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The study of the electronic properties and geometrical arrangement of 5, 10, 15, 20-tetraphenyl-

21H, 23H-porphine on metal is presented. The systems were analyzed using both scanning tunnel-

ing microscopy and photoelectron spectroscopy and compared across surfaces to determine how

the interface chemistry between the metal and molecule affect the self-assembly and band structure

of the adsorbed species. The molecules are found to self-assemble and grow on the Ag(111) surface

in a manner described by similar models to weakly bound metal/metal surface systems. The CH-π

bonds between molecules are found to largely determine the relative inter-molecular arrangement,

while the more isotropic van der Waals interactions drive the self-assembly. The 2H-TPP however

remains isolated and equally dispersed despite any increases in coverage, observed motion, or an-

nealing on the Cu(111) surface, indicating an electrostatic repulsion between adsorbates. Through

calculation, spectroscopic observations of state shifts and mapping of the local work function, the

limiting factor in the inter-molecular repulsion is found to be due to a combination of charge trans-

fer between molecule and surface and perturbation of the surface electrons due to frontier orbital

overlap. By comparing this molecule across surfaces and temperatures, the complex interplay be-

tween band structure matching, charge transfer, surface barriers, and self-assembly is described.

Controlling the charge transferred to the adsorbed speciesby the underlying metal, these proper-

ties are tailored without changing the atomic constituentsor general band structure of the adsorbed

species.
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Isolated material particles are abstractions, their properties being definable and observ-

able only through their interaction with other systems.

Niels Bohr
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Chapter 1

Introduction

The use of metal/organic systems has exploded over the past twenty years into a wide variety

of applications including, organic diodes and OLEDs [1], photovoltaic cells [2, 3], field effect

transistors [4], magnets [5, 6], and hydrogen storage [7]. This is because the discrete energy levels

of organic molecules are similar to the band structure of semi-conductors [8]. However, unlike

semi-conductors, the properties are inherent to the individual, closed-shell molecules, not the bulk

material. This allows much more tailorability of semi-conductor properties through control of the

structure and interactions of the molecules in question.

This tailorability is not limited to the molecule itself, but also to the underlying electrode sur-

face. Improper band structure matching [9], surface dipoles [10], and hybridization of states [11]

are key parameters affecting charge exchange at the interface. These can be used as additional

control parameters to achieve the desired device design.

The degree of disorder in the organic system is commensuratewith the semi-conductor-like

charge transport properties of the device [12]. With greater disorder, the charge transport mech-

anism functions less according to a band structure model andmore as charge hopping between

molecules in a gas [13]. This allows tunable band structures through control of the supramolecular

ordering.
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It is for these reasons that so much work in surface science has been devoted to understanding

how the metal/organic interface affects the band structureand self-assembly of organic thin films.

Only by understanding these topics may techniques be designed to bypass or control them. One

fact that has become clear during this study is that while theapplication of certain descriptions

of metal/semiconductor interfaces can be applied to specific metal/organic interfaces [1], these

models are not generally applicable to all systems [14]. There is at present a lack of understand-

ing of the mechanics and chemistry of the weak metal/organicinterface, and how this affects the

aforementioned properties.

It is the goal of this dissertation to advance the understanding of this problem through the local

probe analysis of the metal/organic interfaces of a specifickey species of molecule, 5, 10, 15,

20-tetraphenyl porphyrin (TPP), and in so doing present unique techniques for the control of the

dynamics of the organic adlayer. Using the unique capabilities of scanning tunneling microscopy

(STM) over a varying set of metal surfaces, the basic interactions at the metal/organic interface

and how these interfere with the self-assembly and electronic states of weakly bound molecules

are illustrated and discussed.

As STM is a local probe measurement technique, this allows for the simultaneous measurement

of the electronic properties in correlation with the geometric location on the adsorbed molecule

and surrounding metal surface. This is the most direct comparison that can be made between

experimental results and theoretical predictions. Through work function measurements not only

can the shift in the work function of the adsorbed system be determined, but the direction of

electron transfer within the different components of the molecule as well [15]. The use of local-

probe spectroscopic techniques finds differences between the adsorbed molecules depending on

surface, but through comparison with the integral probe techniques of photoemission spectroscopy,

it is shown that none of these interactions are indicative ofa covalent bond with the surfaces, and

that the molecules may be considered in all cases weakly bound. Based on this, the heretofore

debated mechanisms of the molecular phyisorption and how itaffects self-assembly are described.
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This dissertation is organized as follows. An outline of theexperimental systems used to grow

and evaluate the thin films studied is presented in chapter 2.Here, the theoretical basis underlying

scanning tunneling microscopy (STM), ultraviolet photoemission spectroscopy (UPS), as well as

the design and facilities of the equipment used are explained. Chapter 3 provides an introduction

to the relevant physical interactions taking place at the metal/organic interface. This includes an

overview of the both inter-molecular and molecule-surfacebonds of similar organic molecules,

along with a hierarchy of the energetic contributions of each bond.

In chapter 4 are three published and to-be-published articles discussing 2H-TPP self-assembly,

and how it can be controlled through the molecule-surface interaction. This is presented along

with a brief background to the recent advances made in the study of this, and similar molecules,

on metal surfaces. Comparison of the mechanics of the self-assembly of 2H-TPP on Ag(111) to

similar growth studies of metal/metal systems shows that the growth dynamics of organic adsor-

bates follow the same physical mechanisms as inorganic systems. These studies also provide an

estimate for the inter-molecular bond for comparison with theoretical predictions. By then compar-

ing the same molecule across metal surfaces, it is determined that the molecule strongly interacts

with the Cu(111) surface in a manner not present on Ag(111). It is this interaction which limits

self-assembly, and is explained through the local probe of individual molecules and application

of Ag buffer layers to the more strongly binding Cu(111) surface. The interaction is found due

to a combination of interface state and repulsion of surfaceelectrons, in accordance with modern

theory by certain authors.

Through this comprehensive analysis, it is shown that the factor limiting the self-assembly of

these structures over free terraces is not only electron transfer between the molecule and the under-

lying metal, but restructuring of surface electrons. This is in accordance with the modern theory

presented by certain authors for physisorption of organic species on metal surfaces: a combination

of interface state and repulsion of surface electrons. Bothcreate electrostatic barriers which pre-

vent the molecule-molecule interactions driving self-assembly. By therefore controlling the charge
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transfer, it is possible to prevent any electrostatic repulsion between adsorbates and control the

self-organization of the adsorbed species.



5

Chapter 2

Experimental

2.1 Experimental setup and sample preparation

Sample preparation and experiments were performed in a two-chamber ultra high vacuum

(UHV) system at base pressure< 10−10 Torr. One chamber housing an Omicron LT-STM (Chap-

ter 2.1.2), and one chamber containing the equipment for sample preparation (Chapter2.1.1), Fig-

ure2.1.

2.1.1 Molecular Evaporator

The sub-nanometer organic films used in this study were produced through controlled sub-

monolayer deposition using a homebuilt evaporator. Due to the low partial pressure and sharp

thermal range of evaporation for organic molecules, the construction of this heater was based on

the contact heating of removable crucibles by wrapped filament wire as used in Knudsen cell based

thermal evaporators.

The design is as follows. A copper cooling plate holds a groupof four thermally isolated and

individually heated crucible holders, Figure2.2 (a) i. The holders rest atop stainless mountings

electrically isolated from the cooling plate and are held inplace by removable bolts. The holders
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Figure 2.1: UHV chambers containing measurement systems: STM chamber and prep chamber

are each separated from one another by a copper curtain that is held in thermal contact with the

copper base plate, ii. This curtain limits radiative heating between holders as well as evaporation of

material from one crucible to the other. The holders are composed of two ceramic sheaths tightly

binding a tantalum wire (red), iii. The tight wrapping distributes the heat from the wires evenly

across the surface of the sheaths, within which a tightly fitting, removable quartz crucible (green)

is inserted, iv. A hole is placed in the center of the stainless steel mountings and a small type-K

thermocouple is left in contact with the bottom of the crucibles. By running a current through the

wires, this heats the crucibles and allows a controlled evaporation of organic material.

The full set-up is illustrated in Figure2.2(b). The pressure of the heated matrial is controlled by

running water through two cooling tubes, v, and cooling the plate upon which the evaporator head

(a) is mounted. This allows for a stable, constant temperature to within∼1 K of the evaporation

temperature. The evaporation of the material from the crucibles onto the sample surface is then

started/stopped using a simple stainless steel shutter, vi, over the holes in a copper sleeve that

surrounds the evaporator head. The heating wires, thermocouples and shutter control are attached
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to stainless steel feedthroughs.

The design provides surprising thermal isolation. Temperatures of individual crucibles not in

use rarely grows by any more than 20 K during heating. Using this setup, the quartz crucibles are

easily removed, cleaned, and replaced in a matter of minutesfollowing removal of the evaporator.

This ease of use combined with the fact that the crucibles caneach hold∼50 mg of porphyrin

compounds provides a robust and flexible system for easy sample preparation.

Using this together with a quartz crystal microbalance, molecules of 5, 10, 15, 20-tetraphenyl-

20, H 21, H-porphyrin (2H-TPP), various species of metallated TPP (M-TPP), and 5, 10, 15, 20-

tetra carboxyphenyl-20, H 21, H-porphyrin (TCPP) were deposited on surfaces at controllable rates

typically< 0.1 ML min−1.

2.1.2 Scanning Tunneling Microscope

The STM used in these studies is a low-temperature scanning tunneling microscope (LT-STM)

manufactured according to specifications by Omicron Nanotechnology. The machine operates in

a temperature range from 2.6 K - 300 K within magnetic fields and is usable with z-stability in

topographic images as low as 1 pm. The cooling of the system allows for temperature control of

the scanning probe tip as well as the sample, thereby both lowering the thermal noise of the tip to

below the electric noise expected in spectroscopic signalsat very low temperature (< 10 K) and

limiting thermal diffusion of tip atoms which creates more stable signals across measurements. The

cryostat is able to hold temperatures without refilling for 50 hours to obtain these measurements,

making the machine ideal for long-term sample measurementswithout perturbation of the sample

in question.

The basic design of the machine is as follows. The STM sample stage sits under a large bath

cryostat containing two separate dewars, Figure2.3 (i). The outer dewar, the LN2 dewar, is filled

with liquid nitrogen (LN2) for cooling both the system and the inner dewar, the LHe dewar, which
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Figure 2.2: (a) Evaporation head includes crucibles and heating equipment: ceramic heating sheath
(i), thermal isolation curtain (ii), heating wires (red) (iii), and replaceable quartz crucibles (iv). (b)
Complete evaporator with water cooling lines (v) and shutter (vi).

can be filled with LN2 or liquid helium (LHe). The LHe cryostatis the dewar in direct thermal

contact with the otherwise isolated sample stage. For purposes of this dissertation, temperatures on

the order of 5 K were generally unnecessary and measurementswere therefore conducted filling

both cryostat dewars with LN2, resulting in temperatures of80 K unless otherwise specified.

The sample stage is held in contact with the LHe cryostat by three suspension springs. These

lower the stage, holding it in minimal contact with the cryostat and surrounding system, thereby



9

reducing thermal loss as well as noise due to mechanical vibrations Figure2.3 (ii). The sample

rests face-down in a sample holder, with the scanning probe tip underneath, (iii - iv). The tip is

positioned laterally under the relevant area of interest ofthe sample by two x̂ and ŷ piezo crystals,

(v). The piezos both have a range of∼5 mm. Noise due to vibrations of the UHV systems are

further reduced using an eddy current dampening system between the sample stage, shown in

Figure2.3(vi), and the surrounding shield (not shown).

Figure 2.3: Side-view of the Omicron LT-STM sample stage. (i) LN2 bath cryostat (silver) and
LHe bath cryostat (gold) (ii) suspension springs holding up(iii) side-view of sample holder (iv) tip
mounting (v) x̂, ŷ piezo coarse motion drive (vi) eddy current dampeners.

The sample stage is illustrated in further detail in Figure2.4 (a). It rests face-down with the

tip underneath. This helps prevent the tip from crashing into the surface due to slippage or sudden

shifts. A small aperture is positioned right below the sample plate to allow for thein situ deposition

of sample materials onto the surface of the plate. The tip rests on a cylindrical piezo crystal which

moves the tip normal to the sample in ẑ with a range of motion of 10 mm, (b). The lateral coarse

motion piezos are shown below.
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Figure 2.4: (a) A schematic of the sample stage. (b) Tip component showing the two sets of coarse
motion piezo drives along with tunneling tip.

2.2 Scanning Tunneling Microscopy

Scanning tunneling microscopy (STM), the techniques upon which most of the following work

is based, is an extraordinarily powerful tool for measurement of the electronic structure of conduct-

ing, semi-conducting and even insulating [16] surfaces near the Fermi energy. The beauty of the

technique is not simply in the ability to measure such systems, it is in the ability to measure them

locally, on length scales< 1 Å. This allows for the relation of morphological features with spec-

troscopic states [17, 18], surface states [19], the vibrational states of molecular adsorbates [20],

surface potential [21, 22, 23], as well as electron spin [24]. These measurement techniques will be

reviewed to provide a more detailed understanding of the STMand the measurements performed

for the clarity of the reader.
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2.2.1 Scanning tunneling microscopy/spectroscopy

The fundamental principle underlying this technique is quantum tunneling: the passage of a

particle, such as an electron, through a barrier of larger energy than that of the particle [25]. This is

used by moving a sharp metal tip close to a conducting surfacethrough the use of a well-controlled

coarse motion drive, using a piezo crystal. The tip is initially approached using a current measuring

feedback loop. Wherein, a bias potential is applied betweenthe tip and metal surface and the the

tip is then approached in a step-wise fashion as the current is measured at each small decrease in

the distance between the tip and the sample. When a noticeable increase is observed, the motion is

halted and the tip is at scanning position with the surface. The tip is then retracted or approached

in ẑ using this same feedback loop on a nanometer scale by a second set of piezos which are used

for the control of the normal motion during measurement [26, 27].

As the tip is then scanned across the surface encountering defects, adsorbates, step-edges and

other surface features, it is moved up and down in ẑ in order that the measured current is kept

constant. As the changes in the z-signal of the piezo (∆z) are measured, this creates a topological

map of the surface of interest, Figure2.5. With appropriately sharp tips, atomic-scale images are

obtainable, such as this sample image of a 9 nm× 9 nm Ag(111) surface, Figure2.6.

Figure 2.5: The tip is brought some distancez away from the surface, producing a currentI for a
given potentialV applied across the sample. As the tip is scanned across the surface, the tip must
approach or retract by∆z to keepI constant.
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Figure 2.6: 9 nm× 9 nm STM image of Ag surface taken in our lab showing atomic structure
along the〈111〉 surface.

2.2.2 Scanning tunneling spectroscopy

The key difference between scanning tunneling microscopy and other low-dimensional mi-

croscopy techniques such as atomic force microscopy or transmission electron microscopy is the

potential for spatially resolved spectroscopy. In STM, themeasured quantity is the electronic states

of the system being examined. The tip is neither interactingthrough direct electrostatic forces as

with AFM, nor measuring the passage of wavelengths around geometric barriers such as electron

microscopy. Rather, the current passing between sample andtip is composed of electrons in one

bound energy state (sample) tunneling into other availableenergy states (tip). As the probe mea-

sures the local enviornments, these currents change can be related to these environments. Through

examining specific changes in the currents between the tip and sample, spectroscopic information

of the electronic states of the sample can be gained.

For two systems separated by vacuum, bound electrons tunnelfrom occupied states of one



13

material into unoccupied states of the other. Here, the potential barrier the electrons are tunneling

through is the binding energy of the electrons to material, the workfunctionΦ. Due to the Pauli

exclusion principle, they may only tunnel from occupied states of one electrode (tip or sample) into

unoccupied states of the other. For conductors, these occupied states are energy states ofE < EF .

For closed-shell molecules, these are occupied molecular orbitals.

With no bias voltageV applied across the tip-sample junction, the fermi energiesalign, and

there is no net current, Figure2.7 (a). Upon the activation of an electric potential over the tip

however, the energy levels of (b) are shifted byeV , (b). This creates a change in the relative Fermi

distributions and allows electrons of energyE > EF − eV to tunnel into the unoccupied states of

the tip. In the case of organic molecules on the other hand, the energy levels are not continuous,

but discrete, Figure2.7 (c). This means tunneling is allowed only at energies equal to the discrete

energy levels of the system.

The tunneling of electrons between the electrodes constitutes the tunneling current,IT . This

current is expressed simply as the integral of the distribution of electronic states over the energy

rangeEF − eV ≤ E ≤ EF , Equation2.1[28].

Figure 2.7: (a)EF of the metal surface (left hand side) and the metal tip (righthand side) are
at equal level with no potential. (b) WithV applied across the gap, the apparent Fermi level of
the tip is lowered toEF − eV , allowing tunneling from sample to tipe. (c) Organic adsorbate
or semiconductor with the unoccupied (blue) and occupied (red) orbitals allow tunneling from
discrete occupied states into tip. See text for explanation.
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IT =
2π
m2

∫ eV

EF

dε|M|2ρ1(ε)ρ2(ε− eV )[ f1(ε)− f2(ε− eV )], (2.1)

where here, we are taking the two workfunctions to a be the same between materials,Φavg.

|M|2, ρ(ε), and f (ε) are the tunneling matrix, the densities of states (DOS), andthe Fermi-Dirac

distributions respectively [28]. ρ(ε) provides a description of the available energies of electronic

states, whilef (ε) is the occupation of those states. The tunneling matrix is the overlap of the

wavefunctions of the sample and the tip in the tunneling regime (EF > E > EF − eV ) [29]. This

remains generally stable over energies nearEF , and as such is taken as a constant of integration in

energy [30].

Then, for relatively low temperatures the Fermi distribution can be approximated as a step

function, and Equation2.1becomes,

I ∝
∫ eV

EF

dερ1(ε)ρ2(ε− eV ) (2.2)

This is the well known known Tersoff-Hamann approximation [31] for the tunneling current.

In this description, the tunneling current is proportionalsimply to the integration over energy of

the convolution of the DOS of tip and sample. The key here is that the current is dependentonly

on the DOS of the tip and the sample. Therefore, through the derivative of IT in V we have a direct

measure of the DOS [32, 33],

∂IT

∂V
∝ ρ1(ε)ρ2(ε− eV ) (2.3)

In the case where the tip DOS is approximately constant across the energy range of interest, a

quite common phenomenon, any variations indIT /dV can be attributed to the sample DOS [30,

31, 34]. This is accomplished through conditioning of the tip to provide a flat DOS nearEF [35].

This provides the amazing tool of STM: scanning tunneling spectroscopy (STS) [32, 36, 18, 17].
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By properly measuring the variation ofV in IT , we can achieve a measurement of the sample DOS

on an local, atomic scale!

This is achieved through two methods: a differential analysis of anIT (V ) curve or, more com-

monly, a direct measurement ofdIT /dV . For the latter, the currentIT is measured at a given bias

voltageV , the bias voltage is modulated by a small AC current resulting in a change inV (∆V , typ-

ically on the order of 20 meV at a few kHz). The responding variation inIT (∆IT ) is the derivative

of theI(V ) signal and measured as the bias voltage is scanned across theenergy range of interest.

The energetic states of the sample are then measured, as seenin Figure2.8. Here adIT /dV curve

is taken over a Ag(111) surface in the energy range of -600 meVto +200 meV below and above

EF respectively. The surface state of the Ag(111) surface is clearly distinguished at -80 meV.

Figure 2.8: Example of voltage dependent point spectra of the Ag(111) surface. Ag(111) surface
state is clearly visible near -0.08 eV belowEF .

By taking these measurements at a given bias voltage while scanning over the sample, it is

possible to map the DOS at a given energy and compare between different features or adsorbates.

An example is provided in Figure2.9. A molecule ofmeso-tetraphenyl porphine (TPP) is adsorbed

on the surface of a Cu(111) single crystal and thedIT /dV map is shown over a range of voltages
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between -400 meV and 400 meV relative toEF . The symmetry of the DOS of the molecules

changes between energy levels as well as the wavelength of the surface state of the Cu(111) (seen

scattering around the adsorbed molecule).

Figure 2.9:dIT /dV map of 2H-TPP/Cu(111) taken at (a) -400 meV, (b) -200 meV, (c)+200 meV,
and (d) +400 meV relative toEF showing the different molecular DOS and surface state wavevector
of the Cu(111) surface.

Exciting as this is, there are a number of limitations to thismeasurement technique that need

be kept in mind. Most obvious here is the peak broadening observed in the spectra. This is

due first to the previous approximation of the fermi distribution being flat in temperature. In

reality, it is not and the thermal excitation creates a weak broadening ofIT (V ) in temperature of

approximately 3.5kBT [37]. Here, this would be 24 meV as the measurement temperature was

80 K. The second broadening effect, is due to the modulation of ∆V by the lock-in amplifier and is

given as approximately 1.7 times the modulation voltage of the amplifier [38]. So the overall energy

resolution at 80 K is typically on the order of 50 meV. Furthermore, while the above estimations

assume a relatively flat tip DOS, simple tip irregularities can create DOS peaks relatively close to
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EF due to adsorption of surface molecules, geometric reconstructions, electronic resonance states

and more [39, 35]. Many of these in fact overlap known states, changing the appearance of the

spectra. By intentionally transferring single adatoms or molecules such as CO to the STM tip

however, this creates a significant overlap in DOS with thosesame adsorbed species, allowing

increased contrast and image resolution between the species of interest in scans over multiple

adsorbates [40, 41].

This is all general enough that it extends to any measured sample: metal, semiconductor or

organic. However, it was discovered by Hansma in 1966 that this spectroscopic mapping extended

not only to the electronic states of the sample, but to thevibrational modes of adsorbed molecules

as well [42]. The tunneling electrons can excite vibrational modes of energy hν in molecules

situated within the tunneling gap, thereby losing energy and tunneling into states of reduced energy

E = eV −hν, Figure2.9[42].

This is what is known as inelastic tunneling spectroscopy (IETS) Electrons at energyeV > hν

therefore can tunnel into two states

E =











eV

eV −hν
(2.4)

What results is a greater net tunneling at higher energies and an increase in the conductance of

the sample represented by a sharp peak in thed2IT /dV 2 slopes [43, 44].

This measurement technique had previously been used with tunneling bridge systems to mea-

sure the vibrational modes of molecules [20]. When done using STM, the̊A scale lateral resolution

allows the probing of vibrational modes and what effects thesurrounding environment has on them

[43].
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Figure 2.10: As with a typical tunneling setup, electrons tunnel from the conductor (a) into
molecule adsorbed on the surface (b). The tunneling excitesa vibrational mode of energyhv,
resulting in an energy loss as the electrons tunnel into the underlying metal surface with a lowered
energy (c).

2.2.3 Workfunction/Barrier Height

While Equation2.3 provides an excellent approximate description to the variation of IT in

energy, the dependence of the current on the tip-sample separation is entirely determined by the

prefactor|M|2, which is generally taken to be constant over smalleV nearEF . Then for a constant

V and assuming a simple one-dimensional model of tunneling, the current was initially estimated

by Binnig and Rohrer to vary with separationz as [26, 27],

IT ∝ e−2kz (2.5)

k =

√

2m(Φ)

h̄2

This was done by extending Frenkel’s model (Equation2.1) to the approximation of two iden-

tical conductors at very low bias with no geometric variation. While the expansion of|M|2 and its

constancy inz is still a matter of discussion, a model taking the geometry of the tip and DOS of the

system into account generally finds the very same dependency[31]. In fact, in the energy range

nearEF , geometric considerations can be somewhat ignored inz and all models can be generally
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written as [28, 29, 45, 34],

I =
h̄e
2m

Dtip(EF )V G(R)e−2kz (2.6)

HereDtip andG(R) are the DOS per unit volume of the tip and the geometrical factor over the

surface describing the tip. Both of these are considered constant inε andz only in the low energy

range whereIT ∝ V .

ln(IT ) = ln(C0)−2kz, (2.7)

C0 =
h̄e
2m

Dtip(EF)V G(R),

and from this, by taking the differential ofI in z,

∂ln(IT )

∂z
= −2

√
2m
h̄

(φ)−1/2 (2.8)

The key is that this provides an approximation for the workfunctionΦ. An example is shown in

Figure2.11. In (a) we see a measurement of the current over both the cleanCu(111) surface (black)

and TPP molecule (red). By taking lnIT , as in Equation2.8, we find estimates forΦ showing a

decrease in the workfunction over the molecule.

Though this is an approximation in the low-energy regime, the benefit to Equation2.8 is the

linearity of I in V . The energetic bounds of the approximation are determined by the linearity

of a simpleIT (V ) curve, as shown for anIT (V ) curve over Ag(111) in Figure2.12. Outside

the highlighted region,IT (V ) does not have linear shape. This is because the approximations

used above all assume very low energy of tunneling electrons, nearEF [28, 31]. As E increases

significantly, the DOS of the same no longer remains constantand the approximations made in

Equation2.6 are no longer valid. This causes relationship betweenIT andV becomes nonlinear
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Figure 2.11: (a) I(z) curves of Cu(111) surface and adsorbed2H-TPP molecule. (b) lnIT curves
show linear relationship inz with respective workfunctions of 5.0 eV and 4.0 eV.

and is reflected in theIT (V ) signal at increased energies [46]. By keeping the voltage during any

measurements ofIT (z) to within 350 meV ofEF , one can therefore gain an accurate measure of

Φ.

From this we see that by varying tip-sample distance under a constant potentialV , an approx-

imation for Φ is obtained [23]. Together with the ability of STM to map local structures, the

variations in the surface workfunction can be related to local structures such as defects, step edges

or adsorbates [23, 47, 15].

A spatially resolved map of the work function can be obtainedby takingIT (z) curves at a single
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Figure 2.12: IT (V ) curve of Ag(111) surface showing linear relation betweenIT andV in the
energy range of± 0.35 eV. It is in this range that Equation2.8provides an accurate description of
the LBH.

bias voltage over a grid of specific points and then determining Φ by the observed variations. A

second method is very similar to the spectroscopic mode. Theheightz is varied over a smallpm

range at high frequency as the tip is scanned across the surface. As described in Chapter2.2.2for

the measuring ofdIT /dV , by measuring the changes ofln IT in z (dln IT /dz), measurements of

Φ are obtained. The results using both methods provides greatinsight into the nature of the local

electronic interactions on surfaces, as in the example below, Figure2.13 (c). The first method,

while much more costly in time, provides raw data of theI(z) curves over a larger range inz. It

is therefore much easier to establish the ranges of the simple exponential behavior in Equation2.8,

allowing a more accurate choice of the data range to use for each point. With the latter method, the

variation is small and the accuracy of the range not varying over the sample is assumed.

In either case, the measurements ofΦ provide a direct method to confirm thelocal changes

in surface potential with adsorbed species. As with Figure2.13(c), local increases and decreases

of Φ shows a great dependence with the sub-molecular characteristics of the adsorbed 2H-TPP as
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Figure 2.13: Example of three topological maps taken simultaneously over the same sample, a
single 2H-TPP molecule adsorbed on a Cu(111) single crystalsurface. The z-dependent surface
features (a), the DOS atV = +0.4eV (b) and the variation in the surface workfunction (Chap-
ter2.2.3) (c).

well as the immediately surrounding Cu(111) surface. Differences in the localΦ are seen here to

vary by as much as∼ 6 eV. From this measurement, the observed behavior of the molecules and

the integral measurements of the DOS are able to be describedby existing theories using this map

of changes in local barrier potential.

2.3 Photoelectron Spectroscopy

The second method of measurement used in this study is that ofphotoelectron spectroscopy

(PES), specifically in the energy range of ultraviolet lightor ultraviolet photoelectron spectroscopy

(UPS). Photons are impinged on a surface at a frequencyν being absorbed by the sample on the

surface, Figure2.14(i). The absorption excites electrons from bound states into the vacuum with

some kinetic energyEk. The sample is placed below a narrow aperature and a series ofelectron

lenses which focus the beam of outgoing electrons (ii). After passing through the lenses, the

electrons reach a small aperature into a hemispherical chamber, (iii). The width of the aperature

and strength of the lenses limit the kinetic energy of the electrons examined to the range desired.

After passing through the aperature, electrons then reach ahemispherical energy analyzer (iv).

Voltages are applied across the walls of the hemispheres, forming an electrostatic lens that focuses

electrons of a given energy on a micro channel path detector (v) [48].
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Figure 2.14: (i) Photons impinge on a sample surface, freeing electrons from bound states. (ii) The
electron beam is focused through a series of electron lenses, and (iii) the electrons pass through
a small aperture into a hemispherical chamber allowing onlyelectrons of a given trajectory into
the apparatus. (iv) The biases applied across the hemispheres cause electrons outside the desired
kinetic energy range to hit the walls of the hemispheres. (v)Those electrons of the desired kinetic
energy then pass through a second aperature and onto a microchannel path detector for measure-
ment.

The kinetic energy of the outgoing electrons is given by,

Ek = hν−Φ−EB (2.9)

whereν is the frequency of the photons,Φ is the workfunction of the sample, andEB is the

binding energy of excited electrons. As the photons are absorbed by the sample, the electrons of

a given energetic state,EB, are excited to higher energies thereby ionizing the sampleFigure2.15.

The detector is scanned acrossEk comparing the ionizing energy of the electrons across energy

and a spectroscopic map of the energy levels is constructed.An example is shown in Figure2.16

of Zn-TPP gas in vacuum [49]. The peaks observed in the spectra correspond to the energylevels
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of the free molecule.

Figure 2.15: Photons of some energyhν bombard a molecule, exciting electrons from occupied
states to energies aboveΦ, thereby freeing the electrons and ionizing the molecule.

Figure 2.16: UPS spectra of Zn-TPP in vacuum [49]. The energy states of the molecule are ob-
served as peaks of specific energies (here written in wavelength), and the highest occupied orbitals
assigned symmetries.

In the case of organic materials, the situation is further complicated by the fact that, as discussed

earlier, inelastic vibrational states exist at energies inbetween the electric states ofEtot(N−1) and
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Etot(N) [50]. Considering the vibrational modes of the molecule as a quantum harmonic oscillator,

these energies correspond then to the energies of the modes of the harmonic oscillator and also

require energetic consideration along with the orbitals ofthe molecule [51, 52]. The vibrational

modes of molecules are not limited to a single frequency, but, like the classic harmonic oscillator,

exist also in multiples of the vibrational modesnhνvib.

The peaks due to the vibrational modes therefore overlap with the orbitals of the molecules and

create further broadening of the measured energy levels. Anexample is shown for N2, CO, and O2

on a Xe buffer layer in UHV, Figure2.17[51]. The sharp bands beneath the broad peaks represent

the vibrational spectra of the relevant molecules and are discernable for the N2/Xe sample.

Figure 2.17: Spectra of molecule dimers of N2, CO, and O2 on Xe buffer layers on Ni(111) [51]

The unoccupied electronic states are measured using the same principles but the inverse

methodology, inverse photoemission spectroscopy (IPES).Electrons of some kinetic energyEk

are bombarded onto the sample. In hitting the sample, the electrons bind to unoccupied statesEB,

eventually decaying to lower energetic states of energyEB′. In the decay, a photon is relesead of

energyhν = Ek + Φ+ EB −EB′. Through continuous bombardment and simultaneous measure-
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ment of the outgoing photons, the differences in electronicstates can be constructed and a map of

the energy levels of the system.
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Chapter 3

Organic chemistry on metal surfaces

In this chapter, a brief explanation of the self-assembly oforganic materials on metal surfaces

is presented. Basic principles are reviewed, followed by a more in-depth discussion of the binding

mechanisms differentiating organic molecules from metal adatoms. Finally, the existing theories

of electron exchange and surface dipoles are included as they play a key role in limitations of this

process, as shown in this thesis.

3.1 Interface energetics

Adsorption is the process where a gas-phase particle (any atom, cluster, molecule, etc.), the

adsorbate, interacts with an exposed surface, forming a bond strong enough to prevent it from

releasing back into the gas phase, desorption. The chance ofdesorption increases with ambient

temperature due to thermal motion of the adsorbate. Therefore, the adsorption energy (Ead) must

be large enough to compensate for this at the temperature thedevice is intended for use (typically

room temperature or above). This is typically on the order of1 eV [53]. Current research has

observed binding energies for noble gases and organic molecules ranging between 100 meV and 6

eV, depending on the surface of adsorption [54].
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Molecules have a similar wide range of binding energies, with those attributed to chemical

bonds (chemisorption) tend to be on the order of several eV [55, 56, 57] and that physically bound

(physisorbed) systems on the scale of 10−2 eV [57, 58]. It was previously the energy scales them-

selves which previously defined the nature (physisorption vs. chemisorption) of the interaction.

However, as binding energies vary in a continuum between these scales, this has since been found

to be a rather arbitrary boundary [58]. Most frequently now physisorption is defined where the

binding is due mainly to weak van der Waals forces, the molecule retains its chemical uniqueness,

any shifts in energy are uniform throughout the band structure, and any charge exchange is ”mini-

mal” [57, 58, 14]. Chemisorption is then defined where the energy levels of the surface/molecule

system are unique, the energy levels of the molecule may be shifted relative to one another, and

there is ”significant” electronic exchange [59, 57, 58]. Even these definitions however are some-

what arbitrary. What constitutes ”significant” and ”minimal” are not properly defined and, due to

energy level broadening and deformation of geometry, the energy levels of adsorbed molecules

are different from the free molecule. While some authors refer to interactions of intermediary en-

ergy with some charge exchange as strong physisorption [58, 60], others refer to them as weak

chemisorption [57, 61].

A schematic of the metal/molecule energy interface is shownin Figure3.1. Here, the metal

surface is on the left, in region (i) and the free molecule is represented by discrete occupied (red)

and unoccupied (blue) energy levels (orbitals) on the right(iii). The region between (i) and (iii)

represents the interface: the molecule adsorbed on the metal surface (ii).

On the metal,EF represents the Fermi energy, the highest occupied energy ofelectrons in the

metal. All energy states belowEF are therefore occupied by electrons in a continuum, represented

by the black striped lines. The vacuum energyE∞
v , is the energy level of a free electron far from the

surface of the metal.Ev is the energy of a free electron, near to the surface. The potential energy

at Ev is raised, as the electron is close enough to interact with the dipole created on the surface by

surface electrons tailing into the vacuum.Φ, the workfunction, is simply the energy necessary to
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Figure 3.1: The energy levels of a metal surface (i): The vacuum energy far from the surface
(E∞

V ) and near the surface (Ev), workfunction (Φ), and Fermi energy (EF ). The occupied states are
represented by striped lines. The energy levels of a molecule near the surface (ii): The electron
affinity (EA), ionization energy (IE), charge neutrality level (ECNL), and surface dipole energy (∆).
The energy levels of the molecule far from the surface (iii):highest occupied molecular orbital
(HOMO), lowest unoccupied molecular orbital (LUMO), and vacuum energy (E∞

v ).

free an electron from the highest occupied energy of the metal.

As the free molecule is isolated (iii), the orbitals exist atdiscrete energies, indicated by the

horizontal lines. Here the highest occupied molecular orbital (HOMO) is and the lowest unoccu-

pied molecular orbital (LUMO) are labelled to indicate the gap between occupied and unoccupied

orbitals. As the molecule is different from the metal, the vacuum energy of the free molecule is not

necessarily the same as the metal. The purple line labelled IE, is the ionization energy, the energy

required to remove an electron from the HOMO to the vacuum. This is similar to the workfunction

of the metal. The green is what is referred to as the electron affinity, EA, or the energy difference

between vacuum and the LUMO. The larger EA, the more energetically favorable it is to gain

charge, and the easier it is for electrons to bind to the molecule. Whereas the larger IE, the more

difficult it is to remove electrons from the system.E∞
V for the free molecule is simply the energy

of a free electron, as there is no dipole of the molecule tailing into the vacuum. For this reasonE∞
v

for the molecule is aligned withE∞
v for the metal.

Upon adsorption to the surface (ii), a bond is formed betweenthe metal and the molecule. The
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close proximity of the molecule to metal surface forces the molecule to interact with the dipole

created by the metal surface electrons. With no rearrangement of surface charges, this potential

increases or decreases the apparent vacuum level of the molecule. This shift inEv is indicated by

∆, the interface dipole of the adsorbed system. The larger∆, the more difficult it is for electrons

to be absorbed. Depending on the nature of the bond, the energy levels of the metal/molecule

system may shift. Upon adsorption, there is a broadening of energy levels, depending on the

strength of the interaction. For strong interactions, thiscan lead to a continuous density of states

(DOS) between the discrete orbitals, the interface states or metal induced gap states. The charge

neutrality level (ECNL) is the energy level where charge occupancy up to this energyresults in a

neutral molecule. If the electron occupancy of the metal/molecule system is above (below)ECNL,

the system is negatively (positively) charged.ECNL does not occur halfway between the HOMO

and LUMO, instead it is dependent on the relative DOS of the unoccupied and occupied energy

states, and is therefore closer to the HOMO (LUMO) where the density of unoccupied (occupied)

levels is higher than occupied (unoccupied) levels [62].

3.1.1 Physisorption

The most common metal/organic systems studied over the lastdecade or so have been organic

molecules with very weak interaction with the metal surface, physisorbed molecules. The diagram

shown in Figure3.1 represents one such case: a simple van der Waals interactionbetween the

molecule and the metal surface. Here, the energy levels of the molecule weakly shift and there is

no overall alignment between the molecular orbitals and energy levelsEF or Ev of the metal. The

orbitals remain discrete, and there is a vanishingly small DOS between orbitals, therefore charge

can only be exchanged between the metal and discrete orbitals of the molecule. The HOMO

remains at energies lower thanEF , so there is no exchange of charge from the molecule to the

metal and the LUMO remains at energies aboveEF , so there can be no charge exchange from the
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Figure 3.2: A single molecule weakly adsorbed on a metal surface illustrating a variety of interac-
tions. (a) weak pysisorption with no rearrangement of charge, (b) dipole formation due to mirror
charges, (c) shift of surface DOS due to pillow effect, (d) charge transfer due to Schottky-Mott
interaction, and (e) charge transfer due to interface states.

metal into the molecule. In this case, the molecule remains simply weakly bound to the surface

with little or no change in energy levels. This is illustrated in Figure3.2(a).

This weak interaction results in a decrease in the workfunction over the adsorbed molecule.

The electronic orbitals of the metal surface atoms spill from the bulk into the vacuum, creating the

increased electron density responsible forΦ. This increased negative charge density outside of the

metal induces an image charge within. For those neutral adsorbates weakly bond to the surface,

the positive mirror charge creates an electrostatic gradient, inducing a dipole in the adsorbate, as

seen in the positive (light) to negative (dark) gradient in Figure3.2(b). This results in two dipoles:

the intra-adsorbate dipole and the adsorbate-surface dipole, the latter generally being large than

the former due to increased distance. This dipole acts in thedirection opposite that of the surface

electron dipole, thereby lowering the workfunction [63].

3.1.2 Reordering of surface charge

This model is incomplete however as it assumes little or no geometric change in electron or-

bitals. Upon adsorption, the orbitals of the adsorbate overlap with the tails of the orbitals of the
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surface electrons of the metal which spill into the vacuum. Pauli repulsion between the metal and

adsorbate forces rearrangement of these orbitals to minimize overlap [64]. In the case of closed-

shell systems such as noble gases and simple organics, the electron cloud of the adsorbate is not

easily deformed and as a result, the surface electrons of themetal are instead strongly reordered

[65, 66]. The density of surface electrons under the molecule decreases, while the density sur-

rounding of the molecule increases.

As a result, the electron density sinking into the vacuum is pushed further into the metal and

outward to the sides of the adsorbate, as in Figure3.2(c), the so-called ”pillow effect” [65, 67, 68].

While there is no exchange of charge between the isolated molecule and the surface, the decrease

of the electron density under (around) the molecule lowers (increases) the surface dipole in the

region where orbitals have receded (advanced), just as witha molecule with a permanent dipole

(Figure3.2(b)). This therefore creates a change in the dipole in addition to∆. This dipole change

is frequently considered parallel with any changes in work function, described as

∆ΦPE =
4πD

A
(3.1)

with D the surface-molecule dipole andA the area of the adsorbed species. However, such

changes are only accounted for in the case of metals whose spill-over electrons, typicallyd orbitals,

are most important to the work function of the metal [69]. The dipole created by the rearranged

charge then weakly contributes to new electrostatic forces, aiding in inter-adsorbate repulsion and

limiting the self-assembly of the adsorbate [70]. In the cases of other metal systems and those with

significant hybridization of the metal-organic states, more complex methodology is required for

description [68].
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3.1.3 Schottky-Mött semi-conductor model

The model applied to many metal/semi-conductor interfaceshas been applied to some

metal/organic interfaces as well. This is the Schotkky-Mött model, which assumes energy level

alignment at the interface between betweenEV of the molecule and the metal, such that∆ = 0

[71], Figure3.3 (a). Here, the energy levels of the adsorbate do not shift relative to one another,

but rather they all shift by the same change in energy given byEv −E∞
v . This weak interaction is

dependent only on the initial differences inEV , so long as∆ = 0 andIE < Φ < EA. With ∆ = 0,

the surface dipole under the molecule disappears.

Upon adsorption however, the interaction between the adsorbate and the metal surface induces

a hybridization between metal and adsorbate states, resulting in resonance of the adsorbate states

into broadened levels with Gaussian shape [72]. While the DOS between the energy levels remains

small enough to be ignored, when theΦ approaches the same magnitude as EA or IA (as shown

in the figure), the Fermi energy overlaps with the tail of the orbital [73]. This overlap then results

in charge exchange, causing the molecule to lose (gain) charge as the shoulder of the HOMO

(LUMO) overlaps withEF [74], creating a surface dipole in the region of the molecule, asshown

in Figure3.2 (d). Here, the overlap results in a loss of charge from the molecule. This typically

occurs at energies on the order 0.3 eV from the band edge of thestate [1].

3.1.4 Energy level pinning

While the Schottky-Mött model accurately describes the interaction between noble surfaces

and some weakly interacting molecules, studies over most molecules have found that∆ 6= 0 [14].

A recently proposed model by Rusu [66] maintains the same description of electron transfer from

the tail of the energy level into the metal as the Schottky-M¨ott model. In this model however,

the Fermi energy is pinned to the nearest molecular orbital,rather thanEv of the systems aligning,

Figure3.3(b). This pinning results in electron transfer between the molecule and the metal surface,
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Figure 3.3: (a) the Schottky-Mött model results in alignment betweenEv and∆ = 0. All states
shift by the same amount and create widened DOS due to the interaction at the interface. (b)EF

alignment showsEF pinning to the orbitals of the adsorbed molecule. (c) the IDIS model results
in EF pinning closely toECNL, resulting in charge transfer between the adsorbate and surface
depending on whetherEF > ECNL or EF < ECNL.

creating a dipole on the surface dependent on the relative energies ofEF and the nearest molecular

orbitals. AsE∞
v is equal between the free molecule and the surface, andEF aligns with the nearest

molecular orbitals, any shift inEF andΦ of the metal results in pinning ofEF to different orbitals.

While the workfunction of the free metal surface may decrease, the higherEF aligns with more

unoccupied orbitals and creates an exchange of more charge which results in an increase of the

surface dipole. This change in dipole then matches the change in workfunction between metals,

making the observed workfunction of the metal/molecule sample remain constant [66].

While this has been observed for some systems, such as PTCDA [66] and C60 [75], other

molecules such as benzene have shown no such interaction. Rather, the observedΦ of benzene is

seen to vary linearly with the workfunction of the metal, consistent with the pillow-effect model

proposed by Paul Bagus [66].



35

3.1.5 Induced density of interface states

Another explanation for systems where∆ 6= 0 is a model borrowing heavily from models of

semiconductors with noticeable DOS between the discrete energy levels, the induced density of

interface states (IDIS) model. In this model the energy level broadening induces a small, continu-

ous set of energetic states between the energy levels Figure3.3(c), these are the interface states or

metal induced gap states (MIGS) [76, 77, 78].

Further, the energy level alignment is between the states ofneutral charge in the metal (EF ) and

the molecule (ECNL), and not betweenEv of the metal and adsorbate as in Figure3.3(a). Similar to

above interfaces,EF andECNL align through electron transfer, the only difference here being the the

transfer is due to the creation of interface states between the orbitals of the molecule. Electrons are

passed between the two systems until the electron occupancyof the organic is such thatECNL ≃ EF .

This is indicated in Figure3.3 (c) by the red stripes betweenEF andECNL, indicating continuous

electron occupancy, as with the underlying metal. In so doing, the gain/loss of charge creates

a dipole on the metal surface and the various adsorbates repel one another through long-range

interactions depending on the net charge exchanged Figure3.2(e).

In the ideal model, charge uptake occurs just as easily as between two metals and therefore

this can be thought of as two interacting metal systems rather than a metal/semiconductor interac-

tion [62, 60]. The parameter currently used to predict which model (IDIS, Schottky-Mött, orEF

pinning) applies to what is known as the screening parameter,

S =
dECNL

dΦ
=

1
1+4πe2DOS(EF)δ/A

(3.2)

where DOS(EF ) is the local density of interface states,δ the molecule-surface separation, and A

the molecule surface area. In the Schottky-Mött model, it is assumed that the molecular structure

remains generally unchanged except for weak, expected broadening. In this case, there should

be little or no change in the DOS between orbitals and DOS should be near 0,S ∼ 1. In the IDIS
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model, the induced continuous states between orbitals is large enough that the 4πe2DOS(EF)δ ≫ 1,

andS ∼ 1. This parameter varies significantly between molecular species with many falling about

half-way between the two models [79]. Specifically, the the screening parameter of TPyP is ST PyP

= 0.44 [80], indicating that there is some form of interaction with thesurface stronger than then

Schottky-Mött model but weaker than the IDIS model.

These charge transfer interactions (Schottky-Mött,EF pinning, and IDIS) result in adsorption

energies on the order of 2.0 eV for weakly bound systems [81, 82], providing the binding energy

necessary to hold adsorbates at the temperatures of interest. Furthermore, these three models are

independent of the surface dipole created by surface state reconstruction and mirror charges, which

have even been included most recently in IDIS models [83]. In all these cases, the adsorption re-

sults in surface dipoles determined by a) the amount of charge transferred, b) the surface reconstruc-

tion, and c) mirror images. These large dipoles and adsorbate charges result in inter-molecular re-

pulsion, which, if of large enough magnitude, prevents inter-molecular bonding and self-assembly

[10]. It is not the adsorption energy which prevents the motion of the molecules and inter-molecular

binding. This is seen by both the inter-molecular binding ofthe physisorbed PTCDA [82] and the

the inter-molecular binding of the chemically adsorbed (chemisorbed) HtBDC on Cu(110) [84].

What then limits the inter-molecular bonding and self-assembly is the relation between the dipole

strength of the adsorbates and the magnitude of the bonds formed between adsorbed molecules.

3.2 Hierarchy of chemical bonds

As the molecules physisorbed on the metal surfaces considered in this dissertation are carbon-

based organic molecules, the inter-adsorbate interactionis different from that of metal adsorbates.

Adsorbed metal atoms are single particles which interact through covalent bonds between their

respective unfilled atomic orbitals. Adsorbed organic species are instead closed-shell molecules,

severalÅ to nm larger than adsorbed atoms, which lackd orbitals.
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Figure 3.4: (a) Molecules bonding through weak interactions along the edges orient in a close-
packed square array. (b) Molecules bonding through a largerinteraction on the corner of the
squares orient in a less close-packed checker board array.

The inter-molecular interactions which counter act the repulsion felt by the surface dipoles cre-

ated upon adsorption are therefore different than those between adsorbed adatoms. With this said,

the chemical bonds between adsorbed molecules are that which act against the repulsive interac-

tions and determines the stability and symmetry of the molecular structures. The key importance

is twofold. The first is that there are a wide variety of these interactions and a distinct hierarchy to

their ranges and strengths. The second is that due to the spherical asymmetry of organic molecules,

these chemical bonds are anisotropic and therefore force the molecules to orient along the axes

of the interactions [85]. This combination allows for flexible engineering of the supermolecular

structure while keeping the molecule largely unaffected.

This is illustrated in Figure3.4. Square molecules where the strongest inter-molecular bond is

along the edges of the molecule will align so as to maximize the bonds along this direction. This

results in a supermolecular ordering with compact, square symmetry (a). If, however, a second

set of intermolecular bonds are of greater strength and are located on the corners of the molecules,

the molecules align to maximize this bond, resulting in a much less compact, checker-board like

supermolecular ordering (b).

We can then engineer the supermolecular structure by controlling the geometry and make up

of the molecule, as we control which interactions take placeand where. It is this flexibility which

gives organic molecules such amazing potential for application: by simply replacing a single com-
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Figure 3.5: (a) STM image of tetraphenyl porphyrin (TPP) on HOPG surface bound by van der
Waals and CH-π bonds [86] and (b) STM image of tetra carboxyphenyl porphyrin (TCPP) on
HOPG surface bound by hydrogen bonds [87]

ponent of the molecule, we can keep the overall electronic properties of the system constant while

controlling the geometry of the final system!

This is shown in Figure3.5for tetra phenyl porphyrin on the surface of highly ordered pyrolitic

graphite (HOPG). A layer of 2H-TPP bound to the substrate interact with one another through

weak bonds, forming an ordered rhombohedral pattern with 3.2 nm spacing [86], Figure3.5 (a).

As described in Chapter3.2.2, a hydrogen bond between two craboxylic acids are of the order of

ten times as large as a van der Waals interaction. This is seenin Figure3.5 (b) where a layer of

tetra carboxyphenyl porphryin (TCPP) interact through themuch stronger hydrogen bonds of the

carboxylic acid end groups on the ligand, resulting in a slightly more compact spacing of 1.8 nm

in a square-symmetric positions with the molecules oriented parallel to the direction of ordering

[87]. Simply by replacing the H bound to the tip of the phenyl ligands with a carboxylic acid, the

ordering of the molecules and the inter-molecular spacing are customized.



39

The key importance to the inter-molecular bonds formed between organic adsorbates is the fact

that the most common are not covalent, but are rather complexdipole interactions between organic

components. Due to the dipole nature of these bonds, this allows the bonds between the molecular

systems to be broken and reformed again with no change to the chemical nature of the component

molecules. This reversibility is ideal for self-assembledstructures, allowing customization and

control of the super-molecular ordering desired. In order to customize the interactions and under-

stand the relationship between the various organic bonds however, the interaction ranges and bond

strengths must also be understood. For this reason, a quick review is presented below of the five

most common reversible inter-molecular interactions as well as a comparison to the use of covalent

bonds in inter-molecular surface super structures.

3.2.1 van der Waals bonds

For many molecules, the primary molecule-molecule interaction is the dispersive component

of the van der Waals (vdW) potential. This is an electrostatic interaction with no fundamental,

underlying directionality. Where there is no permanent asymmetry in the charge distribution (non

dipolar molecules/atoms), the only component of the electrostatic potential is the dispersion effect

[88]. The charged electrons on the surface of the molecular or atomic electron shell interact with

those electrons on the surface of the neighboring particles. This very weak electrostatic interaction

is only strong enough to effect the shell electron itself, and not the shielded charges in the lower

orbitals or the nucleus. The electron-electron repulsion creates a momentary dipole forcing the

neighboring charge to move away, before shifting back into position. This is best described as the

tendency of shell electrons of neighboring material to oscillate in phase with one another. This

oscillation, creates a very weak dipole at any given moment and the molecules remain weakly

attracted to one another, Figure3.3(a). Both the interaction energy (0.02∼ 0.1 eV) and the range

over which it takes place are fairly weak compared with otherchemical bonds, Table3.1.
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Figure 3.6: Examples of the most common intermolecular bonds, dark is negative charge and light
positive. (a) van der Waals interaction between oscillating atoms. (b) hydrogen bond between
charged dipoles, (c) CH-π bond, (d) metal-ligand coordination, (e)π−π stacking, and (f) covalent
chemical bond.

Table 3.1: Inter-molecular bond types, energies, and interaction ranges

Bond Energy Range (eV) Interaction Range (̊A)
van der Waal 0.02∼ 0.1 ∼ 1

CH-π 0.06∼ 0.1 1 ∼ 2
π−π 0.1 3.2∼ 3.8

Hydrogen bond 0.05∼ 0.7 1.5∼ 3.5
Metal-ligand 0.5∼ 2 1.5∼ 2.5

For the case of spherically symmetric adatoms, this interaction is non-directional and as such

does nothing to order the bonding adsorbates relative to oneanother. Organic molecules however,

lack the spherical symmetry of such noble gas atoms. So, while the local dispersion force between

oscillating electron clouds creates a generally isotropicattractive force, the asymmetry of the or-

ganic molecules forces the net interaction between molecules to become anisotropic [85]. Such

forces result in the alignment of all molecules based on geometry of the molecules themselves,

Figure3.7(a).
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Figure 3.7: (a) Polymers exhibit close packed structures reflecting the chirality of individual
molecules [89] (b) TMA network formed by hydrogen bonds [90] (c) rubrene/Au(111) forms chiral
networks due toπ−π stacking of ligands [91] (d) Br4-TPP/Au(111) form covalent bonds through
bromine substitution [92] and (e) two-dimensional Cu-TPyP MOCN formed on Au(111) [93]

3.2.2 Hydrogen bonds andπ orbitals

The key interaction however between many organic moleculesis a dipole interaction dependent

on the hydrogen atoms along the edge of the various oxygen, carbon, and nitrogen atoms. Upon

forming a covalent bond, the charge distribution of the X-H dimer (where X is either C, N, or O)

becomes uneven, with the X atom negative and the H atom positive. The relative electronegativity

of the component atoms creates an uneven charge along the axis of the covalent bond, resulting

in a dipole facing from the X atom to the H. This dipole then attracts lone oxygen, nitrogen, or

carbon atoms, and a weak electrostatic bond takes place witha bond length between 1.5̊A to 3.5Å,

Figure3.3 (b). In the case where a carboxylic acid (COOH) is located on the ends of molecules,

the alignment is such that the O-H of one molecule bonds to theO of the other and vice versa, as in

Figure3.3(b). This is what is referred to as a hydrogen bond. As the interaction is directional and



42

highly adaptable, both the bond distance and the strength depend strongly on the dipole magnitude

of X-H and electronegativity of the free atom to which they bind [94, 95, 96]. Due to the anistropy

of the dipole moment, any hydrogen bonds formed between adsorbed molecules exhibit the same

anisotropy. This can result in networks with directional bonds that do not exhibit the same close

packed nature as the vdW interactions, as shown in Figure3.7(b).

It can be difficult to form these bonds in the exact single dipole-dipole interaction pictured

in Figure3.7 (b) however as this requires directly aligned axes of the COOH - COOH bonds. As

shown in Figure3.5(b), carboxylic acid end groups may instead align off-axis.While this weakens

the magnitude of the individual hydrogen bonds, it providesmore room for a third or fourth COOH

end group to form similar weaker bonds, thereby increasing the net magnitude of the bond. This

is the difference seen between the TMA bonds in Figure3.7(b) and the TCPP bonds in Figure3.5

(b).

This same dipole interaction extends to interactions between such X-H dimers and the much

more disperseπ orbitals of organic molecules. Theπ orbital is a molecular orbital formed by the

overlap of the out-of-planep orbitals in neighboring C atoms, as shown in Figure3.8 (a). As

an example, in benzene, thep orbitals of the carbon extend normal to the plane of the molecule.

The resulting overlap creates a ring-like shape above the plane of the molecule. With the six C-H

dimers laying on the six corners, the resulting C-H dipole creates a series of positive charges along

the rim of the molecule confining the negative charge of the ring-like π orbitals above and below

the plane of the molecule, creating a quadrupole [97], Figure3.8(b).

When near to C-H dipoles, the C-H dimer forms a weak bond with the quadrupole of theπ

orbitals, facing normal to the plane of the aromatic ring, Figure 3.6 (c). Due to the increased

dispersity of theπ orbital compared to carbon, oxygen, or nitrogen atoms, the interaction distances

are much more confined but slightly larger than the vdW interaction, typically between 1∼ 2 Å[98].

Furthermore, while larger than the vdW interaction, the CH-π interaction is noticeably weaker than

the hydrogen bond at 0.06∼ 0.1 eV [99], placing this interaction somewhere between the vdW and
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Figure 3.8: (a) Top-down view of benzene molecule showingπ orbital (dark) along the rim of the
molecule andσ orbitals (light) of the C-H bonds. Here the dark color represents negative charge
and the light negative charge. (b) 45◦ side view of molecule showsπ orbitals extending above and
below the plane of the molecule.

hydrogen bonds.

This intermediary placement of the bond energy and interaction distance is explained appro-

priately enough by a combined bond of the vdW and hydrogen bonds. The geometry of the aro-

matic ring results in the positively polarized hydrogens lying on the outer edge, and the negatively

chargedπ orbitals above and below the plane of the molecule, Figure3.6(c). This creates a weak

quadrupole arrangement of electrons [100]. While the resulting dipole-quadrupole interaction is

significantly weaker in electrostatic polarizability thana dipole-dipole interactions of the hydrogen

bond [98], it provides directionality not present in the vdW interaction [99]. This weak interaction

with bonding anisotropy results in closely packed structures, ordered according to the relative ge-

ometry of theπ orbitals, Figure3.7(c).

Another directional interaction between aromatic speciesis the more complexπ stacking. In

this interaction, the aromatic rings arrange themselves insuch a manner that theπ orbitals are

parallel and shifted to one another, with the C-H dimers of the rims above theπ orbitals forming

two CH-π bonds, Figure3.6 (d). The interaction is of the same energy as the CH-π interaction

despite the dual CH-π bonds for the following reasons.

The interactingπ orbitals have the same negative charge while theσ orbitals of the C-H instead

has a positive charge and is concentrated in the center planeof the molecule. The neutrality of
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the molecule then requires that the total charge of the twoπ orbitals must be equal to the positive

charge of theσ orbital. Given that theπ orbital is much more diffuse and split in two, this then

means that the attraction of theπ−σ interaction is larger than theπ−π interaction and there is a

net attractive force [97]. The interaction then causes the aromatic rings to align such that the center

of the ring usually stacks above the edge of the other, as in (d). As theπ orbitals do not overlap and

are significantly diffuse, this results is significantly large separation distances as noted in Table3.1.

As a significant part of this interaction involves repulsionbetween theπ orbitals, typically the

predominant interactions of the molecule-molecule bonds for the currently studied organic systems

involve hydrogen bonding and CH-π interactions. This is especially true given the fact that surface

studied systems are two-dimensional, and theπ−π bonds require significant rearrangement of the

geometric orientation of the molecule.

3.2.3 Metal-ligand coordination and covalent bonds

The available N, C, O end groups of such organic molecules canalso be used to form coor-

dination bonds between the adsorbed molecules and co-adsorbed metal ions (linkers), unlike the

ionic binding discussed above. The increased number of electron shell vacancies in the transition

metal linkers typically used (Ni, Fe, Co, Cu, Ag, Au, etc.) versus the organic end groups, allows

the linkers to form bonds with virtually any number of neighboring organic end group [101]. This

results in the linkers acting as bridging sites between coadsorbed organic molecules which are then

linked together in extended arrays called metal-organic coordination networks (MOCN).

The individual metal-carbon coordination bond is on the order of 0.5∼ 2 eV in magnitude,

much stronger than the various ionic bonds discussed above,Table3.1. This bond strength, cre-

ates very stable inter-molecular architectures which further act to limit dissociation of individual

component molecules at room temperature or above [53]. Furthermore, as the available electron

vacancies in the linkers are greater than the available end group bonds within the small area sur-
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Figure 3.9: (a) TMLA/Cu(100) with deposition of 0.66 Fe/TMLA stoichiometric ratio. (b) Model
of predicted molecule/linker MOCN in (a). (c) TMLA/Cu(100)with deposition of 2 Fe/TMLA
ratio. (d) Model of predicted molecule/linker MOCN in (c) [102]

rounding the linker, a second component limiting the architecture of the MOCN is the ratio of

linkers to molecules.

By increasing the linker/molecule ratio, this increases the availability of linkers to bind to the

active end groups of the adsorbed molecules [102]. such changes not only affect the geometry of

the enclosed MOCN, but they can be used to create boundaries on the MOCN as desired. As an

example, for TMLA/Cu(100) with Fe adatom linkers, a Fe/TMLAratio of 1:1.51 leaves fewer than

one linker for every active molecule, resulting in closed MOCNs bound to each other through weak

vdW and hydrogen interactions, Figure3.9 (a). Upon increasing the ratio to 2:1, there are enough

linkers for every component molecule, and the MOCN extends indefinately. This stoichiometric

varying allows for the same general control well known in solution-based metal-organic chemistry

[103, 104, 105, 106].

Recently, surface studies have begun using this same technique for the construction of single
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carbon-carbon covalent bonds in the same manner as the oxygen-metal covalent bonds. Molecules

are deposited on surfaces with weakly bound ligand endgroups such as bromine or iodine. Fol-

lowing heating, the endgroup dissociates and the moleculesform covalent bonds with one another,

Figure3.6 (f) [92], as shown in Figure3.7 (e). While these bond energies are much stronger than

any of the others, being∼ 3.5 eV, this bond type does not form self-assembled structures like

all others heretofore listed, these are not self-assembledstructures as the system is not reversible.

Once the bonds are formed, the molecules cannot be dissociated without breaking the other carbon

bonds holding the molecule together [107].

3.3 Growth dynamics and self-assembly

These inter-molecular bonds are the interactions which drive the well known structural order-

ing of organic adlayers [108]. Adsorbed molecules distributed across the surface in a disorderd

arrangement interact and bind, thereby forming well-ordered supramolecular architectures: self-

assembly. The final structure of which is an organized lattice of organic material covering surface,

a self-assembled monolayer (SAM). The adsorbed molecules cover all available surface area in a

single, compact island. An example is shown below, Figure3.10(a). Here, a 300 nm× 300 nm

STM images shows a heterogeneous mixture of 5% 2H-TPP and 95%Ag-TPP on a Ag(111) sin-

gle crystal surface with three step edges. The molecules cover the entire upper terrace and a large

portion of the center terrace, leaving a wide area of unoccupied space rather than remaining statis-

tically distributed across the surface in a disordered arrangement.

A small, 10 nm× 10 nm section of the island is highlighted along the edge to show the regular

ordering of the self-assembled structure (b). The individual component molecules can be discerned,

with the 2H-TPP molecules the brighter molecules and the Ag-TPP molecules the darker colored

molecules represented by the molecular model with the greencenter atom. The ordering is easily

discerned due to the unoccupied position and edge of the island. Here, the 2H-TPP molecules,
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Figure 3.10: (a) 300 nm× 300 nm STM image of 0.5 ML coverage 2H-TPP and Ag-TPP mono-
layer. Top terrace is completely covered, second terrace ishalf-covered in molecules. A 10 nm
× 10 nm zoom of the highlighted region is shown in (b). The heterogeneous mixture of Ag-TPP
(dark) and 2H-TPP (light) together with the vacancy highlight the ordering. (c) 20 nm× 20 nm
scan of the same edge shows a much greater density of 2H-TPP molecules along the edge of the
island (blue arrow) compared to the inner part, which is largely occupied by Ag-TPP (blue arrow).

despite only composing 5% of the mixture occupy a very large portion of the observed molecules.

A scan over larger area of the island however shows that further inside the edges, the percentage

of 2H-TPP drops close to 5% closer to the center of the adisland (c). This curiosity raises an

important point regarding the formation of these SAMs. The growth of the SAM is defined by

the kinetics of the constituent molecules, not just the equilibrium between the adsorption and

desorption pressures.

The molecules are deposited on the metal surface under UHV conditions from a heated crucible.

Before adsorption, they begin in an evenly distributed heterogenous 2H-TPP/Ag-TPP gas phase.

Following deposition, the adsorbates order into the observed final state according to the interactions

outlined above, thereby forming the SAM. The SAM however shows an uneven distribution of

component molecules not reflective of the gas-phase mixture, Figure3.10(c) [109, 110].

Now, following adsorption, the strong metal/molecule binding prevents the molecules from

desorbing back into the gas phase and re-forming along the edge. The high concentration of 2H-

TPP here must therefore come from adsorbed molecules diffusing along the surface onto the edge.

As molecules can only diffuse along a free path, this prevents those within the island from diffusing
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to the edges. Instead, the edge molecules must be composed ofmolecules which have diffused from

some other edge or free point on the surface. The only explanation for such a strong gradient in

population is due to the differences in kinetics between thecomponent molecules [111]. Hence,

the time evolution of the adsorbed molecules must be considered in like manner with the energies

of the initial and final states [112].

The evolution is a three-step process dependent on the localenergetic barriers: the diffusion of

the adsorbates along the surface, the initial nucleation ofadsorbate islands through inter-molecular

bonding, and the exchange of molecules between islands and resulting growth. The first of these

is described by the diffusivity,D, a temperature dependent measure of the rate of diffusion of

particles between adsorbed sites [112].

It is expected that the barrier acting against this diffusion, the activation energy (EA), is depen-

dent on the number of bonds between adsorbed particles. Thisis proportional to both the change

in energy as the adsorbate moves between surface sites (diffusion barrier) and the number of inter-

molecular bonds (nearest neighbors).

In the case of highly scattered monomers, there are no bonds with neighboring molecules and

EA is only the diffusion barrier Figure3.11(i). This description ofEA also applies to any system

of two bound molecules (dimer) diffusing together, as the number of nearest molecular neighbors

does not change, ii.

As the coverage of particles on the surface increases, adsorbates begin to bond with one an-

other and form adislands. The molecules diffusing away fromneighbors must first break the

inter-molecular bonds outlined in Chapter3.2. The barrier acting against a molecule diffusing

away from a single neighbor (dissociating) (Figure3.11(iii)) is then both the diffusion barrier and

the inter-molecular bond energy. In the case of a molecule dissociating from two neighbors, this

increase the inter-molecular bond to twice the amount, in the case of three neighbors, three times,

etc. This increase in activation energy is reflected in a lowered diffusivity compared to the free

monomers above.
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Figure 3.11: A diagram of a collection of 2H-TPP/Ag(111). Diffusion of monomer (i) and dimer
(ii) across surface with no detachment. (iii) The dissociation of a dimer - the diffusion of molecules
away from bonds with a neighboring molecule.

With greater density, the mean free path between adsorbatesis lowered and there is a higher

tendency of particles to form bonds, nucleating small islands. Similarly, at lower temperature the

diffusion of the molecules is decreased, also lowering the mean free path and resulting in the same

phenomenon. The rate of island nucleation can be approximated through a comparison then of the

ratio between the rate of incoming adsorbates,R, which reflects the density, and the temperature

dependence ofD. [111].

Now, while all of this is applicable to both metal adatoms andmolecular adsorbates, organic

molecules provide additional complexity to this model of diffusion due to the vibrational modes

of molecular adsorbates (Chapter2.2.2). D is dependent not only on the relationship between the

activation energies and the temperature, but also the separation between adsorption sites and the

parameter known as the hopping frequency,ν, given by,

D =
νa
4

e−EA/kBT (3.3)

ν is the frequency of jump attempts made by the adsorbate between sites, typically on the
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Figure 3.12: 2H-TPyP diffuses across the surface of Cu(111), with a calculable diffusion barrier
of 0.96 eV [61].

order of 1012 s−1 for weakly adsorbed systems [53]. As molecules exhibit modes of vibration,

unlike single adatoms, when these vibratoinal modes are in-phase with the direction of motion,

this increases the hopping frequency in this direction, andtherefore the diffusivity [61].

This has been theorized as an explanation for an observed phenomenon in surface-bound

dimers where the diffusivity ofdimers has been reported to increase by two orders of magnitude in

comparison with coadsorbed monomers [113, 61]. The molecules in the dimer do not dissociate,

as in Figure3.11iii, but rather diffuse in a common direction of motion, Figure3.11ii.

This is shown in this example of 2H-TPyP/Cu(111) by Eichberger, Figure3.12[61]. Here, a

series of fast STM scans were taken over the same set of molecules, monitoring the motion. A

single dimer is seen in the bottom half of the image, moving tothe right and back towards the

center again as the scans proceed. The monomers were found todiffuse with barriers of 0.96 eV,

and attempt frequencies on the scale of 1012 s−1, the same order as metal adsorbates. Dimers, as

illustrated in this set of images, diffused under the same energetic barriers but with a frequency

rate on the order of 1014 s−1.

The source of this behavior was theorized as due to an in-phase vibrational mode between the

molecules of the dimer. As the molecules are bound parallel to one another, the vibrational modes

of the individual molecules are changed to create a new mode of vibration in the same direction as

the〈111〉 axes [61]. If this is a common phenomenon, it could be used to design self-assembling

systems with nucleation rates orders of magnitude higher than metallic adsorbates.
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Chapter 4

Studies of 2D monolayers of tetra phenyl

porphyrin

4.1 Introduction

It is the interplay between these interactions that governsthe self-assembly and island growth of

2D organic SAMs. Only through sufficient understanding can the self-assembled growth of organic

surface systems be controlled through molecular design. Asoutlined above, this can be done by

changing the functional groups, the stochiometric ratio ofmolecules and other metal atoms, linker

clusters, etc., as well as the temperature. The surface/molecule interactions however also limit the

mobility of the molecules. This is not only caused by the charge repulsion between adsorbates

[114, 10], but, as with metals [115], also by interactions with the electron gas of the metal surface

state. A consequence is that the established concepts of solution-based coordination chemistry

cannot be applied without appropriate modification. The substrate becomes therefore an important

additional parameter to steer the self-assembly process and to control the final architecture of the

networks.

An example is shown below, Figure4.1. Sub-monolayer coverage of 2H-TPP is adsorbed on
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Figure 4.1: 2H-TPP adsorbed on (a) Ag(111) surface and (b) Cu(111) surface.

the surfaces of Ag(111) (a) and Cu(111) (b). The molecules adsorbed on Ag(111) form regular,

close-packed square structures [116], with all molecules within the structure oriented according to

a repeatable pattern within the architecture. The molecules on Cu(111) instead remain isolated and

statistically distributed (b). No supramolecular ordering, self-assembly or nucleated islands are

observed, unlike 2H-TPP/Ag(111). By choosing the metal surface, the growth and self-assembly

of the molecules can be manipulated.

The molecule studied in this dissertation ismeso-tetraphenyl porphyrin, a large, 1.4 nm×

1.4 nm molecule composed of the assembly of five aromatic components: a single porphine

molecule with four benzene ligands rotated∼60◦ out of the porphine plane and bound to the

carbons bridging the nitrogen containing pyrrolines Figure 4.2. The geometry, chemical makeup,

and metal-organic binding discussed above allow for the porphine macrocycle of the compound

to be catalyzed with over 60 different metallic elements forthe formation of metal-tetraphenyl

porphyrins (M-TPP) Figure4.2 (c), catalyzed with both transition and rare earth elements. These

molecules may also be metallated in UHV conditions post-adsorption on the underlying metal sur-

face [117, 118, 119, 120] including rare-earth metals such as Ce [121]. Photoemission studies

have even demonstrated post-metallation chemical reaction of the metals [122, 123]. It has been

seen that through this metallation under UHV conditions, the coordinated metal atom is able to
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Figure 4.2: (a) Stick diagram of a single tetraphenyl porphyrin molecule, (b) 3D model of molecule,
(c) 2H-TPP bound with some metal adatomM (green), M-TPP, and (d)meso-tetrapyridyl prophyrin

retain a lower oxidation state under much greater ease than if performed using a solution-based

wet chemistry synthesis, thereby keeping the electronic and spin properties of interest [124].

The key interest the community has had in this, and the very similar tetra pyridyl porphyirn

(TPyP) molecules [125, 126] Figure4.2(d), and tetra (3,5-di-tert-butylphenyl) porphyrins (TBPP)

[127] molecules, has lead to considerable review over the self-assembly of these molecules and

a variety of metallated species. Examination has been carried out at length on the self-assembled

ordering and variations in the 2D lattice constant of the SAMs due to the chemical components

of the metallated M-TPP species on both the Ag(111) surface [128, 129] and Au(111) surface

[130, 131]. In all cases of self-assembly, the TPP molecules in the SAMform compact, well-

packed structures, Figure4.3 (a - b). What has been observed on the noble metal surfaces across

both metallated and non-metallated species is that the ordering varies only minimally [131], this

occurs across metallated species and chemical reaction [132, 122, 119, 120, 129], and there is
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Figure 4.3: (a) NiTPP adsorbed on Au(111) in close-packed structures with molecules oriented
similar to that observed in Figure3.10(a) [131]. (b) Co-TPP and 2H-TPP adsorbed on Ag(111)
surface with the mixed SAM ordered as in Figure3.10(a) [121]. (c) 2H-TPyP adsorbed on Ag(111)
surface in a close-packed SAM forming bi-column structures[125]. (d) 2H-TPyP on Cu(111) [134]

general intermixing between metallated and non-metallated species within the SAM [121, 133,

130], Figure4.3(b).

As can be seen, while the geometries of all post-assembled systems have been properly iden-

tified, most research has focused on the chemical nature and electronic properties of the vari-

ous systems in question. This includes both the general chemical structure of the differing ad-

sorbates as well as how these can be distinguished and vary using local probe methodologies

[132, 133, 120, 135]. This makes sense as it is ultimately the application of these qualities for

which such excitement has grown over the use of organic SAMs.

While insightful, unfortunately only a small amount of headway has been made on thedy-

namics of the self-assembly process of these chemically adaptablemolecules. It is only through

understanding the dynamics of the growth processes of thesemolecules that future systems can



55

Figure 4.4: (a) 2H-TBPP on Cu(100) form, bridging the step edges of the terrace. (b) Cu-TBPP
form along the step-edges, as commonly observed with metal adatoms [136]

be predicted, designed, and engineereda priori. As an example, Kamikadoet al. have shown

that both 2H-TBPP and Cu-TBPP preferentially bind to the step-edges of the terrace on Cu(100)

[136]. While this might be thought consistent with edge-diffusion versus corner crossing as with

metal adatoms, 2H-TBPP preferentially bridge over the stepedges while the metallated Cu-TBPP

instead form along its edges, Figure4.4. The former is well known and typifies the behavior ob-

served in inorganic adatoms, whereas the latter is peculiaronly to large molecules which have the

size to form such bridges. Little more is drawn from this paper and this leaves open the question of

how accurately the diffusion mechanics applied to inorganic systems can be applied to such large

organic compounds. If it is known that molecules as large as 2H-TBPP bridge the step edge of

terraces, does the concept of edge diffusion still apply as with metal/metal surface systems? Fur-

thermore, how, if at all, does the diffusion of these adsorbates along the edges of 2H-TBPP islands

within the terrace affect the growth of the island self-assembly?

Recent studies by Buchneret al. in the mixed phase analysis of 2H-TPP and Co-TPP on

Cu(111) found while Co-TPP remain in self-assembled islandstructures, as with the other studies

of M-TPP on Ag(111) and Au(111), the non-metallated 2H-TPP remain isolated and statistically

distributed across the surface [129]. Similar isolation is observed for the 2H-TPyP on Cu(111),

with the molecules remaining isolated and evenly distributed across the underlying Cu(111) sur-
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face, Figure4.3 (d) [134]. Upon annealing to higher temperatures, it was observed that the TPyP

molecules in this system formed MOCN from interaction of thenitrogen end group of the pyridyl

ligand with freed Cu atoms, while no such temperature dependent study was conducted regarding

the 2H-TPP/Cu(111) system. Furthermore, it has been seen that isolated 2H-TPyP diffuse across

the surface, even after forming dimer pairs with metal linkers [61].

While this isolated pattern of adsorbates is consistent with that seen for self-repulsion between

other adsorbed organic species [114, 10], no similar such method of analysis can be conducted

on either sample. This is due to the intermixing of the Co-TPPlimiting the available surface area

2H-TPP/Cu(111) may migrate into. This is also due to the factthat the metal-ligand bond strength

of the Cu linkers on 2H-TPyP/Cu(111) may be large enough to counter act the charge repulsion

(Table3.1).

Porphyrin presents the opportunity to adapt the desired electric and spin properties of a metal

atom to the organic system which self-assembles into the geometry desired. Understanding the

mechanism of the self-assembly is therefore key to not only expanding our understanding of the

self-assembly and growth of organic thin films, but also understanding how this molecule behaves.

It is for this reason that the following experiments have been conducted. Because 2H-TPP only

interact with neighboring molecules through weak forces such as vdW, this allows the molecule

to be studied on systems where the surface interaction is strong enough to prevent such bonds.

Whereas the very similar molecule, 2H-TPyP, is able to form strong bonds through dissociated sur-

face atoms of Cu, this prevented study of whether it is a matter of diffusivity, surface deformation,

or electrostatic repulsion that inhibited the growth [61].

Due to the increased porphine-surface separation comparedto octaethyl porphine [137] and de-

creased separation compared to TBPP [124], this allows the molecule to interact with the Cu(111)

surface due to the extendeddz2 orbitals of the Cu atoms, while not interacting with the shielded

orbitals of the atoms in the surfaces of Ag(111) and Au(111).Comparison of this system across

temperature, coverage, and surface allows for the in-depthstudy of the basic mechanics of self-
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assembly of the weakly bound organic molecule of interest while determining the limiting factors

and how they may be overcome without affecting the molecule itself.

In what follows, three published and to-be-published papers investigating the energetic barriers

and associated dynamics of 2H-TPP on group 11 metal surfaces, focusing on Ag(111) and Cu(111)

are presented. Through the comparison of the ordering behavior, energy levels, and work function

measurements across temperature and varied substrate, thechemical interaction between molecule

and substrate is explored on a sub-molecular scale. Throughthis study, the mechanics of the self-

assembly and the source of its inhibition is discovered.

Each study addresses a separate topic regarding the problemof the self-ordering of 2H-TPP-

surface structures: growth dynamics, intermolecular binding, and inhibition of nucleation. These

three topics, in combination, can describe the self-assembly of any surface system in full.

The current difficulty is that most papers and review articles discussing self-ordering treat the

individual systems discussed as entirely separate. Due to the uniqueness of each molecule/surface

combination, the discussions of surface systems with sub-monolayer coverage are presented much

the same way as studies of newly discovered molecules. The geometric properties are presented,

the electronic properties are mapped, occasionally theoretical descriptions are given in conjunction

with explanation and a study of a new system is later given. Inthe case of systems lacking self-

ordering, connections are infrequently made to similar systems that do.

In the following three papers this is changed. A full description is given of the molecule 2H-

TPP on the Ag(111) substrate. On this substrate, it is observed that the molecules form ordered,

two-dimensional networks. The geometry of the final, ordered networks does not only reflect the

symmetry of the individual molecules but the directionality of the dipolar CH-π interactions. The

inter-molecular binding energies are of the same order as those of noble gas adatoms and weakly

interacting metals. The observed ordering of the islands istemperature dependent, from nucleation

to dissolution. From this it is learned that such organic surface system can be described by the very

same growth dynamic formula applied to metal heteroepitaxy.
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Those molecules adsorbed on the Cu(111) surface however exhibit no such ordering, across all

temperatures, and despite freedom of motion. The inter-molecular separation grows proportionally

with available surface area, providing evidence of long-range repulsion between adsorbates. Such

a long-range, repulsive interaction can only be due to electrostatic dipole-dipole interactions and

the source of this interaction is investigated and determined to be due to a weak surface interaction

and not a chemical bond. Work function maps validate the pattern of dipole formation expected

from both repulsion of the underlying surface electrons (the pillow effect) and the IDIS models of

surface adsorption.

Through addition of single-atom thick layers of Ag on top of the Cu(111) surface, the inter-

face interaction is controlled in a repeatable, step-wise manner. Eventually, the self-ordering and

electronic properties of the 2H-TPP/Ag(111) system are replicated on the 2H-TPP/Ag/Cu(111)

buffer layer system. In this, the source of the repulsive interaction is discovered and matched to

existing theoretical predictions. As it is this repulsive interaction which inhibits self-assembly, the

inhibition of self-assembly is not only explained, but through its understanding this phenomenon

is controlled.
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4.2 Temperature dependence of metal-organic heteroepitaxy∗

Geoffrey Rojas†, Xumin Chen†, Donna Kunkel†, Matthias Bode‡,§, Axel
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Abstract

The nucleation and growth of two-dimensional layers of tetra phenyl porphyrin molecules on

Ag(111) is studied with variable temperature scanning tunneling microscopy. The organic/metal

heteroepitaxy occurs in strict analogy to established principles for metal heteroepitaxy. A hierarchy

of energy barriers for the diffusion on terraces and along edges and around corners of adislands

is established. The temperature is key to selectively activating those barriers, thus determining

the shape of the organic aggregates, from fractal shape at lower temperatures to compact shape at

higher temperatures. The energy barrier for the terrace diffusion of porpyrins and the molecule-

molecule binding energy were determined to 30 meV< Eterrace < 60 meV and 130 meV< Ediss <

160 meV, respectively, from measurements of island sizes asa function of temperature. This

study provides an experimental verification of the validityof current models of epitaxy for the

heteroepitaxy of organics and is thus expected to help establish design principles for complex

organic / metal hybrid structures.

∗Accepted for publication inLangmuir, 2011.
†University of Nebraska-Lincoln, Physics Department
‡Universität Würzburg
§Argonne National Laboratory, Center for Nano Materials
¶Nebraska Center for Materials and Nanoscience
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4.2.1 Introduction

The current interest in ultra thin layers of organic molecules on metal surfaces is fueled by

the prospect to be able to synthesize new and improved hybridmaterials for applications in next

generation electronic devices, catalysis, chemical sensors, and passivation coatings. Many of the

useful properties arise from interactions at the metal-organic interface. Their study and exploita-

tion depends on the meticulous fabrication of desired organic structures by precisely controlling the

interactions between molecules, following the established principles of supramolecular chemistry.

The control parameters for the self-assembled growth of organics are the design of the molecules

and their functional groups, the stoichiometric ratio of molecules, atoms and linker clusters, and

the temperature. In contrast to solution-based chemistry,the molecular self-assembly on surfaces

is limited by the mobility of the adsorbed molecules. The substrate thus becomes an important ad-

ditional parameter to steer the growth and to control the architecture of the networks [53, 111, 116].

As such, the question about similarities and differences between organics/metals heteroepitaxy and

metals/metals heteroepitaxy arises.

It is well established for the heteroepitaxial growth of metals on metal surfaces that the growth

can occur either near the thermodynamic equilibrium or far from equilibrium [111]. The growth

near thermal equilibrium is often correctly predicted by comparing the surface free energies of

the film and substrate interfaces [138], thereby considering the growth as a wetting phenomena.

Often though, the growth is far from equilibrium, especially when the deposition rate of atoms or

molecules,R, is high, and the diffusivity of adsorbed species,D, is low. The latter is temperature-

dependent and determines the average distance an adatom hasto travel to nucleate a new aggregate

or to attach to an already existing aggregate. If the deposition of molecules is fast compared to

their diffusivity, the individual atomistic processes become important and the growth is essentially

determined by kinetics, i.e. thermally activated motion inthe presence of diffusion barriers. The

size and areal density of adlayer islands is dependent on theratio R/D [139, 53, 110]. As a trend,
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a large number of small islands is found at low temperature and high deposition rate, while fewer

but larger islands are formed at high temperatures or low deposition rates. Fundamental diffusion

processes are diffusion on terraces and over steps, and uponattachment on nucleated aggregates

also along adisland edges and across corners. Each of these processes is associated with a charac-

teristic energy barrier. The diffusion across such barriers is thermally activated, with the respective

rate depending on the barrier height. The growing aggregates can thus be shaped by selective

activation/freezing of certain diffusion processes via the temperature [53, 110, 111].

There are good reasons why these established principles formetal heteroepitaxy may not be

applicable to the heteroepitaxy of organics on metal surfaces. Unlike many metal adsorbates, or-

ganic molecules are closed-shell systems with energy gaps across the Fermi energyEF . Usually,

interactions between organic molecules and metal surfacesare complex and involve charge dona-

tion and back donation, electronic level realignment, static surface dipoles, and other factors [1].

Also given the large size of organic molecules, they often extend over several atomic spacings of

the substrate, which makes diffusion barriers on the terraces and at the step edges of the substrate

less relevant.

Despite an increasing effort to investigate structure and properties of ultra thin organic lay-

ers, the question remains, how accurately can existing models of nucleation and growth be ap-

plied? In this article, we will study the growth of 2D layers of hydrogenated tetra phenyl porphyrin

molecules (2H-TPP) on Ag(111). Porphyrins have become a model system, and a large number of

studies addressing the network formation on various metal substrates, as function of metallization

and of functional groups is now available [125, 140, 119, 128, 116, 141, 131]. The 2D networks

observed are typically equilibrium structures where the functional groups of the molecules, and

not the terrace diffusion, determine the architecture of the networks. We present here a growth

study of 2H-TPP as function of temperature, performed with variable temperature scanning tun-

neling microscopy. It is found that nucleation and growth dominated regimes can be distinguished

clearly, and that selective activation of edge diffusion and corner crossing by the growth temper-
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ature determine the island’s shape. While this is result is well-known for metals and as such not

very surprising, the value of this study is that it extends now the validity of those models to organic

heteroepitaxial systems.

4.2.2 Experimental Procedure

Our study was conducted under ultrahigh vacuum (UHV) in a multi chamber system compris-

ing all tools required for comprehensive in-situ sample preparation and characterization. Ag(111)

single crystals were prepared by repeated cycles of Ar+ ion sputtering and annealing to 650 K.

The 5, 10, 15, 20-tetraphenyl porphine (2H-TPP) molecules,purchased from Frontier Scientific

Inc., were deposited by thermal evaporation using a knudsencell evaporator. The deposition rate

was approximately 0.05 monolayers·minute−1, unless specified otherwise. Images were obtained

as function of temperature using an Omicron variable temperature scanning tunneling microscope

(VT-STM). The deposition of molecules was done directly with the sample resting in the VT-STM

sample stage, so that imaging could be done during or directly after deposition and at deposi-

tion temperature. Where the deposition continued during scanning, the tip was moved between

images to prevent shadowing the sample with the STM tip. Someof the studies presented were

performed, using the same substrate and molecules, in a separate UHV system with an Omicron

low-temperature scanning tunneling microscope (LT-STM).In such studies, the molecules were

deposited at room temperature.

4.2.3 Growth studies with VT-STM

Images of islands of 2H-TPP on Ag(111), taken with scanning tunneling microscopy, are shown

in Figure4.5. Here, the 2H-TPP molecules were deposited and imaged at 300K. The images show

the well-known 2D networks of the 2H-TPP on the terraces of the Ag(111) [116, 128, 131], and the

decoration of the substrate step edges [116]. At room temperature, the size and shape of the islands
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is time-dependent, due to a constant flux of detachment and attachment of edge molecules between

islands. Figure4.5 (b-c) show the shape of one selected island over a time periodof 30 minutes

following deposition. Over the entire course of observation, the molecule count of the shown

adisland went from 125 attached molecules to 74, with a new smaller island forming above it (not

pictured). The molecules are only weakly bound to the surface and are easily dragged around

with the tip of the STM, resulting in visible streaks in the images. When the same sample was

cooled to 80 K, the size of observed adislands increased dramatically as the result of condensation,

Figure4.5(d). Long-term observation of the same system at 80 K showed no significant molecule

diffusion.

Figure 4.5: (a - c) STM topograph of 2H-TPP/Ag(111) deposited and imaged at room temperature.
The images were taken at specified times after deposition of the molecules. Image size: 23 nm
× 23 nm. (d) STM topograph of 2H-TPP/Ag(111) deposited at roomtemperature and imaged at
80 K. Image size: 100 nm× 100 nm.

Next, the island nucleation and growth at low temperatures was studied. The molecules were

deposited on the Ag(111) crystal, held at 58 K, and continuously imaged during deposition. In the

STM image in Figure4.6 (a), taken after 10 minutes of deposition, the coverage isθ = 0.14 ML,
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and after 30 minutes of deposition, an increased coverage ofθ = 1.28 ML was observed, see Fig-

ure4.6 (b). Here, one monolayer corresponds to a coverage of 0.51 molecules·nm−2, as observed

in the densely packed 2D networks formed at room temperatureas in Figure4.5(d). It is apparent

from inspection of the STM images that the nucleated adislands are single monolayer in height and

show irregular, fractal-like shape. With increasing coverage, the islands develop a ramified shape,

and nucleation sets in on top of the islands.

Figure 4.6: STM topograph of 2H-TPP/Ag(111) taken at 58 K after (a) 1 minute of deposition, and
(b) 30 minutes of deposition. (c) Plot of the perimeter v. area relationship of 2H-TPP islands at
58 K.

The onset of thermally activated motion was studied by depositing molecules on Ag(111) at

approx. 55 K and annealing the sample after deposition to specific annealing temperatures,TA.

STM images were then taken at 80 K, to suppress molecule diffusion during imaging. Character-
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istic STM images taken after annealing at different temperaturesTA < 300 K are summarized in

Figure4.7. No significant change in island size and shape with respect to the as-grown morphology

was observed upon annealing up toTA = 110 K. The islands remained as small, narrow, irregular

structures and were typically of 2 ML height. AtTA = 110 - 130 K, the double layer islands be-

gan to disappear, and islands showed increased diameter. No2 ML islands were observed above

150 K, indicating the diffusion of all molecules in the second layer over the organic island edges

and on to the Ag(111) surface. The average area of the adislands continued to grow with increasing

temperature up to 250 K, and the larger islands exhibited a rather compact shape.

Figure 4.7: (a - d) STM topographs of 2H-TPP/Ag(111) taken after annealing the system to the
specified annealing temperatures. Height profiles at 83 K (e)and 130 K (f) show relative heights
of 1 ML and 2 ML adislands. All data taken at 80 K.
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4.2.4 Discussion

The nucleation and growth of 2D organic layers, as observed on the example of 2H-TPP

molecules on Ag(111), shows striking similarities to metalheteroepitaxy. As has been demon-

strated, the substrate temperature is a key parameter to control the growth. We find here for 2H-

TPP a comparatively high density of rather small islands of fractal shape at temperatures below

100 K, while at higher temperature large and compact islandsare formed.

The found fractal shape of the islands is evidence of activated diffusion of the molecules on the

substrate terraces and along island edges after attachment, but crossing the corners at the adisland

perimeter is associated with a higher barrier and thus not activated at lower temperature. The

fractal shape of the islands can be quantified in terms of their fractal dimension,d f , which relates

the scaling of the mass of an object with its size. A common approach to determine the fractal

dimension is to calculate the ratio of island perimeter,P, to island area,A of the islands from the

STM images. Island perimeter and area are related as

P ∝ Ad f /2. (4.1)

As structures becomes more compact in form, their P/A ratio grows smaller. Thed f is calcu-

lated from the slope in the plot of the logarithms of perimeter versus area, which are determined

from the STM images, Figure4.6. From the data in Figure4.7, the fractal dimension is determined

to d f = 1.54±0.03 at the temperature of 58 kelvins. This value appears to be similar to the fractal

dimension of metallic nucleates that lack the energy to cross corner boundaries [142, 143].

The temperature dependence of the fractal dimension is plotted in Figure4.8. Clearly, the

d f remains constant until the annealing temperature reachesTA ∼ 100 K. Further increasing the

sample temperature causes a significant reduction of the fractal dimension tod f = 1.21±0.08 at

TA ∼ 130 K, and further annealing up to room temperature does not change the value ofd f further.

A phenomenological fit of the data to a sigmoidal function wasused to approximate the critical
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temperature, determined from this plot toTc = 125±7 K. This sudden decrease ind f is related

with the observed transition from fractal to compact islandshape. This, too, is in analogy to the

similar transitions in metallic islands, such as those reported for Au/Ru(001) [144] and Ag/Pt(111)

[145], where this compactification was ascribed to the activation of corner crossing of atoms.

In this present study we find that terrace diffusion, associated with an energy barrierEterrace,

occurs even at the lowest temperature studied (58 K). The onset of of corner crossing, observed

at approximately 100 - 110 K, coincides with the gradual disappearance of islands of double layer

height, and with the onset of island ripening (Figure4.7). For instance, while at lowest tempera-

tures studied the occurrence of double layer islands is near100%, atTA ≃ 109 K only about 50% of

all islands are of monolayer height. It is believed that aggregates in the second layer must dissoci-

ate first, before diffusing as monomers on the surface of single monolayer islands and descending

across the adisland edge. This implies that the barriers forcorner crossing,Ec, molecule-molecule

dissociation,Ediss, and step edge descent,Es, are all of similar magnitude.

The growth of some of the island on the expense of smaller islands is the familiar Ostwald

Figure 4.8: Calculated df as a function of temperature. Red solid line: sigmoidal function with T0

= 124± 2 K. Insets: characteristic STM images for high and lowTA reflecting the change ind f .
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ripening: adsorbates on the island edges begin to dissociate with increasing frequency and diffuse

away until attaching to neighboring larger islands [146]. The ripening of expitaxial systems is well

established and described as a growth rate,K, of a circular island over time,

K =
∆r3

∆t
=

K0

kBT
e−(EA/kBT ), (4.2)

whereK0 is a measure of the surface energy of islands and availability of free molecules [146,

138, 147], thekB is the Boltzmann constant, and the activation energy here isthe energy required for

a molecule to dissociate from an existant island and diffuseacross the surface [148, 139, 149, 150],

EA = nEdiss +Eterrace (4.3)

The n specifies the critical number of nearest neighbors to start island nucleation, taken to be

1 from the very low coverage data at 58 K (not shown). Both the island area and the growth rate

were determined from the STM images and are plotted as functions of temperature in Figure4.9.

The islands become unstable near 300 K, seen in Figure4.5, explaining the kink in the trend inA

at that temperature in Figure4.9. Upon cooling of the sample down to 80 K, the dissociation rates

decrease, the islands become stable. TheK was determined by comparing the size of identical

islands in consecutively taken STM images, separated by time intervals∆t. The sharp increase in

the island area at a temperature of 110 K is consistent with the onset of the change in the fractal

dimension of the islands (Figure4.9 (a)), step edge descent and compactification of the islands.

The intersection of the trend lines for the static and ripening regimes (i and ii respectively) is seen

located at the same critical temperature from the fractal analysis, 120 K. This is concurrent with

the expectation that the ripening of the system is controlled by the energetic barriers acting against

dissociation from the adislands.

The fit over the growth rate of the adislands,K, with bothK0 andEA held as free parameters,

shown in Figure4.9 (b) provides an estimate of the activation barrier,EA = 194± 27 meV. While
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Figure 4.9: (a) Temperature dependence of the mean island area. Exponential growth occurs in the
range labelled (ii) between 100 K - 250 K. The onset of growth is at∼125 K (red dashed line). (b)
Island growth rate K, with fit to equation (2).

noticeably weaker than the typical terrace diffusion barriers of many metal-metal systems [145,

151, 152] with some on the order of 800 meV [153], it is consistent in magnitude with the activation

energy of the more weakly adsorbed systems such as Pt/Pt(111) (260 meV) [154], Ag/Pt(111)

(320 meV) [155] and the weakly-bound organic-metal system of PTCDA/Ag (130 meV) [156].

The critical temperature where the system crosses from the static nucleation regime to the

ripening regime is clearly near 124 K from Figure4.9. This allows for the estimation ofEterrace at

kBT ≪ Eterrace using the same nucleation model of metal adsorbates and the low temperature data
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in Figure4.6[157] the nucleation density of dimers is,

nx =
1
4

(

4 R
ν a2

)1/3

e(Eterrace/3kBT ) (4.4)

Applying the observed deposition rateR = 4.97×10−4 molecules·nm2 ·s−1 in this experiment, the

nucleation density ofnx = 4.9×10−4 islands·lattice site−1, and the lattice constant for the Ag(111)

surface (a = 2.88Å) yieldsEterrace of 30 meV to 60 meV. The variance is the result of uncertainty

in the hopping frequency, which are expected to be in the range between 109 < ν < 1012. This

leaves a dissociation barrier between∼ 130 meV and 160 meV for 2H-TPP/Ag(111). While an

approximation, this is in reasonable agreement with the diffusion barrier for 2H-TPP from first-

principle calculations [116] and of the same order of magnitude as weakly bound metal/metal

systems with similar attempt frequencies [157].

4.2.5 Conclusions

The nucleation and growth of 2D films of 2H-TPP on Ag(111) occurs in analogy to metal

heteroepitaxy. It was shown that existing models accurately describe the surface kinetics of the

2H-TPP / Ag(111) system, despite the incommensurate matching of the film structure with the

substrate lattice, the large size of the molecules in comparison with the substrate lattice spacing,

weak physisorbed interaction, and van der Waals intermolecular bonding, which all distinguishes

organic adsorbates from metallic species. An important reason for this good agreement is that the

energy barrier for terrace diffusion is determined by the landscape of the binding energy for the

molecules, which has the same symmetry and periodicity as the potential energy landscape for sin-

gle adatom diffusion, namely the surface structure of the substrate. However, the effective barrier

height is expected to be smaller for the molecules compared to single atoms, due to the lateral size

of the molecules, expanding over several substrate latticespacings, and the increased bond length

to the substrate. This is exactly reflected in our measured energy barrier for terrace diffusion The
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same hierarchy of diffusion barriers that determines the shape of metallic aggregates is also gov-

erning the shape of the organic aggregates: with increasingtemperature, terrace diffusion, edge

diffusion, corner crossing and dissociation are successively activated and cause a change in the

island shape and size, from small and fractal to large and compact. This experimental verification

of the validity of current models of epitaxy is thus expectedto help establishing design principles

for complex organic/metal hybrid structures.

acknowledgement

This work was supported by the NSF through CAREER (DMR-0747704) and MRSEC (DMR-

0213808). The use of the facilities at the Center for Nanoscale Materials was supported by the

U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no.

DE-AC02-06CH11357.



72

4.3 Non-metallated tetraphenyl-porphyrin on noble metal

substrates†

Geoffrey Rojas†, Xumin Chen†, Cameron Bravo†, Ji-Hyun Kim‡, Jae-Sung Kim‡,

Xie Jiao†, Peter A. Dowben†, Yi Gao§, Xiao Cheng Zeng§, Wonyoung Choe§,

Axel Enders†,¶

Department of Physics, University of Nebraska-Lincoln, Lincoln, NE, 68588

Department of Physics, Sookmyung Women’s University, 52 Hyochangwon-gil, Yongsan-gu, Seoul,

140-741, Korea

Department of Chemistry, University of Nebraska-Lincoln,Lincoln, NE, 68588

Abstract

The structure-electronic structure relationship of nonmetalated meso-tetraphenyl porphyrin

(2H-TPP) on the (111) surfaces of Ag, Cu, and Au was studied with a combination of scanning

tunneling microscopy, photoelectron spectroscopy, and density functional theory. We observe that

the molecules form a 2D network on Ag(111), driven by attractive intermolecular interactions,

while the surface migration barriers are comparatively small and the charge transfer to the ad-

sorbed molecules is minimal. This is in contrast to a significant charge transfer observed in 2H-

TPP/Cu(111), resulting in repulsive forces between the molecules that prevent molecular adlayer

network formation. It is shown that the limiting factor in formation of selforganized networks is

the nature of the frontier orbital overlap and the adsorbate-interface electron transfer. Further, the
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electronic structure, most notably the HOMO-LUMO splitting, are found to be dependent on the

substrate as well. The comparison of the results in this article with published work on similar por-

phyrins suggests that the molecule-substrate interactionstrength is determined by the molecule’s

metalation, and not so much by the ligands.

4.3.1 Introduction

The self-assembly of porphyrins on well-defined surfaces isattracting considerable interest

because it promises to create surface patterns with nanometer dimension that exhibit specific elec-

tronic, sensoric, optic or catalytic functionality [158, 159, 160], or even interesting magnetic prop-

erties [6, 161]. The ability of porphyrin to show self-organization and toaccommodate metal

atoms in their macrocycle is exploited, for instance, to form metal-organic frameworks or adsorbed

layers for catalysis [122, 162, 163, 164]. The self-assembly is mainly driven by non-covalent

metal-organic coordination interactions, which is well-known and important in solution-based 3D

supramolecular chemistry [106, 103, 104, 165, 105, 166].

Porphyrin molecules have been adsorbed onto surfaces to form supramolecular networks from

solution [167, 168, 169, 170], electrochemically [171, 172] or by thermal evaporation under vac-

uum conditions [173, 174, 175, 125, 176, 136, 177]. While there is a rich literature on the electronic

structure of these adsorbates, the surface adlayer structures have also been characterized with scan-

ning force microscopy, scanning tunneling microscopy, or X-ray absorption near-edge structure

analysis [79]. The rationale of such experiments on 2D structures has been to study the long-range

interactions that determine the self-assembly processes.It has been demonstrated that the bottom-

up fabrication of highly organized porphyrin layers, as well as of porphyrin-based multicomponent

molecular entities, depends on the interplay of molecule-molecule and substrate-molecule interac-

tions. Molecule-substrate interactions will set limits tothe mobility of the adsorbed molecules

and may alter the electronic structure of the absorbed molecules, or the electronic states at the sur-
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faces may become locally perturbed by the adsorbate [120]. A consequence is that the established

concepts of solution-based coordination chemistry cannotbe applied without appropriate modifi-

cation. The substrate thus becomes an additional parameterto control the adsorption energy of the

molecules and, hence, their diffusivity at surfaces. An intriguing demonstration of this effect is the

self-assembly of porphyrins, which are decoupled from their metal substrate by insulating NaCl

layers of varying thickness [174]. The interaction was shown to be dependent on the NaCl layers

and the thicker the NaCl the weaker the interaction and the more delayed the onset of network

formation. The occupation of the center ring of the porphyrin may affect the molecular adsorption

at surfaces. As an example, free-base or Cu-incorporated porphyrin molecules show different ar-

rangements along step edges on Cu(100) surfaces. While the 2H-TPP bridge over the step edges,

Cu-TBPP rather sit on either side of step edges [136]. In contrast, no differene in the network

architecutre was found for differently metalated TPP on Ag(111) [178]. Such a subtle dependence

of adsorption site on metal incorporation, if fully understood, may become useful to control the

self-assembly or the properties of the molecules on surfaces.

The goal of the present work is to investigate the competition between non-covalent inter-

molecular interactions and molecule-substrate interactions for 2H-TPP on Ag(111), Cu(111), and

Au(111) and to establish the structure-properties relationship and its dependence on interactions

with the supporting substrate.

4.3.2 Experimental

Ag(111) and Cu(111) single crystals of purity> 99.999% were prepared by repeated cycles

of Ar+ ion sputtering and annealing at temperatures of 850 and 800 Krespectively for multiple

cycles in ultrahigh vacuum (UHV) conditions (< 1 × 10−10 mBar). The substrate’s cleanliness

was checked by STM at 80 K before deposition of organic material, as well as by photoemission.

The 5, 10, 15, 20-tetraphenyl 21H, 23H, porphine (2H-TPP) was purchased from Frontier
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Scientific (purity> 97%) and used without further modification. Molecules were deposited by

evaporation using a homebuilt Knudsen Cell evaporator. Molecules were evaporated at a rate of

approx. 0.05 ML/min at crucible temperatures of appr oximately 500 K. Coverages were initially

limited to approximatelyΘ = 0.01 ML, where a monolayer (ML) is defined as coverages of ap-

proximately 5.1×1013 molecules·cm−2, and gradually increased by successive evaporation cycles

as needed. For a comparison of molecular adsorption, the 2H-TPP adlayers were studied after

evaporation onto Ag(111) and Cu(111) under identical growth conditions.

Samples were immediately transferred in situ to an adjoining chamber for scanning tunneling

microscopy (STM) measurements. Image data were obtained under constant current mode using

an Omicron Nanotechnology low temperature STM (LT STM) witha W tip at 80 K and pressures

of low 10−11 mBar. Combined photoemission (UPS) and inverse photoemission spectra (IPES)

were taken in a separate UHV system using the same single crystal substrates and evaporators.

In all spectroscopy measurements, the binding energies arereferenced with respect to the Fermi

edge of the substrates in close contact with the sample surface. The IPES were obtained by using

variable energy electrons incident along the sample surface normal while measuring the emitted

photons at a fixed energy (9.7 eV) using a Geiger-Müller detector. The instrumental linewidth is

400 meV, as described elsewhere [179]. The angle integrated photoemission (UPS) studies were

carried out using a helium lamp athv = 21.2 eV (He I) and a Phi hemispherical electron analyzer

with an angular acceptance of±10◦ or more, as also described elsewhere [179].

Calculations were performed using density functional theory (DFT) utilizing the generalized-

gradient approximation (GGA-DFT) HCTH functional [180, 181, 182]. The double numerical

polarized basis sets (DNP) with the semicore pseudo potentials were applied for all atoms, includ-

ing Ag, C, N, and H atoms [183, 184]. A 2-layer 10×10 silver slab was used to simulate the

Ag(111) surface substrate. In addition, a layer with 10×4 Ag(111) surface was placed on top of

the slab to simulate the step-edge effects. In order to reduce the computational cost, the substrate

was frozen while the 2H-TPP was fully relaxed. All calculations were performed by using the
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DMol3 software package [183, 184].

4.3.3 Growth studies with STM

4.3.3.1 2H-TPP on Ag(111)

The 2H-TPP adlayers were studied after evaporation onto Ag(111) and Cu(111) under identical

growth conditions. First, submonolayer aliquots of the 2H-TPP molecules were evaporated onto a

Ag(111) substrate at 300 K. The substrate was subsequently cooled to liquid nitrogen temperatures

(T = 77 K) for STM studies. For very low 2H-TPP coverage, (Θ < 0.01 ML), molecules are

exclusively observed at the substrate step edges, while nothing is seen on the terraces. Higher

resolution STM images, as in Figure4.10 (a), show that those 2H-TPP molecules straddle the

step edges, with the phenyl ligands oriented with an angle ofapproximatelyφ 21◦ relative to the

boundary of the step-edge. All observed step-edge phase molecules sit across the Ag(111) step-

edges in apparently identical geometries. These moleculesare not seen to engage in any lateral

motion even over the period of several hours. Increasing the2H-TPP coverage resulted in an

increase of the step-edge occupancy, until every step edge was fully occupied.

Molecules nucleated into clusters on the terraces only after complete occupation of the step-

edges, resulting in ordered two dimensional networks as those seen in Figure4.10(b - c). Clearly

visible in this figure is the coexistence of the step-edge phase [136] with extended 2D networks

of 2H-TPP at a coverage of (Θ ≃ 0.5 ML), while (c) provides a detailed view of the molecular

arrangement in the network. The molecules are found to orderin tetragonal unit cells of length a =

13.(8)Å, and to be rotated by 16◦ relative to the axis of the network (Figure4.10(d)). Similar 2D

arrangement can be found in bulk phases of TPP molecules incorporated with various metals such

as Ti, V, Cr, Fe, Co, Cu, Zn, Ru, Mg, Sn, and Ge [185, 186, 187]. The tetragonal unit cell parameter

a obtained from X-ray single crystal diffraction of these phases ranges from 13.3̊A to 13.8Å [185,

186, 187], comparable to the same parameter from our surface pattern. Interestingly, free-base
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Figure 4.10: STM images of 2H-TPP molecules adsorbed on Ag(111). (a) Θ < 0.01 ML, all
observed molecules located straddling step edges. (b) Molecules adsorbed atΘ ≃ 0.5 ML, (c)
Close up of molecules on terraces from (b) showing the relative orientation of the molecules.
(d) Schematic illustration of measured intermolecular distances for (1) CH-π interaction at
3.9(3) Å and (2) unit cell dimension of 13.(9)̊A. All images taken at I = 0.8 nA, VGap = -0.90
nA.

2H-TPP molecules in bulk phase do not form this observed tetragonal 2D pattern [185, 186, 187].

The value of the CH-π spacing of 3.9(3)̊A, found in Figure4.10(d), was again comparable to the

tetragonal phase of metallated TPP bulk phases.

The orientation of the adsorbed molecules shows a clear influence of the underlying sub-

strate crystallography, as we found three characteristic domains with main directions separated

by roughly 60◦, following Ag(111) substrate symmetry.

We conclude from the STM studies that 2H-TPP is highly mobileon Ag(111) at 300 K ex-

cept at step-edges, with a mean diffusion length significantly larger than the mean terrace width of

our substrate. The substrate step-edges, however, provideefficient pinning sites for the porphyrin

molecules. The 2D network formation on the terrace is mainlydriven by molecule-molecule inter-

action while the interaction between the molecules substrate the substrate, specifically the migra-
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tion barriers, is comparatively weak.

The same arrangement of molecules has been reported for 2H-TPP on the same substrate, as

well as on Au(111) [126, 178, 119]. The geometry of the molecules and the limitations imposed

by multiple interactions with neighboring molecules, including potential CH-π interactions be-

tween phenyl ligands and C-H pairs on neighboring macrocycles, determines the arrangements of

molecules at surfaces, has, for example, been suggested in ref [178]. Calculations were performed

to further examine these interactions and will be discussedlater.

4.3.3.2 2H-TPP on Cu(111)

2H-TPP molecules were evaporated onto Cu(111) under conditions identical to the 2H-

TPP/Ag(111) system, as described in the previous section. STM images of sub-monolayer cov-

erages of 2H-TPP on Cu(111), taken at 77 K, are summarized in Figure4.11. The molecules were

not observed to form 2D networks on the Cu substrate, unlike the Ag case. Rather, they tend to

be randomly distributed across the terraces at the substrate surface and remain isolated from neigh-

boring molecules. No tendency towards step decoration was observed, as seen in Figure4.10(a).

However, the molecules appear to be oriented along the principal crystallographic directions of the

underlying surface structure, as concluded from the generally observed angle of 120◦ between the

major axes of any two closely adjacent molecules.

Observation of the molecules over significant lengths of time showed no lateral motion of

the molecules over the substrate, contrary to what was seen for terrace-adsorbed molecules on

Ag(111). Furthermore, the molecules on Cu(111) appear topologically distinct from the same

molecular species adsorbed on the Ag(111). Under identicalscanning conditions, the molecules

appear with a raised center and 2-fold symmetry on Cu as seen for metalated species [188], while

on Ag they appear as ring-like structures with dark centers and clearly resolved arms. However,

the appearance of the molecules is dependent on the bias voltage during the STM experiment,

as a comparison of Figure4.11, panels a and b, shows. At sufficiently low bias voltage, a ring
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Figure 4.11: (a) STM images of 2H-TPP chemisorbed on a cleaned Cu(111) substrate at T = 300 K
and taken at V = -0.8 V with a tunneling current of I = 0.90 nA, (b) a close-up image of the
molecule taken at V = +0.4 V and I = 0.8 nA, and (c) after annealing to T = 350 K taken with bias
voltage of V = -1.0 V and I = 1.4 nA.

becomes visible in the substrate in the vicinity of chemisorbed molecules (Figure4.11(b)). This

ring is ascribed to the formation of a surface dipole at the molecule site by drawing electrons

from the substrate, leaving the molecules negatively charged. This surface induced dipole, along

with greatly increased migration barrier for Cu(111) [61] seems to be related to the absence of

self-assembled ordered structures of 2H-TPP on Cu(111).

In an attempt to overcome the diffusion barriers, the molecule-substrate system was annealed

to higher temperatures (Figure4.11(c)). Following moderate annealing to 350 K for 2 minutes,

the molecules were seen to partially decorate the step edge,shown in Figure4.11(c). The step-

edge occupancy was observed to become complete only after all further annealing to 450 K. The

molecules occupying the step-edges in the 2H-TPP/Cu(111) remained seated at the top of the step-

edge on the terrace and aligned with the axis of the molecule parallel with the step-edge boundary.

No bridging of the step-edges, similar to 2H-TPP/Ag(111), was observed. Despite this observed

motion on the terraces, the 2H-TPP molecules did not exhibitany 2D lateral organization on the

Cu(111) terraces for all annealing temperatures studied upto 450 K.
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4.3.4 Photoelectron Spectroscopy

Combined photoemission and inverse photoemission spectrahave been taken for sub-

monolayer, monolayer, and multilayer coverages of 2H-TPP on a variety of noble metal substrates.

The goal was to correlate the occupied and unoccupied electronic states of the molecules in contact

with the metal surfaces with the observed structures. All spectra obtained, together with spectra

from the pristine substrates are summarized in Figure4.12.

Features resulting from the occupied and unoccupied molecular orbitals were clearly observed

at all coverages for the Cu(111) and Au(111) systems (Figure4.12(b - c)) in the combined pho-

toemission and inverse photoemission. In contrast, peaks due to the molecular orbitals are difficult

to distinguish in the occupied states at low 2H-TPP coverages on Ag(111) (Figure4.12(a)). All

the photoemission spectra show a rapid decrease in those peaks of the underlying substrates with

increasing molecule coverage. The generally good agreement of the low coverage combined pho-

toemission and inverse photoemission spectra of 2H-TPP on Cu(111) and Au(111) is remarkable,

and indicates a planar adsorption geometry. The absence of clear states at low coverages for 2H-

TPP on Ag(111) is attributed to the coexistence of differentadsorption geometries as observed

with STM, and will be discussed later.

At greater thicknesses, features from the molecules becomeresolved also on Ag(111) (Fig-

ure 4.13). Similarities of the electronic structure in 2H-TPP films are apparent for all three sub-

strates studied. Those features are also in good agreement with the calculated spectra, also shown

at the bottom of Figure4.13. The calculated spectrum is based on simplistic single molecule

semiempirical method NDO-PM3 model calculations based on Hartree-Fock formalism, neglect-

ing differential diatomic overlap and assuming a parametric model number of 3, all performed

using SPARTAN 8.0 [189]. Geometry optimization of the molecule was performed by obtaining

the lowest restricted Hartree-Fock energy states. The calculated density of states (DOS) shown

was obtained by applying equal Gaussian envelopes of 1 eV full width half-maximum to each
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Table 4.1: Orbitals and Energies of a single 2H-TPP molecule. Calculated values are from PM3
calcuations in SPARTAN, Cu, Ag, Au are from 8 ML samples on therespective substrates.

Calcuated Cu Ag Au
HOMO -1 (eV) -2.73 -4.10 -4.30 -4.10
HOMO (eV) -2.37 -1.90 -1.90 -1.90
LUMO (eV) 2.63 2.10 2.10 1.00

LUMO +1 (eV) 2.82 2.10
Gap (eV) 5.00 4.00 4.00 2.90

Radius (̊A) 1.45 1.65 1.74

molecular orbital and then summing to account for the solid state broadening in photoemission.

This model density of states calculation was rigidly shifted in energy, largely to account for the

influence of work functions on the orbital energies, and no corrections were made for molecular

interactions and final state effects.

Photoemission and inverse photoemission are final state spectroscopies, and the HOMO-

LUMO gap has been estimated from the vertical energies, withcorrections included for the mea-

sured instrumental line widths. The combined photoemission and inverse photoemission provides

an estimate of the HOMO-LUMO gap of 4.00 to 2.90 eV, dependingon substrate, as summarized

in Table4.3.4. This means the HOMO-LUMO gap of a thin film is strongly dependent on the un-

derlying substrate, showing a difference as large as 25%. Wefurther note that the HOMO-LUMO

gap predicted by the ground state theory is larger than that measured, which is unusual. The ob-

served HOMO-LUMO gaps for the 2H-TPP/Ag(111) and 2H-TPP/Cu(111) systems differ from

those reported for bulk samples [190] in that they are significantly larger. A splitting of the LUMO

state is seen for the 2H-TPP/Au(111) system, and weakly alsofor the 2H-TPP/Ag(111) system.

Such splitting indicate either strong intermolecular or substrate interactions, and is in fact consis-

tent with the close packed 2H-TPP on Ag(111), as discussed later. No such splitting is seen for the

Cu(111).
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Figure 4.12: Coverage dependant photoemission and inversephotoemission spectra (symbols) of
metal-free porphyrin (2H-TPP) adsorbed at 300 K in coverages (from bottom to top) of≃ 0.5 ML,
1 ML, 3 ML, and 8 ML on (a) Ag(111), (b) Cu(111), and (c) Au(111). The bottom thin line shows
the spectra of the pristince substrates as reference.

4.3.5 Density Functional Theory

Calculations of molecules and dimers of 2H-TPP on Ag(111) were performed in order to gauge

the effect of molecule-molecule and molecule-substrate interactions, and their influence on the

aggregation of molecules at the surface. It is known that traditional DFT methods often cannot

reproduce the weak interactions qualitatively and quantitatively due to the lack of dispersion [191].

In order to test the applicability of the HCTH functional in this system, we examined the binding

energy of a benzene dimer. Binding energies for the T-shapedand sandwich benzene dimer of

0.04 eV and 0.02 eV were obtained, respectively. Although these values are much smaller than the

results based on high level CCSD(T) calculations [192], it gives a correct qualitative description of

van der Waals interactions, which means the HCTH functionalcould be used to evaluate theσ-π

andπ-π interactions.

With our calculations we optimized a 2H-TPP monomer on a Ag terrace and on a step edge,

as well as free 2H-TPP dimers. On the Ag(111) surface, the molecules were found to exhibit little
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Figure 4.13: Comparison of scanning tunneling spectra of 2H-TPP on Ag(111) at 77 K, and pho-
toemission and inverse photoemission spectra of thick filmsof 2H-TPP (nominally 5 ML) on (b)
Ag(111), (c) Cu(111), and (d) Au(111) at room temperature. (e) The barcode at the bottom are
the calculated molecular orbital eigenvalues and the bottom thin line are the model calculations of
the single molecule density of states. The LUMO splitting from Au to Ag and Cu as well as the
HOMO are indicated by vertical lines between spectra.

Figure 4.14: GGA-DFT calculated adsorption geometry of 2H-TPP at a step-edge initially oriented
with ligand directions at (a) 45◦ and (b) parallel to the direction of the step-edge.
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distortion of the overall shape, with the porphyrin molecules centered above a Ag(111) lattice site.

The dihedral angle of the phenyl arms of 2H-TPP on a Ag(111) terrace was found to be 70.5◦,

which is reasonably close to previously reported 60◦ for an isolated 2H-TPP molecule [125, 126,

120]. On the step edge, the phenyl arms are rotated between 69◦ and 74◦ depending on adsorption

geometry. Considering the very slight energy change (0.03 eV) with the dihedral rotation from

60◦ to 90◦ [193], the small dihedral angle change of 2H-TPP reflects the interaction between Ag

surface and the 2H-TPP molecule.

The molecule-molecule total binding energy for a free porphyrin dimer was found to be 0.15 eV,

due to a combination of van der Waals, electrostatic, CH-π, andπ-π interactions. In contrast, the

resulting binding energy of a 2H-TPP monomer to the Ag(111) terrace was found to be 0.44 eV.

The diffusion barrier for a single molecule on the Ag(111) surface was found to be 0.032 eV, on the

same order as that seen for other organic adsorbates on Ag(111) surfaces [194]. For comparison,

the kinetic energy at 300 and 77 K would be 0.026 and 0.007 eV respectively. Such a small

surface diffusion barrier would allow for the molecules to move along the surface, making single

lattice jumps before interacting with another at room temperature, as well as at liquid nitrogen

temperatures at a reduced rate. The resulting distance of a CH-π interaction in 2H-TPP dimers on

a Ag(111) terrace was found to be 3.03Å, which is only slightly shorter than what was observed

with the STM.

Further DFT calculations show the binding between 2H-TPP and the Ag(111) terrace comes

from modest electron transfer between the Ag surface and theadsorbed 2H-TPP molecule, where

the molecule takes up 0.191 e according to a Hirshfeld analysis. Meanwhile, the electrostatic

potential surface (ESP) indicates that the negative electrostatic potential of the inner porphyrin

ring of 2H-TPP has an interaction with the positive electrostatic potential of the Ag(111) surface,

which could explain the nature of the 2H-TPP adsorption on Ag(111) surface.

Calculations were undertaken for individual molecules bridging the step-edge in multiple orien-

tations. First, a single 2H-TPP molecule was tested with themolecule initially bridging a Ag(111)
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step-edge with all phenyl ligands 45◦ to the boundary of the step-edge. It was found by struc-

tural optimization that in this orientation the molecule bound to the substrate at an angle of 28◦

between the molecule plane and the substrate surface, and ata distance of 4.26̊A(Figure 4.14).

The phenyl arms and the step edge enclose an in-plane angle of25.4◦, and the net binding energy

was calculated as 0.39 eV. When calculations were run with the molecule initially oriented with

two phenyl arms parallel to the boundary of the step-edge andtwo normal, this molecule rotated

upon optimization to an orientation similar to that observed by the STM (exp: in-plane angle of

21◦, calculated: in-plane angle of 19◦; Figure4.10 (a) and Figure4.14 (b), respectively). The

resulting molecule-substrate distance was found to be 4.65Å and the binding energy was found

to be 0.55 eV and the Hirshfeld analysis found the Ag gives 0.193 e to 2H-TPP molecules. In

both examples, the binding energy for the molecules at the step edge is larger than on flat terraces,

explaining the found preferential step decoration.

Computation of the interactions of the 2H-TPP molecule or dimer on the Cu(111) substrate

were infeasible for us. However, given the highly preferential binding of the 2H-TPP molecules

over step edges on Ag(111), the limiting interaction of the 2H-TPP/Cu(111) system were thought

to be due to the nitrogens of the porphyrin macrocycle interacting strongly with the underly-

ing Cu(111) atoms as per similar interactions claimed for 2H-TPyP/Cu(111) [134]. In making

a computational comparison between the Ag(111) and Cu(111)systems, calculations were thus

performed for lone pyrroline molecules as representing components of the porphyrin macrocycle

which have the strongest potential interaction with the substrate. Two types of calculations were

performed, one with the pyrroline initially parallel to thesubstrate, representing 2H-TPP in the

terrace phase (Figure4.15(a)) and one with the pyrroline initially normal to the substrate, repre-

senting 2H-TPP in the step-edge phase (Figure4.15(d)).

It was found that for those pyrroline molecules which began initially parallel to the underly-

ing substrates, the simulations of the pyrroline on Ag(111)did not converge (Figure4.15 (b)),

despite being attempted in several different initial orientations. For the pyrroline/Cu(111) sys-
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Figure 4.15: Calculated adsorption geometry of pyrroline molecules at Cu(111) and Ag(111) sur-
faces. The orientations of the molecules (a) initially parallel to the substrate and after convergence
for (b) pyrroline parallel to Ag(111) (c) pyrroline parallel to Cu(111). The orientations of the
molecules (d) initially normal to the substrate and after convergence for (e) pyrroline normal to
Ag(111) (f) pyrroline normal to Cu(111).

tem the molecule bound to the underlying substrate with an energy of 1.49 eV (Figure4.15(c)).

For those pyrroline molecules initially normal, both the pyrroline/Ag(111) (Figure4.15(e)) and

the pyrroline/Cu(111) (Figure4.15 (f)) converged to a strong chemical bond with the substrate.

However, the energy of the pyrroline/Cu(111) bond (1.50 eV)was more than twice that of the

pyrroline/Ag(111) bond (0.73 eV). In both cases for the Cu(111) substrate, the molecule-substrate

system converged to a strong bond due to overlap of theπ-orbitals of the pyrroline with the d

orbitals of the underlying Cu as per the LDOS.

Taken from these results it is concluded that for the 2H-TPP/Cu(111) system, there was no

energetic preference for the molecules binding to the step edge over binding to the underlying

terrace. The overlap in the orbitals calculated would be strong enough to create a significant bond
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of the porphyrin macrocycle with the underlying substrate regardless of initial orientation. In

contrast, a clear preference for step decoration was seen both experimentally and from the 2H-

TPP/Ag(111) and pyrroline/Ag(111) calculations.

4.3.6 Discussion

Our observations can be summarized as follows: (i) 2H-TPP are highly mobile on Ag(111) and

prefer to occupy substrate step edges in a bridging position, with an angle between phenyl arms

and the step edge of approximately 20◦. Upon achieving 100% step-edge occupancy, extended

2D networks are formed on the terraces. (ii) 2H-TPP on Cu(111) does not show any tendency

of surface diffusion or self-assembly. The mobility was increased at elevated temperatures, but

still no network formation or step edge bridging was observed. The formation of a surface dipole

at the molecule sites is observed with STM. (iii) Photoelectron spectroscopy of the occupied and

unoccupied states show distinct and easily discernible peaks generally matching published UPS

data and theoretical expectations [124, 195, 80, 49]. For low and moderate 2H-TPP coverages

on Ag, distinctive molecular orbital features of the occupied states are absent and peak splitting

of the LUMO is observed for 2H-TPP/Au(111) by inverse photoemission. (iv) DFT calculations

show that the binding energy for 2H-TPP on Ag in various positions and geometries is largest for a

bridging position at step edges, with rotated ”X” geometry,whereas the binding energy is by over

a factor of 2 larger on Cu(111) and independent on the adsorption site.

The observed ordering of the molecules on the terraces of Ag(111) has also been reported for

the same moleculs on Ag(111) [117, 119] and for metalated TPP molecules on Cu(111) [178] and

is consistent with what has previously been reported for similar systems of porphyrin molecules

on noble metal substrates [172, 126, 92, 196, 132, 133, 197]. However, the very strong preferential

and ordered bonding the molecules show toward the surface step-edge has not been reported thus

far. Also, the observed absence of self-assembly for 2H-TPPon Cu(111) is in striking difference
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to the networks reported for Co-TPP or Cu-TPP on Cu(111) [178].

To explain the preferred step edge adsorption, we have presented energy calculations by DFT-

GGA for various absorption geometries on step-edges, by varying the angle between the phenyl

arms and the step edge as well as the inclination of the molecule against the step-edge. As a result,

the experimentally observed orientation of the 2H-TPP was found to have the highest binding en-

ergy, about 125% higher than what was calculated for the molecules occupying terrace sites. The

preferential step edge decoration is not related to the 2H-TPP macrocycle metalation, as compara-

tive measurements with Ag-TPP on the same Ag(111) substrateshowed, which is also inagreement

with arguments made in ref [178]. We thus suggest that the observed geometry is largely due to a

simple energetic favorability of geometric orientations.The achieved geometrical closeness of the

nitrogen atoms in the porphyrin macrocycle to the Ag atoms ofthe step-edge cannot be achieved

on terraces where the rotated phenyl arms determine the macrocyclesubstrate distance, explaining

the higher binding energy at the step edges.

Our calculation showed further that the energy of the T-typeinteraction between neighboring

phenyl ligands is 1 order of magnitude smaller than the totalbinding energy of a 2H-TPP dimer. It

is thus concluded that the self-assembly of 2H-TPP into the 2D networks observed on Ag(111) is

the result of the interplay between several factors. It is driven by the attractive interaction between

the molecules, but only possible if the 2HTPP interacts weakly with the substrate underneath so

that diffusion barriers are sufficiently low. The attractive CH-π bonds, regarded as the driving

force for network formation in ref [178], are alone insufficient to overcome the diffusion barriers

on Ag(111), but do determine the alignment of neighboring molecules with respect to each other,

or in other words, the network’s geometry.

In contrast to what has been found for 2H-TPP on Ag(111) and for metalated TPP on Cu(111)

[178], no self-assembly of 2H-TPP is observed on Cu(111). Networks are also not formed at

increased temperatures, when the molecule’s diffusion rates are already substantial. It is thus con-

cluded that on Cu(111) the interaction between 2H-TPP is repulsive, which can only be the result
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of the interaction with the Cu substrate. The pickup of charges by the molecules from the substrate

can result in the formation of a electric dipole and hence electrostatic repulsion between molecules,

thereby inhibiting network formation. Such a charge pickupby the 2H-TPP is observed with STM

on Cu(111), where the modification of the substrate around isolated 2H-TPP molecules is clearly

visible as a ring, which is in analogy to the observed sombrero-like shape of charged metal atoms

on insulating films [198] or TCNE molecules on Ag(100) [199] This modified electronic struc-

ture surrounding the molecule corresponds well with those predicted and observed for simple two

body molecules on Cu(001) [200]. This electron exchange then leads to long-range, electrostatic

repulsive molecule-molecule interactions as seen also forother species [201, 199].

A comparison of our findings on 2H-TPP on Cu(111) with published STM data on metalated

TPP or TPyP on the same substrate [188, 178, 140] seems further to suggest that not the ligands

but rather the macrocycle metalation is controlling the self-assembly: nonmetalated molecules

with different ligands (2H-TPP, TPyP) remain isolated on the Cu(111), while only metallated TPP

are observed to form networks. This conclusion is backed by related studies of molecule-substrate

interactions that conclude that the metal ion in the porphyrin macrocycle plays the central role in

the electronic interaction between the complexes and the metal surface, which was even found to

result in additional electronic states [124].

Qualitatively, the Cu system possesses adz2 orbital extending into the vacuum while the out-

ermost orbitals for the Ag and the Au system are more dominated by the frontiers orbitals. The

calculated molecular orbitals from our semiempirical calculations of the free molecule, and match-

ing those found with GGA-DFT calculations, are shown in Figure 4.16. It is apparent that the

HOMO orbital possesses a1u symmetry and the LUMO and LUMO+1 orbitals posses b1g symme-

try. Given this, the former will be dominated bydz2 levels while the later will be dominated by px

and py levels. This results in a greater cross-sectional overlap of the 2H-TPP HOMO levels with

both thedz2 and 4s frontier orbitals of the Cu(111) system versus only the 5s and 6s orbitals of

the Au(111) and Ag(111) systems. Given that the former will have a much larger cross-sectional
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Figure 4.16: Orbitals corresponding to semiempirical NDO-PM3 model calculations. (a) LUMO
(b) LUMO+1 (c) HOMO and (d) HOMO-1

overlap with the orbitals of the adsorbed porphyrin than will the later, enhanced electron transfer

and therefore, tunnelling, directly from the tip to the metal substrate via the adsorbed molecules is

achieved. This interaction can create enough charge in the molecule-substrate system to hinder 2D

network growth through Coulomb repulsion. This is similar in concept to Co-TPP [178, 202] and

Fe-TPyP [126, 135] deposited on metal substrates, as thedz2 orbital of the metal in the molecule

provides the same general overlap with the underlying metalthat the Cu has with the adsorbed

molecules here.

Given that the substrates are, by themselves, similarly electronegative, it is this greater frontier

orbital overlap which transfers a greater amount of charge between the substrate and the adsorbate.

The charge transfer is then responsible for the significant electronegativity seen in the HOMO state

of the surface 2H-TPP on Cu(111) of Figure4.11(b) as well as the apparent modified electronic

structure surrounding the molecule.

From the location of the LUMO of the 2H-TPP on the macrocycle,as seen in Figure4.16, a
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Figure 4.17: Comparison of photoemission and inverse photoemission spectra of thin film 2H-
TPP (0.5 ML) on (a) Ag(111) and (b) Cu(111), along with the spectra of the corresponding clean
substrate at room temperature. STM images of 1/3 ML thick 2H-TPP on (c) Ag(111) and (d)
Cu(111) are shown on the right side of the Figure (10×10 nm). V = -0.8 V.

perturbation of the LUMO by the formation of week CH-π bonds with the phenyl arms of neigh-

boring molecules can be expected. This perturbation may lead to the splitting of the LUMO states

by 1.1 eV observed in the inverse photoemission data, see Figure4.13(d). This level splitting is

observed on Au(111) and, to lesser extend on Ag(111) where the 2H-TPP molecules are observed

to form a network structure [178, 203, 204]. This splitting is not observable on Cu(111), where the

molecules remain isolated.

In Figure4.17we compare UPS/IPES spectra for sub-monolayer coverages of2H-TPP on Ag

and Cu with STM images taken at such coverages. Striking hereis the absence of discernible

peaks in the UPS spectra of 2H-TPP/Ag(111). We suggest that the coexistence of different struc-

tural phases with fundamentally different orientation relative to the substrate in multiple energetic

orientations smear out peaks in the UPS spectra as seen for other adsorbate-surface systems [205].

DFT calculations support this observation by showing that step-edge sites held significantly higher
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binding energies than terrace sites for the 2H-TPP/Ag(111)system. Electronic features similar to

those of free 2H-TPP molecules appear only at coverages above 3 ML where the layer stacking is

the dominating structural arrangement.

4.3.7 Conclusion

It has been demonstrated that the tendency of porphyrins to self-organize is limited by interac-

tions with the substrate. While a rather significant molecule-substrate bond exists for 2H-TPP on

all substrates studied, the limiting factor in formation ofself-organized islands is apparently the

nature of the frontier orbital overlap and resulting electron transfer, which is mainly involving the

macrocycles of the molecules.

The self-assembly of near charge neutral 2H-TPP molecules into extended 2D networks on

Ag(111) is due to a combination of van der Waals, electrostatic and CH-π interactions between the

molecules. The relative orientation of neighboring molecules is mainly given by the CH-π interac-

tions, due to which there is a perturbation of the electronicstates of the adsorbed molecules. Charge

pickup and dipole formation of 2H-TPP on Cu(111) results in repulsive Coulomb interactions

which seem to dominate over attractive intermolecular interactions, thus preventing network forma-

tion. A zone of modified electronic structure is observed around the molecules on Cu(111), which

is indicative of such strong molecule-substrate interactions and charge uptake by the molecules.

This mechanism seems to be absent for 2H-TPP/Ag(111) and 2H-TPP/Au(111), where the orbital

overlap differs significantly from that of the 2H-TPP/Cu(111) system. The comparison of our

results with published work on Co-TPP, Cu-TPP, and TPyP suggests that the molecule-substrate

interaction strength is governed by the molecule’s metalation, and not so much by the ligands.

The morphology of the substrate surface is also important asthe molecules are observed to

preferentially bridge the substrate step-edges before island nucleation starts on the terraces. The

discussed examples showed that the properties of 2D layers of organic materials can be controlled
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by interactions with the supporting substrate. Specifically, it was shown that the structural arrange-

ment, HOMO-LUMO gap, and details of the electronic structure are determined by the substrate,

therebu improving our understanding of planar organic molecular adsorption and self-assembly on

surfaces.
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Abstract

Engineering the electronic structure of organics through interface manipulation, particularly the

interface dipole and the barriers to charge carrier injection, is of essential importance to improved

organic devices. This requires the meticulous fabricationof desired organic structures by precisely

controlling the interactions between molecules. The well-known principles of organic coordination

chemistry cannot be applied without proper consideration of extra molecular hybridization, charge

transfer and dipole formation at the interfaces. Here we identify the interplay between energy level

alignment, charge transfer, surface dipole and charge pillow effect and show how these effects

collectively determine the net force between adsorbed porphyrin 2H-TPP on Cu(111). We show

that the forces between supported porphyrins can be alteredby controlling the amount of charge

transferred across the interface accurately through the relative alignment of molecular electronic

levels with respect to the Shockley surface state of the metal substrate, and hence govern the self-

assembly of the molecules.
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4.4.1 Introduction

The electronic properties of organics in contact with metalsubstrates depend on the alignment

of the electronic levels and bands at the metal-organic interface and the resulting hybridization of

states, as well as charge transfer to or from the adsorbate, the molecular band offsets [14, 206, 67],

the emergence of interaction-induced states [207, 124], the distortion of the molecules [208] as

well as changes that may occur at the substrate surface [209]. Also key to the interface electronic

structure is the presence of substrate surface states [210]. Generally, the properties of metal-organic

interfaces are determined by a delicate balance of competing factors and experiments usually as-

sess only the cumulative effect of many different contributions to the interface electronic structure

[208, 209]. The net charge transferred across the interface, the formation of charge dipoles, and

the work function are intrinsically related effects. Oftenwhat is highlighted is the interface dipole

or the work function, but the substrate surface states, a fundamental ingredient to the interface elec-

tronic structure is often poorly described. Here we demonstrate the importance of the Shockley sur-

face states [210] in establishing the interface electronic structure usingthe example of tetraphenyl

porphyrins (2H-TPP) chemisorbed on Cu(111). The surface state interactions with the adsorbed

molecular layers are important for the charge transfer between the substrate and the molecule and

the resulting surface dipoles that ultimately strongly influence the intermolecular lateral interac-

tions. The surface state can be shifted in energy by using Ag buffer layers of varied thickness on

Cu(111), thereby determining the overlap of molecular levels with substrate surface metal bands

[206], the amount of charge transferred, and consequently the intermolecular forces. We can relate

our findings to the observed strong repulsive intermolecular Coulomb forces and the repression of

molecular self-assembly. We show that the molecule-molecule interactions can be changed from

repulsive to attractive by controlling the amount of chargetransferred across the interface through

surface state engineering using Ag buffer layers on the Cu(111).
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4.4.2 Results and Discussion

The 2D character of an adsorbed monolayer of 2H-TPP has been exploited for a comparative

study of the occupied and unoccupied band structure of largeensembles with direct and inverse

photoelectron spectroscopy (UPS and IPES), as well as of selected individuals with the tip of a

scanning tunneling microscope (STM) in the local spectroscopy mode (STS). By this combination

of local and area-integrating complementary methods the atomistic basis of observed features in the

electronic structure became evident. STM images, taken at sub-monolayer to monolayer coverage

of 2H-TPP on Cu(111), are shown in Figure4.18. A coverage ofΘ = 1 ML is defined here

as the maximum observed packing density within the first layer of 0.42 molecules·nm−2. This

packing is 20% smaller, expressed in terms of areal density,than that observed on Ag(111), see

Figure4.18(e) [116, 178]. The mobility of the molecules is sufficiently high for surface diffusion,

as concluded from visible substrate step edge decoration (not shown), however, no nucleation is

observed. The molecules remain isolated and roughly equally spaced on the terraces of the Cu(111)

(Figure4.18(b - c)). They appear to be aligned along the three〈111〉 crystallographic directions

of the surface, concluded from the observed angles of multiples of 120◦ between the major axes of

any two molecules. It can be seen by comparing Figure4.18(b) and (c) that molecules are added

to the first monolayer even if the gaps between the molecules are significantly smaller than the size

of the molecules itself. This requires rearrangement of allmolecules in the layer during deposition.

Self-organization of the 2H-TPPs into networks, as found for the same molecules on Ag(111) in

Figure4.18(a) and Au(111) [116, 178, 119], was not observed on Cu(111) at any coverage and

sample temperature in the rage between 77 K and 500 K. We do observe, however, by inspection

of Figure4.18(c, d) that an alignment of the molecules with respect to eachother sets in as the

areal density of the molecules increases. Upon reaching saturation coverage within the first layer,

molecules nucleate into islands on top of the first layer. Thearchitecture of this arrangement is a

porous 2D network apparently dominated byπ−π bonds, and is a different architecture than the
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densely packed arrangement observed for the same moleculeson Ag(111) in Figure4.18(a). We

conclude from these observations that the net force betweenthe molecules within the first layer is

repulsive, while it is attractive for the molecules within the second layer.

Figure 4.18: STM images of 2H-TPP on Ag(111) (a) and Cu(111) (b-d). The molecule coverage
is 0.6 ML (b), 0.7 ML (c) and 1.2 ML (d).It = 0.4 nA,Ub = +0.8 V.

The occupied and unoccupied electronic structure of the adsorbate-substrate system has been

studied in detail with tunneling spectroscopy and combinedphotoemission and inverse photoemis-

sion spectroscopies, as seen in Figure4.19. The combined photoemission spectra of the 2H-TPP

covered Cu(111) shows characteristic peaks that are not observable in the spectra of the pristine

Cu(111). One feature, at +2 eV, is in reasonable agreement with the lowest unoccupied molec-

ular orbital (LUMO) of calculated and measured spectra for similar TPP systems [211]. Also

the spectra of the occupied states resemble those reported for 2H-TPP adsorbed on other noble-

metal systems [212], with the highest occupied molecular orbital (HOMO) at approximately -2 eV.

Within this HOMO-LUMO gap we observe an additional characteristic peak at +0.65 eV at sub-

monolayer coverage, which is observed to decay rapidly in intensity with increasing coverage and

is not apparent in the spectra at 3 ML coverage or more.

Complementary to the combined photoemission and inverse photoemission spectroscopy mea-

surements, point spectroscopy measurements have been taken locally with STS over a similar

energy range, see bottom panel in Figure4.19. Single point dI/dV spectra were taken over the

molecules themselves, as well as the surrounding Cu surfaceat successively increasing distance

from the molecule center. The observed HOMO and LUMO of the molecules are aligned well
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Figure 4.19: Upper panel: Photoemission (UPS) and inverse photoemission (IPES) spectra of 2H-
TPP on Cu(111). (a) 3 ML 2H-TPP; (b) 1 ML 2H-TPP; (c) bare Cu(111). Lower panel: STS point
spectra taken on or near lone TPP molecules. (d) on top of a molecule in the second layer; (e) on
top of a molecule in the first layer; (f) on Cu, at a distance of 1Angstrom from the molecule edge;
(g) on Cu, several Angstroms away from a molecule. Inset: STMimage showing the positions
where spectra (e-g) were taken. Binding energies are denoted asE −EF , making occupied state
energies negative and unoccupied states positive.

with those observed using photoelectron spectroscopy; theLUMO is seen at approx. 1.5 eV above

the Fermi level, contained with the LUMO + 1 peak. The spectrataken on the bare Cu show the

well-known Shockley surface state at -0.4 eV [213, 214], which is not resolved in the photoelec-

tron spectra. This surface state is suppressed on the Cu surface covered withΘ > 0.7 ML 2H-TPP.

At lower coverage, this surface state is shifted towards theFermi level in the direct vicinity of the
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molecule. The spectra shown in Figure4.19(f) was taken at a distance of 6̊Afrom the molecule

center and shows this surface state shifted upward in energyby ∆E = 0.2 eV. Also within the

HOMO-LUMO gap at +0.7 eV an electronic state, already known from the IPES measurements,

is observed at the molecules. This peak is only observed for spectra taken of molecules in the first

monolayer. Spectra taken on molecules in the second layer donot show this substrate surface state

feature, and yet the characteristic LUMO and HOMO remain undisturbed.

The molecules of the second layer appear in the STM images under the same tunneling con-

ditions with dark center and bright phenyl arms, while in thefirst layer the opposite is observed,

the centers are bright and the phenyl arms are dark. This change in contrast is due to an electronic

level rearrangement at the interface [124]. We again exploit the local nature of tunnel spectroscopy

to identify local differences in the DOS. In STS point spectra taken at the center of a molecule

in the second layer the new peak at +0.65 eV, observed over themolecules in the first layer, does

not appear. This allows us to attribute the physical origin of this state to the 2H-TPP/Cu interface.

The electronic states in this energy range have been observed previously for other porphyrin-based

surface systems on Ag(111) as well as Cu(111) with photoelectron spectroscopy [124, 215, 128],

and have been heretofore ascribed to the shifted LUMO of the porphyrin macrocycle. However,

the absence of the energy state at +0.65 eV in the second monolayer provides now evidence that

this state is an interface state.

Measurements of the local work function,Φ, have also been made using the STM. We have

characterized and measured the local work function to evaluate the local surface dipoles, following

a procedure similar to that published in reference [15] and described in the supplementary material.

The so measured work function of the Cu(111) is∆Φ = (4.9± 0.2) eV. With 2H-TPP deposited,

we find a decrease of the work function by∆Φ ∼ (-2.0± 0.5) eV over the center of TPP molecules,

and an increase of∆Φ ∼ (+1.0± 0.4) eV at the boundary of the molecules macrocycle. While

these data are in quantitative agreement with the net work function shift of 0.84 eV found for 1

ML 2H-TPP on Ag(111) [124], the particular advantage of these local measurements is that they
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reveal a significant amount of spatial variance. For clarification of the spatial variance, a map of

the work function has been measured in a square area across the molecule and its surrounding

from 100× 100 separately performed point spectra. ThisΦ-map is shown together with an STM

image of a lone 2H-TPP on Cu(111) in Figure4.20. By comparing both results in this manner

the spatial dependence of the work function can be associated with local chemical components of

the adsorbed molecule, and with the locally measured density of states. TheΦ drops significantly

over the location of the central pyrolines while increasingrelative to the bare Cu(111) over the

surrounding hydrogen edges and phenyl ligands. Surrounding the molecule in a narrow band there

is a slight drop in the Cu(111) work function. This band corresponds to the area where the upward

shift in the surface state was observed, too.

Figure 4.20: (a) STM image of a lone 2H-TPP molecule on Cu(111). It = 0.4 nA,Ub = +0.8 V;
image size 4 nm× 4 nm. (b) Work function map of the same molecule, showing lowered work
function at the center of the molecule and increased work function at the boundary of the molecule,
relative to the substrate.

The electronic interactions at the 2H-TPP/Cu(111) and the 2H-TPP/Ag(111) interfaces can be

understood using the results of density functional theory calculations, undertaken as described in

the supplementary material. The computational results, summarized in Table4.2, show that the

binding energy of the molecules to the substrate is significantly larger on Cu(111) (3.96 eV) than

on Ag(111) (0.42 eV), resulting in a much shorter distance between the molecule and the substrate
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and significant distortion of the molecule on Cu(111) (Figure4.21). In particular, the dihedral angle

of the phenyl ligands changes and the ligands become nearly planar to the surface. For comparison,

we calculate the free 2H-TPP molecule as having a dihedral angle of 62.7 degrees, in agreement

with refs [125, 126, 120, 116]. This distortion is also visible in the STM images in Figure4.18

(b). As a result of the rotation of the phenyl arms, the pyrrole rings containing the N-H motifs

distort downwards and those containing the lone nitrogen atoms distort upwards. The composition

of the molecular orbitals of the metal-adsorbate system wasdecomposed into contributions from

occupied and unoccupied orbitals of the finite copper cluster and of the 2H-TPP. The resulting

interaction diagram revealed a state at about 1.1 eV below the Fermi level, which contains character

from the 2H-TPP HOMO (57%) and various copper slab MOs (43%) (see supplement), indicating

a strong overlap and interaction (hybridization) between these two states. A similar calculation for

Ag(111)-TPP showed a much weaker interaction between silver slab MOs (10%) and the 2H-TPP

HOMO (90%). The distance between the silver slab and the 2H-TPP is large, so the resulting

overlap between these two orbitals is small, and the bond is weak. Our findings are in agreement

with the increase in nobleness of a metal descending down Group 11 from Cu to Ag to Au. [206]

The interaction of the 2H-TPP HOMO with the Cu states resultsin a deep-lying filled bonding

state, with almost equal contribution from the Cu and the molecule and a concomitant transfer of

charge to the copper surface. The build of charge surrounding the copper-molecule interface (the

red isovalue in Figure4.21(c), along with the charge on the molecules themselves, bothwhich are

much larger for the 2H-TPP Cu system than for 2H-TPP - Ag, prevents the adsorbate molecules

from interacting with one another due to electrostatic repulsion, thereby impeding self-assembly

on the Cu(111) surface.

The charge density difference plots in Figure4.21reflect strong variations in the charge density

at the interface upon adsorption: there is charge depletiondirectly under the center of the molecules

and an increase in the charge density along the edges of the molecule and under the phenyl ligands.

The underlying mechanism here is Pauli repulsion, which follows from the quantum mechanical
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Table 4.2: The binding energy (Eb), charge and structure of 2H-TPP on top of Cu(111) and
Ag(111). The surface distances,dCu and dAg, are the average calculated distances of the cen-
tral nitrogen atoms of the 2H-TPP to the metal. The dihedral angle is defined in the supplemental
material.

System Eb Surface Adsorbate Dihedral angle Surface distanced
(eV) charge charge (deg) (Å)

Cu(111) 3.96 -1.69 1.69 40.4 3.04
Ag(111) 0.42 0.02 -0.02 49.2 7.02

Figure 4.21: (a) Top and side view of the optimized geometry of 2H-TPP on top of a Cu(111) slab.
(b, d) The calculated differences between the charge density of the metal-organic systems and that
of the isolated, distorted fragments illustrates how the charge density changes upon adsorption of
the molecule to the metal surface, with blue being a decreaseand red an increase. (b) 2H-TPP on
Cu(111) with an isovalue of± 0.0003 au. (c, d) Contour diagrams for 2H-TPP on top of Cu(111)
(c) and Ag(111) (d). The same settings were employed to obtain the contours. The values dCu,
dAg, are listed in Table4.2

requirement that overlapping electronic states must be orthogonal to each other. This drives up the

energy and as a result pushes charge away at the surface of theCu in an area directly under the

center of the molecule. This effect has been described as the”pillow effect” [ 65, 206, 83, 66], The

redistribution and exchange of charge also changes drastically the surface dipole of the Cu and is

at the origin of the observed spatial variation of the work function. By comparison, the negligible

charge transfer from Ag to the adsorbate is in line with a weaker binding energy, a longer metal-

adsorbate distance and a negligible pillow effect occurring on the metal’s surface.

Besides the electrostatic repulsion between the moleculesthere are also attractive interactions,
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mainly van-der-Waals and dispersive interactions. Additional bonding contributions come from

CH-π andπ−π interactions between the phenyl ligands. For a freestanding 2H-TPP dimer, the

total binding energy was estimated to be 0.3 eV. The net effect is thus dependent on the competition

between Coulomb repulsion and the mainly van der Waals attraction. The net force is attractive for

2H-TPP on Ag(111) and Au(111) [128, 116, 216] and repulsive on Cu(111), owing to the discussed

differences in charge transferred and Coulomb repulsion. Asimilar dominance of the electrostatic

repulsion has been reported earlier for other organic-metallic interface systems [199, 201, 116, 10,

70]. In addition here, the distorted phenyl arms of the molecules impede the formation ofπ−π

bonds, thereby further decreasing the propensity of binding between two 2H-TPP molecules.

The observed differences in the interactions of 2H-TPP on Agand Cu surfaces were exploited

to actually control the inter-molecular forces, between the repulsive and attractive limits by engi-

neering the metal-organic interface. The trick is to deposit the molecules on the Cu(111), which

was pre-covered by an Ag buffer layer of variable thickness.The STM images of 2H-TPP ad-

sorbed on 1 to 3 monolayers of Ag on Cu(111) are shown in Figure4.22. Clearly, the molecules

remain, more or less, statistically distributed on 1 ML Ag/Cu, while islands of extended networks,

identical in architecture to that found on Ag(111) in Figure4.18(a), are observed for the 2H-TPP

adsorbed on 3 ML Ag/Cu. At the intermediate Ag buffer layer thickness of 2 ML, clusters of

2H-TPP adsorbed molecules are commonly observed but with noticeable degree of disorder within

such clusters. On Ag layers on Cu, the 2H-TPP molecules appear in 2 distinctively different sym-

metries: the symmetry labeled (i) which is usually observedon Cu(111), and the symmetry labeled

(ii) which is typical for TPP on Ag(111). With increasing Ag layer thickness, the occurrence of

2H-TPP molecules in configurations of type (i) decreases while at the same time the occurrence of

the 2H-TPP adsorbed molecules in the arrangement of type (ii) increases. It appears as if clusters

of molecules, ordered or disordered, are mostly formed by 2H-TPP adsorbed molecules of type

(ii).

Tunneling spectroscopy was again employed to elucidate thelocal electronic structure of the
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Figure 4.22: STM images of 2H-TPP on Ag buffer layers ofθAg on Cu(111), whereθAg = 1 ML
(a), θAg = 2 ML (b), θAg = 3 ML (c). Two different shapes of the molecules are observed, labeled
(i) and (ii), see text for explanation. Image size 15 nm× 15 nm. (d) STS point spectra on Cu, Ag
films on Cu, and Ag substrates showing the Shockley surface state.

interface. While the spectrum of electronic states taken ontop of the molecules does not show

significant differences for all samples in Figure4.22, the Shockley surface state of the substrate

on the other hand shifts upward in energy with increasing thickness of the Ag buffer layer, from

-400 meV for clean Cu(111) to -50 meV for Ag(111) (Figure4.22(d)). The energy of this Shockley

state is thus a precise indicator for the Ag layer thickness.Key is that the energy of the Shockley

state can be adjusted by the Ag buffer layer thickness between the two extremes of pure Ag(111)

and Cu(111) surfaces, and that has profound consequences for the molecular self-assembly as just

demonstrated.

4.4.3 Conclusions

It is has been already established that the electronic levelalignment at the metal-organic inter-

face and frontier orbital symmetry determines the hybridization of levels and the amount of charge

transferred across the interfaces [14, 62]. Based on the results shown here, we find it reasonable

to assume that the Shockley state plays a crucial role for theinteraction strength. Depending on

the exact energetic position of this state, more or less overlap with the corresponding molecule

levels is possible, thereby facilitating (Cu) or impeding (Ag) charge transfer across the interface.

By controlling the exact energetic position of the surface state by the choice of thickness of Ag
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buffer layers on Cu(111), the degree of electronic level hybridization can thus be finely tuned, to

adjust the amount of charge transferred and the strength of the Coulomb repulsion. Since the van

der Waals interaction remains unaffected by this, the net effect can thus be chosen to be repulsive

or attractive. The ability to control inter-molecular forces for a particular type of molecule between

both extremes in this manner opens new possibilities to steer molecular self-assembly, especially

if patterned buffer layers are used. It is thus an important new milestone in establishing rational

design principles for organics in contact with surfaces. Specifically, we demonstrated the potential

of using substrates to build organic structures and frameworks of potentially greater complexity

than currently possible, exhibiting pre-defined and desired functionality.

4.4.4 Experimental

The experiments were carried out using a Omicron low temperature scanning tunneling micro-

scope in a ultrahigh vacuum system with a base pressure of 8× 10−11 mbar. Single crystalline

substrates have been cleaned in UHV by Ar+ ion sputtering andannealing. TPP molecules have

been deposited by thermal evaporation from a home-build Knudsen cell, with the substrate held

at room temperature. The combined photoemission and inverse photoemission spectroscopy mea-

surements have been performed in a second UHV system[32] butusing the same substrates and

Knudsen cells.

The DFT-D calculations were carried out using the ADF software package [217, 218]. The

revPBE gradient density functional [219] was employed, and Grimmes latest dispersion corrected

functional [220] was used to account for the dispersion forces. Tests were performed to determine

the effect of the basis set on the binding energy of benzene toan Ag(111) slab. For the results

given in the main text, the basis functions on all of the atomsconsisted of a valence triple-ξ Slater-

type basis set with polarization functions (TZP) from the ADF basis-set library. The core shells

up to 1s, 1s, 3p and 4p of carbon, nitrogen, copper and silver,respectively, were kept frozen. In
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situations where SCF convergence issues arose, the steepest decent method was employed. A

Mulliken charge analysis was used to determine the magnitude of the charge transferred between

the adsorbate and the metal surface. More computational details and complementary results are

provided in the supplementary material.
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4.4.5 Supporting Information

4.4.5.1 Experimental Details

Ag(111) and Cu(111) single crystals used for sample surfaces were prepared by three repeated

cycles of Ar+ ion sputtering and annealing to 650 K in ultrahigh vacuum (10−10 Torr) to remove

defects. Ag buffer layers were deposited on the Cu(111) surface at 300 K using an e-beam evapo-

rator and 99.999% pure Ag beads at a consistent rate of 0.013 ML·s−1 for all samples. Following

annealing, the Ag/Cu(111) samples were imaged to ascertainthe surface coverage. 5, 10, 15, 20-

tetraphenyl-21-H, 23-H-porphine (2H-TPP) molecules of>97% purity purchased from Frontier

Scientific were deposited on the Ag/Cu(111) buffer layer system using a homebuilt Knudsen Cell

evaporator at a rate of approximately 0.03 ML·s-1. The system was then transferred in situ for mea-

surement. Data were obtained using an Omicron low-temperature scanning tunneling microscope

(LT-STM), operated at 80 K using a W tip.
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The work function was determined from measurement of the tunnel current,I, as a function of

tip-sample separation,z, following the well-known relationship

Φ =
h̄2

8me

(

d
dz

lnI

)2

(4.5)

whereme is the electron mass andΦ = 1
2 (Φtip +Φsample) [15]. The separation was varied

from 100 picometers above the apparent surface to 400 picometers with the tip-sample potential

held constant at +400 meV, and the resulting tunneling current was measured. Numerous scans

were first taken over the bare surface to verify the stabilityand reliability of the tip-surface inter-

face. Multiple loops were performed over each point to provide an averaged single set of data for

final analysis. The derivative of the natural logarithm of the resulting spectra were then analyzed

according the prescription given by Yoshitake [46].

Scanning tunneling spectra were obtained by connecting thesystem to a Princeton Scientific

lock-in amplifer and holding the tip at a constant separation distance, z, while modulating the DC

voltage around a set voltage biasV by an amplitude between 10 to 20 meV and at a frequency of

∼3 kHz. By then measuring the resulting modulation in current, dI, the differential in current was

obtained as a function of the bias voltage and the local density of states was measured.
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4.5 Summary

This thesis has demonstrated that the self-assembly of the organic/metal surface system of 2H-

TPP on Ag(111) and Cu(111) is limited by the energetic barriers created by the interaction with the

metal surface and that this interaction is controllable. The long-range interactions which limit self-

assembly of the 2H-TPP/Cu(111) system are due to a combination of energy level hybridization

and surface state restructuring as outlined in Chapter4.4. The energy level hybridization results in

charge exchange between the metal and the adsorbed molecule, predicted to be +1.69 e (Table4.2).

The close surface separation and largedz2 orbitals of the Cu electrons causes an overlap of molec-

ular orbitals and surface DOS, resulting in significant shifts in the surface electrons due to Pauli

exclusion. This, combined with the charge exchange, results in a very strong surface dipole that

prevents inter-molecular binding despite observed mobility at the temperatures deposited (Chap-

ter4.3).

The molecules on Ag(111) and Au(111) exhibit a much weaker interaction, and little or no

hybridization. This results in a much greater surface separation and no significant charge exchange

or perturbation of the underlying surface electrons. This lack of surface dipole presents no ob-

served long-range interaction acting in opposition to the weak inter-molecular bonding of the free

molecule, unlike the 2H-TPP/Cu(111) system. The moleculesmove freely and are able to there-

fore form self-assembled, close-packed, inter-molecularnetworks. The lattice arrangement of the

networks is unique to the individual molecules because of the unique symmetry of the molecule

and anisotropy of the hydrogen bonds.

The growth dynamics of the 2H-TPP/Ag(111) surface system occurs according to the same

energetic hierarchy of barriers as that of metal heteroepitaxy. The barriers affecting the geometry

of the resulting surface structure are those of the inter-molecular attractive potentials described as

due to a combination of van der Waal and CH-π bonds. Using the same energetic hierarchy models

as inorganic systems, and approximation for the inter-molecular bond is found to be 130 eV∼
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160 eV. This is consistent with the models of the bond betweenfree 2H-TPP dimers, giving further

evidence of the weak binding of the underlying surface.

The energy level of the interacting metal surface state is controlled through the addition of atom-

ically thin Ag buffer layers to the Cu(111) surface. This allows for the tuning of the metal/organic

interface states and surface electron suppression, thereby adjusting the Coulomb potential and

inter-molecular repulsion to levels lower than the inter-molecular attractive potentials, which re-

main unaffected as they are inherent to the physical makeup of the molecule. This shows the

ability to control the self-ordering of organic adsorbateson metal surfaces using a new dimension

to material design: surface engineering. By understandingthe physical origin of the surface in-

teraction, the chemistry of the underlying metal may be manipulated to control the self-assembly

and growth of the adsorbate, rather than changing the structure of the pre-defined molecule. While

done here using the surface dipoles and charge transfer, other mechanisms including surface states,

patterned surfaces, and band structure alignment may be further used to control the self-assembly

of organic molecules.
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[120] F. Buchner, K.-G. Warnick, T. Wölfle, A. Görling, H.-P. Steinrück, W. Hieringer, and

H. Marbach, J. Phys. Chem. C113, 16450 (2009).4.1, 4.1, 4.1, 4.3.1, 4.3.5, 4.4.2

[121] A. Weber-Bargioni, J. reichert, A. P. Seitsonen, W. Auwärter, A. Schiffrin, and J. V. Barth,

J. Phys. Chem. C.112, 3453 (2008).4.1, 4.3, 4.1

[122] K. Fletchner, A. Kretschmann, H. P. Steinrück, and J.M. Gottfried, J. Am. Chem. Soc.129,

12110 (2007).4.1, 4.1, 4.3.1



119

[123] F. Buchner, K. Seufert, W. Auwärter, D. Heim, J.-V. Barth, K. Fletchner, J. M. Gottfried,

H.-P. Steinrück, and H. Marbach, ACS Nano3, 1789 (2009).4.1

[124] T. Lukasczyk, , K. flechtner, L. R. Merte, N. Jux, F. Maier, J. M. Gottfried, and H.-P.

Steinrück, J. Phys. Chem. C111, 3090 (2007).4.1, 4.1, 4.3.6, 4.4.1, 4.4.2

[125] W. Auwärter, A. Weber-Bargioni, A. Riemann, A. Schiffrin, O. Gröning, R. Fasel, and J. V.
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[163] E. Brulè and X. R. d. Miguel, Org. Biomol. Chem.4, 599 (2006).4.3.1

[164] E. C. Zampronio, M. Gotardo, M. D. Assis, and H. P. Oliveira, Catal. Lett.104, 53 (2005).

4.3.1

[165] C. M. Drain, I. Goldberg, I. Sylvain, and A. Falber,245, 55 (2005).4.3.1

[166] L. D. DeVries and W. J. Choe, Chem. Crystallogr.39, 229 (2009).4.3.1

[167] Y. Zhou, B. Wang, and H. J. G. Zhu, M., Chem. Phys. Lett.403, 140 (2005).4.3.1

[168] C. M. Drain, F. Nifiatis, A. Vasenko, and J. D. Batteas, Angew. Chem. Int. Ed.42, 2670

(2003).4.3.1

[169] C. M. Drain, J. D. Batteas, G. w. Flynn, T. Milic, N. Chi,D. G. Yablon, and H. Sommers,

PNAs99, 6498 (2002).4.3.1

[170] J. Zhang, C. Sessi, C. H. Michaelis, I. Brihuega, J. Honolka, K. Kern, R. Skomski, X. Chen,

G. Rojas, and A. Enders, Phys. Rev. B.78, 165430 (2008).4.3.1

[171] N. T. M. Hai, B. Gasparovic, K. Wandelt, and P. Brökmann, Surf. Sci.601, 2597 (2007).

4.3.1



123

[172] S. Yoshimoto, N. Yokoo, T. Fukuda, N. Kobayashi, and K.Itaya, Chem. Commun. p. 500

(2006).4.3.1, 4.3.6

[173] T. Yokoyama, S. Yokoyama, T. Kamikado, and S. Mashiko,J. Chem. Phys.115, 3814 (2001).

4.3.1

[174] L. Ramoino, M. von Arx, S. Schintke, A. Baratoff, H.-J.Güntherodt, and T. Jung, Chem.

Phys. Lett.417, 22 (2006).4.3.1
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[192] M. Pitoŏá, P. Neogrády, J. Rezác̆, P. Jurec̆ka, M.Urban, and P. Hobza, J. Chem. Theo. Comp.

4, 1829 (2008).4.3.5
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