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University of Nebraska, 2013 

Advisor: Herman Batelaan 

Since the advent of quantum mechanics and the idea that massive particles exhibit 

wave properties, physicists have made efforts to make use of the short deBroglie wave 

length of matter waves for fundamental as well as practical studies. Among these are the 

precise measurements allowed by interference, diffraction, and microscopy as well as the 

study of more fundamental aspects of quantum theory such as the Aharonov-Bohm 

effects or the Stern-Gerlach effect, which are described below. However, in order to use 

matter waves to observe any of these effects it is necessary to produce and maintain 

coherence in the waves which are used for measurement. With a grasp of what coherence 

is and how it may be achieved and maintained one can move forward to study the 

interesting phenomena associated with coherent matter waves. More specifically in this 

work the interference and diffraction of electron matter waves are considered. The 

phenomena under consideration are those associated with the interaction of the electric 

charge and magnetic dipole moment of the electron with external fields and potentials 

while in the process of interfering or diffracting. Namely the focus of this dissertation is 

the Aharonov-Bohm effect, the Aharonov-Casher effect, and the Stern-Gerlach effect. 

Additionally, a wide-angle electron beam-splitter capable of producing two 

centimeter beam separation at the detection plane is discussed.  The beam-splitter utilizes 

a nanofabricated periodic grating in combination with a bi-prism element.  Contrary to 



  

devices utilizing only bi-prism elements, the use of the periodic grating causes amplitude, 

and not wave front, splitting.  Even at maximum separation, beam profiles remain 

undistorted, providing evidence that coherence is intact.  This is a step towards the 

realization of a large area electron interferometer using such a grating bi-prism 

combination. Such an interferometer could, in principle, be used to test the dispersionless 

nature of the Aharonov-Bohm effect. Work towards such an interferometer and possible 

future work are also discussed. 
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The precision of a measurement is only as good as the smallest measurement 

available given the technique or device being used. For example a measurement with a 

ruler can only be as precise as the distance between neighboring marks. One way to make 

a more precise measurement than is possible with a ruler is by interference of waves. 

Interference is what happens when two waves are added together. The amplitude of the 

resulting wave is dependent on the relative displacement and amplitude of the two 

constituent waves. In other words the interference of waves of light or matter is the use of 

a wave as a ruler. This is an improvement over the conventional ruler because the 

wavelength of visible light is less than 1 micrometer. Going even further, the wavelength 

of electrons in our lab is typically on the order of one tenth of a nanometer. No 

conventional ruler could come close to that. 

With such a fine ruler extremely precise measurements can be made using 

interference techniques. Additionally, with the use of electron interference can yield 

answers to fundamental questions as to the quantum mechanical nature of the electron. 

The electron has certain intrinsic properties. In a way it can be thought of as a tiny bar 

magnet with a nonzero net electric charge. These properties of the electron result in 

interesting quantum mechanical effects when the electron is bathed in or passes nearby an 



  

electric or magnetic field. For example, if an electron passes near a solenoid (a coil of 

wire with a current passing through it) the electron wave is shifted. In principle the 

magnetic field is completely contained in the solenoid meaning the electron does not 

even need to pass through the field. This is known as the Aharonov-Bohm effect and is 

discussed in more detail in chapter 3. The purpose of this dissertation is to consider some 

possible causes and consequences of a few such quantum mechanical interactions. 
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Preface 

 
Chapter 2 is the written portion of my comprehensive exam. The topic was received on 

February 21, 2013 to be turned in and defended on March 8, 2013 (due to scheduling 

conflicts the defense was postponed to March 15, 2013). The topic of the exam was as 

follows: 

 

What is the coherence length of electrons in a metallic structure and how can one 

measure this? This question can initially be addressed in general at a basic level; 

including a definition of coherence length and what decoherence processes are 

and do. The question should also be addressed with a focus on those electrons that 

can be photo-emitted. Techniques used in surface crystallography (see the book 

by L J Clarke, this will be provided for you) answer the above question for 

coherence lengths on the atomic length scale for photo-emission. Also see the 

following attached papers. However, it appears that a coherent electron emitter 

using coherence lengths at the hundreds of nanometers scale does not exist. A 

literature survey is necessary to establish if this statement is correct. What limits 

the scale? Is the coherence length not long enough, does the emission process 

reduce coherence, are the measurements techniques not scalable from the atomic 

regime to the nanoscale (or larger) regime, or is this a timely question and do you 

expect that current techniques allow one to address this question? 
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Chapter 3 has been published in the New Journal of Physics (S. McGregor, R. Hotovy, A. 

Caprez, and H. Batelaan, "On the relation between the Feynman paradox and the 

Aharonov-Bohm effects," New J. Phys. 14 2012). 

 

Chapter 4 has been accepted for publication as a section in the memorial book In Memory 

of Akira Tonomura: Physicist and Electron Microscopist in 2013. 

 

Chapter 5 has been published in the New Journal of Physics (S. McGregor, R. Bach, and 

H. Batelaan, "Transverse quantum Stern-Gerlach magnets for electrons," New J. Phys. 13 

2011). 

 

Chapter 6 is still in progress and will hopefully be submitted for publication in 2013. 

 

Chapter 7 has been published in Journal of Physics B: Atomic, Molecular and Optical 

Physics (A. Caprez, R. Bach, S. McGregor, and H. Batelaan, "A wide-angle electron 

grating bi-prism beam splitter," J. Phys. B 42, 165503 (2009)) 
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Chapter 1 – Introduction 

1. The Aharonov-Bohm Effect 

Having been first predicted by Ehrenberg and Siday
1
 and later appearing in a 

1959 Physical Review by its namesake authors
2
, the Aharonov-Bohm effect continues to 

inspire debate over its apparent consequences. The Aharonov-Bohm (A-B) effect states 

that as an electron passes a solenoid its wave function accumulates a phase shift due to its 

interaction with the magnetic vector potential. If an electron interferometer is constructed 

such that the two arms pass around a solenoid in which the magnetic field is completely 

contained a measureable phase difference between the two arms will accrue in spite of 

the fact that both arms pass through field free regions. The phase accumulated by an 

electron moving along a path through a magnetic vector potential is given by
2
  

,
e

A dx         (1) 

where A  is the magnetic vector potential, and e  is the charge of the electron. Thus the 

phase difference between two paths which pass on either side of a solenoid may be 

computed by taking the difference between two such integrals resulting in the closed loop 

integral
2
 

  ,B
AB

e e e e
A dx A da B da


                (2) 

where B  is the magnetic flux enclosed between the two arms of the interferometer. This 

implies that there need only be a magnetic field present and that the electrons need not 

actually pass through it. 
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 This effect was first observed by R. G. Chambers in 1960
3
 in an experiment in 

which a tapered magnetic whisker was placed between the two arms of an electron bi-

prism interferometer (see figure 1.1a). 

 

Figure 1.1 

Chambers’ Experimental Setup and Observation 

a) Two arms of an electron interferometer propagate from source s around a bi-prism wire f, and 

magnetic whisker a to observation plane o. Upon measurement b) straight vertical fringes were 

observed in the shadow of the bi-prism in absence of the whisker while c) slanted fringes were seen 

with the whisker present. Images taken from Chambers’ article
3
. 

Upon measurement straight vertical fringes were observed in the shadow of the bi-prism 

in absence of the whisker (figure 1.1b) while slanted fringes were seen with the whisker 

present (figure 1.1c). The magnetic flux enclosed in the whisker is a function of its 

thickness. Therefore, the slant in the fringes is due to the taper in the whisker giving a 

phase difference which is dependent upon which part of the whisker the two arms pass. 

 The A-B effect was again demonstrated in an experiment in 1986 conducted by 

Akira Tonomura
4
 in which a loop of ferromagnetic material was enclosed by a 

superconductor thus eliminating the effect of stray magnetic fields.  

a) 

b) c) 
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Figure 1.2 

Tonomura’s Experimental Setup and Observation 

a) The object wave and reference wave interfere at the detection plane. Fringes corresponding to 

electrons that passed through the loop are compared to fringes that passed around. b) Dashed lines 

indicate the phase difference between the two parts of the object wave. Images taken from 

Tonomura’s PRL
4
. 

As in Chambers’ experiment Tonomura used an electron bi-prism interferometer to 

measure the A-B effect (see figure 1.2a). The portion of the electron beam passing 

through and immediately around the ferromagnetic loop is sent on one side of the bi-

prism. This is referred to as the object wave. The part of the electron beam passing on the 

other side of the bi-prism is called the reference wave. The object and reference waves 

are brought together to interfere at the detector where the phase difference between 

electrons passing through the loop and those passing around may be observed. 

 In spite of the fact that the A-B effect has been beautifully demonstrated in 

experiments such as those shown above, it remains surrounded by controversy. When an 

electron passes a solenoid, the magnetic field produced by the moving particle exerts a 

force on the solenoid. Given that the electron is passing through a field free region it 

a) 

b) 
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would appear that the force is not reciprocated and Newton’s third law is violated. 

However, it has been suggested by Boyer that Newton’s third law can be invoked and 

that the back acting force on the electron provides a delay which exactly matches the 

quantum mechanical phase shift predicted by Aharonov and Bohm
5
. In a 2007 PRL by 

Caprez et al.
6
 an experiment is described which tests this very claim. 

     

Figure 1.3 

Macroscopic Test of the Aharonov-Bohm Effect 

a) The time of flight of pulsed electrons passing between two solenoids is measured in order to test if 

there is a delay resulting from a force. b) Measurement over a range of currents indicates a time of 

flight which is independent of the current thus indicating the absence of a force. Images taken from 

PRL by Caprez et al.
6
 

Pulsed electrons were sent between two current carrying solenoids and the time of flight 

of the electrons was measured (see figure 1.3a). This was done for a range of currents 

resulting and the measured time of flight for the electrons was compared to that which 

would be predicted assuming a classical force appropriate for an A-B phase shift (see 

figure 1.3b). The result was that the time of flight for the electrons was independent of 

the current in the solenoid thus seemingly disproving the notion that the A-B effect is a 

result of a classical force. Boyer responds to this result with the claim that the response of 

conduction electrons within the solenoid to a passing electron depends on the size of the 

a) 
b) 
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solenoid. Thus the lack of a time delay measured for a macroscopic solenoid does not 

necessarily indicate likewise for a microscopic solenoid
7
. One test which could possibly 

settle the debate is suggested by Anton Zeilinger
8
 in which an A-B phase difference 

corresponding to a delay in excess of the coherence length of the electrons is applied to 

the two arms of an interferometer (see figure 1.4).  

 

Figure 1.4 

The A-B Effect: Phase or Force 

a) If there is no force and the A-B effect is purely quantum mechanical then the phase can be 

increased indefinitely without loss of coherence. b) If the A-B effect is the result of a classical force 

then the interference pattern will lose contrast as the two arms will no longer be coherent with each 

other. Image taken from reference
6
 

If the A-B effect is the result of a classical force then the interference pattern will lose 

contrast as the two arms will no longer be coherent with each other. Alternatively, if there 

is no force and the A-B effect is purely quantum mechanical then the phase can be 

increased indefinitely without lose of coherence. In such an experiment the presence or 

absence of a force would be demonstrated using a microscopic solenoid under conditions 
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in which the A-B phase difference could be measured directly. Steps have been taken 

toward constructing an interferometer capable of such an experiment and are discussed in 

chapters 7 and 8.  

In chapter 7 a wide-angle electron beam-splitter capable of producing two 

centimeter beam separation at the detection plane is reported.  The beam-splitter utilizes a 

nanofabricated periodic grating in combination with a bi-prism element.  Contrary to 

devices utilizing only bi-prism elements, the use of the periodic grating causes amplitude, 

and not wave front, splitting.  Even at maximum separation, beam profiles remain 

undistorted, providing evidence that coherence is intact.  This is a step towards the 

realization of a large area electron interferometer using such a grating bi-prism 

combination. In chapter 8 an electron interferometer consisting of a field emission tip and 

a bi-prism wire is reported as work toward a grating bi-prism interferometer. 

Additionally, potential difficulties in constructing a grating bi-prism interferometer and 

possible future steps are discussed. 

 Furthermore, a defining property of the Aharonov-Bohm effect is its 

dispersionless nature. This means that the response of a matter wave to external potentials 

of the type used in the A-B effect is frequency or, equivalently, velocity independent. In 

the classical limit the dispersionless nature is often equated with the absence of forces. 

But how is the classical limit defined in the context of the A-B effect? This is the 

question addressed in chapter 4 where it is argued that the A-B physical system provides 

an interesting testing ground for the classical-quantum boundary. 
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2. The Aharonov-Casher Effect 

Sometimes referred to as the dual of the A-B effect, the Aharonov-Casher (A-C) 

effect was first proposed in 1984
9
 and describes the behavior of a neutron passing by a 

charged wire. The A-C effect states that a neutron passing a charged wire accumulates a 

phase shift due to the interaction between the motional electric dipole moment of the 

neutron with the electric field of the charged wire. The phase difference between two 

paths taken by neutrons passing on either side of a charged wire is given by
9 

(in CGS 

units) 

1 4
,AC E dx

c c

 
 

 
     

 
    (3) 

where   is the magnetic moment of the neutron, 1   or 1  for spin up or spin down, 

respectively. E  and   are the electric field and linear charge density of the charged 

wire, respectively. 

The A-C effect was first observed by Cimmino et al. in 1989
10

 in an experiment in 

which neutrons were sent through a Mach-Zehnder interferometer consisting of three 

Bragg crystals (see figure 1.5). 
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Figure 1.5 

Experimental Setup for A-C Effect 

Bragg diffracted neutrons are split into two beams which are sent through two sets of electrodes. 

The neutrons then diffract from a second Bragg crystal to be recombined onto a third thus 

completing a Mach-Zehnder interferometer. Measurements of count rate at C2 and C3 were used to 

determine the A-C phase difference. Image taken from reference
10

. 

As with the A-B effect, in spite of this demonstration of the A-C effect there is still some 

controversy regarding the underlying mechanism for the measured phase difference. Is it 

a classical force or a purely quantum mechanical phase shift? In this case the intuitive 

answer seems to be that a force causes the effect because the motional electric dipole is in 

fact bathed in a spatially dependent electric field. As with the Aharonov-Bohm effect the 

delay associated with a force predicted in this manner corresponds to exactly the same 

phase shift as that stated originally by Aharonov and Casher
11

. This, however, is not the 
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commonly accepted view of the effect. A Hamiltonian approach
12

 as well as the approach 

which takes into account “hidden momentum”
13

 suggest that given the symmetry along 

the spin quantization axis in the A-C system the force on the neutron is zero. These 

different perspectives on the A-C effect are discussed in chapter 3. Also in chapter 3, 

using the Euler-Lagrange equations it is predicted that in the case of unconstrained 

motion only one part of each system (A-B and A-C) accelerates, while momentum 

remains conserved. This prediction requires a time dependent electromagnetic 

momentum. For our analysis of unconstrained motion the A-B and A-C effects are then 

examples of the Feynman paradox which will be explained in chapter 3.  In the case of 

constrained motion, the Euler-Lagrange equations give no forces in agreement with the 

generally accepted analysis. The quantum mechanical A-B and A-C phase shifts are 

independent of the treatment of constraint. Nevertheless, experimental testing of the 

above ideas and further understanding of A-B effects which is central to both quantum 

mechanics and electromagnetism may be possible. 

3. The Stern-Gerlach Effect for Electrons 

While examining the various aspects the A-B and A-C effects it is quite natural to 

consider the classical or quantum mechanical behavior of any system consisting of a 

charged particle or a magnetic moment bathed in an external field or potential. One such 

experiment of historical significance for the development of early quantum mechanics is 

the Stern-Gerlach (S-G) experiment. One of the most significant experiments in modern 

physics is that which was conducted by Otto Stern and Walter Gerlach in 1922 in which a 

beam of silver atoms was sent through an inhomogeneous magnetic field
14

.  
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Figure 1.6 

Stern-Gerlach Setup and Results 

a) In the original Stern-Gerlach setup a beam of silver atoms propagated through an 

inhomogeneous magnetic field. The atoms were then split into two beams representing the two spin 

states of the electron. b) Images of two of the deposition detectors used in the Stern-Gerlach 

experiment are shown. The right and left images show the intensity profile of the silver atoms with 

and without the magnetic field, respectively. Image taken from reference
16

 

The result was a separation of the beam into two distinct beams indicating the 

quantization of spin angular momentum of the 5s state electron of the silver atom
15

 (see 

figure 1.6). This separation is due to the interaction between the magnetic moment of the 

a) 

b) 
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silver atom and the applied magnetic field. The force exerted on a magnetic dipole 

moment in an external magnetic field is  F B  . 

Even though this experiment was a demonstration of spin quantization for 

electrons bound to silver atoms, it cannot be used for a similar demonstration of spin 

quantization for free electrons. This is due to the inclusion of the charge of the electron 

and the consequence of the inclusion of Lorentz force in its interaction with the external 

field. In order for spin splitting to occur in the first place there must be a gradient in the 

magnetic field in the direction in which spin splitting is intended. However, a magnetic 

field with a gradient in only one direction is physically impossible. This can be seen by 

applying the Maxwell equations in free space (more specifically 0B  ). 

            

Figure 1.7 

With and Without Lorentz Force 

a) Without the Lorentz force an electron S-G apparatus would function in much the same way as 

the original setup but b) when included the gradient in the y-direction gives rise to blurring which 

makes the two spin states indistinguishable. 

a) b) 
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Consider an electron propagating in the z-direction through an inhomogeneous magnetic 

field (see figure 1.7b). Taking the y-direction as the spin quantization axis the spin 

dependent force acting on an electron passing through the center of the magnetic field is 

yB

y






. However, the spatial extent of the beam must be in excess of a certain size in 

accordance with the Heisenberg uncertainty principle and therefore must pass through 

more than just the center of the field. Additionally, Gauss’ law for magnetic fields 

dictates that the gradient of the x component of the magnetic field in the x direction is 

given by 
yx

BB

x y


 

 
. Because of this there is a spatially dependent y component of the 

Lorentz force (the same direction as the spin splitting force). The result is that the two 

spin states are blurred together and are no longer distinguishable. A more thorough and 

quantitative explanation is given by Kessler
17

. 

An alternative attempt at free electron spin separation was put forth by Brillouin 

in the form of the longitudinal S-G effect
18

. Brillouin’s idea was to send a pulse of 

electrons through a current loop so that the resulting magnetic field is aligned with the 

direction of motion of the electrons (see figure 1.8). 
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Figure 1.8 

Longitudinal S-G Effect 

A pulse of electrons sent through a current loop was expected to split longitudinally thus creating 

spin up and spin down pulses separated in time. 

The difference in this case was that with the magnetic field and electron velocity aligned 

the Lorentz force would be eliminated. However, once again by considering classical 

trajectories it seems that this approach can be defeated. Given the finite spatial extent of 

the beam and the spatial dependence of all components of the magnetic field, some of the 

electrons will experience a transverse Lorentz force. These electrons will spiral through 

the current loop and experience a time delay which is dependent upon their initial 

position. Thus the pulses will broaden and become indistinguishable. Upon considering 

the above idea among others, Wolfgang Pauli stated at the 1930 Solvay conference that 

“it is impossible to observe the spin of the electron, separated fully from its orbital 

momentum, by means of experiments based on the concept of classical particle 

trajectories”
19,20

. This, however, begs the question: what about experiments based on the 

concept of quantum particle trajectories?  
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 The first experiment of this kind was done by Hans Dehmelt’s groupe and 

demonstrated what they called the continuous Stern-Gerlach effect
21

. With The use of a 

Penning trap, Dehmelt was able to observe the spin of an electron continuously for 

several minutes by measuring the cyclotron frequency of the trapped electron (see figure 

1.9). 

 

Figure 1.9 

Continuous Stern-Gerlach Effect 

a) Two negatively charged electrodes and a positively charged ring bathed in an external magnetic 

field are used to trap an electron. The resonant frequency of the trapped electron is then measured. 

b) Jumps in the baseline of shifts in the resonant frequency of the electron indicate spin flips. Images 

taken from reference
21

 

The idea that the quantum mechanical behavior of the electron could allow for 

measurement of its spin was pushed further when the longitudinal Stern-Gerlach effect 

was analyzed fully quantum mechanically and was shown to be, in principle, possible
22

. 

Examples of thought experiments based on the quantum mechanical behavior of the 

electron with the intention of creating a transverse Stern-Gerlach effect are discussed in 

chapter 5. There it is shown that a magnetic phase grating composed of a regular array of 

microscopic current loops can separate electron diffraction peaks according to their spin 

states. The experimental feasibility of a diffractive approach is compared to that of an 

interferometric approach. We show that an interferometric arrangement with magnetic 

a) 

b) 
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phase control is the functional equivalent of an electron Stern-Gerlach magnet. 

Furthermore, the interaction between an electron and a laser field is analyzed quantum 

mechanically in chapter 6. There, an experimentally realizable scenario in which spin 

dependent effects of the interaction between the laser and electrons are dominant is 

predicted. The laser interaction strength and incident electron velocity are in the non-

relativistic domain. This process potentially allows for spin separation of electrons and 

may thus be thought of as a laser induced Stern-Gerlach effect for electrons.  

4. Coherence 

While not yet stated explicitly, one common thread that runs throughout this 

chapter and the rest of this dissertation is quantum mechanical coherence. Each section so 

far has introduced certain features of the quantum mechanical behavior of electrons or, in 

the case of the A-C effect, neutrons. The manner in which these effects are proposed to 

be exhibited is through interference or diffraction. Given that a coherent beam is 

necessary to observe either of these phenomena it is worth considering what coherence is 

and how it may be lost before anything else. In chapter 2 qualitative as well as 

quantitative descriptions are given for coherence. Processes by which coherence can be 

lost and measured are discussed.  A sufficiently coherent electron source is also important 

as well. Different types of electron sources are discussed as well as techniques of 

measuring the coherence of the free electrons at the source, conduction electrons within 

the source, and a possible connection between the two.  
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Chapter 2 – Source Coherence 

1. Coherence  

The scientific study and application of waves be they optical or material is 

contingent on an understanding of the concept of coherence. Coherence is a property of 

waves that is necessary for the observation of interference, a definitive phenomenon of 

waves, which is the superposition of waves with a known phase relation. The result of 

this superposition is a wave of greater or lesser amplitude depending on the phase 

difference. For the purpose of this chapter the focus will be on transverse spatial 

coherence rather than temporal coherence. Spatial coherence implies the ability to 

observe a time averaged interference between two spatially separated points on a wave 

front. When considering two different sources of light, a light bulb and a laser, one may 

observe exactly this phenomenon of coherence. In the case of the light bulb each point on 

the filament may be considered as an independent light source from which light is 

emitted with a random phase relationship with light emitted from any other point on the 

filament. The result is a wave front with a random spatially dependent phase. To see how 

this would result in reduced spatial coherence, consider making a copy of such a wave 

and superimposing it, with a transverse spatial shift, onto the original (see figure 2.1a). 

The result is that in some places constructive interference (i.e. resulting in increased 

amplitude) occurs while in other places destructive interference (i.e. cancellation of the 

two waves upon superposition) occurs. Since the light is spatially averaged over the 

detector one obtains reduced contrast in their interference fringes due to the averaging of 

constructive and destructive interference. If the length scale over which these random 

phase differences occur is small than the detector must be just as small in order to 
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distinguish regions where constructive interference occurs from regions of destructive 

interference. Alternatively if the two waves are shifted transversely relative to one 

another a distance which is small compared to this length scale than interference will 

occur over the entire wave front. As the transverse displacement of one copy relative to 

the other increases, the contrast decreases in the manner described above. It is in this 

manner that one may define the transverse coherence length. Additionally, if the phase 

difference between any two points on the wave front is sufficiently small compared to 2π 

than contrast will not be lost fully even if the two copies are transversely shifted a 

distance in excess of the length scale over which phase shifts occur. 

 

Figure 2.1 

Coherence length and interference 

a) A coherent wave with a random spatially dependent phase is copied, shifted, and superimposed 

with itself. b) A coherent plane wave such as that which is produced by a laser has a minimal if not 

nonexistent transverse spatially dependent phase. Copying and superimposing such a wave onto itself 

would result in interference contrast that is independent of the extent to which the waves are shifted 

transversely relative to one another. (Images taken from Wikipedia article: 

http://en.wikipedia.org/wiki/Coherence_(physics)) 

Alternatively, in the case of the laser, light is created via stimulated emission thus 

there is an imposed phase relation and the result is a plane wave (i.e. the wave fronts have 

minimal phase variation. See figure 2.1b). Because of the minimal or nonexistent 

b) a) 
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spatially dependent phase of the light produced by the laser, copying and superimposing 

such a wave onto itself would result in interference contrast that is independent of the 

extent to which the waves are shifted transversely relative to one another. If coherence is 

the extent to which two wave functions can interfere, then the coherence length is the 

largest distance between two points on a wave function which can interfere with one 

another. Thus, laser light is said to have a very large transverse coherence length.  

One can see that the above statements may be made for any sort of wave for 

which the superposition principle holds. This would mean that the same principles hold 

for matter wave solutions of the Schrodinger equation. It is on the coherence and 

decoherence of electron matter waves that this chapter is intended to focus. Potential 

causes of decoherence in matter waves involve interactions with parts of the environment 

which would impart random phase shifts to the wave function. There have been many 

experiments demonstrating the loss of coherence in free propagating matter waves due to 

environmental interaction. Examples include coherence loss in matter waves due to 

interaction with light
2-4

, scattering from molecules
5
, or interaction of electrons with 

nearby materials
6
 to name a few. Note that each of these interactions can be studied 

independently. That is if you can create a matter wave with enough coherence to observe 

interference fringes, then you can observe the loss of coherence by applying any one of 

these interactions independently. 

An example of such an experiment by Hackermueller et al.
7
 shows decoherence 

of a beam of C70 molecules by interaction with an Argon ion laser beam. To do this they 

sent their molecular beam first through the laser beam which resulted in the absorption of 

photons. The use of large molecules allowed for the absorbed energy to be distributed 
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amongst the many vibrational and rotational degrees of freedom of the molecules. 

Eventually a fraction of this absorbed energy is emitted as another photon. The kinetic 

energy of the molecule is changed and thus the time dependent phase factor  exp iEt  

is randomly affected with each absorption. The molecules were then sent through a three 

grating interferometer which is a means by which a beam can be split into two copies 

which are then overlapped. By varying the position of one of the gratings the overall 

phase difference between the two beams can be controlled. This allows the observer to 

measure interference fringes. 

 

  

Figure 2.2 

Decoherence of C70 beam by Photon Absorption 

a) A beam of C70 molecules loses transverse coherence via absorption and emission of photons from 

an Argon ion laser. The molecular beam is then sent through a three grating interferometer. 

Interference fringes are measured by varying the position of the final grating which is used to control 

the phase between the two interfering wave functions. b) As the power output of the laser increases 

from 3W to 6W to 10.5W a decrease in fringe contrast is observed. (Images taken from 

Hackermueller et al.
7
) 

It is apparent from this example that if one wishes to conduct an experiment measuring 

interference fringes, one would do well to maximize the coherence width of the matter 

b) a) 
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wave used to measure interference. Applications for which a coherent source of matter 

waves is necessary are numerous
8-11

.  

2. Decoherence due to photoemission and field emission 

All of the discussion thus far regarding decoherence of matter waves has been 

mainly focused on the decoherence of free waves to illuminate possible causes of 

decoherence. It would seem that any random interaction with the environment may result 

in decoherence. One potentially important factor in the coherence of an electron beam is 

the manner in which it is created. In order to examine this idea a little further, consider 

sources of free electrons. Two methods of producing a free electron beam are field 

emission, and photo emission. In the analysis of these two methods the electrons bound to 

the material are modeled as being contained within a finite square well. The highest 

energy that can be occupied by electrons at 0K is known as the Fermi energy.   

 

Figure 2.3 

Photoemission and Field Emission 

a) The model used for field emission of electrons consists of a finite square well in which electrons 

occupy energies up to the Fermi energy Efermi. The energy difference between the top of the well and 

the Fermi energy is the work function work. b) Applying an electrostatic potential  to the material 

creates a potential that drops off linearly outside the surface of the material. This allows the electrons 

within the material to tunnel out through the surface. 

b) a) c) 
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The energy difference between the top of the well and the Fermi energy is called the 

work function (figure 2.3a). 

In the case of photoemission electrons are liberated via the photoelectric effect
12

. 

In this process a photon is absorbed by an electron giving enough energy for the electron 

to go over its potential barrier (figure 2.3b). For a given photon frequency ,  the 

maximum kinetic energy maxK  of the liberated photon is the difference between the 

energy of the photon   and the work function work  ( max workK   ). In the case of 

field emission, an electric potential is applied to the material resulting in an electric field 

outside the surface of the conductor
13

. The corresponding electrostatic potential drops off 

linearly outside of the material which gives the electrons contained inside an opportunity 

to tunnel out through the surface (figure 2.3c). These effects may be taken in combination 

to produce coherent electron sources
14, 15

.  

One important question to ask is whether or not decoherence is a reversible 

process. The consensus view among in the literature seems to be that decoherence is an 

irreversible process by which the wave function interacts with an external system 

consisting of a large number of degrees of freedom
16-18

. That is significant because, if it is 

true, the process of removing electrons from metal can at best leave the coherence length 

of the electrons unchanged. The coherence length of free electrons just outside the metal 

surface is limited by the coherence length of the conduction electrons inside the metal. 

The assumed connection between emitted electrons and conduction electrons is based on 

claims in the literature that photoemitted electrons from metals originate entirely in the 

conduction band
19, 20

 and that in the case of field emission the electrons with the highest 

energy (i.e. the ones at the top of the conduction band) are most likely to tunnel through 
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the barrier. In the interest of producing the most coherent source possible it would be 

worthwhile to consider which of these processes best maintains the coherence of the 

electrons as they are being liberated from the source. One way to determine the extent of 

decoherence upon field emission or photoemission is to compare the coherence length of 

the electrons at the source immediately after they have been freed to the coherence length 

of the conduction electrons that are still within the metallic structure. If one of the two 

processes yields a smaller change in coherence length then it is the best choice for a 

coherent source. In the next section I discuss one possible way of determining the 

coherence length of emitted electrons at the source and an example of a similar 

experiment performed in 2004 by B. Cho et al
21

. 

2.1. Coherence of free electrons at the source 

It is clear from the above discussion that in order to perform any experiment 

involving interference of matter waves one must have a coherent source. In order to 

better understand the consequences of coherence length at the source it is necessary to 

work out a quantitative description of a partially coherent source. One common way for 

quantifying coherence is with the density operator which allows for full coherence, 

partial coherence, or complete incoherence. For a state vector   the corresponding 

density operator would be    . If the state vector were a coherent superposition of 

states  1 2

1

2
     it would be treated the normal way (just add up the states in 

superposition) and a density operator could be made of it. 

    1 2 1 2 1 1 2 2 1 2 2 1

1 1

2 2
                          (1) 
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For an incoherent superposition the density operator is simply the weighted sum of the 

density operators corresponding to each of the states in the superposition.  

n n n n n

n n

P P           (2) 

Finally the probability of measuring a particular outcome of observable A  can be found 

by computing a trace 

   n n nP a Tr a a             (3) 

where na  is an eigenstate of operator A . Taking the coherent state to be a Gaussian 

wave packet with a width equal to the coherence width of the source, it is possible to 

apply all of the above formalism to predict the outcome of an experiment with a partially 

coherent source. In order to write the density operator for the state at the source I must 

integrate the density operators corresponding to the coherent states 

     0 , ,s s s sP x x t x t dx        (4) 

where sx  is the location of a fully coherent state at the source, and  sP x  is the 

probability density at the source. This is essentially the same as saying that my partially 

coherent source is actually the incoherent superposition of infinitely many fully coherent 

sources. In order to determine the probability density at the detector a trace is required. 

     d d d d d d d d dP x Tr x x x x x x dx x x x x dx x x               

           0 0, , , ,d s s s s d s d s s d sx P x x t x t dx x P x x x t x t x dx     
         

   
2

0 , ,s s d sP x x x t dx       (5) 
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Here  , ,s dx x t  is the final wave function, having propagated it to the detector. 

 , ,s dx x t  is obtained using the free space propagator   

     , , ; , ,f f f f i i i i ix t U x t x t x t dx       (6) 

 
 

 
 

1
2

2

, ; , exp
2 2

f i

f f i i

f i f i

im x xm
U x t x t

i t t t t

   
  

       

   (7) 

where fx , fx , ft , and ft  are the initial position, final position, initial time, and final 

time of the wave function being propagated. The probability integral basically amounts to 

the convolution of the final probability density of the fully coherent portion of the source 

with the initial probability density of my overall partially coherent source. This result was 

shown for optical microscopy and interferometry by Hopkins
22

. 

 As an example of this calculation I chose a source with an overall intensity 

distribution and a coherence width defined by  0 sP x  and  , ,0sx x  as follows 

 
2

0 1 2

2

1
exp s

s

s

s

x
P x

x
x

 
  

 

     (8) 

 
 

 
2

1 2
2 4

1
, ,0 exp .

2

s

s

x x
x x

x
x





 
  

 
 

    (9) 

The electrons were then allowed to propagate to a double slit a distance of 5cm from 

whence they propagated another 50cm to the detection plane. The slits had a width of 

200nm and center to center separation of 1μm. The width of the source was chosen as 

1sx m  , and the energy of the electrons was chosen to be just over 2.5keV (

73 10v m s  ). The FORTRAN code written to compute the diffraction pattern is 
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included in the appendix. Figure 2.4 shows the resulting diffraction pattern for coherence 

lengths of x =1nm, 300nm, 600nm, and 1μm. It is plainly visible that as the coherence 

width increases the contrast also increases. Note that by changing the center to center 

separation between the slits on can change the separation between the diffraction peaks 

without having to change anything about the initial state of the electron. It seems that this 

would change the range of coherence width over which a significant transition in contrast 

would occur. For example, putting the slits closer together would push the peaks further 

apart. It seems that this would allow for visible contrast at a lower coherence length. 

 

 

 

Figure 2.4 

Double Slit Diffraction with Varying Source Coherence Length 

The contrast increases with increasing coherence width. Shown here are plots of diffraction with 

coherence widths of a) 1nm b) 300nm d) 600nm and e) 1μm. 
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 In the case of field emission an experiment to measure the transverse coherence 

length of electrons at the source has actually been done by B. Cho et al.
21

 using a 

tungsten field emission tip, and a multiwalled carbon nanotube (MWCNT) bi-prism to 

form interference fringes. A tungsten tip with radius of hundreds of nanometers was 

positioned behind a MWCNT by distances ranging from 0.1mm to 10mm. The distance 

from the nanotube to the detector was 16.5cm (see figure 2.5a). Electrons of less than 

100eV were used. The deformation of the electric field due to the presence of the 

grounded nanotube pulled the electrons on either side of the nanotube together to overlap 

on the detection screen.  

 

Figure 2.5 

Tungsten FET/MWCNT Bi-Prism Source Coherence Measurement 

a) The set up for the experiment by Cho et al. consisted of a tungsten field emission tip as an electron source, a 

MWCNT from which electrons diffracted, and a detection screen for measuring the diffraction pattern. Also 

shown here are examples of images taken at b) 300K and at c) 78K. (Images taken from B. Cho et al.21) 

Determination of the coherence length at the tip was done using a result by Pozzi
23

 which 

states that the ratio of the coherence width to the overall beam width is constant 

throughout beam propagation. Based on the interference pattern measured at the detector 

the authors estimate the transverse coherence length of the electron source. At 300K and 

78K the resulting coherence lengths were found to be 5-10nm and 35nm, respectively.  

a) 
b) c) 
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2.2. Coherence of electrons in a metallic structure 

In order to determine the coherence length of electrons in a metallic structure one 

must first ask what dictates the coherence length of the conduction electrons within a 

metal. There are many interactions and system dependent factors which come into play 

such as electron-phonon interaction, electron-electron interaction, spin-orbit coupling, 

electron spin flip scattering, shape of the material (i.e. three dimensional bulk material, 

thin films, mesoscopic wires, nanostructures, quantum dots etc.), impurities, disorder in 

the material, superconductivity, etc
24-27

. The determination of the coherence length of 

electrons in metals has been an ongoing subject of research at least the last three 

decades
24

. Unlike the case of free propagating matter waves these interactions and 

systematic factors cannot be isolated. The strength of the coupling between the electrons 

in a metal and their environment is so strong and so much dependent on the specific 

details of the system that a general answer cannot be attained. In other words it is my 

impression that any model attempting to isolate any one of these interactions would not 

be representative of any real material and would therefore be meaningless. Therefore, in 

this section I discuss the ideas behind a common technique for measuring coherence 

length of conduction electrons as well as an example of a couple of experiments done to 

make such a measurement. 

2.2.1.  Weak localization and magnetoresistance 

 One of the most common techniques of measuring the coherence length of 

conduction electrons in metal is low field magnetoresistance. In order to make such 

measurements one must first understand the quantum corrections to conductivity. The 

following is a qualitative explanation of the quantum corrections to conductivity as seen 
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in
28-30

. Other, more precise theoretical approaches exist in the literature
31, 32

. To begin 

with this understanding it is necessary to start with the assumption that the conduction 

electrons are moving in a solid which has impurities randomly situated throughout. 

Electrons drifting through a metal structure can scatter from these as well as phonons, 

other electrons, etc. If we define the scattering rate from any one of these events as 1 i  

then it is assumed that the overall scattering rate is simply the sum of the rates associated 

with each type of scattering event 1 i

i

 . The scattering time corresponding to elastic 

scattering events (electrons scattering from impurities) is denoted sans subscript as 1  . 

These are scattering events which do not change the energy of the electron and therefore 

do not affect the time dependent phase factor of the electrons wave function  exp iEt . 

Since it is random variations in the phase of the electron which are said to give rise to 

decoherence, these elastic scattering events do not affect coherence. Alternatively 

inelastic processes (i.e. those by which the electrons kinetic energy is changed) such as 

electron-phonon or electron-electron scattering are denoted 1 
  where   is defined as 

the dephasing time (the time necessary for the electron to lose coherence). From here on 

in the discussion the assumption will be made that  is much greater than   thus 

allowing paths over which the electrons can elastically scatter many times before losing 

their coherence.  

More specifically the motion of the electron is described as diffusive. The elastic 

scattering of the electron results in the electron taking a random walk through the metal 

where each step takes the electron from one impurity to another. For an electron moving 
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during a time interval t  the probability of finding that electron a distance r  from where it 

started is given by 

   
2

2, 4 exp ,
4

d r
p r t Dt

Dt


  
  

 
 2 2

1

d

i

i

r x


    (10) 

where FD lv d  is the diffusion constant, Fl v   is the mean free path, Fv  is the Fermi 

velocity, and d  is the dimensionality of the system. It may seem strange to have anything 

other than 3 for the dimensionality of a real metal structure but for the purpose of analysis 

not shown here the dimensionality is defined in terms of the coherence length. A system 

has reduced dimensionality if one or more of its length scales b  is small compared to the 

coherence length L  ( b L ). The width of the distribution is then given by 

2

Fr Dt lv t d l t d l N d      where N t   is approximately the number of 

inelastic scattering events which have occurred in time t . This is basically the result of a 

classical description of an electron diffusively moving through a metallic structure. To 

find the probability of the electron going from one point to another it is only necessary to 

add the probabilities associated with each possible path between those two points. Using 

quantum mechanics, however, one must add the probability amplitudes associated with 

each path and square the sum in order to obtain a probability.  

                                         
2

classical i

i

P A      (11) 

2

2

quantum i i i j

i i i j

P A A A A



         (12) 

Here iA  is the probability amplitude associated with a particular electron path. This is 

much like the Feynman path integral approach to quantum mechanics where the group of 
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all possible paths between two points consists of paths that connect impurities with 

straight lines.  Now consider paths which are loops that start and stop at the same point 

(see figure 2.6).  

 

Figure 2.6 

Weak Localization Loop 

An electron going in a closed loop may go around the loop either clockwise or counterclockwise as 

shown in this example of a path that extends over 12 times the inelastic scattering time. 

For such a loop the electron can go clockwise or counterclockwise, each way having the 

same probability amplitude.  

2 2 2

1 2 2classicalP A A A       (13) 

2 2 2 2

1 2 1 2 1 2 2 1 4quantumP A A A A A A A A A          (14) 

where 1A  and 2A  are the probability amplitudes of the two possible directions of the loop 

and 1 2A A A  . With any trajectory that is a closed loop there are two identical paths 

which can be added in this way. This identical path pairing cannot be done so easily with 

paths that start and end at different points. Given that the specific path an electron takes is 

determined by inelastic scattering from randomly situated impurities and defects it is very 

unlikely that for such a path there is a different path which accumulates exactly the same 

phase. Because the probability of the electron returning to its origin is twice that which 

would be predicted classically, the electron will spend more time in the vicinity of the 
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origin and therefore the conductivity will be affected. This effect is called weak 

localization. Note that only paths within a certain length scale can be added coherently in 

this way. If the time taken to travel along a loop exceeds the dephasing time than the two 

possible paths will no longer be in a coherent superposition upon returning their starting 

point and thus cannot interfere. It is in this way that the coherence length L D   

becomes significant. 

 In order to see how this effect can be put to use, consider how a magnetic field 

affects this phenomenon. For this consideration a magnetic field is required such that 

1  where 
eB

m
   is the cyclotron frequency. This limitation on the magnetic field 

is taken so that the electrons take between inelastic scattering events deviate minimally 

from being straight lines thus allowing for identical clockwise and counterclockwise loop 

trajectories to be taken. The inclusion of the magnetic field induces an additional phase 

shift on the electron due to the magnetic vector potential A . This means including a 

phase factor on the probability amplitude for the closed loops under consideration. With 

the use of Stoke’s theorem that phase factor can be written as 

 exp exp
ie ie

A A A dx A A da
   

       
   
   

exp exp Bie ie
A B da A

   
      

   
    (15) 

where B  is the magnetic flux enclosed in the loop and the sign of the phase depends on 

the direction the electron took relative to the magnetic field to get around the loop. Since 

the phase shifts accumulated by the two paths are equal in magnitude and opposite in sign 

then the difference in phase is twice as much as the phase accumulated on an individual 
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path  2 Be   . The area of the loop is taken to be on the order of the square of the 

size of the diffusive probability distribution mentioned earlier  2r Dt  . This leaves us 

with a phase difference of 2 2 2Be eBa eBDt      where a  is the area of the 

loop. The effect of this phase shift can now be seen in the probability calculation made 

earlier. 

2
2 2

2 2
1 2 1 2 1 2 2 1

i i
i i

quantumP Ae A e A A A A e A A e
 

 
  

           

  
2 2 22 1 cos 4 cos

2
A A




 
     

 
   (16) 

It is apparent from this expression that for the right value of the magnetic field the 

constructive interference which results in weak localization is switched over to 

destructive interference thus not permitting the formation of closed loops. The above 

expression for quantumP  has a similar effect on the conductivity as the previous correction. 

The change in the number of electrons that return to their starting place must be opposite 

in sign to the change in number of electrons that do not. The difference here is that 

instead of increasing the probability of returning by adding 
2

2 A , this probability is 

increased by adding  
2

2 cosA  .  

With this result in hand it is possible to consider the magnetic field necessary to 

cause destructive interference and attempt to give credence to the stipulation made earlier 

on the magnetic field  1eB m . Larger loops take longer to complete and have more 

magnetic flux enclosed, therefore not as much magnetic field strength is necessary for 

destructive interference. The longest loop which allows for interference can take no more 
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than   to complete. Therefore, the minimum magnetic field necessary to make the 

probability shown above equal to zero is  

2
B

eD







      (17) 

Rearranging the diffusion constant as FE
D

dm


 where FE  is the Fermi energy. 

Substituting this into the above expression and solving for   gives 

2 F

eB d

m E





 



        (18) 

A portion of this expression can be recognized as the phase accumulated by an electron 

with the Fermi energy during the dephasing time which would be much greater than one 

 1FE  . Therefore it is possible to see the effect of the magnetic field this way 

without causing any significant bending of trajectories between inelastic scattering events 

(i.e. 1  holds).  

 If the time necessary for the phase difference   to be of order 1  2B eBD
   

is much less than the dephasing time ( B    or alternatively B B ) then the largest 

possible phase shift greatly exceeds 1. In this case the group of paths which form loops 

contain both constructive and destructive interference and the two effects average out, 

removing the localization phenomenon. Because of this, experimentalists can measure a 

magnetic field dependence in the conductivity and find a best fit using a theory of this 

kind to determine the coherence length. This Analysis can be pushed further to account 

for the effects of spin-orbit interaction, electron-electron interaction and so on. For the 

purpose of this chapter I will push this analysis no further. With an expression for the 
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conductivity an experimentalist can fit their resistance data to determine the dephasing 

time. This can be done at various temperatures in order to map out the dephasing time as 

a function of temperature. 

2.2.2.  Measurements of coherence length in mesoscopic metal wires 

In a 2003 article by Pierre et al.
1
 the phase coherence time was measured via low 

field magnetoresistance. These measurements were made specifically on silver, gold, and 

copper at various levels of impurity and at temperatures ranging from around 2K down to 

as little as 40mK.  Samples were created using electron beam lithography. Such low 

temperatures were achieved with the use of a top loading dilution refrigerator. Resistance 

measurements were made using a four lead technique (see figure 2.7). 

 

Figure 2.7 

Experimental Setup for Coherence Measurement in Mesoscopic Metal Wires 

A four lead technique was used to measure the magnetoresistance of the samples. Two leads were 

used to supply a current and two were used to measure the voltage drop across the sample. The 

measured voltage drop was compared to the signal taken directly from the power supply via a lock-in 

amplifier. (Image taken from Pierre et al.
1
) 
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 A power supply is used to drive an AC current through the sample via two of the leads 

while another pair of leads are used to measure the voltage difference across the sample. 

The voltage from the power supply is modified by a ratio transformer and is then 

compared to the voltage drop across the sample. This technique allows for measurements 

of very small variations in resistance of the sample. The use of this four lead technique 

instead of a standard resistance meter is so the leads do not contribute to the resistance 

being measured. A superconducting coil was used to generate the magnetic field. This 

field was applied perpendicular to the plane of the sample. 

 Figure 2.8a shows a list of the different samples as well as the following 

characteristic parameters: length l , thickness t , width w , Diffusion constant D , and  
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Figure 2.8 

Wire Characteristics and Corresponding Magnetoresistance Measurements 

a) All of the different samples are listed here along with their various characteristics. b) 

Magnetoresistance curves for four of the samples are shown here at various temperatures. The 

curves are offset vertically so that those of different temperatures can easily be seen. (Images 

taken from Pierre et al.
1
) 

a) 

b) 
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resistance of the wire R . Figure 2.8b shows the measurements of magneto resistance 

made on 4 of the samples. The level of impurity in the samples is indicated by the 

numbers “5N” and “6N” which mean 99.999% pure and 99.9999% pure, respectively. 

In order to determine the dephasing time as a function of temperature, the authors fit their 

magnetoresistance data using an expression based on one dimensional weak localization 

theory which involves spin-orbit coupling  

1 1
2 22 2 2

2 2 2

3 1 4 1 1 1 1

2 3 3 2 3so

R e R eBw eBw

R L L L L 

  
        

           
          

 

  (19) 

where so soL D  is the spin-orbit length which characterizes the strength of the spin-

orbit coupling. The fit parameters taken were L , w , and soL . The width obtained as a 

result of fitting (denoted as wlw  in figure 2.9a) was obtained by taking the best fit of all 

data over the various temperatures. The fit width wlw  was compared to STM images and 

was always found to differ from the measured width by less than 15%. The spin orbit 

distance was determined based on a fit of the magnetoresistance at the highest 

temperature. Figure 2.9a shows the maximum dephasing time   obtained at the lowest 

temperature as well as the other two fitting parameters. 
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Figure 2.9 

Inelastic Scattering Time for Mesoscopic Metal Wires (example 1) 

a) Shown here are the maximum dephasing times for all the samples and the values of the fitting 

parameters Lso and wwl as well as the measured width w. b) Four of the plots of the dephasing 

time as functions of temperature are shown here. The squares, stars, dark circles,  and hollow 

circles represent copper Cu(6N)b, gold Au(6N), silver Ag(6N)c, and Ag(5N)b, respectively. 

(Images taken from Pierre et al.
1
) 

 Figure 2.9b shows plots of   corresponding to copper Cu(6N)b, gold Au(6N), silver 

Ag(6N)c, and Ag(5N)b. Note that silver Ag(6N)c has both the largest dephasing time 

max 22ns   and the largest diffusion constant 20.0185D m s . Therefore, at the lowest 

temperature, the sample Ag(6N)c had the largest coherence length at 

max max 20L D m    . That certainly seems like a large number but figure 2.9b shows 

that the dephasing time drops precipitously with increasing temperature, losing almost 

two orders of magnitude with an increase of just over 1K in the case of Ag(6N)c. This 

would result in a loss of a factor of 10 on the coherence length putting it at roughly 2μm 

at just over 1K. 

a) b) 
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A similar experiment by S. Wind et al.
33

 in which magnetoresistance 

measurements were made on aluminum and silver wires (purity levels were not 

specified). The wires had widths ranging from 35nm to 110nm (comparable to the widths 

in the previously mentioned experiment). These measurements revealed that for silver 

(again with the highest diffusion constant) the coherence length at 20K is already as low 

as 200nm (see figure 2.10b).  

         

Figure 2.10 

Inelastic Scattering Time for Mesoscopic Metal Wires (example 2) 

a) Listed here are the samples measured along with the width, resistance, and diffusion constant 

for each wire. b) The dephasing time and coherence length for aluminum and silver wires as well 

as an aluminum film are plotted as functions of temperature. At 20K the coherence length 

reaches, at most, 200nm. (Image taken from S. Wind et al.
33

) 

3. Conclusion 

A precipitous drop in coherence length of conduction electrons in silver from 

20μm to 2μm as a result of increasing temperature from 40mK to just over 1K was shown 

in the data in section 3.3.1. Further data from that section showed coherence length of 

silver dropping further from about 2μm to 200nm for temperatures ranging from 2K to 

a) 

b) 
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20K. The data in section 2.1 showed that the coherence length of emitted electrons at the 

source (a tungsten field emission tip) falls from about 35nm to 5-10nm for temperatures 

increasing from 78K to 300K. They also claim that the “inelastic mean free path” of 

conduction electrons drops from 140nm to 16nm over that same range of increasing 

temperature, implying a connection between the coherence of emitted electrons and 

conduction electrons (the authors do not strictly define this term nor do they measure it 

themselves). That data along with the idea that decoherence is an irreversible process 

seems to suggest that the coherence of an electron source is limited by the strength of the 

environmental interactions taking place inside the conductor as a function of temperature. 

This data also seems to indicate the possibility that the coherence length of such a source 

could be dramatically improved by lowering the temperature. An experiment comparing 

the coherence length outside of the conductor to that of the conduction electrons could 

potentially determine which process most effectively maintains coherence. Such an 

experiment could also confirm the possibility that low temperatures dramatically improve 

the coherence of the source. Note that the assumption made thus far regarding the 

connection between emitted electrons and conduction electrons is based on claims in the 

literature that photoemitted electrons from metals originate entirely in the conduction 

band
19, 20

 and that in the case of field emission the electrons with the highest energy (i.e. 

the ones at the top of the conduction band) are most likely to tunnel through the barrier. 

While I could find nothing in the literature indicating a direct measurement of the 

coherence length of electrons photoemitted from a metal, it seems reasonable to expect a 

correlation between the between the coherence length of photo emitted electrons and 

conduction electrons given the implied correlation for field emitted electrons in the data 



41 

 

in section 2.1. It is also worth noting that one could predict an approximate lower limit to 

the coherence length of conduction electrons based on the uncertainty principle. 

Considering the simple model of electrons randomly walking from impurity to impurity 

the direction of the momentum of the conduction electrons would seem to be isotropic. 

Assuming the magnitude of the momentum to be approximately that of the Fermi energy 

the minimum uncertainty in position could be written as 

min

1

2 4 4F F

x
p p k

   


    (20) 

Given that the typical Fermi wave number in metals
34

 is on the order of 10
8
cm

-1
, the 

minimum coherence length would be approximately a quarter of an angstrom.  

Future efforts could include attempts to work out detailed plans for measurement 

of coherence lost due to photoemission. The geometry of the metallic structure would 

have to be favorable for both magnetoresistance measurements as well as emission. Also, 

the use of a top loading dilution refrigerator is not practical for such an experiment. Such 

a device requires that the sample is buried inside a very complicated cryostat and as such 

is not accessible for photo emission (see figure 2.11). This seems to limit the 

temperatures that can be reached. One possible experiment may involve photoemission 

from a thin film held at liquid helium temperature (4.2K) with the use of a cold finger. 
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Figure 2.11 

Schematic of Dilution Refrigerator 

Shown here is a schematic diagram of a dilution refrigerator. The sample would be placed on the 

surface of the mixing chamber. (Image taken from Wikipedia article: 

http://en.wikipedia.org/wiki/Dilution_refrigerator 

Judging from the plotted data presented by S. Wind et al.
33

 the upper limit for the 

transverse coherence length of electrons emitted from a silver source at liquid helium 

temperatures would seem to be approximately 1μm (though this may be different for thin 

films). The calculation of the propagation of a partially coherent state made 2.1 neglected 

the decoherence processes that would occur at the double slit. These processes are known 

to reduce contrast
35

 and must be accounted for. Alternatively, it may be possible to 

photoemit and look at the angular spread. The coherence length of the partially coherent 

state can be thought of as the uncertainty in position of its fully coherent constituent as 

described in section 2.1. The Heisenberg uncertainty principle  2x p    tells us that 

the minimum angular spread can be determined by the uncertainty in position. 

2

v p

v p p x
 

 
     


    (21) 
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Thus for a given coherence length the angular spread of the beam can be no less than a 

certain value. For example, in the calculation considered in section 2.1 the coherence 

length ranged from 1nm to 1μm. In that case the minimum angular spread would range 

from approximately 2mrad down to 2μrad. Of course, it also seems reasonable to 

consider repeating the experiment by B. Cho et al.
21

 in section 2.1 but for photoemission 

instead of field emission. 
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Chapter 3 – The Relation Between the Feynman Paradox and 

Aharonov-Bohm Effects 

1. Introduction 

The question whether or not forces are present for physical systems that display 

the Aharonov-Bohm effect has been debated for decades. The general consensus is that 

there are no forces, which is considered to be a defining property of the famous effect. 

The best known version of the effect occurs when a current carrying solenoid (or more 

generally a magnetic flux) is enclosed by an electron interferometer. When the current is 

changed the consequence is that the observed electron fringes in the interferometer shift. 

Given that the solenoid is thought to produce no discernible magnetic (or electric) field 

external to its structure, and that is where the electron passes, there is no force on the 

electron. It is rare if not unique to encounter a response of a physical system without the 

presence of forces, which illuminates a part of the appeal of the A-B effect.  

Central to A-B effects is the interaction between a magnetic moment and a 

charge.  This interaction is associated with a classical relativistic paradox
1
. Recently

2
, 

Aharonov and Rohrlich stated that: “The paradox is crucial to clarifying the entirely 

quantum interactions of “fluxons” and charges – the generalized Aharonov-Bohm 

effect..”  The central problem to the paradox is the following. When a point charge moves 

in the vicinity of a tube that contains magnetic flux, the momentum in the 

electromagnetic field changes. Outside of the flux tube there is no electric or magnetic 

field and the charge does not change its momentum.  The tube carries no net charge, may 

thus not experience a Lorentz force and appears not to change its momentum. These 
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cursory observations would, if true, violate momentum conservation and give the 

appearance that the A-B effect is paradoxical in nature. 

In this chapter, we give a description of the magnetic A-B effect and its 

reciprocal
3
  based on the Darwin Lagrangian. Our approach resolves the paradox, is 

consistent with all experiments to date, and can in principle be differentiated 

experimentally from previous theoretical approaches. We find that for constrained motion 

both parts of the physical system do not accelerate, consistent with the generally accepted 

prediction, however we also find that for unconstrained motion the magnetic part does 

accelerate and the charged part does not. The apparent violation of Newton’s third law is 

typical for the “Feynman paradox.”  The relation between the Feynman paradox and 

Aharonov-Bohm effects has to our knowledge not been pointed out before. Building on 

the Feynman paradox the difference between constrained and unconstrained motion is 

delineated. We argue that the appropriate description of physical systems, which are used 

for demonstration of A-B effects, is not known to be constrained or unconstrained.  

Feynman explains a paradox in his famous Lectures where two particles interact 

in such a way that the momentum of one particle changes by a certain amount that is not 

the same as the momentum change of the other particle
4
. The specific scenario is that two 

charged particles are placed on the x-axis, with one charged particle moving initially 

along the x-axis, while the other moves along the y-axis. From the Lorentz force it is 

clear that the magnetic part of the force is not balanced (figure 3.1a). A relativistic 

treatment of this problem does not change this conclusion
5
. This is indeed an example 

where the interpretation of Newton’s third law as conservation of mechanical momentum 

(as opposed to canonical momentum) breaks down.  
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In this work, a Lagrangian approach is chosen. The Lagrangian offers ways to 

conveniently impose constraints on the particle motion. A Hamiltonian can be obtained 

from it that can be compared to other approaches
6
. Finally, a path integral method can be 

used to obtain the quantum mechanical phase shifts that can be compared to the known 

A-B and A-C phase shifts. For the interaction of charged particles no Lagrangian exists 

that is manifestly invariant and obeys Lorentz symmetry
7
  to all orders in /v c . The 

Darwin Lagrangian is the best known choice that is valid to  
2

/v c . This approximation 

will turn out to be sufficient to treat the Feynman paradox and the A-B and A-C problem 

in such a way that momentum is conserved, the equations of motion for both parts of the 

system are obtained and the method used for all systems is the same. Note that the 

inclusion and the physical effect of higher order terms is potentially interesting but 

unknown. 
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Figure 3.1 

Build Up of Mott-Schwinger, Aharonov-Bohm, and Aharonov-Casher Systems 

a) In the physical system presented in the Feynman paradox, particle 1 moves toward particle 2, 

and particle 2 moves with a velocity perpendicular to that of particle 1. The Lorentz Forces are 

not balanced in this case. b) The Mott-Schwinger system consists of a charged particle moving in 

the vicinity of a current loop
8,9

. The current loop may be thought of as many circulating charge 

elements. Consequently this system bears a resemblance to the Feynman system. c) In the case of 

the Aharonov-Bohm effect, a charged particle is moving near a current carrying solenoid. Here 

the solenoid is depicted as constructed from current loops as they appear in the Mott-Schwinger 

system. d) The Aharonov-Casher system involves a charged wire and a current loop. Similar to 

the solenoid in the Aharonov-Bohm system, the charged wire is shown as constructed from 

charged particles as in the Mott-Schwinger system. 
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2. Relativistic Classical Analysis 

2.1. Preamble and assumptions: Building the physical systems 

It is from the constituents of the physical system presented in the Feynman 

paradox (figure 3.1a) that the Mott-Schwinger system (figure 3.1b), the Aharonov-Bohm 

system (figure 3.1c), and the Aharonov-Casher system (figure 3.1d) can be constructed. 

The neutron in the Mott-Schwinger system can be modeled as a current loop. Such a loop 

may be thought of as many circulating charge elements. Thus, the transition from the 

Feynman paradox to the Mott-Schwinger system may be done by integration over the 

charges in the loop. Similarly a solenoid may be constructed via the addition of non-

interacting current loops, and a charged wire constructed by addition of non-interacting 

point charges. Consequently, a transition from the Mott-Schwinger system to the 

Aharonov-Bohm or Aharonov-Casher systems may be done by integration of current 

loops or point charges, respectively. 

 In the construction phase the issue of constraints comes into play. The 

construction of the Mott-Schwinger system may be performed in two ways. Either the 

Lagrangian for the Feynman system can by integrated directly, or, alternatively, the 

forces resulting from the Lagrangian can be integrated. These two methods imply 

inherent assumptions regarding the freedom of the relative motion of the charges that 

constitute the current loop. If the forces resulting from the Lagrangian are integrated, the 

net force on the overall system, and thus the equation of motion of the current loop, is 

determined. Because the forces were computed without applying any restrictions to the 

relative motion, the charge elements are free to move independently (i.e. the motion of 

the charge elements is unconstrained). If, on the other hand, the Lagrangian is integrated 
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directly, the Euler-Lagrange equations give the equation of motion for the current loop. 

The derivatives of the Euler-Lagrange equations are taken with respect to the position 

and velocity of the current loop. This method stipulates that the charge elements move 

relative to each other in such a way that the initial shape of the charge distribution is 

preserved and the loop merely undergoes translation (i.e. the motion of the charge 

elements is constrained). 

 

Figure 3.2 

Motion of Conduction Electrons in Current Loop 

An electron in a current loop with diameter loopd  and an electron passing at a distance 0r  interact 

via the Lorentz force. The electron in the loop experiences a force intF . During the interaction time 

the electron in the loop moves a distance x . This movement is a combination of drift movement 

due to drift velocity driftv  and the displacement due to the Lorentz force. 
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It appears obvious that the motion of the conduction electrons in a solenoid 

should be treated as constrained. Simple estimates can be made to investigate this 

statement. Consider an electron passing a solenoid in a certain interaction time. During 

this time the motion of solenoidal conduction electrons can be investigated and their 

distance traveled can be compared to the solenoid wire thickness. If the distance traveled 

is much larger, then constraints are certainly important, while if the distance traveled is 

much shorter the roll that the constraints play is much less clear. Our argumentation 

hinges on the veracity of the latter and justifies the investigation of comparison of motion 

for unconstrained versus constrained systems. We do not claim that the system is either, 

but consider both fully unconstrained and constrained systems to be interesting limiting 

cases.  

In A-B experiments such as the one by Mollenstedt and Bayh
10

, the interaction 

time of an electron passing a solenoid at 40 keV is roughly 1 ps (see figure 3.2), 

assuming an interaction length of three times the loop diameter (3×36 μm). The electron 

velocity has a drift velocity of driftv I nAq 80 μm/s, where I is the current, n is the 

number of atoms per unit volume of the wire, A is the cross sectional area of the wire and 

q is the charge of an electron. The electron has a far larger thermal component 

2thermal B ev k T m 9.5×10
5 

m/s. The thermal drift displacement during the interaction 

time is thermalx = 87 nm, which is much smaller than the solenoid wire diameter of 5 μm. 

The displacement of electrons within the coil due to the magnetic field of the passing 

electron intx  can also be approximately determined, by using the Lorentz force. The 

result is intx = 3.7×10
-20 

m using the thermal velocity. Note that the inclusion of the 

effective electron mass of the Drude-Sommerfeld model has little effect on the estimates, 
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as the effective mass of a conduction electron in tungsten is only 2-3 times that of a free 

electron
11

. The potential which restricts the charge to the wire may be thought of as 

having negligible curvature over such small distances. Additionally, the centripetal force 

required for the electrons in the solenoid to move in a circle with a drift velocity of 80 

μm/s is on the order of 10
-34 

N, whereas the Lorentz force due to the passing electron 

charge is on the order of 10
-32 

N. It appears reasonable to at least consider the scenario of 

unconstrained motion.  

Objections can be raised to these estimates. For example, electron-phonon 

interaction may in principle lead to a back-action force. Another example is, that the 

interaction time is much slower than the plasmonic response time of tungsten (0.44 fs)
12

. 

This motivates the inclusion of electron-electron interaction within the wire during the 

interaction time. An interesting attempt has been made to include such interactions and 

some constraints
13

, that support the controversial idea that both parts of the A-B system 

experience a force. However, arguably
14

, a recent experiment may rule out the presence 

of force on the passing electron
15

. To date, no detailed models have been analytically or 

numerically solved, which motivates the study of the simpler case of constrained and 

unconstrained motion. 

For neutrons in the A-C system this type of estimate gives a completely different 

result. The neutron could be modeled as a current loop of radius 10
-15 

m. (This simplistic 

classical model ignores quantum mechanical addition of quark angular momentum and 

magnetic moment).  In order for such a loop to generate a magnetic moment of 10
-26 

J/T, 

the constituent charges would circulate with a period on the order of 10
-23 

s. The 

interaction time in the experiment by Werner et al.
16

 was on the order of 10
-5 

s thus the 
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motion of the charged constituents of the neutron is constrained. For completeness it is 

still interesting to analyze the A-C system in terms of constrained and unconstrained 

motion as described above. Furthermore, A-C phase shift may be observable for other 

larger magnetic particles, for which the constraints are not clear.  

A case has been made in favor of the effective presence of constraints on the basis 

of the following lemma: any finite stationary distribution of matter has zero total 

momentum
17

. The term “stationary” is defined by 0 0T   , where T   is the 

electromagnetic stress tensor. The assumption of a stationary distribution along with the 

conservation law 0T 

 
 
gives the result 

0 0j

jT  . Using the divergence theorem the 

total momentum may be written as a surface integral
18

  

 0 0 0 01 1 1i i j j j

j i i j i jp T d xT x T d xT dS
c c c

       
    .  (1)

 

The assumption of a finite distribution of matter ensures that the elements of the stress 

tensor must fall off as 41 r   ( 0  ). Consequently the above surface integral is zero, 

proving the lemma; 

01
0i j

i jp xT dS
c

  .    (2)
 

The presence of electromagnetic momentum for a stationary charge-current distribution, 

taken together with the validity of the lemma, demands that there is another opposite and 

equal form of momentum.  This “hidden momentum” results from internal motion of a 

stationary system. One text-book example is that of a current carrying loop of wire, 

bathed in a uniform external electric field
19

  (figure 3.3). Relevant for our present 

discussion, the electric field could be thought of as arising from the presence of a distant 

point charge. 
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Figure 3.3 

Hidden Momentum in Current Loop 

A conducting loop with current circulating clockwise is immersed in an external homogeneous 

electric field directed toward the top of the page. The electric field accelerates the charges moving 

toward the top of the loop and decelerates those moving toward the bottom of the loop. Consequently 

there is a non-zero net relativistic total linear momentum of the charges contained in the loop
19

. This 

is the “hidden momentum” and it exactly cancels the momentum in the electromagnetic field. 

The applied electric field E  gives rise to a change in velocity of the charges as they 

move along the vertical segments of the loop. Consequently, the velocity of the charges 

moving in the bottom segment, 1u , is smaller than the velocity in the top section,  2u . The 

result is that the charges in the loop carry a net relativistic mechanical momentum equal 

and opposite to the electromagnetic field momentum
19

. Proponents of using hidden 

momentum for analysis of the A-B effects, claim that in the case of dynamic systems for 

which equations of motion are being calculated, the hidden momentum has a direct effect 

on the equation of motion of the object in question. In the case of a current loop passing a 

charged wire (A-C system) the “hidden momentum” goes directly into the equation of 
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motion so as to cancel the force on the loop. However, one should tread carefully when 

taking this approach considering that the lemma being applied requires a stationary 

system while the calculation of the equations of motion of a system requires the 

assumption of a non-stationary system. Such an analysis of the loop-wire system has been 

made with three different models of the current loop
17

: a gas of charged particles 

constrained to move inside a neutral tube, a gas of charged particles constrained to move 

inside a conducting tube, a charged (incompressible) fluid constrained to move inside a 

neutral tube. Although these analyses all predict zero forces, this is not a general property 

for unconstrained motion as shown by the counterexample given in our present analysis.  

2.2. Unconstrained motion 

In section 2.2.1 the force and the equations of motion for two interacting charged 

particles is derived from the Darwin Lagrangian for the Feynman problem (figure 3.1a). 

In the following two sections the force is integrated for charge and current distributions 

that are relevant for the Mott-Schwinger, and the A-B and A-C effects, respectively. 

2.2.1.  Equations of motion for two interacting charged particles using the 

Darwin Lagrangian 

The Darwin Lagrangian
18

  is given by 

  1 22 2 1 2 1 2
1 1 2 2 1 22 2

1 1
,

2 2 2

v r v rq q q q
L m v m v v v

r rc r

  
      

 
  (3)

 

where 1 2r r r  . The vector potential and scalar potential for a moving charged particle 

are given by 

 
22

r v rq
A v

rc r

 
  

 
    (4)
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q

r
  .      (5)

 

The Euler-Lagrangian equations of motion
20

  are 
1 1

d L L

dt v r

 


 
 and 

2 2

d L L

dt v r

 


 
, where 

             







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
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2
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2
22

21

2

2
232

21
11
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2

22 r
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r

rrrrv
a

rc

qq

r

rrv
v

rc

rrqq
am

v

L

dt

d 






  

 

           







 








2

222

4

2

2

2

22

21

11

3

2 r

rrvrrvra

r

rrrrv

r

vrr
a

rc

qq
am




      (6) 

           







 


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






2

111
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1

2

1
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21
22

2

3
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rrvrrvra

r

rrrrv

r
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a
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qq
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v

L
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d 


     (7)

 

        







 











3

1221

5

21

3

21

2

21

3

21

1

3

2 r

vrvvrv

r

rrvrv

r

rvv

c

qq
r

r

qq

r

L



   (8)

 

        







 











3

1221

5

21

3

21

2

21

3

21

2

3

2 r

vrvvrv

r

rrvrv

r

rvv

c

qq
r

r

qq

r

L



 . (9)

 

Taking the conditions which define the Feynman paradox (figure 3.4) 
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Figure 3.4 

The Feynman Paradox 

 The coordinate system used for the analysis of the Feynman paradox (see text) is given. 

 

01


r , xrr ˆ

2 


 

xvv ˆ
1 


, yvv ˆ
2 


 

21 qq  , 21 mm   

xrr ˆ


,  yxvr ˆˆ 


, xr ˆˆ  .         (10) 

 The equations of motion obtained for particle 1 are 

2 2 2 2

2 2 2 2 2 2

1 2 2 22

2 2

1 1
2

1
21

1

x

q v q v

mr c mc r c q v
a

mr cq

m c r

    
       

         
   

  
 

          (11)
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2 2

2 22 2

1 2 2 22

2 2

1
1

4

y

q v

q vmc ra
mc rq

m c r



  
 

  
 

,    (12) 

and for particle 2  

2 2 2 2

2 2 2 2 2 2

2 2 2 22

2 2

1 1
2

1
1

1

x

q v q v

mr c mc r c q v
a

mr cq

m c r

    
      

        
   

  
 

        (13)

 

2
2 2

2 2

2 2
2

2 2

2
0

1
1

4

y

v q

m r c r
a

q

m c r

 
 
  
 

  
 

.                         (14)

 

The approximation in equations (11)-(14) is obtained by expansion to first order in 

2 2q mc r  under the assumption that 2 2 2 2q mc r v c .  This is valid if the paths of the 

charged particles are approximately straight. A small deflection implies that the potential 

energy of the particle is always less than the kinetic energy (i.e. 2 2 2q r mv ). 

Alternatively, the relativistic equation of motion is given by the Lorentz force law 

1
F q E v B

c

 
   

 
.     (15) 

Expanding the Lorentz force in this equation to second order in v c  leads to the 

equations of motion: 

2 2 2

1 2 2 2
1

2
x

q q v
a

mr mr c

  
     

 
    (16)

 2 2 2 2

1 2 2 2 2y

q v q v
a

mc r mc r


         (17)
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2 2 2

2 2 2 2 2
1x

q q v
a

mr mr c

 
   

 
     (18)

 
2 0ya  ,       (19)

 

which agree with the Darwin Lagrangian approach as well as Feynman’s resolution of the 

paradox
5
  in the non-relativistic limit.  As Feynman points out, Newton’s third law does 

not hold for mechanical momentum; however the consideration of the change of 

electromagnetic momentum ensures the conservation of total and canonical momentum. 

Note that the use of the Darwin Lagrangian is a superfluous step. We could have limited 

ourselves to the forces occurring in the relativistic equation of motion. However, for a 

consistent treatment of the unconstrained and constrained motion an identical starting 

point is favored. For unconstrained motion we can now proceed to integrate over the 

forces acting on the constituent particles of an extended body.  

2.2.2.  Charged particle and current loop 

The forces in a system consisting of two interacting point charges have now been 

determined. A system of a point charge and a loop consisting of many mutually non-

interacting point charges can now be constructed by direct integration over the forces. 

Consider a system consisting of a charged particle moving in the x direction in the 

vicinity of a current loop of radius ε centered at the origin (figure 3.5). 



59 

 

 

 

Figure 3.5 

The Mott-Schwinger System 

The coordinate system for the analysis of a charged particle interacting with a current loop (see text) 

is given. 

 , ,q q q qR x y z  is the position of the charged particle relative to the center of the loop, q

is the charge, pv is the velocity of the particle, and I is the current. The force on the 

current loop due to the charged particle in the limit 0   is 

 2

3 2

ˆ ˆ ˆ31
ˆ

q q q q qq

q q

x y x y y y z zqv
F J Bd y

c cR R





  
    
  

 .  (20)

 

The force on the moving charge due to the current loop is 
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 2

3 2

ˆ ˆ3
ˆ

q q qq

q q

q q

z y y z zqvq
F v B y

c cR R

  
    
  

,    (21)

 

where the magnetic moment is denoted by  . Note that the forces are not equal and 

opposite after integration and thus total mechanical momentum is not conserved similar 

to the Feynman paradox. The same procedure will now be followed for the Aharonov-

Bohm and Aharonov-Casher systems (figure 3.1c and 2.1d).  

2.2.3.  Aharonov-Bohm and Aharonov-Casher systems 

The forces involved in the Aharonov-Bohm (figure 3.1c) and Aharonov-Casher 

(figure 3.1d) systems can be determined by integration of the forces obtained for the 

loop/charge. For the A-B system the connection between the loop magnetic moment and 

the solenoid is made by substituting a differential magnetic moment element of the 

solenoid for the magnetic moment of the current loop: 

ˆ
4

Bc
zdz




 ,    (22) 

where B  is the magnetic flux in the solenoid. The charged particle is assumed to move 

in the x-direction. By integrating equation (21) the force on the charged particle is  

0.q q

solenoid

F dF      (23) 

This is obvious given that the particle is propagating through a region where there are no 

electric or magnetic fields. By integrating equation (20) the force on the solenoid is  

      

   

2 2

2
2 2

ˆ ˆ2

2

q s q s q s q s
B q

s

solenoid
q s q s

x x y y x x x y y yq v
F dF

x x y y






             
    
   

 . (24)
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For the A-C system the connection between charged particle and the wire was made by 

substituting a differential charge element of the wire for the charge of the particle: 

qq dz .     (25) 

By integrating equation (21) the force on the wire is  

0w q

wire

F dF      (26) 

and by integrating equation (20) the force on the current loop is  

      

   

2 2

2
2 2

ˆ ˆ2
2 w w w w

w

wire
w w

x x y y x x x y y y
v

F dF
c

x x y y

   

 

 


          

   
    
   

 . (27)

 

As stated in the introduction it is unreasonable to describe the motion of constituents of a 

neutron as unconstrained during the typical interaction times for A-C experiments. 

Moreover, the above simplistic reasoning foregoes the interesting physics that underlies 

the understanding of the neutron’s magnetic moment as the sum of the magnetic moment 

of its parts and dynamics
21

. Nevertheless, for completeness in our present argument, the 

unconstrained model is considered in the context of the A-C physical system, and 

hopefully highlights the disparity in the nature of the solenoidal versus the neutron’s 

magnetic moment. In this point of view Aharonov and Casher’s realization that a neutron 

passing by a charged wire accumulates a phase shift that can be interpreted as the 

reciprocal of the A-B effect is both beautiful and surprising.   

In each of these systems one object feels a force while the other does not. This 

again is a system which exhibits the qualitative feature of the underlying Feynman 

system that total mechanical momentum is not conserved.  
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2.3. Constrained motion 

In the following sections the integrated Lagrangian will be used to obtain the 

equations of motion for the Mott-Schwinger, A-B and A-C systems. The derivatives in 

the Euler Lagrange equation will be made with respect to coordinates that describe the 

motion of complete objects, such as the current loop in the Mott-Schwinger system. This 

constrains the motion of the charge elements in the loop to experience the same 

acceleration. 

2.3.1.   Integration of the Lagrangian 

An alternative to the unconstrained method of analysis described above for the 

Mott-Schwinger system (figure 3.1b) is the approach of assuming that the charge 

elements within the loop are fixed relative to one another and must accelerate identically 

along with a coordinate defining the location of the loop. This can be done by two 

possible methods. By the first method, the vector potential of the moving charge, 

appropriate for the Darwin Lagrangian, is taken to determine the resulting magnetic field. 

The vector potential and magnetic field of the moving charge are 

 
22

q

q q

r v rq
A v

rc r

 
  

  

    (28)

 

3

q

q q

v rq
B A

c r


  .    (29)

 

The magnetic and electric fields are coupled to the magnetic dipole and relativistic 

electric dipole to obtain the Lagrangian 

2 21 1

2 2
q qL m v m v B d E         
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 
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  


.  (30)

 

The second method is integration of the vector potential over the charges in the current 

loop. Integration of the vector potential (equation (23)) as it appears in the Darwin 

Lagrangian (equation (3)) for a current loop with no net charge gives 

3

r
A

r



      (31) 

 
3

1 v r
v A

c cr



  




 
   .    (32)

 

Coupling these potentials to the point charge gives the Lagrangian 
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

.  (33)

 

These two methods give the same result due to the symmetry under permutation of 

particles of the Darwin Lagrangian and therefore only one should be taken for the 

computation of the equations of motion to avoid double counting. Applying the Euler-

Lagrange equations gives 

0
d L L

dt v r

 
 

 
    (34) 
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3 5

3 q q qq

q q

q q

r r r r v vv vq
m a

c r r r r

  

 

               
   

.  (36)

 

These forces are equal in magnitude and opposite in direction and thus conserve total 

mechanical momentum. Therefore this cannot be characterized as a Feynman type 

paradox.  

The forces acting on the individual components of the A-B (figure 3.1c) and A-C 

(figure 3.1d) systems can be determined by integrating the Mott-Schwinger Lagrangian 

(equation (30) or (33)). The Lagrangian obtained for the A-B system is 

   

   
2 2

2 2

ˆ1 1

2 2 2

q s q s
B

s s q q

q s q s

v v z r rq
L m v m v

x x y y

      
  

  
   (37)

 

 2 21 1

2 2
q q s s q s s

q
m v m v v v A

c
     .    (38)

 

Likewise, the Lagrangian obtained for the A-C system is 

   

   
2 2

2 2

1 1 2

2 2

w w

w w

w w

v v r r
L m v m v

c x x y y

 

 

 

        
  

   (39) 

   2 21 1 1

2 2
w w w wm v m v v v E

c
         .   (40)

 

In both cases application of the Euler-Lagrange equations of motion gives zero force 

acting on both elements of both the A-B and A-C systems. 

The predictions for the unconstrained motion are very different from the 

predictions of the constrained motion (the latter coinciding with generally accepted one). 
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Can these two methods be distinguished by comparing their predicted phase shifts to the 

experimentally measured phase shifts?  

3. Quantum mechanical phase shifts 

3.1. Constrained 

To compute the quantum mechanical phase shift for the charged particle and the 

neutron in the A-B and A-C effects, respectively, a closed loop path integral over time is 

taken for the Lagrangian described for constrained motion. The phase for the constrained 

case is the generally accepted one and only a brief summary is given in this section. In 

these calculations the charged wire and the solenoid are taken to be stationary ( 

0w sv v  ). Using the Lagrangian given by equation (38) the A-B phase is  

21 1

2

B
AB q q q s

q q
m v v A dt

c c


 
    

 
 ,   (41) 

which has been experimentally verified
10,22-24

. Using the Lagrangian given by equation 

(40) the A-C phase is 

 21 1 1 4
.

2
AC wm v v E dt

c c
  


 

 
     

 
   (42) 

In either case the first term in the Lagrangian, ( 2 2mv ), does not contribute to the phase. 

There is no force acting on the charged particle or the neutron and the effects are true A-

B effects. An experimental test of the Aharonov-Casher effect by Werner et al.
6
  is in 

agreement with the standard quantum mechanical prediction, where the experimental to 

theoretical ratio is given by / 1.46 0.35E T

AC AC    . 
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3.2. Unconstrained  

In the path integral formulation
25

  the wavefunction is propagated with the kernel, 

 , exp
b

a

t

t

i
K b a Ldt

 
  

 
 , where L is the classical Lagrangian.  For a free particle the 

Kernel is exp
i

p dr
 

 
 
 , where p mv . Formally, the initial wave function should 

now be constructed and propagated. However, for the purpose of understanding the 

measured phase shift in an interferometer it is customary to consider the effect on plane 

waves. In this case the phase shift is given by 
1 1

( )
b b

a a

t t

t t
Ldt px H dt   , where p is the 

canonical momentum p mv qA  . In the case that the Hamiltonian is time independent 

the phase shift becomes 
1 b

a

x

x
p dx

26
.  

For unconstrained motion in the case of the A-B effect the phase may therefore be 

written as follows 

 
1 1

total jp dx mv qA dx        

   
1 1

j smv q A dx mv qA dx               (43) 

where sA  is the vector potential generated by the solenoid and jA  is the vector potential 

generated by  the charges that constitute the solenoid. This is identical to the phase 

integral for the A-B effect in the case of constrained motion. 

In the case of the A-C effect considering unconstrained motion as argued above is 

unreasonable. However, the existence of a larger particle with a magnetic moment cannot 

be excluded. Such a particle may have constituents that are best described by 
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unconstrained motion.  In our model, there are different forces acting on such 

constituents. How is the path integral phase shift defined for a composite object if the 

constituents experience different forces? The physical picture is that if the interaction 

does not lead to a change of the internal quantum states then the two arms of the 

interferometer remain indistinguishable. The measured phase shift reflects only the effect 

in the center of mass coordinate or external quantum state. If the internal quantum states 

do change then the contrast of the interferometer may be reduced. The initial 

wavefunction for an unconstrained composite particle with N mutually non-interacting 

constituents can be written as a product state of plane waves,  
1

exp
N

C j j

j

i p R


  . 

The phase accumulated by each plane wave along a path is 
1

p dx     and thus the 

phase of the composite wavefunction C  picks up an overall phase factor of  

exp j

i
p dx

 
 

 
 . This phase factor may be rewritten in terms of the total force, totalF , 

on the current loop as computed in section 2.2.3., 

   0

1 1 1
total j j j jp dx p dx p F dt dx        

      
 

   0

1 1
j jp dx F dt dx    

     . 

 0

1 1
j totalp dx F dt dx    

               (44)
 

Note that the composite particle has no charge and the qA  term does not contribute to the 

phase. Integration of the total force (equation (27)) along a straight path gives the total 

phase 
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   0

1 2
total j wp dx sign y y

c



     .  (45) 

The difference in phase between the two paths is 
4

total
c


  , which is the appropriate 

AC phase shift. Thus the constrained and unconstrained method cannot be distinguished 

by inspecting the phase. 

4. Comparison to previous analyses  

4.1. Hidden momentum 

The approach taken by Vaidman
17

 as applied to the A-C system is one in which 

internal motion of the system manifest itself in “hidden momentum” which affects the 

motion of the neutron. The time derivative of this “hidden momentum” or the hidden 

force, as one may refer to it, is applied directly to the equation of motion 

hiddpdp
ma

dt dt
  .            (46) 

As mentioned above the justification for the use of the hidden momentum comes from a 

lemma that states that for stationary and finite current and charge distributions the total 

momentum is zero. A non-zero value of the electromagnetic field momentum than 

implies the presence of a hidden momentum of equal magnitude and opposite in 

direction: 

2

1 1

4
hid emp Jd E Bd p

c c
  


        ,   (47) 

where   is the electrostatic potential of the charged wire and J  is the current density of 

the loop. The electric potential and current density result in an electric field E  and 
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magnetic field B , respectively. Thus the equation of motion explicitly depends on the 

change of the electromagnetic field momentum, 

1

4

dp d
ma E Bd

dt dt c




 
   

 
 .   (48) 

The equation of motion for a current loop in the Aharonov-Casher system (figure 3.1d) 

determined by direct application of this method is 

   
1hiddpdp d

ma B E
dt dt c dt

        

   
1 1 d

v E E
c c dt

         
 

        
1 1

v E v E v E
c c

             
 

  
1

v E
c
    .     (49)

 

This acceleration is zero for the geometry of the Aharonov-Casher effect. Thus the force 

on both objects in the Aharonov-Casher system is zero, by this method. 

However, for the Feynman paradox the equations of motion do not depend on the 

change of the electromagnetic field momentum. The inclusion of electromagnetic field 

momentum solves the paradox by offering a third physical entity that carries a changing 

momentum
5
, while the forces on both objects are not zero, contrasting the Vaidman 

analysis of the Aharonov-Casher system. Why is there a difference between the two 

analyses? The reason is that the Feynman paradox concerns a physical system that is not 

a stationary charge distribution and the Lemma does not hold. The question for the A-C 

system is than if it is well represented by a stationary charge and current distribution. 

Clearly, the neutron passes by the charged wire and formally, the A-C system is not 
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represented by a stationary distribution. The result that our constrained description gives 

is the same as the Vaidman approach, while it is interesting to consider the unconstrained 

result in relation to the Feynman paradox.  

4.2. Newton’s third law 

The approach taken by Boyer is documented in a series of papers that extend over 

several decades
13,14,27,28

, and argue that the Aharonov-Bohm effects are accompanied by a 

force. This point of view conflicts the generally accepted interpretation of the A-B effect. 

We will limit ourselves to comment on two of the more recent papers in this series. Boyer 

considers a charged particle passing by a solenoid (represented by a line of magnetic 

dipoles) and calculates the Lorentz force on the solenoid
13

. This force is the same as that 

given in section 2.2.3 (equation (24)) and Boyer’s work motivated that part of our 

calculation. Boyer continues his argument by invoking Newton’s third law and noticing 

that the back-acting force on the electron causes a displacement that through a semi-

classical argument gives exactly the Aharonov-Bohm phase shift. It is remarkable that 

such an argument can be given that provides exactly the necessary force, in view of the 

observation that an unperturbed solenoid has no external electromagnetic fields. The 

argument hinges on three assumptions. First the force on the solenoid is the total force 

that acts on the solenoid, second Newton’s third law holds, and third the semi-classical 

approximation is valid.  Our work shows that the total force on the solenoid depends on 

the presence or absence of constraints. Additionally, Feynman’s paradox illustrates that 

Newton’s third law is not generally valid. (Boyer argues in another paper in 2002 that the 

electromagnetic momentum is conserved during the interaction
13

). Finally it is interesting 

to note that Boyer’s force is dispersionless, implying that the group velocity of a 
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wavepacket in a semiclassical approximation does not change. All these issues are 

interesting in their own right, and warrant further discussion. Additional forces in this 

context have been predicted to exist by Anandan
29,30

. 

In a paper that comments on our experimental demonstration of the absence of 

force for a charged particle passing a solenoid
14

, Boyer argues that charged particles in a 

solenoid that mutually interact and experience friction can provide a back-action on the 

passing particle. This line of reasoning considers a model that is more complex than the 

ones considered previously and in this dissertation, because mutual interaction between 

the constituents of magnetic dipoles are excluded.  

4.3. Hamiltonian approach 

An analysis based on a Hamiltonian approach by Werner and Klein
6
 has been 

done to determine the force on the neutron in the Aharonov-Casher system (figure 3.1d). 

The Hamiltonian used was 

 
2 1

2

p
H E p

m mc
    .    (50)

 

A direct application of Hamilton’s equations of motion gives 

H
r

p





     (51) 

H
p

r


 


     (52) 

  
1

mr v E
c
    .       (53)

 

In the Aharonov-Casher geometry the electric field has no spatial dependence in the 

direction of the magnetic moment, therefore, the force on the neutron is zero, by the 

above prescription. Note that this approach does not describe a closed system as it is a 
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single particle Hamiltonian. Because this approach is that of an open system it does not 

address conservation of momentum. Thus, the criterium that total momentum must be 

conserved cannot be applied to this approach as a test of the validity of the Hamiltonian. 

Furthermore, this Hamiltonian is equivalent to our Lagrangian (equation (40)) for a 

stationary wire. Using the vector identity    a b c a b c     the equivalence is found: 

 2 21 1 1

2 2
L mv d E mv v E

c
          (54) 

1L
p mv E

v c



   


    (55) 

 
2 21 1 1

2 2

p
H p v L p E p E

m c m mc
 

 
          

 
.  (56)

 

This Hamiltonian can thus be classified as describing a constrained system as described 

in section 2.3.1.  

4.4. Aharonov and Rohrlich  

In their 2005 book, “Quantum Paradoxes:  Quantum Theory for the Perplexed”, 

Aharonov and Rohrlich discuss various momentum terms that can make up for the 

changing momentum in the electromagnetic field and ultimately conserve momentum. 

The missing momentum is stated to be the relativistic momentum of the charged particles 

which give rise to the magnetic flux.   The contribution of the Lorentz force to the 

momentum conservation is ignored. The statement that “We move it [passing particle] as 

slowly as we like, so that the charge scarcely induces a magnetic field…” does not 

address this issue. Although the magnetic field and thus the Lorentz force scale linearly 

with velocity, the momentum exchange is independent of velocity as the interaction time 

scale inversely with velocity. In this chapter it is shown that (in the unconstrained 
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description) the change of momentum due to the Lorentz force is identical in magnitude 

to the change of momentum in the electromagnetic field.  

5. Conclusion 

The relation between the Feynman paradox and the AB-effects is that an 

unconstrained treatment of the AB-effects share with the Feynman paradox the property 

that momentum is stored in the electromagnetic field during the interaction, and 

consequently that the forces on the two interacting mechanical parts of the system are not 

balanced. This implies that one part of the system experiences a force, which is a 

prediction that is in stark contrast with the usual understanding of AB-effects. In the 

constrained description the AB-effects are very different than the Feynman paradox. In 

this description, the usual prediction is made that both mechanical parts do not experience 

a force. Both of these scenarios are limited to the case that constituents that make up the 

magnetic moment are assumed not to interact. Given the limited theoretical scope of the 

theoretical claims, experiments are important. However, as we will indicate now, there 

are very few options within reach of present technology. 

An experiment to test for the force on an electron in the Aharonov-Bohm system 

(figure 3.1c) has been conducted by our group (see Caprez et al.). In that experiment a 

time delay was measured for an electron passing between two solenoids
15

. The time 

required for the electron to pass from source to detector was found to be independent of 

the magnetic flux contained in the solenoids and thus it appears that the Aharonov-Bohm 

phase shift cannot be explained by a classical force on the electron. However, it has been 

pointed out that in this case a macroscopic solenoid was used and the qualitative 

characteristics of the system, such as whether or not there is a measurable delay, 
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potentially depend on the size of the solenoid
14

. For larger solenoids the interaction time 

is greater than the plasma oscillation period. This is the case for all experimental tests of 

the A-B effect so far, and as such the force experiment and phase experiments are 

performed in the same regime. The issue considered in this chapter is a different one. The 

above experiment does not discriminate between the unconstrained and constrained 

description. 

 For the Aharonov-Bohm system, an experiment to detect the predicted force on 

the solenoid (as predicted by the unconstrained model) appears impossible given the 

necessity to detect the force of a single electron on a macroscopic object.  

Although experiments have been done to show the Aharonov-Casher phase shift, 

no experiments have tested for the presence of a force on the neutron. However, for the 

molecule Thallium Fluoride the phase shift was shown to be independent of velocity
31

 

which is a feature associated with the dispersionless nature of the A-B effect and provides 

a link to the absence of force
32-34

. The interaction between the applied electric field and 

the magnetic moment of the fluoride nucleus was responsible for the phase shift. Given 

the small size of a nucleus, or even an atom or molecule that may be used in such type of 

experiments, the circulation time for constituent charges that produce the magnetic 

moment is much less than the interaction time. It is likely then that the system must be 

modeled by constrained motion. Consequently, our present analysis would predict that 

there is, in fact, no force acting on the interfering particle, consistent with the Thallium 

Fluoride experiment.  

Similarly, due to the small size of the neutron, the Mott-Schwinger effect for 

neutron scattering of nuclei is not a physical system that can provide an interesting test 
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between the constrained and unconstrained description. On the other hand if the magnetic 

moment is present in a physical system that has a size between that of a neutron and a 

solenoid, the unconstrained description may be appropriate while still allowing an 

observation of the motion of the magnetic moment. Even, this scenario is plagued with an 

additional difficulty. For a finite system of charge and current distribution the electric and 

magnetic fields must approach zero at large distances from the charges and currents. 

Consider a charge and current loop that scatter from each other. When the charge and 

current loop are far apart the electromagnetic field momentum tends to zero. The total 

mechanical momentum must thus be identical for the final and initial state and Newton’s 

third law holds. These statements imply that there is no difference between the 

constrained and unconstrained approach as far as momentum exchange is concerned. This 

statement may appear to be at odds with our above argumentation, but is not. The result 

of the imbalance of forces, and the violation of Newton’s third law during the interaction 

at close proximity of the two interacting parts of the system, is a displacement for the 

final states, not a momentum exchange. This is not a general property, but can be shown 

in the impulse approximation for our unconstrained (equation (20)) and constrained force 

(equation (35)) by integrating the force over time for a straight path. Effects that depend 

on the differential cross section, such as the Sherman function for the Mott-Schwinger 

effect, are thus not expected to depend on the effective constraint in such a classical 

treatment.  

Although, testing of unconstrained forces for A-B systems appears to be out of 

reach, a test of the Feynman paradox may be possible with current technology. Such a 

test would provide the first demonstration of the violation of Newton’s third law (as it 
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applies to the instantaneous conservation of mechanical momentum). Consider two 

electrons that are cross fired at each other. The capability to generate femtosecond 

electron pulses from nanoscale sources
35-37

 gives control over the initial conditions of the 

trajectories that these electrons will follow. For electrons of about 1 keV energy the point 

of closest approach is on the order of microns. The capability to influence the motion of 

electrons in flight with a focused, pulsed laser may provide a means to make a “movie” 

of the electrons’ trajectory. If momentum is stored in the electromagnetic field as 

Feynman states then controlling and monitoring both electron trajectories should reveal 

this behavior. Even with current technology, this is a major experimental challenge and 

perhaps explains why the Feynman paradox has never been demonstrated. 
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Chapter 4 – Do Dispersionless Forces Exist? 

1. Introduction 

The Aharonov-Bohm effect is well known because it is thought to establish that 

the vector potential can cause measurable effects even when the fields (and thus the 

forces) are zero. It thus elevates the relevance of the vector potential from being a helpful 

mathematical construct to that of having direct physical reality associated with it. To 

highlight this it is interesting to combine two experimental results. The first is the 

demonstration of the Aharonov-Bohm effect. Tonomura’s experiment
2
 is not the first to 

do this, but certainly one of the most elegant ones. The second is the demonstration that 

forces are absent.
3
  

An opposing view on the Aharonov-Bohm effect was provided in the previous 

decade. A force was proposed to explain the Aharonov-Bohm effect.
4
 The x-component 

of the Lorentz force on the solenoid with cross-sectional area A and magnetic field 0B is 

given by the expression 

 
0 0

2
2 2

4
,

4

x e e
sol

e e

B Av x y
F

c x y



                                                     (1) 

where 0v is the electron velocity along the x-direction and ex  and ey are the xy-

coordinates of the charge relative to the solenoid’s z-axis. The supposed back-action 

force of the solenoid on the electron provided by Newton’s third law can be integrated to 

yield a relative displacement between electrons passing on opposite sides of the solenoid 

of 0 0 .x eB A mv   In a semi-classical approximation .k x    This phase turns out  to 

be equal to the well-known Aharonov-Bohm phase shift 0 .eB A   It should be 

emphasized that the fact that such a force can be formulated at all, is very surprising in 
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view of the generally accepted interpretation of the effect. The proposed force was 

predicted to give rise to a time delay for electrons passing by a solenoid. This time delay 

was shown experimentally not to occur in the second experiment mentioned above and 

thus it may appear that this discussion is over. It is the purpose of this chapter to revisit 

that apparent conclusion.   

2. Statement of the problem 

To start the discussion it may be useful to delineate between the classical, semi-

classical and quantum-mechanical parts of the predictions. In the classical description it 

is noted that the force (1) has components along the direction of motion and thus may 

cause a time delay as compared to the free electron’s motion.  The delay can be estimated 

by making the impulse approximation. This means that we assume that the change in 

velocity is small compared to the electron’s initial velocity 0v  and compute the 

displacement .x  The semi-classical part consists of guessing what the associated phase 

shift is. A reasonable guess would be the use the phase factor ikxe  associated with a plane 

wave and assume that this factor changes by .ik xe   The quantum mechanical part is most 

readily attained by using the path integral approach and the phase shift accumulated over 

the electron’s path as it passes by a solenoid is calculated as  

.AB
C

e e
A dl B dS              (2)  

At this point it may appear convenient to simply rely on the fact that quantum 

mechanics is a superior theory, encompasses classical mechanics, and ignore the classical 

and semi-classical arguments. Such a convenient argument would neither do justice to the 
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correspondence principle nor to the main reason why the A-B effect is famous as pointed 

out above. The question remains how to deal with classical forces in a quantum 

mechanical context. 

2.1.  Classical-Quantum deflection in a magnetic field  

To answer this question it is perhaps useful to consider the simple deflection of an 

electron passing through a homogeneous magnetic field. Classical mechanics provides an 

answer that agrees with observation. Consider an electron entering a region with a 

homogeneous magnetic field (Figure 4.1). The electron’s velocity v is at right angle with 

the magnetic field. The classical deflection angle   is given by 

/ .v v qvB t mv qBL mv       

 

Figure 4.1 

Deflection of Electrons in a Magnetic Field 

Left: Electrons deflect by an angle θ after travelling through a region of space with a homogeneous 

magnetic field B and experiencing a Lorentz force F. Right: An electron wave accumulates a 

spatially dependent phase shift after travelling through a region of space with a spatially dependent 

vector potential. This deflects the electron wave by an angle θ. 

Associated with the electron is a quantum mechanical wave. For a plane wave in 

free space the wave planes are at right angles to the direction of motion of the electron. If 



80 

 

the planes of the wave tilt then the electron is deflected. Consider planes of constant 

phase of the wave while propagating through the homogeneous magnetic field.  

The phase difference   accumulated over the width d of a section of a plane 

wave, determines the tilt of the wavefront. The Lagrangian is given by 

21 2 .eL m x qA x    The phase shift is 1 1Ldt qAdy qAL      for a vector 

potential that corresponds to a homogeneous magnetic field 
y z z zA B dx B x B d     in the 

z-direction. A wavefront section with a width d tilts by an angle   / 2 /dB d    , 

where dB   is the electron’s de Broglie wavelength. This can be rewritten as 

       / / 2 / / / 2 /dB dB z zL d d qB dL d qB L mv           and it is clear that 

the quantum and classical deflection are identical.  In other words, the quantum-classical 

correspondence demands the presence of the phase shift. 

 

Figure 4.2 

Magnetic Field and Vector Potential of a Solenoid 

An example of a current carrying solenoid with magnetic field lines (blue) and equi-(vector) potential 

lines (green) (see also cover article of reference
1
 . 
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The phase shift can be generalized for an arbitrary path to 1 qA dl   . For a 

closed path this is the A-B phase shift 1
C

qA dl   . Thus it can be said that the 

deflection of a charged particle in a magnetic field is caused by the A-B phase shift.  

This should not be confused with the A-B effect which occurs when paths are considered 

through regions of space where the magnetic field is zero as would be the case when the 

solenoid in figure 4.2 would be extended in length to infinity. Returning to the main 

question, one should note that although the identical classical and quantum prediction 

may be pleasing this should not be mistaken for the classical quantum correspondence.  

2.2.  Classical-Quantum correspondence  

The correspondence principle demands that there is some limiting procedure by 

which one can recover from the quantum mechanical description the classical description. 

It is traditional to associate large quantum numbers or physically large systems with such 

a limit.
5
  The textbook observation that Gaussian wave packets for particles of 

macroscopic mass (associated with large systems) have immeasurable small position and 

velocity spread is correct but does not represent an appropriate classical limit, after all, a 

wave packet for a large mass particle could still interfere with itself (in an interferometer 

type arrangement) and exhibit quantum mechanical behavior. Thus one would not expect 

a large mass to present a truly appropriate classical limit. Instead the capability to 

interfere must be removed. But what is the detailed description of this coherence 

removal? One could add an overall random phase factor to the wave packet, or one could 

instead add a random phase factor to each frequency component. Both modifications 

approach the classical limit in that the particle loses the capability to interfere with itself, 

but more than one choice is possible. One could attempt to describe the detailed 
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underlying interaction with the environment. For example, large molecules lose their 

capability to interfere with themselves by interaction with a thermal background 

providing evidence for decoherence theory as a means to connect the quantum and 

classical world. This has been demonstrated in a beautiful controlled coherence 

experiment by the Arndt group in Vienna.
6
 In this experiment it is thought that thermal 

excitations of internal molecular quantum states and thermal emission make the arms of 

the interferometer (in principle) distinguishable and thus taking a partial trace over the 

environment removes coherence. In the present context of the discussion of what types of 

forces exist, it is the external quantum states that are relevant. In the next section the 

problem of coherence is defined mathematically at a basic level. 

3. Complete Coherence and Incoherence 

Suppose we would like to experimentally test that quantum mechanics correctly 

describes a free particle. A short pulse could be made and its propagation studied. It is 

sufficient to investigate the propagation of two frequency components. Consider two 

plane waves of equal amplitude propagating along the positive x-axis with velocities 

v v  and .v v  The wavefunction can be written as the sum of the two frequency 

components, 

     
1 2

, , ,E Ex t x t x t          

       
2 2

2 2

1 1
2 2

2 2

m v v m v v m v v m v v
i x t i x t

h h h h

e e

         
    
   
        (3) 

This wavefunction can be rewritten as the product of the frequency carrier and the 

envelope,  
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 

   
   

2

2 2
2

2 2
(( ) (( )1

, 2 ,
2

m v m v
m v m vi x t i x vt O v i x vt O vh h h hx t e e e

 
 



 
                 

     
 

  
 
 

 (4) 

where the former has a phase velocity of v/2 and the latter travels at the group velocity of 

v, but only when the two components are coherently added. The probability distribution 

   , ,x t x t   follows the group velocity according to ,x vt  in “correspondence” 

with the classical prediction. Such an argument can be generalized to a wave packet. 

If an interaction causes a phase shift that affects each frequency (or equivalently velocity) 

component in the same way;       
1 2

, , , ,i i

E Ex t x t e x t e      then (3) and (4) are 

only modified by an overall phase factor that does not change the probability distribution. 

Thus dispersionless interactions do not cause a deviation from the classical path; hence 

we can state that a dispersionless interaction is associated with the absence of force.    

If we assume that an underlying physical decoherence process removes all 

coherence then we can construct a density matrix and add  
1

,E x t   and  
2

,E x t  

completely incoherently in an attempt to take a classical limit: 

       
1 1 2 2

, , , , .E E E Ex t x t x t x t           (5) 

Rewriting the density matrix as a product of the carrier wave and its envelope is 

now not possible. Instead we can calculate how the expectation value of the position 

propagates in time. The result is ill-defined because the expectation value for plane waves 

is ill-defined. This very basic simple step failed, and serves to illustrate that taking 

classical limits may be hard with and even without forces. Perhaps, we should not care 

about the correspondence principle and only demand that our best theory matches our 

experimental outcomes, and not that it should first match a presumably worse theory. So, 
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let’s next attempt to circumvent the classical limit and simply calculate the velocity 

dependence of the phase shift in the absence of force and when the force given by (1) is 

present.  

4. Velocity dependent Phase shift with and without Forces  

Using the path integral formulation of quantum mechanics, the phase shift is 

given by 

       21 1 (1 2 ) ,eLdt m x qA x dt                                            (6) 

where the integral is to be taken along a classical path that starts at  ,A Ax t  and ends at 

 ,B Bx t . For a particle that travels along a classical path that is free from any force, this 

expression can be simplified to 

 
1 (1 2 ) 1 ,

B A

free e

dB

x x
m x qA dx qA dx







                               (7) 

where the first term is similar to what is expected from the Huygens’ principle for matter 

waves
7
 except for a missing factor of two. It is straightforward to show that the factor of 

two can be recovered by considering only phase differences between paths that start and 

stop at the same time.  The second term yields a phase that is velocity independent, and is 

thus dispersionless as expected.  

For a particle that travels along a classical path that experiences a force given by 

(1), this expression has to be explicitly calculated. For the present discussion it will 

suffice to make a very crude approximation. Noting that the force is anti-symmetric under 

parity in x, a simple piecewise constant force (Figure 4.3) is considered that modifies the 

velocity to   v v  when 0,x   and v v  when  0.x   
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Figure 4.3 

Lorentz Force on a Solenoid Due to a Passing Electron 

The x-dependence of the force given by equation (1) is given (dashed line). A crude estimate (solid 

line) is used to estimate the phase dependence on velocity. 

Further, consider a particle that starts at location / 2Ax L   and ends at 

/ 2.Bx L  In this case the phase shift can be approximated by 

       0 0
1

A B

force

x m v v x m v v
qA dx

h h

 


   
                                                                                                                                    

 
1 ,

B A

dB

x x
qA dx






                    (8) 

which is identical to the phase shift for the free particle. The reason that the result with 

force is not the same as the semi-classical phase ik xe   is caused by the demand that the 

path has the same start and stop time as in free particle case. A key feature of the force is 

that it is linear in the velocity itself, which results in a phase that is velocity independent. 

In other words it appears possible to construct forces that are dispersionless.  

5. Approximately dispersionless  

If the magnitude of the force is large in the sense that the change in velocity v  is 

not small compared to the initial velocity v , then the demand that the start and end time 

should not change leads to dispersion. In specific, for the conditions 
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   1 1 2 2 B Av v t v v t x x      and 
1 2 ,B At t t t    the decrease in velocity for the region 

0x  does not equal the increase in velocity in the region 0.x   The result is that the 

cancelation of the v  terms in (8) is removed, which results in a velocity dependent 

phase shift in (8). This leads to a time delay and it may be possible to falsify such a 

prediction experimentally with a refined version of the experiment reported in Ref. 3. 

6. Summary and Conclusion  

To identify if there is a force, one can measure a time delay of a pulse or a 

deflection of a beam of particles. This experimental definition appears to be very clear. 

But can we conclude that if there is no deflection or delay that no forces acted? This is 

not obvious. Nevertheless, that is the operational definition for the claim that the 

Aharonov-Bohm effect occurs in the absence of any force. A counter argument based on 

the non-zero force (1) is hard to rule out. In our first attempt to do so (section 3) by 

demanding that the correspondence principle should hold, we find that it is hard to find 

an appropriate classical limit. In our second attempt to rule out this force (section 4) it 

turns out to be dispersionless. However, dispersionless interaction is considered to be a 

defining property of the A-B effect. This leads to the question raised in the title: “Do 

dispersionless forces exist?” A potential way to resolve this issue presents itself when one 

realizes that the force is only dispersionless for small changes in velocity. A re-analysis 

of the experimental data for small delays may rule out the approximately dispersionless 

forces. A complicating factor for large changes in velocity is the issue to what extent 

decoherence and “the classical limit” can be avoided for such conditions. 
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Chapter 5 – Transverse Quantum Stern-Gerlach Magnets for 

Electrons 

1. Introduction 

Since Stern and Gerlach were able to separate the spin states of an unpolarized 

beam of silver atoms
1
, one may ask, “Can the same experiment be done with electrons?” 

In the 1930 Solvay Conference, Bohr and Pauli rejected four proposals regarding the 

separation of spin states for free electrons. Pauli’s claim was that “it is impossible to 

observe the spin of the electron, separated fully from its orbital momentum, by means of 

experiments based on the concept of classical particle trajectories”
2,3

. An argument 

against the splitting of a free electron beam with a Stern-Gerlach magnet is that Lorentz 

forces will blur the effect of the spin-splitting forces.  

The implications of the Bohr and Pauli statement have found their way into many 

contemporary textbooks
4-9

 and have been interpreted to imply that the construction of an 

electron Stern-Gerlach magnet is impossible. In this chapter I do not address Bohr and 

Pauli’s dictum, but instead explore the possibility of an electron Stern-Gerlach magnet by 

considering quantum trajectories. That is, take advantage of the quantum mechanical 

nature of the electron to force it into a motional quantum state in which spin splitting is 

possible. Such an idea has already been put forth for the longitudinal Stern-Gerlach 

magnet, for which the spin-splitting is in the direction of motion
10

.  For the longitudinal 

case the motion is appropriately described by Landau states. These purely quantum 

mechanical motional states can be used to sidestep the issue of blurring due to the 

magnetic forces
10

. However, the question whether a quantum mechanical transverse 

Stern-Gerlach magnet exists for electrons has to our knowledge never been addressed. 
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For the transverse case the spin splitting is at normal angles to the direction of 

propagation of the electron, just as it is for the usual silver atom case. A transverse 

electron Stern-Gerlach magnet may provide an alternative technique to the production of 

polarized electron beams as compared to the usual optically pumped Ga-As sources
11

. 

The existence of a tranverse Stern-Gerlach magnet (in addition to the earlier proposed 

longitudinal Stern-Gerlach magnet) addresses another of the four proposals rejected by 

Bohr and Pauli. This sheds insight on finding a currently unknown dictum such as: “It is 

possible to observe the spin of the electron, separated fully from its orbital momentum, 

by means of experiments based on the concept of quantum particle trajectories.” 

In this chapter our main focus is on the fundamental question if a transverse 

Stern-Gerlach magnet for electrons is possible in principle. To this end quantum 

mechanical motion is considered. The hallmark for quantum mechanical interference is 

that a final coherent state will be reached by at least two indistinguishable paths.  The 

general idea is that along those paths a different spin dependent phase is applied to the 

electrons in each path. Upon recombination, a spin dependent interference pattern will 

form. The techniques proposed for beam separation are diffraction with a magnetic phase 

grating (section 2) and interferometry with controlled Aharonov-Bohm and magnetic 

phases (section 3). 

2. Stern-Gerlach Diffraction 

2.1. Magnetic Phase Grating 

In Stern and Gerlach’s original experiment a beam of Silver atoms was passed 

through a magnetic field gradient (Figure 5.1a).  
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Figure 5.1 

Stern-Gerlach Systems 

a) In the original Stern-Gerlach experimental setup
1
 a beam of silver atoms was split transversally to 

its direction of motion by an inhomogeneous magnetic field. b) The longitudinal Stern-Gerlach 

magnet, originally conceived by Brillouin
12

 and criticized by Pauli
2,3

, was reinstated by Batelaan and 

Gay
10,13

. Electrons passing through a current carrying loop obtain an additional spin dependent 

a) 

b) 

c) 
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phase due to the interaction energy of the magnetic moment of the electron and the magnetic field 

applied by the loop. Spin forward/backward electrons are delayed/advanced in an arrangement that 

is a longitudinal Stern-Gerlach magnet (i.e. the splitting is along the direction of motion). c) A 

Quantum mechanical transverse Stern-Gerlach magnet for electrons is proposed in this chapter. 

Current-carrying loops are placed in front of the slits of a grating in order to impart a phase on 

passing electrons which depends on the spin of the electrons as well as which slit they pass through. 

This causes the diffraction peaks for spin forward to be shifted oppositely to spin backward peaks, 

transverse to the direction of motion. 

The magnetic moments   of the atoms were directed transverse to the electron velocity 

v  and (anti-)parallel to the magnetic field B . The resulting classical motion of the atoms 

is governed by the interaction between the quantized spin and magnetic field. The 

outcome is a beam that has been fully separated according to spin state. 

For electrons the original Stern-Gerlach arrangement would not work due to 

strong Lorentz forces. Brillouin proposed to use a longitudinal field (Figure 5.1b) so that 

Lorentz forces could be neglected
12

. Pauli noted that although the spin states will be 

pushed apart by the inhomogeneous field of the Stern-Gerlach magnet, they will be 

blurred by a Lorentz force as a result of the gradient in the magnetic field orthogonal to 

the gradient which is necessary for the splitting of the spins in the first place. The 

presence of the orthogonal field gradient is a consequence of Maxwell’s equation that 

dictates that the divergence of the magnetic field be zero. Batelaan et al.
13

 found a 

mistake in Pauli’s proof, but an analysis based on classical trajectories (with Landau state 

initial conditions) showed that the effect of Lorentz forces and spin forces were at best of 

the same strength, in keeping with the dictum of Bohr and Pauli. However, a fully 

quantum mechanical analysis
10

, found that complete spin splitting is indeed possible due 
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to quantization of orbital motion of Landau states. This scheme works when the width of 

the diffraction limited electron beam is matched to the width of the lowest Landau state.  

The new physical arrangement that discussed in this section (Figure 5.1c), is 

electrons passing through a grating where the applied magnetic field for each grating slit 

can be controlled separately. The quantization axis is chosen along the direction of 

motion. The electron velocity is parallel to the applied magnetic fields to avoid Lorentz 

forces, as in Brillouin’s case. The motion must be treated quantum mechanically given 

that diffraction is a quantum phenomenon.  

Currents in each loop are chosen in such a way that the magnetic field increases 

from one loop to the next in a stepwise manner across the grating (Figure 5.1c). The 

magnetic field created by each loop induces a phase due to the B


   interaction energy 

between the magnetic moment of the electron  and the applied field B . This results in a 

phase shift for electrons that also increases in a stepwise manner. The phase shift 

difference for adjacent loops is chosen to be constant. The induced phase shifts for 

forward and backward spins are of opposite sign (Figure 5.2). 

Diffraction has the following general features. If the phaseshift in each slit is 

spatially dependent and identical then the envelope is determined by that spatial 

dependence, while the individual diffraction peaks’ shape and position is unaffected. If 

the phaseshift in each slit is spatially uniform but varies from slit to slit the diffraction 

envelope is unaffected but the diffraction peaks shift, transverse to the direction of 

motion. The latter applies to the described physical system, which I refer to as a 

“magnetic phase grating.”   
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According to Feynman’s path integral formalism of quantum mechanics
14

, the 

phase accumulated by an electron as it propagates along a path is given by the time 

integral of the Lagrangian
5
 divided by Planck’s constant;  

21
.

2

p
B qv A dt

m
 

 
     

 
     (1) 

The phase shift due to 2p  (i.e. the first term in equation 1) equals 2 / dBL 
 
in 

free space, where L is the length of the path and dB  is the deBroglie wavelength of the 

electrons. The phase due to the vector potential A


 (i.e. the third term in equation 1) is 

discussed in detail in section 2.2. 

 

Figure 5.2 

Magnetic Phase Grating 

Electrons pass through current carrying loops just after diffracting from the grating. The loops 

impart a phase which is spatially dependent in a stepwise manner. Each increment on the vertical 

axis is a π/2 phase shift and each mark on the horizontal axis indicates the location of a slit. 

The on-axis magnetic field for a loop of radius R
15

 is 

 

3

0 3
2 2 2

ˆ,
R

B B z

z R





     (2) 



93 

 

where 0B  is the magnitude of the magnetic field at the center of the loop and ẑ  is 

directed along the axis. Performing the path integral over a straight trajectory along the ẑ

-axis gives a phase shift 

   
 

 

3

0

3
2 2 2

1
21 1n

e

B R H x n d

x B x dt dz
v z R



 
 

 

  
 

   




   

 0
1

2
2 ,n

e

B R H x n d

v

   
 

 


    (3) 

where ev is the electron velocity,  is the electron’s magnetic moment, d  is the grating’s 

period,  0, 1, 2,...n    labels the slit, and x  is the coordinate parallel to the grating. The 

“ ” sign in the second equality is due to considering spin up and down along the 

magnetic field direction. The Heaviside function  xH  is used to get an increasing 

stepwise function. The amplitude modulation imposed by the grating to an incident plane 

wave is 

 
1 1 1

,
2 2n

A x H x nd w H x nd w
N

       
            

       
   (4) 

where w  is the slit width and N  the total number of slits. The wave function after 

interaction with the grating is    i x

grating A x e


   , where   and A  are given by 

equations 3 and 4. Using the path integral formulation the final quantum wave function at 

the detection plane is given by
16

  

   ( ) , ,
g ddetect d x x g d grating g gx K x x x dx 






    (5)
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where gx  and dx  are the position at the grating and the detector, respectively, grating is 

the wave function immediately after the grating, and 
g dx xK  is the free space propagator 

 
2

22
exp ,

g dx x d g

dB

i
K x x l






 
   

 
    (6)

 

where dB
 
is the de Broglie wavelength and l  is the distance from the grating to the 

detector. After the wave function is propagated the probability distribution is 

   
2

d detect dP x x . Figure 5.3a, b, and c show diffraction patterns corresponding to 

increasing magnetic field strengths. The velocity of the electrons is chosen to be 10
5
 m/s, 

the period of the grating is 200 nm, the slit width is 15 nm, there are 25 slits each with a 

magnetic coil, and the distance from the grating to the detector is 53 cm. The parameters 

are motivated by experiments
17

 except for the very low electron velocity. For now, 

Lorentz forces are ignored and the magnetic field is assumed to be uniform over the area 

of each slit, to simplify the exposition of the basic idea. 

For zero currents the electrons will simply diffract from the grating (Figure 5.3a). 

When the current is increased, the two spin components each separate into a comb of 

diffraction peaks (Figure 5.3b). For maximum spin separation, the necessary phase jump 

needed between adjacent slits is /2 (Figure 5.3c). The result is a spin dependent 

displacement of the diffraction peaks within the diffraction envelope. The spin forward 

electrons are displaced in an opposite direction as compared to the spin backward 

electrons.  The spin components are completely separated and motivate the nomenclature 

“Quantum Stern-Gerlach Magnet”. 
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Figure 5.3 

Spin Dependent Electron Diffraction Patterns at Varying Magnetic Field Strengths Without Lorentz 

Blurring 

a) 

b) 

c) 
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a) A familiar diffraction pattern is obtained when no magnetic field is applied. b) A diffraction 

pattern with resolvable spin splitting is shown, when the magnetic field increment for adjacent slits is 

1.8T. c) A diffraction pattern is shown when the magnetic field increment is 8.5T which shows 

maximum splitting. The phase shift between neighboring slits is π/2. 

It is interesting to compare the above scenario to a blazed magnetic phase grating 

(for a regular blazed grating see
18

) to the above discussed stepped magnetic phase 

grating. A blazed magnetic phase grating shifts the diffraction envelope in a spin 

dependent manner while leaving the peak position unaffected. The affected envelope is 

representative of the single slit diffraction pattern. Now the Bohr and Pauli argument 

applies directly; for a wide single slit where diffraction is small, the Lorentz force 

broadens the beam and overshadows the spin splitting. For a narrow single slit the 

Lorentz force can be reduced, but diffraction dominates the electron motion. Constructing 

a grating out of many such slits adds diffraction peaks, but as mentioned above, these are 

not affected by spin. Thus, any such blazed grating Stern-Gerlach scheme is doomed to 

fail as either Lorentz forces or diffraction dominate the spin splitting effect, not allowing 

for full separation of the spin states.  

 

2.2. Lorentz blurring and spin flipping 

Given that Lorentz blurring is at the heart of the argument set forth by Bohr and 

Pauli, it is important to include the Lorentz blurring in the calculation. In order to 

determine the effects of the Lorentz force, the phase accumulated along a path is 

computed for an electron passing through the current carrying loop (Figure 5.4a). (Note 

that the path is not assumed to be straight but the classical trajectory obtained from 

solving the equation of motion, as appropriate for the path integral). This phase can be 
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used in the path integral calculation to determine the effect of Lorentz blurring on the 

interference pattern. The phase was calculated as a function of initial position for the 

electrons along the x-axis (Figure 5.4b). The final value of spin phase (due to the B 

term) and Lorentz phase (due to the qv A term) are calculated separately. The equations 

of motion
15

 used for these trajectories are 
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  

where E


 is electric field, g  is the gyromagnetic ratio, and c  is the speed of light.  For 

our purposes 2g , 1 , and 0E


thus reducing the above equations to the 

following: 
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,0zA                           (9) 

which is a valid approximation to second order in the position coordinates near the axis 

of the coil
15

. Figure 5.4b and c are calculated for a 0B  value of 8.5 T (to get a phase shift 

of / 2 for an interaction time of 0.8 ns). For the calculation in figure 5.3 the spin phase 

is assumed to be uniform across each individual slit. This assumption is not used for the 

results in figure 5.4b and c. With initial conditions varying over a span of 15 nm, the spin 

forward and backward phase varies by less than 1%. It is apparent from figure 5.4b that 

the Lorentz phase will have a negligible influence on the spin splitting due to the fact that 

the difference in Lorentz phase accumulated by the two spin states is small compared to 

/2. It does, however, have a parabolic shape. This is of little significance, though, as 

modulation of the shape of the phase in this way only effects the shape of the single slit 

envelope and leaves the position and width of the much narrower diffraction peaks 

unaltered thus in no way affecting the possibility of spin splitting (Figure 5.4c).  
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Figure 5.4 

Lorentz Blurring 

a) An electron entering a slit off-center experiences a Lorentz force and therefore accumulates a 

(Lorentz) phase accordingly. b) The spin phase due to the magnetic interaction term B  , is 

calculated along a path for electrons passing through a current-carrying loop as a function of initial 

position in x. It is approximately uniform. The Lorentz phase shift due to the interaction term Av


 , 

associated with the Lorentz force, is given for both spin states. The Lorentz phase shift difference 

between both spin states, is much smaller than the spin phase difference for all x (note the separate 

scales on the vertical axes). c) Spin splitting with the inclusion of Lorentz blurring, i.e., the spin 

a) 

b) c) 
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dependent parabolic phase shift at each slit due to the Lorentz phase is taken into account in a fully 

quantum mechanical path integral calculation. The envelope of the diffraction pattern is modified, 

while the width and location of the individual diffraction peaks is not. Spin splitting remains in spite 

of the Lorentz force. 

One as of yet unmentioned assumption is the absence of spin flipping. If the 

probability of spin flipping is large then even when the diffraction peaks are maximally 

separated, the peaks are not spin polarized as many of the electrons will have spin 

flipped. To estimate the spin flip probability the final orientation of the spin is calculated. 

Ehrenfest’s theorem yields the time evolution of the quantum mechanical expectation 

value of the magnetic moment of an electron in a uniform magnetic field: 

.
d q

B
dt m


       (10)

 

Therefore, the expectation value of the magnetic moment has the same time dependence 

as the solution to the classical equation of motion (Eq.8). The magnetic moment is 

calculated for a path passing through the current carrying loop. The relative variation of 

the magnetic moment is very small. It can be shown by integration that the final value of 

the z-component only varies about 0.08% over a range of initial positions of 15 nm thus 

illustrating the negligible probability of spin flipping, and justifying the use of equation 

10. 

Another effect that in principle contributes to the phase shift is image charge 

interaction
16,17

. Image charge can affect the electron trajectory as well as time evolution 

of the magnetic moment (see equation 7). Effects on the electron trajectory are the same 

for each slit and as such affect only the envelope, therefore not affecting the spin splitting 

in any way. Also, any spin evolution terms which depend on the electric field are 
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proportional to 1/c
2
 and are therefore very small compared to an already spin evolution in 

the magnetic field.  

While the above arguments demonstrate that the transverse spin splitting of a free 

electron beam is, in principle, possible, it is, by the means described in this chapter, not 

experimentally feasible due to the large magnetic fields and low energy electrons. These 

problems can possibly be addressed in a number of ways. The demand for high magnetic 

fields can be reduced by applying the spin dependent phase modulo 2. In the 

configuration described above the spin dependent phase follows the pattern 0, /2, , 

3/2, 2, 5/2, and so on. If those values are taken modulo 2 the pattern would simply 

repeat the values 0, /2, , 3/2 allowing for lower magnetic fields in many of the coils. 

Second, the length of the region in which the electron has appreciable interaction with the 

magnetic field can be increased. This can be done by replacing the loop by a solenoid. 

Doing so would allow for a combination of lower magnetic fields and higher electron 

energy. The small separation of the slits makes this even with modern nano-fabrication 

technology a very challenging proposition. 

3. Stern-Gerlach Interference 

3.1. Magnetic Phase Interferometer 

Consider the interferometer shown in figure 5.5. In such an interferometer an 

electron beam is split into two beams. Each beam passes through a solenoid. After the 

beams pass through the solenoids they are recombined and interference fringes are 

observed.  
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Figure 5.5 

Magnetic Phase Interferometer 

An electron interferometer with a solenoid around each arm creates a spin dependent phase 

difference between the two arms. The graph indicates the phase accumulated by the electrons as they 

pass through the solenoids. The green and red curves represent spin up and down respectively. It is 

proposed that this arrangement will control the electron polarization of the output, as explained 

below. 

The solenoids are set up to create magnetic fields of equal magnitude but opposite 

direction which are parallel to the direction of motion of the electrons to reduce Lorentz 

forces. When the magnetic field is turned on the fringes corresponding to spin forward 

electrons will shift one way and the fringes corresponding to spin backward electrons will 

shift the other way. Here a solenoid 1 cm long with a radius of 1 mm is considered. A 1 

micron diameter beam of electrons enters the solenoid at 5x10
6
 m/s. Here the following 

vector potential is used 
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.0zA      (11) 

The vector potential for a solenoid with length L was constructed by integrating the 

vector potential in the continuous limit of a series of loops (Eq. 9)
15

. In these equations 

0 is the permeability of free space, K  is the surface current density in the solenoid, and 

R is the radius of the solenoid. The spin dependent phase was integrated along the 

classical curved path (Figure 5.6a) and found to be uniform across the solenoid (Figure 

5.6b). The Lorentz phase was, as before, quadratic in initial position but not dependent on 

spin (Figure 5.6b). These calculations were made for a solenoid with a modest surface 

current density equal to 7100 A/m which gives the spin forward electrons passing 

through the solenoid a phase shift of /2.The probability of spin flipping is low (<

7103  ) in this case as it was in the example of the magnetic phase grating.  
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Figure 5.6 

Lorentz Blurring for a Solenoid 

a) An electron entering the solenoid off-center experiences a Lorentz force and therefore accumulates 

a (Lorentz) phase accordingly. b) The spin phase term is uniform across the solenoid in the region of 

interest, as in the previous case involving the phase grating. The Lorentz phase term is quadratic and 

spin independent, as in the previous case involving the phase grating. 

 

 

 

 

 

 

a) 

b) 
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3.2. Grating Bi-Prism Interferometer 

Consider a wide angle beam splitter consisting of a grating and a bi-prism wire 

such as the one described by Caprez et al.
19

. Figure 5.7 depicts a setup using this beam 

splitter to separate (albeit not fully) spin states interferometrically. 

 

Figure 5.7 

Grating Bi-Prism Interferometer 

An electron beam passes through a grating. The zero order and the two first order diffracted beams 

are shown. The first bi-prism wire blocks the zero order while pushing the two first order beams 

away from each other. The second biprism brings the two first order beams back together. They pass 

through solenoids on their way to the quadrupole lens where the image of the fringes is magnified 

and projected onto the detection plane. Near-field interference patterns for spin-up and spin-down 

states (red and black) are shifted with respect to each other. 

The interferometer shown above consists of a grating, two bi-prisms, two solenoids, an 

electrostatic quadrupole lens, and a spatial detector. The zero diffraction order is blocked 

by the first bi-prism wire. A negative voltage is applied to the first bi-prism to push the 

two first diffraction orders away from each other. This is necessary to create space for the 

solenoids. A positive voltage is applied to the second bi-prism to bring the two beams 
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back together. The two beams pass through solenoids as they approach a quadrupole lens 

which magnifies the interference pattern. By applying a current to the solenoids, a spin 

dependent phase difference is created between the two arms of the interferometer. This 

would result in opposite fringe shifts for spin up as compared to spin down electrons.  

 

 

Figure 5.8 

Near Field Fringes 

a) Interference fringes are calculated with no current in the solenoids. b) Interference fringes are 

calculated with each solenoid carrying a surface current density of 3550 A/m. The arrows show the 

direction that the fringes shift for each spin state as the current is increased. 

a) 

b) 
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Figure 5.8a depicts the interference fringes with no current being applied to the solenoids. 

Figure 5.8b shows a similar fringe pattern but this time with a surface current density of 

3550 A/m, the current required for a /4 magnitude phase shift in each arm. This result is 

obtained from a full path integral simulation including a biprism and two beams 

propagating through finite length solenoids (including Lorentz blurring). This scenario is 

more feasible (than the example of the phase grating) as a large separation between the 

arms of the interferometer allows for larger coils to be inserted. 

3.3. Mach-Zehnder Interferometer 

To achieve full spin splitting, consider a Mach-Zehnder interferometer that 

consists of two sets of unfocused counter propagating laser beams and three bi-prism 

wires (Figure 5.9)
20

 in a similar configuration as the previous example. The electrons 

Bragg scatter from the laser beams as described by Freimund et al.
21

. Two balanced 

electron beams emerge from a perfect Bragg crystal. In between the two arms of the 

interferometer a solenoid is placed perpendicular to the electron beams, which provides 

an Aharonov Bohm phase shift
22

. The purpose of this phase shift is to balance the 

electron intensity of the two interferometer output beams. A solenoid in each 

interferometer arm provides a spin dependent phase shift causing an electron polarization 

of the two outputs. 
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Figure 5.9 

Mach-Zehnder Interferometer 

The interferometer consists of two sets of counter propagating laser beams (horizontal red lines) and 

three bi-prism wires. A solenoid enclosed by the two interferometer arms creates an Aharonov-Bohm 

phase shift to balance the interferometer (see text). Solenoids are placed around each arm to create a 

spin dependent phase shift which polarizes the two outputs of the interferometer. The graph shown is 

the result of a path integral calculation of the count rate in one of the arms as a function of current 

density in the solenoids. The two curves are the count rates of the two spin states. 

As with the grating bi-prism interferometer example (section 3.2) the large separation 

allows for long interaction times thus minimizing the necessary magnetic field as well as 

allowing for higher energy electrons. For this configuration a path integral computation 

yields the probability for spin-forward and spin-backward detection as a function of the 

current in the two solenoids, taking into account Lorentz blurring (Figure 5.9). Complete 

separation of the two spin states in two beams is obtained (Figure 5.9 inset) as one would 

hope to get for a perfect electron Stern-Gerlach magnet.   
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 A quantum optical analysis of this system based on two momentum states and two 

spin states yields the same result. Consider an unpolarized input state with a downward 

component of momentum (Figure 5.10) described by the density operator 

 
1

.
2

initial
   

          (12) 

Where a “ ” or “” inside the bras and kets indicates spin forward or backward while a 

“ ” or “” subscript indicates an upward or downward component of momentum (as 

related to figure 5.10). 

 

 

Figure 5.10 

Interferometer Schematic 

The operational elements of the Mach-Zehnder interferometer are indicated (for a detailed 

description see text). 

The effect of the beamsplitter described by 

 


 i
BS

2

2
 

 ,
2

2


 i
BS

            (13)
 

 is independent of spin. The effect of the mirror described by 



110 

 

              


 iM
 

,


 iM
    (14)

 

is also independent of spin. The AB phase shift and the phase shift given by the coils is 

dependent upon which arm of the interferometer the electrons go through.  The arms are 

labeled I and II to track these phase shifts. The phase shifts given by the coils are chosen 

to be of equal magnitude and opposite sign. In arm I, the phase shift given by the coil and 

the AB phase shift are given by 

 
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Coil iexp  

   
 
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
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and in arm II these phase shifts are given by 
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where the AB phase shift is spin independent. The resulting output density operator is 
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The probability of finding each spin state in each output is 








 
 2

sin
2

1 2 AB
cfinalP


  








 
 2

sin
2

1 2 AB
cfinalP


  








 
 2

cos
2

1 2 AB
cfinalP


  

 21
cos .

22
AB

final cP


   
            (18) 

A non-zero AB-phase shift ( 2/ AB ) together with a non-zero spin dependent phase 

shift ( 4/ c ) is required to obtain complete spin-splitting; 
1

2
P P   , 

0.P P    

4. Conclusion 

The question: “Is it possible to observe the spin of the electron, separated fully 

from its orbital momentum, by means of experiments based on the concept of quantum 

particle trajectories” is addressed. As this applies to Stern-Gerlach “magnets” the answer 

is affirmative. For the longitudinal case this has been analyzed previously
10

, while in this 

chapter a transverse case is analyzed. The arrangement is not optimized for practical 

applications; magnetic Bragg crystals would be interesting to study in this context. 

Nevertheless, the logical argument is made for a scenario, where the physical elements 

have been individually realized. The answer to the above question appears to be: “Yes”. 

For example, spin can by observed, fully separated from its orbital momentum, by energy 
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jumps associated with spin flips, in the lowest quantum motional states (cyclotron and 

magnetron)
23

. Dehmelt has observed such spin flips
23

 for individual electrons, and 

attacked Bohr and Pauli’s dictum
24

 suggesting the above formulated general rule. 
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Chapter 6 – Spin Dependent Two Color K-D Effects 

1. Introduction 

The capability to control electrons with laser light has been demonstrated with the 

higher light intensities that are provided by pulsed lasers
1, 2

. In some of the first 

experiments, continuous electron beams were used so that most electrons were not 

affected by the light
1
. More recently, pulsed electrons have also been affected by pulsed 

laser light
3, 4

. As more variations of pulsed electron sources that are synchronous with 

pulsed lasers are becoming available
5, 6

, proposals have appeared that use such 

technology to control electron motion
7, 8

.  As also table-top relativistic laser intensities 

are becoming more and more accessible, it is timely to consider the weaker interaction of 

electron spin with laser light. Recently, it was predicted that X-ray laser light could be 

used to affect the electron spin of a beam of relativistic free electrons
9
, which is relevant 

to the newest X-ray laser facilities. More generally, electron spin control can provide an 

additional control to ultrafast electron diffraction
10, 11

 and ultrafast electron microscopy
12, 

13
, similar to the non-pulsed version of spin-polarized low energy electron microscopy

14
 

(SPLEEM). For SPLEEM, GaAs polarized electron sources are used. However it is not 

clear what technology will be used for polarization control of femtosecond electron 

beams.  In addition to its technological appeal, spin control may provide (through the 

spin-statistics connection) an opportunity to investigate quantum degeneracy in multi-

electron pulses
15

. In view of these developments, we investigate the influence of visible 

light on the spin of non-relativistic electrons.  

We report on an electron laser configuration for which the spin dependent 

interaction is small, but dominant in the optical to near infrared domain. Specifically, a 
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well collimated electron beam is cross-fired perpendicularly with two counter-

propagating laser beams (figure 6.1) with frequencies ω and 2ω ( 2 / 1c m     ). The 

polarization of the two beams is linear and orthogonal to the electron beam propagation 

axis. For this configuration the regular Kapitza-Dirac effect
16

 is absent due to the choice 

of widely separated frequencies, while the two-color Kapitza-Dirac effect
17

 is absent 

because the electron velocity is chosen perpendicular to the laser polarization. The 

dominant interaction that remains is an interaction that scatters the electron beam by four 

momenta recoils and simultaneously flips the electron spin. The spin-flip probability for 

non-relativistic intensities is small, but within reach of current technology.  

 

 

Figure 6.1  

Two Color K-D Effect with Circular Polarization 

An electron pulse is generated from a field emission tip that is illuminated with a femtosecond laser
5
. 

The electron pulse is collimated (blue beam) and cross fired with two counter propagating laser 

pulses of frequency ω (red) and 2ω (green). Some electrons receive photon recoils of 4 k while 

simultaneously flipping their spin (blue arrows) for appropriate chosen light polarization (see text for 

details). 
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The probability increases for increasing intensity and an extension beyond the scope of 

the present paper to relativistic intensities (for example using the type of analysis used in 

reference
9
) in the same frequency regime appears interesting. 

A spin-dependent scattering could be used as an electron spin analyzer. To 

analyze the spin-polarization of a non-relativistic femtosecond electron pulse no readily 

accessible techniques are available
18

. Techniques for non-pulsed beams include Mott 

scattering
19

, optical polarimetry
20

, Rb spin-filter
21

 and others. The most well-known and 

widely used Mott scattering requires currents exceeding 1 pA
22

. This current is usually 

not available for femtosecond electron pulses, so steady state methods do not easily 

transfer to pulsed scenarios. Relativistic polarized pulse electron bunches in accelarators 

can be analyzed with Compton polarimetry
23

.  However, their spin analyzing power drops 

off sharply with the relativistic gamma-factor. Femtosecond non-relativistic pulsed 

polarized electron sources are under development
24-26

 and it is expected that analysis of 

their polarization will be needed. In general pulsed polarized electron sources are of 

interest for the broad area of spin physics
27

. 

 The question may arise if such an optical control/analysis of electron spin is 

possible at all for non-relativistic electron motion. After all, Pauli pointed out that 

electrons cannot be polarized using ideas based on classical electron trajectories
28-34

, as in 

a Stern-Gerlach device, even when the spin is treated quantum mechanically. This may 

appear to imply that the result obtained in this work could be ruled out based on a general 

principle. An earlier study based on classical mechanics for the physical system studied 

in this paper, indeed revealed no spin interaction
35

. Given that our current analysis is 
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based on perturbative quantum mechanics of the electron motion Pauli’s objection is 

circumvented.  

2. Perturbation Theory 

The non-relativistic interaction Hamiltonian can be obtained by minimal 

substitution and considering the interaction of the electron dipole with the field
36

,  

 
2 2

int
2 2

q q A
H p A A p B

m m
        .                                        (1) 

Here, the coupling of the motional electric dipole moment with the electric field is 

negligible, q and m are the electron charge and mass respectively, p is the momentum, A 

the vector potential, mu the electro’s magnetic moment, and B the magnetic field.  The 

Hamiltonian can couple the states  

, ,z x sn k k m  .                                                           (2) 

The first entry in the definition of state vector of the electron defines the component of 

the electron momentum in the z-direction (i.e. aligned with the laser propagation), the 

second entry sets the electron momentum in the x-direction, and the third entry sets the 

quantum number corresponding to the projection of electron spin along the z-axis. The 

integer n in the first entry is defined in anticipation of photon absorption and emission 

resulting in discrete changes of the electron momentum in terms of multiples of photon 

recoils, zk . The Bragg condition leads to energy and momentum conservation for 

changes of the z-component of the electron momentum from zn k  to , while the x-

component remains unchanged
16

. 
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The 
2 2

2

q A

m
 term in the Hamiltonian is responsible in first order time-dependent 

perturbation theory for the regular K-D effect
16

, the terms 
2 2

2

q A

m
 and 

q
p A

m
  together 

lead in second order perturbation to the two-color K-D effect
17

, while the terms 
2 2

2

q A

m
 

and B  in second order perturbation yield spin dependent scattering that is the main 

focus of our current study.  

Only processes which conserve energy in the laser field are considered in the 

perturbative approach. That this is valid is not obvious and needs to be justified. Below 

we report on a relativistic classical calculation that shows that for our parameters the 

change in the electron velocity along the direction of the laser propagation direction is 

limited to the order of a photon recoil. Our parameters are carefully choice to avoid 

transverse acceleration and thus the weak spin-dependent scattering can become the 

dominant effect. Details of these choices are discussed below. The question whether or 

not an electron can be accelerated by laser fields has been debated for decades. In spite of 

the Lawson-Woodward theorem
37

 it has been shown, that energy gain by laser interaction 

is possible for high energy electrons interacting with a tightly focused laser
38

, and very 

recently even for approximately plane waves
39

. Our parameters do not satisfy the 

Lawson-Woodward criteria as the fields are not infinite in extent, the electron energy is 

not relativistic, and the ponderomotive potential is not negligible. The reason that the 

electron’s velocity in the laser propagation direction change little is that the electron and 

counter propagating laser pulses are timed such that the ponderomotive force from both 
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pulses cancels. Our relativistic simulation does show that the longitudinal velocity can 

change significantly (see below).  

To prevent a potentially dominant spin-independent scattering from 

overwhelming the weaker spin-dependent scattering, the physical parameters need to 

satisfy further criteria.  At a laser intensity of 10
19

 W/m
2
, an electron in a ponderomotive 

potential undergoes acceleration of up to 10
22

m/s
2
. The Larmor radiation rate at this 

acceleration, gives rise to a photon emission probability of 10
-2

 in an interaction time of 

10 ps.  However, these photons are emitted in a large solid angle, give an average recoil 

in the laser propagation direction that is zero, and thus do not overwhelm the spin-

dependent scattering. 

We now continue with the explicit calculation of the spin-dependent perturbation 

term. In order to test whether or not spin-dependent scattering is plausible, perturbation 

theory was used to analyze each term in the interaction Hamiltonian in search of one term 

which would connect an initial spin state with a spin-flipped final state. For the purpose 

of this investigation we began with the vector potential corresponding with two circularly 

polarized laser beams which are counter-propagating along the z-axis, 

       
        

2
†0

2
ˆ ˆ ˆ ˆexp

2 2
L

i kz t i kz t

L

A t
A a e x iy a e x iy

 



   
     

 
       

                        
        

2
2 2†0

2
ˆ ˆ ˆ ˆexp .

2 2

i kz t i kz t

R R

A t
a e x iy a e x iy

 



   
    

 
  (3) 

The choice of using raising and lowering photon number operators is made to facilitate 

the selection of particular processes and is not essential. The calculations done in this 

section could have been done with classical fields to the same effect. The laser 

propagating in the direction of the positive z-axis has frequency   and the laser 
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propagating in the direction of the negative z-axis has frequency 2 . Both beams have 

spin  in the direction of the positive z axis. The magnetic dipole moment operator may 

be written in terms of the Pauli spin operator as 
2 B S





 where B  is the Bohr 

magneton.  The 
q

p A
m

 , 
2 2

2

q A

m
, and B   terms in the interaction Hamiltonian are 

           
2

†0

2
exp

2 2 2
L

i kz t i kz t

L x

qAq t
p A A p a e a e p

m m

 



   
      

 
 

     
    

2
2 2†0
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m
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 
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   
2 22 2 2

3 3† † † †0

2

2
exp

2 8

i kz t i kz t

L L R R L R R L

q Aq A t
a a a a a a e a a e

m m

 



   
       

 
            

   
2 2 2

3 3† † † †0
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 

           
,  (6) 

where  
2

x yS i     and  
2

x yS i     are the electron spin raising and lowering 

operators. The presence of the electron spin raising and lowering operators are a 

consequence of the choice of polarization. These operators can be used to connect initial 

and final states with different spin and therefore justify the choice of polarization in the 

search for spin-flip processes.  

 The first order probability amplitude is 

 int .fi

fi

i
C H t dt






                (7) 
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where int int .fiH f H i  For spin-flip processes it is necessary to consider terms in the 

B   part of the Hamiltonian as those contain the spin raising and lowering operators 

which are necessary to connect initial and final states with different  spin in the matrix 

element. On examination of the B   term it is apparent that such a first order process 

must be either single photon absorption or single photon emission because the terms in 

B   each contain only one photon number operator. Single photon processes are 

impossible because they cannot simultaneously conserve momentum and energy. It is 

therefore necessary to consider second order perturbation theory. 

Using second order perturbation theory, the probability amplitude, Cfi, for 

transition between the initial (i) and final (f) states is found by summing over the 

intermediate state (m) for the 2
nd

 and 3
rd

 terms in the interaction Hamiltonian (Eq. 3,4) 

   int int2

1
t

fm mi

fi

m

C H t H t dt dt



 


       .    (8) 

The matrix elements int

miH  and int

fmH  correspond to transitions from the initial state to the 

intermediate state and from the intermediate state to the final state, respectively. For 

example, let us take 2, ,2 ,N N k    and 22, 1, 2 ,N N k      as initial and final 

states, respectively, where the first quantum number is the photon number for frequency 

 , the second quantum number is the photon number for frequency 2 , the third 

quantum number indicates the transverse momentum of the electron, and the arrow 

indicates the spin state of the electron. The wave function of the electron is a plane wave 

  exp e ei k x t   where ek  and e  are the wave number and frequency of the electron, 
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respectively. The 
 †0
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 term may be used to connect these two states. 
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where 2 ,N N N    mi m i     is the frequency difference between the initial and 

intermediate states, and fm f m     is the frequency difference between the 

intermediate and final states. The probability amplitude for this process may therefore be 

written as 

    
2 3 3 2 2 2

0

22
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exp exp

8 2

t
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fi fm mi

q kA N t t
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  ,  (11) 

where    3 21 2 .N N N N    It is apparent from this example that for the 

Hamiltonian given above there are only particular states that lead to a non-zero 

probability amplitude and identify the possible  processes. Processes in which one of the 

lasers has no net change in photon number or processes in which the net change in photon 

number is identical for both lasers cannot simultaneously conserve momentum and 

energy
9
. Therefore, within the Bragg regime

16
, spin flips are allowed for initial and final 
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electron momentum states with 2 k  and 2 k  using the B   and 
2 2

2

q A

m
 terms. All 

possible amplitudes corresponding to different intermediate states for processes involving 

a 4 k  momentum kick with a spin flip from   to   are added together to determine 

the overall amplitude for the process; 
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 (12) 

The integrals were calculated numerically and the results are shown in column 2 of table 

6.1. Similarly there are two integrals representative of two processes by which the 

electron can receive a spin flip from   to   with no net momentum kick from only one 

of the lasers that must be summed coherently.  

  

Figure 6.2  

Spin Flip Kick and Depolarizer 

a) An example is shown of three photon process by which the electron receives a spin flip and a 

momentum kick by absorbing one 2ω photon and emitting two ω photons. The first process 

shown represents an absorption and emission of a 2ω photon and a 1ω photon, respectively, 

indicating the use of the A
2
 term of the Hamiltonian. The second process shown represents an 

emission of a 1ω photon, indicating the use of the μB term of the Hamiltonian. b)  An example is 

shown of two photon process by which the electron receives a spin flip without an overall 

deflection by emitting and absorbing photons from the same laser. The first process shown 

represents an emission of a photon, indicating the use of the μB term of the Hamiltonian. The 

second process shown represents an absorption of a photon, indicating the use of the pA term of 

the Hamiltonian. 

a) b) 
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Such an event may flip a spin of an electron that already received a momentum kick and 

spin flip, and thus undo the effect we are interested in. The laser considered for this 

calculation was the   frequency laser in the above expression for .A  The results of the 

calculations are shown in column 1 of table 6.1. 

 
 Depolarizer Spin-dependent effect Two-color KD-

effect 

Intensity 18
210 W

m
 

18
210 W

m
 

15
210 W

m
 

Velocity 710 m
s

 
710 m

s
 

710 m
s

 

Wavelength 1064nm  1064nm  1064nm  

Interaction Time 100ps  100ps  100ps  

Probability 0.00576  0.001277  47.424 10  

Proportionality 2 2 2 2P I v    
3 4 2P I    

3 2 6 2P I v    

  215.0912 10  
149.9638 10  

75.1167 10  
 

Table 6.1 

Process Parameters and Probabilities 

The probability of a two photon spin flip, a three photon spin flip (with circularly polarized light), or 

a two color K-D momentum kick (with linearly polarized light) is given as functions of laser intensity, 

electron velocity, laser wavelength, and interaction time. 

Given the numbers in table 6.1 it appears that an interaction in which an electron spin flip 

due to laser interaction is possible but these are only representative of a small a relatively 

small number of potentially relevant scattering events that may take place in the physical 

scenario described above. With only this information we cannot know that the spin 

dependent effect is dominant. It is therefore necessary to compute the spin flip probability 

in a manner which incorporates all possible interactions described by the Hamiltonian 

and conceive of a physical scenario in which a spin flip is dominant. 
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3. Alternative Processes 

In the previous section the focus was on particular perturbative terms. Here a 

more systematic approach is followed in which alternative processes are considered. 

Ignoring specific choices of the physical parameters, in first order perturbation theory 

three matrix elements j j

fiH f H i  are possible (see Eq. 5), where the operators are 

1 2 2 / 2H q A m , 2 /H qp A m  , and 3H B  . At this point we consider as before two 

counter propagating laser pulses that are cross-fired with an electron, and the frequency 

of both fields is given by 1  and 2 . The probability amplitude (Eq.6) is rewritten as 

( )j j j

fi fiC H f  , where the magnitude in decreasing order is given by 
1 2 2

0 / 2H q A m , 

2

0 /H qp A m  , and 
3

0 /H B m  , with 0 0B kA . The value of the amplitude (Eq. 

5) can be approximated (see Appendix) by  

j j

fiC H  .                                                                   (13) 

The amplitude 1j

fiC   is non-zero for 1 2  with an initial and final state choice of k  

and k . This process is the well-known KD-effect
16

, conserves energy and momentum,  

and is a two-photon process. The number of photons in a process can be recognized by 

inspecting the power of the field. From equation (11) the probability of scattering is given 

by 2 2 2

0( / 2 )q A m  in agreement with previous work
2, 16

. 

 Energy and momentum can also be conserved for 
1j

fiC 
 when 1 2  . However, 

when 1 22  , for example, the electron needs to move relativistically at steep angles 

with respect to the laser propagation direction. The amplitudes 2C and 3C involve the 

interaction with one photon, which is kinematically not allowed.  
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 In second order perturbation theory all combinations of two terms of jH  need to 

be considered. The matrix elements ' 'jj j j

fmiH f H m m H i  give rise to a probability 

amplitude  ' ' 'jj j j jj

fmi fmiC H H g  . The value of the amplitude (Eq. 9) can be 

approximated (see Appendix) by 

 
' '

2

jj j j

fmi

k
C H H

mc




  .                                                         (14) 

The term 1, ' 1j j

fmiC   for 1 22  (where 1 comes from one direction and 2 from the other 

(see figure 6.1)) does not conserve energy and momentum, unless the initial and final 

state are identical. It is thus possible that our wanted spin-dependent kick is followed by 

this process. However, this term does not couple spin or momentum and will not dilute 

our process of interest.  

 The second order term 1, ' 2j j

fmiC   for 1 22  is the regular two-color KD-effect
17

. 

From equation (12) the probability of scattering is given by  
2

3 2 3

0 0 2kq A p A m c   in 

agreement with previous work
17

. To suppress this term, p  is chosen perpendicular to A . 

This also implies that , ' 2 0j j

fmiC   . The next term to consider is 1, ' 3j j

fmiC   . That is the term 

of interest of this paper (see the derivation in the previous section). The last second order 

perturbative term, 3, ' 3j j

fmiC   , can only conserve energy and momentum when the 

momentum and spin state is unchanged, and thus will not be observable in a scattering 

experiment. 

 Higher order processes are are worth considering as well despite the fact that it 

seems likely that they will be negligible compared to the spin dependent process of 

interest. For example third order perturbation theory might be expected to result weaker 



127 

 

processes than lower order perturbative processes, however, the combination of three 

strong matrix elements (i.e. matrix elements computed from the 2 2 / 2q A m  term of the 

Hamiltonian) might provide stronger scattering than our spin-dependent scattering term 

that has one strong and one weak matrix element. To consider the effects of all higher 

order processes a numerical integration of the Schrödinger equation was performed. 

4. Numerical integration of Schrödinger’s equation. 

The numerical simulation written by Wayne Cheng-Wei Huang is to verify that 

the perturbation expansion analysis does not introduce incorrect results by limiting which 

processes are considered. The electron scattering to different states of momentum and 

spin are calculated by numerically solving the Pauli equation. Initially, the electron state 

is a plane wave described by  

 | 0 | , ,x zt k k s         (15) 

where zk  and | s  indicate the initial state of the electron by specifying the z component 

of momentum and spin, respectively, and N  is the normalization factor. The electron 

then passes through the two-color light ( , ) ( , ) ( , )R LA z t A z t A z t  , which is composed of 

two light fields coming from opposite directions,  

2( / ) ˆ( , ) 2 cos( ) , L L L

t

L LA z t A e k z t   
 

2( / ) ˆ( , ) 2 cos( ) .R R R

t

R RA z t A e k z t             (16) 

The frequency of one light field is 0L   and the frequency of the other light is  

02R  . The field polarization is described by the unit vector  ̂  in the x-y  plane. 

Because the light field has no spatial dependence in the x- direction, the electron is 

scattered to multiple | zk    states, while the | xk   state stays intact, 
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,

,

| ( ) ( ) | , , ,ni t

n j x z j

n j

nt C t e k k k s
       (17) 

where  
22

/ 2n x z n ek k k m   
 

 , and 0 0 /nk nk n c  . In order to calculate the 

scattering coefficients ,Cn s , we solve for the Pauli equation, 

 
2 2 2

2 2' ( ) ,
2 2 2 2

x e ez
x x x y s x x y y

e e e e e

p q qp q
A p A A I B B

m m m m m
H  

 
          
 

 (18) 

where sI  is a 2 2  identity matrix and i  are the Pauli matrices. The Hamiltonian can be 

decomposed into an unperturbed part, 

2 2

0 ,
2 2

x z
s

e e

p p
H I

m m

 
   
 

    (19) 

and a perturbation part, 

 
2

' 2 2
( ) .

2 2

e e
x x x y s x x y y

e e e

q qq
H A p A A I B B

m m m
 

 
         
 

         (20) 

Given the scattered electron state as shown above, the Pauli equation can be simplified to  

, 2( 1) ,2( 1) ,

'

,

, ( ) ( ) mni t

m i m i n j n

n j

j

d i
C t C e

dt
H t



        (21) 

where mn m n     and 

'

2( 1) ,2( 1) , , | | , ,m i n j x m i x n jH k k s H k k s   
  

 

 
2

2 2
| | | |

2

e x
m x n m x y n

e e

q k q
k A k k A A k

m m
         

  | | | | | | | | .
2

e
m x n i x j m y n i y j

e

q
k B k s s k B k s s

m
           (22) 

When calculating for the matrix element, it is convenient to use the formula, 
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0

, 1| | .
ik

m n m nk e k 

        (23) 

 The above calculations were performed with the initial electron state given by 

02zk k  and | 2s  . The initial electron velocity was 10
7
m/s and the lasers were 

polarized in the y direction. The probability of the spin dependent scattering process as 

computed by the above method with the same process computed by perturbation theory 

are shown in figure 6.3 demonstrating good agreement between the two methods. 

Additionally, the two color K-D effect and as well as the regular K-D effect (for L R 

) are plotted for comparison. 

 

Figure 6.3  

Probability vs. Intensity 

The probability of the spin flip kick scattering process as computed by the above method (SFK(S.E.)) 

with the same process computed by perturbation theory (SFK(P.T.)) are shown demonstrating good 

agreement between the two methods. Additionally, the two color K-D (w-2w(linear)) effect, the 

regular K-D (w-w) effect (for L R  ), and the depolarizer are plotted for comparison. 
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The probability of the spin dependent process of interest is about 0.01 at 10
19

W/m
2
. This 

exceeds the depolarizing process by about an order of magnitude thus making the diluting 

effect of the latter negligible (i.e. of the electrons which undergo the spin flip kick 

process, only approximately 1 in 10
3
 will return to spin up). The implications of a 

comparative analysis of the    and 2   K-D effects with the spin flip momentum 

kick process are discussed in the discussion section of this paper. 

The probability associated with final momentum states having z components of 

0zp n k  for 7n    through 7  are shown in figure 6.4 for spin up and spin down. 

These values were computed for a laser intensity of 10
18

W/m
2
. 

 

Figure 6.4  

Final State Probability Distribution 

The probability associated with final momentum states having z components of 0zp n k  for 

7n    through 7  are shown for spin up and spin down. 

At this intensity it is clear that the spin flip kick process of interest is dominant over all 

non-trivial processes. Here there is no worry of accidentally excluding some other 
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potentially larger process because the direct integration of the Schrödinger equation 

implies the inclusion of all orders. According to this computation, at 10
18

W/m
2
 the 

probability of the spin flip kick is a little more than 10
-6

, confirming again the 

perturbative calculation shown in figure 6.3. One possible concern is the validity of the 

assumption that the motion induced within the laser field is non-relativistic. This is 

addressed in the next section. 

5. Relativistic Classical Simulation 

In order to assess if some of the assumptions made are valid relativistic classical 

electron trajectories were computed by Professor Bradley Shadwick. The particular 

assumptions are: i) the electrons do not reflect from the ponderomotive barrier presented 

to the electron by the laser light, ii) the electrons do not reach  relativistic factors   that 

strongly exceed 1, and iii) the electron are not deflected transversally by much more than 

the deflection produced by the spin-dependent scattering (i.e., four photon recoils). It is 

important to validate these assumptions in order to give credence to the calculations made 

thus far. Predictions that have been made in the previous sections were based on non-

relativistic quantum mechanics. This requires sufficiently low velocity electrons 

throughout the interaction with the laser field. Additionally scattering from the 

ponderomotive potential will result in broadening of the diffraction peaks. If the 

maximum deflection due to ponderomotive scattering exceeds that of the spin dependent 

scattering, the peak corresponding to the effect of interest will be resolved. Finally, if the 

electron is reflected back from whence it came, it cannot pass through the laser and arrive 

at the detector. 
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Figure 6.5  

Relativistic Classical Trajectories 

 Shown here is the time dependence of the position of the electron a) k0x, b) k0y, c) k0z; 

momentum of the electron e) px/mc, f) py/mc, g) pz/mc; and d) the relativistic factor -1. Each is 

shown for different initial positions. 
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The relativistic equations of motion are solved numerically for a single electron 

traversing counter-propagating laser pulses. The electron momentum and position evolve 

according to  

  ,
dp

q E v B
dt

        (24) 

,
dr

v
dt

       (25) 

where q and m are, respectively, the charge and mass of the electron, p mv , 

2 2 2 21 p m c   , and the electric and magnetic fields are evaluated at the location of the 

electron. The laser pulses, taken to be described by the lowest order paraxial Gaussian 

mode
40

, are polarized in the y-direction, propagate in the z-direction and have a 100μm 

spot size at the focus. The pulse propagating in the positive z-direction has frequency 0  

corresponding to a wavelength of 1μm with a peak value of the vector potential given by 

2 0.03qA mc    
0

19 21.24 10I W m    while the pulse propagating in the negative z-

direction has frequency 02  with peak value of the vector potential given by 

0.02qA mc    
0

19 2

2 2.20 10I W m   . For both laser pulses, the vector potential has 

the Gaussian temporal profile  
2 2exp z ct   

 
 with 10ps  . The laser pulses are 

initialized such that they reach the focus at 0z   at 0 4000t  . The electron is initially 

propagating in the positive x-direction with a velocity 0 30v c . The sensitivity of the 

deflection to initial conditions can be seen by examining trajectories over a set of initial 

conditions. Initially, we take y = 0 and (x, z) from the set of nine pairs 

   0 0 0, , ,0,X x X X x z z     , where 0 0 04000k X v c , 0 100k x  , and 
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0 4k z   . The value for 0X  is chosen such that, in the absence of an interaction with 

the laser field, the electron would arrive at the origin at the same instant that the laser 

pulses reach focus and have maximal overlap. The value of x  is chosen to be 

comparable the laser spot size, and z  is chosen comparable to the laser wavelength. All 

computations are performed in dimensionless variables using 0  and 0 0k c  to set the 

temporal and spatial scales while mc is used for the momentum scale. 

 The top three panels in the left (right) column of figure 6.5 indicate the electron 

position (momentum) as is propagates through the laser pulses. Panel (b) and (f) show 

that as the electron is present in the laser field it performs an oscillatory motion, which is 

due to the electric part of the laser field. Panel (a) and (e) show that the ponderomotive 

potential affects the electron motion in the forward direction, and validates assumption i). 

Panel (c) and (g) show that the magnetic part of the Lorentz force causes an oscillatory 

motion. Panel (d) shows that the gamma factor does not strongly deviate from one at any 

time, validating assumption ii). Panel (c) also shows that the transverse deflection reaches 

maximum values of 4 k (which occurs at 0 4k z   ), validating assumption iii). 

 From this analysis it is possible to deduce what the limitations are in a 

demonstration of the spin dependent effect. While the intensity of the lasers is not limited 

by the demand of keeping the electron trajectory non-relativistic it is limited by 

deflection. While the transverse ponderomotive scattering in this case is sufficiently low 

an increase in intensity would lead to increased deflection pushing the broadening of 

diffraction peaks to an unacceptable level. 
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6. Discussion 

It appears there is a window of parameter values where spin-dependent scattering 

of laser light with electrons is dominant. However, in a real experiment spurious effects 

can be present and overwhelm the process of interest. Three of such effects are now 

discussed. With short pulses the frequency distribution of one laser beam (centered 

around ω) could be broadened so that it has a nonzero value at the peak of the distribution 

of the counter-propagating laser beam (centered around 2ω). Since the regular (ω-ω) K-D 

effect
2
 is so much stronger than the effects considered in this paper, one may wonder if it 

will overshadow our effect in spite of the fact that the two frequencies are an octave 

apart. If 10ps pulses of light with 1064nm wavelength are used, than the difference 

between the two frequencies is about 10
4
 times the uncertainty of each distribution. This 

leads to negligible effect for a Lorentzian (or Gaussian) spectral distribution of the laser. 

The regular K-D effect is thus sufficiently reduced by the separation of the frequencies.  

 In practice, the 2  laser beam may be generated by up-conversion and result two 

co-propagating beams that need to be separated optically. If this is not done the regular 

K-D effect will still be present. Dichroic mirrors and filtering can be used to provide 

separation of the two frequencies.  Our analysis indicates that the ratio of the first order 

over a second order process (Eq. 11 and 12) is given by 

1

' 1j k
H

mc



 
 
 

. For the spin 

dependent coupling 
'jH B  and an intensity of 10

19
W/m

2
 this is about 10

6
. To 

suppress the regular K-D effect by this much an isolation in intensity of 10
-6 

is thus 

required. 
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The strong regular two-color K-D effect is suppressed by the choice that the laser 

polarization is perpendicular to the electron velocity, because this K-D effect has 

'j q
H p A

m
   term in the Hamiltonian. However the polarization angle or electron 

beam direction may be misaligned. The ratio of the regular two-color K-D effect over the 

spin-dependent K-D effect is /
q

p A B
m

 , which equals about 10
5
. Since the amplitude 

of the regular effect is proportional to cos , where   is the angle between the electron 

velocity and the laser polarization, than angle should be aligned better than 0.01mrad 

from the perpendicular.  

The three spurious effects given above can be discriminated against as they have 

distinguishing features which can isolate them from the spin-dependent scattering term of 

interest. The spin-dependent effect is not velocity dependent nor polarization angle 

dependent in contrast to the two color K-D effect. It can also be distinguished from the 

regular K-D effect by the different intensity dependence.  

It is important to note that the effect discussed in this paper differs from the 

relativistic effect proposed by Ahrens et al.
9
 in more ways than one. In the paper by 

Ahrens et al. the frequency of the two laser beams is the same, the laser light has a 

photon energy of 3.1keV, and the 176keV electrons are incident at an angle that is far 

from perpendicular to the lasers.  

Given the wavelength dependence of the two and three photon effects it is 

tempting to consider lowering the frequency of the lasers to dramatically boost the 

probability. If the wavelength is increased the focal width too will increase which 

eventually will result in a wavelength dependent interaction time. Assuming an 
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interaction time that is proportional to wavelength, the two photon effect and the three 

photon effect become proportional to 4  and 6 ,  respectively. While the ratio of the 

probabilities remains the same in this case the two effects become more strongly 

wavelength dependent by an added factor of 2  thus increasing the benefit of a longer 

wavelength.  

It is apparent from the numbers presented in Table 6.1 that with the right 

parameters the probabilities of the two photon and three photon effects are comparable. 

Since the probability of a spin flip with no momentum kick due to the two photon process 

is the same for both spin states regardless of input angle this effect can be thought of as a 

depolarizer. If a polarized beam of electrons propagates through a laser field some of the 

electrons will not flip, some will flip once, while others will flip more than once. The 

output electron beam will be depolarized to some extent which depends on the intensity 

of the laser field. This could potentially be a problem. If the three photon process is used 

to create a polarized electron beam, that beam could be depolarized by the very same set 

of counter propagating lasers before it has a chance to exit the field. With such an 

experiment in mind, it is therefore necessary to set the parameters such that the 

probability associated with the two photon process is small compared to the probability 

associated with the three photon process. 

7. Conclusion 

In this paper we have shown that a dominant spin dependent K-D effect is 

possible, given the appropriate laser configuration. This effect could be used as an 

ultrafast spin polarized electron source or to analyze such a source. Applications include 

ultrafast electron diffraction, and ultrafast electron microscopy as well as more 



138 

 

fundamental physics studies looking into what the dominant interactions in multi-electron 

pulse or whether the control and analysis of femtosecond electron polarization affect X-

ray production in relativistic Compton scattering. 
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Chapter 7 - A Wide-Angle Electron Grating Bi-Prism Beam-

Splitter 

1. Introduction 

 For the past half-century, electron interferometers have been used for both 

fundamental physics as well as more applied areas.
1
  The shorter de Broglie wavelength 

of electrons provides electron interferometers with a much finer measuring “comb” than 

their optical counterparts.  The electron’s charge also provides for strong coupling to its 

environment.  This combination has made electron interferometers a powerful tool for the 

study of fundamental physics.  The first electron interferometer was constructed using 

metallic crystals as diffractive elements in 1953.
2, 3

  Shortly afterwards, an interferometer 

using a bi-prism wire in lieu of metallic crystals was demonstrated in 1955.
4
  All 

subsequent devices fell into these two basic types until recently, when interferometers 

using nanofabricated gratings were realized in 2006.
5-7

    

 More recently, applications of large area interferometers have become of interest, 

spurring further development of electron matter optics elements.  For instance, 

determining the electron forward scattering amplitude with atoms or molecules by 

placing a gas cell in one arm of the interferometer requires large beam separation.
8
  Also, 

the separation distance controls decoherence induced by nearby surfaces and relates to 

studies of the quantum-classical boundary.
9
  A large area electron interferometer may 

also be the first step towards a proposed novel method of high-sensitivity rotation sensing 

using an charged particle interferometer enclosed in a Faraday cage.
10

  The application 

which the authors are pursuing is a test of the dispersionless nature of the Aharonov-
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Bohm effect.
11

  Such a test requires placing a large solenoid between the arms of an 

interferometer.   

 As a first step towards this goal, high-quality electron diffraction from a 

nanofabricated grating has been demonstrated
12

.  To ensure that the diffracted beams are 

also coherent, our group has also previously demonstrated a three grating Mach-Zehnder 

interferometer.
5
  However, the small separation between the electron beams (3 m) does 

not allow for objects to be placed between, or in, one of the interferometer arms.  In this 

chapter the construction of a large angle beam-splitter composed of a nanofabricated 

grating in conjunction with a bi-prism wire is reported. 

2. Experimental Setup   

 A schematic of the experimental setup is shown in Figure 7.1.  A Kimball Physics 

EGG-3101 electron gun was used as a thermionic source at an energy of 7.5 keV with an 

estimated E of 1 eV.  All electron optics elements aside from the electron gun are 

rigidly mounted on a rail system.  Two layers of magnetic shielding inside the vacuum 

system enclose the rail system. The inside layer is grounded at a single point to minimize 

eddy currents and thus provide shielding to oscillating magnetic fields.  An external 

Faraday cage provides shielding from stray electric fields.  A 2 m diameter 

molybdenum circular aperture at a distance of 12 cm from the electron gun provides 

beam collimation.  A second identical aperture 18 cm behind the first further narrows 

beam divergence.  The beam is incident on a 100 nm periodicity nanofabricated grating 

situated 7 cm from the second aperture.  The grating used is identical to those used by 

Gronniger et al.
5
  The spatial transverse coherence length of the electron beam incident 
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on the grating  is estimated to be 750 nm, based on the ratio of diffraction order 

separation to beam width and grating periodicity.
12

   

 

Figure 7.1 

Schematic of Experimental Set-Up 

Two apertures collimate an electron beam.  A grating then coherently splits the beam.  The zero 

order diffraction beam is blocked by the bi-prism wire, while the dominant first order beams pass on 

either side.  The wire increases the beam separation without broadening, while the quadrupole 

magnifies the entire diffraction pattern.  A multi-channel plate and a fluorescent screen are used to 

image the pattern. 

  As the beam encounters the grating it undergoes diffraction, with the angles at 

which maxima occur given by  

 sin ,dB nn d       (1) 

where n is the order number, dB is the de Broglie wavelength of the electrons, d the 

grating periodicity, and n  is the diffraction angle.  The quality of the diffraction pattern 

is good, and similar gratings have produced resolved orders out to the positive and 
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negative 21
st
 order

 
.
12

  In this study use is made of the positive and negative 1
st
 order 

beams.  The diffracted beam is aligned such that the 0
th

 order is centered on, and thus 

mostly blocked, by the bi-prism wire.     

 The wire is placed at a distance of 5.5cm from the grating.  The mount for the 

wire is shown in Figure 7.2.  

 

Figure 7.2 

Grating Bi-Prism Electron Beam-Splitter 

The titanium 3 cm diameter mount (a) holds the grating mount (b,c) and the copper coated Ultem bi-

prism mount (d). The front view of the grating mount (b) shows the centered opening that the 

electrons are incident upon. The back view of the grating mount (c) shows the gold coated SiN 100 

nm periodicity grating. Care should be taken to select the bi-prism wire. Electron microscope images 

of bad coating run (e) and good coating run (f) are shown. 

The wire itself is composed of a quartz glass fiber that has been coated with gold via 

sputtering to a thickness of approximately 100 nm.  The quartz fiber is produced by 
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rapidly expanding a rod of quartz that has been melted.  A similar technique for wire 

production is described by Hibi and Yada.
13

  The resulting thin thread is then mounted on 

an electrically insulating ring (composed of Ultem).  The diameter of the wire for the data 

in this work is 5 m.   

 A voltage bpV  applied to the bi-prism wire gives a potential surrounding the wire 

which can be approximated as
1
 

 
 ln

,

ln

r R
el

V r V
bp

R R
bp el


 
 
 

     (2) 

where r is the radial distance from the wire, bpR  the radius of the wire, and 6elR  mm is 

the distance from the wire to the grounded electrode.  The potential given by Eq. (2) 

results in a deflection, which for small angles is
1
 

 
,

2 ln

bp

el bp el

eV

E R R


        (3) 

where elE is the kinetic energy of the electron beam, expressed in eV.  The deflection 

angle is therefore independent of the radial distance of the beam from the bi-prism.  A 

negative voltage applied to the wire increases the angle between the first order beams. 

 A set of deflection plates is placed 4 cm downstream from the bi-prism. An 

electrostatic quadrupole situated 7 cm behind the bi-prism provides an optional 

magnification of the diffraction pattern and deflected beams.  The detector consists of 

microchannel plates (MCP) in combination with a phosphor screen, and is located 38 cm 

beyond the quadrupole.  At 7.5 keV, the adjacent diffraction peaks are separated by 75 

m (at the detection screen).  The peak width is determined by the transverse coherence 

length
12

, and expected to be 10 m.   
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3. Path Integral Calculation 

 The theoretical description of the physical system is based on Feynman’s path 

integral formulation.
14

  Propagation from an initial wave function given by  i x , to the 

final wave function  f x , in the path integral formulation is given by  

     , .f i f ix K x x x dx
           (4) 

The coordinate system is chosen so that the incident electron beam is aligned along the z-

axis, while the slits and grating are parallel to the x-axis.  The kernel in Eq. (4) is given 

by 

    , exp , /i fK x x iS x x
  ,     (5) 

where S  is the classical action.  For our system the wave function propagates in free 

space between the planes where the slits, grating, bi-prism and detector are located. For 

that part of the propagation the action simplifies to 

   , 2 , .
db

S x x l x x        (6) 

The length of a straight individual Feynman path      
2 2

,l x x x x z z       is 

measured from some point  ,x z  on a plane to a point  ,x z on a subsequent plane, and

db  is the deBroglie wavelength of the matter wave.   

 At these planes, the wave function is modified in the following way: 

       , ,exp( )plane out plane inx A x i x x   .      (7) 

For example, at the slit plane the amplitude of the wave function is modified by  

     2 2slitA x H x w H x w     ,      (8) 
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where w  is the slit width  and H is the Heaviside function, while the phase is unaffected 

(   1x  ).  For the detailed description of the effect of a grating see Barwick et al.
15

  For 

this chapter the description of the bi-prism needs to be added.  The bi-prism blocks the 

electron over its width:  

     bp bp bpA x H x R H x R     .      (9) 

The electrons that pass the bi-prism accumulate a phase shift. This phase shift is due to 

the bi-prism potential given by Eq. (2).  To apply Eq. (7), the phase shift that is caused by 

the electron passing through this potential is given by  

    ,bp

e
x V r x z dz

v





  ,     (10) 

where v  is the electron velocity.  This integral diverges; however only local phase 

differences accumulated for trajectories at different distances from the wire are relevant. 

Setting the global phase equal to zero at 0x   gives 

 
 ln /

bp

bp

bp el

Ve
x x

v R R


  .      (11) 

Consecutive application of Eqs. (4) and (7) yields the wave function at the detection 

plane, from which the probability distribution of the diffraction pattern can be found 

directly:  

   
2

detP x x  .      (12) 

4. Results 

 A diffraction pattern with a quadrupole setting producing a magnification of 16X, 

and zero voltage on the bi-prism, is shown in the graph of Figure 7.3a.  The 

magnification factor is determined by comparing the measured peak positions to those 
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given by Eq. (1).  The shadow of the bi-prism wire blocks most of the zero order 

diffraction peak which is centered around 0 mm in the graph.  The 1
st
, 3

rd
, and 5

th
 

diffraction orders are visible on the left and right hand side of the bi-prism shadow.  As 

expected, the even orders are suppressed as a result of using a grating with an open 

fraction of 50%.
15

  The solid line is the result of a path integral simulation written by 

Roger Bach.  The simulation result is scaled by the magnification factor.  The result of 

the simulation is fully left-right symmetric, while the data is not.  For example, an offset 

in the bi-prism position can cause the asymmetry in the 0 order remnant.  As the voltage 

on the bi-prism wire is increased to -20 and -40 volts, the beam separation between the 

negative and positive diffraction orders increases, while the distance between orders of 

the same sign does not increase (see Figure 7.3 b and c).  This indicates, as expected, that 

the bi-prism deflection angle does not depend on the distance that the electron passes 

from the bi-prism wire. 
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Figure 7.3 

Diffraction Patterns at Different Bi-Prism Voltages 

The photographed image of an electron diffraction pattern and the associated line graph are shown 

for bi-prism voltages of (a) 0V (b) -20V (c) -40V.  Experimental data (blue dots) and a path integral 

calculation (solid line) are compared.  The zero order diffraction peak is mostly blocked by the bi-

prism wire. The diffraction peak separation and width do not substantially change as the bi-prism 

voltage is increased. 

 To investigate if the grating-bi-prism is a useful beam splitter for a large angle 

electron interferometer, the beam separation needs to be sufficiently large without 
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causing significant beam distortion.  A full interferometer would require a second bi-

prism wire and/or grating to be installed after the first one to redirect the electron beams 

towards each other.  To reach a separation of 1 mm between the electron interferometer 

arms at the second bi-prism in our device, a bi-prism voltage of 400 V was required (The 

observed separation at the detection screen is about 1 cm with the quadrupole turned off).  

The geometric separation at the second bi-prism is 5
1

cm

L
cm , where L is the distance 

between the first bi-prism and the detection screen.  Such a separation is a ten-fold 

increase as compared to any previous electron interferometer design.
1, 16

  To test if there 

is beam distortion at such large bi-prism voltages, the quadrupole magnification needs to 

be large enough such that the width of the diffracted beams exceed the spatial resolution 

of the detector system.  

 

Figure 7.4 

Electron Spot Size 

An image of an electron diffraction pattern is shown. In the background, fluorescent spots due to 

single electrons are visible. The width (FWHM) of the single electron spots is in the 100-

range, showing that the spatial resolution of the apparatus exceeds the diffraction order width. 

The spatial resolution of our detection system (including camera) was about 100-

150 m as determined from the observed size of individual electron hits (Figure 7.4).  To 

account for this, the simulation includes a convolution with a Gaussian width of 150 m.  
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The quadrupole increases the beam width to exceed this value.  Additionally, moderate 

electrostatic lensing at the second collimating aperture was added to obtain good 

agreement between the measured and simulated diffraction peak widths (Figures 7.3 and 

6.5).  The lensing was incorporated in the simulation by adding a parabolic phase shift 

over the width of the second aperture.  The width of the observed diffraction orders is 

about 375 m.  

In Figure 7.5a the measured beam width is shown as a function of applied bi-

prism voltage.  The major feature is that the beam becomes narrower at larger bi-prism 

voltages.  It is important to note that the combined effect of the bi-prism voltage and 

quadrupole magnification are large enough to shift the electron beam off the detection 

plate.  To overcome this difficulty, the deflection plate in front of the quadrupole was 

used to keep the position of the beam at the same spot on the detection plate.  The beam 

narrows by about 100 m at bi-prism settings of ±400 V.  The same narrowing can be 

obtained in our simulation by adjusting the lensing strength of the parabolic potential.  

The maximum phase shift needed to obtain such a narrowing is about  radians (Figure 

7.5b). This phase shift is small enough to permit interferometry.  Moreover, it is likely 

that the phase shift distortion caused by the bi-prism is much smaller.  Reflection 

symmetry in a plane through the bi-prism wire and parallel to the incident electron beam, 

demands that ( ) ( )V x V x  , where x  is orthogonal to the plane.  This means that lensing 

for electrons passing on the left ( 0x  ) or right ( 0x  ) of the wire is the same.  For our 

data the polarity of the bi-prism voltage is switched for the negative first order diffraction 

beam (which passes on the left) as compared to that for the positive first order diffraction 

beam (which passes on the right).  The lensing, if caused by the bi-prism, should thus be 
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of opposite sign; broadening for negative bi-prism voltages and narrowing for positive bi-

prism voltages.  This is not observed, and the phase shift distortion is likely due to other 

electrostatic elements such as the quadrupole. 

 

Figure 7.5 

Phase Distortion Estimation 

(a) The measured diffraction beam width as a function of the bi-prism voltage is shown.  The beam 

narrows by about 100 μm. (b) A simulation of beam width variation due to a parabolic potential is 

given. The parabolic potential is applied across the electron beam. The edge of the beam accrues the 

maximum phase shift. As the potential strength and thus the maximum phase shift are changed, the 

beam width varies. Starting at a width of about 375 μm, a width reduction of 100 μm requires a 

phase shift of about π radians. 
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5. Conclusion 

 As the beam-splitting device presented here is a novel combination of previously 

developed techniques; a material grating and bi-prism, it is useful to compare benefits 

and drawbacks with other beam splitting techniques used for electron interferometers.  

The three-grating Mach-Zehnder interferometer presented in Gronniger et al
5
 achieves a 

maximum beam separation of 3 m with a grating spacing of 2.5 cm.  By comparison, 

our device can easily attain a distance of 1 mm between beams at a distance of 5 cm 

behind the bi-prism wire.  In order for a three-grating setup to achieve the same 

separation the distance between the gratings would need to be approximately 4 m, as 

there is no beam adjustability present.  Moreover, it has been shown that dephasing 

occurs at the 2
nd

 grating at lower electron energies.
5
  The three grating interferometer 

loses contrast below energies of 5 keV.  For a bi-prism interferometer it is known that at 

energies below 1 kV, the interference contrast reduces sharply.
17

  The cause of this 

behavior is possibly due to a combination of increased sensitivity to external fields, 

mechanical alignment details and interaction with nearby surfaces.  It has been shown 

that decoherence can be caused by a purposefully introduced metallic surface near the 

electron paths in a bi-prism electron interferometer.
9, 18

  Bi-prism wires provide metallic 

surfaces with a close proximity to the electrons.  In the operation of bi-prism electron 

interferometers, great care is used to select a high quality wire.  

 The idea of a hybrid grating bi-prism beam-splitter based interferometer is that the 

grating will provide some initial distance between the diffracted electron beams and the 

bi-prism wire to reduce decoherence, while keeping the adjustability provided by the 

potential on the wire to enable a large beam-splitting angle. Difficulties in the grating bi-
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prism approach to interferometry include its sensitivity to mechanical alignment.  For 

example, a slight displacement of the bi-prism wire so that it is not situated in the middle 

between the two diffraction orders will, upon recombination of the two electron beams, 

lead to slightly different path length.  If these exceed the longitudinal coherence, no 

fringes will be observed.  This difficulty and others is discussed in more detail in the next 

chapter. 

 Electron interferometers utilizing bi-prism filaments have been used extensively 

in the past 50 years in a wide variety of tasks, and as such are a proven technology.  The 

principal difference of these types of devices from material gratings is that bi-prisms 

cause wavefront splitting of the electron beam, while gratings are amplitude splitting 

devices.  Amplitude splitting creates two copies of the incident beam, which are then 

propagated in space.  Wavefront splitting simply divides one wavefront into two, thus the 

spatial coherence of the original electron wave must exceed the bi-prism wire diameter to 

allow the two divided wavefronts to interfere when recombined later.  Additionally, since 

the bi-prism is placed directly in the path of the wavefront, surface effects due to the wire 

are more pronounced than in our device where the beams are spatially separated from the 

bi-prism. Furthermore, the largest beam separation bi-prism interferometers obtain is 

about 120 m
1, 16

. The question of how large a beam separation in an interferometer can 

be achieved using material gratings is an open one.  However, a grating-bi-prism 

combination seems more suited to explore this than the use of multiple gratings given its 

ability to produce relatively large separation distances in a small apparatus size, as 

discussed above.   
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Chapter 8 - A Field Emission Tip Bi-Prism Interferometer 

1. Introduction 

The work discussed in chapter 7 was intended to be the first steps toward a new 

type of interferometer. An interferometer which consists of a grating to generate two 

beams by amplitude splitting (the two first order diffracted beams), and a bi-prism to pull 

them back together. Figure 8.1 shows the design of the interferometer. The beam first 

travels through two collimating apertures. It is then sent through a grating which splits up 

the beam into diffraction orders. The zero order is blocked by the bi-prism and the two 

first order beams are pulled together by the bi-prism wire. The interference pattern is then 

magnified by two quadrupole lenses and projected onto a multichannel plate with a 

phosphor screen where the pattern can be observed. An overview and the testing of each 

experimental component made during the effort to measure interference fringes with this 

device are thoroughly documented in the dissertation of Adam Caprez
1
. This effort did 

not successfully produce interference. In order to investigate the potential difficulties the 

system was simplified to consist only of a field emission tip, a bi-prism wire, and two 

quadrupole lenses (i.e. the same set up as depicted in figure 8.1b but with the grating 

removed and the 25μm slit replaced with a 250μm aperture). Because the grating has 

been removed the two arms are generated by splitting the beam with the bi-prism wire. 

Once the beam is separated by wave front splitting, the two halves are pulled together by 

the bi-prism. Such an interferometer has been created and fringes have been observed. 

This may allow for improvement of the system as a useful precursor to the grating bi-

prism interferometer. In this chapter the production of the bi-prism, successful 
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measurement of fringes with the tip bi-prism setup, and potential solutions for the grating 

bi-prism interferometer are discussed. 

 

 

Figure 8.1 

Grating Bi-prism Setup 

a) The experimental set up for potential new type of interferometer shown here consists of a grating 

to generate two beams by amplitude splitting, and a bi-prism to pull them back together. (Image 

taken from
1
) b) Shown here is an image of the current experimental apparatus with all of the 

components labeled. 

 

 

a) 

b) 
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2. Bi-prism wire 

One critical aspect of this experiment is the bi-prism wire. At this point it is 

worthwhile to outline the manufacture of the bi-prism and discuss some of the difficulties 

therein. The first step in the process of making the bi-prism to melt hollow glass rods 

using  an oxy-acetylene torch.  

 

 

Figure 8.2 

Quartz Rods 

Quartz glass rods were melted to produce a thin fiber which was then coated and used as a bi-prism. 

Before opening the tanks the adjustment screws and torch valves should be closed (turn 

adjustment screws clockwise to open and counterclockwise to close). After opening the 

tank valves the adjustment screws can be opened and to set the pressure in the gas line. 

The settings that were used for bi-prism production were 20 psi in the oxygen line and 5 

psi in the acetylene line before opening either of the torch valves. When opening the 

torch valves the acetylene line should be opened sufficiently. A flame that is too mild 
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does not burn as efficiently and visibly spews smoke and soot which is not the case with 

a hotter flame. The fact that for hotter flames the smoke and soot is significantly 

diminished does not mean that it is completely gone and as such it would be worthwhile 

to consider cleaner burning fuel. It doesn’t matter how clean the room is if the flame 

itself introduces dirt.  

 

Figure 8.3 

Torch and Dirty Wire 

a) Immediately after ignition the torch has a significant enough flame as not to spew smoke and soot. 

b) After careful adjustment of the oxygen and acetylene the flame has turned blue with a bright blue 

cone at its base of approximately 1cm. c) An SEM image of a contaminated bi-prism wire is shown 

here. 

After the torch has been ignited the oxygen and acetylene valves are slowly adjusted such 

that the flame turns blue with a bright blue cone at its base on the order of about 1cm in 

length. The bright blue cone is the hottest spot in the flame and is the point where the 

glass is melted. The larger part of the flame is usually set to be around a foot in length. 

When the quartz glass is placed in the flame the end of the glass begins to melt. Two 

a) b) 

c) 
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pieces are then melted together and then pulled apart rapidly to produce a thin strand of 

quartz glass. The target fiber is less than 1μm in diameter and is thus very difficult to see. 

A black backdrop and a collimated light source were set up in order to make it a little 

easier to spot the thin strand. 

 

 

Figure 8.4 

Setup for Bi-Prism Construction 

a) The setup used for quartz fiber production consists of the oxy-acetylene torch, a black backdrop 

and collimated light source to improve visibility, and a microscope and translation stages for 

mounting the fiber. b) shown here is the setup in the darkened conditions in which fibers were made. 

All light is removed except for the collimated lamp and the torch. 

Identifying the appropriate width strands is a matter of experience. However, it is worth 

noting that when looking for submicron width strands if the fiber is easily visible it is too 

thick. The ideal strand is very difficult to see even from just the right angle with just the 

right lighting. Once the fiber is made it must then be captured with a fork. 

a) b) 



158 

 

 

Figure 8.5 

Microscope Setup for Wire Mounting 

a) A fork was used to capture the thin quartz glass fiber. b) The fork is then placed in the mounting 

apparatus where the fiber is then placed on an ultem ring. c) The fiber is placed on the ultem ring 

under a microscope. 

After the fiber has been captured on the fork it can then be mounted to an ultem ring via 

the three dimensional translation stage shown in figure 8.5b. This is done under a 

microscope. The lighting in figure 8.5c is not ideal for mounting the fiber. A bright lamp 

would normally be placed next to the microscope and the angle adjusted until the fiber 

becomes visible. The fiber is aligned with notches in the ultem ring by translation and 

rotation. Once the fiber is placed on the ultem ring it is glued into place with silver paint 

(Ted Pella, Inc. “Leitsilber” conductive silver cement). After the fiber is mounted and 

glued in place it is then coated via sputtering. When coating the ring and fiber the 

sputtering machine is set for a 100nm layer of gold. This may seem thick but we are 

uncertain as to the uniformity of the layer. After having been coated the wires are then 

lowered into the mount with another translation stage. 

a) 

b) 

c) 
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Figure 8.6 

Example Bi-Prisms, Mount, and Mounting Translation Stage 

a) Ultem rings are with fibers are shown here after having been coated with gold. b) The bi-prism is 

held in the mount shown here. c) When the bi-prism is mounted the lid of the mount is removed and 

the ring is lowered in using a translation stage. (images taken from reference
1
) 

3. Potential difficulties 

In order for the field emission tip bi-prism interferometer to function the bi-prism 

has to pull the two arms of the interferometer together while satisfying certain conditions. 

This action must sufficiently preserve coherence in the two halves remaining halves of 

the beam. The wire must have a diameter less than the coherence width of the beam at the 

wire so that the two halves may be coherent with one another. The deflection of the two 

halves must be sufficiently constant (i.e. small enough noise on the power supply and 

small enough vibration of the wire relative to the beam). The wire must be sufficiently 

aligned with the beam so that differences in the phase shift accumulated during deflection 

of each half do not exceed the longitudinal coherence length of the beam.  

a) b) 

c) 
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 Preservation of the coherence of the beam may be dependent on contact potentials 

or image charge effects. An analysis of these effects has been done by Barwick et al
2
. 

This analysis was done by calculating the phase accumulated by electron interaction with 

image charges within the two nearest grating bars in addition to the phase accumulated 

due to interaction with a random potential generated by the contact between neighboring 

crystals of different orientation within the grating surface. In figure 8.7a an image of the 

Si3N4 substrate used by Barwick et al
2
 is shown. The authors suggest that the protrusions 

visible in figure 8.7a could lead to contact potentials. Figure 8.7b shows one of the 

thicker wires which was coated with gold. Note that the larger protrusions on the gold 

wire have a similar spacing as those on the Si3N4 substrate. In the case of the gratings this 

does not prevent the observation of a diffraction pattern but it does lead to broadening. 

 

           

Figure 8.7 

Si3N4 substrate and Bi-Prism SEM image 

a) The Si3N4 substrate used by Barwick et al
2
 is shown. The authors suggest that the protrusions 

shown here could lead to contact potentials. b) One of the thicker wires which was coated with gold is 

shown here. 

a) b) 
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The extent of the broadening of the diffracted beam is dependent on the material with 

which the substrate is coated. The data shown by Barwick et al
2
 demonstrates that of the 

materials studied, a Nickel coating has the least effect on the breadth of the beam. 

Bearing this in mind it seems worthwhile to consider a Nickel coating for future attempts 

at bi-prism production. 

 The constancy of the deflection of the electrons by the bi-prism depends on the 

position of the wire relative to the two arms and the voltage applied to the wire. For small 

angles the deflection of an electron beam by a bi-prism wire is 
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where bpV  is the voltage applied to the bi-prism, elE  is the kinetic energy of the electrons 

in eV, bpR  is the radius of the bi-prism wire, and elR  is the distance from the wire to the 

grounded electrode. With this deflection angle the phase accumulated can be 

approximated as 

2
2

ln

bp

bp

el

el

exVx

R
E

R


 




 
 
 
 

    (2) 

where x  is the distance from the bi-prism at the point of closest approach. This would 

imply that a time dependent change in the position of the electrons relative to the wire 

 x t  would give rise to a time dependent change in phase  t . With 10
7
m/s 

electrons, a 1μm diameter wire, 0.51m between the wire and the detector, 0.31m between 

the source and the wire, and 1cm distance between the wire and the grounded electrode, 

the variation of the position of the wire relative to the beam should be 14x m  in 
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order to have   . This is important because a phase difference of π would move the 

fringes such that a maximum would move to where a minimum was previously located. If 

this movement were oscillatory and faster than the measurement time then the fringe 

contrast would disappear. This is of was of some concern for us since mechanical pumps 

which supply pressurized air for the building are located at the end of the hall on our 

floor and they tend to make the walls in the basement shake. Measurements were made of 

the vibration of a wall in our lab relative to the optical table on which the system was 

sitting. These measurements were done using an optical interferometer (see figure 8.8).  

 

Figure 8.8 

Schematic of Optical Interferometer 

To use the optical interference to measure the vibration of the wall relative to the optical table 800nm 

wavelength light is first reflected from the front and back surfaces of a piece of glass to create two 

beams. One of these two beams is reflected back onto itself by a mirror on the table while the other is 

reflected back by a retroreflector on the wall. The two beams are recombined at a second piece of 

glass and measured by a photodetector. 
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Typical measurements gave a vibration of less than 10μm at a frequency of 13.7Hz when 

any of the air handling pumps are on. According to specifications the horizontal and 

vertical resonance frequencies of the optical table are 1.5Hz and 1.1Hz, respectively. In 

each case for the measured frequency the table damps vibrations by a factor of less than 

0.01 for vertical transmission and less than 0.1 for horizontal transmission. Thus for this 

vibration the transmitted oscillation is less than 1μm. 

 In the same way that vibration of the wire causes a relative phase difference 

between the arms of the interferometer a static displacement which puts the wire out of 

alignment will result in a difference in the path length for electrons going on either side 

of the wire. If this difference in path length exceeds the longitudinal coherence length 

then interference will not be observed. In an article by Kiesel et al.
3
 a coherence of 90nm 

was reported ( 0.13 ,E eV   900E eV ). Taking this value as an example and using 

equation (2), in order for the phase difference between the two arms to be much less than 

the coherence length the offset of the wire must be much less than 17.6mm. In order for 

this to be problematic the width of the beam would have to be on the order for the wire to 

be so far off center to generate such a phase difference in two interfering paths (see 

figures 8.9a and b).  
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Figure 8.9 

Bi-Prism Displacement 

a) An electron bi-prism wire is deflecting two electron paths to interfere on a detection screen. b) 

Because the deflection angle is independent of distance from the bi-prism the deflection angle of the 

two paths is the same even when the wire is shifted to the right (image a taken from
1
). 

Such a large variation is of little concern given that for a tip bi-prism interferometer it is 

only necessary to overlap paths of grazing incidence on either side of the wire. For a 

grating bi-prism interferometer in which the two paths shown in figure 8.9 represent the 

two first order diffraction beams this might matter because the interfering paths are 

further apart from each other for some freedom of the position of the wire between them. 

Additionally, the larger angle of deflection for the grating bi-prism setup implies an 

increased phase shift due to displacement of the wire. A more detailed discussion of the 

grating bi-prism setup is given in the concluding section of this chapter.  

 It is also necessary that the source maintain sufficient coherence and brightness. 

In a report on the progress of electron and ion interferometry
4
 Hasselbach states that for 

tip bi-prism interferometers it is beneficial to use a single crystal tungsten field emission 

tip with a radius of curvature of about 50 nm and (3 1 0), (1 0 0) or (1 1 1) orientation in 

order to obtain a high emission in axial direction of the single crystal. We do use field 

b) a) 
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emission tips that are on the order of 100nm in diameter but have not attempted this 

experiment with single crystal tips (see figure 8.10
5
).  

500 nm

100 nm

 

Figure 8.10 

Field Emission Tip SEM Image 

Shown here is an example of a tungsten field emission tip made in our lab with a diameter of less 

than 100nm (Image taken from
5
). 

4. Measurement 

In the interest of narrowing the search for fringes it is worthwhile to obtain an 

approximate value for the width of the fringes and the necessary voltage of the bi-prism 

wire to obtain those fringes. If two overlapping plane waves have been deflected by an 

angle   in opposite directions the width w  of the resulting interference fringes can be 

approximated as  
  22sin

w  


   where   is the wavelength (see figure 8.11).  
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Figure 8.11 

Interfering Plane Waves 

Two waves with wavelength λ have been deflected in opposite directions by an angle . The width of 

interference fringes is w. 

           

 

Figure 8.12 

Quadrupole Magnification Images 

The image of the electrons on the detector is shown here with a quadrupole voltage of a) 10V, b) 20V, 

c) 30V, d) 40V, e) 100V, f) 500V, and g) 800V. 

a) b) c) 

d) e) f) g) 
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Figure 8.13 

Hasselbach’s Fringes 

The intensity of these bi-prism interference fringes measured by Hasselbach
6
 seems to indicate that 

our intensity should be sufficient at all of the magnifications shown in figure 8.12. 

Assuming a wire diameter of 1μm, a wire to detector distance of approximately 0.51m, 

and 710 m s  electrons  117.27 10 m    the fringe spacing for the minimum deflection 

angle to overlap the grazing electrons on either side of the wire is roughly 37μm. This 

corresponds to a bi-prism voltage of about 4.6mV. This would be easily visible with one 

hundred times magnification. In reference
1
 a magnification of 10,000 is reported for 

7.5keV electrons with the use of two quadrupole lenses (600V on the first and 200V on 

the second). A magnification of a few hundred should be easily within reach with the 

current configuration. 

Attempts were made to find interference fringes at quadrupole voltages of 10V, 

20V, 30V, 40V, 100V, 500V, and 800V using 1230eV electrons. In these attempts the bi-

prism was left off as the diffraction pattern should be visible even with no voltage on the 

bi-prism. In figure 8.12a a faint shadow of the bi-prism can be seen at the center of the 

oval. The beam profile eventually exceeds the size of the detector at 40V. At 100V on the 

quadrupole the top and bottom edges of the beam profile become visible again. This is 

because the top and bottom poles of the quadrupole have a negative voltage. This initially 



168 

 

magnifies an inverted image but at higher voltage the electrons are pushed back together 

and the image shrinks and then expands at yet higher voltages. Figure 8.13 shows a low 

intensity bi-prism interference pattern measured by Hasselbach
6
. It is apparent that even 

at such low intensities the interference pattern is clearly visible. The intensity obtained at 

each magnification shown in figure 8.12 should be sufficient to observe interference 

fringes.  

Furthermore it is possible to estimate the necessary quadrupole voltage required 

for observing fringes based on trajectory of electrons in the quadrupole fields
7
. The 

trajectories of electrons as they pass through the quadrupole are given by 

       1 1

1
cos tan sinx z x kz kz

k
   
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Where V is the quadrupole voltage, q is the charge  q e  , vz is the forward component 

of electron velocity, x1 and y1 represent the position of the electron at the entrance of the 

quadrupole, 1 and 1 are the angles of the trajectory of the electron entering the 

quadrupole, and the separation and size of the poles is specified by G0 (see figure 8.14). 
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Figure 8.14 

Schematic of Electrostatic Quadrupole Lens 

a) Electrons enter the quadrupole at position x1 with angle 1 and exit at position x2 and 2. b) The 

separation and size of the poles is specified by G0 and V is the voltage applied to the quadrupole. 

Electrons exit the quadrupole at position x2 and y2 with angle 2 and 2. If the electrons 

propagate a distance d in the z direction to go from the quadrupole to the detector the 

position at the detector is 

 det 2 2tanx x d    

 det 2 2tany y d        (5) 

From this the approximate magnification of the image at the front of the quadrupole can 

be determined. For 1.23keV electrons a magnification of 200 can be achieved with a 

quadrupole voltage of about 200V (assuming 1 0  , and 1 0  ). 

 

 

 

a) b) 
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Figure 8.15 

Beam Profile at Different Bi-Prism Voltages 

Images of the beam profile were taken with an electron energy of 1230eV, a quadrupole voltage of 

10V, and bi-prism voltages of a) 5V, b) 3V, c), 1V, and d) 0V. 

In a series of images taken of the electron beam at different bi-prism voltages (see 

figure 8.15) it is clear that the shadow of the bi-prism appears to be slanted to the left and 

the beam profile has a different shape as compared to that of figure 8.12. The change in 

the shape of the beam profile may be in part due to the difference in the voltage applied 

to the field emission tip mount. In order to control the emission current separately from 

the electron energy the field emission tip is mounted in a container that is kept at an 

electrostatic potential (Figure 8.15 shows a schematic of the mount). During the 

measurements shown in figure 8.12 the quadrupole voltage was increased to 1000V. An 

image at this magnification was not recorded because at such high magnification a 

current is required which damages the tip and results in source instability. Consequently a 

higher potential difference is required to obtain emission. When beginning the 

measurements for figure 8.12 the voltage required to obtain emission was approximately 

300V. After the measurements were completed the necessary voltage was roughly 500V. 

This means that in order to have an electron energy of 1230V the emission was 

previously initiated at a mount voltage of approximately 900V whereas after the 

measurements for figure 8.12 were completed a voltage of about 700V would be 

necessary. 

a) b) c) d) 
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Figure 8.16 

Schematic of Field Emission Tip Mount 

Shown here is a cross section of the field emission tip mount as seen from the side. Each layer from 

top to bottom is a cylinder. The outermost layer is grounded and the inner most cylinder which holds 

the field emission tip is kept at the potential VFET which sets the energy of the electrons. In between 

these two is the cylinder which partially creates a cavity surrounding the tip which is kept at a 

voltage Vmount. It is the difference between VFET and Vmount which sets the emission current. The blue 

layers represent electrical insulation between the conducting layers. 

This change in voltage of the mount chamber may have an effect on the beam profile due 

to fields near the exit aperture. Since this lensing occurs before the beam reaches the bi-

prism it seems unlikely that it would affect the shape of the shadow of the bi-prism or 

that of the fringes. The slant in the image may also be due to aberrations of the 

quadrupole lens possibly due to the electrons entering the lens slightly off axis at an 

angle. Better alignment of the quadrupole lenses may be necessary to obtain interference 

fringes. 
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This slant could be much more severe at higher magnification due to the fact that 

magnification in one direction is much larger than in the other. The above expressions 

(Equations 3 and 5) for the trajectory of the electrons were used to determine the 

approximate magnification of the quadrupole lens. The magnification was plotted from 

0V to 800V (see figure 8.17). 

 

 

Figure 8.17 

Quadrupole Magnification 

The magnification in the y-direction is much less than in the x-direction for a single quadrupole. It is 

thus necessary to use two oppositely polarized quadrupoles to achieve approximately the same level 

of magnification in both directions. 

This difference in magnification may make it impossible to observe fringes and thus it 

may be necessary to apply both quadrupole lenses with opposite polarization to obtain 

comparable magnification in both directions. A search for fringes was made with this in 

mind resulting in the images seen in figure 8.18.  
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Figure 8.18 

Tip Bi-Prism Fringes 1 

Interference fringes were measured with 100V on the first quadrupole and 50V on the second 

quadrupole, and 1.23keV electrons. Shown here are the images with bi-prism voltages of a) -125mV, 

b) -16mV, c) 0V, d) 37mV, e) 61mV, f) 114mV, g) 138mV, h) 154mV, i) 192mV, and j) 261mV. 

Images were taken for bi-prism voltages ranging from -125mV to 261mV with 100V on 

the first quadrupole and 50V on the second quadrupole and 1.23keV electrons. As the bi-

prism voltage is increased the two arms are pulled together decreasing the fringe spacing 

until gradually the fringes completely fade away. This loss of contrast is due to the finite 
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transverse coherence length of the electrons. The dark spot in the center is simply where 

the multichannel plate detector has been worn out due to extended use. Additionally, data 

was taken with 80V on the first quadrupole and 50V on the second with bi-prism voltages 

ranging from -270V to 97V (see figure 8.19). 

 

Figure 8.19 

Tip Bi-Prism Fringes 2 

Interference fringes were measured with 80V on the first quadrupole and 50V on the second 

quadrupole, and 1.23keV electrons. Shown here are the images with bi-prism voltages of a) -270mV, 

b) -121mV, c) -47mV, d) 28mV, and e) 97mV. 

In the second data set the fringes have smaller spacing due to the decreased quadrupole 

voltage. Also the slant on the fringes is decreased in the second set as compared to the 

first. This slant is presumably due to a misalignment between the beam and the 
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quadrupole and thus lower quadrupole voltage would have less of an image distorting 

effect. 

5. Conclusion 

An electron interferometer consisting of a field emission tip and a bi-prism wire 

has been created as a first step toward a grating bi-prism interferometer. With this step 

completed it is now possible to attempt to optimize the parameters of the former set up in 

order to optimize the probability of success of the latter. With 1.23keV electrons the 

expected fringes in the grating bi-prism interferometer will have a smaller periodicity. 

Assuming a 100nm periodicity grating is set 5.5cm behind the bi-prism the distance from 

the bi-prism to the first order diffracted beams is approximately 15μm. With a distance of 

approximately 0.51m from the bi-prism to the detector the fringe spacing should be about 

577nm at the detector (as compared to 18μm for the current setup with 1.23keV electrons 

and a bi-prism wire of approximately 1μm diameter). The increased bi-prism deflection 

angle will create an increased sensitivity to bi-prism position due to the previously 

mentioned dependence of the phase shift of an arm on its distance from the bi-prism. For 

the above parameters the necessary deflection angle should be about 30μrad. This must 

be taken in addition to the angle at which the two first order diffracted beams approach 

the bi-prism which is 350μrad. Thus the overall deflection that must be provided by the 

bi-prism is 380μrad. To do this a bi-prism voltage of 2.95V is necessary. This increased 

voltage puts a tighter restriction on the vibration of the wire. With 1.23keV electrons in 

the current grating bi-prism setup a bi-prism movement of 46nm would produce a π phase 

shift in each of the two arms and thus any vibration of the wire must be significantly less 

than 46nm. Similarly, a greater restriction will be placed on the alignment of the bi-prism 
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as described in section 3. Taking again as an example the same longitudinal coherence 

length of 90nm as described in the article by Kiesel et al.
3
, a displacement of the bi-prism 

relative to the center of the two first order beams of approximately 119μm would 

generate a phase difference between the two arms of one coherence length. Thus the wire 

must be centered between the two arms to better than 119μm. Fortunately, since the 

distance between the two first orders at the bi-prism is approximately 31μm, just getting 

the bi-prism between the two arms at all will do. Therefore, centering the zero order 

beam on the bi-prism should be more than sufficient.  

Additionally the stability of each of the power supplies may be critical to the 

success of a grating bi-prism interferometer. Fluctuations in voltages applied to the bi-

prism, deflection plates, or quadrupole lenses could cause a displacement in fringes thus 

making them difficult or impossible to detect. Further consideration needs to be given to 

the stability of each power supply. The alignment of the quadrupole lenses with the 

grating and the bi-prism is also potentially important and a technique which allows for 

universal rotational alignment of each component of the system is a future objective 

worth considering. 
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Chapter 9 - Conclusion 

The main effort of the work presented in this dissertation was to take steps toward 

the eventual realization of a test of the dispersionless nature of the Aharonov-Bohm 

effect through classical and quantum mechanical theoretical analysis as well as progress 

in the experimental development of a novel electron interferometer. By considering the 

theoretical aspects of interactions of electrons with externally applied fields and 

potentials we have probed some of the controversial questions surrounding the 

Aharonov-Bohm effect. Is this effect a purely quantum mechanical phase or is it the 

result of a force? What is the nature of the quantum/classical boundary in light of this 

consideration? Furthermore we have considered similar scenarios in which properties of 

the electron are manifested in thought experiments based purely on quantum mechanical 

behavior (i.e. the Stern-Gerlach effects discussed in chapters 5 and 6). In chapters 7 the 

development of a grating bi-prism beamsplitter is presented as the first step toward a 

grating bi-prism interferometer. Finally, a working field emission tip bi-prism 

interferometer is reported in chapter 8 along with some suggestions as to future work to 

move forward with the grating bi-prism interferometer. 

 There are multiple potentially interesting future projects inspired by the 

conclusions drawn in the chapters of this dissertation. The first demonstration of a 

transverse Stern-Gerlach experiment for free electrons would be quite interesting in its 

own right in addition to having applications to spin-polarized electron research. The 

manipulation of electron spin via laser light could also have meaningful applications. The 

necessary technology for these to pursuits exists and they are shown to be, in principle, 

possible.  
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Given that the Feynman paradox seems to be at the heart of the controversy 

surrounding the Aharonov-Bohm and Aharonov-Casher systems, an experimental 

demonstration of the Feynman system, while experimentally very difficult, could be 

revealing. Such an experiment may be possible in which an electron pulse is sent past an 

oscillating atomic force microscopy cantilever held at an electric potential. In such a 

scenario the electrons and the cantilever tip are intended to represent q2 and q1 in figure 

3.1 depicting the Feynman paradox. Measurement of displacement and delay could give 

information regarding the forces exerted on the electron by the cantilever.  

Finally, in the interest of producing the most coherent source possible it is 

worthwhile to consider the use of a cold source as described in chapter 2 in order to 

improve the coherence width of emitted electrons at the source. Given the data shown in 

that chapter it seems possible to create a source of silver with a coherence width of as 

much as a micron at liquid helium temperatures. This potentially has a large positive 

impact on the results of any interference or diffraction experiment that uses non-atomic 

nanoscale sources. 
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Appendix A - FORTRAN Codes 

A1 - Partially coherent source propagation 

A state with partial spatial coherence is propagated through a double slit to a 

detector. This is done by taking a fully coherent Gaussian wave packet and propagating it 

to the detector and integrating the resulting probability distribution in a convolution with 

the initial partially coherent probability distribution. The details of this calculation are 

described analytically in chapter 2 section 2.1 and the results of this calculation are 

plotted in figure 2.4. 

 
 program simulation  

 use msimsl 

 implicit none 

 

 integer nslitpoints,ndet,num1,num2,num3,ns 

 real*8 v,vp,L1,L2,t1,t2,d1,d2,w,hbar,x,xd,xs,P,pi,delta 

 real*8 dxslit,wdet,dxdet,m,ws,dxsource,ptotal,g 

 complex(8) i,f,cwave,U 

 

 

 open(unit=30,file="probability dist.dat") 

 

 

 

 hbar = 1.0546d-34 

 m = 9.11d-31 

 v = 3d7   !2562.1875 eV 

 vp = v/2d0       !phase velocity 

 L1 = 0.05d0       !distance from source to grating 

 L2 = 0.5d0  !distance from grating to detector 

 t1 = L1/vp  !propagation time for distance L1 

 t2 = L2/vp 

 d1 = 200d-9  !width of each slit 

 d2 = 1d-6  !the center to center distance between slits 

 w = 1d-6  !width of source (delta is the coherence width) 

 pi = 3.14159d0 

 

 i = (0,1) 

 

 !xs = 0d0 

 delta = 1000d-9 !coherence width 

 

  nslitpoints = 50  !number of points integrated in each slit is  

                        !2*nslitpoints + 1                                                                                                                                               
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 dxslit = d1/(2d0*nslitpoints) !distance between integration  

!points on slit                                          

 

 ndet = 300              !number of points on detector 2*ndet + 1 

 wdet = 5d-4   !width of detector 

 dxdet = wdet/(2d0*ndet) !distance between points on detector 

 

 ns = 500   !number of coherent sources summed up is                                   

                              !2*ns + 1 

                                                                                                                             

 ws = 5d0*w   !integration width for convoluting final  

                              !probability with source 

 dxsource = ws/(2d0*ns) 

 

 do num2 = -ndet,ndet 

  xd = num2*dxdet 

 

  Ptotal = 0d0 

  do num3 = -ns,ns 

 

  xs = num3*dxsource 

 

  !integration of double slit 

  cwave = (0d0,0d0) !coherent wavefunction at detector 

   do num1 = -nslitpoints,nslitpoints 

    !first slit 

    x = d2/2d0 + num1*dxslit 

 

 

    !wavefunction just before grating 

f = (pi**0.5d0*(delta +         & 

     i*hbar*t1/(m*delta)))**(-0.5d0)      &    

           *cdexp(-(x - xs)**2d0/(2d0*delta**2d0*   & 

                             (1d0 + i*hbar*t1/(m*delta**2d0)))) 

 

    !free space propagator 

    U = (m/(2d0*pi*hbar*i*t2))**0.5d0*     &  

                             cdexp(i*m*(x - xd)**2d0/(2d0*hbar*t2)) 

 

    cwave = cwave + f*U*dxslit 

    

 

    !second slit 

    x = -d2/2d0 + num1*dxslit 

 

 

    !wavefunction just before grating 

   f = (pi**0.5d0*(delta +            & 

     i*hbar*t1/(m*delta)))**(-     &  

                             0.5d0)*cdexp(-(x - xs)**2d0/    &                                        

(2d0*delta**2d0*(1d0 +      &   

                             i*hbar*t1/(m*delta**2d0)))) 

 

 

 

 

    !free space propagator 
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    U = (m/(2d0*pi*hbar*i*t2))**0.5d0*  &  

                             cdexp(i*m*(x - xd)**2d0/(2d0*hbar*t2)) 

 

    cwave = cwave + f*U*dxslit 

    

   enddo 

 

   P = dfloat(dconjg(cwave)*cwave) 

 

   g = 1d0/(w*(pi)**0.5d0)*dexp(-xs**2d0/(w**2d0)) 

   Ptotal = Ptotal + P*g*dxsource 

 

  enddo 

 

   

  write(6,*) num2 

  write(30,999) xd,Ptotal 

 

 enddo 

 

 

 

999 Format(E12.6,x,E12.6) 

 

 stop 

    end 
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A2 - Stern-Gerlach diffraction I 

 A Plane wave is propagated through a grating and a diffraction pattern is 

calculated. This is done with an additional phase applied in each slit in a stair step pattern 

resulting from the interaction of the magnetic moment of the passing electrons with the 

applied magnetic field as described in section 2.1 of chapter 5. This also includes a phase 

in each slit which has a quadratic spatial dependence to account for the Lorentz force on 

the electrons passing through the grating. The result of this calculation is plotted in figure 

5.3 without the quadratic phase. 

 
 program prog 

 implicit none 

  

 

 real*8 Pi,lambda,L,Fi,Fr,dx,a,xi,xj,d,W,dx1,dx2,dx3,P,QP,phi 

 integer Ng1,Ng2,Nd,i,j,k,s 

 Pi=3.14d0 

 lambda=7.274d-9 

 L=0.53d0  !distance from grating to detector 

 d=80d-9   !width of slit 

 W=0.1d0   !width of detector 

  

 Ng1=10 

 Ng2=1000 

 Nd=10000 

  

 QP=3.75d15        !factor for quadratic phase 

  

 dx1=d/(2d0*Ng2+1d0)  !delta x for riemann sum 

 dx2=W/(2d0*Nd+1d0)  !resolution of detector 

 dx3=200d-9   !grating periodicity 

  

 open(unit=29,file="intensity1.dat") 

 open(unit=30,file="intensity2.dat") 

 open(unit=31,file="phase.dat") 

  

 do s=0,1 

  

  do i=-Nd,Nd 

   Fi=0d0 

   Fr=0d0 

   

   do k=-Ng1,Ng1 

    do j=-Ng2,Ng2 

    



183 

 

     xj=j*dx1+k*dx3 

     xi=i*dx2 

     

     Fi=Fi+sin((2d0*Pi/lambda)*((xi-       &     

                                 xj)**2d0+L**2d0)**0.5d0-           &      

                                 k*QP*(j*dx1)**2d0+k*(-1d0)**s*(Pi/2))  

 

     Fr=Fr+cos((2d0*Pi/lambda)*((xi-       &      

                                 xj)**2d0+L**2d0)**0.5d0-           &      

                                 k*QP*(j*dx1)**2d0+k*(-1d0)**s*(Pi/2))   

 

    enddo 

   enddo 

   P=(Fi**2d0+Fr**2d0)/((2d0*Ng1+1d0)*(2d0*Ng2+1d0)) 

   if(s .EQ. 0)then 

    write(29,999) xi,P 

   elseif(s .EQ. 1)then 

    write(30,999) xi,P 

   endif 

  enddo 

  

 enddo 

  

999 format(E12.6,x,E12.6)  

  

 close(29) 

 close(30) 

 close(31) 

 

 end program prog 
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A3 - Stern-Gerlach diffraction phase 

 The phase is computed electrons in classical trajectories propagating through a 

current loop. This program is used to determine quadratic factor on spatially dependent 

Lorentz phase. Additionally, the final position, velocity, and magnetic moment values for 

each trajectory as well as time dependent taken along specific individual trajectories are 

computed. The phase resulting from the calculation is plotted in figure 5.4b.  

 
 program simulation 

 use msimsl 

 implicit none 

 

 

 INTEGER    MXPARM, N,zend  

      PARAMETER  (MXPARM=50, N=9,zend=100) 

C                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, j, jend,z,s,send,A,i 

      REAL*8       PARAM(MXPARM), T, TEND, TOL, Y(N) 

 real*8       tstep,endoftime,xSTEP, endofspace,magmoment 

 real*8    temp1,temp2,temp3,temp4,temp,factor 

 

 

 real*8 omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 common /par/ omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 

 real*8    dphi,dphiP,dphiMUB,dphiVA 

 real*8    phi,phiP,phiMUB,phiVA(-(zend+2):zend),Q(-

(zend+2):zend) 

 common /par/ dphi,dphiP,dphiMUB,dphiVA,A 

 

 External FCN 

 open(unit=30,file="trajectory.dat") 

 open(unit=31,file="velocity.dat") 

 open(unit=32,file="magnetic moment.dat") 

 open(unit=33,file="mmx.dat") 

 open(unit=34,file="x velocity.dat") 

 open(unit=35,file="omega.dat") 

 open(unit=36,file="B field.dat") 

 open(unit=37,file="dphi.dat") 

 open(unit=38,file="dphiP.dat") 

 open(unit=39,file="dphiMUB.dat") 

 open(unit=40,file="dphiVA.dat") 

 open(unit=41,file="phi.dat") 

 open(unit=42,file="factor.dat") 

 

  

c                             Summations of B-Fields 
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! do A=6,12 

C                                 SPECIFICATIONS FOR SUBROUTINES 

 

 send=1 

 magmoment=9.27d-24 

      do s=0,send 

 

!  zend=100 

!  endofspace=7.5d-9 

!      xSTEP = endofspace/zend 

!      do z=-zend,zend 

 

C                                 Set initial conditions 

 

 

       T = 0.0d0 

   Y(1) = 7.5d-9 !z*xSTEP 

   Y(2) = 0.0d0 

   Y(3) = 0.0d0   

   Y(4) = 0.0d0 

   Y(5) = -4.0d-5           

   Y(6) = 1.0d5           

   Y(7) = 0.0d0 

   Y(8) = 0.0d0 

   Y(9) = (1-2*s)*magmoment 

 

   temp1=0d0 

   temp2=0d0 

   temp3=0d0 

   temp4=0d0 

 

 

 

C              

c                    Set error tolerance 

   TOL = 5.0d-12 

C                                 Set PARAM to default 

   CALL SSET (MXPARM, 0.0, PARAM, 1) 

C                                 Select absolute error control 

   PARAM(10) = 1.0d0 

c        Set max iterations 

   PARAM(4)=1d8 

C                                 Print header 

  

   IDO = 1 

   jend=20000    

   endoftime=8.0d-10  !2.0d-10 

   tSTEP = endoftime/jend 

   do j=1,jend+1 

 

    TEND = (j)*tstep 

c    write(6,*) tend 

    CALL dIVPRK (IDO, N, FCN, T, TEND, TOL, PARAM, 

Y) 
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!    temp1=temp1+dphiVA 

!    temp2=temp2+dphiMUB 

!    temp3=temp3+dphiP 

!    temp4=temp4+dphi 

  

 

c            WRITE (6,'(10E12.3)') T, Y(1), Y(2), Y(3)           

& 

c          ,Y(4), Y(5),Y(6),Y(7),Y(8),Y(9) 

        WRITE (30,998) T, Y(1), Y(3), Y(5) 

          WRITE (31,998) T, Y(2), Y(4), Y(6) 

        WRITE (32,998) T, Y(7), Y(8), Y(9) 

c             WRITE (37,999) T, dphi 

c             WRITE (38,999) T, dphiP 

c   WRITE (39,999) T, dphiMUB 

c   WRITE (40,999) T, dphiVA 

c             WRITE (35,999) T, omega 

   WRITE (36,996) T, Bx,By,Bz,dBxdt,dBydt,dBzdt 

c      WRITE (33,999) T,'    ', Y(7) 

     

C                                 Final call to release workspace 

c   write(6,*) tend,y(2) 

 

   enddo 

 

!   phiVA(z)=temp1 

!   phiMUB=temp2 

!   phiP=temp3 

!   phi=temp4 

 

!   phiVA(-zend-2)=0d0 

!   phiVA(-zend-1)=0d0 

!   Q(z)=0.5d0*(phiVA(z)-2d0*phiVA(z-1)+phiVA(z-

2))/xSTEP**2d0 

 

!   !write(6,*)  z*xSTEP,phiVA,phiMUB,phiP    !s, 

!   write(30,998) z*xSTEP, Y(1), Y(3), Y(5)    !s, 

!          write(31,998) z*xSTEP, Y(2), Y(4), Y(6)    !s, 

!   write(32,998) z*xSTEP, Y(7), Y(8), Y(9)    !s, 

!   WRITE (41,994) z*xSTEP, phiVA,phiMUB,phiP,phi   !s, 

          

c          write(6,*) s,z,(0.5d0)*(9.11D- & 

c    31)*(Y(2)*Y(2)+Y(4)*Y(4)      & 

c         +Y(6)*Y(6))-(0.5d0)*(9.11D- & 

c    31)*(1.874d7)*(1.874d7)  & 

 ido=3      

   CALL dIVPRK (IDO, N, FCN, T, TEND, TOL, PARAM, Y) 

!     enddo 

! enddo 

 

! temp=0d0 

! do i=-(zend-2),zend 

!  temp=temp+Q(i) 

 enddo    

! factor=temp/(2d0*zend-1)  

  

!     write(42,999) A*8.5d0,factor 
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! write(6,*) A,factor 

 

! enddo 

 

 close (30) 

 close (31) 

 close (32) 

 close (33) 

 close (34) 

 close (35) 

 close (36) 

 close (37) 

 close (38) 

 close (39) 

 close (40) 

 close (41) 

 close (42) 

 

994   Format(E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

995 Format(I5,x,E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

996 Format(E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

997 Format(I5,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

998 Format(E12.6,x,E12.6,x,E12.6,x,E12.6) 

999 Format(E12.6,x,E12.6) 

 

 stop 

      end 

 

       

  

      

      Subroutine FCN (N, T, Y, YPRIME) 

C                                 SPECIFICATIONS FOR ARGUMENTS 

      INTEGER    N,A 

      REAL*8     T, Y(N), YPRIME(N) 

 real*8     m,q,dBxdx,dBxdy,dBxdz,dBydx,dBydy,dBydz,dBzdx 

 real*8     dBzdy,dBzdz,Bo,R,L,d,j,W,hbar,Ax,Ay,Az,dt 

  

      real*8     dphi,dphiP,dphiMUB,dphiVA 

      real*8     omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 common /par/ omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 common /par/ dphi,dphiP,dphiMUB,dphiVA,A 

 

 

 q=1.6D-19 

 m=9.11D-31 

 L=250.0D-9 

 R=100.0d-9 !200.0D-9 

 Bo=8.5d0 !A*8.5d0       

 !d =L/(2d0*W+1.0d0) 

 W=50d0 

 hbar=1.054572d-34 

 dt=4.0d-15 

 

 Ax=-Bo*R**3d0*Y(3)/(2d0*(R**2d0+Y(1)**2d0+            &                 

    Y(3)**2d0+Y(5)**2d0)**(3d0/2d0)) 
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 Ay=Bo*R**3d0*Y(1)/(2d0*(R**2d0+Y(1)**2d0+  &        

    Y(3)**2d0+Y(5)**2d0)**(3d0/2d0)) 

 

 Az=0.0d0 

 

 

 Bx=3d0*Bo*R**3d0*Y(1)*Y(5)/(2d0*(R**2d0+  &        

    Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(5d0/2d0)) 

  

 By=3d0*Bo*R**3d0*Y(3)*Y(5)/(2d0*(R**2d0+  &        

    Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(5d0/2d0)) 

 

 Bz=Bo*R**3d0*(2d0*R**2d0-Y(1)**2d0 –   & 

   Y(3)**2d0+2d0*Y(5)**2d0)/(2d0*        & 

    (R**2d0+Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(5d0/2d0)) 

 

 

 dBxdx=3d0*Bo*R**3d0*Y(5)*(R**2d0-4d0*Y(1)** & 

2d0+Y(3)**2d0+Y(5)**2d0)/           & 

       (2d0*(R**2d0+Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

 

 dBxdy=-15d0*Bo*R**3d0*Y(3)*Y(5)*Y(1)/(2d0*(R**2d0+Y(1)**    & 

2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

 

dBxdz=3d0*Bo*R**3d0*Y(1)*(R**2d0+Y(1)**2d0+Y(3)**2d0-4d0*Y(5)  &           

**2d0)/(2d0*(R**2d0+Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

  

 

 dBydx=-15d0*Bo*R**3d0*Y(3)*Y(5)*Y(1)/(2d0*      & 

       (R**2d0+Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

  

      dBydy=3d0*Bo*R**3d0*Y(5)*(R**2d0+Y(1)**2d0 –       & 

4d0*Y(3)**2d0+Y(5)**2d0)/(2d0*(R**2d0+Y(1)**2d0+Y(3)**   &       

2d0+Y(5)**2d0)**(7d0/2d0)) 

 

 dBydz=3d0*Bo*R**3d0*Y(3)*(R**2d0+Y(1)**2d0+Y(3)**2d0-4d0*Y(5)  &          

    **2d0)/(2d0*(R**2d0+Y(1)**2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

 

 

dBzdx=-3d0*Bo*R**3d0*Y(1)*(4d0*R**2d0-Y(1)**2d0- & 

Y(3)**2d0+4d0*Y(5)**2d0)/(2d0*(R**2d0+Y(1) &      

**2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

 

 dBzdy=-3d0*Bo*R**3d0*Y(3)*(4d0*R**2d0-Y(1)**2d0- & 

Y(3)**2d0+4d0*Y(5)**2d0)/(2d0*(R**2d0+Y(1)**    & 

2d0+Y(3)**2d0+Y(5)**2d0)**(7d0/2d0)) 

 

 dBzdz=-3d0*Bo*R**3d0*Y(5)*(2d0*R**2d0-3d0*Y(1)**     & 

2d0-3d0*Y(3)**2d0+2d0*Y(5)**2d0)/(2d0*(R**2d0+Y(1)**     & 

2d0+Y(3)**2d0+Y(5)**2d0) **(7d0/2d0))       

             

 

 

 dBxdt= Y(2)*dBxdx+Y(4)*dBxdy+Y(6)*dBxdz 

 

 dBydt= Y(2)*dBydx+Y(4)*dBydy+Y(6)*dBydz 
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 dBzdt= Y(2)*dBzdx+Y(4)*dBzdy+Y(6)*dBzdz 

 

 omega=(((dBxdt)**2d0+(dBydt)**2d0+(dBzdt)**2d0)                & 

       /(Bx**2d0+By**2d0+Bz**2d0))**(1d0/2d0) 

 

 dphi=dphiP-dphiMUB-dphiVA 

  

 dphiP=(1/hbar)*(1d0/2d0)*m*(Y(2)**2d0+Y(4)**2d0+Y(6)**2d0)*dt 

 

 dphiMUB=-(1/hbar)*(Y(7)*Bx+Y(8)*By+Y(9)*Bz)*dt 

 

 dphiVA=-(q/hbar)*(Y(2)*Ax+Y(4)*Ay+Y(6)*Az)*dt 

 

 

 

 YPRIME(1) = Y(2) 

 YPRIME(2) = (q/m)*(Y(4)*Bz-Y(6)*By)+(1/m)*  & 

(Y(7)*dBxdx+Y(8)*dBydx + Y(9)*dBzdx)        

    

 

 YPRIME(3) = Y(4) 

 YPRIME(4) = (q/m)*(Y(6)*Bx-Y(2)*Bz)+(1/m)*       & 

              (Y(7)*dBxdy+Y(8)*dBydy + Y(9)*dBzdy) 

 

 YPRIME(5) = Y(6) 

 YPRIME(6) = (q/m)*(Y(2)*By-Y(4)*Bx)+(1/m)*   &      

             (Y(7)*dBxdz + Y(8)*dBydz +Y(9)*dBzdz) 

 

 YPRIME(7) = (q/m)*(Y(8)*Bz-Y(9)*By) 

 

 YPRIME(8) = (q/m)*(Y(9)*Bx-Y(7)*Bz) 

 

 YPRIME(9) = (q/m)*(Y(7)*By-Y(8)*Bx) 

 

 

 

c     WRITE (6,'(10E12.3)') T, Y(1), Y(2), Y(3), Y(4),    &    

c          Y(5),Y(6),Y(7),Y(8),Y(9) 

                                

c write(6,*) 'I made it here in function'  

      RETURN 

      END 
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A4 - Stern-Gerlach diffraction II 

As in Appendix A2 a diffraction pattern is computed for a grating with a phase 

shift applied at each slit. In this case the strength of the quadratic phase is determined by 

the code in appendix A3. The result of this calculation may be seen in figure 5.4c. 

  

program prog 

 implicit none 

  

 

 real*8 Pi,lambda,L,Fi,Fr,dx,xi,xj,d,W,dx1,dx2,dx3,P,QP(-12:12) 

 real*8 num,dr 

 integer Ng1,Ng2,Nd,i,j,k,s,NL 

 

 Pi=3.14d0 

 lambda=7.274d-9 

 L=0.53d0    !distance from grating to detector 

 d=100d-9 !30d-9   !80d-9 !width of slit 

 W=0.1d0     !width of detector 

  

  

  

 Ng1=12     !2d0*Ng1+1d0=number of slits 

 Ng2=1000 

 Nd=10000 

 NL=10     !number of loops 

  

  

 QP(0)=0d0 

 QP(1)=-3.73942d14 

 QP(2)=-8.90381d14 

 QP(3)=-1.62568d15 

 QP(4)=-1.92626d15 

 QP(5)=-2.49739d15 

 QP(6)=-2.75875E15 

 QP(7)=-3.11299E15 

 QP(8)=-3.43515E15 

 QP(9)=-3.59395E15 

 QP(10)=-3.97919E15 

 QP(11)=-4.01898E15 

 QP(12)=-4.39362E15 

 

  

 QP(-1)=-3.73942d14 

 QP(-2)=-8.90381d14 

 QP(-3)=-1.62568d15 

 QP(-4)=-1.92626d15 

 QP(-5)=-2.49739d15 

 QP(-6)=-2.75875E15 

 QP(-7)=-3.11299E15 

 QP(-8)=-3.43515E15 
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 QP(-9)=-3.59395E15 

 QP(-10)=-3.97919E15 

 QP(-11)=-4.01898E15 

 QP(-12)=-4.39362E15 

  

  

 dx1=d/(2d0*Ng2+1d0) !delta x for riemann sum 

 dx2=W/(2d0*Nd+1d0)  !resolution of detector 

 dx3=150d-9    !grating periodicity 

 dr=2.0d-6    !space between neighboring loops 

  

 open(unit=29,file="phase1.dat") 

 open(unit=30,file="phase2.dat") 

 open(unit=31,file="intensity1.dat") 

 open(unit=32,file="intensity2.dat") 

  

 do s=0,1 

  do i=-Nd,Nd 

   Fi=0d0 

   Fr=0d0 

   

   do k=-Ng1,Ng1 

    do j=-Ng2,Ng2 

    

     xj=j*dx1+k*dx3 

     xi=i*dx2 

      

      

 Fi=Fi+sin((2d0*Pi/lambda)*((xi-xj)**2d0+L**2d0)**  & 

0.5d0 - QP(modulo(k,4))*(j*dx1)**2d0-(1d0-2d0*s)* & 

modulo(k,4)*Pi/2d0) 

 

Fr=Fr+cos((2d0*Pi/lambda)*((xi-xj)**2d0+L**2d0)**  & 

0.5d0 - QP(modulo(k,4))*(j*dx1)**2d0-(1d0-2d0*s)* & 

modulo(k,4)*Pi/2d0)       

 

      

    enddo 

   enddo 

   P=(Fi**2d0+Fr**2d0)/((2d0*Ng1+1d0)*(2d0*Ng2+1d0)) 

   if(s .EQ. 0)then 

    write(31,999) xi,P 

   elseif(s .EQ. 1)then 

    write(32,999) xi,P 

   endif 

  enddo 

  

 enddo 

  

999 format(E12.6,x,E12.6)  

 close(29) 

 close(30) 

 close(31) 

 close(32) 

 end program prog 
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A5 - Stern-Gerlach interference phase 

This code accomplishes ultimately the same goal as the one in A3 except it is 

done with a solenoid for analysing the Stern-Gerlach interferometers as described in 

section 3 of chapter 5. The results of this calculation are plotted in figure 5.6b. 

 

 program simulation 

 implicit none 

 

 

 INTEGER    MXPARM, N,zend 

      PARAMETER  (MXPARM=50, N=9,zend=150) 

!                                 SPECIFICATIONS FOR LOCAL VARIABLES 

      INTEGER    IDO, j, jend,z,s,send,A,i 

      REAL*8     PARAM(MXPARM), T, TEND, TOL, Y(N) 

 real*8     tstep,endoftime,xSTEP, endofspace,magmoment 

 real*8     temp1,temp2,temp3,temp4,temp,factor 

 

 

 real*8     omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 common /par/ omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 

 real*8  dphi,dphiP,dphiMUB,dphiVA 

 real*8  phi,phiP,phiMUB,phiVA(-(zend+2):zend) 

real*8  Q(-(zend+2):zend) 

 

 common /par/ dphi,dphiP,dphiMUB,dphiVA,A 

 

 External FCN 

 open(unit=30,file="trajectory.dat") 

 open(unit=31,file="velocity.dat") 

 open(unit=32,file="magnetic moment.dat") 

 open(unit=33,file="mmx.dat") 

 open(unit=34,file="x velocity.dat") 

 open(unit=35,file="omega.dat") 

 open(unit=36,file="B field.dat") 

 open(unit=37,file="dphi.dat") 

 open(unit=38,file="dphiP.dat") 

 open(unit=39,file="dphiMUB.dat") 

 open(unit=40,file="dphiVA.dat") 

 open(unit=41,file="phi.dat") 

 open(unit=42,file="vA quad factor.dat") 

  

 

! do A=0,80 

! write(6,*) A 

  

 send=1 

 magmoment=9.27d-24 

      do s=0,send 
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! zend=150 

! endofspace=0.5d-6 

! xSTEP = endofspace/zend 

! do z=-zend,zend 

 

!                                 Set initial conditions 

 

 

T = 0.0d0 

   Y(1) = 0.5d-6 !z*xSTEP 

   Y(2) = 0.0d0 

   Y(3) = 0.0d0   

   Y(4) = 0.0d0 

   Y(5) = -0.01d0          !-2.3425d-5 

   Y(6) = 5d6          !1.874d7 

   Y(7) = 0.0d0 

   Y(8) = 0.0d0 

   Y(9) = (1-2*s)*magmoment 

 

   temp1=0d0 

   temp2=0d0 

   temp3=0d0 

   temp4=0d0 

 

 

 

!              

!                    Set error tolerance 

   TOL = 5.0d-12 

!                                 Set PARAM to default 

   CALL SSET (MXPARM, 0.0, PARAM, 1) 

!                                 Select absolute error control 

   PARAM(10) = 1.0d0 

!        Set max iterations 

   PARAM(4)=1d8 

!                                 Print header 

  

  

   IDO = 1 

   jend=10000  !150000 !1000000 

   endoftime=4d-9 

   tSTEP = endoftime/jend 

   do j=1,jend+1 

 

    TEND = (j)*tstep 

!    write(6,*) tend 

!    write(6,*) 'I made it here' 

    CALL dIVPRK (IDO, N, FCN, T, TEND, TOL,  & 

PARAM, Y) 

 

    temp1=temp1+dphiVA 

    temp2=temp2+dphiMUB 

    temp3=temp3+dphiP 

    temp4=temp4+dphi 

 

 

!        write(6,*) 'I made it here' 
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!          WRITE (6,'(10E12.3)') T, Y(1), Y(2), Y(3), Y(4),  & 

!       Y(5),Y(6),Y(7),Y(8),Y(9) 

 

 

        WRITE (30,998) T, Y(1), Y(3), Y(5) 

          WRITE (31,998) T, Y(2), Y(4), Y(6) 

        WRITE (32,998) T, Y(7), Y(8), Y(9) 

!                  WRITE (37,999) T, dphi 

!                  WRITE (38,999) T, dphiP 

!       WRITE (39,999) T, dphiMUB 

!        WRITE (40,999) T, dphiVA 

!                  WRITE (35,999) T, omega 

        WRITE (36,996) T, Bx,By,Bz,dBxdt,dBydt,dBzdt 

!           WRITE (33,999) T,'    ', Y(7) 

     

!                                 Final call to release workspace 

!    write(6,*) tend,y(2) 

 

   enddo 

 

!   phiVA(z)=temp1 

!   phiMUB=temp2 

!   phiP=temp3 

!   phi=temp4 

    

!   phiVA(-zend-2)=0d0 

!   phiVA(-zend-1)=0d0 

!   Q(z)=0.5d0*(phiVA(z)-2d0*phiVA(z-1)+phiVA(z-

2))/xSTEP**2d0 

    

    

!   write(6,*)  s,z*xSTEP,phiVA(z),phiMUB,phiP    

!   write(30,997) s,z*xSTEP, Y(1), Y(3), Y(5) 

!          write(31,997) s,z*xSTEP, Y(2), Y(4), Y(6) 

!   write(32,997) s,z*xSTEP, Y(7), Y(8), Y(9) 

!   WRITE(41,995) s,z*xSTEP, phiVA(z),phiMUB,phiP,phi 

          

!          write(6,*) s,z,(0.5d0)*(9.11D-   & 

!     31)*(Y(2)*Y(2)+Y(4)*Y(4)      &  

!     +Y(6)*Y(6))-(0.5d0)*(9.11D-31)* & 

!     (1.874d7)*(1.874d7) 

 ido=3      

   CALL dIVPRK (IDO, N, FCN, T, TEND, TOL, PARAM, Y) 

!     enddo 

      

!     temp=0d0 

!  do i=-(zend-2),zend 

!   temp=temp+Q(i) 

!  enddo    

!  factor=temp/(2d0*zend-1) 

   

  

!  write(42,999) A*7112.999d0/10d0,factor  

 

      

 

!  write(6,*) A,factor 
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 enddo 

 

! enddo 

  

 close (30) 

 close (31) 

 close (32) 

 close (33) 

 close (34) 

 close (35) 

 close (36) 

 close (37) 

 close (38) 

 close (39) 

 close (40) 

 close (41) 

 close (42) 

 

994  Format(I5,x,E12.6,x,E12.6) 

995 Format(I5,x,E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

996 Format(E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

997 Format(I5,x,E12.6,x,E12.6,x,E12.6,x,E12.6) 

998 Format(E12.6,x,E12.6,x,E12.6,x,E12.6) 

999 Format(E12.6,x,E12.6) 

 

 stop 

     end 

 

       

  

      

     Subroutine FCN (N, T, Y, YPRIME) 

!                                 SPECIFICATIONS FOR ARGUMENTS 

     INTEGER    N,A 

     REAL*8     T, Y(N), YPRIME(N) 

 real*8     m,q,dBxdx,dBxdy,dBxdz,dBydx,dBydy,dBydz,dBzdx 

 real*8     dBzdy,dBzdz,Bo,R,L,d,j,W,hbar,Ax,Ay,Az,dt,K,muo 

  

     real*8     dphi,dphiP,dphiMUB,dphiVA,bignum1,bignum2 

     real*8     omega,Bx,By,Bz,dBxdt,dBydt,dBzdt,c1,c2,c3,z1,z2 

 common /par/ omega,Bx,By,Bz,dBxdt,dBydt,dBzdt 

 common /par/ dphi,dphiP,dphiMUB,dphiVA,A 

 

 

 q=1.6D-19 

 m=9.11D-31 

 K=7112.999d0    !A*7112.999d0/10d0  !surface current 

density 

 R=1d-3    !radius of solenoid 

 L=0.01d0    !length of solenoid 

 muo=4d0*3.14d0*1d-7 !permeability of free space 

 hbar=1.054572d-34 

 dt=4.0d-13 

  

 c1=R**2d0+Y(1)**2d0+Y(3)**2d0 

 c2=c1+(Y(5)+L/2d0)**2d0 
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 c3=c1+(Y(5)-L/2d0)**2d0 

  

 z1=Y(5)+L/2d0 

 z2=Y(5)-L/2d0 

  

 Ax=(muo*K*R**2d0*Y(3)/(4d0*c1))*(z2/c3**0.5d0-z1/c2**0.5d0) 

 

 Ay=-(muo*K*R**2d0*Y(1)/(4d0*c1))*(z2/c3**0.5d0-z1/c2**0.5d0) 

 

 Az=0.0d0 

 

 

 Bx=-(muo*K*R**2d0*Y(1)/(4d0*c1))*(1d0/c2**0.5d0*                & 

          (1d0-z1**2d0/c2)-1d0/c3**0.5d0*(1d0-z2**2d0/c3)) 

  

 By=-(muo*K*R**2d0*Y(3)/(4d0*c1))*(1d0/c2**0.5d0*                & 

          (1d0-z1**2d0/c2)-1d0/c3**0.5d0*(1d0-z2**2d0/c3)) 

 

 Bz=(muo*K*R**2d0/(4d0*c1))*(2d0*(z1/c2**0.5d0-                  & 

         z2/c3**0.5d0)*(1d0-(Y(1)**2d0+Y(3)**2d0)/c1)-                & 

         (Y(1)**2d0+Y(3)**2d0)*(z1/c2**1.5d0-z2/c3**1.5d0)) 

 

 bignum1=-(muo*K*R**2d0/(4d0*c1))*(1d0/c2**0.5d0*                & 

               (1d0-z1**2d0/c2)-1d0/c3**0.5d0*(1d0-z2**2d0/c3)) 

 

 dBxdx=bignum1-2d0*Y(1)*Bx/c1-                                   & 

            (muo*K*R**2d0*Y(1)**2d0/(4d0*c1))*    & 

(3d0*(z1**2d0/c2**2.5d0-          & 

            z2**2d0/c3**2.5d0)-(1d0/c2**1.5d0-1d0/c3**1.5d0)) 

  

 dBxdy=-2d0*Y(3)*Bx/c1-(muo*K*R**2d0*Y(1)*Y(3)/(4d0*c1))* & 

(3d0*(z1**2d0/c2**2.5d0 -         & 

            z2**2d0/c3**2.5d0)-(1d0/c2**1.5d0-1d0/c3**1.5d0)) 

  

 dBxdz=3d0*(muo*K*R**2d0*Y(1)/(4d0*c1))*((z1/c2**1.5d0-      &      

z2/c3**1.5d0)-(z1**3d0/c2**2.5d0-z2**3d0/c3**2.5d0))  

 

 dBydx=dBxdy 

  

 bignum2=-(muo*K*R**2d0/(4d0*c1))*(1d0/c2**0.5d0*(1d0-         & 

              z1**2d0/c2)-1d0/c3**0.5d0*(1d0-z2**2d0/c3)) 

  

    dBydy=bignum2-2d0*Y(3)*By/c1 - (muo*K*R**2d0*Y(3)**2d0/(4d0*c1))* & 

(3d0*(z1**2d0/c2**2.5d0 - z2**2d0/c3**2.5d0)-(1d0/c2**    & 

1.5d0-1d0/c3**1.5d0))  

 

 dBydz=3d0*(muo*K*R**2d0*Y(3)/(4d0*c1))*((z1/c2**1.5d0-          & 

            z2/c3**1.5d0)-(z1**3d0/c2**2.5d0-z2**3d0/c3**2.5d0)) 

  

 

 dBzdx=dBxdz 

 

 dBzdy=dBydz 

 

 dBzdz=-(dBxdx+dBydy) 
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 dBxdt= Y(2)*dBxdx+Y(4)*dBxdy+Y(6)*dBxdz 

 

 dBydt= Y(2)*dBydx+Y(4)*dBydy+Y(6)*dBydz 

 

 dBzdt= Y(2)*dBzdx+Y(4)*dBzdy+Y(6)*dBzdz 

 

 omega=(((dBxdt)**2d0+(dBydt)**2d0+(dBzdt)**2d0)/(Bx**2d0+    &         

            By**2d0+Bz**2d0))**(1d0/2d0) 

  

 dphi=dphiP+dphiMUB+dphiVA 

  

 dphiP=(1d0/hbar)*(1d0/2d0)*m*(Y(2)**2d0+Y(4)**2d0+Y(6)**2d0)*dt 

 

 dphiMUB=(1d0/hbar)*(Y(7)*Bx+Y(8)*By+Y(9)*Bz)*dt 

 

 dphiVA=(q/hbar)*(Y(2)*Ax+Y(4)*Ay+Y(6)*Az)*dt 

 

 

 

 YPRIME(1) = Y(2) 

 YPRIME(2) = (q/m)*(Y(4)*Bz-                         & 

                  Y(6)*By)+(1/m)*(Y(7)*dBxdx+Y(8)*dBydx+Y(9)*dBzdx) 

     

 

 YPRIME(3) = Y(4) 

 YPRIME(4) = (q/m)*(Y(6)*Bx-                         & 

                  Y(2)*Bz)+(1/m)*(Y(7)*dBxdy+Y(8)*dBydy+Y(9)*dBzdy) 

 

 YPRIME(5) = Y(6) 

 YPRIME(6) = (q/m)*(Y(2)*By-                       & 

                  Y(4)*Bx)+(1/m)*(Y(7)*dBxdz+Y(8)*dBydz+Y(9)*dBzdz) 

 

 YPRIME(7) = (q/m)*(Y(8)*Bz-Y(9)*By) 

 

 YPRIME(8) = (q/m)*(Y(9)*Bx-Y(7)*Bz) 

 

 YPRIME(9) = (q/m)*(Y(7)*By-Y(8)*Bx) 

 

 

 

!     WRITE (6,'(10E12.3)') T, Y(1), Y(2), Y(3), Y(4),   & 

!  Y(5),Y(6),Y(7),Y(8),Y(9) 

                                

      RETURN 

      END 
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A6 - Stern-Gerlach grating-biprism interferometer 

A beam of electrons is propagated from a point source to a collimating aperture 

and then to a grating from which it diffracts. The resulting first order diffracted beams are 

propagated to a bi-prism wire such that one passes on each side of the wire. The bi-prism 

pulls the two beams together at which point they pass through solenoids, acquiring spin 

dependent phase shifts. The two beams are then propagated to the detector where a 

probability distribution is calculated. The result of this calculation is plotted in figure 5.8a 

with no spin dependent phase shift and 8b with a spin dependent phase shift of magnitude 

π/4 in each arm. 

 
     program prog   

 implicit none 

  

 parameter(Nbp=5000,Ns=1000,Nd=10000) !Ng1=100,Ng1c=3 

 !parameter(gratingnumber=4)  

 real*8 Pi,lambda,dx,d,dx1,dx2,dx3,dx4,hbar,q,m,L1,L2 

 real*8 Rbp,Rel,Eel,alpha,Vbp,Wbp,Ws,Wa,xbp 

 real*8 P1(-Nd:Nd,0:1),Fr1(-Ns:Ns) 

 real*8 L3,Fr2(-Nbp:Nbp,0:1,0:1),Fi2(-Nbp:Nbp,0:1,0:1) 

      real*8 x2(-Nbp:Nbp),x3(-Nd:Nd),xg 

 real*8 Ki,Kr,Fi1(-Ns:Ns),x1(-Ns:Ns),A,P2(-Nbp:Nbp,0:1,0:1) 

real*8 P3(-Ns:Ns) 

 real*8 L4,xs,xa,phi,muo,mu,L,Ko,v,Fr3(-Nd:Nd,0:1) 

real*8 Fi3(-Nd:Nd,0:1),xd,Wd 

 integer nums,numk,Nbp,i,j,k,Ns,Na,spin,Nd,Nbpr,N 

  

 Pi=3.14d0 

 hbar=1.054572d-34  !hbar in J*s 

 Rbp=2d-6 

 q=-1.6d-19 

 m=9.1094d-31 

 L1=0.25d0  !distance from FET to aperture 

 L2=0.005d0 !distance from aperture to solenoid 

 L3=0.01d0  !distance from solenoid to biprism 

 L4=0.5d0   !distance from biprism to detector 

 L=0.01     !length of solenoid 

 Ko=3556.45 !0.1 times the necessary surface current density for  

                 !pi/2 phase shift 

 v=5d6 

 muo=4d0*Pi*1d-7 

 mu=9.27d-24 

 lambda=2d0*Pi*hbar/(m*v) 
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 d=0.003d0  !seperation between solenoid centers 

  

 alpha=Wbp/(2d0*L4) !defl. angle delta=arctan(Wbp/(2d0*L4)),   

                         !alpha=tan(delta)  

  

 Wd=1d-6      !width of detector 

 Wbp=10d-6    !width of integration region on one side of biprism 

 Ws=2d-6      !width of integration in solenoid 

 Wa=1d-6  !width of aperture 

  

 N=NINT((d/Wbp)*(2d0*Nbp+1d0))  !number to shift index by to place  

 !beam around biprism 

 Na=1000 

 Nbpr=NINT((Rbp/Wbp)*(2d0*Nbp+1d0)) 

 

 write(6,*) N 

 dx1=Wa/(2d0*Na+1d0) !space between points at aperture 

 dx2=Ws/(2d0*Ns+1d0)    !space between points at solenoid 

 dx3=Wbp/(2d0*Nbp+1d0) !space between points at biprism 

 dx4=Wd/(2d0*Nd+1d0)   !resolution of detector 

  

 A=-1.90814E12 

  

 call omp_set_num_threads(4)  

  

 open(unit=28,file="intensity at solenoid.dat") 

 open(unit=29,file="intensity.dat") 

 open(unit=30,file="intensity at BP.dat") 

  

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 !!!Propogating wavefunction from tip to aperture to solenoid!!! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 write(6,*) 'aperture to solenoid' 

   

 

 do i=-Ns,Ns 

   Fr1(i)=0d0 !real part 

   Fi1(i)=0d0 !imaginary part 

 enddo 

 

   

 do i=-Ns,Ns 

  xs=i*dx2 

  x1(i)=xs   

   

  do j=-Na,Na  

    

    xa=j*dx1 

     

    Fi1(i)=Fi1(i)+sin((2d0*Pi/lambda)*    &           

                               ((xa**2d0+L1**2d0)**0.5d0+((xs-    &      

                               xa)**2d0+L2**2d0)**0.5d0))     

 

    Fr1(i)=Fr1(i)+cos((2d0*Pi/lambda)*        &      

                               ((xa**2d0+L1**2d0)**0.5d0+((xs- &          

                               xa)**2d0+L2**2d0)**0.5d0))    
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  enddo  

 enddo 

  

 do i=-Ns,Ns 

  P3(i)=(Fi1(i))**2d0+(Fr1(i))**2d0 

  write(28,997) i*dx2,P3(i) 

 enddo 

 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 !!!propogating wavefunction from solenoid to biprism !!! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 write(6,*) 'solenoid to biprism' 

 

 do spin=0,1 

  do i=-Nbp,Nbp 

   do nums=0,1 

    Fr2(i,nums,spin)=0d0 !real part 

    Fi2(i,nums,spin)=0d0 !imaginary part 

   enddo 

  enddo  

 enddo 

 

 do spin=0,1 

   do nums=0,1 

   

    do i=-Nbp,Nbp 

     xbp=i*dx3 

     x2(i)=xbp  !xq 

   

     do j=-Ns,Ns 

    

      xs=j*dx2 

    

      phi=(1d0-2d0*spin)*(1d0-      & 

                                        2d0*nums)*muo*mu*L*Ko/    & 

    (hbar*v) + A*xs**2d0 

 

    

      Ki=sin((2d0*Pi/lambda)*((xbp-    &          

                                       xs)**2d0+L3**2d0)**0.5d0-phi) 

 

      Kr=cos((2d0*Pi/lambda)*((xbp-     &         

                                       xs)**2d0+L3**2d0)**0.5d0-phi) 

     

      Fi2(i,nums,spin)= 

Fi2(i,nums,spin) +          & 

(Ki*Fr1(j)+Kr*Fi1(j))       & 

 

      Fr2(i,nums,spin)=      & 

Fr2(i,nums,spin)+          & 

                                          (Kr*Fr1(j)-Ki*Fi1(j))   

 

     enddo 

     !write(6,*) Fi2(i,numk,nums), 

Fr2(i,numk,nums) 

    enddo 
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   enddo  

 enddo 

  

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 !!!propogating wavefunction from biprism to detector !!! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 write(6,*) 'biprism to detector' 

  

 do spin=0,1 

  do i=-Nd,Nd 

   Fr3(i,spin)=0d0 !real part 

   Fi3(i,spin)=0d0 !imaginary part 

  enddo 

 enddo 

  

 do spin=0,1 

    

  do i=-Nd,Nd 

   xd=i*dx4 

   x3(i)=xd  !xq 

   do j=-(N+Nbp),-(N-Nbp) 

    xbp=j*dx3 

    

    Ki=sin((2d0*Pi/lambda)*((xd-      &                     

                           xbp)**2d0+L4**2d0)**0.5d0-alpha*abs(xbp)) 

 

    Kr=cos((2d0*Pi/lambda)*((xd-               &          

                           xbp)**2d0+L4**2d0)**0.5d0-alpha*abs(xbp)) 

     

    Fi3(i,spin)=Fi3(i,spin)+(Ki*Fr2(j+N,0,spin)+  &      

                                    Kr*Fi2(j+N,0,spin)) 

 

    Fr3(i,spin)=Fr3(i,spin)+(Kr*Fr2(j+N,0,spin)-  &        

                                    Ki*Fi2(j+N,0,spin))   

   enddo 

  

   do j=N-Nbp,N+Nbp 

    

    xbp=j*dx3 

    

    Ki=sin((2d0*Pi/lambda)*((xd-xbp)**2d0+      &         

                           L4**2d0)**0.5d0-alpha*abs(xbp)) 

 

    Kr=cos((2d0*Pi/lambda)*((xd-xbp)**2d0+      &         

                           L4**2d0)**0.5d0-alpha*abs(xbp)) 

     

    Fi3(i,spin)=Fi3(i,spin)+(Ki*Fr2(j-N,1,spin)+  &        

                                    Kr*Fi2(j-N,1,spin))  

 

    Fr3(i,spin)=Fr3(i,spin)+(Kr*Fr2(j-N,1,spin)-  &      

                                    Ki*Fi2(j-N,1,spin)) 

   

   enddo 

  enddo 

 enddo 

 write(6,*) 'computing probability' 
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 do spin=0,1 

  do i=-Nd,Nd 

   P1(i,spin)=(Fr3(i,spin))**2d0+(Fi3(i,spin))**2d0 

  enddo 

 enddo 

 

 do spin=0,1 

  do nums=0,1 

   do i=-Nbp,Nbp 

    P2(i,nums,spin)=(Fi2(i,nums,spin))**2d0 +   & 

    (Fi2(i,nums,spin))**2d0 

   enddo 

  enddo 

 enddo 

  

 do i=-Nd,Nd 

  write(29,999) x3(i),P1(i,0),P1(i,1)  

 enddo 

  

 do i=-Nbp,Nbp 

  write(30,998) x2(i),P2(i,0,0),P2(i,0,1),P2(i,1,0),P2(i,1,1)  

 enddo 

 

997 format(E12.6,x,E12.6) 

998 format(E12.6,x,E12.6,x,E12.6,x,E12.6,x,E12.6)  

999 format(E12.6,x,E12.6,x,E12.6)  

 

 close(28) 

 close(29) 

 close(30) 

  

 end program prog 
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A7 - Stern-Gerlach Mach-Zehnder interferometer 

The output of the Stern-Gerlach Mach-Zehnder interferometer described in 

section 3.3 of chapter 5 is computed. The electron beam is propagated from a point 

source to a collimating aperture, and then to a solenoid. At the solenoid the beam 

acquires a spin dependent phase shift and is then propagated to the detection screen. This 

is repeated for another beam passing through a magnetic field of opposite direction. 

These two resulting wavefunctions represent the two arms of an interferometer having 

been separated by Bragg diffraction from a standing wave of light. The two wave 

functions are combined, and a probability distribution is determined which is then 

integrated over the detector. This is repeated computed for spin up and spin down for 

various magnetic field strengths. The result of this calculation may be seen in figure 5.9. 

 

      program prog   

 implicit none 

  

 parameter(Nd=1000,Ns=1000) !Ng1=100,Ng1c=3 

 !parameter(gratingnumber=4)  

 real*8 Pi,lambda,dx,d,dx1,dx2,dx3,dx4,hbar,q,m,L1,L2 

 real*8 Rbp,Rel,Eel,alpha,Vbp,Wd,Ws,Wa,xbp,xd 

 real*8 P1(-Nd:Nd,0:80,0:1),Fr1(-Ns:Ns) 

 real*8 L3,Fr2(-Nd:Nd,0:80,0:1,0:1),Fi2(-Nd:Nd,0:80,0:1,0:1) 

      real*8 x2(-Nd:Nd),xg 

 real*8 Ki,Kr,Fi1(-Ns:Ns),x1(-Ns:Ns),P1total(0:80,0:1),A(0:80) 

 real*8 L4,xs,xa,phi,muo,mu,L,Ko,v 

 integer nums,numk,Nd,i,j,k,Ns,Na,spin 

  

 Pi=3.14d0 

 hbar=1.054572d-34  !hbar in J*s 

 q=-1.6d-19 

 m=9.1094d-31 

 L1=0.25d0  !distance from FET to aperture 

 L2=0.005d0 !distance from aperture to solenoid 

 L3=0.5d0   !distance from solenoid to detector 

 L=0.01     !length of solenoid 

 Ko=711.3   !0.1 times the necessary surface current density for  

                 !pi/2   

                 !phase shift 

 v=5d6 

 muo=4d0*Pi*1d-7 
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 mu=9.27d-24 

 lambda=2d0*Pi*hbar/(m*v) 

 

  

 Wd=0.01d0    !width of detector 

 Ws=2d-6      !width of integration in solenoid 

 Wa=1d-6  !width of aperture 

 

 Na=1000 

  

 dx1=Wa/(2d0*Na+1d0) !space between points at aperture 

 dx2=Ws/(2d0*Ns+1d0)     !space between points at solenoid 

 dx3=Wd/(2d0*Nd+1d0) !space between points at detector 

  

 A(0)=0d0 

 A(1)=-8.92133d10 

 A(2)=-3.49841d11 

 A(3)=-7.61686d11 

 A(4)=-1.29378d12 

 A(5)=-1.90814d12 

 A(6)=-2.56438d12 

 A(7)=-3.22475d12 

 A(8)=-3.85898d12 

 A(9)=-4.44841d12 

 A(10)=-4.98888d12 

 A(11)=-5.49204d12 

 A(12)=-5.98496d12 

 A(13)=-6.50789d12 

 A(14)=-7.11049d12 

 A(15)=-7.84676d12 

 A(16)=-8.76933d12 

 A(17)=-9.92351d12 

 A(18)=-1.13419d13 

 A(19)=-1.304d13 

 A(20)=-1.50134d13 

 A(21)=-1.72371d13 

 A(22)=-1.96664d13 

 A(23)=-2.22403d13 

 A(24)=-2.48866d13 

 A(25)=-2.75279d13 

 A(26)=-3.00893d13 

 A(27)=-3.25048d13 

 A(28)=-3.47246d13 

 A(29)=-3.67198d13 

 A(30)=-3.84861d13 

 A(31)=-4.00446d13 

 A(32)=-4.14411d13 

 A(33)=-4.27419d13 

 A(34)=-4.40287d13 

 A(35)=-4.53908d13 

 A(36)=-4.69172d13 

 A(37)=-4.86883d13 

 A(38)=-5.07678d13 

 A(39)=-5.31969d13 

 A(40)=-5.59893d13 

 A(41)=-5.91298d13 

 A(42)=-6.25746d13 
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 A(43)=-6.62548d13 

 A(44)=-7.00826d13 

 A(45)=-7.39582d13 

 A(46)=-7.77794d13 

 A(47)=-8.145d13 

 A(48)=-8.48893d13 

 A(49)=-8.80391d13 

 A(50)=-9.08692d13 

 A(51)=-9.33804d13 

 A(52)=-9.56046d13 

 A(53)=-9.76019d13 

 A(54)=-9.94552d13 

 A(55)=-1.01263d14 

 A(56)=-1.0313d14 

 A(57)=-1.05157d14 

 A(58)=-1.07434d14 

 A(59)=-1.10028d14 

 A(60)=-1.12981d14 

 A(61)=-1.163d14 

 A(62)=-1.19965d14 

 A(63)=-1.23923d14 

 A(64)=-1.28095d14 

 A(65)=-1.32387d14 

 A(66)=-1.36691d14 

 A(67)=-1.40904d14 

 A(68)=-1.44929d14 

 A(69)=-1.4869d14 

 A(70)=-1.52136d14 

 A(71)=-1.55244d14 

 A(72)=-1.58025d14 

 A(73)=-1.60521d14 

 A(74)=-1.62799d14 

 A(75)=-1.64948d14 

 A(76)=-1.67066d14 

 A(77)=-1.69256d14 

 A(78)=-1.71614d14 

 A(79)=-1.74217d14 

 A(80)=-1.77122d14 

 

  

 call omp_set_num_threads(4)  

  

  

 open(unit=29,file="intensity.dat") 

 

  

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 !!!Propogating wavefunction from tip to aperture to solenoid!!! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

   

 

 do i=-Ns,Ns 

   Fr1(i)=0d0 !real part 

   Fi1(i)=0d0 !imaginary part 

 enddo 
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 do i=-Ns,Ns 

  xs=i*dx2 

  x1(i)=xs   

   

  do j=-Na,Na  

    

    xa=j*dx1 

     

    Fi1(i)=Fi1(i)+sin((2d0*Pi/lambda)*         &          

                               ((xa**2d0+L1**2d0)**0.5d0+((xs-     &          

                               xa)**2d0+L2**2d0)**0.5d0)) 

  

    Fr1(i)=Fr1(i)+cos((2d0*Pi/lambda)*         &          

                               ((xa**2d0+L1**2d0)**0.5d0+((xs-     &          

                               xa)**2d0+L2**2d0)**0.5d0)) 

   

  enddo  

 enddo 

 

 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 !!!propogating wavefunction from solenoid to detector!!! 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

  

 do spin=0,1 

  do i=-Nd,Nd 

   do numk=0,80 

    do nums=0,1 

     Fr2(i,numk,nums,spin)=0d0 !real part 

     Fi2(i,numk,nums,spin)=0d0 !imaginary 

part 

    enddo 

   enddo  

  enddo  

 enddo 

  

 do spin=0,1 

  do numk=0,80 

   write(6,*) numk 

   do nums=0,1 

   

    do i=-Nd,Nd 

     xd=i*dx3 

     x2(i)=xd  !xq 

   

     do j=-Ns,Ns 

    

      xs=j*dx2 

    

      phi=(1d0-2d0*spin)*(1d0-          &         

                                        2d0*nums)*muo*mu*L*numk*Ko/   &       

                                        (hbar*v)+A(numk)*xs**2d0 

    

      Ki=sin((2d0*Pi/lambda)*((xd-   &          

                                       xs)**2d0+L3**2d0)**0.5d0-   &          

                                       phi-(1d0-2d0*nums)*Pi/4) 
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      Kr=cos((2d0*Pi/lambda)*((xd-    &         

                                       xs)**2d0+L3**2d0)**0.5d0-    &         

                                       phi-(1d0-2d0*nums)*Pi/4) 

     

      Fi2(i,numk,nums,spin)=          &         

                                       Fi2(i,numk,nums,spin)+       &         

                                       (Ki*Fr1(j)+Kr*Fi1(j))  

 

      Fr2(i,numk,nums,spin)=          &         

                                       Fr2(i,numk,nums,spin)+       &         

                                       (Kr*Fr1(j)-Ki*Fi1(j))   

 

     enddo 

     !write(6,*) Fi2(i,numk,nums),     &  

     !Fr2(i,numk,nums) 

    enddo 

  

   enddo 

  enddo  

 enddo 

  

 do spin=0,1 

  do numk=0,80 

   do i=-Nd,Nd 

    P1(i,numk,spin)=(Fr2(i,numk,0,spin)+          &       

                                        Fr2(i,numk,1,spin))**2d0+     &       

                                        (Fi2(i,numk,0,spin)+          &       

                                        Fi2(i,numk,1,spin))**2d0 

   enddo 

  enddo 

 enddo 

! !$OMP parallel private(i) shared(Nq,P2,num) 

! !$OMP do 

! do i=-Nd,Nd 

!   P2(i,num)=(Fr2(i,num)**2d0+Fi2(i,num)**2d0) 

! enddo 

! !$OMP end do 

! !$OMP end parallel 

 

  

 do spin=0,1 

  do i=0,80 

   P1total(i,spin)=0d0 

  enddo 

 enddo 

 

 do spin=0,1 

  do numk=0,80 

   do i=-Nd,Nd 

          

  P1total(numk,spin)=P1total(numk,spin) +    &  

P1(i,numk,spin) 

   enddo 

  enddo 

 enddo 
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 do numk=0,80 

  write(29,999) numk*Ko,P1total(numk,0),P1total(numk,1)  

 enddo 

999 format(E12.6,x,E12.6,x,E12.6)  

 

 close(29) 

 end program prog 
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A8 - Depolarizer 

The probability amplitude of the depolarizer as described in section 2 of chapter 6 

is computed for a range of laser pulse lengths. The built in double integral routine 

DTWODQ is used.  

 

 program prog     

 use msimsl     

 implicit none 

           

 integer N 

 parameter (N = 2500)    

 

 real t1,t2 

 real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

     INTEGER    IRULE, NOUT,i,Ntau 

     REAL*8     A, B, ERRABSr,ERRABSi, ERRESTr,ERRESTi, ERRREL   

     REAL*8     Freal,Fimaginary, G, H, RESULTi,RESULTr,mu 

     EXTERNAL   Freal,Fimaginary, G, H 

 

 CALL UMACH (2, NOUT) 

 

 open(unit=30,file="Itot.dat") 

 open(unit=31,file="error.dat") 

 

 open(unit=32,file="Itoti.dat") 

 open(unit=33,file="errori.dat") 

 

 t1 = cpsec() 

 

 Pi = 2d0*dacos(0d0) 

 mu = 9.274d-24 

 m = 9.1094d-31  

 v = 1d7 

 lambda = 1064d-9 

 hbar = 1.0546d-34 

 k = 2d0*Pi/lambda 

 q = 1.6d-19 

 eps0 = 8.8542d-12  

 c = 3d8 

 p = m*v 

 Int = 1d18  

 

 w0 = k*c   

 w = hbar*k**2d0/(2d0*m) 

  

 

      !factor in front of integral 
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 A0 = q*mu*k*p/(4d0*m*hbar**2d0)*(2d0*Int/(c*eps0*w0**2d0))         

       

 !tau = 1d-15 !2d0*6.28d-15 

  

Wint = (2d0*Pi/w0)*100d0 !6.28d-13 !2*Wint = width of 

!integration 

 

!                                 Set limits of integration 

     A = -Wint 

     B = Wint 

!                                 Set error tolerances 

ERRABSr = 1d-8 

ERRABSi = 1d-8 

ERRREL = 0 

!                                 Parameter for oscillatory function 

IRULE = 6 

 

Ntau = 1000   !number of tau data points 

   

do i = 1,Ntau 

 

tau = 5d0*(2d0*Pi/w0)*(dfloat(i)/dfloat(Ntau))  

 

CALL DTWODQ (Freal, A, B, G, H, ERRABSr, ERRREL,   & 

IRULE, RESULTr, ERRESTr) 

 

CALL DTWODQ (Fimaginary, A, B, G, H, ERRABSi,   & 

ERRREL, IRULE, RESULTi, ERRESTi) 

 

 

  write(30,999) tau,resultr,resulti 

             

!estimate of absolute value of error 

 write(31,999) tau,ERRESTr,ERRESTi  

 

  !write(32,998) tau,resulti 

  !write(33,998) tau,ERRESTi 

 

  !ERRABSr = dabs(RESULTr)*1d-2 

  !ERRABSi = dabs(RESULTi)*1d-2 

 

  write(6,*) i   

enddo 

 

close(30) 

close(31) 

close(32) 

close(33) 

 

998 format(E12.6,x,E12.6) 

999 format(E12.6,x,E12.6,x,E12.6) 

 

 t2 = cpsec() 

 

 write(6,*) t2-t1 

 

     END 
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REAL*8 FUNCTION Freal (tp, tpp)   !real part of 

integrand 

  REAL*8       tp, tpp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

 

  Freal = A0*(dcos((w0 - w)*tp + (-w0 + w)*tpp)*      &             

                    dexp(-(tp**2d0 +tpp**2d0)/tau**2d0) +       &             

                    dcos((-w0 - w)*tp + (w0 + w)*tpp)*          &             

                    dexp(-(tp**2d0 + tpp**2d0)/tau**2d0)) 

 

  RETURN 

     end 

       

 REAL*8 FUNCTION Fimaginary (tp,tpp)       !imaginary part 

  REAL*8 tp, tpp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  Fimaginary = A0*(dsin((w0 - w)*tp + (-w0 + w)*tpp)*     &         

                         dexp(-(tp**2d0 + tpp**2d0)/tau**2d0) +     &        

     dsin((-w0 - w)*tp + (w0 + w)*tpp)*         &         

                         dexp(-(tp**2d0 + tpp**2d0)/tau**2d0)) 

 

  RETURN 

     end 

     

 REAL*8 FUNCTION G (tp)       !lower bound of inner integral 

  REAL*8 tp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  G = -Wint 

  RETURN 

    end 

 

    

 REAL*8 FUNCTION H (tp)       !upper bound of inner integral 

  REAL*8 tp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  H = tp 

  RETURN 

    END 
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A9 - Two color spin-flip K-D effect 

The probability amplitude of the two color spin-flip K-D effect as described in 

section 2 of chapter 6 is computed for a range of laser pulse lengths. The built in double 

integral routine DTWODQ is used.  

 

program prog     

 use msimsl   

 implicit none    

         

 integer N 

 parameter (N = 2500)   !2500 

 

 real t1,t2 

 real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

 common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

 

INTEGER    IRULE, NOUT,i,Ntau 

REAL*8     A, B, ERRABSr,ERRABSi, ERRESTr,ERRESTi, ERRREL  

REAL*8     Freal,Fimaginary, G, H, RESULTi,RESULTr,mu 

     EXTERNAL   Freal,Fimaginary, G, H !, DTWODQ, UMACH 

 

 CALL UMACH (2, NOUT) 

 

 open(unit=30,file="Itot.dat") 

 open(unit=31,file="error.dat") 

 

 open(unit=32,file="Itoti.dat") 

 open(unit=33,file="errori.dat") 

 

 t1 = cpsec() 

 

 Pi = 2d0*dacos(0d0) 

 mu = 9.274d-24 

 m = 9.1094d-31  

 v = 1d7 

 lambda = 1064d-9 

 hbar = 1.0546d-34 

 k = 2d0*Pi/lambda 

 q = 1.6d-19 

 eps0 = 8.8542d-12  

 c = 3d8 

 p = m*v 

 Int = 1d18 !8.52093313d10 !6.2996d5 !1d10 !1d16 

 

 w0 = k*c  !1.0d15 !tau = 6.28d-15 

 w = hbar*k**2d0/(2d0*m) 
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 !factor in front of integral 

 A0 = q**2d0*mu*k/(4d0*2d0**0.5d0*m*hbar**2d0)*         &                

      (2d0*Int/(c*eps0*w0**2d0))**(3d0/2d0)   

  

 

 !tau = 1d-15 !2d0*6.28d-15 

  

 Wint = (2d0*Pi/w0)*100d0  !2*Wint = width of integration 

  

 

!                                 Set limits of integration 

     A = -Wint 

     B = Wint 

!                                 Set error tolerances 

     ERRABSr = 1d-8 

ERRABSi = 1d-8 

     ERRREL = 0 

!                                 Parameter for oscillatory function 

     IRULE = 6 

 

 Ntau = 1000   !number of tau data points 

   

 do i = 1,Ntau 

 

  tau = 5d0*(2d0*Pi/w0)*(dfloat(i)/dfloat(Ntau))  

 

  CALL DTWODQ (Freal, A, B, G, H, ERRABSr, ERRREL, IRULE,         

& 

               RESULTr, ERRESTr) 

 

  CALL DTWODQ (Fimaginary, A, B, G, H, ERRABSi, ERRREL,           

& 

               IRULE, RESULTi, ERRESTi) 

 

  write(30,999) tau,resultr,resulti 

 

  !estimate of absolute value of error 

  write(31,999) tau,ERRESTr,ERRESTi  

 

  !write(32,998) tau,resulti 

  !write(33,998) tau,ERRESTi 

 

  !ERRABSr = dabs(RESULTr)*1d-2 

  !ERRABSi = dabs(RESULTi)*1d-2 

 

  write(6,*) i 

 enddo 

 

 close(30) 

 close(31) 

 close(32) 

 close(33) 

 

998 format(E12.6,x,E12.6) 

999 format(E12.6,x,E12.6,x,E12.6) 
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 t2 = cpsec() 

 

 write(6,*) t2-t1 

 

     END 

   

   

    REAL*8 FUNCTION Freal (tp, tpp)   !real part of 

integrand 

  REAL*8 tp, tpp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  Freal = A0*(dcos((w0 + 3d0*w)*tp + (-w0 - 3d0*w)*tpp)*    &       

                    dexp(-(tp**2d0 + 2d0*tpp**2d0)/tau**2d0) +        &       

          dcos((-w0 + 3d0*w)*tp + (w0 - 3d0*w)*tpp)*        &       

                    dexp(-(2d0*tp**2d0 + tpp**2d0)/tau**2d0)) 

  RETURN 

     end 

       

 REAL*8 FUNCTION Fimaginary (tp,tpp)       !imaginary part 

  REAL*8 tp, tpp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  Fimaginary=A0*(dsin((w0 + 3d0*w)*tp + (-w0 - 3d0*w)*tpp)* & 

     dexp(-(tp**2d0 + 2d0*tpp**2d0)/tau**2d0) +   &       

     dsin((-w0 + 3d0*w)*tp + (w0 - 3d0*w)*tpp)*   &       

          dexp(-(2d0*tp**2d0 + tpp**2d0)/tau**2d0)) 

  RETURN 

     end 

     

 REAL*8 FUNCTION G (tp)       !lower bound of inner integral 

  REAL*8 tp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  G = -Wint 

  RETURN 

     end 

 

    

 REAL*8 FUNCTION H (tp)       !upper bound of inner integral 

  REAL*8 tp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  H = tp 

  RETURN 

     END 
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A10 - Two color K-D effect (linear polarization) 

The probability amplitude of the regular two color K-D effect is computed for a 

range of laser pulse lengths. The built in double integral routine DTWODQ is used.  

 

program prog     

 use msimsl     

 implicit none    

 

 integer N 

 parameter (N = 2500)    

 

 real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

 common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

 

  

     INTEGER    IRULE, NOUT,i,Ntau 

     REAL*8     A, B, ERRABS, ERRESTr,ERRESTi, ERRREL 

      REAL*8     Freal,Fimaginary, G, H, RESULTi,RESULTr 

     EXTERNAL   Freal,Fimaginary, G, H !, DTWODQ, UMACH 

 

 CALL UMACH (2, NOUT) 

 

 open(unit=30,file="Itot.dat") 

 open(unit=31,file="error.dat") 

 

 Pi = 2d0*dacos(0d0)        

        

 m = 9.1094d-31  

 v = 1d7 

 lambda = 1064d-9 

 hbar = 1.0546d-34 

 k = 2d0*Pi/lambda 

 q = 1.6d-19 

 eps0 = 8.8542d-12  

 c = 3d8 

 p = m*v 

 Int = 1d15 

 

 w0 = k*c  !1.0d15 !tau = 6.28d-15 

 w = hbar*k**2d0/(2d0*m) 

  

 

!factor in front of integral 

 A0 = q**3d0*p/(16*m**2d0*hbar**2d0)*           &                        

     (2d0*Int/(c*eps0*w0**2d0))**(3d0/2d0)   

  

 !tau = 1d-15 !2d0*6.28d-15 
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 Wint = (2d0*Pi/w0)*100d0  !2*Wint = width of integration 

  

 

!                                 Set limits of integration 

     A = -Wint 

     B = Wint 

!                                 Set error tolerances 

ERRABS = 1d-9 

     ERRREL = 0 

!Parameter for oscillatory function 

     IRULE = 6 

 

 Ntau = 1000    !number of tau data points 

   

 do i = 1,Ntau 

 

  tau = 5*(2d0*Pi/w0)*(dfloat(i)/dfloat(Ntau))  

 

  CALL DTWODQ (Freal, A, B, G, H, ERRABS, ERRREL, IRULE,   &        

               RESULTr, ERRESTr) 

 

  CALL DTWODQ (Fimaginary, A, B, G, H, ERRABS, ERRREL,     &        

                         IRULE, RESULTi, ERRESTi) 

 

  write(30,999) tau,resultr,resulti 

  write(31,999) tau,ERRESTr,ERRESTi !estimate of absolute 

value of error 

 

  write(6,*) i 

 enddo 

 

 close(30) 

 close(31) 

 

999 format(E12.6,x,E12.6,x,E12.6) 

 

     END 

   

   

REAL*8 FUNCTION Freal (tp, tpp)   !real part of 

integrand 

  REAL*8 tp, tpp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  Freal = A0*(dcos((2d0*w0 + 4d0*w)*tp +        & 

  (-2d0*w0 – 4d0*w)*tpp)*          & 

                    dexp(-(2d0*tp**2d0 + tpp**2d0)/tau**2d0) +        &       

     dcos((-2d0*w0 + 4d0*w)*tp + (2d0*w0 - 4d0*w)*tpp)*&       

                    dexp(-(tp**2d0 + 2d0*tpp**2d0)/tau**2d0) +        &       

          2d0*dcos((-w0 + 3d0*w)*tp + (w0 - 3d0*w)*tpp)*    &       

  dexp(-(2d0*tp**2d0 + tpp**2d0)/tau**2d0) +        &       

     2d0*dcos((w0 + 3d0*w)*tp + (-w0 - 3d0*w)*tpp)*    &       

                    dexp(-(tp**2d0 + 2d0*tpp**2d0)/tau**2d0)) 

  RETURN 

     end 
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 REAL*8 FUNCTION Fimaginary (tp,tpp)       !imaginary part 

  REAL*8 tp, tpp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

 

 

 

  Fimaginary = A0*(dsin((2d0*w0 + 4d0*w)*tp +  

(-2d0*w0 -4d0*w)*tpp)*                & 

   dexp(-(2d0*tp**2d0 + tpp**2d0)/tau**2d0) +          &       

   dsin((-2d0*w0 + 4d0*w)*tp + (2d0*w0 - 4d0*w)*tpp)*  &  

   dexp(-(tp**2d0 + 2d0*tpp**2d0)/tau**2d0) +          & 

   2d0*dsin((-w0 + 3d0*w)*tp + (w0 - 3d0*w)*tpp)*     &       

   dexp(-(2d0*tp**2d0 + tpp**2d0)/tau**2d0) +          & 

   2d0*dsin((w0 + 3d0*w)*tp + (-w0 - 3d0*w)*tpp)*     &       

   dexp(-(tp**2d0 + 2d0*tpp**2d0)/tau**2d0)) 

 

  RETURN 

    end 

     

 REAL*8 FUNCTION G (tp)       !lower bound of inner integral 

  REAL*8 tp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  G = -Wint 

  RETURN 

    end 

 

    

 REAL*8 FUNCTION H (tp)       !upper bound of inner integral 

  REAL*8 tp 

  real*8 w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

  common w,w0,tau,Wint,Pi,m,v,lambda,hbar,k,q,eps0,c,p,A0,Int 

 

  H = tp 

  RETURN 

    END 
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Appendix B - Derivations 

B1 - Equations of motion of Feynman paradox from Darwin 

Lagrangian (Chapter 3 Section 2.2.1) 

In order to determine the equations of motion for two interacting charged 

particles, I used the Darwin Lagrangian  
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Where 1v  and 2v  are the velocities of the two particles, 1m  and 2m  are the charges, and 
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Plugging these into the Lagrange equations of motion, 
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I get the following equations: 
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In order to simplify the problem I apply the conditions of the Feynman paradox 
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Where 1r


, 1v


, 1q , and 1m  correspond to particle 1 and 2r


, 2v


, 2q , and 2m  correspond to 

particle 2. By applying these conditions the equations of motion simplify to 
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which can be further simplified to 
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Breaking these equations up into components gives the following set of equations 
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Since 2 2 2 2q mc r v c  (i.e. 2 2 2q r mv ) these can be reduced to the following 

expressions: 
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B2 - Forces on a charged particle and a current loop (Chapter 

3 Section 2.2.2) 

In order to determine the forces in a system consisting of a point charge and a 

current loop I start with the following conditions 

ˆ
q qv v x     ˆ ˆ ˆcos sinr x y       ˆ ˆ ˆsinx r z   

where the coordinates and system parameters are shown in figure 2.5. The magnetic 

dipole moment of the loop may be written in terms of the current and radius ( 2c I    

in Gaussian units). Thus the force on the loop was determined by integration of the 

Lorentz force. 

1 1
ˆ ˆ

q q qF J B d I B d B d
c c
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 
 

where F  and qB  are the force on the loop and the magnetic field due to the point charge, 

respectively. This expression for the magnetic field of the point charge can be simplified 

by taking a series expansion of Legendre polynomials 
ˆ

cos
q

q

r R

R


 
  

 

. 

     

3 3

0 13 1 3
0

1 1
cos cos cos

ˆ

l

ll
l q q pq

P P P
R R Rr R

 
  








   
        

    
  

3 3

3 3 2 3 2

ˆ ˆ31 cos 1 1
1 1 1

q q

q q q q q q

r R r R

R R R R R R

        
               

     

 



223 

 

 
3 2

3 cos sin1
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q q

q q

x y

R R

   
  
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Making the appropriate substitution the magnetic field due to the moving point charge 

can be broken up into two terms. 
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 Substituting these into the Lorentz force expression gives 
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The force acting on the point charge due to the current loop is determined by 

applying the Lorentz force law as follows 
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where qF  and B  are the force on the point charge and the magnetic field due to the 

current loop, respectively.  Evaluating the cross product gives 
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B3 - Unconstrained Aharonov-Bohm and Aharonov-Casher 

forces (chapter 3 section 2.2.3) 

For the forces acting in the Aharonov-Bohm and Aharonov-Casher Systems in the 

case of unconstrained motion it is necessary to integrate the force expressions shown in 

appendix B2. Starting with the Aharonov-Bohm system the magnetic moment of the 

current loop is taken to be an element for integration to construct an infinitely long 

solenoid. The magnetic dipole moment associated with a current loop is ˆIAz   where 

I  is the current and A  is the area enclosed. This can be taken as an element on an 

infinitely long solenoid where the current is I Kdz  and K  is the surface current 

density. The magnetic moment then may be written ˆKAzdz  . The strength of the 

magnetic field in a solenoid is 
4

SB K
c


  so the magnetic flux enclosed in the solenoid 

is 
4

B SB A KA
c


   . Therefore 

4

Bc
KA




  and the magnetic moment of a current loop 

can be rewritten for integration into an infinitely long solenoid as follows 

ˆ .
4

Bc
zdz




  

The following integrals must then be taken for the force on the point charge and the force 

on the solenoid 

,q q

solenoid

F dF     .s

solenoid

F dF   

The integral for the force on the charge may be written 
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Evaluating these integrals from z    to z    (i.e. from Z   to Z   ) gives 
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Thus the overall integral is zero and 0.qF  The integral for the force on the solenoid is 
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Evaluating these integrals from z    to z    gives 
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 A very similar derivation is given for the forces in the Aharonov-Casher effect. 

The point charge is taken to be an element for integration to construct an infinitely long 

wire. 

qq dz  

The following integrals must be taken for the force on the wire and the magnetic moment 
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wire

F dF     .
wire

F dF    

The Integral for the force on the wire may be written 
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Evaluating these integrals from qz    to qz    (i.e. from Z    to Z  ) gives 

0.wF   The integral for the force on the magnetic dipole moment is 
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Evaluating these integrals from qz    to qz    gives 
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B4 - Integration of Darwin vector potential for current loop 

(chapter 3 section 2.3.1) 

  To determine the magnetic vector potential of a current loop from the Darwin 

vector potential of a point charge we a system like that shown in figure 2.5 is used in 

which a rotating ring of charge of radius   and charge density   represents a current 

loop centered at the origin. The charge element is given by 

.
2 2

q q
dq d d d    

 
    The vector potential to be integrated (i.e. that of a point 

charge) is 
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ˆ ˆ ˆcos sinr x y    

Where Iv  is the velocity of the charge element on the current loop relative to the origin, 

v  is the velocity of the charge element on the current loop relative to the center of the 

loop (i.e. the velocity which determines the current in the loop), v  is the velocity of the 

center of the loop, R  is the position of a field point where the vector potential is 

calculated relative to a charge element on the loop, r̂  is the position of the charge 

element on the current loop relative to the center of the loop, and pR  is the position of the 

field point relative to the center of the loop. Substituting this into dA  gives 
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The magnetic moment of the current loop can be written as 

2 2

2 2

q qv
c IA v v


   


    , and therefore 

2 c
v

q


  . Substituting this into the 

expression and taking 0   simplifies the above expression. 
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



                                     

 

This of course must then be integrated from 0   to 2  . The first line gives the 

familiar vector potential of a charge for the Darwin Lagrangian. The first term in the 

second line is zero as the integral of sin  and sin  from 0   to 2   is zero. 
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Evaluating the second term in the integral for A  gives 

 2 2

3 3

0 0

ˆ ˆ
ˆ ˆ 0

4 4

p p

p p

p p

v r z R Rq qv
d r zd R R

c R cR

 

 
 

              
   

   

Taking the remaining terms in A  which are proportional to v  gives 
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where IA , IIA , and IIIA  represent the first, second, and third terms in the integral, 

respectively. Evaluating these integrals gives 
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Adding these three integrals gives the known magnetic vector potential for a magnetic 

dipole moment. 
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If this loop were constructed of two rings of charge, one with 2q  and the other with 

2q , rotating in opposite directions then it would be a loop with no net charge and a 

current equal to that of the loop described above. It is a ring with these properties which 

is described in chapter 2. The magnetic vector potential for such a ring is 

3
.

p

p

R
A

R


  
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B5 - Integration of Aharonov-Bohm and Aharonov-Casher 

Lagrangians for constrained motion (chapter 3 section 2.3.1) 

In order to determine the interaction Lagrangian for the Aharonov-Bohm and 

Aharonov-Casher systems in the case of constrained motion, an integral of the interaction 

Lagrangian for the Mott-Schwinger system is evaluated. This assumes that the solenoid 

in the Aharonov-Bohm system consists of infinitely many loops that do not interact with 

each other except to maintain the shape of the solenoid and each one interacts with the 

passing charge in the way described by the Mott-Schwinger Lagrangian. Likewise the 

wire in the Aharonov-Casher system consists of infinitely many point charges that do not 

interact with each other except to maintain the shape of the wire and each one interacts 

with the passing current loop in the way described by the Mott-Schwinger Lagrangian. 

The Mott-Schwinger Lagrangian is 

   
int 3
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q q

q

v v r rq
L

c r r

 



    
 




 

In order to integrate this Lagrangian for the Aharonov-Bohm system the magnetic 

moment of the current loop is taken to be an element for integration to construct an 

infinitely long solenoid. 

ˆ
4

Bc
zdz




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Thus the integrated Lagrangian becomes 
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Where ABL  and MSL  are the Aharonov-Bohm and Mott-Schwinger Lagrangians, 

respectively. Since  ˆ
qz r r   has no z  dependence this can be written as 
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Similarly the point charge in the Mott-Schwinger system is taken to be an element for 

integration to construct an infinitely long charged wire in the Aharonov-Casher system. 

.qq dz  

The integrated Lagrangian in this case is 
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 is independent of qz  since ẑ  . Therefore the 

integral becomes 
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Thus the Aharonov-Bohm and Aharonov-Casher Lagrangians for constrained motion are 
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B6 - Quantum Optics (Chapter 5 section 3.3) 

 Here the quantum optical analysis of this system based on two momentum states 

and two spin states is shown in a bit more detail. Consider an unpolarized input state with 

a downward component of momentum (figure B1) described by the density operator 

 
1

.
2

I    
       

Where a “ ” or “” inside the bras and kets indicates spin forward or backward while a 

“ ” or “” subscript indicates an upward or downward component of momentum. 

 

Figure B1 

Interferometer Schematic 

The operational elements of the Mach-Zehnder interferometer are indicated (for a detailed 

description see text). 

The effect of the beamsplitter described by 

 


 i
BS

2

2
 

 ,
2

2


 i
BS

 

 

 is independent of spin. The effect of the mirror described by 
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
 iM  

,


 iM

 

 

is also independent of spin. The AB phase shift and the phase shift given by the coils is 

dependent upon which arm of the interferometer the electrons go through.  The arms are 

labeled I and II to track these phaseshifts. The phase shifts given by the coils are chosen 

to be of equal magnitude and opposite sign. In arm I, the phase shift given by the coil and 

the AB phase shift are given by 
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and in arm II these phase shifts are given by 

 

 


 c

Coil iexp  

 


 c

Coil iexp  

,
2

exp









 ABAB i
 

where the AB phase shift is spin independent. Using these operations, the density 

operator after the first beam splitter is 
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The AB phase shift is applied just after the first beamsplitter to give 
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The beams then reflect of the mirrors, giving 
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The density operator after the spin phase coils is 
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The final density operator after the last beam splitter is 
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The probability of finding each spin state in each output is given as follows 
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B7 - Approximate Perturbative Analysis (Chapter 6 Section 3) 

In order to calculate the approximations given in section direct integration of the 

probability amplitude was performed. In the case of the regular K-D effect calculation of 

the integral shown in equation (7) of chapter 6 was performed. The matrix element 

chosen corresponds to the 
2 2

2

q A

m
 term in the Hamiltonian where A  is the vector potential 

corresponding to two counter propagating lasers of frequency  .  
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 in the 

2 2

2

q A

m
 term in the Hamiltonian 

which is descriptive of a 2 k  momentum kick and applying equation (5) gives  
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Since the initial and final state of the electron satisfy the Bragg condition, the frequency 

difference between the two is zero  0fi  . 
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For the two-color K-D effect the integral shown in equation (8) of chapter 6 was 

performed. The matrix elements chosen corresponds to the 

2 2

2

q A

m
 and 

q
p A

m
  terms in 
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the Hamiltonian where A  is the vector potential corresponding to two counter 

propagating lasers of frequencies   and 2 .  
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Accounting for all possible combinations of operators contained in the 
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m
and 

q
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m
  

terms which give rise to a momentum kick of 4 k  results in the probability amplitude 
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In order to evaluate these integrals the approximation 
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1  was used. By applying this directly to the integral above the probability 

amplitude is obtained. 
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