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ABSTRACT 

Polarized electron beams are an indispensable probe of spin-dependent 

phenomena in fields of atomic and molecular physics, magnetism and biophysics. While 

their uses have become widespread, the standard source based on negative electron 

affinity gallium arsenide (GaAs) remains technically complicated. This has hindered 

progress on many experiments involving spin-polarized electrons, especially those using 

target gas loads, which tend to adversely affect the performance of GaAs sources. A 

robust system based on an alternative way to make polarized electron beams has been 

devised in this study, which builds on previous work done in our lab. It involves spin-

exchange collisions between free, unpolarized electrons and oriented rubidium atoms in 

the presence of a quenching gas.  

This system has less stringent vacuum requirements than those of GaAs sources, 

and is capable of operating in background pressures of ~1mTorr. Beams with ~24% 

polarization and 4μA of current have been recorded, which is comparable to the 

performance obtained with the earlier version built in our lab. The present system is 

however not as unstable as in the previous work, and has the potential to be developed 

into a “turn-key” source of polarized electron beams. It has also allowed us to undertake a 

study to find factors which affect the beam polarization in this scheme of producing 
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polarized electrons. Such knowledge will help us to design better optically-pumped spin-

exchange polarized electron sources.     
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CHAPTER 1. Introduction 

 

1.1     Electron spin and its polarization 

In addition to its mass and negative charge, an electron has an intrinsic spin 

angular momentum S


 of magnitude 

 1 1 3( 1) 1
2 2 4

S S S  = + = + = 
 



    (1.1) 

where 1 2S =  is the spin quantum number associated with the spin angular momentum, 

and   is Planck’s constant divided by 2π  [1]. The electron has a magnetic dipole 

moment sµ  related to this spin angular momentum, and it is given by 

 .e B
s

g
S

µ
µ = − ⋅



 (1.2) 

Here, eg  is the electron spin g-factor, and Bµ  is the Bohr magneton. Spin can classically 

be thought of as the angular momentum associated with a small spinning object [2]. But, 

such a picture has limitations. For example, estimates obtained for the spatial extent of 

the electron’s internal structure using the classical picture range between 10-13 and 10-11 

cm while data from high-energy colliders indicate that the electron is a point-like particle 

without any structure down to 10-18 cm [3]. Measurement of the component of the 

electron’s spin along any given axis yields either 
2

+


 or 
2

−


. The former, corresponding 

to “spin-up,” refers to an electron with its component parallel to the axis (see figure
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Figure 1.1: A “spin-up” electron. Its spin component of 
2
  is parallel to the axis of quantization z. (After 

Kessler [1].) 

 

    

(a) (b) (c) (d) 

Figure 1.2: With the axis of quantization chosen along the z axis as shown in (a), the electron ensemble in 
(b) is polarized, in (c) unpolarized, and in (d) partially polarized. (Adapted from [1].) 

 

1.1) while the latter, “spin-down,” describes a particle with its component antiparallel to 

the axis.  

This work deals with spin-polarized electron beams. A group of electrons is said 

to be spin-polarized if the population of particles in the “spin-up” and “spin-down” states 

are unevenly distributed [1]. Such an ensemble is characterized by a polarization P


 

defined as 

 ˆ.
N N

P z
N N

↑ ↓

↑ ↓

−
=

+



 (1.3) 
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Here, ẑ  represents the unit vector along the axis of quantization. The number of 

electrons in the spin-up and spin-down states are denoted by N↑  and N↓ . Thus, the 

electron ensemble in figure 1.2(d) has a polarization of 
4 2 1
4 2 3
−

=
+

 in magnitude if the 

quantization axis is chosen along the z of the coordinate system in 1.2(a). Alternatively, 

an electron beam with polarization P  along the axis of quantization can be thought of as 

being composed of a totally polarized fraction and an unpolarized fraction, mixed in the 

ratio P  to (1 ).P−  In this case, the density matrix describing such a beam is given by 

 1 2 0 1 0
(1 ) .

0 1 2 0 0
P Pρ
   

= − +   
   

 (1.4) 

Here, 
1 0
0 0
 
 
 

 is the density matrix for a beam totally polarized along the axis of 

quantization while 
1 2 0
0 1 2

 
 
 

 denotes the density matrix for an unpolarized beam. 

Electron beams can be either longitudinally or transversely spin-polarized. Longitudinally 

spin-polarized electron ensembles have their polarization vectors along the beam axis 

whereas transversely spin-polarized particles have theirs perpendicular to the beam axis.   

 

1.2     Applications of spin-polarized electrons 

Polarized electron beams are important to many branches of physics. They offer 

unique information about the dynamics of matter. Several examples of how they are used 

are given below. 
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1.2.1 Atomic and molecular physics 

Experiments involving polarized electron beams allow atomic physicists to obtain 

much more information about the most basic elastic scattering processes than would be 

available if unpolarized electrons were used [1]. If only the Coulomb and spin-orbit 

interactions are considered, elastic scattering of electrons from spinless, structureless 

targets is described by two scattering amplitudes [4]: 

   1if f e ϒ=  and 

 

 

(1.5) 

   2 .ig g e ϒ=  

 

(1.6) 

In the case of “direct” scattering, where the incident and scattered electrons have the 

same spin, the differential cross section is 

 2 .d f
d
σ

=
Ω

 (1.7) 

When an incident electron results in a scattered electron of the opposite spin, the 

“exchange” differential cross section is given by 

 2 .d g
d
σ

=
Ω

 (1.8) 

If the electron beam is initially unpolarized, the differential cross section is [4] 

 ( )2 2 21 .
2unpolarized

d f g f g
d
σ  = + + − Ω 

 (1.9) 

Hence, the information due to direct and spin-flip scattering cannot be separated with 

incident unpolarized electron beams. To be able to measure the amplitudes f  and ,g

polarized electrons have to be scattered from the atoms. Additionally, we can monitor the 

spin polarization vector 
0
eP


 of the scattered electrons which will take the form [4] 
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 ( )0
e e eP Sn T P U n P= + + ×
    

 (1.10) 

where 

 1 2
2 2

2 sin( )
,

f g
S

f g

γ γ−
= −

+
 (1.11) 

 

 
2 2

2 2 ,
f g

T
f g

−
=

+
 and (1.12) 

 

 1 2
2 2

2 cos( )
.

f g
U

f g

γ γ−
=

+
 (1.13) 

Here, eP


 is parallel to the scattering plane and refers to the spin polarization vector of the 

incident electrons (see figure 1.3).  The spin polarization vector 
0
eP


 of the scattered 

electrons consists of three components: ,Sn


 which is normal to the scattering plane, 

,eT P


 a component parallel or antiparallel to 0
,eP



 and ( ) ,eU n P×
 

 which is in the 

scattering plane but perpendicular to .eP


 By measuring the spin polarization of the 

scattered electrons in these three directions, we obtain the data necessary to determine the 

moduli ,g  f  and their phase difference ( )1 2 .γ γ−  Hence, scattering experiments with 

polarized electrons can yield the maximum possible information about the elastic 

scattering process, assuming that the collision kinetics is well-defined. Such studies have 

been performed with many atoms including mercury, xenon, rubidium and cesium among 

others [1, 5]. Inelastic scattering of polarized electrons has, on the other hand, helped us 

better understand the mechanisms involved in spin-orbit coupling and exchange 
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interactions among the incident and target electrons as well as the Coulomb field of the 

screened nucleus.  

 

 

Figure 1.3: Schematic diagram showing how the polarization components of the incident and scattered 
electron beams are defined. The polarization vector eP



 of the incident electrons is parallel to the scattering 
plane. (Adapted from [5].)  

 

Scattering of polarized electrons from chiral molecules has also been investigated 

[1, 6]. These molecules must be made of at least four different atoms in a non-coplanar 

arrangement [7]. In order for the molecule to exhibit chirality, the four atoms or groups of 

atoms must be different from one another. In essence, a chiral molecule is a particle with 

no superposable mirror image. The two non-superposable mirror images of chiral 

molecules are labeled D- and L-enantiomers. In nature, one finds, for example, that 

natural proteins are made of L-amino acids only while carbohydrates and nucleic acids 

consist solely of D-sugars [1]. The origin of this dissymmetry is a mystery. It has been 

speculated that it originates from the preferential interaction of longitudinally polarized 

electrons emitted from β radiation with one enantiomer compared to the other, leading to 

more substantial degradation of one over the other. Bonner et al. [8] tested this 
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hypothesis by irradiating a mixture of D- and L-leucine with longitudinally polarized 

electrons. They found that D-leucine was degraded to a larger extent. However, 

subsequent studies [9] failed to reproduce their results.      

  

1.2.2 Nuclear physics 

In high-energy physics, polarized electrons can be used to reveal details about the 

nuclear structure [1]. Researchers have, for instance, investigated how the deep inelastic 

scattering of longitudinally polarized electrons by polarized protons depends on spin [10]. 

Various models of the nuclear structure predicted an asymmetry in the differential 

inelastic cross-sections for parallel and anti-parallel mutual orientations of the electron 

and proton spins. However, estimates of this asymmetry varied among the models. 

Experimental determination of this asymmetry using polarized electron beams helped 

high-energy physicists find out which model is valid and should thus be used to extract 

accurate information about the spin distribution of quark constituents inside protons.     

Polarized electrons can also be used in experiments to test the Weinberg-Salam 

theory, which unifies two fundamental interactions in physics [11, 12]. This theory 

predicts that the cross-section for inelastic scattering of electrons from unpolarized nuclei 

depends on both the weak and electromagnetic interactions; it comprises an interference 

term between the weak and electromagnetic amplitudes. One would therefore expect 

different scattering intensities for beams with polarization parallel and anti-parallel to the 

direction of propagation. Such dependence of the scattering cross section from an 
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unpolarized target on the electron helicity violates parity conservation, which is 

characteristic of weak interactions. 

 

1.2.3 Surface physics 

Applications of polarized electron beams are not limited to studies of the 

dynamics of particle collisions. The electron with its intrinsic spin angular momentum S


 

has a magnetic moment associated with it which can interact with and be affected by the 

magnetization of surfaces. Information obtained from this interaction helps researchers to 

study the electron spin configurations of these surfaces [13]. Electrons possess other 

properties which make them suitable probes for such studies. For instance, the strong 

Coulomb interaction prevents electrons from embedding themselves deeply in a solid 

[14]. The resulting short mean free path and probing depths allow information to be 

readily obtained about surface-specific properties. Electron-based techniques are 

therefore ideal for investigating magnetic properties of surfaces and thin films. Such 

magnetic properties are important for data storage devices and future electronics such as 

spin valves, magnetic memories, spin injectors and magnetic sensors [15]. Among the 

spin-sensitive methods devised for these studies are spin-polarized photoemission 

spectroscopy [16], spin-polarized inverse photoemission spectroscopy (SPIPES) [17, 18], 

spin-polarized electron energy loss spectroscopy (SPEELS) [19], and spin-polarized low 

energy electron microscopy (SPLEEM) [20]. 

Transmission of spin-polarized free electrons through ferromagnetic structures 

offers another means of investigating the properties of thin foils [21, 22]. In these 
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experiments, the spin polarization eP


 of the incident electron beam is oriented either 

parallel or anti-parallel to the magnetization of the material. The energy distribution of 

the transmitted electron beam may exhibit different behaviors for the two polarizations of 

the incident beam as can be seen in figure 1.4. This information is important to 

understand how the transport of low energy electrons in metals depends on spin. 

 

 

Figure 1.4: Intensity spectra I+(E) and I-(E) of an Au/4 nm Co/Au trilayer as a function of the electron 
energy loss. Here, I+(E) refers to the energy loss distribution for an incident electron beam with its spin 
polarization 0P



 parallel to the magnetization M of the sample while I-(E) refers to the energy loss 
distribution for an incident electron beam with its spin polarization 0P



 anti-parallel to the magnetization M 
of the sample. The energy of the incident electrons is 6.9eV. (After Dey et al. [21].)      

 

Spin-polarized electron energy loss spectroscopy (SPEELS) is another valuable 

probe of surface physics [23]. With the help of an analyzer, the energy and momentum 

transfer of the scattered electrons to the sample are recorded to obtain information about 

its magnetization. Magnetization dynamics of surfaces is governed by spin waves. The 
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latter are disturbances that propagate in magnetic materials, thus affecting their ordering. 

Spin waves can be excited when spin-polarized electrons scatter from a magnetic material 

along its magnetization direction. The projectiles will lose energy in the process, and the 

energy difference equals the energy of the excited spin wave. Researchers can then use 

this information to determine the ordering in magnetic materials and their magnetization.  

 

1.3     Sources of polarized electrons 

Polarized electrons are produced from processes such as photoionization, 

photoemission, autoionization, secondary emission, impact ionization and diffraction [1]. 

The most successful sources based on some of these processes are reviewed in the 

following subsections. They are characterized by their beam current ,I  their degree of 

polarization ,P  the direction of polarization of the electrons, their emittance, which 

describes the electron beam quality (it is the product of the width of the beam and its 

transverse velocity spread), and their figure-of-merit FOM 2( ),P I=  which is inversely 

proportional to the statistical error obtained in an experiment with an electron beam of 

polarization P  and current I  [24]. 

 

1.3.1 Photoemission from gallium arsenide (GaAs) 

The GaAs photocathode source enjoys the widest application in polarized electron 

physics. It is the state-of-the-art in polarized electron sources, yielding high current and 

polarization, greater than 80% with strained GaAs layers [25]. The polarization of the 
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electron beam can be reversed optically, which is highly desirable for the elimination of 

instrumental uncertainties. Typically, a photocurrent of ~20μA can be produced with just 

1mW of incident light [24]. The quantum efficiency for such sources, defined as the 

number of electrons emitted per incident photon, for such sources is ~1%. The energy 

distribution of its electron beam is narrow. At 300 K, its full width at half-maximum of 

the energy distribution is about 0.15 eV [24]. It is thus ideal for experiments requiring 

“monochromatic” beams.  

Photoemission from the gallium arsenide crystal proceeds in three steps [26]. 

First, a photon is absorbed by the crystal. This process creates an electron-hole pair with 

the electron transitioning from the valence band maximum to the conduction band 

minimum. The electron then diffuses to the surface of the crystal, which has had its work 

function reduced by applying cesium and oxygen to produce negative electron affinity 

(NEA) conditions. Finally, the particle escapes into vacuum. 

By examining the band structure of GaAs near the center of the Brillouin zone (Γ  point) 

[24], one can understand why the photoelectrons are spin-polarized. The band structure 

and its corresponding states are illustrated in figure 1.5. If the electrons in the crystal are 

excited with circularly polarized ( )σ ±  light, jm∆  must be equal to +1 (for σ +  light) or -1 

(for σ −  light) according to the selection rules. Excitation from the fourfold degenerate 

3 2P  level by, say, σ −  light would yield three times more electrons in the 1 2j sm m= = +  

state than in the 1 2j sm m= = −  state of the 1 2S  level. Such a situation would result in 

photoelectrons with a maximum polarization of 50%. This number is actually closer to  
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Figure 1.5: The GaAs energy bands at the center of the Brillouin zone are shown on the left. Here, gE  

represents the band gap energy, and ∆  the spin-orbit splitting of the valence band. On the right, the 
allowed transitions between the 3

2
P  and 1

2
S  levels for σ −  circularly polarized light are depicted. The 

circled numbers denote the relative transition probabilities. (After Celotta et al. [24].)   

 

 

Figure 1.6: Effects of different surface treatments on the energy bands near the surface in p-type GaAs: (a) 
a high electron affinity clean GaAs crystal; (b) an approximately zero electron affinity GaAs crystal with a 
layer of Cs, and (c) a negative electron affinity GaAs crystal with Cs-O treatment. (After Pierce et al. [27].) 
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35% for bulk GaAs at room temperature due to depolarizing effects [24]  as the electrons 

diffuse to the surface and are emitted into the vacuum from the bulk. 

Unfortunately, the GaAs polarized electron source is difficult to operate [28, 29, 

30], especially with regard to the production of negative electron affinity (NEA) 

conditions at the surface. Ordinarily, electrons excited to the conduction band minimum 

would be approximately 3eV below the vacuum level and could not escape from the 

GaAs (please refer to figure 1.6). By treating the surface with cesium and oxygen 

successively in a process called activation, it is possible to lower the vacuum level at the 

surface below the energy of the conduction band minimum in the bulk to achieve the 

NEA condition. The electrons can thus escape into vacuum after excitation to the 

conduction band. These complex procedures generally present a steep learning curve to 

graduate students in university laboratories, who may spend many months learning how 

to prepare useable GaAs photocathodes. Unlike accelerators such as CEBAF and MAMI, 

university laboratories cannot afford teams of technicians to continuously maintain and 

run these sources. Furthermore, GaAs electron emitters require stringent vacuum 

systems. In pressures greater than 11~ 5 10−×  Torr, the bare GaAs is highly susceptible to 

contamination, and the activation process will generally fail [31]. This vacuum 

requirement proves challenging for experiments involving target gas loads, for example 

in the search for electron circular dichroism [6] or in the investigation of fluorescence 

polarization from spin-polarized electron impact on atoms and molecules [32]. In such an 

environment, the GaAs photocathode must be activated regularly; its quantum efficiency 

lifetime rarely exceeds 8 hours. Moreover, electron beam transmission and focusing 
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conditions become unstable. There exists a definite need for a user-friendly, turn-key 

source of polarized electrons. 

 

1.3.2 Photoionization of polarized atoms by unpolarized light 

Polarized electrons can also be generated by photoionizing a beam of polarized 

alkali atoms. A source relying on this principle was built by Alguard et al. [33], and was 

used at the Stanford Linear Accelerator. In such a source, an alkali atomic beam from an 

oven was polarized by passing it through a six-pole magnet. The polarized atomic beam 

then entered another region with a high magnetic field, which decoupled the electronic 

and nuclear spins of the atoms. This process minimized depolarization due to the 

hyperfine interaction. The atoms were then photoionized with unpolarized ultraviolet 

light to produce polarized photoelectrons.  

This scheme created pulsed electron beams with a repetition rate of ~180 Hz and 

~85% longitudinal polarization. However, the current, at 9~ 10  electrons/pulse, was low. 

Moreover, reversing the electron polarization was a relatively slow process because it 

involved switching the orientation of the magnetic field in the photoionization region. 

 

1.3.3 Photoionization of unpolarized atoms by circularly polarized light (Fano 

effect) 

In 1969, Fano determined that polarized electrons can be produced by ionizing an 

unpolarized atomic beam with circularly polarized light [34]. The Fano effect relies on 

the spin-orbit interaction of photoemitted electrons in the continuum of high Z alkalis 
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such as rubidium and cesium. An alkali atom has one valence electron, which can be in 

either the 1 2jm = +  or 1 2jm = −  of the 2
1 2n S  level. When the atom is ionized using 

σ +  circularly polarized light, the electron can transition to one of the following  

continuum states: 2
3 2 ( 3 2),jP m =  2

3 2 ( 1 2),jP m =  or 2
1 2 ( 1 2).jP m =  The relative 

intensities of these three possible transitions will fix the magnitude of the electron 

polarization .P  These transition probabilities depend solely on their radial ionization 

matrix elements 1 2,R R  and 3R  [4]: 

 
2

3 1 3 1 3 1
2 2

3 1 3 1

2( )(2 ) ( )
.

(2 ) 2( )
R R R R R R

P
R R R R
− + + −

=
+ + −

 (1.14) 

In the absence of the spin-orbit coupling, 1 3 ,R R=  and the electron polarization vanishes.  

 Electrons from Fano sources are longitudinally polarized. Their polarization can 

be reversed optically. The Fano mechanism has been employed to create both pulsed and 

continuous polarized electron beams. The maximum polarization produced by a pulsed 

source [35] was 90% with ~109 electrons/pulse and a repetition rate of 0.05 Hz. The 

continuous source [36] generated beams with 63% polarization. However, its electron 

current was on the order of nanoamperes. The electron energy distribution was ~3 eV, too 

large for many applications. 

 

1.3.4 Field emission from ferromagnetic europium sulfide (EuS) on tungsten 

In 1972, Mueller et al. [37] found that electrons with a polarization of 89% were 

produced by field emission from a tungsten tip coated with a thin film of ferromagnetic 
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europium sulfide. The EuS acts as a spin filter for electrons tunneling into its empty 

conduction band from the tungsten. The simplified band model in figure 1.7 can explain 

the observation of Mueller et al.. Below the Curie temperature, europium sulfide 

becomes a ferromagnetic insulator with its 4f states above the valence band. These states 

are totally polarized because the europium atom has 7 valence electrons, all with the 

same spin, localized in these states. The exchange interaction of the conduction electrons 

with those of the polarized 4f states causes a shift in the energy of particles with opposite 

spins in the conduction band. Electrons in the conduction band with spins parallel to 

those in the 4f state lie lower in energy than those with spin antiparallel. Consequently, 

the internal barrier iφ  experienced by electrons trying to tunnel from W into EuS will be 

spin-dependent; the ferromagnetic splitting of the EuS conduction band causes the barrier 

to be of different heights for the two spin states. Kisker et al. [38] have argued that the 

effect of the external barrier at the EuS-vacuum interface can be neglected when 

explaining why polarized electrons are emitted from ferromagnetic europium sulfide on 

tungsten in an applied electric field; only the internal barrier iφ  need to be considered. If 

an electric field E


 is applied near the surface of the emitter, it causes the EuS energy 

bands to decrease in energy with distance x  from the W surface. For a large enough ,E


 

the conduction band of the EuS can be lower than the Fermi level, corresponding to 

energy ,FE  of the W. Electrons of one spin can then tunnel from the tungsten through the 

barrier height iφ  to the lower conduction band before proceeding into the vacuum. 

Electron current of ~10-8 A has been produced with this technique. Owing to their 

small emitting areas (~100 nm), field emitters act essentially as point sources of polarized 
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Figure 1.7: Simplified band model for the W-EuS emitter. The internal barrier iφ  determines the emission 
current. It is different for spin-up and spin-down electrons due to the ferromagnetic splitting of the EuS 
conduction band. (After Celotta et al [24].) 

 

electrons, and are therefore very bright. The polarization is transverse to the electron 

beam axis. Reversing it is a complex process which involves raising the temperature of 

the field emitter above the Curie temperature and cooling it in an applied magnetic field 

of the appropriate direction. This source is also operated under stringent conditions: 

ultrahigh vacuum pressures of 1010−≤  Torr and temperatures of 10≤ K.  

 

1.3.5 Chemi-ionization of optically-oriented metastable helium 

This technique was devised at Rice University in the mid-1970s, and has been 

significantly upgraded since then [39, 40, 41]. In such a source, a microwave discharge 

first produces metastable helium atoms in the 3
12 S  state, which lies 19.8eV above the 
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1
01 S  ground state as shown in figure 1.8. These atoms are then optically pumped using 

circularly polarized 1.08 μm light from a neodymium-doped lanthanum magnesium 

hexaluminate (LNA) laser. Through repeated absorption and emission of photons, the 

helium atoms eventually populate the 1jm = +  or 1jm = −  magnetic sublevels of the 

3
12 S  state, depending on the helicity of the pump light used. The polarized helium atoms 

are finally chemi-ionized by collisions with carbon dioxide gas. In this reaction, spin 

angular momentum is conserved. It implies that optical orientation of the helium triplet 

metastables will lead to polarized free electrons. The resulting spin-polarized electrons 

are extracted and are formed into a beam electrostatically. 

Figure 1.9 illustrates the performance of the helium flowing afterglow source. 

Polarized electrons of ~90% at currents of 100 nA can be obtained with such a scheme. 

The polarization can be reversed optically. Moreover, the FWHM (full width at half 

maximum) of the polarized electrons energy spectrum is ~150 meV, which is comparable 

to that of GaAs sources.  This source is stable. It has the potential to compete with 

conventional GaAs sources because it does not require ultrahigh vacuum (operating 

pressure: ~0.05 to 1 Torr). Also, it does not involve complicated activation procedures. 

However, this source needs large, high speed mechanical pumps to handle the flow rate 

of helium gas, which may make it cumbersome. Attempts to use this source at the Orsay 

linac failed because of repeated laser and vacuum problems [42]. 
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Figure 1.8: Relevant energy levels of helium. The optical pumping cycle increases the population of the 
1jm = +  sublevel of the 23S1 state for right-circularly-polarized (RCP) light whereas for left-circularly- 

polarized light, the 1jm = −  sublevel is preferentially populated. For example, the red solid line shows 
atoms in the metastable 23S1 1jm = − state absorbing RCP light. The dashed lines denote their subsequent 
decay pathways. Repeated absorption and emission of photons transfer the population to the 23S1 1jm = +  
state. (After McCusker et al. [43].) 

 

 

Figure 1.9: Performance of the helium flowing afterglow source. (After Rutherford et al. [41].) 
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1.3.6 Spin-exchange collisions with oriented atoms 

Sources based on this principle can offer another viable alternative to the GaAs 

photocathodes. This thesis focuses on this method of polarizing electrons. Burke and 

Shey were the first to suggest that spin-exchange scattering of unpolarized electrons from 

oriented one-valence-electron atoms could produce beams of polarized electrons [44, 45]: 

 ( ) ( ) ( ) ( )e A e A↑ + ↓ → ↓ + ↑  (1.15) 

In such a scattering process, an electron with, say, spin-up, ( )e ↑ , collides with a spin-

down atom, ( )A ↓ , resulting in a spin-down electron and a spin-up atom.  

Using the principle of spin-exchange collisions, Farago et al. created a pulsed 

source of polarized electrons in 1966 [46, 47]. In their experimental setup, a beam of 

potassium atoms emerges from an oven, and is oriented by a six-pole magnet. Free 

electrons emitted by a thermionic cathode are injected and are trapped using a 

combination of electric and magnetic fields in a Penning trap. Besides confining the 

motion of the electrons in the radial direction, the magnetic field defines the quantization 

direction relative to which the polarization vector of the atomic beam is oriented. Thus, it 

also describes the direction of polarization of the output electrons. In the Penning trap, 

the electrons undergo direct and spin-exchange collisions with the alkali beam. At the end 

of the prescribed trapping time, the electrons are released, and they emerge longitudinally 

polarized. Polarizations of 45% with a pulse repetition rate of 50 times per second were 

obtained. However, less than 105 electrons could be generated per pulse. 
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After extensive theoretical calculations [48], R. J. Krisciokaitis-Krisst et al. 

designed and built a system with improved performance [49]. A two-element electron 

gun with an indirectly heated cathode provided the free unpolarized electrons. The 

particles were trapped, and underwent spin-exchange scattering with polarized atomic 

hydrogen. The atomic target was obtained by dissociating molecular hydrogen in a 

microwave cavity. The atomic hydrogen was then polarized by passage through an 

axially-tapered six-pole magnet. This source produced pulses of electrons with 60% 

polarization. The repetition rate was about 50Hz. Among the factors contributing to the 

increased electron polarization were the longer interaction length between the electrons 

and the target atoms (~30cm), and the higher degree of orientation of the hydrogen atoms 

(~70%). Each pulse also contained two orders of magnitude more electrons than the 

source of Farago et al. [46]. However, this electron current is still insignificant compared 

to that of the GaAs photocathode. 

In 1998, Batelaan et al. [29] finally achieved performances comparable to first-

generation GaAs photocathodes [50] with their electron spin filter. Their source was 

based on the spin-exchange collisions of free unpolarized electrons with rubidium atoms 

oriented using the technique of optical pumping [51]. Optically-pumped alkali atoms 

were polarized with resonant circularly polarized light. The polarization of the atoms and 

hence that of the electrons can be reversed by flipping the helicity of the light. In low 

magnetic fields, less than 0.3T for rubidium [52, 53, 54], a quenching gas must be added 

to the alkali vapor for it to be effectively polarized [55, 56]. The quenching gas causes the 

excited rubidium atoms to decay non-radiatively. Radiative decay would create photons 
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with random propagation directions that might be absorbed by the oriented atoms, thus 

leading to their depolarization. 

A schematic representation of the apparatus built by Batelaan et al. is shown in figure 

1.10. A rubidium ampoule was placed in a 2.75” Conflat nipple, and was heated to form 

an alkali vapor of the desired density (~1012 atoms/cm3). The free unpolarized electrons 

were produced by ionizing, with a cold-cathode discharge, the quenching gas (~1Torr) 

that filled the vacuum chamber. Under the influence of longitudinal electric and magnetic 

fields, the free electrons drifted through the gas mixture. The 600G magnetic field 

defined the quantization axis as well as constrained the radial diffusion of the electrons. 

While drifting, the electrons scattered multiple times, predominantly from the quenching 

gas. In addition to causing the electrons to lose energy (the electron-rubidium spin-

exchange cross section is largest for thermal electrons [57]), this process increased the 

path length of the electrons, and hence, their likelihood of making a spin-exchange 

collision with polarized rubidium atoms. This scheme eliminated the use of an electron 

trap, thus paving the way for a continuous source of polarized electron beams. The 

performance of the source developed by Batelaan et al. is shown in figure 1.11. Two 

different quenching gases were tried: nitrogen and helium. Electrons with 26% 

polarization and 2μA of current were generated. The FWHM of the energy spread was 

estimated to be 1eV. These numbers show that the optically-pumped electron spin filter 

has the potential to be a turn-key source of polarized electron beams, operating at 

reasonable pressures of 10-4-10-3 Torr. 
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Figure 1.10: Diagram of spin filter showing: (1) dc-discharge cold cathode; (2) discharge anode; (3) 
discharge high-voltage feedthrough; (4) electrically isolated field plate and exit aperture; (5) Rb ampoule; 
(6) optical pumping radiation. A magnetic field is applied to the entire apparatus. (After Batelaan et al. 
[29].) 

 

 

 

(a) (b) 
Figure 1.11: Performance of the optically pumped electron spin filter with two different buffer gases: (a) 
nitrogen at 0.4 Torr, and (b) helium at 2 Torr. The rubidium densities were 7x1011 atoms/cm3 and 3x1012  
atoms/cm3. (After Batelaan et al. [29].) 
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1.4     Motivation for current research 

This work builds on that of Batelaan et al. [29]. In their setup, Batelaan et al. were 

ionizing the nitrogen, or helium buffer gas, to produce the free, unpolarized electrons. 

These gases also served to quench and thus, to better orient the rubidium vapor. In 

essence, the two mechanisms were coupled. This feature made systematic studies to 

understand the factors affecting the generation of polarized electrons very difficult, if not 

impossible. For example, the spin-exchange cross section between electrons and 

rubidium atoms is largest for very slow particles (see figure 1.12). Batelaan et al. could 

not readily investigate how the energy of the incident electrons would influence their 

final polarization. An ideal system for such studies would therefore separate the 

production of free, unpolarized electrons from the optical pumping of the alkali vapor. 

Subsequent studies [30] based on the scheme developed by Batelaan et al. [29] 

also highlighted the inherent instability of the cold-cathode discharge. They made the  

need to identify a simpler mechanism to generate the free, unpolarized electrons more 

pressing. But above all, these same studies could produce electron beams with no more 

than 2% polarization. This thesis work was primarily aimed at ensuring that the scheme 

developed by Batelaan et al. [29] can generate polarized electrons reliably, and can thus 

be developed into a viable turnkey source in the future.  

Moreover, as discussed in the previous section, the buffer gas serves many key 

roles in the operation of the optically-pumped spin-exchange polarized electron system. It 

is important to find buffer gases which help the apparatus to yield high electron  
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Figure 1.12: Electron-rubidium spin-exchange cross-section as a function of incident electron energy. 
(Adapted from [57].) 

 

polarization as well as current. Batelaan et al. [29] tried nitrogen and helium as buffer 

gases.  In this work, we expanded the list to include hydrogen and ethylene. We observed 

how the system performed with nitrogen, helium, hydrogen and ethylene, all at 

approximately 200mTorr. We tried hydrogen as buffer gas because W. Happer, whose 

group at Princeton has worked extensively on the production of spin-polarized atomic 

hydrogen by spin-exchange optical pumping, suggested it [42]. Hrycyshyn et al. have, on 

the other hand, shown that ethylene is the most effective at orienting rubidium atoms 

compared to the other gases mentioned above [58]. We also wanted to investigate 

whether the pump laser’s wavelength, the electric field across the spin-exchange cell, and 

the energy of the incident electrons have any influence on the polarization of the electron 

beam. Knowing which factors affect the performance of the optically-pumped electron 
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spin filter will be critical to the realization of a viable, turnkey source of polarized 

electrons. 
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CHAPTER 2. Experimental setup 

 

2.1     Evolution of the experimental setup 

Initially, L. Neukirch and E. B. Norrgard were assigned to this project. A schematic 

diagram of the prototype they originally built is shown in figure 2.1. In their final design, 

the bends at the ends of the apparatus were eliminated, and an inline thermionic electron 

gun was installed, which supplied free, unpolarized electrons. The electron beam was 

guided along the apparatus with longitudinal magnetic fields produced by four 

electromagnets. It was collimated by a first differential-pumping aperture, upstream of 

the collision region. There, the electron beam would have encountered a mixture of 

rubidium and quenching gas. The alkali vapor would have been optically pumped by an 

off-axis laser beam. The circularly-polarized laser light would have been reflected off the 

downstream exit aperture and back into the collision chamber to give it two chances to 

pump the rubidium vapor. This aperture was electrically isolated from the rest of the 

chamber. It provided an electric field inside the interaction region. Thus, the electrons 

could drift through the gases and eventually exit the chamber. A hole was drilled through 

the ceramic base of the commercially-available filament of their electron gun to let the 

probe beam through. The hairpin-style thermionic filament wire, being 0.13mm in 

diameter, allowed the 2mm in diameter probe beam to pass through, and travel to the 

collision region where it interacted with the rubidium vapor. By monitoring changes in 
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Figure 2.1: L. Neukirch’s and E. B. Norrgard’s spin filter apparatus showing (1) incident electron beam, (2) 
probe laser, (3) differential pumping and beam-defining apertures, (4) pump beam, (5) solenoidal magnet, 
(6) differential pumping port, (7) spin-exchange chamber, (8) insulating break, (9) buffer gas inlet. 

 

the plane of polarization of the portion of the probe beam emerging from the vacuum 

system, one could determine the alkali vapor’s density and degree of orientation using the 

diamagnetic and paramagnetic Faraday effects [59, 60, 61]. These techniques to monitor 

the properties of the rubidium vapor target are described in detail in section 2.2.2 and 3.5. 

Initial tests of this system showed that it was flawed. Only small currents of 

electrons could be transported to the Faraday cup intermittently. The causes of this 

problem were never resolved. When the particles did make it through the apparatus, 

energies of at least 150eV were required. Even at these high energies, less than 1nA of 

current was registered on the Faraday cup when the nitrogen pressure in the collision 

region reached ~0.2 Torr. Ultimately, this system was abandoned, and a simpler design 

was sought. Dr. D. Tupa, for instance, suggested that the pump light should be counter-

propagating with the electron beam. Electrons have a better chance of being polarized 

using such an experimental setup for a couple of reasons. As the particles penetrate 

deeper into the collision cell, they will slow down as a result of losing energy through 
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multiple collisions with the buffer gas. They will thus experience larger electron-

rubidium spin-exchange collisions deeper inside the interaction region. With the 

proposed experimental geometry, the rubidium vapor is likely to have its highest degree 

of orientation at the downstream end where the pump light enters the collision cell and 

electrons exit the interaction region. Indeed, the pump light will be absorbed by the alkali 

atoms, and will be attenuated as it travels through the cell [62]. Thus this setup favors 

interaction between the most highly-polarized rubidium atoms, and those electrons which 

have slowed down the most and so have the greatest probability of undergoing spin-

exchange collisions.  

Dr. Tupa also recommended placing a 6” six-way Conflat chamber between the 

electron gun and the electron optical polarimeter. A smaller collision cell attached to a 

Conflat flange would be inserted from the top port of the six-way chamber. A reservoir 

loaded with rubidium would sit at the bottom of the collision cell. The entrance and exit 

apertures of the interaction volume would be collinear with the electron beam. It was 

suggested that a xyz-manipulator could facilitate alignment of the system. 

Further discussions with Mr. Les Marquart and Dr. P. D. Burrow yielded key ideas 

for the final design. They suggested simplifying the alignment procedure by building the 

electron gun immediately upstream of the interaction volume instead of having the 

former in a separate vacuum chamber. Dr. Burrow advocated using a collision cell 

similar to those used in electron swarm experiments [63]. Such a cell would be broken 

into many different electrodes with each biased at a slightly more positive potential than 
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the previous one. Such a feature, he argued, would provide a more uniform electric field 

inside the interaction region. These ideas gave the impetus for the current prototype.  

  

2.2     Overview of the apparatus 

The new source design used to acquire the data presented in this study is shown in 

figures 2.2 through 2.7. In the following sections, the main aspects of the apparatus will 

be described. More figures will be provided to supplement the discussion. It consists of 

five segments: the source, a differential pumping chamber, the optical electron  

polarimeter, and the probe and pump optics.  

I will start by discussing the optical layout. It should be noted that we are dealing 

with 795 nm pumping light, corresponding to the rubidium D1 transition. All mirrors 

(BB1-E03) and beam samplers (BSF10-B) in this study were bought from Thorlabs. They 

are 1” in diameter, and they are rated for wavelengths ranging from 750 nm to 1050 nm.   

 

2.2.1 Pump optics 

The pump optics allows us to polarize the alkali vapor parallel or antiparallel to 

the apparatus’s longitudinal magnetic field. For this purpose, I used a 60mW diode laser 

(Sacher Lasertechnik 795nm TEC-050 Cheetah series) fiber-coupled to a tapered 

amplifier (Sacher Lasertechnik 795nm TEC-400 Cheetah series). When the fiber-coupler 

is properly aligned, the laser system produces up to 1W of laser power. I would typically 

use about 850mW during experimental runs. The pump wavelength can be set at any 
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Figure 2.7: The collision cell/electron gun system under vacuum in the Conflat 6” six-way cross. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 2.8: Spectral profile of pump beam: (a) unbroadened, (b) broadened with a FWHM of 588 MHz, and 
(c) broadened with a FWHM of 1 GHz. 
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point along the rubidium D1 absorption line by changing the temperature on the laser 

controller. By applying white noise of different amplitudes ( noiseV ) from a function 

generator (Stanford Research Systems DS345) to the laser head, the Gaussian profile of 

the pump beam can also be broadened (see figure 2.8).  

As seen in figure 2.9, the pump beam is guided into the vacuum system using a 

pair of mirrors (M7 and M8). Before entering the first vacuum chamber, it passes through 

a linear polarizer and a quarter-wave plate to be circularly polarized. This combination of 

optical elements causes the laser power to drop to ~650 mW. The circularly polarized, 2 

mm pump beam passes through a mini-Conflat viewport, and travels along the axis of the 

vacuum system to the rubidium vapor in the collision cell. This viewport was obtained 

from one of the cabinets in the laboratory; its manufacturer is unknown. During this study 

it was found that the glass affects right- and left-circularly polarized 795nm light 

differently. The viewport reflects a portion of the pump light, which retraces its path to 

the laser housing and splashes next to its output aperture. Visual inspection of this 

reflected beam spot reveals that its intensity is different for right- and left-circularly 

polarized light. Moreover, if linearly-polarized pump light is sent through the vapor, the 

rubidium atoms are expected to align with the quantization axis instead of undergoing 

orientation as in the case with circularly polarized pump light. Both the rubidium and 

electron polarizations, RbP  and ,eP  would be zero under such circumstances. The 

opposite was actually observed. Linearly polarized pump light still yielded nonzero .eP  

As can be seen in figure 2.10, these effects cause the polarization of the electron beam 
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obtained with our source to have different magnitudes for the two circular polarizations 

of the pump beam. 

 

0 50 100 150 200

-5

0

5
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15
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e
 
(
%
)

Retarder angle (degrees)  

Figure 2.10: The viewport has adverse effects on the performance of the system, causing the electron 
polarization to have different magnitudes for the two circular polarizations of the pump light. Under the 
current experimental conditions, the pump light is polarized circularly by setting the retarder at 20o and 
110o. 

 

A flip mount holding a mirror (see figure 2.11) has been placed after the laser. 

When the bandwidth and wavelength are to be measured, the mirror is flipped up to 

sendthe pump beam to a spectrum analyzer (Coherent model 240) and to a wavemeter 

(Angstrom WS-6). The flip mount is retracted to let the beam through to the collision 

cell. 
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2.2.2 Probe optics 

The probe optics help us to monitor the rubidium vapor thickness, and when 

possible, its polarization. In the majority of experimental runs, I used the optical 

configuration in figure 2.9 to estimate the alkali density. The probe laser (New Focus 

Vortex 6000) outputs ~7mW of power. Its bandwidth is about 200kHz. Its wavelength 

can be modulated from 794.9122nm to 795.0995nm by applying a periodic sawtooth 

signal from a function generator (HP 3311A) to the laser controller. Absorption profiles 

related to the D1 transition of the rubidium vapor can be gathered in such a way.  

 

 

Figure 2.13: (a) Absorption profile of rubidium from a reference cell. (b) The positions of the hyperfine 
ground (g) to excited (e) level transitions of Rb; from left to right: 87Rb Fg = 2 → Fe = 1, 87Rb 2 → 2, 
85Rb 3 → 2, 85Rb 3 → 3, 85Rb 2 → 2, 85Rb 2 → 3, 87Rb 1 → 1, 87Rb 1 → 2. See figure 2.12 for 
additional details on the rubidium energy levels. (adapted from [64])   

 

The probe beam first interacts with a beam sampler (BS1) (see figure 2.9). The 

transmitted part of the beam is sent to the wavemeter. The reflected portion is directed 

into the collision cell by two mirrors (M1 and M2). Before going into the vacuum system, 
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the beam passes through a neutral density filter followed by a linear polarizer. This 

arrangement attenuates its power to ~20 μW. The probe intensity is kept low so that it 

does not affect the polarization of the vapor. Both the vacuum chamber and the collision 

cell have viewports on their sides through which the beam can enter and exit. After 

interacting with the rubidium vapor, the probe beam emerges from the vacuum system. 

Its intensity is recorded by a photodiode (Thorlabs DET 36A) whose signal is captured on 

an oscilloscope (Tektronix TDS 2014B). Figure 2.14 shows an example of an absorption 

profile recorded using such a setup.  

-8 -4 0 4 8 12

Detuning (GHz)  

Figure 2.14: Oscilloscope signal showing the D1 absorption profile of rubidium vapor in the collision cell. 
Detuning is with respect to the Rb D1 line center. The rubidium density was about 12(4 10 )×  atoms/cm3. 

 

When the probe beam is used to measure the rubidium density and polarization by 

the diamagnetic and paramagnetic Faraday effects [59, 60, 61], the optical components 

are configured as shown in figure 2.15. The beam is guided along the axis of the vacuum 

chambers, antiparallel to the pump beam, by a set of six mirrors. Along the way, it passes 

through an optical chopper (Thorlabs MC1000A) and a linear polarizer. It enters the 
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collision cell, interacts with the rubidium vapor, and emerges from the vacuum system. It 

then encounters a beam sampler. The reflected part of the beam is directed to a linear 

polarizer and a photodiode by a mirror. By using the combination of linear polarizer and 

photodiode, I can determine the angle of rotation of the plane of polarization of the probe 

beam after it has interacted with the rubidium vapor. To this end, the signals from the 

photodetector and the optical chopper are fed into a lock-in amplifier (Stanford Research 

Systems SR510). The output of the latter is read on an oscilloscope (Tektronix TDS 

2024B).  

 

2.2.3 Vacuum system 

Vacuum schematics of the apparatus are shown in figures 2.16, 2.17 and 2.18. The source 

chamber is a 6” Conflat six-way cross. Conflat viewports (zero profile 7056 glass, 

nominal flange diameter: 6”) are located on the sides of the chamber so that the probe 

laser can access the collision cell. An Edwards “Diffstack” diffusion pump (MK2 series, 

700 L/s pumping speed) is attached at the bottom of the six-way cross. Convectron and 

ion pressure gauges are fitted at the top. These elements are critical in monitoring the 

pressure inside the cross when buffer gas is admitted into the collision cell during 

experimental runs. In order to prevent excessive backstreaming of diffusion pump oil into 

the chamber, the chamber pressure must be maintained below 10-3Torr (and, preferably, 

below 10-4 Torr). A differentially pumped 2.75” Conflat six-way cross is attached to the 

final port. The two chambers are separated by a copper disk with a 5 mm aperture to 

allow the electron beam through.  
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Butterfly valve 

 

Oil diffusion pump 

 

Turbo-molecular pump 

 
Roughing pump 

 Ionization pressure gauge 

 Convectron pressure gauge 

 Shut-off valve 

 Variable leak valve 

 
Foreline trap 

Figure 2.16: Symbols used in the following two figures, which are vacuum schematics of the apparatus. 
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Besides an ion pressure gauge, the differentially-pumped chamber contains an electron 

collector on a Conflat rotary motion feedthrough (See figures 2.2, 2.4 and 2.19). The 

collector consists of a copper electrode, ~4 x 2 x 0.1 cm. The latter is electrically isolated 

from the rotary motion feedthrough, which is at ground. This isolation is achieved by 

fastening the copper electrode to a rectangular cuboid made of Macor, ~4 x 2 x 0.8 cm. 

The electrode is connected to a single-ended, grounded shield coaxial feedthrough on a 

2.75” Conflat flange at the bottom of the six-way cross. Thus, the copper electrode can be 

linked to an ammeter from the outside. It is used to monitor the electron beam current 

reaching the differentially-pumped chamber while the positions of the source’s 

electromagnets are being optimized for electron transport. Once alignment of the 

electromagnets is complete, the collector can be retracted to let the beam through to the 

optical electron polarimeter.  

The polarimeter is attached to the differentially-pumped chamber. It contains the 

elements to determine the polarization of the electron beams as well as the electron 

current. The vacuum in the differentially pumped chamber and the polarimeter is 

maintained by turmolecular pumps (Pfeiffer Vacuum HiPace 80). It must be noted that 

these pumps cannot handle a magnetic field greater than 50G. Since the field caused by 

the solenoidal guiding magnets in the vicinity of the apparatus exceeds this value, the 

pumps were positioned at least 40 cm away from the longitudinal axis of the vacuum 

system (See location of pumps in figures 2.3 and 2.4), in a region where they experienced 

a field of ~20 G. 
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Two Welch 1397 (pumping speed: 500 liters per minute) are used as backing 

pumps for the diffusion and turbomolecular pumps. The latter employ the same backing 

pump. The base pressure of the apparatus is ~5 x 10-7 Torr. When the collision cell is 

filled with 200 mTorr of gas, the pressure above the diffusion pump can be as high as 10-3 

Torr. 

 

2.2.4 Electromagnets 

Three main electromagnets provide an axial magnetic field along the apparatus 

(see figures 2.3 and 2.7). From here on, I will designate those before and after the source 

as 1 and 2, and the one after the differentially-pumped chamber as 3. They were built by 

Levi Neukirch and Eric Norrgard for the earlier prototype discussed above, and were 

adapted to the present setup. Owing to lack of proper documentation on their part, work 

had to be undertaken to determine the physical characteristics of these electromagnets, 

especially with regard to their dimensions and number of turns per unit length. To this 

end, the longitudinal magnetic field produced by each electromagnet due to different 

applied currents was recorded with a Hall probe placed on axis at a distance 1x from the 

coil (see figure 2.20 and Table 2.1). Figure 2.21 shows the results of this investigation. 

Using the slopes of the lines of best fit of these graphs as well as the equation describing 

the axial magnetic field B  of a finite, air-core solenoid [65], the number of turns per unit 

length, ,n  of the electromagnets could be determined:  
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Figure 2.20: Definition of the parameters 1,r  2 ,r 1x  and 2x  used in the text.  

 

Table 2.1: Physical properties of the electromagnets. (See figure 2.20 for more details.) 

Electromagnet r1  
(cm) 

r2  
(cm) 

x1  
(cm) 

x2  
(cm) 

n 
(turns/cm) 

1 11.0 15.3 0 6.5 45 

2 11.0 15.3 0 6.5 42 

3 11.0 15.3 10.0 16.5 52 

 

  

 ( )

2 2 2 2
2 2 2 2 1 2

2 12 2 2 2
2 1 1 2 1 1 1 1

ln ln .
2

o r x r r x rinB x x
r r r x r r x r
µ     + + + +    = −    − + + + +     

 (2.1) 

Here, oµ  is the permeability constant and i  the current supplied to the electromagnet. 

The other parameters in equation (2.1) are defined in figure 2.20. The physical 

characteristics obtained for the three electromagnets are tabulated in Table 2.1. Using 

these numbers, equation (2.1) and the superposition principle [66], we can determine how 

the axial magnetic field varies along the apparatus. For example, figure 2.22 shows how 
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Figure 2.21: Magnetic field strength recorded for different applied currents through (a) electromagnet 1, (b) 
electromagnet 2, and (c) electromagnet 3. The equations describing the lines of best fit are (a) 

(25.4 0.1) ,B I= ± ⋅  (b) (23.0 0.3) ,B I= ± ⋅ and (c) (11.4 0.1) .B I= ± ⋅   (See text for details.) 
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Figure 2.22: Variation of magnetic field strength along the apparatus. Electromagnet 1 refers to the one 
before the source. The blue and magenta arrows indicate the approximate positions of the collision cell and 
of the target cylinder in the optical electron polarimeter, respectively. 

 

the magnetic field changes as a function of distance from electromagnet 1 for a typical set 

of currents employed during experimental runs corresponding to 15A through 1 and 2, 

and 6A through 3. These are provided by a HP 62698 DC power supply, a Sorensen 

Nobatron DCR40-20A, and a Sorensen Nobatron DCR80-5A.  

The electromagnets need to be aligned to maximize the electron current reaching 

the Faraday cup. The positions of electromagnets 1 and 2 are adjusted first. They provide 

the longitudinal magnetic field guiding the free electrons along the axis of the source 

chamber and into the differentially-pumped region. Before tuning these electromagnets, 

the electron collector on the Conflat rotary motion feedthrough in the latter chamber is 

placed in the path of the electron beam, and the current reaching it is monitored. The 

ammeter is likely to read zero with the magnets misaligned. The supports holding the 
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electromagnets are on rails, which allow the former to slide along the axis of the 

apparatus up until they run into a vacuum chamber. The positions of electromagnets 1 

and 2 can thus be adjusted by shifting them backward and forward while watching for 

electrons to make it to the collector, and the ammeter reading is non-zero. The supports 

have also been designed to let the electromagnets to be lifted slightly, perpendicular to 

the axis of the apparatus. The final step in alignment involves raising the electromagnets 

slowly to see if this increases the current reaching the electron collector. Once this is 

accomplished, the electron collector is retracted, and the current on the Faraday cup is 

monitored next. The position of electromagnet 3 is now fine-tuned to get the most 

electrons onto the Faraday cup. Finally, slight adjustments are made to electromagnets 1 

and 2 to see whether they increase the Faraday cup current further. If this step only 

affects the electron beam adversely, the magnets are brought back to their optimal 

position. The magnetic field along the system is now properly aligned.       

 

2.2.5 Source 

The electron gun and the collision cell for the prototype of the polarized electron 

source are built as one unit. I will first focus on the collision cell (see figure 2.23). It is 

made of oxygen- free copper. Its dimensions are ~2 x 1.1 x 1.26”. Along the path of the 

probe laser, as shown in figure 2.23, it is 2” long, and it has a hole ~0.73” in diameter 

drilled transversely through it. Uncoated sapphire windows, 1” in diameter, are located 

on either side (see figures 2.6, 2.24 and 2.28). They allow the probe beam to enter and 

exit the collision cell from the side. The windows are pressed against silicone O-rings 
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(Mcmaster-Carr AS568A Dash number 019). This arrangement is held in place by a 

square copper support bracket with 1.1” sides. It has a ~0.72” hole drilled through the 

middle to expose the sapphire window but also four holes, ~0.2” in diameter, in its 

corners. The support can thus be bolted to the collision cell.  

Along the path of the electrons (see figure 2.23), the collision cell is 1.1” long, 

and it has a hole, ~0.8” in diameter, drilled through it. There are two tubular extensions 

from the copper rectangular cuboid. One of these allows the collision cell to be filled with 

buffer gases of interest during experimental runs. The other is connected to a Convectron 

pressure gauge that monitors the pressure inside the collision cell. At a temperature of 

(25 5) C,o±  pressure readings have an uncertainty of 3%±  [67].   

A Conflat nipple (nominal flange O.D 1.33”) is attached at the bottom of the 

collision cell by a 6mm ID aluminum tube. The former acts as the rubidium reservoir. A 

broken 1g alkali ampoule (Strem Chemicals, 1g, 99+% purity, pre-scored ampoule, 

product number: 93-3736) is stored in it during experimental runs. The collision cell and 

the reservoir are heated by a total of six cartridge heaters (Mcmaster-Carr, OD: 0.125”, 

length: 1.25”, 50W, 0.42A, product number: 8376T22). The heaters fit snugly into holes 

drilled through the collision cell and in the flanges sealing the Conflat nipple (see figure 

2.24). The tight fit allows heat to be dissipated rapidly to the surroundings. The rubidium 

reservoir and the collision cell contain two and four heaters respectively. The unit is also 

fitted with two type-K thermocouples (Accu-Glass, product number: 100850). The 

locations of the thermocouples are also shown in figure 2.24. The temperature of the 

collision cell and of the reservoir can thus be monitored during experimental runs. 
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(a) (b) 
 

Figure 2.26: The clamping electrode (a) used to fasten the stacks of electrodes to the collision cell chamber, 
as shown in figure 2.23. Vespel sleeves such as the one in (b) are inserted in the openings at A, B and C. 
This arrangement allows the clamping electrode to be electrically isolated from the collision cell as 
discussed in the text. 
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The electron gun is built into the upstream end of the collision cell. Both ends of 

the latter contain stacks of electrodes to transport electrons to and from the interaction 

region. The upstream electron injection stack comprises five electrodes, including the 

filament, while the downstream electron extraction stack holds six electrodes, including a 

pair of deflectors. Both stacks are electrically isolated from the collision cell by Kapton 

polyimide rings (thickness: 0.005”, OD: 0.970”, ID: 0.912”). A Kapton ring is laid on the 

face of the collision cell (see figure 2.25). An electrode is then placed on top of it. The 

electrode is made of molybdenum. It is 1” in diameter. It has six holes equally spaced 

around its edge. The holes are ~0.03” wide, and they are diametrically opposite to each 

other on a ~0.8” diameter. A sapphire ball, 0.0625” in diameter, is placed in each hole. 

Using this technique, electrodes can be stacked on top of each other, separated by the 

insulating balls. The last electrode to be stacked, called the clamping electrode (see figure 

2.24 and 2.26), is a molybdenum ring (OD: 1.4”, ID: 0.6”). Besides the six regular holes 

which fit on the sapphire balls, this clamping electrode has three extra outermost ones. 

Screws (2-56 thread) are inserted through them. The collision cell has three 

corresponding tapped holes. By tightening these screws, the clamping electrode presses 

the whole stack against the collision cell, thus holding it in place. The clamping 

electrodes would be at the same potential as the collision cell if it was not for Vespel 

sleeves (See figure 2.26b) inserted in their outermost apertures. These sleeves prevent the 

screws from being in electrical contact with the clamping electrode. Hence, the clamping 

electrodes can be biased at potentials independent of that of the collision cell. Apart from 

the electrode at the entrance of the collision cell, which has a 1mm aperture, all other 
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electrodes responsible for the forward transport of electrons have 2mm holes drilled on 

their centers. In this prototype, the free, unpolarized electrons are produced by thermionic 

emission from a pure tungsten filament (thickness: 0.01mm, width: 0.9mm). The filament 

is spot-welded to the legs of the electrode pictured in figures 2.24, 2.27 and 2.29.  

The unit hangs from an aluminum support attached to a 6” Conflat flange (see 

figure 2.6). The prototype is held on the support by two bolts which are electrically 

insulated from the latter by ceramic inserts and washers. This arrangement prevents the 

collision cell from being in electrical contact with the handle, and from being grounded. 

In summary, the prototype has been designed to allow each electrode to be biased at a 

potential independent of the rest of the chamber. 

 

 

Figure 2.29: Schematic of the collision cell/electron gun electrode system. The filament n is spot-welded to 
the legs of electrodes b and c. The electron-injection stack consists of an additional four electrodes: a, d, e, f 
and c. The electron-extraction stack contains six electrodes: h, i, j, k, l and m. 

 

The Conflat flange holding the prototype has three multipin electrical feedthroughs 

(see figure 2.6). The electron injection electrodes are connected to one feedthrough, the 
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electron extraction ones to another, and the cartridge heaters as well as the thermocouples 

to the last one. The connections from the electrodes to the feedthroughs are made with 

Kapton insulated wire (Accu-Glass, 22 AWG, product number: 100680). The 

thermocouple leads are attached to a pair of multimeters capable of gathering temperature 

readings. The potentials to the electrodes and to the reservoir’s heaters are provided by 

Agilent E3612A power supplies. The collision cell’s heaters are connected in parallel. 

They are powered by a DC regulated supply from Circuit Specialists (CS112001X). 

 

2.2.6 Electron optical polarimeter 

The electron polarimeter is shown in figures 2.30, 2.31 and 2.32. Unlike the rest 

of the vacuum system, the main polarimeter chamber is constructed of aluminum. If stray 

electrons strike the nonconductive oxide on an unprepared aluminum surface, they will 

charge the walls [68]. To prevent this effect, the inside of this chamber was coated with a 

thin, uniform layer of aqueous colloidal graphite (Aerodag). The polarimeter main 

chamber contains eight Conflat ports. The electron beam enters the chamber through the 

opening at A. The electron collector is located at the opposite end E. The latter consists of 

the halves of a longitudinally split, hollow cylindrical electrode. The halves are biased 

with potentials to deflect and collect the primary electron beam. The pump laser enters 

the system through the anterior viewport of the electron collector, counter propagating 

with the electron beam. A Convectron pressure gauge is mounted on one of the ports.  A 

60 L/s turbomolecular pump (Pfeiffer Vacuum HiPace 80), attached at the bottom of the 
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chamber, maintains the vacuum at a base pressure of 10-7Torr, which rises to 10-3Torr 

when gas is introduced.  

The helium injection assembly is fitted to the top of the polarimeter chamber. 

Target gas flows through a feedthrough, with an outer diameter of 0.25″, welded on a 

2.75″ Conflat flange before passing into a copper capillary with 0.125″ outer and 0.061″ 

inner diameters. The end of the capillary is approximately 5 mm above the electron beam. 

Trantham et al. [69] have shown that the fluorescence intensity is close to a maximum at 

this height while Fischer et al. [70] have demonstrated that the Stokes parameters are 

independent of height above this value. A stainless steel cylinder of outer diameter 

25.5mm and wall thickness 1mm encloses the helium injection assembly. The former is 

electrically isolated from the rest of the chamber. It is used as an electrode to define the 

nominal electrical potential of the collision volume, and also serves to direct the effusive 

flow of gas from the target capillary into the turbo pump. 

The metallic inner energy-defining cylinder has two collinear apertures (see figure 

2.30), each 6mm in diameter, through which the electron beam enters and exits the 

collision region. Photons emitted from the excited helium pass through a 40mm focal-

length collection lens, and travel to the optical train via an opening at 36.5o from the 

electron beam axis. For maximum efficiency in measuring longitudinal polarization, the 

axis of the optical polarimeter should make the smallest possible angle with the electron 

beam axis. However, room was left for the chamber housing the Faraday cup, and more 

importantly, for the window through which the laser used in the rubidium optical 
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pumping process enters the apparatus. Therefore, the minimum possible angle between 

the optical polarimeter axis and the electron beam direction was 36.5o.  

For a given Pe, the relative Stokes parameters P1 and P3 are functions of electron 

energy. Therefore, to obtain Pe accurately, the energy spread of the beam, and hence, the 

electric potential must vary minimally in the region yielding detectable fluorescence from 

the excitation of the target gas by the electrons. To provide an electric potential as 

uniform as possible in this region, the capillary should be at the same voltage as the 

stainless steel cylinder. Therefore, it cannot be welded to the feedthrough, which is 

grounded. It is instead fitted through a cylindrical Delrin® retainer which is surrounded 

by a copper mounting sleeve. The sleeve is in electrical contact with the outer metallic 

cylinder as well as with the copper capillary. For the optically-pumped electron spin-filter  

experiments, a -6V potential is applied to the cylinder when the relative Stokes 

parameters are measured at electron energies corresponding to the peak of the helium 23S 

→ 33P optical excitation function. The outer vacuum chamber is held at ground. While 

the electric potential may vary spatially in the collision volume due to contact potential 

differences between the cylinder and the capillary, a SIMION® simulation, shown in 

figure 2.33, revealed that the electric potential changes by less than 0.3% within this 

region. Here, we assumed a contact potential of -0.5V for the capillary relative to the 

inner cylinder, corresponding to a typical voltage observed between two different metals 

which are in contact in electron optics systems.  
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Figure 2.30: Vertical cut-away view of the electron polarimeter. The incident electrons enter the chamber 
through A traveling from left-to-right, guided by a longitudinal 10 mT magnetic field. Shown also are the 
target-gas-feed copper capillary B, its mounting sleeve C, the optical polarimeter D, the chamber housing 
the electron collector and viewport E, the main vacuum chamber F, the fluorescence collection lens G, and 
the stainless steel inner energy-defining cylinder H.  

 

 

Figure 2.31: Horizontal cross-sectional view of the optical polarimeter. Letter designations for the collision 
chamber are the same as those in Fig. 2. Shown also are the hollow gear in which the retarder is mounted I, 
the linear polarizer J, the interference filter K, the focusing lens L and the photon counting module M. The 
rod N has step-down gears at either end and connects the retarder to a stepper motor. 
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Figure 2.33: SIMION 8.0 simulation of the contour lines inside the stainless steel inner energy-defining 
cylinder. A horizontal slice through the center is shown. The potential varies by less than 0.3% along the 
path of the electron beam in the region where the helium atoms are excited. Here, the focal point of the 
fluorescence collection lens is indicated (●) while the region within the dashed circle represents the 
“sensitive volume” [71] of the optical polarimeter. A contact potential offset of -0.5V for the capillary 
needle (which ends 5mm, in scale, above the plane of this diagram) is assumed in this simulation.  

 

The optical polarimeter, shown in detail in figure 2.31, uses a rotating retarder and 

a fixed linear polarizer downstream to determine the relative Stokes parameters P1, P2 

and P3. Measurements of Pe are therefore unaffected by polarization sensitivity of the 

photon detector because it observes a single polarization of light. The optical train 

comprises a collimating lens, the retarder, linear polarizer, an interference filter, a 

focusing lens, and a photon counting module. The retarder and linear polarizer are cut 

from plastic sheets (International Polarizer Inc. No. IP104WR-P and Rolyn No. 65.5305 

respectively) commonly available in student laboratories. The retarder is mounted in a 

gear with a circular hole cut in its center for the transmission of light along its axis. The 

latter is connected to a stepper motor via a rod with step-down gears at either end. The 
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stepper motor can thus rotate the retarder in increments of 7.5o. The photodetector is a 

Hamamatsu photon counting head (H6180-01), which includes a bialkali photomultiplier 

tube, a high-voltage DC/DC power supply, and a high-speed photon counting circuit 

integrated into a compact unit.  

Labview® 7.0 software fully automates operation of the polarimeter controlling 

the rotation of the stepper motor, the application of voltages to the inner cylinder, and the 

acquisition of data related to photon count rate, Faraday cup current and pressure in the 

chamber. The software was installed on a personal computer outfitted with a National 

Instruments (NI) PCI-6024E hardware card, a NI PCI-GPIB hardware card, parallel 

printer ports, and USB ports. The PCI-6024E card contains two counters. While one 

counts pulses, the other determines the actual time interval during the counting process. 

The Faraday cup current was read with a Keithley 6485 GPIB picoammeter. 
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CHAPTER 3. Operation 

 

The different components comprising the system were described in the previous 

chapter. Here, we explain how they are operated, especially with regard to the transport 

of electrons along the apparatus, working with rubidium and its vapor, and measuring the 

polarization of the beam. We begin this discussion with the electron gun, which is 

responsible for producing free, unpolarized electron beams.  

 

3.1     Electron gun 

Table 3.1: Typical potentials applied to the different electrodes during operation of the 
system. Electrodes are biased with respect to the elements denoted in the third column. 

Electrode Approximate 
potential (V) 

Biased with 
respect to 

g 28.5 f 
h 41.1 f 
i -35 ground 
j -33 ground 
k -30 ground 
l 40 k 

m 0 ground 
n 9 ground 
o 0 ground 
p 0 ground 
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Figure 3.1 shows a circuit diagram of how the different electrodes of the source 

are electrically biased. The potentials listed in Table 3.1 are typically applied to the 

electrodes during experimental runs. The tungsten filament “f” is biased using the power 

supply “a.” The electron-injection-clamping electrode “e” is at the same potential as that 

of “a,” referred to as the filament bias from now on. The optimal bias for deflector “n” to 

maximize current recorded on the Faraday cup changes every time the source is taken 

apart and re-assembled. During operation, the current through the filament is set with the 

help of power supply “d” (HP 6286A). With no gas in the collision cell, the following 

emission currents emissionI  are typically obtained as the current filaI  passing through the 

tungsten filament is varied: 

 

Table 3.2. Typical filament emission current with no gas in the collision cell. 

( )filaI A   ( )emissionI Aµ  
2.5 1 
3.0 16 
3.5 55 

 

 

We are effectively changing the temperature at which the filament is operating by 

varying filaI  [72], which according to Richardson’s law [73], affects the number of 

electrons emitted thermionically:  

 2 e ,
W
kTJ AT

−
=  

(3.1) 
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where J  represents the density of emitted current, A the Richardson constant, W the 

work function of the metal, and T its temperature. When buffer gas is introduced into the 

collision cell and exits through the apertures at the ends, it comes into contact with the 

hot tungsten filament, cooling it in the process. This decreases the emission current. For 

instance, while 2.5filaI = A generates an emission current of 1μA with no gas in the 

collision cell, only 0.2μA is observed with ~200mTorr of nitrogen in the system. More 

current has to be supplied to the tungsten filament to obtain similar emission currents as 

those with an empty collision cell. I usually apply ~4.5A when the gas load is 200mTorr 

in the collision cell, which causes the ammeter reading the emission current from the 

filament to register about 300μA. This value also depends on which buffer gas is used in 

the collision cell. For example, with ethylene, the emission current can jump as high as 

3mA, a phenomenon observed by Dr. P. D. Burrow during electron transmission 

spectroscopy experiments [74]. The ethylene molecules decompose on contact with the 

hot filament, coating the latter with carbon. Baker et al. [75] have observed that such a 

process can lower the work function of pure tungsten, thus leading to increased electron 

emission. 

The present design of the source is not devoid of problems. First, the rubidium 

vapor tends to cool down on the inner surface of the collision cell fairly quickly. 

Eventually, the latter, especially the windows, are coated with a thick layer of alkali 

metal (see figure 3.2). The rubidium deposit also causes the entrance, exit and copper 

electrodes to conduct electrically, thus, affecting electron transport (see figure 3.3). The 

proximity of the reservoir, the collision cell and the tungsten filament proves problematic. 
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(a) (b) 

Figure 3.2: (a) Front and (b) back view of one of the windows on the collision cell. The alkali vapor cools 
down on and coats these components with rubidium and its oxide (white residue) fairly quickly, affecting 
passage of the probe beam in the process. (See text for more details.)  

 

 

Figure 3.3: During operation of the source, rubidium and its oxide accumulate on and around the exit 
electrode (green arrow), eventually causing it to short out with the collision cell.   

 

Currently, the heat from the collision cell dissipates rapidly to the reservoir so that the 

two are at almost the same temperature. The collision cell should actually be much hotter 
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than the reservoir (by at least 40oC according to Dr. P. D. Burrow who has worked 

extensively with alkali vapors under vacuum conditions) to prevent the rubidium vapor 

from cooling down in the former. Attaching more heaters to the cell does not improve the 

situation; it simply causes more heat to dissipate to the reservoir. I have had limited 

success in getting the cell hotter than the reservoir by attaching a heat-sink at the junction 

connecting the two components. The heat-sink consists of an approximately 40cm long 

Kapton-insulated wire (the same kind used to connect the electrodes to the electrical 

feedthroughs; see chapter 2) which has been wrapped around the junction of the reservoir 

and the collision cell. The ends of the wire have been tied to the wall of the 6” Conflat 

flange supporting the source. This helps to dissipate heat from the cell to the latter, thus 

keeping the reservoir cooler than the collision cell by ~15oC. Alternatively, the system 

could be modified by placing the reservoir further from both the collision cell and the 

tungsten filament. Such a setup combined with a heat-sink would mitigate the effects of 

thermal conduction and radiation to the reservoir. This would allow us to heat the 

collision cell to even higher temperatures without affecting the reservoir, and would 

prevent rubidium vapor from cooling down on the walls of the former.    

Moreover, the hot tungsten filament radiates enough heat to warm the collision 

cell. Rubidium which has coated the cell from previous use is vaporized whenever the 

filament is turned on. Additionally, since the electron-injection and electron-extraction 

optics stacks possess no direct source of heat, rubidium exiting the collision cell builds up 

on them. Over time, the sapphire balls become conductive, and the whole unit shorts out. 

If the rubidium density is kept below 1012 atoms/cm3, the system can run for a month 
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with minimal wear and tear. With densities close to 1014 atoms/cm3 and above, several 

electrodes will short out among each other after a single use. The electrodes will 

experience increased leakage currents after each run with densities of ~1013 atoms/cm3. 

One can run for a couple of weeks at such densities before the system has to be cleaned. 

Another problem along the same line concerns the tungsten filament. With the 

latter operating at such high temperature, sublimated tungsten will deposit on neighboring 

sapphire balls. The filament will eventually short out with its neighboring electrodes 

(parts “e” and “g” in figure 3.1). The procedure to clean deposits from these balls 

(described in the following section) is very complex, involving the use of corrosive 

chemicals such as hydrofluoric acid and nitric acid [76]. It is best to discard the sapphire 

balls every time the system is cleaned, and replace them with new ones. 

 

3.2     Cleaning the source  

Here, I describe the key steps in cleaning the apparatus. The system is first 

brought to atmospheric pressure. The 6” flange supporting the gun system is then 

unbolted from the vacuum chamber and attached to a support stand. The assembly 

consisting of the collision cell, the electrodes and the reservoir are typically coated with 

rubidium. In order to minimize the risk of ignition of the alkali metal during the cleaning 

process, I leave the gun assembly open to air overnight. Most of the rubidium will have 

turned into oxide the following morning. The Kapton-insulated wires, which provide 

electrical contact to the feedthroughs attached to the 6” flange, are disconnected from the 

electrodes. The assembly consisting of the collision cell, the electrodes and the reservoir, 
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all of which form a single unit, is detached from the aluminum handle (see figure 2.6) it 

is fastened to. It is taken to the fume hood where it is disassembled. Each part is carefully 

sprayed with methanol until all residual rubidium has reacted. The different components, 

except for the windows and clamping electrodes (described in section 2.2.5), are 

immersed in a beaker of methanol and are sonicated. Windows are cleaned by hand to 

avoid scratching them. The clamping electrodes are subjected to the same treatment to 

prevent the Vespel sleeves (see figure 2.25) embedded in them from reacting with the 

methanol. Sapphire balls can be cleaned [76] by immersing them in a solution composed 

of equal parts hydrofluoric acid and nitric acid (12 molar in concentration). After 

standing for approximately 2 hours, they are carefully retrieved from the solution, and are 

thoroughly rinsed with distilled water. 

The parts are then dried. The electrodes and the collision cell will be coated with an 

insulating layer. The molybdenum metal making up the electrodes will contain patches of 

a white and light brown residue. The deposit inside the collision cell, on the other hand, 

will consist of a white powder and a black liquid of some sort. The nature of this residue 

is unknown, but its removal is vital for effective electron transport, otherwise electrons 

striking it will charge up the walls and affect the beam. Removal of the residue is 

achieved by sanding down the electrodes and the collision cell with fine sandpaper (grit: 

320). In the process, care must be taken not to damage the Vespel sleeves. Once the non-

conducting residue has been removed, the electrodes, with the exception of the clamping 

ones, and the collision cell are sonicated in methanol again. The parts are then dried. The 
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inside of the collision cell is coated with a thin, uniform layer of aqueous colloidal 

graphite (Aerodag®). The source is now ready to be assembled. 

After the stacks of electrodes have been clamped to the collision cell, the tungsten 

filament is spot-welded in position. For me, this is the most frustrating step. It can take a 

whole day to align the filament with the apertures in the electrodes. Moreover, if the tip 

of the filament is placed too close to the next electrode (electrode “g” in figure 3.1), it 

will come in electrical contact with the latter when the hot filament expands or droops. 

The tip of the filament should be positioned at least 1mm away from electrode “g”. The 

current setup could be modified to accommodate commercially-available electron 

emitters on ceramic bases. They would be easier to replace. However, given the large 

gauge of wire they use, I doubt they can last as long as the present filament, particularly 

at the pressures we are operating, or even match the high electron current produced by the 

latter. For instance, tungsten filaments typically employed in electron guns in our lab and 

bought from Kimball Physics are rated to have a maximum emission current of 50μA; we 

need 300μA or more.   

The unit is now bolted to its support on the 6” Conflat flange. The Viton tubing 

connecting the collision cell to the gas line and to the pressure gauge is replaced. 

Rubidium tends to diffuse and accumulate on the inner walls of the tubing. This process 

eventually results in the collision cell shorting to ground via the now conductive Viton 

tubing. The Kapton-insulated wires from the electrical feedthroughs are connected to the 

electrodes. The heaters as well as the thermocouples are mounted on the unit, and the 

system is finally ready to be loaded with a rubidium ampoule. 
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3.3     Loading the rubidium  

Once it is under vacuum, the system does not have the capability to be loaded with 

rubidium nor is it configured to allow us to break a sealed alkali ampoule placed in its 

reservoir. Therefore, the rubidium ampoule has to be loaded in the reservoir before it is 

positioned inside the vacuum chamber. If the ampoule is broken in air, a layer of 

rubidium oxide will form on the metal’s surface. It will take temperatures greater than 

200oC to break it down before the rubidium can be released in vapor form [77]. Several 

times when we needed to resort to such high temperatures to break the oxide crust, the 

rubidium was released rapidly and violently, coating much of the gun system and on one 

spectacular occasion, producing a Rb fire in the vacuum system! The Kapton polyimide 

rings (described in section 2.2.5) insulating the entrance and exit electrodes from the 

collision cell do not withstand such high temperatures for very long. The heat seems to 

cause the rings to become thinner. Consequently, the entrance and exit electrodes (parts 

labeled “i” and “k” in figure 3.1) eventually short out to the collision cell. Therefore, the 

ampoule is broken under liquid hexane, which prevents the rubidium from reacting with 

oxygen. In the following paragraphs, I describe this procedure. 

The base holding the Conflat flange with the collision cell and electron gun 

assembly is tipped so that the axis of the reservoir is now at an angle of ~45o to the 

horizontal (see figure 3.5). It is filled with liquid hexane (C6H14). Care must be taken to 

prevent the fluid from spilling over into the collision cell. Otherwise the Aerodag® 

coating may wash onto the entrance and exit electrodes, and may short out the various  
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Figure 3.4: Pre-scored rubidium ampoule used in the system. 

 

 

Figure 3.5: Shown in this cross-sectional view of the reservoir is the level to which the chamber is filled 
with liquid hexane before a new rubidium ampoule is loaded inside. (See text for more details)  

 

elements. A beaker is next filled with liquid hexane. The pre-scored rubidium ampoule is 

immersed in the beaker and broken. To do this, I usually immerse my gloved hands into 

the beaker, grab the ampoule, snap it, and let the parts sink back to the bottom. I then lift 

the ampoule out of the beaker with tweezers. The empty portion of the rubidium ampoule 
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should be filled with liquid hexane as it is taken out of the beaker (see figure 3.5). I 

advise against dropping the ampoule at this stage; it will catch on fire. Finally, the 

ampoule is inserted into the reservoir. The latter is again filled with liquid hexane. The 

mini-Conflat blank at the downstream end of the reservoir (see for example figure 2.28) 

is now attached and sealed using an oxygen-free, high-conductivity (OFHC) copper 

gasket. The cartridge heater is positioned back on the sealing blank. The 6” Conflat 

flange supporting the electron gun assembly is now ready to be introduced into the 

vacuum chamber. As the liquid hexane evaporates quickly, the source chamber should be 

pumped down to roughvacuum (~10 mTorr) as soon as possible. Any leftover liquid 

hexane should be poured back into its container, and should be stored in the chemical 

cabinet. This substance is toxic [78]. Long-term exposure will damage the nervous 

system. Short exposures cause minor headaches. 

 

3.4     Buffer gas pumping issues 

Unlike the apparatus described in Batelaan et al. [29], our system cannot handle 

more than 200mTorr of quenching gas in the collision cell. If this value is exceeded, the 

pressure above the 700Ls-1 diffusion pump reaches the critical 1mTorr regime, which 

results in significant backstreaming of diffusion pump oil into the six-way cross housing 

the collision cell [79]. Part of the problem lies at the junction connecting the vacuum 

chamber with the diffusion pump. The latter has a ~10” OD and ~6.3” ID while the 

former has a 6” OD and a 3.8” ID. To bridge this gap, a 10” OD to 8” OD straight tube 

nipple reducer was installed on the diffusion pump. This arrangement was followed by an 
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8” OD and 4” ID zero length reducer and finally, the six-way cross was attached on top. 

This scheme reduces the pumping speed of the diffusion pump in the vacuum chamber to 

~500Ls-1. Gas emanates from two apertures in the collision cell, 1mm (upstream) and 

2mm (downstream) in diameter. Calculations show that such a system can handle 

~200mTorr of buffer gas in the collision cell before the pressure above the diffusion 

pump surpasses 1mTorr, in agreement with our observations. These estimates were 

obtained with the help of reference [80].      

 

3.5     Measuring rubidium density and polarization 

Before any density and polarization measurements can be performed, rubidium 

vapor has to be introduced into the collision cell. The heaters are therefore switched on, 

and the collision cell is heated slowly. During this process, the probe beam, whose 

wavelength is being modulated from ~794.960nm to ~795.010nm, is made to go 

transversely through the collision cell. The arrangement described in figure 2.9 is used to 

monitor the intensity of the light. When alkali vapor eventually starts to fill the collision 

cell, an absorption profile corresponding to the rubidium D1 transitions, such as the one 

shown in figure 2.14, will be observed on the oscilloscope screen. If no absorption profile 

is recorded by the time the temperature of the collision cell reaches ~110oC, the reservoir 

heaters are turned on. The reservoir is heated slowly until rubidium vapor starts to build 

up in the collision cell. The latter’s temperature is adjusted constantly to try to keep it 

hotter than the former by at least a couple of degrees. A rubidium D1 absorption profile 

can usually be observed when the temperature of the reservoir reaches about 75oC.    
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Figure 3.6: Propagation through a birefringent vapor causes rotation of the plane of polarization of linearly 
polarized light by an angle proportional to θ. (See text for details.) (Adapted from [81].) 

 

Once the rubidium vapor has built up in the collision cell and the absorption profile 

has stabilized, implying that the vapor thickness is not changing anymore, the density of 

the rubidium vapor RbN  and its polarization RbP  are usually inferred from the Faraday  

diamagnetic and paramagnetic effects [82]. In essence, the alkali vapor becomes 

birefringent as a result of a population difference induced by optical pumping in the 

ground state and/or the application of a longitudinal magnetic field. Therefore, in 

measuring the quantities of interest, the probe beam is sent through the rubidium vapor, 

parallel to the magnetic field, and the rotation of its plane of polarization is monitored 

(see figure 3.6). Determining RbN  and RbP  has proved no trivial matter with this system. 

The filament tends to block the probe light. Given that the former’s width is comparable 

to the aperture size of the entrance electrode, ~1mm, it is extremely challenging to get the 

probe beam into the collision cell. When the probe beam does go through, light with less 

than 0.3μW of power emerges from the vacuum system (out of 1mW of incident light). 

Interaction with the beam sampler “BS2” (please refer to figure 2.15) causes the probe’s 
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power to drop further. Consequently, it becomes challenging to locate the position of the 

beam, and guide it to the detector responsible for measuring Faraday rotation angles.    

Moreover, the window through which the pump light enters and the probe beam 

emerges from the vacuum system reflects part of the beam. The reflected portion of the 

pump beam travels back to the pump laser. On the way, it encounters the same beam 

sampler “BS2” as the probe beam. Part of this pump light scatters, and follows a similar 

path as the probe laser all the way to the photodiode. Care must be taken to prevent the 

scattered pump light from saturating the photodetector. This situation also requires the 

use of phase-sensitive-detection techniques involving an optical chopper and a lock-in 

amplifier to extract the signal corresponding to the probe light.    

The steps in measuring RbN  and RbP  by the Faraday effects with a probe beam 

traveling through an alkali vapor parallel to a magnetic field have been documented in 

references [29, 61, 83]. I will briefly go through them. I will first focus on determining 

the number density. With the electromagnets off and no pump light, I locate the angle oθ  

at which the transmission axis of the linear polarizer “LP3” (refer to figure 2.15) is 

perpendicular to the plane of polarization of the probe beam. In other words, I minimize 

the photodiode signal by rotating the transmission axis of the linear polarizer “LP3.” This 

procedure is repeated for several different wavelengths of the probe beam, detuned from 

the line center of the rubidium D1 transition. The electromagnets are now turned on. The 

magnetic field will cause the alkali vapor to become birefringent. Consequently, the plane 

of polarization of the probe beam will rotate as the light travels through the gas. The 

photodiode reading will not be minimal anymore. This situation is remedied by rotating 
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the transmission axis of the linear polarizer “LP3” again. The angle Bθ  at which the new 

minimum occurs is recorded. This step is duplicated for all the detunings measured with 

no magnetic field. The rubidium density can then be found from the following equation 

[83, 60]: 

 2

2
1

6 ( )
.B o

Rb
B D

h
N

L B
π δ θ θ
µ λ

−
=

Γ
 

(3.2) 

Here, Bµ  is the Bohr magneton, L the distance travelled by the probe beam through the 

vapor, B the magnetic field strength, δ  the detuning from line center, h  Planck’s 

constant, Γ  the natural linewidth, and 1Dλ  the wavelength of the D1 transition. The 

choice of detuning is crucial. If one probes too close to the rubidium D1 line center, one 

may face rotations of the plane of polarization of over 360o. With the present 

experimental setup, it is impossible to distinguish a rotation angle of ( )o
B oθ θ−  from 

( 180)o
B o nθ θ− + ⋅  where n is an integer. It is imperative to be able to tell these angles 

apart because according to equation (3.2), they correspond to different rubidium 

densities. Therefore, I recommend starting at large detunings where the rotation angles 

are barely noticeable. For example, as can be seen in table 3.3, with rubidium densities of 

~1013 atoms/cm3 in the system, the rotation angle is relatively small, 4o, for a detuning of 

~10GHz from the D1 line center, and rises to 11o for a detuning of ~6GHz. These data 

were taken with the probe beam traveling along the collision cell parallel to the magnetic 

field. 

When the rubidium vapor is polarized by letting the pump light through the  
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Table 3.3. Typical rotation angles recorded when determining [Rb] by the Faraday effect. 

Probe 
wavelength                

(nm) 

Probe 
detuning from 

Rb D1 line 
center                          
(GHz) 

θo                               
(degrees) 

θB                               
(degrees) 

(θB-θo)                               
(degrees) 

[Rb]                      
(x1012 atoms/cm3) 

794.9992 9.653 4 0 -4 4.0 
794.9967 8.467 3 355 -8 6.2 
794.9924 6.427 4 353 -11 4.9 
 

collision cell, the oriented alkali vapor will cause the plane of polarization of the probe 

beam to rotate further. The photodiode signal is minimized again by rotating the 

transmission axis of the linear polarizer “LP3” through angle .pθ  The rotation angle of 

the probe light’s polarization due to the oriented alkali vapor is then given by ( )p Bθ θ−  

[84]. The degree of polarization of the rubidium vapor is obtained from [83] 
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(3.3) 

During this whole process, the electromagnets are left on in order not to affect the 

electron beam. 

In principle, this technique to measure RbN  and RbP  can be applied when the 

probe beam is incident on the birefringent alkali vapor at an angle of less than 90o to the 

magnetic field lines. It would have been convenient to use the viewports on the side of 

the collision cell for this. However, these become coated with an opaque layer of 

rubidium quickly (see figure 3.2). The probe beam could only get through the collision 

cell if sent at the very edge of the viewport, perpendicular to the magnetic field. In such a 

case, the technique relying on the Faraday effect was not applicable, and another method 
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of estimating the alkali vapor’s density had to be sought. A procedure based on 

absorption spectroscopy [60, 85] was devised to that end. Absorption profiles of the 

alkali vapor in the collision cell were acquired using the setup described in section 2.2.2, 

and could be used to estimate its density with the following procedure. The acquired 

absorption profiles were compared with ones generated with a program written in 

Mathematica by P. Siddons from the University of Durham [85], who has worked 

extensively on developing models to describe the interaction of light with rubidium 

vapors. The computer program is based on the theory of references [85] and [86]. It 

outputs the absorption profile of rubidium vapor in a cell with a user-defined length and 

temperature. It first converts the temperature put in by the user into its corresponding 

alkali density using equations typically employed in the determination of rubidium vapor 

pressure curves [87]. In essence, the program determines the density corresponding to the 

input temperature by using available rubidium vapor pressure curves. For a particular 

thickness of the alkali vapor, it then calculates the refractive indices and absorption 

coefficients over the range of wavelengths related to the D1 transitions. Finally, it outputs 

the theoretical absorption profile. For our collision cell length, we generated a library of 

such profiles, corresponding to different temperatures and hence rubidium densities. To 

estimate the vapor’s thickness, the experimentally-acquired absorption profile was 

compared to the theoretical ones by superposing them on top of each other until the best 

match was found. Several examples of such superposition are shown in figure 3.7. In 

each case, the black dashed curve is the experimentally-acquired absorption profile while 

the blue and magenta curves have been generated with the software. These provide an 
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Figure 3.7: Estimating the rubidium density using the method outlined in the text. Starting from the first 
row and going from left to right, the densities were found to be, in units of atoms/cm3, 12(1.4 0.2) 10 ,± ×  

12(2.1 0.1) 10 ,± × 12(2.8 0.3) 10 ,± × 12(6.7 0.6) 10 ,± × 12(9 1) 10 ,± × 13(1.27 0.08) 10 ,± × 13(2.9 0.6) 10± ×  and 
13(7.3 0.6) 10 .± × (See text for more details.) 
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Figure 3.8: Under the current experimental conditions, the following functional relationship exists between 
the reservoir temperature resT  and that obtained from vapor pressure curves, vapT : 

( 27 4) (1.12 0.03) .vap resT T= − ± + ± ⋅    
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Figure 3.9: Comparison between rubidium densities [Rb] obtained using the method devised from 
absorption spectroscopy (blue) and those gathered with the Faraday rotation technique (magenta), 
performed at an angle of ~79o to the magnetic field lines. 
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upper and a lower bound on the rubidium density. It can also be seen from the legends of 

figure 3.7 that the temperatures read by the reservoir thermocouple (values related to the 

black dashed curve) when the experimental absorption profiles were acquired do not 

match those obtained from the vapor pressure curves (values related to the blue and 

magenta curves) [87]. This is not surprising considering that the thermocouple was not 

directly measuring the temperature of the rubidium vapor but was attached outside of the 

reservoir, at one of the ends housing a heater. However, figure 3.8 shows that a functional 

relationship may exist between the temperatures read by the thermocouple and those 

obtained from the vapor pressure curves. In figure 3.9, densities estimated using the 

method just outlined were compared to those taken with the Faraday rotation technique, 

performed at an angle of ~79o to the magnetic field lines, and they are in reasonable 

agreement. It should be noted that the method of estimating rubidium densities using 

absorption spectroscopy is extremely tedious and time-consuming. There is a pressing 

need to prevent rubidium from cooling down on the viewports. The suggestions outlined 

in section 3.1 could be implemented to this end. 

 

3.6     Electron polarimetry data acquisition 

The electron optical polarimeter described in section 2.2.6 works on the principle 

of inelastic exchange collisions of polarized electrons with helium atoms [88]: 
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( ) ( ) ( )

1 * 3 '
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+ → +
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 (3.4) 



93 
 

 

 

Figure 3.10: Schematic of the helium optical electron polarimeter geometry. In our device, φ = 90o and θ = 
36.5o. The electron beam is incident along z while the helium gas flows towards the  –x direction. The 
initial offset of the retarder’s fast axis and the linear polarizer’s transmission axis are denoted by βo and αo 
respectively. 

 

The spin angular momentum of the electron is transferred to the helium by exciting the 

latter from the 1
01 S  state to the 33 P  state. Eventually, the excited atom decays into the 

metastable state 32 S  by emitting circularly polarized light. The relative 

Stokesparameters 1 ,P  2P  and 3P  of this 388.9nm 33P→  23P He radiation can be related 

analytically to the polarization of the electron beam eP  [88]. Here, 1 ,P  2P  and 3P  

describe, respectively, the difference between the amount of horizontal and vertical linear 

polarization relative to the electron beam axis, of linear +45o or -45o polarization, and of 

right- or left- circular polarization of the light, all normalized to the total intensity [89]. If 
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we apply the results from [90] to our collision geometry, shown in figure 3.10, we find 

that [91]   

 3
1

2.6409 .
1.0614 0.9386eP P

P
 

=  + 
 (3.5) 

We can deduce the electron polarization by determining 1P  and 3P  experimentally. On 

the other hand, 2P  vanishes if the spin-orbit interaction in the Hamiltonian describing the 

electron-atom scattering is negligible, which is a necessary condition for the validity of 

equation (3.5). 

This polarimeter consists of a rotating waveplate in front of a fixed analyzer. It is 

a well-documented [32, 89, 69, 92] technique for finding the relative Stokes parameters. I 

will now describe how this device is operated. According to the Mueller calculus, the 

transmitted intensity ' ,iI  normalized to the vacuum chamber pressure and the Faraday cup 

current [93], for light incident on such a polarimeter obeys [32] 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
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α β β δ δ α β β δ
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+ + − − + − − +   

− + −

 

(3.6) 

Here, δ is the retardance of the waveplate, and kinc is a measure of the efficiency [89] of 

the linear polarizer. The latter is given by (k1−k2)/(k1+k2), where k1 and k2 are the 

maximum and minimum transmittances of completely linearly polarized light through the 

polarizer. The retarder angle iβ  is equal to (i−1) × 22.5o where i = 1, 2,…,16. Equation 

(3.6) describes a truncated Fourier series. The relative Stokes parameters can be obtained 

in terms of Fourier coefficients [32]: 
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where fo, f1, f2 and f3 are defined as 
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A comprehensive account of how to determine δ and kinc can be found in [94]. 

The value of kinc was determined by using an optical train consisting of an unpolarized 

light source (white LED), two linear polarizers, a 388.9nm interference filter and a 

photodetector. The polarizers were cut from the same Rolyn plastic sheet (No. 65.5305) 

so that their kinc would be identical. The transmission axes of these optical components 

were first set parallel to each other. The linear polarizer right after the light source was 
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rotated incrementally for one revolution, and the light intensity was recorded at each 

position. The resulting data was fitted to equation (2.15) of reference [94] to obtain kinc: 

 21 cos(2 ) .i inc iI I k θ = +   (3.15) 

Measurement of the retardance δ was accomplished by setting the transmission axes of 

the linear polarizers parallel to each other again. The waveplate was then inserted in 

between the linear polarizers. The retarder was rotated incrementally for one revolution, 

and the light intensity was recorded at each position. The resulting data was fitted to 

equation (2.16) of reference [94] to obtain δ: 

 { }2 2 21 cos (2 ) cos( )sin (2 ) .i inc i iI I k θ δ θ = + +   (3.16) 

For our experimental setup, we obtained the following: (1.65 0.01)δ = ±  radians, and 

(0.971 0.001),inck = ±  which are within 2% of the manufacturers’ specifications.  

The procedure to obtain the offset angles, oα  and ,oβ  of the linear polarizer’s 

transmission axis and the retarder’s fast or slow axis has been adapted from reference 

[94]. I will outline how these quantities are established. First, the transmission axis of the 

linear polarizer is carefully positioned in the horizontal plane of the apparatus containing 

the electron beam’s axis (refer to figure 3.10). At this stage, 0.oα ≈  The optical 

polarimeter is then removed from its support on the vacuum chamber, and is placed on a 

laser table without its photomultiplier tube and retarder attached. A photodiode (Thorlabs 

DET10A) is set behind it. The signal of the former is monitored with an oscilloscope. 

Light from an incandescent lamp is collimated and is shone through the polarimeter to the  
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Figure 3.11: Layout for calibrating the offset angles of the polarimeter’s linear polarizer and retarder, 
represented inside the dashed box. (See text for more details.) 

 

photodiode. Another linear polarizer is now positioned in front of the lamp. It is rotated 

until the signal of the photodetector is maximized. At this point, the transmission axes of 

the linear polarizers are aligned. Next, the retarder is remounted in the optical 

polarimeter. At this point, it will be located between the linear polarizers (see figure 

3.11). When the fast or slow axis of the waveplate is parallel to the transmission axes of 

the polarizers, the photodiode signal will be maximized again. This position of the 

retarder is marked. This situation corresponds to ( ) 0.o oφ β α= − =  The difference φ  

between the offset angles can be obtained more accurately by rotating the retarder 

incrementally by 7.5o for several revolutions and measuring the light intensity at each 

position. The data is then fitted to:  

 ( ) ( ) ( )'
1

11 cos 4 4 1 cos 1 cos
2i inc i oI I P k β β δ δ = + + − + +    

 (3.17) 

which is equivalent to equation (3.6) with 2 3 0o P Pα = = =  to account for the fact that the 

light is linearly polarized along the transmission axes of the linear polarizers. In this case, 

oβ  is actually .φ  The latter is obtained from the fit.  
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This value of φ  and the fact that 2 0P =  when the transmission axis of the 

polarimeter’s linear polarizer is aligned with the electron beam axis [95] are used to 

determine oα  and oβ  accurately. We have previously assumed that 0.oα ≈   If oα  is not 

zero but ,γ  oβ  will be equal to .φ γ+  We can collide unpolarized electrons with helium 

atoms, and record the fluorescence intensity from the 388.9nm transition as the retarder is 

rotated incrementally for several revolutions. Such data, taken at 23.6eV, are shown in 

figure 3.14. We then repeat this for several electron energies. We use these data to 

determine 1P  and 2 .P  To this end, we input the data into equations (3.7) to (3.14), which 

are rewritten in terms of the known parameter ( )o oφ β α= −  and the free parameter .γ  

The free parameter is varied and is chosen such that it minimizes 2P  as discussed in 

reference [94]. This value of γ  is then used to evaluate oα  and .oβ  Figure 3.15 shows 

how 1P  and 2P  vary as the energy of the electron beam changes from approximately 

23.1eV to 30.1eV.   

Before taking these data, an energy scale is established by measuring the optical 

excitation function for the helium 33P state. Due to contact potential differences, the 

electron energy is not necessarily the electric charge times the applied difference in 

potential between the target and electron emitter. The potential yielding electrons with 

energies corresponding to the threshold energy for the helium 33P excitation needs to be 

determined. Such an excitation function is shown in figure 3.12. The intensity signal 

starts to rise at an electron energy very close to the known value for the threshold of the  
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Figure 3.12: The electron impact excitation function for the transition of helium 23S→ 33P, 388.9 nm. 
Arrow indicates the known threshold energy.  
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Figure 3.13: Profile of the Faraday cup current as a function of electron energy. The energy spread of the 
electron beam is determined to be about 1.5 eV. (See text for details.) 
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Figure 3.14: Variation in fluorescence intensity as the retarder is rotated. The electron-beam energy was 
23.6 eV. At this energy, the efficiency of the polarimeter is about 2.3 Hz/nA for a chamber pressure of 1 
mTorr, as read by the Convectron gauge corrected for helium gas. This number rises to ~20 Hz/nA for 
electron energies corresponding to the peak of the optical excitation function. 

 

 

Figure 3.15: Energy dependence of P1 (▲) and P2 (■). The error bars denote the standard deviation of the 
mean of five data sets taken through five complete retarder revolutions Here, (0 1)o

oα = ±  and 
(37 1) .o

oβ = ±   
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33P→  23S He transition. Therefore, discrepancies in the electron energy due to contact 

potential differences amount to less than 1eV. Figure 3.13 shows how the current 

recorded on the Faraday cup varied as a function of electron energy. These data are 

equivalent to what would be obtained from performing a retarding field analysis on the 

beam (more information on this technique can be found in section 4.6.1) because the 

energy of electrons incident on the helium gas in the polarimeter chamber was actually 

changed by applying retarding potentials on the target cylinder (part “H” in figure 2.30). 

Hence, figure 3.13 can be used to estimate the energy spread of the electron beam with no 

gas in the collision cell, and it is found to be ~1.5eV. 

Once the polarimeter has been calibrated and the values of 1P  essential to 

equation (4.5) have been evaluated, the relative Stokes parameter 3P  is obtained by the 

“2-point method” [92] during the operation of the source: 

 
' '

3 ' '

( 135 ) ( 45 )
( 135 ) ( 45 )

o o
o o

o o
o o

I I
P

I I
β β
β β

= − =
=

= + =
 (3.18) 

where ' ( 45 )o
oI β =  and ' ( 135 )o

oI β =  are the normalized fluorescence intensities taken 

with the retarder’s fast (or slow) axis at 45o and at 135o to the transmission axis of the 

optical polarimeter’s linear polarizer. By alternating between these two angles, N  pairs 

of measurements are made. At each step, the photomultiplier tube counts the number of 

photons for ~3s. During this time period, a reading of the polarimeter chamber pressure 

and the average of 120 samples of the Faraday cup current are also acquired by Labview 

software.  
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I will now describe how the data is normalized and is analyzed to find the 

polarization of the electron beam. Despite turning the ambient light off during data 

collection, the count rates taken above the threshold of the 388.9nm helium transition are 

still contaminated by other background sources. This background contribution must be 

determined and compensated for. It consists of two components: an electron-beam-

independent part and an electron-beam-dependent portion. Light from the glowing 

filament contributes mainly to the electron-beam-independent part while the electron-

beam-dependent portion comprises photons from the electron-impact excitation of 

background gases in the polarimeter chamber and their subsequent de-excitation. The 

former is evaluated by taking 1N  pairs of measurements with no electron beam reaching 

the polarimeter chamber. To this end, a large enough retarding potential is applied on the 

last electrodes of the electron gun to prevent the beam from making its way to the 

polarimeter chamber. The electron-beam-dependent portion of the background 

contamination is determined by taking 2N  pairs of measurements below the threshold 

energy of the helium 33P excitation.   

Let ,45( )nobeamCR  be a measured count rate with the retarder’s axis at 45o to the 

linear polarizer’s transmission axis and with no electron beam reaching the polarimeter. 

The average of all 1N  measurements of ,45( )nobeamCR  is calculated. We label this average 

,45( ) .nobeamCR  This procedure is repeated for the data taken with the retarder’s axis at 135o 

to obtain ,135( ) .nobeamCR  Let ,45( )belowCR  be a measured count rate corresponding to an 

electron energy below the threshold of the helium 388.9nm transition, and with the 
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retarder’s axis at 45o. The next step involves the subtraction of ,45( )nobeamCR  from each of 

the 2N  measurements of ,45( ) .belowCR  This process gets rid of the contribution of the 

electron-beam-independent background contamination from the count rates taken below 

the threshold energy. The resulting quantities are normalized to their respective Faraday 

cup current ,45belowI  and polarimeter chamber pressure ,45belowP : 

 ,45 ,45
,45,

,45 ,45

( ) ( )
( ) .below nobeam

below norm
below below

CR CR
CR

I P
−

=
×

 (3.19) 

We now have 2N  normalized count rates corresponding to the retarder’s axis at 45o, and 

to the electron energy being below the threshold energy. The average of these 2N  points 

is determined. We label this quantity ,45,( ) .below normCR  These steps are repeated for the 

data taken with the retarder’s axis at 135o to obtain ,135,( ) .below normCR  

Afterwards, 3N  pairs of measurements are taken with the electron beam energy 

above the threshold of the 388.9nm helium transition. The quantities ,45( ) ,nobeamCR

,135( ) ,nobeamCR ,45,( ) ,below normCR  and ,135,( )below normCR  are used to compensate for background 

contamination from these measurements. As usual, I will focus on the data taken with the 

retarder’s axis at 45o. First, ,45( )nobeamCR  is subtracted from each of the 3N  data points 

,45( ) .aboveCR  The resulting quantity is normalized to its respective Faraday cup current 

,45aboveI  and polarimeter chamber pressure ,45aboveP . Next, the mean normalized count rate 

obtained below the threshold energy is subtracted from the 3N  normalized count rates 

collected above the threshold energy: 
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 (3.20) 

 

This procedure is repeated for the data collected with the retarder’s axis at 135o to obtain 

,135,( ) .above normCR  For each of the 3N  pairs of normalized data points, 3P  is determined: 

 ,135, ,45,
3

,135, ,45,

( ) ( )
.

( ) ( )
above norm above norm

above norm above norm

CR CR
P

CR CR
−

=
+

 (3.21) 

We now have a distribution of 3P  values. The mean and the standard error of this 

distribution are calculated to find 3P  and its uncertainty.  

 

 

  Figure 3.16: Energy dependence of 3P  with unpolarized (▲) and polarized (■) electrons. 
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During the operation of the source, 3P is found both with and without the pump 

laser going through the collision cell. If there is any residual 3P  without the pump light, 

it is subtracted for the one with the pump light. The uncertainty in the resulting quantity 

is evaluated in quadrature. Using this value of 3P   as well as 1P  for the particular electron 

energy used in the polarimetric measurements, we can determine the polarization eP  of 

the electron beam with equation (4.5). The uncertainty in eP  is calculated by propagating 

those in 3P  and 1.P  Overall, the uncertainties in ,δ  ,inck  oα  and oβ  contribute 

negligibly. Figure 3.16 shows the energy dependence of 3P  with unpolarized and 

polarized electrons from the optically-pumped electron spin filter.             
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CHAPTER 4. Results 

 

In this study, I varied certain parameters of the source to see whether they affect 

the electron polarization. Such knowledge will serve as a guide to build better optically-

pumped polarized electron sources. Among the factors investigated are: 

1. the pump laser’s wavelength (electron-spin reversal phenomenon), 

2. the pump laser’s power, 

3. the pump laser’s line-width, 

4. the choice of quenching gas, 

5. the driving electric field across the collision cell, and 

6. the energy of the electrons incident on the gas mixture. 

In the following sections, I present our findings. 

 

4.1     Dependence of electron polarization on the pump laser wavelength  

In this experiment, I looked at how the electron polarization eP  is affected by the 

pump laser’s wavelength for a given spectral line-width and light polarization. The 

optical state-preparation of rubidium atoms with the optical pumping technique is 

sensitive to these pump laser parameters. It is therefore important to find parameters 

yielding high degrees of orientation of the rubidium vapor’s electronic spin, especially 

since in this system, free, unpolarized electrons undergo spin-exchange collisions with 

the alkali atoms:  
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 ( ) ( ) ( ) ( ).e Rb e Rb↑ + ↓ → ↓ + ↑  (4.1) 

and eP  follows RbP  closely as was demonstrated by Batelaan et al. [29] (see figure 1.11). 

Not exercising care in choosing the above-mentioned pump light properties can have 

adverse effects on the polarization of the rubidium vapor as was shown by Norrgard et al. 

[64]. For example, if the pump light is not circularly-polarized but is contaminated with a 

component of linear polarization, and is simultaneously spectrally-narrow such that only 

a few of the hyperfine transitions are being effectively pumped, a reversal in the rubidium 

vapor’s electronic spin polarization is observed as the pump wavelength is detuned from 

the rubidium D1 line center [64] (see figure 4.1). We noted a similar reversal in the 

polarization of the electron beam when the pump wavelength was varied; it followed the 

behavior of RbP  closely. In the following sections, I will explain qualitatively why this 

reversal in ,RbP  and hence, in ,eP  occurs. I will then briefly go through the experimental 

setup. Finally, I will present our results. 

 

4.1.1 Origin of the electron-spin reversal phenomenon 

In optical pumping experiments to orient a vapor of, say, rubidium-85 parallel (or 

anti-parallel) to the quantization axis, we want all atoms to transfer to the highest (or 

lowest) Fm  sublelvel of the ground state hyperfine level with the largest quantum 

number .F  Thus, for rubidium-85 (refer to figure 4.1b and 4.2 for the location of the 

different hyperfine transitions with respect to the D1 line center, and for energy level 
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Figure 4.1: (a) Absorption scan of the probe beam from a Rb reference cell. (b) The positions of the 
hyperfine ground (g) to excited (e) level transitions of Rb; from left to right: 87Rb Fg = 2 → Fe = 1, 87Rb 2 
→ 2, 85Rb 3 → 2, 85Rb 3 → 3, 85Rb 2 → 2, 85Rb 2 → 3, 87Rb 1 → 1, 87Rb 1 → 2. (c) Measured (data 
points) and calculated (curves) polarization of a natural-abundance rubidium vapor as a function of the 
pump laser frequency. Red data: 0.1 torr nitrogen, 128.4 10×  cm-3 rubidium density; red curve: 0.1 torr 
nitrogen, 99.5% σ +  light polarization. Green data: 1.0 torr nitrogen, 128.8 10×  cm-3 rubidium density; 
green curve: 1.0 torr nitrogen, 99.5% σ +  light polarization. (Adapted from [64].)      
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Figure 4.2: Schematic of optical pumping for both rubidium-85 and rubidium-87. The incident light isσ +  
circularly-polarized light. The electric dipole selection rules dictate that Fm∆  is +1. (Adapted from [96].)    
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diagrams of the two Rb isotopes), we want the atoms to be in the ( 3, 3)g FF m= =  

sublevel, corresponding to complete orientation of the alkali vapor parallel to the 

quantization axis (or in the ( 3, 3)g FF m= = −   sublevel  which corresponds to complete 

orientation anti-parallel to the quantization axis). Such a situation is desired because in 

the ( 3, 3)g FF m= =  sublevel, the probability of finding the outer electron of the alkali 

atom with 1 2Sm =  is 1. Hence, the expectation value of the electronic spin of the 

rubidium vapor will be 1 2. 

 

 

Figure 4.3: Vector coupling of the nuclear (I) and electronic (J) angular momenta. Here, mI and mJ are the 
components of the nuclear and electronic angular momenta along the quantization axis z. (Adapted from 
[97].) 

 

To understand the previous fact, we should keep in mind that the quantum number 

F I Jm m m= +  (see figure 4.3), and .J L Sm m m= +  In the 2
1

2
5 S  state, 0.Lm L= =  
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Therefore, in the ground state of rubidium-85, .J Sm m=  Since the angular momentum J  

is 1 2,  its component Jm  along the quantization axis z


 can be either 1 2  or 1 2.−  A 

rubidium-85 atom also has a nuclear spin I  of 5 2,  implying that its z-component Im  

can be 5 2,−  3 2,−  1 2,−  1 2,  3 2  and 5 2.  Now, in the ( 3, 3)g FF m= =  sublevel, 

the only combination of Im  and J Sm m=  which will yield an Fm  of 3 is 

( 5 2, 1 2),I J Sm m m= = =  and thus, the rubidium atom is oriented parallel to the 

quantization axis.  

Complete orientation of the vapor is ideally achieved with resonant 100% 

circularly polarized light. The electric dipole selection rules dictate that with circularly- 

polarized pump light, Fm∆  must be equal to 1.±  With σ +  light, Fm∆  is +1. Therefore, 

the atoms will shuttle to sublevels with higher ,Fm  and eventually, settle in the “dark” or 

completely “polarized” state ( 3, 3)g FF m= =  where they cannot absorb any more 

photons (see figure 4.2).  

If the σ +  pump light is spectrally-narrow such that we are effectively pumping on 

the 3 2,3g eF F= → =  transitions, only the population of the sublevels of 3gF =  will be 

excited, in contrast to the situation described in figure 4.2. Some of these excited atoms 

will decay to the 2gF =  sublevels. Unless there exists mechanism to excite them again 

and transfer them to the 3gF =  state, they will stay in the “dark” 2gF =  level because 

the pump light is not resonant with the 2 2,3g eF F= → =  transitions. Such a situation 

will prevent the alkali vapor from achieving complete orientation because unlike the 
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( 3, 3)g FF m= =  and ( 3, 3)g FF m= = −  levels, the other sublevels of the ground state are 

linear superpositions of two states from the uncoupled basis ( , ).I J Sm m m=  For instance, 

 1 3 1 5 5 1( 2, 2) ( , ) ( , ),
6 2 2 6 2 2g F I J I JF m m m m m= = → − = = + = = −  

and a rubidium atom in this sublevel has a higher probability of being measured with 

1 2.Sm = −   

A combination of a spectrally-narrow laser, for example with a FWHM of 

~500MHz, and circularly-polarized pump light which is contaminated with a linearly-

polarized component will affect the orientation of the alkali vapor more acutely. Balykin 

[98] showed theoretically that circularly-polarized light with 1% linear polarization will 

cause rapid depletion of the “dark” state population in optical pumping experiments. His 

study was, however, limited to determining how the population of the “dark” state varied 

with time. In-depth studies conducted by Norrgard et al. [64] revealed startling 

consequences of pumping with a spectrally-narrow laser and imperfect circularly-

polarized light. Their data, shown in figure 4.1 for nitrogen pressures of 0.1Torr and 

1Torr, displays a reversal in the electronic spin orientation of the rubidium vapor for a 

range of pump wavelengths even though the helicity of the light was constant and 

predominantly circular (~99.5%).  

The reversal occurs when the ~500 MHz spectrally-wide pump laser is on 

resonance with the 3 2,3g eF F= → =  transitions. Thus, the pump laser cannot 

effectively pump the 2 2,3g eF F= → =  transitions. While most rubidium atoms are 

transferred to the ( 3, 3)g FF m= =  sublevel by absorption of the predominantly σ +  light,  
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Figure 4.4: Pump light on resonance with the 3 2, 3g eF F= → =  transitions of rubidium-85. The 
( 3, 3)g FF m= =  sublevel is not a “dark” state when the pump light is contaminated with a linearly-
polarized (π) component. In this case, rubidium atoms accumulate in the ( 2, 2)g FF m= =  state where the 
expectation value of the electronic spin is negative. 

 

the linearly polarized component drives the population of this sublevel to the 2gF =  

state, especially the ( 2, 2)g FF m= =  sublevel (see figure 4.4). In essence, there is no 

dark state in this case because atoms in the ( 3, 3)g FF m= =  sublevel can still absorb the 

linear component of the pump light. The pump light cannot depopulate the 2gF =  

sublevels effectively because its spectral profile does not overlap significantly with the 

line-shape of the 2 2,3g eF F= → =  transitions. The atoms remain stuck in the 2gF =  

state. Consequently, the outer electrons of the rubidium atoms have a higher probability 
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of being measured with 1 2Sm = −  as discussed above, and the alkali vapor’s electronic 

spin polarization is reversed even though the pump light is predominantly σ +  light. 

 

 

Figure 4.5: Pump light ( )σ +  on resonance with the 2 2, 3g eF F= → =  transitions of rubidium-85. 
Rubidium atoms accumulate in the 3gF =  sublevels with high Fm  quantum numbers. Expectation value of 
the alkali vapor’s electronic spin is observed to be positive in this case.  

 

If the pump light is on resonance with the 2 2,3g eF F= → =  transitions instead, 

the population of the 2gF =  sublevels will be depleted. In this case, absorption of both 

the right-circularly-polarized and linearly-polarized components of the pump light 

transfer atoms to the 3gF =  state. Since the light is predominantly circularly polarized, 

most of the atoms will move to sublevels with higher Fm  quantum numbers. In this case, 

the majority of rubidium particles have larger probabilities of being measured with 



115 
 

 

1 2.Sm =  The rubidium electronic spin polarization RbP  is observed to be in the opposite 

direction to that of the previous case (see figure 4.5). This discussion forms the basis of 

Norrgard et al’s [64] explanation of the electronic spin reversal phenomenon in optically-

pumped rubidium vapor. 

 

4.1.2 Experimental setup 

In this experiment, the polarization of the rubidium vapor and that of the electron 

beam were measured simultaneously as a function of pump laser wavelength. The pump 

light’s spectral bandwidth was constant throughout the process. As the pump beam’s 

wavelength was swept from 794.9675 nm to 794.9950 nm during the data-taking process, 

the retardance of the wave-plate (part labeled “QWP” in figure 2.16) responsible for 

making the light circularly-polarized varied by about 30μrad [99]. According to Mueller 

calculus [100], this would affect the pump light’s helicity negligibly; we can assume it 

was constant during this study.  In this particular experiment, we were able to send the 

probe beam downstream past the filament, along the axis of the apparatus. The 

arrangement outlined in figure 2.16 was used to measure the rubidium vapor’s density 

[Rb] and electronic-spin orientation RbP  by the Faraday effects as discussed in chapter 3. 

Measurements were taken when the apparatus had reached equilibrium. In other 

words, I waited several hours for the magnetic field, the electron current, the temperature 

of the system and [Rb] to stabilize. The rubidium vapor was then polarized by admitting 

the pump light to the collision cell. The polarization of the alkali vapor was inferred from 

the rotation of the plane of polarization of the probe beam as outlined in section 3.5. 
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Afterwards, the probe beam was blocked, and measurements were performed to 

determine the electron beam’s polarization .eP  These steps were repeated at each pump 

wavelength. Once data related to eP  and RbP  had been gathered, the pump beam was 

blocked. The rubidium density was then measured. For such a measurement, the 

magnetic field had to be turned off at some point. The rubidium density is therefore 

determined at the very end of the experimental run so that we do not have to wait for the 

system to stabilize again. The electromagnets dissipate large quantities of heat to the 

vacuum chambers. Turning the former off cools the latter, which may affect the thickness 

of alkali vapor. Therefore, the relevant steps in measuring the rubidium density were 

done as soon as the electromagnets are off. 

For this experiment, the quenching gas employed was nitrogen, at a pressure of 

~200mTorr. The rubidium density was measured to be 12(5.0 0.6) 10± × atoms/cm3. The 

free, unpolarized electrons incident on the gaseous mixture had energies of ~1eV. The 

current reaching the Faraday cup was ~200nA. The potential on electrodes “j” and “k” 

(see figure 3.1) was -31.5V with respect to ground. The pump light’s spectral bandwidth 

was ~2GHz and its power was ~650mW.  

 

4.1.3 Results 

The results of this experiment are shown in figure 4.6. The polarization of the 

electron beam eP  tracks the rubidium polarization RbP  closely. In order to extract 

electron beams with the highest polarization, it is therefore important to use parameters 
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delivering the best electronic spin orientation of the alkali vapor. These data also allow us 

to find the “polarization transfer efficiency” ,α  the constant of proportionality between 

eP  and RbP  [101]:  

 .e RbP Pα=  (4.2) 

By plotting eP  as a function of ,RbP  we can evaluate this polarization transfer efficiency. 

Such plots are shown in figures 4.7 and 4.8 both for this system and for the electron spin 

filter built by Batelaan et al. [29]. A polarization transfer efficiency of ~25% is obtained 

in the former case while the latter yielded ~46%.  

We can find the factors affecting α  by solving the rate equation for eP  [62, 102]: 

 [ ] [ ] .e
SE Rb SE e e e

dP
k Rb P k Rb P P

dt
= − − Γ  (4.3) 

The first term describes the transfer of polarization from oriented rubidium atoms to free, 

unpolarized electrons while the second refers to the opposite process where polarized 

electrons undergo spin-exchange collisions with unpolarized rubidium particles. Here, 

SEk  is the rubidium-electron spin-exchange rate coefficient, [ ]Rb  the alkali density, and 

eΓ  the relaxation rate of the electron polarization through processes other than spin-

exchange collisions such as magnetic spin-flip processes occurring either in electron 

collisions with the chamber walls or with the rubidium atoms or the buffer gas. The spin-

exchange rate coefficient SEk  is the product of the rubidium-electron relative velocity and 

its corresponding spin-exchange cross-section, averaged over the distribution of relative 

velocities. The solution to the rate equation is [62, 102] 
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Figure 4.6: Behavior of RbP  and eP  as the pump laser’s frequency is varied across the rubidium D1 
absorption line. The electron polarization follows that of the rubidium vapor closely, even exhibiting the 
electron-spin reversal phenomenon. In this experiment, [Rb] was 12(5.0 0.6) 10± × atoms/cm3, the buffer gas 
was nitrogen at a pressure of ~200mTorr, the incident electron energy was 1eV, the pump light’s spectral 
bandwidth was ~2GHz, and its power was ~650mW.    
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Figure 4.7: Determination of the polarization transfer efficiency (see text on page 91) of our system for the 
data of figure 4.6. A linear fit to the data yields ( )0.25 0.01 .e RbP P= ±  The polarization transfer efficiency 
is therefore ~25%.  
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Figure 4.8: Polarization transfer efficiency for the spin filter developed by Batelaan et al. [29]. The 
experimental conditions included an [Rb] of 117 10× atoms/cm3, the buffer gas was nitrogen at a pressure of 
400mTorr, and the pump light’s spectral bandwidth was ~40GHz. The outlier with Pe of 27% for a pump 
laser power of 150mW was not included. A linear fit to the data yields ( )0.46 0.02 .e RbP P= ± The 
polarization transfer efficiency was ~46%.  
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k Rb

Pα

 = − − + Γ ⋅ + Γ

= ⋅

 (4.4) 

Hence, the polarization transfer efficiency depends on several factors, namely the relative 

velocity between rubidium atoms and free electrons, the spin-exchange cross-section, the 

rubidium density, and the interaction time ct  between the electron beam and the alkali 

vapor. 

This result may explain the higher polarization transfer efficiency for the older 

spin filter [29] despite the lower rubidium density used (Batelaan et al.: 117 10×  

atoms/cm3, current system: 125 10×  atoms/cm3). The cell length in the former case was 

~7cm, and they used a nitrogen pressure of 0.4Torr, compared to 0.2Torr and a length of 

~3cm for the current setup. A longer cell length causes free electrons to interact with the 

gaseous mixture, especially the polarized alkali vapor, for a longer time interval. It can be 

seen from the equation above that a longer interaction time will lead to higher .eP  Indeed, 

as the interaction time increases, electrons are more likely to undergo spin-exchange 

collisions with polarized rubidium atoms. The higher nitrogen pressure, on the other 

hand, causes the frequency of collisions between free electrons and the molecules to be 

larger. Electrons will lose more energy to the nitrogen. This will increase the spin-

exchange cross-section experienced by the free electrons (see figure 1.12), which in turn, 

will raise the spin-exchange rate coefficient ,SEk  and hence, .eP  Another consequence of 

the higher nitrogen pressure and collision frequency is that electrons will undergo longer 

effective path lengths [29] as they travel through the gas. By scattering multiple times on 
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the nitrogen molecules, the total distance traveled by the particles through the collision 

cell becomes longer. From the random walk analysis performed by Batelaan et al. [29], 

the effective path length (EPL) of electrons in the gas will be approximately 

 
2

,LEPL
λ

=  (4.5) 

where L  is the cell length and λ  the mean free path. Assuming no energy loss as the 

particles moved through the nitrogen gas, the effective path length of, for example, 1eV 

electrons in the system built by Batelaan et al. [29] would have been over 10 times longer 

than in the present apparatus. A longer effective path length would increase the 

probability of electrons undergoing spin-exchange collisions with the alkali vapor. All 

these factors may have improved the transfer of polarization from oriented rubidium 

atoms to electrons in the former case. 

The ratio ξ  of polarization transfer efficiencies α  obtained from figures 4.7 

(present system) and 4.8 (apparatus of Batelaan et al. [29]) is about 1.8. Using the 

expression for α  in equation 4.4 and that of the effective path length in 4.5, we proceed 

to make a rough estimate of ξ  to see how it compares with the experimentally-

determined value of 1.8. To simplify this problem, we assume that all electrons are 

drifting with a constant energy of 1eV, and that SEk  is given by the mean relative velocity 

between free electrons and rubidium atoms times the average spin-exchange cross-section 

.SEσ  Since 15 23.1 10SE cmσ −= ×  for 1eV electrons [57], and their drift velocity in nitrogen 

gas is 5~ 9 10 /cm s×  [103], 9 32.8 10 / .SEk cm s−≈ ×  The times ct  taken by electrons to 

travel the effective path lengths in the system of Batelaan et al. [29] and the current one 
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are approximately 46.8 10 s−×  and 56.3 10 ,s−×  respectively. The relaxation rates eΓ  of 

the electron polarization are unknown. Since we are only looking for a ballpark figure for 

,ξ  we assume eΓ  is negligible. Given these considerations, we estimate the theoretical 

ratio of polarization transfer efficiencies to be ~1.4, which is within 20% of the 

experimental value of 1.8. 
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4.2     Effect of pump light’s bandwidth on the electron polarization 

The laser line-width is another important parameter in the optical pumping of 

rubidium atoms. It can have an impact on how much of the light’s spectral profile 

interacts with the atomic line-shape function of the rubidium D1 transition. In other 

words, it can affect how much of the spectral profile is on resonance with the rubidium 

atoms in the vapor. A preliminary study of how the pump light’s bandwidth affects the 

electron polarization was carried out since the present pump laser allows us to broaden 

the full width at half maximum (FWHM) of its quasi-Gaussian spectral profile. An in-

depth investigation of the effects of the pump light’s spectral width on the polarization of 

rubidium vapor in a sealed glass cell is currently being conducted by E. Litaker. 

 

 

Figure 4.9: Simplified representation of the experiment. The blue curve denotes a Doppler-broadened 
absorption profile while the magenta curves correspond to different spectral profiles of the pump light. 
When the pump light has a large bandwidth, a significant portion of its spectral profile is not on resonance 
with the transition. Thus, more light travels through the vapor unabsorbed. At 100oC, a typical temperature 
used in this study, the Doppler effect causes the absorption profile due to each rubidium D1 hyperfine 
transition to be broadened by about 560MHz. 
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In this experiment, I varied the pump light’s spectral bandwidth, and I measured 

the resulting electron polarization. Figure 4.9 shows the laser’s Gaussian spectral profile 

on resonance with the Doppler-broadened absorption profile of an idealized rubidium 

hyperfine transition. Initially, the pump light has a small bandwidth, which is gradually 

increased. Such a procedure affects the mean rate at which an unpolarized rubidium atom 

absorbs photons. This quantity is given by the integral, with respect to frequency, of the 

product of the absorption cross-section for light on resonance with the transition, and the 

photon flux associated with the laser’s spectral profile [104, 105]. 

In this investigation, I used nitrogen as the buffer gas, at a pressure of 110mTorr. 

The rubidium density was approximately 126 10× atoms/cm3. The electrons were incident 

on the collision cell with ~2eV of energy. The Faraday cup collected a steady current of 

about 350nA. The pump light was tuned to 794.9762nm, which produced the highest RbP  

and eP  in the wavelength-dependence study of section 4.1. Its power was measured to be 

560mW after the quarter wave-plate “QWP” in figure 2.9. 

The results of this investigation are shown in the top panel of figure 4.10. Data 

were taken for both unbroadened pump light and spectrally-broadened light. The 

spectrum analyzer used in this study could not resolve line-widths narrower than 

160MHz because it contained mirrors with a free spectral range of 30GHz and a finesse 

of 188. The unbroadened pump light is, however, quoted as having a FWHM of ~10MHz 

by the laser’s manufacturer, Sacher Lasertechnik. The largest broadening studied 

corresponds to a FWHM of 2.2GHz. The data show that the electron polarization rises 
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steadily as the pump light’s line-width is increased until it reaches 1.8GHz. It then 

decreases for the larger line-width. 
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Figure 4.10: Shown in the top panel is the variation of the electron polarization with the bandwidth of the 
pump light’s spectral profile. The bottom panel represents a theoretical determination of the optical 
pumping rate due to the different laser line-widths studied. The optical pumping rates have been 
normalized to that corresponding to the unbroadened pump light. 

 

Starting with the assumption that the electron polarization is directly affected by 

the rubidium polarization, a valid supposition in light of the results of [29] and of section 

4.1, we can attempt to explain the trends in the data by looking at the impact of the pump 

light’s spectral bandwidth on the steady-state solution for RbP , which is given by [59] 

 .Rb
RP

R
=
Γ +

 (4.6) 
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Here, Γ  is the spin relaxation rate of the alkali atoms, and R  is the mean rate at which 

an unpolarized rubidium atom absorbs photons [104]:  

 
0

( ) ( ) ,R dν σ ν ν
∞

= Φ∫  (4.7) 

where ( )νΦ  is the photon flux incident on the atom and ( )σ ν  is the total photon 

absorption cross-section, both at frequency .ν  The photon flux depends on the spectral 

profile of the pump light. So does the optical pumping rate and the rubidium polarization. 

The photon flux at frequency ν  associated with light with a Gaussian spectral profile can 

be described by [104] 

 ( ) ( )
2

2
14( ) ln(2)

( ) .
l

l
l e

ν ν
δνν ν

− −

Φ = Φ
 

 (4.8) 

Here, l
l

cν
λ

=  is the central frequency of the profile and 2
l

l
l

c
δλ

δν
λ

=  is the full width at 

half maximum. For a laser beam of intensity ,lI  

 ( ) 2 ln(2)
.l

l
l l

I
h
π

ν
π ν δν

Φ =  (4.9) 

In order to evaluate the optical pumping rate, we also need the total optical absorption 

cross-section σ  of D1 light. For the sake of making the integral manageable, we use 

Doppler-broadened line profiles to describe the relevant hyperfine transitions. The total 

photon absorption cross-section at frequency ν  is then given by [106] 

 ( ) ( )' '
'

, ,
,

,e F F F F
F F

r cf A Gσ ν π ν ν= −∑  (4.10) 
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Figure 4.11: When broadened to 2.2 GHz, a significant fraction of the laser’s spectral profile is not on 
resonance with the Rb hyperfine transitions. Only the D1 transitions significantly affected by the pump 
light are shown on this diagram. The amplitudes of the transitions are representative of the magnitude                
of their photon absorption cross-sections, which depend on the relative strengths of the transitions ',

.
F F

A  



128 
 

 

where er  is the classical electron radius, c  is the speed of light, f  is the oscillator 

strength for the D1 transition, ',F F
ν  is the resonance center frequency of the 'F F→  

hyperfine transition, ',F F
A  is the relative strength of the transition, and ( )',F F

G ν ν−  is 

the frequency response of a Doppler-broadened line profile. 

The bottom panel of figure 4.10 shows the optical pumping rate obtained, based 

on the above equations, for the laser line-widths studied under the current experimental 

conditions. The y-axis actually represents the optical pumping rate normalized to that 

with the spectrally-unbroadened pump light. We see that the optical pumping rate rises 

steadily as the pump light’s spectral profile is broadened. A greater fraction of the profile 

is on resonance with the hyperfine transitions. Thus, more rubidium atoms can absorb 

photons. Eventually, the optical pumping rate reaches a maximum, and starts to decrease 

for larger line-widths. In this case, a large portion of the spectral profile does not overlap 

with the absorption cross-section associated with the rubidium hyperfine transitions as 

can be seen in figure 4.11.  

The larger statistical error bar in the electron polarization (top panel of figure 

4.10) for a pump laser line-width of 1.97GHz may reflect the fact that the wavelength of 

the light was fluctuating at this broadening and the one above it. It varied between 

794.9760nm and 794.9764nm instead of staying steady at 794.9762nm as at the other 

line-widths. Such a variation in wavelength causes a fluctuation of about 7%±  in our 

theoretical determination of the optical pumping rate for a line-width of 1.97GHz. As RbP  

depends on the optical pumping rate [30], fluctuations in the latter may have caused 
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changes in the former, which in turn, may have affected eP . The same variation in 

wavelength produces only a change of approximately 3%±  in the optical pumping rate 

for a 2.82GHz line-width. This may explain the relatively smaller statistical error bar in 

the electron polarization at such a line-width compared to that at 1.97GHz. The rubidium 

polarization is more sensitive to fluctuations in pump light’s wavelength at this line-width 

than at 2.82GHz.  

These estimates correspond to optical pumping rates at a position along the cell 

where the laser light first interacts with the rubidium atoms. Due to absorption by the 

alkali vapor, the pump light will be attenuated as it travels through the cell. The estimates 

above did not take this into account, and represent an approximation of the actual 

situation. Nevertheless, they indicate the possible cause of the trend observed in the 

electron polarization in this study. 
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4.3     Dependence of electron polarization on pump laser power 

In this experiment, we varied the pump laser’s power to see how it affected the 

electron polarization. The intensity of the pump light can alter the fraction of alkali atoms 

in the different hyperfine sublevels. This can in turn have an impact on the polarization of 

the vapor, and hence, on that of the electron beam. According to Steck [107], a laser 

beam of intensity greater than 2mW/cm2 can saturate a thin ensemble of rubidium atoms. 

As the vapor becomes optically thick or a quenching gas is added, the exact value of this 

saturation intensity will depend on the rates of the different photo-physical processes 

occurring in the vapor as discussed below. 

 

 

Figure 4.12: Two-level system interacting with resonant light of intensity I. (See text for more details) 
[108] 

 

Let us consider, for instance, a sample of two-level systems (see figure 4.12) with 

a homogeneously broadened absorption line. If the sample is illuminated with resonant 

light of intensity I, the rate equations describing the populations N1 and N2 of the two 

levels are [108] 
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 1 2
1 2 ,

dN N
WN WN

dt τ
= − + +  and (4.11) 

 2 2
1 2 .

dN N
WN WN

dt τ
= − −  

(4.12) 

Here, W is the transition rate due to photon absorption (or stimulated emission) while 1 τ  

is the decay rate from the excited state via processes other than stimulated emission. In 

terms of the total population ( )1 2tN N N= +  and the population difference 

( )1 2N N N∆ = −  between the two levels, the rate equation becomes 

 
1 12 .t

d N N W N
dt τ τ

 ∆ = −∆ + + 
 

 (4.13) 

 The steady state solution 0d N
dt

 ∆ = 
 

  yields 
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+
 or (4.14) 

 
2 .

1 2t
WN N

W
τ
τ

= ⋅
+

 
(4.15) 

At this point, let us define the saturation parameter Is as 
2
hν
στ

 where σ  is the absorption 

cross-section of the transition, and hν  is the energy of an incident photon. With W given 

by ,I
h
σ
ν

 the steady state solution can then be rewritten as 

 
( )
( )2 .

2 1
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s

I IN
N

I I
=

+
 (4.16) 
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It can be seen that when the intensity I of the pump light is equal to Is, the steady state 

population of level 2, 2 ,N  is 4.tN  The intensity of the pump light at which such a 

situation occurs is known as the saturation intensity. If ,sI I  2 2.tN N→  As 

mentioned above, the saturation intensity depends on the rate 1 τ  at which atoms decay 

from the excited state through processes other than stimulated emission, such as 

spontaneous emission. The presence of a quenching gas can cause this rate to increase as 

excited atoms collide with the former and decay to the ground state faster. In such a case, 

higher laser intensities would be needed to saturate the sample (see figure 4.13). 

 

 

Figure 4.13: Fractional population of the upper state N2 as a function of incident pump light intensity for 

two different relaxation rates: 
1

1
τ

 and 
2

1 .
τ

 Here, 
2

1
τ

 is five times greater than 
1

1 .
τ

 Higher pump light 

intensity is needed in the former case to saturate the sample.     
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In this experiment, we wanted to investigate whether we have enough pump light 

power to saturate the rubidium vapor and maximize the population of its “dark” state 

when quenching gas is present in the system. Above a certain laser power, the population 

of the different sublevels of the rubidium vapor will stop changing, and RbP  will reach a 

maximum. We can anticipate that the polarization of the electron beam will follow that of 

the alkali vapor in light of the results of the previous section and of reference [29]. 

Hence, eP  will plateau when RbP  does. The effects of the pump light power on the 

rubidium vapor can thus be inferred from the electron polarization. 

The optical configuration described in figure 2.9 was used in this study. Only the 

polarization of the electron beam could be monitored. The buffer gas in the collision cell 

was nitrogen at a pressure of ~200mTorr. The energy of the incident electron beam was 

~2eV. The current reaching the Faraday cup was ~300nA. In this experiment, the 

rubidium densities were approximately ( )121 10×  atoms/cm3 and ( )123 10×  atoms/cm3. 

The spectral bandwidth of the pump laser was ~2 GHz, and its wavelength was 

794.9762nm. The pump power was measured with a Newport® power meter (model: 841-

PE), which according to its owner’s manual, has an accuracy of 5%.±   

The results of this investigation are shown in figure 4.11; polarization of the 

electron beam reaches a maximum and levels off at about 150mW. Therefore, under the 

current experimental conditions, pump light intensities of about 5W/cm2 are needed to 

saturate the rubidium vapor. This is not surprising considering that Liu et al. [109] have 

determined that the saturation intensity can rise from ~2mW/cm2 to ~8W/cm2 for a 

Doppler-broadened rubidium absorption profile. Compared to the highest power available 
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to us, which corresponds to 650mW right before the beam enters the vacuum system, it 

takes relatively low power to saturate the rubidium vapor at the largest buffer gas 

pressures our system can handle. It is unlikely that more laser power will improve the 

performance of the current apparatus. 
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Figure 4.11: Variation of electron polarization with pump laser power for two rubidium vapor thicknesses: 
( )121 10× cm-3 and ( )123 10× cm-3. (See text for details.)   

 

The asymptotic value of the electron polarization was determined in each case by 

fitting the datasets to a function of the following form: 

  ,
1

l
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⋅
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 (4.17) 
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where lP  is the pump laser power, and  A  and B  are free parameters. These free 

parameters were obtained from the curve-fitting software, Originlab, and they are shown 

in table 4.1. It is thus found that under the current experimental conditions, the electron 

polarizations tend to about 9.5% and 8% when [Rb] is 123 10×  atoms/cm3 and 121 10×  

atoms/cm3, respectively. 

 

Table 4.1. 

[Rb]                                                 
(cm-3) 

A                                                             
(mW-1) 

B                                
(mW-1) 

123 10×   0.19 0.04±   0.020 0.005±   
121 10×  0.16 0.05±  0.020 0.007±  
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4.4     Effects of different quenching gases on the electron polarization 

In this experiment, we investigated how the choice of buffer gas affected the 

performance of the system. The buffer gas plays many crucial roles in optically-pumped 

polarized electron sources [29]. For instance, it slows the diffusion of rubidium atoms out 

of the pump beam’s path. This allows the alkali atoms to undergo the number of cycles of 

photon absorption and emission needed to become polarized. Additionally, oriented 

rubidium atoms can spend more time along the electron beam’s path before they are 

replaced by unpolarized ones. The buffer gas also mitigates the effects of radiation 

trapping. It quenches excited alkali atoms, causing them to decay non-radiatively. It is 

thus essential to polarize the rubidium vapor. For example figure 4.15, which represents 

data gathered by Norrgard et al. [64] in their study on the dependence of RbP  on pump 

light wavelength, shows that for approximately the same [Rb], a peak polarization of 

~80% is obtained with 1Torr of buffer gas (nitrogen) compared to 50% with 0.1Torr. 

In addition to facilitating the polarization of rubidium atoms, the buffer gas 

increases the likelihood that free electrons will undergo spin-exchange collisions. By 

scattering multiple times against particles comprising the gas, electrons experience a 

longer effective path length through the cell [29]. They may also lose energy in the 

process. Since the spin-exchange cross section is largest for thermal electrons [57], both 

the slowing down of the particles and the increase in effective path length contribute to 

higher probabilities that spin-exchange collisions between rubidium atoms and electrons 

can occur. We thus wish to find a buffer gas that provides an optimal combination of 

these properties to maximize the polarization of the free electron beam.    
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Figure 4.15: Measured (data points) and calculated (curves) polarization of a natural-abundance rubidium 
vapor as a function of the pump laser frequency. Red data: 0.1Torr nitrogen, 128.4 10×  cm-3 rubidium 
density; red curve: 0.1Torr nitrogen, 99.5% σ +  light polarization. Green data: 1.0Torr nitrogen, 128.8 10×  
cm-3 rubidium density; green curve: 1.0Torr nitrogen, 99.5% σ +  light polarization. (Adapted from [64].)      

 

In this study, we tried four different gases. Following Batelaan et al. [29], we 

operated the system with nitrogen and helium. Unlike the former, we used approximately 

the same pressure for both. Thus, we could roughly compare their performance as buffer 

gases. Hydrogen gas was chosen at the suggestion of W. Happer, whose group has 

worked on the production of spin-polarized atomic hydrogen by spin-exchange optical 

pumping for many years [110]. The final gas investigated was ethylene (C2H4). Optical 

pumping studies involving this gas are scarce. Hrycyshyn et al. [58] found that its 

quenching cross section is largest compared to the other gases under consideration (see 

Table 4.2). Thus it should be best at mitigating radiation trapping, and at orienting 

rubidium atoms. 
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Figure 4.16: Performance of the system with the different buffer gases. Top panel shows electron 
polarization eP  as a function of rubidium density [ ].Rb The bottom panel indicates the average current 

recorded on the Faraday cup at each [ ]Rb  at which eP  was measured (see text for details).    

 

In this study, the optical configuration shown in figure 2.4 was used; only the 

polarization eP  of the electron beam could be monitored. For each buffer gas, I varied the 

rubidium density and measured the electron polarization. The results are shown in figure 
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4.16. The pump laser’s wavelength was 794.9762nm, its bandwidth ~2GHz, and its 

power ~650mW (measured after the quarter wave-plate “QWP” in figure 2.9). The gas 

pressure in each run was ~200mTorr. This value corresponds to the corrected Convectron 

gauge reading. The incident electron energies for the nitrogen, helium and hydrogen 

cases were ~2eV. It was higher for the run with ethylene because the latter poses 

problems to the electron gun. The hydrocarbon molecules break down on contact with the 

hot tungsten filament and leave an apparently electrically-conductive layer of carbon on 

the electrodes. This carbon deposit causes the electrodes to short out with each other, 

making the electron gun unstable to operate at low energies. I had to use electrons with 

incident energies of ~4eV in the experiment with ethylene. However, this thermal 

decomposition of ethylene and the resulting carbon residue prove to be beneficial to the 

filament emission current. Indeed, the emission current was about 300μA with helium, 

hydrogen or nitrogen in the system while it rose to 3mA with ethylene. Previous 

investigations [75] have shown that carburized tungsten filaments can have a lower work 

function and hence, a higher emission current than pure tungsten. A direct effect of this 

increase in emission current can be seen in the bottom panel of figure 4.16 which shows 

the current FaradayI  recorded on the Faraday cup during the experiments with the four 

buffer gases. As the electron polarization was being measured at each rubidium density of 

interest, 120 samples of FaradayI  were being collected as discussed in chapter 3. Every data 

point on the plot in the bottom panel of figure 4.16 represents the average of these 120 

samples. The graph essentially describes the behavior of the mean Faraday cup current 

over time because the rubidium metal was heated slowly, its vapor density allowed to 
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increase gradually, and eP  measurements made at particular values of [Rb] along the way. 

During this whole process, the tungsten filament was on and was interacting with the 

buffer gas. The time interval between the first and the last eP  measurements correspond 

to approximately 7 hours for each run with the different buffer gases. We can thus see 

from the bottom panel of figure 4.16 that the average Faraday cup current was relatively 

low (~200nA) and fairly consistent over the time period of the run with helium, hydrogen 

or nitrogen in the system. With ethylene as buffer gas, FaradayI  started at ~400nA and rose 

to reach a value of about 4μA. We also observe that the system worked best with that 

same buffer gas. A maximum electron polarization of ~24% was obtained, which also 

represents the best performance attained to date with this system. Figure 4.16 also shows 

that under almost identical experimental conditions, nitrogen fares better than helium in 

the operation of the current system, which suggests that the higher electron polarization 

recorded by Batelaan et al. [29] with the latter gas (see figure 1.11) is potentially due to 

the different pressures used (0.4 Torr with nitrogen compared to 2 Torr with helium). 

Several properties unique to ethylene may have contributed to its better 

performance as a buffer gas. For instance, compared to the other gases in this study, 

ethylene has the largest quenching cross-section (see Table 4.2). This means that excited 

rubidium atoms are most likely to decay non-radiatively in ethylene. Indeed, the 

probability Q for an alkali atom in the excited state to decay to the ground state by 

spontaneous emission rather than quenching is given by [106, 81, 59] 

 
1 ,

1 Q

Q
R τ

=
+

 (4.18) 
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where ( )Q Q QR n vσ=  is the rate of quenching collisions, Qn  the density of the buffer gas, 

Qσ  the quenching cross-section, v  the mean relative velocity between an alkali atom and 

a quenching particle, and τ  the lifetime of the rubidium 2
1 25 P  excited states. Such 

probabilities, obtained under the current experimental conditions, are tabulated in Table 

4.2, and they show that excited rubidium atoms are least likely to decay by spontaneous 

emission in ethylene, and thus emit depolarizing photons.  

From Table 4.2, we also see that the mean free paths of electrons in the different 

buffer gases are less than the length of the collision cell. Therefore, electrons, on average, 

make multiple collisions with the buffer particles. However, Warman et al. [111] have 

calculated that electrons without enough energy to excite molecular electronic states (≤ 

1eV) thermalize fastest in ethylene; the thermalization time in ethylene is 100 times 

shorter than that in nitrogen. The hydrocarbon molecules, being polyatomic, have more 

vibrational modes which relatively low-energy free electrons can excite [112]. If free 

electrons do lose more energy in ethylene, they will be more likely to undergo spin-

exchange collisions with rubidium atoms because they will experience larger spin-

exchange cross-sections (see figure 1.12).  

In the data sets, the electron polarization rises rapidly, reaches a maximum, and 

eventually decreases with higher rubidium density. To understand this behavior 

qualitatively, we refer back to the solution of the rate equation for the electron 

polarization from section 4.1: 
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Figure 4.17: (a) An example of how the polarization transfer efficiency α  (blue solid curve) behaves as a 
function of rubidium density [Rb]. It tends to 1 as the density rises. Also shown is a typical behavior of the 
rubidium polarization RbP  (magenta dashed curve) as [Rb] increases (adapted from [113, 114]). (b) 
Electron polarization ( )e RbP Pα= ⋅  which would be obtained from the representative polarization transfer 
efficiencies and RbP  depicted in (a). (See text for details.)    

  

 
( ) [ ]

[ ] [ ]( ){ }1 exp

.

SE
e c SE e c Rb

SE e

Rb

k Rb
P t k Rb t P

k Rb

Pα

 = − − + Γ ⋅ + Γ

= ⋅

 (4.19) 

Here, ct  is the average time free electrons spend in the collision cell interacting with the 

rubidium vapor, SEk  the spin-exchange rate coefficient, [ ]Rb  the rubidium density, eΓ
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the relaxation rate of the electron polarization through processes other than spin- 

exchange collisions, and RbP  the rubidium polarization. The expression for α  in equation 

4.18 can be used to see a representative behavior of the polarization transfer efficiency as 

a function of rubidium density. The blue curve in figure 4.17a is an example of the 

behavior of α  as a function of [Rb] for an arbitrary set of ,SEk  eΓ  and .ct  This curve 

does not correspond to actual experimental data. It was generated from the expression for 

the polarization transfer efficiency to get a feel for how it changes as the rubidium 

density is varied. It is noted that the x-axis of figure 4.17 represents [Rb] much greater 

than zero. The polarization transfer efficiency would actually be zero for [ ] 0Rb =  

because no electron-rubidium spin-exchange collisions could occur in the absence of 

alkali atoms. It is also seen that the blue curve representing the behavior of the 

polarization transfer efficiency in figure 4.17a rises slowly, eventually approaching 1, as 

[Rb] increases. Indeed, as more and more rubidium atoms become available, a growing 

number of free electrons can effectively undergo spin-exchange collisions with them. 

Figure 4.17a also shows a typical behavior of RbP  as a function of [Rb] (magenta dashed 

curve), which was calculated by Tupa et al. [113] for the case of optical pumping of an 

arbitrary alkali vapor in a weak magnetic field such that F I J= +  and F I Jm m m= +  are 

good quantum numbers. For low rubidium densities, RbP  is large and constant. The alkali 

atoms decay primarily non-radiatively, so radiation trapping is not an issue. As the vapor 

thickens, more and more rubidium atoms can be excited and can thus decay by 

spontaneous emission. This situation leads to the production of many depolarizing 
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photons which are absorbed by polarized rubidium atoms. Radiation trapping ensues, and 

it causes RbP  to fall rapidly. 

The electron polarization eP  is the product of the polarization transfer efficiency 

and the rubidium polarization. The curve in figure 4.17b denotes the electron polarization 

which would be obtained from the representative α  and RbP  shown in figure 4.17a. The 

behavior of eP  depends on those of both the polarization transfer efficiency and the 

rubidium polarization. Even though RbP  is high in the beginning, eP  is low because it is 

limited by the availability of rubidium atoms. Absence of alkali atoms would mean that 

no spin-exchange collisions could occur, and the polarization transfer efficiency as well 

as the electron polarization would be zero (note: the x-axis of figure 4.17 shows rubidium 

densities much greater than zero; the point where [Rb] is zero is not shown). As the 

rubidium vapor density increases, more free electrons can undergo spin-exchange 

collisions with oriented alkali atoms and be polarized. The electron polarization would 

rise rapidly. Eventually, addition of rubidium atoms does not affect the polarization 

transfer efficiency as much, and the behavior of eP  is dominated by that of .RbP  

Performing simultaneous measurements of eP  and RbP  will help us know how the 

rubidium polarization and the polarization transfer efficiency vary with rubidium density. 

Such information will enable us to better understand the trends observed in this study 

with the different buffer gases. Such measurements may also help us answer whether the 

high electron polarization recorded with ethylene is due to better orientation of the 

rubidium atoms and/or to higher polarization transfer efficiency.    
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4.5     Dependence of electron polarization on the axial electric field 

The longitudinal electric field applied across the collision cell is crucial to the 

operation of the optically-pumped polarized electron source. In both the system 

developed by Batelaan et al. [29] and the current one, an axial electric field drives the 

free electrons through the mixture of buffer gas and rubidium vapor towards the exit 

aperture of the collision cell (part h in figure 2.28). In the former, the electric field 

strength could be controlled by setting the voltage on an electrically-isolated field plate 

containing the exit aperture (part 4 in figure 1.10). In our system, changes to the 

potentials of the collision cell and the exit electrode (parts j and k in figure 3.1) vary 

the axial electric field. Until now, no study of how electron polarization varies with 

electric field strength inside the interaction region has been undertaken. This would have 

been difficult to do in the apparatus of reference 28 because the exit electrode’s potential 

had significant influence on the characteristics of the DC discharge responsible for 

producing the free electrons.    

One may anticipate a link between the polarization of the electron beam and the 

electric field strength across the collision cell because a stronger field will result in 

increased electron drift velocities. Larger drift velocities cause electrons to experience 

lower spin-exchange cross-sections. Hence, the electron-rubidium spin-exchange mean 

free path is longer, and free electrons are less likely to be polarized. 

In this experiment, I varied the potential on the exit electrode (part k in figure 

3.1) while keeping those of the other elements constant. In effect, this increased the 

electric field strength across the collision cell. I measured the electron polarization for 
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several exit electrode potentials. The incident electron energy, the rubidium density, the 

buffer gas (in this case, nitrogen) pressure and the pump light parameters were not 

changed in this experiment. During the investigation, the nitrogen pressure was 

~200mTorr while the rubidium density was close to 1013 atoms/cm3. The electrons had a 

kinetic energy of ~4eV at the entrance electrode (part i in figure 3.1). This element of the 

electron gun was at a potential of -35V while that of the collision cell was at -34V; both 

potentials are with respect to ground, and they were constant during the experiment. All 

the voltages quoted were read directly from the front panels of the relevant power 

supplies, and did not account for contact potentials. The pump light was tuned to 

794.9762nm. Its bandwidth was ~2GHz, and its power was ~600mW.  

Figure 4.18 summarizes the results obtained from this experiment. The current FI   

recorded on the Faraday cup and the electron polarization eP   are shown as functions of 

the exit electrode potential .exitV  The last panel of figure 4.18 describes how 

the figure-of-merit 2 ,e FP I  which is a measure of the quality of a source of polarized 

electrons as discussed in section 1.3 [1], changed as exitV  was varied. We note that the 

electric field becomes stronger as the voltage applied to the exit electrode becomes less 

negative. The system was modeled using the SIMION® software (version 8.1) to obtain 

electric field strengths across the collision cell for the different experimental conditions 

employed. These are plotted in figure 4.19. 

Figure 4.18 reveals that the exit electrode’s potential ,exitV  and hence the 

longitudinal electric field strength ,E


 affects both the current emerging from the collision 
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Figure 4.18: Effects of the longitudinal electric field along the collision cell on the Faraday cup current ,FI   
the electron polarization eP  and the figure-of-merit of the system. The field (see figure 4.19) gets stronger 
as the potential on the exit electrode becomes less negative. 
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Figure 4.19: Electric field strengths across the collision cell for the different exit electrode potentials used 
in this study. These were obtained by modeling the system using the SIMION® software. Electrons 
experience retarding fields as they approach the exit electrode when electric field strengths are negative. 
Length of the collision cell is 2.8cm. The position marked 0.0cm corresponds to the entrance of the 
interaction region.  (See text for details.) 

 

cell and the electron polarization. Therefore, it directly impacts the figure-of-merit of the 

system. For the most negative exit electrode potential (-36.6V), and hence the lowest 

electric field strength across the collision cell, the Faraday cup current FI  recorded is 

smallest (~48nA). As exitV  becomes less negative, and E


 rises, FI  increases; more and 

more electrons emerge from the collision cell. Eventually, a plateau is reached where the 

current recorded on the Faraday cup stays fairly constant. The electron polarization, on 

the other hand, is largest for the most negative exit electrode potential (-36.6V) and 

lowest electric field strength. It stays somewhat steady as exitV  becomes less negative and 
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E


 increases. Ultimately, it decreases as E


 rises further, even reaching zero for the 

largest electric field strength investigated.  

Two additional observations are not apparent from figures 4.18 and 4.19. First, 

when the entrance electrode, the collision cell and the exit electrode are electrically 

connected together, and thus, no electric field exists across the collision cell, less than a 

nanoampere of current is recorded on the Faraday cup. This is not surprising considering 

that the collision number NQL  (where N  is the density of nitrogen molecules, Q  the 

electron-nitrogen total scattering cross-section, and L  the length of interaction region) is 

~26 under the present experimental conditions, and collisional processes become 

important when ~ 1.NQL  The electrons collide multiple times with the nitrogen gas. 

Without a longitudinal magnetic field to limit their lateral diffusion [115], the electrons 

would scatter rapidly out of the primary beam and onto the walls of the collision cell. 

Second, both with and without gas in the collision cell, the same exit electrode potential 

of -37V is needed to “kill” the beam and prevent electrons from emerging from the 

interaction region. This indicates that some component of the electron beam did not lose 

energy as it traveled through the gas. 

The observations discussed in the previous paragraph together with those 

represented in figure 4.18 suggest that the electric field strengths obtained from the 

SIMION simulation (figure 4.19) do not correspond to what actually happens in the 

collision cell. For example, with no field ( 0)E =


 across the interaction region, we 

recorded less than a nanoampere of current on the Faraday cup. Let this current 

corresponding to 0E =


 be denoted by 0 .I  If electrons now experienced a retarding field 
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as they approached the exit electrode, we would expect the current emerging from the 

cell and collected on the Faraday cup FI  would be lower than that with no electric field, 

0 .I  Figure 4.19, which describes results of the SIMION simulation, shows that electrons 

supposedly experience retarding fields when the exit electrode potentials exitV  are -36.6V 

and -35.8V. However, as can be seen from figure 4.18, the Faraday cup current observed 

were 48nA and 185nA in those two cases. These currents are clearly greater than the one 

observed with no electric field across the collision cell, 0 .I  This implies that electrons do 

not experience retarding fields but attractive ones as they approach the exit electrode for 

all ,exitV  even for -36.6V and -35.8V. Such attractive electric fields would cause the 

current emerging from the collision cell to be greater than that with no electric field, 0 ,I  

agreeing with our observations. Since the voltages entered in the software during the 

modeling process were read directly from the front panel of the relevant power supplies 

and did not account for contact potential differences, it may prove problematic to 

simulate the system accurately. Perhaps, the free electrons do experience more attractive 

electric fields than the SIMION® simulation is suggesting. 

With no electric field across the interaction region, the majority of electrons 

scatter laterally or backwards after colliding with the buffer gas molecules multiple times. 

Hence, very low FI  (less than a nanoampere) is recorded in this case. It takes a relatively 

weak electric field of about 2V/cm, corresponding to ~ 30 ,exitV V−  to extract the majority 

of scattered electrons from the collision cell; for stronger fields, FI  stays fairly constant. 

This may suggest that most of the incident electrons scatter in the half of the collision cell 
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closer to the exit electrode. Since most scattered electrons are extracted with an electric 

field corresponding to ~ 30 ,exitV V−  the main effect of stronger fields is to increase the 

drift velocity of the particles as they travel through the interaction region. Consequently, 

free electrons experience long spin-exchange mean free paths, and are less likely to be 

polarized. The electron polarization starts to decrease. For the strongest electric field 

investigated, which corresponds to 5 ,exitV V= −  the drift velocity is likely too large for 

free electrons to undergo significant spin-exchange collisions with polarized rubidium 

atoms, and eP  approaches zero.              

These results show that if the electric field is weak, the electron polarization is 

high, but the current emerging from the collision cell is low. If, on the other hand, the 

field is too strong, the polarization is low whereas the current is high. A compromise has 

to be found on the electric field strength used during the operation of the system. Under 

the current experimental conditions, average electric field strengths of about 2V/cm 

maximize the figure-of-merit of the polarized electron source.  
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4.6     Dependence of electron polarization on incident energy 

In the experiments discussed so far, I have used free, unpolarized electrons of 

relatively low incident energy (between 2 and 4 eV) because the electron-rubidium spin 

exchange cross-section decreases rapidly as energy rises. For instance, the spin-exchange 

cross-section at 30meV is ~10-13 cm2 compared to ~10-15 cm2 at 1eV [57]. However, at 

low incident energies, the electron beam transmitted through the quenching gases is 

severely reduced owing to the larger total scattering cross-sections. The electrons collide 

more frequently with the gas, and diffuse rapidly out of the primary beam.  The current 

recorded on the Faraday cup is relatively small compared to the GaAs photocathodes; in 

experiments done in our lab, GaAs photocurrents are typically 20 Aµ≥  [24]. Thus, one 

major improvement to our system would be to increase the electron beam intensity 

without significantly compromising the electron polarization.  

In this section, I discuss the dependence of the electron polarization on the 

incident electron energy. I varied the energy of the electrons incident on the collision cell 

while keeping the buffer gas pressure (nitrogen, in this case), the rubidium density, and 

kept the relevant parameters of the pump light constant. An effect, especially at energies 

where N2 can be ionized, has been observed that may help increase the intensity of the 

polarized electron beam. This effect is closely related to the energy loss of the incident 

electrons through inelastic collisions with the nitrogen buffer gas. Before presenting the 

results of the dependence of eP  on the incident electron energy, I will show and discuss 

curves obtained from performing retarding field analysis on the electron beam after it 
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emerges from the collision cell. Such analyses were performed for several incident 

electron energies. 

 

4.6.1 Retarding field analysis of incident electron beams 

Retarding field analyzers are often used to obtain information about the energy 

distribution of an electron beam [116]. For the basic retarding field analyzer depicted in 

figure 4.20a, electrons with kinetic energy oE eV=  are assumed to be heading towards 

the collector in a beam of infinitesimal extent and perfect collimation. On their way to the 

collector plate, they go through an electrode A with a tiny aperture. They are retarded by 

the axially directed electrostatic field of this electrode. If the retarding potential AV  is less 

than ,oV  the electrons will reach the collector. If ,A oV V>  the particles will be repelled. 

Only electrons with kinetic energies greater than the analyzing voltage AV  can traverse 

this potential barrier and be collected. Thus, the retarding field analyzer acts, in effect, as 

a high pass filter. By sweeping the potential of the analyzer and making it more negative, 

only higher and higher energy components of the electron beam are collected. We can 

thus obtain the energy distribution of the electron beam.  

If the electrons are mono-energetic, the curve shown in figure 4.20b is obtained 

for the current I  of the collector as a function of the retarding potential. The current 

stays constant until the repulsive potential barrier becomes Vo. At this point, the particles 

do not have enough energy to overcome the barrier. The current on the collector therefore 

drops to zero. However, this curve represents an idealized situation where the 
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electron beam is perfectly collimated and its diameter is negligible. In reality, the curve 

will behave more like the one in figure 4.20c, even for a perfectly mono-energetic beam. 

The current on the collector will decrease gradually over a range of retarding potentials 

instead of exhibiting a sharp drop at Vo as in figure 4.20b. Such situations result from the 

geometry of the retarding field analyzer. The aperture in the device not only produces 

lens effects which forces incident electron beams to diverge [116], but it also causes the 

retarding field to be non-uniform. Thus, the resolution of the device is limited by the 

diameter of the aperture; the former worsens as the size of the latter increases [116]. 

Finally, we can obtain information about the energy distribution of electrons in the beam 

by determining ,dI dV−  which is proportional to the number of particles per unit energy 

in the beam [117].     

I now present the results of applying a retarding field analysis technique to 

electron beams in our system. I used the target cylinder (part labeled H in figure 2.31) in 

the electron polarimeter chamber as the retarding electrode. The opening of the target 

cylinder is 6mm in diameter. This is relatively large compared to conventional retarding 

field analyzers, which typically have apertures of 1mm or less [118, 119]. The target 

cylinder therefore represents a non-ideal, low resolution analyzer. However, it was the 

only component with which we could obtain information about the energy distribution of 

the electron beam. Other electrodes in the system were either crucial for electron 

transport or were being used to collect the beam. The electrons overcoming the potential 

barrier of the target cylinder were collected at the Faraday cup. It is noted that the 

electrode at the entrance of the collision cell (“i” in figure 3.1) was biased at about -33V, 
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the collision cell at -32.5V, and the electrode at the exit (“k” in figure 3.1) at -29.5V. 

Thus, electrons can only overcome the barrier at the entrance of the collision cell and 

head to the polarimeter chamber if the potential at the tip of the tungsten filament (the 

electron emitter), which is controlled by the power supply “a” (also known as the 

filament bias) in figure 3.1, is more negative than that of the entrance electrode.  

I performed retarding field analysis on electron beams going through both an 

empty spin-exchange collision cell, and one with ~110mTorr of nitrogen. The analysis 

was undertaken for several energies of electrons incident on the interaction region, 

namely 2, 8, 10, 14, 20, 30, 60 and 80 eV with an empty collision cell, and 3, 9, 19, 28, 

59 and 108 eV for the case with 110mTorr of nitrogen gas. Figures 4.21 and 4.22 show 

the currents I  recorded on the Faraday cup as functions of the retarding potentials for 

the situations discussed. In each case, the data were normalized to the maximum current 

recorded on the Faraday cup. Since the maximum I  is observed when the target cylinder 

is grounded, the normalized Faraday cup current is 1 at a retarding potential of 0V. Using 

the data gathered from the retarding field analyses, energy distributions of the electron 

beam ( )dI dV−  were determined. These are plotted in the bottom panel of figure 4.21, 

and in 4.23. In the legend of the figures mentioned above, the numbers in parentheses 

correspond to the approximate kinetic energy of the incident electrons at the entrance of 

the collision cell while those outside the parentheses denote the total initial energy 

(potential plus kinetic) of the particles.  

Figure 4.21 describes the behavior of the electron beam current recorded on the 

Faraday cup for several incident energies as the potential barrier of the polarimeter’s
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Figure 4.21: Retarding field analyses of electron beams with different energies incident on an empty 
collision cell. Numbers in parentheses in the legend correspond to the approximate kinetic energy of the 
electrons at the entrance electrode. Top panel shows how current collected on the Faraday cup varied as the 
potential on the target cylinder was gradually made more negative. The bottom panel describes the energy 
distributions obtained by interpolating the points in the top panel, and taking the derivative with respect to 
the retarding potential. With no gas, the beam has an average apparent energy width (FWHM) of about 
2eV.  
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Figure 4.22: Retarding field analyses of electron beams with different energies incident on the collision cell 
with 110 mTorr of N2. In the legend, the numbers in parentheses denote the approximate kinetic energy of 
the electrons at the entrance electrode. Top panel shows retarding field curves for the three slowest incident 
energies investigated while data in the middle panel correspond to the highest incident energies studied. 
Results for all incident energies have been combined in the bottom panel.  
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Figure 4.23: Energy distributions obtained from the retarding field analyses of electron beams with 
different energies incident on the collision cell with 110 mTorr of N2 (see figure 4.24). In the legend, the 
numbers in parentheses denote the approximate kinetic energy of the electrons at the entrance electrode. 
The top panel shows energy distributions for the three slowest incident energies investigated while data in 
the middle panel correspond to the highest incident energies studied. Results for all incident energies have 
been combined in the bottom panel.  
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target cylinder is made more repulsive with no gas in the collision cell. Looking at the 

data corresponding to an electron beam with total initial energy of ~141eV, for example, 

we see that the current registered on the collector is fairly constant until the retarding 

potential reaches about 138eV. Then, it drops sharply, and the retarding field analysis 

data follow a somewhat similar behavior to the plot in figure 4.20c. The corresponding 

energy distributions are plotted in the bottom panel of figure 4.21. These were obtained 

by interpolating the data from the retarding field analyses (top panel of figure 4.21), and 

then, carrying out the derivative with respect to retarding voltage. The energy 

distributions indicate that with no gas in the collision cell, the average energy width 

(FWHM) of the electron beam is approximately 2eV. However, it is important to keep in 

mind that this value may not represent the actual energy width of the electron beam 

emerging from the collision cell. As discussed previously, the target cylinder in the 

polarimeter chamber is a very crude, low-resolution retarding field analyzer. Obtaining 

the real energy width is further complicated by the “flaring out” of the magnetic field 

lines at the end of the apparatus (see figure 2.22), which will cause the beam to diverge, 

and the electrons to have a wider distribution of longitudinal velocities. 

Figure 4.22 shows the retarding field analyses with 110mTorr of nitrogen in the 

collision cell. They behave differently from those with no gas in the system, especially at 

the higher incident energies. The curves do not have slopes as steep as those taken with 

no gas in the collision cell, indicating a wider distribution of electron energies in the final 

beam. This is indeed obvious from figure 4.23, which describes the energy distributions 

obtained from the retarding field analyses.  
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Figure 4.24: Cross-sections for the vibrational excitation 0 1υ = →  of N2 by electron impact. The results 
obtained from a swarm analysis are compared with the recommented values based on a beam measurement. 
(After Itikawa [120].)  

 

 

Figure 4.25: Potential energy curves of molecular nitrogen. (After Bogaerts [121].) 
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For electrons with ~2eV of incident energy, the total collision number NQL  is 

~21 [120]; the particles collide multiple times with the nitrogen molecules. These 

collisions can be elastic in nature or can result in the vibrational excitation of the nitrogen 

molecules [120]. Electrons can lose significant energy in the latter process as will be 

discussed shortly. Figure 4.24 shows the cross-sections for the vibrational excitation 

0 1υ = →  of molecular nitrogen by electron impact. Electrons are likely to undergo such 

a process if their incident kinetic energies fall between ~1.8eV and ~3.5eV. Electrons 

~6eV of incident kinetic energy and above can excite electronic states of the N2 

molecules. Figure 4.25 shows the potential energy curves for the different electronic 

states of molecular nitrogen which can be excited by incoming electrons. A single such 

collision can cause them to lose a significant fraction of their energy. Under the current 

experimental conditions, the probability for electrons to excite any particular electronic 

state of N2 as they travel along the length of the cell is less than 1 because the cross-

sections for such processes are ~10 times smaller than those for electron-impact vibration 

excitations. However, for electrons with incident kinetic energy above 15.6eV 

(corresponding to the ionization energy of N2), excitation and ionization of nitrogen 

molecules are the predominant energy loss mechanisms [122, 123]. Using available 

electron impact ionization cross-sections ionσ  [120], we find that the probability of an 

electron ionizing a nitrogen molecule as it travels the length of the collision cell 

containing ~110mTorr of gas increases from 0.5 for an incident kinetic energy of 19eV to 

1 for 100eV electrons, which corresponds to the energy where ionσ  peaks for such a 

process. As the kinetic energy of the electrons increases from 26eV to 106eV, they are 
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more and more likely to ionize nitrogen molecules. In the process, they will lose energy 

(each ionizing collision will cause the primary electron to dissipate at least 15.6eV, the 

ionization threshold energy), but they will also produce secondary electrons. These 

secondary electrons can become part of the final beam emerging from the gas. It is thus 

important to determine where their energy contribution would appear in the retarding 

field analyses data. 

For several energies of electrons incident on N2, Opal et al. [124] have measured 

the energy and angular distributions of secondary electrons emerging from the ionization 

of nitrogen molecules. When an electron ionizes an N2 molecule, two or more free 

electrons are obtained after the collision. In general, one cannot distinguish the secondary 

from the primary electrons. By convention [122], the fast one is called the primary 

electron, and the slow one the secondary electron. Opal et al. [124] have tabulated 

,( , ),p sE Eσ θ  the doubly differential cross-section in square centimeters/electron 

volt˖steradian, where pE  is the energy of the incident (primary) electron, sE  is that of an 

electron observed leaving the collision, and θ  is the angle between the directions of the 

incident and departing electrons. Their measurements allowed them to determine the 

cross-section integrated over angle: 

 
0

( , ) ( , , ) 2 sin d .p s p sE E E E
π

σ σ θ π θ θ= ⋅∫  (4.20) 

We thus have the singly-differential cross-section [120] with respect to energy of the 

electrons emerging from the ionization process. The measurements of Opal et al. [124]  
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Figure 4.26: Singly differential cross-section (SDCS) for the ionization of N2. The incident electron 
energies are 50 eV, 100 eV and 500 eV. For electrons emerging from the ionization process with energies 
below 4.13 eV, data have been extrapolated using the analytic form of the SDCS (see text). 

 

are limited to electrons leaving with 4.13eV of energy and above. They have nonetheless 

found that these singly differential cross-sections can be fitted to an analytic function of 

the form [125] 

 ( )
(E )

.
1

p

s

C

E D ασ =
+

 (4.21) 

The fitting parameters include α  and ,D  which are independent of incident energy, 

whereas C is a normalization constant that does depend on the incident energy. The 

fitting is good for electrons of energies below 30eV.  I have fitted their data to this 

equation for primary electrons of 50eV, 100eV and 500eV to obtain singly differential 
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cross-sections for electrons emerging from the ionization process with energies lower 

than 4.13eV.  For primary electrons of 100 eV, 

 
18 2 1

2

17.3( 100eV, ) 10 ,
1

13

p s
s

E E cm eV
E

σ − −= = ×
 +  
 

 
(4.22) 

which agrees with the parameters obtained by Itikawa [122] for the same incident energy 

while for primary electrons of 50eV and 500eV, the constants ( ), ,C D α  are found to be 

( )10.1 0.8,16 4,2± ±  and  ( )6.9 0.9,12 2,2± ±  respectively. 

Figure 4.26 shows how ( , )p sE Eσ  varies with electron energy for the three 

primary energies mentioned above. The data obtained by Opal et al. [124] suggests that 

electrons emerging from the ionization of nitrogen molecules are predominantly very 

slow. If the beam emerging from the collision cell was composed of any secondary 

electrons, one would therefore expect that most of their energy contribution would appear 

at the lower repulsive potentials in the retarding field analyses. The energy distributions 

in figure 4.23 do show that for incident kinetic energies of 28, 59 and 108 eV, the beams 

emerge from the collision cell consisting mostly of slow electrons in marked contrast to 

those in figure 4.21.   

Finally, figures 4.27a and 4.27b describe the actual current recorded on the 

Faraday cup for the different electron energies used in the retarding field analyses when 

the target cylinder was grounded. The x-axis represents the total initial energy of the 

electrons. The values in parentheses denote the approximate kinetic energy of the 

electrons at the entrance electrode. For example, a total initial electron energy of 40eV 
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corresponds to a kinetic energy of ~7eV at the entrance electrode. It is important to note 

that the filament emission current used with nitrogen in the collision cell was ~3 times 

that without the buffer gas. More electrons were being emitted per unit time in the former 

case. This fact may account for the higher current recorded on the Faraday cup with 

electrons of ~100eV incident kinetic energy when nitrogen was introduced in the 

collision cell (8.6μA with nitrogen compared to 4.8μA without). 
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(b) 

Figure 4.27: Current observed on the Faraday cup with (a) no gas and (b) 110mTorr of N2 in the collision 
cell when the target cylinder retarding potential is 0V. The numbers in parentheses correspond to the 
approximate kinetic energy of the electrons at the entrance electrode. 
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Figure 4.27a (for no nitrogen in the collision cell) shows the electron beam 

“turning on” when the total initial energy is around 35eV. At this point, the particles have 

enough kinetic energy to overcome the potential of the entrance electrode. The current on 

the Faraday cup stays fairly constant for the higher electron energies. The current 

recorded on the Faraday cup when nitrogen is introduced in the collision cell (figure 

4.27b) exhibits a different behavior. It is fairly constant at the lower incident energies. 

For electrons with kinetic energies of ~27eV and above at the entrance electrode, the 

Faraday cup current rises significantly. Better transmission of the electron beam through 

the nitrogen gas at the higher energies may have contributed to this increase. For 

example, the electron-nitrogen total scattering cross section is 1611.5 10−× cm2 at 8eV 

compared to 168.94 10−× cm2 at 100eV [120]. According to Beer’s law [103], the 

transmitted current tI  through the gas is equal to NQL
oI e−  where oI  is the initial current, 

N  the number density of nitrogen molecules, Q  the electron-nitrogen total scattering 

cross section, and L  the length of the collision cell. An estimate of the ratio of ( )t oI I  

through 110mTorr of nitrogen gas in the ~3cm long collision cell at 100eV to that at 8eV 

yields 

 
( )
( )

100 100

8

8

~ 20.

t
NQL

o eV eV
NQL

t eV

o eV

I
eI

I e
I

−

−

 
 
  =
 
 
 

 (4.23) 

Since the electrons at lower energies collide more frequently with nitrogen molecules 

owing to their larger total scattering cross-section, they diffuse rapidly out of the beam 
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and onto the walls of the collision cell. Therefore, electron beams at the lower energies 

are attenuated to a greater extent than those at the higher energies.  

The ratio in Faraday cup current recorded with these two particular incident 

electron energies is actually closer to 40. Several facts may have contributed to this 

increase. First, simulations in SIMION® reveal that the electron optics of the system were 

optimized for electron transport at high energies. More electrons are therefore expected to 

emerge from the collision cell at such incident energies. Moreover, electrons incident on 

the collision cell with kinetic energies of 15.6eV and above can ionize nitrogen molecules 

[120]. The ionization cross-section starts to increase at ~16eV and peaks at about 100eV. 

Therefore, as the kinetic energy of the incident electrons rises above 16eV, their 

probability of ionizing nitrogen molecules and producing secondary electrons becomes 

larger. The presence of a magnetic field along the collision cell would reduce the 

diffusion of these secondary electrons to the walls while the longitudinal electric field 

would help in their extraction by causing them to drift through the gaseous mixture and 

out of the interaction region [126]. Instead of undergoing rapid, lateral diffusion due to 

collisions with nitrogen molecules, electrons experience the effects of the Lorentz force 

acting on them, and they gyrate around the magnetic field lines. Given that the gyro-

radius of slow secondary electrons (~1eV) is about 0.2mm under the current experimental 

conditions, the particles do not stray far from the primary beam, and they are likely to 

emerge out of the 2mm exit aperture of the collision cell. Thus, they would contribute to 

enhancing the primary electron beam. 
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4.6.2 Effect of incident energy on electron polarization 

 

Figure 4.28: Dependence of the Faraday cup current and the electron polarization on the total initial energy 
of the electrons. The numbers in parentheses correspond to the kinetic energy of the electrons in eV at the 
entrance electrode. 

 

The retarding field analyses data motivated the study of how the eP  depends on 

the energy of the incident electrons, especially in the range where ionization of the 

nitrogen gas and production of very slow particles can occur. For this investigation, I 

used a nitrogen pressure of 130mTorr, and a rubidium density close to 1013 atoms/cm3. 

The pump power was 650mW, its wavelength 794.9762nm, and its bandwidth ~2GHz. 

The results of this investigation are shown in figure 4.28. The current recorded on the 

Faraday cup as a function of the primary electron beam’s total initial energy and its 
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approximate kinetic energy at the entrance electrode (the numbers in parentheses) is 

shown in the top panel while the behavior of the electron polarization is given at the 

bottom. 

Electrons with the lowest incident energies yield very high electron polarization. 

This is not surprising considering that the electron-rubidium spin-exchange cross-section 

is largest for such particles. As the energy increases, the electron polarization decreases 

as would be expected from the behavior of the spin-exchange cross-section. However, 

there is a short plateau in Pe around ~2.5eV of incident kinetic energy, and the electron 

polarization appears to rise again, peaks and then drops to zero near 6eV. This rise is 

likely due to the presence of shape resonances in nitrogen in the range between 2eV and 

4eV [127]. At such energies, vibrational excitation of nitrogen by the electrons can occur 

via the formation of a temporary negative ion state (see figure 4.29). After ~10-13 s, the 

state decays, often leaving the neutral molecule in a vibrational state other than 0.ν =  

Electrons can lose energy by undergoing such a process.  

 

Table 4.3. Vibrational excitations of N2. [128] 

Transition Energy                                 
(eV) 

Cross-section                     
(cm2) 

0 → 1 1.95 165.6 10−×    
0 → 2 2.00 163.7 10−×   
0 → 3 2.15 163.1 10−×   
0 → 4 2.22 162.1 10−×   
0 → 5 2.39 161.3 10−×   
0 → 6 2.48 177.1 10−×   
0 → 7 2.64 173.8 10−×   
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Table 4.3 lists the major vibrational energy loss channels. These manifest 

themselves as the pronounced bumps in the electron-nitrogen scattering cross-section 

between approximately 1.8eV and 3.5eV (see for example figure 4.24 and 4.30). Under 

the current experimental conditions, the collision number corresponding to, for instance, 

the vibrational excitation 0 1υ = →  of nitrogen by electrons, ,vibNQ L  is equal to 

( )16 163.4 10 0.13 5.6 10 2.8 7.−× × × × × ≈  Electrons would lose 1 quanta of vibrational 

energy in this process. If each quantum of energy is ~0.3eV, electrons will, in this case, 

dissipate, on average, ~2.1eV of energy after traveling through the collision cell. The 

formation of temporary negative ion states and the subsequent vibrational excitation of 

nitrogen molecules are an efficient way of causing electrons to lose energy, thus 

increasing their likelihood of undergoing spin-exchange collisions with oriented rubidium 

atoms. For simplicity, the above analysis has assumed that the cross-section for 

vibrational excitation of nitrogen molecules stays constant as the electrons lose energy. 

The polarization drops close to zero for electrons with 6eV of incident kinetic 

energy (see figure 4.28). Given a total scattering cross-section of 1611.4 10−× cm2 at this 

energy [120], the collision number under the present experimental conditions is ~10. 

From figure 4.30, it can be seen that these electrons undergo mainly elastic collisions. 

They lose only ~ 410− eV per collision in such processes [103]. Therefore, the electron-

rubidium spin-exchange cross-section stays fairly small. It is unlikely that these electrons 

can undergo spin-exchange collisions with oriented rubidium atoms. 
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Figure 4.29: Schematic representation of inelastic scattering of electrons via formation of a temporary 
negative ion state. This process leads to vibrational excitation of the neutral N2 molecule. [129] 

 

 

Figure 4.30: Cross-sections as a function of electron energy in N2. Shown are the momentum transfer cross-
section Qm, the sum of vibrational cross-sections ∑Qv, the sum of excitation cross-sections ∑Qex, and the 
ionization cross-section Qi. (Adapted from [130]) 
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For electrons with incident kinetic energies of 8eV and above, the electron 

polarization rises again. It peaks around 12eV before falling to zero at 15eV. In this 

energy range, electrons can excite the electronic states of N2 (see figures 4.25 and 4.30), 

and will dissipate a large portion of their energy in this process. Table 4.4 lists the main 

electronic states (based on the magnitude of cross-sections) which electrons with the 

incident energies under consideration can excite. Also shown are the corresponding 

cross-sections, the onset energies for the excitation processes (or the approximate energy 

lost in the excitation process), and the approximate amount of energy the electron has 

after a single excitation. The collision number exNQ L  has been determined for the current 

experimental conditions, corresponding to 130mTorr of nitrogen, and a cell length of 

3cm. 

Under the present experimental conditions, the collision number exNQ L  for the 

excitation of an electronic state of N2 is less than 1; only a fraction of the beam incident 

on the collision cell can excite any particular electronic state. Moreover, between 6eV 

and 15eV, electrons cannot rely on any other process involving molecular nitrogen to lose 

significant energy; the cross-sections for the vibrational excitation 0 1υ = →  of N2 by 

electron impact are negligible in this energy range. But once they excite an electronic 

state of N2, some electrons may end up with energies where they experience large cross-

sections υσ  for forming temporary negative ions with nitrogen [127]. They can then 

excite vibrational states of N2, dissipating more energy in the process. Or electrons with 

energies between 6eV and 15eV may excite an electronic state of N2, and end up with 

less than 1eV after a single inelastic collision. Both collisional pathways just discussed 
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would cause electrons to slow down, experience large spin-exchange cross-sections, and 

be more likely to be polarized by colliding with oriented rubidium atoms.  

 

Table 4.4. Main electronic states of N2 which incident electrons can excite. [120] 

Incident 
kinetic 
energy  

(eV) 

Main 
electronic 
excitations 

Cross-section 
Qex               

(x10-16 cm2) 
NQexL 

Onset 
energy for 
excitation            

(eV) 

Approximate 
energy 

remaining after 
a single 

excitation           
  (eV) 

7-9   3
uA +Σ    0.090 - 0.140 0.2 - 0.3 6.2 1.8 - 2.8 

 1
ga Π  0.038 0.1 8.5 0.5 

9-11 3
uA +Σ   0.140 - 0.155 0.3 6.2 2.8 - 3.5 

  3
gB Π  0.141 - 0.300 0.3 - 0.6 7.4 1.8 - 3.5 

 1
ga Π  0.100 - 0.174 0.2 - 0.4 8.4 1.8 - 3.5 

 3
uW ∆  0.020 - 0.120 0.04 - 0.25 7.4 1.8 - 3.5 

11-13  ' 1
ua −Σ  0.051 - 0.069 0.1 - 0.2 8.4 2.6 - 3.5 

   1
ga Π  0.174 - 0.254 0.4 - 0.5 8.5 2.5 - 3.5 

   1
uw ∆  0.080 - 0.100 0.2 8.9 2.1 - 3.5 

   3
gE +Σ  0.030 - 0.148 0.06 - 0.3 11.9 0.0 - 1.0 

   3
uC Π  0.074 - 0.147 0.2 - 0.3 11.0 0.5 - 1.0 

  0.230 - 0.335 0.5 - 0.7 11.0 1.8 - 2.0 
14-16  3

uA +Σ  0.150 - 0.180 0.3 - 0.4 6.2 7.8 - 9.8 

   3
gB Π  0.224 - 0.308 0.5 - 0.7 7.4 6.6 - 8.6 

   3
uW ∆  0.216 - 0.238 0.5 7.4 6.6 - 8.6 

  ' 3
uB −Σ   0.143 - 0.162 0.3 8.2 5.8 - 7.8 

   ' 1
ua −Σ  0.095 - 0.110 0.2 8.4 5.6 - 7.6 

   1
ga Π  0.394 - 0.469 0.8 - 1.0 8.5 5.5 - 7.5 

 1
uw ∆  0.078 - 0.103 0.2 8.9 5.1 - 7.1 

   3
uC Π  0.447 - 0.551 0.9 - 1.0 11.0 3.0 - 5.0 
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As an example, take an 8eV beam with an energy width of ~2eV, which 

corresponds to the experimental conditions in this study. Table 4.4 shows that electrons 

with energy between 8eV and 9eV can excite the 3
uA +Σ  electronic state of N2, and end up 

with 1.8eV to 2.8eV. These electrons can subsequently excite the vibrational states of 

nitrogen molecules via the formation of temporary negative ions, thus losing more 

energy. Particles with ~9eV of energy in the incident beam under consideration can also 

excite the 1
ga Π  electronic state of molecular nitrogen, which will cause them to have 

less than 1eV after a single inelastic collision. These processes increase the chance that 

such an electron beam undergoes spin-exchange collisions with oriented rubidium atoms. 

A 12eV incident beam with the same energy width as above has more electronic 

excitation channels of N2 open to it. Electrons can excite the ' 1
ua −Σ , 1

ga Π , 1
uw ∆  and 

3
uC Π  states, and fall in an energy band where they are likely to produce vibrational 

excitations of nitrogen molecules. They can also lose a significant amount of energy, and 

have less than 1eV left by exciting the 3
gE +Σ  and 3

uC Π  electronic states of N2. Electrons 

incident with energies ranging between 14eV and 16eV have large impact excitation 

cross-sections of molecular nitrogen (see Table 4.4). However, they have a significant 

amount of energy left, between ~3eV and ~10eV, after exciting any particular electronic 

state. The particles do not dissipate enough energy to enhance their likelihood of 

undergoing spin-exchange collisions with oriented rubidium atoms, and be polarized. 

Energy distributions obtained from retarding field analyses (see figure 4.31) seem to  
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Figure 4.31: Retarding field analyses of electron beams with different energies incident on the collision cell 
with 130mTorr of N2 and a rubidium vapor of ~1013 atoms/cm3 in density. In the legend, the numbers in 
parentheses denote the approximate kinetic energy of the electrons at the entrance electrode. The top panel 
shows retarding field curves for the four slowest incident energies investigated while data in the middle 
panel correspond to the highest incident energies studied. Results for all incident energies have been 
combined in the bottom panel. 
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Figure 4.32: Energy distributions obtained from the retarding field analyses of electron beams with 
different energies incident on the collision cell with 130mTorr of N2 and a rubidium vapor of ~1013 
atoms/cm3 in density (see figure 4.31). In the legend, the numbers in parentheses denote the approximate 
kinetic energy of the electrons at the entrance electrode. The top panel shows energy distributions for the 
fours lowest incident energies investigated while data in the middle panel correspond to the highest incident 
energies studied. Results for all incident energies have been combined in the bottom panel. 
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support this hypothesis for electrons incident with kinetic energies of 15eV (see figure 

4.32). It shows that the majority of electrons introduced into the cell with 10eV emerge 

slower than those injected with either 7eV or 15eV (see top panel of figure 4.32). 

Electrons with incident kinetic energies of 7eV and 15eV are less likely to undergo spin-

exchange collisions with oriented rubidium atoms, and the polarization of the beam is 

close to zero.  

Above energies corresponding to the threshold for the ionization of nitrogen 

molecules (15.6eV), the electron polarization rises as the incident kinetic energy 

increases. At 105eV, which is close to the maximum ionization cross-section [120], it 

matches the peak electron polarization observed at the lowest energies. As was discussed 

previously, excitation and ionization of nitrogen molecules by primary electrons result in 

significant energy loss and the production of slow particles. This phenomenon can be 

observed again in figure 4.32. For incident energies above the ionization of molecular 

nitrogen, the energy distribution of beams emerging from the collision cell consists 

mainly of low energy electrons. These slow particles have high probabilities of 

undergoing spin exchange collisions with oriented rubidium atoms. 

The experimental data in this section suggests that the ionization process may be a 

key factor in enhancing the current obtained from the optically-pumped electron spin 

filter. By ionizing the buffer gas, the primary electrons lose energy, and also produce 

slow secondary electrons. So, in addition to having a large cross-section for quenching 

excited rubidium atoms, an ideal buffer gas will possess large electron-impact ionization 

cross-sections. Ethylene has a maximum electron-impact ionization cross-section twice 
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that of nitrogen [120, 131]. From figure 4.33, we see that its cross-section peaks at about 

the same energy as nitrogen. Future experiments should therefore include repeating the 

present study with ethylene. 

 

 

Figure 4.33: Electron impact ionization cross-section of ethylene. Comparison of the binary-encounter 
Bethe model (BEB) cross-section to experiment. (After Hwang et al. [131]) 
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Chapter 5. Summary 

 

In this study, we have built a more robust, easy to use source of polarized 

electrons than that of Batelaan et al. [29]. We have particularly addressed issues raised by 

work following the efforts of Batelaan et al. [29], namely the instability of the cold 

cathode discharge as the source of free, unpolarized electrons, and our later inability to 

produce beams of polarizations greater than 2% [30]. In the present setup, thermionic 

emission from a pure tungsten filament produces the beam of free, unpolarized electrons, 

and a turn-key diode laser is used to orient the rubidium vapor. These modifications 

simplify the operation of the system, and take us a step closer towards the realization of a 

“black-box” source of polarized electrons with less stringent vacuum requirements. 

Compared to standard GaAs sources, our new source would be much better for 

experiments in a university research laboratory setting.    

Chapters 2 and 3 contain extensive descriptions of the system and how it is 

operated, especially with regard to transport of electron beams, manipulation of rubidium 

and its vapor, and measurements of electron polarization eP . Measurements of eP were 

carried out with a new, compact optical electron polarimeter [91]. This instrument offers 

several attractive features for electron spin analysis. Unlike earlier helium optical electron 

polarimeters which were designed for transversely polarized particles, this model can 

measure the polarization of longitudinally polarized electron beams. It is also relatively 

simple and compact in its construction. By relying on a magnetic field to guide the 
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longitudinally spin-polarized electron beam, the present instrument employs fewer 

electrodes. It also uses a commercially-available integrated photon counting module. 

These features allow it to occupy a smaller volume and make it easier to operate. 

Moreover, this optical electron polarimeter offers a maximum fluorescence detection 

efficiency of ~20 Hz/nA, which is an order of magnitude higher than earlier versions 

reported by us. 

The results in chapter 4 demonstrate that the present system can produce polarized 

electron beams with sufficient reliability to allow us to undertake systematic studies to 

find the factors affecting .eP  It was thus observed that the pump light parameters, the 

choice of buffer gas, the electric field across the collision region, and the energy of the 

incident electrons have an impact on the resulting polarization of the electron beam. 

Measurement of eP  as a function of pump light wavelengths, for instance, shows that the 

electron polarization tracks that of the rubidium closely, which is to be expected given 

the results of Batelaan et al. [29]. Norrgard et al. [64] have demonstrated that the electron 

spin polarization of rubidium vapors can reverse direction for a range of wavelengths if 

the pump light is not purely circularly-polarized but contaminated with some linear 

component, and is spectrally-narrow so that only a few of the hyperfine transitions are 

being pumped. The polarization of our electron beam exhibits a similar reversal when the 

pump laser’s wavelength is varied. This spin-reversal phenomenon can, in effect, be used 

to provide an independent means of flipping the spin-polarization of the electrons in 

addition to reversing the pump light’s helicity. Users of polarized sources based on the 

spin-exchange collisions of slow electrons with optically-pumped alkali vapors could 
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potentially have two ways of reversing eP  for the study and elimination of systematic 

instrumental asymmetries. Above all, this experiment highlights the inefficiency of our 

present optical pumping scheme which involves a single pump laser. As suggested by 

Norrgard et al. [64], the polarization of the alkali vapor may increase significantly by 

employing two pump lasers: one tuned to the 2 2,3g eF F= → =  transitions of rubidium-

85 and the 1 1,2g eF F= → =  transitions of rubidium-87, and another to the 

3 2,3g eF F= → =  transitions of rubidium-85 and 2 1,2g eF F= → =  transitions of 

rubidium-85 (see figure 5.1). Under such conditions, the population of all sublevels can 

absorb photons, and can be transferred to the target state to be polarized. The rubidium 

atoms will not be stuck in any particular state even if the pump light is not perfectly 

circularly-polarized. This scheme has the potential to increase the rubidium polarization, 

and hence that of the electron beam without the need to add tens of Torr of buffer gas as 

suggested by the work of Rosenberry et al. [59]. It would thus relax the vacuum 

requirements for this kind of polarized electron source.  

Unlike the system developed by Batelaan et al. [29], the source of free, 

unpolarized electrons in the present setup is separate from the buffer gas. In other words, 

electron beams can be produced with or without buffer gas in the collision cell. This 

feature allowed us to see how the gas affects the energy of the incident electrons. It was, 

for example, observed that inelastic processes such as excitation and ionization of the 

buffer gas can cause electrons to dissipate large amounts of energy. The ionization 

process also produces slow secondary electrons which may increase the electron current 

exiting the collision cell. Electrons resulting from such inelastic processes experience 
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 (a) 

 (b) 

 
(c) 

Figure 5.1: Using two lasers to pump on all D1 hyperfine transitions of (a) rubidium-85 and (b) rubidium-
87 may lead to higher alkali vapor polarization according to Norrgard et al. [64]. (See text for details.) 
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large spin-exchange cross-sections, and are likely to be polarized. It was indeed observed 

that eP  for electrons with relatively high incident energies (~100eV) matched that of slow 

incoming particles while at the same time offering a 40-fold increase in the current 

collected on the Faraday cup. This experiment suggests that another criterion should be 

added to the list of desirable characteristics an ideal buffer gas would possess, namely 

large ionization cross-sections. 

So far the present source has yielded its maximum figure-of-merit (FOM) with 

ethylene as buffer gas. An electron polarization of ~24% with 4μA of current has been 

recorded, corresponding to a figure-of-merit of 0.23μA. This value is comparable to that 

of Batelaan et al. [29], 0.26μA, but is much smaller than FOMs typically obtained with 

GaAs sources in our lab, which can be about 1.8μA.  

It is however not known whether the high eP  achieved with ethylene is due to its 

large quenching cross-section or to its ability to slow down electrons, both of which 

would improve the polarization of the beam. The former would allow thick rubidium 

vapors to achieve high degrees of orientation while the latter would cause free electrons 

to experience large spin-exchange cross-sections, thus increasing their likelihood of being 

polarized. Modifying the electron gun/collision cell assembly by either offsetting the 

tungsten filament or by using a spirally-shaped one to let the probe beam through the 

collision cell consistently would help us study how different buffer gases affect the 

rubidium polarization. Such a change would allow us to investigate whether ethylene is 

indeed better at orienting rubidium atoms. The addition of a high resolution retarding 

field analyzer, maybe in place of the electron collector on the rotary feedthrough in the 
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differentially-pumped chamber, would help us obtain more accurate information on the 

effects of the buffer gases on the energy of incident electrons.  

Future experiments should extend this study to include benzene as buffer gas. 

Norrish et al. [132] have determined that it has a quenching cross-section about twice that 

of ethylene while Warman et al. [111] have estimated that electrons with ~1eV of energy 

will thermalize slightly faster in benzene. Given these characteristics, we can expect to 

see even higher electron polarizations with benzene compared to ethylene.  

The pressure of buffer gas the system can handle is currently limited to 

~200mTorr. By decreasing the exit aperture diameter from 2mm to 1mm, it is estimated 

that ~600mTorr of gas may be introduced in the collision cell before the pressure above 

the diffusion pump reaches the mTorr regime where significant backstreaming of 

diffusion pump oil into the source chamber would occur. Higher buffer gas pressures 

would prove beneficial to both the polarization of the rubidium vapor and the slowing 

down of incident electrons. 

Finally, the present source could also benefit from a temperature control system. 

Currently, the heater power supplies have to be adjusted constantly to keep the 

temperature of the collision cell and hence, the rubidium density steady. By maintaining a 

vapor with a constant thickness, a temperature control system would allow us to study 

whether the electron polarization and the current recorded on the Faraday cup of the 

source are stable over time periods typically used in experiments involving polarized 

electrons, which can extend to several hours in a university lab setting. Moreover, the 

temperature control system could be interfaced with Labview, and could be programmed 



187 
 

 

to start heating the source and allow the rubidium vapor to stabilize, say, an hour before 

the user arrives. It would cut down on the waiting time, and allow the experimenter to use 

the source immediately. 
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Appendix A. Labview VI 

 

This section contains the Labview “codes” used in the data-taking process during 

this study. The main Labview VI employed was built from three fundamental 

subroutines: one to acquire a reading of the Convectron gauge attached to the optical 

electron polarimeter chamber, another to gather multiple samples of the current read by 

the picoammeter connected to the Faraday cup, and a final one to obtain the total photon 

counts from the photomultiplier tube in a user-defined time interval. The front panel and 

the block diagram of these Labview subroutines are shown below. 

 

 

Figure A.1: Front panel of the “pressure gauge” Labview VI. The user must first find the channel on the 
National Instruments card to which the Convectron gauge has been connected, and then, put that number is 
the box at the top. The Labview VI will read the analog voltage being sent out by the pressure gauge, which 
will be shown at the bottom of the front panel. This analog voltage is converted into the corresponding 
chamber pressure reading using the appropriate functional relationship given in the pressure gauge owner’s 
manual. 
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Figure A.2: Block diagram of the Labview VI used to acquire a sample of the pressure gauge reading. The 
equation to convert the analog voltage output by the pressure gauge into its corresponding pressure value is 
shown in the box. It can be found in the owner’s manual for the pressure gauge. 

 

 

 

Figure A.3: Front panel of the “GPIB read” VI (written by M. Fabrikant). These commands must be sent to 
the picoammeter before any reading can be acquired with Labview. 
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Figure A.4: Block diagram of the “GPIB read” Labview VI. 

 

 

 

Figure A.5: Once the “GPIB read” VI has been run, the “Keithley” VI can be used to gather multiple 
samples of the picoammeter reading. The user can define the number of samples to be gathered in the top 
box. After acquiring the desired number of current readings, the VI will calculate its average and standard 
deviation, and output it. 
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Figure A.6: Front panel of the “Keithley” VI. 

 

 

Figure A.7: The “counter” VI (written by J. Maseberg) acquires the total number of counts from the 
photomultiplier tube in a user-defined time interval. This interval is specified in the box labeled “dwell.” At 
the end, the software will output the actual time period over which photon counts were gathered in the 
second box. The VI will output the total number counts and the corresponding count rate in the last two 
boxes. 
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Figure A.8: Block diagram of the “counter” VI. 
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Figure A.9: Shown is the front panel of the “polarimeter” VI used during the experiments in this study. To 
determine the magnitude of the relative Stokes parameter P3, the retarder’s fast/slow axis is set at an angle 
of 45o and 135o, and data corresponding to the Faraday cup current, pressure in the polarimeter chamber, 
and photon count rate are acquired. Before using the VI, the user has to undertake the steps described in 
chapter 3 to locate the retarder’s fast/slow axis, and set it at 45o to the linear polarizer’s transmission axis. 
Once this step has been completed, the user can proceed to input 45o and 135o in the boxes labeled “Angle 
1” and “Angle 2.” The number of times the user wants the relative Stokes parameter P3 to be determined in 
any given experimental run must be specified in the box labeled “No. of data sets to take.” Every time a set 
of data (measured times, raw counts, count rates, Faraday cup currents) corresponding to the two positions 
of interest of the retarder’s fast/slow axis (45o and 135o) is acquired, the VI will output an un-normalized 
value of P3. The user will have to analyze the data more thoroughly later according to the procedure 
described in chapter 3. In the box labeled “File path 2” the user can specify the file path (usually a .txt file) 
to which data being gathered by the VI will be saved. 

 

 

 

 

 

 

 

 



194 
 

 

                                        Fi
gu

re
 A

.1
0:

 B
lo

ck
 d

ia
gr

am
 o

f t
he

 “
po

la
rim

te
r”

 V
I. 



195 
 

 

References 

 

[1]  J. Kessler, Polarized electrons, Berlin Heidelberg New York: Springer-Verlag, 

1985.  

[2]  D. Bohm, Quantum theory, New York: Dover Publications, 1989.  

[3]  M. Auzinsh, D. Budker and S. Rochester, Optically Polarized Atoms, New York: 

Oxford University Press, 2010.  

[4]  L. Bergmann and C. Schaefer, Constituents of matter, Berlin New York: de 

Gruyter, 1997.  

[5]  O. Berger and J. Kessler, J. Phys. B, vol. 19, p. 3539, 1986.  

[6]  K. W. Trantham, M. E. Johnston and T. J. Gay, J. Phys. B, vol. 28, p. L543, 1995.  

[7]  R. A. Rosenberg, Top Curr Chem, vol. 298, p. 279, 2011.  

[8]  W. A. Bonner, M. A. van Dort and M. R. Yearian, Nature, vol. 258, p. 419, 1975.  

[9]  L. A. Hodge, F. B. Dunning, G. K. Walters, R. H. White and G. J. Schroepfer, 

Nature, vol. 280, p. 250, 1979.  

[10]  M. J. Alguard et al., Phys. Rev. Lett. , vol. 37, p. 1261, 1976.  

[11]  C. Y. Prescott et al., Phys. Letters B, vol. 77, p. 347, 1978.  

[12]  C. Y. Prescott et al., Phys. Letters B, vol. 84, p. 524, 1979.  

[13]  D. T. Pierce, Physica Scripta., vol. 38, p. 291, 1988.  



196 
 

 

[14]  R. Feder, Polarized electrons in surface physics, Singapore: World Scientific, 1985.  

[15]  I. Zutic, J. Fabian and S. Das Sharma, Rev. Mod. Phys., vol. 76, p. 323, 2004.  

[16]  D. Johnson, N. B. Brookes, S. L. Hulbert, R. W. Klaffky, N. V. Smith, R. J. 

Celotta, M. H. Kelly, D. T. Pierce, B. J. Waclawski and M. R. Howells, Rev. Sci. 

Instrum, vol. 63, p. 1902, 1992.  

[17]  J. B. Pendry, Phys. Rev. Lett., vol. 45, p. 1356, 1980.  

[18]  J. Unguris, A. Seiler, J. Celotta, D. T. Pierce, P. D. Johnson and N. V. Smith, Phys. 

Rev. Lett. , vol. 49, p. 1047, 1982.  

[19]  J. Kirschner, D. Rebenstorff and H. Ibach, Phys. Rev. Lett., vol. 53, p. 698, 1984.  

[20]  E. Bauer, Rep. Prog. Phys., vol. 57, p. 895, 1994.  

[21]  P. Dey and W. Weber, J. Phys.: Condens. Matter, vol. 23, p. 473201, 2011.  

[22]  Y. Lassailly, H. J. Drouhin, A. J. van der Sluijs, L. G and C. Marliere, Phys. Rev. B, 

vol. 50, p. 13054, 1994.  

[23]  M. Plihal, D. L. Mills and J. Kirschner, Phys. Rev. Lett., vol. 82, p. 2579, 1999.  

[24]  R. J. Celotta and D. T. Pierce, Adv. At. Mol. Phys., vol. 16, p. 101, 1980.  

[25]  T. J. Gay, Adv. At. Mol. Phys., vol. 57, p. 157, 2009.  

[26]  D. T. Pierce, F. Meier and P. Zurcher, Appl. Phys. Lett., vol. 26, p. 670, 1975.  

[27]  D. T. Pierce and F. Meier, Phys. Rev. B, vol. 13, p. 5484, 1976.  

[28]  H. M. Al-Khateeb, B. G. Birdsey, T. C. Bowen, A. S. Green and M. E. Johnston, 

Rev. Sci. Instrum., vol. 70, p. 3882, 1999.  



197 
 

 

[29]  H. Batelaan, A. S. Green, H. A. Hitt and T. J. Gay, Phys. Rev. Lett., vol. 82, p. 

4216, 1999.  

[30]  M. A. Rosenberry, H. Batelaan, J. P. Reyes and T. J. Gay, "Progress with optically 

pumped sources of polarized electrons," AIP Conf. Proc. , vol. 604, p. 264, 2002.  

[31]  F. C. Tang, M. S. Lubell, K. Rubin, A. Vasilakis, M. Eminyan and J. Slevina, Rev. 

Sci. Instrum., vol. 57, p. 3004, 1986.  

[32]  J. W. Maseberg and T. J. Gay, J. Phys. B., vol. 39, p. 4861, 2006.  

[33]  M. J. Alguard, J. E. Clendenin, R. D. Ehrlich, V. W. Hughes, J. S. Ladish, M. S. 

Lubell, K. P. Schüler, G. Baum, W. Raith, R. H. Miller and W. Lysenko, Nucl. 

Instrum. Methods, vol. 163, p. 29, 1979.  

[34]  U. Fano, Phys. Rev., vol. 131, p. 178, 1969.  

[35]  W. von Drachenfels, U. T. Koch, T. M. Müller, W. Paul and S. H. R, Nucl. 

Instrum. Methods, vol. 140, p. 47, 1977.  

[36]  P. F. Wainwright, M. J. Alguard, G. Baum and M. S. Lubell, Rev. Sci. Instrum. , 

vol. 49, p. 571, 1978.  

[37]  N. Muller, W. Eckstein and W. Heiland, Phys. Rev. Lett., vol. 29, p. 1651, 1972.  

[38]  E. Kisker, G. Baum, A. H. Mahan, W. Raith and B. Reihl, Phys. Rev. B, vol. 18, p. 

2256, 1978.  

[39]  M. V. McCusker, L. L. Hatfield and G. K. Walters, Phys. Rev. Lett. , vol. 21, p. 

817, 1969.  

[40]  P. J. Keliher, R. E. Gleason and G. K. Walters, Phys. Rev. A, vol. 11, p. 1279, 1975.  



198 
 

 

[41]  G. Rutherford, J. M. Ratliff, J. G. Lynn, F. B. Dunning and G. K. Walters, Rev. Sci. 

Instrum., vol. 61, p. 1460, 1990.  

[42]  T. J. Gay, private communication.  

[43]  M. V. McCusker, L. L. Hatfield and G. K. Walters, Physical Review A, vol. 5, p. 

177, 1972.  

[44]  P. G. Burke and H. M. Shey, Phys. Rev. , vol. 126, p. 163, 1962.  

[45]  G. F. Drukarev and V. D. Ob'edkov, Sov. Phys. Usp., vol. 22, p. 236, 1979.  

[46]  P. S. Farago and H. Siegmann, Phys. Lett., vol. 20, p. 279, 1966.  

[47]  D. M. Campbell, H. M. Brash and P. S. Farago, Proc. R. Soc. Edinb. A, vol. 70, p. 

15, 1971.  

[48]  R. J. Krisciokaitis and Wu-Yang Tsai, Nucl. Instrum. Methods, vol. 83, p. 45, 1970.  

[49]  R. Krisciokaitis-Krisst and W. K. Peterson, Nucl. Instrum. Methods, vol. 118, p. 

157, 1974.  

[50]  K. Aulenbacher et al., Nucl. Instrum. Methods. Phys. Res. Sect. A, vol. 391, p. 498, 

1997.  

[51]  A. Kastler, J. Phys. Radium, vol. 11, p. 255, 1950.  

[52]  G. Breit and I. I. Rabi, Phys. Rev., vol. 38, p. 2082, 1931.  

[53]  L. W. Anderson and T. Walker, Nucl. Instrum. Meth. A, vol. 316, p. 123, 1992.  

[54]  M. Tanaka, Y. Takahashi, T. Shimoda, M. Yosoi, K. Takahisa and Y. A. Plis, Rev. 

Sci. Instrum., vol. 79, p. 02B308, 2008.  



199 
 

 

[55]  W. Happer, Rev. Mod. Phys., vol. 44, p. 169, 1972.  

[56]  T. G. Walker and W. Happer, Rev. Mod. Phys., vol. 69, p. 629, 1997.  

[57]  I. I. Fabrikant, private communication, 2011.  

[58]  E. S. Hrycyshyn and L. Krause, Can. J. Phys., vol. 48, p. 2761, 1970.  

[59]  M. A. Rosenberry, J. P. Reyes, D. Tupa and T. J. Gay, Phys. Rev. A, vol. 75, p. 

023401, 2007.  

[60]  Z. Wu, M. Kitano, W. Happer, M. Hou and J. Daniels, Phys. Rev. A, vol. 49, p. 

3854, 1994.  

[61]  J. P. Reyes, Master's thesis, University of Nebraska-Lincoln, 2005.  

[62]  T. J. Walker, J Phys Conf Ser. , vol. 294, p. 012001, 2011.  

[63]  B. Bederson and L. J. Kieffer, Rev. Mord. Phys., vol. 43, p. 601, 1971.  

[64]  E. B. Norrgard, D. Tupa, J. M. Dreiling and T. J. Gay, Phys. Rev. A , vol. 82, p. 

033408, 2010.  

[65]  E. Dennison, "Magnet Formulas," 2005. [Online]. Available: 

http://www.netdenizen.com/emagnet/solenoids/thinsolenoid.htm. [Accessed 19 

April 2013]. 

[66]  D. J. Griffiths, Introduction to Electrodynamics, Boston: Addison-Wesley, 2012.  

[67]  Granville-Phillips, Series 307 Vacuum Gauge Controller Instruction Manual, 

Boulder: Granville-Phillips, 1994.  

[68]  T. G. Anderson, B. G. Birdsey, S. M. Woeher, M. A. Rosenberry and T. J. Gay, 



200 
 

 

Rev. Sci. Instrum. , vol. 72, p. 2923, 2001.  

[69]  K. W. Trantham, T. J. Gay and R. J. Vandiver, Rev. Sci. Instrum., vol. 67, p. 4103, 

1996.  

[70]  T. Fischer and J. Kessler, Rev. Sci. Instrum., vol. 66, p. 4885, 1995.  

[71]  E. T. Litaker, J. R. Machacek and T. J. Gay, Eur. J. Phys., vol. 32, p. 1107, 2011.  

[72]  J. H. Moore, C. C. Davis, M. A. Coplan and S. C. Greer, Building Scientific 

Apparatus, Cambridge: Cambridge University Press, 2009.  

[73]  O. W. Richardson, Thermionic Emission from Hot Bodies, Palm Springs: Wexford 

College Press, 2003.  

[74]  P. D. Burrow, private communication, 2013.  

[75]  J. B. Baker and G. B. Gaines, "Evaluation of electron-emission behavior for 

detecting carbon in tungsten and rhenium," Battelle Memorial Institute, Columbus, 

1963. 

[76]  K. Aflatooni, private communication, 2010.  

[77]  "WebElements," 1993-2012. [Online]. Available: 

http://www.webelements.com/compounds/rubidium/dirubidium_oxide.html. 

[Accessed 13 8 2013]. 

[78]  Science Lab Chemicals and Laboratory Equipment, "ScienceLab.com," 2012. 

[Online]. Available: http://www.sciencelab.com/msds.php?msdsId=9927187. 

[Accessed 2013]. 

[79]  T. J. Gay, M. C. Fritts, J. E. Furst, M. A. Khakoo and E. R. Mell, J. Vac. Sci. 



201 
 

 

Technol. A, vol. 12, p. 2903, 1994.  

[80]  J. H. Moore, C. C. Davis, M. A. Coplan and S. C. Greer, Building Scientific 

Apparatus, Cambridge: Cambridge University Press, 2009.  

[81]  S. J. Seltzer, Ph.D. thesis, Princeton University , 2008.  

[82]  W. Happer, in Advances in Atomic and Molecular Physics, Academic Press, 1988.  

[83]  E. B. Norrgard, Honor's thesis, 2010.  

[84]  A. Ueno, K. Takasaki, K. Ogura, Y. Wakuta, I. Kumabe, K. O-Ohata, Y. Mori and 

S. Fukumoto, Nucl. Instrum. Meth. A, vol. 262, no. 2-3, pp. 170-178, 1987.  

[85]  P. Siddons, "Absorption and dispersion profile simulation for Rb D1 Line," 2008. 

[Online]. Available: http://massey.dur.ac.uk/resources/psiddons/absdisD1.nb. 

[Accessed 2013]. 

[86]  P. Siddons, Ph.D. thesis, Durham, UK: University of Durham, 2011.  

[87]  C. B. Alcock, V. P. Itkin and M. K. Horrigan, Can. Metall. Quart., vol. 23, p. 309, 

1984.  

[88]  T. J. Gay, J. Phys. B, vol. 16, p. L553, 1983.  

[89]  H. G. Berry, G. Gabrielse and W. E. Livingston, Appl. Opt. , vol. 16, p. 3200, 1977.  

[90]  K. Bartschat, B. K, G. F. Hanne and J. Kessler, J. Phys. B, vol. 14, p. 3761, 1981.  

[91]  M. Pirbhai, D. M. Ryan, G. Richards and T. J. Gay, Rev. Sci. Instrum. , vol. 84, p. 

053113, 2013.  

[92]  A. B. Wedding, A. G. Mikosza and J. F. Williams, JOSA A, vol. 8, p. 1729, 1991.  



202 
 

 

[93]  J. E. Furst, W. M. K. P. Wijayaratna, D. H. Madiosn and T. J. Gay, Phys. Rev. A, 

vol. 47, p. 3775, 1993.  

[94]  J. W. Maseberg, Ph.D. thesis, University of Nebraska - Lincoln, 2009.  

[95]  P. A. Hayes, D. H. Yu, J. Furst, M. Donath and J. F. Williams, J. Phys. B, vol. 29, 

p. 3989, 1996.  

[96]  I. C. Ruset, Ph.D. thesis, University of New Hampshire, 2005.  

[97]  N. C. M. Bartlett, J. Jankunas, R. N. Zare and J. A. Harrison, Phys. Chem. Chem. 

Phys., vol. 12, p. 15689, 2010.  

[98]  V. I. Balykin, Opt. Commun., vol. 33, p. 31, 1979.  

[99]  "Meadowlark Optics," 2006. [Online]. Available: 

http://www.meadowlark.com/retarders.php?pg=ret. [Accessed 30 9 2013]. 

[100]  E. Collett, Polarized Light: Fundamentals and Applications, Worldwide: CRC 

Press, 1992.  

[101]  "Optical pumping of the polarized H- ion source at LAMPF," in Accelerator 

Science and Technology Conference Record , San Francisco, IEEE, 1991, p. 1931. 

[102]  H. G. Dehmelt, Phys. Rev., vol. 109, no. 2, p. 381, 1958.  

[103]  G. G. Raju, Gaseous Electronics, Boca Raton: CRC Press, 2006.  

[104]  S. Appelt, A. Ben-Amar Baranga, C. J. Erickson, M. V. Romalis, A. R. Young and 

W. Happer, Phys. Rev. A, vol. 58, p. 1412, 1998.  

[105]  A. Corney, Atomic & Laser Spectroscopy, Oxford: Oxford University Press, 1978.  



203 
 

 

[106]  S. J. Seltzer and M. V. Romalis, J. Appl. Phys., vol. 106, p. 114905, 2009.  

[107]  D. A. Steck, 

"http://george.ph.utexas.edu/~dsteck/alkalidata/rubidium87numbers.pdf," 2 5 2008. 

[Online]. Available: 

http://george.ph.utexas.edu/~dsteck/alkalidata/rubidium87numbers.pdf. [Accessed 

24 8 2013]. 

[108]  O. Svelto, Principles of lasers, New York: Springer, 2010.  

[109]  S. Liu, Y. Zhang, D. Fan, H. Wu and P. Yuan, Applied Optics, vol. 50, p. 1620, 

2011.  

[110]  S. G. Redsun, R. J. Knize, G. D. Cates and W. Happer, Phys. Rev. A, vol. 42, p. 

1293, 1990.  

[111]  J. M. Warman and M. C. Sauer, J. Chem. Phys., vol. 62, p. 1971, 1975.  

[112]  R. E. Johnson, Introduction to atomic and molecular collisions, New York: Plenum 

Press, 1982.  

[113]  D. Tupa and L. W. Anderson, Phys. Rev. A, vol. 36, p. 2142, 1987.  

[114]  B. Chann, E. Babcock, L. W. Anderson, T. G. Walker, W. C. Chen, T. B. Smith, A. 

K. Thompson and T. R. Gentile, J. Appl. Phys. , vol. 94, p. 6908, 2003.  

[115]  W. Blum, W. Riegler and L. Rolandi, Particle detection with drift chambers, New 

York City: Springer, 2008.  

[116]  J. A. Simpson, Rev. Sci. Instr., vol. 29, p. 701, 1958.  

[117]  G. F. Derbenwick, D. T. Pierce and W. E. Spicer, in Methods of experimental 



204 
 

 

physics, V.11, New York, Academic Press , 1974, p. 67. 

[118]  Y. Cui, Y. Zou, A. Valfells, M. Reiser, M. Walter, I. Haber, R. A. Kishek, S. 

Bernal and P. G. O'Shea, Rev. Sci. Instrum. , vol. 75, p. 2736, 2004.  

[119]  "Kas'yanenko, D; Louksha, O; Sominski, G; Piosczyk, B; Thumm, M," in 

Proceedings of displays and vacuum electronics, Berlin, VDE Verlag GMBH, 

2004, p. 81. 

[120]  Y. Itikawa, J. Phys. Chem. Ref. Data, vol. 35, p. 32, 2006.  

[121]  A. Bogaerts, Spectrochim. Acta, Part B, vol. 64, p. 126, 2009.  

[122]  Y. Itikawa, Molecular processes in plasmas, Berlin Heidelberg New York: 

Springer-Verlag, 2007.  

[123]  A. Mozumber, Fundamentals of radiation chemistry, San Diego: Academic Press, 

1999.  

[124]  C. B. Opal, E. C. Beaty and W. K. Peterson, At. Data. Nucl. Data Tables, vol. 4, p. 

209, 1972.  

[125]  C. B. Opal, W. K. Peterson and E. C. Beaty, J. Chem. Phys., vol. 55, p. 4100, 1971.  

[126]  W. Blum and L. Rolandi, Particle detection with drift chambers, Berlin Heidelberg: 

Springer-Verlag, 1993.  

[127]  G. J. Schultz, Phys. Rev, vol. 125, p. 229, 1962.  

[128]  M. Allan, J. Phys. B, vol. 18, p. 4511, 1985.  

[129]  M. A. Biondi, Adv. Electron. El. Phys., vol. 18, p. 67, 1963.  



205 
 

 

[130]  "Liu, J; Raju, R G," JFI, vol. 329, p. 181, 1992.  

[131]  W. Hwang, Y. K. Kim and M. E. Rudd, J. Chem. Phys., vol. 104, p. 2956, 1996.  

[132]  R. G. W. Norrish and W. MacF.Smith, Proc.Roy.Soc.London, vol. A176, p. 295, 

1940.  

[133]  D. A. Steck, 19 9 2012. [Online]. Available: 

http://steck.us/alkalidata/rubidium85numbers.pdf. [Accessed 2 6 2013]. 

[134]  Y. Kim, W. R. Johnson and M. E. Rudd, Phys. Rev. A, vol. 61, pp. 034702-1, 2000.  

 

 

 

 

 

 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 12-6-2013

	Optically-pumped spin-exchange polarized electron source
	Munir Pirbhai

	Cover
	Thesis-MHP
	1.2.1 Atomic and molecular physics
	1.2.2 Nuclear physics
	1.2.3 Surface physics
	1.3.1 Photoemission from gallium arsenide (GaAs)
	1.3.2 Photoionization of polarized atoms by unpolarized light
	1.3.3 Photoionization of unpolarized atoms by circularly polarized light (Fano effect)
	1.3.4 Field emission from ferromagnetic europium sulfide (EuS) on tungsten
	1.3.5 Chemi-ionization of optically-oriented metastable helium
	1.3.6 Spin-exchange collisions with oriented atoms
	2.2.1 Pump optics
	2.2.2 Probe optics
	2.2.3 Vacuum system
	2.2.4 Electromagnets
	2.2.5 Source
	2.2.6 Electron optical polarimeter
	4.1.1 Origin of the electron-spin reversal phenomenon
	4.1.2 Experimental setup
	4.1.3 Results
	4.6.1 Retarding field analysis of incident electron beams
	4.6.2 Effect of incident energy on electron polarization


