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The advent of nano-technology has made possible the manipulation of electron or light

through nanostructures. For example, a nano-tip in near-field optical microscopy al-

lows imaging beyond the diffraction limit, and a nano-fabricated hologram is used to

produce electron vortex beam. While most schemes of electron control utilize only

static components, dynamic electron beam control using both light and nanostruc-

tures has not yet been realized. In this dissertation, we explore this possibility and

study the interplay between electron, light, and nanostructures. A understanding

of such a system may facilitate dynamic electron beam control or even bring new

insights to fundamental quantum mechanics.

The direct interaction between light and free electrons is weak, but the presence

of nanostructures may modify the electron-light interaction in different ways. First,

nanostructures may change a free electron’s behavior by deforming the local vacuum

field. When the electron’s behavior is modified, its interaction with light could change

too. Second, the illumination of light on nanostructures may give rise to induced sur-

face charges or surface plasmon polaritons. The near-field of these charge structures

could couple strongly with free electrons.

To learn about electron dynamics in the vacuum field, we start with a classical

harmonic oscillator. When the oscillator is immersed in the vacuum field, its inter-

action with light could be modified. Our study shows that the harmonic oscillator

exhibits an integer-spaced spectrum instead of a single resonance. On the other hand,



to study how induced surface charges could mediate interaction between light and free

electrons, we illuminated different surfaces with a low-intensity laser. As an electron

beam is brought close to a surface that is illuminated with light, electron deflection

was observed. This is considered to be a preliminary study to the effect of light on

the electrons in the presence of nanostructures.

The implications of our studies are as follows. First, coherent electron-beam split-

ting may be possible through using spatial-temporal light modes on nanostructures.

Second, electron beams could be used to probe optically induced surface near-fields.

Further studies in these directions seem promising and may result in interesting dis-

coveries.



iv

DEDICATION

May all the glory be to the Lord God.

To my father Huang Ming-Hsien and my mother Chu Huey-Chen.

By faith we understand that the worlds were prepared by the word of God, so that

what is seen was not made out of things which are visible. (Hebrews 11:3)



v

PREFACE

• Chapter 1 is accepted by Journal of Computational Methods in Physics.

• Chapter 2 is submitted to Physical Review A.

• Chapter 3 is submitted to Journal of Physics D.

• Chapter 4 is published in Annalen der Physik [Ann. Phys. (Berlin) 524, 1

(2012)].

We gratefully acknowledge funding supports from the National Science Foundation.



vi

ACKNOWLEDGMENTS

“In der Beschränkung zeigt sich der Meister.”

(The master shows himself in his limitation.)

My five-year doctoral study has been filled with adventures and excitement. At

the same time, it has also been a humbling experiencing, expanding my scope as a

scientist. As an apprentice under Prof. Batelaan, I have felt blessed to work in an

environment where exciting discussions of physics never end. Thank you, Herman,

for much inspiration and the mentorship that have helped me grow into maturity.

I would like to thank the members of my Ph.D. committee, who have been sup-

portive of me in finishing my degree. Thank you, Prof. Herman Batelaan, Prof. Kees

Uiterwaal, Prof. Brad Shadwick, Prof. Evgeny Tsymbal, Prof. David Swanson, and

Prof. Timothy H. Boyer. I would like to give special thanks to Prof. Swanson and

Prof. Shadwick. Prof. Swanson has been a strong support in helping me advance

my supercomputing skills, while Prof. Shadwick has alway made time to have long

conversations with me and give insightful advice.

I would like to thank all the faculty members of the physics department for

making it a nourishing academic environment. Special thanks to Prof. Kirill Be-

lashchenko, Prof. Ilya Fabrikant, Prof. Sy-Hwang Liou, Prof. Peter Dowben, Prof. An-

thony Starace, Prof. Martin Centurion, and Prof. Timothy Gay for many physics

discussions and practical advice that made my Ph.D. experience successful.

I would like to thank all the staff of the physics department. They have made the

stressful life in academia much easier. Especially, I would like to warmly thank our



vii

former department secretary, Kay Haley, for she has rescued my career at one of my

most difficult times in life.

I would like to give thanks to the my fellow graduate students, who have helped

and inspired me through graduate school. Thank you, Mu Sai, Joan Dreiling, Roger

Bach, Scot McGregor, Maria Becker, Eric Jones, Peter Beierle, Kristin Kraemer,

Yang Jie, Yin Xiaolu, Keisuke Fukutani, Shashi Poddar, Anil Kumar, Benjamin

Hage, and Alex Stamm. I would also like to give special thanks to Mu Sai and Joan

Dreiling. While Sai is always the first person I went to for physics helps, Joan’s

radiant personality has encouraged the graduate community and helped us keep our

sanity. Special thanks to Dr. Adam Carprez, for his expertise in supercomputing

that has enabled much of my research work.

I would like to give special thank to Dr. Diane Baxter of San Diego Supercom-

puting Center for unceasing encouragement, to Prof. Federico Capasso of Harvard

University for giving support to our work on the plasmonic attenna and vacuum field

physics, to Prof. Peter Milonni of Los Alamos National Laboratory for advice and

encouragement.

I would like to thank my “family” in Lincoln Nebraska. Thank you, Dan and

Angel Schiermann, Samuel and Patience Noonoo, Mike and Sherri Bossard, and Deb

Stephens for much love and the memories. Also, special thanks to all the brothers

and sisters at the International Student Fellowship, the Lincoln Berean Church, and

the Lincoln Chinese Christian Church for being my supporting networks during these

years.

Finally, I would like to thank my beloved family in Taiwan. Thank you, Dad,

Mom, Amy, Johnny, and Jordan for accompanying me through my Ph.D. years. Your

love and support has kept me going strong and enabled me to soar for a brighter

future.



viii

Contents

Contents viii

List of Figures xi

Introduction to Dissertation xiii

1. Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

2. Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

3. Research Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

3.1 Dynamics of a Classical Harmonic Oscillator in Vacuum Field . . xvi

3.2 Quantized Excitation Spectrum of a Classical Particle . . . . . . . xvi

3.3 Electron Deflection by Light-Induced Surface Near-Field . . . . . xvii

3.4 Ultrafast Temporal Response of a Plasmonic Structure . . . . . . xviii

3. Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Bibliography xxii

1 Dynamics of a Classical Harmonic Oscillator in Vacuum Field 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Theory of Stochastic Electrodynamics . . . . . . . . . . . . . . . . . . 4

1.2.1 Brief Review of Boyer’s Work . . . . . . . . . . . . . . . . . . 4



ix

1.2.2 Probability Distribution . . . . . . . . . . . . . . . . . . . . . 7

1.3 Methods of Numerical Simulation . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Vacuum Field in Bounded Space . . . . . . . . . . . . . . . . 8

1.3.2 Equation of Motion in Numerical Simulation . . . . . . . . . . 15

1.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 Particle Trajectory and the Probability Distribution . . . . . . 21

1.4.2 Phase Averaging and Ensemble Sampling . . . . . . . . . . . . 29

1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Discussions: Application of Simulation to Other Physical Systems . . 35

Bibliography 38

2 Quantized Excitation Spectrum of a Classical Particle 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Quantum Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Classical Harmonic Oscillator in the Vacuum Field . . . . . . . . . . 48

2.4 Analysis and Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . 58

Bibliography 60

3 Electron Deflection by Light-Induced Surface Near-Field 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Summary and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 71

Bibliography 73



x

4 Ultrafast Temporal Response of a Plasmonic Structure 75

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Model and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Discussion: Plasmonic Femtosecond Electron Swtich . . . . . . . . . . 85

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Bibliography 89

A The Vacuum Field in Unbounded and Bounded Space 93

A.1 Unbounded Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2 Bounded Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B Isotropic Polarization Vectors 99

C Repetitive Time 101

D Parallel Computing of the QM/SED Excitation Spectrum 104

E Plasmonic Antenna Work Highlighted in Annalen der Physik 126



xi

List of Figures

1 Trajectory and Distribution of a Harmonic Oscillator in Vacuum Field . xvii

2 Excitation Spectrum of a Harmonic Oscillator in Vacuum Field . . . . . xviii

3 Electron Deflection by a Surface Illuminated with Low-Intensity Light . . xix

4 Field Reconstruction from the Cross-Correlation Signal . . . . . . . . . . xx

1.1 Gaussian Probability Distribution of a Classical Harmonic Oscillator in

the Vacuum Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Isotropy of the Vacuum Field Modes in the Wavevector Space . . . . . . 15

1.3 Trajectory of the Harmonic Oscillator Under the Zero-Point Radition . . 23

1.4 Probability Distribution from Sequential Sampling . . . . . . . . . . . . 24

1.5 Probability Distribution within the Coherence Time . . . . . . . . . . . . 25

1.6 Constant Oscillation Amplitude within the Coherence Time . . . . . . . 26

1.7 Reconstructed Probability Distribution from Oscillation Amplitudes . . . 27

1.8 Probability Distribution from Ensemble Sampling . . . . . . . . . . . . . 30

1.9 Radiation Damping and Heisenberg’s Minimum Uncertainty . . . . . . . 31

1.10 Scalability of the SED Simulation in Parallel Computing . . . . . . . . . 32

1.11 Convergence of the SED Simulation . . . . . . . . . . . . . . . . . . . . . 33

1.12 Relation between the Trajectory and the Gaussian Probability Distribu-

tion of a Classical Harmonic Oscillator in Vacuum Field . . . . . . . . . 34



xii

1.13 Proposed Mechanism for the Electron Double-Slit Diffraction via the Vac-

uum Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1 Isotropic Selection of Vacuum Field Modes in Wavevector Space . . . . . 48

2.2 Quantized Excitation Spectrum of a Classical Harmonic Oscillator in Vac-

uum Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1 Experimental Setup for Electron Deflection Experiment . . . . . . . . . . 64

3.2 Electron Deflection in Time . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Optical Electron Switch Working Distance . . . . . . . . . . . . . . . . . 67

3.4 Deflection Mechanism from Optically Induced Near-Field . . . . . . . . . 68

4.1 Cross-Correlation Measurement for Plasmonic Antenna Experiment . . . 80

4.2 Resonance Curve of Plasmonic Antenna . . . . . . . . . . . . . . . . . . 82

4.3 Cross-Correlation Signals from the Antenna and Glass Configurations . . 83

4.4 Pulse Field Reconstruction from the Cross-Correlation Signal . . . . . . 84

4.5 Proposed Femtosecond Electron Switch via Plasmonic Antenna . . . . . 87

C.1 Repetition Time of the Vacuum Field in the Simulation . . . . . . . . . . 103



xiii

Introduction to Dissertation

1. Research Motivation

Over the years, much progress has been made in the field of free electron control

using microscopic structure. In 1961, Jönsson first demonstrated electron diffraction

with micro-slits [1]. Then, Barwick et al. [2] used a nano-grating to obtain a high-

quality electron interference pattern up to the 21st order. Verbeeck et al. [3] used a

nano-hologram to produce electron vortex beams which is analogous to producing an

optical vortex beams from micro-hologram. Recently, Bach et al. [4] used a movable

mask to cover a double-slit and showed the transition between the double-slit and

single-slit diffraction patterns. While static control of free electrons using material

structures is a maturing field, dynamic control of free electrons using light has not

made much progress. The major obstacle is the requirement for a high-intensity

laser, as the direct interaction between light and free electrons is weak [5]. However,

light affected by a material surface can behave much differently from that in free

space, and the electron-light interaction there may be modified as well. In view of the

rapid advancement of plasmonics and nanophotonics [6, 7, 8, 9], we envision dynamic

electron control using both light and nanostructures.

With the presence of nanostuctures, the electron dynamics can be altered in two

ways. First, the local vacuum field as deformed by nanostructures can change the
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behavior of an electron [10, 11, 12, 13, 14, 15]. In the past decade, much interest

was generated in measuring the Casimir force [15, 16, 17, 18, 19, 20, 21, 22, 23,

24]. As the Casimir force is a result of deforming the vacuum field with material

boundaries, measurements of Casimir forces using micro- or nano-structures confirm

that microscopic structures can cause enough deformation of the vacuum field to

produce measurable effects. Thus, it may be reasonable to assume that the use

of nanostructures changes the local vacuum field, and that electron dynamics near

nanostructures, as well as its interaction with light could change accordingly. Second,

nanostructures may obtain light-induced surface charge or surface plasmon polaritons

when interacting with light. The near-field of these charge structures may affect the

interaction with electrons. Thus, the problem of weak interaction between light and

free electrons can perhaps be remedied by the use of the nanostructure.

2. Research Overview

In the first part of our study, we consider the interaction between electrons and

the vacuum field. Here we use a classical theory as an approximation instead of

the full quantum electrodynamics. The theoretical framework of electron-vacuum

interaction was first formulated in 1947 right after the experimental discovery of the

Lamb shift [10, 11]. While the discovery of the vacuum field marks a milestone in

the development of fundamental quantum mechanics [25, 26], some also considered

how classical mechanics should be modified under the constant disturbance of the

omnipresent vacuum field [27, 28]. The classical theory that accounts for the vacuum

field effect is generally known as stochastic electrodynamics (SED)1. Being a fully

classical theory, SED does not employ any quantization condition and thus is expected

1This name is sometimes used interchangeably with random electrodynamics (RED).
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to only approximate the quantum mechanical results. However, it has been shown in

certain physical systems that SED reproduces the exact quantum mechanical results

[29, 30, 31]. As SED accounts for the Casimir force correctly [32, 33, 34], it may be

easier to approach our problem using this classical theory instead of the full quantum

electrodynamics.

We started with examining the detailed dynamics of a classical harmonic oscillator

in the vacuum field. Computer simulation is used to visualize the temporal evolution

of the oscillator and study how the Gaussian probability distribution emerges. Espe-

cially, the relation between sequential and ensemble samplings is studied. We also use

the harmonic oscillator to study how the vacuum field can change the electron-light

interaction. The excitation spectrum of a classical harmonic oscillator is recorded

with and without the vacuum field. The results are also compared with a quantum

mechanical calculation.

The second part of our study is an experimental investigation of nanostructures’

response to laser light. In one experiment, a surface of nano-grooves is illuminated

with a low-power laser and compared to the behavior of a flat surface. We record

the deflection of a free electron beam as it is brought near the surface. In another

experiment, we use a femtosecond laser to probe the temporal response of a surface

patterned with nano-rods. The cross-correlation signal of the input and reflected light

is analyzed to infer the nano-rods’ response time scale. We infer that the surface

charge on the nano-rods can respond to the femtosecond laser promptly.

3. Research Highlights

There are four chapters in this dissertation, and each chapter corresponds to a re-

search topic. The first two chapters are theoretical studies that deal with the inter-
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action between the vacuum field and a classical harmonic oscillator. The last two

chapters are experimental studies that investigate the interaction between light and

nanostructures. The following presents the main results of each chapter.

3.1 Dynamics of a Classical Harmonic Oscillator in Vacuum

Field

In Chapter 1, we acquaint ourselves with vacuum field physics using a test system of

a classical harmonic oscillator. The numerical study focused on the visualization and

the analysis of the trajectory (see Figure 1). In studying the trajectory, we looked

for the underlying mechanism of the oscillator’s Gaussian probability distribution.

We found that the Gaussian probability distribution is formed from many classical

double-peak probability distributions with different oscillating amplitudes. Oscilla-

tions that are at least one coherence time apart become weakly correlated, thus the

sequential sampling gives the same result as the ensemble sampling. Collecting the

various oscillation amplitudes at time points separated by several coherence time, the

Gaussian probability distribution can be reconstructed from classical double-peak

distributions.

3.2 Quantized Excitation Spectrum of a Classical Particle

Chapter 2 illustrates how electron-light interaction can be modified by the presence

of vacuum field using the example of a driven harmonic oscillator. As a light pulse is

shone on a harmonic oscillator, the excitation energy is recorded as a function of pulse

frequency. In the absence of vacuum field, the classical excitation spectrum possesses

a single resonance peak. With the presence of vacuum field, the excitation spectrum

becomes integer-spaced and the peak heights agree with the quantum calculation (see



xvii

Figure 1: Trajectory and probability distribution of an harmonic oscillator with (top)
and without (bottom) the perturbation from vacuum field.

Figure 2). A perturbation analysis is performed in addition to the numerical simu-

lation, which confirms the underlying mechanism for the integer-spaced spectrum to

be parametric resonance. The peak heights are determined by the ensemble statistics

which are related to the details of the vacuum field.

3.3 Electron Deflection by Light-Induced Surface Near-Field

In Chapter 3, we turn to experimental studies of interaction between nanostructures

and light. When a surface of nano-grooves is illuminated with light, the intensity

gradient produces a surface charge pattern that mimics the beam shape. A free

electron beam is brought close to the surface. As light is turned on, large deflection is

observed. This deflection is much stronger than that through image charge [2]. The

difference between the two deflection processes is shown by chopping the laser light

(see Figure 3). The power of the laser used in the experiment is as low as several

mW, so the direct interaction between laser and free electron is negligible.
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Figure 2: Excitation spectrum of a classical harmonic oscillator in vacuum field.

3.4 Ultrafast Temporal Response of a Plasmonic Structure

The optical response of a nanostructure is studied in Chapter 4. To determine how

fast a nanostructure can respond to a driving field, a silicon nitride surface patterned

with nano-rods is illuminated with a femtosecond laser pulse. We analyzed the cross-

correlation signal of the input and the reflected light to infer the response time of the

nanostructure (see Figure 4). It is found that the nanostructure responds promptly to

the driving field. Although we do not know yet if the temporal response depends on

the geometry or the size of the nanostructures, we speculate that ultrashort pulse may

be used together with specially designed nanostructure to achieve ultrafast dynamic

control of free electron.
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Block 

6μs 

fmax≈ 2 MHz 

Figure 3: Electron deflection by a surface illuminated with low-intensity light.

3. Conclusions and Outlook

In our theoretical studies, we showed that vacuum field can play a major role in

classical electron dynamics. Properties that are considered as intrinsic, such as exci-

tation spectra or the uncertainty relation between position and momentum, may be

subject to change when the vacuum field is modified. In our experimental studies, a

surface was shown to cause significant deflection of free electron through an optically

induced surface near-field. This may be seen as a precursor that motivates a study of

dynamic electron control using light and nanostructures. We speculate that designed

nanostructures and ultrashort light pulses may be used to achieve ultrafast dynamic

control of free electrons.

As the next step of our theoretical study, it may be interesting to further explore

the role of the vacuum field in quantum mechanical properties of matter. An inter-

esting topic would be double-slit diffraction. There have been claims in the literature
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Figure 4: Field reconstruction from the cross-correlation signal.

that the wave-particle duality can be derived in a SED system [35, 36]. However, no

solid evidence was provided. In view that the Heisenberg uncertainty relation and

quantized excitation spectrum can both be obtained from such a classical system, it

may be reasonable to consider if a similar mechanism exists to produce slit-diffraction.

Such a study will touch on the heart of quantum mechanics [37], and a positive result

may motivate many interesting experiments in foundational quantum mechanics.

As a natural extension of our electron deflection experiment, two laser beams

may be used on a nano-structured surface with independent controls on the beams’

frequencies, polarizations, phase, and incident angles. Different combinations of the

above parameters can produce different spatial and temporal profiles of light on the

surface. As the profile of light changes, the induced surface-charge distribution follows

too. It is interesting to investigate the interaction between the free electron beam with
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various near-field patterns. We anticipate that it may even be possible to use induced

near-field light as a light grating and split an electron beam coherently. Moreover, it

may be possible to make a traveling light-grating from the near-field and impart a

discrete amount of momentum on a free electron beam.
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Chapter 1

Dynamics of a Classical Harmonic

Oscillator in Vacuum Field

Stochastic electrodynamics (SED) predicts a Gaussian probability distribution for a

classical harmonic oscillator in the vacuum field. This probability distribution is iden-

tical to that of the ground state quantum harmonic oscillator. Thus, the Heisenberg

minimum uncertainty relation is recovered in SED. To understand the dynamics that

gives rise to the uncertainty relation and the Gaussian probability distribution, we

perform a numerical simulation and follow the motion of the oscillator. The dynam-

ical information obtained through the simulation provides insight to the connection

between the double-peak probability distribution and the Gaussian probability dis-

tribution.
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1.1 Introduction

According to quantum electrodynamics, the vacuum is not a tranquil place. A

background electromagnetic field, called the electromagnetic vacuum field, is always

present, independent of any external electromagnetic source [1]. The first experi-

mental evidence of the vacuum field dates back to 1947 when Lamb and his graduate

student Retherford found an unexpected shift in the hydrogen fine structure spectrum

[2, 3]. The physical existence of the vacuum field has inspired an interesting modifica-

tion to the classical mechanics. The modified theory is generally known as stochastic

electrodynamics (SED) [4]. As a variation of classical electrodynamics, SED adds

a background electromagnetic vacuum field to the classical mechanics. The vacuum

field as formulated in SED has no adjustable parameters except that each field mode

has a random initial phase and that the field strength is set by the Planck constant,

~. With the aid of this background field, SED is able to reproduce a number of results

that were originally thought to be pure quantum effects [1, 4, 6, 7, 8, 9].

In the case of a classical harmonic oscillator, the vacuum field forcing has caused

the particle’s dynamics to change. Boyer showed that the moments 〈xn〉 of a classical

harmonic oscillator in vacuum field are identical to those of the ground state quantum

harmonic oscillator [10]. As a consequence, its probability distribution obtains a

Gaussian shape (see Figure 1.1), and the Heisenberg minimum uncertainty relation

is satisfied. These interesting results were obtained analytically several decades ago.

If one wishes to draw a direct connection between the probability distribution and a

single particle’s dynamical behavior, some subtle issues still need to be addressed. To

be specific, as the probability distribution was obtained through averaging over the

phase that is in the vacuum field, it can reflect only the statistical behavior of particles.

To make a connection between the probability distribution and a single particle’s
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Figure 1.1: A comparison between the harmonic oscillators with and without the
vacuum field. Top: Without any external force except for the vacuum field, the SED
harmonic oscillator undergoes a motion that results in a Gaussian probability distri-
bution. This motion is investigated with our simulation. Bottom: In the absence of
the vacuum field or any external drive, a harmonic oscillator that is initially displaced
from equilibrium performs a simple harmonic oscillation with constant oscillation am-
plitude. The resulting probability distribution has peaks at the two turning points.

dynamical properties in time, one often needs to invoke the concept of ergodicity.

As the justification of the ergodic assumption for a SED system is challenging, we

will not attempt such an analysis. Instead, we take a numerical approach to obtain

the probability distribution directly from a single trajectory1, and we investigate

the relation between such a probability distribution and the particle’s dynamical

properties. Therefore, the questions that we want to address in this study are three:

Is the probability distribution constructed from a single trajectory still a Gaussian?

Does it satisfy Heisenberg’s minimum uncertainty? If the answers are yes, how does

1 It may be possible to use the central limit theorem to prove that the probability distribution
from a single trajectory is Gaussian. However, here the assumption for the central limit theorem
would be that the positions in time are independent random variables. This property can not be
easily justified for our system, because the correlation between the motion at two points in time
persists beyond many cycles of oscillation.
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the driving of the vacuum field turn the classic double-peak distribution (that one

finds with the vacuum field) into a Gaussian distribution?

Additionally, most work in the field of SED is analytical, and numerical studies are

rare [11, 12, 13]. The advantage of numerical simulation is that it may be extended

to physical systems that do not have and analytical solution. The major challenge for

the numerical simulation is to account for the physics of the vacuum field that has a

spectrum of infinite bandwidth. A representative sampling of the vacuum field modes

is thus the key for the success of numerical simulations. In this numerical study, we

use a simple physical system (i.e. harmonic oscillator), to develop a numerical method

for which the results can be compared to the results of known analytical calculation.

We document the details of our simulation so that it can be used by others.

1.2 Theory of Stochastic Electrodynamics

1.2.1 Brief Review of Boyer’s Work

In his 1975 papers [4, 10], Boyer calculated the statistical features of an SED har-

monic oscillator, and the Heisenberg minimum uncertainty relation is shown to be

satisfied for such an oscillator. The vacuum field used in Boyer’s work arises from the

homogeneous solution of Maxwell’s equations, which is assumed to be zero in classical

electrodynamics [4]. In an unbounded (free) space, the vacuum field has an integral
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form2,

Evac(r, t) =
2∑

λ=1

∫
d3k ε(k, λ)

η(k, λ)

2

(
a(k, λ)ei(k·r−ωt) + a∗(k, λ)e−i(k·r−ωt)

)
, (1.1)

η(k, λ) ≡
√

~ω
8π3ε0

, (1.2)

a(k, λ) ≡ eiθ̃(k,λ), (1.3)

where ω = c|k|, and θ̃(k, λ) is the random phase uniformly distributed in [0, 2π]. The

integral is to be taken over all k-space. The two unit vectors, ε(k, 1) and ε(k, 2),

describe a polarization basis in a plane that is perpendicular to the wave vector k,

ε(k, λ) · k = 0. (1.4)

Furthermore, the polarization basis vectors are chosen to be mutually orthogonal,

ε(k, 1) · ε(k, 2) = 0. (1.5)

To investigate the dynamics of the SED harmonic oscillator, Boyer used the dipole

approximation,

k · r� 1, (1.6)

to remove the spatial dependence in the vacuum field, Eq. (1.1). Therefore, the

equation of motion for an SED harmonic oscillator used in Boyer’s analysis is

mẍ = −mω2
0x+mΓ

...
x + qEvac,x(t), (1.7)

2 A detailed account of the vacuum field in unbounded space is given in Appendix A.1.
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where Γ ≡ 2q2

3mc3

1

4πε0
is the radiation damping parameter, m is the mass, q is the

charge, and ω0 is the natural frequency. The x-component of the vacuum field in

Eq. (1.7) is

Evac,x(t) =
2∑

λ=1

∫
d3k εx(k, λ)

η(k, λ)

2

(
a(k, λ)e−iωt + a∗(k, λ)eiωt

)
, (1.8)

and the steady-state solution is obtained as

x(t) =
q

m

2∑
λ=1

∫
d3k εx(k, λ)

η(k, λ)

2

(
a(k, λ)

C(k, λ)
e−iωt +

a∗(k, λ)

C∗(k, λ)
eiωt
)
, (1.9)

where C(k, λ) ≡ (−ω2 + ω2
0) − iΓω3. Additionally, using the condition of sharp

resonance,

Γω0 � 1, (1.10)

Boyer further calculated the standard deviation of position and momentum from

Eq. (1.9) by averaging over the random phase θ̃ [10],

σx =

√
〈x2〉θ̃ − 〈x〉

2
θ̃ =

√
~

2mω0

, (1.11)

σp =

√
〈p2〉θ̃ − 〈p〉

2
θ̃ =

√
~mω0

2
, (1.12)

where the phase averaging 〈 〉θ̃ represents the ensemble average over many realiza-

tions. In each realization, the random phase θ̃ of the vacuum field is different. The

above result satisfies the Heisenberg minimum uncertainty relation,

σxσp =
~
2
. (1.13)
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From an energy argument, Boyer showed that this uncertainty relation can also be

derived from a delicate balance between the energy gain from the vacuum field and

the energy loss through radiation damping [4].

1.2.2 Probability Distribution

Given the knowledge of the moments 〈xn〉θ̃, the Fourier coefficients Fθ̃(k) of the

probability distribution Pθ̃(x) can be determined by Taylor expanding e−ikx in powers

of xn,

Fθ̃(k) =

∫ +∞

−∞
e−ikxPθ̃(x) dx =

∞∑
n=0

(−ik)n

n!

∫ +∞

−∞
xnPθ̃(x) dx =

∞∑
n=0

(−ik)n

n!
〈xn〉θ̃.

(1.14)

Using Eq. (1.9) and the relation from Boyer’s paper [10]

〈
e±i(θ̃(k,λ)+θ̃(k′,λ′))

〉
θ̃

= 0,〈
e±i(θ̃(k,λ)−θ̃(k′,λ′))

〉
θ̃

= δλ′,λδ
3(k′ − k),

(1.15)

the moments 〈xn〉θ̃ can be evaluated,

〈
x2m+1

〉
θ̃

= 0,〈
x2m
〉
θ̃

=
(2m)!

m!2m

(
~

2mω0

)m
,

(1.16)

where m is a natural number. Consequently, only even-power terms are contributing

in Eq. (1.14), and the Fourier coefficients Fθ̃(k) can be determined,

Fθ̃(k) =
∞∑
m=0

(−ik)2m

(2m)!

〈
x2m
〉

=
∞∑
m=0

1

m!

(−~k2

4mω0

)m
= exp

(
− ~

4mω0

k2

)
. (1.17)
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Therefore, although not explicitly given, it is implied by Boyer’s work [10] that the

probability distribution of the SED harmonic oscillator is

Pθ̃(x) =
1

2π

∫ +∞

−∞
eikxFθ̃(k) dk =

√
mω0

π~
exp

(
−mω0

~
x2
)
, (1.18)

which is identical to the probability distribution of the quantum harmonic oscillator

in the ground state3.

1.3 Methods of Numerical Simulation

1.3.1 Vacuum Field in Bounded Space

While the vacuum field in unbounded space is not subject to any boundary condition

thus every wave vector k is allowed [4], the field confined in a space of volume V

with zero value boundary condition has a discrete spectrum, and a summation over

infinitely many countable wave vectors k is required [1, 5]. In a simulation, it is

convenient to write the vacuum field in the summation form,

Evac =
∑
k,λ

√
~ω
ε0V

cos(k · r− ωt+ θ̃
kλ

)ε
kλ
, (1.19)

where a
kλ
≡ eiθ̃kλ , ω = c|k|, θ̃

kλ
is the random phase uniformly distributed in [0, 2π],

and V is the volume of the bounded space. A derivation of the summation form of

the vacuum field in bounded space is given in Appendix A.2.

While the spatial boundary of the vacuum field affects the distance between ad-

jacent wave vectors in k-space, the spectral width of the vacuum field is unlimited.

3 This result is consistent with the phase space probability distribution given in Marshall’s work
[14].
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In Boyer’s analysis, the infinite bandwidth of the vacuum field is reduced to a finite

value via the use of the sharp resonance condition. For a direct comparison between

the simulation and Boyer’s analysis, we also apply the sharp resonance condition and

sample only the wave vectors k whose frequencies is in [ω0 − ∆/2, ω0 + ∆/2]. Such

approximation is valid as long as the chosen frequency range ∆ completely covers the

characteristic resonance width Γω2
0 of the harmonic oscillator,

Γω2
0 � ∆. (1.20)

On the other hand, the distribution of the allowed wave vectors k depends on the

specific shape of the bounded space. In a cubic space of volume V , the allowed

wave vectors k are uniformly distributed at cubic grid points, and the corresponding

vacuum field is

Evac =
2∑

λ=1

∑
(kx,ky ,kz)

√
~ω
ε0V

cos(k · r− ωt+ θ̃
kλ

)ε
kλ
. (1.21)

The sampling density is uniform and has a simple relation with the space volume V ,

ρk =
V

(2π)3
. (1.22)

Nevertheless, such uniform cubic sampling is not convenient for describing a frequency

spectrum, and it requires large number of sampled modes to reproduce the analytical

result. In order to sample only the wave vectors k in the resonance region, spherical

coordinates are used. For the sampling to be uniform, each sampled wave vector k

must occupy the same size of finite discrete volume element ∆3k ' k2 sin θ∆k∆θ∆φ.

To sample for modes in the resonance region with each mode occupying the same

volume size, we use a set of specifically chosen numbers (κijn, ϑijn, ϕijn) to sample the
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wave vectors k. For i = 1 . . . Nκ, j = 1 . . . Nϑ, and n = 1 . . . Nϕ,

κijn = (ω0 −∆/2)3/3c3 + (i− 1)∆κ,

ϑijn = −1 + (j − 1)∆ϑ,

ϕijn = R
(0)
ij + (n− 1)∆ϕ,

(1.23)

where R
(0)
ij is a random number uniformly distributed in [0, 2π], and the stepsizes are

constant,

∆κ =
[(ω0 + ∆/2)3/3c3 − (ω0 −∆/2)3/3c3]

Nκ − 1
, (1.24)

∆ϑ =
2

Nϑ − 1
, (1.25)

∆ϕ =
2π

Nϕ

. (1.26)

For fixed i and j, the sampled modes are arranged as a ring. The random number R
(0)
ij

should not be confused with the random phase in the vacuum field. In principle, a

uniform sampling in angle can be used, but we found the random sampling convenient.

A set of numbers (κijn, ϑijn, ϕijn) is then used for assigning the spherical coordinates

to each sampled wave vector k,

kijn =


kx

ky

kz

 =


kijn sin (θijn) cos (φijn)

kijn sin (θijn) sin (φijn)

kijn cos (θijn)

 , (1.27)



11

where

kijn = (3κijn)1/3,

θijn = cos−1(ϑijn),

φijn = ϕijn.

(1.28)

Therefore, each sampled wave vector kijn is in the resonance region and occupies

approximately the same size of finite discrete volume element,

∆3k ' k2 sin θ∆k∆θ∆φ ' ∆κ∆ϑ∆ϕ. (1.29)

The differential limit is approached when Nκ, Nϑ, and Nϕ are large. The numerical

result is expected to converge to the analytical solution in this limit. The use of

discrete sampling in this work is intended to approximate the analytical integral by

a numerical summation. Subsequently, the uncountable number of modes between

any sampled wave vectors are not taken into account. By increasing the sampling

numbers, what we hope to see is that the numerical simulation approaches to the

analytical results. If that turns out to be the case, it would indicate the uncountable

modes in between the sample wave vectors are not critical for the physics studied

here.

Under the uniform spherical sampling method (described by Eqs. (1.23), (1.27),

and (1.28)), the expression for the vacuum field, Eq. (1.19), becomes

Evac =
2∑

λ=1

∑
(κ,ϑ,ϕ)

√
~ω
ε0V

cos(k · r− ωt+ θ̃
kλ

)ε
kλ
. (1.30)

where k = kijn. It is worth noting that when the total number of wave vectors

Nk becomes very large, both uniform spherical and cubic sampling approach to each
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other because they both sample a large number of wave vectors in the same area of

k-space. In the limit of large sampling number Nk →∞, the two sampling methods

are equivalent4, and Eq. (1.22) can be used for both sampling methods to calculate

the volume factor V in Eqs. (1.21) and (1.30),

V = (2π)3ρk = (2π)3Nk

Vk
, (1.31)

where

Vk =
4π

3

(
ω0 + ∆/2

c

)3

− 4π

3

(
ω0 −∆/2

c

)3

. (1.32)

In the simulation, the summation indices in Eq. (1.30) can be rewritten as

Evac =
2∑

λ=1

Nκ∑
i=1

Nϑ∑
j=1

Nϕ∑
n=1

√
~ω
ε0V

cos(k · r− ωt+ θ̃
kλ

)ε
kλ
, (1.33)

where the multiple sums indicate a numerical nested loop, and the wave vector k =

kijn is chosen according to the uniform spherical sampling method. To reproduce the

analytical result, Nϑ and Nϕ need to be sufficiently large so that the wave vector k at

a fixed frequency may be sampled isotropically. In addition, a large Nκ is required for

representative samplings in frequency. As a result, Nk = NκNϑNϕ needs to be very

large when using uniform spherical sampling for numerical simulation. To improve

the efficiency of the computer simulation, we sample k at one random angle (θi, φi)

4 Keeping Vk as a fixed value, the relation ρk = 1/∆3k = Nk/Vk = V/(2π)3 implies that the
limit of large sampling number (i.e. Nk → ∞) is equivalent to the limit of unbounded space (i.e.
V → ∞). At this limit, the volume element becomes differential (denoted as d3k) and is free from
any specific shape associated with the space boundary. Therefore, all sampling methods for the
allowed wave vectors k become equivalent, and the summation approaches the integral. This is
consistent with the fact that no volume factor V is involved in the vacuum field integral, as shown
in Eq. (1.1).
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for each frequency. Namely, for i = 1 . . . Nω,

ki =


kx

ky

kz

 =


ki sin θi cosφi

ki sin θi sinφi

ki cos θi

 , (1.34)

where

ki = (3κi)
1/3,

θi = cos−1(ϑi),

φi = ϕi,

(1.35)

and

κi = (ω0 −∆/2)3/3c3 + (i− 1)∆κ,

ϑi = R
(1)
i ,

ϕi = R
(2)
i .

(1.36)

The stepsize ∆κ is specified in Eq. (1.24), ϑ = R
(1)
i is a random number uniformly

distributed in [−1, 1], and ϕ = R
(2)
i is another random number uniformly distributed

in [0, 2π]. As the number of sampled frequencies Nω becomes sufficiently large, the

random angles (θi, φi) will approach the angles specified in uniform spherical sampling

(Eq. (1.23)). In the limit of ∆/ω0 � 1, the above sampling method (described by

Eqs. (1.34), (1.35), and (1.36)) and the uniform spherical sampling method both

approach a uniform sampling on a spherical surface at the radius rk =
ω0

c
. In this

limit, the addition of the condition in Eq. (1.20) leads to the possible choices for the

frequency range ∆,

Γω0 � ∆/ω0 � 1. (1.37)
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Within this range (Eq. (1.37)), the expression for the vacuum field in Eq. (1.19)

becomes

Evac =
2∑

λ=1

Nω∑
i=1

√
~ω
ε0V

cos(k · r− ωt+ θ̃
kλ

)ε
kλ
. (1.38)

where k = ki. For large Nk = Nω, the volume factor V is calculated using Eq. (1.31).

Finally, for a complete specification of the vacuum field, Eq. (1.38), the polariza-

tions ε
kλ

need to be chosen. From Eq. (1.31), we notice that large Nk gives large V .

Since for large V the vacuum field is not affected by the space boundary, there should

be no preferential polarization direction, and the polarizations should be isotropically

distributed. The construction for isotropically distributed polarizations is discussed

in detail in Appendix B. Here we give the result that satisfies the property of isotropy

and the properties of polarization (described by Eqs. (1.4) and (1.5)),

ε
k,1

=


ε1,x

ε1,y

ε1,z

 =


cos θi cosφi cosχi − sinφi sinχi

cos θi sinφi cosχi + cosφi sinχi

− sin θi cosχi

 ,

ε
k,2

=


ε2,x

ε2,y

ε2,z

 =


− cos θi cosφi sinχi − sinφi cosχi

− cos θi sinφi sinχi + cosφi cosχi

sin θi sinχi

 ,

(1.39)

where χ is a random number uniformly distributed in [0, 2π]. With the wave vectors

k (described by Eqs. (1.34), (1.35), and (1.36)) and the polarizations ε
kλ

(described

by Eq. (1.39)), the endpoints of the sampled vacuum field vector are plotted on a

unit sphere as shown in Figure 1.2, which illustrates the isotropy of the distribution.

In summary, the vacuum field mode (k, λ) in Eq. (1.38) can be sampled by a set

of four numbers (κi, ϑi, ϕi, χi), which are specified in Eqs. (1.34), (1.35), (1.36), and

Eq. (1.39). The only assumption used in determining these numbers is Eq. (1.37),
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Figure 1.2: The isotropic distribution of the polarization field vectors ε
k,1

(number
of sampled frequencies number Nω = 3 × 103). The endpoints of the polarization
field vectors, ε

k,1
, are plotted for a random sampling of modes (k, 1) according to the

methods described in Eqs. (1.34), (1.35), and (1.36).

which is equivalent to the sharp resonance condition (Eq. (1.10)) used in Boyer’s

analysis.

1.3.2 Equation of Motion in Numerical Simulation

In the unbounded (free) space, the equation of motion in Boyer’s analysis is,

mẍ = −mω2
0x+mΓ

...
x + qEvac,x(t), (1.40)

where the dipole approximation k · r� 1 (Eq. (1.6)) is used. In the bounded space,

the equation of motion remains the same, but the vacuum field is formulated has the

summation form (Eq. (1.38)),

Evac =
∑
k,λ

√
~ω
ε0V

1

2

(
a

kλ
e−iωt + a∗

kλ
eiωt
)
ε

kλ
, (1.41)
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where a
kλ
≡ eiθ̃kλ . The steady-state solution to Eq. (1.40) in the bounded space can

be found following Boyer’s approach,

x(t) =
q

m

∑
k,λ

√
~ω
ε0V

1

2

(
a

kλ

C
kλ

e−iωt +
a∗

kλ

C∗
kλ

eiωt
)
ε
kλ,x

, (1.42)

where C
kλ
≡ (−ω2 + ω2

0)−iΓω3. While this analytical solution can be evaluated using

our method of vacuum mode selection (Eqs. (1.34), (1.35), (1.36), and Eq. (1.39)),

our goal with the numerical simulation is to reproduce Boyer’s analytical results

(Eq. (1.9)) so that the methods can be applied to other physical systems in future

studies. One major obstacle for the numerical approach is the third-order derivative

in the the radiation damping term, mΓ
...
x . To circumvent this problem, we follow

the perturbtive approach in [15, 16, 17]. According to classical electrodynamics, the

equation of motion for an electron with radiation damping is

mẍ = F +mΓ
...
x , (1.43)

where F is the force and Γ ≡ 2e2

3mc3

1

4πε0
is the radiation damping coefficient. Under

the assumption mΓ
...
x � F , the zero-order equation of motion is

mẍ ' F. (1.44)

The justification for the assumption mΓ
...
x � F is that a point particle description

of the electron is used in classical electrodynamics [15, 17]. Using Eq. (1.44), the

radiation damping term may be estimated by

mΓ
...
x ' ΓḞ , (1.45)
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which can be iterated back to the original equation (Eq. (1.43)) and get a perturbative

expansion,

mẍ ' F + ΓḞ . (1.46)

Thus, in this approximated equation of motion we replace the third derivative of

position x by the first derivative of the force F . Applying Eq. (1.46) to Eq. (1.40),

the equation of motion becomes

mẍ ' −mω2
0x−mΓω2

0ẋ+ qEvac,x(t) + qΓĖvac,x(t). (1.47)

The order of magnitude for each term on the right-hand side is,

O(mω2
0x) = mω2

0x0, (1.48)

O(qEvac,x) = eE0, (1.49)

O(mΓω2
0ẋ) = (Γω0)mω2

0x0, (1.50)

O(qΓĖvac,x) = (Γω0)qE0. (1.51)

where x0 and E0 are the order of magnitude for the particle motion x and the vacuum

field Evac,x. The order of magnitude for the time scale of particle motion is given

by 1/ω0 because of the sharp resonance condition Eq. (1.10). In order to compare

the two radiation damping terms (Eqs. (1.50) and (1.51)), we use a random walk

model to estimate x0 and E0. For a fixed time t = t0, the order of magnitude for

Evac,x(t0) and x(t0) (see Eqs. (1.41) and (1.42)) is equal to E0 and x0. Written as

complex numbers, the mathematical form of Ẽvac,x(t0) and x̃(t0) is analogous to a two-

dimensional random walk on the complex plane with random variable Θ{k,λ}, where

{k, λ} denotes a set of modes (k, λ). Averaging over {k, λ}, the order of magnitude for

Evac,x(t0) and x(t0) can be estimated by the root-mean-squared distance of Ẽvac,x(t0)
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and x̃(t0). In a two-dimensional random walk model [18], the root-mean-squared

distance Drms is given by

Drms =
√
Ns ·∆s, (1.52)

where Ns is the number of steps taken, and ∆s is a typical stepsize; for D
(E)
rms,

∆s =
1

2

√
~ω0

ε0V
, and for D

(x)
rms, ∆s =

1

2

(
q

mΓω3
0

√
~ω0

ε0V

)
. Hence, the order of mag-

nitude, E0 and x0, may be estimated as5

E0 ' D(E)
rms =

√
2Nω ·

1

2

√
~ω0

ε0V
,

x0 ' D(x)
rms =

√
2Nω ·

1

2

(
q

mΓω3
0

√
~ω0

ε0V

)
.

(1.53)

The order of magnitude for the two radiation damping term is evaluated accordingly,

O(mΓω2
0ẋ) ' q

√
Nω

2
·
√

~ω0

ε0V

O(qΓĖvac,x) ' (Γω0)q

√
Nω

2
·
√

~ω0

ε0V
.

(1.54)

Using the sharp resonance condition Γω0 � 1 (Eq. (1.10)), we approximate the

equation of motion (Eq. (1.47)) to its leading order,

mẍ ' −mω2
0x−mΓω2

0ẋ+ qEvac,x(t). (1.55)

As an additional note, given the estimation of E0 and x0 in Eq. (1.53), the three

force terms in Eq. (1.55) have the following relation,

O(mω2
0x)� O(mΓω2

0ẋ) ' O(qEvac,x). (1.56)

5 Using V = (2π)3Nω/Vk and Vk ' 4πω2
0

(
Γω2

0

)
/c3 (Eqs. (1.31) and (1.32)), the value of x0 in

Eq. (1.53) can be estimated as x0 '
√

3/π
√

~/2mω0, which is consistent with Boyer’s calculation
for the standard deviation of position in Eq. (1.11).
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Thus, the linear restoring force mω2
0x is the dominating drive for a SED harmonic

oscillator, while the vacuum field qEvac,x and radiation damping mΓω2
0ẋ act as pertur-

bations. The balance between the vacuum field and the radiation damping constrains

the oscillation amplitude to fluctuate in the vicinity of x0.

Finally, as we have established an approximated equation of motion (Eq. (1.55))

for numerical simulation, the total integration time τint (i.e. how long the simulation

is set to run) needs to be specified. Upon inspection, two important time scales are

identified from the analytical solution of Eq. (1.55),

x(t) = e−Γω2
0t/2(AeiωRt + A∗e−iωRt) +

q

m

∑
k,λ

√
~ω
ε0V

1

2

(
a

kλ

B
kλ

e−iωt +
a∗

kλ

B∗
kλ

eiωt
)
ε
kλ,x

,

(1.57)

where A is a coefficient determined by the initial conditions, and

ωR ≡ ω0

√
1− (Γω0/2)2, (1.58)

B
kλ
≡
(
−ω2 + ω2

0

)
− i
(
Γω2

0

)
ω, (1.59)

a
kλ
≡ eiθ̃kλ . (1.60)

The first term in Eq. (1.57) represents the transient motion and the second term

represents the steady-state motion. The characteristic time for the transient motion

is

τtran =
2

Γω2
0

. (1.61)

Thus, the simulation should run beyond τtran if one is interested in the steady-state

motion. As the steady-state solution is a finite discrete sum of periodic functions,

it would have a non-physical repetition time τrep. The choice of τint should satisfy

τint ≤ τrep to avoid repetitive solutions. A detailed discussion about τrep can be found
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in Appendix C. Here we give a choice of τint,

τint =
2π

∆ω
, (1.62)

where ∆ω is the frequency gap and it can be estimated using Eqs. (1.24), (1.35), and

(1.36),

∆ω ' c(3κ0)1/3

3

∆κ

κ0

, (1.63)

where κ0 ≡
1

3

(ω0

c

)3

.

To summarize, Eq. (1.55) is the approximated equation of motion to be used in

numerical simulation. The vacuum field Evac,x in Eq. (1.55) is given by Eq. (1.41). The

specifications of the vacuum field modes (k, λ), polarizations ε
kλ

, and other relevant

variables can be found in Sec. 1.3.1. To approximate Eq. (1.40) by Eq. (1.55), two

conditions need to be used, namely the dipole approximation Eq. (1.6) and the sharp

resonance condition Eq. (1.10). The parameters q, m, and ω0 simulation should be

chosen to satisfy these two conditions, as these two conditions are also used in Boyer’s

analysis. Lastly, the integration time τint for the simulation is chosen to be within

the range τtrans � τint ≤ τrep, where τtran and τrep are given in Eqs. (1.61) and (1.62)

respectively.

1.4 Simulation Results

In Sec. 1.2, it was shown that the probability distribution for a SED harmonic oscil-

lator is a Gaussian. In Sec. 1.3, we develop the methods for a numerical simulation to

investigate the dynamics of the SED harmonic oscillator and how it gives rise to the

Gaussian probability distribution. In this section, the results of the simulation are

presented, and the relation between the trajectory and the probability distribution is
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discussed.

To construct the probability distribution from particle’s trajectory, two sampling

methods are used. The first method is sequential sampling and the second method

is ensemble sampling. In sequential sampling the position or velocity is recorded in a

time sequence from a single particle’s trajectory, while in ensemble sampling the same

is recored only at the end of the simulation from an ensemble of particle trajectories.

The recorded positions or velocities are collected in histogram and then converted to a

probability distribution for comparison to the analytical result (Eq. (1.18)). Whereas

the sequential sampling illustrates the relationship between the buildup of probability

distribution and the dynamics of particle trajectory, the ensemble sampling is conve-

nient for statistical interpretation. In addition, the ensemble sampling is suitable for

parallel computing, which can be used to improve the computation efficiency.

1.4.1 Particle Trajectory and the Probability Distribution

By solving Eq. (1.55) numerically, the steady-state trajectory for the SED harmonic

oscillator is obtained and shown in Figure 1.3. For a comparison, the temporal

evolution of the vacuum field (Eq. (1.41)) is also included. The ordinary differential

equation (Eq. (1.55)) is solved using the adaptive 5th order Cash-Karp Runge-Kutta

method [19], and the integration stepsize is set as small as one twentieth of the

natural period,
1

20

(
2π

ω0

)
to avoid numerical aliasing. The charge q, mass m, natural
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frequency ω0, and vacuum field frequency range ∆ are chosen to be

q = e,

m = 10−4me,

ω0 = 1016rad/s,

∆ = 220× Γω2
0,

(1.64)

where e is the electron charge, me is the electron mass, and Γω2
0 is the the resonance

width of the haromanic oscillator. The choice of m = 10−4me is made to bring the

modulation time and the natural period of the harmonic oscillator closer to each

other. In other words, the equation of motion (Eq. (1.55)) covers time scales at two

extremes, and the choice of mass m = 10−4me brings these two scales closer so that

the integration time is manageable without losing the physical characteristics of the

problem.

Here we would like to highlight some interesting features of the simulated trajec-

tory (Figure 1.3). First, there appears to be no fixed phase or amplitude relation

between the particle trajectory and the instantaneous driving field. Second, the rate

of amplitude modulation in the particle trajectory is slower than that in the driving

field. To gain insights into these dynamical behaviors, we study the steady-state

solution of Eq. (1.57) in the Green function form [20],

x(t) =
q

mωR

∫ t

−∞
Evac,x(t′)e−Γω2

0(t−t′)/2 sin (ωR(t− t′))dt′. (1.65)

where ωR ≡ ω0

√
1− (Γω0/2)2. The solution indicates that the effect of the driving

field Evac,x(t′) at any given time t′ lasts for a time period of 1/Γω2
0 beyond t′. In other

words, the particle motion x(t) at time t is affected by the vacuum field Evac,x(t′)
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Figure 1.3: A comparison between particle trajectory and the temporal evolution of
the vacuum field. Top: The vacuum field (red) is compared to the trajectory of the
SED harmonic oscillator (black). Bottom: A magnified section of the trajectory shows
that there is no fixed phase or amplitude relation between the particle trajectory and
the instantaneous driving field. The modulation time for the field is also shown to be
longer than that for the motion of the harmonic oscillator.

from all the previous moments (t′ ≤ t). As the vacuum field fluctuates in time, the

fields at two points in time only becomes uncorrelated when the time separation is

much longer than one coherence time6. This property of the vacuum field reflects on

the particle trajectory, and it explains why the particle trajectory has no fixed phase

or amplitude relation with the instantaneous driving field. Another implication of

Eq. (1.65) is that it takes a characteristic time 1/Γω2
0 for the particle to dissipate the

energy gained from the instantaneous driving field. Thus, even if the field already

changes its amplitude, it would still take a while for the particle to follow. This

explains why the amplitude modulation in the particle trajectory is slower compared

6 The coherence time of the vacuum field is calculated in Eq. (1.4.1).
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Figure 1.4: The probability distribution constructed from a single particle’s trajectory
(number of sampled frequencies Nω = 2 × 104). Left: The position and momentum
probability distributions for the SED harmonic oscillator (black dot) and the ground
state quantum harmonic oscillator (red and blue line) are compared. Right: An
illustration of the sequential sampling shows how positions are recorded at a regular
time sequence (red cross). Note that at small time scale the oscillation amplitude is
constant, but at large time scale it modulates.

to that in the driving field7.

The sequential sampling of a simulated trajectory gives the probability distri-

butions in Figure 1.4. While Boyer’s result is obtained through ensemble (phase)

averaging, the Gaussian probability distribution shown here is constructed from a

single trajectory and is identical to the probability distribution of a ground state

quantum harmonic oscillator.

To understand how the trajectory gives rise to a Gaussian probability distribution,

we investigate the particle dynamics at two time scales. At short time scale, the par-

7 However, in case of slow field modulation when the field bandwidth shorter than resonance
width of the harmonic oscillator, the modulation time of the field and the particle trajectory are the
same.
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Figure 1.5: Contributions of different oscillation amplitudes in the final probability
distribution. Top: Several sections (red) of a steady-state trajectory (black) are
shown. A section is limited to the duration of the characteristic modulation time.
The oscillation amplitude changes significantly beyond the characteristic modulation
time, so different sections of the trajectory obtain different oscillation amplitudes.
Bottom: The probability distributions of each section of the trajectory are shown. As
the oscillation amplitude is approximately constant in each section, the corresponding
probability distribution (red bar) is close to the classic double-peak distribution. The
probability distributions in different sections of the trajectory contribute to different
areas of the final probability distribution (black dash line). The final probability
distribution is constructed from the steady-state trajectory.

ticle oscillates in a harmonic motion. The oscillation amplitude is constant, and the

period is T = 2π/ω0. Such an oscillation makes a classical double-peak probability

distribution. At large time scale, the oscillation amplitude modulates. As a result,

different parts of the trajectory have double-peak probability distributions associated

with different oscillation amplitudes, which add to make the final probability distri-

bution a Gaussian distribution as shown in Figure 1.5. To verify this idea, we attempt

to reconstruct the Gaussian probability distribution from the double-peak probabil-
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Figure 1.6: A schematic illustration of the oscillation amplitude as a sum of different
frequency components in the complex plane. At a particular time t = t0, an oscillation
amplitude A(t0) (blue solid arrow) is formed by a group of frequency components
(blue dash arrow), which rotate in the complex plane at different rate. After a time
∆t � τcoh, the angles of the frequency components (red dash arrow) change only
a little. Therefore, the oscillation amplitude A(t0 + ∆t) (red solid arrow) does not
change much within the coherence time.

ity distributions at different sections of the trajectory. We approach this problem

by numerically sampling the oscillation amplitudes at a fixed time-step. To deter-

mine the appropriate sampling time-step for the oscillation amplitude, we inspect the

steady-state solution (Eq. (1.57)) in its complex form,

x̃(t) =
q

m

∑
k,λ

√
~ω
ε0V

a
kλ

B
kλ

e−iωtε
kλ,x

. (1.66)

Since the frequency components can be sampled symmetrically around ω0, we factorize
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Figure 1.7: Sampled oscillation amplitude and the reconstructed Gaussian proba-
bility distribution. Top: The oscillation amplitudes (red dot) are sampled from a
steady-state trajectory (black) with a sampling time-step equal to 3τcoh, where τcoh
is the coherence time. Middle: A magnified section of the trajectory shows that the
sampling time-step (red dot) is 3τcoh. Bottom: Using the amplitude distribution (red
bar), a probability distribution (blue line) is constructed and shown to agree with the
simulated Gaussian probability distribution (black dot). The simulated probability
distribution (black dot) is offset by ∆s = 1.5×107 for better visualization. This result
confirms that the underlying mechanism for the Gaussian probability distribution is
the addition of a series of double-peak probability distributions according to the am-
plitude distribution given by the vacuum field. It is also worth noting that the most
frequent oscillation amplitude in the amplitude distribution is at the half-maximum
of the position distribution (black dot).
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x̃(t) into an amplitude term A(t) and an oscillation term e−iω0t,

x̃(t) = A(t)e−iω0t,

A(t) =
∑
k,λ

(
ε
kλ,x

q

m

√
~ω
ε0V

a
kλ

B
kλ

)
e−i(ω−ω0)t.

(1.67)

The complex components e−i(ω−ω0)t rotate in the complex plane at different rates

ω − ω0. At any given time, the configuration of these components determines the

magnitude of A(t), as shown in Figure 1.6. As time elapses, the configuration evolves

and the amplitude A(t) changes with time. When the elapsed time ∆t is much shorter

than the shortest rotating period 2π/|ω − ω0|max, the change in the amplitude A(t)

is negligible,

A(t+ ∆t) ' A(t) for ∆t� τcoh, (1.68)

where τcoh = 2π/|ω−ω0|max. Here we denote this shortest rotating period as coherence

time8 τcoh. For our problem at hand, it is clear that the sampling of oscillation

amplitudes should use a time-step greater than τcoh.

A representative sampling of the oscillation amplitudes with each sampled am-

plitudes separated by 3τcoh is shown in Figure 1.7. In this figure, the histogram of

the sampled oscillation amplitudes shows that the occurrence of large or small ampli-

tudes is rare. Most of the sampled amplitudes have a medium value. This is because

the occurrence of extreme values requires complete alignment or misalignment of the

complex components in A(t). For most of the time, the complex components are in

partial alignment and thus give a medium value of A(t). Interestingly, the averaged

8 The coherence time τcoh as defined here is equivalent to the temporal width of the first-order
correlation function (autocorrelation). As the autocorrelation of the simulated trajectory is the
Fourier transform of the spectrum according to the Wiener-Khinchin theorem, it has a temporal
width the same as the coherence time τcoh calculated here, as they are both inversely proportional
to the spectral width.
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value of A(t) is close to the oscillation amplitude x0 as predicted by the random

walk model (Eq. (1.53)). Using the amplitude distribution given in Figure 1.7, a

probability distribution can be constructed by adding up the double-peak probability

distributions,

P (x) =
∑
A

PA(x) =

∫
PA(x)f(A)dA, (1.69)

where A is oscillation amplitude, f(A) is the amplitude distribution, and PA(x) is

the corresponding double-peak probability distribution. This constructed probability

distribution is a Gaussian and is identical to the simulation result shown in Fig-

ure 1.4. The reconstruction of the Gaussian probability distribution indicates the

transition from the double-peak distribution to the Gaussian distribution as due to

the amplitude modulation driven by the vacuum field.

1.4.2 Phase Averaging and Ensemble Sampling

In many SED analyses [4, 6, 7, 8, 10, 21], the procedure of random phase averaging

is often used to obtain the statistical properties of the physical system. A proper

comparison between numerical simulation and analysis should thus be based on en-

semble sampling. In each realization of ensemble sampling, the particle is prepared

with identical initial conditions, but the vacuum field differs in its initial random

phase θ̃
kλ

. The difference in the initial random phase θ̃
kλ

corresponds to the differ-

ent physical realizations in random phase averaging. At the end of the simulation,

physical quantities such as position and momentum are recorded from an ensemble

of trajectories.

The ensemble sampling of the simulation gives the probability distributions in

Figure 1.8. The position and momentum distributions satisfy the Heisenberg mini-

mum uncertainty as predicted by the Boyer’s analysis. In addition, Boyer proposed a
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Figure 1.8: The probability distribution constructed from an ensemble sampling
(number of particles Np = 2 × 105, number of sampled frequencies Nω = 2 × 103).
Left: The position and momentum probability distributions are shown for the SED
harmonic oscillator (black dot) and the ground state quantum harmonic oscillator
(red and blue line). The ensemble sampling corresponds to the procedure of random
phase averaging (Eqs. (1.11) and (1.12)), so the width of the probability distributions
should satisfy Heisenberg’s minimum uncertainty relation (σxσp = ~/2) as predicted
by the analysis. Right: An illustration of the ensemble sampling shows how positions
(red cross) are recorded from an ensemble of trajectories (black line).

mechanism for the minimum uncertainty using an energy-balance argument. Namely,

he calculated the energy gain from the vacuum field and the energy loss through ra-

diation damping, and he found that the balance results in the minimum uncertainty

relation [4]. We confirm this balancing mechanism by turning off the radiation damp-

ing in the simulation and see that the minimum uncertainty relation no long holds

(see Figure 1.9).

Unlike sequential sampling, ensemble sampling has the advantage that the recorded

data are fully uncorrelated. As a result, the integration time does not need to be very
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Figure 1.9: Radiation damping and Heisenberg’s minimum uncertainty relation. Un-
der the balance between vacuum field driving and the radiation damping, the trajec-
tory of the SED harmonic oscillator (black) satisfies the Heisenberg minimum uncer-
tainty relation. When the radiation damping is turned off in the simulation (red and
blue), the minimum uncertainty relation no longer holds, although the range of the
particle’s motion is still bounded by the harmonic potential.

long compared to the coherence time τcoh. However, since only one data point is

recorded from each trajectory, a simulation with ensemble sampling actually takes

longer time than with sequential sampling. For example, a typical simulation run

with sequential sampling takes 2.3 hours to finish (for number of sampled frequencies

Nω = 2× 104), but with ensemble sampling it takes 61 hours (for number of particles

Np = 2 × 105 and number of sampled frequencies Nω = 5 × 102). A remedy to this

problem is to use parallel computing for the simulation. The parallelization scheme9

for our simulation with ensemble sampling is straightforward, since each trajectory

9 The parallelization of the simulation program is developed and benchmarked with assistance
from University of Nebraksa Holland Computing Center. The program is written in Fortran and
parallelized using Message Passing Interface (MPI) [19, 22]. The compiler used in this work is the
GNU Compiler Collection (GCC) gcc-4.4.1 and the MPI wrapper used is openmpi-1.4.3.
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Figure 1.10: The inverse relation between the computation time and the number of
processors. The data (black open square, blue and red dot) follow an inverse relation
y = C/x (black, blue and red dash line). The proportionality constant C scales with
the product of Np (number of particles) and Nω (number of sampled frequencies).
The larger the value of NpNω, the longer it takes to finish a simulation with a fixed
number of processors.

are independent except for the random initial phases θ̃
kλ

. To reduce the amount of

interprocessor communication and computation overhead, each processor is assigned

an equal amount of work. The parallelized program is benchmarked and shows an

inverse relation between the computation time and the number of processors (see

Figure 1.10). The computation speedup is defined as Sp = T1/Tp, where T1 is the

single processor computation time and Tp is the multi-processor computation time.

The inverse relation (Tp ∝ 1/Nproc)between the multi-processor computation time Tp

and the number of processors Nproc, as shown in Figure 1.10, implies a linear speedup,

Sp ∝ Nproc. As an additional note, the convergence of the ensemble-averaged energy

to the analytical value is shown as a function of sampled frequency number in Fig-

ure 1.11. As highlighted in the figure, only Nω = 5× 102 sampled modes need to be

used for the simulation to reproduce with the analytical result. The fact that Nω is
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Figure 1.11: The ensemble-averaged energy of the SED harmonic oscillator and its
convergence to the analytical value as a function of sampled frequency number Nω.
The number of particles used in the simulation is Np = 2 × 105, and the sampled
frequency range is ∆ = 220 × Γω2

0. The energy converges as the number of sampled
frequencies Nω increases. At Nω = 5 × 102 (blue cross), the deviation between the
energy of the SED harmonic oscillator and the ground state energy of the quantum
oscillator is 1%.

low indicates that our method of vacuum mode selection is effective.

1.5 Conclusions

The analytical probability distribution of an SED harmonic oscillator is obtained in

Sec. 1.2. The details of our numerical methods including vacuum mode selection is

documented in Sec. 1.3. Agreement is found between the simulation and the analytical

results, as both sequential sampling and ensemble sampling give the same probability

distribution as the analytical result (see Figure 1.4 and Figure 1.8). The analytical

results such as the ensemble-averaged energy and the probability distribution are

reproduced by the numerical simulation using a low number of sampled vacuum field

mode (Nω = 5×102), which is an indication that our method of vacuum mode selection
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Figure 1.12: A comparison between the harmonic oscillators with and without the
vacuum field. Top: Comparing to Figure 1.1, it is clear from this figure that the
SED harmonic oscillator undergoes an oscillatory motion with modulating oscillation
amplitude. The oscillation amplitude modulates at the time scale of coherence time
τcoh and is responsible for the resulting Gaussian probability distribution. Bottom:
In the absence of the vacuum field or any external drive, a harmonic oscillator that
is initially displaced from equilibrium performs a simple harmonic oscillation with
constant oscillation amplitude. The resulting probability distribution has peaks at
the two turning points.

(Eqs. (1.34), (1.35), (1.36), and Eq. (1.39)) is effective in achieving a representative

sampling.

As the probability distribution constructed from a single trajectory is a Gaussian

and satisfies the Heisenberg minimum uncertainty relation, we investigate the relation

between the Gaussian probability distribution and the particle’s dynamical properties.

As a result, the amplitude modulation of the SED harmonic oscillator is found to

be the cause for the transition from the double-peak probability distribution to the

Gaussian probability distribution (see Figure 1.7).
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1.6 Discussions: Application of Simulation to

Other Physical Systems

In quantum mechanics, the harmonic oscillator has excited, coherent, and squeezed

states. A natural extension of our current work is to search for the SED correspon-

dence of such states. Currently, we are investigating how a Gaussian pulse with

different harmonics of ω0 will affect the SED harmonic oscillator. Can the SED

harmonic oscillator support a discrete excitation spectrum, and if so, how does it

compare with the prediction from quantum mechanics? Such a study is interesting in

the broader view of Milonni’s comment that SED is unable to account for the discrete

energy levels of interacting atoms [1], and also Boyer’s comment that at present the

line spectra of atoms is still unexplained in SED [23].

The methods of our numerical simulation may be applicable to study other quan-

tum systems that are related to the harmonic oscillator, such as a charged particle

in a uniform magnetic field and the anharmonic oscillator [6, 21]. For the first ex-

ample, classically, a particle in a uniform magnetic field performs cyclotron motion.

Such a system is a two-dimensional oscillator, having the natural frequency set by

the Larmor frequency. On the other hand, a quantum mechanical calculation for the

same system reveals Landau quantization. The quantum orbitals of cyclotron motion

are discrete and degenerate. Such a system presents a challenge to SED. For the

second example, a harmonic potential can be modified to include anharmonic terms

of various strength. Heisenberg considered such a system a critical test in the early

development of quantum mechanics [24, 25]. We think that a study of the anharmonic

oscillator is thus a natural extension of our current study and may serve as a test for

SED.

Lastly, over the last decades there has been a sustained interest to explain the
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origin of electron spin and the mechanism behind the electron double-slit diffraction

with SED [26, 27, 28, 29]. Several attempts were made to construct a dynamical

model that accounts for electron spin. In 1982, de la Peña calculated the phase

averaged mechanical angular momentum of a three-dimensional harmonic oscillator.

The result deviates from the electron spin magnitude by a factor of 2 [26]. One

year later, Sachidanandam derived the intrinsic spin one-half of a free electron in a

uniform magnetic field [27]. Whereas Sachidanandam’s calculation is based on the

phase averaged canonical angular momentum, his result is consistent with Boyer’s

earlier work where Landau diamagnetism is derived via the phase averaged mechanical

angular momentum of an electron in a uniform magnetic field [6]. Although these

results are intriguing, the most important aspect of spin, the spin quantization, has

not been shown. If passed through a Stern-Gerlach magnet, will the electrons in the

SED description split into two groups of trajectories10? At this point, the dynamics

becomes delicate and rather complex. To further investigate such a model of spin, a

numerical simulation may be helpful.

On the other hand, over the years claims have been made that SED can predict

double-slit electron diffraction [4, 28, 29]. In order to explain the experimentally

observed electron double-slit diffraction11 [36, 37, 38], different mechanisms motivated

by SED were proposed [28, 29], but no concrete calculation have been given except

for a detailed account of the slit-diffracted vacuum field [39]. In 1999, Kracklauer

suggested that particles steered by the modulating waves of the SED vacuum field

should display a diffraction pattern when passing through a slit, since the vacuum

field itself is diffracted [28]. In recent years, another diffraction mechanism is proposed

10 Electron Stern-Gerlach effect is an interesting but controversial topic in its own right. Whereas
Bohr and Pauli asserted that an electron beam can not be separated by spin based on the concept
of classical trajectories [30], Batelaan and Dehmelt argue that one can do so with certain Stern-
Gerlach-like devices [31, 32, 33, 34].

11 See [35] for a movie of the single electron buildup of a double-slit diffraction pattern.
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Figure 1.13: Schematic illustration of a vacuum field based mechanism for electron
double-slit diffraction. Several authors have proposed different SED mechanisms that
explain the electron double-slit diffraction. The central idea is that the vacuum field
in one slit is affected by the presence the other slit. As the vacuum field perturbs
the electron’s motion, an electron passing through only one slit can demonstrate a
dynamical behavior that reflects the presence of both slits. Such a mechanism may
reconcile the superposition principle with the concept of particle trajectory.

by Cavalleri et al. in relation to a postulated electron spin motion [29]. Despite of

these efforts, Boyer points out in a recent review article that at present there is still

not a concrete SED calculation on the double-slit diffraction [23]. Boyer suggests

that as the correlation function of the vacuum field near the slits is modified by

the slit boundary, the motion of the electron near the slits should be influenced as

well. Can the scattering of the vacuum field be the physical mechanism behind the

electron double-slit diffraction (see Figure 1.13)? As Heisenberg’s uncertainty relation

is a central feature in all matter diffraction phenomena, any proposed mechanism for

electron double-slit diffraction must be able to account for Heisenberg’s uncertainty

relation. In the physical system of the harmonic oscillator, SED demonstrates a

mechanism that gives rise to the Heisenberg minimum uncertainty. We hope that

the current simulation method may help providing a detailed investigation on the

proposed SED mechanisms for the electron slit-diffraction.



38

Bibliography

[1] P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrody-

namics (Academic Press, Boston, 1994), pp. 290–294.

[2] W. E. Lamb Jr. and R. C. Retherford, Fine Structure of the Hydrogen Atom by

a Microwave Method, Phys. Rev. 72, 241 (1947).

[3] H. A. Bethe, The Electromagnetic Shift of Energy Levels, Phys. Rev. 72, 339

(1947).

[4] T. H. Boyer, Random electrodynamics: The theory of classical electrodynamics

with classical electromagnetic zero-point radiation, Phys. Rev. D 11, 790 (1975).

[5] M. Ibison and B. Haisch, Quantum and classical statistics of the electromagnetic

zero-point field, Phys. Rev. A 54, 2737 (1996).

[6] T. H. Boyer, Diamagnetism of a free particle in classical electron theory with

classical electromagnetic zero-point radiation, Phys. Rev. A 21, 66 (1980).

[7] T. H. Boyer, Thermal effects of acceleration through random classical radiation,

Phys. Rev. D 21, 2137 (1980).

[8] T. H. Boyer, Retarded van der Waals forces at all distances derived from classical

electrodynamics with classical electromagnetic zero-point radiation, Phys. Rev. A

7, 1832 (1973).



39

[9] H. E. Puthoff, Ground state of hydrogen as a zero-point-fluction-determined state,

Phys. Rev. D 35, 3266 (1987).

[10] T. H. Boyer, General connection between random electrodynamics and quantum

electrodynamics for free electromagnetic fields and for dipole oscillator systems,

Phys. Rev. D 11, 809 (1975).

[11] D. C. Cole and Y. Zou, Quantum mechanical ground state of hydrogen obtained

from classical electrodynamics, Phys. Lett. A 317, 14 (2003).

[12] D. C. Cole and Y. Zou, Simulation study of aspects of the classical hydrogen atom

interacting with electromagnetic radiation: Elliptical orbits, J. Sci. Comput 20,

379 (2004).

[13] D. C. Cole and Y. Zou, Simulation study of aspects of the classical hydrogen atom

interacting with electromagnetic radiation: Circular orbits, J. Sci. Comput. 20,

43 (2004).

[14] T. W. Marshall, Random Electrodynamics, Proc. Roy. Soc. A 276, 475 (1963).

[15] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed. (Perg-

amon Press, New York, 1987), p. 207, Eq. (75.10).

[16] J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998), p. 749,

Eq. (16.10).

[17] E. Poisson, An introduction to the Lorentz-Dirac equation,

http://arxiv.org/abs/gr-qc/9912045, (1999).

[18] G. Woan, The Cambridge Handbook of Physics Formulas (Cambridge University

Press, New York, 2003), p. 59.



40

[19] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical

Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. (Cambridge

University Press, New York, 1996). For the uniform random number generator,

we use “ran1” in p. 271. To solve the ordinary differentiation equation, we use the

adaptive 5th order Cash-Karp Runge-Kutta method (“odeint, rkqs, rkck”)

in pp. 712–715, with accuracy parameter esp set to 0.001.

[20] S. T. Thornton and J. B. Marion, Classical Dynamics of Particles and Systems,

5th ed. (Brooks/Cole, Belmont, 2004), p.136.

[21] T. H. Boyer, Equilibrium of random classical electromagnetic radiation in the

presence of a nonrelativistic nonlinear electric dipole oscillator, Phys. Rev. D

13, 2832 (1976).

[22] P. S. Pacheco, Parallel programming with MPI, (Morgan Kaufmann, San Fran-

cisco, 1997).

[23] T. H. Boyer, Any classical description of nature requires classical electromagnetic

zero-point radiation, Am. J. Phys. 79, 1163 (2011).

[24] K. Gottfried, P. A. M. Dirac and the discovery of quantum mechanics,

Am. J. Phys. 79, 261 (2011).

[25] I. J. R. Aitchison, D. A. MacManus, and T. M. Snyder, Understanding Heisen-

berg’s “magical” paper of July 1925: A new look at the calculational details, Am.

J. Phys. 72, 1370 (2004).
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Chapter 2

Quantized Excitation Spectrum of

a Classical Particle

The interaction between a light pulse and a classical harmonic oscillator in the vacuum

field gives rises to a quantized excitation spectrum. Although quantized spectra

are common in nonlinear classical systems, this result is interesting given that the

magnitude of excitation peaks agree with those predicted by quantum mechanics.
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2.1 Introduction

Historically, the discreteness of atomic spectra motivated the early development of

quantum mechanics. Because quantum mechanics has made numerous successful pre-

dictions on atomic spectra, conventionally the discrete atomic spectrum is attributed

to transitions between the quantized energy levels of an atom. Classical theories,

such as stochastic electrodynamics (SED), are usually thought of as incapable of gen-

erating discrete atomic spectra, or any discrete spectra of the quantum mechanical

bound states. Indeed, Peter W. Milonni has commented in his well-known book The

Quantum Vacuum that “Being a purely classical theory of radiation and matter, SED

is unable . . . to account for the discrete energy levels of the interacting atoms.” [1].

In the case of the harmonic oscillator, quantum mechanics predicts an integer-

spaced excitation spectrum, but classical mechanics only supports a single resonance

at the oscillator’s natural frequency. In this report, we investigate the excitation

spectrum of a semi-1D classical harmonic oscillator immersed in the classical electro-

magnetic zero-point radiation, or the vacuum field. The vacuum field as defined in

SED is a nonzero homogenous solution to the Maxwell’s equations [2, 3]. The Planck

constant ~ is brought into the classical vacuum field as an overall factor that sets the

field strength. Our simulation and perturbation analysis show that a classical har-

monic oscillator in the vacuum field exhibits the same integer-spaced, or “quantized”,

excitation spectrum as its quantum counterpart. The organization of this paper is

the following. First, the theories for both driven quantum and classical oscillators are

provided. Then, the excitation spectra of the quantum and classical systems are ob-

tained through numerically solving the equation of motion. A classical perturbative

analysis is also given to provide insights to the underlying mechanism of the integer-

spaced excitation spectrum of the classical oscillator. At the end, the implications of
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our results are discussed.

2.2 Quantum Harmonic Oscillator

A semi-1D driven quantum harmonic oscillator can be constructed from an anisotropic

3D driven quantum harmonic oscillator. Treating the driving field as classical, the

Hamiltonian for the 3D driven quantnum harmonic oscillator has the form [4]

Ĥqm =
(p̂− qAp(r̂, t))

2

2m
+ qφp(r̂, t) +

mω2
x

2
x̂2 +

mω2
y

2
ŷ2 +

mω2
z

2
ẑ2, (2.1)

where p̂ = −i~∇ = (p̂x, p̂y, p̂z), r̂ = (x̂, ŷ, ẑ), m is the mass, q is the charge of

the harmonic oscillator, and (φp,Ap) is the driving field. The anisotropic harmonic

oscillator has natural frequencies ωx ≡ ω0 and ωy = ωz ≡ ωs for the harmonic

potentials along the x, y, and z axes. The use of the Coulomb gauge (∇ ·Ap = 0)

makes φp = 0 in the absence of external charges and also p̂ ·Ap = Ap · p̂. Therefore,

under the Coulomb gauge the Hamiltonian in Eq. (2.1) can be written as

Ĥqm =
(
Ĥx + Ĥy + Ĥz

)
+ Ĥ

′
, (2.2)

where the unperturbed Hamiltonians are

Ĥx ≡
p̂2
x

2m
+
mω2

0

2
x̂2,

Ĥy ≡
p̂2
y

2m
+
mω2

s

2
ŷ2,

Ĥz ≡
p̂2
z

2m
+
mω2

s

2
ẑ2,

(2.3)
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and the interaction Hamiltonian is

Ĥ
′
= − q

2m

(
2Ap · p̂− qA2

p

)
. (2.4)

In our study, a propagating Gaussian pulse is used as the driving field,

Ap = Ap cos (kp · r̂− ωpτ) exp

[
−
(

kp · r̂
|kp|∆x

− τ

∆t

)2
]
εp, (2.5)

where τ ≡ t − t0, is used for excitation. The temporal width of the pulse is ∆t,

and the spatial width is ∆x = c∆t. The wave vector of the carrier wave is denoted

as kp = ωp/c (sin θp, 0, cos θp), and the field polarization is εp = (cos θp, 0,− sin θp).

In the simulation, the field amplitude is chosen to be Ap = 1.5 × 10−9Vs/m, and

the polarization angle is θp = π/4. While the unperturbed Hamiltonian in Eq. (2.3)

defines a unperturbed basis states for the oscillator, the interaction Hamiltonian in

Eq. (2.4) can induce transitions between these basis states. The energy levels of the

oscillator are

Enmk = En + Em + Ek, (2.6)

where En = ~ω0(n + 1/2), Em = ~ωs(m + 1/2), and Ek = ~ωs(k + 1/2) are the

eigenvalues to the unperturbed Hamiltonians. A transition between the state |nmk〉

and the state |abc〉 occurs when |Eabc−Enmk| = j~ωp. Here the parameter j signifies

a j-th order process. Assuming ωs � ω0 and wp ' ω0, a high-order processes (j � 1)

is required to drive any ∆m > 0 or ∆k > 0 transitions. Given the parameters in our

simulation, only the lowest excited states |n00〉 with eigen-energies En00 = En + ~ωs

will be considered. Therefore, the 3D anisotropic harmonic oscillator can be seen as

a semi-1D oscillator in the x-direction, constrained by the strong potentials in the y-

and z-direction.
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As only |n00〉 states will be considered, we let p̂ = p̂xεx and r̂ = x̂εx, in the

Hamiltonian to simplify the notation. The unit vector εx is along the x-direction,

εx = (1, 0, 0). The oscillator is initially in the ground state. After excitation the state

|ψ〉(t) becomes a superposition of N eigenstates |n00〉,

|ψ〉(t) =
N∑
n=1

cn|n00〉e−iωnte−iωst, (2.7)

where ωn = ω0(n + 1/2). To obtain the coefficients of the excited state |ψ〉(t), we

solve the Schrödinger equation,

d

dt
C(t) = − i

~
H

′
C(t), (2.8)

where C(t) is a N × 1 matrix and H
′

is a N ×N matrix,

C =



c1(t)

c2(t)

...

c
N

(t)


, H

′
=


. . .

... H
′
nme

iωnmt
...

. . .

 . (2.9)

For each element in the matrix H
′
, H

′
nm = 〈n00|Ĥ ′ |m00〉 and ωnm ≡ ωn − ωm. The

total number of energy levels is chosen to be N = 20 for the given parameters, so

that the population of the highest energy state is close to zero. Since resonances

at higher-harmonics depends critically on the spatial nonlinearity of the pulse field,

the dipole approximation is not sufficient for the study of the excitation spectrum,

making a numerical approach to this problem convenient. In the simulation, the

spatial dependence of the pulse field Ap is multipole-expanded up to the 20th-order.

Higher-order expansion does not change the computed excitation spectrum. Lastly,
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Figure 2.1: The sampled vacuum field modes in k-space. Left: The sampled vacuum
field modes (black dots) are distributed in a spherical shell with thickness ∆/c. The
number of sampled modes shown here is Nω = 2× 104. A slice of the spherical shell
at kx ' 0 is highlighted (red dots). Right: A quarter of the highlighted slice (red
dots) is projected on the kykz-plane. The modes sampled with cartesian sampling
(blue circles) are shown for comparison.

the matrix element of the operators x̂ and p̂x are specified by

〈n00|x̂|m00〉 =

√
~

2mω0

(√
nδm,n−1 +

√
n+ 1δm,n+1

)
〈n00|p̂x|m00〉 = i

√
~mω0

2

(√
nδm,n−1 −

√
n+ 1δm,n+1

)
.

(2.10)

2.3 Classical Harmonic Oscillator in the Vacuum

Field

In the classical case, a similar construction can be done to construct a semi-1D driven

classical harmonic oscillator. To account for the vacuum field and the radiation reac-

tion, the additional field HamiltonianHF =
ε0
2

∫
d3r
(
|Ep + Evac|2 + c2 |Bp + Bvac|2

)
needs to be included. Having a semi-1D harmonic oscillator immersed in the vacuum
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QM

CM w/ ZPF

CM

Figure 2.2: The excitation spectra of harmonic oscillators in different theories. Left:
Schematics of harmonic oscillators are shown for quantum theory (left-top), for clas-
sical theory as modified by the vacuum field, or zero-point field (ZPF) (left-middle),
and for the standard classical theory (left-bottom). Right: The averaged value of
energy 〈E〉 after excitation is plotted as a function of pulse frequency ωp. For the
classical theory, the ensemble average is computed. For the quantum theory, the ex-
pectation value is computed. The classical oscillator in the vacuum field (red solid
line) exhibits an excitation spectrum in agreement with the quantum result (blue bro-
ken line). The number of vacuum field modes used in this simulation is Nω = 500. In
the absence of the vacuum field, the classical oscillator has only one single resonance
peak at the natural frequency ω0 (black dotted line). The excitation peak heights
and the relative ratio are confirmed by the classical perturbation analysis.

field, the classical Hamiltonian is

Hcl =

(
p2
x

2m
+
mω2

0

2
x2

)
− q

2m

(
2A · p− qA2

)
+HF , (2.11)

where A = Ap + Avac, p = pxεx, and r = xεx. The vacuum field is specified by

Avac =
∑
k,λ

√
~

ε0V ω
cos (k · r− ωt+ θ̃

kλ
)ε

kλ
, (2.12)
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where ω = c|k|, θ̃
kλ

is the random phase uniformly distributed in [0, 2π], and V is

the physical volume occupied by the vacuum field. The two unit vectors, ε
k,1

and

ε
k,2

, describe a mutually orthogonal polarization basis in a plane perpendicular to

the wave vector k. The pulse field Ap is identical to that in Eq. (2.5) except for r

being a classical quantity rather than an operator,

Ap = Ap cos (kp · r− ωpτ) exp

[
−
(

kp · r
|kp|∆x

− τ

∆t

)2
]
εp. (2.13)

From the Hamiltonian, the classical equation of motion follows,

mẍ = −mω2
0x+mΓ

...
x + q

[(
Ep,x + Evac,x

)
+
(
v × (Bp + Bvac)

)
x

]
, (2.14)

where Γ ≡ 2q2

3mc3

1

4πε0
and mΓ

...
x represents the radiation reaction field [5, 6]. Under

the Coulomb gauge, the electric field is given by E = −∂A

∂t
and the magnetic field by

B = ∇×A. Because v = εxpx/m, the magnetic part of the Lorentz force is zero. To

avoid numerical runaway solutions, we assume the point-particle description of the

charged particle and make the usual approximation mΓ
...
x ' −mΓω2

0ẋ for numerical

simulation [7, 8].

To carry out the simulation, an isotropic sampling ofNω vacuum field modes (ki, λ)

is needed. The wave vectors ki are chosen to have frequencies within the finite range

[ω0 −∆/2, ω0 + ∆/2], where ∆ is the vacuum field frequency bandwidth and it is

chosen to be ∆ = 2.2×102Γω2
0, much larger than the oscillator’s resonance bandwidth

Γω2
0. The vacuum field modes in k-space are sampled in spherical coordinates. In the

following, we give the specific steps of the sampling method. For i = 1 . . . Nω, the
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wave vector are sampled by

ki =


ki sin θi cosφi

ki sin θi sinφi

ki cos θi

 , (2.15)

where 
ki = (3κi)

1/3

θi = cos−1 (ϑi)

φi = ϕi,

(2.16)

and 
κi = (ω0 −∆/2)3/3c3 + (i− 1)∆κ

ϑi = R
(1)
i

ϕi = R
(2)
i .

(2.17)

The random number R
(1)
i is uniformly distributed in [−1, 1], and R

(2)
i is another

random number uniformly distributed in [0, 2π]. The stepsize ∆κ is specified by

∆κ =
[
(ω0 + ∆/2)3 − (ω0 −∆/2)3

]
/
[
3c3(Nω − 1)

]
. Finally, the polarization vectors

are sampled by

ε
k,1

=


cos θi cosφi cosχi − sinφi sinχi

cos θi sinφi cosχi + cosφi sinχi

− sin θi cosχi

 ,

ε
k,2

=


− cos θi cosφi sinχi − sinφi cosχi

− cos θi sinφi sinχi + cosφi cosχi

sin θi sinχi

 .

(2.18)
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Such a sampling method is computationally convenient in describing the wave vectors

ki within certain frequency range (see Figure 2.1). The volume factor V in the vacuum

field strength

√
~

ε0V ω
can be estimated by V ' (2π)3Nω/Vk. Here, the k-space

volume Vk = 4π/3c3
[
(ω0 + ∆/2)3 − (ω0 −∆/2)3

]
encloses the sampled vacuum field

modes ki in the spherical shell
[
(ω0 −∆/2)/c, (ω0 + ∆/2)/c

]
.

We give the simulation result for the excitation spectrum in Figure 2.2. When the

vacuum field is absent, the classical harmonic oscillator has only a single resonance

at its natural frequency. With the vacuum field acting as a background perturbation,

the classical harmonic oscillator exhibits a integer-spaced excitation spectrum, or if

one likes, a “quantized” excitation spectrum. The position and the magnitude of the

resonance peaks are in agreement with the quantum mechanical result.

2.4 Analysis and Mechanism

Such an agreement between the classical theory (as modified by the vacuum field)

and quantum mechanics appears to be astonishing, given that the theory is fully

classical and no quantization condition is added. While the quantized excitation

spectrum of a quantum harmonic oscillator is explained by the intrinsic quantized

energy levels, the quantized excitation of the classical harmonic oscillator is a result

of nonlinearity. In the simulation, we can turn on and off the spatial dependence of

either the vacuum field or the pulse field. The excitation spectrum was unaffected

when only the spatial dependence of the vacuum field is turned off. When turning off

only the spatial dependence of the pulse field, the excitation at the higher-harmonics

completely disappear. Moreover, the magnitude of the excitation peak at ω0 is also

affected. This suggests that the occurrence of the integer-spaced excitation spectrum

is solely due to the spatial nonlinearity of the pulse field. To support this idea, we
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consider a classical harmonic oscillator subject to only the pulse field,

mẍ = −mω2
0x+ qEp(x, t), (2.19)

where Ep(x, t) = E0 sin (kpx− ωpτ) exp (−τ 2/∆t2), E0 = −Apωp cos (θp), and kp =

ω/cp sin (θp). The spatial dependence in the pulse field can be Taylor expanded around

kpx = 0,

Ep(x, t) ' E1ω0(x, t) + E2ω0(x, t) + E3ω0(x, t), (2.20)

where

E1ω0(x, t) = −E0 sin (ωpτ) exp (−τ 2/∆t2),

E2ω0(x, t) = (kpx)E0 cos (ωpτ) exp (−τ 2/∆t2),

E3ω0(x, t) =

(
k2
px

2

2

)
E0 sin (ωpτ) exp (−τ 2/∆t2).

(2.21)

To show that the three interaction terms in Eq. (2.21) correspond to excitation at the

harmonics 1ω0, 2ω0, and 3ω0, three equations of motion are solved in the following

with individual interaction terms as the driving field. The equation for 1ω0-excitation

is given by,

mẍ1ω0 = −mω2
0x1ω0 + qE1ω0(x, t)

= −mω2
0x1ω0 − qE0 sin (ωpτ) exp (−τ 2/∆t2).

(2.22)

The full solution to this equation can be found as [9]

x1ω0 = x1c + x1p, (2.23)



54

with

x1c(t) = D0 cos (ω0t+ ϕ0),

x1p(t) = −
∫ ∞

0

dωf1(ω) sin (ωτ),
(2.24)

where

f1(ω) ≡ ∆t

2
√
π

qE0

m(ω2
0 − ω2)

exp

[
−
(
ω − ωp
2/∆t

)2
]
,

D0 =
√

(x0 − xp(0))2 + (v0 − vp(0))2/ω2
0,

cos (ϕ0) = (x0 − xp(0))/D0,

sin (ϕ0) = −(v0 − vp(0))/D0ω0.

(2.25)

Here we assume the classical harmonic oscillator has the initial position x0 and velocity

v0. The equation for 2ω0-excitation is given by

mẍ2ω0 = −mω2
0x2ω0 + qE2ω0(x, t)

= −mω2
0x2ω0 + q(kpx)E0 cos (ωpτ) exp (−τ 2/∆t2).

(2.26)

This equation is solved with a perturbation method up to the first-order in ε ≡

qE0λ0/mc
2,

x2ω0 ' x
(0)
2c + ε

(
x

(1)
2c + x

(1)
2p

)
, (2.27)

with

x
(0)
2c (t) = A0 cos (ω0t+ φ0),

x
(1)
2c (t) = B0 cos (ω0t+ ξ0),

x
(1)
2p (t) =

(
kpA0

2ε

)∫ ∞
0

dωf2(ω) cos (ωτ − ω0t0 − φ0),

(2.28)
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where

f2(ω) ≡ ∆t

2
√
π

qE0

m(ω2
0 − ω2)

exp

[
−
(
ω − (ωp − ω0)

2/∆t

)2
]
,

A0 =
√
x2

0 + v2
0/ω

2
0,

cos (φ0) = x0/A0,

sin (φ0) = −v0/(A0ω0),

B0 =

√
(x

(1)
p (0))2 + (v

(1)
p (0)/ω0)2,

cos (ξ0) = −x(1)
p (0)/B0,

sin (ξ0) = v(1)
p (0)/B0ω0.

(2.29)

Again, ω0 and v0 are the initial conditions as defined previously. The equation for

3ω0-excitation is given by

mẍ3ω0 = −mω2
0x3ω0 + qE3ω0(x, t)

= −mω2
0x3ω0 + q

(
k2
px

2

2

)
E0 sin (ωpτ) exp (−τ 2/∆t2).

(2.30)

The perturbative solution to is solved to the first-order in η ≡ qE0A0/mc
2,

x3ω0 ' x
(0)
3c + η

(
x

(2)
3c + x

(2)
3p

)
, (2.31)

with

x
(0)
3c (t) = A0 cos (ω0t+ φ0),

x
(2)
3c (t) = C0 cos (ω0t+ ζ0),

x
(2)
3p (t) =

(
k2
pA

2
0

8η

)∫ ∞
0

dωf3(ω) sin (ωτ − 2ω0t0 − 2φ0),

(2.32)
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where,

f3(ω) =
∆t

2
√
π

qE0

m(ω2
0 − ω2)

exp

[
−
(
ω − (ωp − 2ω0)

2/∆t

)2
]
,

A0 =
√
x2

0 + v2
0/ω

2
0,

cos (φ0) = x0/A0,

sin (φ0) = −v0/(A0ω0),

C0 =

√
(x

(2)
p (0))2 + (v

(2)
p (0)/ω0)2,

cos (ζ0) = −x(2)
p (0)/C0,

sin (ζ0) = v(2)
p (0)/C0ω0.

(2.33)

The total energy change of the harmonic oscillators as described in Eq. (2.22), (2.26),

and (2.30) can be calculated through ∆Eω =

∫ +∞

−∞
qEω(xω, t)vω(t) dt, where ω = 1ω0,

2ω0, or 3ω0. Using the solutions given above, the energy changes can be obtained for

ωp ' 1ω0, 2ω0, and 3ω0 respectively,

∆Eω0 =

√
π

2
(A0ω0)(qE0∆t) exp

[
−
(
wp − ω0

2/∆t

)2
]

cos (ω0t0 + φ0),

∆E2ω0 = −
√
π

4
(kpA0)(A0ω0)(qE0∆t) exp

[
−
(
wp − 2ω0

2/∆t

)2
][

sin (2ω0t0 + 2φ0)

+ 2
εB0

A0

sin (2ω0t0 + ξ0 + φ0)
]
,

∆E3ω0 = −
√
π

8

(
kpA0

2

)
(A0ω0)(qE0∆t) exp

[
−
(
wp − 3ω0

2/∆t

)2
][

cos (3ω0t0 + 3φ0)

+ 3
ηC0

A0

cos (3ω0t0 + 2φ0 + ζ0)
]
.

(2.34)
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As a result, the excitation at 1ω0 is due to the harmonic resonance of the oscillator

with the driving pulse frequency, while excitation at 2ω0 and 3ω0 is due to parametric

resonance [10, 11]. For the regular harmonic resonance, the energy change ∆E1ω0 is

independent of the initial conditions. However, for parametric resonance the energy

charges ∆E2ω0 and ∆E3ω0 depend on the initial conditions. If we assume that the

initial conditions are given by the oscillator ensemble in the vacuum field, as provided

by the numerical solutions of Eq. (2.14) in the absence of the pulse field or by using

the analytical solution [3], the ensemble average of Eq. (2.34) can be calculated,

〈∆Eω0〉 =
π

8

(qE0∆t)2

m
exp

[
−2

(
wp − ω0

2/∆t

)2
]
,

〈∆E2ω0〉 =
π

16

(qE0∆t)2

m

(
~ωp
mc2

)(
ωp
ω0

)
sin2 (θp)× exp

[
−2

(
wp − 2ω0

2/∆t

)2
]
,

〈∆E3ω0〉 =
3π

162

(qE0∆t)2

m

[(
~ωp
mc2

)(
ωp
ω0

)
sin2 (θp)

]2

exp

[
−2

(
wp − 3ω0

2/∆t

)2
]
,

(2.35)

where E0 = −Apωp cos (θp). With the parameters used in our simulation, namely the

natural frequency ω0 = 1016rad/s, particle charge q = 1.60 × 10−19C, particle mass1

m = 9.11 × 10−35kg, polarization angle θp = π/4, pulse duration ∆t = 10−14s, and

field amplitude Ap = 1.5 × 10−9Vs/m, the perturbation result shown in Eq. (2.35)

gives the peak heights at 1ω0, 2ω0, and 3ω0 as

〈∆Eω0〉 ' 1.2~ω0,

〈∆E2ω0〉 ' 0.6~ω0,

〈∆E3ω0〉 ' 0.3~ω0.

(2.36)

1 The mass value is chosen to keep the integration time manageable without losing the physical
characteristics of the problem.
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The full spectrum can also be evaluated using Eq. (2.35), and the agreement with the

simulation result (Figure 2.2) is about 80%. Therefore, the above perturbation anal-

ysis confirms that the occurrence of integer-spaced overtones is due to the parametric

resonance through the spatial nonlinearity of the pulse field. Before the arrival of the

pulse, the vacuum field prepares the particle ensemble with a particular distribution

in the phase space. Such a distribution eventually determines the relative height for

the excitation peaks.

2.5 Conclusions and Discussion

The occurrence of overtones is common in nonlinear classical systems. Whereas a clas-

sical anharmonic oscillator usually possesses non-integer spaced overtones [12, 13, 14],

a classical harmonic oscillator can have integer-spaced overtones if the spatial non-

linearity of the excitation pulse is taken into account and the initial energy of the

oscillator is nonzero. Such a process is analogous to excitation beyond the dipole

approximation in quantum mechanics [15], as also illustrated by the need of a mul-

tipole expansion in our quantum mechanical calculation. When a classical harmonic

oscillator is immersed in the vacuum field, a special steady state distribution of the

initial condition is reached. The initial conditions provided by the vacuum field makes

the excitation peak-height agree with those predicted by quantum mechanics (Fig-

ure 2.2). Remarkably, the agreement holds for weakly populated low excited states

where the quantum-classical correspondence is thought to fail.

In conclusion, we have shown that the classical harmonic oscillator in the vacuum

field exhibits the same integer-spaced excitation spectrum as its quantum counterpart.

In this study, the classical and the quantum excitation spectra are compared in terms

of ensemble averages. According to the quantum postulates, the individual outcomes
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of energy measurement should be discrete, while the classical theory in our study

gives a continuous distribution of energy outcomes. Thus, expanding on Milonni’s

comment; although SED can account for discrete energy levels in terms of an averaged

energies, it can not, in terms of individual measurement outcomes. Nevertheless, the

detailed agreement between the classical theory (as modified by the vacuum field) and

quantum mechanics is surprising, as classical particle theories are generally thought

to be unable to produce quantized excitation spectra. Extension of numerical work

to atomic and molecular system appears to be interesting.
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Chapter 3

Electron Deflection by

Light-Induced Surface Near-Field

An electron beam is deflected when it passes over a silicon nitride surface, if the

surface is illuminated by a low-power continuous-wave diode laser. A deflection angle

of up-to 1.2 mrad is achieved for an electron beam of 29µrad divergence. A mechanical

beam-stop is used to demonstrate that the effect can act as an optical electron switch

with a rise and fall time of 6µs. Such a switch provides an alternative means to

control electron beams, which may be useful in electron lithography and microscopy.
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3.1 Introduction

The motion of electron beams is controlled in technologies such as electron lithogra-

phy, microscopy, and diffractometry, in which the use of electric and magnetic fields

to focus and steer beams are proven techniques. The control of electron motion with

laser fields is also possible with the ponderomotive potential [1, 2]. In principle, such

a technique offers the interesting possibility that no electrical components or other

hardware needs to be placed in the vicinity of the electron beam. In addition, using

the spatial control at optical wavelength scales, electron-optical elements can be re-

alized [3, 4]. However, this optical control requires light intensities of 1014 W/m2. In

this paper we report on an optical electron switch that makes use of a small surface

and a low power laser. Although some material is placed in the vicinity of the electron

beam, no electrical feedthroughs are needed. Moreover, the required laser intensity

is reduced by ten orders of magnitude as compared to techniques based on the direct

interaction between laser light and electrons.

In this letter, it is shown that an electron beam that passes by a surface de-

flects when the surface is illuminated by a low-power continuous-wave diode laser.

While searching for a nano-scale related effect at grazing incidence, a significant and

unexpected beam deflection was observed. Deflection angles reached value of up-to

1.2 mrad. At a distance of 20 cm downstream from the interaction region, this trans-

lates to a beam displacement of 240µm. A beam-stop can placed in the deflected

electron beam, so that chopping the laser light results in complete switching the elec-

tron beam on and off. A maximum switching rate of 105 Hz is established. Such

an optically controlled electron switch may find applications in electron lithography

[5], coherent beam splitting or provide an alternative route to STM-based techniques

that probe optically induced near-fields [7, 6].
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3.2 Experiment Results

A schematic of the experimental setup is shown in Figure 3.1. In our experiment, the

electron beam is emitted from a thermionic source with a beam energy of 3.98 keV.

After passing through two collimation slits of width 5µm and 2µm and separation

24 cm, the beam divergence is reduced to 29µrad. At 6 cm after the second collimation

slit, a surface is placed parallel to the beam path. Three different surfaces were tested.

The first is a metallic-coated surface with nano-scale grooves [8, 9]. The other two are

a flat amorphous aluminum (with aluminum oxide on surface) and a silicon nitride

surface. All three surfaces resulted in electron beam deflection.

Continuous-wave diode lasers with maximum powers of 1 mW, 40 mW, and 5 mW

and wavelengths of 532 nm, 685 nm, or 800 nm, respectively, were focused by a cylin-

drical lens onto the first surface. The other two surfaces were tested with 800 nm light.

y 
 

z 

x 

electron beam surface 

chopper 

θ 

laser 

cylindrical lens 

MCP detector 

Figure 3.1: Setup of the low-power optical electron switch. An electron beam passing
close to a surface is deflected by an angle θ when the surface is illuminated with a
laser beam. The illumination is turned on and off with a mechanical chopper. (For a
detailed descriptions see text.)
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Block 

6μs 

fmax≈ 2 MHz 

Figure 3.2: Electron counts as a function of time as the laser is switching on and off.
Both chopper data (red dots) at 818 Hz and AOM data (black dots) at 1000 Hz are
shown. Top-left inset: A time-averaged image shows the initial and deflected electron
beam. A semi-transparent rectangle is added to depict a movable electron beam-stop.
Top-right inset: The deflection magnitude θ is plotted as a function of the chopping
frequency f . The estimated maximum chopping frequency according our heuristic
model, fmax ' 2 MHz, is also drawn (blue line) for comparison. The red dots are
data collected with a mechanical chopper and the black dots with a AOM.

The height of the laser beam and electron beam were matched by using an edge of the

surface structure to block part of these beams. The focal distance is 25 cm, and the

focused laser beam waist was about 280µm× 1 mm (FWHM). The waist of the light

beam was determined by scanning the intensity profile in situ with a surface edge.

A 10µm wide electron beam passes at a distance of nominally 20µm from the verti-

cally mounted metallic surface. Micrometer stages were used to control the horizontal

angle (in the xz-plane) as well as the vertical and horizontal travel of the surface.

Downstream from the metallic surface, the electron beam passes through a parallel

plate electrical deflector that aligns the beam with an electrostatic quadrupole lens.
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This lens magnifies the electron beam image in the horizontal direction by a factor of

65. A chevron multi-channel plate (MCP) detector is placed 26 cm downstream from

the surface. A phosphorescent screen follows the multichannel plates and a camera

is used to record the beam profile. Amplifiers and discriminators are used in con-

junction with a data acquisition board to record the electron counts as a function of

time. Gaussian fits of the beam profiles are used to find the center positions and the

deflection angles.

The vacuum pressure is about 1.5×10−7 Torr. By chopping the laser, the electron

beam image on the MCP detector switches between two positions. The time-averaged

image displays two nearly identical electron beam images that are horizontally dis-

placed from each other (Figure 3.2, top-left inset). An electron beam-stop, depicted

in the top-left inset of Figure 3.2 as a semi-transparent rectangle, is added. The elec-

tron counts are recorded as a function of time (Figure 3.2). The dynamical response

of the effect and also the finite electron beam size will limit the rise and fall time.

To explore the limit of the response speed, an 40 MHz acousto-optical modulator

(AOM) was used [IntraAction Corp. AOM-40N]. The amplitude of the acoustic wave

was modulated from 1 Hz to 3 MHz. The inset of Figure 3.2 shows the scaling of

the deflection magnitude of the electron beam with the AOM and the chopping fre-

quency. Overall, the deflection magnitude stays constant for frequencies from 102 Hz

to 3× 105 Hz. When the chopping frequencies are below 102 Hz, the deflection mag-

nitude becomes larger. When the AOM frequency increases above 2 × 105 Hz, the

deflection magnitude decreases to zero.

In Figure 3.3, deflection larger than the beam divergence is observed to a distance

of up-to 200µm. The Rayleigh length of the focused laser beam is roughly 5 cm for

an initial beam width of 1 mm and a the focal length of 25 cm). This is much larger

than 200µm, thus the illumination of the surface is unchanged as the surface is moved
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200 μm 

Figure 3.3: Distance dependence of the optical electron switch. As the surface is
displaced, the distance x between the surface and the electron beam is increased
(inset). The optical electron switch turns completely on and off up-to a distance of
200µm.

with respect to the electron beam. This measurement indicates that the deflection

originates from the electron-surface interaction rather than the direct electron-laser

interaction. As the interaction range is of the order of 200µm, the interacting part

of the surface is expected to have a length scale of that order of magnitude.

When moving the cylindrical lens in the vertical direction, the laser light crosses

the electron beam at different heights. The deflection angle shown in Figure 3.4

changes its sign as the light crosses through the electron beam. This was determined

by placing the beam-stop in such a way that the electron beam is half-blocked when

the laser is off. If the laser light deflects the beam towards the beam-stop, the electron

count rate decreases when the light is on. If the laser light deflect the beam away

from the beam-stop, the electron count rate increases when the light is on. The

magnitude of the deflection is determined by fitting a double Gaussian to the camera



68

y 
 
z 

x 

500nm 

Figure 3.4: Beam deflection. Left: The measured deflection magnitude is given as
a function of y (black dots). A measurement of the deflection direction is made at
three locations (red circles). The values including sign are indicated (red crosses).
Reversals of deflection sign may be explained by our heuristic model (blue line) of
light-induced surface charge redistribution. Right: A schematics of electron trajecto-
ries (black lines) and surface charge density (color-coded) is shown (See text for model
description). Red represents positive charge density. Dark blue represents negative
charge density. The red dots indicate the final positions of the electron beams. The
interaction between the electron beams and the surface charges is attractive in the
middle and repulsive at the sides.

image taken with the beam-stop removed. We observed that as the cylindrical lens

is moved vertically and the light approaches the electron beam from one end, the

electron beam first is deflected away from the surface, then attracted towards the

surface, and back to deflected away again. No significant dependence is observed for

surface tilt angles or laser polarizations.

Measurements have also been performed on different material surfaces such as

uncoated flat silicon-nitride membrane and bulk aluminum. A repulsive deflection of

up-to 1.2 mrad is observed with the silicon-nitride membrane, while at the aluminum

surface some small attractive deflection is observed. Given that the deflection effect

works with different laser wavelengths at low power, and it can occur at different

material surface, we conclude that an optical electron switch based on such a effect
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is robust.

3.3 Modeling

In the cases of uncoated silicon-nitride surface, the deflection shows only one sign

unlike that observed with the nano-structured metallic-coated surface. This suggests

that the deflection mechanism could be complex and involve a host of phenomena

including laser heating, plasmon or phonon excitation, and surface-charge redistribu-

tion. Nevertheless, a simplistic model is constructed to illuminate some features of

our experimental data shown in Figure 3.4. Focused by the cylindrical lens, the laser

intensity profile on the metallic-coated surface can be approximated with an elliptical

Gaussian,

I(y, z) = I0 × exp
[
−
(
y

∆y

)2

−
( z

∆z

)2
]
. (3.1)

where ∆y = 170µm and ∆z = 0.6 mm (corresponding to FWHM of 280µm× 1 mm).

The maximum intensity is I0 = P0/(π∆y∆z) = 1.6 × 104 W/m2 and the laser wave-

length is λ = 800 nm. The intensity gradient of the laser light can exert a pondermo-

tive force1 on the electrons in a thin surface layer,

Fp = − e2λ2

8π2mec3ε0
∇I. (3.2)

If we assume a linear restoring force for the electron,

Fr = −αd, (3.3)

1 When a light wave propagates in the solid, the phase relationship between the electric field
and the magnetic field is a complex function of the material properties. For a simplistic model, here
we assume that the electric field and the magnetic field are in phase.
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where α is a fitting parameter and d is the displacement, the induced volume dipole

moment can be determined,

P = −n0ed =
1

α

n0e
3λ2

8π2mec3ε0
∇I, (3.4)

where n0 = 5.9 × 1028 m−3 is the free electron density of gold [10]. The volume

charge distribution ρnet is calculated according to ρnet = −∇ ·P. Assuming that the

pondermotive force is effective through a depth of δeff = 1 nm into the metal, the

effective surface charge distribution on the metallic-coated surface can be obtained,

σeff = ρnetδeff = − 1

α

n0e
3λ2δeff

8π2mec3ε0
∇2I (3.5)

The distance between the free electron beam and the surface is 20µm, which is

much smaller than the length scale of the surface charge distribution. Thus, close to

the surface the free electron beam may experience a electric field approximated by

E ' σeff/2ε0(−x̂). Assuming that the velocity is constant in the z-direction because

of the high kinetic energy K0 = 3.98 keV in the incoming z-direction, the deflection

angle of the electron beam along the x-axis is estimated by

θ =
∆vx
v0

=
e

4ε0K0

∫ +∞

−∞
σeff dz. (3.6)

After integration, the above equation becomes

θ = θ0

[
1− 2

(
y

∆y

)2
]
e−(y/∆y)2 , (3.7)
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where

θ0 ≡
√
πeE0∆z

K0

,

E0 ≡
σ0

2ε0
,

σ0 ≡
1

α

n0e
3λ2δeffI0

8π3ε0mec3∆y2
.

(3.8)

The result of this simplistic model is compared with the experimental data in Fig-

ure 3.4. The fitting parameter is determined to be α ' 1.52× 10−16 N/m. The linear

restoring force (Eq. (3.3)) produces a harmonic motion with fundamental frequency

ω0 =
√
α/me. As a damped harmonic oscillator, the frequency response of the elec-

tron switch as shown in the inset of Figure 3.2 is limited to fmax = ω0/2π ' 2 MHz.

Despite some qualitative agreements, this crude model does not explain many

details, such as the physical origin of linear restoring force (Eq. (3.3)), the increase

of the deflection magnitude at very low frequency (Figure 3.2), the asymmetric side-

peak heights (Figure 3.4), and the fact that sign reversal of deflection direction is

only present on the nano-structured metallic-coated surface but not on the silicon

nitride surface. This heuristic model serves to draw attention to these features of our

experimental data.

3.4 Summary and Discussions

In summary, when a material surface is placed near an electron beam, a deflection of

the electron beam occurs as the surface is illuminated by a low-power laser. Thus,

the combination of a material surface, a low-power laser, and a chopping device can

make a low-power optical electron switch. Such an optical electron switch may be

used for electron beam control in electron lithography and in electron microscopy.
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The qualitative agreement between our model and the experimental data may be

fortuitous, but it suggests that the deflection mechanism is consistent with a surface-

charge redistribution that is driven by a mechanism that depends on the intensity

gradient of the laser light.

An implication of this work is that instead of using one laser beam for the optical

electron switch, one can use multiple laser beams to form spatial-temporal controlled

structures on a material surface. The near field of the surface charge may mimic

the pattern of the light, and electron matter waves could be coherently controlled in

this manner analogous to the Kapitza-Dirac effect or temporal lensing [11, 12], but

without the need for high laser intensity. Finally, we speculate that the combination

of laser pulses and nano-fabricated structures will make femtosecond manipulation of

free electrons accessible at low intensities [7, 13, 14].
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Chapter 4

Ultrafast Temporal Response of a

Plasmonic Structure

The temporal response of a plasmonic antenna at the femtosecond time scale is

measured via cross-correlation technique. The antenna consists of a square array

of nanometer-size gold rods. We find that the far-field dispersion of light reflected

from the plasmonic antenna is less than that of a 1.2mm thick glass slide. Assuming

a simple oscillating dipole model, this implies that the near-field of the antenna may

be used as an electron switch that responds faster than 20fs.
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4.1 Introduction

Light incident on a metallic material is strongly attenuated at the surface. For metallic

films of nanometer-scale thickness, all electrons in the material can interact with light

at optical frequencies. When this thin metallic film is patterned with nanometer scale

boundaries to form a metallic nanoparticle, electron resonance behavior occurs. This

phenomenon takes place when the dominant spatial mode of the charge oscillation,

i.e. the dipole oscillation mode, corresponds to the boundary shape of the particle [1].

Consequently, metallic nanoparticles that are made of the same material but have

different shapes reflect different colors under white light illumination [2, 3].

As the size of metallic particles shrinks down to sub-wavelength dimensions, a

strong near-field arises at the poles of the oscillating dipole. The magnitude of this

near field exceeds ten times that of the incident field which drives the particle, a

phenomena known as near-field enhancement [4, 5]. The near-field enhancement

can be even greater if several metallic particles are positioned close to each other

[4]. Additionally, the resonant response of a particle assembly can be tuned through

variation of the inter-particle distances [6, 7]. Thus, an array of metallic nanoparticles

can be used as an antenna, known as a plasmonic antenna [6]. The periodic structure

and strong near-field enhancement of a plasmonic antenna during a laser pulse may

enable it to act as a pulsed electron diffraction grating. Such a device could be used

as an ultrafast electron switch [8] or as a target for ultrafast electron microscopy [9].

In order to utilize a plasmonic antenna as an electron diffraction/deflection device

in the ultrafast regime, it is important to know how a plasmonic antenna responds

to ultrafast light. In this study, we investigate the temporal response of a plasmonic

antenna upon excitation by a femtosecond light pulse.

The temporal response of regular arrays of nanoparticles have been previously
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studied with methods sensitive to a variety of nanoparticle shapes [10, 11, 12, 13].

The results from autocorrelation measurements of transmitted second- and third-

harmonic generation signals indicated a fast relaxation time of 6fs. The arrays used

had periodicities and gapsizes of hundreds of nanometers. In this study, we use a

reflective cross-correlation method, which does not require higher-harmonic genera-

tion. We also propose that this arrangement could be used for electron manipulation.

Periodic structures with a period of about 100 nm and gaps of tens of nanometers are

of particular interest for electron diffraction. The former provides practical diffrac-

tion angles, while the latter yields an intensity enhancement that may be suited for

femtosecond electron switching. In view of our proposed application, the main ob-

jective of the present work is to establish that the enhanced near-fields in the small

gaps between elements of the array studied do not significantly lengthen the temporal

response of the reflected pulse.

The near-field of nanoscale structures has been probed time-independently with

tip-enhanced electron emission microscopy [14] and time-dependently with photon-

induced near-field microscopy [15]. As pointed out previously in [15], these techniques

may also be used to investigate plasmonic antennas. The simple all-optical technique

presented in this study may be useful for selecting plasmonic antennas with an in-

teresting response in the far-field that warrant a more involved study with pulsed

electron techniques.

4.2 Model and Theory

When excited by a light pulse, the plasmonic antenna generates a strong localized

near-field. The far-field is radiated as a reflected pulse. For an array of dipole ra-

diators, the relation between the antenna’s near- and far-fields can be deduced by
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inspecting the fields of each single oscillating dipole, p(t) = pωe
−i(ωt+φω) [16],

Edip,ω(r, t) =
1

4πε0

{
k2

r
(r̂× ẑ)× r̂

+

(
1

r3
− ik

r2

)
[3(r̂ · ẑ)r̂− ẑ]

}
pωe

−i(ωt+φω)eikr

= Efar(r)pωω
2eiφωe−iω(t−r/c)

+ Emid(r)pωωe
iπ/2eiφωe−iω(t−r/c)

+ Enear(r)pωe
iφωe−iω(t−r/c),

(4.1)

where k = ω/c, ω is the frequency of the incident field, pω is the dipole strength of

the nanoparticle, φω is the relative phase between the incident field and the induced

dipole, ẑ is the unit vector along the direction of the dipole, and r̂ is the unit vector

in the radial direction from the center of the dipole. Efar(r), Emid(r), and Enear(r)

are the spatial patterns of the far-, intermediate-, and near-fields, respectively. It

is clear from Eq. (4.1) that the near- and far-fields have the same phase spectrum.

Although the power spectra of the near- and far-fields differ by a factor of ω2, this

difference is negligible for a plasmonic resonance curve that is about 100nm wide

and centered at 800nm. Thus, the near- and far-fields of a nanoparticle can have

an identical temporal pulse shape. The field reflected from the plasmonic antenna is

the sum of the fields from many dipole radiators. When the plasmonic antenna is

excited by a pulse incident at an angle, the far-fields from all the radiators have the

same time delay in the direction specified by the law of reflection. In other directions,

the far-fields interfere destructively. Thus, the far-field of the plasmonic antenna has

the same temporal shape as the far-field of the individual radiators. The near-field

close to the surface of the antenna has contributions from the incident field and the

nearest radiators of the antenna. The field in the immediate vicinity of one particular
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radiator has also a contribution from a neighboring radiator. However that field has

a time delay that depends on the distance between the next neighbor pairs. For an

array of nanoparticles in an antenna, these distances can be in the subwavelength

region. Then the contribution of a next neighbor radiator is delayed in time at most

by their distance divided by the speed of light, and therefore, within the sub-cycle

oscillation. This contribution would be in phase and not reduce the local field. The

near-fields from more distant neighbors can have a significant time delay and may

potentially cause the temporal duration of the near-field to broaden. However, the

strength of the near-field of any radiator decays quickly over the distance of one

wavelength, so the contribution from the far neighbors can be ignored. Consequently,

the near-field of the plasmonic antenna has the same temporal shape as the near-field

of the individual radiator. Assuming that the antenna is an array of independent

dipole radiators, the temporal response of the antenna’s far-field equals the temporal

response of the antenna’s near-field.

Information about the temporal width of the antenna’s far-field may be ob-

tained from comparing the cross-correlation signal of the reflected pulse to the auto-

correlation signal of the incident pulse. Comparison between the cross-correlation

signal and the auto-correlation signal shows the contrast between the reflected pulse

and the incident pulse, revealing any broadening that may have occurred. However,

without knowing the specific shape of the pulse, its temporal width cannot be inferred

directly from the cross-correlation signal. In this study, the cross-correlation signal is

modeled by reconstructing the pulse fields from the experimentally obtained power

spectrum and the theoretically computed phase spectrum. The phase spectrum of

the reflected pulse is modeled by calculating the phase dispersion of a pulse which
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Figure 4.1: Experimental setups. Experiments are performed for the antenna-
configuration and the glass-configuration configuration. The experiment with the
glass-configuration tests the validity of the glass-model, while the experiment of the
antenna-configuration measures the temporal width of the plasmonic antenna’s far
field.

passes through a glass slide (fused silica) twice,

φdisp(ω) =
2ωd

c
n(ω) + φbs(ω), (4.2)

where d is the thickness of the glass slide, ω is the frequency, φbs(ω) is the phase

dispersion due to the beamsplitter (BK7), and n(ω) is the index of refraction of

the glass (fused silica). The “modeling” is here intended to provide a convenient

parametrization of the pulsed laser field, not to model the physical process of reflection

in the plasmonic antenna. The thickness of the glass, d, is the only fitting parameter

in this “glass-model” and is determined by comparing theoretical and experimental

cross-correlation signals.
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4.3 Experiment

To test the validity of this glass-model, experiments were performed in the antenna-

configuration and the glass-configuration, shown in Figure 4.1. After the pulse passed

through a dispersion compensator [17], a beamsplitter splits the pulse to two arms.

In the antenna-configuration, the pulse reflected from the plasmonic antenna arm is

interfered with the pulse reflected from the mirror arm. The temporal interference

pattern is the cross-correlation signal,

C(τ) =

∫ +∞

−∞
Em(t− τ)Edisp(t) dτ, (4.3)

where Em(t) is the pulse from the mirror arm, and Edisp(t) is the pulse from the

antenna arm of the interferometer. Note that the real part of the field is used in this

expression. If the plasmonic antenna changes either the power or phase spectrum of

the incident pulse, the pulse from the antenna arm, Edisp(t), would have a different

shape than the pulse from the mirror arm, Em(t). This would result in a cross-

correlation signal between Em(t) and Epl(t) that is broader than the auto-correlation

signal of Em(t),

A(τ) =

∫ +∞

−∞
Em(t− τ)Em(t) dτ. (4.4)

The same applies to the glass-configuration except that glass causes a known changes

in the phase spectrum while leaving the power spectrum unaltered.

In our experiment, we use a light pulse which has a full-width-half-maximum

spectral bandwidth of ∆λ = 63nm and a central frequency of λc = 800nm. Assum-

ing a transform-limited pulse shape, the full-width-half-maximum temporal width

of the pulse field is ∆t ' 20fs. The plasmonic antenna used in the experiment

was fabricated using electron-beam lithography as described in [6]. Images ob-
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Figure 4.2: Antenna characterization. Left top: An SEM micrograph of a localized
area of the array of gold nanorods that make up the plasmonic antenna. Missing
nanorods can be observed. Main graph: The power spectrum of the input laser pulse
(green line) is centered around 800nm and supports a minimum pulse duration of
20fs. The reflectance of incident unpolarized white light from the plasmonic antenna
(black, red, and blue lines) shows a broad resonance structure. Right top: The
reflectance of linearly polarized light at a wavelength of 800nm shows a maximal
reflection when the incident polarization is aligned along the length nanorods.

tained with a scanning-electron microscope (see Figure 4.2) indicate rod dimensions

of 170nm × 80nm. The rod array has a period of 160nm in the direction perpen-

dicular to the rod length and a spacing of 10− 20nm along their length. The entire

array has a size of 100µm×100µm. Defects, such as missing rods and scratches, were

present and are likely a result of the fabrication process and/or damage incurred

during handling the device. The broadband reflectance spectrum was measured by

focusing white light from a xenon lamp with a 50× microscope objective onto the

plasmonic antenna (Figure 4.2). Reflected light was collected into a fiber-coupled

spectrometer and the resulting spectrum was normalized with the spectrum reflected
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Figure 4.3: Experimental data of the cross-correlation signals from the antenna-
configuration (blue line) and the glass-configuration (red line). The auto-correlation
signal of the incident pulse (black line) is computed from the measured power spec-
trum according to the Wiener-Khinchin theorem.

by a silver mirror. The result is consistent with the relations between resonance and

rod dimensions and spacing reported in [6]. Comparison of the input laser spectrum

with the plasmonic antenna reflectance spectrum shows that the laser pulse contained

frequencies appropriate for generating near-field enhancement in the antenna. The

reflection of the array was also measured using a focused beam of linearly polarized

light with a wavelength of 800nm (Figure 4.2). The polarization-dependence of the

reflected power is indicative of the resonance behavior of the antenna.

4.4 Results

The experimental results are shown in Figure 4.3. The autocorrelation signal is

obtained by taking a Fourier transform of the measured power spectrum according
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Figure 4.4: Field reconstruction from the glass-model. Left: The theoretically calcu-
lated cross-correlation signal shown in black dots, is fit to the experimental data (blue
and red lines) to determine the glass thickness in the glass-model (see text). For com-
parison the theoretical cross-correlation signal for zero glass thickness is shown (green
line). Right: Reflected pulses are reconstructed with the fit parameter obtained from
the glass-model in the absence of dispersion from other optical components in the
system. The pulse reflected from the array is shown in blue, and the pulse from the
glass in red.

to the Wiener-Khinchin theorem. The width of the autocorrelation signal is about

30fs. The cross-correlation widths measured in the antenna- and glass-configuration

are about 40fs and 50fs, respectively. To interpret this result, the glass-model is

used. Agreement between the model and the experimental data is found when the

fitting parameter is set at 1.145mm, as shown in Figure 4.4. This is indeed close to

the measured thickness of the glass slide used in the experiment, which is 1.14mm.
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When this model is applied to the cross-correlation spectrum acquired in the antenna-

configuration, the effect of reflection from the antenna can be modeled well by the

glass-model when the fitting parameter is set to 0.25mm. Use of this model enables

the reconstruction of the reflected pulse by the nanorod array without inclusion of

dispersion from other optical components in the system. The temporal width of the

pulse reflected by the antenna (shown in Figure 4.4) is found to be close to that of

the incident pulse.

4.5 Discussion: Plasmonic Femtosecond Electron

Swtich

Our result indicates that it may be feasible to use the plasmonic antenna as a fem-

tosecond electron switch. Consider an electron pulse that is cross fired with a laser

pulse in such a way that the electron pulse and the laser pulse meet at the plasmonic

antenna (Figure 4.5). Upon excitation by the laser pulse, the antenna will provide

a spatially modulated near-field defined by the periodicity of the antenna array. An

antenna can enhance the laser intensity at its near field by a factor of κ ' 800 [4], al-

though for the antenna array characterized above an enhancement factor of about 50

is expected [6]. As an electron comes close to the antenna surface, it will experience

a force from the antenna’s near-field. For an electron wave with a small coherence

length the interaction time will be shorter than the laser period (2.7fs) and the elec-

tron will interact with the enhanced electric field of the array. If the electron wave

is more delocalized, the electron will experience the cycle-averaged ponderomotive

potential of the array [18, 19]. The maximum diffraction angle by the ponderomotive
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potential ∆θm may be estimated by [20]

∆θm =
∆v

v
=

τ

mv

∆Up
∆x

=
τ

mv

e2(κI)

2mε0cω2∆x
, (4.5)

where τ is the interaction time, v is the electron’s speed, m is the electron’s mass, ω

is the laser frequency, I is the laser intensity, Up is the pondermotive potential of the

near-field, and ∆x is the distance over which the pondermotive potential drops to a

small value. For a non-amplified femtosecond laser oscillator operated at 800nm, the

laser pulse has an energy of 10nJ and thus an intensity of I = 2× 1011(W/cm2) for a

duration of 50fs and a focus of 10µm. This intensity approaches the damage threshold

of most materials, including a plasmonic antenna. However, cooling the antenna,

optimizing the enhancement, or simply working at somewhat lower intensity may be

possible. Assuming that the typical interaction length scale between the potential

and the electron wave is about 100nm, the interaction time can be estimated to be

τ = 10(fs) for a 500eV electron pulse. Given an enhancement factor of κ ' 800,

a significant diffraction angle of ∆θm = 10(mrad) can be expected. For a more

moderate intensity enhancement of κ = 40, the ponderomotive diffraction is reduced

to a measurable ∆θm = 0.5(mrad). This is considered to be a lower limit for the

expected electron diffraction angle.

If the electron wave interaction is limited to the enhanced field within the 10nm

gap between the nanoparticles, the interaction time will be 1fs and classical deflection

by the antenna’s electric field could be considered. In this case the deflection angle

is given by

∆θE =
∆v

v
=
eEτ

mv
, (4.6)

where the electric field E =
√
κε0cI. For a moderate enhancement of κ ' 50 the

result is a large deflection of ∆θE = 50(mrad). These rough estimates indicate that
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Figure 4.5: Proposed femtosecond electron switch. A laser pulse affects the scattering
of an electron pulse through the pondermotive potential provided by the enhanced
near field of a plasmonic antenna. The intersection of a laser pulse and electron pulse
can be directed onto a planar structure. Following an idea of Zewail [21], the electron
velocity and interaction angle can be chosen in such a way that the pulses remain
synchronous as they sweep over the planar plasmonic structure. The consequence is
that the temporal resolution of the switched electron beams (dashed blue lines) is set
by the laser pulse duration.

it appears reasonable to consider a plasmonic antenna for the purpose of ultrafast

electron switching.

In summary, three properties of a plasmonic antenna justify its proposed use as

an ultrafast electron switch. First, the periodic structure of the plasmonic antenna

ensures a large gradient of the electric field and thus a large force on the electron.

Second, the near-field enhancement eliminates the need for strong laser power, en-

abling the use of a laser with a higher repetition rate and increasing the number of

electrons per second detected. Third, the planar geometry allows for femtosecond

resolution detection and control of large diameter electron beams by the use of angle

tuning [21].
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4.6 Conclusions

In conclusion, agreement between theory and experimental cross-correlation data in

the glass-configuration justifies use of the glass-model to model the phase spectrum

of the laser pulse reflected from the plasmonic antenna. According to this model,

the temporal width of the antenna’s far field is shown to be close to that of the

excitation pulse. Under the assumption that the plasmonic antenna is described by

a collection of dipole radiators, the near field of the plasmonic antenna responds on

the femtosecond scale. This ultrafast enhanced near field may affect the motion of

incident electron beams. Femtosecond nanoscale pulsed electron sources have been

developed [22, 23]. Electron pulse compression techniques applied to electron beams

extracted from pulsed sources have been shown to deliver electron pulses of about

100fs [24]. Electron pulse compression techniques have been proposed to deliver

sub-femtosecond electron pulses [25, 8, 26]. A plasmonic antenna functioning as an

electron switch may be an ideal detection method for these sub-femtosecond electron

pulses.
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Appendix A

The Vacuum Field in Unbounded

and Bounded Space

In “unbounded” space, the modes are continuous and the field is expressed in terms

of an integral. In “bounded” space, the modes are discrete and the field is expressed

in terms of a summation. In both cases, the expression for the field amplitude needs

to be obtained (see Appendix A.1 and A.2). The integral expression helps comparison

with analytical calculations in previous papers [2, 6, 7, 8, 3], while the summation

expression is what we use in our numerical work.
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A.1 Unbounded Space

The homogeneous solution of Maxwell’s equations in unbounded space is equivalent

to the solution for a wave equation,

E(r, t) =
1

2

2∑
λ=1

∫
d3k ε(k, λ)

(
Ã(k, λ)ei(k·r−ωt) + Ã∗(k, λ)e−i(k·r−ωt)

)
B(r, t) =

1

2c

2∑
λ=1

∫
d3k (k̂× ε(k, λ))

(
Ã(k, λ)ei(k·r−ωt) + Ã∗(k, λ)e−i(k·r−ωt)

)
,

(A.1)

where Ã(k, λ) is the undetermined field amplitude for the mode (k, λ) and has the

unit of electric field (V/m), k̂ is defined as the unit vector of k, and the two vectors,

ε(k, 1) and ε(k, 2), describe an orthonormal polarization basis in a plane that is

perpendicular to the wave vector k.

Without loss of generality, a random phase eiθ̃(k,λ) can be factored out from the

field amplitude Ã(k, λ) = A(k, λ)eiθ̃(k,λ),

E(r, t) =
1

2

2∑
λ=1

∫
d3k ε(k, λ)

(
A(k, λ)ei(k·r−ωt)eiθ̃(k,λ) + A∗(k, λ)e−i(k·r−ωt)e−iθ̃(k,λ)

)
B(r, t) =

1

2c

2∑
λ=1

∫
d3k ξ(k, λ)

(
A(k, λ)ei(k·r−ωt)eiθ̃(k,λ) + A∗(k, λ)e−i(k·r−ωt)e−iθ̃(k,λ)

)
.

(A.2)

where ξ(k, λ) ≡ k̂× ε(k, λ). The field amplitude A(k, λ) can be determined through

the phase averaged energy density,

〈u〉θ̃ =
ε0
2

〈
|E|2

〉
θ̃

+
1

2µ0

〈
|B|2

〉
θ̃
, (A.3)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and θ̃ is the



95

random phase in Eq. (A.2). To evaluate the phase averaged energy density 〈u〉θ̃, we

first calculate |E|2 and |B|2 using Eq. (A.2),

|E|2 (r, t) = E(r, t)E∗(r, t) =
1

4

∑
λ,λ′

∫
d3k

∫
d3k′ (ε(k, λ) · ε(k′, λ′))f,

|B|2 (r, t) = B(r, t)B∗(r, t) =
1

4c2

∑
λ,λ′

∫
d3k

∫
d3k′ (ξ(k, λ) · ξ(k′, λ′))f,

(A.4)

where f ≡ f(k, λ; k′, λ′; r, t),

f(k, λ; k′, λ′; r, t) = A(k, λ)A∗(k′, λ′)ei(k·r−ωt+θ̃(k,λ))e−i(k
′·r−ω′t+θ̃(k′,λ′))

+ A(k, λ)A(k′, λ′)ei(k·r−ωt+θ̃(k,λ))ei(k
′·r−ω′t+θ̃(k′,λ′))

+ A∗(k, λ)A∗(k′, λ′)e−i(k·r−ωt+θ̃(k,λ))e−i(k
′·r−ω′t+θ̃(k′,λ′))

+ A∗(k, λ)A(k′, λ′)e−i(k·r−ωt+θ̃(k,λ))ei(k
′·r−ω′t+θ̃(k′,λ′)).

(A.5)

The random phase average can be calculated with the following relation [3],

〈
e±i(θ̃(k,λ)+θ̃(k′,λ′))

〉
θ̃

= 0,〈
e±i(θ̃(k,λ)−θ̃(k′,λ′))

〉
θ̃

= δλ′,λδ
3(k′ − k).

(A.6)

Applying Eq. (A.6) to Eq. (A.5), we obtain

〈f(k, λ; k′, λ′; r, t)〉θ̃ = A(k, λ)A∗(k′, λ′)ei(k·r−ωt)e−i(k
′·r−ω′t)δλ′,λδ

3(k′ − k)

+ A∗(k, λ)A(k′, λ′)e−i(k·r−ωt)ei(k
′·r−ω′t)δλ′,λδ

3(k′ − k).

(A.7)
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Consequently,
〈
|E|2

〉
θ̃

and
〈
|B|2

〉
θ̃

can be evaluated using Eqs. (A.4) and (A.7),

〈
|E|2

〉
θ̃

=
1

4

∑
λ,λ′

∫
d3k

∫
d3k′ (ε(k, λ) · ε(k′, λ′))〈f〉θ̃ =

1

2

2∑
λ=1

∫
d3k |A(k, λ)|2 ,

〈
|B|2

〉
θ̃

=
1

4c2

∑
λ,λ′

∫
d3k

∫
d3k′ (ξ(k, λ) · ξ(k′, λ′))〈f〉θ̃ =

1

2c2

2∑
λ=1

∫
d3k |A(k, λ)|2 .

(A.8)

The above calculation leads to a relation between the field amplitude A(k, λ) and the

phase averaged energy density 〈u〉θ̃ in unbounded space,

〈u〉θ̃ =
ε0
2

2∑
λ=1

∫
d3k |A(k, λ)|2 . (A.9)

Now, if we postulate that the vacuum energy is ~ω/2 for each mode (k, λ), then in a

bounded cubic space of volume V the vacuum energy density is

uvac =
1

V

∑
k,λ

~ω
2

=
1

V

∑
k,λ

~ω
2

(
Lx
2π

∆kx

)(
Ly
2π

∆ky

)(
Lz
2π

∆kz

)
=

2∑
λ=1

1

(2π)3

∑
k

∆3k
~ω
2
.

(A.10)

In the limit of unbounded space (i.e. V → ∞), the volume element ∆3k becomes

differential (i.e. ∆3k → d3k) and the vacuum energy density becomes

uvac =
2∑

λ=1

1

(2π)3

∫
d3k

~ω
2
. (A.11)

Comparing this result with Eq. (A.9), we find

|Avac(k, λ)|2 =
~ω

(2π)3ε0
. (A.12)

Assuming Avac(k, λ) is a positive real number, the vacuum field amplitude in un-
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bounded space is determined,

Avac(k, λ) =

√
~ω

8π3ε0
. (A.13)

Therefore, the vacuum field in unbounded space is found to be

Evac(r, t) =
1

2

2∑
λ=1

∫
d3k ε(k, λ)

√
~ω

8π3ε0

(
ei(k·r−ωt)eiθ̃(k,λ) + e−i(k·r−ωt)e−iθ̃(k,λ)

)
Bvac(r, t) =

1

2c

2∑
λ=1

∫
d3k ξ(k, λ)

√
~ω

8π3ε0

(
ei(k·r−ωt)eiθ̃(k,λ) + e−i(k·r−ωt)e−iθ̃(k,λ)

)
,

(A.14)

which is Eq. (1.1).

A.2 Bounded Space

The solution of homogeneous Maxwell’s equations in bounded space has the summa-

tion form,

E(r, t) =
1

2

∑
k,λ

(
Ã

kλ
ei(k·r−ωt) + Ã∗

kλ
e−i(k·r−ωt)

)
ε

kλ
,

B(r, t) =
1

2c

∑
k,λ

(
Ã

kλ
ei(k·r−ωt) + Ã∗

kλ
e−i(k·r−ωt)

)
ξ

kλ
,

(A.15)

where ξ
kλ

= k̂ × ε
kλ

, Ã
kλ

is the undetermined field amplitude for the mode (k, λ)

and has the unit of electric field (V/m), k̂ is defined as the unit vector of k, and the

two vectors, ε
k,1

and ε
k,2

, describe an orthonormal polarization basis in a plane that

is perpendicular to the wave vector k.
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Using the relation1

〈
e
±i(θ̃

kλ
+θ̃

k′,λ′ )
〉
θ̃

= 0〈
e
±i(θ̃

kλ
−θ̃

k′,λ′ )
〉
θ̃

= δλ′,λδk′,k,

(A.16)

we can follow the same argument in Appendix A.1 and obtain the phase averaged

energy density in bounded space

〈u〉θ̃ =
ε0
2

∑
k,λ

|A
kλ
|2 , (A.17)

where Ã
kλ

= A
kλ
eiθ̃kλ . Again, if we postulate that the vacuum energy is ~ω/2 for

each mode (k, λ), then in a bounded space of volume V the vacuum energy density is

uvac =
1

V

∑
k,λ

~ω
2
. (A.18)

Comparing Eq. (A.17) and Eq. (A.18), the vacuum field amplitude in bounded space

is determined,

Avackλ =

√
~ω
ε0V

. (A.19)

Therefore, the RED vacuum field in bounded space is

Evac(r, t) =
1

2

∑
k,λ

(√
~ω
ε0V

ei(k·r−ωt)eiθ̃kλ + c.c.

)
ε

kλ
,

Bvac(r, t) =
1

2c

∑
k,λ

(√
~ω
ε0V

ei(k·r−ωt)eiθ̃kλ + c.c

)
ξ

kλ
.

(A.20)

1 If the two modes are not identical (i.e. k′ 6= k or λ′ 6= λ), then eiθk,λ and eiθk′,λ′ are independent,
which leads to the factorization 〈ei(θk,λ±θk′,λ′ )〉θ̃ = 〈eiθk,λ〉θ̃〈e±iθk′,λ′ 〉θ̃ = 0.
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Appendix B

Isotropic Polarization Vectors

A wave vector chosen along the z-axis,

k̃ =


k̃x

k̃y

k̃z

 =


0

0

k

 , (B.1)

has an orthonormal polarization basis in the xy-plane,

ε̃
k,1

=


cosχ

sinχ

0

 , ε̃
k,2

=


− sinχ

cosχ

0

 , (B.2)

where the random angle χ is uniformly distributed in [0, 2π]. To obtain the wave

vector k in Eq. (1.34), k̃ can be first rotated counterclockwise about the y-axis by an

angle θ, then counterclockwise about the z-axis by an angle φ. The corresponding
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rotation matrix is described by

R̂ = R̂
(z)
φ R̂

(y)
θ

=


cosφ − sinφ 0

sinφ cosφ 0

0 0 1




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



=


cos θ cosφ − sinφ cosφ sin θ

cos θ sinφ cosφ sinφ sin θ

− sin θ 0 cos θ

 ,

(B.3)

and k is obtained accordingly,

k = R̂k̃ =


k sin θ cosφ

k sin θ sinφ

k cos θ

 . (B.4)

In the same manner, we can rotate ε̃
k,1

and ε̃
k,2

with the rotation matrix R̂, and

obtain an isotropically distributed1 polarization basis as described in Eq. (1.39),

ε
k,1

= R̂ε̃
k,1

=


cos θ cosφ cosχ− sinφ sinχ

cos θ sinφ cosχ+ cosφ sinχ

− sin θ cosχ



ε
k,2

= R̂ε̃
k,2

=


− cos θ cosφ sinχ− sinφ cosχ

− cos θ sinφ sinχ+ cosφ cosχ

sin θ sinχ

 .

(B.5)

1 After the rotation, the uniformly distributed circle will span into a uniformly distributed
spherical surface.
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Appendix C

Repetitive Time

A field composed of finite discrete frequencies,

E(t) =
N∑
k=1

Ek cos (ωkt), (C.1)

repeats itself at the least common multiple (LCM) of all the periods of its frequency

components,

E(t+ τrep) = E(t), (C.2)

τrep = [T1, T2, . . . , TN ]LCM , (C.3)

where Tk =
2π

ωk
. An example of a two-frequency beat wave is given in Figure C.1.

Given the frequency spectrum of E(t), one can draw a relation between the repetition

time τrep and the greatest common divider (GCD) of the frequencies,

τrep =
2π

(ω1, ω2, . . . , ωN)GCD
. (C.4)
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The derivation of the relation in Eq. (C.4) is the following. First, we factorize the

sum of all the frequencies into two terms,

ω1+ω2+. . .+ωN =
2π

T1

+
2π

T2

+. . .+
2π

TN
=

2π

[T1, T2, . . . , TN ]LCM
(n1+n2+. . .+nN), (C.5)

where nk are positive integers,

nk =
[T1, T2, . . . , TN ]LCM

Tk
. (C.6)

Now, it is true that (n1, n2, . . . , nN)GCD = 1, otherwise it would lead to a contradiction

to Eq. (C.6). Therefore, one can conclude that

∆ωgcd ≡ (ω1, ω2, . . . , ωN)GCD =
2π

[T1, T2, . . . , TN ]LCM
. (C.7)

From Eq. (C.3) and Eq. (C.7), the relation in Eq. (C.4)

τrep =
2π

∆ωgcd
(C.8)

is drawn. Since the simulation should only be carried through an integration time

τint ≤ τrep to avoid repetitive solutions, in our case the choice of the integration time

(Eq. (1.62))

τint =
2π

∆ω
, (C.9)

where ∆ω is the smallest frequency gap (∆ω ≤ ∆ωgcd), suffices our purpose. The

frequency gap as a function of κ can be estimated using Eq. (1.35),

∆ω(κ) = ω(κ)− ω(κ−∆κ) = c(3κ)1/3 − c(3κ)1/3

(
1− ∆κ

κ

)1/3

. (C.10)
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Figure C.1: Repetition time of a beat wave. A beat wave (black solid line) is made
of two frequency components (red and blue solid line). The oscillation periods of
the two frequency components are T1 = 1.5 and T2 = 2, thus the repetition time is
τrep = [T1, T2]LCM = 6. Note that the periodicity of the envelope (black dash line) is
τenv = 12, which is different from the repetition time τrep = 6.

Applying the sharp resonance condition (Eq. (1.10)) to Eqs. (1.24) and (1.36), it can

be further shown that ∆κ is much smaller than κ0 and κ ' κ0,

∆κ

κ0

=

(
3

Nk − 1

)
∆

ω0

� 1, (C.11)

κ = κ0 +O

(
∆

ω0

)
, (C.12)

where κ0 =
1

3

(ω0

c

)3

. Therefore, the size of ∆ω(κ) is approximately fixed within the

sampled frequency range ∆, and the smallest frequency gap ∆ω can be approximated

as

∆ω ' c(3κ0)1/3

3

∆κ

κ0

. (C.13)
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Appendix D

Parallel Computing of the

QM/SED Excitation Spectrum

The following is the Fortran 90 code used in the simulation of the quantized excitation

spectrum as described in Chapter 2.



Page 1 of 11QM_Spectrum_higher_order_mpi.f90
Printed: 2/22/13 5:47:49 PM Printed For: Wayne

Module matrix_functions
! implicit none
! contains

! FUNCTION expM(order, A, N)
! ! implicit none
! ! integer, intent(in) :: order, N 
! ! real*8, dimension(N,N), intent(in) :: A 
! ! real*8, dimension(N,N) :: expM, idtyM
! ! real*8, dimension(order+1,N,N) :: OrdM
! ! integer i, j, k
! ! real*8 kd, factrl
!
! ! do i = 1, N!! ! ! ! ! !build identity matrix
! ! ! do j = 1, N!
! ! ! ! idtyM(i,j) = kd(i*1d0,j*1d0)
! ! ! enddo! !
! ! enddo!
! ! do k = 0, order!! ! ! ! !build matrix at different order
! ! ! if (k >= 1) then
! ! ! ! OrdM(k+1,:,:) = idtyM
! ! ! ! do i = 1, k
! ! ! ! ! OrdM(k+1,:,:) = matmul(OrdM(k+1,:,:), A)
! ! ! ! enddo
! ! ! else
! ! ! ! OrdM(k+1,:,:) = idtyM!
! ! ! endif
! ! enddo!
! ! do k = 0,order! ! ! ! ! !put on the factorial factor on each order of matrix
! ! ! OrdM(k+1,:,:) = OrdM(k+1,:,:)/factrl(k) 
! ! enddo! !
! ! expM = sum(OrdM,1)
! RETURN
! END FUNCTION 
!
! FUNCTION cexpM(order, A, N)
! ! implicit none
! ! integer, intent(in) :: order, N 
! ! complex*16, dimension(N,N), intent(in) :: A 
! ! real*8, dimension(N,N) :: idtyM
! ! complex*16, dimension(N,N) :: cexpM
! ! complex*16, dimension(order+1,N,N) :: OrdM
! ! integer i, j, k
! ! real*8 kd, factrl
!
! ! do i = 1, N!! ! ! ! ! !build identity matrix
! ! ! do j = 1, N!
! ! ! ! idtyM(i,j) = kd(i*1d0,j*1d0)
! ! ! enddo! !
! ! enddo!
! ! do k = 0, order!! ! ! ! !build matrix at different order
! ! ! if (k >= 1) then
! ! ! ! OrdM(k+1,:,:) = idtyM
! ! ! ! do i = 1, k
! ! ! ! ! OrdM(k+1,:,:) = matmul(OrdM(k+1,:,:), A)
! ! ! ! enddo
! ! ! else
! ! ! ! OrdM(k+1,:,:) = idtyM!
! ! ! endif
! ! enddo!
! ! do k = 0,order! ! ! ! ! !put on the factorial factor on each order of matrix
! ! ! OrdM(k+1,:,:) = OrdM(k+1,:,:)/factrl(k) 
! ! enddo! !
! ! cexpM = sum(OrdM,1)



Page 2 of 11QM_Spectrum_higher_order_mpi.f90
Printed: 2/22/13 5:47:49 PM Printed For: Wayne

! RETURN
! END FUNCTION 
!
! FUNCTION matmul3(dim, A, B, C)
! ! integer, intent(in) :: dim
! ! complex*16, dimension(dim, dim), intent(in) :: A
! ! real*8, dimension(dim, dim), intent(in) :: B, C
! ! complex*16, dimension(dim, dim) :: matmul3
! !
! ! matmul3 = matmul( (matmul(A,B)), C )
!
! RETURN
! END FUNCTION

! FUNCTION matmulN(N, dim, A)
! ! integer, intent(in) :: N, dim
! ! real*8, dimension(N, dim, dim) :: A
! ! real*8, dimension(dim, dim) :: matmulN
! ! integer i
! ! !
!! ! matmulN = matmul( matmul(A(1,:,:),A(2,:,:)), A(3,:,:) )
!
! ! matmulN = A(1,:,:)
! ! do i = 2,N
! ! ! matmulN = matmul( matmulN, A(i,:,:) )! ! !
! ! enddo
! RETURN
! END FUNCTION!
!
End Module 

Module vector_functions
! implicit none
! contains
!
! Function dot(A,B)
! ! implicit none
! ! real*8, intent(in), dimension(3) :: A,B
! ! real*8 dot
! ! dot = dot_product(A,B)
! Return
! End Function 

! Function cross(A,B)
! ! implicit none
! ! real*8, intent(in), dimension(3) :: A,B
! ! real*8, dimension(3) :: cross
!
! ! cross(1) = A(2)*B(3)-A(3)*B(2)
! ! cross(2) = A(3)*B(1)-A(1)*B(3)
! ! cross(3) = A(1)*B(2)-A(2)*B(1)!
! Return
! End Function 
!
! Function norm(A)
! ! implicit none
! ! real*8, intent(in), dimension(3) :: A
! ! real*8 norm
! ! norm = dsqrt(dot_product(A,A))
! Return
! End Function 
End Module 
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PROGRAM QM_Spectrum_higher_order_mpi
! use mpi
! implicit none
! integer, parameter :: Nw = 4000
! real*8 wmid,wlow,wstep
! real*8 w,weng
! integer i, ii
! real*8, dimension(Nw,3) :: qeng
! real*8, dimension(:,:), allocatable :: qeng_local
! integer numnodes,myid,rc,ierr,start_local,end_local,Nw_local
! real*8 wsigma
! common/sigmaE/ wsigma

! call mpi_init( ierr )
! call mpi_comm_rank ( mpi_comm_world, myid, ierr )
! call mpi_comm_size ( mpi_comm_world, numnodes, ierr )

! Nw_local = Nw/numnodes
! allocate ( qeng_local(Nw_local,3) )
! start_local = Nw_local*myid + 1 
! end_local =  Nw_local*myid + Nw_local!

! open(unit=12,file='data.dat')
! !
! wmid = 1d16*2d0;
! wlow = wmid*0.05d0
! wstep = 2*dabs(wmid-wlow)/(Nw-1d0)
! do i = start_local,end_local
! ! w = wlow + (i-1)*wstep
! ! ii = i - Nw_local*myid
! ! qeng_local(ii,1) = w
! ! qeng_local(ii,2) = weng(w)
! ! qeng_local(ii,3) = wsigma
! !
!! if ( MOD(i,Nw/10) == 0) then!   
!! write(6,105) (i*100)/Nw
!! endif
! enddo
!
! do i = 1,3
! ! call mpi_gather ( qeng_local(:,i), Nw_local, mpi_real8, qeng(:,i), Nw_local, &
! ! ! ! ! ! ! & mpi_real8, 0, mpi_comm_world, ierr )!
! enddo ! ! !
! if (myid == 0) then!
! ! do i = 1,Nw
! ! ! write(12,102) qeng(i,:)
! ! enddo 
! endif
!
!
! call mpi_finalize(rc)
! deallocate( qeng_local )

! 666 format(A, 10E25.15E4)!
! 102 format(10E25.15E4)
! 105  format(I4,'%')

STOP
END

FUNCTION weng(w)
! implicit none
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! real*8, intent(in) :: w
! real*8 weng
! integer, parameter :: NN = 20
! integer, parameter :: neq = 2*NN! !  
! real*8 y(neq),dydt(neq)
! external derivs,rkqs 
! integer!nbad,nok 
! real*8 tbgn,tstep,tend,tol
! integer i
! real*8 Eng2(NN),Eng(NN),hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv(3),pol(3)
! common/par/ Eng2,Eng,hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv,pol!
! real*8, dimension(NN,NN) :: wnm
! common/wmtrix/ wnm
! real*8 t,tmax
! integer Nt
! complex*16, parameter :: lj = (0d0,1d0)
! complex*16 Cn(NN)
! real*8 Pn(NN)
! real*8 wsigma
! common/sigmaE/ wsigma
! real*8 tmid
! common/center/ tmid
! real*8 ww
! common/freq/ ww
!
! ww = w
! ! !
! call parameters(w)
! tol = 1d-3! !tol = 1d-6 for FINAL CHECK
! tbgn = 0d0
! do i = 1,neq
! ! y(i) = 0d0
! enddo
! y(1) = 1d0
!
! Nt = int(4e4);
! tstep = (2*pi/w0/80)/t0;       !dimensionless
! tmax = Nt*tstep;
! tmid = tmax/2d0*t0
! do i = 1,Nt
! tend = tbgn + tstep!!
! t = tbgn
! call Hmatrix(t*t0)! ! ! in-loop (derivs) for FINAL CHECK
! call odeint(y,neq,tbgn,tend,tol,tstep,0d0,nok,nbad,derivs,rkqs)
! tbgn = tend   !odient does not change (tbgn,tend)!
! enddo 
! do i = 0,NN-1
! ! Cn(i+1) = y(i+1)+lj*y(i+1+NN)
! ! Pn(i+1) = cdabs(Cn(i+1))**2
! enddo
! weng = dot_product(Pn,Eng)
! wsigma = dsqrt( abs( dot_product(Pn,Eng2)-weng**2d0 ) )
RETURN!
END FUNCTION

SUBROUTINE parameters(w)
! implicit none
! real*8 w
! integer, parameter :: NN = 20
! real*8, dimension(NN,NN) :: wnm
! common/wmtrix/ wnm
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! real*8 Eng2(NN),Eng(NN),hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv(3),pol(3)
! common/par/ Eng2,Eng,hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv,pol!
! integer i,j
! real*8 n, m
! real*8, dimension(NN,NN) :: ap, an
! real*8, dimension(NN,NN) :: xMtrix
! complex*16, dimension(NN,NN) :: pMtrix
! common/xp/ xMtrix, pMtrix
! complex*16, parameter :: lj = (0d0,1d0)
! real*8 kd
!
! hbar = 1.05457d-34
! c = 2.99792d8
! w0 = 1d16
! q = 1.60218d-19!
! mm = 9.10938d-31*1d-4
! pi=dacos(-1d0)
! t0 = 1d-16
! E0 = hbar/t0
! A0 = 1.5d-9
! Dt = 1d-14!
! Dx = c*Dt
! phs = 0d0
! k_phi = 0
! k_theta = pi/4  ! ! !NOTE: k_theta = zero at x-axis
! pol_phi = 0
! pol_theta = k_theta+pi/2 ! !NOTE: k_theta = zero at x-axis
! kv(1) = w/c*dcos(k_theta)*dcos(k_phi)
! kv(2) = w/c*dcos(k_theta)*dsin(k_phi)
! kv(3) = w/c*dsin(k_theta)
! pol(1) = dcos(pol_theta)*dcos(pol_phi)
! pol(2) = dcos(pol_theta)*dsin(pol_phi)
! pol(3) = dsin(pol_theta)
! do i = 0,NN-1
! ! n = i*1d0;
! ! Eng(i+1) = hbar*w0*(n+0.5d0)
! ! Eng2(i+1) = Eng(i+1)**2d0! !
! enddo!
! do i = 0,NN-1
! ! do j = 0,NN-1
! ! ! wnm(i+1,j+1) = (Eng(i+1)-Eng(j+1))/hbar!!
! ! enddo
! enddo
! do i = 0,NN-1
! ! do j = 0,NN-1
! ! ! n = i*1d0
! ! ! m = j*1d0
! ! ! ap(i+1,j+1) = dsqrt(n)*kd(n-1,m)
! ! ! an(i+1,j+1) = dsqrt(n+1)*kd(n+1,m)
! ! enddo
! enddo
! xMtrix = dsqrt(hbar/(2d0*mm*w0))*(ap + an)
! pMtrix = lj*dsqrt(hbar*mm*w0/2d0)*(ap - an)
!
RETURN
END SUBROUTINE

SUBROUTINE derivs(t,y,dydt)
! implicit none
! integer, parameter :: NN = 20
! integer, parameter :: neq = 2*NN! !  
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! real*8 t,y(neq),dydt(neq)
! real*8, dimension(2*NN,2*NN) :: Hint
! common/Hmtrix/ Hint
! real*8 Eng2(NN),Eng(NN),hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv(3),pol(3)
! common/par/ Eng2,Eng,hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv,pol!
! integer i

!! call Hmatrix(t*t0)! !for FINAL CHECK
! dydt = matmul(Hint,y)!
!
RETURN                       
END SUBROUTINE

SUBROUTINE Hmatrix(t)
! use vector_functions
! use matrix_functions
! implicit none
! real*8, intent(in) :: t
! integer, parameter :: NN = 20
! complex*16, parameter :: lj = (0d0,1d0)
! real*8 kd
! real*8 Eng2(NN),Eng(NN),hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv(3),pol(3)
! common/par/ Eng2,Eng,hbar,c,w0,q,mm,pi,t0,E0,A0,Dt,Dx,phs,k_phi,k_theta,pol_phi, &
! ! ! & pol_theta,kv,pol!
! real*8 xv(3)
! integer i,j
! real*8 n,m
! real*8, dimension(NN,NN) :: wnm
! common/wmtrix/ wnm
! real*8, dimension(NN,NN) :: xMtrix
! complex*16, dimension(NN,NN) :: pMtrix
! common/xp/ xMtrix, pMtrix
! real*8, dimension(NN,NN) :: kr, kxDx, Ax2, kxtDxDt, Ax3, AMtrix
! complex*16, dimension(NN,NN) :: ikr, Ax1, AMtrixC
! complex*16, dimension(NN,NN) :: Hnm1, Hnm2, Hnm
! real*8, dimension(NN,NN) :: HnmR, HnmI
! real*8, dimension(NN,NN) :: HintR, HintI
! real*8, dimension(2*NN,2*NN) :: Hint
! common/Hmtrix/ Hint
! real*8, dimension(2*NN,1) :: vc
! real*8 tmid
! common/center/ tmid
! real*8 ww
! common/freq/ ww

! xv = (/1d0,0d0,0d0/)
! kr = dot(kv,xv)*xMtrix
! ikr = lj*kr
! Ax1 = cexpM(20,ikr,NN)! ! ! ! ! !Order of Approximation, Spatial Effect
! kxDx = dot(kv,xv)/(norm(kv)*Dx)*xMtrix
! Ax2 = expM(20,-matmul(kxDx,kxDx),NN)! ! !Order of Approximation, Spatial Effect
! kxtDxDt = 2d0*(t-tmid)/Dt*kxDx
! Ax3 = expM(20,kxtDxDt,NN)! ! ! ! !Order of Approximation, Spatial Effect
! AMtrixC = A0*cdexp(lj*ww*(t-tmid))*dexp(-( (t-tmid)/Dt )**2d0)*matmul3(NN, Ax1, Ax2, Ax3)
! AMtrix = dreal(AMtrixC)
!
! Hnm1 = -q/(2d0*mm)*( 2d0*dot(pol,xv)*matmul(AMtrix,pMtrix) )!
! Hnm2 = -q/(2d0*mm)*( -q*matmul(AMtrix,AMtrix) )
! Hnm = Hnm1 + Hnm2
! do i = 0,NN-1
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! ! do j = 0,NN-1
! ! ! n = i*1d0
! ! ! m = j*1d0
! ! ! Hnm(i+1,j+1) = Hnm(i+1,j+1)*cdexp(lj*wnm(i+1,j+1)*t)! ! !
! ! enddo
! enddo
    HnmR = dreal(Hnm)     
    HnmI = dimag(Hnm)   
! do j = 1,NN
! ! vc = reshape( (/HnmI(:,j),-HnmR(:,j)/), (/2*NN,1/) )
! ! Hint(:,j) = vc(:,1)
! enddo
! do j = 1,NN
! ! vc = reshape( (/HnmR(:,j),HnmI(:,j)/), (/2*NN,1/) )
! ! Hint(:,j+NN) = vc(:,1)
! enddo
!
! Hint = 1d0/hbar*(Hint/E0)*(E0*t0)!
RETURN
END SUBROUTINE 

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,derivs,rkqs) 
! INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX 
! REAL*8 eps,h1,hmin,x1,x2,ystart(nvar),TINY 
! EXTERNAL derivs,rkqs 
! PARAMETER(MAXSTP=1000000000,NMAX=50,KMAXX=200,TINY=1d-30)   
! ! ! ! !use MAXSTP=10 to get the solver running then increase to MAXSTP=10000
! INTEGER i,kmax,kount,nstp 
! REAL*8 dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),yp(NMAX,KMAXX),yscal(NMAX) 
!! COMMON/path/kmax,kount,dxsav,xp,yp 
! PARAMETER (dxsav=0.1d0,kmax=100)
! x=x1 !  
! h=sign(h1,x2-x1) 
! nok=0 
! nbad=0 
! kount=0 
! do i=1,nvar
 ! ! y(i)=ystart(i) 
! enddo 
! if (kmax.gt.0) xsav=x-2d0*dxsav 
! do nstp=1,MAXSTP  
! ! call derivs(x,y,dydx)
! ! do i=1,nvar 
! ! ! yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY 
!! ! ! yscal(i)=1d0
! ! enddo 
! ! if(kmax.gt.0)then 
! ! ! if(abs(x-xsav).gt.abs(dxsav))then 
! ! ! ! if(kount.lt.kmax-1)then 
! ! ! ! ! kount=kount+1 
! ! ! ! ! xp(kount)=x 
! ! ! ! ! do i=1,nvar 
! ! ! ! ! ! yp(i,kount)=y(i) 
! ! ! ! ! enddo 
! ! ! ! ! xsav=x 
! ! ! ! endif 
! ! ! endif 
! ! endif 
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! ! if((x+h-x2)*(x+h-x1).gt.0.)h=x2-x  
! ! call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs) 
! ! if(hdid.eq.h)then 
! ! ! nok=nok+1 
! ! else 
! ! ! nbad=nbad+1 
! ! endif 
! ! if((x-x2)*(x2-x1).ge.0.)then
! ! ! do i=1,nvar 
! ! ! ystart(i)=y(i) 
! ! ! enddo 
! ! ! if(kmax.ne.0)then 
! ! ! ! kount=kount+1 
! ! ! ! xp(kount)=x 
! ! ! ! do i=1,nvar 
! ! ! ! ! yp(i,kount)=y(i) 
! ! ! ! enddo 
! ! ! endif 
! ! ! return 
! ! endif
!pause -> write(6,*) ! ! ! ! ! ! ! ! ! ! ! ! !   
! ! if(abs(hnext).lt.hmin) write(6,*) "stepsize smaller than minimum in odeint" 
! ! h=hnext 
! enddo 
!pause => write(6,*)
! write(6,*) "too many steps in odeint" 
! return 
END SUBROUTINE odeint

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs) 
! INTEGER n,NMAX 
! REAL*8 eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n) 
! EXTERNAL derivs 
! PARAMETER(NMAX=50) 
! INTEGER i 
! REAL*8 errmax,h,htemp,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK,ERRCON 
! PARAMETER(SAFETY=0.9d0,PGROW=-0.2d0,PSHRNK=-0.25d0,ERRCON=1.89d-4) 
! h=htry 
! 1 call rkck(y,dydx,n,x,h,ytemp,yerr,derivs)
! errmax=0.  
! do i=1,n 
! ! errmax=max(errmax,abs(yerr(i)/yscal(i))) 
! enddo 
! errmax=errmax/eps
! if(errmax.gt.1d0)then
! ! htemp=SAFETY*h*(errmax**PSHRNK) 
! ! h=sign(max(abs(htemp),0.1d0*abs(h)),h)  
! ! xnew=x+h
!pause -> write(6,*) 
! ! if(xnew.eq.x) write(6,*) "step size underflow in rkqs" 
! ! go to 1  
! else  
! ! if(errmax.gt.ERRCON)then 
! ! ! hnext=SAFETY*h*(errmax**PGROW) 
! ! else  
! ! ! hnext=5d0*h 
! ! endif 
! ! hdid=h 
! ! x=x+h 
! ! do i=1,n 
! ! ! y(i)=ytemp(i) 
! ! enddo 
! ! return 
! endif 
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END SUBROUTINE rkqs

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs) 
! INTEGER n,NMAX 
! REAL*8 h,x,dydx(n),y(n),yerr(n),yout(n) 
! EXTERNAL derivs 
! PARAMETER(NMAX=50) 
! INTEGER i 
! REAL*8 ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),ytemp(NMAX),A2,A3,A4,A5,A6,B21, &
! & B31,B32,B41,B42,B43,B51,B52,B53,B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DC6 
! PARAMETER(A2=0.2d0,A3=0.3d0,A4=0.6d0,A5=1.0d0,A6=0.875d0,B21=0.2d0,B31=3.0d0/40.0d0,&
! & B32=9.0d0/40.0d0,B41=0.3d0,B42=-0.9d0,B43=1.2d0,B51=-11.0d0/54.0d0,B52=2.5d0, &
! & B53=-70.0d0/27.0d0,B54=35.0d0/27.0d0,B61=1631.0d0/55296.0d0,B62=175.0d0/512.0d0, &
! & B63=575.0d0/13824.0d0,B64=44275.0d0/110592.0d0,B65=253.0d0/4096.0d0,C1=37.0d0/378.0d0, &
! & C3=250.0d0/621.0d0,C4=125.0d0/594.0d0,C6=512.0d0/1771.0d0,DC1=C1-2825.0d0/27648.0d0, &
! & DC3=C3-18575.0d0/48384.0d0,DC4=C4-13525.0d0/55296.0d0,DC5=-277.0d0/14336.0d0,DC6=C6-0.25d0) 
! do i=1,n 
! ytemp(i)=y(i)+B21*h*dydx(i) 
! enddo 
! call derivs(x+A2*h,ytemp,ak2)
        do i=1,n 
! ! ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i)) 
! enddo 
! call derivs(x+A3*h,ytemp,ak3) 
! do i=1,n 
! ! ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))
! enddo
! call derivs(x+A4*h,ytemp,ak4)  
! do i=1,n 
! ! ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i)) 
! enddo 
! call derivs(x+A5*h,ytemp,ak5)  
! do i=1,n 
! ! ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+B65*ak5(i)) 
! enddo
! call derivs(x+A6*h,ytemp,ak6)  
! do i=1,n  
! ! yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i)) 
! enddo 
! do i=1,n 
! ! yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6*ak6(i)) 
! enddo 
! return 
END SUBROUTINE rkck
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!~~~~~~~~~~~~~~~~~~
!include for matrix_functions (below)
!~~~~~~~~~~~~~~~~~~
FUNCTION kd(n,m) 
! implicit none
! real*8, intent(in) :: n,m
! real*8 kd

! if (n == m) then
! ! kd = 1d0;
! else 
! ! kd = 0d0;
! endif !
RETURN 
END FUNCTION 
!
FUNCTION factrl(n) 
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! implicit none
! integer n 
! real*8 factrl
! integer j,ntop 
! real*8 a(33),gammln!
! save ntop,a 
! data ntop,a(1)/0,1./! !
! if (n.lt.0) then
! ! return
! ! write(6,*) 'negative factorial in factrl'
! else if (n.le.ntop) then
! ! factrl=a(n+1) 
! else if (n.le.32) then!
! ! do !j=ntop+1,n
! ! ! a(j+1)=j*a(j) 
! ! enddo
! ! ntop=n
! ! factrl=a(n+1)
! else
! ! factrl=exp(gammln(n+1d0))
! endif
RETURN
END!FUNCTION 

FUNCTION gammln(xx) 
! implicit none
! real*8 gammln,xx
! integer j
! real*8 ser,stp,tmp,x,y,cof(6)
! save cof,stp 
! data cof,stp/76.18009172947146d0,-86.50532032941677d0,24.01409824083091d0 &
! ! ! ,-1.231739572450155d0,.1208650973866179d-2,-.5395239384953d-5,2.5066282746310005d0/
! x=xx
! y=x 
! tmp=x+5.5d0 
! tmp=(x+0.5d0)*log(tmp)-tmp 
! ser=1.000000000190015d0 
! do j=1,6
! ! y=y+1.d0
! ! ser=ser+cof(j)/y 
! enddo
! gammln=tmp+log(stp*ser/x) 
RETURN 
END!FUNCTION

!~~~~~~~~~~~~~~~~~~
!include for matrix_functions (above)
!~~~~~~~~~~~~~~~~~~

SUBROUTINE mwrite(A,N,M)
! implicit none
! integer, intent(in) :: N, M
! real*8, dimension(N,M), intent(in) :: A!
! integer i
!
! do i = lbound(A,1),ubound(A,1)
! ! write(6,*) A(i,:)
! enddo
RETURN
END SUBROUTINE

SUBROUTINE cmwrite(A,N,M)
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! implicit none
! integer, intent(in) :: N, M
! complex*16, dimension(N,M), intent(in) :: A!
! integer i
! do i = lbound(A,1),ubound(A,1)
! ! write(6,*) A(i,:)
! enddo
RETURN
END SUBROUTINE 
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Module vector_functions
! implicit none
! contains
!
! Function dot(A,B)
! ! real*8,intent(in),dimension(3) :: A,B
! ! real*8 dot
! ! dot = dot_product(A,B)
! Return
! End Function 

! Function cross(A,B)
! ! real*8,intent(in),dimension(3) :: A,B
! ! real*8,dimension(3) :: cross
!
! ! cross(1) = A(2)*B(3)-A(3)*B(2)
! ! cross(2) = A(3)*B(1)-A(1)*B(3)
! ! cross(3) = A(1)*B(2)-A(2)*B(1)!
! Return
! End Function 
!
! Function norm(A)
! ! real*8,intent(in),dimension(3) :: A
! ! real*8 norm
! ! norm = dsqrt(dot_product(A,A))
! Return
! End Function 
End Module 

Program RED_spectrum_mpi
! use mpi
! use vector_functions
! implicit none!
! integer, parameter :: Nw = 3000
! real*8 wmid, wbgn, wend, wstep, wp
! real*8, dimension(Nw,3) :: gEng, eEng, gEng2, eEng2
! integer, parameter :: Np = 2000
! integer i, k
! real*8 c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix(3,3), Dmtrix(3,3)
! common/pra/!c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix, Dmtrix
! real*8, dimension(:,:), allocatable :: gr_local, gp_local, er_local, ep_local
! integer numnodes, myid, rc, ierr, Np_local
! real*8, dimension(3) :: tgEng, teEng, tgEng2, teEng2
! integer particleid, id_local
! real*8 ran1
! integer workerseed, particleseed
! real*8, dimension(3) :: gavgE, gavgE2, gsigmaE, eavgE, eavgE2, esigmaE
!
! call mpi_init( ierr )
! call mpi_comm_rank ( mpi_comm_world, myid, ierr )
! call mpi_comm_size ( mpi_comm_world, numnodes, ierr )
! Np_local = Np/numnodes
! allocate ( gr_local(Np_local,3) )
! allocate ( gp_local(Np_local,3) )
! allocate ( er_local(Np_local,3) )
! allocate ( ep_local(Np_local,3) )

! open(unit=11, file ='Spectrum_x.dat')
! open(unit=12, file ='Spectrum_y.dat')
! open(unit=13, file ='Spectrum_z.dat')

! workerseed = -(myid+1)
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! call parameters

! wmid = w0*2d0
! wbgn = wmid*0.05d0
! wend = wbgn + 2d0*dabs(wmid-wbgn)
! wstep = dabs(wbgn-wend)/(Nw-1d0)
! gEng = 0d0
! eEng = 0d0
! gEng2 = 0d0
! eEng2 = 0d0
! do k = 1, Nw
! ! wp = wbgn + (k-1d0)*wstep
! ! gr_local = 0d0
! ! gp_local = 0d0
! ! er_local = 0d0
! ! ep_local = 0d0
! ! do i = 1, Np_local
! ! ! id_local = i
! ! ! particleseed = int(ran1(workerseed)*1d6)! ! !
! ! ! call RED_worker(wp, id_local, Np_local, particleseed, gr_local, gp_local, er_local, ep_local)!
!! ! ! particleid = myid*Np_local + id_local! ! ! ! !for checking purpose
!! ! ! write(6,*) 'frequency', k, particleid, particleseed!
! ! ! !the same particle would experience different vacuum field at different laser frequency
! ! enddo !
! ! do i = 1,3
! ! ! gEng(k,i) = sum( 5d-1*mm*w0**2d0*gr_local(:,i)**2d0 + 5d-1/mm*gp_local(:,i)**2d0 )
! ! ! eEng(k,i) = sum( 5d-1*mm*w0**2d0*er_local(:,i)**2d0 + 5d-1/mm*ep_local(:,i)**2d0 )! !
! ! ! gEng2(k,i) = sum( (5d-1*mm*w0**2d0*gr_local(:,i)**2d0 + 5d-1/mm*gp_local(:,i)**2d0)**2d0 )
! ! ! eEng2(k,i) = sum( (5d-1*mm*w0**2d0*er_local(:,i)**2d0 + 5d-1/mm*ep_local(:,i)**2d0)**2d0 )! !

! ! enddo
! ! do i = 1,3
! ! ! call mpi_reduce( gEng(k,i), tgEng(i), 1, mpi_real8, mpi_sum, 0, mpi_comm_world, ierr )
! ! ! call mpi_reduce( eEng(k,i), teEng(i), 1, mpi_real8, mpi_sum, 0, mpi_comm_world, ierr )
! ! ! call mpi_reduce( gEng2(k,i), tgEng2(i), 1, mpi_real8, mpi_sum, 0, mpi_comm_world, ierr )
! ! ! call mpi_reduce( eEng2(k,i), teEng2(i), 1, mpi_real8, mpi_sum, 0, mpi_comm_world, ierr )
! ! enddo! !
! ! if ( myid == 0 ) then
! ! ! do i = 1,3
! ! ! ! gavgE(i) = tgEng(i)/(Np*1d0)
! ! ! ! eavgE(i) = teEng(i)/(Np*1d0)
! ! ! ! gavgE2(i) = tgEng2(i)/(Np*1d0)
! ! ! ! eavgE2(i) = teEng2(i)/(Np*1d0)
! ! ! ! gsigmaE(i) = dsqrt( gavgE2(i) - gavgE(i)**2d0) 
! ! ! ! esigmaE(i) = dsqrt( eavgE2(i) - eavgE(i)**2d0) 
! ! ! enddo
! ! ! write(11,102) wp, gavgE(1), eavgE(1), gsigmaE(1), esigmaE(1)
! ! ! write(12,102) wp, gavgE(2), eavgE(2), gsigmaE(2), esigmaE(2)
! ! ! write(13,102) wp, gavgE(3), eavgE(3), gsigmaE(3), esigmaE(3)
! ! endif
! ! tgEng = 0d0
! ! teEng = 0d0
! ! tgEng2 = 0d0
! ! teEng2 = 0d0
! ! gavgE = 0d0
! ! eavgE = 0d0
! ! gavgE2 = 0d0
! ! eavgE2 = 0d0
! ! gsigmaE = 0d0
! ! esigmaE = 0d0
! !
! enddo 
! 102 format(10E25.15E4)
! 104 format(10E25.15E4)
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! if ( myid == 0 ) then
! ! write(6,*) '# of pulse frequency, Nw =', Nw
! ! write(6,*) '# of particle, Np =', Np
! endif
!

! call mpi_finalize(rc)
! deallocate( gr_local )
! deallocate( gp_local )
! deallocate( er_local )
! deallocate( ep_local )

Stop
End Program

SUBROUTINE RED_worker(wp, id_local, Np_local, particleseed, gr, gp, er, ep)
! implicit none
! real*8, intent(in) :: wp
! integer, intent(in) ::  id_local, Np_local, particleseed
! real*8, dimension(Np_local,3) :: gr, gp, er, ep!
! integer, parameter :: neq = 6! ! !  
! real*8 t, y(neq), dydt(neq)
! external derivs,rkqs 
! integer!nbad,nok 
! real*8 tbgn,tstep,tend,tol
! integer i, Nt
! real*8 w, AA, Dt, Dx, k_phi, k_theta, pol_phi, pol_theta
! real*8, dimension(3) :: kv, pol!
! common/pulse_pra/ w, AA, Dt, Dx, k_phi, k_theta, pol_phi, pol_theta, kv, pol!
! real*8 c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix(3,3), Dmtrix(3,3)
! common/pra/!c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix, Dmtrix
! real*8, dimension(3) :: r, v!
! real*8 tmax
! integer, parameter :: Wmodes = 500   !INPUT
! real*8 gprobe, eprobe, gap
! real*8 tmid
! common/center/tmid
!
!
! call pulseParameters(wp)
! call vacParameters(particleseed)
! tol = 1d-3! !tol = 1d-6 for FINAL CHECK
 ! y = 0d0!! !IC, dimensionless
 ! tbgn = 0d0
! tmax = (cohtime*7d0)/t0!! ! !make tmax > cohtime*2d0 
! tstep = (2d0*pi/w0/2d1)/t0      !dimensionless 
! Nt = int(tmax/tstep)!
! tmid = (cohtime)*2d0 + (tmax*t0-(cohtime)*2d0)/2d0
! gprobe = tmid/t0 - 3d0*(Dt/t0)
! eprobe = tmid/t0 + 2d0*(Dt/t0)
! gap = (2d0*pi/w0)/t0
! do i = 1,Nt
! ! tend = tbgn + tstep!
! ! t = tbgn
! ! r = (/y(1),y(2),y(3)/)
! ! v = (/y(4),y(5),y(6)/)
! ! if ( (gprobe < t).and.(t < gprobe+gap ) ) then
! ! ! gr(id_local,:) = r*a0
! ! ! gp(id_local,:) = v*mm*(a0/t0)
! ! endif ! !
! ! if ( (eprobe < t).and.(t < eprobe+gap ) ) then
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! ! ! er(id_local,:) = r*a0
! ! ! ep(id_local,:) = v*mm*(a0/t0)
! ! endif 
! ! call vacfield(r*a0,t*t0)! !in-loop (dervis) for FINAL CHECK
! ! call pulsefield(r*a0,t*t0)! !in-loop (dervis) for FINAL CHECK
! ! call odeint(y,neq,tbgn,tend,tol,tstep,0d0,nok,nbad,derivs,rkqs)
! ! tbgn = tend ! !
! enddo 
RETURN
END!SUBROUTINE

SUBROUTINE parameters
! implicit none
! real*8 c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix(3,3), Dmtrix(3,3)
! common/pra/!c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix, Dmtrix
! real*8, dimension(3) :: Sprgx, Sprgy, Sprgz, Dmpx, Dmpy, Dmpz
!
    c = 2.99792d8! ! ! !
    hbar = 1.05457d-34
! eps = 8.85419d-12
! pi = dacos(-1d0)! !
! w0 = 1d16!
    q = 1.60218d-19!! ! ! ! !
! mm = 9.10938d-31*1d-4 !it was 9.11d-31
! Gamma = 2d0/3d0*(q**2d0)/(mm*c**3d0)/(4d0*pi*eps) !
! Dw0 = Gamma*w0**2d0 !
! cohtime = 2d0/Dw0
! a0 = dsqrt(hbar/(2d0*mm*w0))
! t0 = 1d0/w0
!
! Sprgx = (/1d0,0d0,0d0/)*1d0
! Sprgy = (/0d0,1d0,0d0/)*0d0
! Sprgz = (/0d0,0d0,1d0/)*0d0
! Smtrix = reshape((/Sprgx,Sprgy,Sprgz/),(/3,3/))  !3D harmonic oscillator

! Dmpx = (/1d0,0d0,0d0/)*1d0
! Dmpy = (/0d0,1d0,0d0/)*1d0
! Dmpz = (/0d0,0d0,1d0/)*1d0
! Dmtrix = reshape((/Dmpx,Dmpy,Dmpz/),(/3,3/))  !3D damper
RETURN
END SUBROUTINE

SUBROUTINE vacParameters(particleseed)
! implicit none
! integer, intent(in) :: particleseed
! integer, parameter :: Wmodes = 500
! real*8 ran1
! integer seed
! real*8 vacDw, wc, kbgn, kend, volk, volr, dkapa, kapa, kapa_theta, kapa_phi
! real*8, dimension(Wmodes) :: kmvac, thetavac, phivac, wvac, phir, Amvac, Emvac, Bmvac
! real*8, dimension(Wmodes,3) :: kvac
! real*8, dimension(Wmodes,2) :: phsvac
! real*8, dimension(Wmodes,3,2) :: polvac
! common/vac_pra/ kmvac, thetavac, phivac, wvac, phir, Amvac, Emvac, Bmvac, kvac, phsvac, polvac
! real*8 c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix(3,3), Dmtrix(3,3)
! common/pra/!c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix, Dmtrix
! integer i
!
! seed = -particleseed
! vacDw = Dw0*22d1   !INPUT
! wc = w0*1d0!
! kbgn = (wc - vacDw/2d0)/c
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! kend = (wc + vacDw/2d0)/c
! volk = 4d0*pi/3d0*(kend**3d0-kbgn**3d0)  
! volr = (2d0*pi)**3d0*(Wmodes*1d0)/volk
! dkapa = ( kend**3d0/3d0 - kbgn**3d0/3d0 )/(Wmodes*1d0 - 1d0)
!  
! do i=1,Wmodes!
! ! ! kapa = kbgn**3d0/3d0 + (i*1d0-1d0)*dkapa
! ! ! kapa_theta = (ran1(seed) - 5d-1)*2d0
! ! ! kapa_phi = ran1(seed)*2d0*pi
! ! !
! !  ! kmvac(i) =  (3d0*kapa)**(1d0/3d0)
! !  ! thetavac(i) = dacos(kapa_theta)
! !  ! phivac(i) = kapa_phi
!         kvac(i,1) = kmvac(i)*dsin(thetavac(i))*dcos(phivac(i))
            kvac(i,2) = kmvac(i)*dsin(thetavac(i))*dsin(phivac(i))
            kvac(i,3) = kmvac(i)*dcos(thetavac(i))
! !  ! wvac(i) = kmvac(i)*c

!  ! ! phsvac(i,1) = ran1(seed)*2d0*pi
!  ! ! phsvac(i,2) = ran1(seed)*2d0*pi
! !  
! !     phir(i) = ran1(seed)*2d0*pi
! ! ! polvac(i,1,1) = dcos(thetavac(i))*dcos(phivac(i))*dcos(phir(i)) - dsin(phivac(i))*dsin(phir(i))!
! ! ! polvac(i,2,1) = dcos(thetavac(i))*dsin(phivac(i))*dcos(phir(i)) + dcos(phivac(i))*dsin(phir(i))!
! ! ! polvac(i,3,1) = -dsin(thetavac(i))*dcos(phir(i))
! ! ! polvac(i,1,2) = -dcos(thetavac(i))*dcos(phivac(i))*dsin(phir(i)) - dsin(phivac(i))*dcos(phir(i))
! ! ! polvac(i,2,2) =  -dcos(thetavac(i))*dsin(phivac(i))*dsin(phir(i)) + dcos(phivac(i))*dcos(phir(i))
! ! ! polvac(i,3,2) =  dsin(thetavac(i))*dsin(phir(i)) ! ! !
!  !
! !  ! Amvac(i) = dsqrt( hbar/wvac(i)/eps/volr )
! !  ! Emvac(i) = Amvac(i)*wvac(i)
! ! ! Bmvac(i) = Amvac(i)                
! enddo!

RETURN
END

SUBROUTINE vacField(r,t)! !(r,t) have original dimension
! use vector_functions
! implicit none
! real*8, intent(in) :: r(3),t
! integer, parameter :: Wmodes = 500
! real*8, dimension(3) ::!Evac, Bvac
! common/vac_field/ Evac, Bvac
! real*8, dimension(Wmodes) :: kmvac, thetavac, phivac, wvac, phir, Amvac, Emvac, Bmvac
! real*8, dimension(Wmodes,3) :: kvac
! real*8, dimension(Wmodes,2) :: phsvac
! real*8, dimension(Wmodes,3,2) :: polvac
! common/vac_pra/ kmvac, thetavac, phivac, wvac, phir, Amvac, Emvac, Bmvac, kvac, phsvac, polvac
! real*8, dimension(Wmodes) :: kr,wt
! real*8, dimension(Wmodes,3) :: E1, E2, B1, B2, Ek, Bk
! integer i
! !
! do i = 1, Wmodes
! ! kr(i) = dot(kvac(i,:),r)
! ! wt(i) = wvac(i)*t
! ! E1(i,:) = -Emvac(i)*dsin( kr(i)-wt(i)+phsvac(i,1) )*polvac(i,:,1)
! ! E2(i,:) = -Emvac(i)*dsin( kr(i)-wt(i)+phsvac(i,2) )*polvac(i,:,2)! !
! ! B1(i,:) = -Bmvac(i)*dsin( kr(i)-wt(i)+phsvac(i,1) )*cross(kvac(i,:),polvac(i,:,1))
! ! B2(i,:) = -Bmvac(i)*dsin( kr(i)-wt(i)+phsvac(i,2) )*cross(kvac(i,:),polvac(i,:,2))
! enddo
! Ek = E1 + E2
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! Evac = sum(Ek,1)
! Bk = B1 + B2
! Bvac = sum(Bk,1)
RETURN
END

SUBROUTINE pulseParameters(wp)
! implicit none
! real*8, intent(in) :: wp
! real*8 w, AA, Dt, Dx, k_phi, k_theta, pol_phi, pol_theta
! real*8, dimension(3) :: kv, pol!
! common/pulse_pra/ w, AA, Dt, Dx, k_phi, k_theta, pol_phi, pol_theta, kv, pol!
! real*8 c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix(3,3), Dmtrix(3,3)
! common/pra/!c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix, Dmtrix

! w = wp
! AA = 1.5d-9
! Dt = 1d-14!
! Dx = c*Dt
! k_phi = 0
! k_theta = pi/4  ! ! ! !NOTE: k_theta follows the convention in Matlab
! pol_phi = 0
! pol_theta = k_theta+pi/2 ! !NOTE: pol_theta follows the convention in Matlab
! kv(1) = w/c*dcos(k_theta)*dcos(k_phi)
! kv(2) = w/c*dcos(k_theta)*dsin(k_phi)
! kv(3) = w/c*dsin(k_theta)
! pol(1) = dcos(pol_theta)*dcos(pol_phi)
! pol(2) = dcos(pol_theta)*dsin(pol_phi)
! pol(3) = dsin(pol_theta)
RETURN
END

SUBROUTINE pulseField(r,t)! !(r, t, tmid) have original dimension
! use vector_functions
! implicit none
! real*8, intent(in) :: r(3), t
! real*8, dimension(3) :: Epulse, Bpulse
! common/pulse_field/ Epulse, Bpulse
! real*8 w, AA, Dt, Dx, k_phi, k_theta, pol_phi, pol_theta
! real*8, dimension(3) :: kv, pol!
! common/pulse_pra/ w, AA, Dt, Dx, k_phi, k_theta, pol_phi, pol_theta, kv, pol!
! real*8, dimension(3) :: Apulse
! real*8 kr, wt, DxDt
! real*8 tmid
! common/center/tmid

! wt = w*(t-tmid)
! kr = dot(kv,r)
! DxDt = kr/norm(kv)/Dx - (t-tmid)/Dt 
! Apulse =  ( AA*dcos(kr-wt)*dexp(-DxDt**2d0) )*pol
! Epulse = -AA*( w*dsin(kr-wt) + 2d0/Dt*DxDt*dcos(kr-wt) )*dexp(-DxDt**2d0)*pol
! Bpulse = -AA*( dsin(kr-wt) + 2d0/norm(kv)/Dx*DxDt*dcos(kr-wt) )*dexp(-DxDt**2d0)*cross(kv,pol)
RETURN
END

SUBROUTINE derivs(t,y,dydt)
! use vector_functions
! implicit none
! integer, parameter :: neq = 6! ! !  
! real*8 t, y(neq), dydt(neq)
! real*8 evolution(neq)
! real*8 c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix(3,3), Dmtrix(3,3)
! common/pra/!c, hbar, eps, pi, w0, q, mm, Gamma, Dw0, cohtime, a0, t0, Smtrix, Dmtrix
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! real*8, dimension(3) ::!Evac, Bvac
! common/vac_field/ Evac, Bvac
! real*8, dimension(3) :: Epulse, Bpulse
! common/pulse_field/ Epulse, Bpulse
! real*8, dimension(3) :: r, v
! real*8, dimension(3) :: F, Fspring, Fdamp, Fvac, Fpulse

! r = (/y(1),y(2),y(3)/)*a0
! v = (/y(4),y(5),y(6)/)*(a0/t0)

!! call vacfield(r,t*t0)! ! for FINAL CHECK
!! call pulsefield(r,t*t0)!! for FINAL CHECK

!
! Fspring = -mm*w0**2*r
! Fspring = matmul(Smtrix,Fspring)
! Fdamp = -mm*Gamma*w0**2*v
! Fdamp = matmul(Dmtrix,Fdamp)
! Fvac = q*Evac + q*cross(v,Bvac)*0d0
! Fvac = matmul(Smtrix,Fvac)
! Fpulse = q*Epulse + q*cross(v,Bpulse)*0d0
! Fpulse = matmul(Smtrix,Fpulse)
! F = Fspring + Fdamp + Fvac + Fpulse

! evolution = (/y(4),y(5),y(6),F*(t0**2d0/a0/mm)/)
! dydt = evolution
RETURN                       
END

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
SUBROUTINE odeint(ystart,nvar,x1,x2,eps,h1,hmin,nok,nbad,derivs,rkqs) 
! INTEGER nbad,nok,nvar,KMAXX,MAXSTP,NMAX 
! REAL*8 eps,h1,hmin,x1,x2,ystart(nvar),TINY 
! EXTERNAL derivs,rkqs 
! PARAMETER(MAXSTP=1000000000,NMAX=50,KMAXX=200,TINY=1d-30)   
! !use MAXSTP=10 to get the solver running then increase to MAXSTP=10000
! INTEGER i,kmax,kount,nstp 
! REAL*8 dxsav,h,hdid,hnext,x,xsav,dydx(NMAX),xp(KMAXX),y(NMAX),yp(NMAX,KMAXX),yscal(NMAX) 
!! COMMON/path/kmax,kount,dxsav,xp,yp 
! PARAMETER (dxsav=0.1d0,kmax=100)
! x=x1 !  
! h=sign(h1,x2-x1) 
! nok=0 
! nbad=0 
! kount=0 
! do i=1,nvar
 ! ! y(i)=ystart(i) 
! enddo 
! if (kmax.gt.0) xsav=x-2d0*dxsav 
! do nstp=1,MAXSTP  
! ! call derivs(x,y,dydx)
! ! do i=1,nvar 
! ! ! yscal(i)=abs(y(i))+abs(h*dydx(i))+TINY 
!! ! ! yscal(i)=1d0
! ! enddo 
! ! if(kmax.gt.0)then 
! ! ! if(abs(x-xsav).gt.abs(dxsav))then 
! ! ! ! if(kount.lt.kmax-1)then 
! ! ! ! ! kount=kount+1 
! ! ! ! ! xp(kount)=x 
! ! ! ! ! do i=1,nvar 
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! ! ! ! ! ! yp(i,kount)=y(i) 
! ! ! ! ! enddo 
! ! ! ! ! xsav=x 
! ! ! ! endif 
! ! ! endif 
! ! endif 
! ! if((x+h-x2)*(x+h-x1).gt.0.)h=x2-x  
! ! call rkqs(y,dydx,nvar,x,h,eps,yscal,hdid,hnext,derivs) 
! ! if(hdid.eq.h)then 
! ! ! nok=nok+1 
! ! else 
! ! ! nbad=nbad+1 
! ! endif 
! ! if((x-x2)*(x2-x1).ge.0.)then
! ! ! do i=1,nvar 
! ! ! ystart(i)=y(i) 
! ! ! enddo 
! ! ! if(kmax.ne.0)then 
! ! ! ! kount=kount+1 
! ! ! ! xp(kount)=x 
! ! ! ! do i=1,nvar 
! ! ! ! ! yp(i,kount)=y(i) 
! ! ! ! enddo 
! ! ! endif 
! ! ! return 
! ! endif
!pause -> write(6,*) ! ! ! ! ! ! ! ! ! ! ! ! !   
! ! if(abs(hnext).lt.hmin) write(6,*) "stepsize smaller than minimum in odeint" 
! ! h=hnext 
! enddo 
!pause => write(6,*)
! write(6,*) "too many steps in odeint" 
! return 
END SUBROUTINE odeint

SUBROUTINE rkqs(y,dydx,n,x,htry,eps,yscal,hdid,hnext,derivs) 
! INTEGER n,NMAX 
! REAL*8 eps,hdid,hnext,htry,x,dydx(n),y(n),yscal(n) 
! EXTERNAL derivs 
! PARAMETER(NMAX=50) 
! INTEGER i 
! REAL*8 errmax,h,htemp,xnew,yerr(NMAX),ytemp(NMAX),SAFETY,PGROW,PSHRNK,ERRCON 
! PARAMETER(SAFETY=0.9d0,PGROW=-0.2d0,PSHRNK=-0.25d0,ERRCON=1.89d-4) 
! h=htry 
! 1 call rkck(y,dydx,n,x,h,ytemp,yerr,derivs)
! errmax=0.  
! do i=1,n 
! ! errmax=max(errmax,abs(yerr(i)/yscal(i))) 
! enddo 
! errmax=errmax/eps
! if(errmax.gt.1d0)then
! ! htemp=SAFETY*h*(errmax**PSHRNK) 
! ! h=sign(max(abs(htemp),0.1d0*abs(h)),h)  
! ! xnew=x+h
!pause -> write(6,*) 
! ! if(xnew.eq.x) write(6,*) "step size underflow in rkqs" 
! ! go to 1  
! else  
! ! if(errmax.gt.ERRCON)then 
! ! ! hnext=SAFETY*h*(errmax**PGROW) 
! ! else  
! ! ! hnext=5d0*h 
! ! endif 
! ! hdid=h 
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! ! x=x+h 
! ! do i=1,n 
! ! ! y(i)=ytemp(i) 
! ! enddo 
! ! return 
! endif 
END SUBROUTINE rkqs

SUBROUTINE rkck(y,dydx,n,x,h,yout,yerr,derivs) 
! INTEGER n,NMAX 
! REAL*8 h,x,dydx(n),y(n),yerr(n),yout(n) 
! EXTERNAL derivs 
! PARAMETER(NMAX=50) 
! INTEGER i 
! REAL*8 ak2(NMAX),ak3(NMAX),ak4(NMAX),ak5(NMAX),ak6(NMAX),ytemp(NMAX),A2,A3,A4,A5,A6,B21, &
! & B31,B32,B41,B42,B43,B51,B52,B53,B54,B61,B62,B63,B64,B65,C1,C3,C4,C6,DC1,DC3,DC4,DC5,DC6 
! PARAMETER(A2=0.2d0,A3=0.3d0,A4=0.6d0,A5=1.0d0,A6=0.875d0,B21=0.2d0,B31=3.0d0/40.0d0,&
! & B32=9.0d0/40.0d0,B41=0.3d0,B42=-0.9d0,B43=1.2d0,B51=-11.0d0/54.0d0,B52=2.5d0, &
! & B53=-70.0d0/27.0d0,B54=35.0d0/27.0d0,B61=1631.0d0/55296.0d0,B62=175.0d0/512.0d0, &
! & B63=575.0d0/13824.0d0,B64=44275.0d0/110592.0d0,B65=253.0d0/4096.0d0,C1=37.0d0/378.0d0, &
! & C3=250.0d0/621.0d0,C4=125.0d0/594.0d0,C6=512.0d0/1771.0d0,DC1=C1-2825.0d0/27648.0d0, &
! & DC3=C3-18575.0d0/48384.0d0,DC4=C4-13525.0d0/55296.0d0,DC5=-277.0d0/14336.0d0,DC6=C6-0.25d0) 
! do i=1,n 
! ytemp(i)=y(i)+B21*h*dydx(i) 
! enddo 
! call derivs(x+A2*h,ytemp,ak2)
        do i=1,n 
! ! ytemp(i)=y(i)+h*(B31*dydx(i)+B32*ak2(i)) 
! enddo 
! call derivs(x+A3*h,ytemp,ak3) 
! do i=1,n 
! ! ytemp(i)=y(i)+h*(B41*dydx(i)+B42*ak2(i)+B43*ak3(i))
! enddo
! call derivs(x+A4*h,ytemp,ak4)  
! do i=1,n 
! ! ytemp(i)=y(i)+h*(B51*dydx(i)+B52*ak2(i)+B53*ak3(i)+B54*ak4(i)) 
! enddo 
! call derivs(x+A5*h,ytemp,ak5)  
! do i=1,n 
! ! ytemp(i)=y(i)+h*(B61*dydx(i)+B62*ak2(i)+B63*ak3(i)+B64*ak4(i)+B65*ak5(i)) 
! enddo
! call derivs(x+A6*h,ytemp,ak6)  
! do i=1,n  
! ! yout(i)=y(i)+h*(C1*dydx(i)+C3*ak3(i)+C4*ak4(i)+C6*ak6(i)) 
! enddo 
! do i=1,n 
! ! yerr(i)=h*(DC1*dydx(i)+DC3*ak3(i)+DC4*ak4(i)+DC5*ak5(i)+DC6*ak6(i)) 
! enddo 
! return 
END SUBROUTINE rkck

!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
FUNCTION ran1(idum) 
! INTEGER idum,IA,IM,IQ,IR,NTAB,NDIV 
! REAL*8 ran1,AM,EPS,RNMX 
! PARAMETER(IA=16807,IM=2147483647,AM=1.0d0/IM,IQ=127773,IR=2836,NTAB=32,!&
! ! ! ! & NDIV=1+(IM-1)/NTAB,EPS=1.2d-7,RNMX=1.d0-EPS) 
! INTEGER j,k,iv(NTAB),iy 
! SAVE iv,iy 
! DATA iv/NTAB*0/,iy/0/ 
! if(idum.le.0.or.iy.eq.0)then 
! ! idum=max(-idum,1)  
! ! do j=NTAB+8,1,-1 
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! ! ! k=idum/IQ 
! ! ! idum=IA*(idum-k*IQ)-IR*k 
! ! ! if(idum.lt.0)idum=idum+IM 
! ! ! if(j.le.NTAB)iv(j)=idum 
! ! enddo 
! ! iy=iv(1) 
! endif 
! k=idum/IQ 
! idum=IA*(idum-k*IQ)-IR*k 
! if (idum.lt.0) idum=idum+IM 
! j=1+iy/NDIV  
! iy=iv(j) 
! iv(j)=idum 
! ran1=min(AM*iy,RNMX) 
! return 
END FUNCTION ran1
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Appendix E

Plasmonic Antenna Work

Highlighted in Annalen der Physik

Our work on the ultrafast temporal response of a plasmonic antenna is chosen to

be the cover article in the 2013 February Issue of Annalen der Physik. An “Expert

Opinion” by Otto Muskens is also written to highlight our work.
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EXPERT OPINION

Towards nanoantenna electron switches
Otto Muskens

The electromagnetic ‘ponderomo-
tive force’ was discovered in 1957
in a radio-frequency experiment by
Boot and Harvie [1]. The force arises
due to gradients in an inhomoge-
neous oscillating electric field, and
can be used to control and accel-
erate electrons, with applications
in ion traps, plasma accelerators
and high-harmonic generation.
However, being a second-order
nonlinear effect in the applied field,
the ponderomotive force is relatively
weak. The availability of high-power,
short laser pulses has enabled new
practical realizations of this effect
[2].

In a Letter in this issue, Batelaan
and co-workers predict that metal
nanoantennas can produce suffi-
cient ponderomotive force to deflect
electrons [4]. The phenomenon
relies on the surface plasmon
resonance properties of the nanoan-
tenna, which produces a high local
field enhancement combined with
large field gradients in a small vol-
ume around the nanoantenna. To
achieve the required field strengths,
they propose to use high energy
laser pulses of femtosecond time
duration, tuned to the surface
plasmon resonance wavelength.
These short laser pulses offer yet
another advantage, as they allow
producing an ultrafast modula-
tion of an incident electron beam.
Such an electron switch would
be of interest for a range of ap-
plications, for example ultrafast
electron microscopy [4]. Ultrafast

electron microscopy is a powerful
tool for characterizing chemical and
physical processes at nanometer
length scales and ultrafast time
scales. Currently, the generation
of ultrafast electron pulses is done
by directly exciting the electron
emission source with a high-power
UV laser pulse. Plasmonic elec-
tron switches may be a feasibly
alternative route toward the devel-
opment of ultrafast electron beams

Figure 1 (online color at: www.ann-phys.
org)) Layout of an ultrafast electron micro-
scope where a plasmonic antenna array is
used as an ultrafast electron switch.

at higher repetition frequencies and
using lower-power femtosecond
oscillators.

As a first step, the authors mea-
sured the coherence time of sur-
face plasmon modes in an array of
nanoparticles, so-called optical an-
tennas [3]. A short, resonant laser
pulse can drive a coherent plas-
mon oscillation, however this os-
cillation rapidly dephases via colli-
sions of the electrons (intraband) or

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim A21
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through excitation of electron-hole
pairs (interband). Surface plasmons
in isolated metal nanospheres have
a dephasing time of several fem-
toseconds, depending on the type
of metal antenna under study and
details of the damping mechanism.
Detailed measurements of plasmon
dephasing were pioneered in the
1990s by Franz Aussenegg and co-
workers, who used high harmonic
generation as a nonlinear process
to make an autocorrelation of the
plasmon pulse [5]. High-harmonic
generation in nanoparticles is com-
plicated, since second-harmonic re-
quires noncentrosymmetric struc-
tures, while third harmonic signals
are comparably weak. Becker et al.
use a different, more direct method
of measuring both the amplitude
and phase of the plasmon field us-
ing cross-correlation of the plasmon
field with a reference pulse with
known width taken directly from the
laser.

The prospect of electron beam
modulation using ultrafast plasmon
fields is promising as a funda-

mental phenomenon and may
further open up the field of ul-
trafast electron microscopy. Both
the coherence time and local field
enhancement can be tailored by the
geometry of the nanoantenna,
allowing for a rational design of
nanostructures optimized for spe-
cific applications [6]. Of particular
interest will also be the application
of techniques from coherent control
to achieve local plasmonic hot-spots
in both space and time [7], poten-
tially resulting in even stronger field
gradients at shorter time scales.
Several hurdles will have to be
overcome, related to the high field
strengths required and the break-
down of metal nanoantenna arrays
under such high power excitation.
Similar problems are encountered
in higher-harmonic generation
experiments, and require careful
optimization of material proper-
ties of the antennas and substrate.
However, if successful, the plas-
monic antenna approach may result
in a new generation of electron
modulation devices.

Otto Muskens
Quantum Light and Matter Group,
School of Phyics and Astronomy
University of Southampton, High!eld,
Southampton SO 17 1BJ, United Kingdom
E-mail: O.Muskens@soton.ac.uk
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