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Abstract

Localization Techniques, Yang-Mills Theory and
Strings

Linnea Svensk

Equivariant localization techniques exploit symmetries 
of systems, represented by group actions on manifolds, 
and use them to evaluate certain partition functions 
exactly. In this master thesis we begin with the study of 
localization in finite dimensions. We then generalize 
this concept to infinite dimensions and study the 
partition function of two dimensional quantum Yang-
Mills theory and its relation to string theory. The 
partition function can be written as a sum over the 
critical point set and be related to the topology of the 
moduli space of flat connections. Furthermore, for 
large N the partition function of the gauge groups 
SU(N) and U(N) can be interpreted as a string 
perturbation series. The coefficients of the expansion 
are given by a sum over maps from a two dimensional 
surface onto the two dimensional target space and 
thus the partition function is interpreted as a closed 
string theory. Also, a string theory action is discussed 
using topological field theory tools and localization 
techniques. 
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POPULÄRVETENSKAPL IG SAMMANFATTNING

Lokaliseringstekniker använder symmetrier, som beskrivs som en
gruppverkan på en mångfald, hos system för att beräkna vissa inte-
graler exakt. Lokalisering betyder att integralen kan skrivas som en
summa över en diskret mängd element. Eftersom dessa integraler,
t.ex. vägintegraler för fysikaliska system, kan lösas exakt ger de en
fullständig förståelse för fysiken/matematiken där. Vägintegraler
är integraler som används i kvantfysiken och ersätter vägen som
en partikel tar i den klassiska fysiken (en bana som minimerar en-
ergin) med att summera över alla möjliga vägar. Denna summa
ger istället en sannolikhetesamplitud och beskriver hur ett system
beter sig. Vägintegraler är oändligdimensionella men via lokalis-
ering kan vissa av dessa vägintegraler reduceras till ändligdimen-
sionella integraler, vilka är väldefinerade. Det är symmetrierna i
den underliggande dynamiska teorin som säger om vägintegralerna
kan reduceras till ändligdimensionella integral.

Det matematiska ramverket för att beskriva dessa symmetrier kallas
ekvivariant kohomologi, vilket inkluderar gruppverkan i kohomologi
beskrivningen. Kohomolgi är ett matematiskt verktyg för att stud-
era topologin hos en mångfald. Det var på 1980-talet som det
insågs att vissa integraler kunde skrivas exakt om det fanns vissa
typer av symmetrier - det fundamentala lokaliseringsteoremet var
fött.
I fysiken har symmetrier länge använts för att förenkla, beskriva

och förstå olika fenomen i naturen. Till exempel bygger Standard
Modellen, som beskriver elementarpartiklarna och deras interak-
tioner genom elektromagnetisk, stark och svag växelverkan, på
symmetrier hos naturen. Standard Modellen bygger på en teori
som heter Yang-Mills teori. Detta är en gauge teori. Dessa bygger
på lokala symmetrier som i sin tur ger upphov till interaktionerna
i teorin.

I denna uppsats kommer vi diskutera lokalisering för både ändlig-
dimensionella integraler och oändligdimensionella integraler. Vi in-
för Cartans modell för ekvivariant kohomologi som liknar de Rham
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kohomologi med skillnaden att gruppverkan är inkluderad. Vi gör
sedan beräkningar på supermångfalder genom att införa anti- kom-
mutativa variabler. I det oändligdimensionella fallet kommer vi att
studera tvådimensionell Yang-Mills teori med hjälp av lokaliser-
ingsprincipen och även dess underliggande strängteori.
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1
INTRODUCTION

Localization techniques make use of symmetries, represented by
group actions on a manifold, of systems and use these in evaluating
certain integrals exactly. Specifically, localization means that the
integral can be written as a sum over a discrete set of points.
As these integrals, for example path integrals of physical systems,
can be solved exactly they give a complete understanding of the
physics/mathematics there.
There is a mathematical framework to describe these symme-

tries called equivariant cohomology (one includes the group action
in the description of cohomology, the study of manifold topology).
This gives us a general framework; the equivariant cohomological
framework, which is a tool to develop geometric techniques for
manipulating integrals and investigate the localization properties
they possess.
This tool can be used to study Feynman path integrals, which

was introduced in the 1940’s as a new and original approach to
quantum theory [1]. The path integral is understood as an inte-
gral over infinite dimensional functional space but without rigorous
definition. It replaces the single trajectory of classical physics by
integrating over all possible trajectories to calculate the quantum
probability amplitude describing the behavior of the system. To
calculate it one imitates how the evaluation is done in the finite di-
mensional case. The path integrals that can be solved exactly have
some features in common. There is numerous (super-)symmetries
in the underlying dynamical theory. This makes the integrals re-
duce (localize) to Gaussian finite-dimensional integrals where one
can extract the physical/mathematical information (compare the
Schrödinger equation; the O(4)-symmetry of the Coulomb problem
in three dimensions makes the hydrogen atom exactly solvable [2]).
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1 introduction 2

In the 1940’s, there was only two examples that could be solved
exactly; the harmonic oscillator and the free particle. The path
integrals can then be calculated using

∫ ∞

−∞

n

∏
k=1

dxke
i
2 ∑ij xi Mijxj+i ∑i λixi

=
(2πeiπ/2)

n
2 e

i
2 ∑ij λi(M−1)ijλj

√
detM

(1.1)

which is the functional analog of the Gaussian integration formula
and M is a n× n non-singular symmetric matrix [3]. Using (1.1),
the path integral can formally be evaluated for a field theory that
is at most quadratic in the fields. If not, the arguments of the
integrand can be expanded and the path integral can be approx-
imated by (1.1). For a finite-dimensional integral this approxima-
tion is called the stationary phase approximation (or saddle-point
or steepest-descent approximation) [4]. For path integrals, it is
often denoted Wentzel-Kramers-Brillouin (WKB) approximation
[2, 5]. As the solution of (1.1) is given by putting the global min-
imum of the quadratic form (the classical value) in the exponent
and multiplying it by the second variation of the form (the fluctu-
ation determinant) it is also denoted the semi-classical approxima-
tion (this is what gives the interpretation of quantum mechanics
to be a sum over paths fluctuating about the classical trajectories).
If the semi-classical approximation is exact, (1.1) can be seen as a
localization of the complicated path integral onto the global mini-
mum of the quadratic form.
A class of field theories that has path integrals that can be solved

exactly in most cases is topological quantum field theories (have
observables that are independent of the metric) and supersymmet-
ric (spacetime symmetry that relates fermions to bosons) theories.
Topological quantum field theories have some likeness to many in-
teresting physical systems and physicists can use them for some
insight to the structure of more complicated physical systems. In
chapter 6 we will see that two dimensional quantum Yang-Mills
theory can be studied from localization using a topological quan-
tum field theory and we have supersymmetry such that the path
integral can be evaluated exactly.

The application of localization techniques started in the begin-
ning of the 1980s when Duistermaat and Heckman were studying
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symplectic geometry and understood that integrals of certain sym-
metry could be simplified to easier operations. In their paper [6],
published in 1982, they showed the Duistermaat-Heckman theo-
rem which states that the the semi-classical approximation for
oscillatory integrals of finite dimension over compact manifolds is
exact. This is the fundamental theorem of localization. The simpli-
fication was understood by Atiyah and Bott [7] to be a special case
of a more general localization principle of equivariant cohomology.
Thereafter, Berline and Vergne used this to prove the first general
localization formula for Killing vector fields on compact Rieman-
nian manifolds [8, 9]. We will prove this theorem in chapter 4.
In 1985 the Duistermaat-Heckman theorem was generalized to

an infinite dimensional case by Atiyah and Witten [10]. In this
work they studied the supersymmetric path integral for the Dirac
operator index. They showed that the Duistermaat-Heckman the-
orem could be applied to the partition function of N = 1/2 su-
persymmetric quantum mechanics on the loop space of a manifold
(which in other words is the description of a supersymmetric spin-
ning particle in a gravitational background [24]) and that it gave
the Atiyah-Singer index theorem (which states that the analytical
and topological index of the Dirac operator is the same. The topo-
logical index is given by an integral over characteristic classes and
gives a measure of the curvature of a manifold).
In [11] Blau related supersymmetry and equivariant cohomology

in the quantum mechanics of spin. From this work Blau, Keski-
Vakkuri and Niemi [12] worked out a general supersymmetric,
or equivariant cohomological, framework to study Duistermaat-
Heckman localization formulas for path integrals of non-supersymmetric
phase space and it is the foundation of equivariant localization the-
ory. They showed that the partition function of quantum mechan-
ics with circle actions on symplectic manifolds localizes and their
work led to a lot of activity in this field. The proof uses Becchi-
Rouet-Stora-Tyupin (BRST) quantization (see chapter 5). BRST
cohomology is the fundamental structure in topological field theo-
ries and these BRST supersymmetries are the ones responsible for
the localization.
The Duistermaat-Heckman theorem was first generalized to non-

abelian group actions by Guilleman and Prato [13]. In 1992 Witten
showed [14] that a more general non-abelian localization formula
can be used to study the path integral of two dimensional quan-
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tum Yang-Mills theory. In that paper Witten showed that the path
integral can be related to the topology of the moduli space of flat
connections. This was of great importance and received a lot of
interest as it showed that one can reduce the path integral (which
is a very complicated integral over infinite dimensional functional
space that one doesn’t even know how to define properly) to in-
tersection numbers, topological invariants, using the localization
principle. In chapter 6 we will study the non-abelian localization
formula and two dimensional quantum Yang-Mills theory.

Yang-Mills theory is a gauge theory (gauge means standard of cal-
ibration) that has been successfully used to explain the dynamics
of the known elementary particles. The theory of elementary par-
ticle physics is put together in the Standard Model (however not a
final theory of elementary particles). This is a non-abelian gauge
theory, with symmetry group U(1)× SU(2)× SU(3), which de-
scribes the elementary particles and the electro-weak and strong
interactions. Gauge theories can be constructed from the follow-
ing recipe. First one looks for a global symmetry of the physical
system. Secondly one changes this symmetry to a local symmetry
which destroys the invariance. To restore the invariance one has
to add new fields. These fields gives the interactions of the theory.
Finally it leaves us with a Lagrangian with local gauge invariance
and interactions.
Gauge theories can be viewed more geometrically by the concept

of fiber bundles. A fiber bundle is a manifold which locally is a
direct product of two topological spaces (see figure 3.1 in chapter
3). This is the resulting structure constructed by attaching fibers
to every point of the manifold. A fiber bundle can be written
schematically as

E← G
↓

B
(1.2)

where E is the total space, B the base space and G is the fiber
given by the symmetry group (can also be a vector field). For
example, electrodynamics is described by a U(1) fibre bundle over
the spacetime. The gauge field, which gives the photon field, is a
connection on the bundle and the electromagnetic field strength is
the curvature.
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Yang-Mils theory has another expected interpretation in terms
of string theory. The are many reasons for this. For example, one
has seen that the strong interaction resembles strings. In the late
1960s string theory was actually found when people tried to guess
a mathematical formula for the strong interaction scattering ampli-
tudes that would agree with current experiments. However, view-
ing the strong interaction as a one dimensional string made a lot
of contradictions with experimental results and in the middle of
the 1970s this theory was abandoned for quantum electrodynamics
(QCD). Later string theory has been used as a theory for trying
to describe all the forces (including gravity) and matter in nature.
In modern theoretical physics fundamental theories of nature are
described by both geometry and symmetry; general relativity and
gauge theory. It is believed that string theory can generalize gen-
eral relativity and gauge theory to one final theory. And the hope
of writing Yang-Mills theory as a string theory is still alive. How-
ever there are no experimental proofs for string theory.

1.1 aim and structure of thesis

The aim of this master thesis is to study finite dimensional local-
ization, two dimensional quantum Yang-Mills theory (using the
concept of localization) and its relation to string theory using the
localization principle. Two dimensional quantum Yang-Mills the-
ory without matter is a gauge theory that has been studied a lot
over the years and can be solved easily. Here we will re-examine it
using a non-abelian localization formula to explain properties that
can not be explained using standard methods. It is an interesting
object of study as four dimensional quantum Yang-Mills theory
is the basis of the Standard Model. We will use the localization
principle to show that the partition function of two dimensional
quantum Yang-Mills theory can be written as a sum over the crit-
ical point set of the action and that one can relate the partition
function to the topology of the moduli space of flat connections.
We will also write down general formulas for intersection pairings
on moduli spaces of flat connections. To achieve this goal we will
begin by proving localization formulas in a finite dimensional set-
ting. This will be shown using supergeometry. We will then go on
to study the infinite dimensional case of two dimensional quantum
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Yang-Mills theory using a further generalization of the localization
formula following [14]. Thereafter we will interpret the two dimen-
sional Yang-Mills theory in terms of an equivalent string theory
and write down a string action using topological field theory tools
and localization techniques [15, 16, 17, 18].
The structure of the thesis is as follows. The thesis is divided

into three blocks. The first block contains chapters 2 to 4, which
discusses finite dimensional localization. The second block consists
of chapter 5 and 6, were we study infinite dimensional localization
for the case of two dimensional Yang-Mills theory. The third block
contains chapter 7 and reviews the underlying string theory of
the two dimensional quantum Yang-Mills theory. A short intro-
duction/summary of each chapter can be found in the beginning
of the chapters. To easily find references they are included there
as well.
The chapters contain the following. In chapter 2 we will intro-

duce basic notions of supergeometry. In particular we will look at
Berezin integration, superalgebra and supermanifolds. In chapter
3 we will study manifolds acted on by a group. We will generalize
concepts as cohomology and vector bundles to this case. This will
be used in chapter 4 where we prove localization formulas in finite
dimension. In particular we will prove the Berline-Vergne formula,
the Duistermaat-Heckman formula and the localization formula of
the degenerate case. Chapter 2 and 3 are reviews of necessary the-
ory for doing the calculations in chapter 4, that may be skipped if
familiar with the concepts. In chapter 5 we will discuss topological
quantum field theory and gauge theory (Yang-Mills theory). We
will look at Yang-Mills theory and compute its partition function
in two dimensions. Chapter 5 contains the theory for understand-
ing the calculations of chapter 6. In chapter 6 we study the local-
ization of two dimensional quantum Yang-Mills theory. In chapter
7 we give an introduction to string theory, the symmetric group,
Young tableaux and Riemann surfaces and use these concepts in
interpreting the two dimensional Yang-Mills theory in terms of a
string theory. Chapter 8 is devoted to the conclusions.



2
SUPERGEOMETRY

We will begin this master thesis by considering some basic con-
cepts of supergeometry. Supergeometry extends classical geome-
try (commuting coordinates) by permitting odd coordinates which
anticommute. These coordinates are realized through Grassmann
variables. When gluing these new coordinate systems one gets su-
permanifolds. The notions of supermanifolds and integration over
odd coordinates will be of importance in the work of the next
chapters. To understand these we need to introduce Grassmann
variables, Berezin integration and Z2-graded algebra (also called
superalgebra). We will not discuss the sheaf and categorical no-
tions of supergeometry, as this will not simplify the understanding
of this work. Nevertheless it is important for the proper treatment
of the subject (see [20, 21]). At the end of this chapter we will also
introduce graded geometry, which is the generalization of superge-
ometry.

2.1 grassmann variables

Grassmann variables (also called odd variables) are anticommuting
variables satisfying

θiθj = −θjθi, (θi)
2 = 0. (2.1)

These variables commute with ordinary numbers and allows for fer-
monic fields to have a path integral representation through Berezin
integration (see below).
A general function of even variables xj (j = 1, . . . , m) and odd

variables θi (i = 1, . . . , n) can be written as

f = f0(x̄) +
n

∑
k=1

1
k!

fi1...ik(x̄)θi1 · · · θik . (2.2)

7



2.1 Grassmann Variables 8

Two homogeneous functions f and g with degree | f |, |g| (for exam-
ple f (x)θ is homogeneous, it only consist of a determined power
of odd variables, of degree one) respectively satisfies

f g = (−1)| f ||g|g f . (2.3)

This is known as the sign rule, which says that if two odd terms
are interchanged a minus sign will appear.
Let us now introduce derivation of odd variables. The derivation

is defined through {
∂

∂θi , θ j
}

= δ
j
i . (2.4)

Let f and g be homogeneous functions consisting of a specific
number of odd variables. The generalized Leibniz rule is given by

∂

∂θβ
f g =

∂

∂θβ
∑
k

1
k!

fi1...ik(x̄)θi1 · · · θik ∑
l

1
l!

gj1...jl(x̄)θ j1 · · · θ jl

=
∂

∂θβ
∑
k

∑
l

1
k!

1
l!

fi1...ik(x̄)gj1...jl(x̄) θi1 · · · θik︸ ︷︷ ︸
θβ in here

θ j1 · · · θ jl

+
∂

∂θβ
∑
k

∑
l

1
k!

1
l!

fi1...ik(x̄)gj1...jl(x̄)θi1 · · · θik θ j1 · · · θ jl︸ ︷︷ ︸
θβ in here

=
∂

∂θβ
∑
k

∑
l

1
k!

1
l!

fi1...ik(x̄)gj1...jl(x̄)θi1 · · · θikθ j1 · · · θ jl

+
∂

∂θβ
∑
k

∑
l

1
k!

1
l!
(−1)kl fi1...ik(x̄)gj1...jl(x̄)θ j1 · · · θ jl θi1 · · · θik ,

(2.5)

which for two homogenous functions f , g can be written as

∂

∂θβ
f g =

(
∂

∂θβ
f

)
g + (−1)|k||l|

(
∂

∂θβ
g

)
f . (2.6)

Example 2.1. Let us take the two functions f1(θ1, θ2) = θ1θ2
and f2(θ1, θ2) = θ2θ1. The derivative of f1 and f2 is d

θ1
θ1θ2 = θ2

and d
θ1

θ2θ1 = −θ2 respectively. This shows that one must look
carefully at the order of the θ’s when dealing with odd variables.
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2.2 berezin integration

We will now turn our attention to the integration of odd variables,
denoted Berezin integration. The basic Berezin integration rules
are ∫

dθ = 0,
∫

dθθ = 1. (2.7)

These rules are constructed in this way in order to satisfy the
linearity condition and the partial integration formula:∫

[a f (θ) + bg(θ)]dθ = a
∫

f (θ)dθ + b
∫

g(θ)dθ, (2.8)∫ [
∂

∂θ
f (θ)

]
dθ = 0 (2.9)

so that one can reproduce the path integral for a fermion field.
When integrating an even function f (x) in one variable one can

make a coordinate change by x = cy and the measure is changed
as

dx = cdy. (2.10)

However, integrating a function f = f0 + f1θ (with one odd
coordinate θ) using Berezin integration we get a different mea-
sure when changing coordinates. We like to change coordinates as
θ = cθ̃. Looking back at (2.7) we have

∫
dθθ = 1 and

∫
dθ̃θ̃ = 1.

Changing coordinates gives
∫

dθcθ̃ with the measure

dθ =
1
c

dθ̃. (2.11)

As a result we see that the odd measure transforms in the opposite
way as for the even measure.

Next, we define the convention used in this work for integration
over many θ’s by ∫

dθn · · · dθ1θ1 · · · θn = 1. (2.12)

This says that the θ’s must be put in this particular order to
integrate out to one. Next we like to do the coordinate change

θi =
m

∑
j=1

Aijθ̃
j (2.13)
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This gives∫
dθn · · · dθ1θ1 · · · θn =

∫
dnθ

n

∑
j=1

A1jθ̃
j · · ·

n

∑
l=1

Anl θ̃
l

= det(A)
∫

dnθθ̃1 · · · θ̃n

=
∫

dθ̃n · · · dθ̃1θ̃1 · · · θ̃n.

(2.14)

This implies that the measure is changed as

dnθ =
1

det(A)
dnθ̃. (2.15)

One can also define an exponential function of θ’s which will
terminate after finitely many terms. An example, in two odd vari-
ables, is

eθ1θ2 = 1 + θ1θ2. (2.16)

We will now discuss how to perform Gaussian integration with
odd coordinates. First we recall how its done using even coordi-
nates. Let A be a n× n symmetric, real matrix. A can be diagonal-
ized by a matrix B ∈ SO(n) and D = BT AB = diag(λ1 . . . λn),
where λi are the eigenvalues of A. We get∫

dnxe−xT Ax =
∫

dnye−yT BT ABy

=
∫

dnye−yT Dy

=
n

∏
i1

∫
dnyie−λiy2

i

=
πn/2√
det(A)

.

(2.17)

Now we turn to the case of odd variables. Let B be a 2n× 2n
skew-symmetric matrix. We have∫

dθ2m · · · dθ1e−∑2m
i,j=1 θiBijθ

j
=
∫

dθ2m · · · dθ1
(−∑2m

i,j=1 θiBijθ
j)n

n!

=
1
n!

εi1 . . . εi2n Bi1i2 · · · Bi2n−1i2n

= (−2)mP f (B),
(2.18)
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where P f is short for the pfaffian of B. The pfaffian of B is defined
as

P f (B) = εi1...i2n Bi1i2 . . . Bi2n−1i2n =
1

2nn! ∑σ∈S2n
sgn(σ)

n

∏
1=1

bσ(2i−1),σ(2i)

(2.19)

and is zero for 2n odd. The pfaffian is related to the determinant
as (P f (B))2 = det(B).

2.3 superalgebra

Now we will consider vector spaces constructed out of both even
(ordinary) and odd (Grassman) variables [19]. These type of vector
spaces are called super vector spaces or Z2-graded vector spaces.
A super vector space V over a field K (usually R or C) with
Z2-grading is a vector space decomposed as

V = V1
⊕

V2, (2.20)

where V1 is called even and V2 is called odd. If dimV1 = m
and dimV2 = n then we write Vm|n (compare Rn), where the
combination (m, n) is called the superdimension of V. The notions
of Z2-grading can be generalized to any grading discussed at the
end of this chapter.
An algebra is a vector space with bilinear multiplication. A

superalgebra V is a Z2-graded vector space V with a product:
V ⊗V → V that respects the grading.
A superspace with the Lie bracket [a, b] that satisfies

[a, b] = −(−1)|a||b|[b, a],

[a, [b, c]] = [[a, b], c] + (−1)|a||b|[b, [a, c]],
(2.21)

for a, b ∈ V and |a| the degree of a is called a Lie superalgebra.
Note that if [a, b] = ab− (−1)|a||b|ba = 0, i.e.

ab = (−1)|a||b|ba, (2.22)

the superalgebra is said to supercommutative. The exterior algebra
(the algebra of differential forms with multiplication defined by the
wedge product) is an important example of the supercommutative
algebra.
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Let’s also introduce the parity reversion functor Π by (ΠV)1 =
V2 and (ΠV)2 = V1 that changes the parity of the components
of a superspace.

Example 2.2. Take real vector space Rn and reverse the parity
by ΠRn. This gives the odd vector space R0|n. Now, pick a basis
θi (i = 1, · · · , n) and define the multiplication as θiθj = −θjθi.
The functions on C∞(R)0|n on R0|n are

f (θ1, . . . , θm) =
n

∑
k=1

1
k!

θi1 · · · θik , (2.23)

which corresponds to elements of the exterior algebra Λ•(Rn). The
exterior algebra is a supervector space with the wedge product as
the supercommutative multiplication. The multiplication of func-
tions in C∞(R)0|n corresponds to the wedge product of the exterior
algebra.

2.4 supermanifolds

We will now look at how to construct supermanifolds. This is done
in a way analogously to the definition of ordinary manifolds (the re-
sulting object when gluing together open subsets of Rn by smooth
transformations) but using vector superspaces. A supermanifold
M of dimension (n, m) has a local description of n even coordi-
nates xi (i = 1, ..., n) and m odd coordinates θ j (j = 1, ..., m).
We cover the supermanifold M by open sets Uα having coordi-
nates (xα, θα). At the intersection Uα ∩Uβ we have the gluing
rule

xi
α = xi

αβ(xβ, θβ),

θ
j
α = θ

j
αβ(xβ, θβ).

(2.24)

The gluing map must have an inverse, be compatible with the
gluing maps on triple intersections and preserve parity (the parity
of the variables is 0 for even and 1 odd variables).
We will now turn to some examples of supermanifolds.

Example 2.3 (The odd tangent bundle). Let M be a smooth man-
ifold. Then we can define a supermanifold called the odd tangent
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bundle ΠTM (or T[1]M) with coordinates xi and θi by the rules
of transformation x̃i = x̃i(x),

θ̃i = ∂x̃i

∂xj θ
j,

(2.25)

with x being local coordinates on M and the θ’s transforming as
dxi. Thus we have an identification θi ∼ dxi.
The functions on ΠTM are given by

f (x, θ) =
n

∑
k=1

1
k!

fi1...ik(x)θi1 · · · θik . (2.26)

We can see that the functions on ΠTM are identified naturally
with differential forms on M, i.e. C∞(T[1]M) = Λ•(M).

Moreover, on ΠTM we have a canonical way of defining integra-
tion. As we saw in section 2.2 the even and odd measure transform
opposite canceling each other, i.e. the even part transforms as

dn x̃ = det
(

∂x̃
∂x

)
dnx (2.27)

and the odd part as

dnθ̃ =
1

det( ∂x̃
∂x )

dnθ. (2.28)

Thus we have ∫
dn x̃dnθ̃ =

∫
dnxdnθ. (2.29)

This result says that any top degree function can be integrated
canonically.

Example 2.4 (The odd cotangent bundle). We can also define a
supermanifold called the odd cotangent bundle ΠT∗M (or T∗[1]M)
by the rules of transformationx̃i = x̃i(x),

θ̃i =
∂xj

∂x̃i θj,
(2.30)
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with x being local coordinates on M and the θ’s transforming as
∂i. The functions on ΠTM are given by

f (x, θ) =
n

∑
k=1

1
k!

f i1...ik(x)θi1 · · · θik . (2.31)

We can see that the functions on ΠT∗M are identified with multi-
vector fields, i.e. C∞(ΠT∗M) = Γ(∧•(TM)).

On ΠT∗M there is no way of canonically defining integration.
In this case the even and odd measure transform in the same way,
i.e. the even part transforms as

dn x̃ = det
(

∂x̃
∂x

)
dnx (2.32)

and the odd part as

dnθ̃ = det
(

∂x̃
∂x

)
dnθ. (2.33)

To define integration we need a term transforming in the opposite
way. If M is orientable we can pick a volume form ρ(x)dx1 ∧
· · · ∧ dxn, where ρ transforms as

ρ̃ =
1

det( ∂x̃
∂x )

ρ. (2.34)

Using ρ we can define an invariant measure as follows∫
dn x̃dnθ̃ρ̃2 =

∫
dnxdθρ2. (2.35)

Example 2.5. If we again look at the odd tangent bundle ΠTM
we can write the de Rham operator d, the interior product iV (the
contraction of a differential form with a vector field) and the Lie
derivative LV as functions of x’s and θ’s. Let the vector field be
V = Vµ ∂

∂xµ then

d = θµ ∂

∂xµ ,

iV = Vµ ∂

∂θµ ,

LV = diV + iVd = (θµ ∂

∂xµ )(V
µ ∂

∂θµ ) + (Vµ ∂

∂θµ )(θ
µ ∂

∂xµ )

= θµ ∂

∂xµ Vν ∂

∂θν
+ Vµ ∂

∂xµ .

(2.36)
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2.5 graded geometry - generalizing supergeom-
etry

We will end this chapter by a very brief review of the generalization
of supergeometry (see [19] or [22, 23] for more details). Supergeom-
etry (with Z2-grading) can be generalized to an Z-grading called
graded geometry. We will explain this concept in the following.
A vector space V with a Z-grading is a vector space decomposed

as

V =
⊕
i∈Z

Vi, (2.37)

where v is a homogeneous element of V with degree |v| = i if
v ∈ Vi. The elements of V can be decomposed as homogeneous
elements of a certain degree. The morphism between these graded
vector spaces is defined as a grading preserving linear map. This
is just a bookkeeping device to keep track of elements of certain
degree.

V is a graded algebra if the graded vector space V has an asso-
ciative product that respects the grading. The endomorphism of
V is then a derivation D of degree |D| satisfying (for Z2-grading)

D(ab) = (Da)b + (−1)|D||a|a(Db). (2.38)

The graded algebra V is called a graded commutative algebra if

vv′ = (−1)|v||v
′|v′v, (2.39)

for homogenous elements v and v′. We shall end by giving one
important example of graded commutative algebra.

Example 2.6 (Graded symmetric space S(V)). We will now look
at the graded symmetric algebra S(V), which is a graded vector
space V over R or C spanned by polynomial functions on V

∑
l

fa1...al v
a1 . . . val (2.40)

with

vavb = (−1)|v
a||vb|vbva. (2.41)

va and vb are homogeneous elements of degree |va| and |vb|. S(V)
is a graded commutative algebra as the functions on V are graded
and the multiplication is graded commutative.



3
THE EQUIVARIANT GROUP ACTION ON
MANIFOLDS

In this chapter we will introduce Cartan’s model of equivariant
cohomology and the equivariant Euler class, which we will use in
chapter 4 when we prove the localization formulas in finite dimen-
sion.
Let us start by a short reminder of the notions of ordinary vector

bundles, de Rham cohomology and characteristic classes.
On a manifold we can introduce differential forms and define

the de Rham cohomology as closed differential forms modulo exact
forms. The failure of closed forms to be exact tell us something
about the sort of topology ("holes") we have on the manifold. As
an example, on the plane all closed forms are exact if there are no
holes present and the de Rham cohomology gives a tool to measure
this.
A manifold which locally is a direct product of two topological

spaces is called a fiber bundle (see figure 3.1). This is the resulting
structure constructed by attaching fibers to every point of the
manifold. If the fiber is a vector space then the fiber bundle is
called a vector bundle and if the fiber is a group then it is called
a principle bundle.
To measure the twisting, or non-triviality, of a fiber bundle one

introduces characteristic classes. This is a way to assign a global
invariant (a cohomology class of the manifold) to the principle
bundle, written as an integral using the fiber bundle curvature.
This said, we will now discuss the scenario when there is a group

acting on the manifold, and in particular how this changes nota-
tions, following [24].

3.1 cartan’s model of equivariant cohomology

There are many problems in theoretical physics where one not
only has a manifold but an action of a Lie group (a symmetry)
on this manifold. In these cases we can introduce equivariant co-
homology (the generalization of cohomology including the group

16
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Figure 3.1: A fiber bundle p : E → B with base space B and
total space E, that locally is a direct product of B and
another topological spaces. A section s is a map from
base space B to s(B) of E.

action), which we will explain in what follows. There are different
ways used to define equivariant cohomology but here we will use
the Cartan model. The equivariant cohomology of M is then given
by

H∗G(X) = kerD|Λk
G M/imD|Λk−1

G M , (3.1)

which is the space of equivariantly closed forms (Dα = 0) modulo
the space of equivariantly exact forms (α = Dβ). We will explain
this in the following.
When a differentiable manifold M is acted on by a group G it

is denoted by

G×M→ M
(g, x) 7→ g · x,

(3.2)

with e · x = x ∀x ∈ M and g1 · (g2 · x) = (g1 · g2) · x ∀g1, g2 ∈
G. Often G is picked as the symmetry group of the physical prob-
lem. For example, in topological field theory (see chapter 5) it is
common that the space of gauge connections is M (usually de-
noted A), the group of gauge transformations is taken to be G
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and M modulo G is called the moduli space (this will be used in
chapter 5 and 6).
We assume that G is connected and has a smooth action on M.

Given this action we denote the set of elements invariant of the
group action by

MG := {x ∈ M|∀g ∈ G, g · x = x}. (3.3)

The power of G denotes the invariant part.
We now like to know the cohomology of M given the group

action G. This is called the equivariant cohomology of M. We
begin by the defining the space of orbits M/G (the orbit of an
element x ∈ X is the set of elements in X to which x can be moved
by the elements of G given by G.x = {g.x | g ∈ G}). M/G is
the set of equivalence classes (the equivalence class of an element
a is the set [a] = {x ∈ X | a ∼ x}), such that x and x′ are equal
iff x′ = g · x for g ∈ G. If G acts freely on M (g · x = x iff g is
the identity of G ∀x ∈ M) then M/G is a differential manifold
and the equivariant cohomology is defined as

H∗G(M) = H∗(M/G). (3.4)

If there is a non-free action another way of defining the equiv-
ariant cohomology is needed. There are three different ways to do
this. The three models are the Cartan model, the Weil model and
the BRST model, which is a interpolation between the first two
[25, 26]. These three ways of modeling H∗G(M) uses differential
forms on M and polynomial functions and forms on the Lie algebra
g on G.
To write down the equivariant cohomology groups similar to

the de Rham case we need to introduce equivariant differential
forms. An equivariant differential form on M acted on by G is a
polynomial map

α : g→ ΛM, (3.5)

from Lie algebra g to the exterior algebra ΛM of differential forms
on M. The equivariant differential forms are invariant under the
G-action and thus the Lie derivative acting on the equivariant
differential form is LVα = 0. This is equivalent to say that α is
an element of the G-invariant subalgebra

ΛG M = (Sym(g∗)⊗ΛM)G, (3.6)
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where G denotes the G-invariant part, g∗ is the dual vector space
of g and Sym(g∗) is the symmetric algebra over g∗.
Next we assign a Z-grading (usually called ghost number in

physical language) to the equivariant differential forms in (3.6).
We can then define the equivariant exterior derivative D as the
linear map

D : Λk
G M→ Λk+1

G M (3.7)

on (3.6) by Dφa = 0 and Dβ = (1 ⊗ d − φa ⊗ iVa)β for
β ∈ ΛM. The degree of the equivariant form is two times its
polynomial degree plus its form degree. The basis of g∗ is φa dual
to Ta of g. The equivariant exterior derivative on an equivariant
differential form is written as

(Dα)(X) = d(α(X))− iV(α(X)) (3.8)

for α ∈ (Sym(g∗)⊗ΛM)G, V is the vector on M generated by
Lie algebra element X, d is the exterior derivative and iV is the
interior product.
The square of the equivariant exterior derivative is given by the

Lie derivative (see (2.36)). Thus D2α = 0 with α ∈ ΛG M. Finally
we have reach the goal an can define the equivariant cohomology
of M as

H∗G(X) = kerD|Λk
G M/imD|Λk−1

G M , (3.9)

which is the space of equivariantly closed forms (Dα = 0) modulo
the space of equivariantly exact forms (α = Dβ).

Equivariant differential forms are of interest because when inte-
grating over an equivariantly closed form one can evaluate the
integral by summing over the fixed points of the action using lo-
calization techniques. This will be the object of the next chapter.
Before going there we will conclude this chapter by introducing
the equivariant Euler class. This class will be needed in the next
chapter.

3.2 equivariant vector bundles and character-
istic classes

In this section we define equivariant vector bundles and generalize
ordinary characteristic classes to the equivariant context (see for
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example [24]). These equivariant characteristic classes provide rep-
resentatives of the equivariant cohomology and can be described
by equivariant differential forms.
A fiber bundle π : E → M is called an equivariant bundle if

there are group actions G on M and E such that π is an equivari-
ant map, i.e.

g · π(x) = π(g · x) ∀x ∈ E, ∀g ∈ G. (3.10)

The action of G on differential forms that has values in E is gen-
erated by the Lie derivatives La

V (see [24]).
As in the normal de Rham case we need to say how to connect

the fibers if there are twists, which is done using a connection Γ.
This object is defined over M and has values in E. The action of
Γ on sections of the bundle gives the sections parallel transport
along fibers. The covariant derivative, that generates the parallel
transport, is given by

∇ = d + Γ, (3.11)

where d is the exterior derivative. This operator is a linear deriva-
tion and it associates to every section of the vector bundle a 1-form
in Λ1(M, E). Let x(t) be a path in M, then (∇s)(ẋ(t)) = 0
for ẋ(t) a tangent vector along the path and s be the section.
This gives the parallel transport along the path and let us connect
different fibers of the bundle.
Let E → M be a equivariant vector bundle. Then we will as-

sume that the covariant derivative is G-invariant, i.e.

[∇,LVa ] = 0. (3.12)

Define the equivariant covariant derivative or equivariant connec-
tion as an operator on ΛG(M, E) (equivariant differential forms
on M with values in E) by taking after (3.7) as

∇g = 1⊗∇− φa ⊗ iVa (3.13)

and define the equivariant curvature of the connection as

Fg = (∇g)
2 + φa ⊗LVa , (3.14)

that satisfies [∇g, Fg] = 0 and Fg is an element of Λ2
G(M, E).

These conditions reduce to the ordinary concepts for a vector bun-
dle when G is trivial group.
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Now we will introduce the equivariant characteristic classes. First
recall that ordinary characteristic classes can be constructed us-
ing an invariant polynomial P on principal bundles with structure
group H. For the equivariant case we can generalize this almost
immediately. We now pick the curvature (3.14) invariant of the
G-action as the argument of P. Then

DP(Fg) = rP(∇gFg) = 0, (3.15)

where r is the degree of P. This implies that P(Fg) defines equiv-
ariant characteristic classes that are elements of the algebra ΛG M.
The equivariant cohomology class of Pg(F) is connection indepen-
dent.

3.2.1 The Equivariant Euler Class

In this subsection we define the equivariant Euler class which will
be needed in the degenerate localization formula in section 4.3.
Let E → M be a real oriented equivariant vector bundle with

a metric and a connection ∇ compatible with the metric, both
invariant under the group action. Let Fg be the equivariant exten-
sion of the curvature defined in (3.14). Then the equivariant Euler
class is

eg(F) = P f (Fg) (3.16)

which is an equivariantly closed form and its equivariant cohomol-
ogy class depends only on the orientation of E.



4
LOCAL IZAT ION IN F IN ITE DIMENS ION

In this chapter we will first explain the localization principle using
equivariant cohomology and then show the Berline-Vergne formula
[8, 9], the Duistermaat-Heckman (DH) [6] formula and the local-
ization formula for the degenerate case [24, 27].

4.1 localization principle

We will now start by explaining the localization principle. This is
an application of equivariant cohomology (discussed in the previ-
ous chapter) which simplifies certain integrals as we will see in the
following.
Assume that we want to integrate a closed equivariant differ-

ential form
∫

α, Dα = 0, on a compact oriented manifold M
without boundary with a G-action. α lies in the equivariant co-
homology of M that we introduced in the previous chapter. Let
V = Vµ∂/∂xµ be the vector field on M generated by the G-
action that we will assume to be G = U(1) for simplicity. The
role of φa ∈ Sym(u(1)∗) is not important here and we can "lo-
calize algebraically" by putting φa = −1 in the equation for the
equivariant exterior derivative (see chapter 3). The equivariant ex-
terior derivative D then is

D = d + iV = θµ ∂

∂xµ + Vµ ∂

∂θµ (4.1)

on

ΛV M = {α ∈ ΛM : LVα = 0} (4.2)

using (3.8) and (2.36) to get D.
It can be noticed (first shown by Atiyah and Bott [7] and Berline

and Vergne [8, 9]) that the equivariant cohomology is determined
by the fixed point set

MV = {x ∈ M|V(x) = 0}. (4.3)

22
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This implies that as
∫

M α depends only on the equivariant coho-
mology class of α (because

∫
M α + Dλ =

∫
M α + dλ + iVλ =∫

M α +
∫

∂M λ =
∫

M α) it is determined by the fixed point set.
This is the core of the localization theorems, both in finite dimen-
sion and in topological quantum field theory, and it is called the
equivariant localization principle. We will now show the localiza-
tion principle explicitly.
We start by picking an one form ω and a real positive number

t such that ∫
ΠTM

dnxdnθα =
∫

ΠTM
dnxdnθαe−tDω (4.4)

holds. This is so since
dZ(t)

dt
= −

∫
dnxdnθα(Dω)e−tDω

= −
∫

dnxdnθ[D(αωe−tDω)− (Dα)ωe−tDω

+ α(D2ω)e−tDω] = 0, if D2ω = 0. (4.5)

As Z(t) is independent of t, given that we pick ω such that
D2ω = 0, we can instead calculate

lim
t→+∞

∫
dnxdnθα(x, θ)e−tDω(x,θ). (4.6)

Next we pick ω = gµνθµVν(x), where g = 1
2 gµν(x)dxµ⊗ dxν

is the metric. Then

Dω =

(
θµ∂µ + Vµ ∂

∂θµ

)
gαβθαVβ = gµβVµVβ + θµ

(
∂µ(gαβ)Vβ + gαβ∂µVβ

)
θα.

(4.7)
The second derivative of ω gives

D2ω =

(
θµ∂µVν ∂

∂θν
+ Vµ∂µ

)
gαβθαVβ

= θµ∂µVαgαβVβ + Vµ∂µgαβθαVβ + Vµgαβθα∂µVβ

= θα∂αVµgµβVβ + Vµ∂µgαβθαVβ + Vβgαµθα∂βVµ

=
(
∂αVµgµβ + Vµ∂µgαβ + gαµ∂βVµ

)
θαVβ.

(4.8)

For any compact manifold with a U(1)-action generated by V
there exist an U(1)-invariant metric g satisfying the Killing equa-
tion (V is a Killing vector field of the metric g)

(LV g)αβ = Vµ∂µgαβ + gµβ∂αVµ + gµα∂βVµ = 0. (4.9)
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Comparing the two equations (4.8) and (4.9) we have

LV g = 0 ⇐⇒ D2ω = 0. (4.10)

Equation (4.4) can be written out explicitly as

Z(t) =
∫

dnxdnθα(x, θ)e−t(gµβVµVβ+θµ[(∂µgαβ)Vβ+gαβ(∂µVβ)]θα).

(4.11)

Then, as t → ∞ only fixed points of the vector field, i.e. Vµ(xi) =
0, can contribute. This is the principle of localization. We will now
continue by using this to prove the Berline-Vergne formula.

4.2 the berline-vergne formula and the symplec-
tic case

Theorem 4.1 (Berline-Vergne formula). Let M be a compact
oriented boundary less even-dimensional manifold acted on by a
U(1)-action. Let V ∈ Γ(TM) be a vector field on M generated
by the action and let MV = {x ∈ M|V(x) = 0} only consist of
isolated points. Assume that α is a closed equivariant form then∫

M
α = ∑

xi∈MV

(−2π)
n/2 α(0)(xi)

P f (∂µVν(xi))
(4.12)

Proof. To prove this formula we begin by expanding Vµ(x) and
gαβ(x) around the fixed points.

In general,we have T(x) = ∑α|>0
(x−xi)

α

α! (∂α f )(a). This gives

Vµ(x) = Vµ(xi) + ∂νVµ(xi)(x− xi)
ν + ..., (4.13)

gµν(x) = gµν(xi) + ∂αgµν(xi)(x− xi)
α + .... (4.14)

Expanding the terms we need to put in (4.11) gives

gµνVµVν = gµν(xi)∂αVν(xi)(x− xi)
α∂βVµ(xi)(x− xi)

β + ...
(4.15)

θµBµαθα = [(∂µgαβ(xi))Vβ(xi) + gαβ(xi)∂µVβ(xi) + ...]θµθα.
(4.16)

Next we change the variables as

x̃ =
√

tx (4.17)

θ̃ =
√

tθ. (4.18)
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Putting everything together we get the proof of the formula:

Z(t) = lim
t→+∞ ∑

xi∈Mv

∫
dn x̃dnθ̃(α(0)(xi) + ...)e−t[ 1

t gµν(xi)∂αVν(xi)∂βVµ(xi)(x̃)α(x̃)β+ 1
t gαβ(xi)∂µVβ(xi)θ̃

µ θ̃α+...]

= ∑
xi∈Mv

α(0)(xi)
∫

dn x̃e−gµν(xi)∂αVν(xi)∂βVµ(xi)(x̃)α(x̃)β
∫

dnθ̃egλσ(xi)∂κVσ(xi)θ̃κ θ̃λ

= ∑
xi∈Mv

α(0)(xi)
π

n
2 (−2)

n
2 P f (det(gλκ(xi)∂κVσ(xi)))√

det(gµν(xi)∂αVν(xi)∂βVµ(xi))

= ∑
xi∈Mv

α(0)(xi)
(−2π)

n
2

P f (∂µVν(xi))
,

(4.19)

where we in the third line used (2.18) for the Grassman coordinates
and (2.17) for the even coordinates.

Example 4.1 (Area of S2). As S2 is a compact manifold with
rotational symmetry around one axis we can use the the Berline-
Vergne formula to calculate the area. By ordinary integration the
area is calculated to be

∫
S2 sin φdφdϕ = 4π. Now we instead want

to find the equivariant extension of the volume form and make use
of the Berline-Vergne formula to calculate the area.

Let the U(1)-action rotate the sphere around its z-axis giving the
vector field V = ∂

∂ϕ . The equivariant extension can be written as

a sum of a zero form and a two form, i.e. α = α(2) + α(0), where
Dα = 0. We have∫

ΠS2
α(2) + α(0) =

∫
ΠS2

α(2) =
∫

ΠS2
sin φθϕθφ =

∫
S2

sin φdφdϕ,

(4.20)

as only the top form contributes in the Berezin integral.
Let us now find α(0) using

0 = Dα = (d + iV)(α(2) + α(0)) (4.21)

= (θµ∂µ + Vµ ∂

∂θµ )(sin φθϕθφ + α(0)) (4.22)

= (θϕ ∂

∂ϕ
+ θφ ∂

∂φ
+

∂

∂θϕ )(sin φθϕθφ + α(0)) (4.23)

= sin φθφ + dα(0). (4.24)



4.2 The Berline-Vergne Formula and the Symplectic Case 26

This implies that α(0) = cos φ.
The sphere has two fixed points at z = ±1. At these points

the coordinate system is not well defined and we have to introduce
local coordinates. Around z = 1 we have x = cos ϕ and y =

sin ϕ. This gives ∂
∂ϕ = ∂x

∂ϕ
∂

∂x +
∂y
∂ϕ

∂
∂y = − sin ϕ ∂

∂x + cos ϕ ∂
∂y =

−y ∂
∂x + x ∂

∂y . Then

∂V =

(
0 −1
1 0

)
. (4.25)

Around z = −1 we have x = cos ϕ and y = − sin ϕ which in
a similar way gives

∂V =

(
0 1
−1 0

)
. (4.26)

Now we can put everything in to calculate the area to be∫
ΠS2

α = ∑
i
(−2π)

α(0)(xi)

P f (∂µVν(xi))
= (−2π)(

1
−1

+
−1
1
) = 4π.

(4.27)
This might not be the most useful example but is shows how we

can extend a form we want to integrate to a closed equivariant dif-
ferential form and make use of the Berline-Vergne formula, which
can be a great simplification.

We will now turn our attention to the partition function of classical
statistical mechanics and how to simplify the calculations of these
integrals by using the equivariant localization principle.
Assume that M is a compact symplectic manifold of dimension

2n, with a symplectic form ω (for a review on symplectic geometry
see [24]). Assume that M is acted symplectically on (i.e. the sym-
plectic structure is preserved; LVω = 0) by a U(1)-action gener-
ated by a vector field V. If the action is Hamiltonian, i.e. there is a
function H on M satisfying DH = −iVω, then D(H + ω) = 0.
In local coordinates xi if we write the symplectic form as

ω =
1
2

ωµνdxµ ∧ dxν (4.28)

then

∂µH(x) = Vν(x)ωµν(x) (4.29)
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and

iVω = Viωijdxj. (4.30)

Equation (4.29) says that the critical point set MV (where Vµ(xi) =
0) and the critical points of H coincide.
The volume form (or Liouville measure) is given by

ωn

n!
=
√

detω(x)d2nx. (4.31)

The symplectic manifold is related to classical Hamiltonian me-
chanics through Darboux’s theorem [28]. The theorem says that
locally one can always find a coordinate system (pµ, qµ)n

µ=1 on
M (called Darboux coordinates) such that

ω = dpµ ∧ dqµ. (4.32)

In classical statistical mechanics the partition function can then
be written as ∫

M

ωn

n!
e−TH. (4.33)

Given this, we can write down the following formula which states
that this integral can be calculated exactly as a sum over the crit-
ical points of H.

Theorem 4.2 (Duistermaat-Heckman theorem). Let M be a com-
pact 2n-dimensional symplectic manifold acted on symplectically
by a U(1)-action generated by a vector field V. Assume that V
generates a global Hamiltonian H given by (4.29) and that the
critical points xi of H are isolated and its Hessian matrix is non-
degenerate. Then, assuming α is an closed equivariant form,∫

α = ∑
xi∈MV

(
−2π

T

)n e−TH(xi)

P f (∂νV(xi))
(4.34)

If the Hamiltonian is quadratic then∫
α = ∑

xi∈MV

(
2π

T

)n √
detω(xi)√
det∂2H(xi)

e−TH(xi). (4.35)
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Proof. We begin by looking at the partition function we want to
integrate∫

α =
∫

M
d2nx

√
detω(x)e−TH(x) (4.36)

= ∑
i

∫
d2nx

√
detω(x)e−T(H(xi)+∂µH(xi)(x−xi)

µ+ 1
2

∂2
∂xµ∂xν H(xi)(x−xi)

µ(x−xi)
ν+...)

(4.37)

≈ ∑
xi∈MV

(
2π

T

)n √
detω(xi)√

det∂2H(xi)
e−TH(xi). (4.38)

In the second line we have expanded the Hamiltonian around its
fixed points and in the third line we used the saddle point approx-
imation.
To be able to use the Berline-Vergne formula we have to find an

equivariant extension of α that we call α′, such that Dα′ = 0. As
we are working with a symplectic manifold we have D(ω + H) =
0 and we can take α′ = 1

Tn e−T(w+H).
Using the Berline-Vergne formula we directly get∫

α′ = ∑
i

(
−2π

T

)n e−TH(xi)

P f (∂νV(xi))
. (4.39)

If we have a quadratic Hamiltonian H we can write this slightly
differently. The equivariant Darboux theorem [29] says that one
can find local Darboux coordinates (pµ, qµ) such that ω = dpµ ∧
dqµ and that the origin can be located on the fixed point xi. Then,
the the action on M is locally given by

V = ∑
i

εi

(
−pi

∂

∂qi
+ qi

∂

∂pi

)
, (4.40)

with the weights εj. Then using (4.29) the quadratic Hamiltonian

is written as H = H(xi) + ∑i εi
p2

i +q2
i

2 .
In the equivariant Darboux coordinates ω is the antidiagonal

matrix

ω =

0 1
1 0

. . .

 (4.41)

and the Hessian of H is given by
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∂νV = ω−1∂2H =

 0 εi

−εi 0
. . .

 . (4.42)

Then we have ∂νV = (−1)nε1...εn. This implies that one can
write

Z(T) = ∑
i

(
2π

T

)n √
detω(xi)√

det∂2H(xi)
e−TH(xi). (4.43)

4.3 degenerate systems

As a next generalization we will assume a degenerate vector field.
In this case the set of fixed points become a submanifold MV ⊂ M.
M is again a compact manifold acted on by a U(1)-action. We
still want to calculate∫

M
α =

∫
M

αe−tDω =
∫

M
αe−t(gABVAVB+(Ω)ABθAθB) (4.44)

with Dα = 0 and

(Ω)AB =
1
2
[∂A(gBCVC)− ∂B(gACVC)], (4.45)

where A, B, C = 1, . . . , dimM. To simplify calculations we will
have to introduce normal coordinates.
Before we go on with the theory we will give an example of

where the critical points becomes a submanifold. This is the case
of the height function on the torus, given that the torus is laying
flat on the xy-plane in three dimensional space. This function has
two extrema which are cirlcles (given a rotation around the z-axis).
The set of fixed points consist of S1 t S1.

Having a degenerate system we can decompose the manifold M as
M = MV t NV , where NV is normal to MV . Let dimMV = m
and dimM = n. Locally on M we have coordinates

(x1, . . . , xm, xm+1, . . . , xn). (4.46)
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We will let the latin indices represent points on MV , greek indices
represent points on NV and capital latin letters run from 1, . . . , n,
i.e.

x = (xA) = (xi, xα), xα = 0 if x ∈ MV . (4.47)

The tangent space Tx M is decomposed as

Tx M = Tx MV ⊕ (Tx MV)
⊥, (4.48)

where {∂/∂xi} spans Tx MV and {∂/∂xα} spans (Tx MV)
⊥. The

Grassman variables (generating the exterior algebra of M) can
then be decomposed as

θ = (θA) = (θi, θα). (4.49)

The vector field V = VA(xi, xα) ∂
∂xA satisfies

VA(xi, 0) = 0,

∂iVA(xi, xα) = 0.
(4.50)

The tangent bundle, with the connection ∇, is an equivariant
vector bundle. The Lie derivative acts non-trivially on the fibers
as LV = Vµ∂µ + dVµiµ

V − dV and the moment map of the
equivariant bundle is the Riemann moment map µV = ∇V [24].
By (2.36), the moment map can be written in terms of Ω defined

in (4.45) as (Ω)µν = 2gµλ(µV)
λ
ν . The equivariant curvature RV

of the bundle can be written as

RV = R + µV . (4.51)

The 2-form Riemann curvature of the bundle is [24]

Rµ
ν =

1
2

Rµ
νλρθλθρ, (4.52)

where Rµ
νλρ is the Riemann curvature tensor.

Let p ∈ MV and (xi, xα) be normal coordinates (see [31])
around p, then the metric g can be written as

gµν = δµν −
1
3

Rµρνσxρxσ + O(x3). (4.53)
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Using normal coordinates the metric and the curvature tensor sat-
isfies [31]

∂CgAB|(xi,0) = 0,

RABCD(xi, 0) = gAD,BC(xi, 0)− gAC,BD(xi, 0),
(4.54)

where gAD,BC = ∂2gAB
∂xB∂xC .

With these notations we can write down a localization formula
for the degenerate system.

Theorem 4.3 (The Degenerate Formula). Let M be a compact
manifold acted on by a U(1)-action. Assume that α is a closed
equivariant differential form. Let r be the codimension of the criti-
cal point set MV and eV(R) the equivariant Euler class of the nor-
mal bundle NV. Let MV have local coordinates xi (i = 1, . . . , m).
Then ∫

M
α =

∫
MV

⊗
Λ1MV

dxidθiα(xi, θi)
(−2π)

r/2

eV(R)
. (4.55)

Proof. To prove this theorem we need to know the t-dependence
of the terms in the exponent

e−tDω = e−t(gABVAVB+(Ω)ABθAθB), (4.56)

with (Ω)AB given by (4.45).
First we expand Dω around (xi, 0) then do a change of vari-

ables as

xα →
√

txα

θα →
√

tθα.
(4.57)

The terms of concern are:

Prop. to t : θi(Ω)ijθ
j

Prop. to
√

t : θixα∂α((Ω)ij)θ
j + θα(Ω)αiθ

i + θi(Ω)iαθα

O(1) :
1
2

θiθ jxαxβ∂α∂β((Ω)ij) + θαVβ∂β((Ω)αi)θ
i

+ θα(Ω)αβθβ + gµνxαxβ∂αVµ∂βVν
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The term proportional to t is zero by (4.50). Next look at the
first term proportional to

√
t

θixα∂α((Ω)ij)θ
j =

1
2

∂α[∂i(gjAVA)− ∂j(giAVA)]xαθiθ j

=
1
2

∂α[∂i(gjρ)Vρ + gjρ∂i(Vρ)− ∂j(giρ)Vρ − giρ∂j(Vρ)]xαθiθ j

=
1
2
[∂α(∂i(gjρ))Vρ + (∂i(gjρ))∂α(Vρ) + ∂α(gjρ)∂iVρ

+ gjρ∂α∂iVρ − ∂α(∂j(giρ))Vρ − ∂j(giρ)∂αVρ

− (∂αgiρ)∂j(Vρ)− giρ)∂α∂j(Vρ)]xαθiθ j

= 0,
(4.58)

where we used (4.50). The other terms proportional to
√

t are also
zero by (4.50).
Of the terms of order one the second term is zero by inspection

(using the calculations above). The first term is

1
2

θiθ jxαxβ∂α∂β((Ω)ij) =
1
4

θiθ jVαVβ∂α∂β[∂i(gjAVA)− ∂j(giAVA)]xαθiθ j

=
1
4

θiθ jxαxβ[(∂β(∂igjρ − ∂β∂jgiρ)∂αVρ

+ (∂α∂igjρ − ∂α∂jgiρ)∂β(Vρ)]

=
1
4

θiθ jxαxβ[Rβρji∂α(Vρ) + Rαρji∂β(Vρ)]

=
1
2

θiθ jxαxβRβρji∂α(Vρ)

=
1
2

θiθ jxαxβRρβijgρνgνλ∂α(Vλ)

=
1
2

θiθ jxαxβRρ
βij(Ω)αρ,

(4.59)

where we in the second line used (4.50), in the third line we used
(4.54), in the fourth line used the symmetry of the indices of the
Riemann curvature tensor and in the last line we used (4.45).
Taking the limit limt→+∞ of

∫
M αe−tDω we have:
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∫
M
⊗

Λ1M=(Mv
⊗

Λ1Mv)
⊔
(N⊥

⊗
Λ1N⊥)

dxidθidxαdθαα(xi, θi)e−(Ω)αν(Ω)ν
βxαxβ+ 1

2 θiθ jxαxβRρ
βij(Ω)αρ+(Ω)αβθαθβ

(4.60)

=
∫

MV
⊗

Λ1MV

dxidθiα(xi, θi)
(−2π)r/2P f ((Ω)αβ)√

det((Ω)αν +
1
2 Rρ

βij(Ω)αρθiθ j))

(4.61)

=
∫

dxidθiα(xi, θi)
(−2π)

r/2

P f (∂νVµ + r
2 Rρ

βij(Ω)αρθiθ j)
(4.62)

=
∫

dxidθiα(xi, θi)
(−2π)

r/2

eV(R)
, (4.63)

where r = codim(M) and eV(R) is the equivariant Euler class of
the normal bundle defined in (3.16). In the first line we used (4.45)
to rewrite the last term of order one in terms of Ω. To get second
line we used (2.18) for the Grassman coordinates and (2.17) for
the even ones. In the last line we used (4.52) and (4.51).



5
TOPOLOGICAL QUANTUM FIELD THEORY
AND GAUGE THEORY

We will now leave the finite dimensional setup and turn our atten-
tion to how the localization principle can be used in the infinite
dimensional case (quantum field theory). To do so, further con-
cepts have to be introduced that we will review in this chapter.
We will discuss basic notions of topological field theory (TQFT)
[32], non-abelian gauge theories [40] and how to compute the par-
tition function of two dimensional Yang-Mills theory by using a
lattice gauge regularization [33].

5.1 topological quantum field theory

In this section we review the general notions of TQFT following
[32].
The study of TQFT started in the 1980s (the first TQFT was

formulated in 1988 [35]) and was a new link between physics and
mathematics. We will here study the TQFT from the viewpoint
of the functional integral.
Let X be Riemannian manifold (real smooth manifold with inner

product on the tangent space) endowed with a metric gµν and
consider a quantum field theory defined over X. Let {φi} be a
set of fields on X, with which the action S(φi) of the theory can
be constructed. Let Oα(φi) be operators (arbitrary functionals of
the fields). Then the vacuum expectation value of such operators
is 〈
Oα1 · · · Oαp

〉
=
∫
[Dφi]Oα1(φi) · · · Oαp(φi)e−S(φi). (5.1)

We can now define a TQFT as a quantum field theory with a
set of operators, also known as topological observables, that has
correlation functions independent of the metric, i.e,

δ

δgµν

〈
Oα1 · · · Oαp

〉
= 0. (5.2)

34
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This condition can be realized in two ways. The first way is when
both the action and the operators are independent of the metric.
These are called TQFT’s of Schwarz type [36], for example Chern-
Simons gauge theory. In the second case the observables and the
action can be dependent on the metric. However, the theory has a
symmetry given by an operator Q (odd and nilpotent) that leaves
the correlation functions independent of the metric. In this theory
the observables are in the cohomology of Q. This second type is
called cohomological TQFT’s or TQFT’s of Witten type [37]. One
example is Donaldson-Witten theory [37].

Example 5.1 (TQFT of Schwarz type; Chern-Simons theory).
The Chern-Simons theory is defined on a differentiable compact
3-manifold M with a simple compact gauge group G. The action
is

SCS =
∫

Tr(A ∧ dA +
2
3

A ∧ A ∧ A), (5.3)

where A is a gauge connection corresponding to G.
As it is a gauge invariant theory the operators have to be invari-

ant under gauge transformations. Observables are written from
Wilson loop

TrR(Holγ(A)) = TrRP exp
∫

γ
A, (5.4)

where the path-ordering operator is denoted by P, TrR is the trace
of the holonomy (see figure 5.1) of A in representation R and γ
is a 1-cycle.

5.1.1 The Cohomological Type and the Mathai-Quillen Formal-
ism

In this subsection the second type of TQFT’s mentioned above
will be described in more detail.

To assure that (5.2) is satisfied in a cohomological TQFT one
uses the symmetry of the theory (with infinitesimal form δ). Sym-
metry transformation of the fields are done so that the action and
the operators are invariant under the symmetry, leaving the corre-
lation functions independent of the metric. This is shown in what
follows.
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Figure 5.1: Holonomy [18]. If γ′ isn’t closed we have holonomy.

Assume δ satisfies

δOα1(φi) = 0,
Tµν(φi) = δGµν(φi),

(5.5)

where Gµν(φi) is a tensor and Tµν(φi) =
δ

δgµν S(φi) is the energy-
momentum tensor. These conditions gives the relation

δ

δgµν

〈
Oα1 · · · Oαp

〉
= −

∫
[Dφi]Oα1(φi) · · · Oαp(φi)Tµνe−S(φi)

= −
∫
[Dφi]δ

(
Oα1(φi) · · · Oαp(φi)Gµνe−S(φi)

)
= 0,

(5.6)

assuming that the measure is invariant under δ and the observables
are independent of the metric. This says that the theory is to be
considered topological.
Cohomological TQFT’s often satisfy

S(φi) = δΛ(φi), (5.7)

Λ(φi) being some functional. This implies that the partition func-
tion and topological observables in general are independent of the
coupling constant [32].
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In a theory where (5.5) holds it is possible to construct correla-
tion functions which correspond to topological invariants (invari-
ant under deformations of the metric) by looking at operators that
are invariant under the symmetry δ. Looking back at (5.6) we can
see that if one of the operators can be written as δΓ then it will
make the correlation function vanish. Thus, we can identify oper-
ators differing by some δΓ and having δ2 = 0 (and O 6= δχ).
These operators, invariant under the symmetry, are the observ-
ables of the theory. It can be shown that δ2 is a gauge transfor-
mation (see below), which means that the analysis is restricted to
gauge invariant operators, a natural demand. Let Q be the oper-
ator giving this symmetry, then the observables of the theory are
in the cohomology of Q (a state |a >= Q|b > has zero norm as
< a|a >=< b|Q2|b >= 0).
The observables of the theory can be built out of gauge invariant

polynomials in the fields φ(x) as [Q, φ(x)] = 0. To construct
other fields the topological descent equations

dφ(n) = i[Q, φ(n+1)] (5.8)

can be used. From this the observables of the theory can be built;

Wγn
φ =

∫
γn

φ(n). (5.9)

Wγn
φ is an observable as it is invariant under Q. If the cycle is the

boundary of a surface then the observable is Q-exact and it cor-
relation function will vanish. Wγn

φ depends only on the homology
class of the cycle.
We now introduce shortly the Mathai-Quillen formalism, a more

mathematical approach to TQFT introduced in [32, 41]. The co-
homological TQFT’s can be described by fields φi, equations s(φ)
(s is a generic section) and symmetries. In general, the fields (el-
ements of configuration space X and defined on a Riemann man-
ifold) are acted on by a group G, for example a gauge symmetry
group, and its natural to consider the quotient space of X modulo
G. A subset of this space, called the moduli space (see figure 5.2),
is

M = Z(s)/G, (5.10)

with Z(s) = {φi ∈ X|s(φ) = 0}. The symmetry δ gives a rep-
resentation of the equivariant cohomology on the space of fields.
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The moduli space is of great importance as the path integral local-
izes onto this subset, a fact that we will make use of in chapter 6
and 7 (compare (4.3) in chapter 4). We note that topological quan-
tum field theories of this kind can be used to study the geometry
of moduli spaces and from a mathematical viewpoint this is the
study of intersection theory (intersection of two subspaces inside
some space) on moduli spaces.

Figure 5.2: The moduli space where the space of fields is denoted
C, M = {φ ∈ C|Dφ = 0}/G is the moduli space [18].

5.2 poincaré duality

In topological quantum field theories the correlation functions are
related to topological invariants. For example, in three dimensions
the correlation functions can be related to link invariants (a link is
a union of knots). There are different ways to assign invariants to a
knot. The linking number is computed from labeling each crossing
as positive or negative and then adding the signs of the crossings.
One can also assign a polynomial to a knot where the coefficients
of the polynomial contain some properties of the knot.
In [38] Witten showed that in the topological quantum field the-

ory Chern-Simons theory expectation values, constructed out of
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Wilson loops, are given by knot polynomials (Jones polynomials
of knot theory). Thus link invariants can be related to physical ob-
servables. The way of relating the integral of the wedge product of
differential forms to homology cycles is done through the Poincaré
duality.
Let M be a n-dimensional closed oriented smooth manifold. The

Poincaré duality [39] relates the k-th cohomology group with the
(n− k)-th homology group on the manifold as

Hk(M) ' Hn−k(M), k ∈ Z. (5.11)

Thus, a differential form can be represented by a homology cycle
and the wedge product of differential forms are the intersection
numbers of homology cycles.
On the compact smooth manifold M of dimension 2n the inter-

section form is defined as a bilinear form

λM : Hn(M)× Hn(M)→ R (5.12)

defined by

λM([α], [β]) =
∫

M
α ∧ β. (5.13)

This is an important topological invariant. It can be thought of
geometrically by Poincaré duality. Choose Poincaré duals of α and
β to be submanifolds A and B then λM(a, b) is the oriented
intersection number of A and B.
We will see in chapter 6 how we can write general expressions

for intersection numbers on moduli spaces of flat connections.

5.3 yang-mills theory

In this section we will review Yang-Mills theory, which is a non-
abelian gauge theory [40] with the gauge group given by SU(N) or
in general any compact, semi-simple Lie group (semi-simple means
that it has a Lie algebra that is a semi-simple, i.e. a direct sum
of simple Lie algebras. Simple non-abelian Lie algebras has only
ideals that are {0} and itself).
The two dimensional Yang-Mills theory (which is the object of

interest for us) is a super-renormalizable quantum field theory that
can be solved exactly and one can use it to study structures of
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more complicated non-abelian gauge theories, for example higher-
dimensional cohomological field theories or physical models such
as four dimensional quantum chromodynamics (QCD).
In Yang-Mills theory the gauge fields are the Yang-Mills fields

Aa
µ(x). The symmetries are gauge symmetries and the action on a

Riemann surface Σ (a complex one dimensional surface) of genus
g is

SYM = − 1
2e2

∫
Σ

Tr(F ∧ ?F), (5.14)

where a gauge connection of a trivial principle bundle over Σ is
denoted A, F = dA + A ∧ A is the field strength, e2 is the
coupling constant and ? is the Hodge star operator. The action
is invariant under gauge transformations A → g−1Ag + g−1dg,
g : Σ→ G for g in Lie algebra g and Lie group G.
To quantize Yang-Mills theory one introduces the path integral

Z =
∫
A

DAe−SYM (5.15)

over the space of all connections. Because of the gauge invariance
we like to divide the result by the gauge symmetries as we have a
range of equivalent solutions that are related by gauge transforma-
tions. This is however ill-defined and instead one fixes a gauge and
restrict integration to the space of all connections modulo gauge
transformations [42]. This is done by adding some additional fields,
called ghost fields or Faddeev-Popov ghosts, that break the gauge
symmetry. These fields will not correspond to any physical parti-
cles.
The mentioned procedure has to do with integrals of the form∫
dxdye−S. Here the integral over y is redundant and we can

define Z as

Z :=
∫

dxe−S =
∫

dxdyδye−S. (5.16)

Without changing the result, the argument of the delta function
can be shifted as Z =

∫
dxdyδ(y− f (x))e−S. Assume that we

are told that y = f (x) is the solution of G(x, y) = 0 (for fixed x).
Then we can substitute the delta-function in Z using the relation

δ(G(x, y)) =
δ(y− f (x))
|∂G/∂y| . (5.17)



5.3 Yang-Mills Theory 41

Generalizing to integrate over dnxdny, we get

Z =
∫

dnxdnydet
(

∂Gi
∂yi

)
Πiδ(Gi)e−S, (5.18)

assuming ∂Gi
∂yi

is positive.
Now we can use the result to path integrals over non-abelian

gauge fields. We let the redundant integration variable y be the set
of all gauge transformations ξa(x) and the integration variables
x and y together is changed for the the gauge field Aa

µ(x). G is
the gauge-fixing function (that one picks for ones purpose). Then
(index a plays the role of the index i),

Z =
∫

DAdet
(

∂G
∂ξ

)
Πx,aδ(G)e−SYM . (5.19)

To evaluate the functional derivative ∂Ga/∂ξb one has to choose a
particular gauge-fixing function. Its functional determinant can be
written as a path integral over complex Grassmann variables. Let
ca(x) and c̄a(x) (the hermitian conjugate) be complex Grassmann
fields. These are the Faddeev-Popov ghosts. We can write

det
(

∂Ga

∂ξb

)
∝
∫

DcDc̄e−Sgh . (5.20)

We can also write δ(G) as an integral for the gauge fixing (gf),
leaving

Z ∝
∫

DADcDc̄e−SYM−Sgh−Sg f , (5.21)

i.e. we can instead integrate also over the ghost fields to get rid of
the gauge redundancy.

The gauge-fixed path integral can be re-derived in a different way
because there is another symmetry of the Lagrangian in play,
called the BRST symmetry [24, 42]. BRST quantization was first
introduced in quantization of Yang-Mills theory used to prove the
re-normalizability of four dimensional non-abelian gauge theories.
It can also show which the physical particles of the theory are. We
will now outline the BRST quantization procedure.
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Let Aa
µ(x) be the gauge field in the non-abelian gauge theory

and let φi(x) be a scalar or spinor field in representation R. The
infinitesimal gauge transformations are

δAa
µ(x) = −Dab

µ ξb(x),

δφi(x) = −igξa(x)(Ta
R)ijφj(x),

(5.22)

with the gauge transformation parametrized by ξa(x) and where
Dab

µ is the covariant derivative and Ta
R is the generator matrices

of the representation. We can now introduce ca(x) being a scalar
Grassman field in the adjoint representation. Then we can define
a infinitesimal BRST transformation

δB Aa
µ(x) = Dab

µ cb(x),

δBφi(x) = −igca(x)(Ta
R)ijφj(x),

(5.23)

which is a infinitesimal gauge transformation with −ξa(x) →
ca(x). Then gauge invariance implies BRST invariance. In partic-
ular the Yang-Mills lagrangian is BRST invariant, i.e. δBL. We will
restrict the BRST transformation by requiring δ2

B = 0, which de-
termines the ghost field transformation to be δBcc(x) = −1

2 g f abcca(x)cb(x)
(look at δB(δBφi) = 0 to get the transformation. δB(δB Aa

µ) will
is also be zero then) [42].
Now we introduce an antighost field that we call c̄a(x) (indepen-

dent of ca(x)) with the BRST transformation δBc̄a(x) = Ba(x),
with the commuting scalar field Ba(x). Let us now add to our
BRST invariant Yang-Mills lagrangian another term δBO, which
corresponds to fixing a gauge (the gauge depends on our choice of
O), using our introduced fields. We then end up with the same
terms Lgh and Lg f as in the procedure above. Ghost number con-
servation is one symmetry of the new lagrangian, which means
that one assigns ghost number +1 to ca and −1 to c̄a. All other
fields have zero ghost number.
From the infinitesimal BRST transformation we can define the

BRST charge (an operator giving the symmetry) as

QB =
∫

d3xj0B(x), (5.24)
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where jµB(x) is the associated Noether current. The BRST charge
generates a BRST transformation

i[QB, Aa(x)] = Dab
µ cb(x),

i[QB, φi(x)]± = igca(x)(Ta
R)ijφj(x),

i{QB, ca(x)} = −1
2

g f abccb(x)cc(x),

i{QB, c̄a(x)} = Ba(x),
i[QB, Ba(x)] = 0,

(5.25)

where f abc are the structure coefficients. If φi is a scalar field []±
the commutator and if φi is a spinor field then []± is the anticom-
mutator (i.e. [A, B] = AB− BA). As Q2

B = 0 all physical states
lie in the cohomology of QB.
We have now seen the Fadeev-Popov-BRST procedure to get the

measure on A/G, which introduces ghost field ca transforming as
(5.23). The gauge fixing term is δBO for some O.

For our purposes (see chapter 6) we will introduce Aa
µ(x) of

ghost number zero, ghosts ψa
µ(x) of ghost number one with oppo-

site statistics and fields φa(x) with ghost number two with quan-
tum numbers of the generators of the symmetry group. Then, in
the Yang-Mills theory, the anticommuting BRST symmetry Q has
transformation rules given by

[Q, Aa
µ] = ψa

µ(x),

{Q, ψa
µ} = −Dµφa,

[Q, φa] = 0,

(5.26)

where Q2 = 0 on gauge invariant fields ([Q2, Aa
µ] = {Q, [Q, Aa

µ(x)]} =
−Dµφa, which is an infinitesimal gauge transformation generated
by gauge parameter φa of Aa

µ).
More abstractly the transformations in (5.26) can be written

(with δ
gauge
φ ( f ield) being the infinitesimal gauge transformation

generated by φ) as

[Q, f ield] = ghost,

{Q, ghost} = δ
gauge
φ ( f ield),

[Q, φ] = 0.

(5.27)
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We can compare this with the Faddeev-Popov-BRST quantization
(introduced in (5.23)) written in the abstract from

[QB, f ield] = δ
gauge
c ( f ield),

{QB, c} = 1
2

δ
gauge
c ( f ield).

(5.28)

The ordinary BRST symmetry (5.23) can be related to the Lie
algebra cohomology of the gauge group acting on the space of con-
nections and (5.26) can be related to the equivariant cohomology
of the gauge group acting on the space of connections.
The physical observables (gauge invariant operators) are in the

cohomology of Q. As [Q, φa(x)] = 0 and φa(x) is not on the
right hand side of (5.26) we can construct a physical observable of
gauge invariant polynomial in φa(x), as introduced in subsection
5.1.1 (we will use this in chapter 6). Take

Ok,0 = Trφk(x) (5.29)

with ghost number 2k. The derivative of Ok,0 by x is Q-exact by
(d is the exterior derivative)

dOk,0(x) = {Q,Ok,1}, (5.30)

which means that the correlation function and the BRST coho-
mology class of Ok,0 are not dependent of x. This implies that we
can construct a theory that is topologically invariant. In (5.30) the
operator Ok,1 = −kTrφk−1ψ. For a circle C we have

Wk(C) =
∫

C
Ok,1, (5.31)

which is BRST invariant that can be seen using (5.30). One can
use the topological descent equations (5.8) to construct other op-
erators, see that Wk(C) depends only on the homology class of C
and that

Wk(Σ) =
∫

Σ
Ok,2(Σ) (5.32)

is a BRST invariant term that can be added to the lagrangian.

We are now ready to apply the BRST gauge fixing more explicitly
on our two dimensional Yang-Mills path integral Z =

∫
A DAe−SYM .
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First of all, we will write the partition function in a simpler form
of first order

Z =
∫

DADφe−i
∫

Σ Tr(iφF+ e2
2 φ?φ), (5.33)

where φ = ?F is the Lie algebra valued scalar field. The gauge in-
variance of the action S[φ, A] is S[g−1φg, Ag] = S[φ, A], where
φ transforms under the adjoint representation of the gauge group.
Now we need to fix a gauge because of the gauge invariance and

we will use the procedure of BRST gauge fixing. To do this pro-
cedure one introduces an anticommuting one form ψµ and writes
(5.33) as

Z =
1

volC∞(Σ, g)

∫
DADψDφe−i

∫
Σ Tr(iφF− 1

2 ψ∧ψ)−i e2
2
∫

Σ Trφ?φ−i
∫

Σ ?{Q,ψ}.

(5.34)

In (5.34) the ordinary BRST and Faddeev-Popov gauge fixing
terms are introduced. They are defined by the graded BRST com-
mutator of a gauge fermion Ψ = ψµΠµ(x) and Q (the BRST
charge that satisfies Q2 = −iδφ, where δφ is the generator of a
gauge transformation with φ being the infinitesimal parameter).
On the physical states of the quantum field theory (states that

are gauge invariant) Q is nilpotent. The (A, ψ, φ) field multiplet
is the basic multiplet of cohomological Yang-Mills theory. The in-
finitesimal gauge invariance of (5.34) can be written as the in-
finitesimal BRST supersymmetry transformations

δAµ = iεψµ,

δψµ = −εDµφ = −ε(∂µφ + [Aµ, φ]),

δφ = 0,

(5.35)

where we have introduced the anticommuting parameter ε. These
supersymmetric transformations are generated by the graded BRST
commutator δΦ = −i{Q, Φ} for every field Φ in (A, ψ, φ). The
Z-gradings (or ghost quantum numbers) of (A, ψ, φ) are (0, 1, 2).
These results will be used in chapter 6 when we use the local-

ization principle on two dimensional quantum Yang-Mills theory.
The field strength tensor F corresponds to the Hamiltonian and
the fields φ generate the G-equivariant cohomology.



5.3 Yang-Mills Theory 46

5.3.1 Computation of Partition Function

A quite direct way of computing the partition function of two di-
mensional Yang-Mills theory is using a lattice gauge regularization
[33]. In chapter 6, this result will be compared to the predictions
of the localization principle for this type of integral.
We will start by putting everything in the right context. Assume

that H is a compact, simple, connected Lie group with Lie algebra
H. Let H = SU(N) and introduce a positive definite quadratic
form (, ) on H by

(a, b) = −Tr ab (5.36)

where the trace is in the N dimensional representation.
Let Σ be a two dimensional closed oriented Riemann surface of

genus g. Take E to be an H bundle over Σ and take A to be the
space of connections on E, whose tangent space is Λ1(Σ, ad(E))
(ad(E) is the adjoint vector bundle). Then, one can define a sym-
plectic form on A by

ω(a, b) =
1

4π2

∫
Σ

Tr(a ∧ b). (5.37)

Let the group of gauge transformations on E be G and its Lie
algebra g be the space of ad(E)-valued zero-forms. G acts sym-
plectically on A, with a moment map given by

µ(A) = − F
4π2 . (5.38)

A is the connection and F the ad(E)-valued curvature two-form
given by F = dA + A ∧ A. Therefore, µ−1(0) consists of flat
connections. µ−1(0)/G is the moduli spaceM of flat connections
on E up to gauge transformation.
Pick a measure µ on Σ with total area 1. This gives a metric (or

quadratic form) (a, a) = −
∫

Σ dµTr a2 on g and thereby deter-
mines a quadratic form on the dual of g as (F, F) = −

∫
Σ dµTr f 2,

where f = ?F (the Hodge star operator ? depends only on a mea-
sure, not a metric, in two dimensions).
We can now write down the partition function of two dimen-

sional quantum Yang-Mills theory on the surface Σ as

Z(ε) =
1

vol(G)

∫
A

DAe−
1
2ε (F,F), (5.39)
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where DA is the symplectic measure on A and ε ∈ R.
The Yang-Mills theory can be written slightly different then we

just have done, as mentioned above. If we let

L = −ε2

2

∫
Σ

dµTrφ2 − i
∫

Σ
TrφF (5.40)

then we can integrate over φ and get back 1
2ε2

∫
Σ Tr f 2. The good

thing about (5.40) is that we can take ε→ 0 which gives

L = − i
4π2

∫
Σ

TrφF. (5.41)

This is a topological field theory and it is related to the Ray-Singer
analytic torsion [43].
Depending on the regularization used to define the theory the

partition functions can differ as

Z′ = Zet
∫

Σ dµ+v
∫

Σ dµ R
2π , (5.42)

where the two terms in the exponential are the volume and the
Euler characteristic and t, v are constants. In chapter (6) the con-
stants will be fixed such that t gives the right eigenvalues of the
Hamiltonian and v to get agreement with the Ray Singer torsion.
We will now turn to compute the partition function of the Yang-

Mills theory using a combinatorial approach. We can do a finite
dimensional approximation using lattice gauge theory [44, 33]. In
this approach one covers Σ with polygons and restricts E to the
finite set S of vertices of the polygons. In this step we loose the
topology of E and we will get a partition function summed over
all kind of G bundle topology on Σ.
The lattice gauge transformations are a map S→ G. We pick a

group element gx ∈ G to every x ∈ S and only takes into account
parallel transport along polygon edges.
Let the edge of a polygon between x and y be denoted γ and

assign group element Uγ to the edge. Uγ is the parallel transport
operator from x → y, regarded as a map Ex → Ey. It transforms
as Uγ → gyUγg−1

x under gauge transformations.
It is possible (in two dimensional Yang-Mills theory) to write the

lattice gauge theory such that Z is invariant under subdivision of
the lattice [45, 33]. We will show this below.
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Let us start by writing the integrand as

e−
∫

Σ L = Πie
−
∫

ωi
Li , (5.43)

were ωi are the plaquettes (the interior of the polygons) dividing
up Σ. We can see that the integrand is a product of local factors.
In the continuum limit we need to pick a measure, therefore we

are interested in defining a lattice version of it. Let ρi be the area
of each plaquette and by summing over them we get the total area
ρ. From the connection elements assigned to each edge we can
build the holonomy

U = U1 . . . Un. (5.44)

The conjugation class of the holonomy is gauge invariant and the
local factors on the plaquettes are class functions of the holonomy.
This then says that they are linear combination of group char-
acters χα(U ), which constitutes the basis of the class functions.
The character is the trace of U in the α-representation. The local
factors proposed by [45] can be written as

Γ(U , ρω) = ∑
α

dimαχα(U )e−ρωc2(α)/2, (5.45)

where c2 is the quadratic Casimir operator associated with the
quadratic form on H. The quadratic Casimir is used because we
have a Lagrangian density Tr f 2 quadratic in f in the continuum
limit. As ρ→ 0 then ∑α dimαχα(U ) = δ(U − 1).
As a reminder, the Casimir operator is a function of the gen-

erators on a semisimple n-dimensional Lie algebra, with basis
{Ta}n

i=1, that commutes with all the generators; c2 = ∑n
i=1 TaTa,

and there are as many Casimir operators as the rank of the group.
For example, in SU(2) there is one Casimir operator; c2 = 3/4I.
The constant proportional to the identity can be used to classify
the representations and is often related to the mass or (iso)spin.
Here, the constant is the "square" of total (iso)spin T2 = t(t+ 1)
for t = 1/2.
Given this local factors we can write down a theory that is

invariant under subdivision of the surface. First pick a polygon
cover of the surface. Then the integral of the lattice approximation
given the Haar measure dUγ with volG = 1 is

ZΣ,X(ρ) =
∫

ΠγdUγΠiΓ(Ui, ρi). (5.46)
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Imagine now a square with area ρ that is divided up in two trian-
gles with areas ρ′ and ρ′′ with the extra edge V being the diagonal
of the square. Then for the square

Γ = ∑
α

dimαχα(U1U2U3U4)e−ρc2(α)/2 (5.47)

and for the two triangles

Γ′Γ′′ = ∑
α,β

dimαdimβχα(U1U2V)χβ(V−1U3U4)e−ρ′c2(α)/2−ρ′′c2(β)/2.

(5.48)

We now want to show that
∫

dVΓ′Γ′′ = Γ as this gives ZΣ,X =
ZΣ,X′ . This is shown by the use of the formula∫

dVχα(UV)χβ(V−1W) = δαβ
1

dimα
· χα(UW). (5.49)

Let us now try to compute the partition function ZΣ(ρ) with
Σ being orientable of genus g. As we have just shown that it is
invariant under subdivision we can divide the surface however we
like. In particular it can by covered by one polygon of 4g number
of sides (see figure 7.6). Then

Zg(ρ) = ∑
α

dimαe−ρc2(α)/2
∫

dUidVjχα(U1V1U−1
1 V−1

1 . . . UgVgU−1
g V−1

g ).

(5.50)

Using (5.49) and
∫

dUχα(VUWU−1) = 1
dimα χα(V)χα(W) we

get the Yang-Mills partition function on Σ (orientable surface of
genus g) to be

Zg(ρ) = ∑
α

e−ρc2(σ)/2

(dimα)2g−2 . (5.51)

This result can be rederived relating it to quantum field theory
and Hilbert space. Let us instead cut the surface Σ through the
circle C into ΣL and ΣR with areas ρL and ρR respectively [33]
and cover them by polygons. We cover C with a single one-cell and
attach the group element U to C (in general the holonomy around
C). On ΣL and ΣR we assign group variables UL,γ and UR,δ to
their edges. Integrating over UR,δ gives a function ΨR(U) (for U
fixed) given by

ΨR(U) =
∫

dUR,δΠωi∈ΣRΓ(Ui, ρi). (5.52)
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Figure 5.3: The orientable surface of genus g can be obtained by
gluing the edges of a polygon with 4g sides, here shown
for g = 2 [34].

Integrating over UL,γ gives

ΨL(U−1) =
∫

dUL,γΠωi∈ΣLΓ(Ui, ρi). (5.53)

ΣL and ΣR are class functions because they are gauge invariant;
ΣL(AUA−1) = ΣL(U) and ΣR(AUA−1) = ΣR(U).
To get ZΣ(ρ) we integrate over U:

ZΣ(ρ) =
∫

dUΨL(U−1)ΨR(U) =
∫

dU ¯ΨL(U)ΨR(U)

(5.54)

Introduce the Hilbert space of class functions on G with the
inner product ( f , g) =

∫
dU ¯f (U)g(U) in which ΨL and ΨR

are vectors. The partition function then is

ZΣ(ρ) = (ΨL, ΨR). (5.55)

Using that the characters constitute a orthogonal basis of the
Hilbert space, a results from representation theory, we can write

(ΨL, ΨR) = ∑
σ

(ΨL, χσ) · (χσ, ΨR). (5.56)

The partition function in a more general setting, with circles
C1, . . . , Cn making up the boundary with holonomies U1, . . . Un
can then be written changing the first version by multiplication of
a character giving

ZΣ(ρ) = (ΨL, ΨR) = ∑
σ

(ΨL, χσ)(χσ, ΨR). (5.57)
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Doing this rederivation of associating a Hilbert space with each
circle gives the structure predicted from canonical quantization of∫

Σ dµTr f 2 (described above), which predicts to give the Hilbert
space of class functions that we have described [33].

Figure 5.4: A three holed sphere

Next pick a surface Σ of genus greater than 1. This can be
divided into 2g− 2 pieces of three holed spheres (see figure 5.4)
cutting 3g− 3 circles. First we compute the partition function of
a three holed sphere picking convenient covering using a similar
method as above to be

Z3(ρ; α, β, γ) =
e−ρ0c2(σ)/2

dimα
δαβγ (5.58)

Then, the partition function of an orientable surface of genus g is
again

Zg(ρ) = ∑
α

e−ρc2(σ)/2

(dimα)2g−2 , (5.59)

where every three holed sphere contributes a factor 1/dimα.



6
TWO DIMENS IONAL GAUGE THEORY AND
LOCAL IZAT ION

In this chapter we will discuss how to apply the equivariant lo-
calization formalism to field theories. We will generalize the DH-
formula of chapter 4 to an infinite dimensional setup in quantum
field theory following the work by Witten [14]. More explicitly, we
will study the partition function Z of two dimensional quantum
Yang-Mills theory where we have a non-abelian action. We will
define how to perform equivariant integration and use the localiza-
tion principle of chapter 4 to show that the partition function can
be written as a sum over the critical point set. We will map topo-
logical Yang-Mills theory to physical Yang-Mills theory, which can
be seen as the localization in physical language. This can explain
why in two dimensional quantum Yang-Mills theory one finds that
the partition function Z(ε), expanded in powers of ε, has finitely
many terms (Z(ε) is not a polynomial but contains exponentially
small terms, explained as unstable classical solutions). It will be
shown using localization that one can relate Z(ε) at ε 6= 0 to the
topology of moduli spaces of flat connections.

6.1 equivariant integration and localization prin-
ciple

Assume that we now have an action on a manifold X given by a
compact, connected Lie group G, with Lie algebra G, generating
a vector field Va on X. The Hamiltonian functions µa can be put
together into µ : X → G∗. In this case we consequently have
a collection of G-invariant functions so we need to modify the
partition function in classical statistical mechanics (4.33) to

Z =
∫

X

ωn

n!
e

1
2ε (µ,µ), (6.1)

where I = (µ, µ) is an invariant quadratic form on G.
As in the abelian case, Z can be expressed as a sum over the crit-

ical points. To explain this we need to introduce a way to integrate

52
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equivariant differential forms. Usually one considers the pushfor-
ward Λ∗G(X) → Λ∗G(pt) by integrating over X, i.e. α →

∫
X α.

However, we want the operation given by

α→ 1
vol(G)

∫
G×X

dφ1 . . . dφs

(2π)s α, (6.2)

which map Λ∗G(X)→ C in analogy with normal de Rham integra-
tion. 1

vol(H)
dφ1 . . . dφs is a natural measure on G, where φ1 . . . φs

are Euclidean coordinates on G so that the measure on G agrees
with the Haar measure chosen at the identity of G. The Haar
measure is a G-invariant measure on G.
The integral in (6.2) does however not converge in general. We

therefore need to multiply by a convergence factor e−
ε
2 (φ,φ). This

will give the definition of equivariant integration∮
X

α =
1

vol(G)

∫
G×X

dφ1 . . . dφs

(2π)s αe−
ε
2 (φ,φ). (6.3)

When mapping Λ∗G(X) to C most of the information is lost. To
recover the information one can look at both

∮
α and

∮
αQ(φ)

with Q ∈ Λ∗G(pt), an arbitrary G invariant polynomial on G.

Example 6.1 (Equivariant integration over of point). As a first
example we look at the G action on a point with α = 1. This gives∮

pt
1 =

1
vol(G)(2πε)s/2

, (6.4)

using (2.17). This illustrates how the singularities of the action and
the singularities of the equivariant integral are related by functions
of ε.

As we now have a notion of integration, we shall turn to the
localization principle in this setting. In chapter 4 we found that
we could calculate the integral

∫
α (α being an equivariantly closed

form) by multiplying it with e−tDω, where D2ω = 0 to ensure
t-independence. By the same arguments we have∮

α =
∮

αetDλ. (6.5)

We here call the G-invariant one-form λ and D = d− i · iV(φ).
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In chapter 4 we explicitly calculated the integral by taking the
limit t → ∞ and the integral localized on the fixed points of
the action. We will now explain the generalization to the infinite
dimensional setting.
Let Ta be an orthonormal basis of the Lie algebra G and V(φ) =

∑a φaVa. Then∮
α =

1
vol(G)

∫ dφ1 . . . dφs

(2π)s αe−tdλ−itφaλ(Va)− ε
2 ∑a(φ

a)2

=
1

vol(G)(2πε)s/2

∫
X

αe−tdλ− t2
2ε ∑a(λ(Va))2

,
(6.6)

where in the line we performed the gaussian integral over φ assum-
ing α is independent of φ and we have written iV(λ) as λ(V).
Take X′ ⊂ X on which λ(Va) = 0 (a = 1, · · · , s). We can

write X′ as a union of its connected components Xσ:

X′ = ∪σ∈SXσ, (6.7)

with S being the set of these components. Then take W ⊂ X such
that W ∩ X′ = ∅
As (6.6) is independent of t we can take the limit t→ ∞ leaving

only contributions from Xσ introduced above as the integral over
W vanishes as e−kt2

with k a positive constant. Then the integral
can be written as ∮

X
α = ∑

σ∈S
Zσ, (6.8)

where Zσ are the integral over a tubular neighborhood of Xσ. We
have found that Z can be express as a sum over the critical point
set.

6.1.1 Stationary Phase Arguments

The argument just explained can be reformulated using the station-
ary phase method (see for example [46], chapter 7). The stationary
phase method is used here to compute the integral in the first line
of (6.6) in the large t limit (without integrating over φ) to show
that Zσ is a polynomial in ε. We will do this in the following.
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Except from etdλ, in the first line of (6.6), t only appears in
e−itK with K = φaλ(Va) on X×G. This means that we have the
conditions

λ(Va) = 0, (6.9)

φad(λ(Va)) = 0, (6.10)

for the condition of critical points dK = 0.
There is an invariance of the equations under scaling φa, as φ

takes its values in a vector space that can be contracted to the
origin. This means that we can set φ = 0, i.e. the components of
the critical point set of K is the same as Xσ introduced above. So,
the components of the critical point set of K will make the same
contribution of the first line of (6.6) as Xσ does to the second line
of (6.6) when t→ ∞.
The scaling invariance leads to the fact that the critical point set

of K is compact when that of Xσ is [14]. The compactness of the
critical point set of K means that we don’t need the convergence
factor in (6.6) and thereby the integral has a limit for ε → 0.
Stationary phase integration principles say that the integral will
have finitely many terms and Zσ will be a polynomial in ε. This
is an important result we will use later on.
We will now explain this more explicitly. When G acts freely on

Xσ then H∗G(Xσ) ' H∗G(Xσ/G). Assume that Y is an equivari-
ant tubular neighborhood of Xσ, so

H∗G(Y) ' H∗G(Xσ) ' H∗G(Xσ/G). (6.11)

Let π : Y → Xσ/G and π∗ : H∗G(Xσ/G) → H∗G(Y) be the
pullback. We can then write

−(φ, φ)

2
= π∗(θ) + Dω, (6.12)

with −(φ,φ)
2 ∈ H4

G(X), ω ∈ Λ3
G(Y) and θ ∈ H4

G(Xσ/G). θ is
a characteristic class of µ−1(0).
As the components of the critical point set of K is equal to the

components Xσ we can calculate the contribution of Xσ to
∮

α as∮
α =

1
vol(G)

∫ dφ1 . . . dφs

(2π)s αe−tdλ−itφaλ(Va)− ε
2 ∑a(φ

a)2 · u

(6.13)
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using the stationary phase in which the integral of (6.6) is multi-
plied by u - a smooth function invariant of G zero outside of Y
and 1 otherwise. The contribution Zσ can be calculated with the
substitution

e−
ε
2 (φ,φ) → eεθ (6.14)

using (6.12). We then see that Zσ is a polynomial in ε at most of
order 1

4dim(Xσ/G). We can also make the substitution

α→ α′ (6.15)

for α ∈ H∗G(X) and α′ ∈ H∗(Xσ/G). That we can do these sub-
stitutions will be important in the calculations of next subsection.

6.1.2 Contribution of Flat Connections to the Equivariant Inte-
gral on a Symplectic Manifold

Let us now look at equivariant integration over a symplectic man-
ifold X acted on by the group G with the moment map µ. As
we will see, this integral can be written as a sum over the critical
points of I = (µ, µ). We want to calculate the contribution of
µ−1(0) (the minimum of I = (µ, µ)) to∮

α =
1

vol(G)

∫ dφ1 . . . dφs

(2π)s

∫
X

αetDλ− ε
2 (φ,φ) (6.16)

on (X, ω), which gives the dominant contribution as ε → 0. As-
sume that µ−1(0) is smooth and acted on freely by G then con-
tribution of µ−1(0) to

∮
X α is

Z(µ−1(0)) =
∫

µ−1(0)/G
α′eεθ (6.17)

The quotient space µ−1(0)/G (introduced in chapter 5) is called
the symplectic quotient of X and is a symplectic manifold. We will
show how to get (6.17) in what follows.
We start by showing that the integral can be written as a sum

over the critical points of I = (µ, µ). As we have seen the integral
(6.16) localizes on λ(Va) = 0 by the argumentation after (6.6).
Now we like to show that λ(Va) = 0 implies dI = 0.
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Let J be an almost complex structure on X and ω be positive
(the metric g(u, v) = ω(u, J, v) is positive definite) and of type
(1, 1). Let

λ =
1
2

J(dI). (6.18)

On critical points of I, λ = 0 meaning that λ(Va) = 0. We want
the other way around to hold.
Assume Y = ∑a µaVa and use dµa = −iVa(ω) to get Y =

1
2ω−1dI. λ(Va) = 0 gives λ(Y) = 0 or ω−1(dI, JdI) = 0.
ω−1(dI, JdI) = 0 holds only for dI = 0 as the metric is positive
definite. This means that λ(Va) = 0 implies dI = 0, i.e. on
symplectic manifolds the integral localizes to the the critical points
of I using this particular λ.
We will now go on to calculate the contribution of µ−1(0) to

the integral (6.16) making use of (6.14) and (6.15). To see that the
condition to use (6.14) holds see [p.23, [14]].
Assume that Y is an equivariant tubular neighborhood of µ−1(0)

and that the equivariant projection is π : Y → µ−1(0)/G com-
posed of Y → µ−1(0) and ψ : µ−1(0)→ µ−1(0)/G.
To study the integral (6.16) we will integrate over the fibers of π

to reduce it from an integral over Y to an integral over µ−1(0)/G.
As −(φ, φ)/2 and α ∈ H∗G(Y) are pullbacks by π of θ and α′

we see that all terms in (6.16) is a pullback through π but etDλ.
Performing the integration over the fibers of π means that we
substitute −(φ, φ)/2 and α using (6.14) and (6.15). What is left
to calculate is the integral∫ dφ1 . . . dφs

(2π)s

∫
π−1(pt)

etDλ. (6.19)

This is 1 as t→ ∞ by the following arguments. π−1(pt) is fibered
on G ' ψ−1(pt) and the G action on π−1(pt) can be modeled on
a neighborhood of G ⊂ T∗G. T∗G can be seen as G ×G. Written
with g× γ ∈ G × G the symplectic form is ω = (dγ, dgg−1) +
(γ, dgg−1dgg−1). In this setting λ = 1

2 J(dI) = (γ, dgg−1).
We can now write down Dλ and change variables as φ to g−1φg

to get −i(γ, φ) (dγ,dgg−1)n

n! .
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To calculate (6.19) first calculate the φ integral using
∫ ∞
−∞ due−iuv =

2πδ(v) and then calculate the γ integral over the delta functions.
This gives 1. Thereby, we can write down the result as

Z(µ−1(0)) =
∫

µ−1(0)/G
α′eεθ, (6.20)

getting the result stated above. This will be important for later
calculations.

6.2 localization in quantum field theory lan-
guage

So far, we have shown how the localization principle works. We will
now continue by putting everything in the context of quantum field
theory. Then we will show how we can map topological to physical
Yang-Mills theory and how to interpret the partition function.

Let the local coordinates on the compact manifold X be xi and
anticommuting variables tangent to X be ψi. Let D be the equiv-
ariant exterior derivative (introduced in chapter 3) given by

D = ψi ∂

∂xi − i ∑ φaVi
a

∂

∂ψi (6.21)

and write the equivariant integration as∮
X

α =
1

vol(G)

∫
X

dxidψi
∫
G

dφ1 . . . dφs

(2π)s αe−
ε
2 (φ,φ). (6.22)

Note that we now have a natural integration measure dxidψi on X
because the Jacobians of the odd and even variables cancel when
changing variables (as explained in chapter 2).
Now, choose λ = ψibi(x). After integrating over φ and insert-

ing dλ we have∮
X

α =
1

vol(G)(2πε)s/2

∫
X

dxidψiαet ∑i,j ψiψj∂ibj− t2
2 ∑a(Vi

abi)
2
.

(6.23)

As before, the integral localizes around solutions of Vi
abi = 0

(a = 1, . . . , s) as → ∞.
Let us now look at the symplectic manifold (X, ω) with ω =

1
2ωijψ

iψj. The choice of λ implies that the integral localizes on
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the set of critical points, i.e. where ∂I = 0 with I = ∑a µ2
a (done

similarly to what we saw in 6.1.2).
Let’s now choose an α of the form:

α = e
1
2 ωijψ

iψj−iφaµa β. (6.24)

With the ω introduced above and with β = 1 we get the standard
Liouville measure when integrating over ψ. This is done using
(2.18) to get

√
detω normally written as ωn

n! .
Integrating over φ gives∮

α =
∫

X

ωn

n!
e−

1
2ε (µ,µ). (6.25)

In (6.25) we expect critical points c to contribute as e
−I(c)

2ε and we
see that solutions µ = 0 (the absolute minimum of I) give the
dominant contribution.

6.3 gauge theory of cohomological type

We will now look at cohomological Yang-Mills theory and find the
relation of the contribution of solutions µ = 0 of the partition
function of two dimensional Yang-Mills theory with the cohomol-
ogy of M = µ−1(0)/G by a map from cohomological gauge
theory to physical field theory (compare result found in 6.1.2).
Will will now take the space X above to be the space of connec-

tions A on a vector bundle E over the two dimensional Riemann
surface Σ. Assume that E has a compact structure group H and
let G be the group of gauge transformations of E. Let A be the
gauge field and replace the x’s above with A. Let ψ be an one
form in ad(H) and φ a zero form on Σ.
Cohomological Yang-Mills theory have the multiplet (A, ψ, φ)

introduced in 5. The BRST supersymmetry transformation laws
are given by (5.35) but we repeat them again for convenience. Let
ε is an anticommuting variable then

δA = iεψ

δψi = −εDiφ = −ε(∂iφ + [Ai, φ])

δφ = 0

(6.26)
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(compare δxµ = ψµ, δψi = Vµ(x) from the finite dimensional
case in chapter 4). Using the exterior equivariant derivative we can
write the relations as δΦ = iDΦ or δΦ = −i{Q, Φ}, where Q
is the BRST operator (so Q = −D and Q2 = D2 = 0 up to
gauge transformations)
As before (A, φ, ψ) have ghost numbers (0, 1, 2). To write a

Lagrangian with Q symmetry we additional multiplets. These can
be written as pairs (u, v) with ghost numbers (n, n + 1) and
opposite statistics transforming as

δu = iεν

δν = ε[φ, u].
(6.27)

These are analogous to the antighost multiplets introduced in
usual BRST quantization. There is a lot of freedom in the antighost
choice, we just need to pick them such that a good lagrangian can
be written. We will add (λ, η) and (χ,−iH) with ghost numbers
(−2,−1) and (−1, 0) respectively. λ is a commuting field and χ
an anticommuting field.
Let us pick a Lagrangian L as

L = −i{Q, V} = 1
h2

∫
Σ

dµTr(
1
2
(H − f )2 − 1

2
f 2 − iχ ? Dψ

+iDiηψi + DiλDiφ +
i
2

χ[χ, φ] + i[ψi, λ]ψi),

(6.28)

with

V =
1
h2

∫
Σ

dµTr(
1
2

χ(H − 2 ? F) + gijDiλψj). (6.29)

Here g is the metric on Σ, µ is the measure and F is the Yang-Mills
field strength with f = ?F = 1

2εijFij. This V is gauge invariant
which make the lagrangian Q-invariant. The kinetic energy of all
fields in V is nondegenarate. This choice of lagrangian is a topo-
logical field theory and independent of the coupling parameter h
(see explanation in chapter 5).

We can delete (H− f )2 from L through the equation of motion
H = f . In the limit as h → 0 we can expand the lagrangian
around F = 0 to get the solution. The scalar energy is minimized
by Diφ = 0 if λ = φ̄. When A is an irreducible solution of F = 0
then φ = 0.



6.3 Gauge Theory of Cohomological Type 61

Let us denote the space of solutions to F = 0 and Diφ = 0
as U . In the limit h→ 0 the integral localizes to an integral over
U . For H and E with only irreducible solutions of F = 0, U is
equal to the moduli spaceM (the space of flat connections on E
up to gauge transformations) and the correlation functions can be
written, in more mathematical language, as intersection pairings
onM [47]. If we have reducible connections then we can get zero
modes of φ and λ = φ̄ [37]. Therefore we want to eliminate these
fields as U andM might not be equal then.
We will now turn to the task of mapping the given theory with

L as in (6.28) to a physical Yang-Mills theory. We will start this by
letting V → tV′. Then the new theory with L(t) = −i{Q, V +
tV′} is independent of t if L(t) still has a non degenerate kinetic
energy and that there are no new fixed points (solutions of δχ =
δψ = 0). Here we will not fulfill the last condition. This means
that the fixed point set will have one componentM (U in general)
and then the new extra component Mα. The path integral will
then be a sum overM andMα. We will find a way to disentangle
the contributions of the two.
We will begin by eliminating λ from the theory. Pick

V′ = − 1
h2

∫
Σ

dµTrχλ. (6.30)

The lagrangian is

L(t) = −i{Q, V + tV′}

=
1
h2

∫
Σ

dµTr(
1
2
(H − λt− f )2 − 1

2
(λt + f )2 + iχ ? Dψ

+ iDiηψi − DiλDiφ +
i
2

χ[χ, φ] + i[ψi, λ]ψi).

(6.31)

We can integrate out H by H − λt− f = 0. λ, χ, η can be inte-
grated out too, with λ = − f

t , leaving a local lagrangian written
as

L′(t) =
1
h2

∫
Σ

dµTr(
1
t
(Di f Diφ + i f [ψi, ψi]− iDlψ

lεijDiψj)

+
1
t2 (Dlφψl[Dkψk, φ] +

1
2
(−DkDkφ + i[ψk, ψk])2)).

(6.32)
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In L = −i{Q, V} given by (6.28) (the standard cohomological
lagrangian) the BRST invariant operators have correlation func-
tions given by the cohomology of M. This can be perturbed to
L′(t) (given by (6.32)) that still has the BRST symmetry and is
written in terms of (A, ψ, φ) only.

It is not sure that L in (6.28) and L′(t) in (6.32) is equal as
we can have the new componentsMα. We like to study L′(t) in
(6.32) by putting t = −iu which gives L′′(u). Considering the
terms of 1/u we get

L′′(t) =
i

h2u

∫
Σ

dµTr(Di f Diφ + i f [ψi, ψi]− iDlψ
lεijDiψj).

(6.33)

This gives the Feynman path integral

1
vol(G)

∫
DADψDφe−L′′(u). (6.34)

Integrating (6.34) over φ we get∫
Dφe

i
h2u

∫
Σ dµTrφDiDi f ∼ Πx∈Σδ(DiDi f ) (6.35)

The path integral therefore localizes on

0 =
∫

Σ
dµTr f DiDi f = −

∫
Σ

Tr(Di f )2 (6.36)

or equivalently

0 = Di f , (6.37)

which are the Yang-Mills equations. The solutions are f = 0 and
f 6= 0 on higher critical points. The space of these solutions is
constructed out of M (with f = 0) and Mα with the higher
critical points.
The correlation functions

〈
O
〉
computed in (6.28) and

〈
O
〉′

computed in (6.33) might not be equal because ofMα. We will
now discuss a situation where they are equal.
First we introduce two BRST invariant operators

ω =
1

4π2

∫
Σ

Tr(iφF +
1
2

ψ ∧ ψ)

θ =
1

8π2

∫
Σ

dµTrφ2.
(6.38)
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Then we compute their correlation function as〈
exp ω + εΘ

〉′
=

1
vol(G)

∫
DADψDφβe

1
h2u
{Q,
∫

Σ dµψkDk f }+ 1
4π2

∫
Σ Tr(iφF+ 1

2 ψ∧ψ)+ ε
8π2

∫
Σ dµTrφ2

,

(6.39)

which is u-independent. Let us set ”u = ∞” and by this go to
physical Yang-Mills theory as the first term of the exponent in
(6.39) vanishes. We can here calculate the correlation functions
using two dimensional Yang-Mills theory just found with the la-
grangian

L(A, ψ, φ) =
∫

Σ
Tr(−iφF− 1

2
ψ ∧ ψ)− ε

8π2

∫
Σ

dµTrφ2.

(6.40)

Let us turn to the case where ε = 0 (can extract all topological
information there, see chapter 5). Put β = 1. Integrating over φ
gives δ(F) and there are no higher critical points (even for β 6= 1)
so the correlation functions are equal, i.e

〈
eωβ

〉
=
〈
eωβ

〉′.
Let us now turn to the case where ε 6= 0. We can integrate over

ψ as before and then integrate over φ. This gives the path integral
of two dimensional Yang-Mills theory:〈

eω+εΘ〉′ = 1
vol(G)

∫
DAe−

2π2
ε

∫
Σ dµTr f 2

. (6.41)

At ε 6= 0 and β = 1 the correlation functions might not be the
same, as we haveMα. These higher critical points contributes as
I = −

∫
Σ dµTr f 2 with f 6= 0 and we can write

1
vol(G)

∫
DAe−

2π2
ε

∫
Σ dµTr f 2

=
〈
eω+εΘ〉+ O(e−2π2c/ε),

(6.42)

where c is the lowest value of I of the higher critical points.
In chapter 5 we saw that in a cohomological field theory one

builds operator out of BRST invariant polynomials. We can build
an operator which is not Q-exact as O(0)

T (P) = T(φ(P)), where
T is an invariant polynomial on Lie algebra H and P ∈ Σ. We
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can then build the observables of the theory from these operators,
with Fa being the components of the curvature F, as

T(0) = O(0)(P)→
∫

Σ
dµT(φ),

T(1)(C) = −
∫

C

∂T
∂φa ψa,

T(2)(Σ) =
∫

Σ

(
i

∂T
∂φa Fa +

1
2

∂2T
∂φa∂φb ψa ∧ ψb

)
.

(6.43)

6.4 comparison of localization principles and
yang-mills theory

Until now we have looked at cohomological gauge theory that we
mapped to physical Yang-Mills theory. Now we like to compare
localization principles from section 6.1 with two dimensional Yang-
Mills theory.
As we saw in chapter 5 the partition function of of Yang-Mills

theory at ε = 0 can be written as a topological field theory with

L = − i
4π2

∫
Σ

TrφF, (6.44)

which is related to the Ray Singer torsion. We also found that
the Yang-Mills partition function on a trivial bundle to be given
by (5.51). Thereto, we mentioned that the regularization used to
define the theory can differ as (5.42) so we really should be writing

Z = v ·∑
α

1
(dimα)2g−2 (6.45)

without the Casimir operator for the topological field theory. v
should now be adjusted such that the theory agrees with the Ray
Singer torsion. This gives [14]

Z(Σ) =
(

vol(H)

(2π)dimH

)2g−2

∑
α

1
(dimα)2g−2 . (6.46)

Moreover, Z is related to vol(M) by

Z = vol(M)/#Z(H) (6.47)
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(#Z(H) is the symmetry of the connection, the number of elements
in center of H) [14, 33]. The volume of M can then be written
directly as

∫
M

eω =
∫
M

ωn

n!
= #Z(H)

(
vol(H)

(2π)dimH

)2g−2

∑
α

1
(dimα)2g−2 .

(6.48)

The topological interpretation is that each differential form repre-
sents the Poincaré dual of a homology cycle and the integral gives
the intersection number of the homology cycles. Thus the integral
gives the intersection pairings on the moduli space.

6.4.1 Calculation of Twisted Partition Function

We will now drop the assumption that the gauge group is simply
connected and look at groups with non-trivial π1. We still let E
be the trivial H bundle.
Assume that Γ ⊂ Z(H), where Z(H) is the center of H, and

that H′ = H/Γ is the gauge group. We let E′ be the principle H′

bundle over Σ. The possible bundles are defined by the choice of
the monodromy u ∈ Γ as we will see in the following.
The principal bundle E′ is trivial restricted to Σ − P (P is a

point on Σ) and one can lift E′ to the trivial H bundle E. We let
A′ be the connection on E′ and we can lift A′ to A on E when on
Σ− P. A doesn’t need to be smooth over P and the monodromy
u ∈ H of A around P projects to the identity element of H′.
However, A′ is smooth over P and u ∈ Γ. The monodromy u is a
topological invariant of E′.
We now turn our attention to the non-singular cases. We will

look at the space of flat connectionsM′(u) on E′ being smooth
and the gauge group acts freely on it. We have the Riemann surface
Σ of genus 1 or higher, H = SU(N), H′ = H/Γ (with Γ being
the center of SU(N)) and u its generator.
We want to integrate the path integral for H′

Z̃(Σ) =
1

vol(G′)

∫
DA′Dφe−L (6.49)
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by relating the A′-integral to the A-integral. We need the rela-
tion between the volumes of G′ and G. We will make use of the
following relations [14]

Vol(G) = #Γ1−2gvol(G′),
Vol(H) = #Γ · vol(H′),
#Z(H) = #Γ · #Z(H′),

#π1(H′) = #Γ.

(6.50)

We also need to know how the singularity at P affects. Let us
cut out disk D from Σ with P ∈ D. The monodromy about P
given by u ∈ Γ says that the monodromy U around C should be
u and not 1 as before. We must therefore replace δ(U − 1) =

∑α dim(α)χα(U) used to get the result of the partition function
in (6.46) with

δ(U − u) = ∑
α

dimαχα(U)λα(u−1). (6.51)

We will now calculate the twisted partition function Z̃(Σ, u).
First we notice, by the arguments above, that Z(Σ, u) on Σ− P is
given by multiplying every representation α by λα(u−1) in (6.46).
Using this and (6.50) we get the result for the twisted partition
function

Z̃(Σ, u) =
1

#π1(H′)

(
vol(H′)

(2π)dimH′

)2g−2

∑
α

λα(u−1)

(dimα)2g−2 .

(6.52)

As before, the volume ofM′(u) can be written down directly
as ∫
M′(u)

eω =
#Z(H′)
#π1(H′)

(
vol(H′)

(2π)dimH′

)2g−2

∑
α

λα(u−1)

(dimα)2g−2 .

(6.53)

6.4.2 The Interpretation of Yang-Mills theory using Localization

We will now look at the physical Yang-Mills theory introduced
earlier with the lagrangian

L = − i
4π2

∫
Σ

TrφF− ε

4π2

∫
Σ

dµTrφ2, (6.54)
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where ε ∈ R+. After integrating the path integral with the la-
grangian in (6.54) we get the lagrangian

I = − 1
8π2ε

∫
Σ

dµTr f 2, (6.55)

which defines the same theory.
The partition function, with I ∝ (F, F) = −

∫
Σ dµTr f 2, is on

the exact form (6.1) that is governed by the localization principle.
One can interpret I as the square of the moment map. The critical
points of I are the solutions to the Yang-Mills equations (6.37).
The solutions of (6.37) are f = 0 and higher critical points f 6= 0.
For the higher critical points f gives a reduced structure group
H0 that commutes with f and the solutions are flat connections
twisted by constant curvature line bundles in the U(1) subgroup
generated by f .
The partition function of the twisted bundle E′(u), with the

Hamiltonian H = ε′
2 c2 + tε′ (ε′ = 4π2ε) using canonical quan-

tization, is

Z̃(Σ, ε; u) =
1

#π1(H′)

(
vol(H′)
(2π)dimH

)2g−2

∑
α

λα(u−1)e−ε′C2(α)/2+ε′t

(dimα)2g−2 .

(6.56)

t is the parameter introduced in chapter 5 that appears because
of different ways of defining the path integral.
Now we turn our attention to comparing (6.56) with localization

predictions in the beginning of this chapter. We will do this in the
two following examples.

Example 6.2 (H = SU(2)). In this example we will start by
writing down the partition function with gauge group H=SU(2).
Then we will rewrite the result as a sum over critical points to put
it in the right context of the localization principle.

To write down the partition function we need the value of the
Casimir operator. As this group has one n-dimensional irreducible
representation αn for every n we can write the Casimir operator
as c2(αn) = (n2 − 1)/2. Let t = 1/4 to get the eigenvalues of
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the Hamiltonian to be ε′n2/4. Here, vol(SU(2)) = 25/2π2 and
dimSU(2) = 3. This gives the partition function

Z(Σ, ε) =

(
25π4

(2π)6

)2(g−1) ∞

∑
n=1

1
n2g−2 e− εn2/4

=
1

(2π2)(g−1)

∞

∑
n=1

1
n2g−2 e

−εn2
4 .

(6.57)

If f 6= 0 in the Yang-Mills equations the structure group is
reduced to U(1) and from line bundle classifications we get the
conjugacy class of f is

f = 2πm

(
i 0
0 −1

)
, (6.58)

were m is an integer. I at these critical points gives

Im =
(2πm)2

ε′
(6.59)

Now we want to write the partition function as a sum of over
the critical points. Start by looking at

∂g−1Z
∂εg−1 =

(−1)g

(8π2)g−1

∞

∑
n=1

e
−εn2

4 =
(−1)g

2(8π2)g−1

(
−1 + ∑

n∈Z

e
−εn2

4

)
.

(6.60)

We can write
∞

∑
n=1

e
−εn2

4 = −1
2
+

1
2 ∑

n∈Z

e
−εn2

4 . (6.61)

Then we can use Poisson summation to get the Jacobi inversion
formula

∑
n∈Z

e
−εn2

4 = ∑
m∈Z

∫ ∞

−∞
dne2πinm− εn2

4

=

√
4π

ε ∑
m∈Z

e−
(2πm)2

ε

(6.62)

to get the result of the derivation as

∂g−1Z
∂εg−1 =

(−1)g

2(8π2)g−1

(
−1 +

√
4π

ε ∑
m∈Z

e−
(2πm)2

ε

)
(6.63)
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and we see that the exponent agrees with Im. If we put m = 0 in
(6.63) we see that the (g− 1)th derivative of Z is proportional to
ε−1/2. In general, the structure is

Z(ε) =
g−2

∑
k=0

akεk + ag−3/2εg−3/2 + exp. small terms. (6.64)

The terms of Z(ε) that doesn’t exponentially vanish have to be
interpreted as the µ−1(0) contribution by the arguments of the
beginning of this chapter. The non-analytic contribution of µ−1(0)
tell us that µ−1(0) is singular.

Example 6.3 (Non-trivial SO(3)-bundle with u = −1). In this
example we will start by writing down the twisted partition func-
tion for a non-trivial SO(3)-bundle and then rewrite the result as
a sum over critical points. Thereafter we can interpret the result
using the localization principles.

The twisted partition function with λn(u−1) = (−1)n+1 (ex-
tracted from Verlinde’s formula in [33]), #π1(H′) = 2, vol(SO(3)) =
23/2π2 is

Z̃(Σ, ε,−1) =
1

2(8π2)g−1

∞

∑
n=1

(−1)n+1

n2g−2 e− ε′n2/4. (6.65)

If f 6= 0 in the Yang-Mills equations the structure group is
reduced to U(1) and from line bundle classifications we get that
the conjugacy class of f is

f = 2π

(
m +

1
2

)(
i 0
0 −1

)
, (6.66)

where m is an integer. At these critical points, I is

Im =
(2π(m + 1

2))
2

ε′
(6.67)

Next we want to write Z̃ as a sum of over the critical points.
Start by looking at

∂g−1Z̃
∂ε′g−1 =

(−1)g

2(32π2)g−1

∞

∑
n=1

(−1)ne
−ε′n2

4 . (6.68)
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We can write
∞

∑
n=1

(−1)ne
−ε′n2

4 = −1
2
+

1
2 ∑

n∈Z

(−1)ne
−ε′n2

4 . (6.69)

Then we can use Poisson summation to get the Jacobi inversion
formula

∑
n∈Z

(−1)ne
−ε′n2

4 = ∑
m∈Z

∫ ∞

−∞
dne2πinm+iπn− ε′n2

4

=

√
4π

ε′ ∑
m∈Z

e−
(2π(m+1/2))2

ε′

(6.70)

to get the result of the derivation as

∂g−1Z̃
∂ε′g−1 =

(−1)g

4(32π2)g−1

(
−1 +

√
4π

ε′ ∑
m∈Z

e−
(2π(m+1/2))2

ε′

)
.

(6.71)

We are now at the point were we can use the localization prin-
ciples explained in the beginning of this chapter and compare them
with Z̃. For this bundle µ−1(0) is smooth and G acts freely on
it and therefore Z̃(ε) has to be a sum of polynomials in ε (of de-
gree dimM/4 at highest) plus exponentially small terms of higher
critical points (that are unstable) when ε → 0. We can see from
(6.67) that these higher critical points must make the contribute of
the exponential term in (6.71) for small ε. We also see in (6.71)
that Z̃(ε) is a polynomial in ε of degree g− 1 up to exponentially
small terms.

We can write Z̃(ε) as

Z̃(ε) =
1

2(8π2)g−1

g−2

∑
k=0

(−π2ε)k

k!
(1− 23−2g+2k)ζ(2g− 2− 2k) + O(εg−1)

(6.72)

To get the εk-terms expand (6.65) in ε. ζ(2n) = (2π)2n(−1)n+1B2n
2(2n)!

using Euler’s formula and B2n is the Bernoulli number.
This implies that∫
M′(−u)

eω+εθ = (−1)(g+1)
g−1

∑
k=0

εk

n!
(2g−2−2k)

23g−1(2g− 2− 2k)!
B2g−2−2k.

(6.73)

M′(−u) is the moduli space of flat SO(3) connections.
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6.4.3 Cohomology of SO(3) Moduli Space

To calculate the cohomology of SO(3) moduli spaceM′(−1) we
need both classes θ and ω and some non-algebraic cycles [48, 49].
We already calculated the intersection pairings onM′(−1) of θ
and ω in (6.73) which leaves us to discuss the non-algebraic cycles.
We will use the formula (introduced in section 6.3)

〈
exp (ω + εΘ)β

〉′
=

1
Vol(G)

∫
DADφDψe

i
4π2

∫
Σ Tr(iφF+ 1

2 ψ∧ψ)+ ε
8π2

∫
Σ dµTrφ2

β.

(6.74)

This correlation function is the same as the integral over moduli
space up to exponentially small terms.
We now add the new cycles using the operator, with circle C ∈

Σ,

VC =
1

4π2

∫
C

Trφψ, (6.75)

a three dimensional class on moduli space (depending on the ho-
mology class of C).
We will need an even number of V′Cs because otherwise their

intersection pairings will vanish as algebraic cycles are even di-
mensional. Let us first look at〈

exp (ω + εΘ)VC1VC2 β
〉′

=

1
Vol(G)

∫
DADφDψe

i
4π2

∫
Σ Tr(iφF+ 1

2 ψ∧ψ)+ ε
8π2

∫
Σ dµTrφ2 1

4π2

∫
C1

Trφψ
1

4π2

∫
C2

Trφψ.

=
1

Vol(G)

∫
DADφDψe

i
4π2

∫
Σ Tr(iφF+ 1

2 ψ∧ψ)+ ε
8π2

∫
Σ dµTrφ2 1

4π2 ∑
P∈C1∩C2

−σ(P)
4π2 Trφ2(P)

= −2#(C1 ∩ C2)
∂

∂ε

〈
exp (ω + εΘ)β

〉′,
(6.76)

where we in the third line performed the ψ-integral using

< ψa
i (x)ψb

j (y) >= −4π2εijδ
abδ2(x− y) (6.77)

and used that σ(P) = ±1 is the oriented intersection number
summed over all the points P of intersection of C1 and C2. In
the fourth line we used that the cohomology class of Trφ2(P)
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is not dependent on P and can be written as
∫

Σ Trφ2 and that
∑P σ(P) = #(C1 ∩ C2).
If we now interpret this integral to be the same as the integral

over the moduli spaceM′(−1) up to exponentially small terms
then we have∫
M′(−1)

eω+εθVC1VC2 = −2#(C1 ∩ C2)
∂

∂ε

∫
M′(−1)

eω+εθ,

(6.78)

where we know the answer for the integral of the right hand side
from (6.73).
In general, this result can be written for arbitrary many V′s

(using a similar method) as∫
M′(−1)

eω+εθ+∑
2g
σ=1 ησVCσ =

∫
M′(−1)

eω+ε̂θ, (6.79)

where ησ (σ = 1 . . . 2n) are anti commuting variables, ε̂ =
ε− 2 ∑σ<τ ησητγστ and γστ = #(Cσ ∩ Cτ) is the intersection
number matrix of circles Cσ (σ = 1 . . . 2g), which constitutes a
basis of H1(Σ, Z).

6.5 intersection ring of moduli spaces

So far, we have seen that the Yang-Mills path integral can be writ-
ten as the intersection pairings on the moduli space of flat connec-
tions plus exponentially small terms that vanish when ε goes to
zero. We have calculated two examples for the gauge groups SO(3)
and SU(2). We will conclude this chapter by looking at the inter-
section pairings of arbitrary gauge group H′ that we assume to be
compact and connected. We are going to calculate the partition
function in general and in the smooth cases we can interpret it as
intersection pairings.
As before, we will use a H′ bundle E′(u) over Σ, oriented and

closed, of genus g and our formula

〈exp (ω + εΘ)β
〉′

=
1

Vol(G)

∫
DADφDψe

1
4π2

∫
Σ Tr(iφF+ 1

2 ψ∧ψ)+ ε
8π2

∫
Σ dµTrφ2

β.

(6.80)

We assume that β is an equivariant differential form of polynomial
φ-dependence and we write β = e∑i δiβ, as it will be easier to



6.5 Intersection Ring of Moduli Spaces 73

work with exponentials. δi is fermonic (then δ2
i = 0) and bosonic

variables. The possible βi’s are of the following form. Assume that
Q is an invariant polynomial of degree r onH then the equivariant
differential forms are

Q(0) =
∫

Σ
dµQ(φ) (of deg 2r),

Q(1) = −
∫

C

∂Q
∂φa

ψa (of deg 2r - 1),

Q(2) =
∫

Σ

(
i
∂Q
∂φa

Fa +
1
2

∂2Q
∂φa∂φb ψa ∧ ψb

)
(of deg 2r - 2).

(6.81)

Pick Q(φ) and T(φ) (with degqi(φ) > 2 and degti(φ) > 2)
as

Q(φ) =
1

8π2 Trφ2 + ∑
i

δiqi(φ).

T(φ) =
ε

8π2 Trφ2 + ∑
i

δ′i ti(φ).
(6.82)

Assume that we have the oriented circles Cρ ⊂ Σ (ρ = 1, · · · , 2g)
generating H1(Σ, Z) with γστ = #(Cσ ∩ Cτ) being the intersec-
tion pairings. Then pick an invariant polynomial for every ρ to
be Sρ(φ) = ∑i η

ρ
i sρ

i with η
ρ
i being anticommuting and sρ

i being
homogeneous invariant polynomials.
Assuming det∂φ̂a

∂φb = 1 we can now compute

〈
eQ(2)+T(2)+Sρ

(1)(Cρ)〉′ =
=

1
vol(G′)

∫
DADφDψe

∫
Σ

(
i ∂Q

∂φa Fa+ 1
2

∂2Q
∂φa∂φb ψa∧ψb

)
−∑σ

∮
Cσ

∂Sσ

∂φa ψa+
∫

Σ dµT(φ)

=
1

vol(G′)

∫
DA′Dφe

∫
Σ i ∂Q

∂φa Fa+
∫

Σ dµT̂(φ)

=
1

vol(G′)

∫
DA′Dφ̂e

i
4π2

∫
Σ Trφ̂F+

∫
Σ dµT̂◦W(φ̂),

(6.83)

where ψ is shifted to complete the square and integrated over in the
third line giving the normal symplectic measure DA′ on the space
of connections (as we discussed in 6.2). (∂2Q)−1 is the inverse ma-
trix of ∂2Q/∂φa∂φb and ˆT(φ) = T(φ)−∑σ<τ γστ

∂Sσ

∂φa
∂Sτ

∂φb (∂
2Q)−1

ab .
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In the fourth line φ is changed to φ̂ by φ̂a = 4π2 ∂Q
∂φa . The Jaco-

bian is det∂φ̂a

∂φb = 1 as we assumed above. The transformation is

invertible, as δ2
i are nilpotent, and the inverse is φa = Wa(φ̂).

To write the result of (6.83) we need to modify (6.56) by defining
the Hamiltonian in this case (we need a prescription how to pick
t introduced above). To do this we will consider the generalized
path integral ∫

DADφe
i

4π2
∫

Σ TrφF+
∫

Σ Q(φ̃) (6.84)

where Q(φ̃) is an invariant polynomial on H of degree t and
φ̃ = φ

4π2 .
In general when one goes from classical mechanics to quan-

tum mechanics the only ambiguity is renormalization. In two di-
mensional Yang-Mills theory we need to pick the quantum oper-
ator Q̂ corresponding to Q(φ̃) from the range Q̂ = Q(−iT) +
Casimir operators of lower order. The map Q → Q̂ have to be a
ring homomorphism from invariant polynomials on the Lie alge-
bra to quantum operators. Thereby it is enough to pick Q̂ with
Q belonging to the generators of the ring of invariant polynomials
[14].
For example, we can look at SU(2). The ring is a polynomial

ring with one generator that we take to be Q(φ̃) = Trφ̃2. Then
Q̂ = −∑a TrT2

a = c2 and lower order Casimir operator must be
a constant. This constant is the ambiguity of the normal-ordering
for SU(2), which has been called t above.
For compact Lie group H with r being the rank, the ring of

invariant polynomials is a polynomial ring in r generators [50].
Given a H, we have a finite number of t analogs. For Q(φ̃) the
corresponding Casimir Q(−iT) is Q(−iT) = Q′(h + δ) =
Q(h + δ) + Casimir operators of lower order on an irreducible
representation αh of highest weight h (for example we can take
SU(2) and then write states |jm >, then the top state |jj > is
the heighest weight). δ is the sum of the positive roots divided
by two. Then we can pick Q̂ = Q(h + δ) on αh [50] (In general
treatment of Lie algebras generators are divided into set of gener-
ator that commute with each other {H} and a set of generalized
raising and lowering operators {E}. Lie groups can then be classi-
fied due to this dividing and of the commutation relations between
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the members of the two sets and between the raising and lowering
operators. For example if [Hi, Eα] = (α)iEα then α are called the
roots of the Lie algebra). The Hamiltonian is H = −Q̂ so we can
now write down (6.52) in its generalized form as

Z̃(Σ, Q, u) =
1

#π1(H′)

(
vol(H′)
2πdimH′

)2g−2

∑
h

λα(h)(u−1)eQ(h+δ)

(dimα(h))2g−2 .

(6.85)

∑h are the dominant weights of H.
We are now ready to go back to the calculation of (6.83). In

canonical quantization φ̂a

4π2 is the group generator−iTa. Let W(φ̂) =

V( φ̂

4π2 ). T̂ ◦W(φ̂) is in quantum theory an operator written as
T̂ ◦V(h + δ) on the highest weight h representation.
We can now write the result of (6.83) using (6.85) as

1
#π1(H′)

(
vol(H′)
2πdimH′

)2g−2

∑
h

λα(h)(u−1)eT̂◦V(h+δ)

(dimα(h))2g−2 . (6.86)

The calculation could have been done without the assumption
of det∂φ̂a

∂φb = 1. This will give a slightly different formula which is
calculated in a similar way as we just did. In this general setting
it can be shown [14] that the path integral is given by

1
#π1(H′)

(
vol(H′)
2πdimH′

)2g−2

∑
h

λα(h)(u−1)eT̃◦V(h+δ)

(dimα(h))2g−2 , (6.87)

where T̃ = T̂ + (g− 1)ln det( ∂2Q′

∂φa∂φb ).
We can now make some final conclusions. When ε > 0 the

path integral can be calculated as above without carrying about
singularities ofM′(u). If the moduli space of flat connections is
smooth and acted on freely by the gauge group then (6.87) is a
polynomial in ε up to exponentially small terms that vanish for
ε → 0. The polynomial can be interpreted as the intersection
numbers on the moduli space written as

#Z(H′)
#π1(H′)

(
vol(H′)
2πdimH′

)2g−2

∑
h

λα(h)(u−1)eT̃◦V(h+δ)

(dimα(h))2g−2 =
∫
M′(u)

eQ2+T0+∑σ Sσ
(1)(Cσ) + exp. small terms.

(6.88)
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This is so, using the fact that in cohomological gauge theories,
withM non-singular, we have [14, 47]

〈 n

∏
s=1

Tjs(Vs)
〉
=

1
#Z(H)

∫
M

n

∏
s=1

T̂js(Vs) (6.89)

with T̂j(V) in H2r−j(M, R), the j-dimensional submanifold V
of Σ and the homogeneous invariant polynomial T as above. This
equality is true if we use (6.32) to calculate the left hand side.
It also holds if we use (6.40) up to exponentially small terms for
ε→ 0.



7
STR ING THEORY INTERPRETATION OF TWO
DIMENS IONAL YANG-MILLS THEORY

The two dimensional Yang-Mills theory, or pure two dimensional
QCD, can be solved exactly as we have seen. The result is stated
quite formally as a sum over representations. We now like to write
it explicitly for SU(N) and U(N) and interpret it in terms of strings.
The parameter N can be viewed as a free parameter (taking N color
states instead of three). In the large N limit the 1/N expansion can
then be interpreted as a string perturbation series [16]. As we will
see, it can be shown that the coefficients of the expansion are given
by a sum over maps from a two dimensional surface onto the two
dimensional target space. Thus we can interpret two dimensional
QCD as a closed string theory.
In the first, second and third sections we will give a short intro-

duction to string theory, the symmetric group and Young tableaux,
and Riemann surfaces. Thereafter, we will move on to the inter-
pretation of two dimensional Yang-Mills theory as a string theory.

7.1 short introduction to string theory

We will now introduce some basic concepts of string theory (for
an extensive introduction see [51, 52]). That the strong interaction
might be represented by a string theory is an idea older than the
QCD theory. In the late 1960s a string theory was found when peo-
ple tried to guess a mathematical formula for the strong interaction
scattering amplitudes that would agree with current experiments.
A lot of the properties of hadrons can be understood if we look
at the hadrons as string-like flux tubes. The picture is consistent
with linear confinement (that quarks clump together and cannot
be seen separately because the force between them grows as they
move apart) and with the linear Regge trajectories [53] (linear
correlation of mass squared and spin of families of mesons). But
viewing the strong force as a one dimensional string made a lot of
contradictions with experimental results and in the middle of the
1970s this theory was abandoned for QCD.

77
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String theory has since developed a lot and what started as a
theory for trying to describe the strong interaction has later been
seen as a better fit for a theory of everything (describing all forces
and matter in nature). However there are no experimental proofs
for this and a lot remains to work out in the theory/theories.
To introduce strings we begin by considering a relativistic par-

ticle. It traces out a world-line when it moves through spacetime.
The line can be parameterized using only one parameter. A string
however traces out a world-sheet (see figure 7.1 for a comparison),
a two dimensional surface, which can be parameterized by two pa-
rameters. The two dimensional surface lives in the space that is
called the target space (see figure 7.2) [51].

Figure 7.1: A world-line of a particle and a world-sheet of a string
splitting into two.

The action of a relativistic point particle is proportional to the
proper time elapsed on the point particle world-line. For strings
the action is proportional to the proper area of the world-sheet.
The Nambu-Goto action for a relativistic string is [51]

S = −T0

c

∫ t f

ti

dτ
∫ σ1

0

√
(Ẋ · X′)2 − (Ẋ)2 · (X′)2. (7.1)

This is a natural generalization of the relativistic point particle
action. T0 is the string tension, c the speed of light, Ẋ is the
derivative of X (string coordinates) with respect to τ and X′ the
derivative with respect to σ. σ and τ are parameters of the world-
sheet.
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There is another action related to the Nambu-Goto action called
the Polyakov action [52]

S =
T
2

∫
d2σ
√
−hhabgµν(X)∂aXµ(σ)∂bXν(σ). (7.2)

T is the string tension, hab (with inverse hab and determinant h)
is the metric of the world-sheet, gµν the metric of the target space.
σ and τ are the parameters of the world-sheet.
The Polyakov action is more easily quantized because it is lin-

ear. The action is globally invariant under spacetime translations
and infinitesimal Lorentz transformations. Locally it is invariant
under world-sheet diffeomorphisms (coordinates transformations)
andWeyl transformations (local rescaling of metric gab → e−2ω(x)gab).
In string theory the proper area is invariant under the choice of

parametrization. In other words, we can use many different grids
(constant lines of the parameters) on the world-sheet to describe
the same physical motion of the string. The reparameterization in-
variance (invariance under diffeomorphisms) is analogous to gauge
invariance in electrodynamics.

Figure 7.2: The map X(σ, τ) from the world-sheet parameterized
by σ and τ to the target space.

7.2 the symmetric group and young tableaux

The symmetric group Sn (see [60]) is all permutations on n sym-
bols, i.e the members of Sn are all permutations of a set X =
{1, 2, . . . , n}. For example take the set {1, 2, 3}, then we have
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the members (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and
(3, 2, 1).The number of elements, the order, of Sn is n! as there
are n! permutations of n symbols and it has degree n. The group
operation in Sn is function composition. For example, let f and g
be two permutations given by

f = (1 3)(4 5) =

(
1 2 3 4 5
3 2 1 5 4

)

g = (1 2 5)(3 4) =

(
1 2 3 4 5
2 5 4 3 1

)
.

(7.3)

Then the composition is given by

f g = (1 2 4)(3 5) =

(
1 2 3 4 5
2 4 5 1 3

)
. (7.4)

The symmetric group is important in both mathematic and
physics. For example, when one has a system of n identical par-
ticles the symmetric group will be in the symmetry group of the
Hamiltonian.
If we like to know the dimension of the irreducible representation

(irrep) of say S4 corresponding to the partition (2, 12) (this means
that we have one 2-cycle, two symbols permuting into each other,
and two 1-cycles) we can use Young tableaux (see for example [55]).
A Young tableau is a graph of a given shape, built up from square
boxes. For (2, 12), or equally written as (12)(3)(4), we can put
the symbols into the Young tableau as

1 2
3
4

1 3
2
4

1 4
2
3 . (7.5)

The boxes and numbers are put out such that the first line has
more or equal number of boxes as the second line etc. and that the
numbers in the boxes increases to the right in a row and downwards
in a column. The dimension is equal to the number of different
diagrams, i.e. three in this example. The dimension can also be
calculated using the Hook length formula

dim πλ =
n!

∏x hook(x)
, (7.6)



7.2 The Symmetric Group and Young Tableaux 81

where hook(x) of a box x is the sum of the box x plus the boxes
that are in the same row to the right of it plus the boxes in the
same column below it.
The Young tableaux also classify the irreps of GL(N) on V⊗n.

To construct irreps for SU(N) for example, we use vector spaces
that carry the representation, building them by multiplying ten-
sors that carry the fundamental [N] representation. The tensors
can then be decomposed into irreps by (anti)symmetrization (di-
vided into parts that don’t transform into each other under group
transformations). The Young tableaux can be used to represent
the Clebsch-Gordan series (the decomposition of a product repre-
sentation into irreducible components, i.e classifying the irreps).
Let us take SU(2) as an example. The basis state is represented

by a box (which thus represents a particle). If the box is empty
then it represents any state. If we put a number (1 or 2 here for
the two basis states) in the box it represent a particular state

u1 = 1 u2 = 2 . (7.7)

Next we can take a direct product written as

⊗ = ⊕ . (7.8)

If we use the rules introduced above (but with the change that the
numbers in the boxes of a row must be nondecreasing from left to
right) we can write this out as

1 1 1 2 2 2 (7.9)

for the symmetric states and

1
2 (7.10)

for the antisymmetric state. We can do this procedure for N >
2 as well. The number of symmetric states for SU(N) are then
1
2 N(N + 1) and 1

2 N(N − 1) for antisymmetric states. An anti-
quark can be represented by N − 1 boxes in a column denoted
N̄.
We can then move on and do a direct product of three states

⊗ ⊗ = ⊕ ⊕ .
(7.11)
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The dimension of SU(N) can be calculated from a Young tableau
by putting N in the top left corner and then increasing the number
by 1 for each box to the left in the row but decreasing by 1 going
down in a column. Continuing this procedure for all boxes one gets
the dimension by taking the product of all numbers of the boxes
and dividing by the hook lengths.

7.3 riemann surfaces

It is necessary to introduce the concept of Riemann surfaces (see
for example [54]) a bit further before we can go on to the string
interpretation of the Yang-Mills theory.
A Riemann surface is a one dimensional complex analytic con-

nected manifold. It is a Hausdorff topological space with an atlas,
thus for every point there is a neighborhood containing the point
homeomorphic to the unit disk of the complex plane.
Riemann surfaces enters naturally when one tries to define

√
z.

In real variable we learn that we can’t take negative values of the
variable but if we go to complex variable we can represent z by
polar coordinates as z = reiθ. Then

√
z =
√

reiθ/2. What goes
wrong is that if we now smoothly vary θ from 0 to 2π, with r = 1
say, then wee see that

√
1 can be both -1 and 1. This is not a

function (a function can’t be multi-valued). What we really have
to do is to take two complex planes and draw a branch cut (a line)
on each from the origin (the branch point) to infinity (in which di-
rection is not important) and when one crosses the branch cut one
moves to the other complex plane. This is why

√
z is really a com-

plex function and it is required to be defined on a Riemann surface
(the two complex planes (called sheets) fitted together along the
branch cut), see figure 7.3. Thus we have resolved the ambiguities
of a multi-valued function by changing its domain.
Let’s give some more examples of Riemann surfaces. The com-

plex plane C and the Riemann sphere (or the extended complex
plane) C∪ {∞} are both Riemann surfaces.

We will now turn our attention to some results concerning Rie-
mann surfaces [54].
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Figure 7.3: The Riemann surface for f =
√

z. The two horizontal
axes represent the real and imaginary parts of z and
the vertical axis represents the real part of

√
z.

Let f : M → N be a continuous map between Riemann sur-
faces. f is called holomorphic or analytic if for every local coordi-
nate {U, z} on M and {Vξ} on N the map

ξ ◦ f ◦ z−1 : z(U ∩ f−1(V))→ ξ(V) (7.12)

is holomorphic (complex differentiable at every point in open set,
essentially a complex function that doesn’t depend on the complex
conjugate of z).
Furthermore, let M be compact and f a holomorphic mapping.

Then f is either constant or surjective (N is also compact in the
latter case).
A continuous map f : M → N is called a branched cover (see

figure 7.4) if we have a point P ∈ N with neighborhood U ∈ N so
that the inverse f−1(U) is a union of disjoint open sets where f is
topologically equivalent to z→ zn [18]. n is called the ramification
number of f at P (or ramification index, winding number or that
f takes the value of f (P) n times at P) and (n − 1) is called
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the branch number of f at P denoted b f (P). Then there exists a
positive integer m such that each Q ∈ N is assumed precisely m
times on M by f , thus

∑
P∈ f−1(Q)

(b f (P) + 1) = m. (7.13)

m is called the degree of f and one says that f is an m-sheeted
cover of N by M (or f has m sheets).
Two branched covers f1 and f2 are equivalent if there is a home-

omorphism φ : M→ N such that f1 ◦ φ = f2.

Figure 7.4: Branched covering. On the disk containing Q the map
is z→ w = zn(Q) [18].

Now, pick a complex structure J on M. Then given a branched
cover f : M → N there exist a unique complex structure on N
making f holomorphic [18].
If f is a non-constant function on M then f has as many ze-

ros as poles. And a single non-constant meromorhic (holomorphic
except at isolated points) function completely determines the com-
plex structure of the Riemann surface [54]. The local coordinate
vanishing at P is given by

( f − f (P))1/n if f (P) 6= ∞,

f−1/n if f (P) = ∞.
(7.14)
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Next we turn our attention to the Riemann-Hurwitz theorem
[54]. Let f : M → N be the non-constant holomorhic map be-
tween two compact Riemann surfaces. Let M be a surface of genus
h and N of genus G and assume that the degree of f is n. The
theorem states that

2h− 2 = n(2G− 2) + B, (7.15)

where B = ∑
P∈M

(b f (P)) is the total branching number and 2-2h

is the Euler character of M.
For smooth maps we have the Kneser’s formula [62] given by

2(g− 1) > 2n(G− 1) + B. (7.16)

Riemann surfaces can be defined by polynomial equations

P(z, w) = wn + an−1(z)wn−1 + · · ·+ a1(z)w + a0(z) = 0,
(7.17)

which can be compactified. This is given by a theorem that states
that every compact Riemann surface is algebraic [54].
Let us give one example by looking at the equation

T = {(z, w) ∈ C2|w2 = (z2 − 1)(z2 − k2)}, k 6= ±1.
(7.18)

For each value of z there are two values of w, except z = ±1 and
z = ±k where w = 0. Doing the analysis (see for example [56])
one can see that w behaves like the square root close to 1 and ±k.
We can draw two branch cuts between k and 1, and between 1 and
k (this can be done in case of a surface). We then take two sheets
of these with opposite signs. The matching edges of the cuts can
then be aligned and stretched out around the cut to pull out tubes
to connect the two sheets. The resulting surface is a torus and we
can compactify it by adding two points at infinity, see figure 7.5.
The projection to the z-axis has degree 2, and we have four branch
points with total index 4.
A compact Riemann surface can be mapped to surfaces of lower

genus but not to higher genus, except as constant maps. The rea-
son for this is because that maps that are holomorphic or mero-
morphic behave like z 7→ zn locally, thus non-constant maps are
ramified covering maps. For compact Riemann surfaces they are
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Figure 7.5: The torus given by (7.18) [56].

constrained by the Riemann-Hurwitz formula, that describes a re-
lation between the Euler characteristics of two surfaces one being
a ramified covering of the other.

In the next section we again turn our attention to the partition
function of two dimensional Yang-Mills theory, expand it in a
power series in 1/N and explain how it can be interpreted in
terms of maps of two dimensional surfaces onto two dimensional
surfaces.

7.4 yang-mills theory and strings

Yang-Mills theory is the foundation for the formulation of QCD.
QCD perturbation theory in the weak coupling expansion has
proved to describe high-energy strong interaction scattering well.
But as the energy gets lower, distances gets larger the coupling
constant grows (no single quark has been seen in experiments)
and the expansion is not valid. Because of this there is a necessity
to find a theory for the infrared (IR) limit.
Lattice gauge theory has been able to give some insights to

QCD in the IR limit [58]. It was seen that in the strong coupling
expansion the free energy can be expressed as a sum over surfaces
[57], which can be seen as an indication of a string equivalence of
QCD. However it has shown to have very complicated weights of
the surfaces.
It was shown in 1974 [57] that the expansion of the weak cou-

pling perturbation theory of QCD can be interpreted as an expan-
sion of an equivalent string theory, where the string coupling is
given by 1/N. In the large N limit, with g2N held fixed (g is the
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gauge coupling), planar diagrams dominate. They can be viewed
as the world-sheet of a string. The Feynman diagrams is shown to
be given by triangulations of a two dimensional surface. The main
result was that 1/N can be used to pick the topology (genus). This
is because a diagram corresponding to a Riemann surface of genus
G is weighted by (1/N)2G−2. In the expansion of the free energy
the leading order in powers of 1/N is given by the planar diagrams
and is proportional to N2.
Thus, instead of doing the expansion in the gauge coupling,

which is not good at low energies, one takes 1/N as expansion
parameter. Then N = 3 has to be looked at as large and the limit
N → ∞, with g2N = constant, is often used to give the right
1/N expansion.

Two dimensional QCD is a good model to test if there is an
equivalence to a string theory for QCD. It has physically relevant
features like confinement and a linear spectrum. We consider a the-
ory without quarks that correspond to a string theory with only
closed strings (quarks are attached to open string ends). A the-
ory without quarks might look trivial because it has no physical
degrees of freedom for the gluon in two dimensions. However, the
free energy of the gluons will depend non-trivially on the manifold
where they live.

The Yang-Mills theory on a two dimensional manifold M of genus
G and area A is exactly solvable as shown in chapter 5 using lattice
regularization. The partition function is given by [45]

Z[G, g2A, N] = ∑
R
(dimR)2−2Ge

−λA
2N c2(R). (7.19)

This depends only on the genus and the area of the manifold. The
sum runs over all representations R of the gauge group (here U(N)
or SU(N)), c2(R) is the quadratic Casimir and λ = g2N with
gauge coupling g.
In 1992 it was conjectured [15] that the free energy, W = lnZ,

is equal to some string theory partition function, where the string
coupling is 1/N and string tension is g2N, i.e.

W[G, g2A, N] = Zstring[
1
N

, g2N]. (7.20)

For example, the free energy in the Polyakov string theory is writ-
ten as a sum over all connected Riemann surfaces. Every term
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in the sum is weighted by (gstring)
2h−2, with the string coupling

gstring and h is the genus of the world-sheet. So, if two dimen-
sional QCD is to have a corresponding string theory the free en-
ergy is expected to be given by even powers of gstring = 1/N
(at least perturbatively). The free energy, in this interpretation, is
thus given by maps of the world-sheet of genus h into the target
space of genus G. And we should expect that the 1/N expansion
of the partition function to be of the form

Z ∼ exp ∑
h>0

(
1
N

)2h−2
Zh. (7.21)

By expanding the free energy W in powers of 1/N we write

W =
∞

∑
h=1

N2−2h f G
h (λA), (7.22)

Zh and f G
h (λA) should be interpreted as sums over maps from

the word-sheet to the target space.
In 1993 [16] it was shown that two dimensional QCD is a string

theory. The large N expansion of the partition function is described
by two coupled parts, chiral sectors (one chiral partition function
and an anti-chiral partition function coupled by an simple term)
[16].
In the next section we will give the necessary formulas for the

large N expansion. We then look at a single chiral sector and show
that the leading terms are given by the sum of a symmetry factor
over all branched covers of M. We then put everything together
in a nonchiral sum giving the result for the partition function
and free energy. At the end of this chapter we will write down
a string theory action equivalent to two dimensional Yang-Mills
theory, which was found through the tools of cohomological field
theory [64].

7.5 the large n expansion

The partition function in (7.19) is written as a sum over all rep-
resentations. We now like to write it out explicitly for U(N) and
SU(N).
The U(N) and SU(N) representations can be labeled by Young

tableaux. The tableaux can be described by n boxes in rows with
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length ni in row i and columns of length ci [16]. Thus, there are
different ways to describe a Young tableau:

• {ni}, ∑ ni = n

• {ci}, ∑ ci = n

• {li}, ∑ ili = n.

(7.23)

where {ni} are the number of boxes in each row, {ci}, the number
of boxes in each column and li are the number of columns of length
i.
The quadratic Casimirs and dimensions are given by [15, 16, 59]

cU(N)
2 (R) = Nn + c̃(R),

cSU(N)
2 (R) = Nn + c̃(R)− n2

N
,

c̃(R) =
m

∑
i=1

ni(ni + 1− 2i) =
m

∑
i=1
−ci(ci + 1− 2i) =

m

∑
i=1

n2
i −

m

∑
i=1

c2
i ,

dim(R) =
∆(h)
∆(h0)

,

∆(h) = ∏
16i<j6N

(hi − hj),

hi = N + ni − i, h0
i = N − i.

(7.24)

The dimension dR of the associated representation of the sym-
metric group Sn is given by [60]

dR = n!
∆(h)

h1!...hn!
. (7.25)

It is related to dim(R) as [61]

dim(R) =
dR
n!

r

∏
i=1

λi!
(N − i)!

(7.26)

with r being the number of non-empty rows. Using (N+ni−i)!
(N−i)! =

ni
∏

k=1
(N + k− i) = Nni

ni
∏

k=1

(
1 + k−i

N

)
it can be written as [15]

dim(R) =
dRNn

n! ∏
v
(1 +

∆v

N
) =

dRNn

n!
+ O(Nn−1). (7.27)

v runs over all boxes in the diagram, the difference of a column
and row index of a box is denoted ∆v.
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7.5.1 Chiral 1/N expansion

We will now look at the single chiral sector and perform the asymp-
totic expansion of the partition function by expanding in 1/N. We
put in the value of c2(R) from (7.24) for SU(N) (as the only differ-
ence compared to U(N) is the last term) and we have to interpret
the four terms in the chiral partition function Z′ given by

Z′(G, λA, N) = ∑
R

dim(R)2−2Ge−
λAc2(R)

2N

= ∑
R
dim(R)2−2Ge−

λAn
2 e−

λAc̃(R)
2N e−

λAn2

2N2 .
(7.28)

We take λ = g2N = constant when taking the limit N → ∞
(motivated in [57]).

The first two exponentials is understood using branched cover-
ings, where the first exponential looks like the area of a string
which winds n times around the target space of area A. The last
exponential give rise to the introduction of tubes and collapsed
(infinitesimal) handles discussed further in 7.5.4.

Using (7.24) and (7.27) the chiral partition function (7.28) is

written as (without writing the e−
λAn2

2N2 -term)

Z′[G, λA, N] =
∞

∑
n=0

∑
R∈Yn

(dim(R))2−2Ge−
λA
2N c2(R)

=
∞

∑
n=0

∑
R∈Yn

(
n!
dR

)2G−2
e−

nλA
2 ×

∞

∑
i=0

[
(−λAc̃(R))i

2ii!
Nn(2−2G)−i + O

(
Nn(2−2G)−i−1

)]
.

(7.29)

O(Nn(2−2G)−i−1) indicates the subleading contributions from
the last term in c2(R) as well as contributions from the dimen-
sion (for G 6= 1). This expansion contains only half of the full
theory because there is another set of representations that has
quadratic Casimir of leading-order term nN, which we will see
in the subsection of the nonchiral sum 7.5.3. First we will show
that the leading terms in the chiral partition function (7.29) are
given by the sum of maps from two dimensional surface to the two
dimensional target space.
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7.5.2 The Symmetry Factor

We will now look at the leading terms of the chiral partition func-
tion (7.29). Actually, we want a geometrical way of describing the
coefficients in the 1/N expansion of the free energy in (7.22) but
it will show easier to work with the chiral partition function [16]
given by the 1/N expansion as

Z′(G, λA, N) =
∞

∑
h=−∞

∑
n

∑
i

ξn,i
h,Ge−nλA/2(λA)iN2−2h.

(7.30)

From (7.29) we see that when 2(h − 1) = 2n(G − 1) + i the
coefficients ξn,i

h,G are

ξn,i
h,G = ∑

R

n!
dR

1
i!

(
c̃(R)

2

)i
. (7.31)

These coefficients has an interpretation in terms of covering maps.
The covering maps should have a fixed winding number n and only
be singular at points. We have to consider only singularities that
come from branch points as the 2-fold cover z → z2 of the unit
disk in C.
Let Σ(G, n, i) be the set of n-fold covers of the two dimensional

Riemann surface MG of genus G that has i branch points. Let v :
Mh → MG be such a cover map, then 2(h− 1) = 2n(G− 1)+ i.
The covering spaces that are disconnected will also be included,
such that h can be negative (the Euler characteristic χ of a dis-
connected surface is 2− 2h = χ). To each cover v, we associate
a symmetry factor |Sv|. |Sv| is defined as the number of distinct
homeomorphisms π : Mh → Mh such that vπ = v. Then we
can write [16]

i!ξn,i
g,G = ∑

v∈Σ(G,n,i)

1
|Sv|

. (7.32)

To prove this we will count the number of branched covers of MG.
Let’s first look at i = 0, i.e no branch points. Let M be a surface

of genus G and area A and chose a point p ∈ M. Take a set of gen-
erators for πa(M, p) (the fundamental group; determining when
two paths that starts and ends at a fixed point can be continuously
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deformed into each other) a1, b1, a2, b2, ..., which can be identified
with the H1(M) with the basis a1 · b1 = δij, ai · aj = bi · bj = 0.
Using these generators π1(M) can be defined through (when the
space is homeomorphic to a simplicial complex)

a1, b1, a−1
1 , b−1

1 , . . . , aG, bG, a−1
G , b−1

G = 1. (7.33)

Fundamental groups π1 can be studied using covering spaces.
This is because a fundamental group is isomorphic the group of au-
tomorphism of the associated to the universal covering space (au-
tomorphism means isomorphism from the object to itself; an auto-
morphism of a cover p : C → X is a homeomorphism f : C → C
in the way that p ◦ f = p and the set of all automorphisms of p
forms a group under composition, Aut(p)).
The universal covering space is a covering space that is simply

connected. The name universal cover comes from the fact that if
the map q : D → X is a universal cover of the space X and the
map p : C → X is any cover of the space X, with the covering
space C being connected, then there exists a covering map f :
D → C such that p ◦ f = q. We can say that any connected cover
is covered by the universal cover. Each automorphism permutes
the elements of each fiber, which defines the automorphism group
action on each fiber.
Now, take v to be the n-fold unbranched cover of M, by choosing

a labeling of the sheets of v over p with integers I = {1, . . . , n}
then we can construct a map from π1(M) to Sn (the symmetric
group defined above). We get the map by associating every element
t ∈ π1(M) to I that comes from lifting t to the cover space and
going around the paths transporting the labels on sheets.
This map defines a homomorphism Hv : π1(M) → Sn. If we

look at a fixed covering of M then we have n! possible labelings of
the sheets over p.
If we have two labeling differing by ρ ∈ Sn, then we have ho-

momorphisms H and H′ = ρHρ−1 that are related by conjuga-
tion by ρ. Every element of the symmetry group Sv produce a
permutation ρ that leaves Hv invariant. The number of distinct
homomorphisms H : π1(M) → Sn related to a fixed cover v,
that has symmetry factor |Sv|, is n!/|Sv|. To count every cover v
with weight 1/|Sv|, it is enough to sum distinct homomorphism
H : π1(M)→ Sn with weight 1/n!.
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The weighted sum over unbranched covers is then given by

∑
v∈Σ(G,n,i)

1
|Sv|

= ∑
s1,t1,...,sG,tG∈Sn

[
1
n!

δ

(
G

∏
i=1

sitis−1
i t−1

i

)]
(7.34)

where δ is a Kronecker delta function defined on Sn by δ(ρ) =
identity if ρ = 1 and δ(ρ) = 0 if ρ 6= identity.
Now consider the case with branch points (i 6= 0). The branch

points with branching number j are counted as j distinct branch
points.
We can cut the surface M along curves a1, b1, . . . to construct

a 4G-gon that has i branch points q1, . . . , qi. We can choose the
branch points in Ai/i! ways. Furthermore we can take closed
curves c1, ..., ci on the 4G-gon and make cj pass through p and
go around qj and not intersect any another curve, see figure 7.6.
Then we can define π1(M {q1, . . . qi}) by

c1c2...cia1b1a−1
1 b−1

1 ...aGbGa−1
G b−1

G = 1. (7.35)

Figure 7.6: A two dimensional Riemann surface surface as a 4G-
gon, here of genus 2 and four branch points [16].

Let v be a n-fold cover of M that has branch points q1, . . . , qi
and we have a homomorphism π1(M {q1, . . . qi}) → Sn by la-
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beling the sheets. There is a difference from the unbranched cover
because as the branch points has branch number 1 then the per-
mutations p1, . . . , pi related to the curves cj is in the conjugacy
class Pn (permutations that changes two elements). The formula
(7.34) now reads

∑
v∈Σ(G,n,i)

1
|Sv|

= ∑
p1,...,pi∈Pn

∑
s1,t1,...,sG,tG∈Sn

[
1
n!

δ

(
p1 . . . pi

h

∏
j=1

sjtjs−1
j t−1

j

)]
.

(7.36)

To evaluate (7.36) we use the matrix DR(ρ) in representation
R associated by element ρ ∈ Sn. The character is χR(ρ) =
TrDR(ρ). From group theory we have the formulas [16]

δ(ρ) =
1
n! ∑

R
dRχR(ρ),

∑
ρ∈Sn

χR(ρ)DR(ρ) =
n!
dR

IR,

∑
σ∈Sn

DR(σρσ−1) =
n!
dR

χR(ρ)IR.

then

∑
ρ∈Pn

DR(ρ) =
n(n− 1)

2dR
χR(P)IR.

(7.37)

IR is the identity matrix and χR(P) is the character of any element
of Pn in the representation R. Then using (7.37) we can write

∑
v∈Σ(G,n,i)

1
|Sv|

= ∑
p1,...,pi∈Pn

∑
s1,t1,...,sG,tG∈Sn

[(
1
n!

)2

∑
R

dRχR

(
p1 . . . pi ∏

i
sitis−1

i t−1
i

)]
(7.38)

We have

∑
s,t∈Sn

DR(sts−1t−1) = ∑
s,t

DR(sts−1)DR(t−1) = ∑
s∈Sn

n!
dR

χR(t)DR(t−1)IR

(7.39)

and this gives

∑
v∈Σ(G,n,i)

1
|Sv|

= ∑
R

(
n!
dR

)2G−2(n(n− 1)χR(P)
2dR

)i
. (7.40)



7.5 The Large N Expansion 95

Furthermore it can be shown (see [16]) that

c̃(R) =
n(n− 1)χR(P)

dR
. (7.41)

We finally have

i!ξn,i
h,G = ∑

R

n!
dR

(
c̃(R)

2

)i
= ∑

v∈Σ(G,n,i)

1
|Sv|

. (7.42)

Thus the leading terms in the partition function are given by the
sum of the symmetry factor over all n-fold covers (connected and
homotopically distinct) of MG. The factor i! is there because of
the i = 2(h− 1)− 2n(G− 1) branch points when a surface of
genus h covers a surface of genus G.

7.5.3 Nonchiral Sum

We now turn our attention to the other representations of inter-
est. Let R and S be two representation, that has Young tableaux
contain n and ñ boxes respectively. Let the Young tableaux have
columns of length ci and c̃i. We can then construct a new repre-
sentation T, see figure 7.7, from the two old ones, with column
lengths

N − c̃L+1−i, i 6 L,
ci−L, i > L,

(7.43)

where L is the number of boxes in the first row of the Young
tableau for S. We call the representation T = S̄R the composite
representation of R and S. The composite representation contains
L columns with O(N) boxes.
The quadratic Casimir of the composite representation T is [16]

c2(T) = c2(R) + c2(S) +
2nñ
N

. (7.44)

The dimension of the composite representation is [16]

dim(T) = dim(R)dim(S)[1 + O(1/N2)] (7.45)

and for large N behaves as

dim(T) =
dRdSNn+ñ

n!ñ!
[1 + O(1/N2)]. (7.46)
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Figure 7.7: The composite representation [16].

The composite representation has a quadratic Casimir with lead-
ing order term (n + ñ)N, which can be seen from (7.44). There-
fore, it is necessary to use all composite representations to get all
terms proportional to e−nλA/2. We can now write

Z[G, λA, N] = ∑
n

∑̃
n

∑
R∈Yn

∑
S∈Yñ

(dim(S̄R))2−2Ge−
λA
2N [c2(R)+c2(S)+ 2nñ

N ].

(7.47)

We can now see from (7.45) that the partition function in (7.47)
can be written as a product of two copies of the chiral partition
function (7.29), omitting the 1/N2 corrections from the expan-
sion of the dimensions and a coupling term exp (−λAnñ/N2).
As we have seen above the chiral partition function can be writ-
ten as a sum over coverings of M with a fixed orientation. Thus
the two factors of (7.29) coupled by the term exp (−λAnñ/N2)
can be interpreted as two chiral sectors correspond to orientation-
preserving and orientation-reversing maps onto M. The coupling
term can be seen as coupling an orientation-preserving cover with n
sheets with an orientation-reversing cover with ñ sheets. This term
is exponentiated and can be described as infinitesimal orientation-
reversing tubes that couples a sheet of the ñ-sheeted cover with
a sheet of the n-sheeted cover. The arbitrary location of this in-
finitesimal tube gives the factor of λA.
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7.5.4 Tubes, Collapsed Handles and the Final Partition Function

We can now interpret the last term of (7.28) [17]. We rewrite it as

λAn2

2N2 =
nλA
2N2 +

n(n− 1)
2

λA
N2 . (7.48)

The first of the two terms can be seen as a handle connected to
the covering space which is mapped to a single point in the target
space. By doing this interpretation we can explain the factor of
1/N2 (as the genus increases by one for the handle), nλA (the
choice of handle position, we have to integrate over the position
because every position gives a different surface) and 1/2 (as the
two ends of the handle are indistinguishable). The second term
is interpreted as a tube (infinitesimal) connecting two sheets of
the covering space over a point in MG explaining λA. The genus
will then be increased by one (because of the hole that the tube
creates) explaining the 1/N2 factor and the n(n−1)

2 λA factor is
explained by the choice of position of the two ends of the tube on
some pair of the n sheets. As the contributions are local they expo-
nentiate. The tubes are similar to combining two branch points at
a single point and therefore they are orientation-preserving (going
through a tube preserves the orientation of the covering surface
compared to the orientation of the target space). It is consistent
with the interpretation of one chiral sector as corresponding to
covering maps with a consistent relative orientation.

We can now write the partition function of two dimensional quan-
tum Yang-Mills theory as a sum over the set of disconnected cov-
ering maps ΣG given by

Z[G, λA, N] = ∑
v∈ΣG

(−1)t̃

|Sv|
e−

nλA
2
(λA)(i+t+t̃+h)

i!t!t̃!h̃!
Nn(2−2G)−2(t+t̃+h)−i × [1 + O(1/N)] ,

(7.49)

with n the winding number of v, the number of branch points i,
the number of orientation-preserving (reversing) tubes t(t̃) and h
is the number of handles that are mapped to points. The expansion
is exact for the torus as there are no correction terms in that case.
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Next we like to write down the free energy. The sum over con-
nected Feynman diagrams determine the free energy. As a re-
minder the quantum partition function Z[J] is

Z[J] ∝ ∑
k

Dk, (7.50)

where Dk is some arbitrary Feynman diagram that consists of
many connected components Ci. If we have ni copies of a compo-
nent Ci in Dk then we have a symmetry factor ni!. Each Feyn-

man diagram Dk contributes to the partition function as ∏i
C

ni
i

ni!
,

with i being the (infinite) number of connected Feynman diagrams.
Therefore

Z[J] ∝ ∏
i

∞

∑
ni=0

Cni
i

ni!
= exp ∑

i
Ci ∝ exp W[J]. (7.51)

Thus the free energy (the logarithm of the partition function
(7.49) can be written as sums over the set of connected covering
maps Σ̃G written as

W[G, λA, N] = ∑
v∈Σ̃G

(−1)t̃

|Sv|
e−

nλA
2
(λA)(i+t+t̃+h)

i!t!t̃!h̃!
Nn(2−2G)−2(t+t̃+h)−i × [1 + O(1/N)] .

(7.52)

For a local discussion and rederivation of the results, done by cal-
culating the partition function on a plaquette and then gluing the
plaquettes together to form the space, see [16]. This result can be
applied to manifolds with boundary.
In [63] the string theory equivalent theory of the 1/N expansion

of two dimensional Yang-Mills theory is studied further. There is
given a complete geometrical description of the partition function
on an arbitrary manifold. It is stated in terms of maps from a
orientable surface onto the target space and includes correction
terms for surfaces of genus G 6= 1. This is described by extra
"twist" points in the covering maps. See also [64]. For a discussion
of two dimensional SO(N) and SP(N) Yang-Mills theories as closed
string theories see [65].
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7.6 a string theory action

We will now discuss a path integral formulation for the equivalent
string theory following [18, 64]. We will start with a recap of what
we have done so far.

The main message up to now has been that the integral of an
equivariant differential top form on a manifold with a G-action
(which depends only on the equivariant cohomology class of the
equivariant differential top form) is determined by, or localizes
on, the fixed points of the action (as the equivariant cohomology
is determined by the fixed point set of the action). In chapter 4
we applied equivariant cohomology by explaining the localization
principle. We wanted to integrate a closed equivariant differential
form

∫
M α (Dα = 0 and α lies in the equivariant cohomology of

M, a compact oriented manifold without boundary with a G-action
and with the G-action generating a vector field V = Vµ∂/∂xµ).
We saw that the equivariant cohomology is determined by the fixed
point set

MV = {x ∈ M|V(x) = 0}. (7.53)

and thus
∫

M α is determined by the fixed point set. We performed
a trick to see this explicitly by multiplying the integral by a factor
e−tDΨ.
We then generalized this to the infinite dimensional case. In

chapter 5 we discussed cohomological QFT’s and that it can be
described by fields φi, equations s(φ) and symmetries. By choos-
ing the symmetry group G we study the G-equivariant cohomology.
We had fields acted on by a group G and looked at the quotient
space of the configuration space modulo G. A subset of this space,
the moduli space, is

M = Z(s)/G, (7.54)

with

Z(s) = {φi ∈ X|s(φ) = Dφ = 0}. (7.55)

on which the integral localizes.
We now would like to use the localization principle to work

out our string theory path integral. The framework just described
holds for topological string theory as well. Thus topological string
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theory can also be characterized by symmetries, fields and equa-
tions. The symmetries will now be a diffeomorphism group in our
particular case. By choosing the group we study the G-equivariant
cohomology and we must pick a model for the cohomology which
is done by choosing the fields. The equations are as above with
the section s of a vector bundle, the localization bundle, s ∈
Γ[Elocalization → X].
The moduli space is a submanifold Z ⊂ M, where M = P/G

is seen as a principal bundle quotient. In topological string theory
P is MAP(Mh, MG)×MET(Mh) (the space of smooth metrics)
and G is Diff(Mh) and

Z ⊂ MAP(Mh, MG)×MET(Mh)

Diff(Mh)
. (7.56)

The moduli space Z is the space of holomorphic maps, which is
defined by

Z = Z(s)/G = {( f , h) ∈ MAP×MET|R(h) = ±1, 0; s = d f + Jd f ε = 0}/G,
(7.57)

where f is the map f : Mh → MG, R is the curvature, J is the
complex structure on the target space MG and ε is the complex
structure on the world-sheet Mh. Z can be described in terms of
the vanishing of a section of a vector bundle V → P. The vector
bundle and section are both G-equivariant. We can then define a
bundle as

V → P
↓ ↓

E = V/G → M = P/G
(7.58)

The tools of cohomological field theory and the localization prin-
ciple will be used to get the string action. The string theory must
have the symmetries of two dimensional QCD, thus it has to be in-
variant under area-preserving diffeomorphisms. The Nambu-Goto
and the Polyakov string action have this feature. As the free energy
is an expansion in powers of e−λA the string theory action must
be proportional to the area of the map but folds should be sup-
pressed (otherwise we would have terms in the sum corresponding
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to world-sheets that have an area that is not an integer multiple
of the area A). The string reformulation of the Yang-Mills theory
should have the property∫

D[ f , hαβ,...]e
−I[ f ,hαβ,...] =

∫
H

χ[TH(Mh, MG)→ H(Mh, MG)],

(7.59)

as a conclusion from the 1/N expansion is that it generates Euler
characters of moduli spaces of holomorphic maps, see [64] for a
discussion of this. The map f : Mh → MG is between the world-
sheet surface and the target space, hαβ is a metric on Mh and
H(Mh, MG) is the space of holomorphic maps.
To make progress we will use the basic data of topological string

theory. The original fieldspace of topological string theory is [18]

M̃ = {( f , g)| f ∈ C∞(Mh, MG), g ∈ MET(Mh)}, (7.60)

with C∞(Mh, MG) the space of smooth maps and MET(Mh) the
space of smooth metrics. We then have fields F = (h, f ) ∈ M̃ =
MAP×MET. Summarizing, to write the Lagrangian we will need
[18]

Fields: F =

(
f µ

hαβ

)

Ghosts: G =

(
χµ

ψαβ

)
Antighosts: ρα

µ

Lagrange multipliers: πα
µ.

Considering our string theory partition function we want to be
able to localize to H(Mh, MG). For this we can can use the basic
fields F of topological string theory and the standard section

s(F) = (d f + Jd f ε, R[h] + 1). (7.61)

The density on the moduli spaceH(Mh, MG) is given by χ(kerO/G)
with the fermion kinetic operator O (kerO f ,h ' Tf ,hZ(s)) [18].
kerO is a Diff(Mh)-equivariant bundle over

Z(s) = {(h, f ) ∈ M̃−1|s(h, f ) = d f + Jd f ε(h) = 0},
(7.62)
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such that kerO/Diff(Mh) ' T[( f ,h)]H. We have denote the space
satisfying R[h] = −1 (for genus greater than 1) M̃−1.
To get the density of χ(TH → H) the fermion kinetic operator

is O ⊕ O†. We have to extend the space of fields compared to
the standard topological string theory. The new fields, denoted
"cofields" (written with a hat on them), are completely determined
by the requirement that O† maps ghosts to antighosts, and by Q-
symmetry. The ghosts are "hatted" version of the standard ghosts
and takes values in the domain of O†.
The ghosts are differential forms on fieldspace and M̃ has to be

changed by the total space Ê → M̃ and fiber directions spanned
by

F̂ =

(
f̂ α
ν

ĥα

)
, (7.63)

with F̂ ∈ Γ (TMh ⊕ f ∗(T∗MG))
+ ⊕ Γ(TMh).

The section chosen is

s : (F, F̂→ (d f + Jd f ε, O†F̂) = (s1, s2). (7.64)

The Lagrangian for the two dimensional Yang-Mills equivalent
string theory is a sum of a the topological string theory Lagrangian
plus a Lagrangian for localizing to F̂ = 0 (see [64]), i.e.

IYM2 = Itopological string + I"cofield". (7.65)

For the nonchiral case of the theory we have to localize on both
the space of holomorphic and anti-holomorphic maps. We thus
choose a section

w̃( f , h) 7→ Ḟ = [ f d + Jd f ε]⊗ [d f − Jd f ε] (7.66)

that has Ḟµν
αβ written in indices. We have

Fields: F =

(
f µ

hαβ

)

Ghosts: G =

(
χµ

ψαβ

)
Antighosts: A = ρ

µν
αβ

Lagrange multipliers: Πµν
αβ,
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thus the anti-ghosts and Lagrange multipliers have changed com-
pared to in the chiral theory.
We can write the action of the nonchiral theory as

IYM2nonchiral = Itopological string + Inonchiraltopological sigma model + Inonchiral"cofield" ,
(7.67)

where

Inonchiraltopological sigma model = Q
∫

d2z
√

h{ραβ
µν[iḞ

µν
αβ − Γµ

λρχλρ
µρ
αβ +

1
2

π
µν
αβ].

(7.68)

Expanding (7.68) and integrate out the Lagrange multiplier the
bosonic term is given by

Inonchiraltσ =
∫

hzz̄G2
ww̄|∂w f w|2|∂z̄ f w|2 + . . . (7.69)

localizing on both holomorphic and anti-holomorphic maps.

We have now studied two dimensional Yang-Mills theory and its
interpretation in terms of string theory. In 1997 the AdS/CFT cor-
respondence (or gravity/gauge duality) was conjectured [66] giving
a relation between string theory and quantum field theory. The
string theory is defined on a product of anti de Sitter space (the
Lorentzian analogue of hyperbolic space) and some closed mani-
fold and the quantum field theory is conformal field theory (physics
looks the same at all length scales) on the conformal boundary of
the string theory space. For example N = 4 SU(N) Yang-Mills
theory in 3+1 dimensions on the boundary of AdS5 is a string the-
ory on AdS5 × S5. There are a lot of nonrealistic theories with a
lot of supersymmetry where the AdS/CFT correspondence applies
and numerical tests, to hundreds of numbers, has shown agreement
of calculations done on each side of the correspondence.



8
CONCLUS IONS

Localization formulas in finite dimensions (the Berline-Vergne for-
mula, the Duistermaat-Heckman formula and the localization for-
mula for the degenerate case) has been written down and proved.
Two dimensional quantum Yang-Mills theory on a compact Rie-

mann surface is solved exactly. The partition function can be writ-
ten as a sum over the critical point set and be related to the topol-
ogy of the moduli space of flat connections. The 1/N-expansion
of the partition function can be written as a string theory and a
string theory action is discussed. It is the mapping between the
physical gauge theory and the cohomological quantum field theory
that gives the basis for the localization of the partition function of
two dimensional Yang-Mills theory. Thus the large supersymmetry
of this theory explains its solvability properties.
The techniques that have been presented here motivate the ap-

proach to study physical problems by relating their properties to
topological field theory properties. Gauge theories in low dimen-
sions are useful playgrounds for the understanding of quantum
field theory and string theory.
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