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Figure 1: One monomer of the protein triose phosphate isomerase.

1 Proteins

1.1 Introduction to proteins

A protein is a large organic molecule consisting of a chain of amino acids joined
together by peptide bonds. Linked in a chain, the individual amino acid is called
a residue. The amino acids consists of the backbone atoms which are part of the
main chain and almost identical for all different amino acids, and the sidechains
which are individual and can vary in both size and chemical properties. The
protein have structure on several different levels. First it is the primary structure
which simply is the list of residues along the protein chain. The secondary
structure is the local structure composed of a few residues. Finally the tertiary
structure is the global structure of the protein.

The proteins are used for many different purposes in the cells. They can,
for example, be enzymes, taking part in chemical reactions, or they can per-
form many other vital functions in the cells. While the protein essentially is a
long chain of amino acids, the function of the protein depends solely on the 3-
dimensional shape of the protein, its native structure, which in turn is uniquely
defined by the chain sequence. Hence the knowledge of the sequence of amino
acids is only useful for determining the function of a protein if there is a way to
find the unique 3D structure from it.
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Figure 2: X-ray crystallography. (Image by Thomas Splettstoesser)

1.2 Practical methods

The oldest method for determining the structure of proteins is X-ray crystallog-
raphy. This is based on the study of the diffraction pattern of X-rays scattered
from a pure crystal protein. Using this method the structure of myoglobin was
determined in 1958. This method is the one most widely used but it can not be
used for proteins that does not crystallize easily.

A more recent method used is NMR-spectroscopy. The idea here is to use
the magnetic resonance of the nucleus since, ideally, each nucleus has a unique
small shift in the resonance because of its chemical environment. Normally this
method can only detect the hydrogen because of the lack of nuclear spin of
carbon and oxygen and the high quadropolar moment of nitrogen but if the
protein is first enriched with carbon-13 and nitrogen-15, then these can also be
detected.

1.3 Theoretical methods

Now that most of the human genome has been mapped we have an enormous
amount of genetic data. Since the sequence of amino acids in the protein chain is
defined by the DNA code, we also have a massive amount of information about
protein chain sequences. However we have much less information on protein
3D structure because of the time consuming methods, described earlier, used
to determine it. A good reliable method to determine the 3D structure from
the chain sequence would give us very much information on the function of the
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Figure 3: The energy landscape of a folding protein.

protein and the corresponding gene. This knowledge can then be used e.g. in
the creation of more effective pharmaceutical drugs.

The inverse of protein folding is to determine the chains that would fold to
a particular 3D structure. This knowledge can be used to design a new protein
with a desired attribute. A problem with this is that it is widely believed that
there are several theoretically possible structures that no chain would ever fold
to. In fact, while it seems that the total amount of possible 3D structures
are almost infinite, only a small fraction is used in nature, with many proteins
sharing a very similar structure.

There are several difficulties in the prediction of protein folding. The amount
of possible structures for a polypeptide chain is so large that it quickly be-
comes impossible to simply test all conformations, even for a chain of just a few
residues. Then there has to be a way to actually measure how good the current
conformation is. This requires an energy function that can distinguish the na-
tive and native-like structures from all other conformations. The potential well
around the native conformation is important. A function that gives 0 for the
correct conformation and 1 for all the rest would help you test if you have the
correct one but would also be totally useless in trying to find it. Another thing
that can make matters more complicated is that the native structure might not
have the thermodynamically lowest energy. There are also the effects of the
local environment to take into account, like the interactions with the solvent
and the aid of other proteins in the folding process

The last part necessary is an algorithm for searching the huge conformational
space for low energy solutions. Algorithms used include molecular dynamics,
Monte Carlo simulations, genetic algorithms and diffusive methods. All of these
methods require fast supercomputers to do any kind of realistic simulations on
real proteins.

Even though the conformation space is so big in theory, most of the con-
formations are not possible because of steric and chemical constraints. There
seems to be just a few thousand allowed structures, with minor variations.
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Figure 4: The main pathway, DNA to RNA to protein.

Another question is if the protein folds sequentially or combinatorially. In
other words, if the secondary structure formed later in the process affects the
secondary structure already formed. Most models use sequential folding simply
because it requires much less computer power.

1.4 Protein folding

The primary structure of the protein is decided by a, from DNA transcribed,
RNA string, where each three-letter combination stands for one of the 20 amino
acids, e.g. GCU is for Alanine, and the commands to start and stop. The folding
process starts while the primary structure is still being formed and the first thing
that happens is that the chain of amino acids collapses into a molten globule. An
intermediate step in the process of forming a protein. These early interactions
are mainly local and driven by hydrophobic effects. Here the secondary structure
is formed, the most common ones being the a-helix and the 3-sheet. The a-
helix is a coiled sequence where every amino acid residue shares a hydrogen
bond with the residue four residues earlier. The typical a-helix is around 10
residues or 3 turns long but they can be much longer. The willingness of each
amino acid to form an a-helix depends on the side chain and what effects it
has on the ability to hydrogen bond and the allowed angles on the backbone
structure. For example Alanine favours a-helix structure while Serine tends to
disrupt it. The second type of secondary structure, the §-sheet, is composed
of G-strands. A B-strand is a 6 to 8 residues long flat sequence. The backbone
atoms of this g-strand then hydrogen bonds with other g-strands to form a (-
sheet. (B-sheets can be either parallel or anti-parallel depending on the direction
of the (-strands. Another type of secondary structure is the turn that is a 3 or
4 residues long chain with hydrogen bonds between the end residues.

While most sequences always form one type of secondary structure there are
some that in one protein forms an a-helix and in another a (-sheet. This seems
to indicate that non-local interactions may have some part in the formation of
secondary structure.
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The molten globule is similar to the finished protein in that it contains a
high level of secondary structure, however it lacks some important parts. First
of all it lacks a well-packed tertiary structure, secondly it does not have the
functionality of the finished protein, and most importantly it is not stable. The
next step in the folding process is a slow search for a native-like core. This search
is characterised by how the structure stays quiet in a moderately stable form for
a while before it unfolds a bit and folds back into another more compact form.
This process can continue several times before it finds the correct structure.
When this is complete the last step is a rearrangement on the surface to find the
correct native state. Many proteins then go on to form a quaternary structure
by assembling with one or more other fully folded proteins. An example of this
is hemoglobin. All in all this process can take between a few milliseconds to over
a minute depending on the size of the protein. Compare this with the initial
collapse into a molten globule, which takes under 100 nanoseconds. Another
thing worth mentioning is the Levinthal paradox, which says that if a protein
would use some sort of random search to locate its native configuration, it would
take an astronomical amount of time to find it. Hence, the protein cannot use
a random search and the protein folds by a directed process. There are some
theories that the real energy landscape for a folding protein looks like a funnel
leading to the native state. This would mean that the protein might fold through
different paths and still end up with the same structure.

There are many indications that the main force stabilising the folding process
is the backbone interactions, with hydrophobic packing as the main driving
force. It seems that polar and charged residues only contributes marginally to
the stability of the protein and may in fact destabilise it.

While the 3D structure is uniquely determined by the amino acid sequence,
the reverse is not necessarily true. It is not uncommon that two chains where
less than 50% of the amino acids are identical fold into the same or similar 3D
structure.



1.5 When the folding fails

Besides the protein itself there are some other factors which may affect the
folding process. High temperature will cause the protein to misfold, that is to
fold into the wrong structure, or unfold the protein from its native structure.
The same can happen for high concentrations of solutes or extreme pH. Fully
denatured the protein exists just as a random coil with no secondary or tertiary
structure. They also lose their biological functions. For some proteins this
process is reversible and they will fold back into their native state as soon as the
denaturing factors are removed. Others change permanently and can transform
into an insoluble mass, e.g. egg whites.

Some cells protect their proteins by producing chaperones, enzymes that help
proteins fold and protect them from misfolding and unfolding. A few proteins
can never fold in cells without the help of chaperones protecting them from
interactions with other proteins during the folding process and some even need
the help of several different chaperones to fold.

Misfolded proteins may be the cause of several illnesses such as Creutzfeldt-
Jakob disease and Alzheimer’s disease. For Alzheimer’s disease the problem is
that misfolded proteins gathers into an insoluble plaque that the body cannot
get rid of.

The prion related illnesses like Mad Cow disease and Creutzfeldt-Jakob dis-
ease are a bit harder to explain. They are infectious diseases spread by a mis-
folded protein with no genetic code and no method of reproducing. The solution
to this riddle is that the prions use the bodies own natural system for protein
production and then it can refold these proteins into a copy of itself. While
some prion diseases are infectious, they can also be inherited or result from a
random mutation.



2 Energy functions

2.1 Knowledge based potentials

As was said earlier, the first thing you need to simulate folding proteins is an
energy function. Preferably one that can find the correct native conformation
among all the other possible and impossible conformations. There are many dif-
ferent ways to do this. From simple homology methods that compare the chain
to the database and assign an energy, to physical energy functions derived from
first principles and quantum mechanics. I will try to give some representative
examples of different energy functions.

The first one to mention is profile score. This function looks at what the
environment around the side chain looks like and then compares it to what the
environment around the side chain usually looks like for the same amino acid in
the database of known protein structures. Using some weights it then assigns
an energy depending on the result.

2.1.1 Statistical potentials

A slightly more sophisticated method is the statistical potential, here exempli-
fied by the Sippl potential (1990). It is a general law in statistical physics that
the energy of a state is related to the probability of that state being occupied.
For a discrete system, with n states and where f(s) is the probability of state
s being occupied and E(s) being the energy of state s, this relation looks like

" F5) = % exp | 22
] _Zexp[ B ] 1)

where Z is the Boltzmann sum:

Z= Szn;exp {_kET(S)} . (2)

From this it is clear that if you know the probability density function f(s), you
can get the energy from:

E(s) = —kTn[f(s)] — kT In[Z] (3)

but only up to an additive constant —kT In(Z).

All that is necessary to find the energy now is an expression for f(s). In
this example f(s) is the probability that two residues in the protein are within
the distance interval s. While this function f(s) might be interesting, a more
useful function is f;(s), which is the probability of two residues with exactly
k residues between them on the chain to be within the distance interval s.
Using this function it is easy to see the characteristic peaks from the secondary
structure. For example, for k = 4 the distance tends to be within the range 5.5
to 6.5 A in a-helices and within the range 11.0 to 14.0 A for B-strands.



This explanation of fi(s) still gives nothing to put into the energy equation.
This is where the known conformations enter the picture. There are thousands
of proteins with a known 3D-structure, and hence the distances between pairs
are also known. Using the frequency of pairs having a certain distance it is easy
to calculate the probability of the distance.

Now this would all be well if it were not for the fact that different amino acids
have different effects on the folding process and it would be good to separate
them in the energy function instead of using fx(s) which is an average.

The natural solution then is to use different f(s) for different combinations
of amino acids. Define f2%(s) as the probability of amino acid a and b, with
k residues in between to be within a distance interval s. It should be noted
that this function is not symmetric in a and b. From now on the ab superscript
will refer to a particular amino acid pair and terms without it will refer to an
average.

It is more interesting to look at the energy contributions of the individual
pair to the averaged energy, the net potential:

AE(s) = Ej*(s) — Ex(s) (4)
This can also be written out in full as:
ab Zab(s)
AEZ(s) = —len{ k (8)} —len[ k } 5
k ( ) fk(s) Zk(s) ( )

In the last term Z{°(s) ~ Zy(s) so this term can be neglected. The reason for
this is that Zx(s) is really an average of the different Z{*(s) and if the variance
of Z#(s) around Z(s) is not too big then Z2’(s) should be close to Zj(s).
However it may be the case for interactions between amino acids with unusual
conformational properties to have a Z2*(s) value far from Zy(s). By the time
of the printing of the original article, none of these values were actually known.

All this is good if the database is large enough, however it is easy to see
that even if the database is large, the number of e.g. Glycine and Asparagine
pairs with £k = 6 might not be big enough to give a statistically valid result.
Therefore it is important to separate the actual probability density f(s) from
the probability density obtained from the database, g(s). However the data set
is large enough that a good approximation is fx(s) = gr(s) for the averages.

A reasonable first approximation of f°(s) is fx(s), and by giving g¢(s) more
and more effect as the number of known pairs increases, the approximation looks
like:

1 o
£(s) ~ T i(8) e () (©)

where m is the number of measurements of the pair and o is a weight. For small
m this approximation goes like fi(s) while for m — oo it goes like g¢°(s).
Entering this into the expression for the net potential of the pair gives:

AE(s) = kT'In[1 +mapo] — kT In {1 + mabaﬁb((;))] (7)
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Figure 6: The five different classes of Delaunay tetrahedrons.

From this the total net energy of a sequence S in conformation C' can be calcu-
lated as a sum of all interactions:

N—-1 N
AE(S,C) =Y Y AE(s) (8)
i=1 j=i+1

where N is the total number of residues and s is the distance interval corre-
sponding to d;; = |x; — x;| for the two amino acids.

This potential is a two-body potential. One way to get more accurate in-
formation is to instead use a four-body potential. Then it is not the best idea
to use separation along the chain, k, instead the idea is to look at tetrahedrons
of residues. Not all of them but only the tetrahedrons consisting of nearest
neighbours. This would result in an energy function looking like this:

L’”] (9)

&, =—kTIn
ki
“ Dkl

where Qf};, is the four-residue contact energy, f7;, is the observed frequency
of the residue composition 4,5,k,l in a tetrahedron of type a and P 18 the
expected random frequency of observing 4,5,k,l in a type « tetrahedron. The
type of the tetrahedron depends on how the residues in it are connected to each
other.
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2.1.2 Pseudo-physical potentials

Another type of more advanced knowledge based potentials use a more pseudo-
physical approach and tries to have a physical reasoning behind the different
potentials used. The following potential is from Fujitsuka et al. (2004):

V= Vw + V¢ + Vw + VvdW + VHB + VHP + VRama + V;Dairwise (10)

where the first three terms are the torsion angle terms. They make sure that
the bonds are not twisting too much. Especially the w-term keeps the peptide
bond stable.

The next term is for van der Waal interactions. This is separated into
several different parts. First there is the separation between local and non-local
interactions. The local interactions are between residue i and i +4 on the chain,
while the non-local are between residues further apart, but not too far apart
as these residues have too little inpact on each other to be of any significance.
The local potential also separates between backbone-backbone interactions and
backbone-side chain interactions. It should be noted that the Fujitsuka potential
represents each amino acid by the C, C, and N on the main chain, and a centroid
of the side chain.

Vyp is for hydrogen bonding. It is also composed of several parts. The
first is for the real hydrogen bonds. It includes an attractive part for the right
combination of atoms (carbonyl oxygen and amide hydrogen) and a repulsive
part for the wrong combinations. There is also a burial term that depends
on how deep the bond is buried in the protein. The second part is a four-
body interaction that takes into account the cooperativity of two neighbouring
hydrogen bonds. Three different types of cooperativity are considered, a-helices
and parallel and anti-parallel S-sheets. The last part is the Born self-energy and
it represents the free energy cost upon burial of charged, amide and carbonyl
groups.

Vi p is for hydrophobic interactions. It measures the buriedness of the C,
and the centroid of the side-chain by looking at the local density of peptide
atoms.

The Ramachandran plot is the plot of the relative energy versus the angles
¢ and v, i.e. the dihedral angles on both sides of the C,. These angles have
some typical values for a-helices and (-sheets. The Vgamq potential makes sure
that there are two wells in the Ramachandran plot for the correct values of ¢
and ¢ to make sure that there is a tendency to form secondary structure. The
potential varies in strength for different amino acids to simulate the likelihood
of different amino acids to form different types of secondary structure.

The last part of the potential is Vjgirwise- This takes into account all other
attractive interactions between the side chains, like aromatic interactions and
charge-charge interactions. For most pairs this potential is Gaussian. The
only exception is the interaction between two Alanines which has the form of a
Lennard-Jones potential (see next chapter).

11



2.2 Physical potentials
2.2.1 Common terms

The physical energy functions are different from the knowledge based and sta-
tistical energy functions in that they are not primarily based on comparing the
chain you wish to study with similar chains with known 3D structure, however
it still uses them for calibration. Instead the idea is to estimate all the forces
affecting the protein to find its actual energy. The use of these functions are,
however, not limited only to proteins. Because of the fact that they often work
at atom instead of residue level they can be used straight away to model most
biomolecules. The simplicity of most of these functions is necessary because
biomolecules can have 100,000 atoms and there is a limit to how much even a
supercomputer can calculate.

There are a few terms that are similar for almost all physical energy func-
tionals. First it is the bond energies:

E= Y Kyb—b)’+ > Kol0—0)*+ (11)

bonds angles

Z K, (14 cos(nx —9)) + Z Kimp(¢—¢0)2

dihedral impropers

where Kj, Ko, Ky and K, are the force constants, b is the bond length, 6 is
the valence angle, x is the dihedral angle, n is the multiplicity, J is the phase
angle, ¢ is the improper angle and bgy, 6y and ¢ are the equilibrium values.

These terms treat the elastic energy necessary to stretch, bend and twist the
bonds between atoms. What could be noted is that this is a first approximation
and that there are higher order expansions that mixes the terms. The energy
functions that takes this into account are called class 2 energy functions while
this is a class 1 energy function. The increased accuracy of class 2 functions is
especially useful at geometries far away from the minimum energy. In general
class 1 energies work well for simulations at close to room temperature. There
are also some other options such as the use of a Morse function for bonds, which
allows for bond breaking, or a cosine based term for the valence angle.

The bond energies takes care of the interactions between bonded atoms.
There are however other interactions like:

S (e | (B U (B )| 4 (12)
*J Tij Tij 87’1‘j

nonbond
where the first term is a Lennard-Jones (LJ) potential where ¢;; is the LJ well
depth, Ryuin,i; is the minimum interaction radius and 7;; is the distance between
atoms i and j. The LJ term is used to describe the van der Waals interactions.
Rynin,i and €; are typically unique for each atom type and then combined using
special combining rules to form Ry, and ;5. Typically the 1,2 and 1,3
(i.e. atoms bonded to each other or separated by 2 covalent bonds) interactions

12



Figure 7: Definitions of the different angles.

are neglected. For computational purposes the long range interactions are also
neglected if the interaction distance is too large. There are some other form
of this potential. Their purpose is mainly to make the repulsive potential wall
associated with Pauli exclusion a bit softer. Examples of other forms include
the Buckingham potential that uses an exponential term to treat repulsion, a
buffered 14-7 term, instead of the usual 12-6, and the simple change of the r'?
term into an r? term. However, just like the bond energies the LJ potential
seems to work fine for simulations close to room temperature.

The second term is a Coulomb potential where ¢; and ¢; are the partial
atomic charges and ¢ is the dielectric constant, usually set to 1. This term, to-
gether with the LJ term, can treat hydrogen bonding reasonably well. However,
what this energy function can not treat explicitly is electronic polarizability.
Instead this is included by choosing partial atomic charges that overestimate
molecular dipoles. A future improvement of this theory would be to include an
explicit treatment of polarizability.

2.2.2 Commonly used force fields

So far, there has only been talk about energy functions and potentials. One more
thing is however necessary to form a proper force field, the set of parameters.
The regularly used force fields are accompanied by hundreds of parameters. All
of these has to be acquired by calibrating the force field on a previously known
structure.

The most commonly used force fields are the Assisted Model Building and

13



Energy Refinement (AMBER), the Optimized Potential for Liquid Simulations
(OPLS) and Chemistry at HARvard Macromolecular Mechanics (CHARMM).
These force field are constantly updated with new parameter sets. There is also
different parameter sets depending on how to treat the solvent, and if the force
field is all atom or united atom. All atom force fields obviously treats all atoms
while united atom force fields include hydrogen atoms next to carbon atoms
into the carbon parameters. This is used to save some computation time.
The energy functionals looks very similar. First for AMBER:

V= Ebonds %(b - b0)2 + E(mgles %(9 - 00)2
+ 2 dihedral %(1 + cos(nx — 9)) (13)

12 6
+EN—1 EN 45 Tij _ 0'# + qi4q;
j=1 i=j+1 v Tij rij dmer;;

for OPLS:

V= Zbonds Kb(b - b0)2 + Zangles K9(0 - 90)2 +
+Edihed7"als ‘flxi [1+0028(¢i)] + ‘/2,1‘ {H%W} + V}’:i {H%W} (]‘4)

_ o\ 12 o\ 6 cqie?
+E;‘v:11 ZzN:jJrl {451'1' |:(rj) - (ﬁ) ] + %} fii

and for CHARMM:

V= Zbonds Kb(b - bO)Q + EUB KUB(S - SO)Q + Eangles K0(9 - 90)2
+ Zdihedral KX(]' + COS(nX - 5)) + Zimpropers Kimp(¢ - ¢0)2 (15)

12 6
N-1 N T Oij q:q;
251 Dimje (5 [(rf) - (ﬁ) ]) t e

Most of the terms are easily recognizable from the last section but there are
a few that might need further explanation. In the OPLS equation, f;; is a
scaling factor, where f;; = 0.5 for 1,4 interactions and 1 for all the rest. In
the CHARMM equation S is the Urey-Bradley 1,3- distance, i.e. the distance
between two atoms separated by two covalent bonds.

14



3 Continuum models

3.1 The future

As our database of known proteins grows, the knowledge based force fields will
get better and better but it is still obvious that they are not the way forward.
The physical force fields seems like a much better starting point for the force
fields of the future as they have been the standard tool for the last 30 years,
but they also have a serious flaw. They need a huge amount of parameters and
if you want to increase the precision you have to expand the terms leading to
even more parameters needing to be determined. Remembering that a protein
is a long chain of amino acids where each bond is a very small part of the chain,
it should be possible to let the bond length tend to zero and treat the chain as
a continuous curve. Not only is this method good because we can then use the
tools from differential geometry on the curve, but also instead of defining the
curve with hundreds of angles and bond lengths we can now define it with just
two variables: curvature, k(s), and torsion, 7(s).

3.2 The Frenet frame

The easiest way to describe a curve in space is by using a Frenet frame. A
Frenet frame is a moving reference frame along a curve R(s). The frame is
defined by three orthonormal vectors T'(s), N(s) and B(s); the tangent, normal
and binormal vectors respectively. If the curve is unit-speed, that is |R'(s)| =1
then the tangent vector is defined as the derivative of the curve, R’'(s), where
’ always stands for derivation with respect to s. Now we can define N(s) as
T'(s)/||T"(s)||. T and N spans the osculating plane, which is the plane that the
curve seems to be residing in in a close vicinity of s. A planar vector always stays
in this plane for all s. The third vector, B, which points out of the osculating
plane is defined as B(s) = T(s) x N(s). The three vectors T, N and B now
forms an orthonormal basis. What is left now is the definitions of curvature
and torsion. We have already seen the curvature term in the definition of N
since k(s) = ||T"(s)|| or T"(s) = k(s)N(s) so the curvature can be seen as the
factor that decides how much the curve will bend in the osculating plane. The
torsion can be found from B’(s) = —7(s)N(s) and can be seen as the factor that
decides how the curve twists out of the osculating plane. These relations can
be summarized in the Frenet-Serret theorem, here displayed in matrix-form:

T 0 k 0 T
N |=| -« 0 7 N (16)
B’ 0 -7 0 B

3.3 Energy terms

Now that we have a way of describing a curve in space, there are some other
constraints we would like to put on that curve. Remember the earlier physi-
cal energy functions. They all contained energy terms for the elastic bending,

15



twisting and stretching of bonds. What is needed is an energy term that makes
sure that the curve does not bend or twist to sharply and since the bending and
twisting of the curve is governed by x and 7, those are the variables needing to
be minimized. The common way of doing this is by minimizing this energy:

L
E:/|/<;|2+ I7|? ds (17)
0

where ds is integrated over the length of the curve. Of course, for a real protein
model there has to be more energy terms than this since optimization using only
this energy will only give a straight line.

3.4 Thick chain model

What has been described here is an infinitely thin curve in space. Known as
the worm-like chain (WLC) model, this has been used for polymers like DNA,
but for proteins more work has been done on the thick chain model. The main
difference between the two is that, while the WLC model can be described as
the continuum limit of a chain of spheres with decreasing radius, the curve in
the thick chain model has a non-zero thickness and can instead be seen as a
chain of coins with decreasing distance, forming a tube.

The thick chain model requires some different constraints. It is not enough
that the curve behaves nicely and does not make any quick turns. We also
need to make sure that it does not overlap. For this it is not enough with a
simple two-body potential. It is possible to find a circle passing through any
three points in space. By limiting the allowed radius of this circle it is possible
to limit the bending of the curve while at the same time it makes sure that
segments far away from each other along the curve does not end up too close to
each other when it bends.

While this constraint may be easy to explain and draw, it is not that easy
to find an intuitive mathematical description of it. A formula for the radius of
a circle through any three points is given by:

[ry — 11| [rs — v [rs — 1o
R(ry,r2,1r3) = 4A(ry,ra,13) "

where A(ry,ra,r3) is the area of the triangle formed by the three points. The
goal is now to prevent this value from getting smaller than a certain value A.
This is done by simply awarding the curve an infinite amount of energy if that
is the case. The full energy function is:

L L L L
///V(R(r(s),r(s'),r(s"))dsds'ds”—|—/|T|2ds (19)
000 0

V(R) =

{ 0 R>A (20)

o R<A
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Figure 8: The different continuum limits of a sequence of spheres with dimin-
ishing radii and a sequence of discs with diminishing distance.

Figure 9: It is possible to create a circle through any three points in space.
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Figure 10: Phase diagram for a self-attracting tube with length L, radius A,
and a range of interaction R.

There is also the possibility to have a small negative part for R slightly bigger
than A, to get a small attraction for interactions like hydrogen bonds.

So far we have only discussed the constraints on the chain. We have to
remember that protein folding is much about attractive forces. This whole tube
will be self-attracting, mainly because of hydrophobic packing, that is, it wants
to have as little area as possible exposed to the solvent outside. For a theoretical
tube the result of this attractive force depends on the range of the attractive
interaction, R. For example, if the total length of the tube is long compared to
the interaction distance while the tube thickness is short then the tubes form
semi-crystalline structures.

The interesting part is the marginally compact phase is when R ~ A and
L ~ 27 R. There the tubes tend to form a few well recognizable structures like
helices and sheets. The similarity between these and the secondary structure of
proteins is remarkable.
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4 Generating a curve

4.1 Constructing the curve

The last part of this project was to construct a Maple function that could, from
a given curvature and torsion, generate the corresponding curve. I wanted the
function to be able to handle really general curvature and torsion and not limit
myself to, say, differentiable functions. The main reason for this is, except the
generality, the ability to optimize the curve by making small changes to the
curvature and torsion. Hence they are defined as a vector with as many values
as needed. For this to work you also need to specify J, the distance along the
curve between any two values. The last input parameter to be specified for the
function is simply the number of values used.

The curve always starts in the origin with the 7', N and B vectors in the z,
y, z direction respectively. This is not a restriction in any way since you can
always rotate and translate the curve to transfer it where you want it. What
then happens is that the function takes a step of length § along the T" vector.
There it uses the new values for x and 7 to generate the Frenet frame at that
point. Then it takes another step of length ¢ along the T vector and so it
continues. For each step it saves the position vector in the matrix R, which
coincidentally is the output of the whole function. This R matrix can then be
plotted to see what the curve looks like.

Here is the full function:

CreateCurve:=proc(k, 7,0, L) local ¢, n,b,r,R,i,t1,nl; uses LinearAlgebra;
t := Vector[1,0,0];n := Vector([0,1,0]); b := Vector([0,0, 1])
r:= Vector([0,0,0]); R :== Matriz(3, L)
for ¢ from 1 to L do
R[1,i] := r[1]; R[2,4] := r[2]; R[3,1] := r[3];
tl:=t+k[i]-n-d
nl:=n+ (=k[i]-t+7[i]-b) -5

t.= t1
Vi)
n e (n1—((n1.0)t))

V/(nl=(nl.t)t)-(n1—(nl.t)t)’
b := CrossProduct(t,n);
ri=r+46-t

end do;

R

end proc

To show what it can do I have made some test runs (fig. 11-14). The
first two images are of functions with known curvature and torsion and their
presence are mainly to show that the function works. To show the effects of
curvature and torsion I have made two random curves with different limits for
the curvature and torsion, with all the other variables equal. They could be the
starting point for an algorithm to simulate proteins by adding forces between
parts of the curve and using an algorithm to optimize the shape.
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These are just random curves but it could be interesting to compare them
with some real proteins anyway. Fig. 15 shows the backbone of a protein from
the protein database and fig. 1 shows a more complete visualization of a protein.
If the backbone model had been a bit more smooth instead of drawing straight
lines between the residues it could easily have been mistaken for a randomly
generated curve made with my program (compare with fig. 13). This indicates
that this method of defining curves by their curvature and torsion is a viable
way of describing proteins. However, this comparison should not be taken too
far. It is important to remember that the curves are indeed completly random
and, unlike the proteins, have no primary, secondary or tertiary structure. Most
noticeable is the lack of a well-packed tertiary structure.

4.2 Random values

The original CreateCurve function can accept any values for x and 7. For
the first experiments I simply used random values between a minimum and a
maximum value with equal probability for each value in that interval. However,
a more realistic first approximation of a protein would be that there is a preferred
value where the probability is highest and a decreasing probability the further
away you get. A reasonable choice is the Gaussian distribution:

1 —(z—p)?
e 57 (21)

P(z) =
(@) ov2m
where P(z) is the probability of the value x, u is the mean value and o is the

standard deviation. For the purpose of generating random numbers with this
distribution I have constructed the following functions:

GetGaussian := proc (MeanMinimum)
local a, b, ¢, d, e, f, randbool; uses RandomTools;
randbool := rand(1..2);
c:=0;
while 1 <core<0do
a := Generate(float(range =1..2)) — 1;
b := Generate(float(range = 1..2)) — 1;
c:=axa+bxb;
end do;
d:=+/—2xlIn(c)/c
e:=—axd; f:=bxd;
if MeanMinimum = 1 then
f
else
if randbool() = 1 then
e
else

f
end if
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Figure 11: Helix with the following equation (4cos(t),4sin(t),t) Created using
only the curvature k = % and 7 = %7 Observe that the helix is not sup-

posed to go straight up because of the original definition that the z-direction is
peripendicular to the curve at its starting point.
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Figure 12: A plane curve with x(s) = s for s = [—8, 8] using 500 points with
the appropriate distance between them.
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Figure 13: A randomly generated curve with x € [0,30] and 7 € [—30,30].
§—=0.2, L = 500
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L =500
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end if
end proc

GetRand := proc (Mean, Deviation, MeanMinimum) local R;
R := Mean + Deviation x GetGaussian(MeanMinimum,);
end proc

The GetGaussian function generates random numbers that have a Gaus-
sian distribution with ¢ = 0 and ¢ = 1. The GetRand function then ad-
justs this value to the desired p and o. I have also included the possibility of
only using the part of the distribution greater than the mean value, by set-
ting MeanMinimum = 1. For p = 0 this means that only positive values are
allowed.

One reason for making the function generate one random number at a time
instead of list of a specified length is that now it is possible to change the desired
mean and standard deviation values individually. This could for example be used
to adjust the parameters depending on the last generated value, or, for protein
modelling, adjust the parameters depending on the residue.

4.3 Optimizing the curve

The first thing needed for an optimizing algorithm is an energy function to
measure how good the current curve is. I want to build a function to straighten
out a curve. For this I need an energy function to measure how much the curve
bends. Fortunately I have already defined equation 17, which has all the right
properties. The following is a Maple function for calculating the energy of a
curve. The function simply takes the curve, as defined earlier, as input and
outputs the energy.

Energy := proc (k, 7, L) local En, i;

En :=0;
for i to L do
En:= En+ k[i]*> + 7[i]?
end do;
En
end proc

Now that the energy function is well defined, the last remaining part is the
actual optimization algorithm. The algorithm is rather simple. It makes a
copy of the curve and changes one of the angles by generating new values for
the curvature and torsion at that point. Then it checks to see if the energy
of the new curve is lower than that of the original one. If that is the case
then it returns the new curve, otherwise it returns the old one. The input
parameters are easy to recognize as the normal definition of a curve, from above,
and the parameters for the GetRand function, with the added possibility of
defining different parameters for curvature and torsion. The Maple version of
the algorithm looks like this:
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Alg := proc (k,7, L, meank, meant, deviationk, deviationt)

local RandRes, i, Res, k2, tau2;
RandRes := rand(1..L);
k2 := Vector(L, k);
tau2 := Vector(L,T);
Res := RandRes();
k2[Res] := GetRand(meank, deviationk,0);
tau2[Res] := GetRand(meant, deviationt, 1);
if E(k2,tau2,L) < E(k,7,L) then
k[Res] := k2[Res];
T[Res| := tau2[Res];
end if;
k,T
end proc

Figure 16 and 17 shows a curve before and after it has gone through the
optimization algorithm 10000 times. Figure 18 shows the variation in curve
energy during this process.

It is easy to see that the function could be made to run much faster. Because
of the current definition of the energy of the curve, the difference in energy
between the two curves depend entirely on the particular point where the curves
differ. It would have been much more efficient to just look at that point instead
of summing over the entire curve. My reason for writing it this way is that
now the optimization algorithm and the energy are entirely separate functions
and if I wanted to change the energy function this could easily be done without
worrying about anything else.

5 Conclusion

The complete understanding of how a protein folds would truly be a great
achievment. Based on this survey I would say that we are still far away from
that goal. The knowledge-based potentials are for many reasons not a way
forward, mainly because they demand a large database of known 3D-structures
and they does not give any information about the folding process. The physical
force field is the best method used today, it has been used for decades and
will probably still be the dominating method for years to come. The question
is if it is closing in on the limit for what it can do, when every step towards
increased accurracy leads to a much greater step backwards in terms of decreased
performance and increased need for calibration? Continuum methods are an
interesting new way forward that has had some success in the study of DNA. It
solves some of the problem of the physical force fields by requiring a much lesser
amount of constants to describe the main chain. However this method is still
under development. It has shown some promise in the simulation of secondary
structure, but it is not yet known how good it can simulate an entire protein
with all its chemical properties.
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Figure 16: Random curve generated with GetRand function, u = 0, 0 = 10,
6 =0.2, L = 500.

Figure 17: The same curve after 10000 iterations of the straightening algorithm.
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Figure 18: The energy of the curve for each iteration.
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