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 The interaction between ferromagnetic and ferroelectric films, the 

magnetoelectric effect, is a fascinating fundamental research area as well as having 

potential applications in magnetic data storage devices. We have investigated 

magnetoelectric coupling effects in thin film heterostructures, consists of metallic 

ferromagnet, cobalt, and the polymer ferroelectric [P(VDF-TrFE) 70:30]. The work 

described here encompasses changes in ferroelectric polarization with magnetic field as 

well as changes in the magnetic anisotropy with ferroelectric polarization. 

 In samples of Co overlayers on P(VDF-TrFE), in which the Co is not constrained 

by the substrate, the polarization shows a large change on application of a perpendicular 

magnetic field. This magnetoelectric effect is reversible, repeatable and possesses odd 

symmetry with respect to positive and negative magnetic field. Magnetic saturation 

destroys the effect, implying the presence of multiple magnetic domains is essential for 

the effect. The flexoelectric effect, the change in polarization due to strain gradients in 

the ferroelectric film, is a possible candidate for the cause of this effect.   

 



 

 

In samples consisting of Co layers overlaid with P(VDF-TrFE), large changes in 

the magnetic coercivity with changes in ferroelectric polarization are observed. The out-

of-plane coercivity is significantly larger for up polarization (i.e. polarization pointing 

away from the Co layer), whereas the opposite is true for the in-plane coercivity. The 

magnetic anisotropy, calculated using the areas of magnetization hysteresis loops, is 

shown to change by as much as 50% as the ferroelectric polarization is switched from up 

to down. For the thinnest films, the easy axis switches from out-of-plane to in-plane as 

the ferroelectric polarization is switched. The change in coercivity is proportional to the 

ferroelectric polarization, as confirmed by taking magnetization loops at intermediate 

polarization values. Rotation of the magnetization through a large angle, using only 

electric fields is demonstrated. These large changes in the anisotropy arise from the large 

electric field at the surface of the Co layer.  
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Chapter 1 

Introduction 

 

1.1 Introduction 

 The experiments described in this thesis investigate interactions between the 

ferroelectric copolymer polyvinylidene fluoride (C2H2F2) with trifluoroethylene (C2HF3) 

[P(VDF-TrFE)]  and the transition metal ferromagnet,  Cobalt. We have demonstrated 

sizable magnetoelectric coupling in these ferromagnetic-ferroelectric thin film 

heterostructures.  

 The magnetoelectric (ME) effect is defined as the control of ferroelectric 

polarization by applied magnetic fields or the control of magnetization by applied electric 

fields.  The magnetoelectric effects can occur in single-phase multiferroic materials or in 

composite materials with separate ferro-phases, in which the interaction between the 

materials is the source of magnetoelectric coupling. 

 Our choice of materials has the following advantages over conventional 

perovskite ferroelectric/ferromagnet layers: (i) the ferromagnetic metal is much stiffer 

(200 GPa) than the soft polymer film (2 GPa), effectively minimizing the strain at the 

much stiffer metallic Co layer. (ii) Low energy Langmuir Blodgett deposition of a 

crystalline ordered polymer film leads to little or no disruption of the interface.    

 This thesis focuses on the following topics: 

1. ME coupling in a ferroelectric polymer / transition metal ferromagnetic 

heterostructure. (For details see chapter 4). Much of this chapter is taken from a 
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published article in Applied Physics Letters [A. Mardana, Mengjun Bai, A. 

Baruth, Stephen Ducharme & S. Adenwalla, Magneto-Electric Effects In 

Ferromagnetic Cobalt / Ferroelectric Copolymer Multilayer Films, Applied 

Physics Letters 97, 112904 (2010)]. 

2. Ferroelectric control of magnetic anisotropy. (For details see chapter 5 and 

chapter 6). These chapters are taken from a published article in Nano Letters [A. 

Mardana, Stephen Ducharme & S. Adenwalla, Ferroelectric control of magnetic 

anisotropy, Nano Letters 11 (9), 3862 (2011)] and an accepted article in Journal 

of Applied Physics [A. Mardana, Stephen Ducharme & S. Adenwalla, The sweep 

rate dependence of the electrical control of magnetic coercivity, Journal of 

Applied Physics 111, 7 (2012)] respectively. 

 

1.2 Magnetoelectric effects in general: A review 

 In recent years ME effects, in both single phase multiferroics and composite 

samples have been reported1 in which the polarization (magnetization) is altered by the 

application of a magnetic (electric) field, either directly or by introducing piezo-strain via 

magnetostriction. The variety of applications, ranging from memory devices to 

microwave applications, magnetic field sensors and the ability to sense magnetic or 

electric fields with electrical or magnetic responses are motivating the search for 

materials with larger ME coupling.  

 Magnetic ordering occurs in materials in which the exchange between electrons 

spins lead to ordering of the magnetic moments. Multiferroic materials2,3,4,5,6 are special 

types of materials in which two or three ferro-order parameters (ferroelectric, 
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ferromagnetic, ferroelastic) occur. The coupling between these ordered phases is often 

weak, and the mechanisms for the ME coupling in multiferroics are highly dependent on 

the details of the electronic structure and the underlying lattice. Early investigations of 

ME coupling by P. Curie7 in 1894 discussed the correlation of magnetic and electric 

properties in low-symmetry crystals, followed by P. Debye’s8 discussion in 1926 of the 

“magneto-elektrischer Richteffekt”. Dzyaloshinskii9 in 1959, predicted ME coupling in 

Cr2O3, which was experimentally observed by Astrov10,11 in 1960. 

 The Landau free energy for a multiferroic material may be written as1 

...
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ijα is the linear ME coupling coefficient and the third-rank tensors ijkβ and ijkγ  are the 

quadratic ME coefficients. The two equations above quantify the magnetoelectric effect, 

by defining the polarization change induced by magnetic field, and vice versa.  

 

1.3 Magnetic control of ferroelectricity 

 1.3.1 Multiferroic materials  

 Materials which exhibit both magnetic and electrical ordering are scarce, but the 

growing interest in magnetoelectric phenomena has led to the development of new 

materials as well as renewed investigations into well known multiferroics with a view to 

enhancement of the ME coupling.   Single crystal BiFeO3 is a well known multiferroic 

material, exhibiting weak ferromagnetism and ferroelectricity with a Neel temperature of 

~ 640 K and Curie temperature of ~ 1100 K.12 The magnetization and the polarization 

both increase substantially in thin films of BiFeO3, as seen by the group of Ramesh, who 

have reported a spontaneous polarization ~ 55 μC/cm2 much higher than the single crystal 

value of ~ 3.5 μC/cm2. The magnetization value was reported to be ~ 150 emu/cc at room 

temperature much higher than the single crystal value of ~ 2 emu/cc.13 This enhancement 

of the polarization and magnetization is attributed to the lattice mismatch with the 

substrate and the distortion of the thin film from rhombohedral to tetragonal. The ME 

coupling coefficient dE/dH was measured to be 3 V/cm-Oe. 

 Compounds of RMnO3 (where R is a rare earth atom Y, Ho, Er, Tm, Yb, Lu or 

Sc) display ME coupling with ferromagnetic and ferroelectric phase transitions as well as 

changes in the polarization and dielectric constant with applied magnetic field.14,15 The 
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coupling is limited by high magnetic field (3-4 Tesla) and low magnetic ordering 

temperature (~30 K) requirements. Room temperature polarization switching with 

moderate magnetic field in the ceramic hexaferrite Sr3Co2Fe24O41 has been reported.16  

The linear magnetoelectric coupling in Cr2O3 reaches a maximum value of α = 

4.1 ps/m close to the Neel temperature of 307 K.10 A recent experiment17 revealed an 

unconventional ferromagnetism at the (0001) surface of the magnetoelectric Cr2O3. Using 

a ferromagnetic multilayer, Pd/Co, deposited on the Cr2O3, a reversible room temperature 

electric control of exchange bias was demonstrated. [Exchange bias is defined as the shift 

in the magnetization loop of a ferromagnetic film and is most often seen in bilayer 

structures consisting of a ferromagnetic (FM) and an antiferromagnetic (AFM).  When 

this is cooled below the Neel temperature (TN) of the AFM, unidirectional exchange 

anisotropy is induced in the FM layer.]  

 

 1.3.2 Composite materials  

 The paucity of room temperature multiferroics with strong ME coupling has 

motivated the fabrication of heterostructured materials with separate magnetic (or 

magnetostrictive) and ferroelectric (or piezoelectric) components.18,19,20,21 ME coupling 

in composite materials may occur due to one or both of the following mechanisms. The 

first one22 arises from strain coupling between the two components, with piezoelectric 

strain giving rise to magnetostriction, which alters the magnetization. Conversely, 

changes in magnetization result in magnetostriction, and with sufficiently strong strain 

coupling may alter the polarization of a strain coupled ferroelectric. The other effect 

 

http://en.wikipedia.org/wiki/Ferromagnetic
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arises directly from the electric field at the interface, which alters the magnetization, or 

due to changes in interfacial bonding upon polarization switching.23 

 In heterostructures that are designed for strain coupling, magnetic materials are 

chosen to have the largest possible magnetostriction in order to maximize the polarization 

change with an applied magnetic field. For example, heterostructured laminates of 

metglas (with high magnetostriction) and polyvinylidene-fluoride ( a piezo-polymer) 

resulted in large ME effects, with dE/dH values of 7.2 V/cm-Oe at low frequencies and 

up to 310 V/cm-Oe at the mechanical resonance of the heterostructure.24 

 These composite materials may consist of fairly coarse scale laminates25,26,27,28 or 

heterostructured columnar nanostructures20 or epitaxial multilayered films.29 Examples of 

laminated composites are PZT/Terfenol-D30 bonded with silver epoxy or PZT and 

Terfenol-D powders,31 mixed with PVDF and hot-pressed into a three-layer stack of 

PZT/Terfenol-D/PZT. PVDF is required for the insulating matrix binder, which prevents 

eddy current loss in the Terfenol-D. In epitaxial columnar nanostructures of BaTiO3-

CoFe2O4 the elastic magnetoelectric coupling between ferroelectric and ferromagnetic 

layers is reported to be dM/dE = 1x10-2 G-cm/V.20,32 The columnar nanostructure  

effectively reduces the clamping effect of the substrate, while increasing the surface area 

for interaction. Heterostructured materials of Fe or LSMO on ferroelectric BaTiO3 have 

shown straininduced changes in the magnetic properties arising from the 

piezoelectricity.33,34  
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1.4 Electric control of magnetic properties 

The physics behind electric control of magnetism is not only exciting but also has 

the potential for developing a new era of electronic devices.35 Potential applications 

include nano-sensors and electrically tunable magnetic data storage in Magnetoresistive 

Random-Access Memory (MRAM). Overheating is a major problem in nano-electronic 

devices and electric field control requires much lower power compared to current driven 

magnetic devices, such as spin transfer torque elements, which require current densities 

~106 A/cm2 in magnetic tunnel junctions with MgO and AlOx tunnel barriers.36 Applied 

electric fields have been shown to control a wide range of magnetic properties including 

the Curie temperature,37 magnetic anisotropy, surface magnetization, exchange bias and 

the spin polarization. Electric fields are supplied either via applied voltages, or 

alternatively by means of an adjacent ferroelectric. The mechanism behind electric 

control of magnetic properties arises either by induced strain from the piezoelectric 

materials or by means of polarization charge induced effects. The electric control of 

magnetism has been largely based on the elastic strain.33,38,39,40 of the piezoelectric 

material. The disadvantage of the piezoelectric strain based control of a thin magnetic 

film is that it is constrained by the substrate. 

 Research results of the electric control of magnetic anisotropy are presented in 

this dissertation, focused on mechanisms that are not strain induced but charge induced 

effects. Such charge induced effects have been observed in composite materials with both 

volatile and non-volatile electric fields.41,42,43,44,45 

 Isothermal and reversible46 electric control of ferromagnetism has been reported 

in magnetic semiconductors. The hole concentration changes with the applied electric 
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field and changes the ferromagnetic transition temperature by altering the exchange 

interaction47 among the Mn ions. Magnetization reversal48 by electric field in 

[(In,Mn)As] has also been reported at low temperature. Above room temperature the 

electric field control ferromagnetism has been reported in quantum dots of Mn0.05Ge0.95
49

 

Non-volatile electric field induced changes in the Curie temperature and magnetic 

anisotropy of the ferromagnetic semiconductor (Ga,Mn)As have been seen, with the 

source of the electric field being the remanent polarization of ferroelectric P(VDF-

TrFE).50 The electric field induces change in the carrier densities in the relevant material. 

The electric field due to the polarization switching of the ferroelectric PVDF layer at the 

interface of the (Ga, Mn)As produces a change in hole concentration, thereby changing 

the  Mn-Mn exchange interaction, which is mediated by the holes. 

 Magnetic anisotropy changes have been predicted51 in thin Fe films on BaTiO3 

with ferroelectric polarization switching of BaTiO3 using density functional theory 

(DFT).  The effect arises from the ferroelectric displacements and electronic structure 

changes at the FE/FM interface. A large change in the magnetic anisotropy energy is 

predicted for up and down polarization states. Figure 1.1 showed the calculated value of 

magnetic anisotropy energy (MAE) for two different polarization orientations. However, 

experimental measurements of MAE in Fe-BaTiO3 heterostructures are dominated by 

strain effects at the interface. 
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Figure 1.1: Magnetic anisotropy energy as function of a polarization scaling factor λ. 

Here, λ=1 and λ= -1 correspond to the spontaneous polarization up and down, 

respectively (After reference 51). 

 

 In epitaxial FePt or FePd films that are immersed in a liquid electrolyte, the 

magnetic coercivity can be reversibly modified by an external applied electric field.52 

Changes in the magnetic anisotropy from in-plane to out-of-plane in Fe/MgO53 and 

Fe80Co20/MgO54 thin film heterostructures  in the presence of large externally applied 

fields has been experimentally demonstrated. This change possibly originates due to the 

change in the number of d-orbitals in Fe atoms55,56 at the MgO interface. Thickness-

dependent magnetic anisotropy changes have been reported with applied electric field in 

Co40Fe40B20/MgO heterostructures.57 Both the coercivity of the perpendicular 

magnetization region and the perpendicular magnetic anisotropy of the in-plane 

magnetization region can be modified by applying electric fields at room temperature.  
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Chapter 2 

Sample Preparation and Characterization Techniques 

 This chapter describes the sample preparation and characterization techniques that 

were used in this thesis. Sample deposition techniques include sputtering and thermal 

evaporation for deposition of metallic and insulator films, which are described in 2.1 and 

2.3 respectively. Langmuir-Blodgett techniques are used for the deposition of the thin 

polymer ferroelectric films and are described in section 2.2. Sample characterization 

techniques include structural characterization using X-ray diffraction (XRD), X-ray 

reflectivity (XRR) and Atomic Force Microscopy (AFM) measurements for crystalline 

structure, thickness, roughness and continuity of the samples. Electrical characterization 

includes pyroelectric measurements, which characterize the polarization hysteresis loops 

of the ferroelectric layer. Magnetic characterization includes both the polar and 

longitudinal magneto-optical Kerr effects (MOKE) for in-plane and out-of-plane 

components of magnetization respectively. Microscopic magnetic domain images were 

obtained using magnetic force microscopy (MFM) imaging. 

 

2.1 Magnetron Sputtering 

 Sputtering is a common thin-film deposition process that relies on the ejection of 

atoms from solid targets by bombardment with energetic particles. All sputtered samples 

in this thesis were made in an Ar gas atmosphere. The base pressure of the sputtering 

chamber is of the order of 10-8 Torr. An energy source applies either DC (direct current) 
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or RF (radio frequency) voltages across the electrodes to create and maintain plasma 

inside the vacuum chamber.  

 A voltage of -2kV to -5kV is applied across the grounded sample holder and 

target (cathode), resulting in the emission of free electrons, which accelerate and collide 

with the Ar atoms. Free electrons with sufficient kinetic energies (>15 eV) are able to 

repel the outer most electrons of the Ar atoms and knock them out from the atoms 1 

leaving behind ionized Ar+ ions. In turn these positively charged ions (Ar+) are 

accelerated to the negatively charged target (cathode), and kick out target atoms. 95% of 

the incident energy is deposited in the target and 5% of the incident energy is carried off 

by the target atoms (~100 eV). Free electrons both maintain the plasma by creating more 

Ar+ ions, while some free electrons recombine with the Ar+ ions, creating neutral Ar 

atoms. This recombination process produces photons, giving the characteristic plasma 

glow. Conventional sputtering has two major drawbacks: (i) The sputtering yield is very 

low and (ii) electrons also strike the substrate and can cause structural and heating 

damage. These problems are overcome by the use of magnetron sputtering. In magnetron 

sputtering, a magnetic field perpendicular to the applied electric field is applied so that 

electrons are trapped just above the target in a helical path. This results in increased 

electron-Ar+ collisions close to the target, therby increasing the sputtering rate, while at 

the same time decreasing electron collisions with the substrate.2  

 RF voltage sources are necessary for the sputtering of insulating materials 

because DC voltages lead to charge accumulation on the insulator cathode surface. At 

low RF frequencies, electrons and ions both move in the alternating potential and the 

cathode and anode switch on each half cycle, resulting in sputtering of both the target and 
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the substrate. At higher RF frequencies (> 50 kHz), the heavier ions cannot move at the 

RF frequency and the electrons neutralize the positive charge buildup on the cathode 

making insulator sputtering possible. The majority of RF sputtering is performed at a 

frequency of 13.56 MHz. 

 For a given material in a given sputtering gas environment the sputtering rate 

depends on two factors: (i) gas pressure and (ii) cathode voltage. In a typical deposition 

we strike the plasma at 25 mT of Ar pressure with a sputtering power of 40 W and then 

reduced the pressure to 2 mT during deposition. More details on the sputtering 

procedures can be found in references 1 and 2.  

 

 

 

Figure 2.1: Schematic diagram of the sputtering process. The target is installed on the 

magnetron assembly. Ionized Ar atoms knock out target atoms which are then deposited 

on the substrate. The inset on the right is a top view of the magnetic field assembly below 

the target.  
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Figure 2.2: This schematic diagram of the AJA ATC-2000V Phase-II sputtering chamber 

is taken from the AJA website. 3 For details see the text. 

 

 The magnetron sputtering chamber used to grow thin films is from AJA 

International, Inc., model number AJA ATC-2000V Phase-II computer controlled 

sputtering chamber. 4,5 This has two chambers, a main chamber and a load lock chamber. 

Each chamber is equipped with its own pumping system and the two chambers are 

separated by a gate valve. The main chamber is equipped with a Varian TV-551 turbo 

navigator backed by an Alcatel ACP-28 roots pump and the load lock is equipped with a 

Varian TV-301 turbo navigator backed by a Varian SH-110 dry scroll pump. There are 4 

sputtering guns in a con-focal geometry. Two of them are designed for magnetic targets. 

Since the magnetic targets produce their own strong magnetic field lines there need to be 

stronger magnetic fields to trap the electrons near the targets in a helical path. Of the four 

guns, two are operated as DC guns are using the Advanced Energy MDX 500 power 
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supply for metallic sputtering and two as RF guns using the Advanced Energy RF-5S for 

sputtering of insulators as described above. The RF power supply operates at a frequency 

of 13.56 MHz. Up to 12 substrates may be loaded into the load lock for sequential 

deposition without breaking the vacuum. In addition, an in situ mask changer in the load 

lock allows us to change shadow masks without breaking vacuum. The mask changer 

allows for 90 degree rotation, enabling the in-situ deposition of top and bottom electrodes 

perpendicular to each other. An advantage of the con-focal deposition system lies in the 

ability to make either wedges (see chapter 5) or films of uniform thickness by rotation of 

the guns. The optimal gun angle for uniform film thickness in our system corresponds to 

a reading of 4.5 mm on a linear scale attached to the bottom of the guns, which 

corresponds to an angle of approximately 60º to the normal. The substrate is transferred 

to the main chamber from the load lock using an extended arm and attached to the 

substrate holder for deposition. For uniform thickness, the substrate is rotated during 

deposition. During deposition through shadow masks, the rotation is controlled at the 

minimum speed sufficient to ensure uniform thickness. The substrate holder can be 

heated up to 500 ºC for high temperature sputtering deposition or in-situ annealing of the 

deposited films. The argon flow rate is controlled by the mass flow controller at a rate of 

13.81 standard cubic centimeters per minute (sccm). The sample thickness is monitored 

by an Inficon XTM/2 quartz crystal thickness monitor.6 The sputtering guns and the 

turbo pumps are cooled using chilled water flow from a water chiller at a typical 

temperature of 16 ºC with a pressure of 75 psi.  
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2.2 Langmuir-Blodgett deposition of P(VDF-TrFE) copolymers 

 A Langmuir-Blodgett (LB) film is defined as monolayer deposition of a film on a 

solid substrate from a liquid surface that is formed by dipping the substrate into the 

liquid. 7,8 Ideally, each deposition transfers one monomolecular with uniform thickness. 

Amphiphilic monolayers, on a water subphase, such as fatty acids, will orient vertically 

with a hydrophilic head pointing into the subphase and the hydrophobic tail pointing 

away, so that successive dips result in a single oriented layer.9 Although P(VDF-TrFE) 

copolymers are not amphiphilic molecules, a variation of the LB technique, the Langmuir 

Schaefer technique has been successfully used to grow highly crystalline thin films of 

P(VDF-TrFE) with monolayer control of the thickness.10 Because the copolymers are 

insoluble in water, the P(VDF-TrFE) copolymers form floating metastable monolayers on 

the water surface.10  

 A NIMA model 622C LB trough was used to fabricate the LB films of P(VDF-

TrFE). The trough is first cleaned with ultra-pure distilled water purified by the reverse 

osmosis process and with a small home made vacuum cleaner, equipped with a pipette. 

The cleaned trough is then filled with the distilled water (with a water resistance of 18.2 

MΩ). The barriers (to control the water surface area and surface pressure) are then closed 

to the minimum area and the water surface is cleaned thoroughly with the pipette vacuum 

cleaner. This cleaning procedure is repeated 2-3 times. The water temperature is kept 

constant at 25 ºC during the deposition. A pressure-area isotherm confirms the cleanliness 

of the trough- a clean water surface will result in a pressure-area isotherm that is a 

straight line with pre-set surface pressure of zero. The barriers are open all the way and 

pre-cleaned glass slides are slid into the water, at an angle ~ 15º to the water surface, 
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tilted and half-way submerged in the water. Prepared solutions of P(VDF-TrFE) in 

DMSO with 0.05-0.06% weight concentration are dispersed on the tilted glass slides 

using a microliter syringe one drop at a time with each drop containing 20 μL of 

solutions. Droplets of the polymer solution then drain slowly onto the water surface from 

the inclined glass slide. This process is continued until approximately 1.5 mL of solution 

is dispersed on the water surface. The glass slides are removed from the water, and a 

pause of 15-20 minutes allows for evaporation of the DMSO, leaving only the polymer 

chains on the water surface. The barriers are then slowly closed at a rate of 200 cm2 / min 

using pressure control until the solid phase surface pressure of 5 mN / m is achieved and 

this pressure is maintained throughout the deposition process. The copolymer chains are 

aligned parallel to the cross-section of the trough and ready to be transferred to the 

substrate. The monolayers are transferred using the horizontal Schafer method (details 

can be found in reference 9, 10). This is done by keeping the substrate horizontal to the 

water surface with a small tilt angle of about 10 degrees to avoid air bubbles. The 

substrate touches water, the tilt angle is slowly reduced to zero and then tilted back and 

withdrawn slowly so that the meniscus line moves across the substrate slowly enough to 

prevent significant strain or damage to the film. The substrate is allowed to dry between 

layer depositions to remove water droplets.11 As P(VDF-TrFE) is not amphiphilic, the 

film on the trough is thicker than one monomolecular layer. The polymer films  depositd 

using this  method have a thickness of approximately 1.8 nm per 1 LB layer determined 

by variable-angle spectroscopic ellipsometry measurements, corresponding to ~ 3ML of 

P(VDF-TrFE).12,13  
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2.3 Thermal Evaporation 

 Top electrodes have been deposited on the copolymer using thermal evaporation, 

because evaporated materials have relatively low energies corresponding to the 

evaporation temperature (typically 1000 ºC or ~ 0.2 eV), as compared to sputter 

deposited materials with energies of 10-100 eV. This makes evaporation a much better 

deposition technique for electrodes on soft polymer films. Thermal evaporation is carried 

out in a Bal-tec MED 020 evaporation system with a Sycon STM / MF quartz crystal 

thickness monitor, typically at a base pressure of 4 x 10-5 mbar and at a rate of 1-2 Å/s. 

Tungsten wire baskets were used to hold the deposition material while a current of 20 A 

passed though the basket to heat and evaporate the material.  

 

2.4 Annealing of P(VDF-TrFE) films 

After deposition, the P(VDF-TrFE) films were annealed at temperatures of 130 – 

135 ºC, above the ferroelectric to paraelectric phase transition temperature, but well 

below the melting temperature resulting in a reorientation of the polymer chains due to 

increased mobility. Thermal annealing has been shown to substantially increase the 

crystallinity of the films.14 The rate of heating is 1.5 ºC/min in an isolated annealing 

chamber. The sample is kept at 130 – 135 ºC for at least an hour and the temperature is 

then decreased to room temperature at the same rate. In thinner films of less than 10 ML, 

the P(VDF-TrFE) films form nanomesas upon annealing.15 
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2.5 Pyroelectric measurements  

 The polarization of the ferroelectric layers has been measured using the 

pyroelectric effect, which is defined as the change in electric surface charge developed in 

certain polar materials on heating or cooling the material. Note that pyroelectricity and 

thermoelectricity are distinct phenomena. In pyroelectricity the entire sample temperature 

is changed whereas in thermoelectricity only one end of the sample is heated, resulting in 

a temperature gradient.16 Pyroelectric materials have no center of symmetry, resulting in 

a dipole moment and spontaneous polarization arising from the dipole moment. If an 

applied electric field can reverse the dipole moment then the material is ferroelectric. In a 

parallel plate capacitor structure, the polarization cannot be measured directly at constant 

temperature, because the surface charge is compensated by free charges in the electrode. 

In a ferroelectric crystal, when the temperature increases (decreases) the polarization 

decreases (increases) as does the bound charge. The change in the compensating free 

charge constitutes the pyroelectric current. The pyroelectric coefficient is defined 

by
),( E
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= , where ),( Eσ specify that the measurements are done at constant stress 

σ and constant electric field E. Pyroelectric measurements are performed by heating or 

cooling the sample and measuring the resultant current at the electrodes. The pyroelectric 

current can be written as 
t
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= )(3 , where p3(eff) depends on the pyroelectric 

coefficients p and on the piezoelectric tensors. The pyroelectric measurements are done 

in a parallel plate capacitor structure with the ferroelectric film in between two metallic 

electrodes, the film is constrained to the substrate and stress free normal to the surface 

and strain free in-plane.17 The measured pyroelectric coefficients p3(eff) consists of two 
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terms, the primary effect and the secondary effect: 
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where Ps is the spontaneous polarization, T is temperature, S is the strain,  is the 

stress-free piezoelectric coefficient,  is the elastic compliance coefficient, is the 

thermal expansion coefficient, I is the pyroelectric current, A is the surface area and 
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is the rate of temperature change.  

 Careful experiments by Bune et al., 17 have shown that the pyroelectric response 

is directly proportional to the net sample polarization in P(VDF-TrFE). The piezoelectric 

coefficient is proportional to the pyroelectric current and both of them are proportional to 

the spontaneous polarization [see figure 2.4 (a)]. Hence this method can be used to 

measure the remanent polarization hysteresis loops. 

 The Chynoweth modulation method is used to measure the pyroelectric 

current,18,19 the schematic diagram of which is shown in Figure 2.4 (b). The heat source 

is a 1-3 mW diode laser and the temperature is modulated using an optical chopper of 

frequency 2 kHz. The wavelength of the laser light is 658 nm corresponding to a 

maximum photon flux of 2.5 x 1018 photons/m2s. The laser spot size is comparable to the 

sample spot size (1 mm2 or 0.04 mm2 depending on the sample). The laser light is 

incident perpendicular to the sample surface. A DC voltage is applied to polarize the 

sample using the Keithley 2400C source meter. The pyroelectric signal is measured by 

biasing the sample at each voltage for few minutes and then removing the voltage. Data 

are taken at zero bias using a Stanford Research System SR830 DSP lock-in amplifier at 

a frequency of 2 kHz corresponding to the chopper frequency. The sign of the 

pyroelectric current is arbitrarily chosen so that positive FE saturation polarization 

  



 
 

23

corresponds to positive pyroelectric current. This is done by choosing a suitable phase on 

the lock-in amplifier, which is subsequently kept constant during the entire pyroelectric 

hysteresis measurement. This method measures the equilibrium remanent polarization, 

and for P(VDF-TrFE) films, has been shown to be almost equivalent to the polarization. 

 

 

Figure 2.4: (a) Experimentally measured piezoelectric coefficient (d33) is directly 

proportional to the pyroelectric current after Bune et al., 17. (B) Schematic diagram of the 

pyroelectric measurement set up. (c) Schematic of a typical ferroelectric hysteresis loop 

measured by pyroelectric current with applied voltage.  
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 A schematic diagram of a typical hysteresis loop is shown in figure 2.4 (c). At a 

high positive saturation electric field all ferroelectric domains are aligned along the 

applied electric field direction, resulting in saturation polarization Ps. As the field is 

decreased to zero, the polarization decreases slightly to the remanent polarization Pr, 

which is defined as the polarization at zero applied voltage. Pr is slightly smaller than Ps 

because some domains relax back to the original state. The electric field needed to bring 

the polarization to zero on the opposite side of the saturation electric field is called the 

coercive field Ec. The hysteresis arises due to the energy loss (area inside the loop) in 

each cycle during the reversal of the dipoles. In our pyroelectric hysteresis loop 

measurements the conductivity of the top and bottom electrodes (different metallic 

electrodes) are different and hence the hysteresis loop is shifted along the vertical axis. 

 

2.6 Magneto-Optical Kerr Effects (MOKE) 

 When linearly polarized monochromatic light is incident on a magnetized surface, 

the reflected and transmitted light is in general elliptically polarized, with the polarization 

axis rotated by an angle with respect to the incident light. The Faraday and Kerr effects 

refer to the changes in polarization of the transmitted and reflected beams respectively. 

The off-diagonal elements of the dielectric tensor are responsible for the magneto-optical 

Kerr and Faraday effects. The diagonal elements describe the optical properties of the 

film in the absence of magneto-optical effects. Magneto-optical Kerr effects (MOKE) can 

be defined macroscopically as the interaction of the magnetic sample with the 

electromagnetic field of the laser light and represented by the dielectric tensor. The off-
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diagonal elements of the dielectric tensor are linearly proportional to the magnetization, 

which occur through different absorption of left and right circular polarized light.  

 The Kerr effect is directly proportional to the component of magnetization 

parallel to the plane of incident light and in the first order approximation a hysteresis loop 

of the magnetization can be measured. The MOKE technique measures the change of the 

polarization states of the incident light when reflected from the surface of a magnetic 

material. Linearly polarized light experiences a rotation of the polarization plane (Kerr 

rotation θK) and a phase difference between the electric field components perpendicular 

and parallel to the plane of the incident light (Kerr ellipticity εK).  

 MOKE is a highly sensitive technique and one of the few techniques that allow 

for the measurement of in-plane and out-of-plane components of magnetization of the 

magnetic sample separately. The biggest disadvantage of MOKE is that it measures only 

relative changes in the magnetization of the magnetic samples. However, it remains a 

very useful technique to measure surface magnetization and the shape of magnetic 

hysteresis loops. 

 

Figure 2.5: Schematic of the three different MOKE configurations, PMOKE, LMOKE, 

and TMOKE. The black and red arrows depict the magnetization component that is 

measured and the light propagation direction respectively. 
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 MOKE measurements are usually performed in one of three different 

configurations, which differ in the polarization direction of the incident light and applied 

magnetic field direction. These are commonly known as the polar, longitudinal and 

transverse. Polar MOKE (PMOKE) measures the perpendicular component of the sample 

magnetization whereas longitudinal MOKE (LMOKE) measures the in-plane component 

of magnetization. In LMOKE the magnetic field is applied parallel to the sample surface 

and the plane of incidence is perpendicular to the sample surface. Incident s-polarized or 

p-polarized light upon reflection from the sample surface will be elliptically polarized 

due to the component of the magnetization perpendicular to the incident electric field 

vector. In PMOKE the applied magnetic field direction is parallel to the plane of 

incidence but perpendicular to the sample surface. PMOKE measurements are maximized 

at normal incidence whereas for LMOKE no effect will be observed at normal incidence. 

In TMOKE the magnetization vector is parallel to the sample surface but perpendicular to 

the plane of incidence. TMOKE only deals with p-polarized light and only measures 

changes in refractive index. 

 The experimental set up for MOKE measurements20,21,22,23 consists of a laser 

diode, a polarizer, a Hinds photo-elastic modulator (PEM -90), an analyzer, a photo-

detector, GMW electromagnets with Kepco power supply and a SRS 830 Lock-in 

amplifier (Stanford Research Systems, SR830 DSP). The laser diode is set at constant 

current mode with a current of 45 to 50 mA (~ 0.1 mW) using the controller (ThorLabs 

model # LDC 205B LD) and the temperature of the laser diode is maintained at ~ 15 ºC 

with a temperature controller (ThorLabs TED 200). The wavelength of the laser light is 

658 nm. For LMOKE measurements the incident light makes an angle ~ 45º to the 
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sample surface normal where as in case of PMOKE measurements the incident light is 

normal to the surface. In case of LMOKE measurements the incident angle is smaller 

than the Brewster angle between the air / Co interfaces (~63º) so the reflection of p-

polarized light is minimized while the longitudinal Kerr rotation of s-polarized light 

increases linearly with increasing angle of incidence up to the Brewster angle.24,25 The 

details of the MOKE measurement and optimization which are followed in our 

measurements can be found in reference 26. 26 

 

 

Figure 2.6: Schematic set up of (a) LMOKE and (b) PMOKE.  

 

 Linearly s-polarized light is reflected from the desired spot and then transmitted 

through the photo-elastic modulator (PEM).27 The PEM consists of a transparent solid 

material, stressed by compression or stretching, that is birefringent so that different linear 

polarizations of light have slightly different speeds of light when passing through the 

material. When the PEM is compressed the polarization component parallel to the 

modulation axis travels slightly faster than the vertical component. The horizontal 

component then leads the vertical component. The phase difference between the 
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components is called the retardation. The output MOKE signal is then modulated by the 

phase retardation from the PEM. The modulation signal is set up as the reference signal 

for lock-in measurements. The reflected light is transmitted through an analyzer, which is 

set almost perpendicular to the polarization direction so that it blocks almost all the 

incident polarization and transmits the component generated by Kerr interaction to the 

photo detector. An electromagnet (GMW 3470) with Kepco BOP 50-8M power supply is 

used to generate the magnetic field. Data collection is done using LabVIEW programs 

controlled via a GPIB card.  

 A detailed derivation of the MOKE signal can be found in the PEM application 

note. 28 As described earlier, the polarization state changes after reflection from magnetic 

materials and an ellipticity kε is introduced with the plane of polarization rotating by an 

angle kθ . The intensity of light incident on the detector can be written as, 

)]2cos()(4)sin()4)(2)( 02000 tAJtAAJtI kk (1Jk1[0I ωθωεθ +−+≅ , where ω is the angular 

frequency of the PEM, A0 is the amplitude of retardation in the PEM which corresponds 

to the phase angle between the two polarization direction and Jn are the Bessel functions. 

Setting the PEM amplitude, A0=2.405 radians, (which is the zero of J0) eliminates the J0 

term leaving a DC term (VDC = I0), a first harmonic term )sin()(4 01 tAJk ωε  which 

determines the ellipticity εk, and a second harmonic term 4 )2cos()( 02 tAJk ωθ , which 

determines rotation θk. Thus εk and θk can be measured from the equations 
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of the rms voltage. Either of the two equations above can be plotted as a function of 

magnetic field resulting in a magnetic hysteresis loop.29 

 When dealing with MOKE measurements in a heterostructure containing both 

ferroelectric and ferromagnetic components, the electro-optic effects present in all 

ferroelectric materials will contribute to the measured MOKE intensity. This will alter the 

Kerr intensity but will have no effect on the observed coercivity change. This is an 

important point of consideration when dealing with the polarization induced changes in 

magnetic coercivity (See chapter # 5).  

 
2.7 Atomic Force Microscopy (AFM) & Magnetic Force 

Microscopy (MFM) 

 
 Atomic force microscopy (AFM) is a useful technique for obtaining topographical 

images of samples. Our measurements use the model Dimension 3100 from Digital 

Instrument for AFM measurements with a Si tip of radius of curvature of approximately 6 

nm. AFM scanning was done using non-contact tapping mode. The flexible cantilever of 

the AFM tip oscillates at resonance frequency of ~ 100 kHz with fixed amplitude. This 

amplitude determines the separation between the tip and the sample surface and is kept 

constant for the entire sample scan. The force between the tip and sample surface 

depends on the oscillation amplitude. A piezoelectric transducer is used to mount the 

AFM tip. This transducer controls the height and oscillation amplitude of the AFM tip 

depending on the sample surface topography. The position of the AFM tip is detected by 

a laser beam which is reflected back to the cantilever. 
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 Magnetic force microscopy (MFM)30,31,32,33 is a powerful tool for imaging 

magnetic surfaces of a thin film. This is based on the interaction between a sharp 

magnetized tip and a magnetic surface.34 The interaction between the magnetic tip and 

the magnetic surface can be written as, HmF
rrr

).(0 ∇= μ  where mr  is the magnetic moment 

of the tip and H
r

 is the magnetic stray field from the magnetic sample. The stray fields of 

the sample from the nonuniform distribution of the magnetization exert a force on the 

magnetic tip. The stray fields are different for in-plane films compared to a perpendicular 

film. For in-plane magnetization the contrast only appears in the vicinity of the domain 

walls but for perpendicular magnetization a sharp transition between up and down 

domains is observed. This force deflects the cantilever and using laser reflection from the 

cantilever, the deflection of the laser spot is measured to measure the cantilever motion, 

which measures the force gradient. 

 MFM tips are coated with high coercivity magnetic materials (such as Co) to keep 

the magnetization direction of the tip unaltered during image scanning. The coated 

thickness is around 50 nm. MFM scanning is done using the lift method. In this method, 

normal tapping mode scans are performed first to obtain the topography of the surface 

followed by scans in which the cantilever is lifted up and the tip follows the topography 

so that it does not touch the surface (the interleave mode). The distance from the sample 

to tip is kept constant at approximately 50 nm during the scan depending on the sample 

roughness. This distance is necessary to avoid other forces such as electrostatic repulsion 

or atomic forces. A piezoelectric transducer is used at a resonant frequency of 100 kHz to 

400 kHz to drive the cantilever. 
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 The disadvantages of using the MFM include lift height dependence and the static 

charge on the sample. The image depends on the tip magnetic material and magnetic 

moments from the tip and sample can alter the magnetization of the sample or tip. 

However this is a very useful technique to measure magnetic profiles. The sample does 

not need to be electrically conductive and it can be measured at any temperature, in 

UHV. Long-range magnetic interactions are not affected by surface contamination.34 

 

2.8 X-ray Diffraction (XRD) 

 Both X-ray diffraction (XRD) and X-ray reflectivity (XRR) were used to 

characterize the structure of thin film samples, in order to obtain the crystal structure as 

well as details of multilayer thickness and roughness. 35 

 Because atomic spacings within a crystal and x-ray wavelengths are of the same 

order of magnitude, x-ray diffraction is a powerful tool in the investigation of crystal 

structure. XRD measurements were done using the Rigaku D / Max-B Diffractometer. 

XRR and XRD measurements were also done in the Bruker-AXS D8 Discover High-

Resolution Diffractometer with the HI-STAR area detector or point detector. X-rays for 

these table top sources are produced by a process of energetic electron bombardment on a 

metallic target. X-rays are produced in an X-Ray tube with two electrodes, an anode 

(target metal) and cathode (electron source). The anode is maintained at ground potential 

and a very high negative voltage (-40 kV in our case) applied on the cathode. The anode 

is a water cooled block of the desired target material (in our case Cu). The electrons are 

emitted and accelerated away from the cathode and hit the anode with high momentum, 

producing X-rays, by ejecting electrons from the K-shell of the target anode. An outer 
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shell electron jumps into the K shell to fill the vacancy and emits a photon to conserve 

momentum. These photons are at the characteristic wavelengths of Kα, Kβ etc depending 

on the shells (L, M,…)from which  the electrons originate.36,37 In our case Cu Kα X-rays 

are used which originate from the electron transitions from the L to K shell with a 

wavelength of 1.54Å.  

 

 

 

Figure 2.8: Sketch of X-ray diffraction and Bragg’s law. X-rays are diffracted from a set 

of parallel planes separated by a distance d. The path difference between the two 

diffracted beams from the adjacent planes is 2dsinθ and if this equals an integral multiple 

of the X-ray wavelength nλ, constructive interference will result in a high intensity. 

 

 X-ray diffraction peaks can be explained in terms of Bragg’s Law (Figure 2.9).35 

Let us consider a crystal with its atoms periodically arranged in set of parallel planes at a 

distance d apart as shown in figure 2.9. When a monochromatic X-ray beam is incident 

on this crystal the X-ray will be scattered in all directions from all the atoms of the 
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crystal. As the scattered X-ray beam is reflected from successive adjacent planes, certain 

conditions will lead to constructive interference. If the X-ray is incident at an angle θ to 

the crystal plane then the reflected X-ray from the next plane will have a difference in 

path length of 2dsinθ . If the path difference is equal to an integral multiple of the X-ray 

wavelength, constructive interference will occur. The Bragg equation can be written as, 

λθ nd =sin2 . In the Bragg geometry, the angle between the diffracted and transmitted 

beam, the diffraction angle,  is always 2θ. The sets of parallel planes are described by the 

Miller indices <hkl>. The distance between two adjacent hkl planes can be calculated 

from Bragg’s Law. For example in a simple cubic lattice with lattice parameter  the 

distance between adjacent planes is 

a

222sin2 lkh
andhkl

++
==

θ
λ  and hence the position 

of the peak in 2θ will give the distance between adjacent planes and allow for a 

determination of the crystal structure.

hkld
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2.9 X-ray Reflectivity (XRR) 

 Besides looking at XRD peaks to obtain information on the crystal structures, X-

rays can be used to check the surface roughness, film thickness electron density and 

density (ρ) of thin films. The Fresnel reflectivity, which is the modulus of the square of 

the coefficient R(θ), can be written as 
βθθθ

βθθθ
θ

i

i
rrR

c

c

2

2
)(

22

22

−−+

−−−
== ∗ , where β is the 

absorption coefficient and cθ is the critical angle.5,38 The refractive index of X-rays in any 

medium is less than unity and defined as βδ in −−=1 , where δ is the dispersion factor 
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and β is the absorption factor. The absorption factor is approximately 3 orders of 

magnitude less than the dispersion factor39 and we can safely assume no X-ray 

absorption. The Fresnel reflectivity with angle of incidence θ decreases rapidly at angles 

greater than the critical angle cθ , which can be written in terms of the dispersion factor40 

as δθ 2=c . 

 At the interface of two materials there is a change in density giving rise to a 

change in refractive index. This change in refractive index will result in reflections and 

transmission of X-rays at the interface between two materials. X-rays reflected from the 

top and bottom surfaces of a thin film will result in constructive interference if the path 

difference is an integral multiple of wavelength λθ nd =sin2 , where d is the thickness of 

the film and θ in the incident X-ray angle. To obtain the thickness of the films, the 

interference peak positions are determined. Because it may be difficult to see the small 

oscillations in the reflectivity data, the Fresnel reflectivity background, which goes as K4 

(where K is the scattering vector defined as θ
λ
π sin4

=K ), is subtracted. The modified 

intensity is now . A plot of Imod with 2θ makes it easier to identify the maxima 

and minima positions in the reflectivity data. The modified Bragg equation can be written 

as, 

4
mod IKI =

2sin)( mdn θλ −Δ 2
cθn + 2=  and is used to calculate the thickness of the film if the 

first order reflectivity peak is known. Assuming the small angle approximations 

2
2

2
22 )(sin nn

dm

λθ Δ+= 2
cθ+4

=mθ , where n is the reflection order and  has values nΔ

2
1 for maxima and 0 for minima if ρfilm > ρsubstrate and 0 for maxima and 

2
1 for minima if 
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ρsubstrate > ρfilm.  A plot of  with will result in a straight line with the slope 

related to the thickness d using the formula 

2
mθ 2)( nn Δ+

Slope
d λ

2
=

                                        

 and the y-intercept giving the 

critical angle squared. This method of determining the thickness of the films is called the 

Kiessig fringe method and is a very precise method for obtaining film thicknesses down 

to a few monolayers. 

 For multilayered heterostructures, more complex fitting routines allow us to 

obtain information on layer thicknesses, roughness and density. The LEPTOS software 

package from Bruker AXS41 has been used to fit the XRR data described in this thesis.  
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Chapter 3 

Structural Characterization 

 

 This chapter describes the structural characterization of the thin film 

heterostructures that have been investigated in this thesis.  Because the magnetoelectric 

effects that are described in chapters 4 and 5 are dependent on the structural 

characteristics of the interface between the ferroelectric polymer, P(VDF-TrFE) and 

metallic electrodes, our characterization tools include X-ray reflectivity and atomic force 

microscopy to enable thickness and roughness measurements. In addition, the 

ferroelectric polymer has been extensively characterized using variable angle 

spectroscopic ellipsometry (VASE), scanning tunneling microscope (STM) and X-ray 

diffraction and we describe those results that pertain to the relevant structure as well. The 

chapter is divided into the following sections.  Section 1 describes the characterization of 

the ferroelectric polymer layer, section 2 that of the metallic layers and sections 3 

describe the characterization of the heterostructured samples. Using a variety of methods, 

we investigate the crystal structure, the thickness and the surface and interlayer 

roughness. 

 

 3.1 Ferroelectric polymer layer characterization 

 Previous measurements of the P(VDF-TrFE) layer have confirmed that each dip 

into the LB trough results in a thickness of approximately 1.8 nm per 1 LB layer as 

determined by variable-angle spectroscopic ellipsometry measurements, corresponding to 
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~ 3ML of P(VDF-TrFE).1,2 Scanning tunneling microscope (STM)3 and X-ray diffraction 

(XRD)4 measurements have confirmed the high crystallinity of the polymer films. Our X-

ray reflectivity (XRR) measurements of a 25 monolayer film of P(VDF-TrFE) 70:30 on 

glass substrate are shown in figure 3.1, showing thickness oscillations that are more 

clearly visible when the Fresnel background reflectivity has been subtracted out (See 

inset of figure 3.1). The positions of the maxima and minima give us the total thickness 

of the film (this Kiessig Fringe method calculation is described in detail in chapter 2) 

which is 49 nm. This compares well with the ellipsometry calculations of the thickness of 

the polymer films of 45 nm. A simulation fit curve to the XRR data using the LEPTOS 

software, supplied with the Bruker-AXS gives a roughness of 2 nm at the air interface. 

 

Figure 3.1: XRR data on Glass/ P(VDF-TrFE) 70:30 (25 ML) sample. Inset: Intensity 

times K4 is plotted with 2-theta. 

 

 Previous measurements1 of X-ray diffraction (XRD) on PVDF samples show that 

the crystallinity of the polymer films increases after annealing. Figure 3.2 is the XRD 

data before (black) and after (red) annealing at 135 ºC for 2 hours for a 20 ML (36 nm) 
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LB films of P(VDF-TrFE) 50:50 on Si substrates. All the samples described in this thesis 

have been annealed in a similar fashion. 

 

 

Figure 3.2: XRD measurement data before and after annealing on 20 LB layers of 50:50 

copolymers on Si. Annealing condition was 135 ºC for 2 hours. [After reference # 1] 

 

 

Figure 3.3: AFM and MFM measurements on Pt(50nm)/Co(10nm)/P(VDF-TrFE) 80:20 

(15 ML) sample. 
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 Atomic force microscopy (AFM) and magnetic force microscopy (MFM) 

measurements on a Pt(50nm)/Co(10nm)/P(VDF-TrFE) 80:20 (15 ML) sample is shown 

in figure 3.3, showing the familiar rice grain structure of the polymer. The MFM images 

that are taken through the PVDF layer show the presence of magnetic domains in the 

underlying Co.   

 

3.2 Metallic layers characterization 

 

 

Figure 3.4: XRR measurement data on a Pt(50 nm)/Co(1.8 nm) sample.  

 

 The thickness of the metallic layers has been characterized using both the in-situ 

quartz crystal thickness monitor and X-ray reflectivity (XRR) measurements. The 

roughnesses of the metallic layers have been characterized using AFM measurements as 

well as XRR measurements. Figure 3.4 is the XRR data on a Pt(50 nm)/Co(1.8 nm) 

sample. A simulation fit curve to the XRR data was done with the simulation software 

LEPTOS, supplied with the Bruker-AXS. In the simulation we assumed a naturally 
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occurring CoO layer on top of the Co. This simulation curve gives the thickness of the Pt, 

Co and CoO layers to be 54 nm, 1.2 nm and 1.9 nm respectively, which matches quite 

well wit the quartz crystal monitor data. The Co thickness measured by the XRR is 

smaller than the thickness monitor because the few top monolayers top Co form CoO. 

The Pt seed layer thickness deviates by 8% from the thickness monitor thickness. The 

roughness of the sample at Co air interface is ~ 0.8 nm.   

 

 

Figure 3.5: AFM images on a bare Pt (70 nm) / Co (10 nm) sample.  

 

 An AFM image on a bare Pt(70 nm)/Co(10 nm) sample is shown in figure 3.5. 

The roughness of the sample is 0.8 nm. This roughness matches well with the XRR data 

in figure 3.4, indicating that the LB polymer films are deposited on a smooth substrate. 

 AFM and MFM images on bare Pt(50 nm)/Co(10 nm) sample are shown in figure 

3.6. The MFM images after in-plane demagnetization exhibit multiple magnetic domains. 

Images for the same sample after magnetic saturation, when the Co layer is in single 
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domain state, are shown in figure 3.7. The MFM image after magnetic saturation shows 

no multiple magnetic domains. 

 

 

Figure 3.6: AFM and MFM images on a Pt(50nm)/Co(10nm) sample after in-plane 

demagnetization. 

 

 

Figure 3.7: AFM and MFM images after magnetic saturation on the Pt(50nm)/Co(10nm) 

sample. 

 The thickness calibration for the Co wedge is done using both the in-situ 

thickness monitor and XRR measurements. A Co wedge sample on a glass substrate with 

a Pd(100 nm) seed layer is deposited. The palladium layer is of uniform thickness. 

During Co layer deposition the sample is aligned along the Co sputtering gun and not 
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rotated resulting in a non-uniform thickness with the thicker end of the wedge closer to 

the Co gun. The middle of the wedge thickness is our pre-calibrated thickness using the 

thickness monitor. After deposition, by using the Kiessig Fringe method the thickness of 

the Co layer was calibrated and plotted as a function of position along the Co wedge. A 

linear fit to that data set (red line) gives a relationship between position and thickness, as 

thickness (nm) = 0.474 x position (mm) + 31(nm). The slope of this fit is used for 

calibrating the thickness of the Co wedge samples for our measurements. The lower inset 

of figure 3.8 is the XRR data at a distance of 2 mm from thin Co edge, corresponding to a 

thickness of 30 nm. 

 

 

Figure 3.8: Co wedge thickness calibration data. Using the Kiessig Fringe method the 

thickness of the Co layer was calibrated and plotted with the position along the Co 

wedge. A linear fit to that data set (red line) gives the slope, used for calibrating the 

thickness of the Co wedge samples. (Lower inset): XRR data at 2 mm from thin Co edge, 

at a particular position of the wedge corresponding to a thickness of 30 nm. 
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3.3 Heterostructure sample characterization 

 Atomic force microscopy (AFM) images on a sample (similar to our experimental 

sample described in chapter # 4) of Al (96 nm) / P(VDF-TrFE) (25 ML)/ Al (3.3 nm) / 

Co (10nm) / Al (31 nm) is shown in Figure 3.9. This sample has a roughness of 2 nm on 

the multilayer stack, comparable to the bare P(VDF-TrFE) sample we described in 

section 1. 

 

 

Figure 3.9: AFM images on Al (96 nm) / P(VDF-TrFE) (25 ML)/ Al (3.3 nm) / Co 

(10nm) / Al (31 nm) sample. 

  

 XRR data on a sample of Pt(50nm)/Co(1.5nm)/PVDF(31ML)/Al(15nm) similar 

to the samples described in chapter # 5 is shown in figure Figure 3.10. The metallic layer 

thickness values are determined with the in-situ quartz crystal monitor and a simulation 

fit curve using the LETPTOS software gives values of 57 nm, 1.7 nm, 1.2 nm, 57 nm and 

12 nm for Pt, Co, CoO, PVDF and Al layers respectively. The roughness of the sample is 

~ 1 nm at the air interface. The sample is smooth and continuous. 
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Figure 3.10: XRR data on Pt(50nm)/Co(1.5nm)/PVDF(31ML)/Al(15nm).  

 

3.4 Conclusions 

 In conclusions, we have characterized our sample structure using AFM and XRR 

in conjunction with the in-situ quartz crystal monitor to obtain thickness and roughness 

measurements. The quartz monitor deposition thickness is at worst within 8% of the X-

ray reflectivity data. Previous STM and XRD measurements have confirmed the high 

crystallinity of the polymer films. Our measurements of the PVDF thickness compared 

with previous measurements of VASE are off by 9%. The heterostructure sample similar 

to our measurements in chapter 4 has a roughness of ~ 1 nm, confirming that the sample 

is fairly flat as well as continuous. The magneto-optical-Kerr effect measurements (see 

chapter 5 for details of the Mr/Ms measurements with Co thickness in figure 5.6) along 

the Co wedge thickness, which shows clear magnetization loops for Co thickness as low 

as ~ 6 Å confirm the continuity of the magnetic Co wedge and XRR data indicate that the 

wedge is smooth. 
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Chapter 4  

Magneto-Electric Effects In Ferromagnetic Cobalt / 

Ferroelectric Copolymer Multilayer Films 

A. Mardana, Mengjun Bai, A. Baruth, Stephen Ducharme & S. Adenwalla 

Applied Physics Letters 97, 112904 (2010) 

Changes from the original Journal article have been made for this dissertation. 

 

4.1 Introduction 

The magnetoelectric (ME) effect and its converse refer to the control of electric 

polarization and magnetization by magnetic or electric fields, respectively. The wide 

range of potential applications1 ranging from memory devices to microwave applications 

and magnetic field sensors are driving the exploration of multiferroic materials with 

larger ME coefficients than have previously been seen.2 Hetero-structured materials with 

separate magnetic (or magnetostrictive) and ferroelectric components relax the competing 

demands and constraints on a single material.3,4,5 Efforts have focused on magnetic 

materials with the largest possible magnetostriction in order to maximize the 

piezoelectric/magneto-strictive coupling and has resulted in large magnetoelectric 

effects6. Magnetic flux concentration effects have increased the magnetoelectric coupling 

to 21.46 V/cm-Oe.6 Thermally mediated effects7 in a relaxor ferroelectric polymer result 

in ME coefficients of 0.9 V/cm-Oe. 

This chapter reports results that suggest a different mechanism for ME coupling in 

a ferromagnetic/ferroelectric heterostructure, viz. the strain gradient created near 
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magnetic domain boundaries in a multidomain magnetic film and its effect on the 

ferroelectric polarization through the flexoelectric effect. An organic ferroelectric, the 

copolymers of 70% vinylidiene fluoride (VDF) with 30% trifluroethylene (TrFE) i.e., 

[P(VDF-TrFE) 70:30] is overlaid with a transition metal ferromagnet, Cobalt (Co) in a 

heterostructure with thicknesses that are controllable at the atomic level with films in 

intimate contact. 

  

4.2 Sample Preparation and Experimental Techniques 

 

Figure 4.1: Schematic view of the heterostructure (a) Cross-sectional view (b) top view.  

 

 The sample, as shown in Figure 4.1, consists of {[glass/ Al (32.4 nm)/ P(VDF-

TrFE) (45nm)/Al (2.9 nm)/Co (10 nm)/ Al (25.6 nm)}. The thicknesses of the metallic 

layers were calibrated using the in-situ quartz crystal thickness monitor. The polymer 

layer thickness was estimated based on our previous measurements of approximately 1.8 

nm per 1 LB layer, determined by variable-angle spectroscopic ellipsometry 

measurements.8,9  The metallic layers were made from either evaporated Al or sputtered 
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Co deposited through shadow masks of 1 mm wide and 15 mm long, with the upper and 

lower electrodes, perpendicular to each other defining four spots with an overlapping 

electrode area of 1 mm2, as shown in figure 4.1 Sample Schematic of the cross-sectional 

view is shown in figure 4.1 (a) and the top view is shown in figure 4.1 (b). Both Al 

electrodes were deposited at a rate of 1.2 Å/s as measured by the in-situ thickness 

monitor. The top Al electrode served to prevent the diffusion of Co atoms into the soft 

polymer film. The upper Co layer was sputtered at low power, at a deposition rate of 

0.056 Å/s, with frequent pauses of 20 minutes after 20 Å of deposition, to prevent 

shorting through the soft polymer layer. 

The [P(VDF-TrFE 70:30] layer was deposited by the Langmuir-Blodgett (LB) 

method, which results in films with superior crystallinity, excellent ferroelectric 

properties, 10 and a saturation polarization of up to 0.1 C/m2.11 Prior to deposition of the 

top electrode, the ferroelectric polymer film is annealed at 130 °C for an hour in air to 

increase its crystallinity. Copper wires were attached to both electrodes with silver paint, 

allowing for pyroelectric measurements and enabling polarization switching. X-ray 

diffraction measurements indicate that the polymer grows in the (110) direction with the 

chains in the films plane and resulting in a polarization vector at 30° to the surface 

normal (see in chapter # 3 for XRD measurements).12 The in-plane structure consists of 

small crystallites, 30 nm to 50 nm in size13 with the polarization vectors for the various 

crystallites forming a cone at 30º around the normal, resulting in a net macroscopic 

polarization along the normal.  

Ferroelectric polarization is measured using the Chynoweth modulation method,14 

for pyroelectric current (details of the measurement procedure can be found in chapter 2 
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of this thesis), which is proportional to the normal component of the film polarization, 

irrespective of polarization state. Moreover it is perturbative and does not alter the 

polarization state.15 In this method, the sample temperature was modulated by a 3-mW 

helium-neon laser operating at a wavelength of 633 nm, and an optical chopper frequency 

of 2 kHz. The resulting pyroelectric current was measured by a lock-in amplifier locked 

to the chopper frequency with a time constant of 1 s.  

Magnetization measurements were carried out using the polar magneto-optical 

Kerr effect (PMOKE), which measures the out-of-plane magnetization. To demagnetize 

the sample, it was mounted on a rapidly rotating drill in a slowly decreasing magnetic 

field with the sample surface parallel to the magnetic field.  

 

4.3 Experimental Results and Discussions 

 

Figure 4.2: The out-of-plane hard axis magnetic hysteresis loop measured by PMOKE of 

the glass/Al(32.4 nm)/P(VDF-TrFE) (45nm)/Al(2.9 nm)/Co(10 nm)/Al(25.6 nm) sample. 
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Out-of-plane PMOKE measurements (figure 4.2) reveal a typical narrow s-shaped 

hard axis magnetization hysteresis loop, as expected for a 10 nm Co thin film with an in-

plane easy axis. The variously oriented in-plane magnetic domains rotate into the 

magnetic field direction, forming a cone of half-angle (π/2–φ) with the sample normal. 

The slope of the loop gives the angle for the magnetization as a function of applied field, 

sin(φ) = (1.86 x 10-4) H, with H in units of Gauss. Pyroelectric current measurements 

resulted in the ferroelectric polarization hysteresis loop12 shown in figure 4.3. 

 

 

Figure 4.3: Measurements of the pyroelectric current vs. applied voltage showing the 

ferroelectric polarization hysteresis loop in the glass / Al(32.4 nm) / P(VDF-TrFE) 

(45nm) / Al(2.9 nm) / Co(10 nm) / Al(25.6 nm) sample. 

 

After electrical saturation but prior to magnetic saturation, the pyroelectric 

response was measured as a function of both increasing and decreasing perpendicular 

magnetic field (figure 4.4) sweeps, showing an unexpectedly large (over 5%) change in 
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the pyroelectric response on application of a 6 kG magnetic field. The sign of the change 

in pyroelectric current (proportional to polarization) depended on the relative orientation 

between the polarization direction and the magnetic field. Parallel orientation resulted in 

a decrease in the absolute value of the polarization with increasing magnetic field, 

whereas an anti-parallel alignment resulted in an increase. This effect was fully 

reversible, repeatable and possessed odd symmetry with respect to direction of the out-of-

plane magnetic field. We emphasize that this was not an irreversible magnetic poling 

effect.16 There was no evident hysteresis in the pyroelectric response as the magnetic 

field was cycled. Rather, it was a fully reversible and continuous change of the 

polarization as can be seen in the increasing and decreasing field sweeps.  

 The thermoelectric and associated thermomagnetic effects, which occur in the 

presence of a temperature gradient across the sample, may be conclusively ruled out due 

to the extremely small temperature gradient across the thickness of the sample. A one 

dimensional calculation using Fourier’s law with the appropriate thermal conductivity for 

P(VDF-TrFE)17 results in a temperature gradient 0.75 mK, across the 53 nm thick 

P(VDF-TrFE) film. Note that the pyroelectric current, in contrast, is a displacement 

current that arises from the lack of structural symmetry in response to a uniform 

temperature change of the sample. The various thermomagnetic effects (the Ettinghausen, 

Righi-Leduc and Nernst effects)18 all depend on the temperature gradient
dz
dT  whereas the 

pyroelectric current depends on 
dT
dP , where T is the temperature, P is polarization and z 

is the thickness across which the current measured. Secondly, thermomagnetic effects 

occur in a Hall measurement geometry in which the measured current, temperature 
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gradient and the applied magnetic field are perpendicular to each other. Our measured 

pyroelectric effect geometry rules out the presence of thermomagnetic effects as in our 

case the measured current, electric field and applied magnetic field are all parallel or 

antiparallel to each other. Finally, thermomagnetic effects are inconsistent with the 

observation that the change in pyroelectric current with magnetic field is seen only in 

demagnetized samples. In a magnetically saturated sample, there is no change in the 

pyroelectric current with magnetic field. Thermomagnetic effects, in contrast, depend 

only upon the applied magnetic field, irrespective of the magnetic state of the sample. 

The measured changes in polarization ΔP with applied magnetic field H were 

fitted to a nonlinear magnetoelectric coupling of the form, . 

Assuming a saturation polarization of P(VDF-TrFE) of 0.1 C/m2, we obtain a linear ME 

coefficient of α = 4.78 x 10-8 C/m2Oe (equivalent to α = 5.45 V/cm-Oe) and a third-order 

coefficient of β = 7.82 x 10-15 C/m2Oe3. The linear ME coefficient is comparable to those 

measured previously in composite materials such as nanopillars3 of BaTiO3-CoFe2O4 or 

laminates4 of PZT/Terfenol-D, an unexpected result given the much smaller 

magnetostriction of Co. This is comparable to the results taking into account the magnetic 

flux concentration effects6 and thermally mediated effects7 in relaxor ferroelectric 

polymer. 

3)()( ss HHHHP −+−=Δ βα

The data shown in figure 4.4 are for a virgin magnetic sample, with multiple in-

plane magnetic domains. After magnetic saturation, either in-plane of or out-of-plane, the 

polarization shows negligible changes with applied magnetic field, as shown in figure 4.5 

for out-of-plane saturation (red circles). The measurements were done as a function of 

out-of-plane magnetic field so as we increase the field there is rotation of the many in-
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plane magnetic domains into the magnetic field direction.  Saturation presumably forms 

much larger domains and destroys the effect. The necessity of multiple magnetic domains 

in the cobalt film is further underscored by the blue symbols in figure 4.5, which show 

the P vs. H curve after demagnetization of the Co film, which restores the effect, albeit at 

a lower level, approximately 2.5 % instead of 5% as in figure 4.4. 

 

Figure 4.4: Pyroelectric current (proportional to ferroelectric polarization) as a function 

of applied magnetic field perpendicular to the sample plane. The curves labeled (a) and 

(b) correspond to the two different ferroelectric polarization directions of the sample. 

Arrows indicate the relative orientation of the polarization (P) and applied magnetic field 

(B). The red line is a fit to one set of data. 
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Figure 4.5: Ferroelectric polarization as a function of applied magnetic field 

perpendicular to the sample plane, after out-of-plane magnetic saturation (circles) and 

after demagnetization (triangles). 

 

Demagnetization results in smaller domains and hence a higher density of domain 

walls, confirmed by Magnetic Force Microscopy (MFM) imaging on an identically 

grown Co sample. Demagnetization reduced the average domain size to 200 nm, 

approximately 1/3 the size of the domains measured after magnetic saturation. Clearly, 

the presence of multiple domains plays an essential role in this effect. Any discussion of 

the origin of this large magneto-electric effect must account for the dependence on the 

presence of multiple magnetic domains and the odd symmetry with respect to the 

directions of the applied magnetic field and the sample polarization.  

Purely magnetostrictive effects fail on both counts, as well as severely 

underestimating the magnitude of the change, as we show below. Conventional 
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magnetostrictive effects refer to changes in the dimensions of the magnetic layer which 

result in strain in the polymer ferroelectric and a subsequent change in the polarization. 

Because the ferroelectric layer is essentially unclamped (i.e. in constant stress), in 

the out-of-plane direction, out-of-plane magnetostriction should have no effect on the 

electrical properties via the piezoelectric coefficient and the only effects come from in-

plane magnetostriction (Here unclamped means that volume expansion is freely allowed). 

We define a coordinate system such that the 3 (or z) direction is perpendicular to plane, 1 

(x) refers to the direction along the length of the Co electrode, and 2 (y) is perpendicular 

to it. The ferroelectric is polycrystalline in-plane with numerous small randomly oriented 

crystals in plane. Hence the symmetry of the ferroelectric is given by class ∞m (in the 

notation of Nye19) or C∞v.  

The thin Co magnetic film has an in-plane easy axis. The magnetostrictive strain 

relative to the direction of magnetization is given by20 ε = 3
2
λs (cos2 θ − 1

3), where θ 

is the angle between the measured strain and the direction of magnetization, ε is the strain 

and λs is the saturation magnetostriction. The change in magnetization that occurs as the 

out-of plane field is increased occurs purely through rotation, as evidenced by the shape 

of the out-of-plane hysteresis loop (see figure 4.2). With λs = –62 x 10–6 for 

polycrystalline Co,16 we calculate the change in strain to be ε1 = +90 x 10–6, ε2 = 0 and ε3 

= –90 x 10–6 as the magnetization rotates from in-plane to out-of-plane. Assuming the 

best case scenario of perfect coupling to the copolymer, and using the equations σ i = cijε j  

and P3 = d3 jσ j , where σ is the strain, cij are the appropriate stiffness constants, P3 is the 

component of polarization in the out-of-plane direction and d3j are the piezoelectric 
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moduli, we obtain the relation between magnetostrictive stress in the Co and the 

corresponding change in the polarization in the direction perpendicular to the plane. The 

stiffness and piezoelectric constants for the P(VDF-TrFE) copolymer21,22 are c11 = 3.7 x 

109 N/m2 = c22, c12 = c21 = c13 = c23 = 1.5 x 109 N/m2, and d31=21.4 pC/N, d32 = 4.3 pC/N 

and result in in-plane strains of σ1=2.2 x 105 N/m2 and σ2=5 x 104 N/m2 in the polymer, 

(σ3=0, because the polymer is unclamped).  Using these values we obtain a change in 

polarization of approximately ΔP = 0.5 x 10–5 C/m2. Assuming a polarization of 0.1 C/m2 

in the copolymer film (a reasonable value for these LB deposited films) this amounts to a 

relative change in the polarization ΔP/P of less than 10–4, many orders of magnitude 

smaller than the 5 % polarization change that is experimentally measured. Although the 

magnetostrictive coefficients in thin films may be 3-5 times larger than the bulk 

value,23,24 this still fails to account for the large changes in polarization.  

 An alternative explanation arises from the asymmetric geometry of our sample. 

Magnetostrictive effects occur only at the Co electrode, inducing a strain gradient in the 

thickness of the film, ∂ε/∂z. The flexoelectric effect,25,26 defined as the polarization 

change induced by a strain gradient is given by (neglecting the tensor character of the 

flexoelectric effect19) ΔP = –f ( ∂ε ∂ z ), where f is the effective flexoelectric coefficient, 

and ∂ε ∂ z  is the strain gradient in the ferroelectric film [see the figure 4.6 (a)]. 

Although the odd symmetry of the polarization changes with magnetic field and the 

necessity of multiple magnetic domains rule out the effect depicted in figure 4.6 (a), it is 

instructive to consider the magnitude of the expected changes in polarization resulting 

from strain gradients. A recently reported value for  the flexoelectric coefficient in 

PVDF films is 82 μC/m.

f

27 Theoretical predictions of the flexoelectric coefficients in 
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dielectrics are very small, limited by e/a, estimated to be ~10−10 C/m, where e is the 

electronic charge and a is the dimension of unit cell.28,29 However most (if not all) 

experimentally measured values of the flexoelectric coefficients are many orders of 

magnitude higher, ranging from 10−6 to 10−4 C/m.30,31 This puzzling discrepancy has not 

been resolved. In at least one ferroelectric, BaTiO3, two different experimental 

techniques32 (nanoindentation and the more common bending approach) resulted in 

identical values of the flexoelectric coefficient. Experimentally measured values of 

polarization changes due to the flexoelectric effect in epitaxial PZT films are very large, 

comparable to the spontaneous polarization of the film.33 There has been some 

discussion34 of the effect of strain on ferroelectric domain rotation, an effect that may 

erroneously contribute to a much larger measured flexoelectric coefficient in a 

ferroelectric sample. However, similar measurements in the paraelectric phase of 

ferroelectrics (as was done for the PVDF) and even in dielectrics without either 

piezoelectric or ferroelectric ordering indicate large values for the flexoelectric 

coefficient. We will use the reported value of the flexoelectric coefficient in P(VDF-

TrFE) in the following analysis. 

In the model depicted in figure 4.6(a), the strain gradient arises from the 

difference in strain between the top and bottom of the ferroelectric.  Magnetostrictive 

strain from the top ferromagnetic Co layer will strain the top ferroelectric layer, resulting 

in a strain gradient that is given by, 13
6

102.1
50

1062 −
−

×=
×

==
∂
∂ m

nmdz
topεε  

resulting in a very large polarization change 1.0=
∂
∂

=Δ
z

fP ε  (or =
Δ
P
P 100%), much 

larger than the observed 5% change. Since the strain gradient ∂ε/∂z would be largest for a 
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uniformly magnetized cobalt film, and smallest for a demagnetized film, this is 

inconsistent with of the results shown in figure 4.5. Moreover, because the 

magnetostriction in the Co layer will be identical for magnetic fields pointing either up or 

down, this is inconsistent with the odd dependence on the magnetic field. 

 

Figure 4.6: Schematic diagram of the (a) strain gradient in the ferroelectric layer due to 

magnetostriction in the upper ferromagnetic electrode [The actual change will be very 

small compared to the figure.] (b) Strain gradient across a single domain wall. 

 
 However, the presence of multiple in-plane magnetic domains means numerous in-

plane strain gradients exist in the magnetic film and consequently in the ferroelectric 

film. The magnetostrictive strain is given by )3
1(

2
3 2 −= θλε Coss ,where λs is the 

magnetostriction of polycrystalline Co,16 λs= –62 x 10-6 and θ is the angle between the 

measured strain direction and the magnetization. The strain gradient across the domain 

wall between two in-plane magnetic domains oriented at an angle δ with respect to each 
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other is given by )]1)(cos2/3[(/ 2 −=∂∂ δλε Wx s , [see figure 4.6 (b)] where W is the 

domain wall width. Two perpendicularly oriented magnetic domains will result in the 

largest possible in-plane strain gradient across them. In an out-of-plane magnetic field, 

each in-plane domain cants in the direction of field, leading to changes in the strain 

gradient, which would be proportional to the magnetic field. The changes in the 

magnitude of the polarization resulting from these strain gradients, is given by the various 

components of the flexoelectric coefficient tensor fijkl; hence a natural coordinate system 

is one in which the x3 axis is parallel to the polarization of the sample, rotated by 30° 

with respect to the normal (z direction) and the x1-x2 plane is canted at 30° to the sample 

plane. The flexoelectric coefficient is a fourth rank tensor; the components possess the 

same symmetry as the stiffness tensor of the ferroelectric (crystal class 4mm). Excluding 

shear strain and taking into account the zeros of fijkl, the change in polarization can be 

written as (in the condens ere pairs ‘11’  becomes ‘1’ and 

3 33

ed matrix notation of Ny

tc.15) ΔP = f

e, wh

‘13’ becomes ‘5’, e
∂ε 3

∂x3

+ f44
∂ε 2

∂x3

+ f55
∂ε

. From symmetry consideration 1

∂x3

∂ε1

∂x 3

= −
∂ε 2

∂x3

 for all applied magnetic fields and since f = f for the crystal class 4mm, 44 55 

the only relevant strain gradient component is 
∂ε 3

∂x3

. Geometrically ε3 is the strain along 

the x3-axis, along the polarization direction at an angle of 120° to the in-plane direction. 

Calculations show that the strain gradient at zero m lds for two in-plane 

domains oriented at an angle δ is given by 

agnetic fie

]1[
163

3 −= δ3 2λ
∂
∂ε Cos

Wx
s . As the out-of-plane 

magnetic field is increased, the magnetization within each domain rotates towards the 

magnetic field direction, making an angle with the sample plane given by φ(H) [obtained 
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from the magnetic hysteresis loop as explained earlier]. This changes the angle between 

the two adjacent domains and hence changes the strain gradient across the domain wall 

which is now given by, 

 ]1)][(120[
43

3 2023 −−= δφλ
∂
∂ε CosHCoss                                               (1) 

ce, the net change in polarization 

averaged over all the dom

Wx

In this scenario, the change in polarization due to the flexoelectric effect occurs 

only in the region of a magnetic domain wall.  Hen

ain walls can be written as, 

 
dAx3

3 ∂
dwAfP 3∂ε

=Δ                                                                                     (2)  

 Ad is the

simplicity we assume a circular domain, leading to 

Where Adw is the area of the domain wall and  area of the domain. For 

dAd

size and W is the domain wall size. The average domain width in a demagnetized Co 

sample is around 200 nm as measured by MFM. We assume that over the width of a 

ferromagnetic domain wall, the ferroelectric layer consists of a single crystal, with a 

unique direction of polarization. The measured domain wall widths in Co are 

approximately 10-30 nm (our calculations use W=10 nm),

WAdw 2
= , where d is the domain 

canting angle of φ(H) =48º at an applied field of 6 kG. From the above values and from 

35 comparable to the size of the 

ferroelectric crystallites, 30 nm to 50 nm.13 The presence of multiple ferroelectric 

crystallites within a magnetic domain wall will reduce the effect. We also assume that 

adjacent in-plane domains are oriented at an angle δ = 90º corresponding to the maximum 

strain gradient across the domain wall. From the magnetic hysteresis loop, we obtain a 
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equation (1) and (2) we get 
ΔP3

P
= 3.6% close to our experimental measured 

polarization changes of 5%. 

 

 

Figure 4.7: Calculation (from equation. 1) of the changes in polarization with applied 

field across a single domain wall for various values of δ, the angle between 

magnetization directions for two adjacent domains.  

 

The configuration of domains, including their density and the in-plane angle δ 

between adjacent domains results in a net strain gradient, and together with the 

magnitude of the flexoelectric coefficient will determine the magnitude of the change in 

the polarization. Since the configuration of domains is highly sensitive to roughness, 

structure, and magnetization history the change in the magnitude of the effect after 

demagnetization is not surprising. A plot of equation 1 as a function of applied field and 

for various values of δ, the angle between two adjacent domains, is shown in figure 4.7. 
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In a perfectly demagnetized isotropic sample, all values of δ are equally probable; in 

reality there will be a preference for certain angles, depending on the microstructure of 

the Co layer. A more sophisticated calculation would take into account a distribution 

function for the angle δ, the density of domains and the net strain gradient that exists 

across the macroscopic area of the sample. 

 

4.4 Conclusions 

In conclusion, we have demonstrated a large converse magnetoelectric effect in a 

heterostructure composed of a ferromagnetic cobalt film and a ferroelectric polymer film. 

Application of a magnetic field to the heterostructure results in changes in the electric 

polarization of up to 5%. The result is highly dependent on the presence of multiple 

magnetic domains in the cobalt film. We propose a model in which the interaction arises 

from strain gradients at the magnetic domain walls coupling to flexoelectric response in 

the polymer layer. These results provide a qualitative look into the phenomenon; 

quantitative study will require independent measurement probing key features of the 

underlying mechanisms including the flexoelectric response of the ferroelectric polymer, 

the effect of the magnetic state in the ferroelectric hysteresis loops, the domain-wall 

strain of the ferromagnetic film, and the evolution of the magnetic domains with 

magnetic field. The sensitivity of this effect to the exact domain configuration of the 

ferromagnet may provide a path for tuning both the magnitude and symmetry of the 

effect. 
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Chapter 5 

 
 

This chapter has been published in Nano Letters 11, 3862 (2011). Minor changes from 

the original journal article have been made for this dissertation. 

5.1 Introduction 

 The ability to control magnetic properties with an electric field raises exciting 

possibilities, both for the understanding of the fundamental physics underlying these 

effects and for potential technological applications. Electric field control of 

magnetization has a wide range of applicability in spintronics and magnetic data storage 

devices, ranging from electrically controllable magnetic memories to magnetoelectric 

transducers and threshold magnetic sensors. Electric fields inside ferromagnets induce 

spin-dependent screening charges,1,2 leading to changes in the surface magnetization and 

surface magnetocrystalline anisotropy.3,4,5,6 In magnetic semiconductors, the long 

electric field penetration depths significantly alter the carrier concentration, the Curie 

temperature and the saturation magnetization.7,8 Electric field induced changes have also 

been observed in metallic magnetic thin films, including substantial changes in the 

coercivity of FePt thin films immersed in a liquid electrolyte,9 and changes in the 
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magnet

Ferroelectrics offer a convenient source of large, switchable electric fields, as well 

magnetoelectric effects.  To explore the effects of electric field penetration into a 

tallic f

those in the bulk by 10-20%, still preserving the large mismatch in stiffness coefficients 

ch stiffer metallic Co film. Our experiments provide 

detailed

In summary this chapter includes the sample preparations, measurements and 

anisotropy of the Co films changes by as much as 50%.  At the lowest Co thickness the 

ic anisotropy in Fe/MgO,10 Fe80Co20/MgO11 and Co40Fe40B20/MgO 

heterostructures.12  

as satisfying the need for low power consumption, non-volatile devices in the realization 

of electrically controlled magnetic memories. Typically, however, the strain coupling of 

the magnetic and electrical order parameters13,14 in ferroelectric/ferromagnetic 

heterostructures overwhelms the experimental investigation of more subtle 

15

metallic ferromagnet, we fabricated a heterostructure of a stiff me erromagnet, Co, 

with a soft copolymer ferroelectric, P(VDF-TrFE) consisting of 70% vinylidene fluoride 

with 30% trifluoroethylene, with bulk stiffness coefficients of 1011 N/m2 and 109 N/m2 

respectively. In general the stiffness coefficients of thin films are expected to differ from 

that will minimize magnetostrictive effects. The soft ferroelectric polymer is unlikely to 

cause significant strain in the mu

 evidence of the changes in the magnetic anisotropy and free energy of the 

magnetic film with electric field.  

results of the electric field control of magnetic anisotropy in a wedge shaped Co film of 

varying thickness.  A copolymer ferroelectric of 70% vinylidene fluoride with 30% 

trifluoroethylene, P(VDF-TrFE) overlays the Co wedge, providing a large switchable 

electric field. As the ferroelectric polarization is switched from up to down, the magnetic 
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magnetic anisotropy switches from out-of-plane to in-plane as the ferroelectric 

polarization changes from up to down, enabling us to rotate the magnetization through a 

large angle at constant magnetic field merely by switching the ferroelectric polarization.  

5.2 Sample Preparation and Experimental Techniques 

 

 

Figure 5.1: (a) Schematic side view of the sample: Glass / Pd or Pt (50nm) / Co (8.5 Å –

27.8 Å) / 30 monolayers P(VDF-TrFE) 70:30 / Al(30nm). The Co strip is 40 mm long 

resulting in a very shallow wedge angle of 2.7 x 10–6 degree (b) Schematic diagram of the 

top view of the sample with bottom (gray) Co electrode and top Al (green) electrode. 

The sample (Figure 5.1(a)) consisted of a shallow-angled Co wedge grown on a 

Pd or Pt seed layer with a 30 monolayer film of the ferroelectric copolymer, P(VDF-

TrFE) 70:30, deposited by Langmuir-Blodgett deposition 16 and covered by Al stripe 
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electrodes at intervals of 3 mm (Figure 5.1(b)). The metallic bottom electrodes were 

sputtered through shadow masks 0.2 mm wide and 40 mm long on glass substrates at a 

base pressure of 3.7 x 10-8 Torr. The Co layer with a wedge angle of 2.7 x 10-6 degree 

was deposited on a seed layer of either Pd or Pt (50nm). The deposition rates of Pt, Pd 

and Co were 0.46 Å/s, 0.65 Å/s and 0.216 Å/s respectively. The polymer ferroelectric 

films were deposited ex-situ directly on the cobalt films by the Langmuir-Blodgett (LB) 

technique. The Langmuir layer was formed on an ultrapure water subphase using a 0.05% 

concentration of P(VDF-TrFE) (70:30) in dimethyl sulfoxide. The layer was then 

compressed to a surface pressure of 5 mN/m at a temperature of 25 °C and deposited onto 

the substrate using horizontal Langmuir-Blodgett deposition, with the film thickness 

determined by the number of transferred monolayers (ML). The LB deposited 

copolymers of 70% VDF with 30% of TrFE, [P(VDF-TrFE) 70:30] are highly crystalline, 

excellent ferroelectrics with a saturation polarization of up to 0.1 C/m2. The sample was 

then annealed at 130 °C for an hour in air at a ramp rate of 1.6 °C/min for both heating 

and cooling to increase the crystallinity of the polymer film. The 0.2 mm wide top Al 

electrode was deposited on top of the polymer film by evaporation at a deposition rate of 

1.2 Å/s. The top and bottom electrodes formed a crossed pattern and defined an 

overlapping electrode area of 0.04 mm2. Copper wires were attached to the top and 

bottom electrodes with silver epoxy, allowing for pyroelectric measurements and 

enabling polarization switching. The ferroelectric properties of the polymer film were 

characterized by pyroelectric measurements using the Chynoweth method (see chapter # 

2 section 2.5 for details). The sample temperature is modulated using a 3 mW laser beam 

at a chopper frequency of 2 kHz and the pyroelectric current is measured by a lock-in 
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amplifier with a time constant of 1 s. The magnetic layers of the samples were 

characterized using the Magneto Optical Kerr Effect (MOKE) method, using longitudinal 

MOKE for in-plane measurements and polar MOKE for out of plane measurements (see 

chapter #2 section 2.6 for details). The magnetic anisotropy was calculated using the area 

method (see figure 5.2), where we assume the bulk magnetization value for Co. The 

black and red magnetization curve gives the area in the first quadrant of the magnetic 

hysteresis loop for the easy and hard axis directions respectively. If we assume that 

domain losses are identical for both in-plane and out-of-plane orientations, the difference 

between these two areas (shown in green) gives the effective anisotropy energy, which 

contains both the surface and volume anisotropy energies. 

 

Figure 5.2: Schematics of the magnetic anisotropy calculation using the area method.  

5.3 Experimental Results and Discussions 

 The large surface charge density associated with the ferroelectric polarization in 

P(VDF-TrFE), of the order of 0.1 C/m2,17  is equivalent to an applied field of 
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approximately 1 GV/m, well above  the breakdown field of most dielectrics. The 

anisotropy of the wedge-shaped magnetic film goes from out-of-plane18 at the thinnest 

end to in-plane at the thickest end, undergoing the well-known spin reorientation 

transition (SRT) at an intermediate thickness.19 The quan ines the 

orientation of the ferromagnetic film is the anisotropy energy, Keff = (

tity that determ

Ks
t −Kv ), where t 

is the film thickness. The surface anisotropy, Ks, favors out-of-plane magnetization and 

Kv, the volume term, is dominated by the shape anisotropy, favoring in-plane 

magnetization. At the SRT, the two energies are comparable, resulting in a very small net 

anisotropy.  

 

Figure 5.3: Ferroelectric hysteresis loop measured by pyroelectric current with applied 

voltage on one particular spot. 

The ferroelectric polarization hysteresis loop (Figure 5.3) demonstrates that 

voltages of ±12 V are sufficient to switch and saturate the polarization of the ferroelectric 
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film between its two opposing states.20 The essence of the magnetoelectric effect is 

shown in figures 5.4 (a) and (b), which indicate increased out-of-plane coercivity and 

decreased in-plane coercivity for up polarization (in which the ferroelectric bound surface 

charge at the Co surface is negative and the electric field in the Co film points out of the 

film) vs. down polarization. Similar hysteresis loops were measured at various positions 

along the Co wedges, corresponding thicknesses of 9Å, indicating that the Co film is both 

continuous and ferromagnetic at this thickness. 

 

Figure 5.4: (a) Out-of-plane magnetization hysteresis loops using PMOKE (polar 

magneto-optical Kerr effect) depicting the change in coercivity for two different 

polarization states. Up polarization results in a larger out-of-plane coercivity than down 

polarization. (b) In-plane magnetization hysteresis loops using longitudinal MOKE 

(LMOKE) depicting the changes in coercivity indicate that up polarization (solid circle) 

results in smaller in-plane coercivity than down polarization (open circle). 

We propose that the influence of the polarization state on the magnetization arises 

primarily from electric field penetration into the magnetic film. The electric field induces 

unequal screening for spin-up and spin-down electrons in the ferromagnet changing both 
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the anisotropy energy and the magnetization for the top few atomic layers. 2,5 We expect 

the other likely mechanisms of magnetoelectric coupling to be much weaker. Mechanical 

coupling is weak because of the relative softness of the polymer, as noted above. The 

polymer should have negligible influence on bonding at the metal surface, an expectation 

supported by first-principles calculations of the interlayer bonding at the Co/P(VDF-

TrFE) interface.21

 thicker end of the wedge, an effect that may 

result from subtle chemical changes at the interface. 

 

 

The results of both in-plane and out-of-plane magnetization measurements along 

the Co wedge for both polarization states are summarized in Figure 5.4, for cobalt films 

grown on Pd and Pt seed layers, respectively. As measured by the Mr/Ms ratio shown in 

figures 5.4 (a) and 5.4 (d), the Co wedge thickness spanned the spin reorientation 

transition from out-of-plane to in-plane anisotropy. The position and width of the 

reorientation transition depends on the underlying seed layer material. The measurements 

of the SRT (Figure 5.4) were made with a virgin ferroelectric film, before the application 

of an external voltage to polarize the film. However, previous measurements indicate that 

LB deposition results in films with a small preferential up polarization so we expect that 

the polarization was non-zero even before poling.22 We performed additional 

experiments which shows that the presence of the unpoled P(VDF-TrFE) film results in a 

significant shift of the SRT towards the
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Figure 5.5: (a), (b) and (c) correspond to the Pd/Co sample, and (d), (e) and (f) to the 
Pt/Co sample). (a) & (d) Mr / Ms data for out-of-plane and in-plane MOKE 
measurements. Mr / Ms is a measure of the squareness of the magnetization hysteresis 
loops. Out-of plane and in-plane Mr/Ms measurements indicate the spin reorientation 
region. Co films grown on both Pd and Pt seed layers show a clear spin-reorientation 
transition region (gray shadow) from out-of plane to in-plane as the Co thickness 
increases. (b), (c), (e), & (f) Depicting the difference in coercivity ΔHc = Hc (P↑) – 
Hc(P↓) , between up and down polarization. (b) & (e) For out-of plane measurements the 
up polarization state has a larger coercivity than the down polarization state over the 
entire thickness of Co, with a maximum difference of 26 mT for the Pd/Co sample and 
16mT for the Pt/Co sample in the SRT region. ΔHc data with voltage-on are shown for 
the Pt/Co sample (orange). The remaining data are taken at remanence. (c) & (f) In-plane 
measurements indicate the opposite behavior for the change in coercivity with 
ferroelectric polarization. 
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Figure 5.6: (a) Mr / Ms data for both in-plane and out-of plane magnetization loops 
before and after the growth of the ferroelectric P(VDF-TrFE) 70:30 layer. i) in-plane data 
without FE layer (solid black) ii) out- of plane data without FE layer (open black) iii) in-
plane data with FE layer (solid red) iv) out-of plane data with FE layer (open red) for the 
magnetization loop measurement. Clearly there is a shift in the transition region to the 
thicker side of the Co film as shown by the arrow from the green shaded region to the 
gray shaded region. (b) A set of four sequential MOKE measurements were made on an 
identical Pt/Co wedge sample with thickness ranging from 4 Å to 17 Å: (i) on the bare Co 
surface (ii) after immersion into water (iii) after deposition of the PVDF and (iv) after 
annealing of the PVDF film. The SRT transition remained unaffected by the first three 
steps, shifting dramatically from 8 Å to 12 Å only after annealing of the PVDF film. 
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 Measurements of both in-plane and out-of-plane MOKE and the corresponding 

Mr/Ms values indicate that the SRT shifts from a thickness of approximately 10Å without 

the FE polymer to 13 Å after the polymer film has been deposited and annealed as shown 

in figure 5.6. This shift is attributed to interfacial chemistry at the metal polymer 

interface.  Cobalt has been shown to be particularly reactive with polymers,23 with the 

formation of carboxylates, Co(OH)2 as well as clusters of metallic Co. Cobalt films 

exposed to ambient conditions, as was this sample, form oxides and hydroxides,24 with 

rates of formation dependent on temperature and time, further complicating the issue. A 

series of experiments to explore the origin of the shift in the position of the SRT were 

carried out on a Co wedge (identical to the Pt/Co wedge) with thickness ranging from 4 Å 

to 17 Å using the magneto-optical Kerr effect (MOKE) to pinpoint changes in the SRT 

(see Figure 5.5 (b)). A set of four MOKE measurements were made in sequence: (i) on 

the bare Co surface after removal from the deposition chamber (ii) after immersion in 

ultrapure water, as would occur for the LB deposition process, effected by dipping the 

sample into a clean LB trough (iii) after deposition of the PVDF and (iv) after annealing 

of the PVDF film. The SRT remained unaffected by the first three steps, shifting from 8 

Å to 12 Å only after annealing of the PVDF film. We attribute this change to interfacial 

chemical changes that are accelerated by the 130 °C annealing temperature, rather than to 

electric field effects from the polarized ferroelectric. This is because, although annealing 

does increase the net polarization of PVDF,25 magnetic hysteresis loops for the out of-

plane easy axis direction recorded above the Curie temperature of the ferroelectric 

polymer showed no change from the room-temperature measurements (see figure 5.8). 
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When the ferroelectric polarization is pointing away from the metallic Co layer, 

there is an increase in the out-of-plane coercivity and a decrease in the in-plane coercivity 

across the entire range of Co thicknesses explored (see figure 5.5). Clearly, this 

polarization direction (up) favors out-of-plane anisotropy. Note that for the Co/Pt sample, 

we present results both at ferroelectric remanence, with zero applied voltage, and with an 

applied voltage of 12 V. The slightly larger changes seen with the voltage on are 

attributed to the relaxation of the ferroelectric polarization when the voltage is turned off. 

26 The changes in the out-of-plane coercivity are most pronounced in the region of the 

spin reorientation transition. In contrast, the changes in the in-plane coercivity are 

minimized at or close to the SRT.  

 In contrast to spin-reorientation experiments with Fe/MgO10 thin films, which 

require the application of large voltages to perturb the magnetization, the changes seen 

here are present at zero applied voltage because the remanent ferroelectric polarization 

produces a large interface charge. This has important ramifications for data storage 

technology, providing a route to non-volatile memory storage, because this large 

remanent polarization is controlled with a relatively small voltage. 

 To minimize magnetic domain effects in the interpretation of the magnetization 

data, the effective uniaxial anisotropy constant Keff for both samples was calculated using 

the area method (see Figure 5.2).27 This method assumes that irreversible domain 

mechanisms are similar for both in-plane and out-of-plane directions and hence the 

difference in area between the out-of-plane and in-plane magnetization curves yields the 

effective anisotropy energy Keff. As expected from the data in figure 5.5(a) the anisotropy 

energy for the up polarization state (negative interface charge) changes sign at the SRT 
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(see figure 5.7 (a)), going from positive to negative, where a positive value of Keff 

corresponds to out-of-plane anisotropy. For the smallest Co thickness measured, 

switching the ferroelectric polarization to the down state (positive interface charge) alters 

the uniaxial anisotropy from positive to negative, allowing for electric field controlled 

switching of the magnetization easy axis from out-of-plane to in-plane. 

 

Figure 5.7: (a) & (b) show the effective uniaxial anisotropy constant as obtained from 
the area method as a function of Co thickness for samples on a (a) Pd seed layer and (b) 
Pt seed layer. For the lowest thickness (9.4 Å) Keff is positive for up polarization and 
negative for down polarization indicating a switching of the easy axis from out-of plane 
to in-plane. At larger thickness, negative values of Keff result in in-plane magnetization. 
At the spin reorientation region for up polarization the effective anisotropy is close to 
zero, in agreement with the Mr/Ms data in Figure 2. (c) & (d) The changes in effective 
anisotropy  (red circle) and surface anisotropy )()( ↓−↑=Δ PKPKK effeffeff

ΔKs = t ΔKeff  (blue square) resulting from switching of the ferroelectric polarization 
plotted as a function of Co thickness for samples on (c) a Pd seed layer  and (d) a Pt seed 
layer. 
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 The reversal of the electrical polarization results in changes in the anisotropy 

energy, . If we assume that these changes arise solely from 

the changes in the surface anisotropy energy, we can write

ΔKeff = Keff (P ↑) − Keff (P ↓)

ΔKs = t ΔKeff  (where t is the 

thickness of the Co film). These quantities are shown in figures 5.7 (c) and 5.7 (d) as a 

function of Co thickness and indicate that polarization reversal results in surface 

anisotropy changes that are in the range of 30-70 μJ/m2 for both the Co/Pd and Co/Pt 

samples. Given the short electric field penetration depth of ~ 1.5 Å in Co, we would 

expect ΔKs to be constant across the whole thickness range. The differences may be due 

to non-uniform surfaces resulting in variations of the local electric field. 

 In order to confirm the central role of the ferroelectric polarization in the 

magnetic effects observed, the Pt/Co sample was heated to 119.4 °C, well above the 

ferroelectric-paraelectric phase transition temperature of 107 °C.28 At temperatures above 

the ferroelectric transition temperature of the P(VDF-TrFE), where the spontaneous 

polarization vanishes, the magnetization hysteresis loops showed no change in coercivity 

(see Figure 5.8) because in the paraelectric phase, there was no remanent polarization and 

no net charge at the interface to influence the magnetic film. The out-of plane MOKE 

measurement at a Co thickness of 11.2 Å corresponding to two different applied voltage 

of +12 V and -12 V, the same voltage used previously to polarize the FE layer is shown 

in figure 5.8 (a). There was no significant effect of the sign of the applied voltage in the 

magnetic coercivity, which was measured at zero voltage in both cases. At this 

temperature, the ferroelectric film does not remain polarized without a voltage. On 

cooling back down to room temperature, the polymer film was confirmed to be 

ferroelectric through polarization hysteresis measurement (see figure 5.8 (b)) and again 
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the out-of plane MOKE measurements in the two different polarization states, up (-12 V) 

and down (+12 V), showed the change in coercivity of 8.9 mT as shown in figure 5.8 (c). 

The much lower coercivity of the magnetic film at high temperature (compare figure 5.8 

(a) and (c)) is a feature common to ferromagnets, and not necessarily due to the loss of 

ferroelectric polarization in the polymer film. To test this hypothesis with our Co films, a 

new sample of Pd (50 nm)/Co (1.4 nm) was made without the FE layer. The MOKE 

measurement from this sample (Figure 5.8 (d)) also exhibits a decrease in coercivity by 

5.1 mT from room temperature to at 119.4 °C, the same amount observed with the cobalt-

polymer heterostructure (figure 5.8 (a)).  

 

Figure 5.8: (a) At 119.4 °C, well above the ferroelectric-paraelectric phase transition 
temperature there is no change in coercivity. (b) and (c) are room temperature 
measurements of the b, ferroelectric loop and c, magnetization loop indicating that the 
sample is stable. (d) The lower coercivity at high temperature is an expected feature. A 
Pd/Co sample without the FE layer shows a similar temperature dependence of the 
coercivity.  
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Figure 5.9: Out-of-plane magnetic coercivity, as a function of applied voltage, (and net 
ferroelectric polarization) measured at a Co thickness of 11.2 Å at zero applied voltage, 
after the requisite voltage has been applied to change polarization. Coercivity 
measurements as a function of applied voltage show a shape similar to the ferroelectric 
polarization. Inset: out-of-plane coercivity as a function of ferroelectric polarization (as 
measured by the pyroelectric current). The polarization values corresponding to applied 
voltage were taken from a polarization hysteresis loop similar to that shown in Figure 5.3. 

  

 Investigations of the magnetic coercivity at intermediate polarization states 

demonstrated that the magnetic coercive field is proportional to the net ferroelectric 

polarization, as shown in figure 5.9, in which the magnetic coercive fields for out-of-

plane hysteresis loops are plotted as a function of the applied electric field, clearly 

displaying the hysteretic behavior corresponding to the ferroelectric polarization state. 

The inset of figure 5.9 shows the magnetic coercive field plotted as a function of the 

ferroelectric film polarization (with the relative polarization values obtained empirically 
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from the pyroelectric hysteresis loop), revealing the proportionality between the two, 

apart from a small remaining hysteresis, which we attribute to incomplete ferroelectric 

domain switching. The ferromagnetic domains are a few microns in size,29 and about two 

orders of magnitude larger than the ferroelectric domains in P(VDF-TrFE), which are 30 

nm to 50 nm in size.30 Hence, each ferromagnetic domain experiences an electric field 

that results from the average macroscopic polarization. 

 The results of these experiments show that the changes in magnetic behavior 

cannot be attributed to volume effects. Symmetry considerations dictate that there should 

be no change in the in-plane strain in the ferroelectric film on polarization reversal, and 

therefore no strain effects in the Co. (Any out-of-plane strain in the ferroelectric film 

would not have induced stress in the films, because the sample thickness was 

unconstrained.) Further, any residual strains in the polymer ferroelectric film are unlikely 

to perturb the Co, because of the much lower stiffness coefficient of the polymer. MOKE 

measurements in a heterostructure containing both ferroelectric and ferromagnetic 

components, will contain an electro-optic signal from the ferroelectric that will contribute 

to the measured MOKE intensity. This will change the Kerr intensity (height of the 

MOKE loop) but essentially will have no effect on the resultant coercivity change. 

Thermomagnetic effects will also have no effect on the observed coercivity change with 

ferroelectric polarizations. (See chapter 4) 

 The high electrical polarization charge, 0.1 C/m2, at the polymer surface 

contributes an appreciable electric field. If we assume a 15 Å naturally occurring 

overlayer of CoO,31 the electric field penetrating the Co surface is calculated to be 8.7 x 

108 V/m. This electric field will extend into the metallic Co layer over a distance of ~ 1.5 
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Å, altering the spin polarization over this depth because of unequal spin-up and spin-

down screening charge densities.2,5 This large electric field value is larger than the 

expected breakdown voltage for a transition metal oxide such as CoO. Breakdown fields 

for CoO have not been measured, but the band gap of 2.4 eV implies a breakdown field 

of the order of 3 x 108 V/m, 32 about a factor of three smaller than the electric field we 

expect using the full polarization of the ferroelectric. There are several uncertainties that 

exists because (i) the interface between the metallic Co and the polymer ferroelectric is 

not well known, and hence the interface may contain other materials, (ii) the polarization 

at the interface may in fact not be the full polarization of the ferroelectric, leading to 

lower values of the surface charge density and (iii) the interface between the Co and 

polymer layers is not smooth and the chemistry of the interface changes after polymer 

deposition and annealing of the sample as shown and described in figure 5.6. Reactions 

between Co and polymers form carboxylates, metallic Co and hydroxides23 and the rates 

of formation are dependent on temperature and time, making the exact interface structure 

subject to some uncertainty. Our results and interpretation are similar to those in 

Fe80Co20/MgO and Co40Fe40B20/MgO heterostructures, in which the presumed electric 

field at the surface of the MgO is comparable or larger than the experimentally observed 

breakdown voltage in thin MgO films.33 Comparison of our results with other theoretical 

and experimental values (see table 5.1) indicates that our values of the ME coupling are 

of the same order of magnitude. Our data indicate a change in the anisotropy due to the 

induced electric field of ΔKeff/ΔE = 2.47 x 10–5 J/m2V. This may be compared to the 

experimentally obtained values of 8.8 x 10–5 J/m2V found in a Fe/MgO heterostructure10 

with an applied electric field of 108 V/m. Theoretical and experimental values of electric 
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field control of surface anisotropy changes 1 of ~ 10-14 J/Vm are comparable to our 

experimentally observed value ΔKs/ΔE ~ 2.34 x 10-14 J/Vm. In Fe80Co20/MgO 

structures34 very large values of ΔKs/ΔE=83 x 10-14 J/Vm have been reported, much 

larger than theoretically predicted values.35 The table 5.1 below shows a detailed 

comparison of anisotropy changes with electric field. 

Materials  Surface 
anisotropy 
change 
( sKΔ ) 
(μJ/m2) 

Electric 
field 
(V/m) 

)/( VmJ
E
Ks

Δ
Δ

 

Fe (0.48nm)/MgO 

Nature Nanotech. 4, 406 
(2009) 

Experiment 8.4 108 4.2 x 10-14 

Fe80Co20 (0.5nm)/MgO 

APL 96, 022506 (2010) 

Experiment 15 4 x 108 3.75 x 10-14 

Fe (15 ML) /vacuum Theory 400 1010 2 x 10-14 

Pt/Fe/Pt 

PRL 102, 247203 (2009) 

Theory -- 1010 7.2 x 10-14 

Fe80Co20 (0.55nm)/MgO 

APL 96, 142512 (2010) 

Experiment 833 109 83 x 10-14 

Co40Fe40B20 (1.33nm) / 
MgO 

APL 96, 212503 (2010) 

Experiment 33 109 3.3 x 10-14 

Pd/Co(9.4 Å)/PVDF 

Our value 

Experiment 40 8.7 x 108 2.3 x 10-14 

 

Table 5.1: Different experimental and theoretical values of surface anisotropy change 

with electric field. 
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Figure 5.10: The red (open triangles) and black (closed triangles) magnetic hysteresis 
loops for Co thickness of 8.8 Å correspond to polarization pointing down and up 
respectively. (a) Starting from positive magnetic saturation, with polarization pointing up, 
we reverse the magnetic field to -8.3mT resulting in a lowering of the magnetization to 
point 2. Switching the FE polarization to down results in a switching of the magnetization 
to point 3, due to the lowering of the energy barrier with the change in polarization. Point 
3 is stable and switching back to up polarization does not switch the magnetization back 
to point 2. Similarly after negative magnetic saturation and polarization up, we increase 
the field to 5, switch the FE polarization to down resulting in a change of the 
magnetization to point 6. Switching back to up polarization does not alter state 6, which 
like 3 is stable to changes in the ferroelectric polarization. (b) Calculations of the 
magnetic free energy consisting of the magnetic anisotropy (which is altered by the 
direction of ferroelectric polarization) and Zeeman energies for the two polarization 
states. Note the lowering of the energy barrier when the polarization is switched from up 
to down and the minima of energy occurring at θ = 0.6π. 
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 The effect of the ferroelectric polarization on the magnetic anisotropy energy is 

also apparent in an investigation of the magnetic switching behavior, as illustrated by 

figure 5.10 (a). The two out-of-plane magnetization hysteresis loops, one for polarization 

up and the other for polarization down, are shown for the Pt/Co film at a Co thickness of 

8.8 Å. The ferroelectric film was polarized up, and the magnetic film was saturated, 

resulting in the magnetization denoted as point 1 in figure 5.10 (a). On reversing the 

applied magnetic field to –8.34 mT, the magnetization value dropped rapidly (a 

consequence of magnetic relaxation effects) to the state denoted by point 2, where it was 

stable for an extended period of time. Switching the ferroelectric film to the opposite 

(down) polarization state resulted in an abrupt reverse of the magnetization to point 3 in 

the hysteresis loop. Reversing the polarization to up had no effect on the magnetization. 

A similar sequence with polarization up, negative magnetic saturation, reversal of the 

magnetic field to +10.43 mT and switching of the polarization results in the 

magnetization switching from points 5 to 6. Points 2 to 3 and points 5 to 6 are irreversible 

with electric field, requiring the presence of a magnetic field to reverse the magnetization 

state. 

 The irreversibility of the polarization-induced switching results from the free-

energy landscape of the magnetic state and its dependence on the polarization direction. 

The magnetic free energy in a uniaxial system with no magnetocrystalline anisotropy 

may be written as HMKU eff •−= θ2sin , where Keff is the effective anisotropy, which 

in our sample is dependent on the electric field, θ is the angle the magnetization makes 

with the normal to the film and M and H are the saturation magnetization and applied 

magnetic field, respectively. Because we could not measure the in-plane magnetization 
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for the 8.8 Å film, we use the Keff values for the 13.5 Å film, 37.6 kJ/m3 and –16.3 kJ/m3 

for up and down polarization states, respectively, to calculate the free energy curves 

shown in figure 5.10 (b). For up polarization, at an applied field of –8.3 mT, the free 

energy barrier to magnetization reversal prevents rotation of the magnetization into the 

field direction, and the magnetization is stable at θ = 0 corresponding to point 2 in Figure 

5.10 (a). Switching to down polarization lowers the energy barrier with the minimum of 

energy occurring at θ = 0.6π, i.e., the magnetization lies close to the in-plane direction at 

point 3 in Figure 5.10 (a). Because PMOKE measures only the perpendicular component 

of the magnetization, we expect to measure a value of –0.36Ms, close to the actual value 

of –0.5Ms, which was measured at point 3. The irreversibility of this transition is due to 

the large energy barrier encountered in going from point 3 to point 2 (or from point 6 to 

point 5).  

 The results described here occur in all samples of this structure. Data for a variety 

of samples grown in different runs are shown in figure 5.11. In all cases, the out-of plane 

magnetic coercivity is larger for up polarization, while the reverse is true for the in-plane 

magnetic coercivity. The Pd/Co sample and the Pt/Co sample-1 are described earlier in 

figure 5.5.  The Pt/Co samples 2 and 3 are samples with a uniform thickness of Co, with 

all other parameters being the same. 
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Figure 5.11: Change in coercivity with ferroelectric polarization in a variety of 

Co/P(VDF-TrFE) samples. (a) Out-of-plane coercivity measurements on four different 

samples indicate that the coercivity for up polarization is always larger than for down 

polarization. (b) In-plane coercivity measurements on three different samples indicating 

that the magnetic coercivity is always larger for down polarization. 

5.4 Conclusions 

 In conclusion, we have shown that the electric polarization state of a polymer 

ferroelectric thin film substantially alters the magnetic anisotropy of a thin film transition 

metal ferromagnet, changing the magnetization easy axis from out-of-plane to in-plane 

for sufficiently thin ferromagnetic films. This magnetization switching from out-of-plane 

to in-plane is achieved using an applied voltage of only 12 V, is stable at remanence, and 

is irreversible with electric field. The change in magnetic anisotropy is proportional to the 

electrical polarization of the polymer ferroelectric and the effect is absent in the 
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paraelectric phase above the ferroelectric-paraelectric transition temperature. Moreover, 

this behavior is achieved in a device with relaxed constraints on the 

ferroelectric/ferromagnetic interface as exemplified by the ex-situ growth of the 

ferroelectric in a water sub-phase and the naturally occurring oxide layer on the 

ferromagnet. Both of these features confer distinct benefits in the realization of non-

volatile memory devices and are in stark contrast to the demanding fabrication 

requirements of oxide ferroelectric films. The changes in the surface anisotropy induced 

by the direction of FE polarization, 30-70 μJ/m2, are comparable to previous experiments 

10 as is the magnetoelectric anisotropy coupling coefficient, ΔKeff/ΔE. 

 The substantial mismatch between the stiffness coefficients of the ferromagnet 

and the ferroelectric precludes strain effects and the weak interfacial coupling rules out 

atomic rearrangements at the interface. Hence we infer that this is purely an electric field 

effect, arising from the large surface charge density at the ferroelectric/feromagnet 

interface that results in a large electric field that will penetrate the metallic Co over a 

distance equal to the screening length. This alters the anisotropy energy barrier for 

magnetic switching allowing for electric control of magnetic switching at very low 

applied voltages of ±12V, with the magnetic state remaining stable in the absence of 

applied voltage.  
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Chapter 6 

The sweep rate dependence of the electrical control of 

magnetic coercivity  

A. Mardana, Stephen Ducharme and S. Adenwalla 

This chapter has been accepted in Journal of Applied Physics for publications. Minor 

changes from the original journal article have been made for this dissertation 

 

6.1 Introduction 

 In recent years, research on the electrical control of magnetic properties in 

composite materials via magnetoelectric coupling has accelerated, leading to the 

realization of exciting fundamental physics phenomena, in addition to potential 

spintronics applications. Electric fields in magnetic thin films have been shown to control 

the magnetic anisotropy,1,2,3,4,5 the magnetization, the Curie temperature6,7,8 and the spin 

polarization.9 Ferroelectric/ferromagnetic heterostructures provide an easy route for the 

application of large electric field but in the majority of previous studies the strain-

mediated coupling10,11 between the components overwhelms electric-field induced 

effects.12,13 We have previously measured large polarization induced changes in the 

magnetic coercivity and anisotropy of thin Co films in a Co / P(VDF-TrFE) bilayer.14 

P(VDF-TrFE) is a ferroelectric copolymer with a large polarization and a stiffness 

coefficient that is approximately two orders of magnitude below that of Co. This 

combination produces a large electric field of 8.8 x 108 V/m at the surface of the Co but 
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very little, if any, strain in the Co layer, thereby enabling the investigation of purely 

electric field effects.  

 Our previous results14 (see Chapter 5) can be summarized as follows. The 

polarization of the polymer ferroelectric has a significant effect on the coercivity and 

magnetic anisotropy of the thinnest Co films. The out-of-plane coercivity is significantly 

larger for up polarization (i.e. for the polarization pointing away from the Co layer), 

whereas the opposite is true for the in-plane coercivity. The magnetic anisotropy energy 

can be altered by as much as 50% by switching the ferroelectric polarization from up to 

down as calculated from in-plane and out-of-plane hysteresis loops. For the thinnest 

films, the easy magnetization axis switches from out-of-plane to in-plane as the 

ferroelectric polarization is switched. The change in coercivity is proportional to the 

ferroelectric polarization, as confirmed by taking magnetization loops at intermediate 

polarization values. The magnetization can be rotated through a large angle using only 

electric fields and this rotation is electrically irreversible, because the electric field 

changes the free energy of the thin ferromagnetic film. Experiments in the paraelectric 

phase above the ferroelectric-paraelectric transition temperature of the P(VDF-TrFE), at 

which no changes in the coercivity are seen, confirm that these large changes in the 

anisotropy arise from the large electric field at the surface of the Co layer, created by the 

presence of the ferroelectric polarization.  

 The ability to change the magnetic coercive field using an electric field has 

tremendous potential applications in magnetic recording media, because it enables 

electric field writing of the magnetic state. This chapter’s research is motivated by the 

well-known dependence of the magnetic coercivity on the magnetic field sweep rate, 
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prompting us to investigate how the polarization-induced changes in coercivity, ΔHc, 

behave as a function of magnetic field sweep rate. To our knowledge, few if any studies 

of this dependence exist and, as we shall show below, the results are quite striking, even 

at fairly slow sweep rates and over a small range.  

 The sweep rate dependence of the magnetic coercivity, Hc is well known and is 

most apparent in magnetic thin films.15,16,17,18,19 The magnetic coercivity decreases with 

the field sweep rate, approaching the intrinsic coercivity for very slow sweep rates. 

Because magnetization reversal occurs by thermally activated processes, magnetization 

switching times depend on the energy barrier to be overcome, an energy barrier that 

depends (among other things) on the externally applied field. Hence, the coercive field, 

defined as the field at which half the sample volume has switched,15 is highly dependent 

on sweep rate. Because the exact dependence of Hc on sweep rate varies with extrinsic 

film properties (grain size, roughness), our ferromagnetic/ferroelectric heterostructured 

sample consists of a single wedge shaped Co layer, in order to minimize these effects. In 

addition, we measured the sweep rate dependence of identically grown bare Co thin films 

to check for coercive field effects due to the P(VDF-TrFE) overlayer.  

 

6.2 Experimental Procedures 

 The samples consisted of [A] a set of bare Co films of varying thicknesses (3 nm, 

5 nm and 10 nm) on a 50 nm Pt seed layer and [B] one wedge sample with a ferroelectric 

overlayer consisting of Glass / Pt (50 nm) / Co (2.5 Å - 21.5 Å) / [P(VDF-TrFE) 70:30] 

100 ML / Al (26 nm) as shown in figure 6.1. The wedge angle of the Co layer in this 

latter sample [B] is 2.7 x 10-6 degree. All samples were grown on glass substrates. The 
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Co and Pt layers were deposited by sputtering through shadow masks that were 1 mm 

wide and 15 mm long (for set [A]) and 0.5 mm wide and 40 mm long for the wedge 

shaped Co layer for set [B]. The deposition rates of Co and Pt were 0.2 Å/s at 2 x 10-3 

Torr argon pressure. 

 

 

Figure 6.1: Sample schematic diagram. (a) Cross sectional view of sample [B]: Glass / Pt 

(50 nm) / Co (2.5 Å – 21.5 Å) / [P(VDF-TrFE) 70:30] 100 ML / Al (26 nm). The Co 

wedge angle was 2.7 x 10-6 degree. (b) Top view of the sample [B]. LMOKE and 

PMOKE were done on the thick and thin edge respectively as shown in the diagram. 

   

The 180 nm thick ferroelectric polymer layer on the wedge-shaped Co was grown 

ex-situ by the Langmuir-Blodgett (LB) technique (details of the deposition are given in 

chapter 2). The sample was annealed at 135 °C for one hour, resulted in a crystalline 
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ferroelectric film. Upper electrodes of Al (26 nm thick) were deposited by thermal 

evaporation through shadow masks of width 0.2 mm at discrete regions along the Co 

wedge. Copper wires were attached to the top and bottom electrodes with silver paint to 

enable the measurement and switching of the ferroelectric polarization. The ferroelectric 

layer has been characterized using the Chynoweth method with a laser power of 1 mW 

and in reference to an optical chopper frequency of 2 kHz. The pyroelectric current is 

measured using a lock-in amplifier with 1 s time constant. The pyroelectric loop of 

sample [B] is shown in figure 6.2. The magneto-optical Kerr Effect (MOKE) was used to 

characterize the in-plane and out of plane magnetic behavior of all samples in 

longitudinal and polar configurations respectively. 

 

 

Figure 6.2: Ferroelectric polarization hysteresis loop as measured by the pyroelectric 

current vs applied voltage in one of the spots for sample [B].  
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6.3 Results and Discussions 

 

 

Figure 6.3: Step size dependence of magnetic coercivity in the Pt(50 nm)/Co(5 nm) 

sample. The coercivity increases with increasing step size.   

 

 The magnetic coercivity increases with increasing step size as shown in figure 6.3 

for the sample consisting of Pt(50 nm)/Co(5 nm). The dependence of the magnetic 

coercivity on magnetic field step size as a function of film thickness is shown in figure 

6.4. Since the delay between each step is identical for all measurements (300 ms), the 

step size may be taken as a proxy for the sweep rate. Both step size and effective sweep 

rate are indicated on the horizontal axis, with the sweep rate ranging from 0.85 mT/s to 

20.25 mT/s. Measurements were made on the three bare Pt/Co samples as well as on two 

ends of the Co/P(VDF-TrFE) sample at positions along the Co wedge that correspond to 

thicknesses of 10.5 Å and 19.5 Å. The out-of-plane (PMOKE) measurements were done 

at a Co thickness of 10.5 Å and the in-plane (LMOKE) measurements were done at a Co 
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thickness of 19.5 Å corresponding to out-of plane and in-plane magnetization easy axes 

at the respective thicknesses. Over this rather restricted range of sweep rates, the thinnest 

sample of set [A] 3 nm sample shows the maximum change in coercivity of 41.6 mT 

whereas the 5 nm and 10 nm sample show changes of 16 mT and 14 mT respectively, 

confirming the sweep rate dependence as well as the thickness dependence that has 

previously been observed. 15-19 The coercivity of the ferromagnetic/ferroelectric sample is 

shown in figure 6.4(b), for both directions of polarization, with red and black data points 

indicating down and up polarization respectively. The solid data points are for LMOKE 

measurements at a Co thickness of 19.5 Å and the open data points are for PMOKE 

measurements for a Co thickness of 10.5 Å. The coercive field and its dependence on 

sweep rate are quite different from the expected dependence. With these thinner films, we 

expect a larger coercive field and much stronger sweep rate dependence than was 

obtained for the 3 nm bare Co film. We attribute this to chemical changes at the interface 

arising from the presence of the P(VDF-TrFE). Our earlier work has shown a substantial 

shift of the spin reorientation transition when the P(VDF-TrFE) layer is annealed and we 

expect that a similar phenomena is responsible for the coercive field data. As expected 

from our earlier measurements, the in-plane coercivity for up (pointing away from the Co 

surface) polarization is always smaller whereas for out-of-plane coercivity the reverse is 

true. Polarization switching was accomplished with an applied voltage of V and all 

data are taken at zero applied voltage. 

20±
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Figure 6.4: Magnetic coercivity as a function of sweep rate. (a) LMOKE measurements 

of sample set [A] consisting of bare Co on a Pt (50 nm) seed layer. (b) LMOKE and 

PMOKE measurements of sample [B] The solid red and black data are for LMOKE 

measurements at a Co thickness of 19.5 Å with the symbol direction depicting the FE 

polarization direction. The open red and black data are for PMOKE measurements at a 

Co thickness of 10.5 Å. The lines are guides to the eye. 

  

We are interested in how this difference in coercivity , 

depends on the field sweep rate. This dependence is indicated in figure 6.5 in which the 

normalized difference  is plotted as a function of step size and sweep rate for 

both the in-plane data at a thickness of 19.5 Å and the out-of-plane data at a thickness of 

10.5 Å. The blue lines indicate the sweep rate of our previous experiments, albeit on 

different samples. There is a remarkably strong dependence of this change in coercivity 

)()( ↓−↑=Δ ccc HHH

)(/ ↑Δ cc HH
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on the sweep rate, all the more striking because the range of sweep rates used is quite 

modest. This dependence on the sweep rate implies that the electric field from the 

polymer must influence the magnetic domain structure, but the mechanism behind this 

remains unclear. Domain motion with the application of electric fields has been 

previously observed in Fe0.7Ga0.3 / BaTiO3 20 and CoFe / BaTiO3 layered samples, 21 but 

in those samples, strain coupling between the two materials is shown to be the driver 

behind the domain wall motion. This is unlikely to be the case in our samples. 

 

 

Figure 6.5: The normalized electric field induced difference in coercivity, ∆Hc/Hc as a 

function of magnetic field sweep rate, showing a substantial dependence. (a) In-plane 

LMOKE measurements for a Co thickness of 19.5 Å and (b) Out-of-plane PMOKE 

measurements for a Co thickness of 10.5 Å.  The blue line is the sweep rate for our earlier 

reported measurements.14 
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6.4 Conclusions 

 In conclusion, we have investigated the effect of sweep rate on the electric field 

driven changes in magnetic coercivity in a polymer ferroelectric/ferromagnetic bilayer. 

Because of the large mismatch in stiffness coefficients, the magnetic changes with 

ferroelectric polarization that are observed are solely due to the presence of the electric 

field, and not to strain. In this magnetoelectric heterostructure, there is a substantial 

sweep rate dependence of the electric-field driven changes in magnetic behavior, even 

over the small range of fairly slow sweep rates investigated. Because most studies of the 

electric control of magnetism have been reported in very thin magnetic films and because 

the dynamic effect in these thin films can be very large, the field sweep rate is an 

important parameter in any measure of magnetoelectric coupling in heterostructured thin 

films.  
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Chapter 7 

Summary & Future 

 

 This thesis presents experimental results on the magnetoelectric (ME) interactions 

between a transition metal ferromagnet, cobalt, and a ferroelectric copolymer P(VDF-

TrFE) in thin film heterostructures. The results describe both the magnetic control of 

ferroelectric polarization as well as the ferroelectric control of magnetic anisotropy. Our 

choice of materials results in a considerable mismatch in the stiffness. Metallic cobalt is 

100 times stiffer than the polymer ferroelectric and this mismatch has consequences for 

the interpretation of our data. 

 For magnetic control of ferroelectric polarization the samples consist of a metallic 

cobalt layer deposited on the polymer film. The ferromagnetic layer is not constrained by 

the substrate as it floats on the soft polymer layer so any strain in the Co layer due to 

magnetostriction will be transferred to the polymer layer. A large change in polarization 

is observed with the applied magnetic field perpendicular to the sample (which is also 

perpendicular to the easy magnetization axis). This polarization change is reversible and 

possesses odd symmetry with respect to the positive and negative magnetic field 

direction. After magnetic saturation the effect vanishes and careful demagnetization 

restores the effect albeit at a smaller magnitude. This implies that the presence of 

multiple magnetic domains in the ferromagnetic layer is necessary for this effect.  

 A possible origin of this magnetoelectric coupling is the flexoelectric effect, the 

change in polarization due to a strain gradient in the ferroelectric film. In order to 

quantify and explore this effect, future experiments include the measurement of the 
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flexoelectric coefficient of the Langmuir-Blodgett deposited P(VDF-TrFE) thin films. 

Because the magnetic domain structure plays an essential role and because the changes in 

polarization will occur chiefly at magnetic domain walls, both the magnetic domain 

orientation and the ferroelectric domain behavior must be observed. This can be 

conveniently done using magnetic force microscopy (MFM) and piezoelectric force 

microscopy (PFM) in applied magnetic fields to visualize the changes in ferroelectric 

domain polarization with changes in the magnetic domain structure. This will allow us to 

map out this ME effect in a single domain wall and to investigate how it depends on the 

domain wall widths, magnetostriction and the angle between the adjacent domains. The 

domain wall width and the domain structure depend on the film thickness as well as on 

the deposition parameters; we have the freedom to control both the magnitude and the 

sign of the effect. Magnetostriction can be controlled by the choice of magnetic material, 

such as with high magnetostriction Terfenol-D or with small magnetostriction permalloy. 

 An experimental study of the ferroelectric control of magnetic anisotropy in a 

wedge shaped Co layer overlaid with P(VDF-TrFE) is also presented. This detailed study 

has shown a shift in the spin-reorientation transition region to thicker Co after deposition 

and annealing of the P(VDF-TrFE), an effect attributed to chemical changes at the 

interface in ambient conditions. Changes in the ferroelectric polarization from up 

(pointing away from the Co layer) to down resulted in smaller out-of-plane magnetic 

coercivity and larger in-plane coercivity. The magnetic anisotropy, calculated using the 

area method, is shown to change by as much as 50% as the ferroelectric polarization 

switches from up to down. With a sufficiently thin Co film, the magnetic easy axis can be 

switched from out-of-plane to in-plane, by changing only the direction of the ferroelectric 
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polarization. This effect of this polarization change on magnetic coercivity vanishes in 

the paraelectric phase of the ferroelectric layer as there is no polarization charge present. 

The change in magnetic coercivity is also proportional to the ferroelectric polarization as 

confirmed by taking magnetization loops at intermediate polarization values. Rotation of 

the magnetization through a large angle by polarization switching is shown. These large 

changes in magnetic anisotropy arise from the polarization charges at the Co interface. 

The screening charges in the ferromagnetic layer are spin dependent and depending on 

the polarization direction there is a spin imbalance in the ferromagnetic layer, leading to 

an change in magnetic anisotropy. 

 To maximize this effect, future studies using a half-metallic ferromagnet will be 

performed. Since the screening lengths depends on the spin up and spin down electrons, 

the maximum change in magnetic anisotropy should be observed with a half-metal, in 

which one spin sub-band is filled and the other is empty. Another possibility is to use 

other transition metal ferromagnets such as Fe to see this change in magnetic anisotropy. 

In the present study, the interface between the Co and the polymer layers is contaminated 

because the polymer layer is grown ex-situ. In order to see this effect at a clean interface 

experiments that allow for the in-situ deposition (via evaporation) of a ferroelectric VDF 

oligomer on the Co wedge are planned. The effect of the screening charges can be 

enhanced by the deposition of a high-K dielectric material and the choice of a variety of 

dielectric materials deposited in-situ on the Co wedge will measure theoretical 

predictions of linear proportionality between screening charges and the dielectric 

constant. 
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 In conclusion, the ME effects presented here have been studied from the 

perspective of basic research, rather than for engineering applications. Further studies 

will improve the understanding of the effect and the ability to optimize it using different 

materials and measurements. Future results may enable a more realistic model of 

multifunctional devices. Potential applications in ME sensors or transducers with lower 

cost and higher performance are possible. Electric field control of magnetic data storage 

devices are attractive because of the possibilities for lower power consumption and less 

heating. One possible application of the ferroelectric control of magnetic anisotropy is to 

use it in Magnetoresistive Random-Access Memory (MRAM) technology. Polarization 

reversal can be used to store the data by switching the magnetic layer using only electric 

fields. Further studies of the fundamental physics of a variety of ME effects will provide 

understanding as well as vision for future devices and technology. 
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