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 Extensive search for new magnetic materials free of critical rare-earth elements or 

expensive platinum suitable for technology or energy-applications is one of the main 

factors driving today’s research in magnetism. Development of these new materials is 

often hindered by conventional bulk-synthesis techniques which result in phase mixtures 

or poor magnetic properties. This dissertation focusses on this problem by investigating 

an alternate approach to fabricate nanoclusters of magnetic materials using an inert-gas-

condensation cluster-deposition method, and analyzing their potential for magnetic 

applications. Nanoclusters of hard-magnetic Zr2Co11 were studied which have relatively 

high magnetocrystalline anisotropy as required for permanent-magnet applications. The 

Zr2Co11 nanoclusters exhibit high coercivity at room temperature, high magnetization and 

a high-energy product of 16.6 MGOe. When combined with a soft Fe-Co phase, the 

energy product rises to 19.5 MGOe. In-situ magnetic alignment of these nanoclusters is 

also demonstrated, which enhances the remanent magnetization and energy product. 

Mn5Si3 and Fe5Si3 nanoclusters also were studied and high surface spin polarization was 

demonstrated for these materials resulting in novel magnetism such as, high 

magnetization and Curie temperature at the nanoscale compared to bulk. These materials 

show lattice-matching with semiconductors and high spin-polarization, which suggest 

further studies of these nanoclusters in the context of spintronics as potential spin-

injectors. 
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1 CHAPTER 1. INTRODUCTION 
 

 

1.1 Introduction to New Magnetic Materials and Nanoscale Magnetism 

 

1.1.1 Objective: New Magnetic Materials 

 

Magnetic materials play key roles in next-generation technologies including advanced 

electronic devices and mechanical applications such as motors and wind turbines. 

However, due to ever-increasing demand of magnets and limited resource of critical rare-

earth elements it is necessary to design new magnetic materials free of rare-earth and/or 

expensive elements (e.g. Pt, Pd, etc.).[1,2] This rapidly growing demand for permanent 

magnets has led to renewed interest in alternative Co- or Fe-rich transition-metal alloys 

without rare-earth elements, but the synthesis and applications of compounds in this 

category remains a challenge due to their metastable nature as shown by bulk phase 

diagrams.[3-7] Alloys of transition metals are potential candidate for magnetic materials 

with superior magnetic properties due to their electronic structure.[8,9] Few of these 

alloys possess non-cubic crystal structure essential for high magnetocrystalline 

anisotropy, a key requirement for permanent magnetism as will be discussed later. In this 

regard, the Co-rich intermetallic Zr2Co11 compound crystalizing in rhombohedral or 

orthorhombic structure exhibits high magnetocrystalline anisotropy (K1  20 Mergs/cm3) 

and Curie temperature (Tc  650 K) suitable for permanent magnets.[3,10,11] For 

spintronics applications, Si-based magnetic alloys have gained attention in recent years 

due to their potential applications in semiconductor nano-electronics.[12-14] Mn5Si3 and 

Fe5Si3 are two of such alloys which exhibit a hexagonal structure and hence high 
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anisotropy is possible which helps to obtain thermal stability for potential device 

applications.[15,16]  

The alloys discussed above are predicted and/or partially shown to exhibit 

promising magnetic properties suitable for high temperature magnetic and spintronics 

applications and hence are interesting to be studied in detail to understand the spin-

physics.[17,18] 

1.1.2 Advantages of Nanoclusters over Bulk 

 

New magnetic materials often are in binary-alloy phases which are metastable, i.e. exist 

in a narrow composition range, and/or require very high temperatures (700 – 1200 °C) for 

fabrication and stabilization.[7,11,19] For this reason, conventional equilibrium synthesis 

methods usually lead to impurity phases or an entirely different phase from the one with a 

desired crystal structure. Non-equilibrium bulk synthesis such as rapid quenching, or 

chemical synthesis methods might be useful in this process but they may also require 

very high temperatures or involve multiple steps to prepare the magnetic alloys with high 

purity.  

 Fabrication of nanoclusters, which is described in detail in the next chapter, 

involves a single-step deposition process without use of high temperature melting and 

gives unique control over phase purity and crystalline ordering. This is a non-equilibrium 

process which also provides an opportunity to align uniaxial nanoclusters along their 

easy-axis prior to deposition by applying an external magnetic field (details will be 

discussed in a later section) which is difficult or not possible for bulk synthesis. Hence, 

non-equilibrium nanocluster synthesis has emerged as a superior and effective alternative 
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for fabrication of new and/or metastable magnetic materials, and it also provides an 

intriguing opportunity to study the spin-physics and riveting properties of magnetism at 

the nanoscale. 

1.1.3 Prospects for Nanoscale Magnetism 

 

Recently, nanoclusters of sizes ≤ 10 nm have been highlighted for their outstanding 

magnetic properties making them suitable for modern applications.[20,21] These 

nanocluster building blocks are capable of exploiting the nanoscale effects such as 

quantum confinement effects on electron spins and surface effects and to improve the 

magnetic properties beyond their bulk limitations.[22-26] Due to increased surface-to-

volume ratio of the nanoclusters compared to that of larger grains of bulk, spin-structures 

at the nanocluster surfaces are modified and often result in large spin-polarization at the 

surface due to the low co-ordination number. This leads to high average magnetization of 

the nanocluster which increases with a decrease of the nanocluster-size and also 

influences weak ferromagnets or antiferromagnets to exhibit a net magnetization.[27,28] 

 Nanoscale effects also drive the enhancement of permanent-magnet properties 

and magnetic anisotropy which can be manipulated by the domain size and 

magnetocrystalline easy-axis orientation. Usually, the small size of nanoclusters helps to 

accommodate only a single or small number of ferromagnetic domains which results in 

high coercivity. Magnetic alignment of the uniaxial easy-axis of nanoclusters along the 

applied field direction leads to high remanent magnetization and good permanent-magnet 

properties. Furthermore, nanocomposites of hard-soft magnetic materials are a new 

pathway for obtaining strong permanent magnets which can be tailored by high-
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anisotropy nanoclusters using the magnetic alignment and tuned nanostructuring of the 

hard and soft magnetic materials.[29,30] This thesis discusses synthesis and analysis of 

such high-anisotropy magnetic nanoclusters and evaluates their unique spin-structures 

and magnetic properties for practical applications in modern technologies. 

 

1.2 Theoretical Background of Magnetic Properties  
 

1.2.1 Atomic Origin of Magnetism 

Magnetism in solids results mainly from to the electronic orbital and spin motion in an 

atom.  

 

Figure 1.2.1. Angular (L) and Spin (S) moment with the respective magnetic 

moments (µL) and (µS) of an electron rotating around nucleus. 
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Figure 1.2.1 shows the electron motion around nucleus and the corresponding 

orbital and spin moments. Orbital and spin magnetic moments due to the electron motion 

is expressed through equations 1.1 and 1.2 respectively.[31]  

                          𝜇𝐿 =  −
e

2me
𝐿 = −

eħ

2me
√𝑙(𝑙 + 1)                                               1.1 

                           𝜇𝑆 =  −
e

2me
𝑆 = −

eħ

2me
√𝑠(𝑠 + 1)                                             1.2 

Here, me is the electron mass, l and s are orbital and spin quantum number 

respectively, and ħ is h/2π where h is Planck’s constant. Total angular momentum can be 

considered as the sum of orbital and spin moment which reduces to the equation 1.3 of 

effective magnetic moment μf. 

                                           𝜇𝑓 = g
eħ

2me
√𝑗(𝑗 + 1)                                                 1.3 

Here, j is the total magnetic quantum number, and g is a constant known as Landé 

g factor.[31,32] Magnetic moment of a single electron (orbital or spin) is generally 

written as Bohr magnetron μB = 
eħ

2me
. 

According to Pauli’s exclusion principle, only a pair of up and down spins can 

occupy a single state and hence most of the filled orbital have zero contribution to the 

spin moment. Thus, only orbitals with partially filled spin states are important for 

magnetic moment or magnetization of an element. This is the reason for transition metals 

to contribute to magnetic moment because of the unfilled d – orbitals present in those 

elements which have unpaired spin states. For these elements, unpaired states of electron 
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can vary from 1 to 5 leading to as high as 5 µB of magnetic moment per atom. But, for a 

crystallized alloy, atomic orbitals are shared between the consisting atoms which result in 

much lower values for the average magnetic moment.[8] For a single-crystal nanocluster, 

the spin-structure at the surface becomes more complicated compared to the bulk which 

leads to a different average value of the magnetic moment than the bulk crystal, which 

stimulates more research on nanoscale magnetism.[8,12] In this study, the magnetic 

moments (magnetization) of transition-metal-based magnetic alloys will be discussed 

with experimental results and theoretical calculations for nanoscale and bulk materials. 

1.2.2 Ferromagnetism and Hysteresis 

 

Ferromagnetism is the material property in which a spontaneous magnetization exists 

even in the absence of any applied magnetic field. Usually, regions inside such materials 

form domains in which all spins point along same direction. In case of single crystalline 

ferromagnetic nanoclusters, each cluster can be regarded as a single domain. For a 

ferromagnet in applied magnetic field B the Hamiltonian can be written as, 

                                         H ij i j B j

ij j

J S S g S B                                                   1.4 

Here, Jij is called the exchange constant between the nearest neighbor atoms 

which is positive in the case of ferromagnets.[32] The first term on the right is the 

Heisenberg exchange energy and the second term on the right is the Zeeman energy. 

Magnetization of a ferromagnet varies with applied magnetic field and undergoes 

nonlinear transitions and the associated curve is known as the hysteresis loop. Figure 



7 
 

1.2.2 shows a typical hysteresis loop observed in ferromagnets. Each segment of the 

curve is significant from the viewpoint of spin orientations of the magnetic domains. 

  

Figure 1.2.2. An example of ferromagnetic hysteresis loops showing different 

magnetic quantities relevant to a ferromagnet.[33] 

 
 

At zero applied field, all moments are random and create a net magnetization zero 

which is at the origin of the curve and the magnet is in the virgin state. An increasing 

positive applied field begins to align the moments along that direction following the 

initial magnetization curve starting from the origin. The mechanism of magnetization 

affects the shape of this curve. Typically, a concave-up curvature indicates a pinning 

mechanism and concave-down indicates nucleation or rotation. Note that, pinning is 

defined as locking the motion of the rotation of the magnetic spins (domain-wall-motion) 

while nucleation relates to the easy-rotation of the spins.[8] At the saturation field, the 

magnet becomes saturated with the magnetization M = Ms defined as saturation 

magnetization signifying that all moments are aligned with the applied field. While 
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reducing the magnetic field, the aligned spins rotate back and at a particular field called 

the nucleation field (HN) the magnetization starts to decrease which denotes the knee 

region of the curve. At zero field the magnitude of magnetization retained is known as the 

remanent magnetization (Mr). The nonlinear behavior of the curve is defined by the slope 

dM

dH
   and is termed the magnetic susceptibility. For the negative field the moments 

rotate into the reverse direction and at the coercive field Hc, the averaged moments result 

in zero magnetization. Further increasing the field along the negative direction gradually 

saturates the magnet in the fully reversed state. The whole process from negative field 

back to positive saturation reverses a symmetrical curve as shown in the Fig. 1.2.2. This 

full cycle of the hysteresis spends energy equal to the area under the curve and usually is 

dissipated as thermal energy. 

1.2.3 Magnetocrystalline Anisotropy 

 

The crystallographic easy axis is defined by the preferable direction with respect to the 

lattice plane directions along which the magnetization tends to align. Crystals with a 

unique easy axis are called uniaxial crystals and the anisotropy is known as uniaxial 

anisotropy and is often seen in materials with non-cubic crystal structures such as, 

hexagonal or rhombohedral structure. The easy axis is generally along the c -axis of the 

unit cell and the magnetocrystalline anisotropy energy is expressed as, 

            2 4

0 1 2  sin sin ...E K K K                                                  1.5 

Here, θ is the angle between the magnetization direction and c -axis and Ki (i = 0, 1, 2…) 

are the anisotropy constants for different orders of the equation 1.5.[34] K0 is neglected 
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since it is not dependent on angle and if the easy axis is along the c -axis of the crystal, 

then for small angles, higher order terms are also negligible. Hence, only K1 is the 

important term for this kind of materials and known as the magnetocrystalline anisotropy 

constant which can be measured using various methods (discussed later). For K1 < 0, the 

basal plane of the crystal plane acts as the easy-plane instead of a definite easy-axis and 

the anisotropy in such cases is known as easy-plane anisotropy which is also seen in 

some non-cubic crystal structure such as hexagonal lattices.[35] Magnetocrystalline 

anisotropy arises due to spin-orbit coupling which is weak compared to the coupling of 

orbital motion to the lattice. Hence, if the external field induces rotation to the electron 

spin, the orbital moment also tends to be rotated and the energy required to break this 

spin-orbit coupling is referred as anisotropy energy which is basically expressed in 

equation 1.5 from which it is seen that the energy is proportional to K1 and hence a 

measure of this constant gives the strength of magnetocrystalline anisotropy present in 

the corresponding magnetic material.[34]  

1.2.4 Stoner-Wohlfarth Model 

 

A simple model to analyze the hysteresis of ferromagnetic materials with uniaxial 

anisotropy is to assume it as a system of non-interacting individual grains (or 

nanoclusters) and this is known as the Stoner-Wohlfarth model. For a single nanocluster, 

it can be regarded as a single-domain grain which has an easy axis at an angle θ with the 

applied field (H) direction. If ϕ is the angle between magnetization (M) and the applied 

field direction, then the average magnetic energy can be written as,[32] 

           2

1 0sin ( ) cosSE K HM                                                       1.6 
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Figure 1.2.3. Hysteresis loops for a system of randomly oriented non-interacting 

Stoner-Wohlfarth grains.[8] 

 

Figure 1.2.3 shows example of hysteresis for ideal Stoner-Wohlfarth type grains 

with randomly oriented easy axes which are isolated and non-interacting. It can be seen 

that, Mr = Ms/2 for this kind of granular or nanocluster systems. Here, Ha is the anisotropy 

field which is similar to Hc (or HN) for aligned nanoclusters which exhibit a perfect 

square type hysteresis. Using stability analysis, the energy in Eqn. 1.6 can be reduced to a 

simple relationship between Ha and K1 which is expressed as,   

                                              12
a

S

K
H

M
                                                                1.7 

This model helps to describe the magnetism of uniaxial nanoclusters which can be 

magnetically aligned and an estimate of magnetocrystalline anisotropy can be obtained 

using Eqn. 1.7.[17,32] 
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1.2.5 Exchange Interaction and Curie Temperature 

 

The exchange interaction is defined by the Coulomb repulsion of two neighboring 

electrons which, in case of ferromagnets, can happen intra-atomically and is stronger than 

inter-atomic interaction. According to Pauli’s exclusion principle two electrons with 

same spin cannot be in the same state. There is an energy difference between the 

interaction of two spin-up states of two neighboring atoms and the interaction between 

one spin-up and one spin-down state. In general, the total interaction energy for a lattice 

is expressed by the Heisenberg Hamiltonian written as,[8]  

        H 2 ij i j

i j

J S S


                                                        1.8 

Here, i and j define different lattice sites. In certain cases, the exchange term Jij in 

Eqn. 1.8 can be simplified to a single term J representing nearest-neighbor interactions. 

The exchange constant can be related to the Curie temperature of a ferromagnet in 

the context of Weiss law in molecular field theory. Curie temperature (Tc) of a 

ferromagnet is defined as the critical temperature above which the ferromagnet behaves 

as a paramagnet. The alignment of spins in a ferromagnet is broken at high temperatures 

where the thermal fluctuations in a lattice dominates over the exchange interaction 

between the spins. If the interaction between all the spins in a lattice is assumed to be a 

simple average interaction between only the nearest neighbor spins which can be 

regarded as an average molecular field, the model is called the mean-field approximation 

(MFA).[8]   
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Figure 1.2.4. Typical variation of magnetization with temperature for a 

ferromagnet. The vertical straight line indicates the Curie temperature.[36] 

 

Tc can be related to the exchange constant J through the MFA which is expressed 

in eqn. 1.9.[8,36] 

                   
  

C

B

z J
T

k


                                     1.9 

 Here, z is the number of the first neighbors and kB is the Boltzmann constant. 

Figure 1.2.4 shows the typical graph of variation of magnetization (normalized 

magnetization) with temperature for two systems with different exchange constants (J). 

For nanoclusters, often the spins at the surface of a cluster exhibit exchange interactions 

different from that observed in bulk crystal which gives rise to different value for J than 

the core or bulk as seen from the eqn. 1.8.[12] From theoretical simulations the value of J 
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can be obtained for ferromagnetic nanoclusters at the surface and the core which can be 

used in eqn. 1.9 to estimate the corresponding values for the Curie temperatures. This 

phenomenon can be used to understand nanoscale surface effects observed in many 

systems some of which are discussed in this dissertation.  

1.2.6 Energy Product 

 

Besides magnetic anisotropy and Curie temperature, the magnetic energy product is 

another magnetic quantity to determine the strength of a magnet and is the most 

important figure of merit to categorize permanent magnets. Maximum energy product is 

the total energy that can be stored in a magnet under a magnetic field and clearly it is 

related to the hysteresis of the ferromagnet as discussed in Section 1.2.2 only in this case 

it is important to deal with the magnetic flux density B which is the strength of the 

magnetization and is expressed as B = µ0 (H+M) [B = H+4πM in cgs units] where µ0 is 

the magnetic permeability of free space.[8,9,32]  

 

Figure 1.2.5. B vs H hysteresis loop for a ferromagnet showing the maximum energy 

product (BH)max.[37] 
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 Figure 1.2.5 exhibits a hysteresis loop for B vs applied field H.[37] The energy 

product is calculated as the maximum of the product of B and H in the second quadrant of 

this loop as shown by the box. In cgs units, maximum of BH = H2+4πMH results in a 

theoretical value of energy product (when the loop is square and Hc is large) of, 

                                  
2 2

theo

max

(4 )
( )

4 4

S SM J
BH


                                                1.10 

 Thus, the theoretical maximum energy product of a magnet cannot exceed the ¼ 

of square of its saturation magnetic polarization which indicates the necessity of large 

magnetization for high performance permanent magnets.[8] 

 

1.3 Magnetic Nanocomposites 

 

1.3.1 Hard and Soft Ferromagnets 

 

Ferromagnets are often categorized into three types: hard, soft, and semihard magnets, 

based on their coercivities. Ferromagnetic materials showing Hc of several kOe usually 

are hard magnetic since it requires a large reverse applied field to drive the magnetization 

to zero. Typically, Hc near 3 – 5 kOe or greater is called hard magnetic material. These 

are often alloy ferromagnets some of which are discussed in this dissertation. 

 Soft ferromagnets usually have very low or almost zero Hc but often exhibit high 

magnetization. Ferromagnetic metals like Fe or Co are known soft magnets. Usually the 

ferromagnetic domains in soft magnets follow nucleation motion without any pinning 
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which causes the spins to be rotated easily with the applied magnetic field. Fe65Co35 is an 

alloy soft magnet which has the highest magnetization among all known materials with a 

JS value of about 25 kG and often used as the soft phase in a composite magnet.[8] 

1.3.2 Hard-Soft Nanocomposite 

 

Due to comparatively low magnetization in the hard magnetic phase, the energy product 

of these magnetic materials often does not reach the values desired for high performance 

magnetic applications. One solution would be to combine the high Hc hard phase with 

high magnetization soft phase to obtain an optimum energy product. These kinds of 

composite magnets are known as exchange-spring magnets, a term coined by Kneller et 

al. in 1991.[38] In this paper, the idea was introduced and the mechanism involving the 

spin structure was explained.  

 

 

Figure 1.3.1. Schematic of exchange-spring magnet[39] 
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Figure 1.3.1 shows a schematic of exchange-spring magnet involving hard and 

soft magnetic phases. In such composites when a magnetic field is reversed from the 

saturation, the magnetization of the soft phase rotates with the field direction while the 

hard-phase magnetization remains in the initial saturation direction due to its high 

magnetocrystalline anisotropy. Hence, after removing the applied field, the soft phase 

magnetization rotates towards the direction of the magnetization of the hard phase which 

is basically due to the exchange interaction between the hard and soft phases and this is 

the reason for the name “exchange-spring” for this configuration.[8,38,39] If the 

magnetic field is reversed to a high value enough to rotate the hard phase, the total 

magnetization of the system is reversed. 

 

 

Figure 1.3.2. Hysteresis of (a) perfectly exchange coupled and (b) poorly-coupled 

hard-soft composites magnet 
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 The hard and soft phases in a composite magnet should be perfectly exchange 

coupled for the coherent rotation of the magnetization. In the case of poor exchange-

coupling or no coupling, the soft phase magnetization rotates with the magnetic field 

freely while the hard phase magnetization does not change till the applied field exceeds 

the Hc. This results in two phase behavior in the hysteresis loop with a step. Figure 1.3.2 

(a) shows the hysteresis loop for a perfectly exchange coupled composite magnet which 

is similar to a single phase hard magnet. On the other hand, for poor exchange coupling 

showing steps in the hysteresis loop for the incoherent hard and soft phases is shown in 

Fig. 1.3.2 (b). The critical length of the soft phase required for perfect exchange coupling 

is less than about twice the length of Bloch wall width δh =   A/Kh.[38] A Bloch wall is 

defined as the region where the magnetization changes its value from one domain to the 

other and A and Kh are the exchange-stiffness constant and magnetic anisotropy constant 

of the hard phase respectively.[38,40,41] 

 Usually, the critical length discussed above is within the nanoscale region and 

producing perfectly exchange coupled magnets are not easy to prepare in bulk form. One 

solution could be embedding hard magnetic nanoclusters in a soft matrix or coat the hard 

clusters with the soft phase through controlled synthesis methods. Such, exchange-

coupled nanocomposites have potential to obtain high energy product if the hard phase 

has large uniaxial anisotropy. In this dissertation, magnetism of such nanocomposites is 

demonstrated using hard Zr2Co11 nanoclusters with Fe65Co35 soft magnetic phase. 
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1.4 Summary 

 

Magnetic nanoclusters are intriguing in the context of studying the magnetic properties 

described in this chapter. Nanoscale permanent magnets such as Zr2Co11 and their 

nanocomposites as building blocks for magnets with high energy products are interesting 

to investigate experimentally from the view point of practical applications. Nanoscale 

effects on spin structure of magnetic materials like Mn5Si3 may help to provide a pathway 

for developing technologies pertinent to spintronics and other devices. This dissertation 

discusses such magnetic properties at the nanoscale with detailed experimental 

observations and characterizations and, with the help of DFT calculations, and explains 

the new findings in terms of the physics of magnetism. 
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2 CHAPTER 2. EXPERIMENTAL PROCEDURES 
 

 

2.1 Cluster-Deposition Method 

 

2.1.1 Inert-Gas Condensation 

 

Inert-gas condensation method (IGC) is a bottom-up approach for nanocluster synthesis 

in which evaporated materials aggregate to form a cluster of atoms and each of these 

clusters is often regarded as a nanoparticle or a nanocluster. The gas-aggregation method, 

first developed by Haberland et al. is based on IGC and is widely used for gas-phase 

synthesis of nanoclusters. [1,2] It involves two important stages to synthesize 

nanoclusters which are, first, vaporizing the materials to form the gas phase and second, 

rapid condensation in a controlled manner to form nanoclusters of desired sizes. Using 

the gas-aggregation method, nanoclusters of different sizes can be fabricated ranging 

from few hundreds to several thousands of atoms per cluster. [1] The desired sizes can be 

obtained by optimizing several parameters and experimental conditions during the 

fabrication process. 

 Vaporization of the materials is usually performed by magnetron sputtering which 

involves bombarding the solid surface of the target with high-velocity ions of an inert gas 

to eject atoms from the surface. The target is made to the desired composition in two 

ways: (a) alloying stoichiometric elements, and (b) inserting pellets of a second element 

into a disk of another constituent element on the sputtering race-track as shown in Fig. 
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2.1.1. The race-track is a circular shell on the target with maximum probability of 

sputtering.  

 

Figure 2.1.1. Schematic of a composite target showing the target material (element 1 

such as Co, Fe or Si), pellets or plug inserts (element 2 such as Zr, Mn etc.) and the 

sputtering race-track. 

 

 

The schematic of the cluster-deposition system is shown in Fig. 2.1.2 which has 

three major sections. First, a DC magnetron sputtering chamber capable of sputtering 

from a 3 -inch target. Second, a gas-aggregation chamber with a fluid jacket to cool and 

maintain the temperature of the walls and, third, a deposition chamber containing a 

substrate and a rotatable substrate holder. The effective volume of the aggregation 

chamber can be varied by moving the magnetron holder using a screw-rail linear actuator 

and can be used as a parameter for cluster deposition. 
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Figure 2.1.2 Cluster deposition system showing three distinct stages of the 

nanoclusters fabrication process. 

 

 

The inert gas used in the sputtering process is a mixture of argon and helium, 

where Ar acts as the sputtering gas by producing high-energy ions and the He helps as a 

carrier fluid of the sputtered atoms to travel into the nucleation chamber and maintains a 

uniform temperature in the aggregation process and hence acts as one of the parameters 

to control the nanocluster size. The ionization gas near the magnetron is exposed to very 

high electric field by application of high-voltage (DC) from external power source. This 

helps to ionize the gas which, along with the sputtered material-atoms and electrons, form 

a plasma near the surface of the target which also acts as one of the electrode. The 

magnetic field of the magnetron, arising from a pair of strong circular-cylindrical 

magnets behind the target, helps to confine the plasma within a small region near the 
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race-track to ensure large number of collisions and ejection of more atoms. During the 

sputtering process the gas pressure in the chamber is typically 1 – 10-1 torr while the 

pressure in the deposition chamber lies in the range 10-3 – 10-4 torr. Due to differential 

gas pressure between the chambers, the ejected atoms travel into the cold aggregation 

chamber which is cooled either using liquid N2 (-130° C) or water depending on the 

experimental requirements. The neutral inert-gas atoms collide with the ejected-material 

atoms and absorb their energy; on the other hand, the inert-gas atoms lose energy by 

coming in contact with the cold aggregation chamber. This leads to formation of 

nucleation center by bonding between the material atoms which eventually grows to form 

a nanocluster. [3] Using very high sputtering-power (typically in the range between 150 – 

250 Watts depending on the target material), the material atoms can be excited to very 

high energy which is absorbed in the gas-aggregation chamber during the above-

mentioned collision process and this leads to rapid change in thermal energy during the 

formation of the nucleation center. This non-equilibrium process leads to direct 

crystallization similar to rapid thermal annealing and helps to obtain nanoclusters with a 

high degree of atomic ordering.[4]  The amount of nanoclusters produced, their size and 

size distribution can be controlled by varying the different parameters such as flow rate of 

sputtering gas, volume of the gas-aggregation chamber, applied voltage or power in the 

magnetron and temperature of the aggregation chamber. 

The flow rate of the sputtering gas (Ar) is usually measured in the units of SCCM 

(standard cubic centimeter per minute) and can be controlled using a gas flow controller. 

The higher flow rate of Ar ensures a high cooling rate which leads to formation of 
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nucleation sites in large numbers and hence more clusters with smaller sizes are obtained 

compared to smaller number of clusters having larger sizes formed due to lower flow rate 

of Ar. Also, the volume of the aggregation chamber plays key role in determination of the 

cluster-size by controlling the condensation environment. The size of the nanoclusters 

also decreases with reduction of the volume of the aggregation chamber due to a smaller 

number of collisions between the clusters and/or between the clusters and the atoms and 

vice versa. [5] The nanoclusters are drifted towards the deposition chamber by the 

differential gas pressure between the chambers through a small nozzle (diameter of about 

1 mm) opening at the end of the gas-aggregation chamber. The opening can be reduced or 

increased externally by using a rotator and this helps to control the gas pressure inside the 

aggregation chamber, keeping the flow rate constant which acts as a parameter for the 

number of nanoclusters to form and exit the aggregation chamber. 

2.1.2 Deposition of the Nanoclusters and Capping 

 

The nanoclusters produced in the gas-aggregation chamber are extracted as a collimated 

beam towards the deposition chamber as shown in the Fig. 2.1.2 and deposited on the 

substrate. The substrate(s) on the substrate holder is preloaded in the load lock chamber 

so that the load lock chamber can be evacuated first after which the substrate is 

introduced in the deposition chamber without disturbing vacuum of the rest of the system. 

Usually a single crystalline silicon (Si) substrate with (001) orientation was used for the 

X-ray diffraction and magnetometry studies. For transmission-electron-microscopy 

studies thin carbon coated copper grid was used as a substrate on which a very thin layer 

of the nanoclusters was deposited. Since the nanoclusters are more sensitive to total 
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oxidation due to high surface area (or high surface-to-volume ratio), the clusters were 

protected from the atmosphere using a capping layer of either carbon (graphite) or SiO2 

with a layer-thickness of about 5 nm using a RF magnetron gun employed in the 

deposition chamber. The rotatable substrate holder helps in this step to expose the 

deposited nanoclusters towards the beam of capping material. The deposition chamber is 

also equipped with a DC sputtering gun capable of holding a 2 -inch target which can be 

used to deposit thin films of metallic materials for different purposes like creating 

metallic buffer layers or making nano-composites which will be discussed in later 

sections. The mass or the nominal thickness of the deposited nanocluster films on the 

substrates is measured using a quartz-crystal thickness monitor which can also be used to 

measure the nominal thickness of the cap layer or metal films (if necessary).  

 

2.2 Synthesis of Bulk Magnetic Materials 

 

Preparation of bulk magnetic alloys involves two major processes. At first, 

stoichiometrically weighed high-purity elements are melted in an argon atmosphere using 

arc-melting furnace. The melting is done repeatedly (about 4 times) to get 

homogeneously mixed ingots. The weight loss after melting is less than 0.5% in each 

composition of materials. In the second step, the arc-melted ingots are placed in a quartz 

crucible with an orifice of 0.5 – 0.75 mm and melted again using an induction furnace in 

argon atmosphere. The melt of the ingot is shot at high pressure through the orifice onto a 

water-cooled copper wheel rotating at a desired speed in the range of 22 - 57 m/s which 
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Figure 2.2.1. Melt-spinning method to synthesize bulk ribbons of alloys  

 

 

forms ribbons of the materials as shown in Fig. 2.2.1, and the ribbons are collected in a 

chamber kept at room temperature. This method promotes rapid quenching which is a 

necessary step to form metastable phases using a non-equilibrium method. The phase, 

composition and magnetic properties of the ribbons or their mechanically milled powders 

are investigated using various analytical instruments mentioned in the following section. 

 

2.3 X-Ray Diffraction Method 

 

X-ray diffraction of nanocluster films and of the bulk samples were performed using 

Rigaku (D/MaxB) X-ray diffractometer in 2θ-θ mode with the Cu-Kα and/or Co-Kα 

radiation. X-rays are electromagnetic radiation with wavelength near 1.5 Å and generated 
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by impact of high energy electrons with a material target. The characteristic spectrum of 

x-ray (Kα –lines), which is formed usually by filling up the electron-deficiency created in 

the impacted material by the previous electron bombardment, is most important for 

crystallographic studies using x-rays since they are monochromatic.  The wavelength of 

the characteristic x-rays depends on the source, for example Cu-Kα lines have a 

wavelength of 1.54 Å or Co-Kα lines have a wavelength of 1.79 Å. The x-rays are 

diffracted from the lattice planes present in the crystalline materials and the diffraction 

follows Bragg’s law:  

 

Figure 2.3.1. Bragg’s law of diffraction. X-rays are incident at angle θ in the lattice 

plane and are diffracted at angle 2θ with respect to the incident direction 

 

 

                                                         2d sinθ = nλ                                                             2.1 

Here, d is the spacing between the lattice planes as shown in Fig. 2.3.1 , λ is the 

wavelength of the x-rays, θ is the incident angle of the x-rays and n is the order of 

diffraction which is typically taken as unity.[6] The diffraction peaks obtained from an x-
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ray diffraction (XRD) pattern exhibit the corresponding lattice planes and the peak 

intensities depend on the structural symmetries with respect to the lattice sites. The 

atomic structure factor plays an important role in determining the intensity and the 

locations of the XRD peaks and often relies on the chemical sensitivity of x-rays. The 

width of the principal reflection peak is often used to determine the size of the crystallites 

(single-crystalline grain) present in a polycrystalline sample using Scherrer’s equation:  

                                                          𝜎 = 
Kλ

Bcosθ
                                                      2.2 

where, K is a constant shape factor typically chosen as 0.9, B is the full width at half-

maximum (FWHM) of the principal XRD peak and σ is the average size of the grain or 

crystallite.[6] 

 

2.4 Electron Microscopy 

 

Electron microscopy mainly consists of two types, one being scanning electron 

microscopy (SEM) and the other transmission-electron-microscopy (TEM). SEM is used 

to investigate surface properties, morphology or thickness (of films) of the samples 

whereas, TEM is often used to determine the crystal structure. 

   In the case of SEM, electrons originated from a cathode are accelerated through 

high energy in the range between 10 to 20 keV which come as a collimated beam to 

strike the surface of the sample. Because of the collision of this beam with the surface, 

secondary electrons are generated near the surface of the sample containing details of the 
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surface morphology. Detectors of the secondary electrons are then used to obtain this 

information and then convert them into images using a computer.[7] In this study, a FEI 

Nova NanoSEM450 is used which does not need any special sample-preparation 

procedure. The sample is usually mounted on the metal holders provided with the system 

which are transferred into the SEM chamber without breaking the vacuum, and installed 

on the stage for studying the properties of the sample surfaces. 

 TEM, on the other hand, uses higher energy in the range of 100 to 200 keV to 

accelerate the electrons emitted from field-emission gun. Electrons are transmitted 

through the thin samples (~10 nm) and carry structural information of the crystalline 

sample which are detected using various detectors. In high resolution TEM (HRTEM) 

diffraction of electrons from the lattice of crystalline samples produce patterns related to 

the crystal structure of the sample (size can be down to dimensions in the order of few 

Angstroms) which can be reproduced using fast Fourier transform (FFT) of the lattice 

image. High-angle-annular dark field (HAADF) studies also can be done using TEM 

where the electrons scattered from the lattice of the sample are detected at a high angle 

relative to the electron beam and due to their incoherent nature the detection is very 

sensitive to the atomic number (Z) of the sample.[8] Hence, HAADF images of the 

sample contain different contrast according to the Z of the elements present in the 

sample, where low contrast variation in the image indicates homogeneous elemental 

distribution over the sample dimension. High-energy electrons often excite ground state 

electrons residing in inner regions of the atoms of the sample so that they can be ejected 

from the shell. One electron from the outer shell can decay to fill the hole (electron 
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deficiency in the inner shell) and the energy released from this process as an x-ray 

excitation whose wavelength corresponds to the difference in the energy between the two 

shells. This x-ray is detected and energy dispersive x-ray (EDX) spectroscopy is used to 

analyze the EDX spectra to determine chemical composition of the sample. Often, EDX 

color maps are used to visualize the elemental distribution over the sample where 

different colors can be used to identify different elements present in the sample. An FEI 

Tecnai Osiris (Scanning) Transmission Electron Microscope was used for all the 

measurements on the nanoclusters deposited on the copper grid substrate. Low resolution 

TEM was used to obtain an overall image to calculate the size distribution of the 

nanoclusters, whereas HRTEM, HAADF and EDX spectroscopy were used for structural 

characterization and composition analysis. 

 

2.5 Magnetic Characterization 

 

2.5.1 Physical Property Measurement System (PPMS) 

 

PPMS is used to measure magnetic properties using the Vibrating Sample Magnetometer 

(VSM) mode. In VSM, the sample is vibrated in a uniform magnetic field which changes 

the magnetic flux and the flux-change is detected by a set of pick up coils situated close 

to the sample.[9] A schematic of the VSM technique is shown in Fig. 2.5.1. The magnetic 

signal generated in this process is sensitive to the magnetization of the sample and the 

corresponding magnetic moment is measured as output.  
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Figure 2.5.1. Schematic of a VSM. Sample is mounted in the middle of the magnetic 

pole pieces and the pick-up coils 

 

 

In this study, PPMS from Quantum Design is used in VSM mode mostly to study 

high temperature magnetic properties using a heater oven. The oven is connected to the 

sample rod which holds the sample holder. A sample with dimension of about 2 mm is 

mounted on the heater coils of the oven using zirconia cement and a wrapping of copper 

foil is used for homogeneous heat conduction across the sample. The oven operates in the 

temperature range of 300 – 900 K under the vacuum of the sample chamber with a 

pressure of about 10-5 torr. Variation of magnetic moment with temperature is studied 

often under a small magnetic field to obtain good moment signal from the sample. The 
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VSM used in the PPMS is sensitive up to a small magnetic moment of the order of 10-6 

emu. 

2.5.2 Superconducting Quantum Interference Device (SQUID) 

 

A SQUID magnetometer implements the quantum interference effect of a Josephson 

junction for precise measurement of the magnetic signal (moment) produced by 

superconducting detection coils. A Josephson junction is two superconductors at different 

phases separated by an insulator at the junction through which Cooper pairs with 

different phases can tunnel producing a current flow. The current across the Josephson 

junction in presence of a magnetic field B = x A given by: 

                                          0

2
j=j sin( . )

b

a b

a

e
d   A l                                             2.3 

where γa, γb are the phases of the superconducting-state wave functions for the two 

superconductors a and b in the Josephson junction, and we can assume, γa- γb = δ.[10] A 

is the magnetic vector potential, j0 is the maximum current which depends on the charge 

densities of the two superconductors and the coupling strength between them. It can be 

noticed that even if there is no A, the current is not zero. Integrating the current density of 

Eqn. 2.3 across the junction gives the total current I and is given by:  

                                               0

| sin( ) |

| sin |

e

I I
e






                                                 2.4 

Here ϕ is the flux contained in the current carrying region of the junction. Hence the 

current will vary with change in ϕ in a similar way like, optical single-slit diffraction 
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pattern. This diffraction phenomenon can be analyzed by taking the integration of Eqn. 

2.3 along all the possible paths across the junction where each individual path takes on 

different phase shifts due to the vector potential A. Note that, the current becomes zero 

for
n

e


   and this quantized flux element is denoted as ϕ0 = 

𝜋

𝑒
. So, interference occurs 

whenever a new flux quantum is created (a new phase difference) by the magnetic field 

and the tunneling current is cut off. For more than one junction the variation of current 

simply follows the equation:
 

                                             0

| sin( ) |

| sin( ) |T

e
e

I I
e                                     2.5 

where ϕ is the flux trapped in each junction and ϕT is the total flux across the 

junction.[10] Δδ is the change in phase difference between two junctions. Hence, the 

signal detected by the SQUID pick-up coils leading to the current I (Eqn. 2.5) due to 

change in the flux-quantum is precisely detected in the case of DC or in case of AC, the 

Josephson junction oscillates with a characteristic frequency corresponding to the 

variation in flux-quantum and the voltage created across the junction encodes the 

magnetic signal.  

 In this study, a magnetic property measurement system (MPMS) SQUID from 

Quantum Design is used in which a maximum magnetic field of 70 kOe can be applied 

and measurements can be done at a large temperature range from 2 K to 400 K. A 

magnetic moment of as low as 10-8 emu can be detected using the SQUID which operates 

in three modes of magnetic field variation namely no overshoot, hysteresis and oscillation 
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modes. The overshoot mode is ideal for a magnetic field which should be strictly 

restricted to its set value and not beyond which makes the set time for the desired field 

value longer to obtain the most accurate field value. In case of hysteresis mode, the 

magnetic field is swept much faster than the no-overshoot mode so that the field can 

reach within 3 % of its set value faster. Due to the fast sweeping of magnetic field in the 

hysteresis mode, consumption of liquid -He by the superconducting magnets becomes 

high. In the oscillation mode, as the name suggests, the magnetic field is allowed to 

oscillate around the set value up to a range of 30 % which reaches the set point by 

decaying the oscillation. Measurements not suitable for exposure to large field variation 

at each data point should not be run under the oscillation mode. Most of the magnetic 

measurements performed in this study are done in the no-overshoot mode for better 

accuracy of the data. 

 Samples used for SQUID measurements are about 50 – 100 nm thick and cut with 

a dimension of about 6 mm x 6 mm in the case of nanoclusters films and gelatin capsule 

of diameter 5 mm are used to hold bulk samples. The magnetic moment obtained from 

SQUID either from moment m vs. applied magnetic field H hysteresis measurements, or 

from m vs T data contain the diamagnetic signal from the substrate or the capsule holder 

which must be corrected to obtain accurate results related to the sample under 

investigation. The magnetic moment from the bare substrate or the empty capsule is 

measured and m vs. H data is obtained which shows diamagnetic variation of m with H as 

shown in Fig. 2.5.2.  
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Figure 2.5.2. Diamagnetic m vs H graph of Silicon substrate showing negative slope. 

 

 

 The negative slope of the diamagnetic hysteresis loop is calculated from m vs. H 

graph and the slope is deducted from that at the high field region of the hysteresis loop 

obtained for the magnetic sample. The effective curve after this slope correction 

represents the magnetic hysteresis for the sample and is converted to magnetization M vs. 

H curve with proper weighting factor such as mass or volume of the sample.  
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3 CHAPTER 3. MAGNETIC ANISOTROPY OF DILUTE Co(Zr) 

NANOCLUSTERS 

 

Ferromagnetic materials with non-cubic structures are important to study due their 

potential for high magnetocrystalline anisotropy. Cobalt (Co) is a simple example of such 

materials with hcp (hexagonal close-packed) structure. However, Co also exists in f.c.c 

(face-centered-cubic) form and often these two phases co-exist at nanoscale. In this study, 

stabilization of hcp Co phase in the form of nanoclusters with addition of a third element 

zirconium (Zr) is discussed and magnetic alignment of these nanoclusters are 

demonstrated. 

Many of the results presented in this chapter are adapted from the publication:         

“Structure and magnetism of dilute Co(Zr) nanoclusters.” B. Das, B. Balamurugan, R. 

Skomski, X. Z. Li, P. Mukherjee, G. C. Hadjipanayis and D. J. Sellmyer, Journal of 

Applied Physics, 113, 17B509 (2013). 

I performed the synthesis and characterization of the Co(Zr) nanoclusters. R. 

Skomski helped with the theoretical explanations. and X. Z. Li and P. Mukherjee helped 

with the TEM measurements. All co-authors contributed to the final manuscript. 
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3.1 Introduction 

 

Recently, simple ferromagnetic nanoclusters such as Fe or Co doped with substitutional 

or interstitial additives have gained significant interests − in order to create nanocluster 

building blocks with improved magnetic anisotropies for alternative permanent-magnet 

materials. Also, they are of potential interest from the viewpoint of understanding the 

physical significance behind the modified properties.[1-3] It is worth noting that  

experimental and theoretical investigations on bulk and thin films of Fe and Co have 

already shown appreciable changes in their magnetic properties on doping with heavy 

transition metals.[4-6] 

 Studying the magnetic anisotropy of diluted magnetic nanoclusters requires 

precise control over the phase purity as well as crystalline ordering which influences the 

magnetocrystalline anisotropy for uniaxial crystal structures. Co is known to have 

hexagonal close packed (hcp) structure which is of high symmetry and uniaxial as well as 

face-centered cubic (fcc) structure. Promoting growth of only the hcp structure is 

important which can be done with heavy transition metal, like Zr, since it also has 

hexagonal crystal structure and also, being a 4d -transition metal, it may help to improve 

the magnetocrystalline anisotropy. In this study, Co nanoclusters with dilute Zr addition 

are synthesized using the cluster-deposition method and their structure and magnetic 

properties are investigated. 
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3.2 Synthesis and Alignment of the Nanoclusters 

 

Co and Co(Zr) nanoclusters are synthesized using the gas-aggregation type cluster-

deposition method described in the Chapter 2.  A composite target of Co and Zr, with Zr 

used as plug inserts into the Co target, was used for sputtering and the gas-aggregation 

chamber was water cooled. High sputtering power in the range of 150 – 200 W was used 

with the Ar -flow rate of 350 SCCM. The partial pressure of the sputtering chamber and 

the deposition chamber are about 10-1 Torr and 10-3 Torr respectively. The nanoclusters 

are deposited on Si (001) substrate as films of thickness in the range of 50 – 150 nm for 

XRD and magnetic measurements and on copper grids as a layer (thickness 1 – 3 nm) of 

isolated nanoclusters for TEM studies.  

 

Figure 3.2.1. Magnetic alignment of nanoclusters using two permanent magnets. 

 

 

The samples are coated with SiO2 thin layer [thickness of about 25 nm for Si 

substrate and about 2 nm for the copper grids] to protect the nanoclusters from oxidation 

or other atmospheric corruptions. 
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 The direct crystalline ordering achieved using the cluster-deposition method 

provides a unique method to align the nanoclusters along the easy-magnetization 

direction by applying an external magnetic field prior to deposition as shown in the Fig. 

3.2.1.[7] Uniaxial nanoclusters of randomly oriented easy-axes pass through the uniform 

magnetic field of about 5 kOe generated by the permanent magnets kept close to the 

substrate by fixing them on the substrate holder. The magnetic field influences the 

crystalline easy-axes of the nanoclusters to be oriented along the direction of the 

magnetic field which is the x-direction in the Fig. 3.2.1 and therefore, the y and z become 

the hard directions for the aligned Co(Zr) nanoclusters. 

 

3.3 Results and Discussion 

 

XRD patterns of nanoclusters of Co and Co(Zr) having 6.3 at. % of Zr are shown in Fig. 

3.3.1 (a). The standard positions and relative intensities of XRD peaks corresponding to 

the hexagonal close-packed (hcp) and face-centered cubic (fcc) structures of Co are given 

as vertical-solid and -dotted lines, respectively.[8,9] 
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Figure 3.3.1. Structure of Co(Zr) nanoclusters. (a) XRD patterns for the 

nanoclusters of Co [blue line] and Co(Zr) [red line] with 6.3 at.% of Zr. (c) HRTEM 

image of a single Co(Zr) nanocluster and (d) the corresponding fast Fourier 

transform indexed for the hcp structure. 

 

 

XRD pattern of Co nanoclusters show fcc structure with (111) and (200) 

reflection peaks. However, in the case of Co(Zr) clusters, (200) reflection of the fcc phase 

completely disappears and the position of the most intense XRD peak has a good 

agreement with that of (002) reflection of the hcp phase as shown in the XRD pattern of 

Co(Zr) nanoclusters having 6.3 at. % of Zr. These results reveal that Zr addition to Co 

nanoclusters promotes the hcp Co phase in the nanoclusters. The HRTEM image of 

Co(Zr) nanoclusters indicates a high degree of atomic ordering [Fig. 3.3.1 (b)], and the 

corresponding fast Fourier transform (FFT) image as shown in Fig. 3.3.1 (c) reveals the 

hcp structure in agreement with the XRD results. 
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Figure 3.3.2. LRTEM image of Co(Zr) nanoclusters and the cluster size distribution 

(inset). 

 

 

Figure 3.3.2 shows the LRTEM image which exhibits that Co(Zr) nanoclusters 

have an average particle size of about 8.0 nm with an rms standard deviation of /d = 0.1 

as shown in the inset of Fig. 3.3.2. 

Magnetic properties of aligned nanoclusters were investigated by measuring the 

magnetization M at 300 K as a function of applied magnetic field H from -70 to 70 kOe 

along the easy (x-axis) and hard (y-and z-axes) directions as shown in Fig. 3.3.3. 
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Figure 3.3.3.  The expanded room-temperature M-H curves of the aligned 

nanoclusters measured along the easy (x -axis) and hard (y -axis) directions for (a) 

Co and (b) Co(Zr) nanoclusters having 6.3 at. % of Zr. 

 

 

  The room-temperature M-H curve of the Co nanoclusters measured along the 

easy (x-axis) and hard (z-axis) directions are nearly identical with coercivities Hc  180 

Oe and remanence ratios Mr/Ms  0.40 as shown in Fig. 3.3.3 (a) revealing no alignment, 

due to isotropic fcc Co content. Here Ms and Mr are saturation and remanent 

magnetizations, respectively. In comparison, as shown in Fig. 3.3.3 (b), Co(Zr) 

nanoclusters having 6.3 at. % of Zr exhibit Hc  400 Oe and Mr/Ms  0.85 along the easy 

direction (x-axis) and comparatively reduced Hc  130 Oe and Mr/Ms  0.16 along the 

hard direction (z-axis). Note that M-H loop measured along the y-axis for the Co(Zr) 

nanoclusters is identical to that measured along the z-axis.  

Figure 3.3.4 shows the measured values of Hc [Fig. 3.3.4 (a)] and Mr/Ms [Fig. 

3.3.4 (b)] of Co(Zr) nanoclusters as a function of Zr at. % along the easy and hard 

directions. Hc and Mr/Ms are significantly higher along the easy axis as compared to those 

values along the hard axes for Co(Zr) nanoclusters having 6.3 and 7.8 at.% of Zr. 
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Figure 3.3.4. Variation of (a) Hc and, (b) remanence ratio (Mr/Ms) of Co(Zr) 

nanoclusters for different Zr -concentration along easy (red spheres) and hard 

(black triangles) directions. 

 

 

 

These results reveal that Zr addition to Co improves the alignment process, 

presumably due to change in the crystal structure to anisotropic hcp which improves 

magnetic anisotropy in Co(Zr) nanoclusters. We have estimated the uniaxial 

magnetocrystalline anisotropy constant Ku for aligned Co(Zr) nanoclusters having 2.6, 

6.3 and 7.8 at. % of Zr using the area under the complete M-H curves ( from 0 to 70 kOe) 

along the easy and hard directions.[10] In the case of Co, we have estimated the magnetic 

anisotropy from the high-field region of room-temperature M-H curves of the unaligned 

Co nanoclusters by applying the law of approach to saturation method (Appendix A) used 

for randomly oriented magnets.[11-13]  
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Table 3.1. Ku and saturation magnetic polarization Js of Co(Zr) for different Zr 

concentrations (x). 

 

 

 

 

 

 

 

 

Table 3.1 shows Ku and magnetic polarization Js (Js = 4Ms) of Co(Zr) 

nanoclusters as a function of Zr content and clearly indicates an increase of magnetic 

anisotropy in Co(Zr) nanoclusters on increasing Zr content.  These nanoclusters also 

show appreciable Js in the rage of 0.7 to 12.0 kG. Note that generally nanoclusters show 

higher Ku as compared to standard bulk values, presumably due to surface effects in 

nanoparticles.[14]  

 

 

3.4 Conclusions 

 

In conclusion, the gas-aggregation-type cluster-deposition system was used to produce 

dilute Co(Zr) nanoclusters having 0  Zr at.%  7.8 and their structural and magnetic 

properties were investigated. XRD and HRTEM studies show that Co(Zr) nanoclusters 

have predominantly hcp Co phase. Co(Zr) nanoclusters also were aligned using a magnetic 

field of 5 kOe before deposition and the uniaxial anisotropy constant was evaluated as a 

x Ku(Mergs/cm3) Js (kG) 

0 2.1 14.3 

2.6 3.5 12.0 

6.3 4.9 11.5 

7.8 6.8 10.7 



49 
 

function of Zr content. These results reveal that addition of Zr to Co nanoclusters improve 

the easy axis alignment process, due to change in structure to anisotropic hcp phase. Co(Zr) 

nanoclusters having 7.8 at. % of Zr exhibit a high Ku  6.8 Mergs/cm3 at 300 K as compared 

to Ku  2.1 Mergs/cm3 for fcc Co nanoclusters. 
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4 CHAPTER 4. Zr2Co11 -BASED RARE-EARTH-FREE 

NANOCLUSTERS WITH HIGH ENERGY PRODUCTS 

 

Rare-earth free magnets with appreciable permanent-magnet properties are ideal for 

developing magnetic materials in current geo-political situation of rare-earth criticality. 

Zr2Co11 is one of such materials which is hard to prepare with conventional bulk 

processing methods, which often result in phase mixtures. Controlled non-equilibrium 

synthesis can stabilize the phase which potentially can show good magnetic properties. In 

this study, non-equilibrium synthesis of Zr-Co nanoclusters using cluster-deposition 

method is demonstrated and improvement of permanent magnet properties of the 

nanoclusters in the vicinity of Zr2Co11 stoichiometry are shown. 

Many of the results presented in this chapter are adapted from the publication: 

“Novel Nanostructured Rare-Earth-Free Magnetic Materials with High Energy Products”, 

B. Balamurugan†, B. Das†, R. Skomski, W. Y. Zhang and D. J. Sellmyer, Advanced 

Materials. 25, 6089 (2013) - †Co-first authorship. 

I prepared and characterized the Zr-Co nanoclusters. B. Balamurugan and I 

analyzed the results. B. Balamurugan led the writing of the manuscript. P.Mukherjee 

helped with the TEM measurements, and all co-authors contributed ideas and criticized 

the manuscript. 
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4.1 Introduction 

 

Research on new iron- or cobalt-based permanent-magnet materials has gained 

substantial importance, since conventional high-performance materials based on 

Nd2Fe14B or FePt are either expensive or subject to the criticality of rare-earth 

elements.[1-4] However, the range of alternative compounds with appreciable 

magnetocrystalline anisotropy is limited, and the situation often is aggravated by their 

metastable nature and requirement of high-formation temperatures, above 1000 °C.[5-8] 

This threatens the future development and use of permanent magnets in applications 

ranging from home appliances to sophisticated microelectronics and environment-

friendly technologies such as hybrid vehicles and wind turbines.[1-4] Hence, new Fe –or 

Co –rich permanent magnet alloys with high magnetocrystalline anisotropies and Curie 

temperatures are essential for next-generation clean energy-harvesting technologies. 

Furthermore, these materials must have a high coercivity Hc and a high energy product 

(BH)max, that is, the maximum of the product of B and H on the BH curve in the second 

quadrant. Zr2Co11 is a suitable candidate which crystallizes in non-cubic structures, 

essential for obtaining superior permanent-magnet properties.[5-11] However, the poor 

control over phase purity in the traditionally prepared bulk alloys has an adverse effect on 

the permanent-magnet properties and deteriorates the energy products generally to less 

than 5 MGOe.[7,8,10,11] 

 Non-equilibrium synthesis of magnetic materials in the form of nanoclusters 

smaller than 10 nm can be used as an alternate approach to stabilize the non-cubic 

Zr2Co11 phase.[12,13] In addition, the reduced particle size and the associated nanoscale 
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effects also result in improvement of structural and magnetic properties suitable for 

applications in areas such as permanent magnets, magnetic recording and hybrid-energy 

technologies.[14-17] Moreover, alignment of easy-axes of the uniaxial Zr2Co11 

nanoclusters is likely to add additional advantage of obtaining high remanence ratio 

(Mr/Ms), which is key for high-energy products in commercial permanent magnets and 

enables the nanoclusters to be used as building blocks for permanent magnets and 

recording media.[18-20]  

 

 

4.2 Synthesis of Zr2Co11 Nanoclusters 

 

Nanoclusters of Zr2Co11 are synthesized using gas-aggregation type cluster-deposition 

method as described in Chapter 2. In brief, Co target was used in which small pellets of 

Zr was inserted in various numbers to control the desired composition of ZrxCo100-x 

nanoclusters with 9 < x < 20. High sputtering power in the range of 150 – 200 W was 

used with Ar -flow lying in the range between 450 – 650 SCCM. The nanoclusters were 

aligned prior to deposition as described in the previous chapter (section 4.2). Zr –is 

known to absorb oxygen if thermally excited and hence, a thick coating of SiO2 film (10 

– 15 nm) was used for the nanoclusters deposited on Si (001) substrate. For TEM 

measurements, nanoclusters were deposited on copper grids with a thinner protective 

coating (about 1 nm). Bulk Zr2Co11 was fabricated using conventional melt-spinning 

method as described in the section 2.2 (and ref. [8]) from which metallic ribbons were 

obtained and characterized for comparison with the nanoclusters. 
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4.3 Results 

 

4.3.1 Structural Properties 

 

  

Figure 4.3.1. XRD patterns of Zr2Co11 nanoclusters (red) and bulk (blue) showing 

rhombohedral crystal structure. (XRD of bulk Zr2Co11 is adapted from ref.[8]). 

 

 

XRD patterns of nanocluster films with thickness about 250 nm were obtained 

and compared with the diffraction patterns for bulk Zr2Co11. The red curve shown in Fig. 

4.3.1 exhibits the XRD pattern for the nanoclusters which is showing rhombohedral 

crystal structure similar to that observed for the bulk (blue curve in Fig. 4.3.1).  
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Figure 4.3.2. Equilibrium phase diagram of Co-Zr.[5] The solid red vertical    

line represents the ideal composition and temperatures for the formation of 

Zr2Co11 phase. The dotted blue vertical lines show the composition region 

where the phase observed in nanoclusters is predominantly Zr2Co11. 

 

 

Note that, bulk Zr2Co11 crystallizes in both rhombohedral and orthorhombic 

structures at different temperatures among which, the rhombohedral Zr2Co11 is a high 

temperature phase and have comparatively high anisotropy as compare to that of the 

orthorhombic phase. This is not observed in the case of nanoclusters which exhibit only 

the high-symmetry rhombohedral structure.[7,8] The Co-Zr bulk phase diagram, shown 

in Fig. 4.3.2, indicates the formation of Zr2Co11 equilibrium phase only at a single 

composition and at high temperatures (solid red vertical line). However, in practice it is 

found that standard processing methods lead to the formation of secondary phases such as 

Co and Zr6Co23 having low magnetocrystalline anisotropies during the cooling 

process.[7-11] The cluster-deposited ZrxCo100-x nanoclusters not only form in the high-
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anisotropy rhombohedral Zr2Co11 structure for x ≈ 15.4 without high-temperature 

annealing, but they also exhibit a predominant Zr2Co11 phase for a rather broad 

composition region (13.5 ≤ x ≤ 16.3), as indicated by green dotted vertical lines in Fig. 

4.3.2. This phase structure is also supported by magnetic measurements. 

 

 

 

Figure 4.3.3. LRTEM image of Zr2Co11 nanoclusters showing monodisperse clusters 

with the narrow size-distribution seen in the top inset. The bottom inset is a  

HRTEM image of a single Zr2Co11 nanocluster showing a high degree of atomic 

ordering. 

 

 

The ZrxCo100-x nanoclusters are monodispersed with an average cluster size d = 

8.7 nm and an rms standard deviation of σ/d = 0.18, as shown in the transmission electron 

microscope (TEM) image (Fig. 4.3.3) and in the corresponding particle-size histogram of 

Z2Co11 nanoclusters (top inset of Fig. 4.3.3). A high-resolution TEM (HRTEM) image of 
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a single Zr2Co11 nanocluster as shown in the bottom inset of Fig. 4.3.3, reveals a high-

degree of atomic ordering by showing lattice fringes.  

 

Figure 4.3.4. FESEM images of Zr2Co11 nanocluster films deposited on Si (001). (a), 

Top view. (b), Cross-sectional view. For the cross-sectional imaging, the sample was 

prepared by cutting the Si substrate after deposition. 

 

 

 

Thick film of Zr2Co11 nanoclusters with a thickness of about 1.4 µm was 

deposited on Si (001) substrate for SEM [Field Emission SEM (FESEM): FEI Nova 

NanoSEM (section 2.4)] measurements to obtain both the planar and cross-sectional view 

of the film. The secondary-electron (FESEM) images of Fig. 4.3.4 shows that the 

nanocluster films are fairly dense, that is, they do not consist of loosely packed spheres. 

The volume fraction is difficult to determine from the cross-sectional view due to 

roughness or pores generated during the cleaving process, but the top view of the films 

show a density between 50 and 80%. In particular, smaller nanoclusters fill interstitial 

holes between bigger nanoclusters. This indicates that the nominal magnetization 

measured for the nanocluster-films are close to that for highly dense-packed films. 
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4.3.2 Magnetic Properties 

 

The direct crystalline ordering achieved during the gas-aggregation process in the present 

study is essential to accomplish the major goal of aligning the easy axes of the 

nanoclusters. The nanoclusters are aligned by applying a magnetic field (Hal ≈ 5 kOe) 

before deposition on the Si substrate for forming assemblies of dense-packed 

nanoclusters. The alignment process is similar to that described in Chapter 4. The field 

Hal is applied along the x-direction, which is parallel to the substrate, and the x-axis is 

expected to be the easy magnetization direction, whereas both the y- and z-directions are 

hard directions. The aligned nanocluster films are used for magnetization measurements 

along both easy and hard directions. 

The room-temperature M-H hysteresis loops of aligned ZrxCo100-x nanocluster 

assemblies exhibit a high remanence ratio Mr/Ms and coercivity Hc along the easy axis as 

compared to those along the hard axis. Figure 4.3.5 (a) shows the M-H loop for Zr2Co11 

composition along easy (blue curve) and hard (red curve) directions and the expanded 

hysteresis loops are shown in the Fig. 4.3.5 (b). The hysteresis of the unaligned sample 

(green) is shown for realization of the magnetic alignment. The hysteresis loops exhibit a 

high Ms = 825 emu/cm3, and appreciable easy-axis Hc = 4.5 kOe (Hc = 1.4 kOe and 2.3 

kOe along the hard direction and for unaligned Zr2Co11 nanoclusters, respectively). 
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Figure 4.3.5. (a) Hysteresis loops for Zr2Co11 nanoclusters along easy (x)[blue] and 

hard (y) [red] direction compared with that for the unaligned sample [green]. (b) 

The expanded version of the hysteresis loops shown in (a) for clarification. 

 

 

 The alignment of the nanoclusters helps to improve the coercivity substantially 

compared to that of the unaligned samples as seen in the Fig. 4.3.5. Moreover, the 

remanence ratio (Mr/Ms) along easy and hard directions as well as for the unaligned 

sample exhibit large difference with a highest along easy axis and the lowest along the 

hard axis and the value for the unaligned sample lying in between them. This, ensures the 

high degree of magnetic alignment for the nanoclusters and a qualitative measure for the 

alignment is discussed later (section 4.3.3) in this chapter. 

 Figure 4.3.6 shows Hc and the saturation magnetic polarization (Js) for the 

ZrxCo100-x nanoclusters, measured along the easy axis and as a function of x. The figure 

yields Hc = 2.9 - 4.5 kOe and Js = 8.6 - 10.3 kG for nanocluster films that are 

predominantly Zr2Co11.  
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Figure 4.3.6. Coercivity Hc (red curve) and saturation polarization Js (green curve) 

measured along the easy axis at 300 K for aligned ZrxCo100-x nanoclusters. The blue-

dotted rectangle shows the composition range where the phase is predominantly 

Zr2Co11. 

 

 

These values are comparable to those of SmCo5 and L10-ordered FePt and CoPt 

nanoclusters smaller than 10 nm.[16,21,22] The FESEM image (Fig. 4.3.4) reveals that 

that the Zr2Co11 nanoclusters stick to each other in the film but nevertheless exhibit an 

appreciable room-temperature coercivity of about 4.5 kOe. This indicates that 

interparticle interactions and even physical contact do not destroy the coercivity. The 

law-of-approach-to-saturation method (Appendix A) was used to estimate the 

magnetocrystalline anisotropy constant (K1) of the Zr2Co11 nanoclusters using the high-

field region of the hysteresis loop for unaligned nanoclusters [23-25], which yields K1 = 

11 Mergs/cm3, close to the reported K1 = 13.5 Mergs/cm3 for the bulk material.[26,27] 
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4.3.3 Degree of Magnetic Alignment 

 

Magnetic alignment of Zr2Co11 nanoclusters yields a high Mr/Ms = 0.88 along the easy 

axis, as compared to the low value Mr/Ms ≈ 0.5 generally observed for randomly oriented 

permanent-magnet nanoclusters.[28,29] 

 

Figure 4.3.7. Degree of magnetic alignment. (a) Geometry of the easy-axis 

configuration, where Hx is the magnetic field applied along the x direction (direction 

of Hal) and θ is the angle between the easy axis and Hx. (b) The normalized easy-axis 

probability distribution or texture function p(θ) for aligned Zr2Co11 nanocluster 

assembly. 

 

 

 

 Mr/Ms measured along the easy axis is used to quantify the magnetic alignment. 

Figure 4.3.7 (a) shows the geometry of the easy-axis configuration and for a non-

interacting ensemble of aligned uniaxial nanoclusters, the normalized average remanence 

can be written as[30-34] 

𝑚𝑛 =  
𝑀𝑟

𝑀𝑠
=  

∫ 𝑚()𝑃()sind

∫ 𝑃()sind
                                                   4.1 
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where θ is the angle between the easy-axis and x-direction, and m is the normalized 

magnetic moment of the individual nanoclusters in the field (or x-axis) direction. The 

easy-axis distribution or texture function P(θ) can be approximated by [34] 

𝑃() = 𝑃(0)exp (
cos

𝛿
)                                                          4.2 

In this equation, δ parameterizes the width of distribution of the easy-axis (δ <<1 for 

well-aligned particle ensembles).[30,32] Combination of Eqns. 4.1 and 4.2 yields Mr/Ms, 

which depends on δ. The remanence ratio of Zr2Co11 nanoclusters, Mr/Ms = 0.88, 

corresponds to a δ value of about 0.11 and to the narrow normalized distribution (p(θ) = 

P(θ)/P(0)) as shown in Fig. 4.3.7 (b). Numerical evaluation of Eq. 4.1 shows that the 

percentage of nanoclusters with alignment angles smaller than 30° is about 73 %. 

 

4.4 Discussion 

 

The stabilization of a single phase Zr2Co11 nanoclusters having high-anisotropy 

rhombohedral structure, without a subsequent high-temperature annealing, is an 

important achievement of the study and is essential for alignment of the easy axes prior to 

deposition. Note that unaligned Zr2Co11 nanoclusters are isotropic with Mr/Ms ≈ 0.50 

along the in-plane direction, and Mr/Ms increases to 0.88 upon alignment with a field of 

about 5 kOe. By successfully obtaining a single Zr2Co11 phase and magnetic alignment, a 

nominal high energy product (BH)max in the Zr2Co11 nanocluster films is achieved, which 

is a key figure of merit for permanent-magnet materials. Figure 4.4.1 (a) shows the room-



64 
 

temperature B and energy product BHi for an assembly of easy axis aligned Zr2Co11 

nanoclusters as function of Hi, where Hi = H - NMs is the internal field. 

 

Figure 4.4.1. Energy products. (a) B and BHi curves for Zr2Co11 nanoclusters.        

(b) (BHi)max for ZrxCo100-x with different Zr concentrations (x) showing reasonably 

high energy products for majority Zr2Co11 phase (blue rectangle). 

 

 

N is the demagnetization factor and estimated to be 0.26 by comparing the slopes 

(micromagnetic susceptibilities) of in-plane and perpendicular M (H) curves of isotropic 

samples (Details in Appendix B). Figure 4.4.1 (a) yields an energy product of about 16.6 

MGOe which is high compared to that of alnico and other rare-earth-free magnetic 

materials.[1,2,35-38] The variation of energy products with different Zr concentrations in 

ZrxCo100-x is shown in the Fig. 4.4.1 (b) which shows reasonably high (BHi)max values (> 

10 MGOe) for the composition range exhibiting Zr2Co11. The formation of new 

nanoclusters, direct-crystalline ordering, and high degree of easy-axis alignment reported 

in this study are essential processing steps for developing nanostructured rare-earth-free 

high-performance permanent magnets. 
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5 CHAPTER 5. MAGNETIC PROPERTIES OF Zr2Co11:Fe-Co 

NANOCOMPOSITES  FABRICATED BY NANOCLUSTER-

DEPOSITION 

 

Magnetic nanocomposites with a combination of hard and soft magnets are superior 

in energy products since they can utilize high coercivity of the hard phase and high 

magnetization of the soft phase together. Exchange-coupling between hard and soft 

phases is necessary for ideal composite magnets which requires controlled synthesis 

method. In this study, fabrication of magnetic nanocomposites with Zr2Co11 nanoclusters 

as hard phase and Fe-Co matrix as soft phase is demonstrated and magnetic properties of 

the nanocomposite films for different hard-soft volume ratio are shown. Enhanced 

energy-product of the nanocomposites compared to bare Zr2Co11 nanoclusters indicates 

the positive results of the exchange-coupled composite magnets. 

Results presented in this chapter are related to the publications: “Hf–Co and Zr–Co 

alloys for rare-earth-free permanent magnets”, B. Balamurugan, B. Das, W. Y. Zhang, R. 

Skomski and D. J. Sellmyer, Journal of Physics: Condensed Matter. 26, 064204 (2014) 

and “Magnetic nanostructuring and overcoming Brown's paradox to realize extraordinary 

high-temperature energy products”, B. Balamurugan, P. Mukherjee, R. Skomski, P. 

Manchanda, B. Das and D. J. Sellmyer, Scientific Reports. 4, 6265 (2014). 

I fabricated and characterized of the Zr2Co11:Fe-Co nanocomposite films. R. 

Skomski did the theoretical modeling of the nanocomposites and P. Mukherjee helped 

with TEM measurements. All co-authors criticized the manuscripts. 
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5.1 Introduction 

 

Exchange-coupled hard-soft nanocomposites are an active research area in permanent-

magnet development.[1-8] In particular, this class of nanostructures has gained an 

immense focus in recent years to develop new high-energy magnetic materials to satisfy 

the widespread use of permanent magnets in energy-related applications.[9,10] Besides 

their technological impact, the nanoscale magnetic properties and associated physical 

phenomena are also of considerable interest from the viewpoint of fundamental science. 

The soft-phase material improves the hard-magnetic performance of the main hard phase, 

using excess anisotropy to enhance magnetization and energy product beyond that of the 

hard phase. This is evidenced by theory and/or various proof-of-principle experiments in 

nanocomposite systems such as multilayered thin films, nanocrystalline ribbons, bulk 

materials with a random distribution of soft and hard phases, and self-assembled 

nanoclusters.[4-8] The well-known challenge is, however, to maintain significant 

coercivity in the presence of the soft phase. It is well-established that the soft phase of a 

two-phase system cannot be much larger than twice the Bloch-wall width δh = π√𝐴/𝐾ℎ 

of the hard phase irrespective of dimensionality, where A and Kh are the exchange-

stiffness constant and magnetic anisotropy constant of the hard phase, 

respectively.[1,2,11] 
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Figure 5.1.1. Coercivity [Hc; red curve] and energy product [(BHi)max; blue curve] 

of Zr2Co11 nanoclusters measured at different temperatures. 

 

 

Thus, the nanostructuring requires a uniform mixture of hard and soft grains of 

sizes preferably about 10 nm, easy-axis alignment of hard grains for obtaining a high 

remanent magnetization Mr nearly equal to the saturation magnetization Ms, and a 

homogeneous distribution of hard and soft phases for ensuring effective exchange-

coupling.[1,2] 

However, optimum exchange-coupling and superior permanent-magnet properties 

of nanocomposite magnets depend significantly on the permanent-magnet properties of 

the hard phase so that it can be suitable for practical applications both at room and high 

temperatures. In chapter 5, it is shown that Zr2Co11 could be a suitable hard-magnetic 

candidate with high energy products which is free of critical rare-earth elements or 

expensive noble metals. Moreover, as shown in Fig. 5.1.1, the nanoclusters exhibit 

significant coercivities [Hc] and energy-products [(BHi)max] at high-temperatures (up to 
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600 K) suitable for most permanent-magnet applications ranging from room temperature 

to high temperatures.[12-14]  

 

5.2 Synthesis of the Nanocomposite Cluster Films 

 

Exchange-coupled nanocomposites of Zr2Co11:Fe-Co are synthesized using the cluster-

deposition system described in chapter 2 with a DC magnetron gun used for sputtering 

Fe-Co matrix. Figure 5.2.1 (a) shows a schematic of the fabrication process along with 

magnetic alignment of the nanocomposite cluster-films and Fig. 5.2.1 (b) shows 

schematic-example of such films obtained after alignment.  

 

Figure 5.2.1. (a) Schematic of the nanocomposite fabrication process showing the 

alignment of high-anisotropy nanoclusters and co-deposition of Fe and Co atoms 

using the DC magnetron sputtering. Hal (or Hx) indicates the direction of the 

alignment field. (b) Sample structure of an aligned nanocomposite film. The 

substrate is excluded for clarity and the co-ordinate axes clarifies the alignment 

direction (x). [Image idea and concept from Dr. B. Balamurugan at NCMN] 
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The target for the soft Fe-Co matrix is optimized to a composition close to 

Fe65Co35 which is reported to have a large saturation magnetic polarization (Js) of about 

24.5 kG, required to obtain high magnetization in an exchange-coupled magnet.[15] 

Fabrication of hard-magnetic Zr2Co11 nanoclusters is similar to that described in the 

previous chapter, only with a minor variation in the deposition process involving co-

deposition of the Fe-Co soft matrix at various volume fractions with respect to the 

nanoclusters. The nominal thickness of the nanocomposite films was determined from the 

deposition rate measured using a quartz-crystal thickness monitor which also provides a 

quantitative measure of the volume fractions of the soft and hard phases in the film. 

Hence, to change the fraction, deposition rates of the nanoclusters and the Fe-Co film 

were adjusted according to the desired values. Nanocomposite films deposited on Si 

(001) substrate were used for magnetic characterization. For TEM measurements the 

nanocomposites are deposited on copper grids with low coverage densities but large 

enough to determine an approximate average distance between the Zr2Co11 nanoclusters 

required to realize the interaction between the hard-nanoclusters and its effect on the 

overall magnetic properties on the nanocomposites. A thin film of SiO2 was used as 

protective coating on the nanocomposites, similar to that described in chapter 5, to 

prevent oxidation. 
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5.3 Results and Discussion 

 

5.3.1 Nanostructures of Zr2Co11:Fe-Co composite films 

 

 

Figure 5.3.1. HRTEM image of Zr2Co11 : Fe-Co nanocomposite film with 15 vol. % 

of Fe-Co. 

 

 

Hard nanoclusters of Zr2Co11 are embedded in soft magnetic Fe-Co films as 

shown in the HRTEM image (Fig. 5.3.1) where the nanoclusters are seen to be separated 

by the Fe-Co matrix for 15 vol. % of the soft Fe-Co. The Zr2Co11 nanoclusters are highly 

crystalline as seen in Fig. 5.3.1 with the average cluster-size less than 10 nm (average 

size of Zr2Co11 nanoclusters is about 8.7 nm as described in section 4.3.1) which are 

important to obtain superior hard-magnetic nanoclusters required for optimization of the 

magnetic properties. The composition of the Zr2Co11 nanoclusters are verified using EDX 

and the corresponding elemental color maps are shown in Fig. 5.3.2. 
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Figure 5.3.2. STEM and EDX of Zr2Co11:Fe-Co nanocomposite film with 15 vol. % 

of Fe-Co. HAADF image (a); color maps for only Co, (b), only Zr, (c), only Fe, (d), 

Co and Zr, (e), and Co, Zr and Fe, (f). 

 

 

 HAADF image [Fig. 5.3.2 (a)] of the nanocomposite film with 15 vol. % of Fe-Co 

shows no significant contrast difference indicating homogeneous distribution of Co and 

Zr across the volume of the nanoclusters which is also shown in the EDX color maps of 

Co, Zr and combined Co and Zr [Figures 5.3.2 (b), (c) and (e) respectively]. Figure 5.3.2 

(d) and (f) show color maps of the nanocomposite film with only Fe and all the elements 

(Co, Zr and Fe) respectively elucidating the soft-magnetic matrix in which the hard 

nanoclusters are ingrained, which improves the packing fraction of magnetic materials in 

the films and is essential to obtain exchange-coupling between the soft and hard phases. 
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5.3.2 Magnetic Properties 

 

 

Figure 5.3.3. Magnetic hysteresis loops at room temperature along easy (blue curve) 

and hard (red curve) directions of Zr2Co11:Fe-Co nanocomposite films with, (a) 15 

vol. % and, (b) 33 vol. % of soft phase. 

 

 

Magnetically aligned Zr2Co11:Fe-Co nanocomposites exhibit a high degree of 

alignment as seen from the difference in the room temperature hysteresis loops along 

easy and hard directions for films with 15 and 33 vol. % of soft phase shown in Fig. 5.3.3 

(a) and (b) respectively. Also, the hysteresis loops indicate a strong exchange-coupling 

between the soft and hard phases for 15 vol. % of Fe-Co, whereas the exchange-coupling 

is substantially good even for 33 vol. % of the soft phase. Usually, for a strongly 

exchange-coupled magnetic nanocomposite, the hysteresis loop does not exhibit two-

phase behavior as seen in the case of nanocomposites with 15 vol. % of Fe-Co [Fig. 5.3.3 

(a)], while for 33 vol. % of Fe-Co, the small kink in the hysteresis loop exhibits two-

phase hysteresis behavior [Fig. 5.3.3 (b)] indicating slightly weaker exchange-
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coupling.[16] For the nanocomposite film with 15 vol. % of Fe-Co, Hc is about 3.5 kOe 

which is substantial and is not significantly lower than that for Zr2Co11 nanoclusters (Hc = 

4.5 kOe) which is essential for magnetic applications. For a larger amount of the soft 

phase, Hc decreases with expected increase in the magnetization (Ms) or saturation 

magnetic polarization (Js) as can be seen in the Fig. 5.3.3 (b) for 33 vol. % of Fe-Co 

showing an Hc of about 1.5 kOe. 

5.3.3 Nanocomposite Model Structure  

 

 

Figure 5.3.4. Trend of Hc (red curve) and Js (blue curve) of the Zr2Co11:Fe-Co 

nanocomposites with variation of soft phase volume fraction (f). 

 

 

Figure 5.3.4 shows the variation of Hc and Js of the nanocomposite films with 

change in the volume fraction (f) of the soft phase which is determined by factoring the 

vol. % with 100 % (f = 
vol.%

100 %
 ). Decrease in Hc from 4.5 to 0.3 kOe and increase in Js from 
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10.2 to 17 kG are observed with increasing f (from 0 to 0.5 corresponding to 0 to 50 vol. 

%) which is expected for the magnetic nanocomposites. 

 

 A key requirement of exchange-coupled nanocomposites is to achieve a high 

volume fraction of the soft phase without killing the coercivity which is observed in 

Zr2Co11:Fe-Co system showing appreciable Hc (about 1.5 kOe) for high f up to 0.33. 

 

Figure 5.3.5. Model nanocomposite structure. (a) Schematic spin structure near 

coercivity. Brown and yellow regions denote hard and soft regions, respectively and 

a is the center-to-center distance of the hard regions, or the edge length of the 

dashed square. (b) The simulated spin distribution  (x, y) as a function of x and y. 

The center of the soft region is indicated by an arrow. 

 

 

To explain the high Hc, the model structure shown in Fig. 5.3.5 (a) is used where 

a is the center-to-center distance between the hard regions, or the edge length of the 

dashed square. In this coordinate frame, the alignment field Hal, the measurement field H, 

and the c-axis (crystallographic easy axis) alignment are all in the x-direction. The 

absence of a pronounced shoulder in the hysteresis loop and the smallness of the feature 

sizes indicate nearly perfect exchange coupling. In this limit, the nucleation mode is 

nearly coherent and can be written as ϕ(x, y) = ϕ0 + ϕ1(x, y), where ϕ is the local 
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magnetization angle relative to the c-axis, ϕ0 is the coherent magnetization angle, and 

ϕ1(x, y) is the incoherent contribution.[17,18] Nucleation starts in the middle of the soft 

regions, and the exchange stiffness suppresses abrupt changes in the spin direction. This 

indicates that the long-wavelength Fourier components of the magnetization are only 

significant and ϕ can be expressed as, 

                    ϕ(x, y) = ϕ0 - ½ b ϕ0 [cos(2πx/a) + cos(2πy/a)]                                 5.1 

Here, x = 0 and y = 0 are in the center of the bottom-left hard particle in Fig. 5.3.5 (a) and 

b describes the relative strength of the incoherent part. 

 The dimensionless parameter b is determined by minimizing the micromagnetic 

(free) energy written as, 

                      

22
1

( , ) ( , )
2

sE A K x y M x y H dxdy
x y

    
            

                               5.2 

which yields the nucleation field,[19]                            
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                   5.3     

Here, K1 and Ms are the magnetic anisotropy constant and saturation 

magnetization of the hard phase, respectively, and f is the volume fraction of the soft 

phase, Msoft is the saturation magnetization of the soft phase and <M> is the average 

saturation magnetization of the system. Deff is the demagnetization factor which is 
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assumed to be zero for thin films with in-plane applied magnetic field parallel to easy-

axis which is the present case.  

 Figure 5.3.5 (b) shows the distribution of ϕ (x, y) or spin structure during the 

demagnetization in the nanocomposite samples. The nucleation starts from the center of 

the soft phase as indicated by arrow in Fig. 5.3.5 (b). By the definition of the present 

model, the correction term in the right-hand side of Eqn. 5.3 must be small, and thus the 

idealized structure of Fig. 5.3.5 (a) corresponds to a rectangular hysteresis loops with 

remanence Mr = Ms and Hc = HN. However, the experimentally produced structures are 

disordered and this leads to a smoothing of the hysteresis loops. The result of the 

multiplication of the terms in parenthesis in Eqn. 5.3 can be expressed as α, a modified 

Kronmüller factor for nanocomposite films which is about 0.7 obtained by numerical 

calculation for ideal system.[19] This indicates, a reduction of Hc of about 70 % for the 

nanocomposites from the Hc of the pure hard phase.[1,19] As an example, in the case of 

experimental results for Zr2Co11:Fe-Co nanocomposite film with f = 0.15, a Hc of 3.5 kOe 

was obtained which is about 77 % of the Hc obtained for hard Zr2Co11 nanoclusters. 

5.3.4 Energy Products 

 

Energy product [(BH)max] is important as a figure of merit for the efficiency of 

nanocomposite magnets. Optimal composition of hard and soft phases plays crucial role 

in determining the nominal energy product of the nanocomposite films. Although, 

(BH)max varies in proportion with Br
2/4 (Br is the remanent magnetic induction), the value 

of Hc is important to get the large area in B-H loop leading to high energy-product. 
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Figure 5.3.6. Energy product at Room Temperature. (a) Change in BHi and B with 

Hi (internal field) for nanocomposite film with 15 vol. % (f = 0.15) of soft phase; (b) 

variation of (BHi)max with f. 

 

 

 Figure 5.3.6 (a) shows the change in the nominal energy product (BHi) and B with 

the internal magnetic field (Hi) for Zr2Co11:Fe-Co nanocomposite film with f = 0.15. A 

large maximum energy product [(BHi)max] of about 19.5 MGOe was obtained for f = 0.15 

or 15 vol. % of Fe-Co, which is one of the largest values obtained for rare-earth and Pt 

free permanent magnet materials.[19-23] Change in (BHi)max with the soft-phase volume 

fraction f is shown in Fig. 5.3.6 (b) which shows a decrease in energy product with 

increasing f but remains appreciable up to f = 0.33 with corresponding value of 9.2 

MGOe suitable for permanent-magnet applications. Nanocomposites with 50 vol. % (f = 

0.5) of soft phase exhibits low energy product [(BHi)max < 1.5 MGOe] predominantly due 

to reduction of Hc which indicates strong dependence on coercivity of the energy-

products for hard-soft composite films. 
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5.4 Conclusions 

 

Synthesis of magnetic nanocomposite dense films consisting of hard Zr2Co11 nanoclusters 

dispersed in soft Fe-Co matrix is demonstrated in this chapter with different volume 

fractions (f) of the soft phase. Study of the magnetic properties indicate slow decrease 

rate of Hc with increasing f which helps to retain a high energy-product of the composite 

films. The micromagnetic calculations using a model structure indicates a high remanent 

magnetization and a small hysteresis-loop slope near remanence due to perfect exchange-

coupling between the soft and hard phases. This behavior is also evident from the 

experimental hysteresis loops and results in high energy products (9.2 - 19.5 MGOe) for 

nanocomposites having volume fractions in the range of 15 to 33%. The largest value of 

the energy-product (19.5 MGOe) is obtained for f = 15 which is higher than that obtained 

for commercially available alnico or other rare-earth or Pt free magnets. Scaling up of the 

nanocomposite magnets using hard-magnetic nanocluster building blocks is challenging 

and needs further research for commercialization. However, this study is quintessential to 

obtain insights for developing next generation composite magnets for practical 

permanent-magnet applications. 
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6 CHAPTER 6. SIZE-ENHANCED MAGNETIC PROPERTIES OF 

Mn AND Fe -BASED SILICIDE NANOCLUSTERS 

 

Spin-structure changes drastically from bulk to at nanoscale due to surface effect or 

high surface to volume ratio compared to bulk. New magnetic properties are discovered 

in the case of nanoclusters which are not known for bulk or thin films. In this study, 

effect of surface-spins on the magnetic properties of Mn and Fe-based silicides are 

discussed which are reported as potential candidates for spintronics applications. Density 

functional theory is used to understand the physics of magnetism in these nanoclusters. 

Many of the results presented in this chapter are adapted from the publication: 

“Mn5Si3 Nanoparticles: Synthesis and Size-induced Ferromagnetism”, B. Das, B. Balamurugan, 

P. Manchanda, P. Mukherjee, R. Skomski, G. C. Hadjipanayis and D. J. Sellmyer, Nano Letters, 

16, 1132 (2016). 

I fabricated the Mn5Si3 and Fe5Si3 nanoclusters and analyzed the results. B. 

Balamurugan and I wrote the manuscript. R. Skomski and P. Manchanda performed the 

density-functional theory and simulations. P. Mukherjee helped with the TEM 

measurements and analysis. All co-authors contributed with ideas and criticized the 

manuscript. 
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6.1 Introduction 

 

Electron spins on the surface of nanoclusters with sizes less than 10 nm behave 

differently from the spins those are at the core due to very high surface to volume ratio 

which usually absent in case of bulk materials with large grain sizes.[1] This surface 

effect becomes interesting for ferromagnetic materials such as Mn or Fe due to their large 

magnetic moments which drive the spin-polarization on the surface of the nanoclusters. 

Mn-based intermetallic compounds are fascinating due to their exotic spin textures and 

unique crystal structures which facilitate them as a central focus of research in magnetism 

from the viewpoints of developing new rare-earth-free permanent magnets and magnetic 

materials with interesting spin-electronic properties.[2,3] Among various Mn or Fe based 

magnetic materials, their silicides are of special interest due to potential applications in 

spintronics and semiconductor-magnetics.[4,5] The elemental magnetic moment of Mn is 

larger than those of Fe and Co, but Mn atoms tend to exhibit antiferromagnetic 

interactions, which reduce net magnetization and Curie temperature. In this regard, 

Mn5Si3 is a promising material due to its hexagonal crystal structure [D88 -type 

hexagonal structure with space group P63/mcm as shown in Fig. 6.1.1] that has potential 

for creating a high magnetocrystalline anisotropy.  
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Figure 6.1.1. D88 -type hexagonal crystal structure of Mn5Si3. 

 

 

However, bulk Mn5Si3 is paramagnetic at room temperature and transforms at 

around 100 K into a non-collinear orthorhombic phase, that exhibits only 

antiferromagnetic ordering.[6-9] Interestingly, carbon doping has been observed to 

stabilize ferromagnetic ordering in Mn5Si3 bulk and thin films, due to a carbon-mediated 

superexchange between two neighboring Mn atoms.[10-13] Fe5Si3 is a silicide which also 

possesses the same D88 -type hexagonal crystal structure which shows ferromagnetic 

properties in the form of thin films, carbon-encapsulated isolated nanostructures, and 

nanowires with diameters lying in the range between 100 – 200 nm and lengths of the 

order of microns.[14,15] However, ferromagnetic properties of these nanostructures and 

films are weak and close to those for bulk Fe5Si3 with low magnetization not suitable for 

practical applications.  
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 Although the previous studies show relatively low magnetic moments of up to 1.0 

µB/Mn and Curie temperatures just above the room temperature (Tc ≈ 350 K) in carbon-

doped Mn5Si3, the results suggest that a small perturbation in the electronic structure can 

have strong effects on its magnetic properties. Hence, nanostructuring is an effective 

approach to modify the electronic structure of Mn5Si3 and Fe5Si3 by utilizing nanoscale 

effects that can substantially improve their magnetic properties and/or inducing new 

properties entirely different from the bulk.[1,16,17] This chapter focusses on the spin-

polarization at the nanocluster surfaces and its effect on the magnetization and anisotropy 

of nanocluster-deposited Mn5Si3 and Fe5Si3 films. 

 

6.2 Structure of Mn5Si3 and Fe5Si3 Nanoclusters 
 

 

 

Figure 6.2.1. LRTEM image of (a) Mn5Si3 and, (b) Fe5Si3 nanoclusters showing the 

cluster size distribution and the average cluster size in the corresponding insets. 
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Figure 6.2.1 shows the low resolution TEM (LRTEM) images of the Mn5Si3 [Fig. 

6.2.1 (a)] and Fe5Si3 [Fig. 6.2.1 (b)] nanoclusters showing average cluster sizes less than 

10 nm [average size of Mn5Si3 nanoclusters is 8.6 nm and that of the Fe5Si3 nanoclusters 

is 9.8 nm] with narrow size distribution shown in the insets with relative standard 

deviation values (σ/d) 0.2 and 0.23 for the two systems respectively.  

 

Figure 6.2.2. HRTEM images of a single nanocluster of (a) Mn5Si3 and (c) Fe5Si3 

with the corresponding FFTimages shown in (b) and (d) respectively. 

 

 

HRTEM of both the nanoclusters are shown in Fig. 6.2.2 [(a) Mn5Si3 and (c) 

Fe5Si3] with the corresponding FFTs [(b) Mn5Si3 along [1 ̅2 0] zone axis and (c) Fe5Si3 

along [2 ̅1 2] zone axis] indexed with D88 -type hexagonal crystal structure which are 
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also verified using XRD. It is clear from the distinct lattice fringes seen in the HRTEM 

images that both Mn5Si3 and Fe5Si3 nanoclusters are single crystalline with high degree 

of atomic ordering. 

 

Figure 6.2.3. XRD of the nanoclusters shown in red curve compared to that of bulk 

(in blue curve) and standard data (in green straight lines) for (a) Mn5Si3 and, (b) 

Fe5Si3. 

 

 

 Fig. 6.2.3 (a) shows the XRD pattern of Mn5Si3 nanoclusters (red curve) which 

also exhibits D88 -type hexagonal crystal structure as compared to the standard XRD data 

(green straight lines) and bulk (blue curve).[18,19] Similar crystal structure is obtained 

for Fe5Si3 nanoclusters (red curve) as shown in the Fig. 6.2.3 (b) which also shows the 

comparison with the standard data (green starlight lines) for the Fe5Si3 with hexagonal 

structure (prototype – Mn5Si3).[20] Thus, both the nanoclusters are highly ordered and 

crystallize in hexagonal crystal structure as supported by TEM and XRD studies. To 

explore their potential for magnetic applications, it is important to perform magnetic 

characterization which will be discussed for both the systems in the following sections. 
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Figure 6.2.4. Scanning Transmission Electron Microscopy: (a) High-Angle Annular 

Dark-Field (HAADF) image of a single Mn5Si3 nanocluster showing homogeneous 

atomic number (Z) contrast distribution supported by Energy Dispersive X-ray 

(EDX) color mapping of (b) Mn, (c) Si and, (d) combined Mn and Si. 

 

 

Fig. 6.2.4 (a) shows a High-Angle Annular Dark-Field (HAADF) image with 

atomic number (Z) contrast for a single Mn5Si3 nanocluster. The composition of the 

nanoclusters was studied and verified using Energy Dispersive X-ray (EDX) 

measurements in STEM mode and the corresponding color mapping of Mn, Si and 

combined Mn-Si elemental distribution are shown in figures 6.2.4 (b), (c) and (d) 

respectively. The study exhibits a uniform distribution of Mn and Si over the nanocluster 

indicated by the homogeneous contrast and color distribution in Fig. 6.2.4 (a) and (d) 

respectively, and a similar trend was obtained also for the Fe5Si3 nanoclusters (not shown 

here due to similarity of the data). 
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6.3 Magnetic Properties: Mn5Si3 Nanoclusters 

 

 

 
Figure 6.3.1. (a) Magnetization (M) measured as a function of temperature (T) in a 

magnetic field of 1 kOe. The M-T curve for the bulk alloy is magnified in the inset to 

show clearly the antiferromagnetic transition at 99 K. (b) M-T curve for the 

nanoclusters measured in the temperature range of 300 – 850 K, where the Curie 

temperature Tc is indicated by an arrow. 

 

 

The temperature-dependent magnetization curves of Mn5Si3 nanoclusters is 

shown in Fig. 6.3.1 (a) by the red curve which is also compared to the M-T curve for bulk 

Mn5Si3 (blue curve). The bulk alloy exhibits negligibly small magnetization, mainly due 

to its antiferromagnetic behavior. Generally, bulk Mn5Si3 is paramagnetic at room 

temperature and expected to exhibit a structural transition from the hexagonal to 

orthorhombic structure at 100 K, which accompanies antiferromagnetic transition at 99 

K, as clearly shown in the inset of Fig. 6.3.1 (a) which is basically the magnified version 

of the bulk M-T curve near 99 K.[6,21] In comparison, the nanoclusters exhibit an 

enhanced magnetization by about three orders of magnitude, which indicates a possible 
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ferromagnetic ordering with a Curie temperature Tc higher than 300 K. The measured M-

T curve at elevated temperatures, Fig. 6.3.1 (b), suggests a Tc close to 590 K for the 

nanoclusters. 

 

 

Figure 6.3.2. (a) The magnetic hysteresis loops of the isotropic (unaligned) 

nanoclusters measured at 3 K (red curve) and 300 K (green curve). (b) The 

experimental magnetization curves (spheres) of the nanoclusters at high-field region 

(35 – 70 kOe) were fitted (lines) using the law-of-approach to saturation method to 

determine magnetocrystalline anisotropy constant K1. 

 

 

The magnetization curves of the Mn5Si3 nanoclusters measured as a function of 

applied field H from -70 kOe to + 70 kOe reveal a large saturation magnetization (Ms), 

and appreciable coercivities (Hc). For example, the expanded M-H loops of the 

nanoclusters, Fig. 6.3.2 (a), show Hc = 0.50 and 0.90 kOe at 300 and 3 K, respectively. 

Most importantly, M does not saturate even for a high field (70 kOe) as shown in Fig. 

6.3.2 (b), suggesting a significant magnetocrystalline anisotropy constant K1. In Fig. 6.3.2 
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(b), the experimental magnetization data at high field were fitted using the law-of-

approach to saturation method (Appendix A) and this analysis yields K1 = 12.8 

Mergs/cm3 and Ms = 983 emu/cm3 (Js = 12.4 kG) at 3 K [K1 = 6.2 Mergs/cm3 and Ms = 

802 emu/cm3 (Js = 10.1 kG) at 300 K]. 

 

Figure 6.3.3. Easy-axis aligned Mn5Si3 nanoclusters showing in-plane hysteresis 

loops measured along the easy and hard directions. 

 

 

The strong magnetic crystalline anisotropy of Mn5Si3 nanoclusters is also revealed 

from the easy-axis alignment experiment for uniaxial nanoclusters.  Due to this 

anisotropic nature, the nanoclusters were successfully aligned using an external magnetic 

field of about 5 kOe, as described in earlier chapters. The magnetic hysteresis loops of 

the aligned (anisotropic) nanoclusters is shown in Fig. 6.3.3, which exhibits an 

appreciable coercivity, Hc = 1.7 kOe (at 3 K), which is larger than that for the isotropic 
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nanoclusters. A high remanence ratio Mr/Ms = 0.82 along the easy axis was obtained as 

compared to those measured along the hard axis (Hc = 0.50 kOe and Mr/Ms = 0.3) which 

also ensures a high degree of alignment and appreciable magnetocrystalline anisotropy 

present in the nanoclusters. Note that, for aligned Mn5Si3 nanoclusters at 300 K, Hc = 0.9 

kOe and Mr/Ms = 0.84 along the easy direction. 

 

6.4 DFT Results for Mn5Si3 nanoclusters 

 

The experimental results show that Mn5Si3 nanoclusters are ferromagnetic with a high Tc 

 590 K, and a large saturation magnetic polarization, Js = 12.4 kG, which corresponds to 

an average magnetic moment <m> = 2.2 µB/Mn. In order to understand the magnetic 

properties of the nanoclusters, first-principle density-functional theory (DFT) calculations 

using the projected augmented wave method (PAW), as implemented in the Vienna ab-

initio simulation package (VASP) have been used.[22,23] The exchange-correlation 

effects were implemented by generalized-gradient approximation (GGA-PBE) and a 

supercell with 15 Å vacuum spaces in the x, y, and z directions is used to exclude 

interactions between the neighboring nanoclusters.[24] For the nanocluster, the Γ-point 

was used for k-point sampling due to the large supercell. The atomic positions for the 

nanoclusters were relaxed until the force acting on each atom was less than 0.1 eV/Å, and 

a convergence criteria of 1×10-5 eV has been used for electronic structure calculations. 
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Figure 6.4.1. DFT results of Mn5Si3 nanoclusters: (a) Schematic of a nanocluster 

having 128 atoms.  Density of states for (b) core Mn and (c) surface Mn atoms. (d) 

Radial distribution of magnetic moments from the center to the surface. 

 

The simulations were performed for a hexagonal nanocluster having 128 atoms as 

schematically shown in Fig. 6.4.1 (a) and yield <m> = 2.7 µB/Mn, in an agreement with 

the experimental value <m> = 2.2 µB/Mn. The DFT analysis also reveals a large magnetic 

moment of about 3.2 µB/Mn for surface atoms as compared to 0.85 µB/Mn for core atoms. 

Furthermore, this result can be explained by comparing the calculated densities of states 

(DOS) for the core Mn atoms [Figure 6.4.1 (b)] and that of surface Mn atoms [Figure 

6.4.1 (c)]. This surface effect is also reflected by an inhomogeneous distribution of the 

calculated magnetic moment across the nanocluster as shown in Fig. 6.4.1 (d). In brief, 
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Fig 6.4.1 (b)-(d) demonstrate a modified electronic structure at the nanocluster surface as 

compared to core, leading to a large surface spin polarization. It is also clear from the 

DOS study, that the large spin polarization at the nanocluster surface also polarizes the 

core to show ferromagnetic behavior. Note that a small perturbation in the electronic 

structure of Mn5Si3 bulk and thin films upon carbon doping have shown considerable 

effects on their magnetic properties.[10-13] Furthermore, the finite-size effects have 

shown to increase Tc with a decrease of cluster size in MnFe2O4 nanoclusters.[25] Thus, 

the unusual ferromagnetic ordering with a substantially high Tc and <m> observed in the 

case of Mn5Si3 nanoclusters is presumably a direct consequence of the modification in 

the electronic structure due to nanoscale effects, evident from Fig. 6.4.1 (b) and (c). 

 

6.5 Magnetic Properties: Fe5Si3 Bulk and Nanoclusters 

 

 

Figure 6.5.1. Magnetic hysteresis of Fe5Si3 nanoclusters (red curve) and bulk (blue 

curve) at (a) 10 K and (b) 300 K. 
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 Comparison of magnetic properties of Fe5Si3 nanoclusters with the bulk exhibit 

appreciable enhancement of magnetization for the nanoclusters. The comparison is 

shown in Fig. 6.5.1 through the hysteresis loops of Fe5Si3 bulk (blue curve) and 

nanoclusters (red curve) at T = 10 K [Fig. 6.5.1 (a)] and 300 K [Fig. 6.5.1 (b)] which 

shows appreciable Ms of about 915 emu/cm3 (Js = 11.5 kG) at 10 K with Hc = 430 Oe [Hc 

= 200 Oe, Ms = 845 emu/cm3 and Js = 10.6 kG at 300K]. These values are significantly 

higher than those obtained for bulk Fe5Si3 showing Ms of 560 emu/cm3 [Js = 7.0 kG] at 

10K [Ms = 452 emu/cm3 and Js = 5.6 kG at 300 K] with zero coercivity exhibiting soft 

magnetic behavior. 

 

 

Figure 6.5.2. Dependence of magnetization on change in temperature for bulk 

(blue curve) and nanoclusters (red curve) of Fe5Si3 indicating respective 

Curie temperatures by arrows. 
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Figure 6.5.2 shows the variation of normalized magnetization M/M0 with 

temperature (T) [M is the magnetization varying with temperature and M0 is the 

magnetization at 10K] for the nanoclusters (red curve) and bulk (blue curve) Fe5Si3. A Tc 

of about 550 K was obtained for the Fe5Si3 nanoclusters which is significantly higher 

than the bulk Tc of 360 K. The enhancement in magnetic properties can be attributed to 

the nanoscale effect of spin-polarization at the nanocluster surfaces similar to the 

phenomenon observed in Mn5Si3 nanoclusters. DFT calculations for Fe5Si3 nanoclusters 

are also done to verify this effect which is discussed in the following section. 

 

6.6 DFT Study of Fe5Si3 nanoclusters 

 

 

Figure 6.6.1. DOS for the Fe atoms at (a) surface and at (b) core of a Fe5Si3 

nanocluster. 

 

 

 DFT calculations for the Fe5Si3 nanoclusters were performed using similar 

method described in section 6.4 for Mn5Si3 using a cluster of 128 atoms. Figure 6.6.1 



99 
 

shows the DOS for the Fe atoms at the surface and at the core of the nanocluster [Fig. 

6.6.1 (a) and (b) respectively] indicating large spin-polarization at the surface compared 

to that at the core. Note that bulk Fe5Si3 is known to be ferromagnetic and hence it is 

obvious that the core of the nanocluster showing spin-polarization somewhat larger 

compared to that observed in the case of Mn5Si3 [Fig. 6.4.1 (b)]. The average magnetic 

moment of 2.1 µB/Fe -atom was obtained from the DFT calculations which is close to the 

moment of about 1.8 µB/Fe -atom obtained from the experiment. 

 

6.7 Conclusions 

 

Nanoscale confinement effects on spin-polarization at the nanocluster surfaces was 

studied with silicide nanoclusters. A large saturation magnetic polarization of about 12.4 

kG (equivalent to an average magnetic moment of 2.2 µB/Mn) in Mn5Si3 nanoclusters 

was obtained, as compared to the nearly zero magnetic moment observed in the case of 

the antiferromagnetic bulk alloy. The first-principle calculations demonstrate that the 

surface-induced spin polarization is responsible for a high ferromagnetic moment in the 

nanoclusters. The nanoclusters also exhibit appreciable coercivities (Hc = 1.7 kOe at 3 K 

and 0.9 kOe at 300 K), mainly due to the underlying appreciable magnetocrystalline 

anisotropies at the corresponding temperatures. Similarly, spin-polarization-induced high 

magnetization was observed in Fe5Si3 nanoclusters which belong to the same space group 

as Mn5Si3 and has similar crystal structure and interestingly, exhibit a large Tc of about 

550 K compared to that for the bulk [Tc = 360 K]. This study explains how the nanoscale 
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effects can be used to improve the magnetic properties of transition metal – based 

silicides, which may be emerging materials for significant magnetic and spintronics 

applications.  
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7 CONCLUSIONS 
 

 

Synthesis of magnetic nanoclusters with unique inert-gas condensation type cluster-

deposition method is demonstrated in this dissertation. The materials studied are all rare-

earth free and also do not include any expensive element like Pt. Enhancement of 

magnetocrystalline anisotropy in Co(Zr) nanoclusters is shown due to stabilization of hcp 

Co -phase. Metastable Zr2Co11 phase is stabilized using the cluster-deposition synthesis 

method and this single-step technique also helped to align the uniaxial nanoclusters using 

external magnetic field. This is the first time any rare-earth free magnetic materials were 

demonstrated which have a room-temperature energy product as high as 16.6 MGOe. 

Using Zr2Co11 nanoclusters as the hard phase along with Fe-Co soft phase, exchange-

coupled nanocomposites were fabricated which shows even higher energy product of 

19.5 MGOe. This nanocomposite structure likely can be a first step in preparing 

environment-friendly cost-effective permanent magnets for practical applications. The 

physics behind the enhanced magnetic properties is explained with the help of 

experimental characterization and theoretical analysis of the results. Modification of spin-

structure at nanoscale was studied for Mn5Si3 and Fe5Si3 nanoclusters which exhibit 

enhanced spin-polarization at the nanocluster surface leading to new magnetism 

compared to the bulk. The density-functional theory was used to understand the physics 

of spin-modification at low dimension (nano-regime) which helps to develop experiments 

to visualize those effects. Silicide nanoclusters studied in this dissertation have potential 



104 
 

for future spintronic applications and this study helps to understand the underlying size-

dependent magnetism.  

The results in this dissertation help to understand the spin-correlations in 

nanoscale magnets so that proper engineering can be implemented to make these 

materials useful in future technologies. 
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8 APPENDIX A 
 

Measurement of Magnetocrystalline Anisotropy using Law of Approach to 

Saturation Method:  

The magnetic anisotropy constant (K1) is estimated from the high field region of the 

experimental curves using the law of approach to saturation method, widely used for 

randomly oriented magnets.[1–3] 

            M = Ms (1-  
𝐴

𝐻2) + χH                                                         (1) 

In eqn. (1), χ is the high-field susceptibility and A is the constant depends on the 

anisotropy constant as given by, 

                                                         A = 
4

15
 

𝐾1
2

𝑀𝑠
2                                                                 (2) 

 

Figure A. Fitting (line) of eqn. (1) with experimental (spheres) M 

Experimental M (solid spheres in Fig. A) at high field region is fitted with eqn. (1) (line 

in Fig. A) to obtain A which is used in eqn. (2) to calculate K1 which is 8.8 Mergs/cm3 in 

the present example. 
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9 APPENDIX B 
 

Calculation of Demagnetization Factor (N) of Nanocluster-Films: 

 

 

Figure B. Room-temperature hysteresis loops for isotropic Zr2Co11 nanoclusters 

deposited as films measured along the in-plane or x (red) and out-of-

plane or z (black) directions.[1] 

 

The demagnetization factor Nx is estimated from Fig. B, using Nx + Ny + Nz = 1 

and Nx = Ny for the two in-plane directions, 2Nx + Nz = 1.[1-3] The individual 

magnetization factors Ni (i = x, y, z) are related to the external magnetic susceptibilities i 

by 1/i = 1/o + Ni, where o is independent of sample shape.[4] Extracting the two 

susceptibilities (loop slopes) x and z from Fig. B we obtain Nx  0.26 which is for 

Zr2Co11 nanocluster-films. Similar analysis yields a comparatively low Nx  0.15 for 

nanocomposite films. 
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