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Excitation of atoms by spin-polarized electron impact yields fluorescence that can

generally exhibit both linear and circular polarization. For experiments where the scat-

tered electrons are not detected, symmetry requires that the electron beam be spin-

polarized in order for non-zero circular polarization to be observed. Extensive theo-

retical and experimental investigations have been performed regarding fluorescence po-

larizations (Stokes parameters) resulting from spin-polarized electron impact excitation

of atoms. Measurement of fluorescence polarization provides insight into the angular

momentum coupling that exists in the atomic state of interest. It also enables the mea-

surement of electron spin polarization and experimental benchmarking of theoretical

atomic structure calculations.

In an extension of previous atomic investigations, fluorescence polarization from po-

larized electron impact dissociation and excitation of simple diatomic molecules is con-

sidered. Stokes parameters are presented for dissociated atomic transitions in H, D, and

N. Rotationally resolved molecular Fulcher band transitions in H2 and D2, as well as par-

tially resolved transitions in N2, are also presented. Non-zero circular polarizations are

observed for both the dissociation and molecular excitation processes. For the rotation-

ally resolved molecular transitions, lower circular polarizations are observed for higher

values of rotational states.
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Preface

Content in Chap. 3 is published in [1].

Content in Chap. 2, Sec. 2.3.4, is published in [2].

Content in Chap. 5, Sec. 5.2.2, is published in [3].

Content from Chap. 5, Secs. 5.1 and 5.2.1 has been submitted for publication in the

Journal of Physics: Conference Series (JPCS).
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Chapter 1. Introduction

Electron-atom and electron-molecule collisions have proven to be a valuable method with

which to explore both classical and quantum mechanical phenomena. Interactions be-

tween projectiles (electrons) and targets (atoms or molecules), as well as subsequent inter-

actions within the targets themselves, are manifested in several different ways. For inelas-

tic processes, energy is transfered from the incident electrons to the targets, and this can

be observed either by measurement of the scattered projectiles, measurement of residual

targets (or target fragments), or both. Targets can be investigated by observation of spon-

taneous emission; excited atoms and molecules decay to lower energy states by emitting

light, and the properties of this light (its intensity, wavelength, and polarization) provide

information about the collision dynamics. Historically, the discrete nature of such de-

tected photon spectra played a major role in the development of quantum physics. To

this day, these types of experiments remain an active area of research [4].

Many studies have been performed over the past century regarding the properties of

light emission from electron-atom, and, to a lesser extent, electron-molecule collisions.

The amount, or intensity, of fluorescence measured as a function of incident electron

beam energy is referred to as an optical excitation function. A comprehensive article

by Heddle and Gallagher [5] illustrates that experimental excitation functions have been

acquired from roughly half of the elements in the periodic table. Fluorescence polariza-

tion is often measured in conjunction with optical excitation functions. For experiments

where unpolarized targets are excited by an unpolarized electron beam, the fluorescence

observed perpendicular to the beam can exhibit linear polarization, P1, with respect to

the beam direction. (It is assumed here that the scattered electrons are not detected.) This

linear polarization provides information about the relative magnetic sublevel populations

in the excited target states [6], and is related to how oblate or prolate the charge cloud is
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with respect to the electron beam axis.

With the advent of spin-polarized electron sources, even more information could be

gleaned from studying the fluorescence resulting from excitation by spin-polarized elec-

tron impact. If the photons are detected perpendicular to the electron beam and paral-

lel to the incident electron spin polarization direction, additional polarizations can be

observed. These polarizations consist of another linear polarization, P2 (defined with

respect to an axis canted at 45◦ to the beam axis), as well as the circular polarization, P3

[7–9]. The polarizations P2 and P3 can provide additional insight into spin-dependent

collision dynamics [8].

Experiments involving fluorescence polarization and spin-polarized electron impact

were first proposed by Farago and Wykes [10, 11], who derived expressions which re-

lated the circular polarization of fine-structure-resolved transitions in Hg, Cd, and Zn

elements to the value of incident electron spin polarization. Spin-polarized beams are

generally partially polarized, and the actual degree of spin polarization, Pe , must be de-

termined. The proposed relations by Farago and Wykes provided an alternative method

to traditional Mott polarimetry for the characterization of spin-polarized beams. The

first experimental measurement based on this suggestion was conducted by Eminyan and

Lampel [12] using zinc atoms. Soon after, P2 and P3 measurements were acquired for the

case of mercury targets [13]. Gay then pointed out that an unresolved fine-structure mul-

tiplet in helium gives a similar relation between the observed fluorescence polarizations

and the value of Pe [14], and this group later demonstrated that resolved fine-structure

transitions in Ne, Ar, Kr, and Xe could be utilized for optical polarimetry as well [15, 16].

1.1 Implications of fluorescence polarizations

The Stokes parameters (intensity and optical polarizations P1, P2, and P3) are related

to the angular momenta of the emitting target. The intensity is related to the optical
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excitation cross section, and the polarization P1 is a measure of the alignment of angular

momenta (and also the alignment of the charge cloud) with respect to the electron beam

axis. Both the intensity and P1 are independent of Pe . Generally P1 is non-zero for

electron impact excitation, with the notable exception that for excited S atomic states

(where L = ML = 0), P1 is required to be zero if the fine structure is unresolved due to

symmetry considerations [9]. A technical consequence of detecting light with non-zero

P1 in a direction perpendicular to the electron beam is that the collected intensity will not

be directly proportional to the total intensity due to the angular anisotropy of emission.

However, it is well known that the true intensity can be reconstructed from the measured

intensity and P1, and this issue will be further discussed in Chap. 2.

The polarization P2 is also a measure of alignment, but with respect to an axis tilted

by 45◦ from the beam direction. This polarization, if non-zero, indicates that the charge

cloud is aligned and rotated with respect to the electron beam axis. When the scattered

electrons are not detected and no external fields are present, P2 is required to be zero for

unpolarized electron impact excitation. When the incoming electrons are spin polarized,

however, P2 may be non-zero. Its value depends on the dynamical processes at work in the

collision complex. Bartschat and Blum [7] have demonstrated that exchange excitation

of a well-LS coupled state cannot provide a finite P2. For light atoms, two mechanisms

can yield non-zero P2. One mechanism requires exchange excitation to a non-well LS

coupled state (intermediately coupled with different values of L and S combining to give

the same J ). The first observation of this sort was completed by Bartschat et al. [13]. For

the other mechanism, “higher order scattering processes” involving eventual excitation of

a well-LS coupled state preceded by a period in a non-LS coupled intermediate state (or

states) should allow for P2 6= 0 [17]. A search for P2 due to this situation is presented in

Chap. 3, where an experiment is reported regarding the Stokes parameters from a well-

LS coupled state in helium. The investigated fluorescence received cascade contributions



4

from temporary negative ion resonances, which conceivably allows for a non-zero P2.

Finally, the spin-dependent polarization P3 is a measure of the orientation of angular

momenta. For spin-polarized electron-impact excitation with no detection of scattered

electrons, the orbital angular momentum L of excited states cannot initially be oriented.

However, the total angular momentum J can be. (Here the nuclear angular momen-

tum I is ignored.) This orientation of J is due to LS coupling; L and S couple to form

the spatially fixed J , as shown in the classical vector coupling model in Fig. 1.1a. The

initial orientation of S (due to non-zero Pe ), when coupled with un-oriented L, is thus

able to orient J . The time average of L also becomes oriented, due to the precession of

L and S about J . Such precession timescales are typically much shorter than the life-

time of the fluorescing state. Thus, P3 is obtained for exchange excitation of states by

spin-polarized electrons, and can be observed for resolved, or unresolved, fine-structure

transitions. However, as was the case for P1 from atomic S states, the unresolved fine-

structure situation requires L> 0.

1.2 Moving from atoms to molecules

A relatively large number of experimental and theoretical Stokes parameter investigations

have been performed for spin-polarized impact excitation of atoms [9, 18]. Extending

these types of measurements to molecular targets offers new challenges with the reward

of an improved understanding of molecular angular momentum dynamics. A limited

number of such experiments for diatomic targets have already been executed. The Mün-

ster group in Germany made the first foray into this field with molecular nitrogen. They

measured the Stokes parameters for the N2 C 3Πu(v
′ = 0) → B 3Πg (v

′′ = 0) 337.1 nm

band (second positive system) excited by spin-polarized electrons. Interestingly, P3/Pe

was found to be zero within an uncertainty of 2×10−3 at an energy corresponding to the

cross section maximum [19]. This null result was somewhat surprising, given that triplet
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transitions in atoms give sizable non-zero circular polarizations.

Following this puzzling nitrogen experiment, our group made measurements using

molecular hydrogen. Green et al. observed non-zero circular polarization of fluorescence

from excited H2 triplet molecular states produced by spin-polarized electron impact. Val-

ues of P3/Pe ∼ 0.1 were found for a mixture of unresolved Fulcher band transitions in the

595-605 nm wavelength region [20]. These results represented the first observation of cir-

cular polarization from diatomic molecules excited by spin-polarized electrons. Circular

polarization was also observed in Hα emission caused by dissociative excitation [20, 21].

Examples of dissociation leading to spin polarized H, D, and N are treated in Chap. 4.

1.2.1 Molecular notation and some Hund’s cases

In order to better understand the polarization results (and expectations) for molecular

fluorescence, a brief explanation of molecular notation and angular momentum cou-

pling schemes for simple diatomic molecules is in order. Molecular state designations

are slightly different from those of atoms, due to the change from spherical to cylindrical

symmetry. Molecular states are categorized by the term symbol 2S+1Λ
(+/−)
Ω,(g/u)

, which is

preceded by a letter to indicate the electronic state configuration (X for ground states,

A, B , C , etc., for excited states of the same multiplicity as the ground state, and a, b ,

c , etc., for excited states of different multiplicity). The S that appears in the multiplic-

ity superscript represents the total spin quantum number, Λ is the projection of electron

orbital angular momentum L along the internuclear axis, and Ω is the projection of the

total angular momentum J (excluding nuclear spin) onto the internuclear axis. The val-

ues of Λ (0, ±1, ±2, . . .) are represented as capital Greek letters (Σ, Π, ∆, . . .). Use of a

+ or − superscript indicates the symmetry of the wave function upon reflection through

an arbitrary plane containing the nuclei. For homonuclear molecules, inversion of elec-

tron coordinates through the center of the internuclear axis can yield symmetric (g ) or
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antisymmetric (u) states, and this is analogous to atomic parity.

The various molecular angular momenta couple together similarly to the way LS

coupling works in atoms. However, the coupling is more complex due to the additional

angular momentum R of nuclear rotation. Different coupling schemes were proposed

by Hund to aid in choosing a “correct” (maximally diagonal) basis for the Hamiltonian.

The cases differ according to the relative interaction strengths (electrostatic, spin-orbit, or

spin-rotation) of a given molecular state, and represent limiting scenarios. Hund’s cases

(a) and (b) will be described here as they are of primary interest to this work.

Figure 1.1f depicts Hund’s case (a). The strong electrostatic interaction between the

electrons and the nuclei constrains L to precess around the internuclear axis (with pro-

jection Λ upon it); spin-orbit coupling then causes S to precess around the internuclear

axis as well (with projection Σ—this Σ should not be confused with the Σ corresponding

to Λ = 0 in the term symbol!). The coupling of Λ with Σ forms Ω, which lies along the

internuclear axis. The nuclear rotational momentum R is always perpendicular to the

internuclear axis. It couples with Ω to form J , thus Ω = Σ+ Λ is the projection of J

onto the internuclear axis. The vector J has constant magnitude and direction in space,

such that a projection MJ can be defined with respect to some laboratory coordinate. The

good quantum numbers for this case are S , Σ, Λ, J , Ω, and MJ . Note that R and L are not

sharply defined (they are unquantized).

Hund’s case (b) is shown in Figs. 1.1b and 1.1c. The strong electrostatic interaction

still causes L to precesses around the internuclear axis. However, in this case Λ couples

to R to form the total orbital angular momentum N because the spin-orbit interaction

is relatively weak. The coupling of N and S then creates J . The good quantum numbers

consist of S , Λ, N , J , and MJ . Note that here Σ and Ω are not quantized.

It should also be mentioned that in older literature the vectors R and N often ap-

pear as N and K , respectively. Table 1.1 provides a summary of the discussed cases. The



7

(a) Atomic LS coupling. (b) Hund’s case (b), Λ= 0. (c) Hund’s case (b), Λ= 1.

(d) Hund’s case (a), Ω= 0. (e) Hund’s case (a), Ω= 1. (f) Hund’s case (a), Ω= 2.

Figure 1.1: Angular momentum coupling in atoms and molecules. The atomic LS coupling scheme is
shown in 1.1a. The molecular Hund’s case (b) situations are depicted in 1.1b and 1.1c. Hund’s case (a)
situations are shown in 1.1d, 1.1e, and 1.1f. Note that for singlet states (S = 0), the distinction between
Hund’s cases (a) and (b) disappears and J =N .
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Table 1.1: Summary of Hund’s cases (a) and (b) describing the angular momentum coupling in diatomic
molecules.

Hund’s case Good quantum numbers Relative interaction strengths

(a) S, Σ, Λ, J , Ω, MJ ∆Ee l ≫AΛ≫ BJ

(b) S, Λ, N , J , MJ ∆Ee l ≫ BJ ≫AΛ

electrostatic interaction between the electrons and charged nuclei is related to the ∆Ee l

term in the Table. The relative importance of this interaction is gauged by ∆Ee l , which

represents the energy splitting between the molecular state of interest and the nearest elec-

tronic state with a different value of Λ [22]. For the other interaction strengths shown, A

represents the state’s spin-orbit constant and B is the rotational constant. Generally light

molecules such as H2 and D2 conform to Hund’s case (b), while larger molecules like N2

are better described by Hund’s case (a), provided that Λ > 0. Note that states having

Λ = 0 must be in Hund’s case (b) because then AΛ = 0. Similarly, low-valued rotational

states in N2 are usually well described by Hund’s case (a), but higher valued rotational

states can transition to Hund’s case (b) if the BJ term in Table 1.1 surpasses the value of

AΛ as J becomes large [23].

Using this knowledge of Hund’s cases, the mechanism for circular polarization pro-

duction in molecules can be considered in a similar manner to that in atoms. Comparing

Figs. 1.1a and 1.1b, it is apparent that there is a strong similarity between atoms and

molecules in excited Σ states. Thus, one would expect that molecules with S > 0 should

exhibit circularly-polarized fluorescence if excited by spin-polarized electrons. Further,

given that J depends on S for all coupling cases shown in Fig. 1.1, it appears that an

orientation of S should yield an orientation of J , thus providing for non-zero circular po-

larization. In this context, the results of the German group led by Hanne are somewhat

unexpected. What specific effects could work to eliminate nitrogen’s circular polariza-

tion, but not that of hydrogen? This question largely motivated this work. In an effort
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to address this issue, data was acquired with emphasis on rotational isolation of molecular

spectral lines. Chapter 5 contains Stokes parameter measurements for such rotationally

isolated transitions in H2, D2, and N2 molecules.
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Chapter 2. Experimental Apparatus and Data Analysis

The apparatus used to acquire the data presented in this dissertation has been previously

discussed [24, 25] and is shown in Fig. 2.1. A brief description is given here, and notable

improvements made during the course of this work are discussed. Several procedures and

issues related to the operation of the experiment and data acquisition are addressed.

Generally speaking, the apparatus provides a means with which to excite atoms or

molecules by spin-polarized electron impact. The intensity and polarization of the result-

ing fluorescence is observed in a direction perpendicular to the electron beam and parallel

to the beam’s spin polarization direction. The apparatus comprises a spin-polarized elec-

tron source, a beam transport and target gas cell system, and an optical polarimeter.

2.1 Polarized electron source

The polarized electron source has been previously described [24–26], and many of the

procedures are also similar to those discussed in Ref. [27]. Photoemission from an un-

strained GaAs crystal irradiated with circularly polarized (785 nm) light provides a con-

tinuous beam of spin-polarized electrons [28]. Polished Zn doped p-type GaAs bulk

wafers (0.3 mm thick, 〈100〉 orientation) were obtained from Crystal Specialties, with a

typical doping carrier concentration of ∼2×1019 cm−3. In preparation for insertion into

the source, a crystal is cut from a wafer such that the rectangular dimensions are approxi-

mately 5×18.5 mm. The previous chemical etching procedure (outlined in Ref. [29]) has

been abandoned; etching vs. not etching does not appear to affect the spin-polarization

or quantum efficiency. The crystal is carefully mounted such that it is “gripped” between

the coils of two tungsten springs (0.25 mm diam. tungsten wire is wound on a 1.60 mm

diam. cylinder to form right-handed springs which are twisted onto 2–56 stainless steel
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Figure 2.1: Experimental apparatus. The z-axis is taken to be along the electron beam direction, and the
y-axis is collinear with the optical path.
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mounting screws). Four cesium dispensers (SAES Getters 5G0050 or 5G0055) are also

installed in the source chamber such that there exists a line of sight (∼4 cm) between the

dispensers and the crystal surface. After the installation of a crystal and fresh cesiators,

the chamber is pumped down overnight in preparation for bake-out. An AC current

(∼1 A) is applied through the crystal while a DC current of 3.75 A is used to sequentially

outgas each cesium dispenser for ∼5 min. each. Note that the crystal heating current

value is only approximate as it depends on the exact dimensions of the crystal. The cur-

rent is adjusted to achieve a visual red-orange color temperature from the crystal. Care

must be taken to not overheat the crystal because preferential evaporation of As2 begins

at temperatures above∼660 ◦C [28], leaving the crystal with a “frosty” appearance (actual

Ga droplets may form in the case of extreme overheating).

After the cesiators and crystal have been outgassed, a heating shroud is assembled and

the source chamber is baked at 160 ◦C for ∼4 days to achieve a base pressure of 5× 10−11

Torr. This pressure is measured with a nude ionization gauge. The source chamber turbo

pump has been replaced by an ion pump (Gamma Vacuum 200T 160 ℓ/s differential

diode) and non-evaporable getter (NEG) pump (SAES Getters CapiciTorr CF 35 with C

400 cartridge) combination in order to obtain a cleaner vacuum and to extend the lifetime

of photoemission. These alterations have resulted in an improved base pressure (5×10−11

vs. 2×10−10 Torr). The NEG pump complements the ion pump due to its large pumping

speed of H2 and CO gases (>200 ℓ/s). The ion pump is operated during bake-out and

contains its own heating elements. The NEG pump is “activated” at the end of the bake-

out cycle by means of its controller, which provides a timed heater current for a duration

of 1 hr. After the NEG activation is complete, the bake is terminated.

When the chamber has cooled, surface preparation (“activation”) of the GaAs crystal

is required to lower the work function so that polarized electrons excited to the conduc-

tion band can escape into the vacuum. The source laser used to populate the conduction
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band is a Thorlabs HL7851G 50 mW single mode 785 nm diode driven by a LDI-800 con-

troller. The laser is passed through a polarizing cube beamsplitter followed by a precision

polymer quarter-wave retarder (Meadowlark Optics NQM-050-780, 780 nm) to produce

left- or right-circularly polarized light. The actual retardance of the quarter-wave retarder

at the 785 nm laser wavelength is 89.1◦, and the retarder is mounted in a motorized rota-

tion stage (Standa 8MR150-1). The entire laser optical system is mounted on two trans-

lational stages (orthogonal arrangement) above a 2 3
4
" Conflat viewport (MDC #450002).

The laser spot is centered on the crystal by adjusting the translational stages with the aid

of a hand-held mirror (2.5 cm diam.) and a CCD camera or an IR viewer.

To activate the surface, the GaAs is heat cleaned to a red-orange color for 5 min. and

then cooled while a current of ∼4 A is applied through a cesium dispenser. The crystal

is biased to −250 V, and an autoranging picoammeter (Keithley model 485) is connected

in series between this bias potential and the crystal to measure the amount of photoe-

mission. After a few hours, a small peak is observed in the photocurrent (see Fig. 2.2).

When the crystal becomes overcesiated, the photocurrent begins to decrease. The cesia-

tor current is then turned down (typically to 50% of its initial value), and O2 (99.998%

“ultrahigh purity”) is admitted to the source chamber using a Granville-Phillips Series

203 variable leakvalve at partial pressures of ∼1× 10−9 Torr. Another peak is then ob-

served that should exhibit a greater maximum than that of the previous one. If admission

of O2 does not lead to greater photocurrent, the solution is to heat clean the crystal again

at a higher temperature and/or longer duration. A newly installed crystal can require

several heat cleanings before favorable response to O2 is observed. After admission of

O2 is stopped, the cesiator current is turned back up and the process continues. This

“yo-yo” activation procedure [29] is performed until the point of diminishing returns,

which usually occurs in 5–10 cycles. The final cesiator current is carefully adjusted (to

a smaller value than that used for activation) in order to maintain long-term stability of
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photoemission.

The source laser is typically operated at a relatively low power of ∼3 mW. (If the

laser is set to provide more power, the photocurrent is observed to decay more rapidly.)

As shown in Fig. 2.2, photocurrents of ∼10 µA/3 mW are typical. This corresponds to

a quantum efficiency (QE, number of outgoing electrons over the number of incoming

photons) of ∼0.5%. The electron beam energy distribution width (FWHM) is ∼0.3 eV

[1, 30].

The time-decay of photocurrent is believed to be due to sputtering of Cs and O from

the activated surface. There is evidence that this sputtering is caused by ion back bom-

bardment [31], meaning that the electron beam creates ions which then impinge upon

the activated surface due to its large negative potential. A better vacuum can reduce the

rate of sputtering; continuous cessation also combats the problem. The installation of the

aforementioned ion and NEG pumps has led to “easier” activations (shorter timescales

and less heat cleaning cycles) and has roughly doubled the photocurrent lifetime. Typical

lifetimes for the photocurrent are now on the order of 2–5 days. During an experiment,

the partial pressure of target gas (H2, D2, N2, or a noble gas) can be as high as 5× 10−8

Torr, but fortunately these gases are relatively inactive and do not strongly affect pho-

toemission. (However, they likely contribute to ion back bombardment.) Other gases,

such as O2, cannot be used as a target gas because over-oxygenation due to the partial

pressure in the source chamber would kill the photocurrent within seconds. Activations

performed with (Cs-F) are reported to be more thermally stable than those with (Cs-O2)

[32]. The (Cs-F) activation also seems to resist the effects of vacuum contamination (CO)

better than (Cs-O2), and the reported lifetime is an order of magnitude longer for the case

of (Cs-F) vs. (Cs-O2) [32]. It should also be noted that the Continuous Electron Beam

Accelerator Facility at Jefferson Laboratory uses (Cs-NF3) for activations [31, 33]. This

suggests that future investigation regarding the use of (Cs-F or Cs-NF3) instead of (Cs-



16

O2) is warranted to improve the performance of the source. Better differential pumping

seems desirable as well to reduce the effect of ion back bombardment.

The actual value of electron beam spin polarization Pe is defined as

Pe =
N↑−N↓

N↑+N↓
, (2.1)

where N↑(N↓) represents the number of electrons found with spin ħh/2(−ħh/2) by a mea-

surement of spin along the y-axis [8]. To measure the electron spin polarization, the

method of optical polarimetry is used [14–16]. Typically, values of ∼0.25 are measured.

2.2 Electron beam transport and target gas cell

Photoemitted electrons from the GaAs crystal undergo a 90◦ bend in their trajectories

due to the electrostatic deflector above the crystal. The crystal potential is held at−250 V,

and the deflector potential is typically set near −275 V. The electron spin-polarization is

not affected by this deflection, so the electron beam acquires transverse polarization. A

Helmholtz coil wrapped around the Conflat flange joining the ion pump with the source

chamber is used to help cancel the residual static magnetic field near the crystal region due

to the large permanent magnets in the ion pump. A larger Helmholtz coil (65× 130 cm)

surrounds the entire apparatus and is used to cancel the vertical component of the Earth’s

magnetic field.

After being deflected, the electron beam passes through a three-element Einzel lens

in the source chamber. The first and last elements are grounded (0 V), and the middle

element is split horizontally to allow for vertical deflection as well as focusing. Typi-

cal voltages are −270 V for the upper half and −200 V for the lower half of this split

lens element. A differential pumping aperture (∼4 mm diameter) directly follows the

lens structure. The next section of the chamber is for differential pumping; the source
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chamber pressure needs to be isolated from the pressure in the target gas cell. This inter-

mediate chamber is pumped with two Pfeifer-Balzers model TMU 065 turbo pumps (65

ℓ/s). The pumps are mounted facing one another, and due to this opposing arrangement

the magnetic fields associated with the spinning turbines tend to cancel each other. There

is a single tube electrostatic lens in this chamber, which is typically set at a potential of

approximately −150 V. Another differential pumping aperture exists at the end of this

section (∼4 mm diam.).

The target chamber consists of a 4 1
2
" Conflat 6-way cross, which houses the target gas

cell and two three-element Einzel lenses. The diameter of the entrance aperture of the

cell is 1.0 mm, and the exit aperture diameter is 3.1 mm. The distance between these

apertures is ∼40 mm. Two gas lines are attached to the target cell. One is connected to

an external Granville-Phillips Series 203 variable leak valve that allows gas into the target.

The other is connected to an external Granville-Phillips model 275 Convectron gauge for

measurement of pressure in the target cell. The Convectron gauge does not provide pre-

cise readings at low pressures (10−4 Torr range), so a linear calibration is performed using

the ionization gauge (Varian Bayard-Alpert type) connected to the target cell chamber.

This calibration is performed for each gas species used. All pressure gauges on the ap-

paratus are read with two Granville-Phillips Series 307 controllers. A Seiko Seiki model

STP-300 turbo pump (340 ℓ/s) is used to pump the target chamber. A 6" Conflat full nip-

ple lowers the pump 27 cm below the target cross so that the magnetic fields it produces

are negligible in the target cell region.

A 4-way 4 1
2
" cross directly follows the target chamber, and contains two more sets

of three-element Einzel lenses. A Faraday cup was added in this 4-way cross for this

work; previous measurements of transmitted beam current were performed by collecting

electrons on the Einzel lenses behind the target cell [24, 25], which was not ideal. The

stainless steel Faraday cup consists of an inner electrode (12.7 mm diam.) surrounded
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by a shroud (the outer diameter of the shroud face is 25.4 mm and its inner diameter is

12.7 mm). A 9-volt battery biases the inner electrode to be more positive than the outer

shroud, which is connected to 30 V through a Keithley 485 ammeter. Thus current is

measured using both electrodes. Another turbo pump (Pfeifer-Balzers model TPU 520

M) helps evacuate the target chamber indirectly, as it is attached to a large chamber not

shown in Fig. 2.1. This large chamber, connected to the flange on the right-hand side of

Fig. 2.1, houses a Mott polarimeter that was not used for this work.

The voltages applied to the electrodes in the apparatus are manually adjustable by

a voltage divider box equipped with several 300 kΩ 10-turn 5 W potentiometers. A

Philbrick Researches R-100B power supply provides the rail of the voltage divider box

with −300 V (5.1 W). A software-controlled power supply (Sorensen model XT 120-0.5)

referenced to the crystal bias voltage (provided by two Agilent E3612A power supplies

connected in series) is used to vary the potential difference between the crystal and target

cell, thus varying the kinetic energy of the incident electron beam in the target cell.

Various different voltages have been applied to the Einzel lenses immediately before

(and after) the target cell. Ultimately, it is desired that for all electron energies the beam

be transmitted through the target cell with no loss of current. However, this ideal trans-

mission is not observed in practice for low energies. During the course of this work, the

back (or “downstream”) 3.1 mm aperture was electrically isolated from the cell to allow

for current collection on the face of this aperture (15 mm outer diameter). A Keithley

485 picoammeter is connected between the target cell and the applied target cell poten-

tial, and another Keithley 485 is connected between this applied potential and the isolated

back aperture. This arrangemtent allows for separate current measurements on the front

and back target cell apertures. For low electron beam energies (from ∼5–35 eV) non-zero

current is collected on the back aperture. It was hoped that beam tunings could be found

to guide the beam through the back aperture without striking it, but this has not proved
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possible. For low energies the back aperture current can be comparable in magnitude to

the transmitted current detected with the Faraday cup. (The electron beam is tuned to

maximize the Faraday cup current and minimize the back aperture current.) It has been

found that setting all the Einzel lenses surrounding the target cell and Faraday cup to 0 V

provides a tuning as good any other.

The fact that the back aperture can obstruct the electron beam does not bode well for

proper current normalization of excitation functions. Tunings can be obtained that result

in no current reaching the Faraday cup (i.e. all the current is collected on the back aper-

ture), and fluorescence is still measured, meaning the beam exists in the optically sensitive

detection region. This suggests that it is advisable to use the sum of the currents collected

on the back aperture and Faraday cup for normalization purposes. However, there is still

no guarantee that the resulting normalized excitation function will be correct. Given the

circumstances, this seems to be an acceptable mode of operation if one accepts that the

excitation functions obtained with this apparatus are susceptible to this systematic error.

Previous measurements of excitation functions using this apparatus likely suffer from the

same issue and are therefore not extremely reliable. Measurement of the light polariza-

tions, however, are not expected to be affected by this issue, because polarizations are

defined such that systematic intensity errors of this sort cancel.

2.3 Optical polarimeter

The optical polarimeter depicted in Fig. 2.1 is a light-tight box that houses optical com-

ponents that are used to measure the the intensity and polarization of fluorescence with

wavelength selectivity. A plano-convex BK7 lens (Esco model A620040, 50.8 mm diam.,

101.6 mm EFL, 546 nm) tops the target cell and focuses light into the polarimeter such

that the rays are approximately parallel. Inside the polarimeter, two rotatable stages with

2" diam. mounts and 1.5" apertures are controlled by stepper motors operated in half-
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step mode (400 steps / motor revolution). The motors are connected to the stages by

miter gears with a 4:1 ratio, providing an overall ratio of 40 steps / 9◦ of stage rotation.

The lowest rotatable stage typically contains an optical retarder (sheet material from In-

ternational Polarizer), while the middle stage houses a linear polarizer (sheet material

from Rolyn Optics, #65.5305). A narrow bandpass filter is placed in the third stage near

the top of the polarimeter and can be tilted (with an axis of rotation perpendicular to

the optical axis) for the purpose of angle-tuning the bandpass towards bluer wavelengths

[34]. This tilting stage is spring loaded such that it tends to return to its horizontal posi-

tion, and a string connects the edge of the filter mount to the stepper motor shaft. As the

stepper motor turns, the string is wound on the shaft, thus lifting the edge of the filter

stage and providing tilt. The three stepper motors are driven by two Arrick Robotics

MD2 controllers. The motorized rotation capability of the middle stage and the tilting

design of the upper stage were added during the course of this work.

At the top of the optical polarimeter, another BK7 lens (identical to the first) directs

the transmitted light onto the GaAs photocathode of a photomultiplier tube (PMT).

The PMT is a Hamamatsu model R943-02 and is housed in an Amherst Scientific Corp.

model 4501 enclosure. The tube is cooled to −20 ◦C for low-noise pulse counting, and

the tube voltage is held at −1750 V by a Fluke 412B power supply. An Ortec VT120C

fast-timing preamplifier (×20 gain, noninverting) accepts signals directly from the PMT.

The amplified pulses are then routed to a Phillips Scientific model 6930 discriminator

operating in Lower Level Threshold (LLT) mode, with the threshold set to−50 mV. The

discriminator output provides TTL pulses with a 100 ns width. Due to this width, the

true count rate (TCR) is different from the observed count rate (CR) by [35]

T C R=
C R

1− (10−7)C R
. (2.2)
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This effect is neglected due to the low count rates from the experiment.

The optical system is sensitive to the UVA, visible, and NIR wavelength regions due

to the transmission of the lenses and response of the GaAs PMT. The combined detection

efficiency of the BK7 lenses and PMT is shown in Fig. 2.3. The use of narrow bandpass

filters allows for the isolation of desired atomic or molecular transitions. The following

subsections describe techniques used to measure the properties of fluorescence.

2.3.1 Stokes parameters and Mueller matrices

The intensity and polarization of a beam of light can be described by the Stokes parame-

ters. These are represented as a four-component column vector

S = I
�

1 P1 P2 P3

�T

, (2.3)

where I is the beam’s intensity, P1 and P2 are measures of linear polarizations, and P3 is a

measure of circular polarization. The Stokes parameters are subject to the the following

constraints: 0 ¶ I , −1 ¶ Pi ¶ 1, and (P 2
1
+ P 2

2
+ P 2

3
)

1
2 ¶ 1. In this work, emission is

observed in a direction perpendicular to the electron beam axis (z -axis) and parallel to the

axis of electron spin polarization (y-axis). For this detection geometry, the fluorescence

polarizations are defined as

P1 =
I0◦ − I90◦

I
, P2 =

I45◦ − I135◦

I
, and P3 =

IRHC − ILHC

I
, (2.4)

where

I = I0◦ + I90◦ = I45◦ + I135◦ = IRHC + ILHC . (2.5)

The subscripts in Eqs. (2.4) and (2.5) indicate the polarization filters through which the

corresponding intensities are transmitted. The values given in degrees indicate the orien-
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Figure 2.3: Approximate detection efficiency of the optical polarimeter (excluding polarizer, retarder, and
bandpass filter elements) as a function of wavelength. The dotted line represents the transmission of BK7
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tation of an ideal linear polarizer with respect to the z -axis, while RHC(�) and LHC(�)

correspond to ideal circular polarizers which pass photons with negative (σ−) and posi-

tive (σ+) helicities, respectively. Angles are defined in the counterclockwise (CCW) sense

when looking into the light beam, with 0◦ being the direction of electron beam prop-

agation. The P3 parameter is defined in accordance with classical optics such that its

sign is opposite the sign of photon helicity [9], and for this reason −P3 will be reported

throughout this work.

Measurement of the Stokes parameters is accomplished by recording intensities trans-

mitted through rotatable optical elements (polarizer or retarder-polarizer combination).

These optical elements can be described by Mueller matrices, and matrix multiplication

describes the modification of a Stokes vector by a given physical arrangement of optical

elements.

The Mueller matrix for a non-ideal linear polarizer described by k is

LP =





















1 k 0 0

k 1 0 0

0 0
p

1− k2 0

0 0 0
p

1− k2





















, (2.6)

where a preceding factor of 1
2
(k1+k2) has been omitted; for relative Stokes parameter mea-

surements the overall transmission of optical elements need not be taken into account.

Here k1 is the polarizer transmittance observed when pure linearly-polarized light is in-

cident parallel to the pass axis, while k2 is the transmittance observed when pure linearly-

polarized light is incident perpendicular to the pass axis [36]. The k appearing in the the

LP matrix is defined as

k =
k1− k2

k1+ k2

, (2.7)
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and can assume values ranging from 0 (no polarizer) to 1 (perfect polarizer). For a linear

retarder (wave plate) of retardance δ the Mueller matrix is

WP =





















1 0 0 0

0 1 0 0

0 0 cos(δ) sin(δ)

0 0 − sin(δ) cos(δ)





















. (2.8)

For these matrices, the LP pass axis and WP fast axis are taken to be parallel to the z -axis.

In order to describe rotations, a rotator matrix acts on some matrix M by R(−θ)MR(θ),

where

R(θ) =





















1 0 0 0

0 cos(2θ) sin(2θ) 0

0 − sin(2θ) cos(2θ) 0

0 0 0 1





















. (2.9)

This rotation of the element is CCW when looking towards the light source (the same as

is done in the lab).

The order of the matrix multiplication is important as the Mueller matrices do not

commute. Thus, the Mueller matrices act on the Stokes vector from the left, and the

ordering must be done such that the matrix representing the element nearest to the light

source is nearest to the Stokes vector. For this work, only the first row element in the

resulting Stokes vector, the intensity I ′, is of interest because this is what is measured. To

extract this parameter only, a row matrix

F =
�

1 0 0 0

�

(2.10)

can be applied from the far left.
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2.3.2 Measuring Stokes parameters

Using the results of Sec. (2.3.1), expressions for the measured intensity I ′ as a function of

optical element angle(s) can be generated. For the rotation of a single polarizer,

I ′
i
= F ·R(−αi −α0) ·LP ·R(αi +α0) · S

= I
�

1+ kP1 cos
�

2(αi +α0)
�

+ kP2 sin
�

2(αi +α0)
��

. (2.11)

Here αi + α0 has replaced the θ in Eq. (2.9), and although use of two angles is redun-

dant, it is convenient to consider α0 as a constant, initial offset angle (typically ≈0◦),

while αi can represent different angles of rotation. Rotation of a polarizer does not al-

low measurement of Stokes parameter P3. To measure I , P1, and P2, it is convenient to

take four measurements with α1 = 0◦, α2 = 45◦, α3 = 90◦, and α4 = 135◦. If only three

Stokes parameters are desired (I , P1, and P2), then only three different intensity mea-

surements should be required. These measurements could consist of α1 = 0◦, α2 = 60◦,

and α3 = 120◦, for example. However, there is no particular advantage to using only

three measurements, as the statistical uncertainties are similar for both methods assum-

ing identical data accumulation times. The four-measurement method is typically used

as it is conceptually preferred. If P2 is known or assumed to be zero, only two measure-

ments are needed to measure I and P1, with α1 = 0◦ and α2 = 90◦ (or if I and P2 are

desired, α1 = 45◦ and α2 = 135◦). Table 2.1 gives the statistical (Poisson) uncertainties for

these different measurement methods in terms of the total collected counts IT .

Care must be taken when using the rotating polarizer technique to ensure that the

detection system (in this case the combination of bandpass filter and PMT) is insensitive

to polarization. To circumvent possible detection polarization dependence, a quarter-

wave plate can be placed after the polarizer, with the fast axis offset from the polarizer

pass axis by 45◦. If the elements are then rotated together the subsequent light always has
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Table 2.1: Statistical uncertainties in Stokes parameters related to Eq. (2.11) for different measurement
methods (see text) assuming k = 1 and α0 = 0. The total collected counts are represented by IT .

Uncertainty 2-pt method (I and P1) 2-pt method (I and P2) 4-pt method (I , P1, and P2)

∆I/I (IT )
− 1

2 (IT )
− 1

2 (IT )
− 1

2

∆P1 (1− P 2
1
)

1
2 (IT )

− 1
2 — (2− P 2

1
)

1
2 (IT )

− 1
2

∆P2 — (1− P 2
2
)

1
2 (IT )

− 1
2 (2− P 2

2
)

1
2 (IT )

− 1
2

P1 ≈ P2 ≈ 0 and P3 ≈ 1, effectively eliminating the problem of polarization sensitivity.

An alternative method that can be used to measure I , P1, and P2 is to rotate a retarder

(half-wave plate, δ = 180◦) in front of a fixed polarizer. For a half-wave plate at angle

βi +β0 (β0 ≈ 0◦), I , P1, and P2 can be measured using β1 = 0◦, β2 = 22.5◦, β3 = 45◦,

and β4 = 67.5◦ with the same statistical uncertainty as the rotating polarizer technique.

This method also allows for measurement of all the Stokes parameters (including P3) if

0◦ <δ < 180◦. When a rotatable retarder (at angleβi+β0) is followed by a fixed polarizer

(at angle α0),

I ′
i
= F ·R(−α0) ·LP ·R(α0) ·R(−βi −β0) ·WP ·R(βi +β0) · S

= I

�

1+ 1
2
kP1

l

cos(2α0)
�

(1+ cosδ)+ (1− cosδ)cos
�

4(βi +β0)
��

+ sin(2α0)
�

(1− cosδ) sin
�

4(βi +β0)
��

k

+ 1
2
kP2

l

cos(2α0)
�

(1− cosδ) sin
�

4(βi +β0)
��

+ sin(2α0)
�

(1+ cosδ)− (1− cosδ)cos
�

4(βi +β0)
��

k

− kP3 sin(δ) sin
�

2(βi +β0−α0)
�

�

. (2.12)

In order to measure all the Stokes parameters using this method, eight measurements can

be taken atβi = 0◦, 22.5◦, 45◦, 67.5◦, 90◦, 112.5◦, 135◦, and 157.5◦, or βi = (i −1)×22.5◦

with 1¶ i ¶ 8.

Since only four Stokes parameters are being measured, a minimum of four measure-
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ments must be made, but here eight are being used. A 4-pt method has been described

by Daniels [37] which serves to measure the Stokes parameters with “maximum accu-

racy”. This 4-pt method involves the rotation of both a retarder (δ = 120◦) and polar-

izer, and consists of four measurements taken with the following optical orientations:

β = α = C , −β = −α = C , β = −α = C , and −β = α = C , where the angle

C = 1
4

cos−1
�

− 1
3

�

≈ 27.4◦. A comparison of statistical uncertainties achieved by the

4-pt and 8-pt methods is given in Table 2.2. For simplicity, the 8-pt method uncertainties

pertain only to the P1 = P2 = P3 = 0 case, and a choice of δ = 126.9◦ gives nearly equal

values for ∆I/I , ∆P1, ∆P2, and ∆P3. This choice of δ gives uncertainties in P1, P2, and

P3 that are only ∼2% greater than those from Daniels’ method, with an increase in∆I/I

by a factor of ∼1.8 for this null polarization case. When δ is chosen to be 90◦, the un-

certainty in P3 is minimized. In practice, values of delta between ∼90◦ and ∼130◦ are all

acceptable. For this work, the 8-pt method is used over the one offered by Daniels due

to its simplicity and the fact that polarization-dependent detection is not an issue because

the final polarizer remains fixed.

Stokes parameters can be extracted by fitting Eqs. (2.11) or (2.12) to data acquired by

rotating the corresponding optical element in appropriate increments, or, alternatively,

the equations can be inverted using a Fourier transform [38]. For the latter method,

multiplication of Eq. (2.11) by the sinusoidal and cosinusoidal terms which exist in the

Table 2.2: Statistical uncertainties in Stokes parameters related to Eq. (2.12) for different measurement
methods (see text) assuming k = 1. For the 8-pt method (α0 = β0 = 0◦), δ should be greater than ∼70◦

for these approximate expressions to remain valid, and for simplicity only the P1 = P2 = P3 = 0 case is
considered. The total collected counts are represented by IT .

Uncertainty Daniels’ method (δ = 120◦) 8-pt method (70◦ <δ < 180◦)

∆I/I (IT )
− 1

2 (3+ 2cosδ + 3cos2δ)
1
2 (1− cosδ)−1(IT )

− 1
2

∆P1 (3− P 2
1
)

1
2 (IT )

− 1
2 2(2)

1
2 (1− cosδ)−1(IT )

− 1
2

∆P2 (3− P 2
2
+
p

3P1)
1
2 (IT )

− 1
2 2(2)

1
2 (1− cosδ)−1(IT )

− 1
2

∆P3 (3− P 2
3
−
p

3P1)
1
2 (IT )

− 1
2 (2)

1
2 (sinδ)−1(IT )

− 1
2
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expression and summing over all optical orientations i (where αi = 0◦, 45◦, 90◦, and 135◦)

gives

I =
1

4

4
∑

i=1

I ′
i
, P1 =

1

2I k

4
∑

i=1

I ′
i
cos
�

2(αi +α0)
�

,

and P2 =
1

2I k

4
∑

i=1

I ′
i
sin
�

2(αi +α0)
�

. (2.13)

Applying this procedure to Eq. (2.12) similarly gives

I = f0−
f1 cos(4α0)+ f2 sin(4α0)

2(1− cosδ)(1+ cosδ)−1
, P1 =

f1 cos(2α0)+ f2 sin(2α0)

I k(1− cosδ)
,

P2 =
f2 cos(2α0)− f1 sin(2α0)

I k(1− cosδ)
, P3 =

− f3

I k sin(δ)
,

f0 ≡
1

8

8
∑

i=1

I ′
i
, f1 ≡

1

2

8
∑

i=1

I ′
i
cos
�

4(βi +β0)
�

,

f2 ≡
1

2

8
∑

i=1

I ′
i
sin
�

4(βi +β0)
�

, and f3 ≡
1

4

8
∑

i=1

I ′
i
sin
�

2(βi +β0−α0)
�

, (2.14)

where βi = (i − 1)× 22.5◦ with 1¶ i ¶ 8.

2.3.3 Measuring optical component characteristics

Sections 2.3.1 and 2.3.2 dealt with parameters k and δ, but no mention was made of how

these values are obtained for a given optical component. Both of these parameters depend

on the optical wavelength (i.e. the interference filter used for an experiment) and, in prin-

ciple, data provided by the manufacturer can be used to obtain these values. However, it

is generally advisable to double check such specifications, as it is plausible that k and δ

might change over time. For this work, the values of k and δ were always independently

measured.

For measurement of k, two polarizers can be used in conjunction with an unpolarized
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light source (white LED). The polarizer k value at a given wavelength (interference filter)

can be measured by fitting data acquired by rotating one polarizer with respect to the

other [38]

I ′
i
= F ·R(−αi −α0) ·LP ·R(αi +α0) ·LP · S

�

�

(P1=P2=0)

= F ·LP ·R(−αi −α0) ·LP ·R(αi +α0) · S
�

�

(P1=P2=0)

= I
�

1+ k2 cos
�

2(αi +α0)
��

. (2.15)

If the detection system exhibits significant polarization sensitivity, the polarizer closest

to the unpolarized light source should be rotated. It is assumed here that the polarizers

are of the same material and thus have identical k values.

Measurement of the retardance δ (0◦ ¶δ ¶ 180◦) of a linear wave plate can be accom-

plished by rotating it between two parallel polarizers with identical, known k values:

I ′
i
= F ·LP ·R(−βi −β0) ·WP ·R(βi +β0) ·LP · S

�

�

(P1=P2=P3=0)

= I
n

1+ k2
�

cos2
�

2(βi +β0)
�

+ cos(δ) sin2
�

2(βi +β0)
��

o

. (2.16)

This method is capable of determining the angular locations of the retarder’s axes, but

does not determine if a given axis is fast or slow. If this information is unknown a ref-

erence retarder can be used to make these assignments. Combination of retarders with

similar δ values will either result in a nonzero-wave plate (fast axes parallel), or a zero-

wave plate (fast axes perpendicular) device. If the combined retarders are then rotated

between parallel polarizers, the transmitted intensity will be strongly modulated if the

fast axes are parallel, and will not be significantly affected if the fast axes are perpendic-

ular. In this way, the correct assignment of fast and slow axes can be performed. If a

reference retarder is not available, reflection from a stainless steel mirror can serve as a
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substitute [39].

When measuring an unknown retarder using this procedure, it is impossible to know

whether the fitted retardance is δ or 360◦ − δ, meaning the actual retardance of the

device may lie in the range 180◦ < δ < 360◦ rather than 0◦ ¶ δ ¶ 180◦. However, it is

acceptable to assume the retardance is in the 0◦ ¶ δ ¶ 180◦ range even if it is actually

not. This is because the Mueller matrix for a retarder described by δ is identical to the

matrix obtained by replacing δ with 360◦−δ, provided this second matrix is rotated by

90◦. This rotation corresponds to a perceived interchange of the true fast and slow axes.

Using a reference retarder of similar δ to that which was fitted to make the perceived fast

and slow axes assignments remains valid. Thus, when fitting Eq. (2.16) to data, only δ

values in the range 0◦ ¶δ ¶ 180◦ need be considered.

2.3.4 Polarization dependence of optical excitation functions

Section 2.3.2 describes methods to measure the intensity and polarization of light emitted

by atoms or molecules detected in an infinitesimal solid angle perpendicular to the elec-

tron beam and parallel to the incident electron spin polarization. The intensity recorded

in this manner is generally not directly proportional to the total emission, Ie m, because

it depends on the linear polarization of the light, which varies as a function of electron

energy. If only the optical excitation function is desired, only the intensity need be mea-

sured. However, to remove this dependence on polarization, a polarizer is typically set

at the magic angle (≈54.7◦) with respect to the electron beam axis (assuming light is col-

lected perpendicular to the electron beam). The existing literature for the derivation of

the magic angle value assumes this polarizing element is perfect (k = 1). The following

derivation (published in [2]) gives an expression for the magic angle that accounts for the

use of an imperfect polarizer (0< k < 1).

The fluorescence radiation from an atomic or molecular source is modeled by three
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Figure 2.4: Coordinate system for a light source characterized by linear polarization P1, as defined by
Eq. (2.19). Incoherent emitting dipoles along the axes give rise to intensities Ix , Iy , and Iz . By imposing

cylindrical symmetry, Ix = Iy = Ixy . The value of θ for this work is 90◦. Light is detected through an

imperfect linear polarizer (described by k) at an angle α with respect to the y z-plane.
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incoherent dipoles oriented along the coordinates shown in Fig. 2.4 [5, 40–42]. These

radiating dipoles give rise to three intensities per unit solid angle: Ix , Iy , and Iz (measured

perpendicular to the corresponding dipoles at some fixed radius from the origin). The

electron beam is taken to be along the z -axis. Imposing cylindrical symmetry requires

that Ix = Iy = Ixy . It is sufficient to consider only one particular value of φ, and φ= 90◦

is chosen here. The imperfect analyzing power of a linear polarizer (pass axis oriented at

an angle α with respect to the y z -plane) can be described by k such that the first row of

its Mueller matrix is represented as

M = 1
2
(k1+ k2)

�

1 k cos(2α) k sin(2α) 0

�

. (2.17)

Equation (2.17) is merely the first row of R(−α) · LP · R(α) from Sec. 2.3.1, but the

1
2
(k1 + k2) factor has not been omitted in the LP matrix definition here. The intensity

transmitted through the polarizer for some detection angle θ and polarizer orientation α

is

d I (θ,α)

dΩ
= 1

2
(k1+ k2)

n

Iz sin2(θ)
�

1+ k cos(2α)
�

+ Ixy cos2(θ)
�

1+ k cos(2α)
�

+ Ixy

�

1− k cos(2α)
�

o

. (2.18)

Using the standard definition of the linear polarization,

P1 =
Iz − Ixy

Iz + Ixy

, (2.19)

Eq. (2.18) can be expressed as

d I (θ,α)

dΩ
= 1

2
(k1+ k2)(Iz + Ixy)

n

1+ P1k cos(2α)− P1 cos2(θ)
�

1+ k cos(2α)
�

o

. (2.20)
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The total intensity in the solid angle is the sum of two intensities taken with orthogonal

polarizer positions, namely

d I (θ)

dΩ
=

d I (θ,α)

dΩ
+

d I (θ,α+π/2)

dΩ
= (k1+ k2)(Iz + Ixy)

�

1− P1 cos2(θ)
�

. (2.21)

Integrating this over dΩ= sin(θ)dθdφ gives the total emitted intensity

Ie m = 4π(k1+ k2)(Iz + Ixy)(1− 1
3
P1). (2.22)

Using Eq. (2.22), Eq. (2.20) can be multiplied by unity in the form

Ie m

4π(k1+ k2)(Iz + Ixy)(1− 1
3
P1)
= 1 (2.23)

to obtain

d I (θ,α)

dΩ
∝ Ie m





1+ P1k cos(2α)− P1 cos2(θ)
�

1+ k cos(2α)
�

1− 1
3
P1



 . (2.24)

Thus, for the measured intensity to be independent of P1, it is desired that

− 1
3
P1 = P1k cos(2α)− P1 cos2(θ)

�

1+ k cos(2α)
�

. (2.25)

If k = 0, meaning there is no polarizer, the solution of Eq. (2.25) is the magic angle (and

its supplement) θ = cos−1
�±1p

3

�

. If 0< k ≤ 1 then solving Eq. (2.25) for α
�−π

2
≤ α ≤ π

2

�

in terms of k and θ gives

α=±
1

2
cos−1

 

cos2(θ)− 1
3

k sin2(θ)

!

. (2.26)

Equation (2.26) gives possible polarizer orientations α as a function of θ and k, and
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is identical to the expression given in [43] except for the inclusion of k dependence.

Figure 2.5 shows plots of α vs. k for various values of θ. When θ equals the magic

angle (or its supplement), Eq. (2.26) requires that the polarizer be set at 45◦. As shown

above, however, no polarizer is required at this collection angle. Note that for k < 1 this

method is only valid if the instrumental polarizations of the detection elements following

the polarizer are negligible, but this is often a good approximation.

An alternative method to remove polarization dependence from optical excitation

functions is to measure both I and P1. It is well known that with these two measurements,

the polarization dependence can be accounted for [40]. When detection is performed

perpendicular to the beam, examination of Eqs. (2.21) and (2.22) with θ= 90◦ shows that

the measured intensity, I , is proportional to (Iz+Ixy), and the total emitted intensity, Ie m,

is proportional to (Iz + Ixy)(1− 1
3
P1). Thus, neglecting the constant of proportionality,

the emitted intensity can be defined as

Ie m = I (1− 1
3
P1). (2.27)

In the preceding analysis it was assumed that P2 = P3 = 0. For the case of unpolar-

ized electron impact excitation, symmetry considerations require that P2 = P3 = 0 if the

photons are not collected in coincidence with the scattered electrons (as is the case here),

while P1 6= 0 is permitted. For polarized electron impact excitation, symmetry permits

P1 6= 0, P2 6= 0, and P3 6= 0 [7]. However, for this detection geometry the value of P1 is the

same as that for the case of unpolarized electrons [8]. Thus, even if polarized electrons

are used, applying one of the above corrections still results in intensities that are identical

to those that would be obtained from unpolarized electron impact excitation.
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Figure 2.5: Polarizer orientation α as given by Eq. (2.26) required to obtain optical excitation functions
independent of target alignment.
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2.3.5 Effect of finite solid angle detection on Stokes parameters

Due to the finite optical detection solid angle and possible electron beam divergence in

the experiment, the measured P1, P2, P3, and Ie m values differ from the true values. Ap-

proximate expressions to correct for these effects have been presented [44]. The half angle

of the optical detection solid angle, ψm , is 11◦ in this experiment, and the approximate

half angle for the electron beam is 3◦ (as defined by the entrance and exit apertures of the

target cell). The approximate corrected polarization P C
1

can be expressed as

P C
1
≈

P1

1− ε(1− P1)− ζ (3− P1)
, (2.28)

where ε= 1
4
ψ2

m
= 9× 10−3 and ζ = 1

4
θ2

m
= 7× 10−4. The corrected I C

e m
is then given as

I C
e m
≈ I





1− 1
3
P C

1

1− (ε+ ζ )P C
1



 . (2.29)

It is stated in Refs. [24, 27] that Eq. (2.28) can also be used to obtain corrected P2 and P3

polarizations (by replacing P1 with P2 or P3). This notion is incorrect, as the derivation

of Eq. (2.28) does not address the situation where P2 6= 0 and P3 6= 0.

Due to the small values of ε and ζ , |P C
1
−P1|< 3×10−3 for the polarization range rel-

evant to this work. It is not even clear whether the electron beam divergence correction

should be applied, and neglecting it gives |P C
1
−P1|< 2×10−3. Similarly, |I C

e m
−Ie m|/Ie m <

4×10−3. As the magnitudes of these corrections are smaller than the typical reported un-

certainties, the corrections provided by Eqs. (2.28) and (2.29) have not been applied to

the data presented in this work. The effect of the collecting lens on light polarization is

negligible [45].



37

2.4 Data acquisition

Data acquisition and automated control of the experiment is performed using National

Instruments (NI) LabVIEW 7.0 software installed on a modern personal computer (PC).

The PC (Windows XP operating system) contains a 2.0 GHz single-core CPU (AMD

Athlon 64 3200+) and 512 MB of RAM. It is outfitted with a NI PCI-6024E hardware

card, a NI PCI-GPIB hardware card, two parallel (printer) ports, and the typical comple-

ment of USB ports.

The experimental parameters controllable with software are the electron beam energy

and the angular positions of all optical components. The potential difference between the

crystal and target cell is adjustable using the Sorensen DC power supply (equipped with

GPIB interface). The angular position of the source-laser quarter-wave retarder is var-

ied by the Standa rotation stage (USB connection between the stepper motor hardware

driver and PC). The optical polarimeter stepper motors with Arrick Robotics MD2 hard-

ware drivers are interfaced with the PC via the two parallel ports (software drivers were

purchased from TEM Consulting for use with LabVIEW).

Measured quantities consist of pressures, currents, and counts from the PMT. Pres-

sures are measured by routing the analog outputs of the Granville-Phillips Series 307

controllers to 12-bit analog inputs on the NI PCI-6024E card. Currents from the Keith-

ley 485 picoammeters are communicated to the PC via GPIB signals. Pulses (TTL) from

the Phillips Scientific discriminator are counted using a 24-bit counter on the PCI-6024E

card.

For fixed settings of the electron beam energy and optical component angular posi-

tions (source and polarimeter retarders), measurements of pressures, currents, and counts

are performed concurrently during a given dwell period (5 s is typically used). The PCI-

6024E card contains two counters; while one counts pulses, the other is configured to
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measure the actual dwell period. This is done because the desired dwell setting is some-

times not strictly obeyed by the software, so measurement of the actual dwell is needed

to accurately determine the count rate. (The 100 kHz clock rate of this second counter

indicates that the maximum dwell that can be used is <167 s because of the 24-bit restric-

tion.) While the counters are operating, the pressures and currents are sampled every

500 ms (2 Hz). Thus, for a 5 s dwell setting, 10 samples of each pressure and current

channel are taken and the average is returned. (This 2 Hz sample rate restriction is due to

the Keithley 485 GPIB ammeters.) Thus, a “Counter.vi” LabVIEW subroutine accepts a

dwell input and returns the number of counts, the measured dwell period, the average of

the current measurements, and the average of the pressure measurements.

Data is acquired either by scanning all the desired beam energies before incrementing

the polarimeter retarder angle, or by stepping through the polarimeter retarder angles

before incrementing the beam energy. The method wherein the energies are scanned first

will hereafter be referred to as the SEF method, and the latter technique of first stepping

through the polarimeter retarder angles will be called the SAF method.

For the SEF method, the acquisition proceeds as follows. First, the electron beam

energy is set to the lowest desired energy, and the Counter.vi subroutine is then initi-

ated to make measurements at this particular energy. When the subroutine is finished,

the energy is incremented and the process continues until measurements for all desired

beam energies are completed. The angle of the polarimeter retarder is then incremented

by 22.5◦ and another energy scan is performed, and so on. After the retarder has been

returned to its original position (one full rotation), the source quarter-wave retarder is ro-

tated by 90◦, changing the sign of the electron spin polarization Pe . A typical “run” lasts

∼48 hrs., and measuring ∼20 energy points with a 5 s dwell means that ∼25 complete

rotations of the source quarter-wave retarder are performed.

The SAF method begins in a similar way; after the lowest energy is set, the Counter.vi
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is initiated. After the Counter.vi returns the first measurement, the polarimeter retarder

is rotated by 22.5◦ and another measurement is made. This continues until a full rotation

of the retarder is completed. The beam energy is then incremented, and so on. After

all energies have been scanned, the source quarter-wave retarder is rotated by 90◦. The

dwell is typically lengthened to 10 s for this method to increase efficiency by reducing the

time spent rotating optics. (It takes ∼2 s to rotate a polarimeter stage by 22.5◦.) The SEF

method is thus more efficient, and it might be expected to provide a more accurate energy

dependence of the optical excitation cross sections in light of possible temporal drifts,

while the SAF method may be expected to provide more accurate polarizations. Over

the relatively small energy ranges used for this work (∼20 eV), no statistically significant

differences have been observed for the polarizations obtained using the two different

schemes. Thus, the majority of data presented in this work have been acquired using the

SEF method.

2.5 Data analysis

A Fortran code (see Appendix A) was developed to analyze data acquired by one of the

two methods (SEF or SAF) described in Sec. 2.4. Each line of a data file generated by the

LabVIEW acquisition program contains the energy, polarimeter retarder angle, source

quarter-wave plate angle, collected counts, measured dwell period, measured average cur-

rent, and measured average pressure data. This data is loaded into arrays by the Fortran

program. Count rates are constructed by dividing collected counts by their respective

measured dwell periods. A linear relation is applied to scale the pressure measured by the

optical polarimeter ion gauge so that it is representative of the pressure in the target gas

cell. The currents measured on the back aperture of the target cell and in the Faraday cup

are negated (collected electrons yield negative currents) and summed to be used for signal

normalization.
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The data are sorted into arrays such that the constructed count rates, pressures, and

currents corresponding to degenerate energy and angle settings are grouped. The term

“degenerate” angles implies that measurements taken with the polarimeter (or source)

retarder at angular position β are grouped with all other measurements taken at later

times with angle β, as well as with all measurements taken with angle β+ 180◦ due to

the half-rotation symmetry of optical retarders. For the polarimeter retarder, one full

rotation consists of sixteen measurements taken in 22.5◦ increments. Due to the retarder

half-rotation symmetry, this number is reduced to eight, hence the summation limit in

Eq. (2.14). For the source quarter-wave retarder, four measurements are made every 90◦,

and these are combined into just two groups (0◦ and 90◦). When the source quarter-

wave plate angular position is at 0◦ or 180◦, the sign of the electron spin polarization Pe

is positive (spin “up” in the lab), and for angles 90◦ or 270◦, the sign is negative (spin

“down” in the lab). When scattered electrons are not detected, non-zero measurements

of Stokes parameters P2 and P3 are proportional to Pe [7, 13], thus the spin-normalized

ratios P2/Pe and −P3/Pe are reported (the origin of the minus sign preceeding P3 was

discussed on p. 23).

The above “grouping” procedure is done in preparation for combining the data to

form means and uncertainty estimates. For near-threshold experiments, a few energy

points (∼ 5) are measured below the threshold for excitation of the fluorescing state(s)

of interest. These points are used to determine the background signal, which must be

subtracted. First, however, the energy threshold must be determined. To accomplish

this, all count rates for a given energy are temporarily grouped together regardless of

angular dependence. Chauvenet’s criterion [46] is then applied in order to eliminate

outliers (anomalous spikes from the PMT). The resulting distributions are averaged and

the standard deviation of the mean is used to indicate the statistical uncertainties. This

data is then used to determine the threshold energy, which is taken to coincide with the
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first count rate that deviates by greater than∼2.5σµ from the below-threshold horizontal

background. (This background is typically consistent with the PMT dark count rate of

∼ 2 Hz).

Once the threshold energy has been determined, below threshold counts are averaged

(and subjected to Chauvenet’s criterion) to determine a background count rate. An op-

tion exits in the code so that this can be done for the eight individual groups correspond-

ing to the unique polarimeter retarder angles to check if the background is polarized.

These individual averaged backgrounds are found to be statistically consistent with each

other, indicating there is no significant polarization of the background light. Thus all

below-threshold counts are grouped to determine the background count rate, which is

then subtracted from all count rates taken at all energies.

After the background count rate is subtracted, the count rates at and above the thresh-

old energy are normalized to their corresponding measured pressure and current values.

This is done by simply dividing the count rates by the pressures and currents, and multi-

plying the result by the average pressure and current (computed for the threshold energy

value). The normalized count rate distributions for the unique energy and angle values

are then subjected to Chauvenet’s criterion. The application of Chauvenet’s criterion to

distributions typically results in less than 1% of the data being discarded. The resulting

averages and standard deviations of the means can then be used to compute the Stokes

parameters.

For each energy and sign of the spin polarization, the count rates and uncertainties for

the eight retarder angles are used to compute a set of Stokes parameters. This is done by

applying Eq. (2.14) from Sec. 2.3.1. Here I ′
i

refers to the background-subtracted, pressure-

and current-normalized count rates corresponding to a polarimeter retarder angle βi .

The values of k and δ are independently measured. The linear polarizer offset angle α0

and retarder offset β0 are ideally zero, but serve to account for physical misalignments
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(meaning that the optical axes may not be exactly parallel to the electron beam axis).

These angles can be determined using the data for cases where large linear and circular

polarizations are measured. It is initially assumed that α0 = 0. The β0 parameter is then

varied in the analysis code and chosen such that the resulting energy average of Pe -sign-

normalized P3 values is maximized. This value of β0 is then stored, and will be referred

to here as βC . The α0 parameter is then varied, and for each distinct value β0 is set equal

to α0+βC . The value of α0 is selected which provides a minimum for the energy average

of Pe -sign-unnormalized P2 values (the energy average of P1 values is concurrently found

to be maximized).

Propagation of uncertainties is done numerically [46]. The uncertainties for k, δ, α0,

and β0 are neglected as they do not contribute largely to the overall uncertainties. The

statistical uncertainties in the normalized count rates are propagated by sequentially eval-

uating the Stokes parameters in Eq. (2.14) with the count rate uncertainties added to (or

subtracted from) their corresponding count rates. These evaluations are used to compute

the deviations for the functions, which are then squared and combined in quadrature to

form the final error estimates. Finally, the Stokes parameters for both spin polarizations

(“up” and “down”) must be combined. To this end, the P2 and P3 data are divided by

the signed value of Pe , and the weighted mean and error of the weighted mean is then

constructed for I , P1, P2/Pe , and −P3/Pe .



43

Chapter 3. Helium Negative Ion Resonances

Helium resonance structures located above the ionization potential were first discovered

in a transmission experiment by Kuyatt et al. [47]. Two features having energies near

57.2 and 58.3 eV were then tentatively classified as He− (2s22p) 2P and (2s2p2) 2D states

by Fano and Cooper [48]. These designations have since been confirmed [49, 50]. An

accurate measurement of the resonance energies performed by Hicks et al. [51] found

values of 57.22(4) and 58.30(4) eV, respectively, which are in excellent agreement with

other experimental and theoretical results [52, 53].

Numerous researchers have done electron transmission and energy-loss experiments

to characterize these and other helium negative-ion resonances [54]. Another method of

investigation consists of monitoring the fluorescence from states which receive cascade

contributions due to decay of the negative-ion resonances. In particular, the intensity

and linear polarization of the 3 3D→2 3P transition have been studied with unpolarized

incident electron beams [55–59]. (The resonance features in this transition are particu-

larly pronounced.) This experiment is similar, but the incident electron beam is spin-

polarized. The Stokes parameters are measured in the 55–60 eV region for the process:

e+He (1s2) 1S→He− (2s22p) 2P or He− (2s2p2) 2D

→He (1s3d) 3D+ e

→He (1s2p) 3P+ e+ γ (587.6 nm). (3.1)

Interference between these channels and the direct excitation of the 3 3D state produces

resonant features in the observed intensity characterized by Beutler-Fano profiles [60,

61]. Cascade contributions from the 4p, 5p, and 6p levels are responsible for ∼50% of

the observed 587.6 nm radiation in the 50-60 eV energy range [59]. However, the effects
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of the resonances on the emitted radiation from the 4p and 5p states are known to be

small [56], and we expect the same for the 6p state. Therefore, subsequent cascades from

these states to the 3 3D level do little to affect the resonance features discussed below and

will be ignored.

The Stokes parameters are known to be sensitive to exchange effects and magnetic

forces [15]. As mentioned in Sec. 2.3.4, when the electron beam is transversely spin-

polarized and the scattered electrons are not detected, Stokes parameters P2 and P3 are

not required to be zero as they are in the unpolarized case [7]. The motivation for

this experiment was to investigate these values carefully in the energy region of the res-

onances, as observed features could be a signature of relativistic magnetic forces acting

during the resonance lifetime. While such forces are generally small in light atoms, the

resonance lifetime (∼10 fs), roughly 50 times longer than the classical orbital period for

n = 2 states of He, could reasonably be expected to enhance their influence. If electron

spin precession occurred in the triply-excited resonance due to magnetic forces, measure-

ment of a non-zero value of P2 and variations in P3 would be allowed because spin could

no longer be factored out of the interaction Hamiltonian. Equivalently, one could say

that the compound ion state was not well-LS coupled. In the case of P2, discernable

structures near the resonance energies would be a clear indication that magnetic forces

are present. Resonance structures in P3 can be caused by two processes, the first being

the magnetic interactions discussed above. Alternatively, variations in P3 might occur

because Coulombic interactions are generally different for the interfering resonance and

direct channels leading to 3 3D formation. Since P3 depends on the initial distribution of

ML states (which also affect P1 [15]), any difference between the resonant and direct ML

distributions will yield a variation in P3 across the resonance profile.
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3.1 Relative emission

As discussed in Sec. 2.3.4, the measured Stokes parameter I is a quantity that represents

the photon intensity collected in a small solid angle (0.12 sr in this experiment). It is

not directly proportional to a relative emission cross section due to a dependence on the

alignment. The relative emission can be computed using Eq. (2.27) to remove this depen-

dence on Stokes parameter P1. The intensity, relative emission cross section, and linear

polarization fraction P1 are all independent of the polarization of the incident electron

beam, and thus can be directly compared to measurements taken using unpolarized inci-

dent electrons. The graph in Fig. 3.1 shows the relative emission cross section for the He

3 3D→2 3P transition. The values on the y-scale are representative of our experimental

collection rate in Hz. The data sets of other references have been normalized to our low-

est energy point. Helium pressure in the target cell was kept at ∼0.6 mTorr to minimize

the effects of radiation trapping [59].

3.2 Linear polarization P1

The observed intensity near the resonances can be described by the convolution of a

beam energy profile with a modified Beutler-Fano function of the form

I ‖,⊥ = I ‖,⊥
b
+ I ‖,⊥

1







(q‖,⊥
1
+ ε1)

2

1+ (ε1)
2






+ I ‖,⊥

2







(q‖,⊥
2
+ ε2)

2

1+ (ε2)
2






, (3.2)

where εr ≡ 2(E−Er )/Γr and Γr is the FWHM of a given resonance with energy Er . Here,

the r indices 1 and 2 refer to the 2P and 2D peaks, respectively. The dimensionless shape

parameter is given by qr , and the superscripts indicate the collection of light with linear

polarization oriented either parallel or perpendicular to the incident electron beam. The
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Figure 3.1: Relative emission cross section Ie m (in arbitrary units) and polarizations P1, P2/Pe , and −P3/Pe

for the He 3 3D→2 3P 587.6 nm transition. Our data are shown as empty and filled circles (two separate
experimental runs), the values of Defrance [56] are displayed as black lines, and the work of Cvejanović et
al. [59] is represented with gray lines. Resonance energies of 57.2 and 58.3 eV are indicated.
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background far from the resonances is then

B‖,⊥ = I ‖,⊥
b
+ I ‖,⊥

1
+ I ‖,⊥

2
, (3.3)

where Ib is treated as a function of energy while I1 and I2 are taken as constants. The “res-

onance polarization” (with ε1 = 0 for the 2P resonance and ε2 = 0 for the 2D resonance)

is then defined by Defrance [56] to be

Pr (ε1 or ε2 = 0) =

�

I ‖−B‖
�−
�

I⊥−B⊥
�

�

I ‖−B‖
�

+
�

I⊥−B⊥
� . (3.4)

As pointed out by Batelaan et al. [58], this definition of the resonance polarization

depends not only on parameters associated with the resonant process, but also on the

direct excitation cross section. Batelaan et al. [58] have shown that the light intensity for

a given 3 3D ML state can be expressed as

I = I dir+ I res− I int
sym
+ I int

asym
, (3.5)

where I dir and I res can be identified uniquely with the direct excitation and resonant

excitation processes, and I int
sym

and I int
asym

correspond to symmetric and antisymmetric in-

terference terms. Because I res and I int
sym

exhibit the same energy dependence, they are not

distinguishable in this type of experiment. Equation (3.4) implicitly contains both these

terms, and as such, cannot be formally identified as the “resonance polarization,” i.e., the

polarization associated with a purely resonant process.

This being said, we have evaluated Pr for the sake of comparison with earlier work.

We not only analyze our data, but also that of Defrance [56] and Cvejanović et al. [59].

The data of Batelaan et al. [58] were excluded from this analysis because only the in-

tensity values were published (and thus values for I ‖ and I⊥ could not be constructed).
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Resonance polarizations are calculated by fitting data of a given polarization state with

a convolution of Eq. (3.2) with an apparatus profile describing the electron beam energy

distribution. In order to approximate this distribution, the sum of a normalized trian-

gle (T ) and normalized Lorentzian (L) (both with identical widths) was used so that the

profile could be expressed as wT (E)+ (1−w)L(E), where the weighting factor w obeys

0 ¶ w ¶ 1. The convolution of this apparatus profile with Eq. (3.2) gives a tractable

analytical expression [62], and the triangle term closely represents the numerical result

obtained when using a Gaussian instead. This form is somewhat arbitrary, but it gives

reasonable results and, lacking detailed knowledge of the beam profiles, seems justifiable.

A quadratic form is chosen for the background dependence Ib . The resonance widths

(0.071 and 0.047 eV [50]) and energy separation (1.094 eV) [52] are held fixed to facili-

tate convergence. Fitting is done with a nonlinear curve fitting routine (OriginLab soft-

ware, Levenberg-Marquardt algorithm), and after convergence is obtained all parameters

are fixed (assuming zero uncertainty in the fitting parameters) except for the I1 and I2

amplitudes. The subsequent error estimates for these values are used to determine the

uncertainty in the resonance polarization.

The fits are shown in graphs (a), (b), and (c) of Fig. 3.2. The fitted values of the

electron beam energy widths are 0.29, 0.43, and 0.33 eV, and the weighting factors w

are approximately 0.3, 1.0, and 0.4 for the data in (a), (b), and (c), respectively. The

resulting q‖,⊥ values for the 2P state are in the range of −2.6 to −11, and for the 2D case

lie between −11 and −42 for the fits. These are similar to results reported by Defrance

and de Froment [55]. The reduced χ 2 values for all fits in Fig. 3.2 lie between 0.14 and

1.2. Previously reported resonant polarizations and the results from our fits are shown

in Table 3.1.

Comparison of the previously reported results for Pr (first part of Table 3.1) shows

that Cvejanović et al. [59] and Batelaan et al. [58] are in close agreement, while Defrance’s
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Figure 3.2: Graphs (a), (b), and (c) contain parallel and perpendicularly polarized intensities (in arbitrary
units) from Defrance [56], Cvejanović et al. [59], and this work respectively. Graph (d) contains our σ+

and σ− polarized intensities normalized to electron spin. Fits to the data are represented as solid lines.
Resonance energies of 57.2 and 58.3 eV are indicated.
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Table 3.1: Linear polarization fractions for helium negative ion resonances (“resonance polarizations”) as
defined by Defrance [56].

State Present work Cvejanović et al. [59] Batelaan et al. [58] Defrance [56]

Previously reported values

2P (57.2 eV) — 0.13± 0.03 0.14± 0.02 0.24± 0.03
2D (58.3 eV) — 0.247± 0.001 0.25± 0.02 0.30± 0.03

Our results and results we obtained by fitting the data of Refs. [56, 59]

2P (57.2 eV) 0.22± 0.03 0.16± 0.02 — 0.13± 0.02
2D (58.3 eV) 0.29± 0.01 0.27± 0.01 — 0.30± 0.01

values are about 3σ away for the 2P resonance and less than 2σ away for the 2D state. This

seems to indicate that the results of Defrance are in error. By using the same values of the

resonance widths and separation energy in our fits to all the available data, the situation

changes somewhat (second part of Table 3.1). Our results for the 2P resonance indicate

that previous work is in good agreement and that our value is about 2σ larger, while for

the 2D resonance all polarizations are in reasonable agreement.

Our data support the interesting conclusion that Pr for both resonances is nearly

consistent with the kinematically demanded value for non-interfering resonant state pro-

duction, followed by decay to the He (1s3d) 3D state and an outgoing electron, with the

outgoing electron in its lowest allowed angular momentum partial wave [56, 58]. In the

case of the 2P resonance, this is an l = 1 wave, and Pr is expected to be 0.24 as computed

by van Ittersum [58, 63]. For the 2D resonance, the outgoing electron can have l = 0

and for this case Pr should be 0.32 [63] (this is the same as that required for threshold

polarization of the 3 3D state). This is remarkable because, as mentioned earlier, the use

of Eq. (3.4) does not allow measurement of the pure resonant polarization. Thus, we

conclude as did Batelaan et al. [58] that the symmetric interference contribution I int
sym

is

either small or exhibits a similar ML dependence as the resonant I res term (which leads

to equivalent light polarizations). Higher-order allowed outgoing partial waves could

also contribute to some extent, which may account for the fact that our measurements
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are slightly lower than the required threshold values. No further conclusions can be

drawn from the present experiment, but we note that the definitive measurement of res-

onant polarizations must involve some mechanism to distinguish between I res and I int
sym

.

The fitting procedure to extract resonant polarizations would also benefit from increased

electron beam energy resolution.

3.3 Linear polarization P2/Pe

Our data for P2/Pe shown in Fig. 3.1 is comprised of two different experimental runs.

The first run (open circles) contains more energy steps and greater statistical uncertainty.

The weighted mean computed using all energies is −0.019(5) for the first data set and

−0.006(3) for the second. Even though the 3 3D state is well-LS coupled, it is possible

that cascading from higher lying non-well-LS coupled states could produce non-zero val-

ues of P2 [30]. If this were the case, one would expect the marginally non-zero P2 values

observed to be essentially independent of energy over the 55–60 eV range, given that

resonant cascading is expected to be small (as previously mentioned). We are quite cer-

tain that the non-zero measured P2 values are not due to stray magnetic fields or optical

misalignments, as the offset angles α0 and β0 were chosen such that P2 is zero for an

unpolarized electron beam. However, we have no explanation for the statistical incon-

sistency between the two data sets. Therefore, we cannot be confident that our non-zero

values of P2 indicate higher-lying levels that are not well-LS coupled as the data sets are

inconsistent.

The question of whether P2/Pe reveals structures at the resonant energies is of greater

importance. Resonant P2 polarizations can be extracted using a similar procedure as

that described for P1 polarizations. This gives −0.22(9) and −0.04(3) for the P 2 and D2

resonances, respectively. If there were no magnetic interactions, one would expect zero

for both resonant polarizations; for the 2P state the extracted value is 2.5σ away from
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zero. However, the filled circle data point at the 2P resonance energy in Fig. 3.1 is 2σ off

the zero line, (which is consistent with the above analysis), but due to the similar scatter

of other data points, we do not attribute this to a feature. The reduced χ 2 of a linear fit

(with zero slope) to the filled circle data points is 0.90, which argues against the presence

of any statistically significant structure.

3.4 Circular polarization −P3/Pe

Figure 3.1 shows −P3/Pe , and there appears to be some structure at the resonance peaks.

We attribute these features to Coulombic (as opposed to magnetic) interactions. There

are two reasons for this. First, the lack of any obvious resonance structure in the P2 data

indicates that resonant magnetic effects are negligible, as discussed in the introduction.

Secondly, the features we observe are consistent with a resonant cascade-free value of

−P3/Pe . In the absence of resonant processes, the direct excitation of the 3 3D state via

electron exchange produces a kinematically-required threshold polarization of 0.22 (see

Appendix B, Sec. B.2). As cascading becomes more important at higher energies (55–60

eV), −P3/Pe decreases and we measure it to be ∼0.19 (Fig. 3.1). The reduced χ 2 value

from a linear fit to the filled circle−P3/Pe data is 2.6, strengthening our assertion that the

structures are indeed real.

Using the same techniques as those used for calculating Pr , we determine that the

“resonance circular polarizations” for the 2P and 2D features are 0.37(6) and 0.26(2), re-

spectively. The fits are shown in graph (d) of Fig. 3.2. Since these are within 2σ of

the threshold value of 0.25, we argue simply that resonant processes give a value of P3

in agreement with cascade-free exchange excitation. This is not surprising, given that no

variation in P2 (i.e. no magnetic precession of electron spin in the transient resonant state)

is observed.
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3.5 Conclusion

Having found no statistically significant structure for Stokes parameter P2 in the helium

3 3D→ 2 3P transition, we conclude that magnetic spin-orbit interactions in the negative

ion (2s22p) 2P and (2s2p2) 2D resonant states are not important, and present an upper

bound of P2/Pe ¶ 0.02 for this effect. Measured values for the linear “resonant polar-

ization” fractions as defined by Defrance are consistent with the kinematically required

threshold values for 3 3D→2 3P radiation, assuming the outgoing electron is in the lowest

allowed angular momentum state. Our values for the circular “resonant polarization” are

in fair agreement with the threshold value required by exchange excitation of the 3 3D

state, with the caveat that the computed resonance polarizations are not solely due to

polarization from resonance state decays, but in principle can be coupled to polarization

from the direct excitation of the 3 3D state through interference phenomena.
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Chapter 4. Stokes Parameters for Molecular Dissociation

When investigating electron-molecule collisions, fluorescence can be produced by two

different processes. Molecular dissociation can yield excited atomic fragments which

produce light; alternatively emission from molecular transitions can be observed directly.

This chapter will discuss the dissociation process for atomic fragments H, D, and N. Data

is presented in the following chapter regarding transitions in H2, D2, and N2 molecules.

4.1 Dissociative excitation of Hα and Dα

In 1968 Van Brunt and Zare [64] predicted that atomic fragments resulting from molec-

ular dissociation should be polarized if the angular distribution of the outgoing atoms

is anisotropic and if a difference in the populations of magnetic sublevels exists in the

excited atomic states. Later that year, Vroom and de Heer [65] observed such linear

polarization in the Hα 656.3 nm signal from the dissociation of H2, and reported that

P1 ∼ 0.04 at an excitation energy of 50 eV.

The process for the production of Hα from H2 (or Dα from D2) is

e+H2 X 1Σ+
g
→H ∗

2
+ e or H ∗∗

2
+ e

→H(3l )+H(n′ l ′)+ e

→H(2l )+H(n′′ l ′′)+ e+ γ (656 nm). (4.1)

Other processes such as dissociative ionization leading to H(nl )+H+ and dissociative

attachment leading to H(nl )+H− are neglected here; the energy threshold for accessing

dissociative ionization is greater than the energy range of the presented data [66], and the

total cross section for dissociative attachment is known to be negligible in comparison to

the pure dissociation process in Eq. (4.1) [66].
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The Stokes parameter data for this experiment appears in Fig. 4.1 for the dissociation

of H2 and D2. The intensity data shows the threshold to be at 16.6 eV [67], as well as

a small “shoulder” that exists in the ∼3 eV range below this value. This ∼4 Hz below-

threshold signal is due to contributions from molecular fluorescence in the wavelength

region of the filter bandpass. The observed ratio of this contaminant signal to the atomic

signal is roughly 1.2% for Hα and 1.9% for Dα. This Hα ratio is in fair agreement with

the 1.6% level of contamination reported by Khayralla [66]. The effect of this contami-

nation on the measured polarizations is neglected. The current results were acquired at a

pressure of 0.5 mTorr, as Khayralla observed nonlinearity in the optical excitation cross

section above 1 mTorr.

These results are compared with previous work in Fig. 4.2. The below-threshold

contaminant polarizations are omitted for clarity in these plots. Where available, some

experimental parameters for the various experiments are collected in Table 4.1. These

parameters consist of the target gas pressure, photon detection solid angle, and optical

bandpass filter width. The “P1 adjusted” column indicates if the data has been corrected

for the linear polarization P1, i.e., whether or not Eq. (2.27) has been applied.

Table 4.1: Experimental parameters for the production of Hα (656.3 nm) and Dα (656.1 nm) from molecu-
lar dissociation.

Data ref. Pressure (mTorr) Detection angle (sr) Filter FWHM (nm) P1 adjusted

Vroom & de Heer [65] — — 4 No

Khayrallah [66] 0.005 0.48 1.5 No

Glass-Maujean [68] — — — NA

Karolis & Harting [34] 0.2 0.09 1.2 Yes

Kedzierski et al. [69] — — 1 NA

Green et al. [20] 12 0.03 0.9 No

Williams & Yu [21] — — 1 NA

Current work 0.5 0.12 0.9 Yes
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Figure 4.1: Left panel: Stokes parameters for hydrogen (656.3 nm); right panel: Stokes parameters for
deuterium (656.1 nm). Threshold for (n=3) production of H and D is at 16.6 eV. The below-threshold
polarizations with large error bars are due to molecular contamination (see text).
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Figure 4.2: Comparisons with existing data. Stokes parameters for dissociated hydrogen (656.3 nm) on the
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Khayrallah [66]; hatches: Glass-Maujean [68]; empty diamonds: Karolis and Harting [34]; empty trian-
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current results.
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4.1.1 Optical excitation cross sections

The intensity data measured here most closely agree with that of Khayrallah [66], but

due to the issues discussed in Sec. 2.2, it should not be taken as a definitive result. This

data, and that of Green et al. [20], have been scaled to match the data of Karolis and

Harting [34] at an energy of 34 eV. Karolis and Harting scaled their cross sections to

match those of Vroom and de Heer at 500 eV. The results of Khayrallah represent an

independent experimental calibration with a reported systematic uncertainty of 12%,

which provides good agreement with the work of Karolis and Harting. The data of

Vroom and de Heer and that of Green et al. exhibit structures that do not appear to agree

with the other three Hα cross sections, though Vroom and de Heer did state that their

apparatus was not designed for low energy operation.

Three features are observed in the cross section data for Hα and Dα production, with

energy thresholds at 16.6 eV, ∼25 eV, and ∼32 eV [34, 66]. Figure 4.3 illustrates some

potential curves that correlate to H(n = 3) fragments. The thresholds for the inten-

sity features correspond to the accessing of additional dissociation channels as the en-

ergy increases. The first feature is due to the predissociation of precursor singly-excited

states. Doppler spectroscopy measurements also confirm that for low incident electron

energy, the H(n = 3) and D(n = 3) outgoing fragments are slow (kinetic energy ∼0.2 eV)

[68, 72]. The onset of the second feature starting at∼25 eV corresponds to the excitation

threshold of the so-called Q1 doubly-excited states [70] that correlate to H(1l )+H(3l ) or

D(1l )+D(3l ) atomic limits. For this energy range, broadened Doppler profiles have been

observed and imply faster outgoing fragments with energies ∼6.7 eV. Finally, production

of the barely discernible third feature beginning at∼35 eV in the cross sections of Fig. 4.2

is due to a similar mechanism. Here, however, the repulsive dissociating states are the Q2

states [70] which correlate to H(3l )+H(2l ) or D(3l )+D(2l ).

The fact that the average kinetic energies of the H and D fragments is found to be sim-
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ilar indicates that the dissociation processes are similar for the two isotopes [72]. How-

ever, the Hα and Dα cross sections indicate a Hα/Dα ratio of ∼1.3 [65]. This isotope

effect has been attributed to a competition between the autoionization and dissociation

processes. Deuterium, being more massive, moves more slowly when dissociating. This

allows the probability for autoionization to be larger than that for hydrogen, which trans-

lates to a smaller D(n = 3) cross section.

4.1.2 Linear polarization P1

Van Brunt and Zare [64] provided a formula for the angular dependence of the differen-

tial cross section for dissociating fragments assuming the axial recoil approximation (dis-

sociation timescale is much less than the rotational period of the molecule). Their result,

f (θ)∝ [1+ 1
2
β(3cos2(θ)−1)], contains an anisotropy parameter, β, which characterizes

the angular distribution of outgoing atomic fragments. The value of β (−1 ¶ β ¶ 2)

depends on the nature of the dissociating state(s) involved in the dissociation process. For

cases where the assignments and contributions of dissociating states are known, β can

be related to the observed polarization P1 [64], so measurement of one parameter could

yield the other. However, due to the large number of dissociating pathways in H2 and

D2 [21, 70, 73], no theoretical predictions of P1 have been attempted for electron impact

induced dissociation. (Computations have been done regarding photodissociation polar-

ization [74], but these are generally less complex due to the dipole selection rules that

limit the number of excited states that can be reached.) Thus, the experimental P1 values

in Fig. 4.2 are only qualitatively explained.

The P1 values from the current work fall between those of Karolis et al. and Kedzierski

et al., but agree well with the measured values of Williams and Yu for Hα at low energy.

Karolis and Harting report that their statistical uncertainties are ∼0.01 (not shown in

Fig. 4.2). Kedzierski et al. tentatively attribute their low values to electron beam diver-
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gence effects in the interaction region. The early data of Glass-Maujean [68] appears very

low, but curiously agrees with the reported value by Vroom and de Heer of 0.04 at 50 eV.

The linear polarization falls to ∼0.01 at threshold. Glass-Maujean found that the

anisotropy of dissociating fragments is small for low energies, and this is understandable

due to the long-lived predissociative Rydberg states that dominate the cross section in

this region. This causes an invalidation of the axial recoil assumption, which causes the

angular distribution to be smeared out, i.e. β→ 0 which implies P1→ 0 [64]. At higher

energies the double excitation processes become dominant and the axial recoil approxima-

tion becomes better, so the value of P1 increases. The polarizations for Dα are slightly less

than those for Hα, which could indicate that the dissociation pathways (and/or their con-

tributions) leading to Dα are somewhat different from those of H2. Another mechanism

which could account for this discrepancy is hyperfine depolarization of the fluorescing

atoms, and this will be further discussed in Sec. 4.3.

4.1.3 Linear polarization P2/Pe

The P2/Pe and −P3/Pe data shown in Fig. 4.2 represent the results of experiments with

spin-polarized electron beams. For the P2/Pe case only two data sets exist, that of

Williams and Yu [21] and this work. Williams and Yu [21] report statistically signifi-

cant non-zero values of P2/Pe within 2 eV of the Hα threshold; remarkably ∼ 1
2

of their

total P2/Pe data is >2.5σ away from zero. If their data is not in error, this is indicative

of magnetic spin-orbit effects, as discussed in Chaps. 1 and 3. Williams and Yu assert

that their observed structures in P2 are correlated with energy thresholds for accessing

dissociation pathways, and mention that the P2 data exhibits “sharp effects” near the

thresholds leading to n = 4 (17.23 eV) and n = 5 (17.5 eV) state production. However,

this is somewhat perplexing as their data near 17.2 eV are consistent with zero. Five

data points are >5σ from zero, with the 18.55 eV point being a staggering 10.6σ off the
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zero line. The points surrounding it (0.1 eV energy steps) are only 2.9σ and 0.4σ from

zero. This seems to imply that the P2 structures are narrow, and that their electron beam

energy width is small. The authors state that the apparent (unmeasured) beam width is

<0.2 eV, though they reported 0.4 eV in a previous paper [75] and mention no improve-

ments to the apparatus. The uncertainties on the current results are too large to confirm

the previous results of Williams and Yu, but appear entirely consistent with zero in this

near-threshold energy region.

4.1.4 Circular polarization −P3/Pe

The circular polarizations (−P3/Pe ) in Fig. 4.2 comprise three data sets. The experiment

of Green et al. [20] used a detection geometry wherein fluorescence was viewed in a direc-

tion parallel to the electron beam (and spin polarization direction) instead of in the tradi-

tional perpendicular manner. This explains why there is no accompanying P2 data from

this reference in Fig. 4.2, because for this detection geometry P2 is required to be zero

[8, 13]. The−P3/Pe value for the low energy point of Green et al. appears comparatively

small, and this may be related to the fact that the experiment used a 10−2 T collimating

magnetic field. It’s possible that this magnetic collimation effectively increased the detec-

tion solid angle at lower electron energies where the transverse electron velocity becomes

larger relative to the parallel component, and such an increase in solid angle would lead

to depolarization. Green et al. [20] also mention that Paschen-Back decoupling of L and

S due to the external magnetic field might reduce the value of observed polarization. The

Paschen-Back decoupling mechanism involves S decoupling from L such that S and L

precess independently in the external magnetic field (J loses its status as a good quantum

number). For extreme decoupling in a large magnetic field, orientation of L due to S can-

not be achieved and P3 → 0. For smaller fields, such as the 0.01 T considered here, this

effect is expected to be small [20]. The fact that the data was taken at a high pressure (12
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mTorr) may also contribute to depolarization because of multiple scattering processes.

This issue is compounded by the magnetic field which keeps scattered low energy elec-

trons confined in the detection volume, thus increasing the effect of secondary processes.

The data of Williams and Yu actually consists of two data sets taken with different values

of Pe , so two points are plotted at each energy. When normalized to the reported values

of electron spin, the sets do not appear to be consistent with each other.

The value of the circular polarization implies that exchange excitation of triplet states

plays a significant role in the dissociation process. Singlet states contributing more flu-

orescence at higher energy are likely responsible for the observed drop in polarization

because these would provide no circular polarization. In fact, this appears to be a key

advantage of using spin-polarized electrons. Measurement of the circular polarization

allows more information to be inferred about the relative contributions of different dis-

sociating states. It is hoped that this extra information will be of some aid to future

theoretical calculations.

4.2 Dissociative excitation of N

Data was acquired for a dissociated atomic transition in nitrogen to demonstrate that non-

zero circular polarization can be achieved, i.e., atomic fragments from N2 can be oriented

similar to the Hα and Dα cases. For this experiment, the 824.24 nm (3p) 4P3/2→ (3s) 4P5/2

fluorescence was investigated. This light was selected using a bandpass filter centered at

824.32 nm with a FWHM of 0.38 nm. The data was acquired at a pressure of 1 mTorr.

The Stokes parameters are shown in Fig. 4.4.

The threshold for 824 nm light production is at 21.6 eV [76]. The intensity data show

a below-threshold peak, which is likely caused by molecular contamination. The “weak”

nitrogen infrared afterglow system, B ′ 3Σ−
u
(v ′ = 5)→ B 3Πg (v

′′ = 1), at 824.7 nm [77]

is within the bandpass filter. The relative contribution (normalized to the transmission
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at 824.32 nm) allowed by the filter profile is ∼9%. The possibility that other molecular

lines are present in this wavelength region cannot be excluded.

The linear polarization for this transition is small, and appears to be negative at the

threshold, though it is is difficult to be sure as the below-threshold contaminant peak

dominates the contribution to the Stokes parameters. The P2/Pe data are not observed

to be non-zero. The non-zero circular polarization is found to be negative (−P3/Pe < 0).

This appears to be a consequence of the initial and final J values for this specific transition.

The final state has a larger J than the initial state, so the initial oriented J values get

larger upon decay, which forces the outgoing photons to have helicity opposite that of

the incident electron spin due to conservation of angular momentum.

4.3 Comparison with atomic threshold polarizations

Some rudimentary comparisons are made here to better quantify the observed values of

the linear polarization P1 and circular polarization −P3/Pe observed for the Hα, Dα, and

N (824 nm) transitions. Due to the complexity and lack of theoretical predictions for

Stokes parameters from molecular dissociation, a completely different situation is con-

sidered. The theoretical framework for calculating the threshold Stokes parameters for

atomic transitions is well established [13, 18], and it is worthwhile to compare these pre-

dictions with the observed values from dissociation experiments. Such a comparison is

strictly incorrect for several reasons. The calculation of atomic threshold polarizations

requires that the ground state angular momentum is zero, and relies on the fact that only

ML = 0 states can be excited at threshold due to conservation of angular momentum.

These conditions are not satisfied for molecules. The ground states have a thermal rota-

tional distribution which is generally non-zero at room temperature. However, for light

molecules such as the ones considered here, the direction of spin orientation (obtained by

exchange excitation) should be conserved in the lab frame if the dissociation timescale is
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short compared to molecular rotation. Thus, outgoing fragments which have exchanged

an electron with one from the incident beam will be oriented similar to experiments with

atomic, instead of molecular, targets. The alignment of the fragments will be largely dif-

ferent than in the atomic target situation. However, the circular polarization typically

depends strongly on orientation and only weakly on alignment. Thus, it is expected that

this comparison will be most useful for values of −P3/Pe .

The calculations of the threshold polarizations for the desired transitions are given

in Appendix B. The Hα and Dα cases are treated in Sec. B.3, and the results for N (824

nm) appear in Sec. B.4. For simplicity the hyperfine depolarization in H and D was ne-

glected, and thus the polarizations are identical. In reality, I = 1
2

for H and I = 1 for D,

thus the Dα Stokes parameters may be expected to be more depolarized due to the larger

nuclear spin. The linear and circular polarizations for atomic hydrogen (and its isotope)

are calculated to be ∼0.18 and ∼0.12, respectively. The comparison of P1 in this way, as

expected, appears to be incorrect (see Fig. 4.2). However, the prediction for −P3/Pe of

∼0.12 seems to provide an upper bound for the observed value of (∼0.10) near thresh-

old. Similarly, for N the linear and circular polarizations are calculated to be −0.062 and

−0.098, respectively. The signs agree and the calculated circular polarization again ap-

pears to provide an upper bound for the measured values of −P3/Pe , which are around

−0.08 (see Fig. 4.4). Thus, at least for these specific cases, it would appear that there is a

fair amount of correlation between the circular polarization of dissociated fragments and

that of atoms at threshold.
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Chapter 5. Stokes Parameters for Molecular Fluorescence

Measurements of Stokes parameters for molecular transitions excited by spin-polarized

electron impact are presented for H2, D2, and N2 targets. The results are compared with

previous experimental and theoretical work, and significant existing discrepancies are

discussed. Generally, the linear and circular polarizations for molecular fluorescence are

found to be less than the typical values for atomic transitions. The second positive system

of N2 exhibits circular polarizations which are consistent with zero, as was mentioned

in Chap. 1. Emphasis is placed on the mechanisms responsible for causing the circular

polarizations from N2 to be small compared to those observed from H2 and D2.

5.1 Molecular fluorescence from H2 and D2

Following the Münster group’s null result for the circular polarization from nitrogen’s

second positive system, our group set out to further explore this topic. In an initial

report, Green et al. presented the first measurements of non-zero circular polarization

for molecular fluorescence from H2 due to spin exchange [20]. During the course of this

work these values have been remeasured, as the original measurements were taken on a

different apparatus. The measurements were also extended to include the D2 isotope. The

same optical bandpass filter (600±5 nm FWHM) that was used for the previous work was

used again here, for the sake of direct comparison. This optical filter profile is relatively

wide, and several different ro-vibrational transitions contribute to the measured Stokes

parameters [78–81]. However, in this wavelength region the transitions in H2 (and D2)
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are largely dominated by the triplet Fulcher-α d 3Πu(v
′ = 0)→ a 3Σ+

g
(v ′′ = 0) band,

e+H2 X 1Σ+
g
→ (1sσ3pπ) d 3Πu(v

′ = 0)+ e

→ (1sσ2sσ) a 3Σ+
g
(v ′′ = 0)+ e+ γ (∼600 nm). (5.1)

(At room temperature, H2, D2, and even N2 can be considered to occupy only the v = 0

vibration state [23].) In a recent paper (published in July 2008), Aguilar et al. [81] studied

the spectra of H2 with a spectrometer and reported the cross sections of ro-vibrationally

isolated lines for an incident electron energy of 20 eV. This data nicely complements the

H2 wavelength tables that G. H. Dieke generated in the course of his career [79]. Al-

though Dieke’s results were obtained with a high resolution spectrometer and remain

unsurpassed in terms of wavelength resolution (∼0.004 nm), they were also obtained

for discharge conditions. This means that the reported relative intensities do not neces-

sarily correspond to those emitted by room-temperature H2 excited by mono-energetic

electrons. Thus, the intensity spectra of Aguilar et al. (which was calibrated to Dieke’s

wavelengths [81]) are very timely. Their data (shown in Fig. 5.1) indicates that the bright-

est hydrogen line in the 600± 5 nm filter bandpass is the Q(1) transition (labeled “a” in

Fig. 5.1) with a cross section of 0.77× 10−19 cm2 for 20 eV incident electron energy. This

Q(1) transition provides ∼50% of the total measured emission. Here the Q(N ′′ = 1)

transition notation means that the total angular momentum quantum number N of the

final state for Hund’s case (b) coupling is unity; the letter Q indicates that there is no

difference between excited and final state N values, i.e. ∆N = N ′ −N ′′ = 0. Similarly,

transitions corresponding to ∆N =−1 and ∆N = 1 are labeled as P - and R-branch tran-

sitions, respectively. Other significant contributions come from the Q(2,3) and R(0,1, 2)

lines. For D2, significant contributions likely come from the P (2,3), Q(1,2, 3, 4) and

R(0,1, 2, 3) lines [78, 80].
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Figure 5.2 shows the Stokes parameters for the the H2 and D2 lines transmitted by the

600± 5 nm bandpass filter. The excitation threshold for the d 3Πu (N
′ = 1) state is ∼13.9

eV for both H2 and D2 [79, 82]. The values of P2/Pe are consistent with zero. Figure 5.3

provides a comparison of the intensity, P1, and −P3/Pe data sets for H2 and D2.

The excitation functions decrease sharply at higher energy, characteristic of triplet

state (exchange) excitation [83]. A secondary intensity peak appears near 26 eV in the

earlier data of Green et al., and this may be due to the fact that the early data was taken

at higher pressure (12 mTorr vs 0.5 mTorr) and thus may be susceptible to multiple scat-

tering processes [83]. The linear polarization P1 is consistent with zero at threshold

and is observed to increase with increasing energy. It appears remarkably similar to the

observed linear polarization for the Hα line presented in Chap. 4.

The appreciable values of circular polarization for both H2 and D2 indicate that sig-

nificant transfer of spin-to-orbital angular momentum is achieved for these molecules.

The earlier −P3/Pe data for H2 appears low when compared with the current results.

We once again attribute this to the fact that the earlier measurements were taken at a

higher pressure and in the presence of a 10−2 T magnetic field as discussed in Chap. 4.

Direct comparison of the H2 and D2 polarization values is problematic due to the fact

that several different rotational states are contributing to the measured fluorescence, and

the different states will generally exhibit varying degrees of polarization. However, this

data does represent a lower bound for −P3/Pe values from the individual lines with the

largest circular polarizations.

5.1.1 Stokes parameters for rotationally-isolated transitions

In order to further explore the Stokes parameters from molecular transitions in H2 and

D2, isolation of individual ro-vibrational lines was required. This was accomplished by

purchasing custom optical interference filters from Andover Corporation designed to
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Figure 5.2: Stokes parameters for unresolved H2 (at left) and D2 (at right) transitions acquired with a 600±5
nm FWHM optical bandpass filter. The data was acquired at a pressure of 0.5 mTorr. For this wavelength
range the fluorescence is largely due to the Fulcher-α d 3Πu (v

′ = 0)→ a 3Σ+
g
(v ′′ = 0) band (see text).
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Table 5.1: Rotationally-isolated transitions in the d 3Πu → a 3Σ+
g
(0− 0) and (2− 2) vibrational bands of

H2 and D2. Wavelengths were taken from Refs. [79] and [80].

Species Wavelength (air) Label in Fig. 5.1 (v ′→ v ′′), Q(N ′′), R(N ′′)

D2 600.681 — (0− 0) Q(3)

H2 601.830 a (0− 0) Q(1)

H2 618.299 b (2− 2) R(1)

H2 622.482 c (2− 2) Q(1)

H2 623.839 d (2− 2) Q(3)

have the narrowest bandpass possible (0.14 nm FWHM). Five transitions (four in H2 and

one in D2) were chosen for investigation, based on criteria such as the expected intensity

and level of achievable isolation from other transitions. The final selected candidates are

listed in Table 5.1, and consist of transitions in the d 3Πu → a 3Σ+
g
(0− 0) and (2− 2)

vibrational bands of H2 and D2. The data acquired for each of the transitions listed in

Table 5.1 are shown in Figs. 5.4, 5.5, and 5.6. The energy-averaged value of P2/Pe for the

H2 (2− 2) Q(3) transition is 0.057(26), which is 2.2σ from zero; the other four data sets

all have P2/Pe values consistent with zero. The intensity, P1, and −P3/Pe values for the

five data sets are compared in Fig. 5.7.

The excited d 3Πu state is split due to Λ doubling, and the two levels are denoted

as d 3Π−
u

and d 3Π+
u

states. Consideration of nuclear spin statistics reveals that the Q-

transitions in H2 and D2 can only involve the d 3Π−
u

state while the H2 R-transitions

involve the d 3Π+
u

state, which is known to be perturbed by the (1sσ2sσ) e 3Σ+
u

state [84].

The total nuclear spin T for the five measured H2 and D2 transitions is 1, which means

that similar hyperfine depolarization should be expected for each case.

The linear polarization comparison in Fig. 5.7 indicates that the data for the two sep-

arate Q(1) transitions from different vibrational bands is quite similar, and in fact the

polarization is not expected to depend significantly on the vibrational state quantum

number [85]. The Q(3) and R(1) transitions appear to have even larger values of P1, and
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Figure 5.4: Stokes parameters for the H2 Fulcher-α d 3Π−
u
→ a 3Σ+

g
Q(1) lines: (0−0) vibrational band data

on the left, (2− 2) data on the right. Data was acquired at a pressure of 0.7 mTorr.
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Figure 5.5: Stokes parameters for the Fulcher-α d 3Π−
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→ a 3Σ+

g
Q(3) lines: H2 (2−2) vibrational band data
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due to the lower cross sections for these lines the statistical uncertainties are larger. Previ-

ous experimental results for the linear polarization of the Q(1) transitions are available,

as well as a more recent theoretical calculation. The early experimental results (1967) of

Cahill et al. [86] (which represent the first polarization measurement for single-collision-

induced molecular fluorescence) are presented in Figure 5.8 along with the the work of

Baltayan et al. [84], McConkey et al. [87], and the theoretical calculation by Meneses et

al. [85]. The large P1 values found by Cahill et al. are roughly a factor of two greater than

results from the more recent experiments. The polarizations found by this work do not

seem to agree well with the theoretical calculation; the experimental values indicate that

−0.01 ¶ P1 ¶ 0.01 near threshold and increases at higher energy, while the calculation

gives a maximum polarization at threshold.

To calculate P1, Meneses et al. have applied the Stokes parameter formalism provided

by Blum and Jakubowicz [88]. This is analogous to the atomic formalism for the Stokes

parameters reviewed in Appendix B, but deals with Hund’s case (b) molecular systems.

The Blum and Jakubowicz paper focuses on the theoretical treatment of “coincidence”

experiments (where outgoing electrons are detected in coincidence with emitted pho-

tons), but also detail the integration over all scattering angles required to predict the

linear polarization P1 which is of interest here. (Unfortunately the Blum and Jakubow-

icz paper does not account for the use of incident spin-polarized electrons, which would

be required to predict the circular polarizations measured here.) As discussed in Ap-

pendix B, the atomic formalism allows for the threshold linear and circular polarizations

to be computed rather simply. This is due to the fact that all of the magnetic sublevel

excitation cross sections QM with M = ML 6= 0 are required to vanish at threshold due to

angular momentum conservation considerations. Blum and Jakubowicz pointed out that

for molecules, the ground state angular momentum is typically non-zero (due to thermal

rotational state populations). Thus threshold polarizations cannot be easily calculated



79

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

(1-1)

(2-2)

(2-2)
(0-0)

(2-2)

Li
ne

ar
 P

ol
ar

iz
at

io
n 

P1

Incident Electron Energy (eV)

(2-2)

Figure 5.8: Comparison of the experimental results for the H2 d 3Π−
u
→ a 3Σ+

g
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80

like in the atomic case, because the polarizations generally depend on the relative contri-

butions of QM cross sections. Meneses et al. used the Blum and Jakubowicz formalism to

obtain the dependence of P1 on QM (where M now refers to the projection of quantum

number N on the electron beam axis):

P1 =
−3G2(Q0−Q1)

(4G0−G2)Q0+ (8G0+G2)Q1

. (5.2)

Here the Gs refer to the time-integrated depolarization perturbation coefficients that

account for the effect of fine- and hyperfine-structure depolarization. These were com-

puted by McConkey et al. [87] for this H2 Q(1) transition and found to be G0 = 0.962

and G2 = 0.115. Meneses et al. then performed the distorted wave approximation (DWA)

technique to calculate the values of Q0 and Q1 as a function of incident electron energy.

They considered excitation and decay with N =N ′ =N ′′ = 1 and found that the Q0 con-

tribution vanishes at threshold, which gives P1thr = 0.044 (see Fig. 5.8). This vanishing of

Q0 is consequence of the Σ→ Π excitation character, which is referred to as a “perpen-

dicular” transition [89], but should not generally be expected to hold for any excitation

process.

The origin of the observed discrepancy between the current experimental P1 values

and the calculation by Meneses et al. remains unclear. At threshold, cascade contam-

ination of the polarization cannot come into play. (Note that Baltayan et al. [84] have

estimated an upper bound on cascade contribution to the d 3Πu state of 17% at 35 eV.) It is

possible that excitation of N = 3 ground states (N =even contribution is forbidden due to

ortho/para considerations) has a non-zero contribution to the experimental results, but

this has historically been discounted for H2 [90] as it is a non-dipole excitation channel.

However, Bingjia et al. [91] indicate that the relative amount of N = 3→ N ′ = 1 state

excitation may be ∼8%. It is unclear whether such contribution could account for the
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discrepancy. It has also been suggested that such discrepancies can be due to depolarizing

effects of near-threshold resonances or long-range electron-electron correlations [92]. In

any event, the current disagreement highlights the need for further investigation.

The −P3/Pe values shown in Fig. 5.7 represent the first measurements of circular

polarization for rotationally-isolated molecular fluorescence. As discussed above, the

molecular polarization theory by Blum and Jakubowicz does not account for the use

of spin-polarized electrons, and this non-trivial extension of the formalism has not yet

been undertaken. Even if such a formalism existed, numerical calculations would still

be required in order to obtain the individual magnetic sublevel contributions. Thus, the

results are only discussed quantitatively here.

The circular polarizations exhibit a relatively flat energy dependence up to 15 eV

above threshold. This suggests that they do not strongly depend on the alignment (which

varies significantly over this energy range). The largest spin-normalized circular polariza-

tions are observed for the R(1) line, with an energy-averaged value of −P3/Pe ∼ 0.21.

The empirical implication is that R-branch fluorescence yields larger circular polariza-

tions than Q-branch fluorescence. However, it should be remembered that the R-lines

come from the perturbed d 3Π+
u

state, and it is unknown as to what the effects of this

perturbation mean regarding polarization comparisons with fluorescence from the un-

perturbed d 3Π−
u

level. The Q(1) lines from the two different vibrational bands yield

circular polarizations which are quite similar: −P3/Pe ∼ 0.15. The two Q(3) lines also

give similar results, but these values are much smaller: −P3/Pe ∼ 0.045. The only appar-

ent difference between the Q(N ′′ = 1) and Q(N ′′ = 3) situations is that N is larger for

the Q(3) lines. Figure 5.9 illustrates semiclassical angular momentum coupling cases (for

small and large N ) described by Hund’s case (b). An initially isotropic N distribution

describes the ground state. Upon exchange excitation, the oriented S couples with N

(shown as isotropic here, but will generally be aligned by the excitation process) to form
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Figure 5.9: Isotropic distributions of angular momenta N (of different magnitudes) couple with oriented
electron spin S to form J . Greater orientation of J is achieved for the case where N is smaller.
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J . Blum [18] has shown that in the high-J limit, the orientation parameter (related to

the magnitude of observed circular polarization) is proportional to the value of cos(θ)

averaged over the J vector distribution (where θ is taken with respect to the electron

beam axis and 0¶ θ ¶ π). Thus, from Fig. 5.9, it is apparent that smaller N values yield

larger circular polarizations when coupled with oriented S . The observed Q(3)/Q(1)

polarization ratio (∼0.3) is similar to the ratio of the corresponding N values (∼0.33).

5.2 Molecular fluorescence from N2

In the first attempt to detect circular polarization from molecules excited by spin po-

larized electron impact, the Münster group was unable to observe non-zero values of

−P3/Pe from the N2 second positive system. This original result stands in contrast to the

significant circular polarizations observed from H2 and D2 molecules. A verification of

the original nitrogen experiment is presented here, and some explanation is offered to ac-

count for the apparent lack of orientation transfer. The results of two more experiments

which have provided non-zero circular polarizations are then detailed.

5.2.1 Stokes parameters for the N2 second positive system

The Münster group measured the circular polarization for the N2 C 3Πu(v
′ = 0) →

B 3Πg (v
′′ = 0) 337.1 nm band (second positive system) excited by spin-polarized elec-

trons. We have measured the (0− 2) band of this system,

e+N2 X 1Σ+
g
(v = 0)→ C 3Πu(v

′ = 0)+ e

→ B 3Πg (v
′′ = 2)+ e+ γ (∼380.5 nm). (5.3)

This difference in vibrational bands is not expected to significantly affect the Stokes pa-

rameters, or invalidate a comparison with the Münster results. The data was acquired at
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a pressure of 0.3 mTorr. Figure 5.10 compares the results of the two experiments. The

energy-averaged values of −P3/Pe are −0.004± 0.002 and −0.003± 0.001 for the present

work and the Münster results, respectively.

To understand why the circular polarization is so minuscule, we first recall the discus-

sion for H2 in which it was noted that large values of N (or J ) tended to lower the amount

of observed polarization. The large values of rotational angular momenta in room tem-

perature N2 should be expected to lower the observed polarizations. Figure 5.11 gives

the rotational state populations of the H2, D2, and N2 X 1Σ+
g

ground states at room tem-

perature (taken to be 25 ◦C). The population oscillations observed between even and odd

J values are due to the inclusion of nuclear spin statistics. The weighted means of the J

values (where the populations are the weighting factors) in H2, D2, and N2 are approxi-

mately 1.2, 1.8, and 8.5, respectively.

Next, a consideration of the measured rotational transitions is in order. For this

experiment, the interference filter bandpass (380.1± 3.5 nm FWHM) transmitted all the

rotational lines with only a slight discrimination of R-branch intensities corresponding to

large J . Figure 5.12 depicts the spectrum as computed following the method described in

Ref. [93], using the updated C and B state molecular constants reported in Ref. [94]. The

upper panel shows the wavelength dependence of the P (J ′′)-, Q(J ′′)-, and R(J ′′)-branches.

The branches have three sub-branches, corresponding to 3Π0 → 3Π0,
3Π1 → 3Π1 and

3Π2 → 3Π2 transitions (the 3Π0 → 3Π0 Q-branch is forbidden [23]). The lower panel

shows the intensities as a function of wavelength, and for this plot the transmission profile

of the optical filter we used has been taken into account.

Friedrich Hanne has pointed out that orientation of S cannot lead to orientation of

J for the Hund’s case (a) situations where Ω = 0,1 (see Figs. 1.1d and 1.1e on p. 7) [96].

Thus, no circular polarization can be produced from the Hund’s case (a) 3Π0→ 3Π0 and

3Π1 → 3Π1 sub-bands. However, orientation of J can be achieved for the case where
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Ω = 2; thus non-zero P3 was expected [19], even though it was realized that it would be

lowered by a factor of ∼ 3 due to the unoriented 3Π0 → 3Π0 and 3Π1 → 3Π1 sub-bands.

(Due to spin uncoupling, or the transition of the C and B states from Hund’s case (a) to

Hund’s case (b) with increasing J [23], it is likely that the 3Π0→ 3Π0 and 3Π1→ 3Π1 sub-

bands actually can contribute non-zero circular polarization for large J .) The Q-branches

are weak (see Fig. 5.12): their relative intensity contributions are only ∼5% of the total

emission. Thus, the measured Stokes parameters are mainly due to the R- and P -branches.

The P - to R-branch intensity ratios are ∼1.3, meaning they have similar contributions.

We now consider the sign of −P3/Pe values for P - vs. R-branch fluorescence. The

definition of P - and R-branches in conjunction with conservation of angular momentum

suggests that −P3/Pe for the P - and R-branches should have opposite signs. For a P -

branch transition, ∆J (or ∆N )= −1, while the R-branch case has ∆J (or ∆N )= 1. The

molecular angular momentum J is oriented due to S in a direction parallel to that of

the spin polarization of the incident electron beam. Figure 5.13 illustrates an initially

oriented J which yields outgoing photon helicities of opposite sign for the P - and R-

branches upon fluorescence. This indicates that the sign of−P3/Pe should be positive for

R-branch transitions and negative for P -branch fluorescence.

So it appears that several effects can work to prohibit a net transfer of spin angu-

lar momentum to photon circular polarization. Depolarization occurs due to the rela-

tively large values of angular momentum (with which the oriented spin couples to). Also,

P-branch:

R-branch:

J’ J’’ + g

J’ J’’ + g

Figure 5.13: Initially oriented angular momentum J yielding photons with opposite helicites from the P -
and R-branches upon fluorescence.
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Hund’s case (a) states are less oriented than those of Hund’s case (b), because some of the

sub-bands cannot acquire orientation due to the initially oriented S . Finally, P -/R-branch

averaging tends to force P3 values to zero. Here we note that if the Q-branch was brighter,

P -/R- branch averaging would not be able to nullify the net circular polarization. For this

experiment wherein the entire rotation structure was detected and the Q-branch did not

play a large role, no net orientation of the emitted photons was observed.

5.2.2 Stokes parameters for the N2 first negative system

To further address the question of whether circularly polarized fluorescence can be ob-

served in molecular nitrogen, the first negative band was studied, with the aim of partial

rotational isolation. This band is accessed by the excitation-ionization reaction

e+N2 X 1Σ+
g
(v = 0)→N+

2
B 2Σ+

u
(v ′ = 0)+ 2e

→N+
2

X 2Σ+
g
(v ′′ = 0)+ 2e+ γ (∼391.4 nm). (5.4)

Since the molecular states of interest are all of Σ character, the angular momentum cou-

pling is described by Hund’s case (b). Figure 1.1b depicts this coupling scheme, wherein

the vectors N and S couple to form the spatially-fixed J (total angular momentum ex-

cluding nuclear spin). Vectors N and S precess about the spatially-fixed J with a period

of <0.1 ns (N=1) corresponding to the γ (N · S) “spin-doubling” term in the molecular

Hamiltonian [97]. This spin-rotation coupling timescale is much less than the lifetime of

the B 2Σ+
u

system (61 ns [98]), so time-averaged orientation of N can develop.

This experiment demonstrates that the collision-induced orientation of N , and hence

P3 production, is possible even in the absence of electronic orbital angular momentum

along the internuclear axis (Λ = 0 and N = R). The mechanisms responsible for this

torque on the molecular nuclei are the direct coupling of S to the magnetic field produced
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by the “current loop” of nuclear rotation, as well as the coupling of S to the residual

electronic orbital angular momentum perpendicular to the internuclear axis, which also

produces a magnetic field along N [99–101]. (The latter mechanism can also be attributed

to nuclear rotation, however, in that it requires uncoupling of the total electron orbital

angular momentum, L, from the internuclear axis.) To date, the effects of these rotational

couplings have only been observed as spin doubling in molecular spectra [23], although

they have been discussed as a possible mechanism for spin relaxation in triplet alkali

dimers [102, 103].

The polarization of molecular fluorescence depends on the rotational transitions

observed. To illustrate the optical sensitivity, Fig. 5.14 shows a spectrum for the N+
2

B 2Σ+
u
(v ′ = 0) → X 2Σ+

g
(v ′′ = 0) band excited by electron bombardment [104]. As ex-

pected, there is a 2:1 intensity alternation of even N ′′ vs. odd N ′′ rotational transitions

due to the nuclear spin statistics of 14N2 [23]. The effect of the narrow bandpass filter

(391.6± 0.92 nm FWHM) used for this experiment is shown in the lower plot, indicat-

ing that the data is due only to P -branch (N ′ − N ′′ = −1) fluorescence, the R-branch

(N ′ − N ′′ = +1) being almost completely suppressed. Also, transitions near the band

head P (N ′′∼14) are preferentially detected. No significant contaminant molecular or

atomic lines are expected to co-exist in the profile of the bandpass filter. A transition in

the N2 Goldstein-Kaplan C ′ 3Πu(v
′ = 0)→ B 3Πg (v

′′ = 8) system at 391.5 nm exists, but

it is apparently much weaker than the transition under study, as negligible intensity from

this band appears below the threshold for B 2Σ+
u

state production.

The Stokes parameters presented in Fig. 5.15 were acquired at a pressure of 0.3 mTorr

to avoid potential effects of radiation trapping. Cascade contributions from higher-lying

states are not expected [107]. The P1 values are consistent with those of Ref. [105],

but the interference filter used in that work transmitted both the P - and most of the

R-branch fluorescence. It is difficult to assess what the kinematically-required threshold
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B 2Σ+
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(0−0) 391.4 nm first negative system (acquired

at 0.3 mTorr). Data of this work is represented by circles (1σ errors); linear polarization data of Ref. [105]
is shown in squares (errors represent 98% confidence level). Threshold is at 18.75 eV [106].
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value of P1 should be. For production of the B 2Σ state, preferential excitation of MJ=± 1
2

levels is expected [108]. This would yield positive P1 values for the thermal ensemble of

rotational states present in a room-temperature target, which are observed. In addition,

the effects of hyperfine and fine-structure depolarization are significant [109], leading to

an overall reduction in the degree of linear polarization at all energies. The measured

values of P2/Pe are consistent with zero. This is expected, as the total spin of the collision

system should be a good quantum number due to the low Z of the target nuclei [17].

The non-zero value of −P3/Pe for the 391.4 nm fluorescence provides direct evidence

of molecular orientation due to the coupling of N with S . Fitting a constant to the data

gives an energy-averaged value of −0.0133(8), with a reduced χ 2 = 1.04. However, the

observed values are relatively small when compared to the circular polarizations detected

for atomic and even molecular H2 triplet-state fluorescence. There are several reasons

that may explain the small values of circular polarization we observe. The first is related

to the fact that the B state is a doublet, so electron exchange is not guaranteed, and the

initial spin orientation may be diluted relative to a triplet state by an exchange-to-direct

excitation cross section ratio. Another factor to consider is the relative magnitude of ro-

tational state angular momenta in N2 vs. H2, as previously mentioned. For larger values

of N , spin orientation is less effective at producing appreciable nuclear orbital orienta-

tion, resulting in smaller P3 values. Room temperature rotational states in nitrogen are

populated up to N∼20, while for hydrogen the maximum N is ∼3 (see Fig. 5.11). Thus

the doublet state spin momentum of 1
2
ħh is small compared with the rotational angular

momentum of
p

N (N + 1)ħh. In fact, this ratio (∼ 1
40

for maximum N ) is roughly an or-

der of magnitude less than that for triplet-state H2 (∼ 1
3

for maximum N ). This effect

alone could account for the differences in the observed −P3/Pe from these two molecu-

lar species. Finally, the results are susceptible to both fine and hyperfine depolarization

[88, 109]. Typical hyperfine splittings in the excited states of atomic nitrogen are of the
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order of 108 Hz [110], so molecular depolarization should occur in ∼10 ns.

This study of the Stokes parameters for the first negative system in N+
2

confirms

the idea that P -branch fluorescence should give negative values of −P3/Pe . For this N+
2

Hund’s case (b) B 2Σ+
u
(v ′ = 0) → X 2Σ+

g
(v ′′ = 0) band, our interference filter isolated

the P -branch fluorescence from the R-branch contribution and we measured a non-zero

energy-averaged value of −P3/Pe = −0.0133(8). Furthermore, the angular momentum

coupling scheme for the excited and final states closely resembles atomic LS -coupling

(compare Figs. 1.1a with 1.1b on p. 7). With the substitution N → L, the atomic formal-

ism can be used to compute the threshold circular polarization (hyperfine depolarization

is neglected) for the R(N ′′ = 0) and P (N ′′ = 2) transitions excited from the N = 0 molec-

ular ground state. This results in −P3/Pe = 0.29 for the R(0) line and −P3/Pe = −0.16

for the P (2) transition (see Appendix B, Sec. B.5), which again confirms that the circular

polarizations from P - and R-branches have opposite signs.

5.2.3 Stokes parameters for the N2 first positive system

Stokes parameter measurements are presented for some rotationally isolated lines in the

first positive band of N2,

e+N2 X 1Σ+
g
(v = 0)→ B 3Πg (v

′ = 7)+ e

→A 3Σ+
u
(v ′′ = 3)+ e+ γ (∼601.4 nm). (5.5)

This data was taken using a 601.30± 0.16 nm FWHM bandpass filter. To determine

which rotational transitions this filter transmitted, the spectra was computed using the

molecular parameters from Ref. [111] and the energy levels of the 3Π and 3Σ levels given

in Ref. [23]. Following historical convention, Hund’s case (b) notation was used for

notating the 27 different branches [112]. Seven branches which are transmitted by the
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bandpass filter are plotted in Fig. 5.16. Of these, three appear to provide the dominant

contribution. These three are the P11, P12, and P13 branches. The P11 main branch is

bright for large rotational quantum numbers [113, 114]. (Other lines from neighboring

bands should not be completely discounted, however [115].) The subscript notation

refers to the upper and lower state multiplets. Note that N , O , S , and T rotational

branches are allowed (and correspond to∆K =−3,−2,2, and 3, respectively) in addition

the usual P , Q, and R lines. This is due to the inaccuracy of Hund’s case (b) for low

J values of the excited B 3Πg state (which is better described by Hund’s case (a) [23]).

This means that K is not strictly a good quantum number, but the strict selection rule

∆J = 0,±1 still applies [112].

The measured Stokes parameters are plotted in Figure 5.17. The second threshold

near 11 eV in the intensity data is known to be due to cascade contribution from the

second positive system [115]. The linear polarization P1 is small and the P2/Pe data

is consistent with zero. Due to the dominant P -branch character of the fluorescence,

negative values of −P3/Pe are expected, as discussed in the previous sections. Figure 5.17

shows that negative values were actually measured. The observed −P3/Pe values are ∼

−0.05, with a peak value of −0.07 occurring near 10 eV. These circular polarizations

represent the largest values measured for N2 excited by spin-polarized electrons.
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Figure 5.17: Stokes parameters for the N2 B 3Πg → A 3Σ+
u
(7− 3) 601.4 nm first positive system. Data was

acquired at a pressure of 0.5 mTorr.
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Chapter 6. Summary

In this dissertation measurements of the Stokes parameters are presented for atomic,

dissociated atomic, and molecular transitions excited by spin-polarized electron impact.

Since the targets (He, H2, D2, and N2) were investigated using spin-polarized electrons,

the observed fluorescence polarizations contain information about the angular momen-

tum coupling dynamics at work in the excited systems. Significant new improvements to

the apparatus made during the course of this work are described in Chap. 2.

For the helium negative-ion resonances discussed in Chap. 3, the failure to see discern-

able resonance effects in P2 indicates that even though the lifetime of these resonances is

significant (∼10 fs), magnetic forces acting on the temporarily-captured electron are not

observable. Resonant structures in the values of P1 and P3 were observed due to po-

larization contributions from the resonant states. Further, these P1 and P3 polarization

contributions to the detected 3 3D→ 2 3P transition were found to be consistent with the

threshold values for direct excitation of this channel, indicating that the resonances act as

cascade-free intermediate states that serve to populate the 3 3D state.

Data is presented in Chap. 4 regarding the Stokes parameters for atomic transitions

resulting from the dissociation of simple diatomic molecules (H2, D2, and N2). The re-

sults are compared with previous measurements where available. Currently there are

no theoretical calculations to compare with the data, but these results could be of some

aid if such calculations are undertaken in the future as the observed circular polarization

quantifies contributions from states with different multiplicities. Contributions from

singlet states yield no circular polarization, while states with higher multiplicities ex-

hibit nonzero −P3/Pe . Due to the present lack of theory describing atomic polarizations

from electron induced dissociation of molecules, threshold values of P1 and−P3/Pe were

computed for the hypothetical case of atomic excitation. It was discovered that these
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threshold numbers represent an upper bound for the observed polarizations due to dis-

sociation processes. Also, the measured values of −P3/Pe were found to be similar to the

circular polarization calculated for atomic-threshold excitation. Thus although the net

linear polarization is typically small due to the averaging over all molecular orientations,

the circular polarization is not. This suggests that orientation depends only weakly on

alignment for the studied systems.

Chapter 5 includes data which represents the first observation of rotationally-resolved

circular polarizations for molecular transitions due to electron impact processes. The Q-

branch −P3/Pe data for H2 and D2 provide experimental verification that the coupling

of oriented electron spin to larger values of molecular angular momenta yields smaller

values of orientation. In order to explain the observed null results for the circular polar-

ization from the second positive band in N2, we have proposed that the circular polariza-

tions for P - and R-branch transitions exhibit −P3/Pe values of opposite sign. To verify

this, experiments with partial rotational-selection were performed in the first negative

and first positive bands of N2. It was indeed discovered that the P -branch fluorescence

yields negative values of −P3/Pe ; the H2 and D2 experiments show that the Q- and R-

branches give positive values of −P3/Pe .

It is noted here that investigations of molecules by spin-polarized electrons could aid

in the identification of molecular spectra. The assignments of several molecular tran-

sitions in H2, for example, remain ambiguous [79]. For cases where Dieke’s proposed

assignments include both singlet and triplet states, measurement of the circular polariza-

tion could be used to unambiguously verify which multiplicity is correct. If no circular

polarization is observed, the lines must be of singlet character, while non-zero values of

−P3/Pe would imply triplet character.
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6.1 Future experiments

Further investigations of molecular transitions would benefit from the addition of a

spectrometer to the experimental apparatus. The narrowest bandpass filters (∼0.15 nm

FWHM in the 600 nm range) are often still too wide when rotational isolation is desired

(especially for larger molecules such as N2). The addition of a spectrometer could in-

crease the wavelength resolution by more than an order of magnitude when compared

to bandpass filters, and could allow for measurement of rotationally-isolated lines across

entire bands (see Fig. 5.14 for example). This would enable a more comprehensive quan-

titative study of the dependence of the Stokes parameters on rotational states. The effects

of spin-uncoupling in N2 (the shift from Hund’s case (a) at low J values to Hund’s case

(b) and higher values) could be investigated. For such experiments it would be advisable

to develop a means by which to alter the target cell temperature, so that the thermal

distribution of ground state rotational populations could be manipulated to maximize

intensities in the rotational area of interest (e.g., when measuring low rotational states

the gas could be cooled and when measuring large J -values the gas could be heated). The

dependence of the polarizations on the character of states should also be explored, i.e.,

what differences in the Stokes parameters should be expected for Σ−Σ, Π−Σ, Π−Π,

and even∆−Π transitions?

If future experimental work is to be performed concerning spin-polarized excitation

of molecules, a descriptive theory is desirable. The theoretical formalism of Blum and

Jakubowicz needs to be extended to account for spin-polarized excitation [88]. Also, the

theory for Stokes parameters from systems described by Hund’s case (a) remains to be

developed.
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Appendix A. Data Analysis Software

The following code was written for the GNU Fortran g77 (gcc version 3.4.6) compiler.

1 !======================================================================!

2 ! Stokes program !

3 !======================================================================!

4 program main

5 implicit none

6 integer*4 nx,counter,i,j,k,m,ii,jj,bad,thresh,limit

7 integer*4 energies,angles,rotations,spin

8 integer*4 recu,sorts,switch,bsw,ibsw

9
10 real*8 ki,d,pe,pi,cpi,dE,avg,stddev,stddevm,avg1,stddev1

11 real*8 shift,b_offset,a0,a0e,b0,b0e,b0_a0,b0_a0e,a0_p1,a0_p1e

12 real*8 avg_c,avg_p,avgc,avgp,pslope,poffset,bg

13 real*8 ti,tie,tp1,tp1e,tp2,tp2e,tp3,tp3e,tempor

14
15 real*8 ENERGY,ANGLE,SANGLE,COUNTS,DWELL,CCUR,TCUR,OCUR

16 real*8 ICUR,SIG,OIG,TCG,CR,CUP,CRA,TCGA,CUPA

17 real*8 ARRAY,TEMP,TEMPE

18 real*8 SI,SIE,SP1,SP1E,SP2,SP2E,NSP2,NSP2E,SP3,SP3E

19 real*8 SII,SIIE,SP11,SP11E,SP22,SP22E,SP33,SP33E

20 real*8 BACK,DUMMY,DUMMYY,DUMMY1,DUMMYY1

21 real*8 ARR,ARRE

22
23 parameter (nx=100000)

24 dimension ENERGY(nx),ANGLE(nx),SANGLE(nx),COUNTS(nx),DWELL(nx)

25 dimension CCUR(nx),TCUR(nx),OCUR(nx),ICUR(nx),SIG(nx),OIG(nx)

26 dimension TCG(nx),CR(nx),CUP(nx)

27 dimension CRA(121,8,401,2),TCGA(121,8,401,2),CUPA(121,8,401,2)

28 dimension ARRAY(121,8,401,2),TEMP(8),TEMPE(8)

29 dimension SI(121),SIE(121),SP1(121),SP1E(121),SP2(121),SP2E(121)

30 dimension NSP2(121),NSP2E(121),SP3(121),SP3E(121)

31 dimension SII(121,2),SIIE(121,2),SP11(121,2),SP11E(121,2)

32 dimension SP22(121,2),SP22E(121,2),SP33(121,2),SP33E(121,2)

33 dimension BACK(8),DUMMY(nx),DUMMYY(nx),DUMMY1(nx),DUMMYY1(nx)

34 dimension ARR(121,8,2),ARRE(121,8,2)

35
36 !=====define parameters================================================!

37 ki=0.9998d0 !value of k for linear polarizer

38 d=95.92d0 !value of delta in degrees for retarder

39 pe=0.25d0 !value of electron spin polarization, positive

40
41 pslope=0.709d0*214d0 !true pressure = pslope*(OIG-poffset)

42 poffset=1.d-8

43
44 b_offset=90.d0 !0 if fast axis is aligned to e-beam, 90 for slow

45
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46 shift=3.65d0 !true energy is lab-shift

47 recu=0 !Apply Chauvenet’s criterion successively? NO(0), YES(1)

48 pi = 4.d0*atan(1.d0)

49 cpi = pi/180.d0

50 spin=2

51 angles=8

52 write(*,*)’Scanned energy first (0), or rotated qwp first (1)?’

53 read*,sorts

54 open(unit=10,file=’percentbad’)

55
56 !=====load the data====================================================!

57 call input(ENERGY,ANGLE,SANGLE,COUNTS,DWELL,CCUR,TCUR,OCUR,

58 &ICUR,SIG,OIG,TCG,counter)

59
60 if(sorts.eq.0)then

61
62 dE=abs(ENERGY(2)-ENERGY(1))

63 do i=1,counter

64 if(ENERGY(i+1).gt.ENERGY(1))then

65 continue

66 else

67 goto 11

68 endif

69 enddo!i

70 11 energies=i

71
72 elseif(sorts.eq.1)then

73
74 dE=abs(ENERGY(2*angles+1)-ENERGY(1))

75 tempor=0

76 do i=1,counter

77 if(ENERGY(i).ge.tempor)then

78 tempor=ENERGY(i)

79 else

80 goto 12

81 endif

82 enddo!i

83 12 energies=((tempor-ENERGY(1))/dE)+1

84
85 else

86 write(*,*)’Unexpected value of sorts...stop.’

87 stop

88 endif

89
90 rotations=counter/(2*angles*energies)

91 write(*,*)energies,’ energies,’,rotations,’ rotations, and’,

92 &counter,’ lines found in input.’

93 if(2*angles*energies*rotations.ne.counter)then

94 write(*,*)’Input file is not of proper length...stop.’

95 stop

96 endif
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97 !=====compute pressure, count rate, and current========================!

98 avg_p = 0.d0

99 avg_c = 0.d0

100 do i=1,counter

101 CR(i)=COUNTS(i)/DWELL(i)

102 TCG(i)=pslope*(OIG(i)-poffset)

103 CUP(i)=-1.d0*(OCUR(i)+ICUR(i))

104 avg_p=avg_p+TCG(i)/counter

105 avg_c=avg_c+CUP(i)/counter

106 enddo!i

107 write(*,*)’avg pressure :’,avg_p

108 write(*,*)’avg current :’,avg_c

109
110 !=====resort the data into some arrays=================================!

111 if(sorts.eq.0)then

112 call sore(CR,TCG,CUP,energies,angles,rotations,spin,CRA,TCGA,CUPA)

113 elseif(sorts.eq.1)then

114 call sorr(CR,TCG,CUP,energies,angles,rotations,spin,CRA,TCGA,CUPA)

115 endif

116
117 !=====just plot the average count rates================================!

118 open(unit=11,file=’avgcr’)

119 do i=1,energies

120 ii=0

121 do j=1,angles

122 do m=1,spin

123 do k=1,rotations

124 ii=ii+1

125 DUMMY(ii)=CRA(i,j,k,m)

126 enddo!k

127 enddo!m

128 enddo!j

129 call chauvenet(DUMMY,ii,recu,bad,avg,stddev,stddevm)

130 write(10,*)100.d0*bad/ii

131 write(11,*)ENERGY(1)+(i-1)*dE-shift,avg,stddevm

132 enddo!i

133 close(11)

134 write(*,*)’Please look in avgcr file and decide where thresh is.’

135 write(*,*)’Threshold is? (Enter integer point number > 1)’

136 read*,thresh

137 write(*,*)’Limit is? (#pts above thresh to exclude for a0,b0 fit)’

138 read*,limit

139
140 !=====background fork==================================================!

141 write(*,*)’Manually enter background? (0)NO, (1)YES’

142 read*,bsw

143 if(bsw.eq.0)then

144 goto 13

145 elseif(bsw.eq.1)then

146 write(*,*)’Background count rate is? (Hz)’

147 read*,bg



104

148 goto 17

149 else

150 write(*,*)’Unexpected value of bsw...stop.’

151 stop

152 endif

153
154 !=====fit and subtract backgrounds=====================================!

155 13 ii=0

156 avgp=0.d0

157 avgc=0.d0

158 do j=1,angles

159 do m=1,spin

160 do k=1,rotations

161 ii=ii+1

162 DUMMY(ii)=TCGA(thresh,j,k,m)

163 DUMMYY(ii)=CUPA(thresh,j,k,m)

164 enddo!k

165 enddo!m

166 enddo!j

167 call chauvenet(DUMMY,ii,recu,bad,avg,stddev,stddevm)

168 write(*,*)’Threshold pressure :’,avg,stddevm,100.d0*bad/ii

169 avgp=avg

170 call chauvenet(DUMMYY,ii,recu,bad,avg,stddev,stddevm)

171 write(*,*)’Threshold current :’,avg,stddevm,100.d0*bad/ii

172 avgc=avg

173
174 write(*,*)’Fit retarder orientions individually? (0)No, (1)Yes’

175 read*,ibsw

176 if(ibsw.eq.0)then

177 goto 14

178 elseif(ibsw.eq.1)then

179 goto 15

180 else

181 write(*,*)’Unexpected value of ibsw...stop.’

182 stop

183 endif

184
185 14 ii=0

186 do j=1,angles

187 do m=1,spin

188 do k=1,rotations

189 do i=1,thresh-1

190 ii=ii+1

191 DUMMY(ii)=CRA(i,j,k,m)

192 enddo!i

193 enddo!k

194 enddo!m

195 enddo!j

196 call chauvenet(DUMMY,ii,recu,bad,avg,stddev,stddevm)

197 write(10,*)100.d0*bad/ii

198 do j=1,angles



105

199 BACK(j)=avg

200 enddo!j

201 write(*,*)’Background rate is’,avg,stddevm,100.d0*bad/ii

202 goto 16

203
204 15 open(unit=12,file=’backgrounds’)

205 do j=1,angles

206 ii=0

207 do m=1,spin

208 do k=1,rotations

209 do i=1,thresh-1

210 ii=ii+1

211 DUMMY(ii)=CRA(i,j,k,m)

212 enddo!i

213 enddo!k

214 enddo!m

215 call chauvenet(DUMMY,ii,recu,bad,avg,stddev,stddevm)

216 write(10,*)100.d0*bad/ii

217 BACK(j)=avg

218 write(*,*)’Background rate’,j,’ is’,avg,stddevm,100.d0*bad/ii

219 write(12,*)j,avg,stddevm

220 enddo!j

221 close(12)

222 goto 16

223
224 16 do i=1,energies

225 do j=1,angles

226 do k=1,rotations

227 do m=1,spin

228 CRA(i,j,k,m)=CRA(i,j,k,m)-BACK(j)

229 enddo!m

230 enddo!k

231 enddo!j

232 enddo!i

233
234 do j=1,angles

235 do k=1,rotations

236 do m=1,spin

237 do i=1,thresh-1

238 ARRAY(i,j,k,m)=CRA(i,j,k,m)

239 enddo!i

240 do i=thresh,energies

241 ARRAY(i,j,k,m)=CRA(i,j,k,m)*(avgc*avgp)

242 &/(TCGA(i,j,k,m)*CUPA(i,j,k,m))

243 enddo!i

244 enddo!m

245 enddo!k

246 enddo!j

247
248
249
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250 do i=1,energies

251 do j=1,angles

252 do m=1,spin

253 do k=1,rotations

254 DUMMY(k)=ARRAY(i,j,k,m)

255 enddo!k

256 call chauvenet(DUMMY,rotations,recu,bad,avg,stddev,stddevm)

257 write(10,*)100.d0*bad/rotations

258 ARR(i,j,m)=avg

259 ARRE(i,j,m)=stddevm

260 enddo!m

261 enddo!j

262 enddo!i

263 goto 18

264
265 !=====subtract background manually=====================================!

266 17 do i=1,energies

267 do j=1,angles

268 do m=1,spin

269 do k=1,rotations

270 DUMMY(k)=((CRA(i,j,k,m)-bg)*(avg_c*avg_p))

271 &/(TCGA(i,j,k,m)*CUPA(i,j,k,m))

272 enddo!k

273 call chauvenet(DUMMY,rotations,recu,bad,avg,stddev,stddevm)

274 write(10,*)100.d0*bad/rotations

275 ARR(i,j,m)=avg

276 ARRE(i,j,m)=stddevm

277 enddo!m

278 enddo!j

279 enddo!i

280 goto 18

281
282 !=====find a0 and b0 fork==============================================!

283 18 write(*,*)’Manually input a0 and b0? (0 for NO, 1 for YES)’

284 read*,switch

285 if(switch.eq.0)then

286 goto 19

287 elseif(switch.eq.1)then

288 write(*,*)’a0 is: (degrees)’

289 read*,a0

290 write(*,*)’b0 is: (degrees; b_offset will be added to input b0)’

291 read*,b0

292 b0=b0+b_offset

293 goto 70

294 else

295 write(*,*)’Unexpected value of switch...stop.’

296 stop

297 endif

298
299
300
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301 !=====find a0 and b0===================================================!

302 19 open(unit=13,file=’checkb0_p3’)

303 open(unit=14,file=’checka0_p1’)

304 open(unit=15,file=’checka0_p2’)

305
306 !=====get b0_a0 (which includes b_offset)

307 do i=1,energies

308 DUMMY(i)=0.d0

309 enddo!i

310 do jj=1,181

311 a0=0.d0

312 b0=b_offset+((jj-1)-90.d0)/4.d0

313
314 do m=1,spin

315 do i=1,energies

316 do j=1,angles

317 TEMP(j)=ARR(i,j,m)

318 TEMPE(j)=ARRE(i,j,m)

319 enddo!j

320 call stokes(TEMP,TEMPE,a0,b0,ki,d,ti,tie,tp1,tp1e,tp2,tp2e,tp3,

321 &tp3e)

322 SP33(i,m)=tp3

323 SP33E(i,m)=tp3e

324 enddo!i

325 enddo!m

326 do i=1,energies

327 SP3(i)=(SP33(i,1)/SP33E(i,1)**2-SP33(i,2)/SP33E(i,2)**2)/

328 &(1.d0/SP33E(i,1)**2+1.d0/SP33E(i,2)**2)

329 SP3E(i)=sqrt(1.d0/(1.d0/SP33E(i,1)**2+1.d0/SP33E(i,2)**2))

330 enddo!i

331
332 do i=thresh+limit,energies

333 write(13,*)b0,SP3(i),SP3E(i)

334 if(abs(SP3(i)).gt.DUMMY(i))then

335 DUMMY(i)=abs(SP3(i))

336 DUMMYY(i)=b0

337 endif

338 enddo!i

339 enddo!jj

340
341 avg=0.d0

342 stddev=0.d0

343 do i=thresh+limit,energies

344 avg=avg+DUMMYY(i)

345 enddo!i

346 b0_a0=avg/(energies-(thresh+limit)+1)

347 do i=thresh+limit,energies

348 stddev=stddev+(DUMMYY(i)-b0_a0)**2

349 enddo!i

350 stddev=sqrt(stddev/(energies-(thresh+limit)))

351 b0_a0e=stddev/sqrt(1.d0*(energies-(thresh+limit)+1))
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352 !=====get a0 (then b0 = a0 + b0_a0)

353 do i=1,energies

354 DUMMY1(i)=0.d0

355 DUMMY(i)=1000.d0

356 enddo!i

357 do ii=1,181

358 a0=((ii-1)-90.d0)/4.d0

359 b0=a0+b0_a0

360
361 do m=1,spin

362 do i=1,energies

363 do j=1,angles

364 TEMP(j)=ARR(i,j,m)

365 TEMPE(j)=ARRE(i,j,m)

366 enddo!j

367 call stokes(TEMP,TEMPE,a0,b0,ki,d,ti,tie,tp1,tp1e,tp2,tp2e,tp3,

368 &tp3e)

369 SP11(i,m)=tp1

370 SP11E(i,m)=tp1e

371 SP22(i,m)=tp2

372 SP22E(i,m)=tp2e

373 enddo!i

374 enddo!m

375 do i=1,energies

376 SP1(i)=(SP11(i,1)/SP11E(i,1)**2+SP11(i,2)/SP11E(i,2)**2)/

377 &(1.d0/SP11E(i,1)**2+1.d0/SP11E(i,2)**2)

378 SP1E(i)=sqrt(1.d0/(1.d0/SP11E(i,1)**2+1.d0/SP11E(i,2)**2))

379 SP2(i)=(SP22(i,1)/SP22E(i,1)**2+SP22(i,2)/SP22E(i,2)**2)/

380 &(1.d0/SP22E(i,1)**2+1.d0/SP22E(i,2)**2)

381 SP2E(i)=sqrt(1.d0/(1.d0/SP22E(i,1)**2+1.d0/SP22E(i,2)**2))

382 enddo!i

383
384 do i=thresh+limit,energies

385 write(14,*)a0,SP1(i),SP1E(i)

386 write(15,*)a0,SP2(i),SP2E(i)

387
388 if(abs(SP1(i)).gt.DUMMY1(i))then

389 DUMMY1(i)=abs(SP1(i))

390 DUMMYY1(i)=a0

391 endif

392 if(abs(SP2(i)).lt.DUMMY(i))then

393 DUMMY(i)=abs(SP2(i))

394 DUMMYY(i)=a0

395 endif

396
397 enddo!i

398
399 enddo!ii

400 avg1=0.d0

401 avg=0.d0

402 stddev1=0.d0
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403 stddev=0.d0

404 do i=thresh+limit,energies

405 avg1=avg1+DUMMYY1(i)

406 avg=avg+DUMMYY(i)

407 enddo!i

408 a0_p1=avg1/(energies-(thresh+limit)+1)

409 a0=avg/(energies-(thresh+limit)+1)

410 do i=thresh+limit,energies

411 stddev1=stddev1+(DUMMYY1(i)-a0_p1)**2

412 stddev=stddev+(DUMMYY(i)-a0)**2

413 enddo!i

414 stddev1=sqrt(stddev1/(energies-(thresh+limit)))

415 stddev=sqrt(stddev/(energies-(thresh+limit)))

416
417 a0_p1e=stddev1/sqrt(1.d0*(energies-(thresh+limit)+1))

418 a0e=stddev/sqrt(1.d0*(energies-(thresh+limit)+1))

419 b0=a0+b0_a0

420 b0e=b0_a0e

421 write(*,*)’avg a0_p1’,a0_p1,a0_p1e

422 write(*,*)’avg a0_p2’,a0,a0e

423 write(*,*)’avg b0_p3’,b0,b0e

424 close(13)

425 close(14)

426 close(15)

427
428 !=====calculate stokes parameters======================================!

429 70 do m=1,spin

430 do i=1,energies

431 do j=1,angles

432 TEMP(j)=ARR(i,j,m)

433 TEMPE(j)=ARRE(i,j,m)

434 enddo!j

435 call stokes(TEMP,TEMPE,a0,b0,ki,d,ti,tie,tp1,tp1e,tp2,tp2e,tp3,

436 &tp3e)

437 SII(i,m)=ti

438 SIIE(i,m)=tie

439 SP11(i,m)=tp1

440 SP11E(i,m)=tp1e

441 SP22(i,m)=tp2

442 SP22E(i,m)=tp2e

443 SP33(i,m)=tp3

444 SP33E(i,m)=tp3e

445 enddo!i

446 enddo!m

447 do i=1,energies

448 SI(i)=(SII(i,1)/SIIE(i,1)**2+SII(i,2)/SIIE(i,2)**2)/

449 &(1.d0/SIIE(i,1)**2+1.d0/SIIE(i,2)**2)

450 SIE(i)=sqrt(1.d0/(1.d0/SIIE(i,1)**2+1.d0/SIIE(i,2)**2))

451 SP1(i)=(SP11(i,1)/SP11E(i,1)**2+SP11(i,2)/SP11E(i,2)**2)/

452 &(1.d0/SP11E(i,1)**2+1.d0/SP11E(i,2)**2)

453 SP1E(i)=sqrt(1.d0/(1.d0/SP11E(i,1)**2+1.d0/SP11E(i,2)**2))
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454 SP2(i)=(SP22(i,1)/SP22E(i,1)**2+SP22(i,2)/SP22E(i,2)**2)/

455 &(1.d0/SP22E(i,1)**2+1.d0/SP22E(i,2)**2)

456 SP2E(i)=sqrt(1.d0/(1.d0/SP22E(i,1)**2+1.d0/SP22E(i,2)**2))

457 NSP2(i)=(SP22(i,1)/SP22E(i,1)**2-SP22(i,2)/SP22E(i,2)**2)/

458 &(1.d0/SP22E(i,1)**2+1.d0/SP22E(i,2)**2)/pe

459 NSP2E(i)=sqrt(1.d0/(1.d0/SP22E(i,1)**2+1.d0/SP22E(i,2)**2))/pe

460 SP3(i)=(SP33(i,1)/SP33E(i,1)**2-SP33(i,2)/SP33E(i,2)**2)/

461 &(1.d0/SP33E(i,1)**2+1.d0/SP33E(i,2)**2)/pe

462 SP3E(i)=sqrt(1.d0/(1.d0/SP33E(i,1)**2+1.d0/SP33E(i,2)**2))/pe

463 enddo!i

464
465 !=====write the data and shift the energies============================!

466 open(unit=20,file=’dataup’)

467 m=1

468 do i=1,energies

469 write(20,80)ENERGY(1)+(i-1)*dE-shift,SII(i,m),SIIE(i,m),SP11(i,m),

470 &SP11E(i,m),SP22(i,m),SP22E(i,m),SP33(i,m),SP33E(i,m)

471 80 format(f7.3,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,

472 &1x,e12.6,1x,e12.6)

473 enddo!i

474 close(20)

475
476 open(unit=21,file=’datadown’)

477 m=2

478 do i=1,energies

479 write(21,81)ENERGY(1)+(i-1)*dE-shift,SII(i,m),SIIE(i,m),SP11(i,m),

480 &SP11E(i,m),SP22(i,m),SP22E(i,m),SP33(i,m),SP33E(i,m)

481 81 format(f7.3,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,

482 &1x,e12.6,1x,e12.6)

483 enddo!i

484 close(21)

485
486 open(unit=22,file=’data’)

487 do i=1,energies

488 write(22,82)ENERGY(1)+(i-1)*dE-shift,SI(i),SIE(i),SP1(i),SP1E(i),

489 &SP2(i),SP2E(i),NSP2(i),NSP2E(i),SP3(i),SP3E(i)

490 82 format(f7.3,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,

491 &1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6,1x,e12.6)

492 enddo!i

493 close(22)

494
495 close(10)

496 stop

497 end!main

498
499 !======================================================================!

500 subroutine input(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,counter)

501 implicit none

502 character*64 infname

503 integer*4 nx,counter,done,i

504 real*8 A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,A11,A12
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505 parameter (nx=100000)

506 dimension A1(nx),A2(nx),A3(nx),A4(nx),A5(nx),A6(nx),A7(nx),

507 &A8(nx),A9(nx),A10(nx),A11(nx),A12(nx)

508
509 open(unit=8,file=’input’)

510 read(8,*)infname

511 close(8)

512
513 open(unit=9,file=infname)

514 read(9,*)!skipping a header line

515 read(9,*)!skipping a header line

516 counter=0

517 do i=1,nx

518 read(9,*,iostat=done)A1(i),A2(i),A3(i),A4(i),A5(i),A6(i),

519 &A7(i),A8(i),A9(i),A10(i),A11(i),A12(i)

520 if(done.ne.0)goto 100

521 counter=counter+1

522 enddo!i

523 if(counter.eq.nx)then

524 write(*,*)’error in input subroutine, arrays not long enough!’

525 stop

526 endif

527 100 close(9)

528 return

529 end!input

530
531 !======================================================================!

532 subroutine sore(A1,A2,A3,energies,angles,rotations,spin,A4,A5,A6)

533 implicit none!this is for data taken by scanning E first

534 integer*4 i,j,k,kk,m,energies,rotations,angles,spin,arg

535 real*8 A1,A2,A3,A4,A5,A6

536 dimension A1(100000),A2(100000),A3(100000)

537 dimension A4(121,8,401,2),A5(121,8,401,2),A6(121,8,401,2)

538 do i=1,energies

539 do j=1,angles

540 do k=1,rotations/spin

541 do kk=1,spin

542 do m=1,spin

543 arg=i+(m-1)*2*angles*energies+(j-1)*energies+(kk-1)

544 &*angles*energies+(k-1)*4*angles*energies

545 A4(i,j,1+2*(k-1)+(kk-1),m)=A1(arg)

546 A5(i,j,1+2*(k-1)+(kk-1),m)=A2(arg)

547 A6(i,j,1+2*(k-1)+(kk-1),m)=A3(arg)

548 enddo!m

549 enddo!kk

550 enddo!k

551 enddo!j

552 enddo!i

553 return

554 end!sore

555



112

556 !======================================================================!

557 subroutine sorr(A1,A2,A3,energies,angles,rotations,spin,A4,A5,A6)

558 implicit none!this is for data taken by rotating the QWP first

559 integer*4 i,j,k,kk,m,energies,rotations,angles,spin,arg

560 real*8 A1,A2,A3,A4,A5,A6

561 dimension A1(100000),A2(100000),A3(100000)

562 dimension A4(121,8,401,2),A5(121,8,401,2),A6(121,8,401,2)

563 do j=1,angles

564 do kk=1,spin

565 do i=1,energies

566 do m=1,spin

567 do k=1,rotations/spin

568 arg=j+(i-1)*2*angles+(kk-1)*angles

569 &+(k-1)*4*angles*energies+(m-1)*energies*angles*2

570 A4(i,j,1+2*(k-1)+(kk-1),m)=A1(arg)

571 A5(i,j,1+2*(k-1)+(kk-1),m)=A2(arg)

572 A6(i,j,1+2*(k-1)+(kk-1),m)=A3(arg)

573 enddo!k

574 enddo!m

575 enddo!i

576 enddo!kk

577 enddo!j

578 return

579 end!sorr

580
581 !======================================================================!

582 subroutine chauvenet(A1,length,recu,bad,avg,stddev,stddevm)

583 implicit none

584 integer*4 i,length,bad,dumi,recu

585 real*8 A1,A2,avg,stddev,stddevm,cha,flag,dum

586 dimension A1(100000),A2(100000)

587 flag = -123456789.d0

588 cha = 0.5d0

589 do i=1,length

590 A2(i)=A1(i)

591 enddo!i

592 if(recu.eq.0)then

593 goto 410

594 elseif(recu.eq.1)then

595 goto 420

596 else

597 write(*,*)’unexpected value of recu...stop’

598 stop

599 endif

600 410 bad=0

601 avg=0.d0

602 stddev=0.d0

603 do i=1,length

604 avg=avg+A2(i)

605 enddo!i

606 avg=avg/length
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607 do i=1,length

608 stddev=stddev+(A2(i)-avg)**2

609 enddo!i

610 stddev=sqrt(stddev/(length-1))

611 do i=1,length

612 if(length*erfc(abs(A2(i)-avg)/(sqrt(2.d0)*stddev)).lt.cha)then

613 A2(i)=flag

614 bad=bad+1

615 endif

616 enddo!i

617 avg=0.d0

618 stddev=0.d0

619 do i=1,length

620 if(A2(i).ne.flag)then

621 avg=avg+A2(i)

622 endif

623 enddo!i

624 avg=avg/(length-bad)

625 do i=1,length

626 if(A2(i).ne.flag)then

627 stddev=stddev+(A2(i)-avg)**2

628 endif

629 enddo!i

630 stddev=sqrt(stddev/(length-bad-1))

631 stddevm=stddev/sqrt(1.d0*(length-bad))

632 goto 430

633 420 bad=0

634 421 avg=0.d0

635 stddev=0.d0

636 do i=1,length

637 if(A2(i).ne.flag)then

638 avg=avg+A2(i)

639 endif

640 enddo!i

641 avg=avg/(length-bad)

642 do i=1,length

643 if(A2(i).ne.flag)then

644 stddev=stddev+(A2(i)-avg)**2

645 endif

646 enddo!i

647 stddev=sqrt(stddev/(length-bad-1))

648 dum=0.d0

649 do i=1,length

650 if(A2(i).ne.flag)then

651 if(abs(A2(i)-avg).gt.dum)then

652 dum=abs(A2(i)-avg)

653 dumi=i

654 endif

655 endif

656 enddo!i

657
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658 if((length-bad)*erfc(abs(A2(dumi)-avg)/(sqrt(2.d0)*stddev)).lt.

659 &cha)then

660 bad=bad+1

661 A2(dumi)=flag

662 goto 421

663 else

664 goto 422

665 endif

666 422 stddevm=stddev/sqrt(1.d0*(length-bad))

667 goto 430

668 430 return

669 end!chauvenet

670
671 !======================================================================!

672 subroutine stokes(TEMP,TEMPE,a0,b0,ki,d,ti,tie,tp1,tp1e,tp2,tp2e,

673 &tp3,tp3e)

674 implicit none

675 integer*4 i,j,k

676 real*8 TEMP,TEMPE,a0,b0,ki,d,ti,tie,tp1,tp1e,tp2,tp2e,tp3,tp3e

677 real*8 tp4,tp4e,pi,cpi,f0,f1,f2,f3,f4,f5,T,TE,TIA,TP1A,TP2A,TP3A

678 real*8 sumi,sum1,sum2,sum3

679 dimension TEMP(8),TEMPE(8),T(8),TE(8)

680 dimension TIA(8,2),TP1A(8,2),TP2A(8,2),TP3A(8,2)

681 pi = 4.d0*atan(1.d0)

682 cpi = pi/180.d0

683
684 do i=1,8

685 T(i)=TEMP(i)

686 TE(i)=TEMPE(i)

687 enddo!i

688 f0=0.d0

689 f1=0.d0

690 f2=0.d0

691 f3=0.d0

692
693 do i=1,8

694 f0=f0+T(i)

695 f1=f1+T(i)*cos(cpi*4.d0*(22.5d0*(i-1)+b0))

696 f2=f2+T(i)*sin(cpi*4.d0*(22.5d0*(i-1)+b0))

697 f3=f3+T(i)*sin(cpi*2.d0*(22.5d0*(i-1)+b0-a0))

698 enddo!i

699 f0=f0/8.d0

700 f1=f1/2.d0

701 f2=f2/2.d0

702 f3=f3/4.d0

703
704 ti=f0-0.5d0*((1.d0+cos(cpi*d))/(1.d0-cos(cpi*d)))

705 &*(f1*cos(cpi*4.d0*a0)+f2*sin(cpi*4.d0*a0))

706 tp1=(f1*cos(cpi*2.d0*a0)+f2*sin(cpi*2.d0*a0))/

707 &(ti*ki*(1.d0-cos(cpi*d)))

708 tp2=(f2*cos(cpi*2.d0*a0)-f1*sin(cpi*2.d0*a0))/
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709 &(ti*ki*(1.d0-cos(cpi*d)))

710 tp3=-f3/(ti*ki*sin(cpi*d))

711 ti=ti*(1.d0-tp1/3.d0)

712
713 !=====calculate error bars

714 do k=1,2

715 do j=1,8

716 do i=1,8

717 T(i)=TEMP(i)

718 TE(i)=TEMPE(i)

719 enddo!i

720 T(j)=T(j)+TE(j)*((-1)**(k-1))

721
722 f0=0.d0

723 f1=0.d0

724 f2=0.d0

725 f3=0.d0

726
727 do i=1,8

728 f0=f0+T(i)

729 f1=f1+T(i)*cos(cpi*4.d0*(22.5d0*(i-1)+b0))

730 f2=f2+T(i)*sin(cpi*4.d0*(22.5d0*(i-1)+b0))

731 f3=f3+T(i)*sin(cpi*2.d0*(22.5d0*(i-1)+b0-a0))

732 enddo!i

733 f0=f0/8.d0

734 f1=f1/2.d0

735 f2=f2/2.d0

736 f3=f3/4.d0

737
738 TIA(j,k)=f0-0.5d0*((1.d0+cos(cpi*d))/(1.d0-cos(cpi*d)))

739 &*(f1*cos(cpi*4.d0*a0)+f2*sin(cpi*4.d0*a0))

740 TP1A(j,k)=(f1*cos(cpi*2.d0*a0)+f2*sin(cpi*2.d0*a0))/

741 &(TIA(j,k)*ki*(1.d0-cos(cpi*d)))

742 TP2A(j,k)=(f2*cos(cpi*2.d0*a0)-f1*sin(cpi*2.d0*a0))/

743 &(TIA(j,k)*ki*(1.d0-cos(cpi*d)))

744 TP3A(j,k)=-f3/(TIA(j,k)*ki*sin(cpi*d))

745 TIA(j,k)=TIA(j,k)*(1.d0-TP1A(j,k)/3.d0)

746 enddo!j

747 enddo!k

748
749 sumi=0.d0

750 sum1=0.d0

751 sum2=0.d0

752 sum3=0.d0

753
754 do j=1,8

755 if(abs(TIA(j,1)-ti).gt.abs(TIA(j,2)-ti))then

756 sumi=sumi+(TIA(j,1)-ti)**2

757 else

758 sumi=sumi+(TIA(j,2)-ti)**2

759 endif
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760 if(abs(TP1A(j,1)-tp1).gt.abs(TP1A(j,2)-tp1))then

761 sum1=sum1+(TP1A(j,1)-tp1)**2

762 else

763 sum1=sum1+(TP1A(j,2)-tp1)**2

764 endif

765 if(abs(TP2A(j,1)-tp2).gt.abs(TP2A(j,2)-tp2))then

766 sum2=sum2+(TP2A(j,1)-tp2)**2

767 else

768 sum2=sum2+(TP2A(j,2)-tp2)**2

769 endif

770 if(abs(TP3A(j,1)-tp3).gt.abs(TP3A(j,2)-tp3))then

771 sum3=sum3+(TP3A(j,1)-tp3)**2

772 else

773 sum3=sum3+(TP3A(j,2)-tp3)**2

774 endif

775 enddo!j

776 tie=sqrt(sumi)

777 tp1e=sqrt(sum1)

778 tp2e=sqrt(sum2)

779 tp3e=sqrt(sum3)

780 return

781 end!stokes

782
783 !======================================================================!
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Appendix B. Stokes Parameters for Atoms

B.1 Polarization of atomic emission

The relation between the Stokes parameters of fluorescence and the angular momentum

of atomic states excited by spin-polarized electron impact is considered here for the spe-

cific detection geometry pertaining to this work (photons emitted perpendicular to the

electron beam and parallel to the electron spin polarization are collected and the scat-

tered electrons are not detected). The Stokes parameters can be expressed in terms of the

time-integrated state multipoles 〈T (X )†
KQ
〉 (where −K ¶Q ¶ K ) by

I =C


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


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. (B.1)

Equation (B.1) was obtained by evaluating Eq. 13 of Ref. [13] at the angles Θ= Φ= 90◦.

Here C is a constant, X and X f are replaced with the excited and final state angular

momentum (J , J f or L, L f depending on which states are resolved), and the Pe subscripts

on the 〈T (X )†
21
〉 and 〈T (X )†

11
〉 state multipoles indicate that these are dependent on the

incident electron spin polarization and thus vanish for unpolarized electron impact. The
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{} brackets represent Wigner 6- j symbols.

Formulas for the state multipoles 〈T (X )†
KQ
〉 are discussed in the following sections

as required for specific cases. Generally, they depend on perturbation coefficients that

can account for the time-averaged effect of fine- and hyperfine-structure depolarization,

as well as the product of orbital angular momentum state multipoles 〈T (L)†
KQ
〉 and spin

angular momentum state multipoles 〈T (S)†
KQ
〉 (see Sec. B.1.1).

B.1.1 Some useful statistical tensors

This section provides a convenient collection of state multipoles used for this work, as

well as a derivation of the spin tensor for quartet (S = 3
2
) states (as required for the nitro-

gen case discussed in Sec. B.4).

The state multipoles for orbital angular momentum L are given by Sec. 4.6.3 of

Ref. [18] for the situation where the scattered electrons are not detected. The 〈T (L)†
KQ
〉

state multipoles with index Q 6= 0 vanish, and

〈T (L)†
00
〉=

∑

M QMp
2L+ 1

,
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10
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s
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∑

M

�

3M 2− L(L+ 1)
�

QM , (B.2)

where QM = Q−M are the magnetic sublevel cross sections for electron orbital angular

momentum.

The general spin statistical tensor is defined by Eq. (4.3.3) of Ref. [18]with J ′ = J = S :

〈T (S)†
KQ
〉=
∑
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where the () brackets represent a Wigner 3- j symbol. The spin density matrix needed for

Eq. (B.3) is obtained using Eq. (1.1.45) of Ref. [18],

ρ=
1

2S + 1
(1+

∑

j

Pe jσ j ), (B.4)

where the normalization factor of 2S+1 has been introduced in the denominator so that

the density matrix remains normalized (tr ρ = 1) for different values of S . The identity

matrix appears as 1 in Eq. (B.4), the subscript j represents the coordinates x, y, and z , Pe j

is the electron beam spin polarization with respect to the j -axis, and σ j are the Pauli spin

matrices (of dimension 2S + 1). For this experiment, only Pe y 6= 0. For the case of S = 3
2
,

the σy Pauli matrix is

σy =
i
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. (B.5)

The density matrix is then given by

ρ= 1
4
(1+ Pe yσy). (B.6)

The spin tensors 〈T (S = 3
2
)†

KQ
〉 are obtained by inserting Eqs. (B.5) and (B.6) into (B.3),

where the basis states |SM 〉 are taken to be the normalized eigenvectors of the Sz operator,
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with Sz = S ħhσz and
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Combining these results with existing expressions for the spin tensors 〈T (S)†
KQ
〉 gives (for

the case where Pe y 6= 0 and Pe x = Pe z = 0):

〈T (S)†
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, and

〈T (S)†
2Q
〉= 0. (B.8)

The results presented in Eq. (B.8) have been compiled from Eqs. (4.3.14, 4.4.3b, and 4.4.4)

in Ref. [18], Eq. (3) in Ref. [116], and this work.

B.2 Threshold polarizations for He 588 nm

For the helium 3 3DJ →2 3PJ transition, the fine structure is unresolved and there is no

hyperfine depolarization due to the spinless nature of 4He nuclei. Stokes parameters P1,

P2, and −P3/Pe can be computed using X = L = 2, X f = L f = 1, S = 1 in Eq. (B.1) and
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the statistical tensors defined in Ref. [116], which are
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The final {} brackets in Eq. (B.11) represent a Wigner 9- j symbol. This formalism

is only a good approximation for cases where the unresolved fine-structure splitting is

much greater than the natural linewidth, which in turn must be much greater than the

hyperfine-structure splitting.

The resulting linear polarization P1 (P2 is found to be zero) is

P1 =
213(Q0+Q1− 2Q2)

671Q0+ 1271Q1+ 1058Q2

, (B.12)

where the Q|ML| values refer to the excitation cross sections for individual magnetic sub-

levels. (Equation (B.12) is identical to that obtained by Percival and Seaton [6].) At
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threshold, only ML = 0 states can be populated due to conservation of angular momen-

tum. The initial total electron orbital angular momentum of the incoming electron and

target ground state atom is zero with respect to the z -axis; thus the final angular momen-

tum must also be zero. The “outgoing” electron has vanishingly small kinetic energy at

threshold, and thus no angular momentum about the z -axis. This permits only one non-

zero magnetic sub-level excitation cross section at threshold: Q0. Setting Q1 =Q2 = 0 in

Eq. (B.12) gives the threshold value of linear polarization

P1thr =
213

671
≈ 0.317. (B.13)

The spin-normalized circular polarization can be calculated and expressed in terms of the

linear polarization P1 as

−
P3

Pe

=
11

36

�

1−
�

1981

2343

�

P1

�

≈ 0.306(1− 0.845P1). (B.14)

Inserting Eq. (B.13) into Eq. (B.14) yields the threshold circular polarization fraction

−
P3thr

Pe

=
150

671
≈ 0.224. (B.15)

The polarizations given by Eqs. (B.12) and (B.14) generally do not represent the exper-

imentally observed values due to cascade contributions from higher lying states, except

near threshold where the energy of the incoming electrons is below the excitation thresh-

olds for such higher-lying states.

B.3 Threshold polarizations for H (and D) 656 nm

For the n = 3→ 2 transitions in atomic hydrogen, the fine structure is not optically re-

solved (similar to the above case for helium). Also, light from three different multiplets
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is detected (3s–2p, 3p–2s, and 3d–2p). The situation is further complicated because of

the non-zero nuclear spin (I = 1
2

for H and I = 1 for D), which causes hyperfine depo-

larization. For the 3p state in hydrogen, the hyperfine splitting is slightly less than the

linewidth [6]. If the splitting were much smaller than the linewidth, hyperfine depolar-

ization could strictly be neglected [18]. The physical meaning of this situation is that

the precession timescale of I and J about F is much shorter than the lifetime of the state,

so the effects of hyperfine depolarization are not observed. For the actual intermediate

case in hydrogen where the hyperfine splitting and linewidth are of the same order, a

more detailed calculation is strictly required [18, 117]. However, as pointed out by Mc-

Conkey [118], the relative error of the linear polarization due to this neglecting of the

hyperfine depolarization is small for the 3p–2s multiplet (1.8% as given by Percival and

Seaton [6]). For this reason, McConkey neglected the hyperfine structure for all multi-

plets when considering the linear polarizaiton of Balmer-α fluorescence. For simplicity,

hyperfine depolarization is also neglected here, but it should be remembered that some

small error will be incurred by doing so. Since these calculations are only being used in a

qualitative manner, this approximation seems acceptable. Due to this simplification, the

formalism in Sec. B.2 can be applied here separately for each multiplet (L=0,1,2). The

resulting polarizations for the 3s–2p multiplet are all zero, and P2 is found to be zero for

the 3p–2s and 3d–2p multiplets as well. For the 3p–2s multiplet, the linear polarization

P1 is

P1 =
3(Q0−Q1)

7Q0+ 11Q1

, and P1thr =
3

7
≈ 0.429. (B.16)

For the circular polarization,

−
P3

Pe

=
4

9

�

1−
�

5

6

�

P1

�

≈ 0.444(1− 0.833P1), and −
P3thr

Pe

=
2

7
≈ 0.286. (B.17)
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Consideration of the 3d–2p multiplet gives the linear polarization

P1 =
57
p

2(Q0+Q1− 2Q2)

238Q0+ 438Q1+ 324Q2

, and P1thr =
57
p

2

238
≈ 0.339, (B.18)

and the circular polarization is

−
P3

Pe

=
6

25

�

1−
�

2
p

2(47− 25
p

3)

57

�

P1

�

≈ 0.240(1− 0.184P1), and

−
P3thr

Pe

=
6(2
p

3+ 1)

119
≈ 0.225. (B.19)

In order to obtain the observed polarizations, the polarizations for the individual

multiplets must be combined. Adding Stokes vectors gives the relation

Pi =
I(3p−2s )Pi (3p−2s )+ I(3d−2p)Pi (3d−2p)

I(3s−3p)+ I(3p−2s )+ I(3d−2p)

. (B.20)

Using the intensities (obtained from Fig. 5 of Ref. [69]) I(3s−2p) ≈ 28.9, I(3p−2s ) ≈ 4.91,

and I(3d−2p) ≈ 24.0, the polarizations for Hα radiation at threshold may be expected to be

P1thr ≈ 0.177, (B.21)

and

−
P3thr

Pe

≈ 0.118. (B.22)

B.4 Threshold polarizations for N 824 nm

For the 4P3/2 → 4P5/2 transition in atomic N, expressions for P1, P2, and −P3/Pe can

be obtained using the formalism described in Refs. [15, 27]. For this transition, the
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fine structure is resolved but there is depolarization due to the hyperfine interaction (the

nuclear spin of 14N is I = 1). The relevant statistical tensors for this case are (X = J = 3
2
,

X f = J f =
5
2
, L= 1, S = 3

2
)

〈T (X )†
KQ
〉= 〈T (J )†

KQ
〉

=G I
K
(J )
∑

K ′=0,2

Æ

(2K ′+ 1)(2Q + 1)(2J + 1)
�

K ′0QQ|KQ
�

×



















K ′ Q K

L S J

L S J



















〈T (L)†
K ′0
〉〈T (S)†

QQ
〉, (B.23)

where

G I
K
(J ) =

1

γ

1

2I + 1

∑

F

(2F + 1)2







J F I

F J K







2

, (B.24)

and the (K ′0QQ|KQ) Clebsch-Gordon coefficient is related to the 3- j symbol by

�

K ′0QQ|KQ
�

=
p

2K + 1









K ′ Q K

0 Q −Q









. (B.25)

The resulting linear polarization P1 (P2 is found to be zero) is

P1 =−
66
p

3(Q0−Q1)

1853Q0+ 3772Q1

, and P1thr =−
66
p

3

1853
≈−0.0617. (B.26)

The spin-normalized circular polarization expressed in terms of the linear polarization
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P1 is then given by

−
P3

Pe

=−
5137

20250

�

1−
�

6254
p

3

1089

�

P1

�

≈−0.254(1+ 9.95P1), and

−
P3thr

Pe

=−
3269

33354
≈−0.0980. (B.27)

B.5 Threshold polarizations for N+
2

R(0) and P (2) lines

The expressions for atomic polarizations are not generally applicable to molecular tar-

gets. However, there do appear to be special cases for which polarizations can be com-

puted for molecular transitions using Eq. (B.1). Due to the similarity between the an-

gular momentum coupling in atoms with that of molecular Σ states (compare Fig. 1.1a

with Fig. 1.1b), it appears that the substitution N → L can be made. The conservation

of orbital (or, in this case, rotational) angular momentum in initial and excited states at

threshold must still be satisfied. In order to ensure that the sublevel cross section Q0 is the

only non-zero contributor at threshold, the application of the atomic equations is limited

to the case where the ground molecular state has J =N = 0 (this restriction then guaran-

tees that MN = 0 in the excited state). Thus, the excitation process N+
2

X 1Σ+
g
(N = 0)→

B 2Σ+
u
(N = 1) is considered. Upon subsequent fluorescence, the excited state can either

decay to the X 2Σ+
g
(N = 0) state via an R(0) transition, or to the X 2Σ+

g
(N = 2) state via

a P (2) transition. These two cases can be treated using the formalism for unresolved fine-

structure detailed in Sec. B.2 (in the excited state, J = 1
2
, 3

2
). Hyperfine depolarization will

be ignored here for simplicity (the total combined nuclear spin T for the case of ortho

N2 is either 0 or 2). The R(0) polarizations are then identical to the 3p–2s treatment of

atomic hydrogen (see Sec. B.3), so Eqs. (B.16) and (B.17) are reproduced here. For the
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linear polarization P1 (P2 = 0),

P1 =
3(Q0−Q1)

7Q0+ 11Q1

, and P1thr =
3

7
≈ 0.429. (B.28)

For the circular polarization,

−
P3

Pe

=
4

9

�

1−
�

5

6

�

P1

�

≈ 0.444(1− 0.833P1), and −
P3thr

Pe

=
2

7
≈ 0.286. (B.29)

Additional calculation for the P (2) transition (with the substitution N → L) then yields

P1 =
3(Q0−Q1)

61Q0+ 119Q1

, and P1thr =
3

61
≈ 0.0492. (B.30)

The linear polarization P2 is zero as usual and the circular polarization is found to be

−
P3

Pe

=−
2

9

�

1−
�

16

3

�

P1

�

≈−0.222(1− 5.33P1), and −
P3thr

Pe

=−
10

61
≈−0.164.

(B.31)

Comparison of Eqs. (B.29) and (B.31) shows that the threshold circular polarizations for

the R and P branches are of opposite sign.
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