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Abstract

The Atiyah-Singer index theorem, the Euler number, and the Hirzebruch sig-
nature are derived via the supersymmetric path integral. Concisely, the supersym-
metric path integral is a combination of a bosonic and a femionic path integral.
The action in the supersymmetric path integral includes here bosonic, fermionic-
and isospin fields (background fields), where the cross terms in the Lagrangian are
nicely eliminated due to scaling of the fields and using techniques from spontaneous
breaking of supersymmetry (that give rise to a mechanism, analogous to the Higgs-
mechanism, but here regarding the so called superparticles instead). Thus, the su-
persymmetric path integral is a product of three path integrals over the three given
fields, respectively, that can be evaluated exactly by means of Gaussian integrals.
The closely related Witten index is a measure of the failure of spontaneous breaking
of supersymmetry. In addition, the basic concepts of supersymmetry breaking are
reviewed.
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1 Introduction

1 Introduction

In this thesis we derive index theorems by using techniques from mathematical physics
and quantum mechanics. We will use here mainly the supersymmetric path integral in
the derivations below.

The path integral describes the time-evolution of a quantum mechanical system given
an initial- and a final position in space-time. There are two kinds of path integrals; the
bosonic and the fermionic path integral, where in the former kind we use commutative
variables and periodic boundary conditions, while in the latter kind we implement instead
anti-commutative variables and anti-periodic boundary conditions.

Supersymmetry, on the other hand, treats bosons and fermions on an equal footing,
thus the supersymmetric path integral includes both commutative- and anti-commutative
variables and the boundary conditions, implemented over both variables, are periodic.

Index theorems relates analysis to topology by means of the solutions of a differential
equation to a topological invariant, i.e. a topological number. In this thesis we are
only concerned with the topological number called the Euler number, χ(M), where M is
some manifold. Given a manifold that admits the spin structure, the index of the Dirac
operator leads to the Atiyah-Singer index theorem and it is to be considered here as one
of the main derivations using the supersymmetrical path integral.

The Atiyah-Singer index theorem originates from the early 1960s and can be consid-
ered as a vast generalization of earlier versions of index theorems such as the Hirzebruch
signature theorem, also derived here using supersymmetry. In the early 1980s, physicists
realized that the well known results in mathematical index theory could be derived by
using relatively simple techniques from supersymmetric quantum mechanics and thereby,
possibly, relate mathematical theory to physics. (Notice that there is not yet, as of this
writing, any experimental verification of supersymmetric quantum mechanics.) All the
path integrals in the derivations below can be solved exactly by using Gaussian integrals,
thus neither Feynman diagrams, nor Feynman rules, are needed to yield the solutions.

The Witten index determines whether it is not possible to spontaneously break the
supersymmetry in a supersymmetric model. The index of the Dirac operator is closely
related to the Witten index; the Atiyah-Singer index theorem is equal to the Witten index
and thus relates index theorems to supersymmetry. A broken supersymmetry implies
that there is a mechanism that gives mass to supersymmetric particles (i.e. fermions
with integer spin, or bosons with half-integer spin), analogous to the Higgs-mechanism1

in the Standard Model.
The aim of this thesis is to present the most necessary preliminaries and to derive

index theorems using the supersymmetric path integral.

Outline of the Thesis

The thesis is organized as follows: In chapter 2 we introduce the index theorems from
a non-supersymmetric point of view. Mathematical concepts and terminology is briefly
reviewed. Elliptic differential operators, such as the Dirac operator in Euclidean metric,
and common characteristic classes used in the index theorems are presented.

In chapter 3 we review the theory of path integrals. Various standard techniques used
in evaluating path integrals, e.g., Gaussian integrals, are introduced. The similarities and

1The author apologizes for leaving out Brout, Englert, Guralnik, Kibble and possibly other names in
the •-mechanism.
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1 Introduction

differences in construction of the bosonic- and the fermionic path integral are emphasized.
The final topic of the chapter is the supersymmetric path integral.

In chapter 4 we review the concept of spontaneous breaking of supersymmetry in
contrast to symmetry breaking in quantum field theory. The famous Wess-Zumino model
serves as an example of whether supersymmetry is broken, and hence describes nature.

In the final chapter, chapter 5, we use the results from the consecutive chapters to
derive the aforementioned index theorems. Two extensive examples; the Gauss-Bonnet
theorem, and the winding number, serves as an in depth review on the geometrical and
topological meaning of the Euler number and its relation to physics. This chapter can be
considered as the main chapter while the previous chapters are preliminaries.

Four appendices follow the chapters described above: In appendix A, we show that
the supersymmetric Lagrangian fulfills the principle of least action, by using the su-
persymmetry transformations and the Bianchi identities for the field strength- and the
Riemann curvature tensors.

In appendix B, we derive an important formula used in the path integrals that are
implemented in the derivation of the index theorems.

In appendix C, we derive the Riemann curvature tensor and the field strength cur-
vature tensor explicitly. The similarities in construction of the two curvature tensors are
emphasized.

Finally in appendix D, a gauge choice, heuristically introduced in the derivation of
the Atiyah-Singer index theorem in chapter 5, is here calculated explicitly.

2



2 Index Theorems

2 Index Theorems

In this chapter, elementary concepts and terminology of the theory of index theorems
are presented. In chapter 5 below the same expressions of the index theorems presented
here are derived using the supersymmetric path integral. Here, however, we follow closely
the seminal articles [1]. The aim of this chapter is to state the major results of index
theory in a rather non-technical review. For a more mathematical exposure, we refer to
the aforementioned reference. Complementary references to the review given here include
[3, 7, 9, 10, 12]. The mathematical preliminaries are, more or less, omitted here and we
refer instead to the review article [3] for a more comprehensive exposure.

The hallmark of index theorems is that they give information about differential equa-
tions, provided that we understand the topology of the fiber bundles upon which the
differential operators are defined. We outline several examples below, illustrating the
connection between the index of an operator and the related topological numbers.

2.1 Elliptic Operators

In this section we review the theory of elliptic operators. Elliptic operators on compact
manifolds are important in defining index theorems, since the dimension of the kernel of
the operator is finite, thus the analytical index is well defined. Consider the eigenvalue
problem of the generic operator Op acting on some differential form ω ∈ Λp(M) of order
p; Opω = λnω, where Λp(M) is the space of p-forms. The constants λn, for n = 0, 1, . . . ,
are the eigenvalues and the kernel of Op is defined as the set of differential forms

kerOp = {ω;Opω = 0}.

As an example of an elliptic operator we take the Laplacian, ∆p, which act on p-forms
and is defined on compact Riemannian manifolds M of dimension n. The Laplacian
requires a metric gµν(x) for its definition, hence we have a link between analysis and
geometry. The Hodge-de Rham theorem yields topological information of the Laplacian

dim ker ∆p = dimHp
dR(M ;R),

where Hp
dR(M ;R) is the de Rham cohomology group. Next, we define the Fourier trans-

formation F{f(x)} of a function f(x) by the formula

F{f(x)} =
1

(2π)n

∫
dnx exp(iξx)f(x) =: f̂(ξ).

The Laplacian (in Cartesian coordinates) is defined as

∆ = − ∂2

∂x2
1

− · · · − ∂2

∂x2
n

,

and with ∆ acting on f(x) under the inverse Fourier transform yields the equation

∆f(x) =
1

(2π)n

∫
dnξ[ξ2

1 + · · ·+ ξ2
n]f̂(ξ) exp(−iξx).

The leading symbol, denoted by σL(∆), of the differential operator is the highest order
part of its Fourier transform:

3



2.1 Elliptic Operators 2 Index Theorems

σL(∆) = ξ2
1 + · · ·+ ξ2

n,

and for σL(∆) equal to a constant we obtain the equation of a sphere. We can generalize
the Laplacian by a change of scale ai in the coordinates xi, accordingly,

L = −
∑
i

ai
∂2

∂x2
i

,

then the symbol of L set equal to a constant c is given by

a1ξ
2
1 + · · ·+ anξ

2
n = c,

which is the equation of an ellipsoid in Rn, hence the name elliptic operator. A more
formal definition of ellipticity is formulated as follows; if the leading symbol σL(x, ξ) is
always non-zero for all x in Rn, then the associated differential operator is called elliptic.
As a counter example of an elliptic operator, consider the Bessel’s equation of order λ
given by the differential equation

x2d
2u(x)

dx2
+ x

du(x)

dx
+ (x2 − λ2)u(x) = 0; λ ∈ R,

which have the leading symbol

σL(x, ξ) = x2ξ2,

that vanish at the at the origin x = 0.
It is common in the literature to usemulti-index notation. Let L be a linear differential

operator, defined in Rn, of order m

L =
∑
|α|≤m

aα(x)Dα.

The n-tuple α = (α1, . . . , αn), where αi ≥ 0, is called a multi-index and |α| =
∑
αi is its

length. Furthermore, we have pα = pα1
1 p

α2
2 . . . pαnn andDα = (−i)|α|(∂/∂x1)α1 . . . (∂/∂xn)αn ,

thus the linear differential operator is given by

L =
∑
|α|≤m

a(α1,...αn)(x)(−i)|α|
∂α1

∂xα1
1

. . .
∂αn

∂xαnn
.

Using the Fourier transform, we get the symbol σm(x, ξ):

Lu(x) =
∑
|α|≤m

aα(x)Dαu(x) =
∑
|α|≤m

aα(x)

∫
Rn

dnξξα exp(−iξx)û(ξ)

=

∫
Rn

dnξ[σm(x, ξ)] exp(−iξx)û(ξ),

hence,

σm(x, ξ) =
∑
|α|≤m

aα(x)ξα.

4



2 Index Theorems 2.2 Characteristic Classes

The leading symbol is then equal to

σL(x, ξ) =
∑
|α|=m

aα(x)ξα.

We are here mainly interested in the cases m = 1 (Dirac operator) and m = 2 (the
Laplacian).

Elliptic operators on compact manifolds are called Fredholm operators, and we assume
from now on that all differential operators are Fredholm, unless it is stated as non-
Fredholm in a certain case.

2.2 Characteristic Classes

A fiber bundle is a manifold that locally looks like a direct product of two topological
spaces. As an example, a direct product of a circle S1 and some non-zero interval I =
[a, b], is a cylinder denoted by S1× I. The manifold M = S1 is called the base space and
F = I the fiber. A collection of all the fibers is called a fiber bundle. Since the cylinder
can be expressed as a direct product, locally as well as globally, it is a so called trivial
bundle. A Möbius strip, on the other hand, cannot be a direct product as in the case for
a cylinder, since it is twisted globally (if wee zoom in and merely look at a small segment
of its surface, it is indeed a direct product that looks like R2). Characteristic classes
measure the non-triviality, or twisting, of a bundle. The measure of the twisting is equal
to an integer, a topological constant, expressed as an integral involving the curvature of
the fiber bundle.

In this section we present the most important characteristic classes that appear in
the index theorems in the subsequent sections and in chapter 5. Several examples of
integrals over characteristic classes are given in the next section, used in the evaluated
index theorems.

2.2.1 The Chern Character

Let E be a complex vector bundle, whose fiber is Ck. Given a gauge potential Aµ(x) and
a field strength curvature two-form, F = 1

2
Fµνdx

µ ∧ dxν , we define the total Chern class
by

c(F ) = det

(
I +

iF

2π

)
= 1 + c1(F ) + c2(F ) + . . . ,

where cj(F ) is the jth Chern class and I is a unit matrix. In an m-dimensional base
space M , the Chern class cj(F ) with 2j > m vanish, thus the series terminates at
ck(F ) = det(iF/2π) and cj(F ) = 0 for j > k. The Chern classes are given, explicitly,
by

5



2.2 Characteristic Classes 2 Index Theorems

c0(F ) = 1

c1(F ) =
i

2π
Tr F

c2(F ) =
1

2

(
i

2π

)2

[Tr F ∧ Tr F − Tr(F ∧F )]

...

ck(F ) =

(
i

2π

)k
det F .

If we now let E be a real vector bundle with rank dimRE = k, we define the total
Pontrjagin class by

p(F ) = det

(
I +

F

2π

)
= 1 + p1(F ) + p2(F ) + . . . .

The relation between the Pontrjagin classes and the Chern classes is given by

pj(E) = (−i)jc2j(EC),

where EC denotes the complexification of the real vector bundle E, i.e., E ⊗R C = EC.
Finally, the total Chern character is defined by

ch(F ) = Tr exp

(
iF

2π

)
= k + c1(F ) +

1

2
[c2(F )2 − 2c2(F )] + . . . .

2.2.2 The Todd Class

Let E now be a complex vector bundle of rank k, i.e. dimRE = k. We define the total
Todd class of E by

td(E) =
k∏
j=1

xj
1− e−xj

=1 +
1

2
c1(E) +

1

12
[c1(E)2 + c2(E)] + . . .

=1− 1

12
p1(E) +

1

720
[3p1(E)2 − p2(E)] + . . . ,

where the xj’s comes from the splitting principle; the bundle E can be written as a
Whitney sum of n complex line bundles,

E = L1 ⊕ L2 ⊕ · · · ⊕ Ln.

The Whitney sum of the Chern class is, given a direct sum E = E1 ⊗ E2, equal to
c(E1 ⊕ E1) = c(E1) ∧ c(E1). The Chern class ci(E) = 0 for k1 + 1 ≤ i ≤ k1 + k2, where
k1 = dimRE1 and k2 = dimRE2. For the sum of n complex line bundles L defined above,
we get the wedge product

c(E) = c(L1) ∧ c(L2) ∧ · · · ∧ c(Ln).

6



2 Index Theorems 2.2 Characteristic Classes

The rth Chern class cr(L) = 0 for r ≥ 2 since dimR Li = 1, thus we write the Chern class
of Li as

c(Li) = 1 + c1(Li) ≡ 1 + xi,

and the total Chern class is now expressed as

c(E) =
n∏
i=1

(1 + xi).

The Chern character behaves well under Whitney sums; ch(E ⊗ F ) = ch(E) ∧ ch(F )
and ch(E ⊕ F ) = ch(E)⊕ ch(F ), and they are an important property in evaluating the
index theorems as will be demonstrated below.

2.2.3 The Euler Class

Let the base space M be a 2l-dimensional orientable Riemannian manifold. The real
tangent bundle TM =

⋃
p∈M(TpM) of M is the collection of all the tangent spaces TpM

of M . We define the Euler class as the square root of the highest Pontrjagin class:

pk/2(E) = e2(E),

where k = 2l is the rank of the real vector bundle E = TM . For a complex vector bundle
EC the Euler class is equal to the top Chern class:

ck(EC) = e(EC).

If the rank k is even, k = 2l say, the Euler class can be associated to the Pfaffian:

Pf(A) =
√

det(A),

where A is an even dimensional, skew-symmetric matrix of the form

A =


0 x1 . . .
−x1 0 . . .
...

... . . .
0 xk
−xk 0

 .

The Pfaffian is defined only for matrices of even order. For an odd-dimensional skew-
symmetric matrix, the Pfaffian vanishes, thus the Euler class for an odd-dimensional
manifold M is equal to zero. In chapter 3 we define the Pfaffian in terms of a Gaussian
integral and, in chapter 3 and 5, Gaussian integrals are used in evaluating path integrals.

2.2.4 The Â-genus

The Â-genus (called A-roof genus or, common in physics literature, the Dirac genus) is
defined by

Â(F ) =
k∏
j=1

xj/2

sinh(xj/2)
= 1− 1

24
p1 +

1

5760
(7p2

1 − 4p2) + . . . ,

7



2.3 Index Theorems and Classical Complexes 2 Index Theorems

where the xj’s are the eigenvalues of the field strength curvature two form, put in block
diagonal form similar to A above. The index of the Dirac operator is the Atiyah-Singer
index theorem and it is equal to an integral of Â(TM) over a manifold M . The mani-
fold M must admit a spin structure and the Stiefel-Whitney classes singles out all such
manifolds. For a real bundle E, we define the total Stiefel-Whitney class by

w(E) = 1 + w1(E) + w2(E) + . . . ,

where only the first two classes are important in order to determine whether a manifold
allows spin structure. If the base space is orientable, the first Stiefel-Whitney class
w1(TM) is zero. The manifold is a spin-manifold if the second Stiefel-Whitney class
w2(TM) is also zero, this means that parallel transport of spinors can be globally defined
on E = TM if and only if w1(TM) = w2(TM) = 0.

We give here two examples of spin-manifolds; (i) the complex projective spaces of odd
dimension, denoted CP 1, CP 3, . . . , and (ii) any sphere Sn.

2.2.5 The Hirzebruch L-polynomial

Let k = dimRE be the rank of a real bundle E over an n-dimensional manifold M . The
Hirzebruch L-polynomial is defined by

L(x) =
k∏
j=1

xj
tanhxj

= 1 +
1

3
p1 +

1

45
(−p2

1 + 7p2) + . . . .

An alternative definition of the L-polynomial can be found in the literature:

L(x) = 2k
k∏
j=1

xj/2

tanh(xj/2)
.

In the Hirzebruch signature theorem, only the highest order term is evaluated and both
terms are equal, as can be realized by expanding the former definition up to order k.
Hence either definition can be used in the signature theorem. The lower order terms, on
the other hand, are sensitive to which definition is used.

2.3 Index Theorems and Classical Complexes

First we state a general index theorem formula, expressed in terms of the characteristic
classes outlined in the previous section. We then apply the index theorem on complexes,
a finite sequence of elliptic differential operators acting on fiber bundles. The order of the
operators in a complex is important so that we get a certain chain of operators (in contrast
to a partial derivative where the order can be chosen arbitrary). The index theorem of
the de Rham complex yields the Gauss-Bonnet theorem. The Dolbeault complex can be
considered as the complex variable analogue to the de Rham complex and leads to the
Riemann-Roch theorem. The Hirzebruch signature theorem is derived in the context of
the signature complex and, finally, from the spin complex we get the Atiyah-Singer index
theorem.

8



2 Index Theorems 2.3 Index Theorems and Classical Complexes

2.3.1 A General Formula for Index Theorems

We are already familiar with the concept of fiber bundles from the previous section.
Defined more formally, we have the base space M , the fiber F and the total space E,
where E is a collection of all fibers, i.e., a fiber bundle. A map f : A→ B that maps every
element in the domain A to every element in the target B (not necessary one-to-one) is
a surjective map, or a surjection. The surjection π : E →M is called the projection and
its inverse π−1(p) = Fp is the fiber at p ∈ M and it is one-to-one and onto to F , hence
an isomorphism denoted by Fp ∼= F . A (cross) section s : M → E satisfies π ◦ s = idM ,
the identity map idM : M →M . A section of our trivial bundle S1× I introduced above
is just a fraction of the circle M = S1, or the entire circle depending on how many fibers
one chooses to take the cross section of.

A generic differential operator D can now be defined in terms of fiber bundles E π→M
and sections. Let Γ(M,E) denote the set of sections on M , thus we define D, and is dual
D†, by

D : Γ(M,E0)→ Γ(M,E1),

D† : Γ(M,E1)→ Γ(M,E0),

where E0 and E1 are vector bundles over M . The kernels of D and D† are given by

kerD ≡ {s ∈ Γ(M,E0);Ds = 0},
kerD† ≡ {s ∈ Γ(M,E1);D†s = 0}.

The operator D carries analytical information, from the solutions of the differential equa-
tion Ds = 0, hence the analytical index is defined by

index(D) = dim kerD− dim kerD†.

A finite sequence of operators Di is given by

0 −→ Γ(M,E0)
D0−→ Γ(M,E1)

D1−→ · · · Dn−→ Γ(M,En+1) −→ 0

and is called an elliptic complex if the composition Di ◦Di−1 = 0 for any i.
A generalization of the definition of index(D) above, given in terms of characteristic

classes, is given by the formula

index(D) = (−1)n{ch(σL(D))td(TMC)}[TM ]

where TMC is the complexification of the tangent bundle TM , i.e., TMC = M ⊗R C.
The expression [TM ] is an abbreviation of taking the integral of the characteristic classes
over TM . The right hand side can be generalized even further by rewriting the Chern
character of the leading symbol as a fraction of the Chern character of an alternating
sum of fiber bundles and the Euler class:

index(D) = (−1)n(n+1)/2 ch(
∑

i(−1)iEi)td(TMC)

e(TM)
[M ]. (2.1)

The latter index formula defined above is valid only for even dimensional and orientable
manifolds M . The Euler class vanishes for odd dimensions and consequently the index is
defined to be equal to zero in the case when the dimension is odd.

Next, we apply the generalized index formula (2.1) over four different complexes.

9
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2.3.2 The de Rham Complex

The (complexified) de Rham complex is defined by

· · · dr−2−→ Λr−1(M)C
dr−1−→ Λr(M)C

dr−→ Λr+1(M)C
dr+1−→ . . .

where Λp(M)C = Γ(M,∧pT ∗MC) is the vector space of p-forms, d is the exterior derivative
and T ∗MC is the complexified cotangent bundle (which is dual to TMC). For M an even
dimensional manifold, n = 2l and l ≥ 0, we write the right hand side of the generalized
index formula (2.1) as

(−1)l(2l+1)ch

(
n∑
r=0

(−1)rEr

)
td(TMC)

e(TM)
[M ].

The Chern character in the index formula can be written as an alternating sum of Chern
characters of vector bundles:

ch

(
n∑
r=0

(−1)rEr

)
=

n∑
r=0

(−1)rch(Er)

with Er = ∧rT ∗MC. For a line bundle Li we have ch(Li) = exp(xi), where xi = c1(Li),
and using the splitting principle we get the characteristic classes

ch

(
n∑
r=0

(−1)r ∧r T ∗MC

)
=

n∏
i=1

(1− e−xi)(TMC),

td(TMC) =
n∏
i=1

xi
1− e−xi

(TMC),

e(TM) =
l∏

i=1

xi(TMC).

Substituting the Chern character, the Todd class, and the Euler class into the index
formula we arrive at the topological index (given by the integral in the far right hand
side)

index(d) =

∫
M

(−1)l(2l+1)(−1)l

(
l∏

i=1

xi(TMC)

)
=

∫
M

e(TM),

where in the first integral we used the following relation between the Euler class and the
top Chern class cn(TMC) = x1x2 . . . xn:

cn(TMC) = (−1)n/2e(TM ⊕ TM) = (−1)n/2e2(TM).

The exterior derivative d : Λr(M) → Λr+1(M) is not Fredholm in the space Λ•(M),
thus we have to define d in the de Rham cohomology group Hr

dR(M) instead. Hence the
analytical index is (given by the expressions in the first and second equality)

10
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index(d) =
n∑
r=0

(−1)r dimHr
dR(M ;C)

=
n∑
r=0

(−1)r dimHr
dR(M ;R) = χ(M)

where the second equality follows from the de Rham’s theorem and the third equality
from the Euler-Poincaré theorem, via Hodge’s theorem. The topological constant χ(M)
is the Euler number.

The Gauss-Bonnet theorem is the index of the de Rham operator d:∫
M

e(TM) = χ(M).

2.3.3 The Dolbeault Complex

Without going into too many details2, the Dolbeault complex is analogous to the de
Rham complex, using instead complex variables of the form zµ = xµ+iyµ and its complex
conjugate z̄µ = xµ−iyµ. The manifoldM is now a complex manifold of complex dimension
n/2. The exterior derivative is defined as d = ∂+ ∂̄, where the Dolbeault operator ∂, and
its dual ∂̄, is given by

∂ = dzµ ∧ ∂/∂zµ; ∂̄ = dz̄µ ∧ ∂̄/∂z̄µ.
The complex analogue of the de Rham sequence is

· · · ∂̄−→ Λp,q(M)
∂̄−→ Λp,q+1(M)

∂̄−→ . . . ,

· · · ∂−→ Λp,q(M)
∂−→ Λp+1,q(M)

∂−→ . . . .

The Dolbeault complex is obtained with p = 0:

· · · ∂̄−→ Λ0,q(M)
∂̄−→ Λ0,q+1(M)

∂̄−→ . . . .

Using similar arguments as in the de Rham case above, we have the characteristic classes

cn/2(TM) = (−1)n/2cn/2(TM) = (−1)n/2e(TM),

td(TMC) = td(TM ⊕ TM) = td(TM)td(TM),

ch(σL) =

n/2∑
q=0

ch(∧qTM) =
cn/2(TM)

td(TM)
.

The index formula reduces to

index(∂̄) = (−1)l(2l+1) (−1)le(TM)

e(TM)td(TM)
td(TM)td(TM)[M ] = td(TM)[M ].

2See for instance Kähler Geometry in [7], or Complex Manifolds in [3] or in [10].
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There is a relation between the classical Betti numbers bq = dimHq
dR(M ;R) and the

Hodge numbers hp,q:

χ(M) =
∑
q

(−1)qbq =
∑
p,q

(−1)p+qhp,q.

The Hodge numbers can be regarded as a refinement of the Betti numbers. If we denote
the Dolbeault complex by ε we get the topological index

index(∂̄) =
∑
q

(−1)qh0,q = χ(ε)

Finally, the Riemann-Roch theorem is given by∫
M

td(TM) = χ(ε),

where χ(ε) is called the arithmetic genus of the complex manifold M .

2.3.4 The Signature Complex

Let M be an oriented manifold of even dimension, n = 2l. We define a bilinear form
B : H l(M ;R)×H l(M ;R)→ R by

B(α, β) ≡
∫
M

α ∧ β,

where α, β ∈ H l(M ;R), which is the middle cohomology group. The form B(α, β) is a
bl × bl symmetric matrix if l is even, where bl = dimH l(M ;R) is the Betti number. If
l = 2k (so n is divisible by four) the symmetric form B(α, β) has real eigenvalues where
the number of positive (negative) eigenvalues is denoted by b+ (b−). The Hirzebruch
signature of M is defined by

signature(M) := b+ − b−.
For l odd, signature(M) is defined to vanish.

The Hodge star operator ∗ is a duality transformation; ∗ : Λr → Λn−r, and it satisfies
∗2 = 1 when acting on a 2k-form in a 4k-dimensional manifold, hence ∗ has eigenvalues
±1. We define an operator D by the sum

D = d+ d†,

which is the square root of the Laplacian ∆ = dd†+ d†d = D2 (since d2 = (d†)2 = 0). Let
Harm2k(M) = {ω ∈ Λ2k(M);Dω = 0} be the set of harmonic 2k-forms on M , which is
isomorphic to the cohomology groups of order 2k, i.e., Harm2k(M) ∼= H2k(M ;R). Due
to the ±1 eigenvalues of the operator ∗, the set of harmonic forms Harm2k(M) can be
decomposed, accordingly,

Harm2k(M) = Harm2k
+ (M)⊕Harm2k

− (M).

The Betti numbers are b± = dimHarm2k
± (M) and the Hirzebruch signature is given by

signature(M) = dimHarm2k
+ (M)− dimHarm2k

− (M).

12
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When dealing with elliptical complexes we can split the space of forms Λ•(M) in
a similar way as for Harm2k(M). We define an operator τ , that acts on r-forms ω,
accordingly,

τ := ir(r−1)+l∗ : Λr(M)→ Λn−r(M),

which satisfies τ 2 = 1 and τD +Dτ = 0. The exterior algebra Λ•(M) is decomposed as

Λ•(M) =
⊕
r

Λr(M) = Λ+ ⊕ Λ−.

The anti-commutativity τD = −Dτ implies that we can define a restriction D+, and its
dual D−, of the operator D given by

D+ :Λ+(M)→ Λ−(M),

D− :Λ−(M)→ Λ+(M).

On the exterior algebra Λ2k for dimension n = 4k we have that π = ∗, and the index of
the signature complex reduces to the Hirzebruch signature:

index(D+) = dim kerD+ − dim kerD− = signature(M).

The topological index is given by the formula

(−1)l{ch(∧+T ∗M ⊗R C)− ch(∧−T ∗M ⊗R C)}td(TM ⊗R C)

e(TM)
[M ].

From the splitting principle of the characteristic classes, we get

ch(∧+T ∗M ⊗R C)− ch(∧−T ∗M ⊗R C) =

n/2∏
i=1

(e−xi − exi),

td(TM ⊗R C) =
xi

1− exi
−xi

1− e−xi
,

e(TM) = x1x2 . . . xn/2.

Hence, substituting the characteristic classes into the index formula yields:

index(D+) = (−1)n/2


n/2∏
i=1

(
e−xi − exi

xi

xi
1− exi

−xi
1− e−xi

) [M ]

=

n/2∏
i=1

xi(e
xi + 1)

exi − 1
[M ]

= 2n/2
n/2∏
i=1

xi/2

tanh(xi/2)
[M ]

=

n/2∏
i=1

xi
tanhxi

[M ].

13
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As discussed above, the last equality can be realized by expansion of
∏
xi/ tanhxi up to

order n/2. The n/2-order term coincides with the expression in the penultimate equality
since it is only the highest term that is evaluated in the index.

The Hirzebruch signature theorem states that, for a compact oriented manifold of
dimension n, where n is divisible by 4, the signature of M is given by

L(x) = signature(M).

The integer

L(x) =

∫
M

n/2∏
i=1

xi
tanhxi

is called the L-genus of M .
The Hirzebruch signature can be used in order to determine whether a manifold M

admits a complex structure. In dimRM = 4 we have the following relations

index(∂̄) = (χ(M) + τ(M))/4.

Example: If M = S4 is the four-sphere then χ(S4) = 2 and τ(S4) = 0, hence the
arithmetic genus is given by index(∂̄) = 1/2 which is not an integer and it means that S4

is not complex. We can draw the same conclusion for the complex projective space, with
the orientation −CP 2, since index(∂̄) = (3 − 1)/4 = 1/2. For the opposite orientation,
+CP 2, it is complex; index(∂̄) = (3 + 1)/4 = 1.

2.3.5 The Spin Complex

Let TM π→ M be a tangent bundle, where dimM = n = 2l even and M orientable. A
spin structure can be defined on, e.g., M = S2 as discussed above. We define the double
covering by the map

ρ : Spin(n)→ SO(n).

The Spin(2) group is the double covering of S2. Geometrically it is visualized as the
splitting of the sphere into two half-spheres that are covering the upper- and lower hemi-
spheres, respectively. The super orthogonal Lie-group SO(2), that we can regard as a
differentiable manifold, describe rotations in R3, hence ρ : S2 → S2. The two-sphere
can also be defined as the complex projective space CP 1 = S2, with transition functions
tij = − exp (−i2θ), where θ is an angle describing the rotation, i.e., the double covering
ρ : θ 7→ 2θ. Topologically Spin(2) is a latitudinal circle describing spin states on the
double cover of S2. The set of transition functions defines a spin bundle SM , and the set
of sections of SM is denoted by ∆(M) = Γ(M,SM). The spin-group is generated by n
numbers of Dirac matrices, {γµ}, which satisfy the following conditions

γµ† = γµ,

{γµ, γν} = γµγν + γνγµ = 2gµν .

We define the gamma matrix of dimension n+ 1 as

14
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γn+1 ≡ (i)n/2γ1γ2 . . . γn =

(
1 0
0 −1

)
,

(γn+1)2 = I,

where I is a 2n/2 × 2n/2 unit matrix. For n = 2 we yield the Pauli matrices σ1,2,3, and
they are related to the rotations of a spin-1/2 particle on S2 in the x-, y- and z-direction,
respectively,

γ0 = σ2, γ1 = σ1, γ2 = iγ0γ1 = σ3.

Since the eigenvalues of γn+1, called the chirality, are equal to ±1, the set of sections
of the spin bundle ∆(M) is decomposed into two eigenspaces, accordingly,

∆(M) = ∆+(M)⊕∆−(M).

The spin complex is defined in terms of the Dirac operator D, and its dual D†, by

D : ∆+(M)→ ∆−(M),

D† : ∆−(M)→ ∆+(M).

The analytical index of the spin complex is

index(D) = dim kerD− dim kerD† = n+ − n−,

where n+ (n−) is the number of zero-energy modes of chirality + (−). The Dirac operator
is elliptic only in Euclidean metric3 ,i.e., gµν = δµν , which is the ordinary Kronecker delta;
a diagonal matrix of the form δµν =diag(+1,+1,+1,+1). Thus, on the Riemann sphere
M = S2 we assume that the metric is locally flat ; gµν(x0) = δµν and ∂λgµν(x0) = 0,
x0 ∈ M . This choise of coordinates is called the Riemann normal coordinates (see
appendix D for further details).

The index theorem for the spin complex is given by the index formula

(−1)n/2{ch(∆+(M)−∆−(M))}td(TMC)

e(TM)
[M ].

From the splitting principle we have

(−1)n/2{ch(∆+(M))− ch(∆−(M))} =

n/2∏
i=1

(exi/2 − e−xi/2),

Thus the topological index is equal to

3In relativistic quantum mechanics the Dirac operator D is defined in the Lorentzian metric given
by ηµν =diag(-1,1,1,1). The index of D is related to spontaneous breaking of supersymmetry (chapter
four), where we are only interested of the physics in the ground state, i.e., the zero energy state. The
total energy is E ≥ |P |, thus in the ground state the momentum is P = 0.
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index(D) =

n/2∏
i=1

(
exi/2 − e−xi/2

xi

xi
1− e−xi

−xi
1− exi

)
[M ]

=

n/2∏
i=1

xi
exi/2 − e−xi/2

[M ] =

n/2∏
i=1

xi/2

sinh(xi/2)
[M ] = Â(TM)[M ].

The Atiyah-Singer index theorem is given by

index(D) =

∫
M

Â(TM),

where the Â-genus contains only 4i-forms, hence the index, as presented above, vanishes
unless the dimension of M is a multiple of four.

Furthermore, The Dirac operatorD can be ”twisted” if the spin bundle SM is replaced
by the tensor product SM ⊗ V , where V is a vector bundle. Using the multiplicativity
property of the Chern character, the index theorem applied to the twisted spin complex
DV : ∆+(M)⊗ V → ∆−(M)⊗ V is then equal to

index(DV ) =

∫
M

Â(TM) ∧ ch(V ).

For dimM = 2, we have

n+ − n− =

∫
M

ch1(V ) =
i

2π

∫
M

Tr(V )

where Tr(V ) is associated to the trace of the field strength curvature two-form F , i.e., a
background field that causes the twisting of the operator D.

The Atiyah-Singer index theorem of the twisted Dirac operator is derived in the
context of supersymmetry, in chapter 5 below.
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3 Path Integrals

In this chapter we review the theory of path integrals and anti-commuting algebra, also
called Grassmann algebra. We arrive in the end of this chapter at the path integral for
fermions and, finally, the supersymmetric path integral. The fermionic and supersym-
metric path integral play a crucial role in the proofs of the index theorems, presented in
chapter 5 below.

3.1 General Formalism of Path Integrals

3.1.1 The Bosonic Path Integral

The dynamics of a quantum mechanical system can be described by a path integral,
which is a sum of all field configurations4 between a given initial point and a final point
in space-time. We first consider the case of a system with one degree of freedom, and
later generalize to a system with several degrees of freedom. In this section we deal with
the bosonic case, hence the variables are commutative, in contrast to anti-commutative
in the fermionic case. A picture of the quantum process in space-time is given in figure
(1) below.

space
x′ x′′

time

t′

t′′

•

•

Figure 1: A path integral is a sum over all field configurations in space-time, where the
paths in the figure describes a dynamical quantum process evolving from an initial point
to a final point. The initial position is denoted by x′ at the initial time t′, and the
evolution to the final position x′′ is taking place at time t′′.

The derivation of the path integral starts with the classical Lagrangian L of the form

L = L(x, ẋ) =
m

2
ẋ2 − V (x),

where K = (m/2)ẋ2 is the kinetic energy of a particle of mass m under the influence of
the time independent force F (x) = −dV (x)/dx, and V (x) is the potential energy for the
classical trajectory x = x(t). The Hamiltonian H is the sum of the kinetic and potential
energy

4The terminology sum of all paths, or sum of all histories, can also be found in the literature. Since
paths are not well defined in quantum mechanics, due to the Heisenberg uncertainty principle given
by ∆x∆p ≥ ~/2, sum over all histories attempts to avoid such terminology. See the discussion on the
validity of the path integral, further below in this section.
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H = H(p, x) := pẋ− L =
p2

2m
+ V (x),

where p = mẋ is the (generalized) momentum. Replacing the variables (x, p) by the time
independent operators x̂ and p̂ = −id/dx in the Hamiltonian above we get the quantum
Hamiltonian Ĥ

Ĥ := H(x̂, p̂) =
p̂2

2m
+ V (x̂).

The time dependent state vector |Ψ(t)〉 describes the physical state of a quantum
mechanical system at a given time t, and the time-evolution of the states is governed by
the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = Ĥ|Ψ(t)〉.

If we know the state at some initial time t′, we then want to compute |Ψ(t)〉 for a final
time t′′ > t′. Solving the Schrödinger equation

d

dt
|ψ(t)〉 − i

~
Ĥ|ψ(t)〉 = 0; t′ < t < t′′,

we find, from the general solution of the differential equation, the time-evolution operator

Û(t′′, t′) = exp

(
− i
~
Ĥ(t′′ − t′)

)
,

i.e., the final state vector is of the form |Ψ(t′′)〉 = Û(t′′, t′)|Ψ(t′)〉. The time-evolution
operatorÛ fulfills the Schrödinger equation as well and for, e.g., t′ < t1 < t2 < t′′ we
have the composition law of Û ; Û(t′′, t′) = Û(t′′, t2)Û(t2, t1)Û(t1, t

′). Since Ĥ depends on
x̂ and p̂ we work in the x-representation and p-representation, respectively. Instead of
|Ψ(t)〉 we use the state vectors |x〉 and |p〉, having the following properties

x̂|x〉 = x|x〉; 〈x′|x〉 = δ(x′ − x);

∫
R

dx|x〉〈x| = 1,

p̂|p〉 = p|p〉; 〈p′|p〉 = δ(p′ − p);
∫
R

dp|p〉〈p| = 1.

These properties are the eigenvalue equation; the orthogonality of states ; and the com-
pleteness relation for x- and p-representation, respectively.

The path integral describes the evolution of the initial state |x(t′)〉 = |x′〉 at time
t′, evolving to the final state |x(t′′)〉 = |x′′〉, at time t′′. Hence, we shall calculate the
Feynman Kernel K(x′′, x′; t′′, t′)

〈x′′|Û(t′′, t′)|x′〉 =

〈
x′′
∣∣∣∣exp

(
− i
~
ĤT

)∣∣∣∣x′〉
:= K(x′′, x′; t′′, t′); T = t′′ − t′, t′ < t < t′′.

The transformation function, in the coordinate to momentum representation, is given
by the plane wave
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〈x|p〉 =
1√
2π~

eipx/~.

With the transformation function defined above, we compute the matrix element 〈x|Ĥ|p〉,
expressed in the classical Hamiltonian H(p, x):

〈x|Ĥ|p〉 =
1√
2π~

e−ipx/~H(p, x).

For small T = t′′ − t′ we expand the time-evolution operator up to first order in T

exp

(
− i
~
Ĥ(t′′ − t′)

)
∼= 1− i

~
Ĥ(t′′ − t′),

and the matrix element 〈p|Û(t′′, t′)|x〉 is equal to

〈p|Û(t′′, t′)|x〉 ∼=
1√
2π~

e−ipx/~
(

1− i

~
H(p, x)(t′′ − t′)

)
∼=

1√
2π~

exp

(
− i
~
px− i

~
H(p, x)(t′′ − t′)

)
.

Inserting the completeness relation,
∫
dp|p〉〈p| = 1, inside the Feynman kernel gives

〈x′′|1Û(t′′, t′)|x′〉 =

∫
R

dp〈x′′|p〉〈p|Û(t′′, t′)|x′〉

=
1

2π~

∫
R

dp exp

(
i

~
p(x′′ − x′)− i

~
H(p, x′)(t′′ − t′)

)
. (3.1)

The time-evolution operator fulfills the composition law as mentioned above, hence in the
right hand side of the kernel we use the composition Û(t′′, t′) = Û(t′′, tN−1) . . . Û(t1, t

′); a
factorization into N factors. We divide the time interval t′′ − t′ into N steps:

∆t =
t′′ − t′

N
� 1,

hence we can carry out the integration of the term dependent on the Hamiltonian in
(3.1). The time-evolution operator Û(t′′, t′) is now a product, written as

Û(t′′, t′) ∼=
(

1− i

~
Ĥ

(t′′ − t′)
N

)N
=

(
exp

(
− i
~
Ĥ∆t

))N
.

Inserting the completeness relation,
∫
dx|x〉〈x| = 1, N − 1 times to the right of every

factor, except the ultimate one, of Û(t′′, t′) gives
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〈x′′|Û(t′′, t′)|x′〉 =

∫
R

dp〈x′′|p〉〈p|Û(t′′, tN−1)1 . . . Û(t2, t1)1Û(t1, t
′)|x′〉

=

∫
R

N∏
i=1

dpi
2π

N−1∏
j=1

dxj〈xN |pN〉〈pN |Û(tn, tN−1)|xN−1〉 . . . 〈p1|Û(t1, t0)|x0〉

=

∫
R

N∏
i=1

dpi
2π

N−1∏
j=1

dxj exp

[
i

~
(pN(xN − xN−1) + · · ·+ p1(x1 − x0))

− i

~
(H(pN , xN−1) + · · ·+H(p1, x0))∆t

]
,

where xN = x′′ and x0 = x′. In the limits N →∞ and ∆t→ dt, we integrate over pN →
p(t) and (xN − xN−1)/∆t→ ẋ(t) for t′ < t < t′′. The boundary terms of the coordinates
are x(t′) = x′ and x(t′′) = x′′, hence the argument of the exponential transforms into the
classical action

S =

∫ t′′

t′
dt[p(t)ẋ(t)−H(p(t), x(t))] =

∫ t′′

t′
dtL(x, ẋ).

The measure is a product of Liouville measures; they are all classical quantities,

dp′′

2π

N−1∏
i=1

dpi(t)dxi(t)

2π
:= Dp(t)Dx(t).

In summary, the path integral is given by

K(x′′, x′; t′′, t′) =

∫
Dp(t)Dx(t)eiS/~. (3.2)

Since both the measure Dp(t)Dx(t) and the Lagrangian L(x, ẋ) are classical quan-
tities, it might seem to be a contradiction that quantum mechanics can be expressed
in terms of classical mechanics. The path integral expressed in the right hand side of
(3.2) is written out symbolically ; which means that it is to be considered as a limiting
process, valid in the framework of perturbation theory in quantum mechanics. For a
comprehensive review on path integrals, we refer to [4, 8].

3.1.2 Gaussian Integrals

We often use the Gaussian integral when evaluating path integrals. The Gaussian integral
is defined as

F(z, w) =

∫
R

dxe−zx
2+wx =

√
π

z
exp

(
w2

4z

)
; z, w ∈ R, z 6= 0.

The one-dimensional Gaussian integral F(z, 0) can be generalized to d-dimensions

Fd(M) :=

∫
Rd

dx1 . . . dxd exp

(
−

d∑
i,j=1

xiMijx
j

)
≡
∫
Rd

dxe−x
tMx,
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3 Path Integrals 3.1 General Formalism of Path Integrals

where M is a real symmetric d × d matrix, x is a column vector and xt its transpose.
We can diagonalize the matrix M accordingly M = NtMDN, where N is an orthogonal
matrix; Nt = N−1 and detN = 1. The matrix MD is diagonal with real, assuming all
non-zero, eigenvalues λ1, . . . , λd. Hence, for a change of variable y = Nx, the Gaussian
integral is written as

Fd(M) = detN

∫
Rd

dye−y
tMDy =

d∏
k=1

∫
R

dyke
−λk(yk)2 = πd/2(λ1λ2 . . . λd)

−1/2

= πd/2(detMD)−1/2 = πd/2(detM)−1/2.

A more general Gaussian integral is given by

F(M,u) =

∫
Rd

dxe−x
tMx+utx+xtu = πd/2(detM)−1/2euM

−1u.

3.1.3 Zeta Function Regularization

When evaluating path integrals via the Gaussian integral we need to solve functional de-
terminants, e.g. det(d 2/dt2), via an eigenvalue problem. Imposing Dirichlet (or periodic)
boundary conditions on the path integral, we solve eigenvalue equations of the form

− d2

dt2
xn(t) = λnxn(t); 0 ≤ t ≤ T ; xn(0) = xn(T ) = 0.

The eigenfunctions xn are, due to the boundary values, proportional to sin(nπt/T ) and
the eigenvalues are λn = (nπ/T )2, n ≥ 1. Hence, the functional determinant is equal to

det

(
− d2

dt2

)
=
∞∏
n=1

λn =
∞∏
n=1

(nπ
T

)2

<∞.

Let Ô be a generic operator whose eigenvalues are positive definite, i.e. det Ô =
λ1λ2 . . . λn > 0, and from the formula det Ô = exp[Tr log Ô] we have

log det Ô = Tr log Ô =
∞∑
n=1

log λn.

We define the MP zeta function5, associated to Ô, as

ζÔ(s) := Tr Ô−s =
∞∑
n=1

1

λn
s ; s ∈ C,

where the sum converges for sufficiently large <(s). Notice

d

dt
(λn

−s) = − log λn exp(−s log λn)

and
5The zeta function of Minakshisundaram and Pleijel. There are several zeta functions; the Riemann

zeta function is also referred to in this thesis.
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ζ ′
Ô

(0) =
dζÔ(s)

ds

∣∣∣∣
s=0

= −
∞∑
n=1

log λn,

hence we arrive at

det Ô = exp
(
−ζ ′

Ô
(s)
)
.

Thus with the operator Ô = −d2/dt2 mentioned as an example above, we find

ζ−d2/dt2(s) =
∞∑
n=1

(nπ
T

)−2s

=

(
T

π

)2s

ζ(2s),

where ζ(2s) =
∑∞

n=1 n
−2s is the Riemann zeta function, with well-defined ζ(0) = −1/2,

and ζ ′(0) = − log(2π)/2. Finally, we get the derivative of the zeta function at s = 0 equal
to

ζ ′−d2/dt2(0) = 2 log

(
T

π

)
ζ(0) + 2ζ(2s) = − log(2T ).

The final result of the functional determinant is

det

(
− d

2

dt2

)
= 2T.

We give an example below on how to evaluate a path integral using the zeta function
regularization and Fourier series.

3.1.4 Fourier Series and Path Integrals

Previously, we divided the time period T into N steps, i.e. ∆t = (t′′ − t′)/N = T/N .
Instead of discretizing the time interval we can evaluate the path integral using a Fourier
series

x(t) =
∞∑
n=1

anfn(t); t′ < t < t′′,

where an are the Fourier coefficients and fn are trigonometric functions. Hence, we
discretize the trajectory x by the finite series

xN(t) =
N∑
n=1

anfn(t); t′ < t < t′′.

The approximate paths xN(t) are functions of the Fourier coefficients {an}, thus the
measure is D (N)a ∼

∏N
n=1 dan. We can choose here t′ = 0, t′′ = T and the boundary

conditions x(0) = x(T ) = 0. Due to the boundary conditions we must use the sine-Fourier
series:

xN =
N∑
n=1

an sin

(
nπt

T

)
.

The path integral, here denoted F (T ), is then equal to
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F (T ) =

x(T )=0∫
x(0)=0

Dx(t) exp

(
i

~
S[x(t)]

)
=

∫
PBCs

Da exp

{
i

~
S

[
∞∑
n=1

an sin

(
nπt

T

)]}

:= lim
N→∞

[(
π√
2

)N
N !
( m

2πi~T

)(N+1)/2
]

N∏
n=1

∫
R

dan exp

(
i

~
S[xN(t)]

)
(3.3)

The prefactor inside the square brackets in (3.3) is chosen so that in the end we get the
result of the free field case (for which V (x) ≡ 0) multiplied by the trigonometric term
(ωT )1/2(sinωT )−1/2. As an example we compute the path integral of the one-dimensional
harmonic oscillator whose Lagrangian is given by

Losc(x, ẋ) =
m

2
ẋ2 − m

2
ω2x2,

where ω is the oscillation frequency. Here we use t′ = 0, t′′ = T and denote the path
integral by Kosc(x

′′, x′;T ):

Kosc(x
′′, x′;T ) =

x(T )=x′′∫
x(0)=x′

Dx(t)eiSosc[x(t)]/~,

where the action is equal to

Sosc[x(t)] =
m

2

T∫
0

dt(ẋ2 − ω2x2) =
m

2

T∫
0

dtx(t)

(
− d2

dt2
− ω2

)
x(t).

Expanding the variable x(t) as

x(t) = xcl(t) + q(t); xcl(0) = x′, xcl(T ) = x′′, and q(0) = q(T ) = 0,

where xcl is the classical trajectory and q(t) is the closed quantum fluctuation. The
exponent of the action is factorized into a classic factor, where the equations of motion
is given by the Euler-Lagrange equation, and a quantum factor Fosc which is the path
integral of the quantum fluctuations:

Kosc(x
′′, x′;T ) = exp(iSosc[xcl]/~)Fosc(T ).

For closed quantum fluctuations q(t) we use a sine-Fourier series and obtain the path
integral Fosc(T )

Fosc(T ) := Kosc(0, 0;T ) =

q(T )=0∫
q(0)=0

Dq(t)eiSosc[q(t)]/~.

The finite series approximation qN(t) of the action Sosc[q
N(t)] is equal to
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3.1 General Formalism of Path Integrals 3 Path Integrals

Sosc[q
N(t)] =

m

2

T∫
0

dt(q̇2 − ω2q2)

=
m

2

N∑
n=1

a2
n

T∫
0

dt

[(nπ
T

)2

cos2

(
nπt

T

)
− ω2 sin2

(
nπt

T

)]

=
mT

4

N∑
n=1

a2
n

[(nπ
T

)2

− ω2

]
Now we can motivate, more explicitly, the choice of the prefactor in (3.3) by evaluating
FN

osc(T ):

FN
osc(T ) =

N∏
n=1

∫
dan exp

{
−mT

4iπ

N∑
n=1

[(nπ
T

)2

− ω2

]
a2
n

}

= πN/2
(
mT

4i~

)−N/2 N∏
n=1

(
T

nπ

){ N∏
n=1

[
1−

(
ωT

nπ

)2
]}−1/2

=

(
π√
2

)−N ( m

2πi~T

)−N/2 1

N !

{
N∏
n=1

[
1−

(
ωT

nπ

)2
]}−1/2

,

where in the second equality the Gaussian integral was used in evaluating the path in-
tegral, and the two products come from factorizing (

∏
[(nπ/T )2 − ω2])−1/2. Substituting

FN
osc(T ) in (3.3,) and taking the limit N →∞, yields

FN
osc(T ) =

√
m

2πi~T

{
N∏
n=1

[
1−

(
ωT

nπ

)2
]}−1/2

=

√
m

2πi~T

√
ωT

sinωT
for T > 0,

where the first square root is the free field result of the path integral. As an example of
evaluating a path integral using the result of the zeta function regularization above, we
consider the Lagrangian L = (1/2)mq̇2 and check the free field case F0(T ):

F0(T ) =

q(t)=0∫
q(0)=0

Dq(t) exp

−1

2

(m
i~

) T∫
0

dtq(t)

(
− d2

dt2

)
q(t)


=

√
m

πi~

[
det

(
− d2

dt2

)]−1/2

=

√
m

2πi~T
.

3.1.5 Coherent States

Previously we introduced the classical Lagrangian L = (1/2)mẋ2 − (1/2)mω2x2 for the
simple one dimensional harmonic oscillator. The (quantum) Hamiltonian is then equal
to
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Ĥ =
p̂2

2m
+
mω2x̂2

2
.

We define the annihilation and creation operator, respectively, as

a =

√
mω

2~

(
x̂+

ip̂

mω

)
; a† =

√
mω

2~

(
x̂− ip̂

mω

)
. (3.4)

With the commutation relation [x̂, p̂] = x̂p̂ − p̂x̂ = i~, we get the Hamiltonian in terms
of the number operator N = a†a:

a†a =
mω

2~

(
x̂2 +

p̂2

mω2

)
+

(
i

2~

)
[x̂, p̂] =

Ĥ

~ω
− 1

2
,

or

Ĥ = ~ω
(
N +

1

2

)
. (3.5)

The eigenvalue equation of N , acting on the energy eigenkets |n〉, is equal to

N |n〉 = n|n〉.

The eigenvalues n are positive integers, and the annihilation (creation) operator acting
on |n〉 decreases (increases) the energy state by one unit, accordingly

a|n〉 =
√
n|n− 1〉; a†|n〉 =

√
n+ 1|n+ 1〉.

One can show [13], by using the Heisenberg equations of motion, that the time evolution
of a and a† are

a(t) = a(0) exp(−iωt); a†(t) = a†(0) exp(iωt) (3.6)

Expressing x̂ and p̂ in terms of a and a†, by rewriting (3.4), we get x̂(t) and p̂(t) from
(3.6):

x̂(t) = x̂(0) cosωt+

[
p̂(0)

mω

]
sinωt,

p̂(t) = −mωx̂(0) sinωt+ p̂(0) cosωt.

The variables of x̂(t) and p̂(t) seem to oscillate, analogous to the case in classical mechan-
ics. Notice, however, that x̂(0) ∼ a+a† and p̂ ∼ −a+a†; computing the expectation values
〈n|x̂(t)|n〉 and 〈n|p̂(t)|n〉 gives zero in both cases due to the orthogonality 〈n|n± 1〉 = 0.

In order to observe oscillations of x̂(t) and p̂(t) we must use instead a superposition
of energy eigenstates, e.g. using |0〉 and |1〉,

|α〉 = c0|0〉+ c1|1〉; c0, c1 ∈ C.

A coherent state is defined by the following eigenvalue equation:

a|λ〉 = λ|λ〉; λ ∈ C,
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3.2 Grassmann Algebra 3 Path Integrals

where the eigenket |λ〉 is a superposition of |n〉:

|λ〉 =
∞∑
n=0

fn(n)|n〉.

The distribution of |fn(n)|2 is of Poisson type; |fn(n)|2 = (n̄n/n!) exp(−n̄), where n̄ is a
mean of n measurements. For large values of n, the Poisson distribution approaches a
bell-shaped Gauss distribution [2].

In summary; a coherent state is an oscillator ground state (a Gauss distribution) that
can bounce back and forth by some finite distance in space. The shape of a wave-package
translated in space remains in an oscillator ground state, for all time intervals ∆t, without
spreading in shape.

We use coherent states in the derivation of the fermionic path integral below.

3.2 Grassmann Algebra

The Pauli exclusion principle states that no two electrons with identical quantum numbers
can occupy the same quantum state. Consider, e.g., an electron with, say, spin up and is
in a state |n〉, if another electron is in the same state, then the latter electron must have
a spin down.

In the next section the path integral for fermions will be derived. Instead of commut-
ing numbers, as used in the construction of the bosonic path integral, anti-commuting
Grassmann numbers are thus imposed in the Lagrangian and the measures.

3.2.1 Grassmann Algebra

Let {θ1, . . . , θn} be a set of Grassmann variables, satisfying the anti-commutation relation

{θi, θj} = θiθj + θjθi = 0 ∀i, j.
A set of linear combinations of {θi}, with coefficients that are complex numbers, is called
a Grassmann number, e.g. for n = 2,

f(θ) = f0 + f1θ1 + f2θ2 + f12θ1θ2; f0, f1, f2, f12 ∈ C.
From the anti-commutative relation above, we have that (θi)

2 = 0. We define a function
of Grassmann numbers as a Taylor expansion. E.g., for n = 1 and θ a Grassmann
variable, a Grassmann function exp(θ) is equal to

eθ = 1 + θ.

The exponential of one, or several, Grassmann numbers is a Grassmann function we
encounter frequently when evaluating integrals in the following sections of this chapter,
and in chapter 5 below.

3.2.2 Differentiation

The differential operator ∂/∂θi act acts on a function from the left, in a similar way as
the ordinary differential operator:

∂

∂θi
θj = δij.
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E.g., taking the derivative of f(θ) defined above with respect to the operators ∂
∂θ1

∂
∂θ2

yields

∂

∂θ1

∂

∂θ2

f(θ) = −f12.

Notice the order of the differential operators and that θ1θ2 = −θ2θ1 in the fourth term of
f(θ).

3.2.3 Integration

integration with respect to a Grassmann variable θ is equivalent to differentiation. We
introduce the Berezin integrals∫

dθθ = 1, and
∫
dθ1 = 0.

For a general function f(θ) we have

∫
dθf(θ) =

∂f(θ)

∂θ
,

i.e., ∫
dθ1dθ2 . . . dθnf(θ1, θ2, . . . , θn) =

∂

∂θ1

∂

∂θ2

. . .
∂

∂θn
f(θ1, θ2, . . . , θn).

Since the order of the differentials ∂/∂θi is the same as for dθ1 . . . dθn, one must use
the anti-commutation rule to, if necessary, arrange the Grassmann variables of f(θ) in a
descending order with respect to the differentials.

Integration under a change of variable θ ′ = aθ, a ∈ C, transform as∫
dθf(θ) =

∂f(θ)

∂θ
=
∂f(θ

′
/a)

∂(θ ′/a)
= a

∫
dθ
′
f(θ

′
/a),

i.e., dθ ′ = (1/a)dθ. Extending to the case of n variables; θi → θi = aijθj, gives the
transformation ∫

dθ1 . . . dθnf(~θ ) = det a

∫
dθ
′

1 . . . dθ
′

nf(a−1~θ
′
),

where ~θ = (θ1, . . . , θn) is a column vector and a = [aij] a matrix. We use the n-case
change of variables when computing path integrals and Gaussian integrals in a following
chapter. The Gaussian integral using Grassmann variables is defined below.

3.2.4 Gaussian Integral of Grassmann Variables

The Gaussian integral is given by

I =

∫
dθ∗1dθ1 . . . dθ

∗
ndθn e

−
∑
i,j θ
∗
iMijθj .
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The matrix M = [Mij] is skew-symmetric, i.e. Mij = −Mji, since θiθ∗i = −θ∗i θi and
the sets {θi} and {θ∗i } are independent. Under a change of variables θ ′i =

∑
jMijθj the

integral is evaluated as

I = detM

∫
dθ∗1dθ

′

1 . . . dθ
∗
ndθ

′

n e
−

∑
i θ
∗
i θ
′
i

= detM

∫
dθ∗1dθ

′

1e
−θ∗1θ

′
1 . . . dθ∗ndθ

′

ne
−θ∗nθ

′
n

= detM

[∫
dθ∗dθ

′
(1 + θ

′
θ∗)

]n
= detM.

Notice the lack of square-root when integrating over two independents sets of variables.
The determinant is in the nominator, rather than in the denominator as in the bosonic
case, when implementing Grassmann variables into the Gaussian Integral.

If the Grassmann variable θ is complex, then θ∗ is the complex conjugate of θ. (In
a later chapter we introduce an anti-commutative field η, called the isospin field which
dual to the spin field ψ, and the complex conjugate of η is then denoted by η̄.)

We can show that the Gaussian integral vanishes if we have an odd number of factors
in the measure. We define[10] the Pfaffian of the anti-symmetric matrix A = [Aij] of
order 2n as

Pf(A) =
1

2nn!

∑
Permutations of
{i1,...,i2n}

sgn(P )ai1i2ai3i4 . . . ai2n−1i2n .

where sgn(P ) is the signature of the permutation P . Recall the definition[2] of a deter-
minant Dn of order n:

Dn =
∑
i,j,k,...

εijk...aibjck . . .

where εijk... is the n-dimensional analogue to the Levi-Civita symbol. As an example, we
consider the familiar case n = 3:

D3 =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣ = +a1b2c3 − a1b3c2 − a2b1c3 + a2b3c1 + a3b1c2 − a3b2c1.

Now we can clearly see the meaning of sgn(P ); an even (odd) permutation P yields
sgn(P ) = +1 (sgn(P ) = −1). In the example above, we see that a simple transposition
of a subscript of the matrix elements, with respect to the linear sequence (123), gives a
minus, hence an odd permutation. For instance; (123) → −(213) → +(231) → −(321),
hence sgn(P ) = −1 in the last term of D3. Notice that there are 3! = 6 terms in the sum
of D3. From a combinatorical point of view, there are 2n ways of swapping the indices,
e.g.,

ai1i2ai3i4 . . . ai2n−1i2n −→ ai2i1ai3i4 . . . ai2n−1i2n .

There are n! permutations of the pairs of indices, e.g.,

28



3 Path Integrals 3.3 Fermionic Path Integral

ai1i2ai3i4 . . . ai2n−1i2n −→ ai3i4ai1i2 . . . ai2n−1i2n .

In order to avoid double counting of the terms, there is a fraction 1/(2nn!) in front
of the sum in the definition of the Pfaffian. The matrix A can be block diagonalized,
accordingly,

NtAN = AD =


0 λ1 . . .
−λ1 0 . . .
...

... . . .
0 λ2n

−λ2n 0

 ,

and the determinant of A is equal to

det(A) = det(AD) =
2n∏
i=1

λ2
i .

The Pfaffian of a block diagonalized matrix is given by

Pf(AD) = ai1i2ai3i4 . . . ai2n−1i2n =
2n∏
i=1

λi,

which yields the relation between the Pfaffian and the determinant:

det(A) = [Pf(A)]2.

The Gaussian integral can be expressed in terms of the Pfaffian:

I =

∫
dθ2n . . . dθ1 exp

[
1

2

∑
i,j

θiAijθj

]
=

1

2nn!

∫
dθ2n . . . dθ1

(∑
i,j

θiAijθj

)n

= Pf(A).

Notice here the factor 1/2 in the argument of the exponential in the absence of pairs of
dθ’s. In the second equality, the exponential is expanded and the only term that saturates
the measure dθ2n . . . dθ1 is of the order n since there are two Grassmann variables θi and
θj in the sum. The Pfaffian vanishes for odd order matrices. As we shall see in chapter 5,
the order of the matrix is associated to the dimension of a manifold and the non-vanishing
of the analytical index.

3.3 Fermionic Path Integral

The fermionic path integral is constructed analogous to the bosonic case. We use instead
Grassmann variables and arrive at a path integral identical, except for the boundary
conditions, to the bosonic path integral. The boundary conditions are now anti-periodic
rather than periodic.
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3.3.1 Fermionic Harmonic Oscillator

Here we consider a quantum system with a single spin-1/2 particle described by the Pauli
matrices σx, σy and σz. With σ± = (σx± iσy)/2 we define the fermionic annihilation and
creation operators, respectively,

c = σ− =

(
0 0
1 0

)
; c† = σ+ =

(
0 1
0 0

)
.

The operators c and c† satisfy the anti-commutation relations

{c, c†} = cc† + c†c = 1, {c, c} = {c†, c†} = 0.

Hence c2 = (c†)2 = 0. The fermionic harmonic oscillator is described by the Hamiltonian6

Ĥ =
1

2
(c†c− c†c)ω =

1

2
[c†c− (1− c†c)]ω = ω

(
N − 1

2

)
where N = c†c is the number operator (cf. the bosonic case H = ω(N + 1/2)). The
eigenvalue of N is either zero or one; N2 = c†cc†c = c†(1− c†c)c = N , or N(N − 1) = 0.
Let the energy state |n〉, n = 0 or 1, be an eigenvector of Ĥ:

|1〉 =

(
1
0

)
; |0〉 =

(
0
1

)
,

then c†|0〉 = |1〉, c|0〉 = c†|1〉 = 0, and c|1〉 = |0〉. Hence the eigenvalues of the Hamilto-
nian are given by the eigenvalue equations

Ĥ|0〉 = −ω
2
|0〉, Ĥ|1〉 =

ω

2
|1〉.

3.3.2 Fermionic Coherent States

The number operator N has eigenvectors |0〉 and |1〉, hence an arbitrary vector |f〉 can be
written as |f〉 =

∑
fn|n〉 = f0|0〉 + f1|1〉. In the fermionic coherent state representation

we have two basis functions f0 = 1 and f1 = θ, θ a Grassmann variable, hence the
fermionic coherent state |θ〉, and its dual 〈θ|, are equal to

|θ〉 = |0〉+ |1〉θ, 〈θ| = 〈0|+ θ∗〈θ|.

The coherent states are eigenstates of c and c†, respectively:

c|θ〉 = |0〉θ = |0〉θ + 0 = |0〉θ + |1〉θ2 = |θ〉θ,
〈θ|c† = θ∗〈θ|.

6In this section we set ~ = m = 1, since it is more convenient to introduce this notation here, in
agreement with the notation in chapter 5 below.
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3.3.3 Fermionic Partition Function

We introduce the partition function Z(β), derived from the path integral by the replace-
ment t = −iτ , i.e. the imaginary time (or Euclidean time). The partition function is
identical to the path integral, except for the absence of a factor

√
−1 = i in the exponent;

e.g. 〈xf| exp(−iĤT )|xi〉 is identical to Z(β) = 〈xf| exp(−βĤ)|xi〉, where β = iT .
The reason we introduce the partition function here is due to the notation used in the

index theorems, presented in chapter 5 below.
First, we define and compute the partition function of a fermionic harmonic oscillator:

Z(β) = Tr e−βĤ =
1∑

n=0

〈n|e−βĤ |n〉 = eβω/2 + e−βω/2 = 2 cosh(βω/2) (3.7)

This partition function is of great importance in proving the Hirzebruch signature, as will
be verified in chapter 5. Using the completeness relation for fermionic coherent states:∫

dθ∗dθ|θ〉〈θ|e−θ∗θ = 1,

one can show [10] that the partition function is related to the integral over Grassmann
variables, accordingly

Tr e−βĤ =

∫
dθ∗dθ〈−θ|e−βĤ |θ〉e−θ∗θ.

We emphasize here the anti-periodic boundary conditions (APBCs) over [0, β] in the trace
Tr(•) above. The initial state is |θ〉, evolving to the final state | − θ〉; the Grassmann
variable is θ at τ = 0, and −θ at τ = β. The construction of this path integral is
analogous to the bosonic case. With the time step ε = β/N , hence the limit

e−βĤ = lim
N→∞

(1− βĤ/N)N ,

and inserting the coherent completeness relation N−1 times, gives the following partition
function:

Z(β) = lim
N→∞

∫
dθ∗dθe−θ

∗θ〈−θ|(1− βĤ/N)N |θ〉

= lim
N→∞

∫
dθ∗dθe−θ

∗θ
N−1∏
k=1

∫
dθ∗kdθke

−
∑N−1
n=1 θ

∗
nθn〈−θ|(1− εĤ)|θN−1〉 . . .

× . . . 〈θ2|(1− εtĤ)|θ1〉〈θ1|(1− εĤ)|θ〉

= lim
N→∞

∫ N∏
k=1

dθ∗kdθke
−

∑N
n=1 θ

∗
nθn〈θN |(1− εĤ)|θN−1〉 . . . 〈θ1|(1− εĤ)| − θN〉,

where we define the initial and final states as θ = −θN = θ0, θ∗ = −θ∗N = θ∗0. From the
definition of fermionic coherent states we have 〈θk|θk−1〉 = 1 + θ∗kθk−1 = exp(θ∗kθk−1) and
〈θk|Ĥ|θk−1〉 = 〈θk|(θ∗kθk−1− 1/2)ω|θk〉. We now evaluate each one of the matrix elements
for k = 0, . . . , N :
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〈θk|(1− εĤ)|θk−1〉 = 〈θk|θk−1〉

[
1− ε〈θk|Ĥ|θk−1〉

〈θk|θk−1〉

]
∼= exp(θ∗kθk−1) exp

[
−εω

(
θ∗kθk−1 −

1

2

)]
.

Hence, the partition function is

Z = eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗kdθke

−
∑N
n=1 ε[θ

∗
n(θn−θn−1)+εωθ∗nθn−1]

= eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗kdθke

−
∑N
k=1 ε[(1−εω)θ∗n(θn−θn−1)/ε+ωθ∗nθn]

=

∫
Dθ∗Dθ exp

βω/2− β∫
0

dτθ∗
(

(1− εω)
d

dτ
+ ω

)
θ

 , (3.8)

where in the first equality we add and subtract a factor εωθ∗nθn in the sum of the ex-
ponential, in order to rewrite the argument of the exponential as given in the second
equality. Finally, in the third equality the time step ε is kept in the action due to its
contribution of a factor of two, when evaluating the partition function via zeta function
regularization[10] that gives Z(β) = 2 cosh(βω/2) as in (3.7).

3.4 The Supersymmetric Path Integral

We derived one kind of path integral for bosons and another kind for fermions; except
from commutativity and anti-commutativity of their variables, respectively, they differ
by the boundary conditions imposed on their solutions.

To put the bosonic and fermionic path integrals on an equal footing, we impose
therefore periodic boundary conditions on the fermionic part partition function and it is
given by

Tr(−1)F e−βĤ =
1∑

n=0

〈n|(−1)F e−βĤ |n〉

=

∫
dθ∗dθ〈−θ|(−1)F e−βĤ |θ〉e−θ∗θ

=

∫
dθ∗dθ〈θ|e−βĤ |θ〉e−θ∗θ,

where F = c†c is the fermion number operator, and (−1)F is defined as

(−1)F =

(
−1 0
0 1

)
.

Let the operator (−1)F act on a coherent state |θ〉 = |0〉 + |1〉θ, thus the boundary
condition of that state is changed accordingly
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(−1)F |θ〉 =

(
−1 0
0 1

)(
θ
1

)
=

(
−θ
1

)
= |0〉 − |1〉θ = | − θ〉,

i.e., an anti-periodic boundary condition is changed into a periodic one as 〈−θ|(−1)F = 〈θ|
in the third equality of the trace above.

Thus, in the supersymmetric path integral we combine the bosonic and the fermionic
cases into one, unified, path integral in Euclidean time:

Z(β) =

∫
PBCs

DxDψe−
∫ β
0 dtL, (3.9)

where Dx and Dψ are the measures of the bosonic and the fermionic fields, respectively
(a field is a variable with infinitely many degrees of freedom).
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4 Spontaneous Breaking of Supersymmetry

In this chapter we study the trace formula Tr(−1)F exp(−βH), first introduced in the
fermionic partition function in the previous chapter, and relate it to the analytical index
of an operator. In this review of symmetry breaking we will be rather heuristic, hence
no derivations will be found here, with the goal of merely presenting basic facts about
Tr(−1)F and its physical meaning in the context of supersymmetry. We follow closely
[15, 16] where a more comprehensive study can be found.

We do not observe in nature, e.g., neither spin-1 electrons, nor photons with half
integer spin, hence supersymmetry must be spontaneously broken. A broken symmetry
implies a mechanism that gives mass to particles. As will be shown below, the index
Tr(−1)F takes integer values and determines whether supersymmetry is unbroken. In
other words, Tr(−1)F is a mathematical tool used for identifying, and discarding, super-
symmetrical models that cannot describe nature.

First we introduce some terminology that will be used frequently throughout this
chapter. By internal symmetry breaking we mean the symmetry breaking mechanism in
electroweak theory that gives mass to non-supersymmetric particles. Electroweak theory
is a topic usually reviewed in introductory textbooks on quantum field theory, see for
instance [11]. The concepts of internal symmetry breaking should be stated in stark
contrast to spontaneous supersymmetry breaking, since there are certain conditions where
the latter will occur. Thus, the major topics in this chapter is the formal definition of
Tr(−1)F , and the conditions that forces us to discard a supersymmetrical model.

4.1 The Energy Spectrum

In order to associate Tr(−1)F to an index and to determine whether we have unbroken
supersymmetry , we need to define and study the energy spectrum of the theory.

We define a supersymmetric theory in a volume V (and take the limit V →∞ in the
end) where we are mainly interested in the ground state |0〉, or zero energy state, and
a few low lying states above |0〉. The definition of Tr(−1)F , which is called the Witten
index, is

Tr(−1)F = nE=0
B − nE=0

F , (4.1)

where nE=0
B (nE=0

F ) is the number of zero energy bosonic (fermionic) states. In supersym-
metric theories the energy E ≥ |P |, |P | the magnitude of the momentum, hence P = 0
for the ground state. Notice that we can regulate Tr(−1)F with the kernel exp(−βH),
hence Tr(−1) exp(−βH), and let β → 0 which is the high temperature limit, and thus
removing high energy states.

We define the Hamiltonian H in terms of the hermitian supersymmetry charges
Q1, Q2, . . . , QK (K = 4 for supersymmetry in 3 + 1 dimensions):

Q2
1 = Q2

2 = · · · = Q2
K = H,

QiQj +QjQi = 0, for i 6= j.

In four dimensions we define a bosonic (femionic) state |b〉 (|f〉) that satisfies the operator
exp(2πiJz)|b〉 = |b〉 (exp(2πiJz)|f〉 = −|f〉). The operator exp(2πiJz) rotates a state
counter clockwise by 2π in the x-y plane. To be more precise, exp(2πiJz) is (exp(1

2
πiJz))

4;
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4.1 The Energy Spectrum 4 Spontaneous Breaking of Supersymmetry

four successive rotations by ninety degrees in the x-y plane. In a finite volume the rotation
generator Jz is not well defined7, but exp(1

2
πiJz) is well defined. Furthermore, we define

the matrix

(−1)F = exp(2πiJz) =

(
1 0
0 −1

)
.

In 0 + 1 dimensions we have to define (−1)F more abstractly (since there are no angular
momentum Jz in dimensions less than two) as the commutator and the anti-commutator,
respectively,

(−1)Fφ = φ(−1)F , (−1)Fψ = −ψ(−1)F ,

for some Bose field φ and Fermi field ψ.
For any bosonic state |b〉, and for E 6= 0, the fermionic state is defined as |f〉 =

(1/
√
E)Q|b〉, where Q is now any of the Qi, i = 1, . . . , K. The reason we are only

interested in the zero energy state is due to the pair

Q|b〉 =
√
E|f〉, Q|f〉 =

√
E|b〉, (4.2)

where the second equation follows from the definition of the Hamiltonian Q2 = H ≥ 0,
and H|b〉 = E|b〉. The interpretation of (4.2) is that, for every non-zero energy state,
there must exist Bose-Fermi pairs, hence we have the difference nE>0

B − nE>0
F = 0. An

energy spectrum is shown in figure (2) where the lowest horizontal line is the ground
state, hence the equation (4.1) is equal to one in this particular example.

E

E=0

Figure 2: The bosons are indicated by circles, and the fermions by filled rectangles,
in the diagram. The lowest horizontal line is the zero energy state where Tr(−1)F =
3 − 2 = 1, while Tr(−1)F = 0 for all states above the ground state. For Tr(−1)F 6= 0,
supersymmetry is unbroken.

The parameters of the supersymmetric theory is understood as the volume V , the mass
mi of the particles, and the coupling constants gi. Varying the parameters implies that
the energy states are shifted, either up or down, in the energy spectrum. For instance,
assume that we are varying some parameter so that the first state above the ground state
in figure (2) is slowly moving down and, eventually, coincide with the ground state. The
difference is now nE=0

B −nE=0
F = 4−3 = 1, hence, the same as in the original configuration.

This invariance is, of course, due to the Bose-Fermi pairs in the non-zero energy states.
The important property here is the following conditions:

7Rotate a cube lying on the x-y plane. We put a label on one of its vertical faces and apply a (discrete)
rotation. If the label seems to be on the same face, we can’t tell whether there has been applied a 2π
rotation, or no rotation at all. A ninety degree rotation, on the other hand, will surely distinguish the
initial position from the final position.
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4 Spontaneous Breaking of Supersymmetry 4.2 The Potential Energy

If Tr(1−)F = nE=0
B −nE=0

F is not zero, supersymmetry is not spontaneously
broken.

We can only use Tr(−1)F to decide whether supersymmetry is unbroken. On the
other hand, computing Tr(−1)F and if we get nE=0

B − nE=0
F = 0, we cannot draw any

conclusions. We have two cases for the result Tr(−1)F = 0; (i) nE=0
B = nE=0

F = 0 implies
broken supersymmetry, and (ii) nE=0

B = nE=0
F 6= 0, hence unbroken supersymmetry.

In summary, the aforementioned cases are shown in figure (3) and figure (4) below.
The difference nE=0

B − nE=0
F is equal to the index of an operator. In chapter 5, the

derivation of the index, from Tr(−1)F exp(−βH), is shown explicitly.

E

E=0

Figure 3: The difference nE=0
B − nE=0

F = 0, with nE=0
B = nE=0

F = 0, hence supersymmetry
is broken. Due to Tr(−1)F = 0, no conclusions can be drawn, since with nE=0

B = nE=0
F 6= 0

gives the same difference, but with a different outcome. The ground state energy for a
broken supersymmetry is thus positive.

E

E=0

Figure 4: The difference nE=0
B − nE=0

F = 0, with nE=0
B = nE=0

F 6= 0, hence supersymmetry
is unbroken. With Tr(−1)F = 0 no conclusions can be drawn, since the same result of
the trace is achieved with nE=0

B = nE=0
F = 0 and supersymmetry is in that case broken.

4.2 The Potential Energy

Recall that the Hamiltonian is the sum of the squares of the supersymmetry charges
Q. Hence the energy E of any state is positive or zero. A state |0〉 can have zero
energy if it is annihilated by the supercharge; Q|0〉 = 0. If there exists an unbroken
supersymmetric state, it is annihilated by Q, and it is automatically the true ground state
with E = 0 (cf. figure (4)). On the other hand, if there does not exists a state invariant
under supersymmetry (which means that nE=0

B = nE=0
F = 0), the supersymmetry is

spontaneously broken, and thus the ground state energy is positive (cf. figure (3)).
In general we have a Lagrangian of the form

L(φ, φ̇) = (terms with derivatives)− V (φ),
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4.2 The Potential Energy 4 Spontaneous Breaking of Supersymmetry

where φ is some field. We are here only interested in the potential V (φ) and want to
compare internal symmetry breaking versus supersymmetric symmetry breaking. We say
that the internal symmetry is not broken if the expectation value, 〈φ〉, of φ in the ground
state is equal to zero; 〈0|φ|0〉 = 0.

In figure (5) we have a potential V (φ) ∼ φ2 + a, where a is some positive constant.
The ground state is the minimum of V (φ) and clearly 〈φ〉 = 0. From the discussion above
that if supersymmetry is spontaneously broken, it implies that the ground state is strictly
positive, hence supersymmetry is here broken while internal symmetry is unbroken.

In figure (6) the potential is V (φ) ∼ (φ2− b)2, with b > 0, hence we have two minima
at φ = ±

√
b and the expectation value is 〈φ〉 6= 0 (〈φ〉 can be either at

√
b, or at −

√
b).

Internal symmetry is broken8 while supersymmetry is unbroken, since the ground state
energy is exactly zero.

φ

V (φ)

Figure 5: The potential is V (φ) ∼ φ2 +a, a > 0. Internal symmetry is unbroken, since the
expectation value of φ is zero at the minimum (the ground state) of V (φ). The ground
state energy is strictly positive, thus supersymmetry is spontaneously broken.

φ

V (φ)

Figure 6: The potential is V (φ) ∼ (φ2 − b)2, b > 0. Internal symmetry is spontaneously
broken, since the expectation value 〈φ〉 = ±

√
b. Supersymmetry is unbroken since the

ground state energy is zero.

Both internal symmetry and supersymmetry can be broken if we have a potential of
the form V (φ) ∼ (φ2 − b)2 + c, c > 0; the potential in figure (6) shifted by an amount c
in the positive V -axis.

One can also ask whether quantum corrections, i.e. fluctuations, can shift the potential
in figure (5) in a negative direction, and thus restore supersymmetry. This is not possible,
and in general we have that quantum corrections will not break a symmetry that is

8This is the simplest model where the internal symmetry is spontaneously broken, and it is called the
φ4-theory in quantum field theory literature.
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unbroken at the tree level (zeroth order correction in perturbation), nor will they restore
a broken symmetry.

In the language of particles, we know that if supersymmetry is spontaneously broken,
there exists a massless fermion, a so called Goldstone fermion. If the Goldstone fermion
does not already exist, fluctuations cannot shift the potential downwards and thus create
massless fermions. In other words, if supersymmetry is not broken and in which all
fermions have non-zero masses, the supersymmetry must be truly unbroken. This brings
us back to the case Tr(−1)F 6= 0 where we know with certainty that the supersymmetry
is (truly) unbroken.

The contrary, however, is not true. For instance, if we have a potential of the form
V (φ) ∼ φ2 and given that the index Tr(−1)F = 0, then there is a possibility that quantum
fluctuations can shift the potential so that the ground state energy becomes positive and
thus break supersymmetry. This is called dynamical breaking of supersymmetry, and
again, we refer to [15].

4.3 An Example: The Wess-Zumino Model

The following example is from [16]. The Wess-Zumino model is the simplest supersym-
metric model, and the superspace potential is W (φ) = 1

3
gφ3 − (m2/4g)φ. The ordinary

potential is given by

V (φ, φ∗) =

∣∣∣∣∂W∂φ
∣∣∣∣2 = g2

∣∣∣∣φ2 − m2

4g2

∣∣∣∣2 ,
where φ is a single complex scalar field. In addition, we have a fermion field ψ in the
model.

We evaluate Tr(−1)F and assume, at first, that m 6= 0 (the trace is independent of
the parameters g and m, as discussed above). Minimizing V (φ, φ∗) we find two ground
states 〈φ〉 = ±m/2g (the potential is similar to the potential in figure (6)). Both the
scalar (boson) φ and the fermion ψ are massive

mφ = mψ = m(1 +O(g2)).

In each minimum of the potential, there is one spin zero state, hence bosonic, where
E = 0. All other states with E > 0 are obtained by adding φ and ψ quanta to the
bosonic ground state |0〉. Each of the two ground states contributes one to Tr(−1)F ,
hence

Tr(−1)F = 2.

Supersymmetry is not spontaneously broken in the Wess-Zumino model.
In the casem = 0 we have the potential V (φ, φ∗) ∼ φ4, and there is a massless fermion

(the ψ particle). We are now interested to know whether quantum fluctuations can shift
the potential, so that the ground state get a positive energy, hence break the symmetry.
Since Tr(−1)F 6= 0 this is not possible, thus the Wess-Zumino model cannot describe
nature.
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5 Index Theorems and Supersymmetry

In this chapter we use the supersymmetric path integral to prove index theorems, and
we follow closely [14]. We stipulate three versions; the Atiyah-Singer index theorem, the
Euler number (arriving at the famous Gauss-Bonnet theorem) and, finally, the Hirzebruch
signature. Complementary calculations and topics are given in appendix A that the reader
may consult before reading this chapter.

5.1 The Index of the Dirac Operator

We derive here that the Witten index introduced in the previous chaper gives a connection
to the analytical index of an elliptic operator. The operators considered in this chapter are
the Dirac operator D and the Laplacian ∆ = ∇2, hence we have here a minor repetition
from chapter 2, but with a different notation and using instead the heat equation proof
of the index theorem.

First, we define the Dirac operator D on some compact manifold M as

D =

(
0 DL

DR 0

)
=

(
0 DL

−D†L 0

)
.

where the operator DR (DL) maps left(right)-hand spinors to right(left)-hand spinors;
DR : SL → SR (DL : SR → SL). The kernel of the Dirac operator is

kerDL,R = {ψ;DL,Rψ = 0}.

The index of the Dirac operator, index(D), is then defined as

index(D) = dim ker(DL)− dim ker(DR) ∈ Z (5.1)

We assume here that the Dirac operator is a Fredholm operator; this implies that the
number of eigenvalues are finite, hence the right hand side is equal to an integer Z. Next,
we show how the trace Tr(−1)F e−βĤ , for β → 0, in the Witten index and index(D) are
related. To temporary free ourselves from the notation of right- and left-handedness of
the operator, we introduce a generic Fredholm operator A and its adjoint A†. In what
follows, we briefly sketch the proofs of two theorems that can be found in [10] (theorems
12.4 and 12.5).

First, we define the eigenvalue problem (A†A)φn = λnφn and the associated eigenstate
ψn ≡ Aφn/

√
λn for λn > 0. We now compute the eigenvalue of AA† acting on ψn:

(AA†)ψn = AA†(Aφn/
√
λn) = A(A†Aφn)/

√
λn = A(λnφn)/

√
λn = λn(Aφn/

√
λn)

= λnψn,

hence we get the same eigenvalue λn for both eigenvalue problems. Furthermore, {ψn} is
orthonormal

〈ψn|ψm〉 =
1√
λnλm

〈ψn|(A†A|φm〉) =
1√
λnλm

λm〈φn|φm〉 =
λm√
λnλm

δnm = δmn.
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The index is derived from the difference Tr exp(−βA†A) − Tr exp(−βAA†), where the
first trace is over {φn} while the second is over {ψn}; this is the heat kernel proof of the
index theorem where h(β) = exp(−βH) is a heat kernel. Let 1 ≤ i ≤ dim kerA and
1 ≤ j ≤ dim kerA†, hence we get

Tr e−βA
†A − Tr e−βAA† =

∑
{ i,
λn=0}

〈φi|φi〉+
∑
{ n,
λn 6=0}

〈φn|e−βA
†A|φn〉

−
∑
{ j,
λn=0}

〈ψj|ψj〉 −
∑
{ n,
λn 6=0}

〈ψn|e−βAA†|ψn〉

=
dim kerA∑

i

1−
dim kerA†∑

j

1 +
∑
{ n,
λn 6=0}

(〈φn|φn〉 − 〈ψn|ψn〉)

=dim kerA− dim kerA† =: index(A).

Notice that the index is independent of the parameter β. Going back to the Dirac operator
A, we define the two self-adjoint Laplace operators

∆L = D†LDL, and ∆R = D†RDR,

where we have

ker ∆L = kerDL, ker ∆R = kerDR. (5.2)

We show this explicitly. If DLψ = 0, then D†LDLψ = 0 hence kerDL equals ker ∆L. On
the other hand, if ∆Lψ = 0 we get

0 = (ψ,∆Lψ) = (ψ,D†LDLψ) = (DLψ,DLψ),

and this shows that DLψ = 0. From the definition of the Dirac operator we have DR =
−D†L, hence D†R = −DL and furthermore, the eigenstates of ∆L and ∆R are paired:

∆Lψ = λψ ←→ ∆RDLψ = λDLψ (5.3)

We show the implication explicitly

∆RDψ = (D†RDR)DLψ = (−DL)(−D†L)DLψ = DL(D†LDL)ψ = DL∆Lψ = λDLψ.

It remains to show that DLψ 6= 0 in the ultimate equality:

0 6= (ψ,∆Lψ) = λ(ψ, ψ) = (DLψ,DLψ),

hence, DLψ 6= 0.
The Hamiltonian H is defined in terms of the Dirac operator as

H = D†D =

(
0 D†R
D†L 0

)(
0 DL

DR 0

)
=

(
∆R 0
0 ∆L

)
.

Notice the equality between (−1)F and the gamma matrix γ5:
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γ5 =

(
−1 0
0 1

)
=: (−1)F ,

thus we rewrite the index in a compact form as Tr γ5 exp(−βH). Hence the index theorem
in the spinor notation is

Tr γ5e
−βH = dim ker ∆L − dim ker ∆R

= dim kerDL − dim kerDR

= index(D).

In the first equality we used, from (5.3), the identity that the eigenvalue λ is equal for
both left- and right-handed spin operators ∆L,R. The second equality follows from the
auxiliary property between ∆L,R and DL,R as given in (5.2). Due to the equality between
γ5 and (−1)F we write the Witten index as

index(D) = Tr(−1)F e−βH =
∑
{bosonic

states }
e−βλB −

∑
{ fermionic

states }
e−βλF

= nB(λB = 0)− nF(λF = 0),

and reaffirm its connection to the path integral via the fermionic partition function (3.7).
We compute the index explicitly using the supersymmetric path integral introduced

in section 3.4. For a Dirac operator on a d-dimensional Riemannian manifold, where
the fermion fields ψµ = ψµ(t) are coupled to an external gauge field Aµ(x), we get the
supersymmetric action[14]

S =

β∫
0

dt

[
1

2
gµν ẋ

µẋν +
1

2
gµνψ

µ(Dg
tψ)ν + η̄aDA

t η
a − 1

2
η̄aF ab

µνψ
µψνηb + i

α

β
η̄aηa

]
(5.4)

with the covariant derivatives

(Dg
t )
µ
ν = ∂tδ

µ
ν + ẋ%Γµ%ν (for µ, ν = 1, . . . , d),

DA
t = ∂t + ẋαAα(x),

the field strength

F ab
µν = ∂µA

ab
ν − ∂νAabµ + [Aµ, Aν ]

ab,

and the Christoffel symbol

Γµ%ν =
1

2
gµσ(∂%gνσ + ∂νg%σ − ∂σg%ν).

The interaction with the gauge field Aµ(x) give rise to isospin fields η and they are dual
to the fermion fields. For a systematic construction of the interaction terms in the action
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(5.4), see for instance [6]. The supersymmetric transformations of the fields in the action
are given by

δxµ = εψµ,

δψµ = −εẋµ,
δηa = −εψµAabµ ηb,
δη̄a = −εη̄bAbaµ ψµ.

Thus taking the variation of S, and using the Bianchi identities for the field strength Fµν
and the Riemann tensor Rµ

αβ%, the action fulfills Hamilton’s principle

δS =
1

2

∫
PBCs

dtε(gµν ẋ
µψν) =

[
1

2
εgµν ẋ

µ(t)ψν(t)

]t=β
0

= 0,

where the last equality follows from the boundary conditions, e.g. ψ(0) = ψ(β) = 0. To
be more explicit, there are also boundary terms that both depend on a total derivative
in the integral, they do not contribute to the equations of motion and hence can be
neglected. The computations leading to the vanishing variation of the action above are
carried out exceedingly in appendix A.

Recall From elementary quantum mechanics that spherical harmonics Y m
n (θ, ϕ) ∼

(−1)m exp(imϕ), where m is an integer and ϕ an azimuthal angle, represents angular
momentum eigenfunctions. Spherical harmonics are generated by way of a generating
function[2]. Any function f(θ, ϕ), where θ is a polar angle, can be expanded in terms of
spherical harmonics, thus f(θ, ϕ) is evaluated over surface of a sphere in a Laplace series:

f(θ, ϕ) =
∑
m,n

amnY
m
n (θ, ϕ).

In order to get a quantum state of rank k, there is a number operator N = η̄η in the
action S, where η̄ (η) is the creation (annihilation) operator in Fock space. The index
formula for all the antisymmetric tensor products of the internal space is given by the
generating function

I(α) =
∑
k

Ike
−iαk.

The number operatorN commutes with the Hamiltonian and from Heisenberg’s equations
of motion we have dN/dt = 0, thus making it possible to implement the term i(α/β)η̄aηa

into the Lagrangian in the action. The modified heat kernel h̃(β, α) is given by

h̃(β, α) = e−βH−iαN ,

and the generating function, expressed in terms of a path integral in Euclidean time, is
equal to

I(α) = Tr(−1)F e−βH = Tr γ5(−1)Ne−βH−iαN =

∫
PBCs

DxµDψµD η̄aDηae−S.
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The operator (−1)N imposes periodic boundary conditions on the anticommutative
isospin fields η, analogous to (−1)F for the fermion fields. As we shall see below, the
analytical index is given by term Ik in the generating function I(α). Before we can
compute the index theorems, we need to evaluate the path integral for various differential
operators in the action; the topic of the next section.

5.2 Trace Formulas

5.2.1 Fermionic Fields with Periodic Boundary Conditions

We will evaluate the following path integral9

Tr(γ5e
− 1

4
ωµνγµγν ) =

∫
PBCs

Dψµ exp

[
−1

2

∫ 1

0

dt(ψµψ̇µ + ωµνψ
µψν)

]
, (5.5)

where ωµν = −ωνµ, ω̇µν = 0, and the fermionic field ψ corresponds to γµ/
√

2. The path
integral is defined in Euclidean time, on the other hand, let t→ −it here and the integral
is transformed into the ordinary path integral.

The Grassmann functions ψµ(t) can be expanded in a Fourier series[10], e.g., a series
of the form

ψµ(t) =
∞∑

n=−∞

ψµne
i2πnt = ψµ0 +

∞∑
n=−∞
n 6=0

ψµne
i2πnt.

We separate the path integral into zero modes and non-zero modes in the fields. From
the Gaussian integral over Grassmann variables, introduced in chapter three, we evaluate
the trace as

Tr(γ5e
1
4
ωµνγµγν ) = N (

√
2)ddet1/2(∂t + ωµν)

∫
zero
modes

dψ1 . . . dψde−
1
2
ωµνψµψν ,

the normalization factor N is to be determined below, and the determinant is over the
non-zero modes, all having periodic boundary conditions.

To evaluate the determinant we use a product expansion formula [2], see appendix B
for further details on the formula. For some function g(z) of a complex variable z with
zeros at an we have the product expansion

g(z) = g(0) exp

(
zg ′(0)

g(0)

) ∞∏
n=1

(
1− z

an

)
ez/an . (5.6)

E.g. let an = nπ, n 6= 0,

sin z = z

∞∏
n=−∞
n 6=0

(
1− z

nπ

)
ez/nπ = z

∞∏
n=1

(
1− z2

n2π2

)
.

9Notice the absence of the complex number
√
−1 = i in the integral. This definition is related to the

partition function, introduced in chapter 3.4. Throughout this chapter we use the term path integral,
which is understood implicitly as the path integral in Euclidean time.
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5.2 Trace Formulas 5 Index Theorems and Supersymmetry

Furthermore, we define g(0) = 1 and g ′(0) = b, where b is an unknown constant. Hence,
g(z) is of the form

g(z) =
sin z

z
ebz.

In order to substitute a function g(z) into the determinant in the solution of the path
integral, we first need to solve an eigenvalue problem. From the Lagrangian in the action
we get the Hamiltonian

H = −1

2
ωµνψ

µψν ,

whose eigenvalues are ∓1
2
ωµν (cf. the fermionic harmonic oscillator). Since we are working

with the path integral in Euclidean time we get instead a hyperbolical function inside
the functional determinant which is realized from the identities det(A) = exp(Tr(lnA)),
det(AB) = det(A) det(B), and sin(ix) = i sinh(x), where Trω = 0. The path integral
reduces to

2−
1
2
d Tr(γ5e

− 1
4
ωµνγµγν ) = N det1/2

(
sinh ωµν

2
ωµν

2

) ∫
zero

modes

dψ1 . . . dψde−
1
2
ωµνψµψν .

where the normalizing constant N is determined by multiplying the path integral by γ5

and taking the limit ωµν → 0. Using the identities

lim
ω→0

(
sinh ωµν

2
ωµν

2

)
= 1d×d,

γ2
5 = 1 (a 2d/2 × 2d/2-dimensional unit matrix),

γ5 := (−i)
d
2γ1γ2 . . . γd = (−i)

d
2 (
√

2)d(−1)
d
2ψd . . . ψ1,

for even dimension d, we yield the left hand side of the path integral

2−
1
2
d Tr(γ2

5) = 1,

and the right hand side

N (i)
d
2 (
√

2)d
∫

zero
modes

dψ1 . . . dψdψd . . . ψ1.

Thus the normalizing constant is given by N = (−i/2)
d
2 . In the limit ωµν → 0 we get

the free field contribution from the path integral which is equal to

(−i)d/2
∫

zero
modes

dψ1 . . . dψd (5.7)

The free field contribution is one of the path integrals substituted in the supersymmetrical
path integral in the derivation of the Atiyah-Singer index theorem below.

For sake of clarity and in the derivation of the Euler number, we need also the general
solution. Expanding the exponential in the integral up to order d/2, the only term that
saturates the measure is of the highest order term. Hence the path integral is equal to
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∫
dψ1 . . . dψde−

1
2
ωµνψµψν =

∫
dψ1 . . . dψd

1(
d
2

)
!
(−1

2
ωµνψ

µψν)
d
2

=
(−1)

d
2

2
d
2

(
d
2

)
!
ωµ1µ2ωµ3µ4 . . . ωµd−1µd

∫
dψ1 . . . dψdψµ1 . . . ψµd

=
1

2
d
2

(
d
2

)
!
ωµ1µ2ωµ3µ4 . . . ωµd−1µdε

µ1µ2...µd .

The following identity was substituted in the second equality

ψµ1 . . . ψµd = εµ1µ2...µdψ1 . . . ψd = (−1)
d
2 εµ1µ2...µdψd . . . ψ1.

Finally, the general solution of the path integral over the fermion fields is given by

Tr(γ5e
− 1

4
ωµνγµγν ) =

(−i)
d
2(

d
2

)
!

2−d/2εµ1µ2...µdωµ1µ2ωµ3µ4 . . . ωµd−1µddet1/2

(
sinh ωµν

2
ωµν

2

)
. (5.8)

5.2.2 Fermionic Field with Anti-periodic Boundary Conditions

If we omit the gamma matrix γ5 in the trace, in equation (5.5) above, anti-periodic
boundary conditions are instead imposed on its solution. Hence, we have the path integral

Tr(e−
1
4
ωµνγµγν ) =

∫
APBCs

Dψµ exp

[
−1

2

∫ 1

0

dt(ψµψ̇µ + ωµνψ
µψν)

]
. (5.9)

This case is computed in a similar way as in the case above. The difference is that when
evaluating the functional determinant, now with anti-periodic boundary conditions, the
following product formula is replacing the sine-product used above:

cosx =
∞∏
n=1

[
1 +

x2

π2(2n+ 1)

]
.

Hence we get the d-dimensional fermionic path integral

Tr(e−
1
4
ωµνγµγν ) = (

√
2)ddet1/2

(
cosh

ωµν
2

)
. (5.10)

5.2.3 Isospin Fields

The isospin fields η obeys the same algebra as the spin fields ψ. Periodic boundary
conditions are imposed on the solution of the path integral, due to the factor (−1)Nn for
n = 0 and 1, hence the path integral is:

Tr((−1)Nne−η̄
aTabηb) =

∫
PBCs

D η̄aDηa exp

− 1∫
0

dt(η̄aη̇a + η̄aT abηb)

 . (5.11)

The computations are analogous to the spin case above. We define the matrix T with
elements T ab and here Tr(T ) 6= 0, hence we get
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Tr((−1)Nne−η̄
aTabηb) =N ′ det(∂t + T )

∫
zero

modes

dη̄1dη1 . . . dη̄ndηne
−η̄aTabηb

=N ′ det

(
sinh T

2
T
2

ebT/2i

)
det(T )

=N ′ det
(
e
T
2

(1+ b
i
) − e−

T
2

(1− b
i
)
)
, n = 0, 1. (5.12)

To determine the normalizing constant N ′ and the constant b, we take the case where
N1 := 1 and let the matrix T̃ = η̄aT abηb be diagonal.

Recall the partition function Z(β) of a fermionic oscillator (3.7) and its functional
integral (3.8), written out as a functional determinant:

Z(β) = eβω/2 det

(
(1− εω)

d

dτ
+ ω

)
= 2 sinh(βω/2), ε = β/N and N →∞.

Hence, we get the determinant of Z:

det

(
(1− εω)

d

dτ
+ ω

)
= 2e−βω/2 sinh(βω/2) = (1− e−βω).

Solving (5.11) using similar techniques as for the fermionic partition function, gives
the path integral of the isospin fields, here for the non-trivial case N1 = 1,

Tr((−1)N1e−T̃ ) = 2e−T/2 sinhT/2 = (1− e−T ), n = 1.

Thus, the constant b = −i and the normalizing constant N ′ = 1 in (5.12). The path
integral, for both states n = 0 and 1, is finally given by

Tr((−1)Nne−η̄
aTabηb) = det(1− e−T ); n = 0, 1. (5.13)

5.2.4 Scalar Fields

The path integral for scalar fields is derived analogous to the cases abowe. For the Rie-
mann curvature tensor Rµ

ναβ, we define the curvature two-form as Rµ
ν = 1

2
Rµ

ναβψ
αψβ,

and the path integral is

∫
PBCs

Dxµ exp

−1

2

1∫
0

dt(ẋµẋµ + xµR
µ
ν ẋ

ν)


= Ndet−1/2[(−∂2

t + R∂t)
µ
ν ]

∫
zero

modes

dx1 . . . dxd

= Ndet−1/2[(∂t + R)µν ]

∫
zero

modes

dx1 . . . dxd

= (2π)−
d
2 det−1/2

(
sinh Rµ

ν

2
Rµ

ν

2

) ∫
zero

modes

dx1 . . . dxd. (5.14)
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where the normalizing constant N = (2π)−d/2 is computed from the free-field integral,
in the limit Rµ

ν → 0 (cf. F0(T ) in section 3.1.4 with m = ~ = 1 and T = −i). The
argument of the functional determinant, in the second equality, is computed from the
hitherto argument by integration by parts with respect to the operator ∂t.

5.3 The Atiyah-Singer Index Theorem

In the action (5.4), we can choose a gauge for the four-potential Aµ(x) and the Christoffel
symbol Γµν%, accordingly,

Aµ(x) = −1

2
xνFµν , (5.15a)

ψµΓµν%ψ
ν =

1

2
Rα%µνψ

µψνxα =: Rµνx
µ. (5.15b)

The gauge choice for Aµ(x) is interpreted as that we can take any point in space as origin,
here for simplicity we have Aµ(0) = 0. Recall from chapter 2 that for a (local) coordinate
system, with origin at some point x0 on a manifold M , we can define the Riemann
normal coordinates which is necessary when dealing with index theorems and the Dirac
operator; the metric gµν(x) in the normal coordinates is given by the Kronecker-delta,
i.e., gµν(x0) = δµν , and it is locally flat; ∂σgµν(x0) = 0. The Riemann tensor Rα%µν in
the gauge given above is a measure on how much a path on a manifold M deviates from
the geodesic equation Dg

t ẋ
µ = 0, and the classical Euler-Lagrange equations of motion

derived from the Lagrangian in the action (5.4), excluding the isospin fields η, are equal
to [10]

−gαµ(Dg
t ẋ)µ +

1

2
Rα%µνψ

µψν ẋ% = 0.

If the fermion fields ψ ≡ 0, only then are geodesics defined on the manifold M , and
they are the main contribution to the action. On the other hand, for non-zero fermion
fields, quantum fluctuations around a critical point (x0, ψ0), are included. See appendix
D on how to derive the Riemann curvature tensor from the gauge choice (5.15b) and the
quantum fluctuations.

The action (5.4) in components is given by

S =

β∫
0

dt

[
1

2
gµν(x)ẋµẋν +

1

2
gµν(x)ψµψ̇ν +

1

2
gµν(x)ẋ%ψµΓµ%ν(x)ψν

+η̄aη̇a + η̄aẋαAaaα (x)ηa − 1

2
η̄aF ab

µν(x)ψµψνηb + i
α

β
η̄aηa

]

=

β∫
0

dt

[
1

2
ẋµẋµ +

1

2
ψµψ̇µ +

1

2
xµR

µ
ν ẋ

ν

+η̄aη̇a +

{
−1

2
η̄aẋµxνF aa

µν (x)ηa
}
− 1

2
η̄aF ab

µν(x)ψµψνηb + i
α

β
η̄aηa

]
.

The term with the gauge choice for the four-potential Aaaα (x) is put inside the curly
brackets, since it will be equal to zero after re-scaling the fields. We consider the quantum
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5.3 The Atiyah-Singer Index Theorem 5 Index Theorems and Supersymmetry

fluctuations as infinitesimal variations, δxµ(t) and δψµ(t), of the scalar- and fermion-fields,
respectively:

xµ(t) = xµ0 + δxµ(t),

ψµ(t) = ψµ0 + δψµ(t).

The non-zero modes of the fluctuations are periodic and the Fourier expansions of the
quantum fluctuations are given by

δxµ(t) =
1√
β

∞∑
n=−∞

δxµne
i2πnt/β,

δψµ(t) =
1√
β

∞∑
n=−∞

δψµne
i2πnt/β.

The non-zero modes in the Fourier expansions above vanish due to the periodic boundary
condition in the action, thus regarding only zero modes in the expansions, we get the fields

xµ(t) = xµ0 +
1√
β
δxµ0 ,

ψµ(t) = ψµ0 +
1√
β
δψµ0 .

In the limit β → 0, the integral over xµ0 is equivalent with that over δxµ0/
√
β hence

the measure in the integral is dxµ0 = d(δxµ0)/
√
β. By the same token we have dψµ0 =√

βd(δψµ0 ).
We substitute xµ(t) and ψµ(t) in the action S, keeping only terms of second order in

fluctuations, and thus re-scaling the fields for t→ βt, accordingly

ψµ −→ 1√
β
ψµ =⇒ ψ̇µ −→ 1√

β
ψ̇µ,

xµ −→
√
βxµ =⇒ ẋµ −→ 1√

β
ẋµ,

η −→ η =⇒ η̇ −→ 1

β
η̇.

The Dirac operator is Fredholm in Euclidean metric only, hence we use normal coordinates
here and obtain the action S → S ′:

S ′ =

1∫
0

dt

[
1

2
ẋµẋµ +

1

2
ψµψ̇µ +

1

2
xµR

µ
ν ẋ

ν + η̄aη̇a − 1

2
η̄aF abηb + i

α

β
η̄aηa

+β

{
−1

2
η̄aẋµxνF aa

µν (x)ηa
}]

.
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where we define the field strength curvature two form Fab ≡ F ab
µνψ

µψν . The index theorem
is independent of the parameter β ∼ (temperature)−1, thus the term inside the curly-
brackets in S ′ goes to zero in the high temperature limit β → 0.

The generating function I(α), expressed in terms of path integrals, is equal to

I(α) =

∫
PBCs

DxµDψµD η̄aDηae−S
′

=

∫
Dxµ exp

[
−1

2

∫ 1

0

dt(ẋµẋµ + xµR
µ
ν ẋ

ν)

]
×
∫

Dψµ exp

[
−1

2

∫ 1

0

dt(ψµψ̇µ)

]
×
∫

D η̄aDηa exp

[
−
∫ 1

0

dt

(
η̄aη̇a + η̄a

(
−1

2
F + iα

)ab
ηb

)]
.

For some generic tensor Aµ1...µd coupled to fermion fields, we have the following iden-
tity:

∫
dx1 . . . dxd

∫
dψ1 . . . dψdAµ1···µdψ

µ1 . . . ψµd = (−1)
d
2

∫
space

dxµ1 . . . dxµdAµ1...µd .

Thus, in the last equality the tensor is coupled to differential forms. There is a duality
between the fermion fields and the differential forms; ψµ ↔ dxµ. This duality will be
utilized below in derivation of the Euler number. Both Rµ

ν and Fab are coupled to
fermion fields, hence using the path integrals (5.7), (5.13) and (5.14) from the previous
section, the fermion fields are integrated out and the generating function is

I(α) =

( 1

2π

) d
2
∫

zero
modes

dx1 . . . dxddet−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)×
(−i)

d
2

∫
zero

modes

dψ1 . . . dψd

×
×
[
det
(
1− eF/2−iα

)]
=(−1)

d
2

∫
space

det−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)(
−i

2π

) d
2

Tr
(
(−1)Ne−iαNeF/2

)

=
∞∑
k=0

(−1)ke−iαk

 ∫
space

det−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)(
i

2π

) d
2

Tr
(
eF
)

where in the second equality we have the curvature tensors, expressed in differential
forms, Rµ

ν = 1
2
Rµ

ναβdx
α ∧ dxβ and F = 1

2
F = 1

2
Fµνdx

µ ∧ dxν . The first two operators
in the trace, associated to the path integral over the isospin fields, are extracted and
put outside the integral in the third equality where the number operator N becomes the
integer k in the generating function. Recall that in the path integral of the isospin case,
there are two cases; k = 0 (trivial) and k = 1 (non-trivial) and in the generating function
I(α) the analytical index, denoted by Ik, is equal to the expression between the brackets
in the third equality above:
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Ik =

∫
space

det−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)(
i

2π

) d
2

Tr
(
eF
)

; k = 1. (5.16)

For the non-trivial case, the Atiyah-Singer index theorem of the twisted Dirac operator
DV = D⊗F is equal to

index(DV ) =

∫
M

Â(TM) ∧ ch(F ) (5.17)

where we have the Â-genus and the total Chern character, respectively,

Â(TM) = det−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)
=

d/2∏
j=1

yj/2

sinh yj/2
,

ch(F ) =

(
i

2π

) d
2

Tr
(
eF
)

= Tr exp

(
i

2π
F

)
.

The trivial case, I0, is just the integral of the Â-genus without the gauge field applied[10],
hence the Chern character is equal to one.

The Atiyah-Singer index theorem, in words, is formulated as

Atiyah-Singer Index Theorem. The topological and the analytical index are equal.

In the following section we will find a topological invariant, the Euler number χ(M),
equal to the analytical index given in this section.

5.4 The Euler Number

We review here, briefly, some facts about the spin complex. In special cases the spin
complex is in correspondence to the de Rham complex and the Euler number χ(M) can,
via the duality ψµ ↔ dxµ, be defined in terms of spinors.

5.4.1 Clifford Forms and Differential Forms

When the space-time dimension d is even, there is a one-to-one correspondence be-
tween the differential form ω = ωµ1...µddx

µ1 . . . dxµd and the skew-symmetrical matrix
ω̂ = ω̂µ1...µdγ

µ1 . . . γµd , where ω̂ span all the matrices on spinors [6]. Let S be the space of
spinors, and S∗ be its dual space, thus the space of matrices on spinors is S ⊗ S∗. Here
we take (isospin) = (spin)∗. We define the space of Clifford forms C as[14]

C = S ⊗ S∗ =

{
ω̂; ω̂ = ω̂sc + ω̂µγ

µ +
1

2!
ω̂µνγ

µγν + · · ·+ 1

d!
ω̂µ1...µdγ

µ1 . . . γµd
}

As a comparison, a d-form ω ∈ S ⊗ S̄ is then equal to

ω = ωsc + ωµdx
µ +

1

2!
ωµνdx

µdxν + · · ·+ 1

d!
ωµ1...µddx

µ1 . . . dxµd .

Let the modified gamma matrix γ̃5 be defined as
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γ̃5 := (−i)
d
2γ5 = γ1 . . . γd =

1

d!
εµ1...µdγ

µ1 . . . γµd .

The transpose of γ̃5 is

γ̃†5 = (−1)d(d−1)/2γ̃5.

The Hodge star operator ∗ gives the duality between two spaces, e.g., the duality of the
Clifford form ω̂ is

∗ω̂ =
1

d!
ω̂scεµ1...µdγ

µ1 . . . γµd +
1

(d− 1)!
ω̂µ1εµ2...µdγ

µ2 . . . γµd + · · ·+ ω̂µ1...µd = γ̃5ω̂
†.

With {γµ, γν} = 2δµν we can find the commutation relation of two products of gamma
matrices, e.g. for (γµ1 . . . γµd) and (γµ1 . . . γµk) where k < d:

(γµ1 . . . γµd)(γµ1 . . . γµk) = (−1)k(γµ1 . . . γµd−1)(γµ1 . . . γµk)γµd

= (−1)k(−1)k(γµ1 . . . γµd−2)(γµ1 . . . γµk)γµd−1γµd

...
= (−1)k . . . (−1)k(γµ1 . . . γµd−(d−k))(γµ1 . . . γµk)γµd−(d−k)+1 . . . γµd

= (−1)k(d−k)(γµ1 . . . γµk)(γµ1 . . . γµkγµk+1 . . . γµd),

hence (d− k) gamma matrices have been swapped from the left product to the far right
end, and in the end the products commute.

Furthermore, a k-form ω = 1
k!
ωµ1...µkdx

µ1 . . . dxµk commutes with γ̃5 accordingly

γ̃5ω = (−1)k(d−k)ωγ̃5. (5.18)

For d even, the space of Clifford forms can be decomposed into even and odd forms,
C = C+ + C−, where

C+ ≡ S ⊗ S∗+ = {ω ∈ S;ωγ5 = ω}, and C− ≡ S ⊗ S∗− = {ω ∈ S;ωγ5 = −ω}. (5.19)

From the definition of the gamma matrix we have γ5 = (i)d/2γ1 . . . γd = iγ̃5 and from
(5.18), with simplified prefactor [(−1)d]k[(−1)−k]k = (−1)k in the right hand side, we
find γ5ω:

γ5ω = (−1)kωγ5 = (−1)k(+ω), on C+

γ5ω = (−1)kωγ5 = (−1)k(−ω), on C−.

Hence, the correspondence between differential forms ω and Clifford forms ω̂ is given by

(−1)kω ↔ γ5ω̂γ5. (5.20)
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5.4.2 The Index as a Topological Invariant

The correspondence ω ↔ ω̂ allows us to consider the Dirac operator as a difference
between the exterior derivative d and the interior derivative d†; D = d − d†. We define
the derivatives d, and its dual d†, accordingly

dk : Λk → Λk+1,

d†k : Λk+1 → Λk; k = 1, . . . , d.

Here Λk is the space of k-forms on the tangent space of a d-dimensional manifoldM . The
Laplacian is defined as

∆k = d†kdk + dk−1d
†
k−1 : Λk → Λk.

From the Euler-Poincaré theorem, we define the Euler number

χ(M) =
d∑

k=0

(−1)k ker ∆k =
d∑

k=0

(−1)k dimHk
dR(M ;R),

where ker ∆k = {ω; dω = d†ω = 0} is the space of harmonic k-forms. We define the
gamma matrix γ5 = (−1)F := (−1)k, hence multiplying the duality (5.20) by γ5 on the
right and using the properties of the decomposition of the space of Clifford forms (5.19),
we get

(−1)kω ↔ γ5ω̂ for ω̂ ∈ S ⊗ S∗+,
(−1)k+1ω ↔ γ5ω̂ for ω̂ ∈ S ⊗ S∗−.

It follows that the index Ik on C± is equal to

I+ = index(D on C+) =
∑
k

(−1)k dimHarm−k (C+), and

I− = index(D on C−) =
∑
k

(−1)k dimHarm+
k (C−),

whereHarm+
k (Harm−k ) is the space of harmonic forms in S⊗S∗+ (S⊗S∗−), i.e. DD†ω̂ = 0

(D†Dω̂ = 0). From Hodge’s theorem we have an isomorphism between the space of
harmonic forms and the de Rham cohomology groups; Harmk(M) ∼= Hk

dR(M ;R). From
the de Rham’s theorem we have dimHk

dR = dimHk, where Hk is the kth homology group,
hence from the Euler-Poincaré theorem, the index is equal to a topological invariant which
is the Euler number:

index(D) = I+ − I− =
∑
k

(−1)k dimHk = χ(M).

The far right hand side is purely topological, while the terms to the left of the third
equality are analytical quantities. Now, we can compute I+ − I− using the expression of
Ik = I± from the previous section.
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We use (5.16) and replacing Tr(eF ) with Tr[eF (1 ± γ5)/2] in the Chern character
ch(F ). Now we denote the analytical index as Ik = I± and hence we get

I± =

∫
det−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)(
i

2π

) d
2

Tr[eF (1± γ5)/2]. (5.21)

The field strength curvature two-form is here chosen as Fµνdxµ ∧ dxν = −1
4
Rα

βµνγαγ
β,

which is the ordinary scalar curvature represented by infinitesimal rotations on the dual
space of the spinors[6]. The similarities in construction of the curvature tensors Fµν and
Rα

βµν are reviewed in appendix C. Notice that I+− I− ∼ Tr[γ5e
F ], hence using the path

integral (5.8) with 1
2
ωµν = 1

2
Rµ

ν gives

Tr[eF/2γ5] =

(
− i

2

) d
2(

d
2

)
!

det1/2

(
sinh ωµν

2
ωµν

2

)
εµ1µ2...µd

(
1

2

) d
2

Rµ1µ2Rµ3µ4 . . .Rµd−1µd .

Substituting Tr[eFγ5] in I+ − I− yields the index of the Dirac operator

I+ − I− =

∫ (
i

2π

) d
2
(

1

2i

) d
2
(

1

2

) d
2 1(

d
2

)
!
εµ1µ2...µdRµ1µ2Rµ3µ4 . . .Rµd−1µd

=

∫ (
1

8π

) d
2 1(

d
2

)
!
εµ1µ2...µdRµ1µ2Rµ3µ4 . . .Rµd−1µd = χ(M).

5.4.3 Examples

Example 1. (Gauss-Bonnet theorem) For a two-sphere Sd = S2 in R3, we have the
curvature εµνRµν = ε12R12 + ε21R21 = 2ε12R12 = 2RdA, where R is the scalar curvature
(equal to the radius of the sphere) and dA = d2x an infinitesimal area element on the
surface of S2. We get the Gauss-Bonnet theorem from I+ − I− above:∫

d2x
1

4π
R =

∫
d2x

K

2π
= χ(S2) = 2,

where K = R/2 is the Gauss curvature and the Euler number for a sphere Sd is given[3]
by the formula: χ(Sd) = 1 + (−1)d.

In the case of S2 the Euler number gives the number of critical points; the north pole
and the south pole, where a vector field cannot be defined. We can define[5] a vector field
tangent to the longitudinal lines as ∂/∂θ. At the north pole the vector field is diverging
(similar to a vector field of a positive charge in electrodynamics) and the index is equal to
+1. The vector field converges at the south pole (i.e. a vector field of a negative charge)
also of index +1, thus χ(S2) = 2.

We can also derive the Euler number from a polyhedron, homeomorphic to a mani-
fold M . A polyhedron homeomorphic to S2 means that the sphere can be continuously
deformed by stretching out, say three, distinct points on the surface and thus shaping
it into a geometrical object that looks like a pyramid; a tetrahedron. This particular
polyhedron has six edges, four vertices, and four faces, thus we have triangulated S2.
Euler’s theorem states that for any set X ⊂ R

3 homeomorphic to a polyhedron, the
Euler number is equal to
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χ(X) = v − e+ f,

where v, e and f are the number of vertices, edges and faces, respectively, i.e., χ(S2) =
4 − 6 + 2 = 2. The Euler number χ(X) is independent of the polyhedron (Poincaré-
Alexander theorem) thus we can subdivide the tetrahedron. A generalization of the
Euler number χ(X) into n-dimensions (Hopf’s theorem) is given by

χ(Mn) =(no. 0-simplexes)− (no. 1-simplexes)
+ (no. 2-simplexes)− · · ·+ (−1)n(no. n-simplexes)

where Mn is an n-dimensional manifold, and the first three simplexes in the alternating
sum are equal to vertices, edges, and faces, respective.

The Gauss-Bonnet theorem shows that a deformation of a surface of a manifold might
change the curvature K and the area form dA = d2x pointwise, but the total curvature∫
d2x(K/2π) remains invariant. Thus the total curvature is a measure of the genus of a

surface. From a topological point of view, given for instance a multitorus M =
∑

g with
g holes, the general formula for the Euler number is equal to

χ(M) = 2− 2g.

The curvature K involves derivatives of the metric tensor, thus ∂λgµν(x) are quantities
to the tangent bundle TM of some manifold M . For a two-dimensional manifold M2 the
Gauss-Bonnet theorem is ∫

d2x
K

2π
= b0 − b1 + b2 (5.22)

where the Betti numbers bp(M) are equal to (from Hodge’s theorem) the dimension of
the space of harmonic p-forms:

bp(M) = dim ker ∆p : Λp → Λp

The Atiyah-Singer index theorem is a vast generalization of (5.22). Thus we can
replace the tangent bundle by other bundles (e.g. vector bundles, principal bundles, line
bundles), the Gauss curvature by, e.g., the Riemann- or the field strength curvature, and
replacing the Laplacian ∆p by other elliptic differential operators associated with the
bundle.

Example 2. (The winding number) For a manifold M of dimension d = 2 we have the
Â-genus Â(TM) = 1 and the Chern character equal to the first Chern form; c1(F ) =
(i/2π)1

2
Fµνdx

µ ∧ dxν , thus the index (5.17) is equal to

I1 =
i

4π

∫
M

d2xεµνFµν = χ(M).

If the field strength is chosen as εµνFµν ∼ −iR we can see the similarity between the
Atiyah-Singer index theorem (5.17) and the Gauss-Bonnet theorem from the previous
example.

We take again the manifold M = S2 and get the index 2. The two-sphere can be
considered as a one-dimensional complex manifold, which is called the Riemann sphere[5].

56



5 Index Theorems and Supersymmetry 5.5 The Hirzebruch Signature

There are two complex planes tangent to the Riemann sphere at the poles; the u-v plane
at the south pole and the x-y plane at the north pole. Define complex coordinates at the
north- and south pole, respectively, as z = x+iy = |z| exp(iθ) and w = u+iv = |w| exp(iθ),
here θ is an angle. The relation between the u-v coordinates and the x-y coordinates is
given by w = 1/z. In the u-v plane we have a vector field (or a velocity field) defined
as dw/dt = 1. We can stereographically project the flow associated with the vector field
onto the Riemann sphere, hence a flow near the south pole w = limz→∞(1/z) = 0. Near
the north pole z = limw→∞(1/w) = 0 we get the flow

dz

dt
=

(
dz

dw

)(
dw

dt

)
= − 1

w2
= −z2.

If we rotate around the path z = eiθ about the north pole, the vector −z2 = −ei2θ makes
2 circuits, thus this gives us the index 2.

In terms of physics we can realize the 4π rotation in the context of spin-1
2
system[13].

The spin operator in the z-plane is equal to

Sz =
~
2

[(|+〉〈+|)− (|−〉〈−|)] ,

where the ket |+〉 (|−〉) represents spin up (down). The operator that rotates a state in
the x-y plane is given by

Dz(θ) = exp

(
−iSzθ

~

)
,

i.e., |α〉R = Dz(θ)|α〉 for some state |α〉 = |+〉〈+|α〉 + |−〉〈−|α〉. A straightforward
computation of |α〉R gives

exp

(
−iSzθ

~

)
|α〉 = e−iθ/2|+〉〈+|α〉+ eiθ/2|−〉〈−|α〉.

If we substitute the angle θ = 2π in |α〉R we get the rotated state

|α〉Rz(2π) → −|α〉,

thus in order to get back to the initial state, we must rotate |α〉 by two revolutions.

5.5 The Hirzebruch Signature

In this section follow the same arguments as in the previous section, regarding the duality
between the differentials forms and the Clifford forms. We define an operator τ acting
on k-forms ω as

τω = (−1)k(k−1)/2 ∗ ω,

where ∗ is the Hodge star operator. We have now instead the correspondence τω ↔ γ5ω̂γ5,
and multiplying by γ5 on the right gives

τωγ5 = τ(+ω) = (−1)k(k−1)/2 ∗ ω ↔ γ5ω̂ for ω̂ ∈ S ⊗ S∗+,
τωγ5 = τ(−ω) = (−1)k(k+1)/2 ∗ ω ↔ γ5ω̂ for ω̂ ∈ S ⊗ S∗−.
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Notice the symmetry between (−1)k(k−1)/2 and (−1)k(k+1)/2, hence it follows that the
Hirzebruch signature is

signature(M) := I+ + I−.

From (5.21) and the path integral (5.10), since I+ +I− ∼ Tr[eF ], the signature is thus
equal to

signature(M) =

∫
det−1/2

(
sinh(Rµ

ν/2)

Rµ
ν/2

)(
i

2π

) d
2

(
√

2)ddet1/2

(
cosh

Rµ
ν

2

)
=

∫ (
i

π

) d
2

det1/2

(
Rµ

ν/2

tanh(Rµ
ν/2)

)
.

Example. For a manifold M of dimension d = 4, we have the Hirzebruch signature

signature(M) =

∫
space

1

192π2
Tr(Rµ

ν ∧Rµ
ν).

The result in the right hand side is realized also in terms of the Â-genus[3], when d =
dimM is a multiple of 4:∫

M

Â(TM) = − 1

24

∫
M

p1(TM) =
1

24 · 8π2

∫
M

Tr(Rµ
ν ∧Rµ

ν).

It can be shown[7] that the Hirzebruch L-polynomial is related to the Â-genus and the
Chern character. Writing the L-polynomial L(xi) in components of order d/2 gives

L(xi) = 2d/2
d/2∏
i=1

xi/2

tanh(xi/2)

=

d/2∏
i=1

xi
exi/2 + e−xi/2

exi/2 − e−xi/2

=

d/2∏
i=1

xi/2

(exi/2 − e−xi/2)/2

d/2∏
i=1

(exi/2 + e−xi/2),

i.e., L(x) = Â(TM)∧ ch(E) for some vector bundle E. To get the result of the signature
above we have, explicitly, the integral

∫
M
Â1(TM) ∧ ch0(E), where dimE = 1.

In conclusion, we have here demonstrated, once again, the interrelations between the
Atiyah-Singer index theorem and the Hirzebruch signature.
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Svensk Sammanfattning

Supersymmetri är en symmetri som relaterar partiklar med heltalsspinn (bosoner) till
partiklar med halvtalsspinn (fermioner). Som några exempel på partiklar som har hel-
och halvtalsspinn kan nämnas fotoner (”ljuspartiklar”), respektive elektroner.

I denna uppsats betraktar vi supersymmetri endast i termer av vägintegraler. Feyn-
man’s vägintegral beskriver kvantmekaniska processer i tidsrummet där vi kan visualisera
rums-axeln som den horisontella x-axeln och tidsutvecklingen med den vertikala y-axeln.
Vägintegralen är lika med summan av alla ”vägar” givet en start- och slutpunkt i tidsrum-
met. För fermioner, respektive bosoner, använder man två olika sorters vägintegraler. I
den fermioniska vägintegralen använder vi anti-kommutativa variabler, e.g. x1x2 = −x2x1,
som även kallas Grassmann variabler, samt anti-periodiska randvillkor över integralens
lösning. Å andra sidan, i bosoniska vägintegraler har vi de välbekanta kommutativa vari-
ablerna samt periodiska randvillkor. I ju med att supersymmetri inte gör någon skillnad
mellan fermioner och bosoner så definierar vi den supersymmetriska vägintegralen som en
enskild vägintegral över både anti-kommutativa och kommutativa variablerna samt med
periodiskt randvillkor över integralens lösning.

Man har hittills aldrig observerat till exempel elektroner som har heltalsspinn och inte
heller fotoner som har halvtalsspinn. Detta innebär att de så kallade superpartiklarna till
fermionerna, respektive bosonerna, som vi beskrev i föregående mening, endast kan ob-
serveras om supersymmetrin är spontant bruten. Spontant symmetribrott, även kallat dolt
symmetribrott, innebär att ett kvantmekaniskt system ser ut att vara symmetriskt i högre
exciterat kvanttillstånd (i samband med att vi ändrar någon variabel xi → −xi) men som
är asymmetrisk i grundtillståndet. Spontant symmetribrott ger upphov till en mekanism
som ger massa till partiklarna. Detta är den berömda Higgs-mekanismen. På liknande
sätt ger spontant supersymmetribrott en mekanism som ger massa till superpartiklarna.

För att bestämma huruvida supersymmetrin i grundtillståndet misslyckas att vara
bruten så använder vi oss av en kvantitet som kallas för Witten indexet (efter den ame-
rikanska fysikern Edward Witten). Witten indexet ges av nE=0

B − nE=0
F där nE=0

B (nE=0
F )

är antalet bosoner (fermioner) i det supersymmetriska grundtillståndet. Man kan visa
att Witten indexet är lika med det så kallade analytiska indexet av Dirac-operatorn. Det
analytiska indexet är i sin tur lika med det topologiska indexet som ges av en integral
över karakteristik klasser, där klasserna ger ett mått på ytkrökningen av ett geometriskt
objekt. I termer av den supersymmetriska vägintegralen så kan vi uttrycka de fysika-
liska kvantiteterna som en produkt av vägintegraler över bosoniska variabler, respektive
fermioniska variabler, exklusivt i högtemperaturgränsen. Fysikaliskt innebär högtempera-
turgränsen att man ”gör sig av med” de högre exciterade kvanttillstånden och betraktar
endast grundtillståndet. Då man utför kollisionsexperiment i partikelfysik så kan man
uppnå oerhört höga temperaturer då partiklarna kolliderar med varandra inuti en acce-
lerator, därmed är gränsvärdet för temperaturen även giltigt fysikaliskt. Resultatet av
vägintegralerna visar sig vara identiska med integralerna över karakteristik klasserna då
man beräknar index teorem i matematik. Vi kan nämna att Atiyah-Singer index teore-
met är en stor landvinning inom matematiken och kan betraktas som en omfattande
generalisering av index teorem. I Atiyah-Singer index teoremet spelar Dirac-operatorn
en avgörande roll, det innebär, med andra ord, att välkända och etablerade matematiska
resultat kan härledas med hjälp av supersymmetri.

Tolkningen av Witten indexet, givet någon supersymmetrisk modell, ges av följande
tumregel; om nE=0

B − nE=0
F ej är lika med noll så är supersymmetrin ej bruten och då
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måste man förkasta modellen ifråga. Det omvända gäller däremot inte; om indexet är lika
med noll då kan vi ej dra några säkra slutsatser huruvida supersymmetrin är bruten.

Integraler över karakteristik klasser ger upphov till topologiska tal, en kvantitet som
förblir oförändrad oavsett hur vi deformerar ett geometriskt objekt (under förutsättningen
att ytan hos objektet ej slits itu). Ta till exempel ett geometriskt objekt som ser ut
som en badboll; vi kan platta till den eller dra ut den och forma ytan till ett cigarr-
liknande objekt, men oavsett konfiguration så förblir det topologiska talet oförändrat.
Om vi däremot slår ut två hål i badbollen och fäster ett handtag i form av en slang så får
vi ett objekt som (topologiskt) ser ut som en badring. Topologin mellan badbollen och
badringen skiljer sig avsevärt; det förstnämnda objektet har inget hål, till skillnad från
det andra objektet, och därmed skiljer sig det topologiska talet sinsemellan objekten.

I termer av kvanfältteori (ett fält är en variabel med oändligt många frihetsgrader) och
matematiska index teorem så talar vi om topologisk kvantfältteori, där Witten indexet
ger som vi nämnde en koppling till kvantfysik. Och i rena matematiska termer ger likheten
mellan det analytiska- och det topologiska index en relation mellan differentialekvationer
och topologi.(Något kortfattat kan man säga att likheten mellan de båda indexen är just
Atiyah-Singer index teoremet uttryckt i ord.)

Avsaknaden av observerade superpartiklar innebär att supersymmetrin ej i dagsläget
kan betraktas som en fysikalisk teori; det krävs experimentella bevis innan man kan kalla
supersymmetrin en teori. I skrivandets stund kan man endast betrakta supersymmetri
som ett teoretiskt ramverk ellen en fysikalisk modell, men det är forskarnas stora förhopp-
ning att man inom en snar framtid ska kunna avgöra om supersymmetrisk kvantmekanik
faktiskt beskriver naturen. Möjligtvis kommer svaren om huruvida supersymmetrin stäm-
mer överens med experimentella mätningar att uppdaga sig efter uppgraderingen av Large
Hadron Collider (LHC) vid partikelfysiklaboratoriumet CERN som ligger utanför staden
Genève i Schweiz.
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A Hamilton’s Principle and Supersymmetry

A.1 The Basic Lagrangian

By basic Lagrangian we mean here the Lagrangian in the action (5.4), where the gauge
field Aµ(x) is switched off, hence the absence of the isospin fields η:

L =
1

2
gµν ẋ

µẋν − 1

2
gµνψ

µ

(
dψν

dt
+ ẋλΓνλκ(x)ψκ

)
.

The expression inside the parentheses in the Lagrangian is the covariant derivative (Dg
t )
µ
ν

written out in components.
To show that that there are physically realizable quantities, i.e., classical equations

of motion that describes a trajectory10 in space, or observables in the case of quantum
mechanics, the action must fulfill Hamilton’s principle, also called the principle of least
action:

δS = δ

∫
dtL = 0.

This is realized if the variation of the Lagrangian, δL, with respect to the variables

x′µ = xµ + δxµ, and ψ′µ = ψµ + δψµ,

are integrated out and is identical to zero:

δS =

t′′∫
t′

dtL(xµ + δxµ, ψµ + δψ; ẋµ + δẋµ, ψ̇µ + δψ̇ψ)−
t′′∫
t′

dtL(xµ, ψµ; ẋµ, ψ̇µ) ≡ 0.

We introduce the supersymmetry transformations

δxµ = εψµ,

δψµ = −εẋµ,

where ε is a Grassmann number, and we the following metric identity:

∂λgµν + ∂νgµλ + ∂µgλν = 0.

We can now rewrite the Lagrangian, using the metric identity, as:

L =
1

2
gµν ẋ

µẋν +
1

2
gµνψ

µψ̇ν +
1

2
ẋµgλρΓ

ρ
µνψ

λψν

=
1

2
gµν ẋ

µẋν +
1

2
gµνψ

µψ̇ν − 1

2
ẋµ

1

2
(∂λgµν − ∂νgµλ − ∂µgλν)ψλψν

=
1

2
gµν ẋ

µẋν +
1

2
gµνψ

µψ̇ν − 1

2
ẋµ∂λgµνψ

λψν .

10In quantum mechanics we cannot define trajectories in space-time due to Heisenberg’s uncertainty
principle. Classical mechanics is, however, restored in the limit ~→ 0 in the path integral.
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In the first equality we renamed some indices in the third term, in order to relate the
Christoffel symbol Γρµν to the metric identity, used in the second equality.

A straightforward computation of the variation of the Lagrangian gives

δL =
1

2
∂λgµνδx

λẋµẋν +
1

2
gµνδẋ

µẋν +
1

2
gµν ẋ

µδẋν +
1

2
∂λgµνδx

λψµψ̇ν +
1

2
gµνδψ

µψ̇ν

+
1

2
gµνψ

µδψ̇ν − 1

2
δẋµ∂λgµνψ

λψν − 1

2
ẋµ∂λ∂βgµνδx

βψλψν − 1

2
ẋµ∂λgµνδψ

λψν

− 1

2
ẋµ∂λgµνψ

λδψν

=
1

2
εgµνψ

µẍν +
1

2
εgµν ẋ

µψ̇ν − 1

2
ε∂λ∂βgµν ẋ

µψβψλψν +
1

2
ε∂λgµν ẋ

µẋλψν

=
1

2
ε
d

dt
(gµν ẋ

µψν)− ∂λ
[

1

2
ε(∂βgµν ẋ

µψνψβψλ − gµν ẋµẋνψλ)
]
.

The supersymmetric transformations were substituted in the second equality. The second
and fifth term cancel each other after the substitution, so do the first and the tenth term,
likewise the fourth and the seventh term. Rewriting the first term in the second equality
as a total time-derivative, the extra term from the rewriting cancels the second term
(after renaming the indices ν to µ and vice versa). The term with the total derivative ∂λ
can be neglected in the action, since it does not contribute to the equations of motion.
Hence the variation of the action is equal to

δS =

∫
PBCs

dt
d

dt

1

2
ε(gµν ẋ

µψν) ≡ 0,

where the invariance of δS follows from the periodicity of the variables, e.g. ψ(0) =
ψ(β) = 0.

A.2 The Gauge Field Lagrangian

Here we regard the action (5.4), now including the isospin fields η. Since we derived
δS = 0 above without the gauge fields Aµ(x), we include only the terms dependent on η,
hence the action

Sgauge =

β∫
0

dt

[
η̄aη̇a + η̄aηaẋαAα(x)− 1

2
η̄aF ab

µνψ
µψνηb + i

α

β
η̄aηa

]
.

The supersymmetry transformations are given by

δxµ = εψµ,

δψµ = −εẋµ,
δηa = −εψµAabµ ηb,
δη̄a = −εη̄bAbaµ ψµ.

The Bianchi identity for the field strength F ab
µν is equal to
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DµFµν = ∂µFµν + [Aµ, Fµν ] = 0.

For simplicity, we compute the variation of the field strength first, before the substitution
in the variation of the Lagrangian further below:

δF ab
µν = (∂λ∂µA

ab
ν − ∂λ∂νAabµ + [∂λAµ, Aν ]

ab + [Aµ, ∂λAν ]
ab)δxλ.

Taking the variation of the Lagrangian Lgauge, defined by the terms between the square
brackets of Sgauge above, and substituting the supersymmetry transformations yield:

δLgauge =(−εη̄bAabµ ψµ)η̇a + η̄a
d

dt
(−εψµAabµ ηb) + (−εη̄bAbaµ ψµ)ẋαAaaα η

a

+ η̄a(εψ̇µ)Aaaα η
a + η̄aẋα∂λA

aa
α (εψλ)ηa + η̄aẋαAaaα (−εψµAabµ ηb)

− 1

2
(−εη̄bAbaκ ψκ)F ab

µνψ
µψνηb

− 1

2
η̄a(∂λ∂µA

ab
ν − ∂λ∂νAabν + [∂λAµ, Aν ]

ab + [Aµ, ∂λAν ]
ab)(εψλ)ψµψνηb

− 1

2
η̄aF ab

µν(−εẋµ)ψνηb − 1

2
η̄aF ab

µνψ
µ(−εẋν)ηb − 1

2
η̄aF ab

µνψ
µψν(−εψκAbaκ ηa)

+ i
α

β
(−εη̄bAbaµ ψµ)ηa + i

α

β
η̄a(−εψµAabµ ηb)

Notice the anti-commutativity between the Grassmann number ε and the isospin fields,
e.g. εη̄ = −η̄ε. We show explicitly that all, but one, terms cancel each other.

The seventh, eighth and eleventh term vanish:

1

2
εη̄bψκψµψν(Abaκ F

ab
µν)η

b − 1

2
εη̄aψκψµψν(F ab

µνA
ba
κ )ηa +

1

2
εη̄aψκψµψν(∂κF

ab
µν)η

a

=
1

2
εη̄aψκψµψν(Aabκ F

ba
µν − F ab

µνA
ba
κ + ∂κF

ab
µν)η

a =
1

2
εη̄aψκψµψν(∂κF

ab
µν + [Aκ, Fµν ]

ab)ηa = 0.

where we get the first equality after renaming ηb and η̄b to ηa and η̄a, respectively. The
third equality follows from the Bianchi identity by setting κ = µ.

Continuing with the ninth and the tenth terms:

− 1

2
η̄aε(F ab

µν ẋ
µψν)ηb − 1

2
η̄aε(F ab

µν ẋ
νψµ) =

1

2
η̄aε(−F ab

µν ẋ
µψν − F ab

µν ẋ
νψµ)ηb = 0.

The last equality follows from renaming the indices ν to µ, and vice versa, in the last
term between the parentheses in the first equality. Using the anti-symmetry of the field
strength; Fµν = Fνµ, gives the second equality.

Collecting the first, second and the fourth term gives:

(−εη̄bAbaµ ψµ)η̇a + η̄a
d

dt
(−εψµAabµ ηb) + η̄a(εψ̇µ)Aaaα η

a

=− εη̄bAbaµ ψµη̇a + εη̄aψµAabµ η̇
b + εη̄aψ̇µAabµ η

b − εη̄aψ̇µAaaα ηa

=− εη̄bAbaµ ψµη̇a + εη̄bAbaµ ψ
µη̇a + εη̄aψ̇µAabµ η

b − εη̄aψ̇µAabµ ηb = 0.
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In the second equality we renamed, in the second term, the indices a to b, and vice versa,
while Aaaηa = Aabηb in the last term, hence the third equality.

The third and the sixth terms are

−εη̄bAbaµ ψµẋαAaaα ηa + εη̄aAabµ ψ
µẋαAbbα η

b = −εη̄bAbaµ ψµẋαAaaα ηa + εη̄bAbaµ ψ
µẋαAaaα η

a = 0,

after renaming a to b, and vice versa, in the second term before the first equality.
Finally, the ultimate and penultimate terms vanish, using similar arguments as above:

−iα
β
εη̄bAbaµ ψ

µηa + i
α

β
εη̄aAabµ ψ

µηb = −iα
β
εη̄bAbaµ ψ

µηa + i
α

β
εη̄bAbaµ ψ

µηa = 0.

Hence we arrive at one non-vanishing term, the fifth term,

∂λ(η̄
aẋαAaaα εψ

ληa),

that does not contribute to the equations of motion, thus can be neglected in the action.

66



B Product Expansion of an Entire Function

B Product Expansion of an Entire Function

In this appendix we derive the formula (5.6) used in the functional determinants in
the evaluations of the path integrals that are substituted in the derivation of the index
theorems. This review of the theory of complex variables is brief and heuristic, further
information can be found in [2].

A complex function g(z), z = x+ iy, may be constructed as

g(z) = u(x, y) + iv(x, y),

for real functions u(x, y) and v(x, y). If g(z) is differentiable at z = z0 ∈ C and in a
neighborhood of z0, we say that g(z) is analytic11 at z = z0. If g(z) is analytic everywhere
in the finite complex plane we call it an entire function. Examples of entire functions
are; sin z, cos z and exp z. If a function g(z) ∼ (z − z0)−m, m ≥ 1, we say it has a pole,
or a singularity, at z = z0 with multiplicity m. A function that is analytic in the finite
complex plane, except at isolated poles, is called meromorphic. Examples of meromorphic
functions are tan z, cot z, and ratios of polynomials.

We now introduce the Laurent series of a function g(z):

g(z) =
∞∑

n=−∞

bn(z − z0)n

= · · ·+ b−m
1

(z − z0)m
+ · · ·+ b−1

1

(z − z0)

+ b0 + b1(z − z0) + · · ·+ bm(z − z0)m + . . . ,

where the constants bn are called the residues. Without going into further details, we can
regard the Laurent series as a generalized Taylor expansion in the complex plane, where
we also take the singularities into account.

A generalization of the Laurent series is called pole expansion of a meromorphic func-
tion. Instead of just one singularity (at z−z0 in the Laurent series above) we now assume
that there are several poles at z = an, with 0 < |a1| < |a2| < . . . , all having multiplicity
equal to one and the series

g(z) = g(0) +
∞∑
n=1

bn{(z − an)−1 + a−1
n }

converges to g(z) (due to Mittag-Leffler Theorem). Now it is straight forward to show
the product expansion of an entire function.

The logarithmic derivative of g(z) is given by d/dz ln g(z) = g′/g and it is meromorphic
with a pole expansion. If g(z) has a simple singularity at z = an, we can get rid of that
critical point after multiplication by (z−an), then g(z) = (z−an)f(z) with analytic f(z)
and f(an) 6= 0. The logarithmic derivative of g(z) is equal to

g′(z)

g(z)
=

d

dz
(ln(z − an) + ln f(z)) =

1

(z − an)
+
f ′(z)

f(z)
,

11The names holomorphic or regular are synonyms and can be found in the literature.

67



B Product Expansion of an Entire Function

and has a simple pole at z = an with residue 1 (the constant in front of (z− an)−1). The
term f ′/f is analytic at z0. The pole expansion of meromorphic functions of g′/g is given
by

g′(z)

g(z)
=
g′(0)

g(0)
+
∞∑
n=1

[
1

z − an
+

1

an

]
.

Integrating the pole expansion of f ′/f yields

z∫
0

dw
d

dw
ln g(w) = ln g(z)− ln g(0)

=
zg′(0)

g(0)
+
∞∑
n=1

{
ln(z − an) +

z

an
+ A

}
,

where A is a constant of integration we choose as A = − ln(−an). Hence we get

ln
g(z)

g(0)
=
zg′(0)

g(0)
+
∞∑
n=1

{
ln

(
an − z
an

)
+

z

an

}
,

and exponentiating yields the product expansion (5.6):

g(z) = g(0) exp

(
zg′(0)

g(0)

) ∞∏
n=1

(
1− z

an

)
ez/an .

Two standard examples of product expansions are the following functions:

sin z = z
∞∏

n=−∞
n 6=0

(
1− z

nπ

)
ez/nπ = z

∞∏
n=1

(
1− z2

n2π2

)
,

cos z =
∞∏
n=1

(
1− z2

(n− 1/2)2π2

)
.
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C Curvature Tensors

C.1 The Riemann Curvature Tensor

The curvature tensor Rµ
κλν is constructed by taking a vector V , tangent to the surface of

a manifold M , and parallel transport it half way around an infinitesimal parallelogram in
two opposite directions[10]. The difference in direction of the vector at the final point of
the parallel transportation is a measure of the curvature of the manifold. A mnemonic on
the construction of the Riemann curvature tensor and it geometrical meaning is shown
in figure (7) below.

xµp q xµ + εxµ

r xµ + εxµ + δxµsxµ + δxµ

V µ
0

V µ
C

V µ
C′

Figure 7: The Riemann curvature tensor Rµ
κλν is constructed by taking the parallel

transport of the vector V0 across two opposite paths; C = pqr and C ′ = psr. The
difference of V µ

C′ and V
µ
C at the corner r is equal to the curvature tensor.

Let pqrs be a parallelogram, where p is the lower-left corner whose coordinate is xµ.
A vector V0 at p parallel transported to the lower-right corner q, with coordinate xµ+εxµ,
ε an infinitesimal number, is given by

V µ
C (q) = V µ

0 − V κ
0 Γµνκ(p)εx

ν .

The infinitesimal translation from q to the upper-right corner r is equal to δxµ, hence
the coordinate of r is xµ + εxµ + δxµ. The vector at the final translation point is, up to
second order in ε and δ, thus equal to

V µ
C (r) = V µ

C (q)− V κ
C (q)Γµνκ(q)δx

ν

= V µ
0 − V κ

0 Γµνκεx
ν −

[
V κ

0 − V
ρ

0 Γκζρ(p)εx
ζ
][
Γµνκ(p) + ∂λΓ

µ
νκ(p)εx

λ
]
δxν

' V µ
0 − V κ

0 Γµνκεx
ν − V κ

0 Γµνκ(p)δx
ν − V κ

0 [∂λΓ
µ
νκ(p)− Γρλκ(p)Γ

µ
νρ(p)]εx

λδxν .

The subscript C denotes the counter clockwise transportation through the corners pqr.
Similarly, we let C ′ denote the clockwise translation through psr, hence the vector V µ

C′(r)
is given by

V µ
C′(r) ' V µ

0 − V κ
0 Γµνκδx

ν − V κ
0 Γµνκ(p)εx

ν − V κ
0 [∂νΓ

µ
λκ(p)− Γρνκ(p)Γ

µ
λρ(p)]εx

λδxν .
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The difference of the two vectors V µ
C (r) and V µ

C′(r) is equal to

V µ
C′(r)− V

µ
C (r) = V κ

0 [∂λΓ
µ
νκ(p)− ∂νΓµλκ(p)− Γρλκ(p)Γ

µ
νρ(p) + Γρνκ(p)Γ

µ
λρ(p)]εx

λδxν

= V κ
0 R

µ
κλνεx

λδxν .

In summary, the Riemann curvature tensor is given by

Rµ
κλν(p) = ∂λΓ

µ
νκ(p)− ∂νΓµλκ(p)− Γρλκ(p)Γ

µ
νρ(p) + Γρνκ(p)Γ

µ
λρ(p).

C.2 The Field Strength Tensor

We will be rather brief in our construction of the field strength tensor Fµν , and emphasize
the similarities with the construction of the Riemann curvature tensor in the previous
section. For a more comprehensive construction of the field strength tensor, see for
instance [11].

The covariant derivative Dµ, in the direction nµ, of a fermi field ψ(x) is defined as

nµDµψ = lim
ε→0

1

ε
[ψ(x+ εn)− U(x+ εn, x)ψ(x)]

where the factor U(x + εn, x) is called the comparator. The field ψ(x) transforms as
ψ(x) → exp(iα(x))ψ(x), i.e., a phase rotation through an angle α(x). On the other
hand, the field ψ(x + εn) has a different transformation at the point x + εn than has
ψ(x) at x, hence the comparator U(y, x) compensates for the phase difference under field
transformations. Thus the comparator U(y, x) transforms as

U(y, x)→ eiα(y)U(y, x)e−iα(x).

We define U(y, x) to be a pure phase; U(y, x) := exp[iφ(y, x)] for some function φ(y, x),
and we set U(y, y) = 1. In conclusion, the objects of the forms ψ(x) and U(y, x)ψ(x)
have the same transformation law thus the covariant derivative is well defined for a local
phase transformation of the fields.

The expanded comparator U(x+ εn, x) in the covariant derivative above is equal to

U(x+ εn, x) = 1− ieεnµAµ(x) +O(ε2),

where e is a constant12 and Aµ(x) is the four potential. The covariant derivative is then
given by

Dµψ(x) = ∂µψ(x) + ieAµ(x) +O(ε2) (C.1)

To construct the field strength tensor, we expand U(x + εn, x) up to third order in
the infinitesimal constant ε:

U(x+ εn, x) = exp
[
−ieεnνAµ(x+

ε

2
n) +O(ε3)

]
(C.2)

The field strength analogue to the construction of the Riemann curvature tensor is now
examined. We take comparisons around an infinitesimal parallelogram, where the initial

12In quantum electrodynamics the constant e is the electron charge, while in non-Abelian gauge theories
the constant is a generic charge, normally denoted by the letter g.
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and final point is in the lower-left corner whose coordinate is x. Let the parallelogram
lie in the (1, 2)-plane, i.e., the coordinates of the lower-right corner and the upper-right
corner are equal to x + ε1̂ and x + ε1̂ + ε2̂, respectively. Here 1̂ and 2̂ are (horizontal,
respectively vertical) unit vectors. The product of the four comparisons counterclockwise
around the parallelogram is defined as U(x):

U(x) ≡ U(x, x+ ε2̂)U(x+ ε2̂, x+ ε1̂ + ε2̂)U(x+ ε1̂ + ε2̂, x+ ε1̂)U(x+ ε1̂, x).

Substituting equation (C.2) into U(x) yields

U(x) = exp
{
−iεe

[
− A2(x+

ε

2
2̂)− A1(x+

ε

2
1̂ + ε2̂)

+A2(x+ ε1̂ +
ε

2
2̂) + A1(x+

ε

2
1̂)
]

+O(ε3)
}
,

where A1(•) (A2(•)) are the comparisons in the horizontal (vertical) directions. Expand-
ing U(x), and taking the limit ε→ 0, gives

U(x) = 1− iε2e [∂1A2(x)− ∂1A2(x)] +O(ε3),

where ∂1 = limε→0(1/ε1̂) and ∂2 = limε→0(1/ε2̂). The structure between the square
brackets in the final derivation of U(x) is of the form

Fµν := ∂µAν − ∂νAµ,

which is equal to the electromagnetic field tensor, or the field strength tensor.
There is an alternative way of constructing the field strength tensor, namely by taking

the commutator of the covariant derivative Dµ. The commutator [Dµ, Dν ] can be inter-
preted as a comparison of comparisons across a small square, cf. the argument above.
We derived the Abelian field strength tensor above which means that [Aµ, Aν ] = 0.

On the other hand, if we assume that [Aµ, Aν ] 6= 0 and consider a covariant derivative
of the form

Dµ = ∂µ − igAµ

where g is a constant, we get the commutator acting on a field ψ equal to

[Dµ, Dν ]ψ = [∂µ, ∂ν ]ψ − ig([∂µ, Aν ] + [Aµ, ∂ν ])ψ − ig[Aµ, Aν ]ψ

= −ig(∂µAν − ∂νAµ + [Aµ, Aν ])ψ.

Hence the non-Abelian field strength tensor is of the form

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].
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D Quantum Fluctuations and the Riemann Tensor
In this appendix we derive the Riemann curvature tensor, as given in the gauge choice
(5.15b), from the quantum fluctuations around a critical point on a manifold. From the
action (5.4) we have a term dependent on the Christoffel symbol Γµ%ν :

gµν(x)ψµẋ%Γµ%νψ
ν . (D.1)

We introduce quantum fluctuations δxµ := εxµ(t) and δxψµ := εψµ(t) around a critical
point (xµ0 , ψ

µ
0 ) on a manifold M , where ε is an infinitesimal number. Hence the scalar

field and the fermion field are given by

x′
µ
(t) = xµ0 + εxµ(t),

ψ′
µ
(t) = ψµ0 + εψµ(t).

Substituting x′µ and ψ′µ into the quantities in (D.1) yields

gµν(x
α
0 + εxα(t)) = gµν(x

α
0 ) + ∂λgµν(x

α
0 )εxλ = gµν(x

α
0 ) + (Γκλµgκν + Γκλνgκµ)εxλ;

Γµ%ν(x
α
0 + εxα(t)) = Γµ%ν(x

α
0 ) + ∂βΓµ%ν(x

α
0 )εxβ;

ẋ′% = εẋ%.

In Riemann normal coordinates we get the following simplifications:

gµν(x
α
0 ) = δµν ;

∂λgµν(x
α
0 ) = Γκλµ(xα0 ) = Γκλν(x

α
0 ) = Γµ%ν(x

α
0 ) = 0;

∂βΓµ%ν(x
α
0 ) 6= 0.

Substituting gµν(xα0 + εxα(t)), ẋ′% and Γµ%ν(x
α
0 + εxα(t)) together with x′µ and ψ′µ into

(D.1) and keeping only terms of second order in quantum fluctuations yields

[δµν ][ψ
µ
0 + εψµ(t)][εẋ%][∂βΓµ%νεx

β][ψν0 + εψν(t)] +O(ε3)

=δµνψ
µ
0ψ

µ
0 εẋ

%[∂µΓβ%νεx
β] +O(ε3)

=δµνψ
µ
0ψ

µ
0 εẋ

%

[
1

2
(∂µΓβ%ν − ∂νΓβ%µ)

]
εxβ +O(ε3)

=δµνψ
µ
0ψ

µ
0 εẋ

%1

2
Rβ

%µνεx
β +O(ε3)

where in the first equality we renamed the indices µ to β, and vice versa, in the term
∂µΓβ%ν . In the second equality we used the identity ψµψνωµν = ψµψν 1

2
(ωµν − ωνµ) for a

generic tensor ωµν = −ωνµ associated to ∂µΓβ%ν .
Going back to the variables xµ(t) and ψµ(t) in the last equality, we arrive (after

renaming, and lowering, the index β) at the gauge choice (5.15b):

ψµΓνν%ψ
ν =

1

2
Rα%µνψ

µψνxα.
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A final remark on the Riemann normal coordinates is in order here. We have as-
sumed that the geometry is locally Euclidean, i.e., flat around some point (xµ0 , ψ

µ
0 ) on

the manifold M . This local property does not imply that the curvature tensor Rα%µν

vanishes. We can visualize the Euclidean geometry on M as an arbitrary small tangent
plane on M . On the tangent plane there is no connection, thus Γκλµ = Γκλν = Γµ%ν = 0.
However, we can still move the tangent plane to an arbitrary point (xµ, ψµ) on the man-
ifold, and thereby changing the direction of the normal of the tangent plane, hence the
non-vanishing Rβ

%µν = ∂µΓβ%ν − ∂νΓ
β
%µ. The Riemann curvature tensor is coordinate

independent, thus in a general coordinate system we have the tensor

Rβ
%µν(x) = ∂µΓβ%ν(x)− ∂νΓβ%µ(x)− Γρ%µ(x)Γβρν(x) + Γρ%ν(x)Γβρµ(x).
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