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A quasi-two dimensional electron gas (2DEG) in oxide heterostructures such as 

LaAlO3/SrTiO3 has unique properties that are promising for applications in all-oxide 

electronic devices. In this dissertation, we focus on understanding and predicting novel 

properties of the 2DEG by performing first-principles electronic calculations within the 

frame work of density-functional theory (DFT). The investigation is made upon adding 

new functionalities in oxide heterostructures, such as ferroelectric polarization, epitaxial 

strain, and spin polarization that can be employed to control 2DEG properties.  

Based on first-principles calculations the effects of different polarization 

magnitudes and alignments in all-oxide heterostructures incorporating different 

ferroelectric constituents, such as KNbO3/ATiO3 (A = Sr, Ba, Pb), are investigated. It is 

found that screening charge at the interface that counteracts the depolarizing electric 

field in the ferroelectric material significantly changes the free electron density of 2DEG 

at the interface.  Using this mechanism, nonvolatile metal-insulating transition can be 

achieved at the interface by switching the ferroelectric spontaneous polarization.    



 
 

 

 Growing on different substrates, LaAlO3/SrTiO3 heterostructures experience 

different epitaxial strains. Our first-principles calculations reveal that compressive 

epitaxial strain introduces a polarization in SrTiO3 pointing away from the interface, 

which is consistent with the experimental observations. This polarization strongly affects 

the 2DEG carrier density through a polarization charge formed at the interface. Our 

theoretical investigation finds that the critical thickness to form a 2DEG at the interface 

of the heterostructure increases with the compressive strain, while the saturated carrier 

density decreases which is consistent with the experimental results. 

  Adding a spin degree of freedom to 2DEG may be interesting for the application 

of 2DEGs in a spintronic device. We explore a LaAlO3/EuO interface as a potential 

candidate to create a spin-polarized 2DEG. The exchange splitting of unoccupied Eu-5d 

conduction band in bulk EuO makes it possible to realize spin-polarized 2DEG. We 

predict that LaAlO3/EuO interface forms a spin-polarized 2DEG with spin polarization 

of about 50%. We hope that this prediction will stimulate experimental investigations to 

achieve the spin-polarized 2DEG. 
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ferroelectric tetragonal phase of ABO3 in (010) direction.  

Figure 3.2 (NbO2)
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(KNbO3)8.5/(ATiO3)8.5 (001) superlattice with parallel (a) and antiparallel (b) 
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Figure 3.5 Cation (Nb, Ti, K, Sr) displacements with respect to oxygen anions in 

(KNbO3)8.5/(SrTiO3)8.5 superlattice with eight middle monolayers of SrTiO3 

fixed (a), with all the ions fully relaxed (b) and displacements of all the ions in 

fully relaxed ferroelectric state (c). Open and solid symbols in (a) and (b) 

indicate Sr-O (K-O) and Ti-O2 (Nb-O2) displacements, respectively. Solid 

circles and squares in (c) indicate Sr (K) and Ti (Nb) displacements respectively. 
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Figure 3.6 The free charge (in units of electron) on Nb and Ti atoms across the unit cell 
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the central monolayer. The zero along the horizontal axis refers to the Fermi 

energy 

Figure 3.8 Cation (Nb, Ti, K, Pb) displacements with respect to oxygen anions in 
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of (KNbO3)8.5/(PbTiO3)8.5 superlattices in paraelectric state and ferroelectric 
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for the ferroelectric state is from left to right. 

Figure 3.10 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a,b,c) 

and 3d-orbitals of Ti atoms (d,e,f) located in different monolayers l and k 

respectively away from the (NbO2)
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refers to the Fermi energy. 
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respectively. The two dashed vertical lines indicate left and right 

(NbO2)
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Figure 3.12 The free charge (in units of electron) on Nb and Ti atoms across the unit cell 

of (KNbO3)8.5/(BaTiO3)8.5 superlattices in paraelectric state and ferroelectric 
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limit. 
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Chapter 1     Introduction 

 

1.1     Oxide heterostructures 

The field of research related to oxide materials has been developing vigorously in the 

last few decades. There has been a significant experimental and theoretical effort 

to understand fundamental properties of oxide materials and to elucidate the origin of 

their complex behavior [1-3]. This effort is largely motivated by the fact that oxide 

materials provide more structural and functional choices than conventional 

semiconductors used in the electronic industry today. Oxide materials have enormous 

range of structure combinations from simplest binary monoxides like ZnO to much more 

complex oxides like Mo2P4O15 containing a remarkable 441 crystallographically distinct 

atoms in its asymmetric unit [4]. Their transport properties span from insulating to 

semiconducting to metallic.  Oxide materials possess a broad range of functional 

properties such as ferroelectricity, ferromagnetism, multiferroicity, and high-temperature 

superconductivity.  For example, MgO, an insulator with simple rock-salt structure, is 

widely used as a barrier in magnetic tunnel junctions [5] which nowadays find 

applications in magnetic field sensors and magnetic random access memories (MRAM).  

Ferroelectric Pb(Zr, Ti)O3 plays an  important role in ferroelectric random access 

memory (FeRAM) due to its large electric polarization at low Zr concentration. This 

material is also used in sensors and actuators [6], due to its excellent piezoelectric 

properties. La1-xSrxMnO3 exhibits different phases and depends on the concentration x. It 
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exhibits ferromagnetic or antiferromagnetic order with properties of conductivity ranging 

from metallic to insulating. Multiferroics BiFeO3 simultaneously possesses ferroelectric 

and ferromagnetic properties which may be interesting for applications in 

multifunctional devices. Complex oxide YBa2Cu3O7 exhibits a high-temperature 

superconductivity with the critical temperature above the boiling point (77 K) of liquid 

nitrogen [7]. All these properties are sensitive to stoichiometry, structural distortions, and 

chemistry [8, 9]. These factors provide many possible ways to engineering the 

functionalities of the oxide materials.   

 

 

Figure 1.1 High-resolution TEM image of LaAlO3 (LAO) / SrTiO3 (STO) grown on 

(LaAlO3)0.3–(Sr2AlTaO6)0.7 (LSAT).  Intensity differences between separate LaAlO3 and 

SrTiO3 layers and the individual La and Sr atoms are clearly seen. [10]  
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Even more interesting physical phenomena and an even broader spectrum of 

functional properties occur if two or more complex oxides are combined with atomic-

scale precision in a heterostructure to form a new nanoscale material. Recent advances in 

thin-film deposition and characterization techniques, such as pulsed laser deposition 

(PLD) [11],  molecular beam epitaxy (MBE)[12]  and the in situ monitoring technics like 

reflection high-energy electron diffraction (RHEED) [13], have made the experimental 

realization of such oxide heterostructures possible. With these progresses, complex oxide 

heterostructures with atomically abrupt interfaces have been experimentally grown [10] 

[2, 14]. As an example the sharp interfaces between SrTiO3/(LaAlO3)0.3–(Sr2AlTaO6)0.7 

(LSAT) and LaAlO3/SrTiO3 are shown in Figure 1.1.   

With the ability to create the oxide interfaces with atomic precision, many interesting 

and unexpected physical properties have been found [3, 9, 15].  For example, in MgxZn1-

xO/ZnO heterostructure grown on ScAlMgO4 substrate, polarizations are developed in 

MgxZn1-xO and ZnO layers. Due to the uncompensated polarizations at the interface, two 

dimensional electron gas (2DEG) and fractional quantum Hall effect are observed at the 

MgxZn1-xO/ZnO interface [16]. Also extraordinary properties were discovered in all 

oxide superconductor/ferromagnet YBa2Cu3O7/La2/3Ca1/3MnO3 (YBCO/LCMO) 

heterostructures such as a very large magnetoresistance effect [17] and a coexistence of 

magnetism and superconductivity [18, 19]. Superconductivity and ferromagnetism 

normally do not coexist because of their competing long-range order. However, across 

the YBCO/LCMO interface charge is transformed from Mn to Cu atoms leading to a 
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covalent bond between Mn to Cu, and thus induces electronic reconstructions in the 

interfacial CuO2 layer. As a result of the orbital rearrangement and strong hybridization, 

Cu ions in YBCO at interface are ferromagnetically ordered [19]. Another appealing 

phenomenon observed in oxide heterostructures is the localized ferromagnetic ordering 

at the interface between A-type antiferromagnetic LaMnO3 and G-type antiferromagnetic 

SrMnO3 [20]  and possible magnetoelectric coupling [21]. When LaMnO3 is deposited 

on SrMnO3 (or vice versa), difference in the chemical potential at the interface causes a 

charge transfer which interacts with the spin and orbital degree of freedom and leads to 

the formation of two-dimensional ferromagnetic layers [20].  In addition, the interface 

between LaMnO3 and SrMnO3 is polar due to the breaken symmetry. By combining 

three layers LaMnO3, SrMnO3 and LaAlO3, the macroscopic inversion symmetry 

breaking could be retained and leads to an overall polar structure, and thus permits 

magnetoelectric coupling. The examples given above are just a few demonstrations of 

the new physics and novel functionalities that could arise from oxide interfaces.  

One of the most exciting discoveries recently is the demonstration of a 2DEG at the 

interface between two perovskite oxide insulators LaAlO3 and SrTiO3 as we will discuss 

in detail in the next section. This discovery has attracted intense research activities both 

in experiment [22-28] and in theory [29-43]. 

 

1.2     2DEG at oxide interfaces 
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A two dimensional electron gas has been discovered at the LaO/TiO2 interface 

between two wide-bandgap insulators SrTiO3 and LaAlO3 [44]. This electron gas presents 

an extremely high electron density up to  1014/cm2 [45], and high mobility up to 

104cm2/Vs at low temperatures [44]. This 2DEG is attractive for applications as all-oxide 

field-effect transistors [46, 47].  It was found that there is a critical thickness of LaAlO3 

with value of 4 unit cells above which the 2DEG emerges, as seen in Figure 1.2 [46].  By 

applying a gate voltage on LaAlO3 with thickness of 3u.c just below the critical 

thickness, reversible control of insulator-metal transition was realized in LaAlO3/SrTiO3 

heterostructure. There are also indications of ferromagnetic [48] and antiferromagnetic 

[49] ordering at the interfaces of LaAlO3/SrTiO3 heterostructures grown under high and 

low oxygen pressure respectively.  Moreover, superconductivity is observed in 

LaAlO3/SrTiO3 at low temperature around a few hundred mK [50]. These interesting 

properties of this 2DEG make it promising for future generation electronics. 
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Figure 1.2 LaAlO3 thickness dependence of the electronic properties of the 

LaAlO3/SrTiO3 interfaces. (A) Sheet conductance and (B) carrier density of the 

heterostructures plotted as a function of the number of LaAlO3 unit cells. The data 

showed in blue and red are those of samples grown at 770-C and 815-C, respectively. The 

data were taken at 300 K [46].  

 

SrTiO3 and LaAlO3 are all wide-bandgap insulators with Eg = 3.2eV and 5.6eV 

respectively. Both of them have perovskite structure and have well matched lattice 

constants of 3.789 Å and 3.905 Å for LaAlO3 and SrTiO3 respectively. In these structures 

the conventional valance states for each element are La3+, Al3+, Sr2+, Ti4+ and O2-.  Along 

the [001] direction, the perovskite can be considered consisting alternating planes of AO 

and BO2. The major difference between LaAlO3 and SrTiO3 is that LaAlO3 is formed of 

alternately charged atomic layers (LaO)+ and (AlO2)
 while SrTiO3 is composed of 

neutral layers (SrO)0 and (TiO2)
0  as shown in Figure 1.3.  
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Figure 1.3 Illustration of LaAlO3/SrTiO3 heterostructure with (LaO)+/(TiO2)
0 interface 

showing the atomic  arrangement and  ionic charge for each layer.  

 

When LaAlO3 is deposited on top of SrTiO3 in [001] direction, there are two types of 

interface terminations:  LaO/TiO2, as shown in Figure 1.3, and AlO2/SrO called n-type 

and p-type interface respectively.  It was found that a metallic phase can be formed at the 

LaO/TiO2 terminated interface as long as the thickness of LaAlO3 exceeds the critical 

thickness of 4 unit cells [44]. This metallic phase is confined within a couple of 

nanometers near the interface [51] and therefore can be regarded as a two dimensional 

electron gas.  There are three proposed origins of the metallic state observed at the 

LaO/TiO2 interface of SrTiO3/LaAlO3 heterostructure: polar catastrophe [52], oxygen 
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vacancies [23-25] and cation intermixing [53, 54].  

 

                                   

                                   

                           

                           

Figure 1.4 Schematic of the polar catastrophe at the n-type interface of LaAlO3/SrTiO3 

heterostructure. (a).  Before electronic reconstruction, alternating positive and negative 

atomic layers produce on average a constant  electric field in LaAlO3. The potential 
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increases with the thickness of LaAlO3. (b) -0.5e is transferred to TiO2 layers, alternating 

electric fields form at LaAlO3, and the overall effective electric field in LaAlO3 is zero. 

 

The polar catastrophe scenario is demonstrated in Figure 1.4. Polar discontinuity at 

the (LaO)+/(TiO2)
0  interface occurs as the consequence of the alternating positive and 

negative charged planes of LaAlO3 on top of neutral planes of SrTiO3. This polar 

discontinuity creates an internal electric field in LaAlO3 and thus an increase electric 

potential across the LaAlO3 layers. From the electrostatic point of view, as the thickness 

of LaAlO3 increases, the potential also increases and the system becomes unstable.  In 

semiconductor heterointerfaces such a polar discontinuity is well-known, and which 

often causes atomic reconstruction at the interface to avoid the diverging electrostatic 

potential [55, 56].  In contrast, transition metals in perovskite oxide can be mixed-

valence and make electronic reconstruction possible, which is more favorable in energy 

than atomic reconstruction [53]. Half an electron per two-dimensional unit cell is 

transferred through the interface from LaAlO3 to SrTiO3 causing the interfacial titanium 

ion in SrTiO3 to be in the mixed valence state (Ti+3.5). This half an electron per unit cell 

at the (LaO)+/(TiO2)
-0.5 interface forms the 2DEG.   
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Figure 1.5 Schematic band diagrams for the SrTiO3/LaAlO3 heterostructures with 
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thickness smaller and larger than the critical thickness.  (a) When the LaAlO3 thickness 

is  smaller than the critical thickness, the valence band maximum (VBM)  of LaAlO3 on 

the surface lies below the conduction band minimum (CBM)  of SrTiO3 at the interface 

and no charge is transferred. (b) When the LaAlO3 thickness exceeds the critical 

thickness, VBM of LaAlO3 on the surface lies above the CBM of SrTiO3 at the interface 

and charge is transferred from the surface layer of LaAlO3, i.e. AlO2 to the interface 

layer of SrTiO3, i.e. TiO2. The red dashed line indicates the position of the Fermi energy. 

Ref. [52] 

 

This scenario has been confirmed more rigorously by first-principles calculations 

[38, 42, 52] and can be understand from a simple band diagram, as illustrated in Figure 

1.5. Due to the polar nature of LaAlO3 resulting in the intrinsic electric field, the 

macroscopically averaged local potential increases across the LaAlO3 layer When the 

thickness of LaAlO3 is smaller than the critical thickness the potential change is not large 

enough to make the valence band maximum (VBM) of LaAlO3 on the surface to exceed 

the SrTiO3 band gap and therefore there is no charge transfer to the LaAlO3/SrTiO3 

interface. However, when the LaAlO3 thickness is larger than the critical thickness, the 

VBM of LaAlO3 at the surface exceeds the conduction band minimum (CBM) of SrTiO3 

at the interface, and charge is transferred to the interface. Due to the insulating nature of 

LaAlO3 and SrTiO3 layers away from the interface, the conducting electrons are quantum 

confined at the interface [37].  
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There are a number of experimental results suggesting the electronic reconstruction 

is the primary mechanism responsible for the 2DEG formation at oxide interfaces. In 

particular, the built-in electric field in LaAlO3 was recently experimentally observed 

[57]. In addition, 2DEG was also found at the interfaces in other heterostructures, such 

as LaVO3/SrTiO3 [22], consistent with electronic reconstruction mechanism. In some 

systems, however, it was argued the polar discontinuity may also be eliminated by the 

competition between the electronic and atomic reconstruction mechanisms [56, 58].  

The properties of a 2DEG strongly depend on the thin film grow conditions, which 

influence the oxygen vacancy concentration. It is well known that oxygen vacancy rich 

SrTiO3 is metallic [59].  Depending on the oxygen pressure during the film growth 

process, the carrier mobility and carrier concentration at the  SrTiO3/LaAlO3 interface 

can be different by orders of magnitude [23]. The maximum carrier density at the 

interface can be as high as 1017/cm2 which is much larger than the maximum theoretical 

value 3.5 x 1014/cm2.  Apparently oxygen vacancies are responsible for the metallic 

behavior. Several experiments have demonstrated that during the growth oxygen 

vacancies appear in the SrTiO3 substrate which makes it conducting [23-25]. However, if 

heterostructures are grown at high oxygen pressure, oxygen vacancies may be avoided 

and the dominant mechanism of the conducting interface in this situation is the electronic 

reconstruction [53].   

The cation intermixing may also be the reason for the 2DEG formed at the 

LaAlO3/SrTiO3 interface. It follows from the fact that La+ doped SrTiO3, i.e., Sr1-



13 
 

 

xLaxTiO3 with 0.1 < x < 0.95, is metallic [60]. Experimentally La and Sr intermixing at 

interface of SrTiO3 and LaAlO3 has been observed, which leads to the formation of a thin 

layer of Sr1-xLaxTiO3 at interface, and thus to a conducting phase [53, 54]. Cation 

intermixing was also considered theoretically as a possible mechanism of the conducting 

interface [54]. However, fabrication of stoichiometric interfaces with a precise control of 

oxide constituents at the interface eliminates this mechanism of the 2DEG formation.  

In contrast, no metallic phase is found at p-type AlO2/SrO interfaces. This is because 

there are no proper multiple valence states (e.g. Ti+4.5 and O-) and thus it is highly 

unlikely to accommodate a hole [45, 53]. Oxygen vacancy also plays an important role 

in this insulating p-type interface [53]. 

  

1.3     Motivation and organization of this dissertation 

As pointed out by a recent review paper published in Science [15], incorporation of 

functional oxides into electronic circuits or their use in other applications requires 

mastering their interfaces. This implies understanding, predicting and tailoring the 

physical properties of the interfaces between complex oxide materials.  Having these 

challenges in mind, in this thesis by performing first-principles calculations based on 

density functional theory, we investigate the effect of ferroelectric polarization and effect 

of epitaxial strain on 2DEG formed at the oxide interfaces, and propose a method to 

realize a spin-polarized 2DEG.  

In chapter 2, we review the theoretical methods based on density functional theory 
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that are used in this dissertation. We first introduce the Schrödinger equation to describe 

a many-body interacting electron system and explain the difficulties of solving this 

equation in a general form. Then we describe the Hohenberg-Kohn theorems and the 

corresponding Kohn-Sham equation. In the next two sections, we briefly introduce the 

local density approximation (LDA), the generalized gradient approximation (GGA) and 

the LDA+U approximation for the exchange and correlation effects of interacting 

electrons. Then a projector augmented wave (PAW) method is introduced to approximate 

the ionic potential. In the last section of this chapter, we introduce the Vienna Ab-initio 

Simultion Package (VASP) in which our DFT calculations are implemented.  

In chapter 3, the properties of 2DEG in the presence of ferroelectric materials are 

investigated and the ability to manipulate 2DEG by spontaneous polarization is 

demonstrated. We first give an introduction to some basic concepts and properties of 

perovskite ferroelectrics. Then, a method to control the properties of the 2DEG by 

external field known from literature is briefly reviewed. Further, we provide details of 

the electronic and atomic structures of the KNbO3/ATiO3 interfaces, which are 

considered to demonstrate the mechanisms responsible for the modulation of the 2DEG 

properties by ferroelectric polarization. The central part of this chapter is the prediction 

of the influence of  ferroelectric polarizations on the 2DEG formed at three different 

systems: KNbO3/ATiO3 (A = Sr, Ba and Pb).  Finally, we discuss a possibility of the 

controllable metal-insulator transition at the interface driven by polarization reversal.  

In chapter 4, the epitaxial strain effect on 2DEG at the LaAlO3/SrTiO3 interface is 
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investigated. Strain could change the crystal field, bonding properties and electron 

interactions and thus have strong impact on properties of materials. We first introduce 

the experimental results for the LaAlO3/SrTiO3 systems grown on different substrates, 

such as NdGaO3, (LaAlO3)0.3–(Sr2AlTaO6)0.7, DyScO3 and GdScO3, which provides 

epitaxial strain ranging from -1.2% to 1.59%. Then we discuss this phenomenon 

theoretically based on our first-principles calculations. We show that the critical 

thickness for 2DEG formation increases with the compressive strain. We demonstrate 

that the increased critical thickness under compressive strain can be explained by the 

electric polarization formed in SrTiO3 due to the strain.   

In chapter 5, we explore possibilities to create a spin-polarized 2DEG at EuO/LaO 

interfaces. First, spin-polarized 2DEG systems known from literature are introduced. 

Bulk properties of ferroelectric insulator EuO are briefly described. Then we consider 

two systems LaAlO3/EuO and EuO/LaO/EuO.  We demonstrate that in both systems 

2DEG is formed due to extra charge at LaO+ interface layer. The 2DEG becomes spin-

polarized as the result of the electron population of the Eu-5d state in the EuO 

conduction band which is exchange split due to the hybridization with Eu-5f states.  
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Chapter 2      Theoretical methods  

 

2.1     Many-body Schrödinger equation 

Properties of materials are governed by the interactions between the constituting 

electrons and nuclei. From the point of view of quantum mechanics, these properties are 

determined by the many-body Schrödinger equation:  

                                         
ˆ ({ , }) ({ , })I i I iH E R r R r  , (2.1) 

where the Hamiltonian is given by  

           

22 2 2 2
2 2

,

1 1ˆ
2 2 2 2I i

I

I i i I i j I JI e i I I Ji j

Z e e e
H

M m  

       
     R r r R R Rr r

 
. (2.2) 

The first and second terms here are the kinetic energy of ions and electrons respectively. 

The third term is the ion-electron potential energy. The fourth and fifth terms are 

electron-electron and ion-ion potential energy.  As the masses of ions are very large and 

the ions move very slowly compared to electrons, according to the Born-Oppenheimer 

approximation, the system can be excellently described by the motion of electrons alone 

and the kinetic energy of ions can be ignored in the Hamiltonian. Since we are interested 

in the electronic structures, the ion-ion interaction term is irrelevant and can be dropped. 

Thus, the Hamiltonian can now be simplified as 

                                                    

ˆ ˆ ˆ ˆ
ion eeH T V V    , (2.3) 

where 

                                                               2ˆ
i

i

T    r  (2.4) 
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 , (2.6) 

and we used the atomic units to simplify the description.  

The major difficulty in solving Eq. (2.1) is that the electron-electron interaction 

energy êeV  (2.6) could not be simply expressed as a sum of isolated single-particle 

energies. Consequently, the correlation interaction of electrons, ({ })i r  can not simply 

written as a production of isolated electron wavefunctions. These facts make solution of 

Eq. (2.1) very difficult and even not possible at present time for realistic systems. 

Approaches such as the Hartree-Fock approximation and density functional theory to 

replacing the many-body particle equations by a non-interacting single particle equation 

have been proposed to go around these difficulties. Density functional theory excels the 

Hartree-Fock method in the sense that it only deals with the one simple function, i.e. 

density of electron ( )n r , and includes both the exchange and correlation interaction 

while the Hartree-Fock method only includes the exchange effect. Density functional 

theory had an enormous impact on the electronic structure calculations and is the most 

widely used method today. The following three sections are devoted to the essential ideas 

behind density functional theory including the Kohn-Sham equation and the 

approximation for exchange-correlation potential and the approximation of the electron-

ion potential. 
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2.2     Kohn-Sham equation 

The  density functional theory is based on two theorems proposed by Hohenberg and 

Kohn [61]. The first theorem states the ground state properties of many-body interacting 

electron system are uniquely defined by the ground state electron density 0 ( )n r . The 

second theorem states that the expectation value of energy E is a functional of electron 

density, i.e. [ ( )]E E n r , and this functional reaches its minimum at the ground state 

density 0 ( )n r , i.e. min 0[ ( )]E E n r . The energy functional is naturally divided into two 

contributions: one depends purely on electronic motions and another depends on ionic 

potentials, which can be written as  

                                      
[ ( )] [ ( )] ( ) ( )ionE n F n V n d  r r r r r  (2.7) 

with  

                                                      ( ) I
ion

I I

Z
V  

r
r R

. (2.8) 

 As proposed by Kohn and Sham [62], the many-body electron system can be replaced 

by an auxiliary system of non-interacting particles as long as the ground state density of 

the auxiliary system is identical to the ground state density of many-body electrons. 

Assuming the single particle orbital is ( )i r , the density of the auxiliary system is then 

expressed as  

                                                     

2
( ) ( )i

i

n r r  . (2.9) 

By evaluating Eq. (2.3) the functional [ ( )]F n r in Eq. (2.7) takes the form  
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r r

r r r r r
r r

 (2.10) 

where the first term on the right hand side 

                                              

2[ ( )] ( ) ( )i i
i

T n     rr r r  (2.11) 

is the kinetic energy, and the second term is the Hartree energy due to the Coulomb 

repulsion between particles. The third term is defined to include all the many-body 

effects of exchange and correlation and is not known explicitly yet as a function of ( )n r . 

The approximation form of this term will be discussed in the next section. Performing 

variation calculation to Eq. (2.7) and taking account the restriction condition

*( ) ( ) ( ) 0i in d    r r r r through a Lagrange multiplier i , we obtain the Kohn-Sham 

equations: 

                                      
2 ( , ( )) ( ) ( )eff i i iV n       r r r r r  (2.12) 

with  

                                  ( , ( )) ( ) ( , ( )) ( , ( ))eff ion Hartree xcV n V V n V n  r r r r r r r  , (2.13) 

where 
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are Hartree and exchange-correlation potential respectively. The single particle 

wavefunction ( )i r  is called the Kohn-Sham orbital and is not the true electron 

wavefunction. However it provides the correct density as in real many-body electron 
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system. The eigenvalues i are not the true excitation energy of the electron since they 

are introduced just as Lagrange multipliers. The determination of the excitation energy is 

normally done by the Quantum Monte Carlo [63] and many-body perturbation theory 

calculation [64] with the assistance of the eigenstates obtained from Kohn-Sham 

equation. All the properties that can be derived from the ground state energy are given 

correctly. For a collinear spin-polarized system, spin up and spin down particles are 

treated separately. To extend to this case, all the functions in Kohn-Sham equations 

should be written as function of both position r and spin direction  i.e. ( , )i r and 

( , )effV r .  

 

2.3     LDA and GGA approximation 

Since the electron density function in the effective potential of the Kohn-Sham 

equation can only be obtained after Eq. (2.12) is solved for example using an iteration 

algorithm.  The major issue in the Kohn-Sham approach is how to obtain the expression 

of the exchange-correlation potential xcV  or equivalently energy [ ( )]xcE n r .  Considering 

that the effective potential effV  in Eq. (2.13) includes the ionic potential ( )ionV r  and long 

range Coulomb potential HartreeV , the remaining exchange-correlation potential xcV should 

be reasonably approximated by a local functional of density. The exchange-correlation 

energy  

                                             
[ ( )] ( ) ( )xc xcE n n d r r r r  (2.16) 

is an integral of energy density over the whole space 
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Within this local density approximation (LDA), the exchange-correlation energy 

density ( )xc r at each space point r is assumed to be the same as energy density hom ( )xc r  

in the homogeneous electron gas with the same particle density ( )n r . In the 

homogeneous system, hom
xc is purely a function of the electron density and can be divided 

to the exchange and correlation part separately i.e. hom hom hom hom( ) ( ) ( )xc xc x cn n n      . 

Therefore the exchange-correlation energy in the  LDA approximation is  

                            

hom

hom hom

[ ( )] ( ) ( ( ))

                ( ) ( ( )) ( ( ))

LDA
xc xc

x c

E n n n d

n n n d



 



   




r r r r

r r r r
.

 (2.17) 

The exchange energy hom ( )x n of a homogeneous electron gas is represented by a simple 

analytic form 
1/3

hom 3 3
( )

4x

n
n


    
 

[65], while the correlation energy hom ( )c n  can be 

parameterized with great accuracy using the results from Quantum Monte Carlo 

calculation [66]. As soon as the exchange-correlation energy [ ( )]LDA
xcE n r is known, the 

exchange-correlation potential in the Kohn-Sham equation can be easily obtained from 

the variation of [ ( )]LDA
xcE n r  : 

                         

hom
hom ( ( ))

[ ( )] ( ( )) ( )LDA xc
xc xc

n
E n n n n d

n

  
 

   


r
r r r r .  (2.18) 

Thus by definition  

                                              

hom
hom[ ( )]LDA xc

xc xcV n n
n

 
 


r  . (2.19) 

This LDA works very well even in case of very inhomogeneous system, although 

strictly speaking both exchange and correlation in this case should be non-local [67]. 
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When the electron spin is taken into account, the approximation is extended to local spin 

density approximation (LSDA) in which the exchange-correlation energy and potential 

are the functional of both spin-up and spin-down electron densities. And the Eq. (2.17) is 

modified as 

                                hom[ ( )] ( ) ( ( ), ( ))LSDA
xc xcE n n n n d   r r r r r  (2.20) 

Generalized-gradient approximations (GGA) [68-70] extend the LDA assuming that 

xcE not only depends on the density ( )n r , but also on the magnitude of its gradients

( )n r . Thus the exchange-correlation energy is written as  
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r r r r r

r r r r r
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where the gradient of density is included in dimensionless functional ( ( ), ( ) )xcF n nr r . 

As hom
x is already known, the most important step for evaluating GGA

xcE is to obtain both 

the exchange xF  and correlation cF  part of xcF . By expanding both of them, various 

forms of  xcF  have been proposed such as Perdew and Wang (PW91) [69] and Perdew, 

Burke and Enzerhof (PBE) [70]. Similar to LDA once GGA
xcE  is obtained; the exchange-

correlation potential can be derived via variational method: 

        

hom hom
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r r . (2.23) 

GGA provides better agreement with experiment over LDAs in many cases 

especially in predicting the binding energy for many finite systems like molecules and 
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surfaces, etc.  

 

2.4     LDA+U approximation 

Despite the success of LDA and GGA, both of them have problems to describe 

systems with localized (strongly correlated) d and f electrons such as transition metal 

compound and rare earth elements and compound. Because 
[ ]xc

xc

E n
V

n




  obtained from 

LDA or GGA is like a mean-field solution. The LDA or GGA functional tend to over-

delocalize the electrons and the on-site Coulomb repulsion is not well taken into account 

for localized orbitals. To improve the description, an additional orbital dependent 

interactions of the same form as the ‘U’ interaction in Hubbard models can be introduced 

[71]. In this method known as the ‘LDA+U’ and ‘GGA+U’, the added term shifts the 

energy of localized orbitals relative to other orbitals and thus corrects errors usually large 

in LDA and GGA calculations [67].  

More specifically, within atomic spheres where the atomic characteristics of the 

electronic state largely survived, wave function is expanded in a localized orthonormal 

basis inlm ( i  denotes the site, n  is the magnetic number, l is the orbital quantum 

number, m is the magnetic quantum number,   is the spin index). The partly filled 

localized electrons are assumed to be in nl  shell.  The density matrix for these electrons 

is defined as [72]: 

                                                ' , '

1
Im ( )

FE

mm ilm ilmn G E dE 


   , (2.24) 
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where , ' ( )ilm ilmG E are the elements of the green-function matrix in the localized 

representation.  

The generalized LDA+U functional containing three terms: the standard LDA 

functional LDAE , the Hubbard-like term HubE including effective on-site interaction, and 

the ‘double counting’ term  dcE  . Since the Hubbard-like term is added explicitly, the 

energy contribution of these orbitals included in LDA functional should be removed to 

avoid twice counting by subtracting dcE .  In terms of density matrix, LDA+U energy 

functional is 

                                    [ ( )] [{ }] [{ }]LDA U LDA Hub dcE E E n E n     r  , (2.25) 

where ( ) r is the charge density for spin electrons.  In the fully rotational invariant 

form [73] the Hubbard term is given as 

                   

 

' '' '''
,

' '' '''

1
[{ }] { , '' ', '''

2

                   , '' ', ''' , '' ''', ' }

Hub ee mm m m
m

ee ee mm m m

E n m m V m m n n

m m V m m m m V m m n n

  



 



 


, (2.26) 

where eeV  is the screened Coulomb interaction among correlation electrons. From the 

expansion of  
1

'r r
 in spherical harmonics, the matrix elements are obtained as: 

                                  , '' ', ''' ( , ', '', ''') k
ee k

h

m m V m m a m m m m F , (2.27) 

where  

                         *4
( , ', '', ''') ' '' '''

2 1

k

k kq kq
q k

a m m m m lm Y lm lm Y lm
k





  . (2.28) 

kF is the effective Slater integral which are specified in terms of the effective on-site 

Coulomb and exchange parameter U and J [73].  The double counting term is given as   
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[{ }] ( 1) ( 1)

2 2dc

U J
E n n n n n  



     , (2.29) 

where 

                                                             
mm

m

n n   , (2.30) 

                                                               
n n



 . (2.31) 

The Kohn-Sham Hamiltonian ˆ
LDA UH  including on-site Coulomb interaction is finally 

obtained by minimizing the LDA+U energy functional ( ( ),{ })LDA UE n  r with respect 

to ( ) r and { }n  as: 

                                     
'

'

ˆ ˆ 'LDA U LDA mm
mm

H H inlm V inlm     , (2.32) 

where 
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.

 (2.33) 

    

2.5     Plane wave pseudopotential methods       

A simple and convenient way to solve the Kohn-Sham Schrödinger equation is the 

plane wave method [74]. From the Bloch theorem, the wavefunction , ( ) ( )i
n k e u  k rr r  

of an electron in the effective periodic potential effV  can be written as a cell-periodic 

function ( )u r  modulated by a plane wave ie k r . Expanding the periodic function ( )u r  

by plane waves ie G r  with wave vectors G  in the reciprocal space, the electron 

wavefunction can be expressed as a combination of plane wave i.e.  
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( )( ) i
k r c e  

  k G r
k G

G

 , (2.34) 

where ,nc k G  are determined by solving the matrix of Kohn-Sham equation  in reciprocal 

space 

                                     
2

' '
'

( ')eff i
G

V c c  
      GG k G k Gk G G G  (2.35) 

upon substituting Eq. (2.34) into the equation  In principle, infinite number of reciprocal 

vectors G is required to expand the wavefunction.  However, ,nc k G with smaller kinetic 

energy 
2k G are more important than those with larger kinetic energy. Within certain 

energy accuracy, finite plane wave basis set can be obtained by introducing a cutoff 

energy cutE  such that
21

2 cutE k G .   

Although the accuracy of the expansion can always be reached by increasing cutE , 

this direct plane wave method is not practical since the number of plane wave is always 

extremely large in order to describe the tight bounded electron core state and electron 

valence state with rapid oscillation near the nucleus.  Considering the facts that the core 

electrons have little interaction with neighbors and physical properties of material are 

mostly influenced by valence electrons, a ‘pseudo’ ionic potential can be constructed 

such that a pseudo-wavefunction is generated correspondingly which pertains the 

identical scattering properties of the ion and core electron for valence electron and is 

identical to the valence wavefunction outside a critical radius (core radius).  The pseudo-

wavefunction can be smooth in the core region by choosing proper pseudopotential such 
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that pseudo-wavefunction is orthogonal to the core states which have many nodes. By 

replacing the true ionic potential with pseudopotential, the core electron states disappear 

and character of rapid oscillation of valence electron wave-function in the core region is 

replaced by smooth behavior of the pseudo-wavefunction [75].  Therefore, the replacing 

total energy without core-electrons energy is smaller than that in the true system, and the 

required plane wave set is much smaller due to the smooth nature of pseudo-

wavefunction.  

There are many pseudopotential approaches such as norm-conserving 

pseudopotential (NCPP) [76], ultrasoft pseudopotential (USPP)  [77] and projector 

augmented wave (PAW) [78]. The ordinary pseudopotential method like NCPP is either 

very large or complicated for the first-row elements and system with d or f electrons in 

order to taking into account the semicore states of them, and is not an economical way to 

calculate these systems.  But both USPP and PAW method allow these systems to be 

handled in an affordable effect.  In this dissertation all the DFT calculations are 

performed using the PAW method.  This all-electron pseudopotential method divides the 

wave function into an auxiliary smooth valence function n which can be represented in 

a plane wave expansion and an auxiliary localized partial-wave function i which keep 

all the information of the core states [78]. Mathematically only n are taken into account 

in Schrödinger equation calculation and i  are taken into account within a 
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pseudopotential.  PAW method starts with a transformation operator T̂ which maps the 

auxiliary wave function n to the real wave function n : 

                                                            
ˆ( )n nT r  . (2.36)

 
 

To look at the atomic centered contribution to the this transformation, the transformation 

operator T̂ is expressed as  

                                                               

ˆ ˆ1
i

i

T T  R
R

, (2.37) 

where ˆ
i

TR acts within some augmentation region enclosing atom at site iR  and is 

determined by the transformation  

                                                              
ˆ( )i iT r   , (2.38) 

where target partial wave i  are the solution of radial Schrödinger equation for isolated 

atoms, and auxiliary partial-wave function i  are generated to be orthogonal to the core 

state and identical to target partial wave i outside the augmentation radius.  Using Eqs 

(2.37) and (2.38) and introducing a projector function ip which obeys the conditions: 

                                                              i j ijp    (2.39) 

and                                                     1j i
i

p    . (2.40)  

The transformation T̂ is obtained as  

                                                 
 ˆ 1 j j j

j

T p      . (2.41) 

With the knowledge of T̂ , from variation calculation of the total energy with respect to 

auxiliary wave function: 

                                                     

 
* *

ˆ
nn

n n

E TE   
 

  


 
, (2.42) 
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we obtained the Schrödinger -like equation for auxiliary functions  

                                                        ( ) 0n nH O    , (2.43) 

where †ˆ ˆH T HT and †ˆ ˆO T T . And the electron density in the Eq. (2.43)  can be 

evaluated as below: 

                                  

†ˆ ˆ( ) n n n n
n n

r r T r r T      r   . (2.44) 

Now similar to the direct plane wave method, Eq. (2.43) can be solved by expanding n

to a small number of plane waves. 

 

2.6     Vienna Ab-initio Simultion Package (VASP)       

All the computations presented in this dissertation are performed using Vienna Ab-

initio Simultion Package (VASP) [79]. This is a computational program package for 

electronic structure and quantum-mechanical molecular dynamics (MD) calculations 

from first principles.  The approach implemented in VASP is based on DFT using a plane-

wave basis set as discussed above and an exact evaluation of the instantaneous electronic 

ground state at each MD time step.  

Plane-wave calculations in VASP always involve integration of smooth periodic 

functions over the entire Brillouin zone (BZ). This integral can be approximated by 

discrete set of points in the BZ. VASP includes a full featured symmetry code to 

determine the symmetry of arbitrary structure automatically. By using point symmetry 

and selecting special points using Monkhorst-Pack method [80] in VASP, the number of 
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discrete k-points need to evaluate the integral is greatly reduced. For BZ integrals in 

metallic systems, discontinued functions at Fermi-level always leads to poor k-points 

convergence. A finite temperature is artificially introduced to smear the function. 

Gaussian smearing and Fermi-Direc smearing are available in the VASP for calculation of 

metals. The VASP code use efficient matrix diagonalisation schemes, such as the blocked 

Davidson scheme [81] and the residual minimization scheme - direct inversion in the 

iterative subspace (RMM-DIIS) [82, 83], for the iterative calculation of the lowest Kohn-

Sham eigenstates. The VASP use efficient Paulay-Broyden pre-conditioned mixing of the 

input and output charge densities for iteration calculation [82].  

The LDA (LSDA) and GGA approximations for exchange-correlation effect of 

interacting electrons are implemented in VASP.  However, these approximations should 

be carefully chosen when deal with certain materials. Due to the overbinding tendency 

inherent in the LDA, LDA underestimated the lattice constant by about 1%. The GGA 

corrects this intrinsic defect of LDA but overestimates the lattice constant by about the 

same amount. GGA produces correct ground state for magnetic transition metals while 

LSDA fails. GGA gives better prediction for surface and adsorption energy over LDA 

method. LDA works better than GGA for layer crystals such as graphite and molecules 

crystals where Van Der Waals force is dominant [84]. The interaction between ions and 

electrons is described by USPP or PAW method which considerably reduces the number 

of plane waves per atom for transition metals and first row elements.  The LDA+U 
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(GGA+U) approach is also implemented in VASP to take into account strong Coulomb 

repulsion between electrons in localized orbitals such as 3d and 5f bands.  

      Beyond simulations based on DFT, VASP code also allows post-DFT calculations 

such as many-body perturbation theory (GW) for quasiparticle spectra [85] and 

dynamical electronic correlations via the random phase approximation [86].  
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Chapter 3     Ferroelectric polarization effect on 

2DEG 

 

The 2DEG has unique properties that are promising for applications in all-oxide 

electronic devices. For such applications it is desirable to have the ability to control 

2DEG properties by external stimulus. Here we employ first-principles calculations to 

investigate KNbO3/ATiO3 (001) (A = Sr, Pb, Ba) heterostructures where perovskites 

ferroelectrics, KNbO3, PbTiO3 and BaTiO3, are used as oxide constituents to create the 

interface 2DEG. Our results suggest that the polar (NbO2)
+/(AO)0 interface in these 

heterostructures favors the formation of 2DEG similar to that at the (LaO)+/(TiO2)
0 

interface in a LaAlO3/SrTiO3 heterostructure. We predict that the presence of 

spontaneous ferroelectric polarization which can be switched between two stable states 

allows modulations of the carrier density and consequently the conductivity of the 

2DEG. The effect occurs due to the screening charge at the interface that counteracts the 

depolarizing electric field and depends on polarization orientation. The magnitude of the 

effect of polarization on the 2DEG properties strongly depends on contrast between 

polarizations of the two constituents of the heterostructure: the larger is the difference in 

the two polarizations, the bigger is the effect. For a sufficiently large polarization 

difference, we predict a metal-insulator transition at the interface driven by polarization 

reversal. This behavior is found for the KNbO3/PbTiO3 interface and for the 

KNbO3/BaTiO3 interface when polarizations of KNbO3 and BaTiO3 are antiparallel. The 
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proposed concept of ferroelectrically controlled interface conductivity may be very 

interesting for memory and logic applications and we hope that our predictions will 

stimulate experimental studies in this field. 

 

3.1     Introduction  

3.1.1     Ferroelectricity in perovskite oxides 

Electric polarization created in dielectric and paraelectric materials almost linearly 

responds to the external electric field. In contrast, a ferroelectric material responds 

nonlinearly to the external field and has two or more stable states with different nonzero 

polarization at zero electric field, which is called ‘spontaneous polarization’.  Some 

materials which are not ferroelectric also have the spontaneous polarization, such as 

wurtzite structure insulators, but their polarization is not switchable. What makes a 

ferroelectric material interesting is the ability to switch between different spontaneous 

polarizations states using the external electric field. This property gives ferroelectric 

materials broad applications in memory and microwave devices [6, 87].  The most 

studied ferroelectrics nowadays are perovskite oxides.  The reason is that these materials 

are easy to make. 

 Perovskite oxides are a class of materials with chemical formula ABO3, where O is 

oxygen, A and B are cations. In the high symmetric cubic phase, the A atom is sitting at 

the corner of the cube, the B atom is located at the center of the cube and oxygens sit at 

the center of each face, as shown in Figure 3.1(a). In addition, B is at the center of an 
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octahedron cornered by 6 oxygens, and A is at the center of a hole formed by these 

octahedral with 12 oxygens at corners. Alternatively viewed from the [001] direction, 

this structure is formed by alternating the AO and BO2 layers.  

The stability of the cubic phase is fragile, and can be estimated by the empirical 

criterion of Goldschmidt (1926) [88]. While the ionic radius of A is too small to contact 

the holes, rotation and tilting will be developed to make the contact possible, as 

happened in CaTiO3.  When the ionic radius of B is too small to contact the oxygen 

octahedron, it tends to develop a relative displacement to oxygen in the BO2 plane and 

thus forms a dipole moment and possibly creates a ferroelectric polarization [89].  

More generally, the polarization in these perovskite ferroelectrics is characterized by 

relative displacement between cations (both A and B) and oxygen anions, as seen from 

Figure 3.1 (b). BaTiO3, PbTiO3 and KNbO3 are three representative perovskite 

ferroelectrics and will be used as components in the heterostructures to be discussed 

below.  BaTiO3 has a ferroelectric tetragonal phase between 278K and 393K. Above that 

range it has a cubic paraelectric phase. Below that range it transforms to orthorhombic, 

and finally to rhombohedral phase at 183K.  KNbO3 has the same transition pattern as 

BaTiO3. It has three transitions from paraelectric cubic to ferroelectric tetragonal, to 

ferroelectric orthorhombic, and to ferroelectric rhombohedral phase at transition 

temperatures 701K, 488K and 210K respectively [90]. In contrast, PbTiO3 has only one 

transition from cubic to ferroelectric tetragonal at 760K.  In this chapter, we consider the 

ferroelectric perovskites in the tetragonal phase under strain applied by SrTiO3 substrate 
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at room temperature.  

 

             

Figure 3.1 (a) cubic perovskite structure ABO3. B (gray) is at center of oxygen (red) 

octahedron. A (blue) is at the center of a hole formed by these octahedral. (b) 

ferroelectric tetragonal phase of ABO3 in (010) direction.  

 

 

3.1.2     Field controlled 2DEG 

Using a 2DEG system to make a field-effect device is an important step toward 

practical applications. The interface of a heterostructure with 3 unit cell thick LaAlO3 on 

top of SrTiO3 was found insulating. And it was demonstrated that operating at room 

temperature in field-effect configuration, an insulator-metal phase transition can be 

achieved by gate voltages [46]. Surprisingly this 2DEG formed at LaAlO3/SrTiO3 

interface has a certain memory behavior which is not observed in conventional dielectric 
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field-effect device [46].   

It was demonstrated that nanosize conducting dots with densities > 1014inch-2 and 

lines with widths of about 3nm can be created and erased just using voltage applied by 

conducting atomic force microscope probe [91]. A possible explanation of this switching 

behavior is that by application of positive and negative voltage oxygen on the surface of 

LaAlO3 is removed and adsorbed respectively. The oxygen vacancy on top of the LaAlO3 

modifies the intrinsic field in LaAlO3 and thus the carrier density [91]. Other studies 

imply absorption of hydrogen and water could also play an important role in the 

switching process [92, 93]. Using the same technique, tunnel junctions and field-effect 

transistors with characteristic dimensions as small as 2 nanometers were created without 

using destructive lithography techniques [47].  

All of the field-controlled devices above depend on the induced defects or adsorbed 

molecules which are impossible to control. In this chapter, we propose a prototype for a 

field-controlled device which is independent on external environment. The switching 

behavior is completely determined by the internal property, i.e. spontaneous polarization 

of ferroelectrics.  

The effect of spontaneous polarization on the 2DEG has been already demonstrated 

experimentally. It was observed in ZnO/MgxZn1-xO [16][94] and GaN/AlxGa1-xN [95] 

heterostructures where a sheet charge is formed at the interface to relax the 

electrostatically unfavorable state. Using a ferroelectric oxide material as one (or both) 

constituent of the 2DEG heterostructure allows the control of the 2DEG properties by 
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ferroelectric polarization switching. 

  

 

 

Figure 3.2 (NbO2)
+/(AO)0 interface in KNbO3/ATiO3 heterostructure (a) as an analogue 

of (LaO)+/(TiO2)
0 interface in LaAlO3/SrTiO3 heterostructure (b).  

 

To explore the effect of ferroelectricity on electronic properties at the interface of all 

oxide heterostructure, we consider oxide heterostructures composed of ferroelectric 

layers. The particular systems chosen for this study are KNbO3/ATiO3 (001) (A = Sr, Pb 

and Ba) oxide heterostructures. Ferroelectric KNbO3 has alternating charge layers of 

(NbO2)
+ and (KO)- along the [001] direction similar to those of LaAlO3 as shown in 

Figure 3.2. A generalized perovskite form ATiO3 consists of alternating planes of (TiO2)
0 

and (AO)0. A specific analogy is the neutral planes (TiO2)
0 and (SrO)0 in the SrTiO3. 
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Similar to (LaO)+/(TiO2)
0, the polar discontinuity at the (NbO2)

+/(AO)0 interface in the 

KNbO3/ATiO3 heterostructure leads to potential divergence which needs to be removed 

by electron transfer. The (NbO2)
+/(SrO)0 interface in KNbO3/ATiO3 is expected to be 

compensated electronically leading to the conducting interface. On the other hand, the 

presence of the free charge at the interfaces allows for the growth of a superlattice with 

stable polarized regions and large polarization discontinuities at the internal interfaces, 

as was shown recently using first-principles calculations for a SrTiO3/KNbO3 system 

[96]. 

We will show in the next sections that the 2DEG is indeed formed at the 

(NbO2)
+/(AO)0 interface, and the conducting properties of the 2DEG can be switched by 

the orientation of the spontaneous polarization.  

 

3.2     Theoretical approach 

3.2.1     Computational method 

Our theoretical studies are performed using methods described in Chapter 2. The 

electron wave functions are expanded in a plane wave basis set limited by a cutoff energy 

of 500eV. Spin-orbit corrections are not included in the calculations. The bulk and 

superlattice calculations are performed using the 6x6x6 and 8x8x1 Monkhorst-Pack [80] 

k-point mesh respectively. The self-consistent calculations are converged to 10-5 eV/cell 

and the structures are relaxed until the forces on the ions are less than 0.02 eV/Å. 
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3.2.2     Properties of bulk perovskites SrTiO3, KNbO3, BaTiO3 and PbTiO3 

We consider perovskite superlattices grown on (001) SrTiO3 single-crystal substrates. 

Thus in-plane lattice constant of the superlattice is fixed to the experimental lattice 

constant of SrTiO3 which is a = 3.905 Å [97].  By varying the out-of-plane lattice 

constant c in a paraelectric configuration and minimizing the total energy, the lattice 

constant c of bulk BaTiO3, SrTiO3 and KNbO3 are calculated to be 4.143 Å, 3.983 Å and 

4.049 Å respectively. The obtained tetragonal structures of the perovskites are used as 

building blocks of all the superlattices with constituents in paraelectric states with mirror 

plane symmetry and with spontaneous polarization where reflection symmetry is broken 

[98]. However, the out-of-plane lattice constant c of PbTiO3 without ionic relaxation 

(4.018 Å) is used only in superlattice in paraelectric state. With large polarization in 

ferroelectric state, the out-of-plane lattice constant of PbTiO3 in the ferroelectric state 

will be much different from that in the paraelectric state. When the ferroelectric state is 

developed in the PbTiO3 in superlattice, we used an out-of-plane lattice constant of 4.530 

Å obtained by minimizing the total energy with full ionic relaxation. Here, the tetragonal 

distortion c/a is 1.16, which is consistent with the GGA result of Ref. [99], but which 

overestimates the experimental value of c/a = 1.06 at room temperature [100]. It is 

known that the GGA approximation in general overestimates the tetragonal distortion in 

ferroelectrics (see, e.g., Ref. [101]). However, the predicted value of polarization of 

PbTiO3 is consistent with experimental data as discussed in the next paragraph.  

When the bulk ATiO3 structures with the in-plane constraint a = 3.905 Å are in the 
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ferroelectric state, the polarizations of BaTiO3, KNbO3 and PbTiO3 obtained by using 

the Berry Phase Method [102] are 0.43 C/m2, 0.41 C/m2, and 1.16 C/m2, respectively. 

These values are consistent with the experimental values of 0.46 C/m2 [103], 0.37 C/m2 

[104], and 0.97 C/m2 [105], for polarizations of BaTiO3, KNbO3 and PbTiO3 respectively 

and the previous theoretical calculations [98, 99, 106]. It is notable that the calculated 

polarization of PbTiO3 is much larger than the calculated polarization of both KNbO3 

and BaTiO3, which has an important implication for our results as discussed in Sec 3.3.   

The calculated band gaps of bulk KNbO3, SrTiO3, BaTiO3, and PbTiO3 with the in-

plane constraint are very close in magnitude, i.e. 2.0 eV, 2.0 eV, 1.8 eV and 2.0 eV 

respectively. These values are lower than the experimental values of 3.3 eV [107], 3.3 

eV [108], 3.3 eV and 3.4 eV [109], respectively, due to well-known deficiency of DFT 

calculations [66]. However, similar to our calculations they are very close in magnitude. 

This fact has an important implication for the formation of 2DEG at the KNbO3/ATiO3 

(A = Sr, Pb, and Ba) interfaces, which makes it different from the LaAlO3/SrTiO3 

interfaces, where both the calculated (3.7 eV) and the experimental (5.6 eV [109]) gaps 

in LaAlO3 are much higher than those in SrTiO3.  

 

3.2.3     Structural model for superlattices 

We employed periodic boundary conditions for the superlattice. With building blocks 

obtained above, the superlattices are constructed as (KNbO3)m/(ATiO3)n (A = Sr, Ba, and 

Pb) with m = 8.5 unit cells of KNbO3 and n = 8.5 unit cells of ATiO3 along the [001] 



41 
 

 

direction. Figure 3.3 shows the interface geometry of the superlattice. The two interfaces 

have the same termination, i.e. NbO2/AO. This implies a non-stoichiometric KNbO3 

which is terminated by the NbO2 monolayers on both sides. In this case an “extra” 

electron is introduced into the system due to an electron on the additional NbO2 

monolayer. As we will see in Sec 3.3, the Fermi level move above the conduction band at 

the interface and thus there is a 2DEG.  

The interface separation distance in the KNbO3/ATiO3 heterostructure is determined 

by minimizing the total energy of a smaller superlattice (m = 2.5 and n = 1.5) keeping the 

in-plane and out-of-plane lattice constants in KNbO3 and ATiO3 subunits unchanged. The 

left and right NbO2/AO interfaces (see Figure 3.3) in the heterostructure are symmetric 

when both KNbO3 and ATiO3 are in paraelectric states. However, when ferroelectric  

states are developed, the interface to the right is equivalent to the interface to the left with 

electric polarization reversed. This allows us to study the effects of polarization reversal 

on the interface electronic properties by considering two interfaces in a single 

heterostructure.  
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Figure 3.3 Atomic structure of the unit cell and the (NbO2)
+/(AO)0 interfaces in a 

(KNbO3)8.5/(ATiO3)8.5 (001) superlattice with parallel (a) and antiparallel (b) polarization 

indicated by white and black arrows respectively.  

 

First, we consider a reference paraelectric state in which lattice parameters of the two 

components in the heterostructure are kept the same as found above for the bulk 

structures. Only the interface separation is relaxed to minimize the total energy of the 

whole system. Next, we consider a ferroelectric state: we relax all the ions in the 

KNbO3/ATiO3 superlattices starting with the displacement pattern of the bulk tetragonal 

soft mode [110, 111] (with polarization pointing from left to right), and minimize the 

total energy with respect to atomic coordinates of all atoms in the heterostructures 

keeping the lattice constants unchanged. The ferroelectric states are stable with respect to 

the paraelectric states by energies -1.18, -1.43 and -0.91 eV/supercell for KNbO3/BaTiO3, 

KNbO3/PaTiO3, KNbO3/SrTiO3 heterostructures, respectively.  

Within the GGA approximation, the SrTiO3 in the superlattice shows polar atomic 
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displacements. Since SrTiO3 is not a ferroelectric material in the bulk, we also investigate 

the interfaces of the KNbO3/SrTiO3 superlattice by fixing the atomic positions in the 

middle eight monolayers in SrTiO3. Finally, in KNbO3/BaTiO3 heterostructure, we 

consider polarizations in KNbO3 and BaTiO3 pointing opposite to each other in order to 

verify our explanation of the switching behavior and to introduce one more avenue to 

realize metal-insulator transition at the interface.  

 

3.3     Results and discussion 

3.3.1     SrTiO3/KNbO3 

First, we investigate properties of (NbO2)
+/(SrO)0 interface in (KNbO3)8.5/(SrTiO3)8.5 

heterostructure in a paraelectric state. Figures 3.4(a) and 3.4(d) show the density of states 

(DOS) projected onto 4d-orbitals of Nb atoms (Figure 3.4(a)) and 3d-orbitals of Ti atoms 

(Figure 3.4(d)), located at different NbO2 or TiO2 monolayers l and k respectively away 

from the (NbO2)
+/(SrO)0 interface. Apparently, there are occupied conducting states at 

and below the Fermi energy, thus n-type metallic state is obtained at the interface. As is 

evident from Figures 3.4(a,d), the occupation of these states is largest near the interface 

(i.e. for l = 1 and k = 2) and decreases with increasing distance from the interface. These 

occupied states are similar to those at the (LaO)+/(TiO2)
0 interface in LaAlO3/SrTiO3 

heterostructures. However, due to a smaller band gap in KNbO3 (the calculated value is 

2.0eV) as compared to that in LaAlO3 (the calculated value is 3.7eV), the KNbO3 

conduction band minimum in the KNbO3/SrTiO3 heterostructure lies much closer to the 
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Fermi energy, i.e. about 0.4eV, which makes it energetically favorable to bend and 

populate the conduction bands of KNbO3 that are mainly formed by the Nb 4d-orbitals 

(see Figure 3.4(a)). This is different from the LaAlO3/SrTiO3 heterostructure where the 

LaAlO3 conduction bands lie 2.6eV above the Femi level and consequently almost do 

not participate in the 2DEG formation.  

Next, we investigated the interface of the (KNbO3)8.5/(SrTiO3)8.5 superlattice in a 

ferroelectric state with polarization pointing from left to right. We fix eight middle 

monolayers of SrTiO3 and relax all the other atomic positions in the superlattice. Figure 

3.5(a) shows the ferroelectric displacements of the cations (Nb, Ti, K, Sr) relative to the 

oxygen anions in the heterostructure. The symmetry between the left and right interfaces 

(see Figure 3.3(a)) is broken by the ferroelectricity resulting in the deviation between 

electronic structures at the two interfaces as compared to paraelectric (centrosymmetric) 

state. We find that ferroelectric displacements in the central monolayers of KNbO3 are 

close to those found in the bulk KNbO3 constrained to have the in-plane lattice constant 

a = 3.905 Å. 
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Figure 3.4 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a, b, c) 

and 3d-orbitals of Ti atoms (d, e, f) located at different NbO2 or TiO2 monolayers l or k 

from the (NbO2)
+/(SrO)0 interface respectively in the (KNbO3)8.5/(SrTiO3)8.5 superlattice 

for either interface in the paraelectric state (a, d), the right interface (b, e) and the left 

interface (c, f) in the ferroelectric state. Layer number indicates the layer counted from 

the interface. The shaded plots are the DOS of atoms in the central monolayer. The zero 

along the horizontal axis refers to the Fermi energy. 

 

Figures 3.4(b,c) and Figures 3.4(e,f) show the DOS projected onto the Nb 4d-orbitals 
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and the Ti 3d-orbitals respectively, located at different NbO2 or TiO2 monolayers (l or k 

respectively) from the right and left of the (NbO2)
+/(SrO)0 interfaces. For the interface on 

the left (Figures 3.4(b,e)), the occupancies of both the Nb-4d states and Ti-3d states are 

reduced significantly as compared to the right interface (Figures 3.4(c,f)) due to the 

ferroelectric displacements. Thus, in the superlattice the two interfaces are distinguished 

by the orientation of the ferroelectric polarization. This implies that by reversing the 

electric polarization, the carrier density of 2DEG at the KNbO3/SrTiO3 interface could 

be changed significantly.  

 For the KNbO3/SrTiO3 heterostructure without constrains in the middle layers of 

SrTiO3, we find ferroelectric-type displacements in SrTiO3 which are seen in Figure 3.5 

(b) and (c). An induced polarization in SrTiO3 is known from experimental studies (see, 

e.g., Ref. [112]). We note, however, that in our calculations these ferroelectric 

displacements are partially the result of using the GGA approximation which 

overestimates the equilibrium lattice constant of SrTiO3, resulting in the tetragonal 

distortion of SrTiO3 when the experimental lattice constant is used to constrain the in-

plane lattice parameter. We find, however, that for the superlattice with the un-

constrained SrTiO3 the layer-resolved DOS on Nb and Ti atoms are similar to those in 

the superlattice where eight middle monolayers in SrTiO3 are fixed. This indicates that 

the induced polarization in SrTiO3 does not affect the result qualitatively due to the fact 

that the SrTiO3 subunit in the superlattice is a dielectric at the fringe of ferroelectricity 

with much smaller spontaneous polarization compared to KNbO3. 
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Figure 3.5 Cation (Nb, Ti, K, Sr) displacements with respect to oxygen anions in 

(KNbO3)8.5/(SrTiO3)8.5 superlattice with eight middle monolayers of SrTiO3 fixed (a), 

with all the ions fully relaxed (b) and displacements of all the ions in fully relaxed 

ferroelectric state (c). Open and solid symbols in (a) and (b) indicate Sr-O (K-O) and Ti-

O2 (Nb-O2) displacements respectively. Solid circles and squares in (c) indicate Sr (K) 

and Ti (Nb) displacements, respectively. Open circles and squares in (c) indicate 

displacements of O atoms in SrO (KO) and TiO2 (NbO2) layers, respectively. The two 

dashed vertical lines indicate left and right NbO2/SrO interfaces.  

 

The switchable behavior can be understood in terms of the screening of the 

polarization charge achieved by changing the free electron density of 2DEG at the 

interface. As discussed above the polarization in SrTiO3 can be ignored for this 

consideration. The polarization in KNbO3 is pointing from the left to the right causing 
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negative and positive polarization bound charges accumulated at left and right interfaces, 

respectively. To reduce the depolarization field and thus decrease the energy in the 

superlattice, the free charge is enhanced at the right interface and reduced at the left 

interface to compensate polarization charges. This is seen from Figure 3.6 which shows 

the free charge on Nb and Ti atoms in the paraelectric (open circles) and ferroelectric 

(open triangles) states. These charges are obtained by integrating the layer dependent 

DOS shown in Figure 3.4 from the conduction band minimum up to the Fermi energy. 

Thus each point on the curves in Figure 3.6 shows the number of free electrons on the 

Nb and Ti sites in the superlattice. Figure 3.6 also shows the screening charges (solid 

symbols) calculated from the difference between the free charges in the ferroelectric and 

paraelectric states.  
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Figure  3.6 The free charge (in units of electron) on Nb and Ti atoms across the unit cell 

of (KNbO3)8.5/(SrTiO3)8.5 superlattices in paraelectric state and ferroelectric state when 

the middle layers in SrTiO3 is fixed (a) and all the ions are fully relaxed (b). The 

screening charge is obtained by calculating the difference of the free charges on Nb and 

Ti atoms for ferroelectric and paraelectric states. The directions of polarization for the 

ferroelectric state are from left to right.  

 

 

Heterostructure 

Ferroelectric: 
Right interface 

Ferroelectric: 
Left interface 

Paraelectric:  Either 
interface 

Nb Ti Total Nb Ti Total Nb Ti Total 

Parallel 
polarizations 

KNbO3/SrTiO3: 
full relaxation 

0.36 0.07 0.43 0.09 0.06 0.15 0.19 0.10 0.29 

KNbO3/SrTiO3: 
middle SrTiO3 

layers fixed 
0.39 0.14 0.53 0.05 0.01 0.05 0.19 0.10 0.29 
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KNbO3/PbTiO3 0.00 0.00 0.00 0.25 0.47 0.72 0.16 0.11 0.27 

KNbO3/BaTiO3 0.25 0.03 0.28 0.12 0.15 0.27 0.17 0.09 0.26 

Antiparallel 
polarizations 

KNbO3/BaTiO3  0.46 0.12 0.58 0.00 0.00 0.00 0.19 0.09 0.26 

Table 3.1 Number of electrons on Nb and Ti atoms per lateral unit cell area at two 

interfaces in the KNbO3/ATiO3 (A = Sr, Ba, Pb) heterostructures without polarizations, 

with parallel and with antiparallel polarizations in each constituent. 

 

Further insight as to how polarization switching influences the density of the 2DEG 

can be obtained from the number of free electrons accumulated at the two interfaces. We 

calculate local charges using Wigner-Seitz (WS) spheres that are used by VASP to 

project the wave functions onto spherical harmonics to calculate partial DOS*. Table 3.1 

shows the number of occupied Nb-4d and Ti-3d states integrated from conduction band 

minimum up to the Fermi energy and added for all the atoms from the middle layer up to 

the left and right interface. In the paraelectric KNbO3/SrTiO3 superlattice, free carriers 

on left and right interface are calculated to be 0.29 electrons each per unit cell area, 

which are equal due to the symmetry. In the ferroelectric KNbO3/SrTiO3 superlattice 

with middle layer of SrTiO3 fixed, free carriers on right and left interface are obtained to 

be 0.53 electrons and 0.05 electrons per unit cell area. Comparing with the paraelectric 

state, extra 0.24 electrons are accumulated at the right interface and 0.24 electrons are 

removed from the left interface. Evidently the induced screening charge has an opposite 

                                                            
* There is no unambiguous way to define WS radii, and we use the default values of 2.138, 1.588, 1.979, 
1.725, 1.323, 1.270, and 0.820 Angstroms for the radii of Sr, K, Ba, Pb, Ti, Nb and O atoms respectively 
provided by the input potential file in the VASP program. 
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sign to the polarization charge, thereby counteracting the depolarizing electric field. The 

polarization charge density P can be estimated from the polarization of KNbO3 in 

middle layer using the Berry phase method which gives PKNbO3 = 0.41C/m2. This 

corresponds to the polarization charge per unit cell area of P = 0.39e. The WS charge 

density at the two interfaces changes by 0.24e per unit cell area in going from para- to 

ferro-electric state. The WS charge density (0.29e per unit cell area) underestimates the 

actual charge density (0.5e per unit cell area) in the paraelectric state. When scaled with 

the factor 0.5/0.29, the change in charge at either interface becomes 0.41e per unit cell 

area which is about the same as the polarization charge density. 

 In the heterostructure with full structural relaxation, the difference of free charges 

between two interfaces is not as much as that when the middle layer of SrTiO3 is fixed 

due to the small induced polarization in SrTiO3. We obtain the polarization of SrTiO3 

from polar displacements (Figure 3.5(b)), using the Berry phase method, of about 0.17 

C/m2. From the difference of the polarizations in KNbO3 and SrTiO3 of 0.24 C/m2, the 

polarization charge per unit cell area is P = 0.23e, which is about the same as the 

screening charge density of 0.14e per unit cell area scaled with the factor 0.5/0.29. 

 

3.3.2     PbTiO3/KNbO3 

Here we describe our investigations of the electronic properties at the polar interfaces 

in the (KNbO3)8.5/(PbTiO3)8.5 heterostructure. When both subunits are in a paraelectric 

state, similar to the (NbO2)
+/(SrO)0 interface in the KNbO3/SrTiO3 heterostructure, the 
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presence of polar interfaces leads to the formation of 2DEG at the (NbO2)
+/(PbO)0 

interfaces in the KNbO3/PbTiO3 heterostructure. This is evident from Figures 3.7 (a,d), 

which show the Nb-4d and Ti-3d DOS indicating the largest local DOS at the Fermi 

energy at the monolayers located close to the interface (l = 1 and k = 2). The local DOS 

decreases with the distance from the interface. The calculated free carrier densities are 

0.27 electrons per unit cell area on both interfaces as shown in Table 3.1.  
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Figure  3.7 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a,b,c) 

and 3d-orbitals of Ti atoms (d,e,f) located in different monolayers l and k respectively 

from the (NbO2)
+/(PbO)0 interface in the (KNbO3)8.5/(PbTiO3)8.5 superlattice for either 

interface in the paraelectric state (a, d), the right interface (b, e) and the left interface (c, 

f) in the ferroelectric state. Layer number indicates the layer from the interface. The 

shaded plots are the DOS of atoms in the central monolayer. The zero along the 

horizontal axis refers to the Fermi energy. 

 

Figure 3.8 shows the ferroelectric displacements of the cations (Nb, Ti, K, Pb) 
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relative to the oxygen anions in the heterostructure. It can be seen that in the 

(KNbO3)8.5/(PbTiO3)8.5 heterostructure, the spontaneous polarization of strained PbTiO3 

exceeds significantly the polarization of a KNbO3 subunit, which leads to positive and 

negative polarization charge on the left and right interfaces, respectively, even though 

the polarization for the system points to the right. As follows from our discussion of the 

KNbO3/SrTiO3 heterostructure, this leads to more free charges at the left interface and 

less free charges at the right interface to compensate the polarization charges.  

 

 

Figure 3.8 Cation (Nb, Ti, K, Pb) displacements with respect to oxygen anions in 

(KNbO3)8.5/(PbTiO3)8.5 superlattice. Open and solid and symbols indicate Pb-O (K-O) 

and Ti-O2 (Nb-O2) displacements, respectively. The two dashed vertical lines indicate 

left and right (NbO2)
0/(PbO)0 interfaces. 
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Figure 3.9 The free charge (in units of electron) on Nb and Ti atoms across the unit cell 

of (KNbO3)8.5/(PbTiO3)8.5 superlattices in paraelectric state and ferroelectric state. The 

screening charge is the difference of the free charges on Nb and Ti atoms for the 

ferroelectric and paraelectric states. The direction of the polarization for ferroelectric 

state is from left to right. 

 

It is seen from Figures 3.7 (b,c,e,f) that for (KNbO3)8.5/(PbTiO3)8.5 heterostructure, 

the DOS on both the Nb and Ti atoms at the Fermi energy is very large on the left 

interface (Figures 3.7(c,f)) while that on the right interface is zero (Figures 3.7 (b,e)). 

This indicates a ferroelectrically induced metal-insulator transition at the interface as a 

result of polarization reversal. The origin of this behavior can be explained by the large 

difference in polarizations on the two constituents of the heterostructure.  The 
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polarizations in the middle of KNbO3 and PbTiO3 in the superlattice are 0.47C/m2 and 

1.09C/m2, respectively. This results in a negative polarization charge of 0.58e per unit 

cell area at the right interface, which expels all the free carriers of 0.5e per unit cell area 

on that interface leading to an insulating right interface. This metal-insulator transition at 

the interface is visualized by the free charge distribution in Figure 3.9. Thus, a metal-

insulator transition at the interface with polarization reversal is expected at the interface 

of the two constituents with a large difference in their polarizations.  

 

3.3.3     BaTiO3/KNbO3 

Similar to the polar interfaces considered above, the KNbO3/BaTiO3 system exhibits 

a 2DEG at the (NbO2)
+/(BaO)0 interface. This is seen from the Nb-4d and Ti-3d DOS 

shown in Figures 3.10 (a,d) for the heterostructure in a paraelectric state. Again we see 

the largest occupied DOS near the Fermi energy at the interfacial layers which decreases 

when moving away from the interface. The calculated free carrier densities are 0.26e per 

unit cell area on both interfaces as shown in Table 3.1.  
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Figure  3.10 Layer-projected density of states (DOS) on 4d-orbitals of Nb atoms (a,b,c) 

and 3d-orbitals of Ti atoms (d,e,f) located in different monolayers l and k respectively 

away from the (NbO2)
+/(BaO)0 interface in the (KNbO3)8.5/(BaTiO3)8.5 superlattice for 

either interface in the paraelectric state (a, d), the right interface (b, e) and the left 

interface (c, f) in the ferroelectric state. Layer number indicates the layer from the 

interface. The shaded plots are the DOS of atoms in the central monolayer. The zero 

along the horizontal axis refers to the Fermi energy. 

 

When the ferroelectric state is developed in the KNbO3/BaTiO3 heterostructure, the 

ferroelectric displacements in KNbO3 and BaTiO3 appear to be similar in magnitude. 

This is seen from Figure 3.11 (a), which shows the displacements of the cations (Nb, Ti, 

K, Ba) relative to the oxygen anions. This leads to the comparable polarizations of 

strained BaTiO3 and KNbO3 in the heterostructure, mirroring the similarity of their bulk 

polarizations 0.41C/m2 and 0.43C/m2 for KNbO3 and BaTiO3, respectively. This 

behavior is different from KNbO3/SrTiO3 and KNbO3/PbTiO3 systems, where the 

polarization discontinuity was pronounced at the interfaces. 
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Figure 3.11 Cation (Nb, Ti, K, Ba) displacements with respect to the oxygen anions in 

the (KNbO3)8.5/(BaTiO3)8.5 superlattice with parallel polarizations pointing from left to 

right (a) and with antiparallel polarizations pointing toward each other (b). Open and 

solid symbols indicate Ba-O (K-O) and Ti-O2 (Nb-O2) displacements respectively. The 

two dashed vertical lines indicate the left and right (NbO2)
0/(BaO)0 interfaces. 
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The similar polarization values of BaTiO3 and KNbO3 lead to the net polarization 

charge of almost zero at the two interfaces for parallel polarizations resulting in the small 

difference in the density of free carriers at two interfaces as indicated in Table 3.1. We 

note that the layer-resolved DOS of Ti is larger at the left interface than at the right 

interface while it is opposite for the layer-resolved DOS of Nb as is clearly seen from the 

comparison of Figures 3.10 (b) and (c) and Figures 3.10 (e) and (f). This asymmetric 

behavior is a direct result of opposite screening charges extending to several layers away 

from the interfaces to compensate the inhomogeneous polarization charge in each 

constituent. This can be seen from the screening charge distribution in each constituent 

in Figure 3.12(a).  

   

 



63 
 

 

 

Figure 3.12 The free charge (in units of electron) on Nb and Ti atoms across the unit cell 

of (KNbO3)8.5/(BaTiO3)8.5 superlattices in paraelectric state and ferroelectric state with 

(a) polarizations in the same direction from left to right and (b) opposite polarizations. 

The screening charge is the difference of the free charges on Nb and Ti atoms for 

ferroelectric and paraelectric states. 

 

We see, therefore, that there is no pronounced switching effect at the conducting 

NbO2/BaO interface in the KNbO3/BaTiO3 heterostructure when polarizations of the two 

constituents are in the same direction. However, we predict a metal-insulator transition at 

the NbO2/BaO interface with polarizations reversal when the polarizations in KNbO3 and 

BaTiO3 point opposite to each other. It has been predicted that while electrical 

compatibility constrain normally prevent head-to-head and tail-to-tail domain walls from 
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forming in ferroelectric materials, such domain walls could be stabilized by delta-doping 

supplying a substitutional charge density that provides a cancellation of the bound 

polarization charge [113].  In our case the stabilization of the domains with the opposite 

polarization orientation is provided by the presence of the free charges at the interfaces. 

This antiparallel polarization state of the KNbO3/BaTiO3 heterostructures is stable with 

respect to the paraelectric states by energies of -0.86eV/supercell. On the left interface, 

the polarizations of BaTiO3 and KNbO3 are pointing away from the NbO2/BaO interface 

while on the right interface the polarizations are pointing toward interface as shown in 

Figure 3.3(b). We find that the total energy of the superlattice in the parallel polarization 

state is lower by 0.32eV/supercell than that in the antiparallel state. The polarizations of 

BaTiO3 and KNbO3 in the heterostructure are -0.26C/m2 and 0.25C/m2, respectively, 

causing -0.49e and 0.49e polarization charges per unit cell area on the left and right 

interface, respectively. The magnitude of the polarization charges is close to that of the 

free carriers (i.e. 0.5e) at the interfaces in paraelectric heterostructure. Thus, to stabilize 

the ferroelectric state with the antiparallel polarization almost all the free charge needs to 

be removed from one interface and placed to the other interface. This causes a metal-

insulator transition at the interface by the polarization reversal as explained in the section 

describing a KNbO3/PbTiO3 heterostructure.    

The presence of the ferroelectrically induced metal-insulator transition at the 

interface is seen from the calculated charge distribution in the KNbO3/BaTiO3 

heterostructure with antiparallel polarization as shown in Figure 3.12(b). It is seen that 
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while in the paraelectric state the free charge is equally localized at the two interfaces, 

the antiparallel ferroelectric polarization state eliminates the charge from the left 

interface and places it to the right interface. It is notable that the distribution of this 

charge is not symmetric with respect to the interface reflecting complex structural 

relaxations at this interface evident from Figure 3.11 (b).    

 

3.4     Summary 

We have explored the formation of 2DEG and its dependence on the electric 

polarization at the (NbO2)
+/(AO)0 interface in the (KNbO3)/(ATiO3) (A = Sr, Pb, and Ba) 

oxide heterostructures using first-principles methods. The chosen structures have 

ferroelectric constituents besides having polar discontinuity similar to that at the 

interface in (LaAlO3)/(SrTiO3) heterostructure. The interfaces are found to have 

occupied Nb 4d-states and Ti 3d states around the Fermi energy leading to conducting 

interfaces with n-type carriers.  

We have predicted that the conducting properties at the two interfaces in these 

systems are influenced by ferroelectricity. Switching the ferroelectric polarization 

orientation may cause significant changes in the carrier density and consequently the 

conductivity of the interfacial 2DEG. The effect of the polarization reversal on the 

interface carrier density is understood in terms of screening by 2DEG. The magnitude of 

the effect is controlled by contrast between polarizations of the two constituents of the 

heterostructure: the larger is the difference in the two polarizations, the bigger is the 
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effect. Our calculations predict that a heterostructure with ferroelectric constituents can 

be designed such that the density of the 2DEG at the interface can be controlled by an 

external electric field including the possibility of switchable metal-insulator transition at 

the interface. These effects may be useful in controlling the interfacial conducting 

properties in ferroelectric oxide heterostructures by external electric fields. 
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Chapter 4     Strain effect on 2DEG  

 

Properties of the two-dimensional electron gas (2DEG) at interface of insulating 

oxides LaAlO3 and SrTiO3 have attracted significant interest due to its potential 

applications in nanoelectronics. Control over this carrier density and mobility of the 

2DEG is essential for applications of these novel systems, and may be achieved by 

epitaxial strain. Our experimental collaborators at University of Wisconsin-Madison 

have investigated LaAlO3/SrTiO3 interfaces with controlled levels of biaxial epitaxial 

strain by using different substrates with different lattice constants. They found that 

tensile strained SrTiO3 destroys the conducting 2DEG, while compressively strained 

SrTiO3 retains the 2DEG, but with a carrier concentration reduced in comparison to the 

unstrained LaAlO3/SrTiO3 interface. They also found that the critical LaAlO3 overlayer 

thickness for 2DEG formation increases with SrTiO3 compressive strain. Here we use 

density functional calculations to explore this behavior. Our results suggest that a strain-

induced electric polarization in the SrTiO3 layer is responsible for this behavior. We find 

that it is directed away from the interface and hence creates a negative polarization 

charge opposing that of the polar LaAlO3 layer. This both increases the critical thickness 

of the LaAlO3 layer, and reduces carrier concentration above the critical thickness, in 

agreement with the experimental results. Our findings suggest that epitaxial strain can be 

used to tailor 2DEG properties of the LaAlO3/SrTiO3 heterointerface. 

 



68 
 

 

4.1     Introduction 

Strains have previously been used to engineer and enhance numerous properties of 

materials. For example, increased mobility in semiconductors [114, 115], and increased 

transition temperature in ferroelectric materials [116-119] and superconductors [120] 

have been observed. A recently discovered two-dimensional electron gas (2DEG) at the 

LaAlO3/SrTiO3 interface [44, 121] has attracted great interest due to its novel application 

to nanoscale oxide devices [47]. So far, most studies of 2DEGs at oxide interfaces were 

performed using TiO2-terminated SrTiO3 bulk single crystal substrates. Thus, despite the 

rich nature of strain effects on oxide materials properties, the relationship between the 

strain and electrical properties of the 2DEG at the LaAlO3/SrTiO3 heterointerface 

remains largely unexplored.  

The importance of strain effects comes from the fact that integrating 2DEGs to other 

functional devices or substrates always involves strain. Therefore, it is desirable to know 

the effect of the strain on 2DEG at the LaAlO3/SrTiO3 interface. In addition, by changing 

strain we might be able to obtain novel functional properties. For example, strain can 

induce an electric polarization in otherwise non-polar SrTiO3 [122]. It has been predicted 

that polarization can be used to control 2DEG properties at oxide heterointerfaces [123, 

124]. Thus by using the relation between the polarization and the strain, we could 

engineer 2DEG behavior.  

 

4.2     Experimental investigation 
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Performed by our collaborators at University of Wisconsin-Madison, LaAlO3/SrTiO3 

thin films heterostructures were grown on various single crystal substrates using pulsed-

laser deposition (PLD) with in-situ high pressure reflection high-energy electron 

diffraction (RHEED) [13].  Figure 4.1 shows the schematic of the thin film 

heterostructure. Table 4.1 shows substrates that were used in this study to vary the 

SrTiO3 strain state from biaxial compressive to biaxial tensile in the plane. As shown in 

Figure 4.1, (001) SrTiO3 (STO) thin films were grown on (110) NdGaO3 (NGO), (001) 

(LaAlO3)0.3–(Sr2AlTaO6)0.7 (LSAT), (110) DyScO3 (DSO) and (110) GdScO3 (GSO) 

substrates. The varying lattice parameters result in an average biaxial strain ranging from 

-1.21% (compressive) to +1.59% (tensile) in a fully commensurate SrTiO3 deposited 

film. All grown single-crystal (001) SrTiO3 templates were fully coherent with the 

substrates. (001) SrTiO3 films were also grown on (001) silicon substrates using 

molecular beam epitaxy. Thickness of these quasi-single-crystal (001) SrTiO3 templates 

on silicon was 100 nm, and the films were almost fully relaxed. The measured SrTiO3 

lattice parameters on Si correspond to an average biaxial strain of 0.15% [125, 126]. The 

bi-axial strain state and lattice parameters of the strained (001) SrTiO3 templates are 

summarized in Table 4.1.  LaAlO3 overlayers were deposited using PLD on these various 

strain Ti-terminated single crystal SrTiO3 templates.  
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Figure 4.1  Schematic diagram of grown structures. Thickness of LaAlO3 layer was 

varied from 1 to 30 unit cells on STO on LSAT, NGO, Si, DSO, GSO substrate 
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Table 4.1 Results from high-resolution x-ray diffraction measurements on the films at 

room temperature are given. The in-plane (a) and out-of-plane (c) lattice constants and 

lattice mismatch between the SrTiO3 films and single crystal substrates on average of 

two orthogonal directions. The a- and c-lattice parameters of single-crystalline SrTiO3 

are 3.905Å. All SrTiO3 templates were fully coherent except STO/Si (12). (002), (101) of 

SrTiO3 and cubic substrates, LSAT, Silicon (200) pseudo-cubic of (101) pseudo-cubic of 

orthorombic substrate, GdScO3 and DyScO3, NdGdO3 were observed to determine in-

plane and out-of-plane lattice parameters. 

 

It is known experimentally that a conducting 2DEG forms at the 

LaAlO3 / bulk SrTiO3 interface only after the LaAlO3 overlayer thickness exceeds a 
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critical value of 4 unit cells [46]. It was found that this critical thickness depends on the 

strain of the system. This was determined by measuring the conductivity of strained 

LaAlO3/SrTiO3 bilayers for different thickness of the LaAlO3 layer. As shown in 

Figure 4.1, LaAlO3 overlayer thickness was changed from 1 to 30 unit cells while the 

thickness of SrTiO3 template on NGO, LSAT, DSO, GSO substrates was fixed at 50 unit 

cells. The critical thickness of LaAlO3 on Ti-terminated (001) SrTiO3 bulk single crystal 

and on quasi-single-crystal (001) SrTiO3 templates on silicon [127] was checked as a 

reference.  
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Figure 4.2 Effect of strain on 2DEG. (A) Critical thickness of LaAlO3 under bi-axial 

strain. While all others samples have a 50 unit cell-thick SrTiO3 layer, sample 

LAO/STO/Si has 100nm-thick STO and is the nominally unstrained STO layer on 

silicon. The conductivity versus thickness of LaAlO3 in the LAO/STO interface on 

various substrates is given in the inset. (B) Room-temperature carrier concentrations at 

the LAO/STO interface under various biaxial strains. The carrier concentrations in 

tensile strain state were above our measurement limit.  
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In case of the two samples with unstrained SrTiO3 layers ( LaAlO3 on bulk single 

crystal SrTiO3 substrate and LaAlO3 on relaxed SrTiO3 templates on silicon), the critical 

thickness was in agreement with that previously reported, i.e. 4 unit cells. However, in 

the compressive strain states, (SrTiO3 templates on LSAT and NGO), the critical 

thickness of LaAlO3 increased to 10 unit cells and 15 unit cells, respectively, as shown in 

Figure 4.2 A. In all the cases, the conductivity saturate above the critical thickness of the 

LaAlO3 overlayer. However, unlike the non-strained state, the conductivity versus 

thickness of LaAlO3 had a gradual rather than an abrupt change at the critical thickness. 

For instance, in case of LaAlO3/SrTiO3/LSAT measurable conductivity was detected at 

10 unit cells LaAlO3 thickness, but it did not saturate until 20 unit cells. There is, 

however, a clear trend of increasing LaAlO3 critical thickness with increasing 

compressive biaxial in-plane strain. 

 Figure 4.2 B shows the carrier concentration at each strain state above the critical 

thickness of LaAlO3. Similar to the critical thickness of the LaAlO3 layer, nearly the 

same carrier concentration was found at both near-zero strain states, LaAlO3 on SrTiO3 

bulk single crystal and LaAlO3 on quasi-single crystal (001) SrTiO3 template on silicon. 

The saturation carrier concentration (above the critical thickness) decreased with 

increasing compressive strain Although LaAlO3/SrTiO3 interfaces on DSO and GSO 

were grown and treated in the same manner, the interfaces were not conducting within 

our measurement limit at any thickness of LaAlO3 overlayer in these tensile-strained 
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films. 

The above experimental results indicate that compressively strained SrTiO3 preserves 

the 2DEG, but with decreased interfacial carrier concentration. The origin of this 

behavior is the main subject of our theoretical investigation which is described in the 

next section 4.3. For the case of tensile strain in the STO layer, the experiments indicate 

that there is no conducting 2DEG for biaxial tensile strains above 1.1%. Free-standing 

SrTiO3 has been predicted at zero temperature to develop an in-plane polarization in the 

(110) direction under biaxial tensile strain. Experiment suggests that, at room 

temperature, relaxor behavior, with nanoscale polar regions that can be aligned in an 

electric field, occurs in many tensile strained SrTiO3 samples. Stabilization of a uniform 

in-plane polarization by the LaAlO3 layer does not seem likely. If such nanoscale regions 

near to the interface were present in our samples, bound charge at polarization 

discontinuities between random nanopolar regions would tend to be locally screened by 

carriers at the 2DEG interface. This would lead to localization of these carriers, 

preventing us from observing conduction in these samples.  

 

4.3   Theoretical studies  

The physical origin of the experimentally observed changes of 2DEG properties 

under compressive strain are qualitatively explained in Figure 4.3 In the unstrained 

system, positively charged (LaO)+ atomic layers and negatively charged (AlO2)
− atomic 

layers create an average polarization whose positive bound charge resides at the 
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interface, as shown schematically in the left panel of Figure 4.3 (a). This polarization 

charge is responsible for the intrinsic electric field E0 in LaAlO3 (shown by arrow in 

Figure 4.3 (a)) resulting in an electric potential difference between the LaAlO3 surface 

and the LaAlO3/SrTiO3 interface that increases with LaAlO3 layer thickness. Above the 

LaAlO3 critical thickness, charge is transferred to the LaAlO3/SrTiO3 interface (shown 

by a blue filling) to avoid this polarization catastrophe. 

 

 

Figure 4.3 The calculated atomic structure of unstrained (A) and compressively strained 

(B) LaAlO3(3 unit cell.)/SrTiO3 system. In Figure B Ti-O and Sr-O displacements are 

amplified by a factor of eight as compared to the calculated results for visual 

comprehension. The left and right panels show schematically the 2DEG formation and 
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the effect of the polarization P in the strained SrTiO3 on the 2DEG as described in text.   

 

The compressively strained SrTiO3 layer contains polar displacements of the Ti4+ 

ions with respect to the O2- ions, shown in Figure 4.3 (b) for the case of uniform 

polarization. These displacements are responsible for a polarization P pointed away from 

the interface (indicated by an arrow at the bottom of the left panel of Figure 4.3 (b)). The 

polarization orientation is determined by the presence of the LAO layer and is likely not 

switchable. The polarization produces a negative bound charge at the LaAlO3/SrTiO3 

interface (indicated in the left panel of Figure 4.3 (b)) that creates an additional electric 

field in LaAlO3 equal to P/, where  is the dielectric constant of LaAlO3, that opposes 

the intrinsic electric field E0. The presence of polarization in the compressively strained 

SrTiO3 layer reduces the total electric field in LaAlO3 and hence enhances the critical 

thickness necessary to create a 2DEG at the LaAlO3/SrTiO3 interface due to the 

polarization catastrophe effect. Above this critical thickness, the mobile interfacial 

carrier concentration would be then reduced by the interfacial bound charge [123, 124]. 
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Figure 4.4 The symmetric atomic structure of (LaAlO3)3/(SrTiO3)5 separated by a 8 Å 

thick vacuum gap.  

 

In order to quantify these effects we have performed first-principles calculations of 

the LaAlO3/SrTiO3 bilayer under various strain states based on methods described in 

chapter 2. We use density functional theory (DFT) and  the local density approximation 

(LDA) implemented within the VASP method [79, 128]. We consider a LaO/TiO2-

interfaced (LaAlO3)n/(SrTiO3)m bilayer, where n and m are the numbers of unit cells of 

LaAlO3 and SrTiO3 respectively.  The LaAlO3/SrTiO3 bilayer is placed in a 

LaAlO3/SrTiO3/vacuum/SrTiO3/LaAlO3/vacuum supercell, as shown in Figure 4.4, 

where the doubled bilayer is used to avoid an unphysical electric field in vacuum which 

otherwise would occur due to the potential step within the LaAlO3 layer and periodic 

boundary conditions of the supercell calculations. The in-plane lattice constant of the 

unstrained superlattice is fixed to the calculated bulk lattice constant of SrTiO3, i.e. a = 

3.871 Å. For the strained systems the in-plain lattice constant was constrained to be by a 

certain percentage smaller than the bulk one. To reduce the effect of the SrTiO3 surface 

on atomic structure and ionic displacements within the SrTiO3 layer we use a boundary 

condition according to which the atomic positions within one unit cell on the SrTiO3 

surface are fixed to be the same as in the respectively strained bulk SrTiO3. The latter are 

computed separately for the unstrained and strained bulk SrTiO3. All the other atoms in 

the superlattices are relaxed. 



79 
 

 

0 2 4 6 8 10 12 14 16 18

-0.1

0.0

0.1

0.2

 no strain
 -1.2% strain
 -2% strain

B
-O

 d
is

pl
ac

em
en

t(
A

)

Atomic Layers

SrTiO
3 LaAlO

3 Vacuum

 

Figure 4.5 B (Ti, Al) cite atom – oxygen (O) atom displacements in the unstrained 

(squares), 1.2% (circles) and 2% (half circle) compressively strained 

(LaAlO3)3/(SrTiO3)5 structure. 

 

Figure 4.5 shows the calculated ionic displacements for the unstrained 1.2% and 2% 

compressively strained (LaAlO3)3/(SrTiO3)5 structures. It is seen that in the unstrained 

case polar Ti-O displacements in the SrTiO3 layer are very small, consistent with the 

previous calculations [35]. The in-plane compressive strain produces sizable ionic 

displacements, polarizing the SrTiO3 layer and as the compressive strain increases the 

induced polarization increases. The calculation predicts that the induced polarization is 

oriented away from the interface and is not switchable. In the case of 1.2% compressive 
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strain, the magnitude of the polarization is P  0.18 C/m2, as found from the known 

polar displacements in the strained SrTiO3 layer using the Berry phase method [102, 

129]. 

The critical thickness ct in the presence of a STO polarization can be estimated as 

follows:  

                                                        /ct eE  , (4.1) 

where  STO LAO
g VBM VBMe      , g is the band gap of SrTiO3, 

STO
VBM  and LAO

VBM  are the 

valence band maxima (VBM) of SrTiO3 and LaAlO3 respectively, and E is the electric 

field in LaAlO3. In the derivation of ct below, we only need to consider the situation that 

the free charge has not been transfered to the interface and the thickness of LaAlO3 is 

less than ct .  E is reduced from the intrinsic value of E0 due to polarization P of SrTiO3, 

so that    

                                                      0
LAO

P
E E


  , (4.2) 

where LAO  is the dielectric constant of LaAlO3. Due to the reduced electric field in 

LaAlO3 in the presence of the SrTiO3 polarization, the critical thickness is enhanced as 

indicated in Eq. (4.1). The intrinsic electric field E0 can be estimated from the 

experimentally measured critical thickness 0
ct  4 unit cell. for the unstrained system. 

Taking into account the experimental band gap of STO g = 3.2 eV and the CBM offset 

between SrTiO3 and LaAlO3 
STO LAO

VBM VBM    0.35 eV [130], we find that   3.55 eV. 

Using the relationship  
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                                                         0
o ceE t  , (4.3) 

we obtain that 0E  0.23V/Å, which is consistent with our first-principles calculation 

predicting 0E  0.22V/Å, and calculations by others [35, 42, 52]. Using Eqs. (4.1), (4.2) 

and (4.3) we obtain 

                                                     
0

0

1

c
c

LAO

t
t

P
E




. (4.4) 

For the system under strain, when the thickness of LaAlO3 is above the critical 

thickness, there is a transferred charge at the interface and the charge density   is 

estimated as shown below.  At first, it is necessary to derive the transferred charge 

density 0 for the system without strain similar to Ref. [52]. When the LaAlO3 thickness 

t  is above the critical 0
ct , a free surface charge 0 is transferred to the LaAlO3/SrTiO3 

interface. The electric field inside LaAlO3 is then  

                                                           0
0

LAO

E E



  . (4.5)
 
 

The VBM of LaAlO3 is aligned with the CBM of SrTiO3. Therefore  

                                                          0
0 cetE eE t    . (4.6) 

It follows from Eqs. (4.5) and (4.6)  that 

                                                   
0

0 0 1 c
LAO

t
E

t
 

 
  

 
, (4.7) 

i.e. the transferred charge density increases with the LaAlO3 thickness which is 

consistent with the experimental observation, as shown in the insect of Figure 4.2 A.   
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Similarly, when the system is under strain, above the critical thickness ct , electric 

field inside LaAlO3 is  

                                                       0
0

LAO LAO

P
E E


 

  
.
 (4.8) 

Using Eqs. (4.4), (4.6) and (4.8), the transferred charge for strained system is then 

obtained as follows 

                                                      
0 0

0
c c

LAO
c

t t
E

t t
 

 
  

 
. (4.9)

   

It is clear that when there is no strain, i.e. 0
c ct t , Eq. (4.9) is identical to Eq. (7), as 

expected. As the strain increases, due to the increased polarization in SrTiO3 (see Figure 

4.5) we expect a larger critical thickness ct , as indicated both by Eq (4.4) and by the 

experimental data shown in Figure 4.2 A.  Eq. (4.9) predicts that for the same thickness t 

of LaAlO3, as the strain increases, the transferred charge decreases as a result of the 

increased critical thickness. This prediction again agrees well with the experimental 

results shown in Figure 4.2 B. 

Using the calculated polarization value of P 0.18 C/m2 for 1.2% compressive strain 

in the STO layer, and the calculated electric fields in the LaAlO3 and SrTiO3 layers in the 

strained LaAlO3/SrTiO3 system, we estimate the dielectric constant of the 1.2% 

compressively strained LaAlO3 to be 18LAO o  . This value is consistent with that 

obtained from the induced polarization of 0.34 C/m2 in the LaAlO3 layer, as is estimated 

from the calculated ionic displacements using the Berry phase method. (We note that the 
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estimated value of the dielectric constant of the unstrained LaAlO3 is 24LAO o   which 

is consistent with the previously found result [38]). Using. Eq. (4.4) and the dielectric 

constant 18LAO o   we obtain ct  9 unit cell. This value is higher than the critical 

thickness (4 unit cell.) for the unstrained system, and is consistent with the experimental 

result for the 1.2% strained LaAlO3/SrTiO3 structure. In the experimental situation it is 

expected that the surface polarization charge in LaAlO3 is screened by adsorbents, and 

that the bottom polarization charge in the strained SrTiO3 is screened by defects. In the 

structural model used in our DFT calculation the SrTiO3 polarization is screened by 

charge transferred to the SrTiO3 surface.  

Our computations predict that at the LAO critical thickness of 3 unit cells, when the 

unstrained system becomes conducting, the 2% compressive strain expels the electron 

charge from the interface making the interface insulating. This results is seen from 

Figure 4.6, which shows the density of states (DOS) at the TiO2 layer located at the 

interface for the unstrained, and the -2% strained (LaAlO3)3/(SrTiO3)5 structure. It is 

seen that the compressive strain eliminates the free electron charge at the unstrained 

interface (filled shadow under the red curve) making the system insulating.        
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Figure 4.6: Density of electronic states at the TiO2 monolayer located at the interface of 

the unstrained, and the -2% strained (LaAlO3)3/(SrTiO3)5 structure. The vertical line 

indicates the position of the Fermi energy. The filled area under the curve for the 

unstrained system indicates the free electron charge responsible for the formation of the 

2DEG. The strain eliminates this charge making the system insulating.     

 

4.4     Summary 

We have demonstrated that properties of the 2DEG formed at the LaAlO3/SrTiO3 

interface can be controlled by epitaxial strain. Both the critical thickness of the LaAlO3 

overlayer required to generate the 2DEG and the carrier concentration of the 2DEG 

depend on the strain of the SrTiO3 layer. Compressive strain increases the critical 

thickness and decreases the saturated carrier concentration. Our DFT calculations 

indicate that a strain-induced polarization stabilized by the LaAlO3 overlayer is 
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responsible for these changes. Changes in critical thickness and carrier concentration 

estimated from the DFT calculations are in agreement with the experimental data.  

The dependence of the 2DEG properties at the LaAlO3/SrTiO3 interface on the strain 

state opens a new correlation between strain-induced polarization and the electrical 

properties of oxide interfaces. We believe that such strain engineering can be very useful 

for oxide 2DEG device applications, and the relation between strain and 2DEG 

properties provides a new tool in the manipulation of oxide interfacial 2DEGs. 
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Chapter 5     Spin-polarized 2DEG  

 

Making 2DEG gas spin-polarized is a very exciting prospect for spintronics 

applications, where the involvement of the spin degree of freedom broadens the 

spectrum of potential applications. Here, using first-principles calculations, we predict 

the existence of a spin-polarized two-dimensional electron gas (2DEG) at the LaO/EuO 

interface in a LaAlO3/EuO (001) heterostructure. We show that this polar interface favors 

electron doping into the Eu-5d conduction bands resulting in a 2DEG formed at the 

interface. Due to the exchange splitting of the Eu-5d states, the 2DEG is spin-polarized. 

The predicted mechanism for the formation of a spin-polarized 2DEG at the interface 

between polar and ferromagnetic insulators may provide a robust magnetism of the 

2DEG, which is interesting for spintronics applications. 

 

5.1     Introduction 

5.1.1     Overview of spin-polarized 2DEG 

Recently it was found that at ultra-low temperatures the 2DEG occurring at the 

interface between the non-magnetic LaAlO3 and SrTiO3 materials may become magnetic 

[48]. This behavior was attributed to the exchange splitting of the induced electrons in 

the Ti-3d conduction band, which is corroborated by spin-polarized first-principles 

calculations of LaAlO3/SrTiO3 [33, 36],  as well as LaTiO3/SrTiO3 interfaces [31].  It 

was also proposed that it may be possible to create a fully spin-polarized 2DEG by 
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replacing one monolayer of SrO by LaO in SrMnO3 [131]. The magnetic ground state of 

SrMnO3 is G-type antiferromagnetic (AFM) with Mn4+ ( 3 0
2g gt e ), while the ground state of 

LaMnO3 is A-type antiferromagnetic with Mn3+ ( 3 1
2g gt e ).  The 2DEG is introduced by the 

extra charge of the LaO+ layer at interface, where the 2DEG occupies the Mn-eg states 

near the interface. Zener double exchange helps to stabilize the ferromagnetic structure 

of Mn at the interface, while further layers away from interface retain antiferromagnetic 

configuration, and thus a spin-polarized 2DEG is created [131].  

Here, we pursue a different route to achieve a spin-polarized two-dimensional 

electron gas, by employing a ferromagnetic insulator as one of the constituents in the 

oxide heterostructure. Spin-polarized properties of the 2DEG are, in this case, expected 

to be inherited from the ferromagnetism of the oxide, and consequently, this approach 

may lead to a more robust magnetism in the 2DEG, which is beneficial for applications. 

To illustrate the idea we consider EuO as a representative ferromagnetic insulator in 

conjunction with LaAlO3 to form a spin-polarized 2DEG at the LaAlO3/EuO(001) 

interface.   

 

5.1.2     Ferromagnetic insulator EuO 

EuO has a rocksalt crystal structure (Figure 5.1) and is a ferromagnetic insulator 

(semiconductor) with a bulk Curie temperature (TC) of 69 K. The divalent Eu ion in EuO 

has a half filled 4f shell leading to the 8S7/2 ground state and the magnetic moment of 7µB 

per Eu ion. The Heisenberg exchange coupling between the localized 4f electrons causes 
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the ferromagnetic ordering in EuO below TC. The half-filled 4f band is separated from the 

5d-6s conduction bands by a bandgap of 1.12 eV at room temperature [132].   In the 

ferromagnetic state of EuO, the direct exchange interaction between the localized 4f 

moments and the delocalized 5d conduction band states leads to the spin splitting of the 

latter. The spin splitting of the 5d states as large as 0.6 eV produces the full spin 

polarization near the bottom of conduction band [133]. These features can also be seen 

from the electronic density of states of bulk EuO shown in Figure 5.2, which are obtained 

by the first-principles calculation with general description in the next section. 

 

 

Figure 5.1 Rocksalt crystal structure of EuO. 
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Figure 5.2 The density of states (DOS) of bulk EuO for different orbitals. The positive 

and negative values show the DOS for the spin-up and spin-down electrons, respectively. 

Fermi energy is located at zero, indicated by the dashed line.  

 

The large splitting between spin-up and spin-down states at the bottom of the EuO 

conduction band allows creating a highly spin-polarized electron gas by appropriate n-

doping of the material. Experimentally it was found that the transport spin polarization of 

conduction electrons in EuO doped with La exceeds 90% [134]. In particular, recently it 

has been observed that in La-doped EuO, the Curie temperature can be as high as 200 K 

due to the enhanced coupling between Eu 4f states and itinerant electrons in Eu 5d states 

[135].  

 

5.2     Spin-polarized 2DEG in EuO based heterostructures 
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5.2.1     LaAlO3/EuO 

Here we demonstrate that the electron doping may be achieved locally at the 

LaAlO3/EuO(001) interface to create a spin-polarized 2DEG. The mechanism 

responsible for the 2DEG formation is similar to that known for the LaAlO3/SrTiO3 

interface [53].  LaAlO3 consists of alternating (LaO)+ and (AlO2)
 charged planes, 

whereas EuO consists of (EuO)0 neutral planes. When LaAlO3 is deposited on top of 

EuO the divergence in the electrostatic potential can be avoided by transferring half an 

electron per two-dimensional unit cell to the LaO/EuO terminated interface. A charge 

transfer to the interface also occurs if the LaAlO3 layer is non-stoichiometric and 

terminated with the LaO monolayers on both sides. In this case an “extra” electron is 

introduced into the system due to the uncompensated ionic charge on the additional 

(LaO)+ monolayer. This electronic charge is accommodated by partially occupying 

conduction band states near the interface, producing a 2DEG. In ferromagnetic EuO the 

conduction band is formed by exchange split Eu-5d states and so the 2DEG is expected 

to be spin-polarized. Thus, by forming the LaAlO3/EuO(001) interface, one can achieve 

a spin-polarized 2DEG below the Curie temperature of EuO or for even higher 

temperature. 
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Figure  5.3 Atomic structure of the LaO/EuO interface in the (LaAlO3)8.5/(EuO)15 (001) 

superlattice containing 8.5 unit cells of LaAlO3 and 15 monolayers of EuO within the 

supercell. Indices l and m denote atomic monolayers and are increasing with separation 

from the interface. l = 8 in EuO and m = 9 in LaAlO3 correspond the middle of the 

respective layers.    

 

To quantitatively demonstrate our prediction we perform first-principles calculations 

of the electronic structure of the LaAlO3/EuO (001) interface within the framework of 

density functional theory (DFT). Self-consistent calculations are performed using a plane 

wave basis set limited by a cutoff energy of 520eV and the 661 Monkhorst-Pack k-

point mesh [80] with energy converged to 10-5 eV/cell. Atomic relaxations are performed 

until the Hellmann-Feynman forces on atoms have become less than 30 meV/Å.  

On-site correlations for the Eu-4f orbitals are included within the local density 

approximation (LDA)+U approach [73]. The value of J = 0.6 eV is calculated using the 
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constrained occupation method [136] by considering the 4f states as an open-core shell 

and finding the LDA energy difference between the 4f
74f

0 and 4f
64f

1 configurations 

[137]. We find, however, that the value of U = 5.3 eV obtained by this method appears to 

be too small and leads to the 4f states being too shallow with respect to the conduction 

band of EuO. This discrepancy is due to the underestimation by DFT of the intrinsic 

insulating gap between the O-2p and Gd-5d states. Therefore, we adjusted the value of U 

empirically and found that U = 7.5 eV results in a very reasonable agreement with 

experiment. In particular, U + 6J = 11.1 eV agrees well with the occupied-unoccupied 4f 

state splitting observed in photoemission-inverse photoemission for Eu metal; the optical 

band gap at the X point of 0.94 eV is consistent with the zero-temperature experimental 

value of approximately 0.95 eV [138]; and the lattice constant a = 5.188 Å agrees with 

the experimental value of a = 5.144 Å. The exchange splitting of the Eu 5d orbitals is 

found to be Δd = 0.75 eV. Since the La-4f bands lie at higher energy then that predicted by 

LDA, we impose U = 11 eV and J = 0.68 eV on these orbitals to avoid their spurious 

mixing with the conduction bands of LaAlO3.  
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Figure 5.4 The density of state (DOS) of bulk EuO under strain by LaAlO3 (blue) and 

without strain (red).  

 

We consider the LaO/EuO terminated interface of a (LaAlO3)8.5/(EuO)15 superlattice 

(i.e., the interface containing 8.5 unit cells of  LaAlO3 and 15 monolayers of EuO within 

the supercell) stacked in the [001] direction, as shown in Figure 5.3. We use periodic 

boundary conditions and impose mirror plane symmetry at the central EuO monolayer. 

The in-plane lattice constant of the superlattice is fixed to the calculated lattice constant 

of cubic LaAlO3, a = 3.81 Å, which is in good agreement with the experimental value a 

= 3.79 Å. Under this constraint EuO exhibits tetragonal distortion of c/a = 0.947. This 



94 
 

 

distortion does not change significantly the electronic structure of bulk EuO in the 

interested energy region as shown in Figure 5.4. In particular, the band gap of EuO 

becomes Eg = 1.15 eV and the exchange splitting of the d orbitals becomes Δd = 0.66 eV. 

The out-of-plane lattice constant of the supercell is determined by optimizing the 

interface separation distance between the LaAlO3 and EuO sub-units keeping their bulk 

lattice constants fixed. Then, we fix the supercell dimensions and relax the atomic 

positions of all the atoms in the (LaAlO3)8.5/(EuO)15 superlattice.  
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Figure 5.5 Atomic displacements in the (LaAlO3)8.5/(EuO)15 (001) superlattice with 

respect to the atomic “bulk” positions. The latter are determined by fixing the in-plane 

lattice constant and optimizing the interlayer distance, as described in text. The vertical 
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lines indicate interfaces. 

 

Figure 5.5 shows the calculated atomic displacements within the (LaAlO3)8.5/(EuO)15 

supercell. It is seen that the largest structural relaxations occur in the vicinity of the 

LaO/EuO interfaces and involve a polar distortion in which the negatively charged O 

anions are displaced with respect to the positively charged cations (either La, Al or Eu). 

When moving away from the interface, the magnitude of the displacements reduces and 

the La-La and Eu-Eu distances revert to constant values close to those in the bulk.   
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Figure 5.6:  Layer- and spin-resolved density of states (DOS) on EuO (a), LaO (b) and 

AlO2 (c) monolayers located at different planes l and m away from the LaO/EuO 

interface (as labeled in Figure 5.3). Top (bottom) panels show the majority(minority)-

spin. In panel (a) the majority-spin states at energies below –1eV are the occupied Eu-4f 

states. The vertical lines denote the Fermi energy (EF).  

Figure 5.6 shows the layer resolved majority- and minority-spin densities of states 
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(DOS) on the EuO (a) and LaO (b)  monolayers located at different planes l and m away 

from the LaO/EuO interface (see labeling in Figure 5.3). It is seen that there are occupied 

states below the Fermi energy on both the LaO and EuO monolayers near the interface, 

which indicate the formation of the n-type 2DEG at the LaO/EuO interface. This 2DEG 

comes from the occupation of the conduction band. Although it is pointed out that 

metallic phase could exist at surface of EuO [139], here the DOS near the CBM varies 

smoothly which distinguishes itself from the sharp surface DOS.  The DOS on AlO2 

monolayers (Figure 5.6c) is negligible near the Fermi energy compared to that on the 

LaO and EuO monolayers. Far away from the interface, the DOS at the Fermi energy on 

both the LaO and EuO monolayers drops to zero reflecting the insulating nature of bulk 

LaAlO3 and EuO.  

The central result of our calculation is the formation of spin-polarized 2DEG at the 

LaAlO3/EuO (001) interface. This fact is evident from Figure 5.6a indicating a 

significant difference in the occupation of the EuO majority- and minority-spin 

conduction bands near the interface. This is the direct consequence of the exchange 

splitting of the conduction 5d states in EuO and the occupation of these states due to the 

electron doping of the interface. As seen from Figure 5.6a, starting from the second EuO 

monolayer away from the LaO/EuO interface only majority-spin states are occupied in 

the conduction band of EuO indicating tendency to half-metallicity known for the n-

doped bulk EuO [133]. Figures 5.6b and 5.6c also indicate the spin splitting of the 

conduction bands of LaAlO3 near the interface, which is the result of the exchange 
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interaction between the Eu-4f and La-5d states across the interface. 

 

Figure 5.7 Spin-dependent charge distribution across the (LaAlO3)8.5/(EuO)15 (001) 

supercell. The notation for the atomic layers is the same as in Figure 5.3. The dashed 

lines indicate interfaces. 

 

Similar to the case of the LaAlO3/SrTiO3 interface, where the O-2p valence bands of 

LaAlO3 and SrTiO3 are nearly lined up (e.g., Ref. [38]), we find for the LaAlO3/EuO 

interface that the top of the O-2p valence band lies at –3.0eV in EuO and at about –

3.6eV in LaAlO3 with respect to the Fermi energy. Due to a larger energy gap between 

the O-p valence bands and the conduction bands in LaAlO3 than in EuO (the calculated 

values are 3.7eV and 2.7eV, respectively, and the experimental values are 5.6eV and 
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4.4eV [140], respectively), the conduction band minimum lies lower in EuO than in 

LaAlO3 resulting in the charge accumulating mainly within the EuO layer. This is 

evident from Figure 5.7, which shows the distribution of the spin-dependent charge 

across the unit cell. The latter is calculated by integrating the spin- and layer-resolved 

DOS from the conduction band minimum up to the Fermi energy*. The large spin 

polarization of the 2DEG is seen at the EuO monolayers near the LaAlO3/EuO interface. 

The estimated value of the spin polarization of the free charge density is about 50%. 

We note that our calculation is performed for the non- stoichiometric LaAlO3 layer 

which is assumed to be LaO terminated on both sides. Similar to the previous theoretical 

studies [29, 30], in this geometry an “extra” electron is introduced in the system due to 

the uncompensated ionic charge on the additional (LaO)+ monolayer. For a 

stoichiometric LaAlO3 layer deposited on top of EuO, it is demonstrated that a 2DEG is 

formed at the interface due to the electronic reconstruction resulting from the charge 

transfer to the interface that eliminates the increasing electrostatic potential in LaAlO3 

[141]. 

Due to the enhanced coupling between nearest 4f Eu by itinerant electron, the Curie 

temperature of this spin-polarized 2DEG at interface of stoichiometric EuO/LaAlO3 can 

be as high as 105K, as predicted in Ref. [141]. For the same reason, we can expect an 

enhanced Curie temperature in our non-stoichiometric systems. 

 

                                                            
* The local charges are evaluated within the Wigner-Seitz spheres, as specified by VASP. 
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5.2.2 EuO/LaO/EuO 

 

 

Figure 5.8 Atomic structure of LaO/(EuO)19 (001) superlattice containing one 

monolayer LaO and 19 monolayers of EuO. Indices l denote atomic monolayers and are 

increasing with separation from the interface layer LaO.  

 

      Due to the experimental difficulties of growing both EuO and LaAlO3 in the 

same environment, in addition to the heterostructure studied above, here we investigate 

another heterostructure EuO/LaO/EuO (001) at the interface of which electron doping 

may be achieved locally and spin-polarized. This structure could be grown 

experimentally by inserting one layer of LaO in the growing process of bulk EuO. The 

considered LaO/(EuO)19 superlattice (i.e., one monolayer LaO and 19 monolayers of 

EuO) is stacked in the [001] direction, as shown in Figure 5.8. We use periodic boundary 

conditions and impose mirror plane symmetry at the central EuO monolayer. The lattice 

constants used are the same as those used for LaAlO3/EuO. The optimization of the 

superlattice spacing follows the same procedure for LaAlO3/EuO. Figure 5.9 shows the 

calculated atomic displacements within the LaO/(EuO)19 (001) superlattice. A clear Eu-O 
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relative displacement occurs near the interface and reduces when moving from the 

interface. The associated dipole distortion pointing away from the (LaO)+ ionic layer, 

which is the same direction of the electric field produced within this layer. This 

distortion is the result of the inoic screening effect in addition to the possible electronic 

screening. This distortion makes the dielectric constant of EuO in this superstructure 

very different from the bulk value, and thus significantly affects the wedge-shaped 

electric potential, and finally strongly influences the carrier distribution near the 

interface [29].  
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Figure 5.9 Atomic displacements in the LaO/(EuO)19 (001) superlattice with respect to 

the atomic “bulk” positions. The latter are determined by fixing the in-plane lattice 

constant and optimizing the interlayer distance, as described in the text. The vertical 
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dashed line indicates the interface layer LaO. 

By examining layer resolved density of state in the our calculations, the electron doping 

is found locally near the interface of EuO/LaO/EuO(001) structure. Using the same 

approach of calculating the spin-dependent charge distribution in Figure 5.7, we 

demonstrate in Figure 5.10 that a spin-polarized 2DEG is formed in both LaO and EuO 

layers near the interface of LaO/EuO with a decay length smaller than that in 

LaAlO3/EuO. The relatively smaller spin polarization in this superlattice compared with 

that in LaAlO3/EuO is due to the large occupation of small spin-polarized states in the 

LaO layer.  
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Figure 5.10 Spin-dependent charge distribution across the LaO/(EuO)19 (001) supercell. 

The notation for the atomic layers is the same as in Figure 5.8. The dashed lines indicate 

the LaO interface layer. 

 

5.3     Summary 

In summary, based on first-principles calculations we have predicted the possibility 

to create a spin-polarized 2DEG at the LaO/EuO interface in the LaAlO3/EuO (001) 

heterostructure. We demonstrated that this polar interface favors electron doping into the 

Eu-5d conduction bands rendering a 2DEG formed at the interface. Due to the exchange 

splitting of the Eu-5d states the 2DEG becomes spin-polarized. The predicted 

mechanism for the formation of a spin-polarized 2DEG at the interface between polar 

and ferromagnetic insulators may lead to a robust magnetism of a 2DEG which is 

interesting for spintronics applications.  
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