, the rate expression in (4.14) is equal to the minimum

of the rates required for reliable decoding at the relays. Hence, the first-hop rate

is dictated by the worst channel among the channels between the source and the

relays.

The overall secrecy rate is

Rdo f ,s = min(R1, Rs). (4.15)

Above, we observe that having a severely weak source-relay channel can signifi-

cantly degrade the performance. In these cases, other forwarding techniques (e.g.,

amplify-and-forward) can be preferred. Throughout the analysis of the DF sce-

nario, we will not explicitly address these considerations and we will concentrate

on the secure communication between the relays and the destination. Hence, we

will have the implicit assumption that the source-relay links do not constitute a

bottleneck for communication.

Next, we provide some remarks on the performance of collaborative relay

beamforming in the high- and low-SNR regimes. Optimal beamforming under

total power constraints is studied in detail in [17] and [18]. However, these stud-

ies have not identified the beamforming structure at low and high SNR levels. For

simplicity, we assume in the following that the noise variances at the destination

and eavesdropper are N0 = 1.
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4.1.1.1 High-SNR Regime

In the high SNR scenario, where both Ps, PT → ∞ , we can easily see that

lim
Ps→∞

(R1 − log Ps) = min
m=1,...,M

log(|gm|2/Nm). (4.16)

From the Corollary 4 in Chapter 4 of [36], we can see that

lim
PT→∞

(Rs − log(PT)) = log(max
ψ̃

|h†ψ̃|2) (4.17)

where ψ̃ is a unit vector on the null space of z†. This result implies that choosing

the beamforming vectors to lie in the null spaces of the eavesdropper’s channel

vector, i.e., having |∑M
m=1 zmwm|2 = z†W = 0, is asymptotically optimal in the

high-SNR regime. In this case, the eavesdropper cannot receive any data from the

relays, and secrecy is automatically guarantied. No secrecy coding is needed at

the relays. This asymptotic optimality can be seen from the following discussion.

Assume that we impose the constraint z†W = 0. Now, the optimization problem
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(under the assumption N0 = 1) becomes

max
W†W≤PT

z†W=0

log

1 +
∣∣∣∑M

m=1 hmwm

∣∣∣2
1 +

∣∣∣∑M
m=1 zmwm

∣∣∣2
 = max

W†W≤PT
z†W=0

log

1 +

∣∣∣∣∣ M

∑
m=1

hmwm

∣∣∣∣∣
2
 (4.18)

= max
Ŵ†Ŵ≤1
z†Ŵ=0

log

1 +

∣∣∣∣∣ M

∑
m=1

hmŵm
√

PT

∣∣∣∣∣
2
 (4.19)

= log(PT) + max
Ŵ†Ŵ≤1
z†Ŵ=0

log

√ 1
PT

+

∣∣∣∣∣ M

∑
m=1

hmŵm

∣∣∣∣∣
2


(4.20)

≈ log(PT) + log

 max
Ŵ†Ŵ≤1
z†Ŵ=0

∣∣∣∣∣ M

∑
m=1

hmŵm

∣∣∣∣∣
2


(4.21)

= log(PT) + log(max
ψ̃

|h†ψ̃|2) (4.22)

such that z†ψ = 0 and ∥ψ∥2 = 1. Above in (4.19), we have defined Ŵ = W/
√

PT

for which the constraint becomes Ŵ†Ŵ ≤ 1. The approximation in (4.21) is due to

the fact that 1√
PT

becomes negligible for large PT. Hence, null space beamforming

provides the same asymptotic performance as in (4.17) and is optimal in the high-

SNR regime.

Furthermore, the optimal null space beamforming vector can be obtained ex-

plicitly. Due to the null space constraint, we can write W = H⊥
z v, where H⊥

z

denotes the projection matrix onto the null space of z†. Specifically, the columns

of H⊥
z are orthonormal vectors that form the basis of the null space of z†. In our

case, H⊥
z is an M × (M − 1) matrix. The power constraint W†W = v†H⊥

z
†H⊥

z v =
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v†v ≤ PT. Then, the optimization problem can be recast as

max
W†W≤PT

log

1 +

∣∣∣∣∣ M

∑
m=1

hmwm

∣∣∣∣∣
2
 = log

(
1 + max

W†W≤PT

(W†hh†W)

)
(4.23)

= log
(

1 + max
v†v≤PT

(v†H⊥
z

†
hh†H⊥

z v)
)

(4.24)

= log
(

1 + PTλmax(H⊥
z

†
hh†H⊥

z )
)

(4.25)

= log
(

1 + PTh†H⊥
z H⊥

z
†
h
)

. (4.26)

Therefore, the optimum null space beamforming vector W is

Wopt,n = H⊥
z v = ς1H⊥

z H⊥
z

†
h (4.27)

where ς1 is a constant that is introduced to satisfy the power constraint.

4.1.1.2 Low-SNR Regime

In the low SNR regime, in which both Ps, PT → 0, we can see that

lim
Ps→0

R1

Ps
= min

m=1,...,M

|gm|2
Nm

, and (4.28)

lim
Ps→0

Rs

PT
= λmax(hh† − zz†). (4.29)

Thus, in the low SNR regime, the direction of the optimal beamforming vector

approaches that of the eigenvector that corresponds to the largest eigenvalue of

hh† − zz†. A similar result is shown in a multiple-antenna setting in [26].
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4.1.2 Optimal Beamforming under Individual Power

Constraints

In a multiuser network such as the relay system we study in this chapter,

it is practically more relevant to consider individual power constraints as wire-

less nodes generally operate under such limitations. Motivated by this, we now

impose |wm|2 ≤ pm ∀m or equivalently |W|2 ≤ p where | · |2 denotes the element-

wise norm-square operation and p is a column vector that contains the compo-

nents {pm}. In what follows, the problem of interest will be again be the maxi-

mization of the secrecy rate or equivalently the maximization of the term inside

logarithm function of Rs (4.8) but now under individual power constraints:

max
|W|2≤p

N0 + |∑M
m=1 hmwm|2

N0 + |∑M
m=1 zmwm|2

(4.30)

= max
|W|2≤p

N0 + W†hh†W
N0 + W†zz†W

. (4.31)

In the following, we solve the optimization problem using two methods: one

is semidefinite relaxation (SDR) based semidefinite programming (SDP) and the

other one is the second-order cone programming (SOCP). We note that SOCP

method is more efficient in general. However, the SDR method with bisection

search technique described here will later be employed in the analysis of the

amplify-and-forward (AF) relaying and in robust beamforming design. Since the

formulations are more complicated in those cases, we believe it is more instructive

to clearly explain the SDR approach here in the DF case.
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4.1.2.1 Semidefinite Relaxation (SDR) Approach

We first consider a semidefinite programming method similar to that in [56].

Using the definition X , WW†, we can rewrite the optimization problem in (4.31)

as

max
X

N0 + tr(hh†X)
N0 + tr(zz†X)

s.t diag(X) ≤ p

rank X = 1, and X ≽ 0

(4.32)

or equivalently as

max
X,t

t

s.t tr(X(hh† − tzz†)) ≥ N0(t − 1),

diag(X) ≤ p,

rank X = 1, and X ≽ 0

(4.33)

where tr(·) represents the trace of a matrix, diag(X) denotes the vector whose

components are the diagonal elements of X, and X ≽ 0 means that X is a sym-

metric positive semi-definite matrix. The optimization problem in (4.33) is not

convex and may not be easily solved. Let us now ignore the rank constraint in

(4.33). That is, using a semidefinite relaxation (SDR), we aim to solve the following
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optimization problem:

max
X,t

t

s.t tr(X(hh† − tzz†)) ≥ N0(t − 1),

and diag(X) ≤ p, and X ≽ 0.

(4.34)

If the matrix Xopt obtained by solving the optimization problem in (4.34) happens

to be rank one, then its principal component will be the optimal solution to the

original problem. Note that the optimization problem in (4.34) is quasiconvex.

In fact, for any value of t, the feasible set in (4.34) is convex. Let tmax be the

maximum value of t obtained by solving the optimization problem (4.34). If, for

any given t, the convex feasibility problem

f ind X

such that tr(X(hh† − tzz†)) ≥ N0(t − 1),

and diag(X) ≤ p, and X ≽ 0

(4.35)

is feasible, then we have tmax ≥ t. Conversely, if the convex feasibility optimiza-

tion problem (4.35) is not feasible, then we conclude tmax < t. Therefore, we can

check whether the optimal value tmax of the quasiconvex optimization problem

in (4.34) is smaller than or greater than a given value t by solving the convex fea-

sibility problem (4.35). If the convex feasibility problem (4.35) is feasible then we

know tmax ≥ t. If the convex feasibility problem (4.35) is infeasible, then we know

that tmax < t. Based on this observation, we can use a simple bisection algorithm

to solve the quasiconvex optimization problem (4.34) by solving a convex feasibil-

ity problem (4.35) at each step. We assume that the problem is feasible, and start

with an interval [l, u] known to contain the optimal value tmax. We then solve the
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convex feasibility problem at its midpoint t = (l + u)/2 to determine whether the

optimal value is larger or smaller than t. We update the interval accordingly to

obtain a new interval. That is, if t is feasible, then we set l = t, otherwise, we

choose u = t and solve the convex feasibility problem again. This procedure is

repeated until the width of the interval is smaller than the given threshold. Note

that the technique of using bisection search to solve the SDP feasibility problem

is also given in [84]. Once the maximum feasible value for tmax is obtained, one

can solve

min
X

tr(X)

s.t tr(X(hh† − tmaxzz†)) ≥ N0(tmax − 1),

and diag(X) ≤ p, and X ≽ 0

(4.36)

to get the solution Xopt. (4.36) is a convex problem which can be solved efficiently

using interior-point based methods.

To solve the convex feasibility problem, one can use the well-studied interior-

point based methods as well. We use the well-developed interior point method

based package SeDuMi [65], which produces a feasibility certificate if the problem

is feasible, and its popular interface Yalmip [47]. In semidefinite relaxation, the

solution may not be rank one in general. Interestingly, in our extensive simulation

results, we have never encountered a case where the solution Xopt to the SDP

problem has a rank higher than one. In fact, there is always a rank one optimal

solution for our problem as will be explained later. Therefore, we can obtain

our optimal beamforming vector from the principal component of the optimal

solution Xopt.
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4.1.2.2 Second-order Cone Program (SOCP) Approach

The reason that the SDR method is optimal for the above problem is that we

can reformulate it as a second order cone problem [72] [12] by ignoring the phase

in which we optimize W directly rather than performing the optimization over

X = WW†. This provides us with another way of solving the optimization. The

optimization problem (4.30) is equivalent to

max
W,t

t (4.37)

s.t
N0 + |h†W|2
N0 + |z†W|2 ≥ t (4.38)

and |W|2 ≤ p.

Note that (4.38) can be written as

1
t
|h†W|2 ≥

∥∥∥∥∥∥∥
 z†W√(

1 − 1
t

)
N0


∥∥∥∥∥∥∥

2

= |z†W|2 +
(

1 − 1
t

)
N0. (4.39)

where the equality on the right hand side of (4.39) follows from the definition of

the magnitude-square of a vector. The equivalence of (4.38) and (4.39) can easily

be seen by rearranging the terms in (4.39). In the above formulation, we have

implicitly assumed that t ≥ 1. Note that this assumption does not lead to loss of

generality as we are interested in cases in which N0+|h†W|2
N0+|z†W|2 > 1. If this ratio is less

than 1, the secrecy rate, as discussed before, is zero.

Observe that an arbitrary phase rotation can be added to the beamforming

vector without affecting the constraint in (4.38). Thus, h†W can be chosen to be

real without loss of generality. We can take the square root of both sides of (4.39).
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The constraint becomes a second-order cone constraint, which is convex. The

optimization problem now becomes

max
W,t

t

s.t

√
1
t

h†W ≥

∥∥∥∥∥∥∥
 z†W√(

1 − 1
t

)
N0


∥∥∥∥∥∥∥ and |W|2 ≤ p.

(4.40)

As described in the SDR approach, the optimal solution of (4.40) can be obtained

by repeatedly checking the feasibility and using a bisection search over t with

the aid of interior point methods for second order cone program. Again, we use

SeduMi together with Yalmip in our simulations. Once the maximum feasible

value tmax is obtained, we can then solve the following second order cone problem

(SOCP) to obtain the optimal beamforming vector:

min
W

||W||2

s.t

√
1

tmax
h†W ≥

∥∥∥∥∥∥∥
 z†W√(

1 − 1
tmax

)
N0


∥∥∥∥∥∥∥ and |W|2 ≤ p.

(4.41)

Thus, we can get the secrecy rate Rs,ind for the second-hop relay beamforming

system under individual power constraints employing the above two numerical

optimization methods. Then, combined with the first-hop source relay link rate

R1, secrecy rate of the decode and forward collaborative relay beamforming sys-

tem becomes Rdo f ,ind = min(R1, Rs,ind).
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4.1.2.3 Simplified Suboptimal Design

As shown above, the design of the beamformer under individual relay power

constraints requires an iterative procedure in which, at each step, a convex feasi-

bility problem is solved. We now propose a suboptimal beamforming vector that

can be obtained without significant computational complexity.

We choose a simplified beamformer as Wsim = θWopt where Wopt is given by

(5.20) with ||Wopt||2 = PT = ∑ pi where pi is the individual power constraint for

the ith relay, and we choose

θ =
1

|wopt,k|/
√

pk
(4.42)

where wopt,k and pk are the kth entries of Wopt and p respectively, and we choose

k as

k = arg max
1≤i≤M

|wopt,i|2

pi
(4.43)

Substituting this beamformer wsim into (4.8), we get the achievable suboptimal

rate under individual power constraints.

4.2 Amplify-and-Forward Relaying

Another common relaying scheme in practice is amplify-and-forward relaying.

In this scenario, the received signal at the mth relay Rm is directly multiplied by

lmwm without decoding, and forwarded to D. The relay output can be written as

xr,m = wmlm(gmxs + ηm). (4.44)
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The scaling factor,

lm =
1√

|gm|2Ps + Nm
, (4.45)

is used to ensure E[|xr,m|2] = |wm|2. The received signals at the destination D and

eavesdropper E are the superposition of the messages sent by the relays. These

received signals are expressed, respectively, as

yd =
M

∑
m=1

hmwmlm(gmxs + ηm) + n0, and (4.46)

ye =
M

∑
m=1

zmwmlm(gmxs + ηm) + n1. (4.47)

Now, it is easy to compute the received SNR at D and E as

Γd =
|∑M

m=1 hmgmlmwm|2Ps

∑M
m=1 |hm|2l2

m|wm|2Nm + N0
, and (4.48)

Γe =
|∑M

m=1 zmgmlmwm|2Ps

∑M
m=1 |zm|2l2

m|wm|2Nm + N0
. (4.49)

The secrecy rate is now given by

Rs = I(xs; yd)− I(xs; ye) (4.50)

= log(1 + Γd)− log(1 + Γe) (4.51)

= log

(
|∑M

m=1 hmgmlmwm|2Ps + ∑M
m=1 |hm|2l2

m|wm|2Nm + N0

|∑M
m=1 zmgmlmwm|2Ps + ∑M

m=1 |zm|2l2
m|wm|2Nm + N0

× ∑M
m=1 |zm|2l2

m|wm|2Nm + N0

∑M
m=1 |hm|2l2

m|wm|2Nm + N0

)
. (4.52)

Again, we maximize this term by optimizing {wm} jointly with the aid of perfect

CSI. It is obvious that we only have to maximize the term inside the logarithm
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function. Let us define

hg = [h∗1 g∗1 l1, ..., h∗Mg∗MlM]T, (4.53)

hz = [z∗1 g∗1 l1, ..., z∗Mg∗MlM]T, (4.54)

Dh = Diag(|h1|2l2
1 N1, ..., |hM|2l2

MNM), and (4.55)

Dz = Diag(|z1|2l2
1 N1, ..., |zM|2l2

MNM). (4.56)

Then, the received SNR at the destination and eavesdropper can be reformulated,

respectively, as

Γd =
PsW†hghg

†W
W†DhW + N0

=
Pstr(hghg

†WW†)

tr(DhWW†) + N0
, and (4.57)

Γe =
PsW†hzhz

†W
W†DzW + N0

=
Pstr(hzhz

†WW†)

tr(DzWW†) + N0
. (4.58)

With these notations, we can write the objective function of the optimization prob-

lem as

1 + Γd
1 + Γe

=
1 + PsW†hghg

†W
W†DhW+N0

1 + PsW†hzhz
†W

W†DzW+N0

(4.59)

=
W†DhW + N0 + PsW†hghg

†W

W†DzW + N0 + PsW†hzhz
†W

× W†DzW + N0

W†DhW + N0
(4.60)

=
N0 + tr((Dh + Pshghg

†)WW†)

N0 + tr((Dz + Pshzhz
†)WW†)

× N0 + tr(DzWW†)

N0 + tr(DhWW†)
. (4.61)

If we denote t1 =
N0+tr((Dh+Pshghg

†)WW†)

N0+tr((Dz+Pshzhz
†)WW†)

, t2 = N0+tr(DzWW†)
N0+tr(DhWW†)

, and use the simi-

lar SDR approach as described in the DF case, we can express the optimization
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problem as

max
X,t1,t2

t1t2

s.t tr (X (Dz − t2Dh)) ≥ N0(t2 − 1)

tr
(

X
(

Dh + Pshghg
† − t1

(
Dz + Pshzhz

†
)))

≥ N0(t1 − 1)

and diag(X) ≤ p, (and/or tr(X) ≤ PT) and X ≽ 0.

(4.62)

Notice that this formulation is applied to both total relay power constraint and

individual relay power constraint which are represented by tr(X) ≤ PT and

diag(X) ≤ p, respectively. When there is only total power constraint, we can

easily compute the maximum values of t1 and t2 separately since now we have

Rayleigh quotient problems. These maximum values are

t1,u = λmax

(
Dh +

N0

PT
I + Pshghg

†, Dz +
N0

PT
I + Pshzhz

†
)

, (4.63)

t2,u = λmax

(
Dz +

N0

PT
I, Dh +

N0

PT
I
)

. (4.64)

When there are individual power constraints imposed on the relays, we can use

the bisection algorithm similarly as in the DF case to get the maximum values

t1,i,u and t2,i,u
2 for t1 and t2 by repeatedly solving the following two feasibility

problems:
2Subscripts i in t1,i,u and t2,i,u are used to denote that these are the maximum values in the

presence of individual power constraints.
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f ind X

s.t tr
(

X
(

Dh + Pshghg
† − t1

(
Dz + Pshzhz

†
)))

≥ N0(t1 − 1)

and diag(X) ≤ p, and X ≽ 0,

(4.65)

and

f ind X

s.t tr (X (Dz − t2Dh)) ≥ N0(t2 − 1)

and diag(X) ≤ p, and X ≽ 0.

(4.66)

Note that for both total and individual power constraints, the maximum val-

ues of t1 and t2 are obtained separately above, and these values are in general

attained by different X = WW†. Now, the following strategy can be used to ob-

tain achievable secrecy rates. For those X values that correspond to t1,i,u and t1,u

(i.e., the maximum t1 values under individual and total power constraints, respec-

tively), we can compute the corresponding t2 = N0+tr(DzWW†)
N0+tr(DhWW†)

and denote them

as t2,i,l and t2,l for individual and total power constraints, respectively. Then,

log(t1,i,ut2,i,l) and log(t1,ut2,l) will serve as our amplify-and-forward achievable

rates for individual and total power constraints, respectively. With the achievable

rates, we propose the following algorithm to iteratively search over t1 and t2 to

get the optimal t1,o and t2,o that maximize the product t1t2 by checking following
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feasibility problem.

f ind X ≽ 0

s.t tr (X (Dz − t2Dh)) ≥ N0(t2 − 1)

tr
(

X
(

Dh + Pshghg
† − t1

(
Dz + Pshzhz

†
)))

≥ N0(t1 − 1)

and tr(X) ≤ PT if there is total power constraint,

or diag(X) ≤ p if there is individual power constraint.

(4.67)

4.2.1 Proposed Algorithm

Define the resolution ∆t =
t1,u
N or ∆t =

t1,i,u
N for some large N for total and

individual power constraints, respectively.

1. Initialize t1,o = t1,u , t2,o = t2,l when total power constraint is imposed,

and t1,o = t1,i,u, t2,o = t2,i,l when individual power constraint is imposed.

Initialize the iteration index i = N.

2. Set t1 = i∆t. If t1t2,u < t1,ot2,o (total power constraint) or t1t2,i,u < t1,ot2,o

(individual power constraint), then go to Step (3). Otherwise,

a) Let t2 =
t1,ot2,o

t1
. Check the feasibility problem (4.67). If it is infeasible,

i = i − 1 go to step (2). If it is feasible, use the bisection algorithm in

(4.67) with t1 to get the maximum possible values of t2 and denote this

maximum as t2,m. The initial interval in the above bisection algorithm

can be chosen as [
t1,ot2,o

t1
, t2,u] or [

t1,ot2,o
t1

, t2,i,u] depending on the power

constraints.

b) Update t1,o = t1, t2,o = t2,m , i = i − 1. Go back to step (2).



86

3. Solve the following problem to get the optimal X

min
X

tr(X)

s.t tr (X (Dz − t2,oDh)) ≥ N0(t2,o − 1)

tr
(

X
(

Dh + Pshghg
† − t1,o

(
Dz + Pshzhz

†
)))

≥ N0(t1,o − 1)

X ≽ 0 and

tr(X) ≤ PT if there is total power constraint,

diag(X) ≤ p if there is individual power constraint.

(4.68)

4.2.2 Discussion of the Algorithm

Our algorithm is a two-dimensional search over all possible pairs (t1, t2), which

can produce the greatest product t1t2, whose logarithm will be the global max-

imum value of the secrecy rate. In the following, we will illustrate how our

algorithm works for individual power constraints. Similar discussion applies to

the total power constraint case as well. The algorithm initiates with the achiev-

able pair (t1,i,u, t2,i,l), in which t1,i,u is the maximum feasible value for t1. Thus,

all t1 values in our search lie in [0, t1,i,u]. We chose the resolution parameter N

to equally pick N points in this interval. We then use a brute force strategy to

check each point iteratively starting from t1,i,u down to 0. In each iteration, the

feasibility problem (4.67) is quasi-convex. Thus, we can use the bisection search

over t2 to get the greatest value of t2. Note that our initial bisection interval for

t2 is [
t1,ot2,o

t1
, t2,i,u] where t2,i,u is the maximum feasible value for t2, and t1,ot2,o

t1
is

chosen so that the optimal t2 we find at the end of the bisection search will pro-

duce a product t1t2 that is greater than our currently saved optimal t1,ot2,o. With

this approach, after each iteration, if a t2 value is found, the new optimal t1,ot2,o
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will be greater than the previous one. Note that our iteration’s stop criterion is

t1t2,i,u < t1,ot2,o. This means that further decrease in the value of t1 will not pro-

duce a product t1t2 that is greater than our current t1,ot2,o. Thus, the value t1,ot2,o

at the end of this algorithm will be the global maximum since we have already

checked all possible pairs t1, t2 that are candidates for the optimal value.

Again, the optimal X needs to be of rank-one to determine the beamforming

vector. Since we in general have more than two linear constraints depending on

the number of relay nodes and since we cannot assume that we have channels

with real and positive coefficients, the techniques used in other studies (e.g., [86],

[48], and reference therein) are not directly applicable to our setting. Although,

we can not prove the rank-one solution analytically, we would like to emphasize

that the solutions are rank-one in our simulations. Thus, our numerical result are

tight. Also, even when we encounter a solution with rank higher than one, the

Gaussian randomization technique is practically proven to be effective in finding

a feasible, rank-one approximate solution of the original problem. Details can be

found in [48].

4.3 Robust Beamforming Design

All of the beamforming methods discussed heretofore rely on the assumption

that the exact knowledge of the channel state information is available for design.

However, when the exact CSI is unavailable, the performance of these beamform-

ing techniques may degrade severely. Motivated by this, the problem of robust

beamforming design is addressed in [6] and [10]. The robust beamforming for

MISO secrecy communications was studied in [83] where the duality between the

cognitive radio MISO channel and secrecy MISO channel is exploited to trans-
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form the robust design of the transmission strategy over the secrecy channel into

a robust cognitive radio beamforming design problem.

We additionally remark that, beside the assumption of perfect channel state in-

formation, our previous analysis is applicable only when the relays are fully syn-

chronized at the symbol level. When the time synchronization between the relays

is poor, the signal replicas passed through different relays will arrive to the des-

tination node with different delays. This will result in inter-symbol-interference

(ISI). To combat such ISI, the authors of [2] view an asynchronous flat-fading relay

network as an artificial multipath channel (where each channel path corresponds

to one particular relay), and use the orthogonal frequency division multiplexing

(OFDM) scheme at the source and destination nodes to deal with this artificial

multipath channel. In [11], a filter-and-forward protocol has been introduced

for frequency selective relay networks, and several related network beamforming

techniques have been developed. In these techniques, the relays deploy finite

impulse response (FIR) filters to compensate for the effect of source-to-relay and

relay-to-destination channels. Since the relay synchronization problem is out of

the scope of this chapter, we will mainly focus on combatting the effect of imper-

fect channel state information in the following discussion.

Systems robust against channel mismatches can be obtained by two approaches.

In most of robust beamforming methods, the perturbation is modeled as a deter-

ministic one with bounded norm which lead to a worst cast optimization. The

other approach applied to the case in which the CSI error is unbounded is the

statistical approach which provides the robustness in the form of confidence level

measured by probability.

Let us consider the DF case. We define Ĥ = ĥĥ† and Ẑ = ẑẑ† as the channel

estimators, and H̃ = H− Ĥ and Z̃ = Z− Ẑ as the estimation errors. First, consider
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the worst case optimization. In the worst case assumption, H̃ and Z̃ are bounded

in their Frobenius norm as ||H̃|| ≤ ϵH, ||Z̃|| ≤ ϵZ, where ϵH, ϵZ are assumed

to be upper bounds of the channel uncertainty. Based on the result of [6], the

robust counterpart of previously discussed SDR-based optimization problem can

be written as

max
X,t

t

s.t tr(X((Ĥ − ϵHI)− t(Ẑ + ϵZI)) ≥ N0(t − 1),

and diag(X) ≤ p, and X ≽ 0.

(4.69)

Note that the total power constraint tr(X) ≤ PT can be added into the formulation

or substituted for the individual power constraint in (4.69). This problem can be

solved the same way as discussed before.

However, the worst-case approach requires the norms to be bounded, which

is usually not satisfied in practice. Also, this approach is too pessimistic since the

probability of the worst-case may be extremely low. Hence, statistical approach is

a good alternative in certain scenarios. In our case, we require the probability of

the non-outage for secrecy transmission is greater than the predefined threshold

ε by imposing

Pr
(

N0 + tr((Ĥ + H̃)X)
N0 + tr((Ẑ + Z̃)X)

≥ t
)
= Pr

(
tr
(
X(Ĥ + H̃ − t(Ẑ + Z̃)) ≥ N0(t − 1)

))
≥ ε.

(4.70)
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Now, the optimization problem under imperfect CSI can be expressed as

max
X,t

t

s.t Pr
(
tr
(
X(Ĥ + H̃ − t(Ẑ + Z̃)) ≥ N0(t − 1)

))
≥ ε,

and diag(X) ≤ p (or tr(X) ≤ PT), and X ≽ 0.

(4.71)

If relays are under individual power constraints, we use diag(X) ≤ p. Otherwise,

for the case of total power constraint, we use tr(X) ≤ PT. We can also impose

both constraints in the optimization.

Note that the distribution of the components of the error matrices H̃ and Z̃

depend on the channel estimation technique and distribution of the channel co-

efficients. In order to simplify the analysis and provide an analytically and nu-

merically tractable approach, we assume that the components of the Hermitian

channel estimation error matrices H̃ and Z̃ are independent, zero-mean, circularly

symmetric, complex Gaussian random variables with variances σ2
H̃ and σ2

Z̃. Such

an assumption is also used in [10]. Now, we can rearrange the probability in the

constraint as

Pr
(
tr
(
(Ĥ − tẐ + H̃ − tZ̃)X

)
≥ (t − 1)N0)

)
. (4.72)

Let us define y = tr
(
(Ĥ − tẐ + H̃ − tZ̃)X

)
. For given X, Ĥ, and Ẑ, we know from

the results of [10] that y is a Gaussian distributed random variable with mean

µ = tr
(
(Ĥ − tẐ)X

)
and variance σ2

y = (σ2
H̃ + t2σ2

Z̃) tr(XX†). Then, the non-outage
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probability can be written as

Pr(y ≥ (t − 1)N0) =
∫ ∞

(t−1)N0

1√
2πσy

exp

(
− (y − µ)2

2σ2
y

)
(4.73)

=
1
2
− 1

2
erf

(
(t − 1)N0 − µ√

2σy

)
≥ ε, (4.74)

or equivalently as,

(t − 1)N0 − µ√
2σy

≤ erf−1(−2ε + 1). (4.75)

Note that ε should be close to one for good performance. Thus, both −2ε + 1 and
(t−1)N0−µ√

2σy
should be negative valued. Note further that we have tr(XX†) = ∥X∥2,

and hence σy =
√

σ2
H̃ + t2σ2

Z̃∥X∥. Then, this constraint can be written as

∥X∥ ≤ (t − 1)N0 − µ√
2(σ2

H̃ + t2σ2
Z̃)erf−1(−2ε + 1)

. (4.76)

As a result, the optimization problem becomes

max
X,t

t

s.t ||X|| ≤ (t − 1)N0 − µ√
2(σ2

H̃ + t2σ2
Z̃)erf−1(−2ε + 1)

,

and diag(X) ≤ p(or tr(X) ≤ PT), and X ≽ 0.

(4.77)

Using the same bisection search, we can solve this optimization numerically.
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4.4 Numerical Results

We assume that {gm}, {hm}, {zm} are complex, circularly symmetric Gaussian

random variables with zero mean and variances σ2
g , σ2

h , and σ2
z respectively. We

first provide numerical results for decode-and-forward beamforming schemes. In

our numerical results, we focus on the performance of second-hop secrecy rate

since the main emphasis of this chapter is on the design of the beamforming

system in the second-hop. Moreover, each figure is plotted for fixed realizations

of the Gaussian channel coefficients. Hence, the secrecy rates in the plots are

instantaneous secrecy rates.

In Figures 4.2 and 4.3, we plot the second-hop secrecy rate, which is the max-

imum secrecy rate that our collaborative relay beamforming system can support

under both total and individual relay power constraints. For the case of indi-

vidual relay power constraints, we assume that the relays have the same power

budgets: pi =
PT
M . Specifically, in Fig. 4.2, we have σh = 3, σz = 1, N0 = 1 and

M = 5. In this case, the legitimate user has a stronger channel. In Fig. 4.3, the

only changes are σh = 1 and σz = 2, which imply that the eavesdropper has a

stronger channel. Our CRB system can achieve secure transmission even when

the eavesdropper has more favorable channel conditions. As can be seen from the

figures, the highest secrecy rate is achieved, as expected, under a total transmit

power constraint. On the other hand, we observe that only a relatively small rate

loss is experienced under individual relay power constraints. Moreover, we note

that our two different optimization approaches give nearly the same result. It

also can be seen that under individual power constraint, the simple suboptimal

method suffers a constant loss as compared to SDR or SOCP based optimal value.

In Fig. 4.4, we fix the relay total transmitting power as PT = 10dB, and vary the
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Figure 4.2: DF Second-hop secrecy rate vs. the total relay transmit power PT for
different cases. Eavesdropper has a weaker channel.

number of collaborative relays. Other parameters are the same as those used in

Fig. 4.3. We can see that increasing M, increases the secrecy rate under both total

and individual power constraints. We also observe that in some cases, increasing

M can degrade the performance when our simplified suboptimal beamformer is

used.

In Fig. 4.5, we plot the secrecy rate for amplify-and-forward collaborative

relay beamforming system for both individual and total power constraints. We

also provide the result of suboptimal achievable secrecy rate for comparison. The

fixed parameters are σg = 10, σh = 2, σz = 2, and M = 10. Since the AF secrecy

rates depend on both the source and relay powers, the rate curves are plotted as
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Figure 4.3: DF Second-hop secrecy rate vs. the total relay transmit power PT for
different cases. Eavesdropper has a stronger channel.

a function of PT/Ps. As before, we assume that the relays have equal powers in

the case in which individual power constraints are imposed, i.e., pi = PT/M. It

is immediately seen from the figure that the achievable rates for both total and

individual power constraints are very close to the corresponding optimal ones.

Thus, the achievable beamforming scheme is a good alternative in the amplify-

and-forward relaying case due to the fact that it has much less computational

burden. Moreover, we interestingly observe that imposing individual relay power

constraints leads to only small losses in the secrecy rates with respect to the case

in which we have total relay power constraints.

In Fig. 4.6, we plot the maximum second hop secrecy rate of decode-and-
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Figure 4.4: DF second-hop secrecy rate vs. number of relays for different cases.

forward that we can achieve for different power PT and non-outage probability

ε values. In this figure, we fix M = 5. ĥ and ẑ are randomly picked from

Rayleigh fading with σĥ = 1 and σẑ = 2, and we assume that estimation errors

are inversely proportional to PT. More specifically, in our simulation, we have

σ2
H̃ = 0.1/PT and σ2

Z̃ = 0.2/PT. We also assume the relays are operating under

equal individual power constraints, i.e., pi =
PT
M . It is immediately observed in

Fig. 4.6 that smaller rates are supported under higher non-outage probability

requirements. In particular, this figure illustrates that our formulation and the

proposed optimization framework can be used to determine how much secrecy

rate can be supported at what percentage of the time. For instance, at PT =

20dB, we see that approximately 7.4 bits/symbol secrecy rate can be attained 70
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Figure 4.5: AF secrecy rate vs. PT/Ps. σg = 10, σh = 2, σz = 2, M = 10.

percent of the time (i.e., ε = 0.7) while supported secrecy rate drops to about 6.2

bits/symbol when ε = 0.95.

4.5 Conclusion

In this chapter, collaborative beamforming for both DF and AF relaying is

studied under secrecy constraints. Optimal beamforming designs that maximize

secrecy rates are provided under both total and individual relay power constraints.

For DF with total power constraint, we have remarked that the optimal beamform-

ing vector is the solution of a Rayleigh quotient problem. We have further identi-

fied the beamforming structure in the high- and low-SNR regimes. For DF with
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Figure 4.6: DF second secrecy rate vs. PT under different ε.

individual relay power constraints and AF with both total and individual relay

power constraints, we have formulated the problem as a semidefinite program-

ming problem and provided an optimization framework. We have also provided

an alternative SOCP method to solve the DF relaying with individual power con-

straints. In addition, for DF relaying, we have described the worst-case robust

beamforming design when CSI is imperfect but bounded, and the statistical ro-

bust beamforming design based upon minimum non-outage probability criterion.

Finally, we have provided numerical results to illustrate the performance of beam-

forming techniques under different assumptions, e.g., DF and AF relaying, total

and individual relay power constraints, perfect and imperfect channel informa-

tion.
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Chapter 5

Collaborative Relay Beamforming for

Secure Broadcasting

In this chapter, we study the relay-aided secure broadcasting scenario. We

assume that the source has two independent messages, each of which is intended

for one of the receivers but needs to be kept asymptotically perfectly secret from

the other. This is achieved via relay node cooperation in decode and forward

fashion to produce virtual beam points to two receivers. The problem is formu-

lated as a problem of designing the relay node weights in order to maximize the

secrecy rate for both receivers for a fixed total relay power. We assume that the

global channel state information (CSI) is available for weight design. Due to the

difficulty of the general optimization problem, we propose null space beamform-

ing transmission schemes and compare their performance with the outer bound

secrecy rate region.
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Figure 5.1: Channel Model

5.1 Channel

We consider a communication channel with a source S, two destination nodes

D and E, and M relays {Rm}M
m=1 as depicted in Figure 5.1. We assume that there

is no direct link between S and D, and S and E. We also assume that relays work

synchronously and multiply the signals to be transmitted by complex weights to

produce virtual beam points to D and E. We denote the channel fading coefficient

between S and Rm as gm ∈ C , the channel fading coefficient between Rm and D as

hm ∈ C, and the channel coefficient between Rm and E as zm ∈ C. In this model,

the source S tries to transmit confidential messages to D and E with the help of

the relays . It is obvious that our channel is a two hop relay network. In the first

hop, the source S transmits xs which contains the confidential messages intended

for both D and E to the relays with power E[|xs|2] = Ps. The received signal at
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relay Rm is given by

yr,m = gmxs + ηm (5.1)

where ηm is the background noise that has a Gaussian distribution with zero mean

and a variance of Nm.

In the first hop, the secrecy rates for destination D and E lie in the following

triangle region.

Rd ≥ 0 and Re ≥ 0 (5.2)

Rd + Re ≤ min
m=1,...,M

log
(

1 +
|gm|2Ps

Nm

)
(5.3)

where Rd and Re denote the secrecy rates for destination D and E, respectively.

5.2 Relay Beamforming

We consider the scenario in which relays are much more closer to the source

than the destinations, and hence, the first-hop rate does not become a bottle-

neck of the whole system. Due to this assumption, we in the following focus on

characterizing the secrecy rate region of the second-hop. We consider the decode-

and-forward relaying protocol in which each relay Rm first decodes the message

xs,and subsequently scales the decoded messages to obtain xr = wmxd + umxe,

where wm and um are the weight values. xd and xe are independent, zero-mean,

unit-variance Gaussian signals which include the confidential messages to D and
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E, respectively. Under these assumptions, the output power of relay Rm is

E[|xr|2] = E[|wmxd + umxe|2] = |wm|2 + |um|2 (5.4)

The received signals at the destination nodes D and E are the superpositions of the

signals transmitted from the relays. These signals can be expressed, respectively,

as

yd =
M

∑
m=1

hmwmxd +
M

∑
m=1

hmumxe + n0

= h†Wxd + h†uxe + n0 (5.5)

ye =
M

∑
m=1

zmwmxd +
M

∑
m=1

zmumxe + n1

= z†Wxd + z†uxe + n1 (5.6)

where n0 and n1 are the Gaussian background noise components at D and E,

respectively, with zero mean and variance N0. Additionally, we have above de-

fined h = [h∗1 , ....h∗M]T, z = [z∗1 , ....z∗M]T, W = [w1, ...wM]T, and u = [u1, ...uM]T.

In these notations, while superscript ∗ denotes the conjugate operation, (·)T and

(·)† denote the transpose and conjugate transpose , respectively, of a matrix or

vector. From the transmitting and receiving relationship in (5.5) and (5.6), we can

see that the channel we consider can be treated as an interference channel with

secrecy constraints studied in [45]. The achievable secrecy rate region is shown to
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be

0 ≤ Rd ≤ log

(
1 +

|∑M
m=1 hmwm|2

N0 + |∑M
m=1 hmum|2

)
− log

(
1 +

|∑M
m=1 zmwm|2

N0

)
(5.7)

0 ≤ Re ≤ log

(
1 +

|∑M
m=1 zmum|2

N0 + |∑M
m=1 zmwm|2

)
− log

(
1 +

|∑M
m=1 hmum|2

N0

)
. (5.8)

In this chapter, we address the joint optimization {wm} and {um} with the aid of

perfect CSI, and hence identify the optimal collaborative relay beamforming (CRB)

direction that maximizes the secrecy rate region given by (5.7) and (5.8). Since the

optimization problem above is in general intractable, we investigate suboptimal

schemes.

5.2.1 Single Null Space Beamforming

In this scheme, we choose one user’s (e.g., E) beamforming vector (e.g., u) to lie

in the null space of the other user’s channel. With this assumption, we eliminate

the user E’s interference on D and hence D’s capability of eavesdropping on E.

Mathematically, this is equivalent to |∑M
m=1 hmum|2 = h†u = 0, which means u is

in the null space of h†.

We further assume α fraction of total relay transmitting power Pr is used for

sending confidential message to D. Under these assumptions, we can solve the

optimization problem to get maximum Rd . The maximum Rd can be computed
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as

Rd,m(h, z, Pr, α)

= max
W†W≤αPr

log
N0 + |∑M

m=1 hmwm|2

N0 + |∑M
m=1 zmwm|2

(5.9)

= log max
W†W≤αPR

N0 + |∑M
m=1 hmwm|2

N0 + |∑M
m=1 zmwm|2

(5.10)

= log max
W†( N0

αPr
I + hh†)W

W†( N0
αPr

I + zz†)W
(5.11)

= log max
W†(N0I + αPrhh†)W
W†(N0I + αPrzz†)W

(5.12)

= log λmax(N0I + αPrhh†, N0I + αPrzz†) (5.13)

Here, we use the fact that (5.12) is the Rayleigh quotient problem, and its maxi-

mum value is as given in (5.13) where λmax(A, B) is the largest generalized eigen-

value of the matrix pair (A, B). Note that we will also use λmax(·) to denote

largest eigenvalue of the matrix in later discussion. The optimum beamforming

weights W is

Wopt = ςψw (5.14)

where ψw is the eigenvector that corresponds to λmax(N0I+ αPrhh†, N0I+ αPrzz†)

and ς is chosen to ensure W†
optWopt = αPr.

Now we turn our attention to the maximization of Re when W = Wopt. Note

that N0 + |∑M
m=1 zmwm|2 is a constant denoted by Nt, due to the null space con-

straint, we can write u = H⊥
h v, where H⊥

h denotes the projection matrix onto the

null space of h†. Specifically, the columns of H⊥
h are orthonormal vectors which

form the basis of the null space of h†. In our case, H⊥
h is an M × (M − 1) matrix.
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The power constraint u†u = v†H⊥
h

†H⊥
h v = v†v ≤ (1 − α)Pr.

The maximum Re under this condition can be computed as

Re,m(h, z, Pr, α)

= max
u†u≤(1−α)Pr

log

(
1 +

|∑M
m=1 zmum|2

Nt

)
(5.15)

= log

(
1 +

maxu†u≤(1−α)Pr
(u†zz†u)

Nt

)
(5.16)

= log

1 +
maxv†v≤(1−α)Pr

(v†H⊥
h

†zz†H⊥
h v)

Nt

 (5.17)

= log

(
1 +

(1 − α)Prλmax(H⊥
h

†zz†H⊥
h )

Nt

)
(5.18)

= log

(
1 +

(1 − α)Prz†H⊥
h H⊥

h
†z

Nt

)
(5.19)

The optimum beamforming vector u is

uopt = H⊥
h v = ς1H⊥

h H⊥
h

†
z (5.20)

where ς1 is a constant introduced to satisfy the power constraint. Hence, secrecy

rate region Rs,b achieved with this strategy is

0 ≤ Rd ≤ Rd,m(h, z, Pr, α)

0 ≤ Re ≤ Re,m(h, z, Pr, α)
(5.21)

Note that we can switch the role of D and E, and choose W to be in the null

space of z†. In general, the union of region described in (5.21) and its switched

counterpart is the secrecy rate region of single null space beamforming strategy.
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5.2.2 Double Null Space Beamforming

In this scheme, we simultaneously choose the beamforming vectors for D and

E to lie in the null space of each other’s channel vector. That is |∑M
m=1 hmum|2 =

h†u = 0, and |∑M
m=1 zmwm|2 = z†W = 0. In this case, the channel reduces

to two parallel channels. Since interference is completely eliminated, the secrecy

constraint is automatically satisfied. Coding for secrecy is not needed at the relays.

The channel input-output relations are

yd = h†Wxd + n0 (5.22)

ye = z†uxe + n1 (5.23)

Now, we only need to solve the following problems:

max
W†W≤αPr

log

(
1 +

|∑M
m=1 hmwm|2

N0

)
s.t z†W = 0 (5.24)

max
u†u≤(1−α)Pr

log

(
1 +

|∑M
m=1 zmum|2

N0

)
s.t h†u = 0. (5.25)

Similarly as in Section 5.2.1, we can easily find the secrecy rate region Rd,b for

double null space beamforming as

0 ≤ Rd ≤ log

(
1 +

αPrh†H⊥
z H⊥

z
†h

N0

)
(5.26)

0 ≤ Re ≤ log

(
1 +

(1 − α)Prz†H⊥
h H⊥

h
†z

N0

)
(5.27)

where H⊥
z denote the projection matrix onto the null space of z† and is defined

similarly as H⊥
h .
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5.2.3 TDMA

For comparison, we consider in the second-hop that the relay only transmits se-

cret information to one user at a time and treat the other user as the eavesdropper.

We assume that relay uses α fraction of time to transmit xd where (1 − α) fraction

of the time is used to transmit xe. The channel now is the standard Gaussian

wiretap channel instead of an interference channel. It can be easily shown that

the rate region Rtdma is

0 ≤Rd ≤ α log λmax(N0I + Prhh†, N0I + Przz†) (5.28)

0 ≤Re ≤ (1 − α) log λmax(N0I + Przz†, N0I + Prhh†) (5.29)

5.3 Optimality

In this section, we investigate the optimality of our proposed null space beam-

forming techniques. Although the optimal values of W and u that maximize the

rate region (5.7) and (5.8) is unknown, we can easily see that the following rate

region is an outer bound region of our original achievable secrecy rate region.

0 ≤ Rd ≤ log

(
1 +

|∑M
m=1 hmwm|2

N0

)
− log

(
1 +

|∑M
m=1 zmwm|2

N0

)
(5.30)

0 ≤ Re ≤ log

(
1 +

|∑M
m=1 zmum|2

N0

)
− log

(
1 +

|∑M
m=1 hmum|2

N0

)
. (5.31)

Again, this rate region should be maximized with all possible W and u satisfying

||W||2 + ||u||2 ≤ Pr. From the above expressions, we can see that this outer

bound can be interpreted as two simultaneously transmitting wire-tap channels.

Fortunately, the optimization problem in this case can be solved analytically. With
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the same assumptions as before that ||W||2 = αPr, ||u||2 = (1 − α)Pr, we can

easily show that the outer bound secrecy rate region Router of our collaborative

relay beamforming system is

0 ≤Rd ≤ log λmax(N0I + αPrhh†, N0I + αPrzz†) (5.32)

0 ≤Re ≤ log λmax(N0I + (1 − α)Przz†, N0I + (1 − α)Prhh†) (5.33)

The expression for Rd and Re here coincide with the secrecy capacity of Gaussian

MISO wiretap channel [64] [36] with transmit power levels αP and (1 − α)P.

5.3.1 Optimality in the High-SNR Regime

In this section, we show that the outer bound region Router converges to the

proposed null space beamforming regions at high SNR. For the single null space

beamforming scheme, the maximum Rd in (5.13) has the same expression as in

(5.32), and thus it is automatically optimal. Re in single null space beamforming

has basically the same expression as that of Re in double null space beamforming

with N0 replaced by Nt. This difference is negligible as P goes infinity. Hence, we

focus on double null space beamforming and show that in the high-SNR regime,

the Router coincide with the double null space region described by (5.26) and (5.27).

In the following analysis, for simplicity and without loss of generality, we assume

N0 = 1. From the Corollary 4 in Chapter 4 of [36], we can see that

lim
Pr→∞

1
Pr

λmax(I + Prhh†, I + Przz†) = max
ψ̃

|h†ψ̃|2 (5.34)

where ψ̃ is a unit vector on the null space of z†. Similarly, we can define ψ̃1 as a

unit vector on the null space of h†. Combining this result with (5.32) and (5.33),
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we can express the region Router at high SNRs as

0 ≤ Rd ≤ log(αPr) + log(max
ψ̃

|h†ψ̃|2) + o(1) (5.35)

0 ≤ Re ≤ log((1 − α)Pr) + log(max
ψ̃1

|z†ψ̃1|2) + o(1) (5.36)

where o(1) → 0 as Pr → ∞. On the other hand, double null space beamforming

region satisfies

0 ≤ Rd ≤ max
W†W≤αPr

log

(
1 + |

M

∑
m=1

hmwm|2
)

(5.37)

= log(αPr) + log(max
ψ̃

|h†ψ̃|2) + o(1) (5.38)

0 ≤ Re ≤ max
u†u≤(1−α)Pr

log

(
1 + |

M

∑
m=1

zmum|2
)

(5.39)

= log((1 − α)Pr) + log(max
ψ̃1

|z†ψ̃1|2) + o(1). (5.40)

Above, (5.38) follows from the observation that

lim
Pr→∞

log

(
1 + |

M

∑
m=1

hmwm|2
)
− log(αPr) (5.41)

= lim
Pr→∞

log

 1
αPr

+

∣∣∣∣∣ M

∑
m=1

hm
wm√
αPr

∣∣∣∣∣
2
 (5.42)

= log |h†ψ̃|2 (5.43)

where ψ̃ is a unit vector and is in the null space of z† because W is in the null

space of z†. (5.40) follows similarly. Thus, the outer bound secrecy rate region

converges to the double null space beamforming region in the high-SNR regime,

showing that the null space beamforming strategies are optimal in this regime.
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5.3.2 Optimality of TDMA in the Low-SNR Regime

In this section, we consider the limit Pr → 0. In the following steps, the order

notation o(Pr) means that o(Pr)/Pr → 0 as Pr → 0.

λmax(I + Prhh†, I + Przz†) (5.44)

= λmax

(
(I + Przz†)−1(I + Prhh†)

)
(5.45)

= λmax

(
(I − Przz† + o(Pr))(I + Prhh†)

)
(5.46)

= λmax

(
(I − Prz†z)(I + Prhh†)

)
+ o(Pr) (5.47)

= λmax

(
I + Pr(hh† − zz†)

)
+ o(Pr) (5.48)

= 1 + Prλmax(hh† − zz†) + o(Pr) (5.49)

Combining this low-SNR approximation with (5.32) and (5.33), we can see that

the Router at low SNRs is

0 ≤ Rd ≤ log λmax(I + αPrhh†, I + αPrzz†)

= αPrλmax(hh† − zz†) + o(Pr) (5.50)

0 ≤ Re ≤ log λmax(I + (1 − α)Przz†, I + (1 − αPr)hh†)

= (1 − α)Prλmax(zz† − hh†) + o(Pr) (5.51)

Note that (5.50) and (5.51) are also the low-SNR approximations for the TDMA

approach. Thus, the TDMA scheme can achieve the optimal rate region in the

low-SNR regime. For the completeness, we give the lower SNR approximations

for single and double null space beamforming as well. For single null space
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beamforming scheme, the low-SNR approximation of (5.21) is

0 ≤ Rd ≤ αPrλmax(hh† − zz†) + o(Pr) (5.52)

0 ≤ Re ≤ (1 − α)Pr/Ntz†H⊥
z H⊥

z
†
z + o(Pr) (5.53)

while for the double null space beamforming scheme, low-SNR approximations

of (5.26) and (5.27) are

0 ≤ Rd ≤ αPrh†H⊥
z H⊥

z
†
h + o(Pr) (5.54)

0 ≤ Re ≤ (1 − α)Prz†H⊥
h H⊥

h
†
z + o(Pr) (5.55)

5.3.3 Optimality when the Number of Relays is Large

It is easy to show that

λmax(I + αPrhh†, I + αPrzz†) ≤ λmax(I + αPrhh†)

= 1 + αPrh†h (5.56)

Now, consider the function

1 + αPrh†H⊥
z H⊥

z
†
h (5.57)

which is inside the log function in the double null space beamforming Rd bound-

ary rate (5.26). In our numerical results, we observe that when M is large and h

and z are Gaussian distributed (Rayleigh fading environment), (5.56) and (5.57)

converge to the same value. Similar results are also noted when Re in (5.27) is

considered. These numerical observations indicate the optimality of null space
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beamforming strategies in the regime in which the number of relays, M, is large.

5.4 Simulation Results

In our simulations, we assume Nm = N0 = 1, and {gm}, {hm}, {zm} are

complex, circularly symmetric Gaussian random variables with zero mean and

variances σ2
g , σ2

h , and σ2
z respectively.

In Figures 5.2 and 5.3, we plot the second-hop secrecy rate region of different

schemes in which we see Router ⊃ Rs,b ⊃ Rd,b ⊃ Rtdma. We notice that our

proposed suboptimal beamforming region is very close to outer bound secrecy

region Router. Furthermore, the larger the M, the smaller the rate gap between

Router and our proposed null space beamforming schemes. Also, we note that

increasing the number of relays,M, enlarges the rate region. Moreover, we can

see that M = 15 is sufficient for the null space beamforming schemes to coincide

with the Router.

Next, we examine the null space beamforming’s optimality in the high-SNR

regime in Fig. 5.4. In this simulation, we can see that when the relay power

is large enough, Router coincides with the regions of our proposed null space

beamforming schemes as expected even M is very small. Finally, in Fig. 5.5

where relay power small, we observe that Router coincides with the rate region

of the TDMA transmission scheme. Also, we note that the double null space

beamforming has better performance than single null space beamforming at some

operation points. This is mainly because Nt is no longer negligible at very low

SNR values.
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Figure 5.2: Second-hop secrecy rate region σh = 2, σz = 2, Pr = 1, M = 5. Lower
figure provides a zoomed version.
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Figure 5.3: Second-hop secrecy rate region σh = 2, σz = 2, Pr = 1, M = 15

5.5 Conclusion

In this chapter, we have considered a DF-based collaborative relay beamforming

protocol to achieve secure broadcasting to two users. As the general optimization

of relay weights is a difficult task, we have proposed single and double null space

beamforming schemes. We have compared the rate regions of these two schemes

and the TDMA scheme with the outer bound secrecy rate region of the origi-

nal the relay beamforming system. We have analytically shown that null space

beamforming schemes are optimal in the high-SNR regime, and TDMA scheme

is optimal in the low-SNR regime. In our numerical results, we have seen that our

proposed null space beamforming schemes perform in general very close to outer
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Figure 5.4: Second hop secrecy rate region σh = 2, σz = 2, Pr = 100, M = 3

bound secrecy rate region. We have numerically shown that when the number of

relays is large, the null space beamforming schemes are optimal.
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Chapter 6

Secure Relay Beamforming over

Cognitive Radio Channels

In this chapter, we investigate the collaborative relay beamforming under se-

crecy constraints in the cognitive radio network. We first characterize the secrecy

rate of the amplify-and-forward (AF) cognitive relay channel. Then, we formu-

late the beamforming optimization as a quasiconvex optimization problem which

can be solved through convex semidefinite programming (SDP). Furthermore, we

propose two sub-optimal null space beamforming schemes to reduce the compu-

tational complexity.

6.1 Channel Model

We consider a cognitive relay channel with a secondary user source S, a pri-

mary user P, a secondary user destination D, an eavesdropper E, and M relays

{Rm}M
m=1, as depicted in Figure 6.1. We assume that there is no direct link between

S and D, S and P, and S and E. We also assume that relays work synchronously
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Figure 6.1: Channel Model

to perform beamforming by multiplying the signals to be transmitted with com-

plex weights {wm}. We denote the channel fading coefficient between S and Rm

by gm ∈ C, the fading coefficient between Rm and D by hm ∈ C, Rm and P by

km ∈ C and the fading coefficient between Rm and E by zm ∈ C. In this model, the

source S tries to transmit confidential messages to D with the help of the relays

on the same band as the primary user’s while keeping the interference on the

primary user below some predefined interference temperature limit and keeping

the eavesdropper E ignorant of the information. It’s obvious that our channel is a

two-hop relay network. In the first hop, the source S transmits xs to relays with
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power E[|xs|2] = Ps. The received signal at the mth relay Rm is given by

yr,m = gmxs + ηm (6.1)

where ηm is the background noise that has a Gaussian distribution with zero mean

and variance of Nm.

In the AF scenario, the received signal at Rm is directly multiplied by lmwm

without decoding, and forwarded to D. The relay output can be written as

xr,m = wmlm(gmxs + ηm). (6.2)

The scaling factor,

lm =
1√

|gm|2Ps + Nm
, (6.3)

is used to ensure E[|xr,m|2] = |wm|2. There are two kinds of power constraints for

relays. First one is a total relay power constraint in the following form: ||W||2 =

W†W ≤ PT where W = [w1, ...wM]T and PT is the maximum total power. (·)T and

(·)† denote the transpose and conjugate transpose, respectively, of a matrix or

vector. In a multiuser network such as the relay system we study in this chapter,

it is practically more relevant to consider individual power constraints as wireless

nodes generally operate under such limitations. Motivated by this, we can impose

|wm|2 ≤ pm∀m or equivalently |W|2 ≤ p where | · |2 denotes the element-wise

norm-square operation and p is a column vector that contains the components

{pm}. pm is the maximum power for the mth relay node.

The received signals at the destination D and eavesdropper E are the super-

position of the messages sent by the relays. These received signals are expressed,
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respectively, as

yd =
M

∑
m=1

hmwmlm(gmxs + ηm) + n0, and (6.4)

ye =
M

∑
m=1

zmwmlm(gmxs + ηm) + n1 (6.5)

where n0 and n1 are the Gaussian background noise components with zero mean

and variance N0, at D and E, respectively. It is easy to compute the received SNR

at D and E as

Γd =
|∑M

m=1 hmgmlmwm|2Ps

∑M
m=1 |hm|2l2

m|wm|2Nm + N0
, and (6.6)

Γe =
|∑M

m=1 zmgmlmwm|2Ps

∑M
m=1 |zm|2l2

m|wm|2Nm + N0
. (6.7)

The secrecy rate is now given by

Rs = I(xs; yd)− I(xs; ye) (6.8)

= log(1 + Γd)− log(1 + Γe) (6.9)

= log

(
∑M

m=1 |zm|2l2
m|wm|2Nm + N0

∑M
m=1 |hm|2l2

m|wm|2Nm + N0
×

|∑M
m=1 hmgmlmwm|2Ps + ∑M

m=1 |hm|2l2
m|wm|2Nm + N0

|∑M
m=1 zmgmlmwm|2Ps + ∑M

m=1 |zm|2l2
m|wm|2Nm + N0

)
(6.10)

where I(·; ·) denotes the mutual information. The interference at the primary user

is

Λ = |
M

∑
m=1

kmgmlmwm|2Ps +
M

∑
m=1

|km|2l2
m|wm|2Nm. (6.11)

In this chapter, under the assumption that the relays have perfect channel side
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information (CSI), we address the joint optimization of {wm} and hence identify

the optimum collaborative relay beamforming (CRB) direction that maximizes

the secrecy rate in (6.10) while maintaining the interference on the primary user

under a certain threshold, i.e,. Λ ≤ γ, where γ is the interference temperature

limit.

6.2 Optimal Beamforming

Let us define

hg = [h∗1 g∗1 l1, ..., h∗Mg∗MlM]T, (6.12)

hz = [z∗1 g∗1 l1, ..., z∗Mg∗MlM]T, (6.13)

hk = [k∗1g∗1 l1, ..., k∗Mg∗MlM]T, (6.14)

Dh = Diag(|h1|2l2
1 N1, ..., |hM|2l2

MNM), (6.15)

Dz = Diag(|z1|2l2
1 N1, ..., |zM|2l2

MNM), and (6.16)

Dk = Diag(|k1|2l2
1 N1, ..., |kM|2l2

MNM) (6.17)

where superscript ∗ denotes conjugate operation. Then, the received SNR at the

destination and eavesdropper, and the interference on primary user can be writ-

ten, respectively, as

Γd =
PsW†hghg

†W
W†DhW + N0

, (6.18)

Γe =
PsW†hzhz

†W
W†DzW + N0

, (6.19)

Λ = PsW†hkhk
†W + W†DkW. (6.20)
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With these notations, we can write the objective function of the optimization prob-

lem (i.e., the term inside the logarithm in (6.10)) as

1 + Γd
1 + Γe

=
1 + PsW†hghg

†W
W†DhW+N0

1 + PsW†hzhz
†W

W†DzW+N0

=
W†DhW + N0 + PsW†hghg

†W

W†DzW + N0 + PsW†hzhz
†W

× W†DzW + N0

W†DhW + N0
(6.21)

=
N0 + tr((Dh + Pshghg

†)WW†)

N0 + tr((Dz + Pshzhz
†)WW†)

× N0 + tr(DzWW†)

N0 + tr(DhWW†)
.

If we denote t1 =
N0+tr((Dh+Pshghg

†)WW†)

N0+tr((Dz+Pshzhz
†)WW†)

, t2 = N0+tr(DzWW†)
N0+tr(DhWW†)

, define X , WW†,

and employ the semidefinite relaxation approach, we can express the beamform-

ing optimization problem as

max
X,t1,t2

t1t2

s.t tr
(

X
(

Dh + Pshghg
† − t1

(
Dz + Pshzhz

†
)))

≥ N0(t1 − 1)

tr (X (Dz − t2Dh)) ≥ N0(t2 − 1)

tr
(

X
(

Dk + Pshkhk
†
))

≤ γ

and diag(X) ≤ p, (and/or tr(X) ≤ PT) and X ≽ 0.

(6.22)

The optimization problem here is similar to that in [80]. The only difference is

that we have an additional constraint due to the interference limitation. Thus, we

can use the same optimization framework. The optimal beamforming solution

that maximizes the secrecy rate in the cognitive relay channel can be obtained

by using semidefinite programming with a two dimensional search for both total

and individual power constraints. For simulation, one can use the well-developed

interior point method based package SeDuMi [65], which produces a feasibility
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certificate if the problem is feasible, and its popular interface Yalmip [47]. It is im-

portant to note that we should have the optimal X to be of rank-one to determine

the beamforming vector. While proving analytically the existence of a rank-one so-

lution for the above optimization problem seems to be a difficult task1, we would

like to emphasize that the solutions are rank-one in our simulations. Thus, our

numerical result are tight. Also, even in the case we encounter a solution with

rank higher than one, the Gaussian randomization technique is practically proven

to be effective in finding a feasible, rank-one approximate solution of the original

problem. Details can be found in [48].

6.3 Sub-Optimal Null Space Beamforming

Obtaining the optimal solution requires significant computation. To simplify

the analysis, we propose suboptimal null space beamforming techniques in this

section .

6.3.1 Beamforming in the Null Space of Eavesdropper’s

Channel (BNE)

We choose W to lie in the null space of hz. With this assumption, we elimi-

nate E’s capability of eavesdropping on D. Mathematically, this is equivalent to

|∑M
m=1 zmgmlmwm|2 = |hz

†W|2 = 0, which means W is in the null space of hz
†.

We can write W = H⊥
z v, where H⊥

z denotes the projection matrix onto the null

space of hz
†. Specifically, the columns of H⊥

z are orthonormal vectors which form
1Since we in general have more than two linear constraints depending on the number of relay

nodes and since we cannot assume that we have channels with real and positive coefficients, the
techniques that are used in several studies to prove the existence of a rank-one solution (see e.g.,
[86], [48],and references therein) are not directly applicable to our setting.
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the basis of the null space of hz
†. In our case, H⊥

z is an M × (M − 1) matrix. The

total power constraint becomes W†W = v†H⊥
z

†H⊥
z v = v†v ≤ PT. The individual

power constraint becomes |H⊥
z v|2 ≤ p

Under the above null space beamforming assumption, Γe is zero. Hence, we

only need to maximize Γd to get the highest achievable secrecy rate. Γd is now

expressed as

Γd =
Psv†H⊥

z
†hghg

†H⊥
z v

v†H⊥
z

†DhH⊥
z v + N0

. (6.23)

The interference on the primary user can be written as

Λ = Psv†H⊥
z

†
hkhk

†H⊥
z v + v†H⊥

z
†
DkH⊥

z v. (6.24)

Defining X , vv, we can express the optimization problem as

max
X,t

t

s.t tr
(

X
(

PsH⊥
z

†
hghg

†H⊥
z − tH⊥

z
†
DhH⊥

z

))
≥ N0t

tr
(

X
(

H⊥
z

†
DkH⊥

z + PsH⊥
z

†
hkhk

†H⊥
z

))
≤ γ

and diag(H⊥
z XH⊥

z
†
) ≤ p, (and/or tr(X) ≤ PT) and X ≽ 0.

(6.25)

This problem can be easily solved by semidefinite programming with bisection

search [78].
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6.3.2 Beamforming in the Null Space of Eavesdropper’s and

Primary User’s Channels (BNEP)

In this section, we choose W to lie in the null space of hz and hk. Mathe-

matically, this is equivalent to requiring |∑M
m=1 zmgmlmwm|2 = |hz

†W|2 = 0, and

|∑M
m=1 kmgmlmwm|2 = |hk

†W|2 = 0. We can write W = H⊥
z,kv, where H⊥

z,k de-

notes the projection matrix onto the null space of hz
† and hk

†. Specifically, the

columns of H⊥
z,k are orthonormal vectors which form the basis of the null space.

In our case, H⊥
z,k is an M × (M − 2) matrix. The total power constraint becomes

W†W = v†H⊥
z,k

†H⊥
z,kv = v†v ≤ PT. The individual power constraint becomes

|H⊥
z,kv|2 ≤ p.

With this beamforming strategy, we again have Γe = 0. Moreover, the interfer-

ence on the primary user is now reduced to

Λ =
M

∑
m=1

|km|2l2
m|wm|2Nm = v†H⊥

z,k
†
DkH⊥

z,kv (6.26)

which is the sum of the forwarded additive noise components present at the relays.

Now, the optimization problem becomes

max
X,t

t

s.t tr
(

X
(

PsH⊥
z,k

†
hghg

†H⊥
z,k − tH⊥

z,k
†
DhH⊥

z,k

))
≥ N0t

tr
(

X
(

H⊥
z,k

†
DkH⊥

z,k

))
≤ γ

and diag(H⊥
z,kXH⊥

z,k
†
) ≤ p, (and/or tr(X) ≤ PT)

and X ≽ 0.

(6.27)

Again, this problem can be solved through semidefinite programming. With the
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following assumptions, we can also obtain a closed-form characterization of the

beamforming structure. Since the interference experienced by the primary user

consists of the forwarded noise components, we can assume that the interference

constraint Λ ≤ γ is inactive unless γ is very small. With this assumption, we can

drop this constraint. If we further assume that the relays operate under the total

power constraint expressed as v†v ≤ PT, we can get the following closed-form

solution:

max
v†v≤Pt

Γd

= max
v†v≤Pt

Psv†H⊥
z,k

†hghg
†H⊥

z,kv

v†H⊥
z,k

†DhH⊥
z,kv + N0

= max
v†v≤Pt

Psv†H⊥
z,k

†hghg
†H⊥

z,kv

v†
(

H⊥
z,k

†DhH⊥
z,k +

N0
PT

I
)

v

= Psλmax

(
H⊥

z,k
†
hghg

†H⊥
z,k, H⊥

z,k
†
DhH⊥

z,k +
N0

PT
I
)

where λmax(A, B) is the largest generalized eigenvalue of the matrix pair (A, B) 2.

Hence, the maximum secrecy rate is achieved by the beamforming vector

6.4 Multiple Primary Users and Eavesdroppers

The discussion in Section 6.2 can be easily extended to the case of more

than one primary user in the network. Each primary user will introduce an

interference constraint Γi ≤ γi which can be straightforwardly included into

(6.22). The beamforming optimization is still a semidefinite programming prob-

lem. On the other hand, the results in Section 6.2 cannot be easily extended to
2For a Hermitian matrix A ∈ Cn×n and positive definite matrix B ∈ Cn×n, (λ, ψ) is referred to

as a generalized eigenvalue – eigenvector pair of (A, B) if (λ, ψ) satisfy Aψ = λBψ [23].
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the multiple-eavesdropper scenario. In this case, the secrecy rate for AF relay-

ing is Rs = I(xs; yd) − maxi I(xs; ye,i), where the maximization is over the rates

achieved over the links between the relays and different eavesdroppers. Hence,

we have to consider the eavesdropper with the strongest channel. In this scenario,

the objective function cannot be expressed in the form given in (6.10) and the

optimization framework provided in Section 6.2 does not directly apply to the

multi-eavesdropper model.

However, the null space beamforming schemes discussed in Section 6.3 can

be extended to the case of multiple primary users and eavesdroppers under the

condition that the number of relay nodes is greater than the number of eavesdrop-

pers or the total number of eavesdroppers and primary users depending on which

null space beamforming is used. The reason for this condition is to make sure the

projection matrix H⊥ exists. Note that the null space of i channels in general has

the dimension M × (M − i) where M is the number of relays.

6.5 Numerical Results and Discussion

We assume that {gm}, {hm}, {zm}, {km} are complex, circularly symmetric Gaus-

sian random variables with zero mean and variances σ2
g , σ2

h , σ2
z and σ2

k respectively.

In this section, each figure is plotted for fixed realizations of the Gaussian channel

coefficients. Hence, the secrecy rates in the plots are instantaneous secrecy rates.

In Fig. 6.2, we plot the optimal secrecy rates for the amplify-and-forward

collaborative relay beamforming system under both individual and total power

constraints. We also provide, for comparison, the secrecy rates attained by using

the suboptimal beamforming schemes. The fixed parameters are σg = 10, σh =

1, σz = 1, σk = 1, γ = 0dB, and M = 10. Since AF secrecy rates depend on both the
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Figure 6.2: AF secrecy rate vs. PT/Ps. σg = 10, σh =, σz = 1, σk = 1, M = 10, γ =
0dB.

source and relay powers, the rate curves are plotted as a function of PT/Ps. We

assume that the relays have equal powers in the case in which individual power

constraints are imposed, i.e., pi = PT/M. It is immediately seen from the figure

that the suboptimal null space beamforming achievable rates under both total and

individual power constraints are very close to the corresponding optimal ones.

Especially, they are nearly identical in the high SNR regime, which suggests that

null space beamforming is optimal at high SNRs. Thus, null space beamforming

schemes are good alternatives as they are obtained with much less computational

burden. Moreover, we interestingly observe that imposing individual relay power

constraints leads to small losses in the secrecy rates.
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Figure 6.3: AF secrecy rate vs. PT/Ps. σg = 10, σh = 1, σz = 2, σk = 4, M = 10, γ =
10dB.

In Fig. 6.3, we change the parameters to σg = 10, σh = 1, σz = 2, σk = 4,

γ = 10dB and M = 10. In this case, channels between the relays and the eaves-

dropper and between the relays and the primary-user are on average stronger

than the channels between the relays and the destination. We note that beam-

forming schemes can still attain good performance and we observe similar trends

as before.

In Fig. 6.4, we plot the optimal secrecy rate and the secrecy rates of the two sub-

optimal null space beamforming schemes (under both total and individual power

constraints) as a function of the interference temperature limit γ. We assume that

PT = Ps = 0dB. It is observed that the secrecy rate achieved by beamforming in
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Figure 6.4: AF secrecy rate vs. interference temperature γ. σg = 10, σh = 2, σz =
2, σk = 4, M = 10, Ps = PT = 0dB.

the null space of both the eavesdropper’s and primary user’s channels (BNEP)

is almost insensitive to different interference temperature limits when γ ≥ −4dB

since it always forces the signal interference to be zero regardless of the value of

γ. It is further observed that beamforming in the null space of the eavesdropper’s

channel (BNE) always achieves near optimal performance regardless the value of

γ under both total and individual power constraints.



130

6.6 Conclusion

In this chapter, collaborative relay beamforming in cognitive radio networks is

studied under secrecy constraints. Optimal beamforming designs that maximize

secrecy rates are investigated under both total and individual relay power con-

straints. We have formulated the problem as a semidefinite programming prob-

lem and provided an optimization framework. In addition, we have proposed

two sub-optimal null space beamforming schemes to simplify the computation.

Finally, we have provided numerical results to illustrate the performances of dif-

ferent beamforming schemes.
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Chapter 7

Optimal Power Allocation for Secrecy

Fading Channels Under

Spectrum-Sharing Constraints

In this chapter, we consider a scenario in which second users communicate in

the presence of a primary user and an eavesdropper. Hence, secondary users need

to both control the interference levels on the primary user and send the informa-

tion securely. Hence, we combine the challenges seen in studies of cognitive radio

networks and information-theoretic security. Our contributions in this chapter are

as follows. We initially assume that the transmitter has global channel side infor-

mation (CSI), i.e., perfectly knows the fading coefficients of all channels, and we

study the secrecy capacity limits of opportunistic spectrum-sharing channels in

fading environments and identify the optimal power allocation for the secondary

user under average and peak received power constraints at the primary user. Sub-

sequently, we consider the case in which the eavesdropper’s CSI is unavailable at

the source. In this scenario, we study the optimal power allocation under average



132

Figure 7.1: Channel Model

power constraints, and propose a simplified on/off power control method.

7.1 Channel Model

As depicted in Fig.7.1, we consider a cognitive radio channel model with a

secondary user source S, a primary user P, a secondary user destination D, and

an eavesdropper E. In this model, the source S tries to transmit confidential mes-

sages to destination D on the same band as the primary user’s while keeping the

interference on the primary user below some predefined interference temperature

limit and keeping the eavesdropper E ignorant of the information. During any

coherence interval i, the signal received by the destination and the eavesdropper
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are given, respectively, by

y(i) = gM(i)x(i) + wM(i), (7.1)

z(i) = gE(i)x(i) + wE(i), (7.2)

where gM(i), gE(i) are the channel gains from the secondary source to the sec-

ondary receiver (main channel) and from the secondary source to the eavesdrop-

per (eavesdropper channel), respectively, and wM(i), wE(i) represent the i.i.d ad-

ditive Gaussian noise with zero-mean and unit-variance at the destination and

the eavesdropper, respectively. We denote the fading power gains of the main

and eavesdropper channels by hM(i) = |gM(i)|2 and hE(i) = |gE(i)|2, respectively.

Similarly, we denote the channel gain from the secondary source to the primary

receiver by gP(i) and its fading power gain by hP(i) = |gP(i)|2. We assume that

both channels experience block fading, i.e., the channel gains remain constant

during each coherence interval and change independently from one coherence

interval to the next. The fading process is assumed to be ergodic with a bounded

continuous distribution. Moreover, the fading coefficients of the destination and

the eavesdropper in any coherence interval are assumed to be independent of

each other.

Since transmissions pertaining to the secondary user should not harm the sig-

nal quality at the receiver of the primary user, we impose constraints on the

received-power at the primary user P. Hence, denoting the average and peak

received-power values by Qavg and Qpeak, respectively, we define the correspond-

ing constraints as:

EhM,hE,hP{P(hM, hE, hP)hP} ≤ Qavg (7.3)
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and

P(hM, hE, hP)hP ≤ Qpeak, ∀hM, hE, hP. (7.4)

Note that Qavg can be seen as a long-term average received power constraint.

Additionally, although we call Qpeak as the peak received-power constraint, it is

actually a peak constraint on the average instantaneous received power and can

be regarded as a short-term constraint.

7.2 Power Allocation under Average Received-Power

Constraints

In a fading environment, following the same line of development as in [24],

it is straightforward but tedious to show that the channel capacity is achieved

by optimally distributing the transmitted power over time such that the primary

user received power constraint is met. By assuming that hM, hE, and hP are

independent of each other and global CSI is available, the secrecy capacity under

an average received power constraint is the solution to the following optimization

problem,

max
P(hM,hE,hP)≥0

∫ ∫ ∫ [
log (1 + hMP(hM, hE, hP))

− log (1 + hEP(hM, hE, hP))
]+

× f (hM) f (hE) f (hP)dhMdhEdhP

s.t
∫ ∫ ∫

hPP(hM, hE, hP)

× f (hM) f (hE) f (hP)dhMdhEdhP ≤ Qavg (7.5)
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where [x]+ = max{0, x}. To find the optimal power allocation P(hM, hE, hP), we

form the Lagrangian:

L(P, λ) =
∫ ∫ ∫ [

log (1 + hMP(hM, hE, hP))

− log (1 + hEP(hM, hE, hP))
]+

f (hM) f (hE) f (hP)dhMdhEdhP

− λ
( ∫ ∫ ∫

hPP(hM, hE, hP)

× f (hM) f (hE) f (hP)dhMdhEdhP − Qavg

)
. (7.6)

By using the Lagrangian maximization approach, we get the following optimality

condition:

∂L(P, λ)

∂P(hM, hE, hP)

= (
hM

1 + hMP(hM, hE, hP)
− hE

1 + hEP(hM, hE, hP)
− λhP)

× f (hM) f (hE) f (hP) = 0. (7.7)

Solving (7.7) with the constraint P(hM, hE, hP) ≥ 0 yields the optimal power allo-

cation policy at the transmitter as

P(hM, hE, hP) =
1
2

[√(
1

hE
− 1

hM

)2

+
4

λhP

(
1

hE
− 1

hM

)

−
(

1
hM

+
1

hE

)]+
, (7.8)

where λ is a constant that is introduced to satisfy the receive power constraint

(7.5) at the primary user.

Remark 1 It is easy to see that when hE > hM, P(hM, hE, hP) = 0, which is in accor-
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dance with our intuition. Transmitter only spends power for transmission when the main

channel is better than the eavesdropper’s channel. With little calculation, we can also see

that when hP > hM−hE
λ , we have P(hM, hE, hP) = 0. Thus, the power allocation can be

rewritten as

P(hM, hE, hP) =



1
2

[√(
1

hE
− 1

hM

)2
+ 4

λhP

(
1

hE
− 1

hM

)
−
(

1
hM

+ 1
hE

) ]
hM−hE

hP
> λ

0 hM−hE
hP

≤ λ

. (7.9)

Remark 2 From the expression of the optimal power allocation obtained in (7.8), we can

easily see that more transmission power is used when either hM increases or hP decreases.

Also the derivative of (7.8) with regard to hE is

− 1
2h2

E

[ 1
hE

− 1
hM

+ 2
λhP√(

1
hE

− 1
hM

)2
+ 4

λhP

(
1

hE
− 1

hM

) − 1
]
. (7.10)

We can see that the derivative is negative, so P(hM, hE, hP) decreases when hE increases.

These observations are also intuitively appealing. The secondary user takes advantage of

the weak link between its transmitter and the primary receiver, and the stronger main

channel. Also, a weaker eavesdropper’s channel is preferred for secure message transmis-

sion.

Remark 3 When there is no eavesdropper, the channel is the standard cognitive radio

channel. By letting hE = 0 in (7.7) and solving the problem, we can obtain the optimal

power allocation as ( 1
λhP

− 1
hM

)+, which has also been shown in [22] and [54].

Remark 4 When there is no primary user, the channel is the standard secrecy fading
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channel. By replacing hP with 1 in (7.5) and correspondingly replacing hP with 1 in (7.8),

we get the optimal power allocation for the fading secrecy channel given in [24].

7.3 Power Allocation under both Average and Peak

Received-Power Constraints

The average received power constraint is reasonable when the primary user’s

QoS is determined by the average long-term interference. However, we note that

in many cases, the primary user’s QoS is also limited by the instantaneous inter-

ference at the primary receiver. With this motivation, we in this section study the

power allocation under both average and peak received power constraints.

We first introduce a real-valued function β which is defined as

β2 ,
Qpeak

hP
− P(hM, hE, hP). (7.11)

To satisfy the peak power constraint, the right-hand side of (7.11) must be non-

negative over all the possible values of the channel gain. Using (7.11), we form

an equivalent problem of (7.5), which contains an equality constraint for the peak

power.
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max
P(hM,hE,hP)≥0,β

∫ ∫ ∫ [
log (1 + hMP(hM, hE, hP))

− log (1 + hEP(hM, hE, hP))
]+

× f (hM) f (hE) f (hP)dhMdhEdhP (7.12)

s.t
∫ ∫ ∫

hPP(hM, hE, hP)

× f (hM) f (hE) f (hP)dhMdhEdhP ≤ Qavg (7.13)

and β2 + P(hM, hE, hP) =
Qpeak

hP
. (7.14)

Now, the Lagrangian becomes

L(P, λ) =
∫ ∫ ∫ [

log (1 + hMP(hM, hE, hP))

− log (1 + hEP(hM, hE, hP))
]+

f (hM) f (hE) f (hP)dhMdhEdhP

− λ
( ∫ ∫ ∫

hPP(hM, hE, hP)

× f (hM) f (hE) f (hP)dhMdhEdhP − Qavg

)
− λ0

(
β2 + P(hM, hE, hP)−

Qpeak

hP

)
. (7.15)

Setting each of the partial derivatives of the Lagrangian with respect to P and β

to zero, we obtain, respectively, the necessary conditions for the optimal solution

to problem (7.14) as

hM

1 + hMP(hM, hE, hP)
− hE

1 + hEP(hM, hE, hP)
− λhP − λ0 = 0 (7.16)

2βλ0 = 0. (7.17)
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Note that (7.17) implies either β = 0 or λ0 = 0. β = 0 means that the peak

power constraint is active and hence, the optimal transmission power in this case

is given by (7.18)

P(hM, hE, hP) =
Qpeak

hP
. (7.18)

On the other hand, λ0 = 0 in (7.17) means that the peak transmission power

constraint is inactive and it can be ignored. Solving (7.16) with λ0 = 0, we get the

expression for the optimal transmitter power as

1
2

[√(
1

hE
− 1

hM

)2

+
4

λhP

(
1

hE
− 1

hM

)
−
(

1
hM

+
1

hE

)]+
,

which is the same expression as in (7.8) obtained when there is only an average

received power constraint. Combining the two cases, the optimal power allocation

under both average and peak power constraints becomes

P(hM, hE, hP) = min

(
Qpeak

hP
,

1
2

[√(
1

hE
− 1

hM

)2

+
4

λhP

(
1

hE
− 1

hM

)
−
(

1
hM

+
1

hE

)]+)
(7.19)

where λ is a constant with which the average power constraint is satisfied. We

should note that λ here is generally not the same as λ in the optimal power

allocation in (7.8).

Remark 5 We can see from (7.19) with little computation that when the condition

1
hE
hP

+ 1/Qpeak
− 1

hM
hP

+ 1/Qpeak
> λQ2

peak (7.20)
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is satisfied, we have P(hM, hE, hP) =
Qpeak

hP

7.4 Power Allocation without Eavesdropper’s CSI

Since eavesdropping is a passive operation (i.e., does not involve any transmis-

sion), the source may not be able to get the CSI of the eavesdropper’s channel in

certain circumstances. With this motivation, we in this section study the optimal

power allocation when the source knows only hM and hP. To simplify the analysis,

we consider only average receive power constraints here.

7.4.1 Optimal Power Allocation

Based on the results of [24], the secrecy capacity in this case is the solution of

the following optimization problem:

max
P(hM,hP)≥0

∫ ∫ ∫ [
log (1 + hMP(hM, hP))

− log (1 + hEP(hM, hP))
]+

× f (hM) f (hE) f (hP)dhMdhEdhP

s.t
∫ ∫ ∫

hPP(hM, hP)

× f (hM) f (hE) f (hP)dhMdhEdhP ≤ Qavg. (7.21)

Similarly, using the Lagrangian approach, we get the optimal condition as

hM Pr (hE ≤ hM)

1 + hMP(hM, hP)

−
∫ hM

0

(
hE

1 + hEP(hM, hP)

)
f (hE)dhE − λhP = 0, (7.22)
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where λ is a constant that satisfies the power constraints in (7.21) with equality.

By solving (7.22), we can get the optimal transmit power allocation P(hM, hP). If

the obtained value turns out to be negative, then the optimal value of P(hM, hP) is

equal to 0. The exact solution to this optimization problem depends on the fading

distributions.

If Rayleigh fading scenario is considered with E{hM} = γM, E{hE} = γE and

E{hP} = γP , then the optimal power allocation is the solution of the following

equation:

(
1 − e−(hM/γE)

)( hM

1 + hMP(hM, hP)

)
λhP

−

(
1 − e−(hM/γE)

)
P(hM, hP)

+
exp

(
1

γEP(hM,hP)

)
γE(P(hM, hP))2

[
Ei
(

1
γEP(hM, hP)

)

− Ei
(

hM

γE
+

1
γEP(hM, hP)

)]
= 0 (7.23)

where Ei(x) =
∫ ∞

x
e−t

t dt is the exponential integral function. Again, if there is

no positive solution to (7.23), the optimal P(hM, hP) = 0.

7.4.2 On/Off power control

As seen above, the computation of the optimal power allocation is in general

complicated. In this section, we use a simplified suboptimal on/off power control

method [24]. That is, the source sends information only when the channel gain

hM exceeds a pre-determined constant threshold τ > 0. Moreover, when hM > τ,

the transmitter always uses the same power level P . It is easy to compute that
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the constant power level used for transmission should be

P =
Qavg

γP Pr(hM > τ)
. (7.24)

For the Rayleigh fading scenario for which f (hM) = 1
γM

e−(hM/γM), we get

P =
Qavg

γP
e(τ/γM). (7.25)

Then, the secrecy rate can be computed as

Rs =
∫ ∞

0

∫ ∞

τ
[log (1 + hMP)− log (1 + hEP)]+

× f (hM) f (hE)dhMdhE

= e−(τ/γM) log
(

1 + τ
Qavg

γP
e(τ/γM)

)
+ exp

 1

γM
Qavg
γP

e(τ/γM)


Ei

 τ

γM
+

1

γM
Qavg
γP

e(τ/γM)

+ exp

 1

γE
Qavg
γP

e(τ/γM)
− τ

γM


Ei

 τ

γE
+

1

γE
Qavg
γP

e(τ/γM)

− Ei

 1

γE
Qavg
γP

e(τ/γM)


− exp


[

1
γM

+ 1
γE

]
Qavg
γP

e(τ/γM)

Ei

[ 1
γM

+
1

γE

] τ +
1

Qavg
γP

e(τ/γM)

 . (7.26)

Note that the secrecy rate depends on the threshold τ. Hence, we can get the

maximum achievable secrecy rate under the on/off power control policy by opti-

mizing the threshold τ.
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7.5 Numerical Results

In this section, we numerically illustrate the secrecy rate studied in this chapter.

In all simulations, we assume that the fading is Rayleigh distributed.

We first consider the case in which the global CSI is available. In Fig. 7.2, we

plot the secrecy rate versus Qavg for different values of the peak received power

constraint Qpeak. We can see from the figure that, as expected, the larger the Qpeak,

the closer the rate is to the case of no peak power constraint. We also observe

that the constraint on the peak received power does not have much impact on

the secrecy rate for low values of Qavg. On the other hand, as the value of the

average received power limit approaches the peak received power constraint, the

rate plots become flat and the performance gets essentially limited by the peak

received-power constraint.

In Fig. 7.3, we plot the ergodic secrecy rate as a function of Qavg while keeping

the ratio
Qpeak
Qavg

fixed. We should point out that eavesdropper’s channel is stronger

than the main channel on average (i.e., γM = 1 < γE = 2) in this figure. Note

that positive secrecy rate can not achieved without fading in such a case. In the

figure, we again see that the higher the ratio
Qpeak
Qavg

, the closer the curve is to the

no peak power constraint case. Also, since the peak power constraint becomes

more relaxed with increasing Qavg, we do not see the flattening of the rate curve

in contrast to what is observed in Fig. 7.2.

Next, we consider the case in which the eavesdropper’s CSI is not available.

In Fig.7.4, we plot the ergodic secrecy rate vs. Qavg curves achieved with optimal

power allocation and with the on/off power control method. The fading variances

λ̄ are the same as in Fig. 7.3. By comparing the secrecy rates in Fig. 7.4 with the

secrecy rate in Fig. 7.3 obtained in the absence of peak constraints, we observe
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Figure 7.2: secrecy rate vs. Qavg for different peak power constraint with global
CSI available, γM = γE = 1, γP = 2.

that not having the eavesdropper’s channel information result in a certain loss in

the secrecy rate. We also see that the performance of the on/off power control

scheme is very close to the optimal secrecy capacity (when only the main channel

and primary channel CSI is available) for a wide range of SNRs, and approach

the optimal rate when SNR is high. Note that the optimality of the on/off power

control scheme at high SNRs has been proved in [24] for the secrecy fading chan-

nel. Thus, the on/off power control method has great utility in practical systems

due to its advantage of simple implementation.
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Figure 7.3: secrecy rate vs. Qavg for different peak power constraint with global
CSI available, γM = 1, γE = 2, γP = 2.

7.6 Conclusion

In this chapter, we have considered a spectrum-sharing system subject to se-

curity considerations and studied the optimal power allocation strategies for the

secrecy fading channel under average and peak received power constraints at

the primary user. In particular, we have considered two scenarios regarding the

availability of the CSI. When global CSI is available, we have obtained analytical

expressions for the optimal power allocation under average and peak received

power constraints. When only main channel’s and primary channel’s CSI is avail-

able, we have characterized the optimal power allocation as the solution to a

certain equation. We have also derived the analytical secrecy rate expression for
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Figure 7.4: secrecy rate vs. Qavg without eavesdropper’s CSI, γM = 1, γE =
2, γP = 2.

the simplified on/off power control scheme in this scenario. Numerical results

corroborating our theoretical analysis have also been provided. Specially, it is

shown that the constraint on the peak received power does not have much impact

on the secrecy rate for low values of Qavg as long as the average power constraints

remain active, and that the performance of the suboptimal on/off power control

scheme approaches the optimal performance when the eavesdropper’s CSI is not

available.
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Chapter 8

Low-SNR Analysis of Interference

Channels under Secrecy Constraints

In this chapter, we study secure transmission over Gaussian weak interference

channels in the low-power regime. The organization of the rest of the chapter

is as follows. In Section 8.1, we describe the channel model and obtain the se-

crecy achievable rate regions for TDMA, multiplexed transmission schemes and

artificial noise schemes, and compare their performances in terms of the achiev-

able rates. In Section 8.2, we compute the minimum energy per bit and slope at
Eb
N0 min

for TDMA and multiplexed transmission schemes. In Section 8.3, we use

results in Section 8.2 to evaluate how secrecy constraints affect the performance

in the low-power regime and identify optimal transmission schemes. Finally, we

provide conclusions in Section 8.4.
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8.1 Gaussian Interference Channels with

Confidential Messages

We consider secure communication over a two-transmitter, two-receiver Gaus-

sian interference channel. The input-output relations for this channel model are

given by

y1 = c11x1 + c12x2 + n1, and (8.1)

y2 = c21x1 + c22x2 + n2 (8.2)

where x1 and x2 are the channel inputs of the transmitters, the coefficients {cij}

denote the channel gains and are deterministic scalars, and n1 and n2 are indepen-

dent, circularly symmetric, complex Gaussian random variables with zero mean

and common variance σ2. It is assumed that the transmitters are subject to the

following average power constraint:

E[|xi|2] 6 Pi = SNRi σ2, i = 1, 2. (8.3)

We focus on the weak interference channel i.e., we assume that |c12|2
|c11|2

< 1 and
|c21|2
|c22|2

< 1. Over this channel, transmitter i for i = 1, 2 intends to send an confiden-

tial message by transmitting xi to the desired receiver i, which receives yi, while

ensuring that the other receiver does not obtain any information by listening the

transmission. Following [45], we next consider three transmission schemes and

their corresponding achievable secrecy rate regions.
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8.1.1 Time Division Multiple Access

In TDMA, the transmission period is divided into two nonoverlapping time

slots. Transmitters 1 and 2 transmit using α and 1 − α fractions of time, respec-

tively. We note that under this assumption, the channel in each time slot reduces

to a Gaussian wiretap channel [42], and the following rate region can be achieved

with perfect secrecy [45]:

R1 > 0

R2 > 0

R1 6 α

[
log
(

1 +
|c11|2SNR1

α

)
− log

(
1 +

|c21|2SNR1

α

)]
R2 6 (1 − α)

[
log
(

1 +
|c22|2SNR2

1 − α

)
− log

(
1 +

|c12|2SNR2

1 − α

)]
(8.4)

over all possible transmitting signal-to-noise-ratio pairs SNR1 ∈ [0, P1/σ2], SNR2 ∈

[0, P2/σ2] and time allocation parameter α.

8.1.2 Multiplexed Transmission

In the multiplexed transmission scheme, transmitters are allowed to share the

same degrees of freedom. By the constraint of information-theoretic security, no

partial decoding of the other transmitter’s message is allowed at a receiver. Hence,

the interference results in an increase of the noise floor. Thus, the following rate
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region can be achieved with perfect secrecy [45]:

R1 > 0

R2 > 0

R1 6 log
(

1 +
|c11|2SNR1

1 + |c12|2SNR2

)
− log

(
1 + |c21|2SNR1

)
R2 6 log

(
1 +

|c22|2SNR2

1 + |c21|2SNR1

)
− log(1 + |c12|2SNR2) (8.5)

over all possible transmitting signal-to-noise-ratio pairs SNR1 ∈ [0, P1/σ2], SNR2 ∈

[0, P2/σ2].

8.1.3 Artificial Noise

This scheme allows one of the transmitters (e.g transmitter 2) to generate

artificial noise. This scheme will split the power of transmitter 2 into two parts:

λP2 for generating artificial noise and the remaining (1 − λ)P2 for encoding the

confidential message. As detailed in [45], the achievable rate region is

R1 > 0

R2 > 0

R1 6 log
(

1 +
|c11|2SNR1

1 + |c12|2SNR2

)
−log

(
1 +

|c21|2SNR1

1 + |c22|2λSNR2

)
R2 6 log

(
1 +

|c22|2(1 − λ)SNR2

1 + |c21|2SNR1 + |c22|2λSNR2

)
− log

(
1 +

|c12|2(1 − λ)SNR2

1 + |c12|2λSNR2

)
(8.6)

over all possible transmitting signal-to-noise-ratio pairs SNR1 ∈ [0, P1/σ2], SNR2 ∈

[0, P2/σ2] and power splitting parameter λ. We can further enlarge the rate region
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by reversing the roles of transmitters 1 and 2.

When the transmitting power is moderate, neither too high nor too small,

as demonstrated in [45], transmission strategy with artificial noise provides the

largest achievable rate region while TDMA gives the smallest rate region.

On the other hand, when we consider the two extreme cases of high- and

low-SNR regimes, the picture changes. In the high-SNR regime, when we let

SNR1 → ∞, SNR2 → ∞ and lim SNR1
SNR2

= q in (8.4), (8.5), and (8.6), we can see

that multiplexed transmission can not achieve any positive secrecy rate, while

TDMA rates are bounded by R1 < α log( |c11|2
|c21|2

), and R2 < (1 − α) log( |c22|2
|c12|2

). For

the strategy with the artificial noise, rate R1 is bounded by R1 < log(
1+ |c11|

2q
|c12|2

1+ |c21|2q
|c22|2λ

), but

we can not achieve any secrecy rate for R2. Thus, TDMA is the best choice when

we want both users to have secure communication in the high-SNR regime.

In the low-SNR regime (as SNR approaches zero), TDMA and multiplexed

transmission achievable regions become identical. They converge to the following

rectangular rate region, as illustrated in Fig.8.1:

R1 > 0

R2 > 0

R1 6 |c11|2SNR1 − |c21|2SNR1 + o(SNR1)

R2 6 |c22|2SNR2 − |c12|2SNR2 + o(SNR2) (8.7)

Thus, these schemes have similar performances at vanishing SNR levels in terms

of the asymptotic rates. However, a finer analysis in the next section will provide

more insight. We note that in the case of transmission with artificial noise, we

have R1 6 |c11|2SNR1 − |c21|2SNR1 + o(SNR1) and R2 6 (1 − λ)(|c22|2SNR2 −
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P2 = 0.1, c11 = c22 = 1, c12 = c21 = 0.2

|c12|2SNR2) + o(SNR2) which is strictly smaller than that in (8.7). This lets us to

conclude that introducing artificial noise is not preferable in the low-SNR regime.

8.2 Energy Efficiency in the Low-SNR Regime

The tradeoff of spectral efficiency versus energy per information bit is the key

measure of performance in the low-SNR regime. The two major analysis tools in

this regime are the minimum value of the energy per bit Eb
N0 min

, and the slope S of
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the spectral efficiency versus Eb
N0

curve at Eb
N0 min

[69]. These can be obtained from

Eb
N0 min

=
loge 2
Ċ(0)

(8.8)

and

S =
2[Ċ(0)2]

−C̈(0)
(8.9)

where Ċ(0) and C̈(0) denote the first and second derivatives of the channel capac-

ity with respect to SNR at SNR = 0.

In this section, using these tools, we analyze the performance in interference

channels with confidential messages, following an approach similar to that in [9].

Note that in interference channels, we have the achievable rate pairs (R1, R2). As

the SNRs of both users approach zero in the low-SNR regime, it can be easily

seen that R1 → 0 and R2 → 0. In this regime, we introduce the parameter θ, and

assume that the ratio of the rates is R1/R2 = θ as R1 and R2 both vanish. In both

TDMA and multiplexed transmissions, we have

θ =
R1

R2
=

SNR1(|c11|2 − |c21|2)
SNR2(|c22|2 − |c12|2)

. (8.10)

By fixing θ, we can rewrite the achievable rate region of multiplexed transmission
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in (8.5) as

R1 > 0

R2 > 0

R1 6 log

1 +
|c11|2SNR1

1 + |c12|2 (|c11|2−|c21|2)
θ(|c22|2−|c12|2)

SNR1

− log(1 + |c21|2SNR1)

R2 6 log

1 +
|c22|2SNR2

1 + |c21|2 θ(|c22|2−|c12|2)
(|c11|2−|c21|2)

SNR2

− log(1 + |c12|2SNR2). (8.11)

From (8.4) and (8.11), we can see that when SNR diminishes, the bit energy
Eb
N0

= SNR
R(SNR) for both TDMA and multiplexed transmission schemes monotoni-

cally decreases. Furthermore, it can be shown that the rates are concave functions

of SNR in the low-SNR regime. Thus, the minimum energy per bit is achieved as

SNR → 0. The following theorems provide the minimum energy per bit and the

slope at the minimum energy per bit.

Theorem 5 For all θ = R1/R2, the minimum bit energies in the Gaussian interference

channel with confidential messages for both TDMA and multiplexed transmissions are

E1

N0 min
=

loge 2
|c11|2 − |c21|2

, (8.12)

E2

N0 min
=

loge 2
|c22|2 − |c12|2

. (8.13)

Proof : From (8.4) and (8.11), we can for both cases easily compute the deriva-

tives of the achievable rates with respect to SNR as

Ṙ1(0) = |c11|2 − |c21|2 (8.14)

Ṙ2(0) = |c22|2 − |c12|2. (8.15)
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Using (8.8), we get the minimum bit energy expressions. �

From the result of Theorem 5, we see that TDMA and multiplexed transmis-

sion achieve the same minimum energy per bit. Next, we consider the wideband

slope regions.

Theorem 6 Let the rates vanish while keeping R1/R2 = θ. Then, for the Gaussian

interference channel with confidential messages, the slope region achieved by TDMA is

0 6 S1 < 2

0 6 S2 < 2

S1

2A
+

S2

2B
= 1 (8.16)

and the slope region achieved by multiplexed transmission is

0 6 S1 < 2

0 6 S2 < 2(
2A
S1

− 1
)(

2B
S2

− 1
)
=

4|c11|2|c12|2|c22|2|c21|2
(|c11|4 − |c21|4)(|c22|4 − |c12|4)

(8.17)

where

A =
|c11|2 − |c21|2
|c11|2 + |c21|2

, (8.18)

B =
|c22|2 − |c12|2
|c22|2 + |c12|2

. (8.19)
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Proof : Note again that for both transmission schemes, we have

Ṙ1(0) = |c11|2 − |c21|2, (8.20)

Ṙ2(0) = |c22|2 − |c12|2. (8.21)

In TDMA, we also have

−R̈1(0) =
|c11|4 − |c21|4

α
, (8.22)

−R̈2(0) =
|c22|4 − |c12|4

(1 − α)
. (8.23)

Then, using (8.9), we get

S1 =
2α(|c11|2 − |c21|2)
|c11|2 + |c21|2

, (8.24)

S2 =
2(1 − α)(|c22|2 − |c12|2)

|c22|2 + |c12|2
. (8.25)

Considering different values of α leads to the region in (8.16). Similarly, for mul-

tiplexed transmission, we can obtain

−R̈1(0) = |c11|4 − |c21|4 +
2|c11|2|c12|2(|c11|2 − |c21|2)

θ(|c22|2 − |c12|2)
, (8.26)

−R̈2(0) = |c22|4 − |c12|4 +
2|c22|2|c21|2θ(|c22|2 − |c12|2)

|c11|2 − |c21|2
. (8.27)
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From the above expression, we can easily see that

S1 =
2(|c11|2 − |c21|2)

|c11|2 + |c21|2 + 2|c11|2|c12|2
θ(|c22|2−|c12|2)

, (8.28)

S2 =
2(|c22|2 − |c12|2)

|c22|2 + |c12|2 + 2|c22|2|c21|2θ
|c11|2−|c21|2

. (8.29)

Considering different values of θ leads to the slope region given in (8.17). �

8.3 the Impact of Secrecy on Energy Efficiency

For comparison, we provide below the minimum energy per bit and slope

region when there are no secrecy constraints [9]. The minimum bit energies for

both TDMA and multiplexed transmission are

E1

N0 min
=

loge 2
|c11|2

, (8.30)

E2

N0 min
=

loge 2
|c22|2

. (8.31)

The achievable slope region for TDMA is

0 6 S1 < 2

0 6 S2 < 2

S1 + S2 = 2, (8.32)
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while for multiplexed transmission, we have

0 6 S1 < 2

0 6 S2 < 2

(
2
S1

− 1)(
2
S2

− 1) = 4
|c12|2
|c22|2

|c21|2
|c11|2

. (8.33)

We can immediately note that the minimum bit energies in (8.30) and (8.31) are

strictly smaller than those given in (8.12) and (8.13). Thus, there is an energy

penalty associated with secrecy. Moreover, comparing the slope regions in (8.16)

and (8.17) with those in (8.32) and (8.33), and noting that

A < 1

B < 1

4
|c12|2
|c22|2

|c21|2
|c11|2

<
4|c11|2|c12|2|c22|2|c21|2

(|c11|4 − |c21|4)(|c22|4 − |c12|4)
, (8.34)

we can easily verify that the slope region of Gaussian weak interference channel

is strictly larger than the slope region of Gaussian weak interference channel with

confidential messages for both TDMA and multiplexed transmission schemes.

Thus, in addition to the increase in the minimum energy per bit, secrecy intro-

duces a penalty in terms of the achievable wideband slope values. In Figs. 8.2

and 8.3, we plot the slope regions for TDMA and multiplexed transmissions, re-

spectively, under secrecy constraints. We note that regions become smaller as

|c12|2 and |c21|2 increase. This is due to the fact that for fixed |c11|2 and |c22|2, the

larger values of |c12|2 and |c21|2 mean that channel of the unintended receiver gets

stronger and we have to use more energy to achieve the same secrecy transmission

rate.
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Figure 8.2: Slope regions in the Gaussian interference channel with confidential
messages for the TDMA scheme with |c11|2 = |c22|2 = 1 and various values of
|c12|2, |c21|2

.

We are also interested in determining which transmission scheme performs

better in the low-SNR regime. TDMA achievable rate regions converge to those of

multiplexed transmission scheme as power decreases. Furthermore, TDMA and

multiplexed transmission has the same minimum energy per bit values. There-

fore, we should consider the slope regions. From Theorem 6, we know that when

4|c11|2|c12|2|c22|2|c21|2
(|c11|4 − |c21|4)(|c22|4 − |c12|4)

< 1, (8.35)

the slope region of multiplexed transmission is strictly larger than the slope region
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Figure 8.3: Slope regions in the Gaussian interference channel with confidential
messages for multiplexed transmission scheme with |c11|2 = |c22|2 = 1 and vari-
ous values of |c12|2, |c21|2

.

of TDMA, thus in this case, multiplexed transmission is preferred. On the other

hand, when

4|c11|2|c12|2|c22|2|c21|2
(|c11|4 − |c21|4)(|c22|4 − |c12|4)

> 1, (8.36)

the slope region of TDMA is larger than the slope region of multiplexed transmis-

sion. Hence, TDMA should be used in this scenario. Finally, when

4|c11|2|c12|2|c22|2|c21|2
(|c11|4 − |c21|4)(|c22|4 − |c12|4)

= 1, (8.37)
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the slope regions of TDMA and multiplexed transmission converge to the same

triangular region. In this case, TDMA should still be preferred due to its rep-

resentational advantages. These results show parallels to those obtained in [9]

in the absence of secrecy constraints. In [9], the function that is compared with

one is 4 |c12|2
|c22|2

|c21|2
|c11|2

. From (8.34), we see that when we vary the channel parameters,
4|c11|2|c12|2|c22|2|c21|2

(|c11|4−|c21|4)(|c22|4−|c12|4)
is more likely to be greater than one than 4 |c12|2

|c22|2
|c21|2
|c11|2

is. This

observation lets us conclude that under secrecy constraints, TDMA is more likely

to be the optimal transmission scheme. In particular, when

(
|c11|2
|c21|2

− |c21|2
|c11|2

)(
|c22|2
|c12|2

− |c12|2
|c22|2

)
< 4 <

|c11|2
|c21|2

|c22|2
|c12|2

(8.38)

TDMA is preferred in secure transmissions while multiplexed transmission is pre-

ferred when there are no secrecy limitations. In Fig.8.4, we plot the slope regions

when the channel parameters are |c11|2 = |c22|2 = 1, |c12|2 = 0.4, |c21|2 = 0.5. As

explained above, secrecy slope regions are inside the slope regions of Gaussian

interference channel with no secrecy constraints. For secure transmissions, the

region of TDMA is larger than that of multiplexed transmission while for trans-

missions without secrecy, the region of multiplexed transmission is larger. In Fig.

8.5, we plot the slope regions when the channel parameters are |c11|2 = |c22|2 =

1, |c12|2 = 0.1, |c21|2 = 0.2. Here, we note that multiplexed transmission scheme is

superior to TDMA scheme with and without secrecy constraints.

8.4 Conclusion

In this chapter, we have studied the achievable secrecy rates over Gaus-

sian interference channel for TDMA, multiplexed and artificial noise schemes.
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Figure 8.4: Slope regions in the Gaussian interference channel. |c11|2 = |c22|2 =
1, |c12|2 = 0.4, |c21|2 = 0.5

Although usually TDMA has the worst performance [45], we have noted that

only TDMA can achieve positive secrecy rates for both users in the high-SNR

regime. In the low-power regime, we have shown that TDMA is optimal when
4|c11|2|c12|2|c22|2|c21|2

(|c11|4−|c21|4)(|c22|4−|c12|4)
> 1. We have also shown that secrecy constraints introduce

penalty in both the minimum bit energy and slope. Finally, we have shown that

TDMA is more likely to be optimal in the presence of secrecy limitations.
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Appendix A

Proof of Theorem 1

Note that in AF relaying,

I(xs; yd, yd,r|ĥsr, ĥsd, ĥrd) = I(xs1; yd1|ĥsd) + I(xs2; yd2, yd,r|ĥsr, ĥsd, ĥrd) (A.1)

where the first mutual expression on the right-hand side of (A.1) is for the direct

transmission and the second is for the cooperative transmission. In the direct

transmission, we have

yd1 = ĥsdxs1 + zd1. (A.2)

In this setting, it is well-known that the worst-case noise zd1 is Gaussian [28,

Appendix] and xs1 with independent Gaussian components achieves

inf
pzd1 (·)

sup
pxs1 (·)

I(xs1; yd1|ĥsd) = E

{
(1 − 2α)(m − 2) log

(
1 +

P′
s1|ĥsd|2
σ2

zd1

)}
. (A.3)

We now investigate the cooperative phase. Comparing (2.14) and (2.15) with (2.17)

and (2.18), we see that non-overlapped can be obtained as a special case of over-
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lapped AF scheme by letting x′s2 = 0. Therefore, we concentrate on the more

general case of overlapped transmission. For better illustration, we rewrite the

symbol-wise channel input-output relationships in the following:

yr[i] = ĥsrxs2[i] + zr[i], yd2[i] = ĥsdxs2[i] + zd2[i], (A.4)

for i = 1 + (1 − 2α)(m − 2), ..., (1 − α)(m − 2), and

yd,r[i] = ĥsdx′s2[i] + ĥrdxr[i] + zd,r[i], (A.5)

for i = (1 − α)(m − 2) + 1, ..., m − 2. In AF, the signals received and transmitted

by the relay have following relation:

xr[i] = βyr[i − α(m − 2)], where β 6
√

E{|xr|2}
|ĥsr|2E{|xs2|2}+ E{|zr|2}

. (A.6)

Now, we can write the channel in the vector form

 yd2[i]

yd,r[i + α(m − 2)]


︸ ︷︷ ︸

y̌d[i]

=

 ĥsd 0

ĥrdβĥsr ĥsd


︸ ︷︷ ︸

A

 xs[i]

xs[i + α(m − 2)]


︸ ︷︷ ︸

x̌s[i]

+

 0 1 0

ĥrdβ 0 1


︸ ︷︷ ︸

B


zr[i]

zd2[i]

zd,r[i + α(m − 2)]


︸ ︷︷ ︸

z[i]

(A.7)

where i = 1 + (1 − 2α)(m − 2), ..., (1 − α)(m − 2) and β 6
√

E{|xr|2}
|ĥsr|2E{|xs|2}+E{|zr|2}

.

Note that we have defined xs = [xT
s1, xT

s2, x′Ts2 ]
T, and the expression in (A.7) uses the

property that xs2(j) = xs(j + (1 − 2α)(m − 2)) and x′s2(j) = xs(j + (1 − α)(m − 2))
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for j = 1, . . . , α(m − 2). The input-output mutual information in the cooperative

phase can now be expressed as

I(xs2, x′s2; yd2, yd,r|ĥsr, ĥsd, ĥrd) =
(1−α)(m−2)

∑
i=1+(1−2α)(m−2)

I(x̌s[i]; y̌d[i]|ĥsr, ĥsd, ĥrd) = α(m − 2)I(x̌s; y̌d|ĥsr ĥsd, ĥrd)

(A.8)

where in (A.8) we removed the dependence on i without loss of generality. Note

that x̌s and y̌d are defined in (A.7). Now, we can calculate the worst-case capacity

by proving that Gaussian distribution for zr, zd2, and zd,r provides the worst case.

We employ techniques similar to that in [28, Appendix]. Any set of particular

distributions for zr, zd2, and zd,r yields an upper bound on the worst case. Let us

choose zr, zd2, and zd,r to be zero mean complex Gaussian distributed. Then as in

[40, Appendix II],

inf
pzr (·),pzd2 (·),pzd,r (·)

sup
pxs2 (·),px′s2

(·)
I(x̌s; y̌d|ĥsr, ĥsd, ĥrd) ≤ E log det

(
I + (AE{x̌sx̌†

s}A†)(BE{zz†}B†)−1
)

(A.9)

where the expectation is with respect to the fading estimates. To obtain a lower

bound, we compute the mutual information for the channel in (A.7) assuming that

x̌s is a zero-mean complex Gaussian with variance E{x̌sx̌†
s}, but the distributions

of noise components zr, zd2, and zd,r are arbitrary. In this case, we have

I(x̌s; y̌d; |ĥsr, ĥsd, ĥrd) = h(x̌s|ĥsr, ĥsd, ĥrd)− h(x̌s|y̌d, ĥsr, ĥsd, ĥrd)

> log πeE{x̌sx̌†
s} − log πe var(x̌s|y̌d, ĥsr, ĥsd, ĥrd) (A.10)
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where the inequality is due to the fact that Gaussian distribution provides the

largest entropy and hence [14, Chap. 9]

h(x̌s|y̌d, ĥsr, ĥsd, ĥrd) ≤ log πe var(x̌s|y̌d, ĥsr, ĥsd, ĥrd).

Above, h() denotes the differential entropy functional. From [28, Lemma 1, Ap-

pendix], we know that

var(x̌s|y̌d, ĥsr, ĥsd, ĥrd) 6 E
{
(x̌s − ˆ̌xs)(x̌s − ˆ̌xs)

†|ĥsr, ĥsd, ĥrd

}
(A.11)

for any estimate ˆ̌xs given y̌d, ĥsr, ĥsd, and ĥrd. If we substitute the linear mini-

mum mean-square-error (LMMSE) estimate ˆ̌xs = Rx̌y̌R−1
y̌ y̌d, where Rx̌y̌ and Ry̌

are cross-covariance and covariance matrices respectively, into (A.10) and (A.11),

we obtain1

I(x̌s; y̌d|ĥsr, ĥsd, ĥrd)≥E log det
(

I + (E{|xs|2}AA†)(BE{zz†}B†)−1
)

. (A.12)

Since the lower bound (A.12) applies for any noise distribution, we can easily

see that

inf
pzr (·),pzd2 (·),pzd,r (·)

sup
pxs2 (·),px′s2

(·)
I(xs; y̌d|ĥsr, ĥsd, ĥrd) > E log det

(
I + (AE{x̌sx̌†

s}A†)(BE{zz†}B†)−1
)

.

(A.13)

1Here, we use the property that det(I + AB) = det(I + BA).
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From (A.9) and (A.13), we conclude that

inf
pzr (·),pzd2 (·),pzd,r (·)

sup
pxs2 (·),px′s2

(·)
I(xs; y̌d|ĥsr, ĥsd, ĥrd)

= E log det
(

I + (AE{x̌sx̌†
s}A†)(BE{zz†}B†)−1

)
(A.14)

= E log

{
1 +

Ps1|ĥsd|2
σ2

zd2

+ f
(

Ps1|ĥsr|2
σ2

zr

,
Pr1|ĥrd|2

σ2
zd,r

)

+ q
(

Ps1|ĥsd|2
σ2

zd2

,
Ps2|ĥsd|2

σ2
zd,r

,
Ps1|ĥsr|2

σ2
zr

,
Pr1|ĥrd|2

σ2
zd,r

)}
(A.15)

In obtaining (A.15), we have used the fact that E{x̌sx̌†
s} =

Ps1 0

0 Ps2

. Note

also that in (A.15), Ps1, Ps2 and Pr1 are the powers of source and relay symbols

and are given in (2.29)–(2.31). Moreover, σ2
zd2

, σ2
zr , σ2

zd,r
are the variances of the

noise components defined in (2.20). Now, combining (2.23), (A.1), (A.3), and

(A.15), we obtain the achievable rate expression in (2.24). Note that (2.25)–(2.28)

are obtained by using the expressions for the channel estimates in (3.8)–(2.7) and

noise variances in (2.21) and (2.22). �
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Appendix B

Proof of Theorem 2

For DF with repetition coding in overlapped transmission, an achievable rate ex-

pression is

I(xs1; yd1|ĥsd) + min
{

I(xs2; yr|ĥsr), I(xs2, x′s2; yd, yd,r|ĥsd, ĥrd)
}

. (B.1)

Note that the first and second mutual information expressions in (B.1) are for the

direct transmission between the source and destination, and direct transmission

between the source and relay, respectively. Therefore, as in the proof of Theorem

1, the worst-case achievable rates can be immediately seen to be equal to the first

term on the right-hand side of (2.32) and I1, respectively.

In repetition coding, after successfully decoding the source information, the

relay transmits the same codeword as the source. As a result, the input-output
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relation in the cooperative phase can be expressed as

 yd2[i]

yd,r[i + α(m − 2)]


︸ ︷︷ ︸

y̌d[i]

=

 ĥsd 0

ĥrdβ ĥsd


︸ ︷︷ ︸

A

 xs[i]

xs[i + α(m − 2)]


︸ ︷︷ ︸

x̌s[i]

+

 zd2[i]

zd,r[i + α(m − 2)]


︸ ︷︷ ︸

z[i]

. (B.2)

where β ≤
√

E{|xr|2}
E{|xs|2}

. From (B.2), it is clear that the knowledge of ĥsr is not re-

quired at the destination. We can easily see that (B.2) is a simpler expression than

(A.7) in the AF case, therefore we can adopt the same methods as employed in

the proof of Theorem 1 to show that Gaussian noise is the worst noise and I2 is

the worst-case rate. �
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