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 This thesis presents evidence of preferential adsorption and the associated dipole-

dipole interactions that can occur at molecule to molecule interfaces. The results are 

discussed in the context of the possibility of interactions caused by strong intrinsic 

dipoles when adsorbed on electrostatically biased substrates. Key is the discovery of lock 

and key adsorption chemistry by comparing the reversible absorption of the three isomers 

of di-iodobenzene (1,2-di-iodobenzene, 1,3-di-iodobenzene, and 1,4-di-iodobenzene) on 

molecular films of a quinonoid zwitterion. There is unequivocal evidence that the 

molecular adsorption and absorption of 1, 3-diiodobenzene is strongly favored at 150 K 

over the other isomers of di-iodobenzene. Our experiments also demonstrate that 

reversible isomer-selective adsorption chemistry of small molecules is indeed possible, 

with a preferential adsorption mechanism illustrating that symmetry does matter. 

Evidence of selective adsorption on specific ferroelectric domains of the molecular 

ferroelectric, copolymers of polyvinylidene fluoride with trifluoroethylene (PVDF-TrFE) 

is presented. The adsorption of di-iodobenzene depends not only on the dipole orientation 

of the PVDF-TrFE ferroelectric domains, but also the di-iodobenzene isomer. 



 
 

          Foundational to this work is the investigation of the interaction and orientation of a 

strongly dipolar zwitterionic p-benzoquinonemonoimine-type molecule, with a large 

intrinsic dipole of 10 Debye, on both conducting (gold) and on polar insulating substrates 

(lithium niobate). I have studied surface electronic spectroscopic properties and the 

preferential absorption pattern of these unusual zwitterionic molecules 

C6H2(···NHR)2(···O)2, where R = H, n-C4H9, C3H6-S-CH3, C3H6-O-CH3, CH2-C6H5 on 

gold and demonstrated the selective deposition of molecules onto specific ferroelectric 

domains for a spatially periodically poled ferroelectric surface (lithium niobate).  
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Chapter 1 Introduction 
 
         This dissertation describes my research work mainly directed at the investigation of 

preferential adsorption and the associated dipole-dipole interactions of molecules with an 

intrinsic strong dipole on electrostatically biased substrates. If electrostatic dipolar 

interactions can lead to preferential adsorption on electrostatically biased substrates, then 

the large-dipole molecules can be used for chemical testing, possibly even for chemical 

signatures (protein specific) disease markers. This would be sort of like the standard ‘gel 

electrophorisis’ but on a solid state chip. 

         The interactions of adsorbate molecules on a ferroelectric substrate can harken back to 

the problem of the cavity field introduced by Lars Onsager [1], who considered the 

effective internal electric field in polar liquids. The cavity field can orient molecules in the 

ferroelectric phase, and the molecules then polarize the neighbor molecules. This in turn 

generates an opposite reaction field. With adsorption on a ferroelectric, there are some 

significant differences from Onsager’s cavity field concept as there is an effective external 

field provided by the ferroelectric substrate acting on the adsorbate molecules with a strong 

dipole, but the reaction field concept is retained. The substrate–molecule dipolar 

interactions may include a number of complexities due to the interplay between interface 

dipoles and interface chemistry. Dipole contributions from the chemical bonds formed with 

the substrate, the local field induced by the substrate and image dipoles within the substrate, 

may all contribute to the total interface dipole between a conducting substrate and a dipolar 

adsorbate molecule.  

         Interfacial dipole interactions have long been implicated as important in surface 

adsorption and surface catalysis [38-41] (Figure 1.3 shows the origins of various interfacial 
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dipoles). The investigation of surface dipole interactions are, unfortunately, often 

complicated by the influence of the substrate (including band structure effects [42]) and 

strong perturbations due to surface charges that induce large surface dipoles on metal 

surfaces [43]. Ferroelectric materials provide a great opportunity to investigate dipole 

interactions with adsorbates [44-55], particularly as the surface electric dipoles are 

“reversible” [44-45, 48-55]. 

 

 

Figure 1.3 Various origins for interfacial dipole. (a) electronic orbital tailing into the 

vacuum and leaving vacancy (hole) behind, (b) charge transfer between adsorbate and 

substrate, (c) chemical reaction occurs between adsorbate and substrate. (d) metal surface 

dipole layer, as shown in (a), disturbed by non-polar adsorbed molecule causing surface 

charge rearrangement, (e) image charge induced by polar molecule approaching metal 

surface, (f) interfacial dipole caused by adsorbed molecule with permanent dipole [56]. 
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         In this dissertation, the ferroelectric materials employed as electrostatically biased 

substrates to study preferential adsorption and the associated dipole-dipole interactions 

mainly include periodically poled lithium niobate(PPLN) and poly(vinylidene fluoride 

(PVDF)-trifluoroethylene (TrFE)) copolymers. 

         In a properly oriented ferroelectric sample, such as lithium niobate (LiNbO3) 

crystalline thin film, the polarization can be aligned perpendicular to the surface in the 

positive or negative direction to form antiparallel ferroelectric domains. A domain wall 

separates these two domain states. The distinctly oriented domains differ in the sign of key 

non-vanishing components of the piezoelectric, electro-optic, and nonlinear optical tensor. 

In this case, the abrupt change in the normal component of the spontaneous polarization on 

the surface results in the appearance of a bound polarization charge, which in ambient 

conditions is compensated by the accumulation of ionic species or dipole molecules and 

through redistribution of mobile carriers in the bulk [57]. This screening significantly 

affects the surface charge distribution and the surface potential and results in band bending 

[58]. Similarly, charged surface states can pin the surface Fermi level resulting in a change 

in both the surface charge, the surface potential, and the molecular band offsets [59]. It has 

been recently shown that these electrically switchable properties of the ferroelectrics can 

be used to tailor surface reactivity. 

         Besides, molecules possessing a strong intrinsic dipole are keys for testing if 

electrostatic dipolar interactions can lead to preferential adsorption on electrostatically 

biased substrates [2-16]. Both the magnitude of the molecular electrostatic dipole and the 

frontier orbital symmetry play a dominant role in the adsorption process. Even when 

intermolecular interactions do not involve any irreversible chemical reaction between the 
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molecular species, there is a balance between the chemical interactions and the electrostatic 

dipolar interactions [2, 3, 10-16]. 

         Insight into these problems can be gained by comparing the adsorption of different 

isomers of a simple molecule. The investigation of molecular isomeric effects in surface 

science is documented [17-27], with most of the emphasis involving chiral surfaces [17-24] 

or chiral molecules. Isomer-specific surface chemistry has generally not been an emphasis 

in the study of molecular adsorbates on molecular substrates. Electrostatic interactions have 

often been implicated as the origin of the isomer-dependent chemistry [25-27] and while 

the surface structures tend to depend on the isomer (often a chiral isomer), the adsorption 

process itself has not been conclusively demonstrated to be isomer-dependent. 

The molecules we chose to emphasize in these studies are the three isomers of di-

iodobenzene (1, 2-di-iodobenzene, 1, 3-di-iodobenzene, and 1, 4-di-iodobenzene). Such 

small molecules provide a clear test of preferential isomeric adsorption, particularly 

because their intrinsic dipole depends on the isomer. By using photoemission and inverse 

photoemission spectroscopy, we investigate di-iodobenzene adsorption/absorption on films 

made of several different dipolar molecular systems. One such substrate were the small, 

highly dipolar molecules, from the family of p-benzoquinonemonoimine zwitterions with 

rather high symmetry properties. We find that there is a lock and key adsorption chemistry 

evident by comparing the reversible absorption of the three isomers. Our experiments also 

show the unequivocal evidence that the molecular adsorption and absorption of 1, 3-

diiodobenzene is strongly favored at 150 K over the other isomers of di-iodobenzene and 

we are able to demonstrate that reversible isomer-selective adsorption chemistry of small 
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molecules is indeed possible, with a preferential adsorption mechanism illustrating that 

symmetry does matter. 

         One of the molecular substrate in the di-iodobenzene adsorption studies is from the 

family of p-benzoquinonemonoimine zwitterions. The quinonoid zwitterions (as figure 1.1 

shows), although electrically neutral as a whole, carry positive and negative charges on 

different parts of the molecules.  The positive charge is delocalized between the amino 

groups over 4 bonds involving 6π electrons, while the negative charge is spread likewise 

between the oxygen atoms [28-30].  The result is a large electric dipole of typically 10 

Debye that is formed across the “benzene” like plane of the benzoquinonemonoimine 

“core”; this makes these zwitterionic compounds fascinating candidates for the study of the 

electronic structure. These molecules not only have a very strong local dipole, but the 

delocalized benzene π molecule of the zwitterion “core” loses aromatic character due to the 

large charge separation.   

 

 

Figure 1.1 Representation of the family of the zwitterion studied. 

 

          More specifically, we investigate surface electronic spectroscopic properties of 

zwitterionic compounds of the p-benzoquinonemonoimine type (C6H2(···NHR)2(···O)2, 



 
 

6

where R = H, n-C4H9, C3H6-S-CH3, C3H6-O-CH3, CH2-C6H5, etc.) (as shown in figure 1.2), 

adsorbed on Au.  

 

 

Figure 1.2 Zwitterionic compounds with different pendant groups studied. 

 

          We show that ultra-thin films of p-benzoquinonemonoimine compounds of good 

coverage can be readily formed on Au, and exhibit properties tunable by the choice of the 

pendant R groups. These molecules exhibit very efficient interface dipole screening, thus 

the p-benzoquinonemonoimine type zwitterionic compounds may become organic materials 

of interest for their interfacial electronics properties. We also show that organized films, 

exhibiting crystallinity, can be closely packed on substrates, and may be n-type conductors. 

This new type of self-assembled molecular film is therefore a powerful tool for engineering 

metal-organic interfaces for electronics applications. 

         An investigation of the electronic structure of molecules on ferroelectric surfaces can 

also provide additional information regarding the polarization effect on molecular 

adsorption. In this dissertation, we investigate the polarization effect on adsorption of 

quinonoid zwitterion molecules C6H2(···NHR)2(···O)2, where R=n-C4H9, d-cysteine 
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molecules [a chiral isomer of l-cysteine (chemical formula C3H7NO2S)], folate acid and 

fibroblast cells on ferroelectric substrates using a combination of infrared 

spectramicroscopy and spatially resolved x-ray absorption near edge spectroscopy 

(XANES). 

         We have shown that although experiments were performed in the absence of any 

external electronic excitation (optical or thermal), the adsorption was still affected by 

polarization with preferential deposition occurring on the positive domains. This 

observation allows us to exclude selective molecular adsorption due to the surface charge 

resulting from, for example, the pyroelectric effect, restricting the possible surface 

interactions to polarization-dependent surface chemistry and dipole-dipole interaction 

between polar molecules and ferroelectric polarization dipoles. 

         In recent years, there is a rich literature of cysteine adsorption chemistry and the 

characteristics of cysteine adsorption molecules on polar surfaces could be of interest in 

differentiating amino acid molecules. Our work could be widely applicable in other fields 

outside physics. 

         The reason we choose polymer ferroelectric materials as substrate is because of their 

surprising simplicity compared to the complex surfaces formed with the inorganic 

ferroelectric materials. The complexities associated with inorganic ferroelectrics include 

surface compositional instabilities, an abundance of lattice defects (point defects, steps and 

grain boundaries), and considerable difficulty in preparing a stable reproducible surface 

with well-ordered dipoles oriented along the surface normal. And the best way to study the 

dipole interaction and the band offsets at the interface is to use a switchable ferroelectric 

material at one side. The organic ferroelectric polymer polyvinylidene fluoride with 
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trifluoroethylene [P(VDF-TrFE, 70%:30%)] becomes our preference due to its highly 

ordered, controllable surface. 

Evidence of selective adsorption on specific ferroelectric domains of the molecular 

ferroelectric, copolymers of polyvinylidene fluoride with trifluoroethylene (PVDF-TrFE), 

and the inorganic ferroelectric lithium niobate is also presented in this thesis. The 

adsorption of di-iodobenzene depends not only on the dipole orientation of the PVDF-TrFE 

ferroelectric domains, but also the di-iodobenzene isomer. 

 Organic materials are commonly regarded as electrical insulator with a large range 

of application in electronics, biomedical and pharmaceutical purposes.  This is largely true 

even today when we observed man made organic materials in our surroundings.  However, 

electrical conduction on organic materials began to draw attention of scientists.  Even today 

questions such as underlying mechanism of electron mobility, synthesis of materials with 

determine conductivity properties, which electronic state promotes conduction, are current 

subject of research for scientist in materials and nanotechnology research.  

           Electronic properties at organic interfaces are of crucial importance for 

characterizing and understanding carriers injection and transport in organic electronics [60, 

61], especially for the purpose of improving device properties [62, 63]. The HOMO and 

LUMO energy levels of free molecules are generally shifted when the molecules are 

brought into contact with a conducting substrate, and simple arguments based on vacuum 

levels alignment fail [64]. The fundamental reason is that the energy level alignment is 

dependent on the interfacial electronic structure and on interfacial dipole layer [61, 65, 66]. 

In most cases the Fermi level of the substrate should lie in the middle of molecular adlayer 

HOMO-LUMO bandgap, consistent with the intrinsic dielectric properties of the bulk 
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molecular material. With an interface dipole and charge transfer across the interface 

molecular band offsets will occur, however, and these can then be exploited for better 

molecular electronic device performance. The chemical bonding at the interface, the 

adsorbate molecular orientation [67], the adsorbate dipole [68, 69], and their interplay [70, 

71] all play a role in establishing the interface dipole. This result is an interface potential 

barrier due to an offset between the conduction band minimum (lowest unoccupied 

molecular orbital) or the valence band maximum (the highest occupied molecular orbital) 

and the electyrode Fermi level leading to a charge injection barrier at the metal-molecules 

[65, 66]. If the molecular species have an intrinsic significant dipole, one can expect an 

efficient screening of the ubiquitous metal-vacuum interface dipole, so that there may be a 

suppression of the changes of molecular-type energy level alignments when decreasing the 

thickness of molecular adlayers [65, 72].  

In the last chapter of this dissertation, we will discuss relating applications. We will 

show the conductivity property of the p-benzoquinonemonoimine molecules and the study 

of the shifts of positions of the molecular orbitals of the conjugated semiconducting 

polymer, poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) when 

lead selenide (PbSe) quantum dots or the fullerene based molecule [(6)]-1-(3-

(methoxycarbonyl)propyl)-[(5)]-1-phenyl-[5,6]-C61, known as PCBM, are dispersed in the 

polymer host. We demonstrate that MEH-PPV doped with a large-Z semiconducting 

material, such as PbSe nanocrystal quantum dots, is a candidate for use as a good gamma 

radiation detector. 
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Chapter 2 Experimental Methods 

         In this Chapter, I will briefly introduce the experimental techniques and sample 

preparation methods used in the research work described in this dissertation. 

         In our experiment, ultraviolet photoemission spectroscopy (UPS) and inverse 

photoemission spectroscopy (IPES) are two major microscopic techniques to study the 

electronic structures of the sample surface and the interface between two different films, 

which gives the most direct picture of the energy level alignment at the interface. The 

surface sensitivity of the techniques originates from the very limited mean free path of the 

photoelectrons [1, 2] (usually less than 10 nm for almost all the materials).  Ultraviolet 

photoemission spectroscopy investigates the occupied electronic states, while inverse 

photoemission spectroscopy investigates unoccupied electronic states. In the following, I 

will introduce them respectively. The spectroscopy experiments are usually performed in 

ultra-high vacuum (UHV) with a base pressure in the region of 10-10 Torr. The vacuum was 

maintained using turbomolecular and ion pumps. 

 

2.1 Ultraviolet Photoemission Spectroscopy (UPS) 

2.1.1 Theory  

         Photoemission spectroscopy (PES) or photoelectron spectroscopy, is a standard 

method in condensed matter physics to probe surface electronic structures of materials. This 

technique utilizes photo-ionization and analysis of the kinetic energy distribution of the 

emitted photoelectrons to study the composition and electronic state of the surface region of 

a sample. The physics behind the PES technique is an application of the photoelectric 

effect: a photon impinges on sample surface and the excited electrons are escaped out of the 

http://en.wikipedia.org/wiki/Photoelectric_effect
http://en.wikipedia.org/wiki/Photoelectric_effect
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surface and then collected and analyzed by an energy analyzer. The escape depth of 

electrons is only a few Å in metals [3-6], and in some insulators and semiconductors, the 

mean free path could be very large [7] and the bulk electronic structure can also be 

measured. This advantage makes photoemission technique suitable for investigating 

electronic structures near the sample surface. Thus it is a surface sensitive technique.  

          Depending on the variety of incident photo energies, photoemission spectroscopy can 

be referred to several techniques. Ultraviolet photoemission spectroscopy (UPS) uses 

ultraviolet photon (photon energy region below 200 eV) to study valence energy levels and 

chemical bonding; especially the bonding character of molecular orbitals. A photon of 

energy �� is incident on surface, and is absorbed by an atom resulting in the ejection of an 

electron with binding energy �� as shown in figure 2.1. 

 

 

Figure 2.1 Schematic view of ultraviolet photoemission spectroscopy [8]. 
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          This electron is emitted into the vacuum with a kinetic energy Ekin, which follows 

equation 2.1: 

                     ���� � �� 	 �� 	 
���
 	 �������� ������� � �� 	 �� 	 �                     2.1 

where � is a parameter that depends on the  work function of the spectrometer rather than 

that of the sample itself (i.e. the contact potential difference between the sample and the 

spectrometer). 

   The photoemission process involves a transition from an initial state i of wave 

function �� to a final state f of wave function ��. This transition is induced by the photon 

field with the associated vector potential �� . The transition probability or partial cross 

section σ of a photoelectric event occurring for an excitation may be calculated by use of 

Fermi’s golden rule [8, 9, 10]: 

               �
����� !"�# $%��&�' (�)*
+�&�� ,,-$ .
�/ 	 �� 	 ������                     2.2 

 where E and � are electronic energy and wave function for initial ( i ) and final ( f ) 

states separately,�'(�)* is the interaction potential proportional to ��' 01� 2 01�' �� and �� is the 

vector potential of the incident electromagnetic field, 01� is the momentum operator of the 

electron. 

The photoemission process is very rapid (on a time scale of 10-16 s), the excited state 

of the system usually has no time to relax into an equilibrium state. In this case, the process 

can use simple “the frozen orbital approximation”, where the transition matrix element 

contains only two-electron wave functions: 

                          3��$�' (�)*
+�&�� ,4 � 3���5678$�' (�)*
+�$���9 ,4                            2.3   

where we assume final state wave function ��  as a product of ���5678which is free 

http://en.wikipedia.org/wiki/Work_function
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electron of kinetic energy ����  and ���:9 
; 	 <�  which represent the N-1 remaining 

electrons (and the index u indicates the electron u is not included). In a similar way, the 

initial state wave function is a product of orbital ���9 of the excited electron and  ���:9 
; 	
<�  of N-1 remaining electrons. The photoemission experiment then measures the Hartree-

Fock energy of the orbital => ���9 � 	?9, which is the Koopmans’ binding energy. 

         When we take into account relaxation, by assuming the final state of N-1 electrons has 

@  excited states and corresponding wave function: ����9 (N-1), the transition matrix 

elements becomes: 

                              3��$�' (�)*
+�&�� ,4 � 3���5678$�' (�)*
+�$���9 ,4' # A��  2.4              

where &A�&  is the probability that the removal of an electron in orbital �9 of the N-electron 

ground state leaves the system in the excited state @ of the N-1 electron system, and A� is 

given by: 

                                              A� � 3����9 
; 	 <�$���:9 
; 	 <�4                                         2.5 

for a strongly correlated system, many of A� are nonzero, we observe “satellite” peaks, and 

for @ � =, we obtain the “main” photoemission peak. 

         In the UPS experiment (the schematics of photoemission experiment is shown in 

figure 2.2 (a)), we can use either an analyzer with a large acceptance angle to get 

information integrated over large parts of the reciprocal space, i.e. we get the densities of 

occupied electronic states. Or we can use an analyzer which accept only electron in a small 

solid angle in order to measure the emission angle of the electrons to do angle resolved 

UPS, and investigate the dispersion of electronic bands �
BC�  and �
BD�  for bulk and 

surface states [8, 11-17]. A movable electron energy analyzer is usually used when 

recording angle resolved spectra, and we need to extract information about the electron 



 
 

19

wave vector from the geometry of the experiment. For typical experimental geometrical 

parameters as shown in figure 2.2(b), different photoelectron emission angles E correspond 

to the different parallel wave vector k and thus a different point in the surface Brillouin 

zone. Photoelectrons emitted along the surface normal have no parallel wave vector and are 

representative of the surface Brillouin zone center
FG�.  

(a)        (b)  

Figure 2.2 (a) Top view schematics of experimental setup of photoemission. The big grey 

circle is the cross section of vacuum chamber body [18]. (b) Schematic of photoemission 

spectroscopy experiments process [10]. 

 

         In photoemission process, the energy and momentum must be conserved. An electron 

in a valence band of a solid (a periodic array of atoms) does not belong to a single atom. 

We are observing state sharp in k -space and “fuzzy” in real space. We can define the 

spacing between each repeat atom as real space value a, and define the reduced momentum 

or wavevector B � H�IJ in the reciprocal space. Thus, the same state of the electron is 

reproduced by adding a reciprocal lattice vector G. The perpendicular component of the 

wavevector of the electron BC is not conserved due to the broken symmetry at the surface (a 

potential step exists at the surface). The conservation laws then becomes: 
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                                                                 �� 	 �� � �� 

                                                                 BD
K� � BD
L� 2 MN                                           2.6 

where MN is a surface reciprocal lattice vector, and B is the component of the wavevector 

parallel to the surface. 

         When we fix the photon energy and rotate the electron energy analyzer to collect 

photoelectrons that are ejected as a function of angle E off the surface normal, we can probe 

a finite BD value. This idea is represented mathematically in reduced zone by: 

 

                                               BD
K� � O �
ħP ����QLRE � BD
L�                                          2.7 

          This means we can sample different surface plane electron wave vectors by rotating 

the analyzer to obtain different collection angles E for the emitted photoelectrons. When the 

binding energy of a state (the energy position of a photoemission peak) varies as a function 

of wave vector (analyzer angle) this is called dispersion. Thus we can use angle resolved 

UPS to map out band dispersion of electronic bands. 

          The perpendicular component of the wave vector in the initial state BC
L� is directly 

related to the information of final state ��
B�. For photon energies above about 30 eV, the 

photoelectron may be generally assumed to be free-electron-like, as a reasonable 

approximation. For a free electron, we have: 

                                                          ���� � ħP
 � B 	 ST                                                     2.8  

where ST defines inner constant potential as a sum of the work function � and the Fermi 

energy ��> ST � � 2 ��. When combined with Equation 2.7, the perpendicular component 

of the wave vector in the initial stateBC
L� is given by: 
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                                     BC
L� � O �
"P 
����A�Q E 2 ST�                                                      2.9                                              

         This means we can vary the incident photon energy (fix the angle of emission 

photoelectrons) to map out the perpendicular wave vector to the surface. 

 

2.1.2 The Photoemission Experiment 

         Compared to other photoemission spectroscopy, such as XPS (we will discuss it latter 

in this chapter), UPS has greater surface sensitivity due to the smaller mean free path of 

resulting photoelectron (on the order of 5 �10 Å). For the UPS experiments in this 

dissertation, the light sources used are helium lamp ultraviolet (UV) light and synchrotron 

light. The UV light in laboratory was generated by a helium gas-discharge lamp, denoted as 

a “He lamp” in short. Photons with two different energies can be emitted from a He lamp: 

He I 21.2 eV and He II 40.8 eV depending on the gas pressure inside the lamp. He II light is 

more difficult to achieve than He I. The efficient generation of He II requires a lower gas 

pressure inside the lamp and emits light with much lower intensity. Gas pressure is a key to 

get a good monochromatic light with reasonable intensity. Lower pressure usually gives 

lower light intensity, but better monochromaticity. Too low pressure, however, will shut the 

lamp off. So gas pressure need be fine-tuned inside the lamp. 

         The UPS experiments in this dissertation were carried out using a helium lamp at �� = 

21.2 eV (He I) and a PHI hemispherical electron analyzer with an angular acceptance of 

U<VT or more, as described in detail elsewhere [19-25]. 

          The angle-resolved photoemission spectroscopy (ARPES) measurements employed 

plane-polarized synchrotron radiation dispersed by a 3 m toroidal grating monochromator 



 
 

22

[26, 27], at the Center for Advanced Microstructures and Devices (CAMD) [28]. The 

measurements were made in a UHV chamber employing a hemispherical electron analyzer 

with an angular acceptance of U<T , as described elsewhere [26, 27]. The combined 

resolution of the electron energy analyzer and monochromator was 120–150 meV for high 

kinetic photon energies (50–120 eV). The photoemission experiments were undertaken as a 

function of light incidence angle (as shown in figure 2.3), with respect to the surface 

normal, and with the photoelectrons collected along the surface normal, to preserve the 

highest point group symmetry and eliminate any wave vector component parallel with the 

surface. 

 

                Figure 2.3 Schematic view of angle resolved photoelectron spectroscopy [8]. 

 

         The high resolution photoemission studies in this dissertation were carried out on the 

3 m normal incidence monochromator (NIM) beamline, also at the Center for Advanced 

Microstructures and Devices (CAMD) [29], as described elsewhere [30, 31]. This normal 

incidence monochromator is combined with a high resolution electron energy analyzer 

(Scienta SES-200 electron energy analyzer) [25, 30] endstation. The combined resolution 

(including beamline and analyzer) is 9 to 15 meV [30]. 
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          The light polarization dependent ultraviolet photoemission spectroscopies are also 

carried out using synchrotron light, dispersed by a 3 m toroidal grating monochromator, at 

CAMD, as described in detail elsewhere [32-34]. The measurements were performed 

employing a hemispherical electron energy analyzer with an angular acceptance of ±10. 

Synchrotron radiation has a unique advantage that other light sources cannot compete: 

highly linear polarization of the light. The peak intensity of photoemission spectrum can be 

enhanced by synchrotron light if the corresponding initial electronic state shares the 

symmetry with the light polarization (or suppressed if the symmetry of the electronic state 

is orthogonal to that of synchrotron light) according to Equation (3.0): 

                                                        3��$
���' 01� 2 01�' ���$�� ,4                                                 3.0 

         The photoelectrons are collected along the sample surface normal throughout our 

experiments, so the final states are always fully symmetric along the surface normal. We 

change the incident angle (with respect to sample surface normal) of synchrotron light to 

alter the cross section between the incident photon and the excited (initial) electronic state. 

Except for the band structure measurements the photoelectrons were usually collected along 

the surface normal to keep the highest point group symmetry (Γ point) of the final state: the 

symmetry selection rules are thus at their most “selective”. There are three commonly used 

schemes: (a) s-polarized light (small incident angle, say 30°, with respect to the surface 

normal) with more polarization (vector potential�� ) lying parallel with surface; (b) p-

polarized light (big incident angle, say 70°) with more polarization lying perpendicular to 

sample surface; (c) s+p polarized light (45° incident angle) with equal weight of the total 

polarization along the surface and surface normal. 
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2.2 X-ray Photoemission Spectroscopy (XPS) 

 

 

Figure 2.4 Schematic view of XPS [8]. 

 

          X-ray photoemission spectroscopy (XPS) is often used as a chemical analysis 

technique to provide information on the atomic composition of a sample as well on the 

chemical states of the observed atoms. The XPS process is quite similar to the UPS process 

except the incident photons have much higher energy than for UPS and XPS interact with 

core levels of the atom, leading to ionization by removal of the core level electrons ( as 

shown in figure 2.4). The electron emitted into the vacuum with a kinetic energy Ekin also 

follows the Equation 2.1, and the experimental setup is shown in figure 2.2(a). 

         In this dissertation, the core level X-ray photoemission spectra were performed with a 

PHI hemispherical electron analyzer with an angular acceptance of U<VTand a SPECS X-

ray source with a Mg anode (�� = 1253.6 eV) or performed with a VG-Fisons X-ray source 

with a Mg anode (��  = 1253.6 eV), and a VG 100 hemispherical analyzer, but data 

http://en.wikipedia.org/wiki/X-ray
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collection times and the X-ray flux were specifically limited to avoid X-ray induced 

molecular fragmentation. 

We can use angle-resolved X-ray photoemission spectroscopy (ARXPS) for non-

destructive depth-profiling. Many of excited photoelectrons undergo inelastic scattering 

during propagation towards the surface, and can only travel a certain distance in the solid, 

characterized by the electron mean free path λ [4]. The effective probing depth is given by 

                                                                W��� � WXYZ�
E�                                                 3.0 

where E is the emission angle with respect to the surface normal. The theoretical values of λ 

have been tabulated in reference [4], as a function of the core level kinetic energy.  

According to the Beer-Lambert law, the photoelectron intensity from atom at depth d, 

for a material with uniform chemical composition, can be expressed as  

                                                  [\ � [T]
^\ _`ab�
c��d                                               3.1 

where [T  is the intensity from the surface atoms. Thus information, of the sample 

composition as a function of depth from the surface, can be gained by changing the 

emission angle, and comparing the XPS intensities. The measured XPS intensities for each 

different elemental core levels must be normalized by taking into account the efficiency of 

the particular electron energy analyzer for passing and detecting the photoelectrons at the 

kinetic energies characteristic of the elements in the sample, the photoemission cross 

sections, and the photoemission geometry. Consider alloy with two elements in the sample 

surface region: A and B [9], the normalized intensity ratio is then given by 

                                          e
E� � fgh
c� ihd
gj
c� ijd k l5678m 
n�^o

5678m 
��^op                                           3.2 
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where qn, q� are the cross sections for elements A and B respectively, and we use the cross 

sections calculated by Scofield [10]. ����r 
�� s� 	 t is the transmission factors of electron 

energy analyzer, and we set p=0.5 and C=0 for our type of analyzer [35]. 

 

2.3 Inverse Photoemission Spectroscopy (IPES) 

 

                      (a)           (b)     

Figure 2.5 (a) Schematic of inverse photoemission spectroscopy [8]. (b) Top view 

schematics of experimental setup of inverse photoemission spectroscopy. The big grey 

circle is the cross section of vacuum chamber body [18]. 

 

         Inverse photoemission spectroscopy investigates unoccupied electronic states above 

the Fermi Level. The inverse photoemission process can be regarded as the time reversed 

photoemission process [8, 36]. An incident electron to the sample surface results in the 

emission of a photon due to decay of this incident electron from the state above the 

vacuum level into an unoccupied state below the vacuum level and above the Fermi level, 

the schematics and experimental setup are shown in figure 2.5. Thus, an investigation of 
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unfilled electronic states, typically between the Fermi level and the vacuum level is 

possible. The energy of the unoccupied final state is given by the energy of the incident 

electron ���� minus the detected photon energy ��. 

         The process of inverse photoemission is not exactly the inverse process of 

photoemission, the difference between inverse photoemission and photoemission is 

discussed in greater detail in reference [8]. The details of the dipole and symmetry 

selection rules which can be used for the interpretation of inverse photoemission are given 

in several reviews [12-13, 36-37]. 

Inverse photoemission studies in the vacuum ultraviolet photon energy range of a few 

volts to 30 eV since it’s much easier to take advantage of conservation of the parallel 

component k of the wave vector. At these low energies, mapping of the unoccupied 

electronic states near EF , as function of wave-vector k (unoccupied band) can be 

successfully taken experimentally, since one can probe only one k -point in the Brillouin 

zone for each incidence angle in IPES. Moreover, IPES has strength that it is very surface 

sensitive. 

In our lab, the energy of the incident electrons is tuned by the electron gun and the 

emitted UV photons are detected by the vacuum compatible Geiger-müller detector at fixed 

energy. The principle of operation of the Geiger-müller detector is similar to that of a band 

pass filter. The detector is sealed with CaF2 windows and filled with He (12 Torr< P < 18 

Torr) and some iodine crystals (P=0.17 Torr). The Geiger-Müller (GM) photon detector uses 

the ionization of iodine gas to detect photons. The UV photons come into GM detector through 

a CaF2 window which has the high-energy transmission threshold at 10.08 eV [38]. The 

incoming photons then ionize iodine gas with the ionization potential 9.28 eV [39]. The freed 
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electrons will be collected by electronics device simulating a pulse as a photon. The detectable 

photons lie in the range between 9.28 eV to 10.08 eV. The window and the iodine gas 

combined act as a band pass filter, so this GM detector only takes photons at a fixed energy 

9.68 ± 0.4 eV. The different unoccupied states (with binding energy ��) above the Fermi level 

are detected by incident electrons with different kinetic energies �� . Note that the kinetic 

energy ��  is measured from the vacuum level �u, while binding energy �� is referenced with 

respect to the Fermi level ��. So the energy relationships between these quantities are still the 

same as Equation (2.1) except ��  is positive here, instead of negative for occupied states 

(UPS). 

 

2.4 Infrared Micro-Spectroscopy 

         The infrared microspectroscopy experiments in this dissertation were performed at the 

J. Bennett Johnston, Sr. Center for Advanced Microstructures and Devices (CAMD) in 

Baton Rouge, LA. Synchrotron IR radiation was directed from a Thermo Nicolet Nexus 

670 FT-IR spectrometer into a Thermo Nicolet Continuum microscope after being extracted 

from a bending magnet port to a diamond window and subsequently collimated with a 

series of mirrors [40, 41]. The spectrometer is equipped with two beamsplitters, two 

detectors and a globar source. The user can switch between the globar source and the 

external radiation when using the microscope, one that uses Schwarzchild optics, two 

objectives (15× and 32×) and one condenser (15×). A liquid nitrogen-cooled mercury 

cadmium telluride (MCT-A) detector covers the required mid-IR spectral range of 4000 to 

650 cm-1, and chemical imaging ( infrared mapping) is performed with a computer-

controlled XY-stage of the microscope. The aperture size for mapping can be selected, 
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depending on different samples and situations. For example, in our experiments, the 

aperture size of 50×20µm2 was employed for d-Cysteine and 40×40µm2 for LR2 for the 

mapping, respectively [40, 41]. A clean gold substrate was used for a background spectrum 

and 15X Schwarzchild objective was chosen to focus the infrared beam onto the sample 

stage. 

          The software package responsible for microscope-to-computer imaging and infrared 

mapping is Omnic. For signal averaging, 256 scans with a resolution of 4 cm-1 were 

recorded. The subsequent spectra were all baseline corrected. 

          Any peak height differences due to concentration were normalized via peak area 

normalization. The maps were constructed by selecting a step size, i.e., spectra were taken 

at a “spot” separated by some step size. 

 

2.5 Non-contact Ferroelectric Poling 

           In this dissertation, the complete polarization of P(VDF-TrFE, 70:30) films studied 

in Chapter 6, Section 6.2 was ensured by “Non-contact Ferroelectric Poling”. The poling 

technique is performed in a single ultrahigh vacuum chamber with pressure of 1v10-10 Torr 

at room temperature. As the experiment schematics shown in figure 2.6, the polarization of 

PVDF was achieved by applying an appropriate DC bias voltage between a sharp micron 

sized electrode tip and the sample surface which is usually grounded. The applied voltage 

varies by different samples and experiments. In our experiment, we use -200 V to ensure 

the film poled up and 400 V to ensure the film poled down. The tip should be well 

positioned before each poling, and usually 0.05-0.1mm perpendicular above the sample 

surfaces. In the poling process, the tip is scanned from the top to the bottom along the 
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vertical line (w 1 cm) of the PVDF surface each time and then gradually moved across the 

whole sample surface. In our experiment, we use the manipulator in the UHV chamber to 

move the PVDF sample so that the tip can be moved across the sample relatively. The 

scanning rate of the tip is 1min per vertical line and the moving step is 0.1 mm in the 

horizontal direction. Confirmation of complete ferroelectric poling was confirmed by 

piezoresponse force microscopy (figure 2.11). 

 

 

 

         Figure 2.6 The view of the experimental set-up of non-contact ferroelectric poling. 

 

2.6 Spatially Resolved X-ray Absorption near Edge Spectroscopy (x-XANES) 

Spatially resolved x-ray absorption near edge spectroscopy (y-XANES) experiments 

were performed at the microXAS beamline (X05, Swiss Light Source, Switzerland). A 

microfocused x-ray beam of 2v2 ym2 and a solid-state Sidetector was utilized in order to 

record the y-XANES spectra. The energy of the incident x-ray beam was set using a fixed-
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exit Si (111) double-crystal monochromator, with an energy resolution of about 2 eV at 19 

keV. 

2.7 Sample Preparation 

2.7.1 Au (111) Substrate 

          In our experiments, Au (111) substrates were cleaned by ��z ion sputtering every 

time before molecule adsorptions. Its photoemission and inverse photoemission spectra 

are taken as a reference for molecule coverage dependant measurements and Fermi level 

alignment. A clean Au(111) surface will show clear Fermi edge in UPS and image state 

in IPES (Au Fermi edge and image state at [111] direction are both surface states which 

require a clean surface to be observed), as shown in figure 2.7 and 2.8. 

 

 

 

 

 

 
 

 

 
 

Figure 2.7 Ultraviolet photoemission spectrum (UPS) of Au(111) surface taken by He I 

(21.2 eV) light source at room temperature. The Fermi edge is clearly seen, as indicated 

by a red vertical bar [18]. 
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Figure 2.8 Inverse photoemission spectrum of Au (111) surface. Fermi level is at 7.2 eV 

kinetic energy, and the image state is clearly seen, as indicated in the figure [18]. 

 

2.7.2 Periodically Poled Lithium Niobate (PPLN) 

         The preparation of periodically poled lithium niobate substrate was briefly described 

here but was undertaken by Dr. Alexei Gruverman’s group in physics department UNL. 

          In our experiment, periodically poled lithium niobate (PPLN) substrates of congruent 

composition (Crystal Technologies) have been used as ferroelectric templates. At room 

temperature, lithium niobate exhibits a hexagonal symmetry with polarization along the c 

axis (polar axis) which allows only two possible domain orientations. The samples used in 

this study were 5 x 5 x 0.5 mm3 plane-parallel plates cut normal to the polar axis. A 

periodic domain pattern (period of ~28 µm) was been fabricated by depositing a photoresist 

mask on the +c sample face and applying a voltage of 10 kV through a fixture with an 
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electrolyte solution. The mask was been removed after poling the lithium niobate by means 

of chemical-mechanical polishing, leaving behind a bare ferroelectric surface of lithium 

niobate. As a result, periodic domain patterns containing stripes of antiparallel 1800 

domains, with their dipoles oriented either positive or negative along the surface normal 

have been produced (figure 2.9 (a)). These domain patterns have been observed in ambient 

environment by means of piezoresponse force microscopy (PFM) [42]. The imaging of 

ferroelectric domains using this technique exploits the fact that ferroelectric behavior 

implies piezoelectricity, and consequently mapping the piezoelectric response of a material 

provides a direct image of its ferroelectric domain structure. Imaging has been performed 

by applying an ac voltage of 2 V at 12 kHz to the sample surface through a conductive tip 

(NSC-14 MikroMasch, k= 5 N/m) and by detecting surface displacement using the same 

tip. From the atomic force microscopy (AFM) topographical mode images, the resulting 

surfaces are smooth with no features that can be associated with the ferroelectric domain 

stripes (figure 2.9 (b)). 

 

Figure 2.9 (a) piezoresponse force microscopy (PFM) phase image of the polar surface of 

the periodically poled lithium niobate sample showing antiparallel 180° domains; (b) 

atomic force microscopy (AFM) topographic image of the same area. The dipole direction 

is along the surface normal, either positive or negative with respect to the surface. 
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          Spatially resolved X-ray adsorption near edge spectroscopy (µ-XANES) experiments 

were performed at the microXAS beamline (X05, Swiss light Source, Switzerland). A 

micro-focused X-ray beam of 2 × 2 µm2 and a solid-state Si-detector was utilized in order 

to record the µ-XANES spectra. The energy of the incident X-ray beam was set using a 

fixed-exit Si(111) double-crystal monochromator, with an energy resolution of about 2 eV 

at 19 keV. The spectra were collected in fluorescence mode, with the sample placed at an 

angle of 45° relative to the incoming X-ray beam, in order to minimize scattering 

contributions to the fluorescence spectra. The sample was mounted on a 3 axis-motion 

manipulator which allows an accurate positioning (~ 50 nm) of the sample with respect to 

the photon beam. The Athena software (part of the Ifeffit program) has been used to 

normalize the raw data [43]. 

 

Figure 2.10 Spatially resolved near edge X-ray adsorption fine structure (XANES) spectra 

taken at the Nb K-edge at a number of different positions (denoted by five different colors) 

and spaced by roughly 10 µm in both vertical and horizontal directions. The fluorescence 

yields are plotted against photon energy. The Nb K-shell edge is at 18.986 keV. 
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         As seen in figure 2.10, little variation was observed in the µ-XANES spectra taken at 

the niobium K-edge (18.986 keV), with changing sample position, across the periodically 

poled lithium niobate. The absence of spectral variations in the µ-XANES spectra indicate 

that the lithium niobate (LiNbO3) is compositionally uniform and the bulk composition is 

not altered by the ferroelectric poling. 

 

2.7.3 The PVDF-TrFE Substrate 

      The PVDF-TrFE substrate in this dissertation was prepared by Dr. Luis G. Rosa’s 

group in department of physics and electronics, University of Puerto Rico-Humacao. 

       Ultrathin ferroelectric films of the copolymer 70% vinylidene fluoride with 30% 

trifluoroethylene, P(VDF-TrFE 70:30) were fabricated by Langmuir Blodgett (LB) 

deposition techniques on graphite substrates from the water subphase and 

dimethylsulphoxide (DMSO) [44, 45, 47-67]. The P(VDF-TrFE 70:30) films, nominally 9 

molecular layers thick (roughly 30 Å thick, as determined by atomic force microscopy 

studies) were further prepared in ultrahigh vacuum by annealing at 110º C, which has 

proven to be an effective recipe in prior studies[44, 45, 47-66] and has been demonstrated 

to results in a surface free from impurities (including water) [67]. Poly(vinylidene fluoride) 

[PVDF, -(CH2-CF2)n-] copolymers with trifluoroethylene [TrFE, -(CHF-CF2)-] can form 

highly ordered crystalline ferroelectric polymer ultrathin films as has been demonstrated by 

X-ray and neutron scattering [46, 47, 50, 51, 59-60], scanning tunneling microscopy [45, 

47-49, 56-59, 62, 65, 66], low energy electron diffraction [58, 59] and band mapping [45, 

58, 59, 66]. Although not always evident in scanning tunneling microscopy, the band 

structure shows a characteristic super-periodicity dominated by -(CH2-CF2)2- or -(CH2-
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CF2)-(CHF-CF2)- “dimer” pairs[58, 59, 66] in the ferroelectric phase. The copolymer 

P(VDF-TrFE, 70:30), in spite of the low overall symmetry, does show all the characteristics 

of high local symmetry and symmetry selection rules, with the dipoles aligned along the 

surface normal at lower temperatures (especially below 150 K) [63, 64, 68]. 

         The ferroelectric poling process of PVDF has been described in Section 2.5 and the 

ferroelectric domain orientations and hysteresis were determined and imaged in ambient 

environment by means of piezoresponse force microscopy [42]. As grown, the copolymer 

P(VDF-TrFE, 70:30) films have the dipoles generally oriented up and the ferroelectric 

coercivity is small, as seen in figure 2.11 where we plot the hysteresis loop of an as grown 

films. Some of the adsorption studies were carried out on the as grown films, and these 

P(VDF-TrFE) Langmuir Blodgett films should be regarded as at least partially poled as 

typically occurs during the deposition process. Complete polarization of these P(VDF-

TrFE, 70:30) films was ensured by applying a voltage to a tip scanned 1-2 mm above the 

surface (non-contact poling), across the entire surface, with -200 V to ensure the film is 

poled up and 400 V applied to ensure the film is poled down. Confirmation of complete 

ferroelectric poling was confirmed by piezoresponse force microscopy. 
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Figure 2.11 The piezoresponse force microscopy (PFM) amplitude and phase, as a function 

of applied voltage of a roughly 30 Å thick P(VDF-TrFE, 70:30) film. 

 

2.7.4 P-benzoquinonemonoimine Zwitterionic Compounds 

         In this dissertation, we investigate thin films made of a series of small quinonoid 

zwitterion molecules with a large intrinsic dipole and significant flexibility in their design. 

These zwitterionic compounds of the p-benzoquinonemonoimine type include 

(C6H2(···NHR)2(···O)2, where R = H, n-C4H9, C3H6-S-CH3, C3H6-O-CH3, CH2-C6H5, etc.) 

(as shown in figure 1.2), adsorbed on Au. These quinonoid zwitterions are prepared by Dr. 

Lucie Routaboul and Dr. Pierre Braunstein’s group in Laboratoire de Chimie de 

Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue 

Blaise Pascal, 67083 Strasbourg, France, and Dr. Gero Decher Institut Charles Sadron 

(UPR 22 CNRS), Université de Strasbourg, 23 rue du Loess B.P. 84047, 67034 Strasbourg, 

France. I briefly introduce the synthesis processes here. 
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2.7.4.1 General 

           Commercial 4, 6-diaminoresorcinol dihydrochloride and functional amines were 

used directly without further purification. Solvents were freshly distilled under argon prior 

to use. 1H NMR spectra were recorded in CDCl3 on a Bruker AC300 instrument, operating 

at 75 MHz for 13C spectra and 300 MHz for 1H spectra. Chemical shifts were found in δ 

units, in parts per million (ppm) relative to the singlet at δ = 7.26 for CHCl3. Elemental 

analyses were performed by the “Service de Microanalyse de l’Institut de Chimie” 

(Strasbourg, France). 

          The zwitterions 1, 2 and 5 (C6H2(···NHR)2(···O)2, where R = H, n-C4H9, CH2-C6H5, 

respectively) were synthesized according to established procedures [69]. Zwitterions 3 and 

4 can be synthesized using two methods: (A) the “one pot synthesis”, in which addition of 

amine to a suspension of diaminoresorcinol dihydrochloride in ethanol yielded smoothly 

the zwitterions; or (B) reaction of an amine with the “parent zwitterion” 1. The yields in 

both reactions are good to excellent and the zwitterions were easily isolated as pure 

compounds. Method (A) allows the use of commercially available reagents and is easily 

scaled up. In method (B), the stable “parent zwitterion” 1, which is also available in multi-

gram quantities, can be quantitatively converted to the desired products within 2 h by using 

stoichiometric amounts of amine, which is advantageous if the latter is expensive.These two 

methods are described in detail in the following. 
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2.7.4.2 Synthesis of Zwitterion 3 

         Method A: 4, 6-Diaminoresorcinol dihydrochloride (0.300 g, 1.41 mmol) was 

dissolved in a mixture of water and ethanol (5 mL / 15 mL) and then 3-

(methylthio)propylamine (1.1 mL, 9.81 mmol) was added to this solution. Immediately the 

color of the solution turned violet, and the solution was stirred for 2 h at room temperature 

in the presence of air. After concentration of the solution under reduced pressure, the 

residue was taken up in dichloromethane. The organic phase was dried over magnesium 

sulfate, and filtered through Celite. The solution was concentrated under reduced pressure 

and addition of pentane yielded the zwitterion 3 as a violet solid (0.410 g, 92%).  

          Method B: To a suspension of the parent zwitterion 1 (0.200 g, 1.45 mmol) in ethanol 

(10 mL) was added 3-(methylthio)propylamine (0.330 mL, 2.94 mmol). The mixture was 

refluxed for 2 h. After cooling to room temperature, the solution was filtered and 

evaporated to dryness under reduced pressure. The residue was taken up in 

dichloromethane and pentane was added to this solution to precipitate the product. After 

filtration the zwitterion 3 was obtained as a violet solid (0.430 g, 94%). 
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Figure 2.12 Synthetic methods leading to zwitterions 3 and 4. 

 

2.7.4.3 Synthesis of Zwitterion 4 

          Method A: 3-Methoxypropylamine (3.4 mL, 33.3 mmol) was added to a solution of 

4, 6-diaminoresorcinol dihydrochloride (1.00 g, 4.69 mmol) in water (10 mL). Within a few 

minutes the color of the solution changed from brown to violet. After the reaction mixture 

was stirred for 2 h at room temperature in the presence of air, the product was extracted 

with dichloromethane. The organic layer was dried over magnesium sulfate, and filtered 

through Celite. The solution was concentrated under reduced pressure and addition of 

pentane precipitated the zwitterion 4 as a violet solid (1.05 g, 79%).  

          Method B: To a suspension of the parent zwitterion 1 (0.300 g, 2.17 mmol) in ethanol 

(15 mL) was added 3-methoxypropylamine (0.450 mL, 4.4 mmol). The solution was heated 

at 80 °C for 2 h. After cooling to room temperature, the solution was filtered and 
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evaporated to dryness under reduced pressure. The residue was taken up in 

dichloromethane and pentane was added to this solution to precipitate the product. After 

filtration the zwitterion 4 was obtained as a violet solid (0.541 g, 88%). 

 

2.7.4.4 Functionalization of Gold Surfaces 

          These zwitterions were deposited on clean gold substrates from a CH2Cl2 solution. A 

typical overnight exposure to a 0.8 mmol solution (0.2 g/l) was followed by extensive 

washing by ethanol to remove the excess molecules not bonded to the Au substrate. The 

samples were dried and kept under nitrogen atmosphere. Our measurements established that 

this “washing” procedure left a very thin, 0.5-1 nm thick, adsorbed molecular film covering 

the whole substrate (i.e., no pinholes). The film thickness was estimated from the 

attenuation of the substrate gold core level signal and independently confirmed by atomic 

force microscopy and quartz crystal microbalance (QCM) experiments. Films 2-3 nm thick 

were obtained by dipping the substrates into a more concentrated solution of the molecules, 

or by ethanol washing of the surface for much shorter times (ca. 1 min). Both methods 

provided similar pinhole-free molecular films, as described elsewhere [70]. 

 

2.7.5 D-Cysteine 

          The d-cysteine powder (  99%, RT) with molecular weight 121.16 g.mol-1 used in 

our experiments is bought from Sigma Aldrich. Deposition of d-cysteine molecules on 

PPLN has been carried out by immersing the PPLN substrate in aqueous 1M d-cysteine 

solution for 24 h. Following immersion, the samples were washed in a weak 1M NaOH 

alcohol-water solution to remove excess molecules followed by rinsing in ethanol using the 
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previously described cleaning process [71] and dried. Deposition was carried out in 

isothermal conditions at room temperature without illumination. 

 

2.7.6 MEH-PPV Dopped with PbSe and PCBM 

         Powdered MEH-PPV (Sigma Aldrich) from a single batch with the average molecular 

weight 86 000 g.mol-1 was dissolved in chlorobenzene. These solutions were heated to 800C 

and stirred for 8 h, then filtered and spincast onto coated glass substrates for the pristine 

MEH-PPV sample. The substrate was indium tin oxide (ITO) coated glass with sheet 

resistance of ~10 { |d  (150 nm thick ITO) obtained from Delta Technologies. 

         For the nanocrystal bearing films, PbSe nanocrystals in solution (obtained from 

Evident Technologies) were added to MEH-PPV solutions prepared as described above in 

appropriate volume to obtain the desired weight ratios. These PbSe crystals were 5–8 nm in 

diameter and suspended in hexane. PCBM bearing films were prepared from the same base 

MEH-PPV solution described above by adding powdered PCBM (Sigma Aldrich) in 

amounts needed to achieve the given weight ratios. These samples were dried, in vacuo, for 

8 h at room temperature. Film thicknesses were measured to be 90 nm with good uniformity 

(±10%). 

          These samples were prepared by Dr. D. K. Chambers and Dr. S. Zivanovic. Selmic’s 

group in Institute for Micromanufacturing, Louisiana Tech University, 911 Hergot Avenue, 

Ruston, LA 71270, USA. 
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Chapter 3 Altering the Static Dipole on Surfaces though 

Chemistry: p-benzoquinonemonoimine Zwitterionic Compounds 

3.1 Introduction 

 In this chapter, we investigate thin films made of small molecules with a large 

intrinsic dipole and significant flexibility in their design. This allows us to take advantage 

of the tunability of the pendant groups for varying the density and nature of the chemical 

attachment to the surface, with the aim of gaining a better insight into the origin and control 

of the interface dipole [1-13]. We compare several different zwitterionic compounds of the 

p-benzoquinonemonoimine type (see in figure 3.1 i.e. C6H2(···NHR)2(···O)2, where R = H, 

n-C4H9, C3H6-S-CH3, C3H6-O-CH3, CH2-C6H5, etc.) obtained by oxidation of N-

alkyldiaminoresorcinols. The diversity of functions that can be incorporated in the pendant 

groups [14, 15, 16, 17] provides a unique opportunity for systematic studies of interface 

interactions for a family of closely related molecules, much like those studies undertaken 

for the metal (II) phthalocyanines [9, 18], or icosahedral closo-carboranes [13]. We 

systematically observe the molecular films, with homogenous films of thickness below 1 

nm, fully covering the Au surface even for a variety of different attachments involving the 

R pendant group. This allows us to take advantage of the tunability of the pendant groups 

for varying the density and nature of the chemical attachment to the surface, with the aim of 

gaining a better insight into the origin and control of the interface dipole. We compare these 

different zwitterionic compounds and the diversity of functions that can be incorporated in 

the pendant groups provides a unique opportunity for systematic studies of interface 
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interactions for a family of closely related molecules, much like those studies undertaken 

for the metal (II) phthalocyanines , or icosahedral closo-carboranes.  

 

 

Figure 3.1 Representation of the family of the zwitterion studied. Zwitterionic compounds 

of the p-benzoquinonemonoimine type, C6H2(···NHR)2(···O)2, where R = H, n-C4H9, C3H6-

S-CH3, C3H6-O-CH3, CH2-C6H5, etc.). 

 

          Given the wide range of possible substituents on the quinonoid zwitterionic core 

(Figure 3.1) [14, 15, 16, 17], the study of their influence on the bonding and electronic 

structure is essential for further materials development using this class of compounds “by 

design”. In the present work, we change the different functional R groups with the objective 

of modifying the molecular-substrate interactions, without significant alterations of the 

strong intrinsic electric dipole.  

 In this chapter, we show that ultra-thin films of p-benzoquinonemonoimine 

compounds of good coverage can be readily formed on Au, and exhibit properties tunable 

by the choice of the pendant R groups. These molecules exhibit very efficient interface 

dipole screening, thus the p-benzoquinonemonoimine type zwitterionic compounds may 

become organic materials of interest for their interfacial electronics properties. We show 
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that organized films, exhibiting crystallinity, can be closely packed on substrates, and may 

be n-type conductors. 

 

3.2 The Characterization of p-benzoquinonemonoimine Zwitterionic Compounds 

          The schematics of p-benzoquinonemonoimine Zwitterionic Compounds are shown in 

figure 3.2. As described in Chapter 2, the zwitterions 1, 2 and 5 (C6H2(···NHR)2(···O)2, 

where R = H, n-C4H9, CH2-C6H5, respectively) were synthesized according to established 

procedures [17]. Zwitterions 3 and 4 can be synthesized using two methods: (A) the “one 

pot synthesis”, in which addition of amine to a suspension of diaminoresorcinol 

dihydrochloride in ethanol yielded smoothly the zwitterions; or (B) reaction of an amine 

with the “parent zwitterion” 1. 

 

 

 

Figure 3.2 Zwitterionic compounds with different pendant groups studied in this chapter. 
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         Single crystals of zwitterions 3 and 4 were obtained at room temperature by slow 

diffusion of pentane into a dichloromethane solution of 3 or 4. Table 3.1 summaries bond 

lengths of the “C6 core” which are experimentally determined by X-ray crystallography. 

They are similar to those observed in the structures of related zwitterions [15, 16, 17].  

         Interestingly, the bond lengths C(3)-C(4) and C(4)-C(5), C(3)-O(1) and C(5)-O(2) 

distances are almost equal. Likewise (C(1)-C(6) and C(1)-C(2)) as well as (C(2)-N(1) and 

C(6)-N(2)) are similar, respectively. All these distances are intermediate between those for 

single and double bonds. However, C(3)-C(2) and C(5)-C(6) distances are much longer and 

are consistent with single bonds. Based on these metrical data, these zwitterions are well 

described as two fully delocalized 6 electrons systems (trimethyne oxonol part: 

O···C···CH···C···O and  the trimethyne cyanine part: N···C···CH···C···N) connected by two 

C-C single bonds. 

 

Zwitterion 3 Zwitterion 4 

C(3)-C(4) 1.404 C(3)-C(4) 1.393 

C(4)-C(5) 1.392 C(4)-C(5) 1.392 

C(3)-C(2) 1.514 C(3)-C(2) 1.522 

C(5)-C(6) 1.531 C(5)-C(6) 1.526 

C(1)-C(2) 1.386 C(1)-C(2) 1.388 

C(1)-C(6) 1.392 C(1)-C(6) 1.389 

C(3)-O(1) 1.253 C(3)-O(1) 1.249 

C(5)-O(2) 1.256 C(5)-O(2) 1.247 

C(2)-N(1) 1.327 C(2)-N(1) 1.319 

C(6)-N(2) 1.313 C(6)-N(2) 1.318 

 

Table 3.1 Interatomic Distances (Å) observed in zwitterions 3 and 4. 
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         Since thiol or disulfide terminal functionalities are among the most obvious choices 

for strengthening the molecular anchoring, following the extensive literature on self-

assembled monolayers [22, 23], we attempted but failed to isolate pure zwitterions 6 and 7 

(Figure 3.3).  

 

 

Figure 3.3 Zwitterions with thiol or disulfide terminal functions. 

 

         Alternatively, thioether terminal groups, are easier to synthesize and more stable 

towards oxidation than thiol or disulfide analogues. Their successful attachment to gold, 

especially when weaker interactions are needed, as in the case of molecular rotors, has been 

reported by several groups [24, 25, 26, 27]. 

 XPS studies of thioether zwitterion 3 on gold revealed however significant 

decomposition caused by high fluences of low energy electrons and possibly other 

irradiation. The fact that we did not observe any trace of decomposition of the butyl 

zwitterion 2 on gold (although much care was given to keeping the total fluences low) 

suggests that S-C bonds may be the weakest part of the molecule after adsorption [20]. In 

order to confirm this assumption, we synthesized the zwitterion 4 differing only from 3 by 

replacing sulfur by oxygen atoms. The high solubility of the zwitterion 4 in organic 
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solvents and water also provides an opportunity to study the influence of the nature of the 

solvent on the functionalization of gold by zwitterionic compounds.  

 

3.3 Adsorption of p-benzoquinonemonoimine Zwitterionic Compounds on Surfaces  

          The p-benzoquinonemonoimine zwitterions 2-4 were deposited on clean gold 

substrates from CH2Cl2 or EtOH solutions, and the zwitterions 1, 5, from CH2Cl2 solutions 

due to their poor solubility. Quartz crystal microbalance (QCM) experiments were 

performed to estimate the adsorbed mass of the layer and the kinetics for surface 

adsorption. We used a commercial system (QCM-E4, Q-Sense AB, Sweden) that allowed 

parallel processing of several devices, providing greater confidence in the reproducibility 

and facilitating comparisons between molecules 2 and 4. Figure 3.4 shows the frequency 

changes as a function of time upon formation of the molecular films for zwitterions 2 and 4. 

While several injections were necessary for zwitterion 4 to get a maximum number of 

molecules adsorbed onto the surface, only one injection was needed for zwitterion 2. 

Successive EtOH washing can eliminate a significant fraction of the deposit, especially in 

the case of zwitterion 4, where approximately half of the adsorbed molecules are removed 

from the surface by rinsing. However, after extensive washing, the residual QCM frequency 

shifts and the low dissipation values, in the same order of magnitude for both cases, 

indicate a remarkably stable thin molecular adsorption. Using Sauerbrey equation, the 

adsorbed mass can be estimated between 1 and 2 monolayers for both molecules. We 

deduce therefore that a thin film adsorbs rather rapidly, with typical isothermal adsorption 

kinetics showing layer saturations in the tens of mins range. Subsequent growth or 

reorganization has slower kinetics, and is reversible with time or through washing. For the 
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thickness dependence data shown in the subsequent sections, we used typical overnight 

dipping of the substrate in the solution, and successive washing cycles as simple means to 

obtain films of decreasing thickness value. 

 

 

Figure 3.4 Evolution of the normalized frequency, measured at 35 MHz by QCM-D, as 

a function of time for the adsorption of zwitterions 2 (green) and 4 (red) on Au. Arrows 

indicate zwitterion injections and asterisks correspond to EtOH rinsing steps. 
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          The quartz crystal microbalance (QCM) studies were also performed on substrates 

other than gold, confirming that the butyl zwitterion 2 can also be adsorbed on SiO2 

substrates, with less dense packing likely related to the lack of crystallinity. The differences 

in the adsorption of the butyl zwitterion 2 and the ether zwitterion 4 is also reflected in the 

indications of extensive and higher ordered crystal packing for 2. 

            

 

Figure 3.5 Atomic force microcopy mapping of butyl zwitterion 2 adsorbed on mica. The 

topography scan reveals thin crystals with typical 1-nm steps, corresponding to a bilayer 

of molecules (note that the top right crystal shows identical step height). 
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         Atomic force microscopy (AFM) imaging was performed on atomically flat mica 

substrates and indicated the growth of thin flat crystals, made of a few molecular layers, 

with steps corresponding to a double molecular layer (Figure 3.5). The packing of the 

compound made of dipolar molecules always show antiparallel alignment of successive 

dipoles planes, minimizing the electrostatic dipole-dipole energy, and is expected to be a 

dominant factor in growing such ultra thin films. This type of packing is consistent with 

two molecules per unit cell, as inferred from the band structure, as discussed below. 

 

3.4 Bonding to the Au Substrate 

          Partial insight into the molecule to substrate interactions was gained by core level X-

ray photoemission spectra (XPS) taken with a SPECS X-ray source with a Mg anode (�� = 

1253.6 eV). We found that the molecules are stable on the time scale of the spectrsocopy 

measurements, except in the case of molecule 3. The zwitterion is more fragile and shows 

evidence of decomposition with initial electron fluxes in inverse photoemission, and this 

decomposition may also occur in the X-ray photoemission, although we exercised caution 

throughout these studies by using limited total X-ray fluxes and incident photon intensities 

to limit the extent of photodecomposition, and the X-ray photoemission results are very 

reproducible. Unambiguous indications of bonding through the iminium/enamine groups 

have been provided in the case of butyl pendant groups (2) [20]. The previously reported 

[20] 0.5 U 0.2eV nitrogen 1s core level shift, seen for 2, was not observed for increasing 

molecular coverages of either 3 or 4 adsorbed on gold from solution, but the binding 

energies are in line with the expected N 1s core levels for a variety of similar organic 

compounds with amine and amide groups [28]. 
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 A clear sulfur 2p3/2 and 2s core level shift with increasing coverage is found for 

molecule 3 (Figure 3.6). This 1.1 + 0.1 eV increase in binding energy (-162.3 + 0.2 eV to -

163.4 + 0.2 eV for the S 2p3/2) is much larger, but similar in character to the N 1s core level 

shift observed with zwitterion 2. We interpret these core level shifts as indicative of binding 

of the molecule to gold largely through sulfur, in the thin film limit. We cannot exclude 

bonding through the iminium/enamine groups, but if such bonding occurs, it is very weak. 

The S 2p3/2 core level binding energies (-162.3 + 0.2 eV) are in good agreement with the 

sulfur core level binding energies observed for alkane thiol self-assembled monolayers on 

gold [22], biphenyldimethyldithiol self-assembled monolayers on gold [25] and benzyl 

dithiobenzoate on gold [26], but somewhat larger than the core level binding energies (-

162.1 eV) observed for biphenylthiols on gold [27]. We thus assume that in general the p-

benzoquinonemonoimine zwitterions bind to the substrate through the thioether pendant 

groups situated on the electron-poor side of the dipole. We expect a dipole orientation along 

the direction normal to the surface, but unlike the detailed studies performed on molecule 2 

(we will discussed it later in Chapter 4), the angle-resolved photoemission results are 

inconclusive as to the molecular orientation. 
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Figure 3.6 The S 2s and 2p core levels X-ray photoemission spectra for increasing 

coverages on gold of the thioether functionalized p-benzoquinonemonoimine zwitterion 

(molecule 3). The main peak shifts are indicated by vertical bars. 

 

3.5 Electronic Properties  

 The surface electronic properties were investigated using a combination of 

photoemission and inverse techniques. The ultraviolet photoemission (UPS) and inverse 

photoemission (IPES) spectra were taken in a single ultrahigh vacuum chamber to 

characterize the placement of both occupied and unoccupied molecular orbitals of the 

adsorbates as a function of adsorbate film coverage (thickness).  
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Figure 3.7 Coverage dependant photoemission and inverse photoemission (thick lines) of 

molecule 4 adsorbed on Au at room temperature. The bottom thin line corresponds to clean 

Au substrate, taken as reference spectra. The top thin line is the model calculation of the 

single molecule density of states, using a semi-empirical approach PM3 uncorrected for 

matrix elements and final state effects. The HOMO and LUMO are indicated by vertical 

bars and depicted by molecular orbital schematics as insets on the top of the figure. All the 

other shifted peaks are also indicated by vertical bars. The top experimental spectrum is 

taken from the sample in ethanol, instead of CH2Cl2, which is used for all the other spectra. 



 
 

61

           The decreasing thickness notation in Figure 3.7 relates to successive washing cycles, 

confirmed by the increase of the Au 4d core level. The expected extinction of valence band 

electron emission, as well as the Au substrate core level signals, of the buried gold substrate 

indicate that the thin film limit of our organic films is below 3 nm. Indeed, some molecular 

films are as thin as 1 nm, reaching the single to double monolayer coverage. This can be 

inferred from the occurrence of metal-induced gap states revealed by small features within 

the HOMO-LUMO bandgap (see the discussion in [20]). Such states are expected at the 

interface, and should become extinct for a thickness greater than 2 nm, because of the very 

short mean free paths of the low energy electrons detected in photoemission experiments. 

No indication of bare Au spectroscopic features was found for all thicknesses and all 

species of Figure 3.8, where comparison spectra are shown for molecules 1-5. This provides 

strong evidence that the molecular films cover the substrate remarkably well. We estimate 

that the pinholes do not exceed 2% of the surface. 
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Figure 3.8 The combined photoemission and inverse photoemission spectra (thick lines) of 

p-benzoquinonemonoimine zwitterionic  compounds (C6H2(···NHR)2(···O)2), where R is (a) 

H, (b) n-C4H9, (c) C3H6-S-CH3, (d) C3H6-O-CH3  or (e) CH2-C6H5,  on gold. The film 

thickness is in the range 0.5 - 1 nm. Model calculations of the single molecule density of 

states, using a semi-empirical approach PM3 uncorrected for matrix elements and final state 

effects are shown for comparison as a thin line for each species. The right side of the figure 

shows the schematic structure of each molecule. For the benzyl substituted zwitterion 

(zwitterion 5), angle-resolved photoemission taken at 40 eV (as opposed to helium I 

radiation for the other molecules) is shown. Density functional calculations that include 

band structure effects are shown for this benzyl substituted zwitterion 5 (blue).  
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          Experimental spectra were compared with the simplest single molecule calculated 

density of states (as in a gas phase experiment), based on simplistic single molecule 

semiempirical method NDO-PM3 (neglect of differential diatomic overlap, parametric 

model number 3) model calculations based on Hartree-Fock formalism. Geometry 

optimization of each of the p-benzoquinonemonoimine zwitterion systems was performed 

by obtaining the lowest restricted Hartree-Fock energy states. The calculated density of 

states (DOS) were obtained by applying equal Gaussian envelopes of 1 eV full width half 

maximum to each molecular orbital to account for the solid state broadening in 

photoemission and then summing. This model density of states calculations were rigidly 

shifted in energy, largely to account for the influence of work function on the orbital 

energies and no correction was made for molecular interactions and final state effects. We 

estimate that the HOMO-LUMO gap for the p-benzoquinonemonoimine compounds should 

retain a value of ca. 5.7 to 5.9 eV, being robust and stable with little variation for a wide 

variation of pendent groups, as both the HOMO and LUMO are dominated by molecular 

orbitals localized on the p-benzoquinonemonoimine zwitterion core. For the functionalized 

zwitterions 3 and 4 the observed HOMO-LUMO gaps from the combined photoemission 

and inverse photoemission slightly differs from the calculated ones. For the zwitterion 3, 

we expect a HOMO-LUMO gap of 5.7 eV and observe gap of 5 eV or less, whereas the 

zwitterion 4 exhibits a larger gap of 6.3 eV, even larger than the calculated value of 5.9 eV.   

          For the benzyl substituted zwitterion 5, the angle-resolved photoemission spectrum 

taken at 40 eV (using synchrotron radiation, as opposed to helium I radiation used for the 

other molecules) has been added (red curve in figure 3.8) to illustrate that for this zwitterion 
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compound, the single molecule calculation fails to provide a good approximation of the 

HOMO-LUMO gap (red).  

 The key experimental finding of photoemission and inverse photoemission data 

(Figures 3.7 and 3.8) is the observation that the position of the Fermi level energy of the Au 

substrate (used as zero reference energy states for the photoemission and inverse 

photoemission) is very close to the conduction band edge. This is to say that the placement 

of the lowest unoccupied molecular orbitals (LUMO) of the adsorbed molecules 1, 2, 3 and 

5 is very close to the substrate Fermi level. In the case of zwitterion 4, the molecular orbital 

alignment continues to retain the substrate Fermi level in the middle of the gap, as usually 

expected in organic dielectric thin films without electronic interactions with the substrate. 

We also systematically observe very limited charging effects in either photoemission or 

inverse photoemission, and the expected final state effects [29] that should occur with 

increasing molecule films thickness are surprisingly small. We infer therefore that these 

molecular films have good charge transfer properties, confirmed by the good band 

alignment between the LUMO of the molecules and the valence band edge of the metallic 

substrate (Figure 3.8). We interpret these results as an indication of the Au substrate 

becoming an electron donor. This is intuitively reasonable if we consider that in the 

molecular layers, the positively charged side of the molecular core is situated at a short 

distance to the interface. From a device point-of-view, we conclude that Au is a well-

matched electron injector in these films. It also opens the possibility to create an n-type 

semiconductor material of significant mobility, that is a highly desirable property in the 

field of molecular electronics.  
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 Remarkable properties are specifically found for molecule 5 (p-

benzoquinonemonoimine zwitterion with benzyl pendant groups), which forms a molecular 

film that exhibits a density of states overlapping the Fermi level of the Au substrate. One 

can therefore speculate that the molecular films of this zwitterion species on gold are very 

close to a semi-metal. This was confirmed by the total absence of charging effects, even 

when cooling down the sample down to 100 K. Here the absence of final state effects in 

either photoemission or inverse photoemission (i.e. with either holes or electrons), 

combined with almost a complete absence of photovoltaic charging, indicates that these 

molecular films are not dielectrics. Occurrence of available states at the Fermi level of Au 

is likely related to the crystalline nature of these molecular films. This assumption is 

confirmed by modeling of the density of states beyond single molecule approximation to 

account for the observed density of states. This is the only zwitterion within the series 

investigated, where the experimental HOMO-LUMO gap from the combined 

photoemission and inverse photoemission is far smaller than suggested by the single 

molecule calculation. While the single molecule calculation for this benzyl substituted 

zwitterion 5 fails to provide a good approximation of the HOMO-LUMO gap, density 

functional calculations that include band structure effects have been performed for this 

zwitterion (blue line in Figure 3.8) and provide a HOMO-LUMO gap that is too small. This 

is typical for such DFT calculations [30]. The DFT first-principles calculations are 

performed in the framework of density functional theory as implemented in the DMol3 code 

[31]. The PW91 generalized gradient approximation (GGA) was used for the exchange-

correlation functional because of the better performance of GGA than the local density 

approximation (LDA) in many molecular systems. All the electrons were considered 
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equally, and the double numerical plus polarization (DNP) basis set, which is comparable to 

the 6-31G** basis set, was used. The convergence tolerance for the self-consistent field is 

2.72×10-6 eV, and the molecular structures were optimized till the maximum force was 

below 0.054 eV/Å. We indeed observed that butyl and benzyl pendant groups allow self-

organization in the packing of ultra-thin films, resulting in a crystalline structure. We will 

discuss the relating band mapping experiments of butyl and benzyl substituted zwitterions 

(zwitterions 2 and 5) in details later in Chapter 5. 

 

3.6 Conclusion 

         In this chapter, we have shown that small molecules of the p-

benzoquinonemonoimine type, with significant intrinsic dipoles, can be adsorbed on 

conducting surfaces. We fabricated very thin films (less than 2 nm), with high surface 

coverages (few pin holes) and very good screening of the interface dipoles. Thickness 

dependent studies showed limited invariance of the electronic spectroscopic features, which 

can generally be modeled as independent molecular energies. Even if benzyl, butyl and 

methoxy substituents are not considered, a priori, as strong anchoring groups, their presence 

on the N-substituent of the zwitterion provide some important features. Firstly, these groups 

interact with the gold surface and help stabilize the molecule on the surface. In chapter 4, 

we will show our observation of some participation of the alkyl substituent to surprisingly 

strong anchoring of butyl substituted zwitterions on gold [30]. It is also known in the 

literature that aromatic substituents develop some interactions with gold [35]. Secondly, the 

substituent influence the organization of molecules on the surface. For example, the steric 

hindrance of the group may lead to increased distances between adjacent molecules, or 
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well-organized structures can be obtained by�-stacking [36]. We found that crystalline 

ordering of the p-benzoquinonemonoimine molecules was possible, with the related h-

stacking promoting conductivity in the thin films that was mostly evidenced by the 

occurrence of molecular density of states at the substrate Fermi level and significant 

intrinsic conductivity of this type of molecules. We will discuss conductance property of p-

benzoquinonemonoimine molecules in detail in chapter 5. The interface molecular films 

can therefore play an important role for organic electronics devices, creating ideally a 

highly conductive interface with metallic electrodes, promoting efficient carrier injection in 

an organic film.  
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Chapter 4 The Interface Bonding and Orientation of a Butyl 

Pendant Groups Zwitterion 

4.1 Introduction 

         There is considerable interest in the study of molecular adsorbate systems with well-

defined intrinsic electrostatic properties [1–12]. Two-dimensional arrangements of large 

adsorbates (compared to, say, CO) with large electric dipoles can exhibit strong 

intermolecular interactions [2, 4, 12–15]. One key issue is whether these cooperative effects 

within an adsorbate layer of larger dipolar molecules resemble those observed and well 

characterized for small adsorbate molecules like CO [8], or if there is a need to revise our 

views of intermolecular adsorbate interactions (based on our models of CO) when 

investigating larger organic adsorbates. Furthermore, since the interplay between the 

interface dipole interactions and the interface chemistry is not always readily 

distinguishable [1, 2, 6, 7], there is much value in the investigation of adsorbates with 

extremely large dipoles. In addition, a dominant electrostatic dipole, in a relatively high 

symmetry molecule, provides new routes to investigate interface interactions and can result 

in enhanced selectivity of specific spectroscopically dipole active transitions, therefore 

assisting in the interpretation of vibronic fine structure in photoemission and related 

spectroscopies. 

          Instrinsic molecular dipoles can lead to preferential adsorption on electrostatically 

biased substrates [1–7]. While planar aromatic species, alkane thiol-functionalized 

polyphenyls (at low coverages), or macrocyclic metal centered organometallics tend to lie 

flat, this orientation is not always adopted at an interface [6, 7]. When external electrostatic 
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fields are present, the interface chemical bonding, affinity energies, the molecule–molecule 

interactions, as well as the electrostatic dipolar molecule–substrate interactions all 

contribute to the total energy of the adsorbate-substrate system. Changing the balance 

between chemical bonding and the electrostatic dipolar interactions can lead to substantial 

changes in the molecular orientation [1–4, 6, 7] as well as molecular conformation [5]. In 

general, if electrostatics alone are considered, an adsorbed molecule with a large intrinsic 

dipole should adopt an orientation on a conducting substrate that places the dipole along the 

surface normal, as a result of the formation of an image dipole in the substrate [3]. Such 

arguments do not apply to nonconducting substrate [3]. Adsorbate dipole interactions with 

solid surfaces are, unfortunately, often complicated by the influence of the substrate 

(including band structure effects) [1, 16, 17] and strong perturbations due to the metal 

substrate surface charges that induce large interface dipoles [18]. Ferroelectric materials 

provide a unique opportunity to investigate dipole interactions with adsorbates [6]. This 

makes it possible to undertake experiments that may provide insights into the role of the 

static dipole on the vibrational modes of the adsorbate molecule. In prior studies where a 

comparison between molecular adsorption on a conducting substrate (like gold) and a 

ferroelectric substrate was possible, molecules like metal phthalocyanines [7] and dodecane 

[19] with small intrinsic electric dipoles appeared to adopt bonding orientations dominated 

by the interface chemistry, and were only slightly influenced by the dipoles of the 

ferroelectric substrate. The interactions of more polar molecules with a ferroelectric 

substrate were, however, seen to be more significant, and dipole orientation may matter [6, 

7, 19]. 



 
 

75

           In Chapter 3, we introduced a family of small quinonoid molecules. Here we expand 

our studies on just one zwitterions, as shown in figure 4.1, in this case (6Z)-4-(butylamino)-

6-(butyliminio)-3-oxocyclohexa-1,4-dien-1-olate. This zwitterion is later shown to be ideal 

molecular systems for the study of adsorbate dipole interactions. 

 

 

Figure 4.1 The molecule of study: (6Z)-4-(butylamino)-6-(butyliminio)-3-oxocyclohexa-

1,4-dien-1-olate C6H2(···NHR)2(···O)2, where R = n-C4H9, indicating the resonance 

structures involving the cationic nitrogen iminium and enamine functional groups and the 

anionic oxygen enolate and ketonic groups, respectively. 

 

          The electric dipole of this zwitterion, when adsorbed on a metal surface (and most 

substrates) should not be switchable, which makes this molecule more like an electret if 

they adopt a preferential orientation upon adsorption. Each dipole associated with the 

zwitterionic ‘‘core’’ should affect the intermolecular interaction and could ultimately 

influence the molecular packing on metal surfaces, just like in the case of CO adsorption on 

metal surfaces [8, 16, 27], but this may be balanced by the strength and nature of the 

interface bonds. To assess the role of the dipole interactions at a surface, in this chapter, we 

mainly discuss the deposition of a zwitterion compound of figure 4.1 (where R=n-C4H9 for 

solubility reasons) on conducting (gold) substrate, and leave the discussion of selective 
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deposition of this zwitterion molecule onto specific ferroelectric domains of periodically 

poled lithium niobate substrate to Chapter 7. 

.        In this chapter, we will show that for gold substrate, the zwitterion adopts a 

preferential orientation with the plane of its ‘‘C6 core’’ along the surface normal. This 

simplified geometry of strong dipole alignment provides a symmetry simplification 

allowing better identification of the vibrational modes responsible for Frank-Condon 

scattering revealed in the fine spectroscopic signature in the photoemission spectrum.  

 

4.2 Modeling Procedure 

         As a guide to the interpretation of the experimental data, we have performed simple 

model calculations of electronic structure of the p-benzoquinonemonoimine zwitterion. The 

calculated electronic structure of the zwitterion of figure 4.1 is based on simplistic single 

molecule semi-empirical method NDO-PM3 (neglect of differential diatomic overlap, 

parametric model number 3) model calculations. Geometry optimization of this zwitterion 

system was performed by obtaining the lowest restricted Hartree–Fock energy states. Our 

model PM3 calculations are a simplistic semi-empirical single molecule ground state 

calculation based on the quinoid molecule alone and do not include any substrate 

corrections, nor include any additional atoms. 

         The model molecular orbital intensities obtained from these calculations have not 

been corrected for matrix element effects, yet the comparisons with experiment are still 

often successful [6, 7, 11, 29, 31], as shown here. For both figure 4.2 and 4.3, the calculated 

density of states (DOS) is only an approximation based on the molecular orbital placement 

of the free molecule and was obtained by applying equal Gaussian envelopes of 1 eV full 
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width half maximum to each molecular orbital (or both 1 and 2 eV full width half 

maximum to each molecular orbital, in the case of figure 4.3) to account for the solid state 

broadening in photoemission and then summing. The calculated density of states have been 

rigidly shifted in energy, largely to account for the influence of work function on the orbital 

energies without corrections for molecular interactions and final state effects. 

          Better model calculational methods are certainly possible and should be explored, but 

outside the scope of this chapter. Our preference for the simplistic semiempirical 

calculations used here in calculating the electronic structure, as opposed to using density 

functional theory, as is used to model the vibrational modes, stems from problems 

associated with density functional theory (DFT) when it comes to electronic structure. DFT 

is notorious for underestimating the band gap in some cases by a factor 2 or more [43] 

(particularly for some of the larger molecular systems, or systems with considerable charge 

transfer). DFT orbital energies generally require some rescaling for comparison with 

experiment [44], particularly for final state spectroscopies like photoemission and inverse 

photoemission. 

 

4.3 The Bonding and Orientation of a Zwitterion, with Pendant Alkyl chains, 

Adsorbed on Gold 

         An upright configuration of the p-benzoquinonemonoimine zwitterion with the dipole 

along the surface normal would allow for a dense packing along one direction (p-

benzoquinonemonoimine zwitterion plane to plane packing). Support for a dense packing 

between adjacent molecules may be inferred [8, 32, 46] from the intermolecular dispersion 

of about 400 meV, obtained by emission angle dependent photoemission indicating an 
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intermolecular spacing of about 3.2 U0.2 } , with two molecules per period in the direction 

perpendicular to the zwitterion core plane but parallel to the plane of the Au surface [47]. 

This is consistent with the molecule core (Figure 4.1) being aligned upright and with the 

plane of the molecular core lying close to the surface normal as discussed below. The p-

benzoquinonemonoimine band dispersion, along one in-plane direction, is close to the value 

of 350 meV observed for thin crystalline films of sexiphenyl grown on Cu(110), with an 

interplanar spacing of 3.8 Å [46]. 
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Figure 4.2 The coverage dependent photoemission (left) and inverse photoemission spectra 

(right) (thick lines) of the p-benzoquinonemonoimine zwitterion, of figure 4.1, adsorbed on 

Au at room temperature.The bottom thin line is clean Au substrate spectrum used as a 

reference. The top thin line is the model calculation of the single molecule density of states, 

using a semi-empirical approach PM3 uncorrected for matrix elements and final state 

effects. The HOMO and LUMO are indicated by vertical thin lines and the pertinent 

molecular orbitals are schematically depicted as insets on the top of the figure. The 

molecular orbital shifts, as a function of changing molecular coverage, are also indicated by 

vertical lines. The inset on the right is an expanded section of the photoemission spectra 

highlighting the metal induced gap state. 
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        The coverage dependent photoemission and inverse photoemission spectra of the 

zwitterion of figure 4.1, shown in figure 4.2, indicates that even the thinnest films obscure 

the Au substrate signal, and are therefore without pinholes. This is consistent with our 

atomic force microscope images that show that the zwitterion films on gold tend to be 

uniform, even for films that are multiple molecular monolayers thick [47]. The 

photoemission and inverse photoemission spectra of the adsorbed zwitterion on gold 

indicate a highest occupied molecular orbital (HOMO) to lowest unoccupied molecular 

orbital (LUMO) gap of 5.8 to 6.0 eV which has been estimated from the vertical (peak) 

energies, with corrections for the measured instrumental line widths. These experimental 

values are consistent with our expectations of 5.8 eV (indicated at the top of figure 4.2) 

based on simplistic single molecule semiempirical methods (NDO-PM3). In spite of 

experimental and theoretical approximations in estimating the gap, the agreement is 

satisfactory. 

          The combined photoemission and inverse photoemission spectra, shown in figure 4.2, 

also provide indications of interactions between the p-benzoquinonemonoimine zwitterions 

and the gold substrate. Interface interactions with the gold substrate, are evident from the 

changes in the spectra with increasing molecular film thickness. While the experimental 

HOMO–LUMO gap matches theory, there is evidence of a weak metal-induced gap state 

(MIGS) within the HOMO–LUMO gap, in the photoemission spectra of the thinner 

molecular films. This is indicated by a short vertical bar in figure 4.2, and highlighted in the 

expanded inset to figure 4.2. This state is consistent with gold acting as electron donor and 

indicates a strong molecular interaction with the substrate and may be attributed to an 

interfacial molecular orbital formed upon bonding with the gold substrate. Similarly, the 
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shift in some molecular orbitals upon formation of the molecular multilayer films, as well 

as the disappearance of the occupied state (MIGS) within the HOMO–LUMO gap for the 

thicker films is also indicative of strong bonding of this zwitterion to the gold substrate. 

 

Figure 4.3 Light polarization dependent photoemission spectra of the zwitterion, of figure 

4.1, adsorbed on Au at room temperature. The spectra compared are with the ~ of the plane 

polarized light more along the surface normal (red line) obtained with a light incidence 

angle of 700 and with a component of ~ of the plane polarized light more in the plane of the 

surface (blue line) obtained with a light incidence angle of 450 both taken with a photon 

energy of 50 eV. For comparison, two model calculations of density of states were 

performed by applying equal Gaussian envelopes of 1 eV (black thin line) and 2 eV (black 

thick line) full width half maximum to each molecular orbital. The calculated molecular 

orbitals are shown on the bottom as vertical bars at the bottom of the Figure. The 

schematics of the pertinent theoretical molecular orbitals (from the same calculation) of the 

three major peaks, at binding energies in the vicinity of the HOMO, the -10 eV peak and 

the -18 eV peak, are indicated and shown on the right side as three inset panels. 
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          These MIGS photoemission features are also strong indications that the smallest 

coverage corresponds to films thinner than 1 nm. Together with the fact that contributions 

to the spectra from the gold substrate are absent from the thinnest films data, figure 4.2 

provides compelling evidence that this zwitterion molecule can adsorb and form 

homogeneous films not exceeding a few monolayers. 

          The light polarization dependent photoemission of figure 4.3 provides further 

evidence that in a multilayer, the molecules of figure 4.1 adopt a preferential orientation 

when adsorbed on gold. The molecular orbitals associated with the zwitterion core as well 

as those of the alkyl chain, which have strong C–H bond weight, exhibit enhanced 

contributions to the photoemission spectra taken with a light incidence angle that places the 

~ vector more along the surface normal. The angle resolved photoemission results of figure 

4.3  therefore indicate that the preferential orientation adopted upon adsorption on gold 

places the zwitterion core plane parallel with the surface normal, while the two butyl 

pendant groups lie parallel with the surface, likely in opposite directions, as indicated in 

figure 4.4. Some of the zwitterion core contributions to the photoemission feature at about -

8 eV binding energy are expected to be enhanced with the ~ vector (of the incident light) 

parallel with the surface. Although there are six molecular orbitals of b1 or b2 symmetry, 

there are 8 molecular orbitals of a1 symmetry, assuming the C2v point group symmetry. 

Analysis of the light polarization dependent photoemission spectra of figure 4.3, in the 

context of photoemission selection rules [8, 16, 27], strongly favors placement of the 

zwitterion core molecular alignment parallel to the surface normal, or an ‘‘upright’’ 

bonding configuration. Because of the photoemission selection rules, the light polarization 

dependent photoemission above does not directly distinguish whether this zwitterion largely 
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bonds to the surface through the oxygen or through the nitrogen groups. Other evidence, 

however, provided below, establishes that the bonding does occur through the latter 

functional groups. 

 

 

 

Figure 4.4 A sketch of a possible interaction mode between the zwitterions (6Z)-4-

(butylamino)-6-(butyliminio)-3-oxocyclohexa-1, 4-dien-1-olate C6H2(···NHR)2(···O)2, 

where R = n-C4H9 and the gold surface, consistent with the data presented here for 

molecules at the gold interface. See text for details on the possible deprotonation of the N 

bounded atoms. 

 

          The ‘‘upright’’ orientation for this zwitterion, with the molecular plane parallel to the 

surface normal, is similar to that of pyridine adsorbed on Ir (111) [48] through the nitrogen. 

However pyridine generally bonds neither ‘‘upright’’ nor ‘‘flat’’ but rather orients the 

planar molecular axis tilted with respect to the surface normal as in the case of adsorption 

on Pd(111) [49] and Cu (110) [50].  

          The X-ray photoemission data (Figure 4.5) implicate bonding of this zwitterion to the 

gold substrate through the nitrogen functions. Because this generates steric hindrance, there 

N

O

N

O
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is some decrease of the core to N asymmetric modes (schematically illustrated in figure 4.6) 

intensity.         

 

 

 

Figure 4.5 X-Ray photoemission spectra for N 1s core level of adsorbed p-

benzoquinonemonoimine zwitterion of figure 4.1 and 4.4, for increasing molecular film 

thickness on Au at room temperature. The main peaks and the shake-off side peaks are 

indicated by vertical bars (see text).The XPS spectra were taken under low total flux 

conditions to preserve adsorbate molecular integrity. 
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         The N 1s core level binding energy shifts with changes in zwitterion film thickness on 

gold also confirm our hypothesis of the p-benzoquinonemonoimine zwitterion bonding to 

gold through the nitrogen groups. The X-ray photoemission spectra provide some evidence 

for a shift in the N 1s core level photoemission binding energies with increasing zwitterions 

molecular coverage, as seen in figure 4.5. The N 1s core level binding energy shift of about 

0.5 + 0.2 eV to smaller binding energies, with decreasing molecular coverage, is likely the 

result of charge donation to the electrophilic nitrogen at gold substrate interface. This is 

consistent with expectations as is a competition between the molecule–substrate and 

molecule–molecule interactions [2, 4, 12–15] that would generally favor a dipole reduction 

due to intermolecular dipole–dipole interactions. 

         Such zwitterion bonding to gold through the nitrogen atoms is consistent with the 

observation of an occupied state (MIGS) within the HOMO–LUMO gap of this zwitterion 

for the thinner molecular films as seen in figure 4.2. If we suppose that the N 1s core level 

binding energy shift results from increased substrate screening, as seen with molecular 

systems [51–54], such shifts should continue to occur to increasingly higher binding 

energies with increasing film thickness and should not be sensitive to the R substituent in 

the zwitterions. This is not observed with the coverage dependent adsorption of p-

benzoquinonemonoimine zwitterions with thioether and alkyl methyl ether pendant (R) 

groups on gold [47]. A bonding of this p-benzoquinonemonoimine zwitterion to gold, 

through the nitrogen groups, also supports our contention that the molecular zwitterion core 

plane is placed largely along the surface normal. The exact nature of the bonding between 

the nitrogen groups and gold cannot, as yet, be specified more precisely. Interaction 
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involving the carbon of an imidazolium type bond on gold [55] cannot, a priori, be 

excluded. 

 

 

Figure 4.6 High resolution photoemission of the zwitterions (6Z)-4-(butylamino)-6-

(butyliminio)-3-oxocyclohexa-1,4-dien-1-olate C6H2(···NHR)2(···O)2, where R = n-C4H9 

absorbed on Au at room temperature. The vibronic fine structure to the high resolution 

photoemission is seen to have two distinct vibrational contributions. Possible origins of 

these vibronic contributions to the photoemission spectra are indicated (see text), with 

energies of (a) 3126 cm-1, (b) 3227 cm-1, (c) 1609 cm-1, and (d) 1678 cm-1 assuming the 

higher point group symmetry of C2v (see text). 
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          The presence of a shake-off side peak, accompanying the N 1s main peak, as seen in 

figure 4.5, at 6 to 7 eV larger binding energies is consistent with the strong dipole 

excitations possible for the zwitterion of figure 4.1 and 4.4, leaving a two hole bound final 

state, for which the expected energy of a shake-off would be at 6 to 7 eV, or about the value 

of the HOMO–LUMO gap. The other possibility for the higher binding energy satellite N 

1s feature is an unscreened final state at higher binding energy, as has been seen at 5 to 6 

eV larger binding energy for molecular nitrogen (N2) adsorbed on a variety of metal 

substrates [56]. The energy difference between the screened and unscreened final states, in 

the case of adsorbed molecular nitrogen (N2), is apparent in the model of Schönhammer and 

Gunnarsson [57]. The latter explanation is less likely as the N 1s satellite actually decreases 

in intensity with increasing coverage, thus is unlikely to be the unscreened final state and 

more likely to be the screened two hole bound final state. 

          The binding energy of the main (fully screened) N 1s core level at -400.0 U0.2 eV, 

increasing to -400.5 U0.2 eV (with increasing film thickness), is somewhat larger than NH 

amide binding energies (-399.7 eV) of polyamide-6,6 films on Cu and Pt [58], and much 

larger than the binding energies typically observed for pyridine (-399.3 eV) [59] or aniline 

(PhNH2) (-399.4 eV) [60], although slightly less than the N 1s binding energies observed 

for EtCHNH2COOH (-400.6 eV) [61], and CH3CHNH2COOH (-401.0 eV) [62]. 

          Our results for the interactions of the p-benzoquinonemonoimine zwitterion, 

C6H2(···NHR)2(···O)2, where R = n-C4H9, to gold through the nitrogen are consistent with 

the literature data reporting anchoring of molecules by a gold–nitrogen interaction [8, 48, 

51, 63–66]. The nature of the Au–N interaction is, however, not yet fully elucidated. While 

Bilic et al. proposed that the anchoring of ammonia [67] or pyridine [68] on gold is mainly 
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a naturally dispersive bond, a significant contribution to bonding may arise from image 

charge polarization. In a more conventional manner, Ford and coworkers [69] considered 

the Au–N interaction to have a more covalent contribution (a donation/back-donation 

mechanism) with some charge-transfer character. Similar to the situation observed here for 

this p-benzoquinonemonoimine zwitterion, Ford and coworkers [69] observed that all the 

alkylamines studied adopted orientations perpendicular or near-perpendicular to the surface 

with the nitrogen–substituent bonds arranged symmetrically with respect to the surface, as 

was seen for pyridine adsorbed on Ir(111) [48]. In the case of arylamines [69], the aromatic 

ring was found to lie flat on the surface, as does, surprisingly, pyridine adsorbed on Pd(110) 

[70]. 

          We can therefore consider the multiple experimental indications as consistent with 

the picture that the molecules interact strongly with the gold substrate through the two 

nitrogen functional groups, keeping the zwitterionic properties of the adsorbate. Owing to 

the significant interaction energy, the first layer of molecules on gold may be constituted by 

deprotonated zwitterion compounds, as schematically indicated in figure 4.4. Subsequent 

molecular layers do not appear to deprotonate, and it may be that only a fraction of the 

molecules at the gold interface in fact deprotonate. Deprotonation of amines on gold 

surfaces has been reported by several authors [71–73, 66]. Braunstein’s group also found 

that some transition metal precursors are able to deprotonate the N–H group of these 

zwitterions at room temperature [74–76]. 
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4.4 Franck–Condon Scattering from a P-benzoquinonemonoimine Zwitterion on Gold 

         Another approach to exploring the molecular configuration and orientation, in the 

presence of a local electric dipole field is to study the vibronic fine structure in 

photoemission. The existence of contributions of the vibrational modes to the 

photoemission spectra of the molecular orbitals of gas phase [77–87] and adsorbed [85–91] 

molecules has long been recognized. For molecules in the gas phase larger than CO and 

small alkanes, the vibronic fine structure in the photoemission or photoionization spectra 

can be quite complex [79–91]. Based on the time scale of the vibrations, the photoemission 

electronic transition time scale is negligible, so the nuclei do not change their positions or 

momenta during the electronic (photoemission) transition, but only after it has occurred. 

Furthermore, the vibrational modes that couple to the photoemission process must share the 

same symmetry as the electronic transition. Thus with a preferential orientation that favors 

a high point group symmetry, only select modes will likely be observed in the 

photoemission fine structure. If the molecule has a large dipole, the strong dipole 

vibrational modes of specific symmetry will couple better in the photoemission final state, 

although the precise matrix elements are not readily ascertained from first principles. 

         These considerations can be expressed more precisely by considering the 

photoemission process as an electronic dipole transition from the initial vibrational state � 

of the ground state E0, to some vibrational state ��of an excited electronic state E1. Given 

that the overall wave-functions are the product of the individual electronic, vibrational and 

spin wave-functions, the separation of the electronic and vibrational wave-functions is a 

fundamental assumption of the Born–Oppenheimer approximation and core to the Franck–
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Condon principle. The probability amplitude in terms of separate electronic, vibrational and 

spin contributions is 

                                                 0 � ��������N�&�&�������N��                                              4.1                                   

                                                    � ��������N�&
�� 2 ���&�����N� 
                                                    � ��������N�&��&�����N� 2 ��������N�&��&�����N�      
                                                    � ���� &���                 ���� &��&���               ��N�&�N� 
                                                  Franck-Condon Factor      Orbital selection rules         Spin selection rule 

                                                                          2���� &������� &��&�����N�&�N� 
          The first integral is the vibrational overlap integral, also called the Franck–Condon 

factor. The remaining two integrals contributing to the probability amplitude determine the 

molecular orbital photoemission selection rules and the spin selection rules. These selection 

rules do appear to apply and have recently been demonstrated not only in gas phase 

photoemission of molecules larger than CO and small alkanes [80–87], but also for 

molecular thin films [90–91]. Generally though, the Franck–Condon principle is not strictly 

obeyed in these molecular systems, as noted elsewhere [87], and photo-hole perturbations 

of the vibronic fine structure in high resolution photoemission are common and very 

difficult to model accurately.  

         Nonetheless, the resulting Frank-Condon vibronic fine structure can be observed in 

high resolution photoemission [77–88, 90, 91], and has been observed for the p-

benzoquinonemonoimine zwitterion adsorbed on gold, as seen in figure 4.6. Two 

vibrational modes are evident in the high resolution photoemission spectra, as indicated in 

figure 4.6, with characteristic vibrational energies (denoted by the vertical bars in figure 4.6) 
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in the energy regions of ��= 0.41 U0.01 eV (3291U90 cm-1) and � = 0.25U0.01 eV 

(2016U110 cm-1). 

          As just noted, the vibrational modes must share the same symmetry and couple to the 

ionized final state of the molecule, in order to provide the observed photoemission vibronic 

fine structure, seen in figure 4.6. Because the vibronic fine structure occurs in the region of-

7 to-10 eV binding energies, where the molecular orbitals are strongly enhanced with 

incident light that places ~  more along the surface normal (Figure 4.3), the associated 

vibrational modes are most likely to be of a1 irreducible representation symmetry, 

particularly at binding energies closer to -9 to -10 eV, assuming a C2v point group 

symmetry for this adsorbed p-benzoquinonemonoimine zwitterion. Given that this 

zwitterion dipole is placed largely along the surface normal (as discussed in the prior 

section), this means that the a1u core stretching modes (schematic a and b in figure 4.6), at 

3126 cm-1 and 3227 cm-1 are the likely origin of the vibronic fine structure at �� = 

0.41U0.01 eV (or 3291U90 cm-1), observed in the photoemission spectra. These vibrational 

modes are observed to be at lower energies in the electronic ground state. 

           At smaller binding energies of -7 eV or less, vibronic coupling to b1 and b2 

electronic states is more likely (Figure 4.4). These vibronic contributions to the 

photoemission fine structure of � = 0.25 U0.01 eV (i.e. 2016U110 cm-1) occur at much 

higher vibrational energies than the b1 dipole active modes of the electronic ground state. 

The largely b1 symmetry vibrational core to NH asymmetric modes (schematic c of figure 

4.6), at 1609 cm-1 and the asymmetric oxygen to core mode (schematic d of figure 4.6) at 

1678 cm-1 may well be the dominant contributions to the vibronic fine structure in the high 

resolution photoemission at binding energies of -7 eV or less (Figure 4.6).  
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         Because the vibronic structure occurs in the photoemission final state, there could be a 

‘‘stiffening’’ of the associated ground states vibrational modes by as much as 300 to 400 

cm-1, as has been observed in prior measurements of the vibronic photoemission fine 

structure [87,90,91]. 

          The vibrational modes that dominate the photoemission fine structure are symmetry 

restricted by molecular orientation. The observation of different vibronic fine structures at 

different photoemission binding energies is consistent with our placement of the p-

benzoquinonemonoimine zwitterion core dipole (of figure 4.1 and 4.4) along the surface 

normal. Can the selective excitation of specific vibrational modes in the photoemission 

final state be recreated in the electronic ground state? Recent density functional theory 

calculations [92] suggest that the influence of the substrate on the hole-vibration coupling 

for molecular systems like pentacene should be larger than the perturbations caused by 

intermolecular interactions. The test is the adsorption of the p-benzoquinonemonoimine 

zwitterion in a similar orientation in a strong static electric field and using a similar infrared 

absorption selection rule geometry to see if the dipole active vibrational spectra are 

dominated by these two features in the region of 2000 to 3300 cm-1. 
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4.5 Conclusion 

         Adsorption studies have shown that strong interactions develop between the 

zwitterionic p-benzoquinonemonoimine compound (C6H2(···NHR)2(···O)2, where R = n-

C4H9) (Figure 4.1) and a conducting substrate (gold). The core of the zwitterion tends to 

align preferentially along the surface normal, likely because of the image charge and/or the 

substrate dipole. In the case of adsorption on gold, the zwitterion bonds to the gold through 

the nitrogen groups, with the alkyl chains parallel to the surface. We observe a significant 

bonding strength to gold. This suggests, but does not prove, that the N–Au interaction has a 

significant covalent character, implying loss of the N–H hydrogen atom of the precursor 

molecule. We also found remarkable molecular coverage properties, with experimental 

evidence that very thin films (below 1 nm) fully cover the Au substrates. 

          The static dipole field, in the mean field in the photoemission final state (as seen in 

the vibrational fine structure contributions to the valence band photoemission), perturbs the 

adsorbate vibrational states. Strong local dipole fields created owing to the photo-hole in 

the photoemission final state [93], can lead to vibrational mode stiffening of the dipole 

active modes associated with the nitrogen groups of the zwitterion. This is reflected in the 

change of energy of the asymmetric vibrational mode linking the core of the zwitterion 

molecule to the nitrogen, increasing from 1500 U50 cm-1 (Au substrate) to 2016U110 cm-1 

(photoemisson final state). This expected perturbation of the adsorbate vibrational states 

can finally be observed because these adsorbed zwitterions molecules adopt a preferential 

orientation leading to very restrictive selection rules, simplifying the otherwise complex 

vibrational mode spectra. 
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          The selective deposition of molecules C6H2(···NHR)2(···O)2, where R = n-C4H9 onto 

specific ferroelectric domains has also been demonstrated for a spatially periodically poled 

ferroelectric surface (Periodically Poled Lithium Niobate substrate), which we will discuss 

in detail in Chapter 7. 
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Chapter 5 Band Mapping and Electron Pockets at the Fermi 

Level for p-benzoquinonemonoimine Zwitterion   

5.1 Introduction 

          Organic materials are commonly regarded as electrical insulator with a large range of 

application in electronics, biomedical and pharmaceutical purposes.  This is largely true 

even today when we observed man made organic materials in our surroundings.  However, 

electrical conduction on organic materials began to draw attention of scientists.  Even today 

questions such as underlying mechanism of electron mobility, synthesis of materials with 

determine conductivity properties, which electronic state promotes conduction, are current 

subject of research for scientist in materials and nanotechnology research. The field of 

organic semiconductors has developed from a fundamental laboratory discovery into a 

manufacturing technological material for a large range of thin- film electronics applications 

[1-3] , which benefits from the compatibility of organic materials with large area, low-cost, 

room temperature solution processing and direct-write printing. Since their discovery 

organic semiconductor applications today include emissive light emitting diodes, flat panel 

displays, and low cost thin film transistor circuits on flexible substrates [4].   

          One of the general issues in molecular electronics is the transport through organic 

molecules.  The hybridization of molecular orbitals to form band structure has been studied 

for nearly three decades [5-9], and is a fairly well established phenomenon. With larger 

molecular species, intramolecular band structure is far more likely and commonly observed 

[10-12]. Such intramolecular band dispersion has been found in self-assembled monolayers 

[11, 12], including polyphenyl species [12]. In contrast, because of the very small effective 
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Brillouin zone (requiring exceptionally good wave vector resolution) and the generally very 

small intermolecular interactions, band structure resulting from intermolecular interactions 

is generally not observed for ordered assemblies of large molecules, with only a few 

exceptions [5-13]. 

          The study of the details of transport mechanisms in organic systems has demonstrated 

that, not only do interface dipoles and valence band electronic structure symmetry play a 

role, but that there is a strong dependence on molecular vibrations [14-20] that couple to the 

transport properties through electronic structure.  Organic semiconducting systems, such as 

anthracene [21], on the other hand, are characterized by their high degree of electron 

localization and molecular polarization that dominates the physics of excited states and 

transport phenomena. These organics have small intermolecular overlap, low dielectric 

constant, localized charges on individual molecules, and large polarizabilities involving 

charges and induced and permanent electric dipoles [22-25]. This can be enhanced by 

suitable functionalization, as we have demonstrated here for the horizontal and vertical 

anthracene isomers of the silane complexes. 

          The quinonoid zwitterions, although electrically neutral as a whole, carry positive 

and negative charges on different parts of the molecule.  The positive charge is delocalized 

between the amino groups over 4 bonds involving 6π electrons, while the negative charge is 

spread likewise between the oxygen atoms [26-28].  The result is a large electric dipole that 

is formed across the across the “benzene” like plane of the benzoquinonemonoimine 

“core”; this makes these zwitterionic compounds fascinating candidates for the study the 

electronic structure. These molecules have not only had a very strong local dipole, but the 

delocalized benzene π molecule of the zwitterion “core” loses aromatic character due to the 
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large charge separation.  Large dipolar molecules tend to be good dielectrics, but obviously 

the molecular packing and orientation can enhance or suppress the dielectric properties.  In 

this chapter, we will discuss the band structure and electron pockets on the (6Z)-4-

(benzylamino)-6-(benzylliminio)-3-oxocyclohexa-1,4-dien-1-olate zwitterion isomer of the 

benzoquinonemonoimine family (p-benzoquinonemonoimine zwitterion with benzyl 

pendant groups, zwitterions 5). 

 

5.2 Electron Pockets at the Fermi Level and Band Structure 

5.2.1 Theoretical Approaches 

         The zwitterion calculations, it was applied a plane-wave-based density functional 

theory (DFT) method within the Perdew-Burke-Ernzerhof (PBE) generalized gradient 

approximation [39], which was implemented in the CASTEP computer code (Accelyrs Inc. 

San Diego, CA) [40]. The wave functions were expanded in terms of a plane-wave basis set 

with a kinetic energy cutoff of 300 eV, which with adopted ultra soft pseudopotentials 

provided good convergence of calculated total energies and atomic forces [41]. The 

supercell was taken with the dimension ax = 8.446 Å, by = 14.996 Å, cz = 12.728 Å.  The 

semiempirical (with a PM3 parameter set) theoretical calculations of the zwitterion on 

PVDF-TrFE were done with the HyperChem package [42], as previously described in the 

prior chapter. 
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5.2.2 Band Structure of the (6Z)-4-(benzylamino)-6-(benzylliminio)-3-oxocyclohexa-

1,4-dien-1-olate Zwitterion 

         Combined photoemission and inverse photoemission spectra [30-34], were taken of 

the p-benzoquinonemonoimine zwitterion (Figure 5.1) on gold, for molecular coverages 

that range from nominally 0.5 nm to the thicker multilayer films [32]. As mentioned in 

chapter 2, the IPES were obtained by using variable kinetic energy incident energy 

electrons while detecting the emitted photons at a fixed energy (9.7 eV) using a Geiger-

Müller detector [30-35]. The inverse photoemission spectroscopy was limited by an 

instrumental line width of approximately ~ 400 meV, as described elsewhere [33, 34]. In 

both photoemission and inverse photoemission measurements, the binding energies are 

referenced with respect to the Fermi edge (EF = 0 eV) of gold in intimate contact with the 

sample surface and the photoemitted (UPS, XPS), in terms of E-EF (thus making occupied 

state energies negative).  

          Energy-dependent photoemission spectra were taken for the zwitterion thin film 

grown on the gold surface (Figure 5.1(b)), with the photoelectrons collected normal to the 

surface.  In this particular experimental setup, the photon energy dependence of the 

photoemission spectra (relative to the Fermi level) can be exploited to determine the 

dispersion (change in binding energy) as a function of wave vector ⊥k  (along the surface 

normal).  Such dispersion is observed here (Figure 5.1(a & b)) and is a consequence of the 

hybridization of molecular orbitals of adjacent zwitterion molecules fulfilling the criteria of 

Bloch’s theorem [5, 43]. As shown in figure 5.1(b), the photoemission peak binding 

energies exhibit oscillatory behavior as a function of electron wave vector (proportional to 

the square root of electron kinetic energy).  This is summarized in figure 5.1(b), where the 
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peak position for the -2.4 eV band is plotted against the ⊥k  vector.  From this dispersion 

amplitude of 200 meV, not only is the crystallinity of the zwitterion film evident but also a 

bulk lattice parameter for along the surface normal can be derived. 

         From these values, we find that zwitterion crystal grown on the gold substrate here 

has a crystal layer spacing of 5.9 Å ( ± 0.2 Å along the surface normal.  This lattice 

parameter derived from the band dispersion can be assigned to the calculated value of 6.4 

Å, along the Z to G direction (Figure 5.2(a-g)) of the O-O distances in the cubic zwitterion 

structures as shown in figures 5.2(a-f) [26, 27]. As seen in figure 5.1(b) and figure 5.2(g), 

the experimental dispersion is and average to band dispersions calculated along the Z to G 

figure 5.2(g), due to the limited resolution of the electron analyzer.  The expectation that the 

inner potential Uin is negligible in an insulator is not completely borne out by the data.  We 

find some evidence for a small inner potential corresponding to a wave vector of about 0.1 

(0.3 Å-1, which increases with increasing energy (as is often observed with metals [44]).  

This corresponds to a very small inner potential energy correction but does tend to suggest 

that effects from the potential change across the surface boundary cannot be completely 

neglected.  The electron mean free path at roughly 50 eV kinetic energy is generally 

accepted to be quite short [45-48], but as we see from the data here.  Accordingly, we 

would expect that the electron mean free path for the photoelectrons in the zwitterion is 

much longer than is observed in metals, consistent with the longer mean free paths 

observed in organic systems [45]. The mean free path is clearly sufficient to observe that 

Bloch’s theorem [5, 43] is fulfilled for the occupied molecular orbitals of zwitterion, 

although we do not observe photoelectrons from the gold substrate.  
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Figure 5.1 (a) Evidence of electron pockets, electron were collected normal to the surface 

at the Fermi Level, (b) band structure dispersion as a function of wave vector ⊥k , providing 

an experimental lattice of 5.9 Å along the surface normal and (c) energy-dependent 

photoemission spectra of zwitterion (6Z)-4-(benzylamino)-6-(benzylliminio)-3-

oxocyclohexa-1,4-dien-1-olate on gold, showing evidence of band dispersion.  The 

photoelectrons were collected along the surface normal.  
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Figure 5.2 Band structure calculation of zwitterion (6Z)-4-(benzylamino)-6-

(benzylliminio)-3-oxocyclohexa-1,4-dien-1-olate crystal.  (a) crystal structure, (b) , (c) and 

(e) views of the highest valence band wave function density and (d) & (f) views of the 

lowest conduction band wave function density.  

 

 

 

 

 



 
 

111

5.2.3 Electron Pockets at the Fermi Level of the (6Z)-4-(benzylamino)-6-

(benzylliminio)-3-oxocyclohexa-1, 4-dien-1-olate Zwitterion 

          The electronic structure of the zwitterion is shown on figure 5.3 (a) measured by 

photoemission and inverse photoemission.  The calculated density of states for the 

zwitterion (6Z)-4-(benzylamino)-6-(benzylliminio)-3-oxocyclohexa-1,4-dien-1-olate of 

chemical formula C6H2(···NHR)2(···O)2 where R =n-C6H5  is shown on figure 5.3 (b).  In 

comparison  a hydrogenated zwitterion C6H2(···NHR)2(···O)(···OH) figure 5.3(c), a 

dehydrogenated zwitterion C6H2(···NHR)( ···NR)(···O)2 Figure 3(d) were calculated by DFT 

and a dehydrogenated zwitterion C6H2(···NHR)( ···NR)(···O)2 was calculated by 

semiempirical method figure 5.3 (e).  The calculated spectra were aligned with respect to 

the -2.4 eV peak of the experimental photoemission spectra.  In order to align the 

theoretical spectra to the experimental results the zwitterion density of states Figure 5.3(b) 

was shifted -1.58eV, the hydrogenated zwitterion Figure 5.3(c) did not require any shifts to 

be aligned with the experimental measurement, Figure 5.3(a).  The dehydrogenated 

zwitterion Figure 5.3(d) was shifted -1.88 eV.  The dehydrogenated zwitterion Figure 5.3(e) 

calculated with semiempirical methods was also shifted +2.95 eV with respect to the Fermi 

level.  Band gap for the zwitterion experimental measurement was 1.66 eV Figure 5.3(a), 

for the calculated zwitterion 1.63 eV Figure 5.3(b), hydrogenated zwitterion 1.70 eV Figure 

5.3(c), dehydrogenated zwitterion Figure 5.3(d) 1.83 eV and for the dehydrogenated 

zwitterion by semiempirical methods Figure 5.3(e) 1.93 eV. 
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Figure 5.3 (a) Combined photoemission and inverse photoemission of the zwitterion 

zwitterions (6Z)-4-(benzylamino)-6-(benzylliminio)-3-oxocyclohexa-1,4-dien-1-olate, 

Density state calculation of: (b) the C6H2(···NHR)2(···O)2 where R =n-C6H5 zwitterion by 

DFT, (c) hydrogenated zwitterion C6H2(···NHR)2(···O)(···OH) by DFT, (d) dehydrogenated 

zwitterion C6H2(···NHR)( ···NR)(···O)2 by DFT and (e) zwitterion C6H2(···NHR)( 

···NR)(···O)2 by semiempirical methods, (f) energy-dependent photoemission spectra of the 

C6H2(···NHR)2(···O)2 where R =n-C6H5. 

 

         Evidence of an electron pocket within 90 meV below the Fermi Level is a dominant 

feature in the spectra.  Due to a conduction band crossing the Fermi Level, electron pockets 
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are formed, as shown on figure 5.1(a) and figure 5.2(g), were the photoelectron intensity 

current was measured at the Fermi level showing a periodic oscillation corresponding to 

approximately 6.3 Å or 1 Å-1 wave number.  As shown in figure 5.2(g) DFT band structure 

calculation a conduction band does crosses the Fermi level and shows periodicity along the 

Z-G direction as shown in figure 5.2 (b, d, f).  The conduction band wave function density 

was plotted as a 3D view, Figure 5.2(d, f), of the total density along the Z-G direction 

showing an overlap of electron density between zwitterion molecules through the oxygen 

and the amine group of the next zwitterion molecule along the Z-G direction.    

         Besides, we observe the similar band mapping in butyl substituted zwitterions 

(zwitterions 2). Figure 5.4 shows results from band mapping experiments, indicating that 

long range ordering exists in a direction normal to the zwitterion cores. The emission angle 

dependence of photoemission has been exploited to determine the dispersion (change in 

binding energy) as function of wave vector BD, the wave vector parallel to the surface of the 

film, using: 

                       BD � O �
"P ���� Z��
E� � V'�<H����� ]Sd Z��
E� }^�                               5.1 

where the value of BD can be estimated from the photoelectron kinetic energy (Ekin) and the 

photoemission emission angle (θ) [5, 49]. 
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Figure 5.4 Dispersion of the intermolecular band from the HOMO molecular orbitals of 

zwitterion 2 molecules assembled on Au (111) in the reduced zone scheme. The red arrows 

indicate the extent of the disperions or effective band width of the highest occupied 

molecular orbtal along the zwitterion 2 molecular core π-π stacking direction. 

 

          Support for a dense packing between adjacent molecules of zwitterion 2 can be 

inferred from the intermolecular dispersion or band width of about 400 meV, obtained by 

emission angle dependent photoemission, as indicated in figure 5.4 (red arrows). This is a 

rather large band width (dispersion) for a molecular film and indicates a lattice with a 

period of 6.4U 0.2 Å (2π/(k=0.98 Å-1)), with two molecules per period in the direction 

perpendicular to the zwitterion ion core plane but parallel to the plane of the Au surface. 

This lattice spacing along one of the in-plane directions of the film indicates an 

intermolecular spacing of about 3.2 U  0.2 Å, and is consistent with p-

benzoquinonemonoimine zwitterionic core of molecule 2 aligned along the surface normal, 
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as discussed previously [32]. This short distance also opens the possibility of π-π stacking 

allowing good mobility charge transport. 

 

5.3 Conclusion 

         The results demonstrate that Bloch’s theorem applies to the wave vector dependence 

of the electronic band structure (where the molecular orbitals also combine to form bands) 

for a thin film of zwitterion (6Z)-4-(benzylamino)-6-(benzylliminio)-3-oxocyclohexa-1,4-

dien-1-olate on gold substrate. Inter-molecular band dispersion has been previously 

observed for small adsorbates (like the molecular CO and N2 and for large adsorbate 

molecular layers like pentancene, thione 2-mercatobenzoxazole and a very few other 

examples [50-55]. This comparison, by analogy at the very least, is possible because both 

these small and large adsorbate molecules tend to bond with the molecular axis ‘‘mostly’’ 

along the surface normal.  Band dispersion and large electron pockets are observed in the 

photoemission spectra, this large electron pockets can be associated with an electronic state 

in which its electronic density is shared inter-molecularly through the oxygen to amino 

groups of the zwitterion crystal.  Here we provide basic characterization of this large 

electron pocket, revealing its one dimensional origins.  We propose a one dimensional 

electronic state as shown on the calculation figure 5.2(g), electronic band crossing the 

Fermi level and consequently a large number of free electron along Z-G direction on the 

zwitterion crystalline structure, in comparison other crystal directions do not contribute to 

electron states on the Fermi level, making it a quasi-one dimensional conductor.   
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Chapter 6 Di-idobenzene Isomers Adsorptions on Molecule films 

of Quinonoid Zwitterion and PVDF 

6.1 Di-idobenzene Isomers Adsorbed on Quinonoid Zwitterion: Lock and Key 

Adsorption Chemistry 

          Molecules possessing a strong intrinsic dipole can be used for testing if electrostatic 

dipolar interactions can lead to preferential adsorption on electrostatically biased substrates 

[1-27]. Both the magnitude of the molecular electrostatic dipole and the frontier orbital 

symmetry play a dominant role in the adsorption process. Even when intermolecular 

interactions do not involve any irreversible chemical reaction between the molecular 

species, there is a balance between the chemical interactions and the electrostatic dipolar 

interactions [1, 2, 9-26]. 

          Insight into these problems was gained by comparing adsorption of isomeric 

molecules [28-49]. In this chapter, we investigate di-iodobenzene adsorption/absorption on 

the zwitterionic molecule (6Z)-4-(butylamino)-6-(butyliminio)-3-oxocyclohexa-1, 4-dien-1-

olate [50-52], described in detail in Chapter 4. 

          Reversible adsorption of weakly adsorbed molecules has been shown to depend on 

the ferroelectric domain orientation of both organic [14, 15, 53, 54] and inorganic 

ferroelectrics [18, 19, 20, 25, 55, 56]. Such studies have largely investigated polar adsorbate 

molecules [14, 15, 18, 19, 20, 25, 53, 54, 55, 56], with the tacit assumption that non polar 

molecules should be insensitive the ferroelectric polarization domain orientation [18, 19, 

20]. The chemistry of the surface can play a role and it would be rare, if not unusual, for the 

surface chemistry of positive and negative ferroelectric domains to be identical [24, 26]. In 
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this sense, non polar molecules would not be immune from the surface dipole direction of a 

ferroelectric surface. Not only would the non polar molecule respond to the surface dipole 

direction, as all molecules have a finite polarizability, but surface termination, 

stoichiometry and defect densities can differ with different dipole (polarization) directions.  

          This interplay between the surface chemical interactions and the electrostatic dipolar 

interactions can be explored by comparing adsorption of isomeric molecules that are both 

polar and non polar. The investigation of molecular isomeric effects with the adsorption of 

the different isomers of di-iodobenzene on molecular zwitterion films demonstrated that the 

frontier orbital symmetry can both play a dominant role in the adsorption process [57]. For 

a stronger substrate - adsorbate interaction, particularly reaction chemistry [55, 56], it 

remains unclear whether it is the differences in the static surface dipole or the differences in 

the surface chemistry that dominates. For ferroelectrics, the reaction chemistry suggests that 

it is the surface dipoles that matter, but there is no clear delineation of surface chemistry 

and surface dipoles where the surface chemistry is photoactivated [58-71]. 

          At 150 K, the initial adsorption of all three isomers of diiodobenzene is found to be 

similar on a conducting but chemically fairly inert substrate like graphite [49], although a 

number of isomer-specific effects have been identified for the halogenated and substituted 

benzene adsorbates on surfaces [48,49]. Such small simple molecules provide a clear test of 

preferential isomer adsorption, particularly because their intrinsic dipole depends on the 

isomer: the dipole moment 1,2-di-iodobenzene is the largest with an experimentally 

determined value of 1.87 D [72] (1.856 D from density functional theory, with the PW91 

exchange and correlation potential), while 1,3-di-iodobenzene is intermediate with a static 

dipole value of 1.19 D [72] (1.297 D from density functional theory), and of course 1,4-di-



 
 

124

iodobenzene has a zero net dipole moment. These different charge distributions are 

schematically illustrated in figure 6.1. It is, however, 1, 3-disubstituted benzene that shares 

the same symmetry as the C6 core of the zwitterion substrate molecules. While molecular 

dipoles certainly have a profound influence on adsorption [1-27, 73-80], here we show that 

dipolar interactions alone cannot explain the preferential adsorption of one isomer of di-

iodobenzene. The oxygen and nitrogen functional groups of this class of p-

benzoquinonemonoimine zwitterions should also play a role, as potentially influencing the 

chemoselective adsorption chemistry of a “guest” molecule from the vapor [51, 52, 76]. 
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Figure 6.1 Model calculations of the (1) 1,2-di-iodobenzene, (2) 1,3-diiodobenzene, and (3) 

1,4-di-iodobenzene density of states obtained by applying equal Gaussian envelopes of 1 

eV (black thin line) full width half-maximum to each molecular orbital to account for the 

solid state broadening in photoemission and then summing but uncorrected for matrix 

elements and final state effects. The calculated molecular orbitals are shown as a function 

of orbital energy and are not referenced to any Fermi level. Also shown are the schematics 

of the highest occupied molecular orbital (HOMO) of each di-iodobenzene, placed between 

the occupied (left) and unoccupied (right) molecular orbitals. Also shown are schematic 

representations of the charge densities based on Mulliken charge populations. 
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6.1.1 Adsorption of Di-iodobenzene on p-benzoquinonemonoimine Zwitterion 

Molecular Films 

         The ultraviolet photoemission (UPS) and inverse photoemission (IPES) spectra were 

taken in a single ultrahigh vacuum chamber to study the placement of both occupied and 

unoccupied molecular orbitals of the combined zwitterion-di-iodobenzene molecular 

systems as a function of di-iodobenzene exposure to the samples at 150 K. 

         The studies were carried out at 150 K, well below the expected desorption 

temperature of the di-iodobenzenes [49]. Although we do note that while all three isomers 

of di-iodobenzene will adsorb on the ferroelectric copolymer polyvinylidene (70%) with 

trifluoroethylene (30%) (PVDF-TrFE) at 150 K, at 160 K, 1, 2-di-iodobenzene and 1, 3-di-

iodobenzene do not readily adsorb on PVDF-TrFE, while 1, 4-di-iodobenzene will absorb. 

Each isomer of di-iodobenzene (Sigma-Aldrich >99% purity for 1, 2-di-iodobenzene and 1, 

4-di-iodobenzene; >98% purity for 1,3-di-iodobenzene) was admitted to the vacuum 

chamber through a standard leak valve and thus absorbed or adsorbed on the zwitterion 

molecular films from the vapor. Exposures are denoted in Langmuirs (L), where 1 L = 

1v10-6 Torr s. We believe that there is some photodecomposition because after many (10-

20) cycles of absorption/adsorption at 150 K followed by extensive photoemission studies, 

and desorption at or below 300 K, a trace signal of the iodine 3d core level can be observed 

at room temperature. Samples were therefore routinely replaced after a maximum of a few 

cycles, to avoid any contribution from di-iodobenzene fragment contamination as a result of 

this photodissociation common to many halogenated benzenes. 

         All three isomers of diiodobenzene adsorb molecularly on 0.5-1 nm thick films of p-

benzoquinonemonoimine zwitterions, with the substrates held at 150 K. The characteristic 
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molecular orbitals of 1, 2-di-iodobenzene, 1, 3-di-iodobenzene, and 1, 4-di-iodobenzene are 

clearly evident in the combined photoemission and inverse photoemission spectra, shown in 

figure 6.2 for zwitterion molecular films of identical thickness and preparation. There is, 

however, no indication of interactions of any of the di-iodobenzenes with the underlying Au 

substrate, confirming previous observations on clean graphite [49] and copper surfaces [47]. 

         The combined photoemission and inverse photoemission spectra of the p-

benzoquinonemonoimine zwitterion molecular films on Au indicate a highest 

occupiedmolecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) gap 

of 5.8-6.0 eV for the thinner of the films. These experimental values are consistent with the 

calculated value of 5.8 eV based on the simplistic single molecule semiempirical method 

NDO-PM3 (neglect of differential diatomic overlap, parametric model number 3), as 

discussed in detail elsewhere [50]. 

          With increasing exposure of all three isomers of di-iodobenzene, the apparent 

HOMO-LUMO gap increases, and features appear in the spectra (Figure 6.2) consistent 

with the molecular orbitals of the pertinent di-iodobenzenes, as seen in figure 6.1. There is 

agreement of the single molecule calculations with the combined photoemission and 

inverse photoemission, as seen in figure 6.2. Good agreement is found between the 

observed (Figure 6.2) and calculated (Figure 6.1 and top of Figure 6.2) levels of the 

molecular orbitals of the di-iodobenzenes. In fact, the various isomers of di-iodobenzene 

actually have a very similar electronic structure, as illustrated in figure 6.1, where the 

calculated density of states (DOS) was obtained by applying equal Gaussian envelopes of 1 

eV full width half-maximum to each molecular orbital, to account for the solid state 

broadening in photoemission, and then summing. There should be differences from 
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expectations based on a single molecule and a thin film due to intermolecular interactions 

within the film (solid state effects) and band structure, and the model PM3 is a simplistic 

semiempirical single molecule ground state calculation not corrected for matrix element 

effects. Such comparisons with experiments are nevertheless often successful [9-14, 50, 75, 

83, 84, 87, 88], as seen here, although the calculated orbital energies must be rigidly shifted 

in energy by about 5 eV, largely to account for the influence of work function. 

 

 

Figure 6.3 Combined photoemission and inverse photoemission of 1 nm thick p-

benzoquinonemonoimine zwitterion molecular films as a function of (a) 1, 2-di-

iodobenzene, (b) 1, 3-di-iodobenzene, and (c) 1, 4-di-iodobenzene exposure. The exposures 

were done with the p-benzoquinonemonoimine zwitterion molecular films maintained at 

150 K, and exposure is denoted in Langmuirs (L), where 1 L = 1v10-6 Torr s. The bars at 

the top of each panel are the placement of the molecular orbitals rigidly shifted about 5 eV, 

approximately consistent with the work function. Binding energies are in terms of E - EF. 
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          The adsorption of all of the di-iodobenzenes on the p-benzoquinonemonoimine 

zwitterion molecular films is seen to be reversible with no characteristic molecular orbitals 

nor any iodine 3d core level signal evident upon annealing to room temperature. There are 

clear experimental indications that the isomers, while all adsorbing on the zwitterion 

molecular films, exhibit isomeric dependence. The exposure-dependent spectra of figure 

6.2 reveal that the spectral features corresponding to the signature of diiodobenzene 

molecular orbitals appear at exposure values depending on the isomer. The 1,2-di-

iodobenzene requires 60-80 L exposure to approximately 1 nm thick p-

benzoquinonemonoimine zwitterion molecular films at 150 K; the 1,4-di-iodobenzene 

requires some 10-15 L exposure; and the 1,3-diiodobenzene requires only about 4 L 

exposure for the molecular orbitals to become evident in the combined photoemission and 

inverse photoemission spectra. Extending these observations to acoverage dependence on 

the isomer requires introducing the sticking coefficients S, assuming a linear relation 

between the exposure x and coverage y 

                                                                  � � �
� 
 ))��                                                      6.1 

where x0 is the exposure needed to form one monolayer of coverage (roughly 8v1018 

molecules/m2) and q is the ratio of adsorbate ionization cross section to that of N2, neither 

established here. We may assume that the ionization gauge cross sections of all of the di-

iodobenzenes are likely much higher than for nitrogen; for example, the toluene ionization 

gauge crosssection is 6.4 times greater than nitrogen [92], while it is a factor of 3.5 [92] to 

5.7 [93] greater for benzene than nitrogen. Furthermore, one can reasonably assume that the 

ionization gauge cross section of each of the di-iodobenzenes is in fact similar, as has been 
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assumed elsewhere [49]. We therefore infer that the sticking coefficient of 1, 3-di-

iodobenzene on p-benzoquinonemonoimine zwitterion molecular films is roughly 3-5 times 

larger than that observed for 1, 4-di-iodobenzene and 15 times larger than for 1, 2-di-

iodobenzene adsorption at 150 K. This qualitative trend is even more apparent on thicker 

(2-3 nm thick) p-benzoquinonemonoimine zwitterion molecular films at 150 K, as detailed 

in the next section. 

 

6.1.2 Isomeric Dependence of the Di-iodobenzene Adsorption on p-

Benzoquinonemonoimine Zwitterion Molecular Films 

          Another approach to investigating the preferential adsorption and absorption of one 

particular isomer of di-iodobenzene is to look at the increase in the core level iodine signals 

with exposure time. This type of experiment was performed on thicker p-

benzoquinonemonoimine zwitterion films, approximately 2-3 nm thick. As seen in figure 

6.4, significant exposures of 1, 2-di-iodobenzene and 1, 4-di-iodobenzene to thick p-

benzoquinonemonoimine zwitterion molecular films at 150 K are necessary for appreciable 

iodine 3d5/2 core level signals. This is in strongcontrast with iodine signals of 1, 3-di-

iodobenzene adsorption/absorption, which is remarkably more efficient, as seen in figure 

6.4. The iodine 3d5/2 X-ray photoemission core level signal for 1, 3-di-iodobenzene is 

roughly 70 times larger than observed for 1, 2-di-iodobenzene and 210-250 times larger 

than observed for 1, 4-di-iodobenzene, using in all cases thick p-benzoquinonemonoimine 

zwitterion molecular films at 150 K, as summarized in figure 6.4. Again, we see a strong 

preference for the adsorption/absorption of 1, 3-di-iodobenzene. 
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          The 1, 3-di-iodobenzene exposure-dependent XPS spectra show very large shifts in 

the I 3d core level binding energies, as evident in figure 6.4. These increases in core level 

binding energies of w 2.5 eV ormore are far greater than observed for 1, 2- and 1, 4-di-

iodobenzene (Figure 6.3). Since dissociative chemisorption can be excluded in all data of 

the adsorption systems we describe here, such large core level shifts should result 

fromstrong intermolecular interactions or from decreased screening from the substrate with 

increasing di-iodobenzene film thickness [49], resulting in larger photoemission final state 

binding energies [10, 94-96]. Both effects would lead to energy shifts, but such final state 

effects should lead to a decrease [96-98], not an increase, in core level binding energies 

with increasing di-iodobenzene coverages [49]. Changes in the final state screening [94-96], 

with increasing di-idodobenzene coverages, also tend to be excluded because there is no 

change in the HOMO-LUMO gap of the adsorbed 1,3-di-iodobenzenes, as seen in figures 

6.2 and 6.6. 
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Figure 6.3 3d5/2 iodine core level spectra following (a) 1, 2-di-iodobenzene adsorption (1, 5 

L exposure; 2, 600 L exposure) and (b) 1, 4-diidobenzene adsorption (1, 250 L exposure; 2, 

1200 L exposure) to zwitterion molecular films of identical 3 nm thickness and preparation. 

Binding energies are in terms of E - EF. 
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Figure 6.4 X-ray photoemission spectra for I 3d core levels of 1, 3-diiodobenzene adsorbed 

on 3 nm p-benzoquinonemonoimine zwitterions molecular films at 150 K. The core level 

binding energy shifts of both the I 3d5/2 and I 3d3/2 peaks are indicated by vertical bars (see 

text). 
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Figure 6.5 Iodine 3d5/2 core level intensities with increasing exposure of (� ) 1,2-di-

iodobenzene, (●) 1,3-di-iodobenzene, and (▲) 1,4-di-iodobenzene exposures to 3 nmthick 

p-benzoquinonemonoimine zwitterion molecular films maintained at 150 K. Exposures are 

denoted in Langmuirs (L), were 1 L = 1v10-6 Torr s. 
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Figure 6.6 Combined photoemission and inverse photoemission of p-

benzoquinonemonoimine zwitterion molecular films as a function of (a) 1, 2-diiodobenzene, 

(b)1,3-di-iodobenzene, and (c) 1,4-di-iodobenzene exposure. The p-

benzoquinonemonoimine zwitterion molecular films, of identical 3 nm thickness and 

preparation, were maintained at 150 K, and exposure is denoted in Langmuirs (L), were 1 L 

= 1v10-6 Torr s. The bars at the top of each panel are the placement of the di-iodobenzene 

molecular orbitals rigidly shifted about 5 eV, approximately consistent with the work 

function. Binding energies are in terms of E - EF. 

 

          Excluding final state effects, and molecular dissociation, the shifts observed in the I 

3d core level shift with increasing 1, 3-diiodobenzene coverage can also originate from two 

different species: an absorbed phase of di-iodobenzene within the p-

benzoquinonemonoimine zwitterion molecular films and an adsorbed phase, near or at the 

surface of the p-benzoquinonemonoimine zwitterion molecular films. With increasing 
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exposure to di-iodobenzene, the X-ray photoemission iodine signals appear well before the 

molecular orbital peaks appear in the combined photoemission and inverse photoemission 

spectra of figure 6.6. The larger probing depth for the iodine 3d5/2 core level photoemission 

feature is a result of the different electron mean free paths through the molecular film with 

the different electron spectroscopies. The different probing depths are related to 

significantly greater electron kinetic energies (633 eV) in XPS than the valence band 

photoemission (16 eV), with inverse photoemission being notoriously even more surface 

sensitive [99, 100]. The I 3d core level feature may be therefore representative of an 

absorbed phase of 1, 3-di-iodobenzene. It is only with the largest di-iodobenzene exposure 

values where sites in the vicinity or at the surface become populated and become evident in 

inverse photoemission and the low(er) photon energy valence band photoemission. 

          Accordingly, we can partially attribute these different I 3d5/2 core level binding 

energies to the differences between absorbed (621.9 U 0.2 eV) and adsorbed (619.4 U 0.4 

eV) 1, 3-diiodobenzene. The initial iodine 3d5/2 core level binding energies for 1,3-di-

iodobenzene (621.9 U 0.2 eV), 1,2-di-iodobenzene (621.1 U 0.4 eV), and 1,4-di-idobenzene 

(621.7 U  0.4 eV) are significantly greater than the binding energy of 620.7 U  0.1 eV 

observed for the initial molecular adsorption of all three isomers on graphite [49] and 1,4-

di-idobenzene adsorption on the ferroelectric copolymer polyvinylidene (70%) with 

trifluoroethylene (30%) with a binding energy value of 620.8 U 0.2 eV. While adsorption 

on a semimetal like graphite is difficult to compare to adsorption on a poorly conducting 

zwitterion film, the values obtained with dielectric ferroelectric copolymer polyvinylidene 

(70%) with trifluoroethylene (30%) should be similar if the intermolecular interactions are 

minimal. In any case, the change in the initial I 3d5/2 core level binding energy is toward 
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smaller binding energies with increasing di-iodobenzene coverages on 

pbenzoquinonemonoimine zwitterion molecular films at 150 K, in contrast to di-

iodobenzene adsorption on graphite [49]. The core level binding energies support the 

contention that there are strong intermolecular interactions between the di-idobenzenes and 

p-benzoquinonemonoimine zwitterion molecules, especially for 1, 3-di-iodobenzene. 

          The far greater sticking coefficient and far larger core level binding energy shifts (I 

3d5/2 decreasing from 621.9 U 0.2 to 619.4 U 0.1 eV) with increasing 1, 3-di-iodobenzene 

coverages suggest that this isomer favors strong π-π interactions with the adjacent p-

benzoquinonemonoimine zwitterion molecules. The large iodine 3d core level shifts seen 

with 1,3-di-iodobenzene are also consistent with an absorbed phase of 1,3-di-iodobenzene 

followed by adsorption of a surface-related phase on the p-benzoquinonemonoimine 

zwitterion molecular film, with increasing exposure. Exposure of 1, 2-di-iodobenzene and 1, 

4-diiodobenzene to the 3 nm thick p-benzoquinonemonoimine zwitterion molecular films at 

150 K does not provide signature of di-iodobenzene molecular orbitals in the combined 

photoemission and inverse photoemission, even with significant exposure of several 

hundreds of Langmuirs. As seen in figure 6.6, the characteristic di-idobenzene molecular 

orbitals are only observed in the combined photoemission and inverse photoemission in the 

case of 1, 3-di-iodobenzene exposure to thicker (3 nm thick) zwitterion molecular films. 

Given that there are clear indications of di-iodobenzene adsorption from the core level 

photoemission, we must conclude that 1, 2-di-iodobenzene and 1, 4-di-iodobenzene 

exposures (in the range studied here) have only led to absorption within the bulk of the 

thicker 3 nm p-benzoquinonemonoimine zwitterion molecular films at 150 K, with no 

surface or near surface adsorption sites occupied. This goes a long way toward explaining 
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the smaller or negligible iodine X-ray photoemission core level shifts observed (Figure 6.3) 

for 1,2-di-iodobenzene and 1,4-di-iodobenzene. 

          These molecules are dielectrics, and even small core level shifts are not a good 

indication of future trends with continued diiodobenzene adsorption. The XPS core level 

binding energies will not and should not saturate at a specific value. With extensive 

adsorption, as when a di-iodobenzene ice is formed at the surface, there are changes to the 

overall dielectric properties of the combined molecular film, and final state effects will then 

dominate the photoemission spectra. 

 

 

 

Figure 6.7 Lock and key configuration for the absorption interactions between the di-

iodobenzene isomers and the p-benzoquinonemonoimine zwitterion: (a) 1, 3-di-

iodobenzene, (b), (c) 1, 2-di-iodobenzene, (d) 1, 4-di-iodobenzene. Color code: nitrogen 

(dark blue), carbon (light blue and violet), iodine (yellow), oxygen (red). 
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6.1.3 Summary 

           Di-iodobenzene adsorption studies on molecular films of the zwitterionic p-

benzoquinonemonoimine compound C6H2-(···NHR)2(···O)2 where R = n-C4H9 reveal that 

1,3-diiodobenzene adsorption is strongly favored. This isomer of diiodobenzene shares the 

same symmetry as the C6 core of the p-benzoquinonemonoimine zwitterion compound, 

suggesting that the frontier molecular orbital symmetry plays a dominant role in preferential 

isomeric adsorption. Indeed, the highest occupied molecular orbital (HOMO) of 1, 3-di-

iodobenzene bears considerable resemblance to the lowest unoccupied molecular orbital 

(LUMO) of the core of the p-benzoquinonemonoimine zwitterions compound. This 

molecular recognition phenomenon should therefore be understood within models going 

beyond simple dipolar interactions, as there are indications that the HOMO of 1, 3-di-

iodobenzene can strongly hybridize with the LUMO of this p-benzoquinonemonoimine 

zwitterion compound, if the relative orientation of figure 6.7 is adopted. 

           It is clear that there is one orientation of 1, 3-di-iodobenzene that favors strong π-π 

interactions (see Figure 6.7), with a concomitant electric dipole coalignment with the 

adjacent p-benzoquinonemonoimine molecules. The two orientations of 1, 2-di-

iodobenzene that favor π-π interactions are shown in figure 6.7, with electric dipole 

coalignment, with the adjacent p-benzoquinonemonoimine molecules, but the alignment is 

imperfect and the symmetry not preserved. For 1,4-di-iodobenzene, there is one symmetry-

preserving orientation that favors π-π interactions with the adjacent p-

benzoquinonemonoimine molecules, but apart from some induced dipole in the 1,4-

diiodobenzene, there is no expected real dipole alignment (see Figure 6.7). If the 

multiplicity of available favorable orientations based on dipole and π-π interactions is the 
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key factor determining preferential isomeric attachment, then absorption of 1, 2-

diiodobenzene should be preferred, in contradiction with our experimental findings. Our 

experiments demonstrate that reversible isomer-selective adsorption chemistry of small 

molecules is indeed possible, with a preferential adsorption mechanism illustrating that 

symmetry does matter. 

 

6.2 Di-idobenzene Isomers Adsorbed on PVDF: Dipole Orientation Mediated 

Chemistry at Polymer Surfaces 

                  Now we turn to our investigation of di-iodobenzene adsorption/absorption on 

crystalline copolymers of polyvinylidene with trifluoroethylene (PVDF-TrFE), a molecular 

ferroelectric. As with some prior studies of adsorption on ferroelectric substrates [18], we 

compare a polar and nonpolar species, but by investigating two different isomers of di-

iodobenzene, we compare molecules with far more similar surface chemistry than in prior 

investigations involving adsorption on ferroelectrics. Key to any fundamental 

understanding is performing the experiments at constant temperature, to eliminate 

pyroelectric contributions to the surface charge, a complication common to ferroelectric 

materials.  

                 While molecular dipoles certainly have a profound influence in adsorption [1-7, 15, 

53, 72-79], here we show that dipolar interactions alone cannot explain the preferential 

adsorption of one isomer of di-iodobenzene. 
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6.2.1 The Adsorption of Di-iodobenzene on Ferroelectric Films of the Copolymer 70% 

Vinylidene Fluoride with 30% Trifluoroethylene, P(VDF-TrFE 70:30) 

           In Section 2.5 and 2.7.3, Chapter 2, we have shown the fabrication and “non-

contact” ferroelectric poling process of ultrathin ferroelectric films of the copolymer 70% 

vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE 70:30) and discussed the 

ferroelectric domain orientations and hysteresis which were determined and imaged in 

ambient environment by means of piezoresponse force microscopy [118]. 

            In our experiment, combined ultraviolet photoemission (UPS) and inverse 

photoemission (IPES) spectra [11, 14, 18, 75, 83, 85, 90, 76, 103, 111] were taken in a 

single ultrahigh vacuum chamber to study the placement of both occupied and unoccupied 

molecular orbitals of the combined di-iodobenzene – P(VDF-TrFE, 70:30) molecular film 

system, as a function of di-iodobenzene exposure to the samples at 150 K. The studies were 

carried out at 150 K, well below the expected desorption temperature of the di-

iodobenzenes [49, 57]. Here, each isomer of di-iodobenzene (Sigma-Aldrich >99% purity 

for 1,2-di-iodobenzene and 1,4-di-iodobenzene; >98% purity for 1,3-di-iodobenzene) were 

admitted to the vacuum chamber through a standard leak valve, and thus absorbed or 

adsorbed on the zwitterion molecular films from the vapor. Exposures are denoted in 

Langmuirs (L), where 1 L=1x10-6torr.sec. 

          Di-iodobenzene will adsorb molecularly on thin ferroelectric films of the copolymer 

70% vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE 70:30), with the 

substrates held at 150 K as seen in Figure 6.9. As with 1,2-di-iodobenzene, 1,3-di-

iodobenzene and 1,4-di-iodobenzene adsorption on zwitterionic p-benzoquinonemonoimine 

compound C6H2(···NHR)2(···O)2 where R = n-C4H9 molecular films [57], the characteristic 
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molecular orbitals of 1,4-di-iodobenzene are clearly evident in the combined photoemission 

and inverse photoemission, shown in Figure 6.8. Indeed the combined photoemission and 

inverse photoemission spectra for 1, 4-di-iodobenzene adsorption on p-

benzoquinonemonoimine zwitterion molecular films [57] and P(VDF-TrFE 70:30), shown 

here, are very similar.  

         We believe that there is some decomposition, at least with annealing of adsorbed di-

iodobenzene on P(VDF-TrFE 70:30), because strong signal of the iodine 3d core level can 

be observed at room temperature and above with post exposure annealing of the sample, as 

indicated in Figure 6.9 for 1,4-di-idobenzene. Samples were therefore routinely replaced to 

avoid any contribution from di-iodobenzene fragment contamination, as a result of this 

dissociation common to all of the di-iodobenzenes adsorbed on the P(VDF-TrFE 70:30) 

substrates at 150 K. This strong chemisorption and possible decomposition is unlike with 

di-iodobenzene absorption/adsorption on the p-benzoquinonemonoimine zwitterion 

molecular films at 150 K, where many adsorption and desorption cycles (>20) were 

required for traces of the di-iodobenzene to remain at room temperature after annealing. 
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Figure 6.8 The combined photoemission and inverse photoemission of about 3 nm thick 

copolymer 70% vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE 70:30) 

molecular films as a function of (a) 1,2-di-iodobenzene, (b) 1,4-di-iodobenzene exposure. 

The exposures were done with the P(VDF-TrFE 70:30) molecular films maintained at 150 

K, and exposure is denoted in Langmuirs (L), where 1 L=1x10-6torr.sec. The bars at the top 

of the panels on the right are the placement of the molecular orbitals rigidly shifted by 

about 5 eV, approximately consistent with the work function. Binding energies are 

referenced with respect to the Fermi edge in terms of E-EF, thus making occupied state 

energies negative. 
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          In spite of the possible fragmentation upon adsorption, the combined photoemission 

and inverse photoemission spectra of 1, 4-di-iodobenzene and the apparent HOMO-LUMO 

gap are consistent with the molecular orbitals of the 1, 4-di-iodobenzene, as seen in figure 

6.8. There is agreement of the single molecule calculations with the combined 

photoemission and inverse photoemission, as seen in figure 6.8. Good agreement is found 

between the observed (Figure 6.8), and calculated (top of Figure 6.8) energy levels of the 

molecular orbitals of 1-4-di-iodobenzenes using a single molecule semiempirical molecular 

orbital calculation (PM3). There should be differences from expectations based on a single 

molecule and a thin film due to intermolecular interactions within the film (solid state 

effects) and band structure, and the semiempirical model PM3 is a simplistic semi-

empirical single molecule ground state calculation not corrected for matrix element effects. 

This type of comparison with experiments has been, however, very successful in modeling 

all of the isomers of di-iodobenzene adsorbed/absorbed on p-benzoquinonemonoimine 

zwitterion molecular films [57], although, as seen here, the calculated orbital energies must 

be rigidly shifted in energy by about 5 eV, largely to account for the influence of work 

function. 
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Figure 6.9 X-ray photoemission spectra for both the I 3d5/2 and I 3d3/2 core level features of 

1,4-di-iodobenzene adsorbed on 3 nm thick copolymer 70% vinylidene fluoride with 30% 

trifluoroethylene, P(VDF-TrFE 70:30) molecular films following exposures of 400 

Langmuirs at 150 K. The P(VDF-TrFE 70:30) molecular film has been poled up. Binding 

energies are referenced with respect to the Fermi edge in terms of E-EF, thus making 

occupied state energies negative. 

 

     The initial iodine 3d5/2 core level binding energies for 1,2-di-iodobenzene and 1,4-di-

idobenzene adsorption on the ferroelectric copolymer polyvinylidene (70%) with 

trifluroethylene (30%) are similar, with a binding energy value of 620.8U0.2 eV. These 
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values are close to the core level binding energies observed with initial 1,2-di-iodobenzene 

(621.1U0.4 eV) and 1,4-di-idobenzene (621.7U0.4 eV) adsorption/absorption on on p-

benzoquinonemonoimine zwitterion molecular films [57], and extremely similar to the 

binding energy of 620.7U0.1 eV observed for the initial molecular adsorption of all three 

isomers on graphite [49]. While this also suggests that the initial adsorption of di-

iodobenzenes on P(VDF-TrFE 70:30) at 150 K is indeed molecular, this does not exclude 

partial dissociation nor does this exclude strong chemisorption. 

 

 

 

Figure 6.10 The iodine 3d5/2 core level intensities with increasing exposure of (n) 1,2-di-

iodobenzene, (▲)1,3-di-iodobenzene and (l) 1,4-di-iodobenzene exposures to 3 nm thick 

copolymer 70% vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE 70:30) 

molecular films maintained at 150 K. Exposures are denoted in Langmuirs (L), were 1 

L=1x10-6torr.sec. The P(VDF-TrFE 70:30) molecular films have all been poled up.  
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      What is clear is that the appearance of the di-iodobenzene molecular orbitals requires 

very large exposures of 1, 2-di-iodobenzene, compared to 1, 4-di-iodobenzene, for 

adsorption on the P(VDF-TrFE 70:30) substrates held at 150 K. In other words, the initial 

sticking coefficient of 1, 2-di-iodobenzene on the P(VDF-TrFE 70:30) substrates held at 

150 K is low compared to that for 1,4-di-iodobenzene. Either 1, 2-di-iodobenzene does not 

readily adsorb on the P(VDF-TrFE 70:30) substrate, or the fact that the films are naturally 

poled up after growth inhibits 1,2-di-iodobenzene adsorption on the P(VDF-TrFE 70:30) 

substrates. As demonstrated below, we show that in fact the latter is true. This suggestion 

that 1,4-di-iodobenzene adsorption on P(VDF-TrFE 70:30) substrates held at 150 K is more 

facile than 1,2-di-iodobenzene adsorption, as indicated by the combined photoemission and 

inverse photoemission spectra that is reflected in the iodine core level intensities, as 

summarized in Figure 6.10. 

 

6.2.2 The influence of ferroelectric poling on di-iodobenzene adsorption on 

Ferroelectric Films of the Copolymer 70% Vinylidene Fluoride with 30% 

Trifluoroethylene, P(VDF-TrFE 70:30) 

       The preferential adsorption and absorption of one particular isomer of di-

iodobenzene on thicker p-benzoquinonemonoimine zwitterion molecular films at 150 K, is 

clearly evident from the iodine 3d5/2 core level signals, as well as combined photoemission 

and inverse photoemission [57]. The strong preference for the adsorption/absorption of 1,4 

di-iodobenzene on P(VDF-TrFE 70:30) substrates held at 150 K, is seen here to be strongly 

influenced by the direction of the ferroelectric domains, as seen in Figure 6.11. 
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 The far greater sticking coefficient evident from the I 3d5/2 intensities with 1,4-di-

iodobenzene than is observed with 1, 2-di-iodobenzene exposure to P(VDF-TrFE 70:30) 

substrates held at 150 K, occurs with the ferroelectric poling up along the surface normal. 

The reverse is true when the ferroelectric polarization is reverse to down, as seen in Figure 

6.12. In fact there is little difference in sticking coefficient for 1,4-di-iodobenzene 

adsorption on P(VDF-TrFE 70:30) substrates held at 150 K and poled up and the sticking 

coefficient for 1,2-di-iodobenzene adsorption on P(VDF-TrFE 70:30) substrates held at 150 

K and poled down. The apparent differences in sticking coefficient are only apparent when 

di-iodobenzene adsorption on the P(VDF-TrFE 70:30) substrates, held at 150 K, is 

compared for one poling direction, as is the case in Figure 6.10.  
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Figure 6.11 The iodine 3d5/2 core level intensities with increasing exposure of (a) 1,2-di-

iodobenzene and (b) 1,4-di-iodobenzene exposures to 3 nm thick copolymer 70% 

vinylidene fluoride with 30% trifluoroethylene, P(VDF-TrFE 70:30) molecular films 

maintained at 150 K poled both up (�) and down (�). Exposures are denoted in Langmuirs 

(L), were 1 L=1x10-6torr.sec.  

 

          As with adsorption of the various isomers of di-iodobenzene on the p-

benzoquinonemonoimine zwitterion molecular films at 150 K [57], there is a strong 

dependence of the choice of isomer on the adsorption on P(VDF-TrFE 70:30) molecular 

films, but this isomer dependence is also strongly dependent of the direction of the 

ferroelectric poling. Even more important, unlike prior studies [18-20], the adsorption of 

the non polar 1, 4-di-iodobenzene also depends on the direction of the ferroelectric 
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polarization. This implicates the changes in surface chemistry that occur with reversal of 

the ferroelectric polarization: hydrogen-terminated when poled up and fluorine terminated 

when poled down. Although this is a special case as there is strong chemisorption occurring 

with di-iodobenzene adsorption on P(VDF-TrFE 70:30) molecular films, this means that 

like with adsorption on inorganic ferroelectrics [119], surface chemistry cannot be a priori 

excluded when the ferroelectric polarization is reversed. 
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6.2.3 Summary 

 

 

 

Figure 6.12 The iodine 3d5/2 core level intensities with increasing exposure of 1,2-di-

iodobenzene to 3 nm thick copolymer 70% vinylidene fluoride with 30% trifluoroethylene, 

P(VDF-TrFE 70:30) molecular films maintained at 150 K poled both up (�) and down (�) 

and the schematic representation of 1, 2-di-iodobenzene absorbed on PVDF with different 

ferroelectric polarization. Exposures are denoted in Langmuirs (L), were 1 L=1x10-

6torr.sec. 

 

         By changing the ferroelectric polarization direction, isomer specific interfacial 

chemistry can be engineered. Di-idobenzene adsorption studies on P(VDF-TrFE 70:30) 



 
 

152

molecular films, reveal that 1,2-di-iodobenzene adsorption is strongly favored when the 

ferroelectric polarization is down (as shown in figure 6.11 and 6.12), while 1,4-di-

iodobenzene adsorption is strongly favored when the ferroelectric polarization is up. 

Because these experiments are isothermal, pyroelectric contributions to this selectively can 

be excluded. The implication is that while interface dipole orientation can strongly 

influence adsorption kinetics, interface chemistry can trump the influence of the interface 

dipole, as has been previously suggested [119]. This selective chemistry based on 

phenomenon related to the ferroelectric polarization orientation should therefore be 

understood within models going beyond simple dipolar interactions, and complements 

recent demonstrations that the frontier orbitals matter in adsorption and chemisorption at 

the molecule-molecule interface [57].   
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Chapter 7 Spatially Selective Deposition of Zwitterionic D-

Cysteine and a p-benzoquinonemonoimine Molecular System on 

Periodically Poled Lithium Niobate 

In this chapter, I will discuss our study on selective deposition of zwitterionic 

molecular system on periodically poled lithium niobate (PPLN). We have been able to 

selectively deposit folate, d-cysteine and a zwitterion compound from the class of N-

alkyldiaminoresorcinones (or 4, 6-bis-dialkylaminobenzene-1, 3-diones, C6H2(NHR)2(O)2), 

compounds, where R =C5H11. All of these molecules have very strong local dipoles and 

appear to adopt spatial localization consistent with the ferroelectric domain structure of 

lithium niobate (LiNbO3). We have been able to demonstrate that folate, d-cysteine and one 

of this class of p-benzoquinonemonoimine zwitterion compounds will all selectively adsorb 

from solution on periodically poled lithium niobate substrates using infra-red spectra-

microscopy. The spatial localization of the folate, d-cysteine and the p-

benzoquinonemonoimine zwitterionic compound on lithium niobate suggests that the 

ferroelectric poling of lithium niobate either alters the surface chemistry of lithium niobate 

or that there is some dipole-dipole interaction between the substrate and these adsorbates. 

The spatial zwitterion structure is consistent with the periodically poled lithium niobate 

structure.  

One of the characteristic features of the ferroelectrics is the presence of electrically 

reversible polarization. In a properly oriented ferroelectric sample, the polarization can be 
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aligned perpendicular to the surface. In this case, the abrupt change in the normal 

component of the spontaneous polarization on a surface results in the appearance of a 

bound polarization charge, which in ambient conditions is compensated by the 

accumulation of ionic species or dipole molecules and through redistribution of mobile 

carriers in the bulk [1-12]. This screening significantly affects the surface charge 

distribution and the surface potential and results in band bending [13]. Similarly, charged 

surface states can pin the surface Fermi level resulting in a change in both the surface 

charge, the surface potential, and the molecular band offsets [14]. It has been recently 

shown that these electrically switchable properties of the ferroelectrics can be used to tailor 

surface reactivity. Several examples illustrating the effect of polarization on the 

photoreduction rate of Ag+ ions, the sticking coefficients and interaction energies of 

alcohol and water molecules can be found in literature [15-21], including the selective 

deposition of virus particles [22]. This effect opens a possibility of controlled assembling of 

complex organic/ inorganic nanostructures for hybrid electronic devices [23]. 

In spite of sizeable amount of experimental evidence on the effect of polarization on 

surface reactivity, the physicochemical mechanism of adsorption on the polar surfaces is 

not well understood. Band bending and induced redistribution of polarization screening 

charges was invoked as a mechanism for photoinduced adsorption of metals on ferroelectric 

surfaces [15, 24]. On the other hand, the photoinduced reduction of silver can occur on 

domains of both polarities under sufficiently high dose of irradiation. Different 

physisorption energies and chemisorption modes of CO2 molecules (dissociative versus 

associative adsorption) have been reported for opposite domains in barium titanate [25]. 

The strong effect of the LiNbO3 polarity on the thermal desorption of polar acetic acid 
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molecules but not the nonpolar dodecane molecules was explained by electrostatic 

interactions of polar molecules with uncompensated surface charges arising due to 

pyroelectric effect [17]. Nonetheless, polarizationdependent surface chemistry was not 

excluded in prior studies of molecular adsorption on LiNbO3 (Refs. [17], [18], and [25]) 

and thus must be considered as another possible mechanism affecting molecular adsorption 

and desorption. An investigation of the electronic structure of molecules on ferroelectric 

surfaces can provide additional information regarding the polarization effect on molecular 

adsorption. 

 

7.1 Selective Deposition of the P-benzoquinonemonoimine Zwitterion on Periodically 

Poled Lithium Niobate 

Molecules of the p-benzoquinonemonoimine zwitterion compound (6Z)-4-

(butylamino)-6-(butyliminio)-3-oxocyclohexa-1,4-dien-1-olate C6H2(···NHR)2(···O)2 where 

R = n-C4H9 (see Figure 4.1) selectively adsorb from solution on periodically poled lithium 

niobate (LiNbO3) substrates as illustrated in the infra-red spectra-microscopy mapping of 

this compound on lithium niobate (Figure 7.1). The image shows the distribution of the 

molecules, using the molecular vibrational mode at 1730 cm-1 (see the arrow in figure 7.2 e) 

as a marker of the molecular localization. No vibrational modes specific to LiNbO3 

substrate exist in this region of the IR spectrum and LiNbO3 contributions can be excluded.  
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Figure 7.1 The spatial localization of the p-benzoquinonemonoimine zwitterion compound 

using infra-red spectra-microscopy at room temperature. The resolution in the y-axis 

(vertical) direction is limited to several microns. The resolution in the x-axis (horizontal) 

direction is 10-15 microns. The inset at left shows the piezoresponse force microscopy 

phase image of a portion of the periodically poled lithium niobate stripe domains. The IR 

spatial map was taken using the 1730 cm-1 absorption indicated by the arrow in Figure 7.2 

e, and is in no way characteristic of the lithium niobate substrate. The less red and more 

blue seen in the above image, the greater the IR absorption associated with the vibrational 

mode associated with the p-benzoquinonemonoimine zwitterion core to nitrogen group 

asymmetric stretch at 1730 cm-1 (1609 cm-1 as calculated). 
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Figure 7.2 The infrared absorption spectra of the p-benzoquinonemonoimine zwitterion, 

compared with the vibrational eigen-values (a) and the calculated IR active modes (b). The 

experimental IR spectra include the p-benzoquinonemonoimine zwitterion in the solid state 

(c), adsorbed on Au (d), and adsorbed on lithium niobate (e). The modes indicated in the 

spectra by the oval are from CO2. The placement of the modes, obtained from 

photoemission vibronic fine structure, are also indicated, by ν1 and ν2 and the IR imaging 

was undertaken using the absorption line indicated with the larger arrow (see text). 

 

 This selective deposition is not a result of the change in bulk composition. Spatially 

resolved X-ray adsorption near edge spectroscopy (XANES) at the Nb K-shell edge shows 

no change in the absorption fine structure on the scale of a micron, i.e. at dimensions much 

smaller than the dimensions of the poled ferroelectric strip domains (see Supplementary 
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Material). The selective deposition (Figure 7.1) of this p-benzoquinonemonoimine 

zwitterion compound thus results from a surface interaction effect on the surface of poled 

lithium niobate. The failure of the IR microscopy image to localize the p-

benzoquinonemonoimine zwitterion molecules precisely to the ferroelectric stripe domains 

is likely a resolution issue associated with the limitations of the IR microscopy and infrared 

synchrotron beamline. The resolution in the y-axis direction of figure 7.1 is limited to 2-3 

microns, while the resolution in the x-axis direction is 10-15 microns. 

 The general spatial localization of this p-benzoquinonemonoimine zwitterion 

molecule (Figure 7.1) suggests that the ferroelectric poling of LiNbO3 either alters the 

surface chemistry or that there is some dipole-dipole interaction between the zwitterion and 

ferroelectric domains of the substrate surface. Dipole interactions alone would likely have 

the zwitterion decorate both “up” and “down” domains of the ferroelectric, so some surface 

chemistry is certainly implicated in the interation of LiNbO3.  

 The prior surface characterization of LiNbO3 could be interpreted as indicating some 

changes in either the surface defect density or the terminal layer surface composition 

accompany the reversal of polarization [1]. The direction of the ferroelectric dipole has 

been seen to alter the adsorption and desorption chemistry of a number of organic 

molecules on the surface of several inorganic ferroelectrics [2-8], including changes in 

surface chemistry of lithium niobate [2, 6-8]. Thus the selective deposition of our p- 

benzoquinonemonoimine zwitterion molecule from solution (Figure 7.1) is not entirely 

unexpected. The zwitterion adheres better to the lithium niobate surface with one dipole 

orientation surface than the other and is not so easily removed by an ethanol wash (used to 
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remove excess molecules). It should be re-iterated that presently, alterations in surface 

chemistry resulting in spatial chemical localization issues cannot be excluded. 

 Because our studies are isothermal, we can exclude the preferential adsorption and 

desorption as being caused by a surface pyroelectric charge. Such a temperature dependent 

surface charge could influence thermal desorption of polar molecules from LiNbO3 and was 

not ruled out in prior studies [2, 6-8]. As is the case here, changes in thermal desorption and 

chemical reactivity reported previously [2, 5-8] could be explained by changes in the 

surface chemistry that may occur with polarization reversal. There was no proof offered 

that the surface composition, stoichiometry and surface structure was not altered with 

reversal of the ferroelectric dipole direction [2, 5-7]. The p-benzoquinonemonoimine 

zwitterion spatial selectivity on LiNbO3(001) nevertheless further confirms that there are 

ferroelectric domain specific chemistries, as previously noted [4, 6]. 

               The infra-red absorption modes of this zwitterionic compound seen on LiNbO3 

(Figure 7.2 e) resemble those seen in the photoemission vibronic fine structure (Figure 4.6). 

The infra-red absorption spectra are dominated by two absorption lines indicative of very 

selective selection rules: the p-benzoquinonemonoimine zwitterion core plane must be 

aligned preferentially with the surface normal thus placing the zwitterion dipole parallel to 

the lithium niobate dipole direction (along the surface normal), possibly again adopting the 

orientation schematically illustrated in Figure 4.4. Obtaining IR adsorption spectra of 

molecular adsorbates on transparent wide band gap oxides is widely recognized to be very 

difficult [9, 10] particularly for reflection IR, as is the case here. Molecular adsorbate IR 

vibrational modes absorption intensities on oxide surfaces tend to be about an order of 

magnitude weaker than observed for the same adsorbate on a metal substrate. The strong 
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dipole of the p-benzoquinonemonoimine zwitterion is an advantage, as the IR cross-section 

is much improved for the strong dipole active modes, hence the differences in the IR 

spectra of Figure 7.2. 

 The dipole active modes predicted to be located at energies of 3126 cm-1 and 3227 

cm-1, associated with the core molecular stretching modes (schematically shown as (a) and 

(b) in figure 4.6) are in good agreement with the observed infrared absorption in the region 

of 2800 to 2900 cm-1 (Figure 7.2 e) of the p-benzoquinonemonoimine zwitterion compound 

when selectively adsorbed on the LiNbO3 (001) surface. This agreement and the paucity of 

IR absorption bands make a compelling case for a molecular orientation where the plane of 

the zwitterion core is again aligned preferentially close to the surface normal. The observed 

infrared absorption at ca. 1730 cm-1 (Figure 7.2 e) for the zwitterion, when selectively 

adsorbed on the LiNbO3(001) surface should be assigned to one of the strong dipole active 

modes schematically shown as (c) and (d) in Figure 4.6. The strong dipole field at the 

interface, and absence of image dipole (the substrate is a dielectric) will contribute further 

to symmetry restrictions in the IR absorption spectroscopy, leaving only a few modes to 

contribute to the IR absorption spectra in the specular geometry, as is observed. Many such 

modes will appear slightly shifted towards higher energies because of the strong dipole 

field, resulting from the substrate interactions. Because the local fields are not as strong as 

the transient electric field created in photoemission, an increase in the vibrational mode 

energies should not be and is not as large as is observed in the vibronic photoemission fine 

structure. 

Adsorption studies have shown that strong interactions develop between the 

zwitterionic p-benzoquinonemonoimine compound (C6H2(···NHR)2(···O)2 where R = n-
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C4H9) and a ferroelectric insulating substrate (lithium niobate). The core of the zwitterion 

tends to align preferentially along the surface normal, likely because of the image charge 

and/or the substrate dipole. 

The static dipole field, in the mean field approximation either in the initial state (as 

seen with molecular adsorption on the LiNbO3 ferroelectric substrate) or in the 

photoemission final state (as seen in the vibrational fine structure contributions to the 

valence band photoemission), perturbs the adsorbate vibrational states. Strong local dipole 

fields created owing to the photo-hole in the photoemission final state [11], or through 

adsorption on a ferroelectric substrate, can lead to vibrational mode stiffening of the dipole 

active modes associated with the nitrogen groups of the zwitterion. This is reflected in the 

change of energy of the asymmetric vibrational mode linking the core of the zwitterion 

molecule to the nitrogen, increasing from 1500 ± 50 cm-1 (Au substrate) to 1730 ± 30 cm-1 

(LiNbO3 substrate) and 2016 ± 110 cm-1 (photoemisson final state).  This expected 

perturbation of the adsorbate vibrational states can finally be observed because these 

adsorbed zwitterion molecules adopt a preferential orientation leading to very restrictive 

selection rules, simplifying the otherwise complex vibrational mode spectra.  

The selective deposition of molecules onto specific ferroelectric domains has also 

been demonstrated for a spatially periodically poled ferroelectric surface. This represents an 

attractive approach to pattern molecular deposition on optically transparent planar 

substrates through electrostatic dipolar interactions, although some surface chemical 

interactions must be invoked since the entire surface of LiNbO3 is NOT covered. The 

results presented here, on ferroelectric domain selective adsorption, exclude preferential 
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molecular adsorption due to a surface charge resulting from the pyroelectric effect, which 

could not be excluded in some prior studies. 

 

7.2 Selective Deposition of Zwitterionic D-Cysteine on Periodically Poled Lithium 

Niobate 

We investigate the polarization effect on adsorption of d-cysteine molecules [a 

chiral isomer of l-cysteine (chemical formula C3H7NO2S)] on ferroelectric substrates using 

a combination of infrared spectramicroscopy and spatially resolved x-ray absorption near 

edge spectroscopy (XANES). (It is worth mentioning that there is a rich literature of 

cysteine adsorption chemistry [26-30] and the characteristics of cysteine adsorption 

molecules on polar surfaces could be of interest for differentiating amino acid molecules.) 

We have shown that although experiments were performed in the absence of any external 

electronic excitation (optical or thermal), the adsorption was still affected by polarization 

with preferential deposition occurring on the positive domains. This observation allows us 

to exclude selective molecular adsorption due to the surface charge resulting from, for 

example, the pyroelectric effect, restricting the possible surface interactions to polarization-

dependent surface chemistry and dipole-dipole interaction. 

Periodically poled lithium niobate (PPLN) substrates of congruent composition, 

which are similar to the ones used in Ref. [24], were used as the ferroelectric substrates, as 

described in Chapter 2. 
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Figure 7.3 (Color) The spatial localization of the d-cysteine molecules on a periodically 

poled lithium niobate detected using an infrared spectramicroscopy with a blue contrast. 

 

Deposition of d-cysteine molecules on PPLN has been carried out by immersing the 

PPLN substrate in aqueous 1M d-cysteine solution for 24 h. Following immersion, the 

samples were washed in a weak 1M NaOH alcohol-water solution to remove excess 

molecules followed by rinsing in ethanol using the previously described cleaning process 

[22] and dried. Deposition was carried out in isothermal conditions at room temperature 

without illumination. Spatially resolved chemical mapping has been performed using 

infrared spectramicroscopy to determine the domain-specific localization of d-cysteine 

molecules by means of the IR reflection mode of Thermo Nicolet continuum microscope at 

the synchrotron of the Center for Advanced Microstructures and Devices at Louisiana State 

University [32, 33]. With the synchrotron as a light source, the infrared incident light is 

highly planepolarized and s-polarized in the geometry of the experiment. 

Figure 7.3 shows IR spatial microscopy images of the d-cysteine coverage of the 

PPLN surface. Blue contrast in Figure 7.3 and darker contrast in the right inset correspond 

to regions covered with d-cysteine molecules. Comparison of the stripe shape of these 
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regions with the periodical domain structure revealed by PFM indicates that d-cysteine 

adsorption closely follows the polarization pattern. Combined AFM/PFM inspection of the 

PPLN surface after deposition showed larger accumulation of substance on the positive 

ends of domains. 

 
 

Figure 7.4 (Color) (a) IR spectrum on PPLN surface before d-cysteine deposition. [(b) and 

(c)] Spectrum of d-cysteine molecules on PPLN (b) as compared to reference IR spectra of 

solid d-cysteine (c). (d) The calculated vibrational modes of d-cysteine from density 

functional theory. Note that in the absence of d-cystseine, LiNbO3 shows little IR 

absorption in the reflection geometry, as expected. The molecular scissor mode 

experimentally determined to be at 775 cm-1 and calculated to be at 753 cm-1 is 

schematically shown as an inset. This mode (see arrow) occurs in a region where there is no 

absorption from LiNbO3 undecorated by d-cysteine, and was used to construct the IR 

spatial absorption map of Figure 7.3. 
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The change in the infrared spectra associated with adsorption of d-cysteine on lithium 

niobate is shown in Figure 7.4. In the absence of d-cysteine, absorption on the LiNbO3 (001) 

surface is weak [Fig. 7.4(a)]. The characteristic IR absorption lines of d-cysteine are clearly 

evident in the IR spectra of d-cysteine deposited on LiNbO3 [Fig. 7.4(b)], but the huge 

increase in the relative absorbance of the dipolar molecular scissor mode is a strong 

indication of d-cysteine aligned with the long molecular axis normal to the surface. The 

suppression of the other modes of a different symmetry is also consistent with this 

interpretation. There is some shift of the dipole modes to higher vibrational energies, as has 

been seen with other dipolar molecules on ferroelectric substrates [34]. Obtaining the IR 

absorption spectra of molecular adsorbates on transparent wide band gap oxides is widely 

recognized to be very difficult and intensity of IR vibrational modes of molecular 

adsorbates on oxide surfaces tend to be about an order of magnitude weaker than observed 

for the same adsorbate on a metal substrate [35-37]. Beyond the obvious surface 

localization, ascertaining the surface density of d-cysteine molecules is difficult from the 

data available here. 

          In prior deposition experiments, employing the particles in solution [21, 38], it has 

been assumed that the interaction between the deposited ions or charged particles and the 

ferroelectric surface is electrostatic in nature and results from the fact that the ferroelectric 

holds a bound surface charge arising from its spontaneous polarization. However, in an 

aqueous solution, the formation of an electric double layer due to the adsorption of water 

dipoles or different ionic species should lead to essentially complete screening of the 

polarization charges. (For lithium niobate, this is the dominant screening mechanism [24].) 

Only generation of uncompensated surface charges via band gap illumination or 
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temperature change resulted in polarization-specific adsorption. In present experiment, 

adsorption of the d-cysteine molecules occurs in the isothermal conditions and without 

optical excitation. Hence, it cannot be attributed to the effect of pyroelectric or 

photoinduced charge. The data suggest that polarization-dependent surface chemistry can 

be implicated in the selective adsorption of d-cysteine. Nonetheless, the indications of a 

preferential alignment of adsorbed d-cysteine molecules along the surface normal, while not 

completely inconsistent with a polarization-dependent surface chemistry do suggest that 

interface dipole-dipole interaction should play a role as well. The d-cysteine molecules 

largely contain a nonpolar thiol group (-0.1 excess charge on S), a polar amine group (-0.75 

excess charge on N), and a polar carboxilate group (-0.45 and -0.56 excess charge on each 

oxygen, respectively), as derived from density functional theory (the standard B3LYP 

function). The latter two groups possibly participate in the dipoledipole interaction with the 

polar lithium niobate surface and thus cause polarization-dependent adsorption. 

Polarization-dependent surface reconstructions and surface relaxations are indicated by the 

apparent variations of Li/Nb concentration ratios at the lithium niobate surface determined 

from temperature dependent Auger electron spectroscopy, while the possibility of defects at 

the surface mediated by the polarization are suggested by the changes in the O/Nb ratio [39, 

40]. Nonuniformity of surface composition can also explain considerable variations in d-

cysteine concentration along the domain stripes. 

In summary, the polarization-specific adsorption of d-cysteine on periodically poled 

lithium niobate during isothermal deposition from solution has been studied by means of 

infrared spectramicroscopy and XANES spectroscopy. The reported effect is attributed to 

dipole-dipole interaction between polar d-cysteine molecules and ferroelectric polarization 
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dipoles. Surface chemistry related to polarizationdependent variations in Li/Nb 

concentration is also implicated as a contributing factor in the domain-specific adsorption 

of d-cysteine. 

This work could be widely applicable in other fields outside physics. In recent years, 

there is a rich literature of cysteine adsorption chemistry and the characteristics of cysteine 

adsorption molecules on polar surfaces could be of interest in differentiating amino acid 

molecules. More complex polar molecules, such as folate acid, and fibroblast cell have also 

been investigated on ferroelectric substrates. It can be seen that folate acid also has a 

selective deposition on PPLN (as shown in figure 7.5 (c)). Carried out as a complement to 

this work by the group of Dr. Axel Rosenhahn, Christof Christofis, and Prof. M. Grunze, 

University of Heidelberg, a similar study of fibroblast adhesion on periodically poled 

LiTaO3 (as shown in figure 7.6, 7.7) shows that for initial cell adhesion, cells adhere 

passively on the periodically poled substrate and do not show actively respond or choose of 

a preferred adhesion site. And for long time cell incubation, cells do spread and elongate on 

all substrates uniformly and occur in random orientation.  

In conclusion, although those experiments were performed in the absence of any 

external electronic excitation (optical or thermal), the adsorption was still affected by 

polarization with preferential deposition occurring on the ferroelectric domains.  
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Figure 7.5 (Color) Infra-red color map comparison of (a) D-cysteine (b) Zwitterion 2 (c) 

folate acid on periodically poled lithium niobate. The spatial localization of the molecules 

on a periodically poled lithium niobate detected using an infrared spectramicroscopy with a 

blue contrast indicating a higher degree of adsorption. The insets at the (b) left or at the (c) 

right show a PFM phase image of domains (at the same magnification as the infrared 

microscopy image). Positive domains appear with dark PFM contrast. 
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(a)                  (b)  

(c)                 (d)   

 

Figure 7.6 Fibroblast adhesion on periodically poled LiTaO3 (40µm period). Initial 

adhesion and long time incubation of mammalian fibroblasts on periodically poled LiTaO3 

substrates: (a) 0 min; (b) 10 min; (c) 1h; (d) 18h. 
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                                    Positive                                                           Negative 

(a)                  (b)    

(c)                   (d)    

 

Figure 7.7 Fibroblast adhesion on (a) positive and (b) negative poled LiTaO3 after 1h. (c) 

and (d) are fibroblast adhesion on periodically poled LiTaO3 (40µm period) after 1h.  
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Chapter 8 Applications 

Organic materials are commonly regarded as electrical insulator with a large range of 

application in electronics, biomedical and pharmaceutical purposes.  This is largely true 

even today when we observed man made organic materials in our surroundings.  However, 

electrical conduction on organic materials began to draw attention of scientists.  Even today 

questions such as underlying mechanism of electron mobility, synthesis of materials with 

determine conductivity properties, which electronic state promotes conduction, are current 

subject of research for scientist in materials and nanotechnology research. The field of 

organic semiconductors has developed from a fundamental laboratory discovery into a 

manufacturing technological material for a large range of thin- film electronics 

applications[1-3], which benefits from the compatibility of organic materials with large 

area, low-cost, room temperature solution processing and direct-write printing. Since their 

discovery of organic semiconductor applications today include emissive light emitting 

diodes, flat panel displays, and low cost thin film transistor circuits on flexible substratesi.   

One of the general issues in molecular electronics is the transport through organic 

molecules.  The hybridization of molecular orbitals to form band structure has been studied 

for nearly three decades [2-6], and is a fairly well established phenomenon. With larger 

molecular species, intramolecular band structure is far more likely and commonly observed 

[2-4]. Such intramolecular band dispersion has been found in self-assembled monolayers 

[11, 12], including polyphenyl species [12]. In contrast, because of the very small effective 

Brillouin zone (requiring exceptionally good wave vector resolution) and the generally very 



 
 

183

small intermolecular interactions, band structure resulting from intermolecular interactions 

is generally not observed for ordered assemblies of large molecules, with only a few 

exceptions [5-13]. 

.The study of the details of transport mechanisms in organic systems has 

demonstrated that, not only do interface dipoles and valence band electronic structure 

symmetry play a role, but that there is a strong dependence on molecular vibrations [14-20] 

that couple to the transport properties through electronic structure. In this chapter, we will 

discuss the corresponding applications in molecule electronics based on our investigation 

on charge transport properties on metal-organic interfaces and the doping of 

semiconducting polymers. 

 

8.1 The Electrical Transport Properties of Ultra-thin Films of Zwitterions 

           In Chapter 3, we have investigated surface electronic spectroscopic properties of 

C6H2(···NHR)2(···O)2, where R = H, n-C4H9, C3H6-S-CH3, C3H6-O-CH3, CH2-C6H5, 

adsorbed on Au. Direct measurement of the electrical transport properties of these ultra-thin 

films is challenging, especially when considering that these zwitterion species do not all 

absorb on insulating substrates. For example, we identified a preferential adsorption of the 

molecule 3 on Au, identified by IR spectroscopy (Figure 8.1), suggesting that adsorption on 

oxides surfaces is unreliable, or varies with oxide surface. Although this conclusion is also 

true of molecule 2 as discussed elsewhere [21], we found that molecule 2 was the best 

candidate for adsorption on Au and SiO2 substrate, for the purpose of lateral device 

measurements.  
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          We fabricated electrodes nanogaps structures, with nanometer distance separating 

two Au contacts on a microfluidic-equipped chip allowing chemical exposure and cleaning 

of the nanogaps [22]. Figure 8.2 shows that significant current flow can be established in 

junctions made of a few molecules, especially when compared to dodecanedithiols, used as 

benchmark of molecular transport [23]. Measurements are performed on samples that were 

immersed overnight in solutions containing the zwitterions, and washed in a microfluidic 

channel. We found that the solvent flow should not exceed 0.01 m/s, in order to maintain 

Figure 8.1 The localization of molecule 3 on a gold stripe over a native oxide silicon 

surface. At right is the image of the gold stripe, and at left is the IR map based on vibrational 

mode absorption at 3130 cm-1. This energy is characteristic of the symmetric wagging mode 

of the p-benzoquinonemonoimine zwitterions, as indicated in the inset at right. The color 

scale on the left indicates the absorption strength. 



 
 

185

electrical interconnects. We conclude that the electrical transport through molecule 2 is 

robust and significantly larger than current in alkane thiol molecules.  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
          

         In Chapter 3, we have shown that crystalline ordering of the p-

benzoquinonemonoimine molecules was possible. Here we find that the related π-stacking 

promotes conductivity in the thin films that was mostly evidenced by the occurrence of 

molecular density of states at the substrate Fermi level and significant intrinsic conductivity 

of this type of molecules. The interface molecular films can therefore play an important role 

Figure 8.2 Current/voltage curve of molecule 2, compared with decanedithiol molecules 

trapped between Au electrodes separated by 1-3 nm distance. A gain of nearly one order of 

magnitude is found (with the hysteresis in the IV curve likely related to charge trapping by 

the SiO2 substrate).  
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for organic electronics devices, creating ideally a highly conductive interface with metallic 

electrodes, promoting efficient carrier injection in an organic film.  

 

8.2 Doping Poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene] with PbSe 

nanoparticles or PCBM fullerenes 

         The doping of semiconducting polymers is a hugely active area of interest [24–28]. 

However, it is not clear whether nanoparticles dope a polymer in the conventional sense of 

acting as charge donors or acceptors, or merely act as particulates in a polymer matrix with 

a high surface area to volume ratio. In the latter case, doping can still occur due to the 

dipole layer at the nanoparticle interface [29]. Two such dopants command attention: lead 

selenide (PbSe) quantum dots and the fullerene based molecule [(6)]-1-(3-

(methoxycarbonyl)propyl)-[(5)]-1-phenyl-[5,6]-C61, known as PCBM. Polymer 

photodetectors based on poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene] 

(MEH-PPV) and related PPV polymers, doped with lead selenide (PbSe) [30–32], lead 

sulfide (PbS) [33, 34], and cadmium selenide (CdSe) [35, 36] nanocrystal quantum dots 

have shown significant increases in quantum efficiencies. PCBM has also been used to 

dope MEH-PPV, with promising results [28, 37–39]. Fullerene derivatives have been used 

to dope other semiconducting polymers [24, 27, 40–50], sometimes in combination with 

other nanoparticle systems [51]. Certainly doping polymers with semiconducting 

nanoparticles or fullerene molecules is seen as a route to improving polymer solar cell 

performance [24, 27, 32, 52–55]. Recently Zhao et al reported that a composite of blue light 

emitting conjugated polymer polyfluorene, red light emitting dye, and a large-Z atom (Z is 

the atomic number) 1,3-diiodobenzene shows promising γ radiation detecting properties 
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[56]. They confirmed the fluorescence resonance energy transfer between the polymer and 

the dye. The photoluminescence intensities respond linearly to γ-ray dosage. Campbell and 

Crone presented scintillation results of CdSe–ZnSe core–shell quantum dots and MEH-PPV 

composite for radiation-detection application [57]. They demonstrated the Forster excitation 

transfer from the quantum dots to the polymer and thus potential for gamma-ray, neutron, 

and charged-particle detection while having benefits of a low cost, easy processability, and 

large-area applications. 

          Both PbSe and PCBM accept excited electrons from MEH-PPV at extremely high 

charge transfer rates (time in picoseconds), aiding charge separation: but do they act as 

charge acceptors in the ground state? If not uniformly dispersed, there is also the issue of 

when nanoclusters cease to dope with increasing concentrations. The latter issue is of 

importance if PbSe, or like nanocrystal quantum dots, are added to the MEH-PPV matrix to 

make a composite suitable for gamma radiation detection; both to add a large-Z material to 

the polymer, thus increasing the cross-section, as well as to improve quantum efficiencies. 

Here we explore both questions. 
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Figure 8.3 Schematics of (a) poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene] 

(MEH-PPV) and (b) [(6)]-1-(3-(methoxycarbonyl)propyl)-[(5)]-1-phenyl-[5,6]-C61, known 

as PCBM. 

 

           The chemical structures of the MEH-PPV and PCBM are shown in figure 8.3. In 

Chapter 2, Section 2.7.6., we have described the doping procedure of PbSe nanocrystals and 

PCBM fullerenes into MEH-PPV. We use angle-resolved photoemission to study the 

electronic structure of MEH-PPV with dopped PbSe and PCBM. 

          While the electronic structure of MEH-PPV and PCBM have many similarities, as a 

composite, the electronic structure does change as expected from that predicted for MEH-

PPV to that predicted for PCBM, as seen in figure 8.4. After a shift of the calculated orbital 

energies by about 4.4 eV (roughly the expected work function), the experiment is seen to be 

in qualitative agreement with very simplistic calculated representation of the density of 

states based on the ground state molecular orbitals (NDO-PM3 or neglect of differential 

diatomic overlap, parametric model number 3) [61] for a single PCBM complex or a short 
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chain of MEH-PPV, with a 1 eV width Gaussian envelope applied to each molecular orbital, 

without correcting for the substrate, final state or matrix element effects, as has been done 

elsewhere [62, 63]. Some changes are evident in the photoemission spectra as the 

composite concentration changes (figure 8.4). In the shape of the photoemission spectra, 

these changes are even more clear when PbSe nanocrystals are dispersed in MEH-PPV host 

(figure 8.5). 
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Figure 8.4 The occupied electronic structure of MEH-PPV polymer with increasing 

amounts of PCBM, as characterized by photoemission. The photoemission spectrum of 

pure MEH-PPV compared with model expectations (bottom curve) and the photoemission 

spectrum of pure PCBM films compared with model expectations (top curve). There is 

qualitative agreement with the calculated ground state molecular orbitals following a 

summation and using a 1 eV Gaussian applied to each molecular orbital. The photoemission 

spectra were taken at a photon energy of 62 eV with a light incidence angle of 450 relative 

to the surface normal with normal emission. 
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Figure 8.5 The occupied electronic structure of MEH-PPV polymer with increasing 

amounts of PbSe nanocrystals, as characterized by photoemission. The photoemission 

spectrum of pure MEH-PPV compared with model expectations (bottom curve). The 

photoemission spectra were taken at a photon energy of 66 eV with a light incidence angle 

of 450 relative to the surface normal with normal emission. 

 

           With increased PCBM doping, to about 10%, PCBM does not act much like an 

electron acceptor, but more like an electron donor. In the picture of band filling, the 

introduction of extra electrons to the MEH-PPV system fills any empty states near the 

Fermi level EF and increases the binding energies of all the molecular orbitals [63]. The 

subtraction of electrons from the MEH-PPV system should lead to a decrease in binding 

energy of all the bands. To a concentration of about 10%, PCBM (figure 8.4), and to a 
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lesser extent PbSe (figure 8.5), appear to act as electron donor, when added to the MEH-

PPV system. This is because the addition of these nanocluster components leads to greater 

binding energies of the occupied molecular orbitals valence bands and the valence band 

maximum (relative to the Fermi level) and a decrease in density of states near EF as seen in 

similar doped polymer systems [63]. 

 

 

 

Figure 8.6 The binding energy of the main photoemission feature (■) and the binding 

energy of the valence band maximum (○) of MEH-PPV with increasing amounts of PCBM 

as characterized by photoemission. 
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Figure 8.7 The binding energy of the main photoemission feature (■) and the binding 

energy of the valence band maximum (□) of MEH-PPV with increasing amounts of PbSe 

nanocrystals, as characterized by photoemission. 

 

           This influence of increasing concentrations of PCBM, resulting in a decrease in the 

density of states at the Fermi level and an increase in binding energies of the features due to 

the occupied molecular orbitals, is not as evident with increasing concentrations of PbSe 

nanocrystals, and does not extend to the very high doping concentrations. We have plotted 

the binding energies of the valence band maximum and the most prominent photoemission 

for both composites with PCBM (figure 8.6) and PbSe (figure 8.7). These increases in 

binding energies occur either because of band filling, that occurs in the case of PCBM, or 

due to charging. To a far lesser extent this also seems true for composites with PbSe 

nanoclusters. This means that the doped MEH-PPV material likely remains a good 
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dielectric for loading concentrations of 10–25%. This is valuable because it provides a route 

for high loading values of PbSe, while retaining properties that make the material a good 

gamma-ray scintillation detector. 

           For PCBM concentrations above 10%, the valence band maximum and density of 

states is restored, and to a far lesser extent with PbSe nanocluster inclusion. This restoration 

of the valence band maximum closer to the Fermi level tends to indicate that, at the higher 

concentrations, neither PbSe nor PCBM effectively dope MEH-PPV, but rather cluster or 

agglomerate, so that doping occurs only at the interface between the two mixed components. 

Clearly some structural studies are needed to establish whether the composites are phase 

separated or component materials separated. 

           In conclusion, the positions of the molecular orbitals of the semiconducting polymer 

MEH-PPV, relative to the Fermi level, shift with the doping of MEH-PPV by either PbSe 

nanocrystal quantum dots, or fullerene based molecule PCBM. The effect is more dramatic 

with PCBM than with PbSe and results in a decrease in density of states near Fermi level 

and shifts to greater binding energies of the occupied molecular orbitals and the valence 

band edge as probed by photoemission. Phase or component segregation seems likely for 

dopant concentrations greater than 10%. The composite of MEH-PPV and a large-Z 

material such as PbSe nanocrystal quantum dots is a potential gamma-detection material. 
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