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Abstract

The Atiyah-Singer index theorem, the Euler number, and the Hirzebruch sig-
nature are derived via the supersymmetric path integral. Concisely, the supersym-
metric path integral is a combination of a bosonic and a femionic path integral.
The action in the supersymmetric path integral includes here bosonic, fermionic-
and isospin fields (background fields), where the cross terms in the Lagrangian are
nicely eliminated due to scaling of the fields and using techniques from spontaneous
breaking of supersymmetry (that give rise to a mechanism, analogous to the Higgs-
mechanism, but here regarding the so called superparticles instead). Thus, the su-
persymmetric path integral is a product of three path integrals over the three given
fields, respectively, that can be evaluated exactly by means of Gaussian integrals.
The closely related Witten index is a measure of the failure of spontaneous breaking
of supersymmetry. In addition, the basic concepts of supersymmetry breaking are
reviewed.
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1 Introduction

1 Introduction

In this thesis we derive index theorems by using techniques from mathematical physics
and quantum mechanics. We will use here mainly the supersymmetric path integral in
the derivations below.

The path integral describes the time-evolution of a quantum mechanical system given
an initial- and a final position in space-time. There are two kinds of path integrals; the
bosonic and the fermionic path integral, where in the former kind we use commutative
variables and periodic boundary conditions, while in the latter kind we implement instead
anti-commutative variables and anti-periodic boundary conditions.

Supersymmetry, on the other hand, treats bosons and fermions on an equal footing,
thus the supersymmetric path integral includes both commutative- and anti-commutative
variables and the boundary conditions, implemented over both variables, are periodic.

Index theorems relates analysis to topology by means of the solutions of a differential
equation to a topological invariant, i.e. a topological number. In this thesis we are
only concerned with the topological number called the Fuler number, x(M), where M is
some manifold. Given a manifold that admits the spin structure, the index of the Dirac
operator leads to the Atiyah-Singer index theorem and it is to be considered here as one
of the main derivations using the supersymmetrical path integral.

The Atiyah-Singer index theorem originates from the early 1960s and can be consid-
ered as a vast generalization of earlier versions of index theorems such as the Hirzebruch
signature theorem, also derived here using supersymmetry. In the early 1980s, physicists
realized that the well known results in mathematical index theory could be derived by
using relatively simple techniques from supersymmetric quantum mechanics and thereby,
possibly, relate mathematical theory to physics. (Notice that there is not yet, as of this
writing, any experimental verification of supersymmetric quantum mechanics.) All the
path integrals in the derivations below can be solved exactly by using Gaussian integrals,
thus neither Feynman diagrams, nor Feynman rules, are needed to yield the solutions.

The Witten index determines whether it is not possible to spontaneously break the
supersymmetry in a supersymmetric model. The index of the Dirac operator is closely
related to the Witten index; the Atiyah-Singer index theorem is equal to the Witten index
and thus relates index theorems to supersymmetry. A broken supersymmetry implies
that there is a mechanism that gives mass to supersymmetric particles (i.e. fermions
with integer spin, or bosons with half-integer spin), analogous to the Higgs—mechanismﬂ
in the Standard Model.

The aim of this thesis is to present the most necessary preliminaries and to derive
index theorems using the supersymmetric path integral.

Outline of the Thesis

The thesis is organized as follows: In chapter |2| we introduce the index theorems from
a non-supersymmetric point of view. Mathematical concepts and terminology is briefly
reviewed. Elliptic differential operators, such as the Dirac operator in Euclidean metric,
and common characteristic classes used in the index theorems are presented.

In chapter [3|we review the theory of path integrals. Various standard techniques used
in evaluating path integrals, e.g., Gaussian integrals, are introduced. The similarities and

!The author apologizes for leaving out Brout, Englert, Guralnik, Kibble and possibly other names in
the e-mechanism.



1 Introduction

differences in construction of the bosonic- and the fermionic path integral are emphasized.
The final topic of the chapter is the supersymmetric path integral.

In chapter (4] we review the concept of spontaneous breaking of supersymmetry in
contrast to symmetry breaking in quantum field theory. The famous Wess-Zumino model
serves as an example of whether supersymmetry is broken, and hence describes nature.

In the final chapter, chapter [5] we use the results from the consecutive chapters to
derive the aforementioned index theorems. Two extensive examples; the Gauss-Bonnet
theorem, and the winding number, serves as an in depth review on the geometrical and
topological meaning of the Euler number and its relation to physics. This chapter can be
considered as the main chapter while the previous chapters are preliminaries.

Four appendices follow the chapters described above: In appendix [A] we show that
the supersymmetric Lagrangian fulfills the principle of least action, by using the su-
persymmetry transformations and the Bianchi identities for the field strength- and the
Riemann curvature tensors.

In appendix [B], we derive an important formula used in the path integrals that are
implemented in the derivation of the index theorems.

In appendix [C], we derive the Riemann curvature tensor and the field strength cur-
vature tensor explicitly. The similarities in construction of the two curvature tensors are
emphasized.

Finally in appendix [D] a gauge choice, heuristically introduced in the derivation of
the Atiyah-Singer index theorem in chapter [f] is here calculated explicitly.
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2 Index Theorems

In this chapter, elementary concepts and terminology of the theory of index theorems
are presented. In chapter [5 below the same expressions of the index theorems presented
here are derived using the supersymmetric path integral. Here, however, we follow closely
the seminal articles [1]. The aim of this chapter is to state the major results of index
theory in a rather non-technical review. For a more mathematical exposure, we refer to
the aforementioned reference. Complementary references to the review given here include
[3, [7, @, 10, 12]. The mathematical preliminaries are, more or less, omitted here and we
refer instead to the review article [3] for a more comprehensive exposure.

The hallmark of index theorems is that they give information about differential equa-
tions, provided that we understand the topology of the fiber bundles upon which the
differential operators are defined. We outline several examples below, illustrating the
connection between the index of an operator and the related topological numbers.

2.1 Elliptic Operators

In this section we review the theory of elliptic operators. Elliptic operators on compact
manifolds are important in defining index theorems, since the dimension of the kernel of
the operator is finite, thus the analytical index is well defined. Consider the eigenvalue
problem of the generic operator O, acting on some differential form w € AP(M) of order
p; Opw = A\,w, where AP(M) is the space of p-forms. The constants A, for n =0,1,...,
are the eigenvalues and the kernel of O, is defined as the set of differential forms

ker O, = {w; O,w = 0}.

As an example of an elliptic operator we take the Laplacian, A,, which act on p-forms
and is defined on compact Riemannian manifolds M of dimension n. The Laplacian
requires a metric g, (x) for its definition, hence we have a link between analysis and
geometry. The Hodge-de Rham theorem yields topological information of the Laplacian

dimker A, = dim H{, (M; R),

where HY; (M;R) is the de Rham cohomology group. Next, we define the Fourier trans-
formation F{f(x)} of a function f(z) by the formula

F{f (@)} = /d"xexp(iéx)f(x) — f(©).

1
(2m)"
The Laplacian (in Cartesian coordinates) is defined as

0? o

e s,
Oy 02

A —
and with A acting on f(z) under the inverse Fourier transform yields the equation

1
(2m)"

Af(z) = / PELE + -+ E]F(€) exp(—i€x).

The leading symbol, denoted by op,(A), of the differential operator is the highest order
part of its Fourier transform:



2.1 Elliptic Operators 2 Index Theorems

oL(A) =&+ -+ &,

and for o,(A) equal to a constant we obtain the equation of a sphere. We can generalize
the Laplacian by a change of scale a; in the coordinates x;, accordingly,

82
L=-Y a5,
2.9
then the symbol of L set equal to a constant c is given by

ai + -+ andy =,

which is the equation of an ellipsoid in IR", hence the name elliptic operator. A more
formal definition of ellipticity is formulated as follows; if the leading symbol oy, (x,§) is
always non-zero for all x in R", then the associated differential operator is called elliptic.
As a counter example of an elliptic operator, consider the Bessel’s equation of order A
given by the differential equation

d*u(x) du(z)
2

T e i dz
which have the leading symbol

+ (2% — M)u(z) = 0; A €ER,

OL(:E7 f) - l’2€2,

that vanish at the at the origin z = 0.
It is common in the literature to use multi-index notation. Let L be a linear differential
operator, defined in R"”, of order m

L= Z aq () D"

laj<m

The n-tuple a = (o, ..., a,), where a; > 0, is called a multi-index and |a| = ) o is its
length. Furthermore, we have p® = p{*p5? ... p% and D* = (—i)l*(9/0x,)** ... (0/0x,)*",
thus the linear differential operator is given by

oo
_ — )l
L= 3 tanan(@)(=)" 50 g

laj<m

Using the Fourier transform, we get the symbol o, (z, §):

Lu() = 3 au@)Du(e) = 3 aala) [d6" exp(-iga)i(©

ja]<m lal<m R”
— / d"E[om(x,&)] exp(—ilx)u(§),
Rn

hence,

om(x, &) = Z aq(T)E°.

|laj<m

4



2 Index Theorems 2.2 Characteristic Classes

The leading symbol is then equal to

oL(z,§) = Y aa(z)”.

laj=m

We are here mainly interested in the cases m = 1 (Dirac operator) and m = 2 (the
Laplacian).

Elliptic operators on compact manifolds are called Fredholm operators, and we assume
from now on that all differential operators are Fredholm, unless it is stated as non-
Fredholm in a certain case.

2.2 Characteristic Classes

A fiber bundle is a manifold that locally looks like a direct product of two topological
spaces. As an example, a direct product of a circle S and some non-zero interval I =
[a,b], is a cylinder denoted by S x I. The manifold M = S! is called the base space and
F =T the fiber. A collection of all the fibers is called a fiber bundle. Since the cylinder
can be expressed as a direct product, locally as well as globally, it is a so called trivial
bundle. A Mobius strip, on the other hand, cannot be a direct product as in the case for
a cylinder, since it is twisted globally (if wee zoom in and merely look at a small segment
of its surface, it is indeed a direct product that looks like R?). Characteristic classes
measure the non-triviality, or twisting, of a bundle. The measure of the twisting is equal
to an integer, a topological constant, expressed as an integral involving the curvature of
the fiber bundle.

In this section we present the most important characteristic classes that appear in
the index theorems in the subsequent sections and in chapter Several examples of
integrals over characteristic classes are given in the next section, used in the evaluated
index theorems.

2.2.1 The Chern Character

Let E be a complex vector bundle, whose fiber is C*. Given a gauge potential A, (x) and
a field strength curvature two-form, % = %F wdzt A dz¥, we define the total Chern class

by

c(F) = det (I+l2ﬁ> =1+ca(F)+c(F)+...,
m

where ¢;(.%) is the jth Chern class and [ is a unit matrix. In an m-dimensional base
space M, the Chern class ¢;(.%#) with 2j > m vanish, thus the series terminates at
cp(F) = det(i¥ /2m) and ¢;(.F#) = 0 for j > k. The Chern classes are given, explicitly,
by
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. k
(T = (i) det Z.

If we now let E be a real vector bundle with rank dimgr £ = k, we define the total
Pontrjagin class by

o

F
p(F) = det (I+ %) =1+pi(F) +pAF) +....
The relation between the Pontrjagin classes and the Chern classes is given by
pi(E) = (=1 e5(Ee),

where E¢ denotes the complexification of the real vector bundle F| ie., E ®r C = E¢.
Finally, the total Chern character is defined by

ch(F) = Trexp (g) =k+c(F)+ %[@(ﬂf —2c(F)] +....

2.2.2 The Todd Class

Let E now be a complex vector bundle of rank £, i.e. dimg E = k. We define the total
Todd class of E by

k
td(E) = H 1 _xéi% =1+ %C1(E) + E[CI(E) + ()] +
=1~ pu(B) + s B (B~ pa(E)]

where the z;’s comes from the splitting principle; the bundle E can be written as a
Whitney sum of n complex line bundles,
E=01 &L @& Ly.

The Whitney sum of the Chern class is, given a direct sum F = FE; ® F,, equal to
c¢(Ey @ Ey) = ¢(E1) Ac(Ey). The Chern class ¢;(F) = 0 for ky + 1 < i < ky + ko, where
k1 = dimy F; and ko = dimp F». For the sum of n complex line bundles L defined above,
we get the wedge product

c(E) =c(Ly) Ne(La) A -+ ANe(Ly).

6



2 Index Theorems 2.2 Characteristic Classes

The rth Chern class ¢,.(L) = 0 for > 2 since dimg L; = 1, thus we write the Chern class
of L; as

C(LZ) =1+ Cl(Li) =1+ €y,
and the total Chern class is now expressed as

n

c(B) =[]+ ).

i=1
The Chern character behaves well under Whitney sums; ch(E ® F') = ch(E) A ch(F)

and ch(E @ F) = ch(E) @ ch(F'), and they are an important property in evaluating the
index theorems as will be demonstrated below.

2.2.3 The Euler Class

Let the base space M be a 2[-dimensional orientable Riemannian manifold. The real
tangent bundle TM = (J,c,,(1,M) of M is the collection of all the tangent spaces T),M
of M. We define the Fuler class as the square root of the highest Pontrjagin class:

prj2(E) = GZ(E)7

where k = 2[ is the rank of the real vector bundle £ = T'M. For a complex vector bundle
E¢ the Euler class is equal to the top Chern class:

Ck(E@) = €(E@).
If the rank £ is even, k = 2[ say, the Euler class can be associated to the Pfaffian:

Pf(A) = \/det(A),

where A is an even dimensional, skew-symmetric matrix of the form

0 x4
—xr1 O
A =
0
— Tk 0

The Pfaffian is defined only for matrices of even order. For an odd-dimensional skew-
symmetric matrix, the Pfaffian vanishes, thus the Euler class for an odd-dimensional
manifold M is equal to zero. In chapter 3] we define the Pfaffian in terms of a Gaussian
integral and, in chapter 3] and [5 Gaussian integrals are used in evaluating path integrals.

2.2.4 The fl—genus

The A—genus (called A-roof genus or, common in physics literature, the Dirac genus) is
defined by

k
ATy =T[-u2 ]

1
= =1——pi+ —==(7p; — 4
Pl sinh(z;/2) 24! i 5760( L= dApe)



2.3 Index Theorems and Classical Complexes 2 Index Theorems

where the z;’s are the eigenvalues of the field strength curvature two form, put in block
diagonal form similar to A above. The index of the Dirac operator is the Atiyah-Singer
index theorem and it is equal to an integral of A(TM ) over a manifold M. The mani-
fold M must admit a spin structure and the Stiefel-Whitney classes singles out all such
manifolds. For a real bundle E, we define the total Stiefel-Whitney class by

w(E) =14 w (E)+wy(E)+ ...,

where only the first two classes are important in order to determine whether a manifold
allows spin structure. If the base space is orientable, the first Stiefel-Whitney class
wy(T'M) is zero. The manifold is a spin-manifold if the second Stiefel-Whitney class
wo(T M) is also zero, this means that parallel transport of spinors can be globally defined
on E =TM if and only if wy(TM) = wy(T'M) = 0.

We give here two examples of spin-manifolds; (i) the complex projective spaces of odd
dimension, denoted CP!, CP3,..., and (ii) any sphere S™.

2.2.5 The Hirzebruch L-polynomial

Let k£ = dimg E be the rank of a real bundle £ over an n-dimensional manifold M. The
Hirzebruch L-polynomial is defined by

k

ZT; 1 1
L(x) = J 14 = —
(z) 31;[1 tanh z; + 3p1 * 45

(—p} + Tp2) +

An alternative definition of the L-polynomial can be found in the literature:

ok /2
Htanh (z;/2)

In the Hirzebruch signature theorem, only the highest order term is evaluated and both
terms are equal, as can be realized by expanding the former definition up to order k.
Hence either definition can be used in the signature theorem. The lower order terms, on
the other hand, are sensitive to which definition is used.

2.3 Index Theorems and Classical Complexes

First we state a general index theorem formula, expressed in terms of the characteristic
classes outlined in the previous section. We then apply the index theorem on complexes,
a finite sequence of elliptic differential operators acting on fiber bundles. The order of the
operators in a complex is important so that we get a certain chain of operators (in contrast
to a partial derivative where the order can be chosen arbitrary). The index theorem of
the de Rham complex yields the Gauss-Bonnet theorem. The Dolbeault complex can be
considered as the complex variable analogue to the de Rham complex and leads to the
Riemann-Roch theorem. The Hirzebruch signature theorem is derived in the context of
the signature complex and, finally, from the spin complex we get the Atiyah-Singer index
theorem.
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2.3.1 A General Formula for Index Theorems

We are already familiar with the concept of fiber bundles from the previous section.
Defined more formally, we have the base space M, the fiber ' and the total space E,
where F is a collection of all fibers, i.e., a fiber bundle. A map f : A — B that maps every
element in the domain A to every element in the target B (not necessary one-to-one) is
a surjective map, or a surjection. The surjection 7 : E — M is called the projection and
its inverse 7 !(p) = F}, is the fiber at p € M and it is one-to-one and onto to F, hence
an isomorphism denoted by F, = F. A (cross) section s : M — FE satisfies m o s = idyy,
the identity map idy; : M — M. A section of our trivial bundle S x I introduced above
is just a fraction of the circle M = S, or the entire circle depending on how many fibers
one chooses to take the cross section of.

A generic differential operator D can now be defined in terms of fiber bundles E = M
and sections. Let I'(M, E') denote the set of sections on M, thus we define D, and is dual
DT, by

D:I'(M,E) — T'(M, EY),
D' : T(M,E") — T'(M, E%),
where E° and E' are vector bundles over M. The kernels of D and D' are given by

ker D = {s € I'(M, E"); Ds = 0},
ker D' = {s € I'(M, E*); D's = 0}.

The operator D carries analytical information, from the solutions of the differential equa-
tion Ds = 0, hence the analytical index is defined by

index(D) = dimker D — dim ker DT,

A finite sequence of operators D; is given by

Dl Dn

0— I'(M,E% 2% (M, EY 25 .. Boypiag, Yy — 0
and is called an elliptic complez if the composition D; o D;_; = 0 for any <.

A generalization of the definition of index(D) above, given in terms of characteristic
classes, is given by the formula

index(D) = (—=1)"{ch(or(D))td(T Mg) }[T M]
where T'M¢ is the complexification of the tangent bundle T'M, i.e., TMg = M ®r C.
The expression [T'M] is an abbreviation of taking the integral of the characteristic classes
over T'M. The right hand side can be generalized even further by rewriting the Chern
character of the leading symbol as a fraction of the Chern character of an alternating
sum of fiber bundles and the Euler class:

ch(>-,(=1)"E)td(T Mg)
e(TM)
The latter index formula defined above is valid only for even dimensional and orientable
manifolds M. The Euler class vanishes for odd dimensions and consequently the index is
defined to be equal to zero in the case when the dimension is odd.
Next, we apply the generalized index formula (2.1]) over four different complexes.

index(D) = (—1)"("+D/2 [M]. (2.1)

9



2.3 Index Theorems and Classical Complexes 2 Index Theorems

2.3.2 The de Rham Complex

The (complexified) de Rham complex is defined by

LIS AT (M) AT (M) s AT (M) e 2

where AP(M)¢ = I'(M, APT* M) is the vector space of p-forms, d is the exterior derivative
and T* M is the complexified cotangent bundle (which is dual to TM¢). For M an even
dimensional manifold, n = 2/ and [ > 0, we write the right hand side of the generalized

index formula (2.1)) as

(_1)1(21+1)ch (Z(_l)rEr> %[M]

r=0

The Chern character in the index formula can be written as an alternating sum of Chern
characters of vector bundles:

ch (Z(—l)’“E’“) = (=1)'ch(E")
r=0 r=0

with E" = A"T*M¢. For a line bundle L; we have ch(L;) = exp(x;), where z; = ¢1(L;),

and using the splitting principle we get the characteristic classes

ch (ZHV N T*M@) [0 - e,

td(TMe) =[]

e(TM) = H (T Mc).

X

(T'Mc),

1 —e %

Substituting the Chern character, the Todd class, and the Euler class into the index
formula we arrive at the topological index (given by the integral in the far right hand
side)

index(d) — / (1) (1) (Ha:i(TM@)> _ / e(TM),

M M

where in the first integral we used the following relation between the Euler class and the
top Chern class ¢, (TMg) = x5 . .. Ty

cn(TMg) = (—1)"2e(TM ® TM) = (—1)"2e*(TM).

The exterior derivative d : A™(M) — A™(M) is not Fredholm in the space A*(M),
thus we have to define d in the de Rham cohomology group Hjy (M) instead. Hence the
analytical index is (given by the expressions in the first and second equality)

10



2 Index Theorems 2.3 Index Theorems and Classical Complexes

index(d) =) (=1)"dim Hjz(M;C)

<
3 3
o

=) _(=1)"dim Hig (M; R) = x(M)

r=0

where the second equality follows from the de Rham’s theorem and the third equality
from the Euler-Poincaré theorem, via Hodge’s theorem. The topological constant x (M)
is the Fuler number.

The Gauss-Bonnet theorem is the index of the de Rham operator d:

Jetwan) = xaan.

2.3.3 The Dolbeault Complex

Without going into too many detailsﬂ the Dolbeault complex is analogous to the de
Rham complex, using instead complex variables of the form z# = z# 4iy* and its complex
conjugate z# = x#—iy*. The manifold M is now a complex manifold of complex dimension
n/2. The exterior derivative is defined as d = 9+ 0, where the Dolbeault operator 9, and
its dual 0, is given by

0 = dz" N9/, 0 =dz" N0DJOz".

The complex analogue of the de Rham sequence is

.. i> Ap7q(M) i Ap"”l(M)
oo 25 APy -2 APTR()

- -

The Dolbeault complex is obtained with p = 0:

co 0 APa(ary 2 v gy 2

Using similar arguments as in the de Rham case above, we have the characteristic classes

Capa(TH) = (=1)"?c,o(TM) = (—1)"e(TM),
td(TM¢) = td(TM ®© TM) = td(TM)td(TM),
n/2

ch(oy) =Y ch(N'TM) =

q=0

Cn/2 (W)
td(TM)

The index formula reduces to

index(d) = (—1)1@+D) (—1)'e(TM)

o(Tanarany AT MATADIM] = td(TM)[M].

2See for instance Kihler Geometry in [7], or Compler Manifolds in [3] or in [10].
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2.3 Index Theorems and Classical Complexes 2 Index Theorems

There is a relation between the classical Betti numbers b, = dim Hjp(M;R) and the
Hodge numbers hy, 4:

X(M) = Z(_l)qbq = Z(_l)pﬂhp,q-

The Hodge numbers can be regarded as a refinement of the Betti numbers. If we denote
the Dolbeault complex by € we get the topological index

index(0) = Z(—l)qhqu =x(€)

Finally, the Riemann-Roch theorem is given by

/ td(TM) = X(€),

where x(€) is called the arithmetic genus of the complex manifold M.

2.3.4 The Signature Complex

Let M be an oriented manifold of even dimension, n = 2[. We define a bilinear form
B: H(M;R) x H(M;R) — R by

B(a, p) E/a/\ﬁ,
M
where o, 8 € H'(M;R), which is the middle cohomology group. The form B(a, 3) is a
o' x b' symmetric matrix if [ is even, where b = dim H'(M;R) is the Betti number. If
[ = 2k (so n is divisible by four) the symmetric form B(a, 3) has real eigenvalues where
the number of positive (negative) eigenvalues is denoted by b (b~). The Hirzebruch
signature of M is defined by

signature(M) == b" —b~.

For [ odd, signature(M) is defined to vanish.

The Hodge star operator * is a duality transformation; * : A" — A", and it satisfies
*? = 1 when acting on a 2k-form in a 4k-dimensional manifold, hence * has eigenvalues
+1. We define an operator D by the sum

D=d+d,
which is the square root of the Laplacian A = dd" + d'd = D? (since d? = (d")? = 0). Let
Harm* (M) = {w € A**(M); Dw = 0} be the set of harmonic 2k-forms on M, which is
isomorphic to the cohomology groups of order 2k, i.e., Harm? (M) = H?*(M;R). Due
to the £1 eigenvalues of the operator *, the set of harmonic forms Harm?® (M) can be
decomposed, accordingly,
Harm®* (M) = Harm?*(M) & Harm?"(M).

The Betti numbers are b* = dim Harm? (M) and the Hirzebruch signature is given by
signature(M) = dim Harm?* (M) — dim Harm?"(M).

12
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When dealing with elliptical complexes we can split the space of forms A®*(M) in
a similar way as for Harm?(M). We define an operator 7, that acts on r-forms w,
accordingly,

7= iDL A"(M) — A" (M),
which satisfies 72 = 1 and 7D + D7 = 0. The exterior algebra A*(M) is decomposed as

=@PrM)=AtoA.

The anti-commutativity 7D = —D7 implies that we can define a restriction D", and its
dual D~, of the operator D given by

DY AT (M) — A~ (M),
D™ A~ (M) — AT(M).
On the exterior algebra A?* for dimension n = 4k we have that 7 = *, and the index of
the signature complex reduces to the Hirzebruch signature:
index(D") = dimker D" — dimker D~ = signature(M).

The topological index is given by the formula

td(TM ®r C)
e(TM)

From the splitting principle of the characteristic classes, we get

(=) ch(ATT*M @R C) — ch(A"T*M ®g C)} [M].

n/2
h(NT*M © ©) — ch(NT*M @ C) = [J(e ™ - ),
i=1
1—e%il—e @i’
e(TM) = z125 ... Tno.

td(TM @r C) =

Hence, substituting the characteristic classes into the index formula yields:

n/2 s 2
' " e T — et T; —Z;
index(D") = (—1) 2 H ( Z; 1—e*il— e“’”) M
i=1 ’
= exz — 1
n/2
2
= on/2 i/ M
H L fanh(a tanh(z,2) M
n/2

X
= M
g tanh x; [M]

13



2.3 Index Theorems and Classical Complexes 2 Index Theorems

As discussed above, the last equality can be realized by expansion of [] x;/ tanh z; up to
order n/2. The n/2-order term coincides with the expression in the penultimate equality
since it is only the highest term that is evaluated in the index.

The Hirzebruch signature theorem states that, for a compact oriented manifold of
dimension n, where n is divisible by 4, the signature of M is given by

L(z) = signature(M).
The integer

n/2

€Z;
Liz) = /H tanh z;
v i=1

is called the L-genus of M.
The Hirzebruch signature can be used in order to determine whether a manifold M
admits a complex structure. In dimy M = 4 we have the following relations

index(0) = (x(M) + 7(M))/4.
Ezample: 1If M = S* is the four-sphere then y(S*) = 2 and 7(S*) = 0, hence the

arithmetic genus is given by index(9) = 1/2 which is not an integer and it means that S*
is not complex. We can draw the same conclusion for the complex projective space, with
the orientation —CP?; since index(d) = (3 — 1)/4 = 1/2. For the opposite orientation,

+CP?, it is complex; index(0) = (3+1)/4 = 1.

2.3.5 The Spin Complex

Let TM 5 M be a tangent bundle, where dim M = n = 2l even and M orientable. A
spin structure can be defined on, e.g., M = S? as discussed above. We define the double
covering by the map

p: Spin(n) — SO(n).

The Spin(2) group is the double covering of S?. Geometrically it is visualized as the
splitting of the sphere into two half-spheres that are covering the upper- and lower hemi-
spheres, respectively. The super orthogonal Lie-group SO(2), that we can regard as a
differentiable manifold, describe rotations in R3, hence p : S* — S2?. The two-sphere
can also be defined as the complex projective space CP! = S2, with transition functions
ti; = —exp (—i26), where 6 is an angle describing the rotation, i.e., the double covering
p 0 — 20. Topologically Spin(2) is a latitudinal circle describing spin states on the
double cover of S2. The set of transition functions defines a spin bundle SM, and the set
of sections of SM is denoted by A(M) =T'(M,SM). The spin-group is generated by n
numbers of Dirac matrices, {y*}, which satisfy the following conditions

=
{07 = A A =29
We define the gamma matrix of dimension n + 1 as

14



2 Index Theorems 2.3 Index Theorems and Classical Complexes

1 0
n+l — (:\n/2,.1.2 n __
Y =) 77--.7—(0 _1),

(,yn+1)2 -7

Y

where I is a 2"/2 x 2%/2 unit matrix. For n = 2 we yield the Pauli matrices 0,53, and
they are related to the rotations of a spin-1/2 particle on S? in the z-, y- and z-direction,
respectively,

V=02, Al=0, P=i"' =0

Since the eigenvalues of 4"*1, called the chirality, are equal to &1, the set of sections
of the spin bundle A(M) is decomposed into two eigenspaces, accordingly,

A(M) = A* (M) @ A~ (M).

The spin complex is defined in terms of the Dirac operator D, and its dual DT, by

D : AT (M) — A~ (M),
D' : A™(M) — AT(M).

The analytical index of the spin complex is

index(D) = dimker D — dimkerD' = n, —n_,

where ny (n_) is the number of zero-energy modes of chirality + (—). The Dirac operator
is elliptic only in Euclidean metricﬂ Jg.e., g = 0" which is the ordinary Kronecker delta;
a diagonal matrix of the form §* =diag(+1,+1,+1,4+1). Thus, on the Riemann sphere
M = S? we assume that the metric is locally flat; g, (xo) = 0, and 9rgu(xo) = 0,
xg € M. This choise of coordinates is called the Riemann normal coordinates (see
appendix @ for further details).

The index theorem for the spin complex is given by the index formula

_ td(T M)
_1\n/2 + _ et Sl 0
(=1)"*{ch(AT (M) - A~ (M))} (T M) [M].
From the splitting principle we have

n/2

(=1)"*{ch(AY (M) — ch(A™ (M)} = H(ff“/2 —e ),

Thus the topological index is equal to

3In relativistic quantum mechanics the Dirac operator D is defined in the Lorentzian metric given
by n** =diag(-1,1,1,1). The index of D is related to spontaneous breaking of supersymmetry (chapter
four), where we are only interested of the physics in the ground state, i.e., the zero energy state. The
total energy is E' > | P|, thus in the ground state the momentum is P = 0.
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n/2

index(D) :H (e ¢ xl_ ‘ T ) [M]

. T; l—e*]1—e%
i=1

n/2 n/2

Lo = Ll ) = Arany )

The Atiyah-Singer index theorem is given by

index(D) = /A(TM),

where the A—genus contains only 4i-forms, hence the index, as presented above, vanishes
unless the dimension of M is a multiple of four.

Furthermore, The Dirac operator D can be "twisted” if the spin bundle SM is replaced
by the tensor product SM ® V', where V' is a vector bundle. Using the multiplicativity
property of the Chern character, the index theorem applied to the twisted spin complex
Dy : AT (M)®V — A~ (M) ®V is then equal to

index(Dy) = /A(TM) A ch(V).
M
For dim M = 2, we have

Ny —n_ = / chy (V) = = / Tr(V)

o7
M M
where Tr(V') is associated to the trace of the field strength curvature two-form %, i.e., a
background field that causes the twisting of the operator D.
The Atiyah-Singer index theorem of the twisted Dirac operator is derived in the
context of supersymmetry, in chapter 5| below.
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3 Path Integrals

3 Path Integrals

In this chapter we review the theory of path integrals and anti-commuting algebra, also
called Grassmann algebra. We arrive in the end of this chapter at the path integral for
fermions and, finally, the supersymmetric path integral. The fermionic and supersym-
metric path integral play a crucial role in the proofs of the index theorems, presented in
chapter [5] below.

3.1 General Formalism of Path Integrals
3.1.1 The Bosonic Path Integral

The dynamics of a quantum mechanical system can be described by a path integral,
which is a sum of all field configurationg’| between a given initial point and a final point
in space-time. We first consider the case of a system with one degree of freedom, and
later generalize to a system with several degrees of freedom. In this section we deal with
the bosonic case, hence the variables are commutative, in contrast to anti-commutative
in the fermionic case. A picture of the quantum process in space-time is given in figure

below.

time

t// £

% % space
x/ l,//

Figure 1: A path integral is a sum over all field configurations in space-time, where the
paths in the figure describes a dynamical quantum process evolving from an initial point
to a final point. The initial position is denoted by 2/ at the initial time ¢, and the
evolution to the final position z” is taking place at time ¢”.

The derivation of the path integral starts with the classical Lagrangian L of the form

L=L(x,&) = %332 — V(2),
where K = (m/2)i? is the kinetic energy of a particle of mass m under the influence of
the time independent force F(x) = —dV (z)/dx, and V(x) is the potential energy for the
classical trajectory = x(t). The Hamiltonian H is the sum of the kinetic and potential
energy

4The terminology sum of all paths, or sum of all histories, can also be found in the literature. Since
paths are not well defined in quantum mechanics, due to the Heisenberg uncertainty principle given
by AxzAp > h/2, sum over all histories attempts to avoid such terminology. See the discussion on the
validity of the path integral, further below in this section.
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2

. p
H=H =pr —L=—
(0.2) = pi = L= 2+ V(a),

where p = m# is the (generalized) momentum. Replacing the variables (z, p) by the time
independent operators & and p = —id/dz in the Hamiltonian above we get the quantum
Hamultonian H

n2

~ A p R
H:= H(z,p) = o + V(2).

The time dependent state vector |¥(¢)) describes the physical state of a quantum
mechanical system at a given time ¢, and the time-evolution of the states is governed by
the Schrodinger equation

d .
ih—|W(t)) = H ().

If we know the state at some initial time ¢', we then want to compute |¥(¢)) for a final
time t” > t'. Solving the Schrodinger equation

d iy / "
Sl = S HR0) =0 ¢ <t<?

we find, from the general solution of the differential equation, the time-evolution operator

Ut 1) = exp (—%Fl(t” - t’)) :

i.e., the final state vector is of the form |W(¢")) = U(t",t)|¥(t)). The time-evolution
operatorU fulfills the Schrédinger equation as well and for, e.g., ¥/ < t; < to < ¢ we
have the composition law of U; U(t",t') = U(t",t5)U(ts,t1)U(t1,t'). Since H depends on
Z and p we work in the z-representation and p-representation, respectively. Instead of
|W(t)) we use the state vectors |x) and |p), having the following properties

zlx) = x|x); (2|z) =0(2" — 2); /dx|x><x| =1,
R
ble) = plph W) =86 ) [anlo)ipl = 1
R
These properties are the eigenvalue equation; the orthogonality of states; and the com-
pleteness relation for x- and p-representation, respectively.

The path integral describes the evolution of the initial state |z(t')) = |z’) at time
t', evolving to the final state |z(t"”)) = |2”), at time t”. Hence, we shall calculate the

Feynman Kernel K(z",2';t" 1)
exp (——HT) >

K (2", 2"t t); T=t"-t, t'<t<t"

" U )|z') = <x

The transformation function, in the coordinate to momentum representation, is given
by the plane wave
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oo L

With the transformation function defined above, we compute the matrix element (z|H|p),
expressed in the classical Hamiltonian H (p, z):

ezp:c/h'

(x|Hp) = e " /"H (p, ).

\V2mh

For small T'= t" — t’ we expand the time-evolution operator up to first order in 7'

exp (—%f[(t” - t’)) ~1 - LHE 1),

St |

and the matrix element (p|U (", #')|z) is equal to

. 1 . {
"o ~ —ipx/h _ "1
1 { {
= ——pr — —H " —t) ).
ooy P ( pe = 5 H(p, z)( ))

Inserting the completeness relation, [dp|p)(p| = 1, inside the Feynman kernel gives

(@1, )]") = /dp<:c"|p><p|ﬁ<t",t’>|as'>

dp exp <%p(1’” — ') — %H(p, )t — t/)) : (3.1)

" 27h
R

The time-evolution operator fulfills the composition law as mentioned above, hence in the
right hand side of the kernel we use the composition U(t",t') = U(t",ty_1)...U(t1,t'); a
factorization into NV factors. We divide the time interval ¢” — ¢ into IV steps:

t” _ t/
At = < 1,
N

hence we can carry out the integration of the term dependent on the Hamiltonian in
(3.1). The time-evolution operator U(t”,t') is now a product, written as

SRl N Ay Z.A(t//_t/) N_ i~ o
U(t,t)_(l—ﬁH N ) = | exp —ﬁHAt :

Inserting the completeness relation, [dx|z)(z| = 1, N — 1 times to the right of every

factor, except the ultimate one, of U (t",t') gives
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"\ U@#" t)|z') = /dp<:c”|p> PlU" tn_1)1. .. Ulty, t1)1U (1, t)]")

dp; -
/H & Hd% (@nlpn) (P[0 (b tv—1)|wn—1) - (p1|U (1, to) o)

Rzl

dpi 17 {
:/H;; dejexp |:7—i(pN($N—ajN1)+..._|_p1(x1_x0))
Ri:l j=1

- %(H(pjv, ry_1)+ -+ H(ps, xO))At] ;

where zy = 2” and xg = 2/. In the limits N — oo and At — dt, we integrate over py —
p(t) and (zny —axy_1)/At — &(t) for ' <t < t”. The boundary terms of the coordinates
are z(t') = 2’ and z(t") = 2", hence the argument of the exponential transforms into the
classical action

5= [ (v - Ho(o),20)] = [ i),

The measure is a product of Liouville measures; they are all classical quantities,

,,Nl

H dpz = Dp(t) D (t).

=1

In summary, the path integral is given by

K(z", 2t 1) = /@p(t)@x(t)eig/h. (3.2)

Since both the measure Zp(t)Zz(t) and the Lagrangian L(z, ) are classical quan-
tities, it might seem to be a contradiction that quantum mechanics can be expressed
in terms of classical mechanics. The path integral expressed in the right hand side of
(3.2) is written out symbolically; which means that it is to be considered as a limiting
process, valid in the framework of perturbation theory in quantum mechanics. For a
comprehensive review on path integrals, we refer to [4, [§].

3.1.2 Gaussian Integrals

We often use the Gaussian integral when evaluating path integrals. The Gaussian integral
is defined as

2
F(z,w) = /dme‘”QM‘” = ﬁexp (ZUZ) ;o z,2weR, z#0.
R

The one-dimensional Gaussian integral F(z,0) can be generalized to d-dimensions

d
Fa(M) = /dffl ...dz%exp (— Z I'iMij:L‘j> = /dxe_xth,

Rd 3,j=1 R4
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where M is a real symmetric d x d matrix, x is a column vector and x' its transpose.
We can diagonalize the matrix M accordingly M = N*MpN, where N is an orthogonal
matrix; N? = N~! and det N = 1. The matrix Mp is diagonal with real, assuming all
non-zero, eigenvalues A\, ..., \q. Hence, for a change of variable y = Nx, the Gaussian
integral is written as

d
Fa(M) = det N [dye ¥y™Mpy — H /clyke_’\’“(y’“)2 = 72 (Mg .. Ng) Y2
Rd k=1g
= 7%2(det Mp)~V/% = 792 (det M) ~1/2.

A more general Gaussian integral is given by

F(M,u) = / dxe ™ MU d/2 (et M) T2 M T,
R4
3.1.3 Zeta Function Regularization

When evaluating path integrals via the Gaussian integral we need to solve functional de-
terminants, e.g. det(d?/dt?), via an eigenvalue problem. Imposing Dirichlet (or periodic)
boundary conditions on the path integral, we solve eigenvalue equations of the form

d2
—ﬁxn(t) = A (); 0<t<T; z,(0)=2,(T)=0.

The eigenfunctions x,, are, due to the boundary values, proportional to sin(nznt/T) and
the eigenvalues are A\, = (n7/T)? n > 1. Hence, the functional determinant is equal to

d? o0 > 2

Let O be a generic operator whose eigenvalues are positive definite, i.e. det O =
AAg ... A, > 0, and from the formula det O = exp[Trlog O] we have

log det O=Tr logé = Zlog A

n=1

We define the MP zeta functio, associated to O, as

. =1
Cp(s) =TrO™* = g ; s e C,
n=1

A’
where the sum converges for sufficiently large $(s). Notice

d

E(Anis) = log )‘n exp(—s lOg )‘n)

and

5The zeta function of Minakshisundaram and Pleijel. There are several zeta functions; the Riemann
zeta function is also referred to in this thesis.
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¢ (0) = Lol Sy,
n=1

ds s=0

hence we arrive at

det O = exp (—¢5(s)) -

Thus with the operator O = —d?/dt?> mentioned as an example above, we find
2\ s\ 28 T\*
Cd?/dﬂ(s) = ; (?> = (;) C(2S)7

where ((2s) = Y02 n~% is the Riemann zeta function, with well-defined ((0) = —1/2,
and ¢'(0) = —log(2m)/2. Finally, we get the derivative of the zeta function at s = 0 equal
to

¢ e (0) =210 () 6(0) + 20(25) =~ log(a)

The final result of the functional determinant is

d2
det | —— | = 2T.
“(-)

We give an example below on how to evaluate a path integral using the zeta function
regularization and Fourier series.

3.1.4 Fourier Series and Path Integrals

Previously, we divided the time period T into N steps, i.e. At = (" —')/N = T/N.
Instead of discretizing the time interval we can evaluate the path integral using a Fourier
series

o0

2(t) =) anfalt)y ' <t<t

n=1

where a, are the Fourier coefficients and f, are trigonometric functions. Hence, we
discretize the trajectory x by the finite series

N
2N (t) = Zanfn(t); t<t<t’
n=1

The approximate paths z™¥(t) are functions of the Fourier coefficients {a,}, thus the
measure is 2Ma ~ H711V=1 da,. We can choose here t' = 0, ¢ = T and the boundary
conditions z(0) = z(T") = 0. Due to the boundary conditions we must use the sine-Fourier
series:

. ,(m)
T :Zansm T .

n=1

The path integral, here denoted F'(T'), is then equal to
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#(T)=0

= Lo (iaen) = fanenis [ ()]

z(0)=0 PBC's

:=]3zr;o[(%)NN'<W I fien ()

The prefactor inside the square brackets in is chosen so that in the end we get the
result of the free field case (for which V(x) = 0) multiplied by the trigonometric term
(wT)Y?(sinwT)~/2. As an example we compute the path integral of the one-dimensional
harmonic oscillator whose Lagrangian is given by

, m m
Lose(, &) = 5 —i? - 5 —w?a?,
where w is the oscillation frequency. Here we use t' = 0, ¢’ = T and denote the path

integral by Kos(z”,2";T):

z(T)=x
Kose(2", 2" T) / Da(t zSOSC[x(t)]/h
z(0)=a'
where the action is equal to
T T »
Sosc[z(t)] = %/dt(x'2 — w?r?) = %/dtx(t) <_ﬁ - w2) x(t).
0 0

Expanding the variable z(t) as

z(t) = za(t) +qt); za(0)=2', zq(T)=2", and ¢(0)=q(T) =0,

where x. is the classical trajectory and ¢(t) is the closed quantum fluctuation. The
exponent of the action is factorized into a classic factor, where the equations of motion
is given by the Euler-Lagrange equation, and a quantum factor Fis. which is the path
integral of the quantum fluctuations:

Kosc<x”7 33'/; T) = eXp(ZSosc[xcl]/h) 050( )

For closed quantum fluctuations ¢(t) we use a sine-Fourier series and obtain the path
integral Fos.(T')

q(T)=0
Fose(T) := Kose (0,0, T) = / @(,I(t)eis"“[q(t)]/h.
q(0)=0

The finite series approximation ¢ (¢) of the action Su[¢" (t)] is equal to
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T

Sucla(0)] = 3 [ata ~ e

T

mi ) dt[<m>2 2<n7rt) - Q(nm)]
Bl a, e COS — | — W SIn p—
2= T T T

N
-Tra|(F) -]

n=1

Now we can motivate, more explicitly, the choice of the prefactor in (3.3]) by evaluating
FN (T):

0osc

- 2N —1/2
o (MY (I g - (9
N 4ih, A\nm nmw
a\ N m -N/2 ] N _1 wT 21
B (E) <2th) N! g a (E) ’

where in the second equality the Gaussian integral was used in evaluating the path in-

tegral, and the two products come from factorizing ([[[(n7/T)? — w?])~/2. Substituting
FY (T) in (3.3) and taking the limit N — oo, yields

m N WwT\ 2 o m wT
T L (T _ for T >0
osc( ) omihT {H [ (nﬂ-) } 2mihT V sinwT or > U,

n=1
where the first square root is the free field result of the path integral. As an example of
evaluating a path integral using the result of the zeta function regularization above, we
consider the Lagrangian L = (1/2)mg¢* and check the free field case Fy(T):

q(t)=0 T )
R = [ 2o |5 (5) [t (—57) (0
q(0)=0 0

3.1.5 Coherent States

Previously we introduced the classical Lagrangian L = (1/2)mi? — (1/2)mw?x? for the

simple one dimensional harmonic oscillator. The (quantum) Hamiltonian is then equal
to

24



3 Path Integrals 3.1 General Formalism of Path Integrals

~0 249

A D mwx

H=-—
2m+ 2

We define the annihilation and creation operator, respectively, as

mw [ . p t mw [ . ip
=)= e =)= (a2, 4
¢ 2h (gj—{—mw)7 ¢ 2h <a: mw) (3:4)

With the commutation relation [Z,p| = &p — pt = ih, we get the Hamiltonian in terms
of the number operator N = afa:

aTa—@ 22+ P’ + t E A]_E_l
Y me? on ) P T i T

or

ﬁ:m(N+%). (3.5)

The eigenvalue equation of N, acting on the energy eigenkets |n), is equal to

N|n) = nln).

The eigenvalues n are positive integers, and the annihilation (creation) operator acting
on |n) decreases (increases) the energy state by one unit, accordingly

aln) = vnln —1);  a'ln) = Vn +1n +1).

One can show [I3], by using the Heisenberg equations of motion, that the time evolution
of a and a' are

a(t) = a(0) exp(—iwt); a'(t) = a'(0) exp(iwt) (3.6)
Expressing & and p in terms of a and af, by rewriting (3.4)), we get #(¢) and p(t) from

B:6):

z(t) = (0) coswt + [@] sin wt,
mw
p(t) = —mwi(0) sin wt + p(0) cos wt.

The variables of Z(t) and p(t) seem to oscillate, analogous to the case in classical mechan-
ics. Notice, however, that 2(0) ~ a+a' and p ~ —a+a'; computing the expectation values
(n|z(t)|n) and (n|p(t)|n) gives zero in both cases due to the orthogonality (n|n+1) = 0.
In order to observe oscillations of #(t) and p(t) we must use instead a superposition
of energy eigenstates, e.g. using |0) and |1),
la) = ¢ol0) +c1|1); o, € C.

A coherent state is defined by the following eigenvalue equation:
alA) = AN, A e,
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where the eigenket |\) is a superposition of |n):

A) = faln)n).

The distribution of |f,(n)|? is of Poisson type; | f,(n)|*> = (n"/n!) exp(—n), where 7 is a
mean of n measurements. For large values of n, the Poisson distribution approaches a
bell-shaped Gauss distribution [2].

In summary; a coherent state is an oscillator ground state (a Gauss distribution) that
can bounce back and forth by some finite distance in space. The shape of a wave-package
translated in space remains in an oscillator ground state, for all time intervals At, without
spreading in shape.

We use coherent states in the derivation of the fermionic path integral below.

3.2 Grassmann Algebra

The Pauli exclusion principle states that no two electrons with identical quantum numbers
can occupy the same quantum state. Consider, e.g., an electron with, say, spin up and is
in a state |n), if another electron is in the same state, then the latter electron must have
a spin down.

In the next section the path integral for fermions will be derived. Instead of commut-
ing numbers, as used in the construction of the bosonic path integral, anti-commuting
Grassmann numbers are thus imposed in the Lagrangian and the measures.

3.2.1 Grassmann Algebra
Let {0y, ...,60,} be aset of Grassmann variables, satisfying the anti-commutation relation

A set of linear combinations of {6;}, with coefficients that are complex numbers, is called
a Grassmann number, e.g. for n = 2,

f(0) = fo+ fibr + f202 + f126102;  fo, f1, f2, f12 € C.

From the anti-commutative relation above, we have that (6;)> = 0. We define a function
of Grassmann numbers as a Taylor expansion. E.g., for n = 1 and 6 a Grassmann
variable, a Grassmann function exp(f) is equal to

e =1+0.
The exponential of one, or several, Grassmann numbers is a Grassmann function we
encounter frequently when evaluating integrals in the following sections of this chapter,
and in chapter [5] below.
3.2.2 Differentiation

The differential operator 0/06; act acts on a function from the left, in a similar way as
the ordinary differential operator:

0
a_eiej — 51]
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0 0

E.g., taking the derivative of f(#) defined above with respect to the operators 307 56,

yields

0 0

8_(918_92f(0) = — fi2.

Notice the order of the differential operators and that 6,60, = —6560, in the fourth term of
f(0).

3.2.3 Integration

integration with respect to a Grassmann variable 6 is equivalent to differentiation. We
introduce the Berezin integrals

/d99:1, and /dm:o.

For a general function f(f) we have

Janso) = 2L

00
ie.,
0 0 0
/dé’ldég...d@nf(é’l,ég,...,ﬁn) = 96,96, a—enf(él,@Q, 0.

Since the order of the differentials 0/06; is the same as for df;...d#,, one must use
the anti-commutation rule to, if necessary, arrange the Grassmann variables of f(#) in a
descending order with respect to the differentials.

Integration under a change of variable 8’ = af, a € C, transform as

Jaos) =240 - aaf((:, /a C;) ~a [10'50'/a)

ie., dd" = (1/a)df. Extending to the case of n variables; 6, — 6; = a;;0;, gives the
transformation

/del...denf(é) = deta/de{...de,;f(a—leT’),

where 0 = (01,...,6,) is a column vector and a = [a;;] a matrix. We use the n-case
change of variables when computing path integrals and Gaussian integrals in a following
chapter. The Gaussian integral using Grassmann variables is defined below.

3.2.4 Gaussian Integral of Grassmann Variables

The Gaussian integral is given by
I= /d&{d@l ...dfrdo, e 224, 07 Mij0;
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3.2 Grassmann Algebra 3 Path Integrals

The matrix M = [M;;] is skew-symmetric, i.e. M;; = —Mj;, since 0,0F = —6760, and
the sets {6,} and {07} are independent. Under a change of variables 6, = 3 ; M;;0; the
integral is evaluated as

I=detM [d6;do; ... do%de, e~ X%
— det M [dO:do,e % ... dg"dp e~ 0o

= detM [/d@*dﬁ/(l + 9’9*)]
= det M.

Notice the lack of square-root when integrating over two independents sets of variables.
The determinant is in the nominator, rather than in the denominator as in the bosonic
case, when implementing Grassmann variables into the Gaussian Integral.

If the Grassmann variable 0 is complex, then 6* is the complex conjugate of 6. (In
a later chapter we introduce an anti-commutative field 7, called the isospin field which
dual to the spin field 1, and the complex conjugate of 7 is then denoted by 7.)

We can show that the Gaussian integral vanishes if we have an odd number of factors
in the measure. We define[10] the Pfaffian of the anti-symmetric matrix A = [A4;;] of
order 2n as

1
Pf(A) = o] E sgn(P)ailizaigm co Qg gy, -
" Permutations of
{igsos ion}

where sgn(P) is the signature of the permutation P. Recall the definition[2] of a deter-
minant D,, of order n:

Dn = E eijk,_vaibjck c.

where €55, is the n-dimensional analogue to the Levi-Civita symbol. As an example, we
consider the familiar case n = 3:

a; az ag
D3 = | by by b3 | =+aibycs — arbsca — azbics + asbzcy + azbica — agbacy.
i C C3

Now we can clearly see the meaning of sgn(P); an even (odd) permutation P yields
sgn(P) = +1 (sgn(P) = —1). In the example above, we see that a simple transposition
of a subscript of the matrix elements, with respect to the linear sequence (123), gives a
minus, hence an odd permutation. For instance; (123) — —(213) — +(231) — —(321),
hence sgn(P) = —1 in the last term of D3. Notice that there are 3! = 6 terms in the sum
of D3. From a combinatorical point of view, there are 2" ways of swapping the indices,

e.g.,

Qiqip Qigiy - - - Qigy_qioy 7 Qigiy Qigiy - - - Qi iy, -

There are n! permutations of the pairs of indices, e.g.,
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Qiyip Qigiy - - - Qigy_qigy 7 Qigig Qigig - - - Qi ying, -

In order to avoid double counting of the terms, there is a fraction 1/(2"n!) in front
of the sum in the definition of the Pfaffian. The matrix A can be block diagonalized,
accordingly,

0 X\
A\ 0
NAN=Ap=| : : - ,

0 )\Qn
Ao 0

and the determinant of A is equal to
det(A) = det(Ap) = H A2,
The Pfaffian of a block diagonalized matrix is given by
Pf(AD) = iyinQigiy - - - Qigyy_yin, = f[)‘iv

which yields the relation between the Pfaffian and the determinant:

det(A) = [PE(A)]%.

The Gaussian integral can be expressed in terms of the Pfaffian:

]:/clﬁgn...d91exp[ Z@AUH /dgn... (ZQA”@) — Pf(A).

Notice here the factor 1/2 in the argument of the exponential in the absence of pairs of
df’s. In the second equality, the exponential is expanded and the only term that saturates
the measure dbs,, ... d0; is of the order n since there are two Grassmann variables ; and
0; in the sum. The Pfaffian vanishes for odd order matrices. As we shall see in chapter [5]
the order of the matrix is associated to the dimension of a manifold and the non-vanishing
of the analytical index.

3.3 Fermionic Path Integral

The fermionic path integral is constructed analogous to the bosonic case. We use instead
Grassmann variables and arrive at a path integral identical, except for the boundary
conditions, to the bosonic path integral. The boundary conditions are now anti-periodic
rather than periodic.
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3.3.1 Fermionic Harmonic Oscillator

Here we consider a quantum system with a single spin-1/2 particle described by the Pauli
matrices oy, oy and o,. With o, = (04 £ioy)/2 we define the fermionic annihilation and
creation operators, respectively,

e (00, s _ (01
oo\t o) o o)

The operators ¢ and ¢! satisfy the anti-commutation relations

{e,c'} =ccl+cfe=1, {c, ¢} ={c Y =0.
Hence ¢? = (cf)? = 0. The fermionic harmonic oscillator is described by the Hamiltoniar[Y

~ 1 1 1
H = §(cTc —cle)w = §[CTC —1-coJw=w (N - 5)

where N = cfc is the number operator (cf. the bosonic case H = w(N + 1/2)). The

eigenvalue of N is either zero or one; N? = cfecfe = ¢f(1 —AcTc)c =N,or N(N—1)=0.
Let the energy state |n), n = 0 or 1, be an eigenvector of H:

then c|0) = |1), c|0) = ¢f|1) = 0, and ¢|1) = |0). Hence the eigenvalues of the Hamilto-
nian are given by the eigenvalue equations

~ w ~ w
H|0) = —510% H|1) = 5’1>-

3.3.2 Fermionic Coherent States

The number operator N has eigenvectors |0) and |1), hence an arbitrary vector |f) can be
written as |f) = > fuln) = fol0) + f1|1). In the fermionic coherent state representation
we have two basis functions fo = 1 and f; = 0, 6 a Grassmann variable, hence the
fermionic coherent state |#), and its dual (f|, are equal to

16) = 10) +[1)8, (8] = (0] +67(6].

The coherent states are eigenstates of ¢ and cf, respectively:

clf) = [0)0 = [0)0 + 0 = |00 + [1)6 = |6)6,
O|ct = 07(h).

In this section we set A = m = 1, since it is more convenient to introduce this notation here, in
agreement with the notation in chapter [5| below.
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3.3.3 Fermionic Partition Function

We introduce the partition function Z(5), derived from the path integral by the replace-
ment t = —ir, i.e. the imaginary time (or Euclidean time). The partition function is
identical to the path integral, except for the absence of a factor /—1 =i in the exponent;
e.g. (x¢ exp(—iHT)|z;) is identical to Z(8) = (2 exp(—BH)|x;), where 3 =

The reason we introduce the partition function here is due to the notation used in the
index theorems, presented in chapter [5| below.

First, we define and compute the partition function of a fermionic harmonic oscillator:

1
Z(p)="Tr e PH = Z<n|6_5ﬁ|n> = P2 4 P2 = 9 cosh(fw/2) (3.7)

n=0

This partition function is of great importance in proving the Hirzebruch signature, as will
be verified in chapter [5l Using the completeness relation for fermionic coherent states:

/de*d9|9><9|e—9*9 =1,

one can show [10] that the partition function is related to the integral over Grassmann
variables, accordingly

Tre?H = /d@*d&(—e\e—ﬂﬁ 10)e="0

We emphasize here the anti-periodic boundary conditions (APBCs) over [0, 5] in the trace
Tr(e) above. The initial state is |#), evolving to the final state | — 6); the Grassmann
variable is ¢ at 7 = 0, and —0 at 7 = (. The construction of this path integral is
analogous to the bosonic case. With the time step e = /N, hence the limit

e 1 = lim (1 — BH/N)V,

N—oo

and inserting the coherent completeness relation N —1 times, gives the following partition
function:

Z(B) = lim [d6*d0e "% (—0|(1 — BH/N)N|0)

N—00
hm do*dpe=""? H/d@deke net 050 n(—0|(1 — eH)|Oy_1) ..
{Bl(L — et E[6){(81](1 — c1)]6)

hm/Hdedee =100 (00| (1 — €H)|On—1) ... (01)(1 — )| — O,

where we define the initial and final states as 0 = —0y = 0y, 0" = —03 = 6. From the
definition of fermionic coherent states we have (i|0x—1) = 1+ 0;0,_; = exp(6;0,_,) and
(9k|]:!|9k_1) (0650, — 1/2)w|0;). We now evaluate each one of the matrix elements
for k=0,...,N:
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(Ok](1 — ¢H)|6p1) = (6x10k-1) [1 _ M]

€
(O] Or—1)

1
= exp(6;0,_,) exp [—ew (9,’;«9k_1 - 5)} .

Hence, the partition function is

N—o0

N
Z=¢e™" 1im ] /d@;;deke—ﬂvl 05 On=On—1)F el fn 1]
k_

N
_ Bw/2 7 * — N e[(1—ew)0k (O —0r—1)/e+wb26,,)
e A}l_t}f(l)og/d%dﬁke 1

g
— /@9*@9 exp | fw/2 — /dTH* ((1 - ew)d%_ + w) 0|, (3.8)
0

where in the first equality we add and subtract a factor ewé?:6,, in the sum of the ex-
ponential, in order to rewrite the argument of the exponential as given in the second
equality. Finally, in the third equality the time step € is kept in the action due to its
contribution of a factor of two, when evaluating the partition function via zeta function
regularization[10] that gives Z(3) = 2 cosh(fw/2) as in (3.7).

3.4 The Supersymmetric Path Integral

We derived one kind of path integral for bosons and another kind for fermions; except
from commutativity and anti-commutativity of their variables, respectively, they differ
by the boundary conditions imposed on their solutions.

To put the bosonic and fermionic path integrals on an equal footing, we impose
therefore periodic boundary conditions on the fermionic part partition function and it is
given by

1

Te(=1)" e = " (nl(=1)"e )

n=0

= /de*d9<—e|(—1)Fe-ﬁff 16)e """
_ /d@*d@(ﬂeﬁﬂw)ee*e,

where I = cfc is the fermion number operator, and (—1)% is defined as

= (1)

Let the operator (—1)F act on a coherent state |0) = |0) + |1)6, thus the boundary
condition of that state is changed accordingly
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o= (5 1) (1) = () = - me=1-0,

i.e., an anti-periodic boundary condition is changed into a periodic one as (—0|(—1)F = (9|
in the third equality of the trace above.

Thus, in the supersymmetric path integral we combine the bosonic and the fermionic
cases into one, unified, path integral in Euclidean time:

Z(B) = / D Dape= IotL, (3.9)
PBCs

where Zx and P are the measures of the bosonic and the fermionic fields, respectively
(a field is a variable with infinitely many degrees of freedom).
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4 Spontaneous Breaking of Supersymmetry

In this chapter we study the trace formula Tr(—1)" exp(—SH), first introduced in the
fermionic partition function in the previous chapter, and relate it to the analytical index
of an operator. In this review of symmetry breaking we will be rather heuristic, hence
no derivations will be found here, with the goal of merely presenting basic facts about
Tr(—1)" and its physical meaning in the context of supersymmetry. We follow closely
[15, 16] where a more comprehensive study can be found.

We do not observe in nature, e.g., neither spin-1 electrons, nor photons with half
integer spin, hence supersymmetry must be spontaneously broken. A broken symmetry
implies a mechanism that gives mass to particles. As will be shown below, the index
Tr(—1)" takes integer values and determines whether supersymmetry is unbroken. In
other words, Tr(—1)¥ is a mathematical tool used for identifying, and discarding, super-
symmetrical models that cannot describe nature.

First we introduce some terminology that will be used frequently throughout this
chapter. By internal symmetry breaking we mean the symmetry breaking mechanism in
electroweak theory that gives mass to non-supersymmetric particles. Electroweak theory
is a topic usually reviewed in introductory textbooks on quantum field theory, see for
instance [I1]. The concepts of internal symmetry breaking should be stated in stark
contrast to spontaneous supersymmetry breaking, since there are certain conditions where
the latter will occur. Thus, the major topics in this chapter is the formal definition of
Tr(—1)%, and the conditions that forces us to discard a supersymmetrical model.

4.1 The Energy Spectrum

In order to associate Tr(—1)% to an index and to determine whether we have unbroken
supersymmetry , we need to define and study the energy spectrum of the theory.

We define a supersymmetric theory in a volume V' (and take the limit V' — oo in the
end) where we are mainly interested in the ground state |0), or zero energy state, and
a few low lying states above |0). The definition of Tr(—1)¥, which is called the Witten
mder, is

Tr(—1)F = nE=" —nk=" (4.1)

E=0 ( E:O)

where n n is the number of zero energy bosonic (fermionic) states. In supersym-
metric theories the energy E > |P|, |P| the magnitude of the momentum, hence P = 0
for the ground state. Notice that we can regulate Tr(—1)f" with the kernel exp(—3H),
hence Tr(—1)exp(—pH), and let 8 — 0 which is the high temperature limit, and thus
removing high energy states.

We define the Hamiltonian H in terms of the hermitian supersymmetry charges
Q1,Qs,...,Qk (K =4 for supersymmetry in 3 + 1 dimensions):

QI =Q==Qx=1H,
QiQ; + Q;Q; =0, fori#j.
In four dimensions we define a bosonic (femionic) state |b) (| f)) that satisfies the operator

exp(2miJ,)|b) = |b) (exp(2miJ,)|f) = —|f)). The operator exp(2wiJ,) rotates a state
counter clockwise by 27 in the x-y plane. To be more precise, exp(27iJ,) is (exp(7iJ.))*;
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4.1 The Energy Spectrum 4 Spontaneous Breaking of Supersymmetry

four successive rotations by ninety degrees in the x-y plane. In a finite volume the rotation
generator J, is not well deﬁne, but exp(%ﬂiJz) is well defined. Furthermore, we define
the matrix

(—1)F = exp(2mit.) = (é _01> .

In 0+ 1 dimensions we have to define (—1)" more abstractly (since there are no angular
momentum J, in dimensions less than two) as the commutator and the anti-commutator,
respectively,

(D ¢ =0o(-D", ()" =—(-1)",
for some Bose field ¢ and Fermi field .
For any bosonic state |b), and for E # 0, the fermionic state is defined as |f) =
(1/vVE)Q|b), where @ is now any of the Q;, i = 1,...,K. The reason we are only
interested in the zero energy state is due to the pair

Qb)) = VE|f), Qlf) = VEb), (4.2)

where the second equation follows from the definition of the Hamiltonian Q? = H > 0,
and H|b) = E|b). The interpretation of is that, for every non-zero energy state,
there must exist Bose-Fermi pairs, hence we have the difference ng>0 — n£>0 =0. An
energy spectrum is shown in figure where the lowest horizontal line is the ground
state, hence the equation is equal to one in this particular example.

E

c-o—iHi
o—i
c-o-o—iHR E=0

Figure 2: The bosons are indicated by circles, and the fermions by filled rectangles,
in the diagram. The lowest horizontal line is the zero energy state where Tr(—1)" =
3 —2 =1, while Tr(—1)" = 0 for all states above the ground state. For Tr(—1)" # 0,

supersymmetry is unbroken.

The parameters of the supersymmetric theory is understood as the volume V', the mass
m; of the particles, and the coupling constants g;. Varying the parameters implies that
the energy states are shifted, either up or down, in the energy spectrum. For instance,
assume that we are varying some parameter so that the first state above the ground state
in figure is slowly moving down and, eventually, coincide with the ground state. The
difference is now n£=°—n£=0 = 4—3 = 1, hence, the same as in the original configuration.
This invariance is, of course, due to the Bose-Fermi pairs in the non-zero energy states.

The important property here is the following conditions:

"Rotate a cube lying on the x-y plane. We put a label on one of its vertical faces and apply a (discrete)
rotation. If the label seems to be on the same face, we can’t tell whether there has been applied a 27
rotation, or no rotation at all. A ninety degree rotation, on the other hand, will surely distinguish the
initial position from the final position.
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If Tr(1—) = nE=0—nk=0is not zero, supersymmetry is not spontaneously

broken.

We can only use Tr(—1)" to decide whether supersymmetry is unbroken. On the
other hand, computing Tr(—1)" and if we get n£=0 — nk=% = 0, we cannot draw any
conclusions. We have two cases for the result Tr(—1)" = 0; (i) n£=° = n£=% = 0 implies
broken supersymmetry, and (i) n5=0 = n£=% £ 0, hence unbroken supersymmetry.

In summary, the aforementioned cases are shown in figure and figure below.
The difference n£=0 — nZ= is equal to the index of an operator. In chapter [5] the

derivation of the index, from Tr(—1)" exp(—3H), is shown explicitly.

E

)
(ORNO)

E=0

Figure 3: The difference n£=0 — n£=0 = 0, with n%=° = n£=% = 0, hence supersymmetry
is broken. Due to Tr(—1) = 0, no conclusions can be drawn, since with n£=0 = n£=0 =£ 0
gives the same difference, but with a different outcome. The ground state energy for a
broken supersymmetry is thus positive.

E

)
)

(OBNORNO}

E=0

)

Figure 4: The difference n5=0 — n£=0 = 0, with n£=% = n£=0 =£ 0, hence supersymmetry

is unbroken. With Tr(—1)" = 0 no conclusions can be drawn, since the same result of
the trace is achieved with n5= = n£=0 = 0 and supersymmetry is in that case broken.

4.2 The Potential Energy

Recall that the Hamiltonian is the sum of the squares of the supersymmetry charges
Q. Hence the energy E of any state is positive or zero. A state |0) can have zero
energy if it is annihilated by the supercharge; Q|0) = 0. If there exists an unbroken
supersymmetric state, it is annihilated by ), and it is automatically the true ground state
with E' =0 (cf. figure (4))). On the other hand, if there does not exists a state invariant
under supersymmetry (which means that n5=0 = n£=0 = 0), the supersymmetry is
spontaneously broken, and thus the ground state energy is positive (cf. figure )

In general we have a Lagrangian of the form
L(g, ¢) = (terms with derivatives) — V' (¢),
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where ¢ is some field. We are here only interested in the potential V' (¢) and want to
compare internal symmetry breaking versus supersymmetric symmetry breaking. We say
that the internal symmetry is not broken if the expectation value, (¢), of ¢ in the ground
state is equal to zero; (0]|¢|0) = 0.

In figure we have a potential V(¢) ~ ¢ + a, where a is some positive constant.
The ground state is the minimum of V'(¢) and clearly (¢) = 0. From the discussion above
that if supersymmetry is spontaneously broken, it implies that the ground state is strictly
positive, hence supersymmetry is here broken while internal symmetry is unbroken.

In figure (6)) the potential is V(¢) ~ (¢? — b)2, with b > 0, hence we have two minima
at ¢ = =v/b and the expectation value is (¢) # 0 ({(¢) can be either at v/b, or at —/b).
Internal symmetry is brokenf] while supersymmetry is unbroken, since the ground state
energy is exactly zero.

V(9)

¢

Figure 5: The potential is V(¢) ~ ¢*+a, a > 0. Internal symmetry is unbroken, since the
expectation value of ¢ is zero at the minimum (the ground state) of V(¢). The ground
state energy is strictly positive, thus supersymmetry is spontaneously broken.

V(o)

¢

Figure 6: The potential is V(¢) ~ (¢ — b)?, b > 0. Internal symmetry is spontaneously
broken, since the expectation value (¢) = ++/b. Supersymmetry is unbroken since the
ground state energy is zero.

Both internal symmetry and supersymmetry can be broken if we have a potential of
the form V(¢) ~ (¢? — b)? + ¢, ¢ > 0; the potential in figure (6)) shifted by an amount ¢
in the positive V-axis.

One can also ask whether quantum corrections, i.e. fluctuations, can shift the potential
in figure in a negative direction, and thus restore supersymmetry. This is not possible,
and in general we have that quantum corrections will not break a symmetry that is

8This is the simplest model where the internal symmetry is spontaneously broken, and it is called the
¢*-theory in quantum field theory literature.
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unbroken at the tree level (zeroth order correction in perturbation), nor will they restore
a broken symmetry.

In the language of particles, we know that if supersymmetry is spontaneously broken,
there exists a massless fermion, a so called Goldstone fermion. If the Goldstone fermion
does not already exist, fluctuations cannot shift the potential downwards and thus create
massless fermions. In other words, if supersymmetry is not broken and in which all
fermions have non-zero masses, the supersymmetry must be truly unbroken. This brings
us back to the case Tr(—1)f # 0 where we know with certainty that the supersymmetry
is (truly) unbroken.

The contrary, however, is not true. For instance, if we have a potential of the form
V(¢) ~ ¢? and given that the index Tr(—1)¥ = 0, then there is a possibility that quantum
fluctuations can shift the potential so that the ground state energy becomes positive and
thus break supersymmetry. This is called dynamical breaking of supersymmetry, and
again, we refer to [I5].

4.3 An Example: The Wess-Zumino Model

The following example is from [16]. The Wess-Zumino model is the simplest supersym-
metric model, and the superspace potential is W(¢) = 59¢® — (m?/4g)¢$. The ordinary
potential is given by

2
:g2

2

ow m?
99 4g?
where ¢ is a single complex scalar field. In addition, we have a fermion field v in the
model.

We evaluate Tr(—1)" and assume, at first, that m # 0 (the trace is independent of
the parameters g and m, as discussed above). Minimizing V (¢, ¢*) we find two ground
states (¢) = £m/2g (the potential is similar to the potential in figure (6])). Both the
scalar (boson) ¢ and the fermion ¢ are massive

V(¢7 ¢*) = ¢2 -

Y

my = my = m(1+O(g?)).

In each minimum of the potential, there is one spin zero state, hence bosonic, where
E = 0. All other states with E > 0 are obtained by adding ¢ and 1 quanta to the
bosonic ground state |0). Each of the two ground states contributes one to Tr(—1)F,

hence

Tr(-1)F =2.

Supersymmetry is not spontaneously broken in the Wess-Zumino model.

In the case m = 0 we have the potential V (¢, ¢*) ~ ¢, and there is a massless fermion
(the ¢ particle). We are now interested to know whether quantum fluctuations can shift
the potential, so that the ground state get a positive energy, hence break the symmetry.
Since Tr(—1)" # 0 this is not possible, thus the Wess-Zumino model cannot describe
nature.

39



4.3 An Example: The Wess-Zumino Model 4 Spontaneous Breaking of Supersymmetry

40



5 Index Theorems and Supersymmetry

5 Index Theorems and Supersymmetry

In this chapter we use the supersymmetric path integral to prove index theorems, and
we follow closely [14]. We stipulate three versions; the Atiyah-Singer index theorem, the
Euler number (arriving at the famous Gauss-Bonnet theorem) and, finally, the Hirzebruch
signature. Complementary calculations and topics are given in appendix A that the reader
may consult before reading this chapter.

5.1 The Index of the Dirac Operator

We derive here that the Witten index introduced in the previous chaper gives a connection
to the analytical index of an elliptic operator. The operators considered in this chapter are
the Dirac operator D and the Laplacian A = V2, hence we have here a minor repetition
from chapter [2, but with a different notation and using instead the heat equation proof
of the index theorem.

First, we define the Dirac operator D on some compact manifold M as

D 0 DLy ([ 0 Dy
“\Dg 0) \-D{ o0/
where the operator Dg (D) maps left(right)-hand spinors to right(left)-hand spinors;
Dg : St — Sr (Dr : S — S1). The kernel of the Dirac operator is

ker DL,R = {77[), DL,R’Qb = 0}
The index of the Dirac operator, index(D), is then defined as

index(D) = dim ker(Dy,) — dimker(Dg) € Z (5.1)

We assume here that the Dirac operator is a Fredholm operator; this implies that the
number of eigenvalues are finite, hence the right hand side is equal to an integer Z. Next,
we show how the trace Tr(—1)Fe " for f — 0, in the Witten index and index(D) are
related. To temporary free ourselves from the notation of right- and left-handedness of
the operator, we introduce a generic Fredholm operator A and its adjoint Af. In what
follows, we briefly sketch the proofs of two theorems that can be found in [10] (theorems
12.4 and 12.5).

First, we define the eigenvalue problem (ATA)¢, = \,¢, and the associated eigenstate
¥, = Ag, /A, for A, > 0. We now compute the eigenvalue of AAT acting on ¥,

(AANY, = AAT(AG,/\/N) = A(ATAG,) /v N = ANdn) /v A = Aa(Adn/V/An)
= )‘nwna

hence we get the same eigenvalue A, for both eigenvalue problems. Furthermore, {1, } is
orthonormal

1 + B 1 A B
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The index is derived from the difference Trexp(—BAtA) — Trexp(—BAAY'), where the
first trace is over {¢,} while the second is over {t,}; this is the heat kernel proof of the
index theorem where h(8) = exp(—fH) is a heat kernel. Let 1 < i < dimker A and
1 < j < dimker AT, hence we get

Tre PAMA —Tre M8 = N (Glo) + Y (dale P2 A0
{aso} {A:¥0}
— D7 Wil = DT (Wale AR )
{AZ’:o} {A:;Zo}

dim ker A dimker AT

' ! {wo}
—dimker A — dimker AT =: index(A).

Notice that the index is independent of the parameter 5. Going back to the Dirac operator
A, we define the two self-adjoint Laplace operators

A, =D/D;, and Ay =D\Dg,

where we have

ker Aj, = ker Dy, ker Ag = ker Dj. (5.2)

We show this explicitly. If Dy = 0, then D{DLw = 0 hence ker Dy, equals ker Ar,. On
the other hand, if Apy = 0 we get

0= (¢, ALy) = (¥,DID ) = (DL, Drip),

and this shows that Dy = 0. From the definition of the Dirac operator we have Dy =
—D{, hence DI{ = —D; and furthermore, the eigenstates of A, and Ag are paired:

We show the implication explicitly

AgDy = (DiDg)Dyy = (~Dy )(~D{)Dy ¢ = D (D{ Dy )¢ = D; Ay = AD o).

It remains to show that Dy # 0 in the ultimate equality:

0 7£ (¢a ALw) = )\(W?ﬂ) = (DL¢3 DLw>7

hence, Dy # 0.
The Hamiltonian H is defined in terms of the Dirac operator as

0 D! 0 D A 0
_ DD — R L\ _ (Ar
H_DD_(DTL O)(DR 0)_(0 AL)'

Notice the equality between (—1)F and the gamma matrix 7s:
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¥ = (_01 (1]) = (1),

thus we rewrite the index in a compact form as Tr v5 exp(—FH). Hence the index theorem
in the spinor notation is

Tryse P2 = dimker Ap, — dim ker Ag
= dim ker Dy, — dim ker Dy
= index(D).

In the first equality we used, from , the identity that the eigenvalue \ is equal for
both left- and right-handed spin operators Ar,g. The second equality follows from the
auxiliary property between Ap, g and Dy, g as given in . Due to the equality between
75 and (—1)F we write the Witten index as

index(D) = Tr(—1)Fe P = Z e Pre _ Z e~ P

bosonic fermionic
states states

= nB()\B = O) — np()\F = 0),

and reaffirm its connection to the path integral via the fermionic partition function .

We compute the index explicitly using the supersymmetric path integral introduced
in section [3.4. For a Dirac operator on a d-dimensional Riemannian manifold, where
the fermion fields ¢* = 1*(t) are coupled to an external gauge field A,(x), we get the
supersymmetric action|I4]

«

ﬂﬁ“n“ (5.4)

1 1 1 )
S = /dt |:§gw/:tltiﬂ + §guV¢M(D§w)V + ﬁQDZLan - 577QF§51/J“¢V771) +1
0

with the covariant derivatives
(DY), = owo", + a1, (for p,v=1,...,d),
D =0, + 2% Ay(z),
the field strength
ab __ ab ab ab
Fuy - auAV - aVflu + [A;M Al/] )

and the Christoffel symbol

1 g
F/;l/ = 59” (8991/0 + az/ggo - aoggu)~

The interaction with the gauge field A, (x) give rise to isospin fields n and they are dual
to the fermion fields. For a systematic construction of the interaction terms in the action
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(5.4), see for instance [6]. The supersymmetric transformations of the fields in the action
are given by

oxt = ey,

oYH = —ezt,

o = —ed Ay,
Ty

Thus taking the variation of S, and using the Bianchi identities for the field strength F},,
and the Riemann tensor R*,z,, the action fulfills Hamilton’s principle

t=p

5 =5 [ dietgir) = e 0] =0
PBCs 0
where the last equality follows from the boundary conditions, e.g. ¥(0) = ¢(8) = 0. To
be more explicit, there are also boundary terms that both depend on a total derivative
in the integral, they do not contribute to the equations of motion and hence can be
neglected. The computations leading to the vanishing variation of the action above are
carried out exceedingly in appendix [A]

Recall From elementary quantum mechanics that spherical harmonics Y, (0, p) ~
(—1)™exp(imey), where m is an integer and ¢ an azimuthal angle, represents angular
momentum eigenfunctions. Spherical harmonics are generated by way of a generating
function|2]. Any function f(6, ), where 6 is a polar angle, can be expanded in terms of
spherical harmonics, thus f(6, ) is evaluated over surface of a sphere in a Laplace series:

f(ea (10) = Z amnYnm(eﬂ 90)

In order to get a quantum state of rank £, there is a number operator N = 7n in the
action S, where 77 (n) is the creation (annihilation) operator in Fock space. The index
formula for all the antisymmetric tensor products of the internal space is given by the
generating function

I(a) = Z Ie ok,
k

The number operator N commutes with the Hamiltonian and from Heisenberg’s equations
of motion we have dIV/dt = 0, thus making it possible to implement the term i(a/3)7"n"
into the Lagrangian in the action. The modified heat kernel h(3,a) is given by

;Nl(6705) _ efBHfiaN7

and the generating function, expressed in terms of a path integral in Euclidean time, is
equal to

I(a) = Tr(=1) e™PH = Tr s (—1)Ne PHTN = /@x“@zﬁ“@ﬁa@n%_s.

PBCs
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The operator (—1)" imposes periodic boundary conditions on the anticommutative
isospin fields 71, analogous to (—1)f for the fermion fields. As we shall see below, the
analytical index is given by term [j in the generating function I(«). Before we can
compute the index theorems, we need to evaluate the path integral for various differential
operators in the action; the topic of the next section.

5.2 Trace Formulas
5.2.1 Fermionic Fields with Periodic Boundary Conditions

We will evaluate the following path integral’|

Lo 1 [t :
Tr(yse 19 7"") = / 7t exp b/o dt (Y + wu ") | (5.5)

PBCs

where w,, = —wy,, W = 0, and the fermionic field ¢ corresponds to v*/ V2. The path
integral is defined in Euclidean time, on the other hand, let ¢ — —it here and the integral
is transformed into the ordinary path integral.

The Grassmann functions ¢*(t) can be expanded in a Fourier series[I0)], e.g., a series
of the form

00 00
_ Z wﬁeﬂﬂ'nt :d}g_i_ Z wﬁeﬁﬂnt'

n=-—00 n=-00

n#0

We separate the path integral into zero modes and non-zero modes in the fields. From
the Gaussian integral over Grassmann variables, introduced in chapter three, we evaluate
the trace as

Tr(fy5eiwuww”) — W(ﬁ)ddetl/g(at + w“,,) / d@/}l wd wwwwu

zero
modes

the normalization factor .4 is to be determined below, and the determinant is over the
non-zero modes, all having periodic boundary conditions.

To evaluate the determinant we use a product expansion formula [2], see appendix
for further details on the formula. For some function g(z) of a complex variable z with
zeros at a, we have the product expansion

s (S A(-2)ea

n=1

E.g. let a, = nm, n # 0,

sinz = z H (1——) Z/"“—zH<1—n§;>.

n=-—oo

n#0

9Notice the absence of the complex number /—1 = i in the integral. This definition is related to the
partition function, introduced in chapter Throughout this chapter we use the term path integral,
which is understood implicitly as the path integral in Euclidean time.
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5.2 Trace Formulas 5 Index Theorems and Supersymmetry

Furthermore, we define g(0) = 1 and ¢’(0) = b, where b is an unknown constant. Hence,
g(z) is of the form

S11 Zebz,

9(z) =

In order to substitute a function g(z) into the determinant in the solution of the path
integral, we first need to solve an eigenvalue problem. From the Lagrangian in the action
we get the Hamiltonian

1 v
H = _§wuuw“w )

whose eigenvalues are IF%wW (cf. the fermionic harmonic oscillator). Since we are working
with the path integral in Euclidean time we get instead a hyperbolical function inside
the functional determinant which is realized from the identities det(A) = exp(Tr(In A)),
det(AB) = det(A)det(B), and sin(iz) = isinh(z), where Trw = 0. The path integral
reduces to

. wh,
Sln}i 2 > /dwl - 'dl/}de—%wuuw“w”'

2

2721 Tr(%e_i“’“”””')) = N det'/? (

zero
modes

where the normalizing constant .4 is determined by multiplying the path integral by 5
and taking the limit w,, — 0. Using the identities

. iz
) sinh “5*
113}) —wr, | = Laxad,
@ 2

12 =1 (a2¥?x 2%2-dimensional unit matrix),
.\ d .\ d a
= (e e = (F) (V) (=Rt gt

for even dimension d, we yield the left hand side of the path integral

2731 Tr(42) = 1,
and the right hand side

N (1)2(V2)? /dwl...dwdwd...wl.

zero
modes

Thus the normalizing constant is given by A4 = (—i/ 2)%. In the limit w,, — 0 we get
the free field contribution from the path integral which is equal to

(—3)%/? / dipt ... dy? (5.7)

zero
modes

The free field contribution is one of the path integrals substituted in the supersymmetrical
path integral in the derivation of the Atiyah-Singer index theorem below.

For sake of clarity and in the derivation of the Euler number, we need also the general
solution. Expanding the exponential in the integral up to order d/2, the only term that
saturates the measure is of the highest order term. Hence the path integral is equal to
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1 MoV 1
/dwl N .dwde*§WHV¢ L /dz/;l - dwdw(—%wwwwy)
5)!
(-1)?

1 d
== w#lﬂ2wﬂ3ﬂ4"'wﬂdlﬂd/dw coodptptt Lt
22 ( )!
1
= o7 (%)!Wmmwmm ceWhgpg

d
2

d
2

ghiH2e i

The following identity was substituted in the second equality

YR apta = ghibpagl .@/)d _ (_1)%€M1I~’»2~-~#d¢d R

Finally, the general solution of the path integral over the fermion fields is given by

d . "

Y —i)2 sinh “-x

Tr<'y5e_iwuu’w‘7 ) — %Q_d/quLUQ...deulu2wu3u4 - 'wud_l,uddetl/Q <Ty2> . (58)
5) o

2
5.2.2 Fermionic Field with Anti-periodic Boundary Conditions

If we omit the gamma matrix 75 in the trace, in equation (5.5) above, anti-periodic
boundary conditions are instead imposed on its solution. Hence, we have the path integral

1 v 1 [t .
Tr(e i7"y = | Zytexp {_- dt (", + WWMV)} . (5.9)
AP!(;s 2 A

This case is computed in a similar way as in the case above. The difference is that when
evaluating the functional determinant, now with anti-periodic boundary conditions, the
following product formula is replacing the sine-product used above:

) (E2
COS[L’:H |:1+m:| .

n=1

Hence we get the d-dimensional fermionic path integral
_1 A d 1/2 wh,
Tr(e” 1977y = (v/2)det coshT . (5.10)

5.2.3 Isospin Fields

The isospin fields 1 obeys the same algebra as the spin fields 1. Periodic boundary
conditions are imposed on the solution of the path integral, due to the factor (—1)™ for
n = 0 and 1, hence the path integral is:

1

) = /Qﬁ“@naexp —/dt(ﬁ“r']“—i—ﬁ“T“bnb) : (5.11)
PBCs 0

b

Tr((—1)Nne= 1T

The computations are analogous to the spin case above. We define the matrix T" with
elements 7% and here Tr(T') # 0, hence we get
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Tr((—l)N”e_ﬁaTab"b) =A"det(0, + T) / dindny .. . dijndn,e” T

zero
modes

inh Z .
=" det <Sm#2ebT/2’> det(T")

2

=" det <e%(l+%) - e—%“—?)) . n=0,1. (5.12)

To determine the normalizing constant .4 and the constant b, we take the case where
N; =1 and let the matrix T = 7°Tn® be diagonal.

Recall the partition function Z(/3) of a fermionic oscillator and its functional
integral , written out as a functional determinant:

Z(B) = e™/? det ((1 - ew)d%_ —1—w> = 2sinh(fw/2), €= /N and N — cc.

Hence, we get the determinant of Z:

det ((1 — ew)diT + w) = 2e7 /2 ginh(Bw/2) = (1 — e ).

Solving ([5.11]) using similar techniques as for the fermionic partition function, gives
the path integral of the isospin fields, here for the non-trivial case N; =1,

Tr(—1)Me ™) =2 2sinh T/2= (1 —¢ ), n=1.

Thus, the constant b = —i and the normalizing constant .#” = 1 in (5.12). The path
integral, for both states n = 0 and 1, is finally given by

Tr((=1)Me Ty = det(1 — e T): n=0,1. (5.13)

5.2.4 Scalar Fields

The path integral for scalar fields is derived analogous to the cases abowe. For the Rie-
mann curvature tensor R*,,z, we define the curvature two-form as Z*, = %R"m[g@/}a@bﬁ,
and the path integral is

1
1
/@x“exp —§/dt(:t“x'u+xu,%",,x'”)
PBCs 0

= Ndet™2[(=0? + 20,)" ) / da' ... dz?

zero
modes

= Ndet™"2(9, + Z#)" ] / da' ... dx?

zero
modes

) h%uy
= (27r)_gdet_1/2 (%) / da' ... dx?. (5.14)
T zero

modes
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where the normalizing constant N' = (27)~%2 is computed from the free-field integral,
in the limit 2", — 0 (cf. Fy(T') in section with m = h =1 and T = —i). The
argument of the functional determinant, in the second equality, is computed from the
hitherto argument by integration by parts with respect to the operator 0;.

5.3 The Atiyah-Singer Index Theorem
In the action (5.4]), we can choose a gauge for the four-potential A,(z) and the Christoffel

symbol I'} , accordingly,
1 v
Aﬂ(x) = —5.%' F;wv (515&)
1
¢MF59 Y= §Raguywu¢yxa = f@uyxu- (515b)

The gauge choice for A,,(z) is interpreted as that we can take any point in space as origin,
here for simplicity we have A,(0) = 0. Recall from chapter [2|that for a (local) coordinate
system, with origin at some point xy on a manifold M, we can define the Riemann
normal coordinates which is necessary when dealing with index theorems and the Dirac
operator; the metric g,,(z) in the normal coordinates is given by the Kronecker-delta,
i.e., gu(®o) = d,u, and it is locally flat; 0,9, (xo) = 0. The Riemann tensor R, in
the gauge given above is a measure on how much a path on a manifold M deviates from
the geodesic equation Di# = 0, and the classical Euler-Lagrange equations of motion
derived from the Lagrangian in the action , excluding the isospin fields 7, are equal
to [10]

. 1 s
—Gop(Di )" + §Ra9uyw“w 22 = 0.

If the fermion fields ¢» = 0, only then are geodesics defined on the manifold M, and
they are the main contribution to the action. On the other hand, for non-zero fermion
fields, quantum fluctuations around a critical point (xg, 1)), are included. See appendix
@ on how to derive the Riemann curvature tensor from the gauge choice and the
quantum fluctuations.

The action in components is given by

L (@) TR, ()

B
1 1 .
— - TN - ol v
5= [t | Gaul0)its + Ja o+
0

1—CL A
0" AL (@ = 5 e F (@)t n’ +25 n}

B
1 1
/dt{ i, + w U+ Eww@“,,j:”
0

. 1* . 14 aa a 1*(1 a 174 ~a/7a a
+0"n" + {—gnax“fﬂ Fas(x)n } =57 F&(x) " y'n” + i } :

The term with the gauge choice for the four-potential A% (x) is put inside the curly
brackets, since it will be equal to zero after re-scaling the fields. We consider the quantum
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fluctuations as infinitesimal variations, dz#(t) and d1)*(t), of the scalar- and fermion-fields,
respectively:

zh(t) = xff + dxt(1),
PH(t) = vy + 0PH(R).

The non-zero modes of the fluctuations are periodic and the Fourier expansions of the
quantum fluctuations are given by

Szt (t Z 5:1:“6127mt/ B
5w,u( Z 5wu 127mt/,6’

The non-zero modes in the Fourier expansions above vanish due to the periodic boundary
condition in the action, thus regarding only zero modes in the expansions, we get the fields

zh(t) = zf + —=ozf,

VB

1
+ —=5f.

VB
In the limit 8 — 0, the integral over =z} is equivalent with that over 4z} /v/ hence
the measure in the integral is dzf, = d(dxh)//B. By the same token we have dyff =
V(o).

We substitute z#(t) and 1*(t) in the action S, keeping only terms of second order in
fluctuations, and thus re-scaling the fields for ¢t — ¢, accordingly

() =g

1 . 1 .
P = g g,

VB VB

1
ot — \/Bx“ = it — —1",

VB
1,

n—mn = n— 5

g

The Dirac operator is Fredholm in Euclidean metric only, hence we use normal coordinates
here and obtain the action S — S”:

1

1 1
S’ /dt [ ', + w % + xu,@%i” +n'n* —

0

vo{-graampen ||

1 o
_ﬂzﬂab b 2 —a,a
o'l n +ZB7777
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where we define the field strength curvature two form F% = F SZ’,’@Z)“@D” The index theorem

is independent of the parameter 5 ~ (temperature)_l, thus the term inside the curly-
brackets in S’ goes to zero in the high temperature limit 8 — 0.
The generating function I(«), expressed in terms of path integrals, is equal to

I(a) = / D DY D Dt

PBCs

1 1
:/@x“exp {—%/ dt(ab“j:u%—a:u%“l,ab”)} X /@w“exp [—%/ dt(w’%u)]
0 0
1 1 ab
X /@77“@77“ exp —/ dt (77“7?“ +n° (—5.7-"—1— ia) 77b>] )
0

For some generic tensor A, ,, coupled to fermion fields, we have the following iden-
tity:

/dxl...dxd /dwl...dwdAm...Mwl...w = (-1)¢ /d:c“l...dm“dAmmud.

space

Thus, in the last equality the tensor is coupled to differential forms. There is a duality
between the fermion fields and the differential forms; ¥* < dz*. This duality will be
utilized below in derivation of the Euler number. Both %", and F are coupled to

fermion fields, hence using the path integrals (5.7)), (5.13]) and (5.14) from the previous
section, the fermion fields are integrated out and the generating function is

I(a) = (%) /dxl...da:ddet*ﬂ(%) x | (=1)? /dwl---dw" X

zero zero
modes modes

X [det (1 — #/219)]

space

(—1)feme / detlﬂ(%) (i) : Tr (%)

space

[e.e]
k=0
where in the second equality we have the curvature tensors, expressed in differential
forms, #*, = %R“mgdxo‘ Adz? and .F = %]—" = %Fw,dx“ A dx¥. The first two operators
in the trace, associated to the path integral over the isospin fields, are extracted and
put outside the integral in the third equality where the number operator N becomes the
integer k in the generating function. Recall that in the path integral of the isospin case,
there are two cases; k = 0 (trivial) and £ = 1 (non-trivial) and in the generating function

I(«) the analytical index, denoted by Iy, is equal to the expression between the brackets
in the third equality above:
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Iy = / det—1/2<%)(%)gﬂ (e”); k=1 (5.16)

space

For the non-trivial case, the Atiyah-Singer index theorem of the twisted Dirac operator
Dy =D ® . is equal to

index(Dy) = / A(TM) A ch(F) (5.17)

where we have the A—genus and the total Chern character, respectively,

. /2
i - h(#",/2) yi/2
A(TM) = 2 (SIMNATY/2) ) —_JIr=
(TM) = det ( R, |2 Ll sinhy;/2’
J=1

ch(F) = (%) Ty (e”) = Trexp (%ﬁ) :

The trivial case, Iy, is just the integral of the fl—genus without the gauge field applied[10],
hence the Chern character is equal to one.
The Atiyah-Singer index theorem, in words, is formulated as

Atiyah-Singer Index Theorem. The topological and the analytical index are equal.

In the following section we will find a topological invariant, the Fuler number x(M),
equal to the analytical index given in this section.

5.4 The Euler Number

We review here, briefly, some facts about the spin complex. In special cases the spin
complex is in correspondence to the de Rham complex and the Euler number x (M) can,
via the duality ¥* <> dz*, be defined in terms of spinors.

5.4.1 Clifford Forms and Differential Forms

When the space-time dimension d is even, there is a one-to-one correspondence be-
tween the differential form w = w,, ,,dz"* ... dz"¢ and the skew-symmetrical matrix
O = Wyypy Y™ ...y, where @ span all the matrices on spinors [6]. Let S be the space of
spinors, and S* be its dual space, thus the space of matrices on spinors is S ® S*. Here
we take (isospin) = (spin)*. We define the space of Clifford forms C' as|I4]

S ~ sC ~ 1A v 1A
CzS@S*z{w;w:w +wu’y“+§ww/y“’y +"'+awu1...uﬂm---’7“d}

As a comparison, a d-form w € S ® S is then equal to

1 1
w = w* +w,dz" + iwuydx”da:” +--+ awm_,,udda:“l ..odaxtd

Let the modified gamma matrix 5 be defined as
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1
%= TN =

[SlIsH

Y5 = (—1)
The transpose of 75 is
A = (=125,

The Hodge star operator * gives the duality between two spaces, e.g., the duality of the
Clifford form w is

1 1
A nSC H1 Hd ~ H2 Hd ... ~ — At
*W o= — W€y Y (Wi Epipg VY + F+ Wpgopg = VW'

(d—1)

With {v#,4"} = 26" we can find the commutation relation of two products of gamma
matrices, e.g. for (y#1...~y#d) and (y#'...~"*) where k < d:

(_1)k(7u1 N ./ylld—l)(,yﬂl - .,y[l‘k),y,u,d
— (_1)k(_1)k(,yu1 . ',-yﬂd—Q)(,-ylil - -’Y“k)’}/ud_l’)/’ud

(YA (M)

— (_1)k’ o (_1)k(,yu1 I O Y () P S A DR L
<_1)k(d—k) (fyul N .,-)/#k)(pylil Ly _,-)/Hd)’

hence (d — k) gamma matrices have been swapped from the left product to the far right
end, and in the end the products commute.
Furthermore, a k-form w = %wmm#k dz*' ... dz** commutes with 75 accordingly

’3/5(,0 = (—1>k(d_k)W’75. (518)

For d even, the space of Clifford forms can be decomposed into even and odd forms,
C =0y + C_, where

C,=505, ={weSwp=w}, and C_=5SQS5" ={we S;wy; =—w}. (5.19)
From the definition of the gamma matrix we have 5 = (i)¥?7y;...74 = i% and from

(5.18)), with simplified prefactor [(—1)?*[(—=1)7*]* = (=1)* in the right hand side, we
find y5w:

Yw = (=1)'wys = (1) (+w),  on C

ysw = (=1)*wys = (=1)"(-w),  on C..
Hence, the correspondence between differential forms w and Clifford forms @ is given by
(—1)*w < y501s. (5.20)
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5.4.2 The Index as a Topological Invariant

The correspondence w <> @ allows us to consider the Dirac operator as a difference
between the exterior derivative d and the interior derivative d'; D = d — d'. We define
the derivatives d, and its dual d', accordingly

dj, - AP AR

di AR S AR k=14

Here A* is the space of k-forms on the tangent space of a d-dimensional manifold M. The
Laplacian is defined as

Ap=did, +d,_dl_ - A* — A"
From the Euler-Poincaré theorem, we define the Euler number

X(M) = (1) ker Ay =Y (=1)*dim Hj (M; R),

k=0 k=0
where ker A, = {w;dw = d'w = 0} is the space of harmonic k-forms. We define the
gamma matrix 75 = (—1) := (=1)*, hence multiplying the duality (5.20) by 75 on the
right and using the properties of the decomposition of the space of Clifford forms (/5.19)),
we get

(—Dfw e 0 for e S® ST,
(—DFw o 0 for 0 eES®SE.

It follows that the index I, on C is equal to

I, =index(D on Cy) = Z(—l)kdim Harm, (C}), and
k

I_ =index(D on C_) = Z(—l)kdim Harm; (C_),
k

where Harm; (Harm,, ) is the space of harmonic forms in S®S% (S®5*), i.e. DD& =0
(D'D& = 0). From Hodge’s theorem we have an isomorphism between the space of
harmonic forms and the de Rham cohomology groups; Harmy,(M) = Hk (M;R). From
the de Rham’s theorem we have dim H%; = dim Hy, where Hy, is the kth homology group,
hence from the Euler-Poincaré theorem, the index is equal to a topological invariant which
is the Euler number:

index(D) =1, —I_= Z(—l)]C dim Hy, = x(M).
p

The far right hand side is purely topological, while the terms to the left of the third
equality are analytical quantities. Now, we can compute I, — I_ using the expression of
I, = I, from the previous section.
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We use (5.16) and replacing Tr(e”) with Tr[e” (1 4 v5)/2] in the Chern character
ch(#). Now we denote the analytical index as [, = I+ and hence we get

L= /@v”{%) (%) gTr[efu 1 5)/2]. (5.21)

The field strength curvature two-form is here chosen as F),, dz" A dx” = —iRo‘gwmﬂﬁ ,
which is the ordinary scalar curvature represented by infinitesimal rotations on the dual
space of the spinors[6]. The similarities in construction of the curvature tensors F),, and
R%g,,, are reviewed in appendix . Notice that I, — I_ ~ Tr[yse”], hence using the path

integral (5.8) with sw*, = 12", gives

wty

2

. d
; —3 sinh “x 1\2
Tl"[ey/2f75] = %detl/2 (—2> ghtihz-Hd (5) %ﬁtlﬁLQ%ﬂa‘IM - "%Ndﬂud'

Substituting Tr[e” ;] in I — I_ yields the index of the Dirac operator

1 % 1 % 1 g 1 H1H2---Hd
]+ -] = % 5 5 @5 %muz'%u:smx s "%Nd—lﬂd
1\? 1

5.4.3 Examples

Ezample 1. (Gauss-Bonnet theorem) For a two-sphere S¢ = S? in R?, we have the
curvature e %, = 2R3 + e* Hn = 2612 %15 = 2Rd A, where R is the scalar curvature
(equal to the radius of the sphere) and dA = d?x an infinitesimal area element on the
surface of S2. We get the Gauss-Bonnet theorem from I, — I_ above:

1 K
/deER = /de% = x(5?) =2,

where K = R/2 is the Gauss curvature and the Euler number for a sphere S¢ is given|3]
by the formula: x(S¢) =1+ (1)<

In the case of S? the Euler number gives the number of critical points; the north pole
and the south pole, where a vector field cannot be defined. We can define[5)] a vector field
tangent to the longitudinal lines as 0/06. At the north pole the vector field is diverging
(similar to a vector field of a positive charge in electrodynamics) and the index is equal to
+1. The vector field converges at the south pole (i.e. a vector field of a negative charge)
also of index +1, thus x(5?) = 2.

We can also derive the Euler number from a polyhedron, homeomorphic to a mani-
fold M. A polyhedron homeomorphic to S? means that the sphere can be continuously
deformed by stretching out, say three, distinct points on the surface and thus shaping
it into a geometrical object that looks like a pyramid; a tetrahedron. This particular
polyhedron has six edges, four vertices, and four faces, thus we have triangulated S2.
Euler’s theorem states that for any set X C R® homeomorphic to a polyhedron, the
Euler number is equal to
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X(X) =v—e+ fv
where v, e and f are the number of vertices, edges and faces, respectively, i.e., x(S?) =
4 —6+2 = 2. The Euler number y(X) is independent of the polyhedron (Poincaré-

Alexander theorem) thus we can subdivide the tetrahedron. A generalization of the
Euler number (X)) into n-dimensions (Hopf’s theorem) is given by

X(M™) =(no. 0-simplexes) — (no. 1-simplexes)

+ (no. 2-simplexes) — - - - + (—1)"(no. n-simplexes)

where M"™ is an n-dimensional manifold, and the first three simplexes in the alternating
sum are equal to vertices, edges, and faces, respective.

The Gauss-Bonnet theorem shows that a deformation of a surface of a manifold might
change the curvature K and the area form dA = d?z pointwise, but the total curvature
[ d*x(K/2m) remains invariant. Thus the total curvature is a measure of the genus of a
surface. From a topological point of view, given for instance a multitorus M =) , With
g holes, the general formula for the Euler number is equal to

X(M) =2-2g.

The curvature K involves derivatives of the metric tensor, thus 0yg,, (x) are quantities
to the tangent bundle M of some manifold M. For a two-dimensional manifold M? the
Gauss-Bonnet theorem is

2T

where the Betti numbers b,(M) are equal to (from Hodge’s theorem) the dimension of
the space of harmonic p-forms:

K
/d237— = bo - bl + bz (522)

by(M) = dimker A, : AP — AP

The Atiyah-Singer index theorem is a vast generalization of . Thus we can
replace the tangent bundle by other bundles (e.g. vector bundles, principal bundles, line
bundles), the Gauss curvature by, e.g., the Riemann- or the field strength curvature, and
replacing the Laplacian A, by other elliptic differential operators associated with the
bundle.

Ezample 2. (The winding number) For a manifold M of dimension d = 2 we have the
A-genus A(TM) = 1 and the Chern character equal to the first Chern form; ¢, (%) =
(1/27T)2Fwd:r“ A dz¥, thus the index 1} is equal to

i v
[1 = E dzflje'u Fuu = X(M)
M

If the field strength is chosen as e[, ~ —iR we can see the similarity between the
Atiyah-Singer index theorem and the Gauss-Bonnet theorem from the previous
example.

We take again the manifold M = S? and get the index 2. The two-sphere can be
considered as a one-dimensional complex manifold, which is called the Riemann sphere[5].
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There are two complex planes tangent to the Riemann sphere at the poles; the u-v plane
at the south pole and the z-y plane at the north pole. Define complex coordinates at the
north- and south pole, respectively, as z = x+iy = |z| exp(if) and w = u+iv = |w| exp(if),
here 6 is an angle. The relation between the u-v coordinates and the z-y coordinates is
given by w = 1/z. In the u-v plane we have a vector field (or a velocity field) defined
as dw/dt = 1. We can stereographically project the flow associated with the vector field
onto the Riemann sphere, hence a flow near the south pole w = lim, ,(1/2) = 0. Near
the north pole z = lim,, . (1/w) = 0 we get the flow

dz dz \( dw 1 9

dt dw )\ dt w?
If we rotate around the path z = € about the north pole, the vector —z2 =
2 circuits, thus this gives us the index 2.

In terms of physics we can realize the 47 rotation in the context of spin—% system[13].
The spin operator in the z-plane is equal to

—ei2? makes

5. = SI+CH) = (=)D

where the ket |4+) (|—)) represents spin up (down). The operator that rotates a state in
the z-y plane is given by
—iS.0
2.(0) = exp ( h ) ,

Le., |[a)r = 2,(0)|a) for some state |a) = |[+)(+|a) + |[—)(—|a). A straightforward
computation of |a)g gives

exp (Z22) la) = ) o) + - la).

If we substitute the angle = 27 in |a) g we get the rotated state

) R, (2m) = —|¥),

thus in order to get back to the initial state, we must rotate |a) by two revolutions.

5.5 The Hirzebruch Signature

In this section follow the same arguments as in the previous section, regarding the duality
between the differentials forms and the Clifford forms. We define an operator 7 acting
on k-forms w as

Tw = (—1)]‘;(1‘3_1)/2 * W,

where * is the Hodge star operator. We have now instead the correspondence Tw <+ v507s,
and multiplying by 75 on the right gives

TWYs = T(+w) = (—1)k(k_1)/2 * W <> ’75(2) foroeS® Sj_,
TWYs = T(—w) = (—1)k(k+1)/2 * W <> ’}/5(2) for w € S ® Si
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Notice the symmetry between (—1)**=1/2 and (—1)*k+1/2  hence it follows that the
Hirzebruch signature is
signature(M) == I, + 1_.

From (5.21)) and the path integral (5.10)), since I, +I_ ~ Tr[e”], the signature is thus
equal to

. _ —1/2 sinh(2", /2) i : dyntl/2 @
signature(M) /det ( 2 5 (v/2)4det cosh 5

- J(2) vt

FExample. For a manifold M of dimension d = 4, we have the Hirzebruch signature

1
signature(M) = / 99,7 Te(#", N %",).
T
space

The result in the right hand side is realized also in terms of the fl—genus[iﬂ], when d =
dim M is a multiple of 4:

) | 1
/A(TM):_Q (TM) = 24-87r2/Tr(%“”AW”)'

M M M

It can be shown|[7| that the Hirzebruch L-polynomial is related to the A—genus and the
Chern character. Writing the L-polynomial L(x;) in components of order d/2 gives

/2
/2 Zi/2
L(w;) = 29 Hm

=1
d/2
= Xz

emi/2 _’_67:1:1'/2
i=1
d/2

d/2 /2
o H (ei/2 — e=wi/2) /2 H(e Te ),

=1 i=1

~

i.e., L(z) = A(TM) A ch(FE) for some vector bundle E. To get the result of the signature
above we have, explicitly, the integral [, A (TM) A cho(E), where dim E = 1.

In conclusion, we have here demonstrated, once again, the interrelations between the
Atiyah-Singer index theorem and the Hirzebruch signature.
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Svensk Sammanfattning

Supersymmetri dr en symmetri som relaterar partiklar med heltalsspinn (bosoner) till
partiklar med halvtalsspinn (fermioner). Som nagra exempel pa partiklar som har hel-
och halvtalsspinn kan ndmnas fotoner ("ljuspartiklar”), respektive elektroner.

I denna uppsats betraktar vi supersymmetri endast i termer av vagintegraler. Feyn-
man’s vagintegral beskriver kvantmekaniska processer i tidsrummet dar vi kan visualisera
rums-axeln som den horisontella x-axeln och tidsutvecklingen med den vertikala y-axeln.
Vigintegralen ar lika med summan av alla "vigar” givet en start- och slutpunkt i tidsrum-
met. For fermioner, respektive bosoner, anvander man tva olika sorters viagintegraler. I
den fermioniska vigintegralen anvinder vi anti-kommutativa variabler, e.g. x1x9 = —xo11,
som &ven kallas Grassmann variabler, samt anti-periodiska randvillkor 6ver integralens
16sning. A andra sidan, i bosoniska végintegraler har vi de vilbekanta kommutativa vari-
ablerna samt periodiska randvillkor. I ju med att supersymmetri inte gér nagon skillnad
mellan fermioner och bosoner sa definierar vi den supersymmetriska vigintegralen som en
enskild vagintegral 6ver bade anti-kommutativa och kommutativa variablerna samt med
periodiskt randvillkor 6ver integralens 16sning.

Man har hittills aldrig observerat till exempel elektroner som har heltalsspinn och inte
heller fotoner som har halvtalsspinn. Detta innebér att de sa kallade superpartiklarna till
fermionerna, respektive bosonerna, som vi beskrev i foregaende mening, endast kan ob-
serveras om supersymmetrin dr spontant bruten. Spontant symmetribrott, dven kallat dolt
symmetribrott, innebéar att ett kvantmekaniskt system ser ut att vara symmetriskt i hogre
exciterat kvanttillstand (i samband med att vi &ndrar nagon variabel ; — —x;) men som
ar asymmetrisk i grundtillstandet. Spontant symmetribrott ger upphov till en mekanism
som ger massa till partiklarna. Detta ar den berémda Higgs-mekanismen. Pa liknande
satt ger spontant supersymmetribrott en mekanism som ger massa till superpartiklarna.

For att bestamma huruvida supersymmetrin i grundtillstandet misslyckas att vara
bruten sa anvénder vi oss av en kvantitet som kallas for Witten indexet (efter den ame-
rikanska fysikern Edward Witten). Witten indexet ges av n5=0 — nk=0 dir nE=0 (n£=0)
dr antalet bosoner (fermioner) i det supersymmetriska grundtillstandet. Man kan visa
att Witten indexet ar lika med det sa kallade analytiska indezet av Dirac-operatorn. Det
analytiska indexet ar i sin tur lika med det topologiska indexet som ges av en integral
over karakteristik klasser, dar klasserna ger ett matt pa ytkrokningen av ett geometriskt
objekt. I termer av den supersymmetriska vigintegralen sa kan vi uttrycka de fysika-
liska kvantiteterna som en produkt av viagintegraler 6ver bosoniska variabler, respektive
fermioniska variabler, exklusivt i hogtemperaturgriansen. Fysikaliskt innebar hogtempera-
turgransen att man "gor sig av med” de hogre exciterade kvanttillstanden och betraktar
endast grundtillstandet. Da man utfor kollisionsexperiment i partikelfysik sa kan man
uppna oerhort hoga temperaturer da partiklarna kolliderar med varandra inuti en acce-
lerator, darmed &r gransvardet for temperaturen dven giltigt fysikaliskt. Resultatet av
vagintegralerna visar sig vara identiska med integralerna over karakteristik klasserna da
man berdknar index teorem i matematik. Vi kan ndmna att Atiyah-Singer index teore-
met ar en stor landvinning inom matematiken och kan betraktas som en omfattande
generalisering av index teorem. I Atiyah-Singer index teoremet spelar Dirac-operatorn
en avgorande roll, det innebér, med andra ord, att vilkdnda och etablerade matematiska
resultat kan hérledas med hjélp av supersymmetri.

Tolkningen av Witten indexet, givet nagon supersymmetrisk modell, ges av foljande

tumregel; om n5=0 — nE=0 ¢j ér lika med noll si &r supersymmetrin ej bruten och da
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maste man férkasta modellen ifraga. Det omvinda géller ddremot inte; om indexet ar lika
med noll da kan vi ej dra nagra sdkra slutsatser huruvida supersymmetrin ar bruten.

Integraler 6ver karakteristik klasser ger upphov till topologiska tal, en kvantitet som
forblir oférandrad oavsett hur vi deformerar ett geometriskt objekt (under forutsittningen
att ytan hos objektet ej slits itu). Ta till exempel ett geometriskt objekt som ser ut
som en badboll; vi kan platta till den eller dra ut den och forma ytan till ett cigarr-
liknande objekt, men oavsett konfiguration sa forblir det topologiska talet oférandrat.
Om vi déremot slar ut tva hal i badbollen och féster ett handtag i form av en slang sa far
vi ett objekt som (topologiskt) ser ut som en badring. Topologin mellan badbollen och
badringen skiljer sig avsevart; det forstnamnda objektet har inget hal, till skillnad fran
det andra objektet, och dédrmed skiljer sig det topologiska talet sinsemellan objekten.

I termer av kvanféltteori (ett falt dr en variabel med odndligt manga frihetsgrader) och
matematiska index teorem sa talar vi om topologisk kvantfaltteori, dir Witten indexet
ger som vi namnde en koppling till kvantfysik. Och i rena matematiska termer ger likheten
mellan det analytiska- och det topologiska index en relation mellan differentialekvationer
och topologi.(Nagot kortfattat kan man séga att likheten mellan de bada indexen &r just
Atiyah-Singer index teoremet uttryckt i ord.)

Avsaknaden av observerade superpartiklar innebér att supersymmetrin ej i dagslaget
kan betraktas som en fysikalisk teori; det kriavs experimentella bevis innan man kan kalla
supersymmetrin en teori. I skrivandets stund kan man endast betrakta supersymmetri
som ett teoretiskt ramverk ellen en fysikalisk modell, men det ar forskarnas stora férhopp-
ning att man inom en snar framtid ska kunna avgora om supersymmetrisk kvantmekanik
faktiskt beskriver naturen. Méjligtvis kommer svaren om huruvida supersymmetrin stam-
mer 6verens med experimentella métningar att uppdaga sig efter uppgraderingen av Large
Hadron Collider (LHC) vid partikelfysiklaboratoriumet CERN som ligger utanfor staden
Geneve i Schweiz.
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A Hamilton’s Principle and Supersymmetry

A.1 The Basic Lagrangian

By basic Lagrangian we mean here the Lagrangian in the action (5.4), where the gauge
field A, (z) is switched off, hence the absence of the isospin fields #:

dy”
dt

1 1

L= 59#1/3.3#3.5” - ég,twl/}# (

+ :'&Pxn(x)w) .

The expression inside the parentheses in the Lagrangian is the covariant derivative (D7)*
written out in components.

To show that that there are physically realizable quantities, i.e., classical equations
of motion that describes a trajectory[V] in space, or observables in the case of quantum
mechanics, the action must fulfill Hamilton’s principle, also called the principle of least
action:

0S =90 / dtL = 0.
This is realized if the variation of the Lagrangian, L, with respect to the variables

¥ ="+ 02", and Y =YP* + YH,

are integrated out and is identical to zero:

t! '
08 = [dtL(z" + da", " + 6Y;i" + 6it " + 6gp¥) — /dtL(x“, Y it ) = 0.

t/ t/

We introduce the supersymmetry transformations
ozt = eyt
oYt = —ezt,
where € is a Grassmann number, and we the following metric identity:

We can now rewrite the Lagrangian, using the metric identity, as:

1 TN 1 ) 1 . v
L :—guyﬂf”ff + §g/¢u¢#¢y + _ngApFZV¢A¢

2 2
[ U BN .
:gguvx T+ Egqu Yr — 537 5(8/\9;”/ — Ougur — Ougr) VY
1 TN 1 ) 1 . v
:EQ;WIMI + Eguu¢u¢u - §$M8>\guu¢>\¢ .

10Tn quantum mechanics we cannot define trajectories in space-time due to Heisenberg’s uncertainty
principle. Classical mechanics is, however, restored in the limit 2 — 0 in the path integral.
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In the first equality we renamed some indices in the third term, in order to relate the
Christoffel symbol I'”,,, to the metric identity, used in the second equality.
A straightforward computation of the variation of the Lagrangian gives

1 1 1 1 . 1 .
0L :§8Agu,,5:£’\i"“i"” + §gw5i‘“:b” + Eg,wi“é:t” + 50,\9W5:B’\¢“@/J” + — g oty

2
1 % L., v L. v L. v
+ §gww“51/1 - §5x“8,\g#,,w)‘w — §x“8,\859w,5x6¢)‘w - Ex“ﬁAgW&//\w
1. 5
- §$“3A9W¢A5¢
1 g 1 R B L Ay
:§GQMV¢ ¥+ §egw,x (A 568,\859Wx VPP Py + §€8Agw,x T

1 d oy 1 o e
:éea(guwxl%b )_ @)\ §€(aﬁguuxu¢ @Z)ﬂﬂ))\ —gWx“x ¢A) .

The supersymmetric transformations were substituted in the second equality. The second
and fifth term cancel each other after the substitution, so do the first and the tenth term,
likewise the fourth and the seventh term. Rewriting the first term in the second equality
as a total time-derivative, the extra term from the rewriting cancels the second term
(after renaming the indices v to p and vice versa). The term with the total derivative 0y
can be neglected in the action, since it does not contribute to the equations of motion.
Hence the variation of the action is equal to

d1
— _ WMo\ VY —
0S /dtdtQE(gWa? YY) =0,

PBCs

where the invariance of §S follows from the periodicity of the variables, e.g. ¥(0) =

¥(B) = 0.

A.2 The Gauge Field Lagrangian

Here we regard the action (5.4)), now including the isospin fields 1. Since we derived
05 = 0 above without the gauge fields A, (x), we include only the terms dependent on 7,
hence the action

=, a =a,.a. o 1701 a v ‘Oéfa a
Sgauge = /dt{n N + 0 A (z) — 57 Foptapn’ +ZB77 n| .
0

The supersymmetry transformations are given by
oxt = e,
oYt = —ezt,

on* = —e;/)“Azb b,
ont = —eﬁbAZ“w“.

The Bianchi identity for the field strength F ;}fj is equal to
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D,F,, =0,F,, + A, F.|=0.

For simplicity, we compute the variation of the field strength first, before the substitution
in the variation of the Lagrangian further below:

OF = (010, A% — 0,0, A% + [0rAy, A" + [A, 06AL)™) 02,

Taking the variation of the Lagrangian Lgayuge, defined by the terms between the square
brackets of Sgauge above, and substituting the supersymmetry transformations yield:

d e aa,.a
0 Lgange =(—€l" ALPY)0" 40— (—eg Ailn") + (—en AT & Agty

() AL+ DN () + A (e Aty
1 — a,/ Kk a v
(e A E

1
= ST (ONIRAL = N0 AL + [OrA AN + [A, D3AN™) (e )y

1 1 1
o §—aFab<_€l-,,u)1/Jy b aFabwu( ) o aFabw,ul/J ( ewnAZana)
A% (e A+ i (e A
5 8"
Notice the anti-commutativity between the Grassmann number ¢ and the isospin fields,
e.g. en = —ne. We show explicitly that all, but one, terms cancel each other.

The seventh, eighth and eleventh term vanish:

_enbwﬁwuw (AbaFab)ﬁ o _enawnwuwu(pﬁlleia) Eﬁa¢nwuwu(anF5£)na
= 56?7“%0“%0“ V(AL F — Fi A + 0.Fiy)n” 56?7“%0%“ V¥ (OnFyy + [As, )" = 0.

where we get the first equality after renaming n° and 7 to n® and 7%, respectively. The
third equality follows from the Bianchi identity by setting x = pu.
Continuing with the ninth and the tenth terms:

1*(1 al v 1 a v ao ;. vV
T e(F i — Site(Fi ) = Sifte(— Fabith” — Fati o) = 0.

The last equality follows from renaming the indices v to u, and vice versa, in the last
term between the parentheses in the first equality. Using the anti-symmetry of the field
strength; F},, = F,,, gives the second equality.

Collecting the first, second and the fourth term gives:

_ a .a _a d a —a i aa, a
(e Aprm® + 0" (=g Ain’) + i () A
= — P AR+ AL e AL — e AL
- EﬁbAZawuﬁa + eﬁbAZawuﬁa + eﬁaw,qubnb o eﬁaquzbnb = 0.

65



A.2 The Gauge Field Lagrangian A Hamilton’s Principle and Supersymmetry

In the second equality we renamed, in the second term, the indices a to b, and vice versa,
while A%n® = A%’ in the last term, hence the third equality.
The third and the sixth terms are

_EﬁbAZaw”j:aAZana + GﬁaAwauiaAgbnb _ _EﬁbAZaw,ug-caAzana + EﬁbAZawui,aAzana — 07

after renaming a to b, and vice versa, in the second term before the first equality.
Finally, the ultimate and penultimate terms vanish, using similar arguments as above:

i i i
B B B

Hence we arrive at one non-vanishing term, the fifth term,

(67

—1 eﬁbAZa@/)“n“ +1 eﬁaAva,b“nb =—4 eﬁbAZ“W“‘na + iﬁeﬁbAZag/J“n“ = 0.

8,\ (ﬁax-,aAZaew)\na),

that does not contribute to the equations of motion, thus can be neglected in the action.
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B Product Expansion of an Entire Function

In this appendix we derive the formula used in the functional determinants in
the evaluations of the path integrals that are substituted in the derivation of the index
theorems. This review of the theory of complex variables is brief and heuristic, further
information can be found in [2].

A complex function g(z), z = x + iy, may be constructed as

9(2) = u(z,y) +iv(z,y),

for real functions u(x,y) and v(z,y). If g(2) is differentiable at z = zp € C and in a
neighborhood of zy, we say that g(z) is analytz'cEr] at z = 2. If g(2) is analytic everywhere
in the finite complex plane we call it an entire function. Examples of entire functions
are; sin z, cos z and exp z. If a function g(z) ~ (2 — 29) ™™, m > 1, we say it has a pole,
or a singularity, at z = 2o with multiplicity m. A function that is analytic in the finite
complex plane, except at isolated poles, is called meromorphic. Examples of meromorphic
functions are tan z, cot z, and ratios of polynomials.
We now introduce the Laurent series of a function g(z):

g(z) = Z bn(z — z0)"

n=—oo

b L
(z — z9)™ (z — 20)

+bo+bi(z—20) + -+ bn(z—20)" + ...,

=4+ b_,, + -+ by

where the constants b,, are called the residues. Without going into further details, we can
regard the Laurent series as a generalized Taylor expansion in the complex plane, where
we also take the singularities into account.

A generalization of the Laurent series is called pole expansion of a meromorphic func-
tion. Instead of just one singularity (at z — 2y in the Laurent series above) we now assume
that there are several poles at z = a,, with 0 < |a;| < |az| < ..., all having multiplicity
equal to one and the series

g9(z) = g(0) + an{(z —a,)" +a,'}

converges to ¢g(z) (due to Mittag-Leffler Theorem). Now it is straight forward to show
the product expansion of an entire function.

The logarithmic derivative of g(z) is given by d/dzIn g(2) = ¢’ /¢ and it is meromorphic
with a pole expansion. If g(z) has a simple singularity at z = a,, we can get rid of that
critical point after multiplication by (z —a,,), then g(z) = (z —a,,) f(2) with analytic f(2)
and f(a,) # 0. The logarithmic derivative of g(z) is equal to

CE) g L)
(n(z = a0) +10 f2)) = o=y +

g(z)  dz
1 The names holomorphic or regular are synonyms and can be found in the literature.
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and has a simple pole at z = a,, with residue 1 (the constant in front of (z —a,)™'). The
term f’/f is analytic at zp. The pole expansion of meromorphic functions of ¢’/g is given
by

g6 J0) X[ 11
g(z) B 9(0) +; {Z_an * an:| ‘

Integrating the pole expansion of f'/f yields

z

/dw% Ing(w) =Ing(z) —Ing(0)

- Z;;é())) + nf; {ln(z — an) + ain + A} ,

where A is a constant of integration we choose as A = —In(—a,,). Hence we get

g(2)  29'(0) { <an - z) z }
In—= = + E In +— 0,
9(0) 9(0) ! n n
and exponentiating yields the product expansion ({5.6):

- () - )

n=1

Two standard examples of product expansions are the following functions:

oo o0 2
sinz:zH (1—1)62/”:21—[(1— 52)7
niw n2m
o n=l
ﬁ( : )
cosz = 1l——).
_ 2.2
vt (n—1/2)%n
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C.1 The Riemann Curvature Tensor

The curvature tensor R*,,, is constructed by taking a vector V', tangent to the surface of
a manifold M, and parallel transport it half way around an infinitesimal parallelogram in
two opposite directions[I0]. The difference in direction of the vector at the final point of
the parallel transportation is a measure of the curvature of the manifold. A mnemonic on
the construction of the Riemann curvature tensor and it geometrical meaning is shown

in figure below.

%
Ve
Tt + ozt Tt + exht + dxH
pn g v text

Figure 7: The Riemann curvature tensor R*.,, is constructed by taking the parallel
transport of the vector Vj across two opposite paths; C' = pgr and C' = psr. The
difference of V%, and V at the corner r is equal to the curvature tensor.

Let pgrs be a parallelogram, where p is the lower-left corner whose coordinate is x*.
A vector Vj at p parallel transported to the lower-right corner ¢, with coordinate z* +cx*,
¢ an infinitesimal number, is given by

Vé(q) = Vg — VT e(p)ex”.

The infinitesimal translation from ¢ to the upper-right corner r is equal to dz*, hence
the coordinate of r is 2* + ex* + dz#. The vector at the final translation point is, up to
second order in € and ¢, thus equal to

VE(r) = VE(a) — VE(@IMu(q)ox”
= V5 = Vg peea” — [VOK - VOPFKCp(p)ng}[FHVH(P) + 3,\11“,,,{(10)535)‘}(53;”
~ V()“ _ VO"F%ng” _ VOHIWM(]))(S;EV _ VOH [aAFuw(p) _ Fp)\n(p)rul,p(p)]gl’)‘(h‘l’.

The subscript C' denotes the counter clockwise transportation through the corners pqr.
Similarly, we let C’ denote the clockwise translation through psr, hence the vector V7, (r)
is given by

Ve (r) = Vi = VT eda” = VT u(p)ea” — Vi [0, xa(p) — T70(p)T" 5, (p)Jea 02"
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The difference of the two vectors VZ/(r) and V%, (r) is equal to

VE(r) = VE(r) = Vi [T 0(p) — 0T xe(p) = TPrx(D)T¥00 (D) + TP (0)T¥ 1, (p) o202
= %HR“HAVEIA(;J}V.

In summary, the Riemann curvature tensor is given by

R (p) = OaI"0n(p) = 0,15 (P) — T2 (P)T"0p(P) + 70k ()T, (p).-

C.2 The Field Strength Tensor

We will be rather brief in our construction of the field strength tensor F),,, and emphasize
the similarities with the construction of the Riemann curvature tensor in the previous
section. For a more comprehensive construction of the field strength tensor, see for
instance [11].

The covariant derivative D, in the direction n*, of a fermi field ¢(z) is defined as

WDy = ity = (e + &) = Ula +n, ) ()

where the factor U(x + en,x) is called the comparator. The field ¢ (z) transforms as
Y(x) — exp(ia(z))(x), ie., a phase rotation through an angle a(z). On the other
hand, the field ¥(z 4+ en) has a different transformation at the point = + en than has
¥ (x) at z, hence the comparator U(y, x) compensates for the phase difference under field
transformations. Thus the comparator U(y, ) transforms as

Uly,z) — eio‘(y)U(y, x)e_io‘(”“").

We define U(y, z) to be a pure phase; U(y, z) := exp[i¢(y, z)| for some function ¢(y, x),
and we set U(y,y) = 1. In conclusion, the objects of the forms ¢ (z) and U(y, z)¢(x)
have the same transformation law thus the covariant derivative is well defined for a local
phase transformation of the fields.

The expanded comparator U(x + en, x) in the covariant derivative above is equal to

Uz +en,z) =1 —ieen”A,(z) + O(e?),

where e is a Constant{T_Z] and A, (z) is the four potential. The covariant derivative is then
given by

D,b(z) = 0,0(z) +ieA,(x) + O(e?) (C.1)

To construct the field strength tensor, we expand U(x + en,x) up to third order in
the infinitesimal constant e:

U(z +en,x) = exp [—ieen”Au(x + %n) + O(%) (C.2)

The field strength analogue to the construction of the Riemann curvature tensor is now
examined. We take comparisons around an infinitesimal parallelogram, where the initial

12In quantum electrodynamics the constant e is the electron charge, while in non-Abelian gauge theories
the constant is a generic charge, normally denoted by the letter g.
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and final point is in the lower-left corner whose coordinate is x. Let the parallelogram
lie in the (1, 2)-plane, i.e., the coordinates of the lower-right corner and the upper-right
corner are equal to z 4+ 1 and z + el + €2, respectively. Here 1 and 2 are (horizontal,
respectively vertical) unit vectors. The product of the four comparisons counterclockwise
around the parallelogram is defined as U(z):

Uz) =U(z, 2 + Uz + 2,2 + el + e2)U(x + el + 2,2 + e1)U(x + €1, 2).

Substituting equation (C.2)) into U(x) yields

U(z) = exp {—ise [ — As(x + %Q) —Aj(x+ gi +€2)
+Ay(z 4l + gé) + Ay(x + gi)] + 0(53)} ,

where A;(e) (Az(e)) are the comparisons in the horizontal (vertical) directions. Expand-
ing U(z), and taking the limit e — 0, gives

U(z) = 1 —ic?e [0, 45(x) — 01 As(z)] + O(?),
where 0; = lim._,(1 /ei) and 0y = lim._,o(1 /5?) The structure between the square
brackets in the final derivation of U(z) is of the form
F. =0,A, —0,A,,

which is equal to the electromagnetic field tensor, or the field strength tensor.

There is an alternative way of constructing the field strength tensor, namely by taking
the commutator of the covariant derivative D,. The commutator [D,, D,| can be inter-
preted as a comparison of comparisons across a small square, cf. the argument above.
We derived the Abelian field strength tensor above which means that [A,, A4,] = 0.

On the other hand, if we assume that [A,, A,] # 0 and consider a covariant derivative
of the form

D, =0, —igA,

where ¢ is a constant, we get the commutator acting on a field ¢ equal to

[Dys D] = [0, 010 = 1[0, A + [Ay, O) = ig[ Ay AJW)
= —ig(9u A, — O, A, + [A, A0

Hence the non-Abelian field strength tensor is of the form

F,.,=0,A, —0,A,+ A, A
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D Quantum Fluctuations and the Riemann Tensor

In this appendix we derive the Riemann curvature tensor, as given in the gauge choice
(5.15b)), from the quantum fluctuations around a critical point on a manifold. From the
action (5.4) we have a term dependent on the Christoffel symbol I',,:

G ()Y ETF " (D.1)

We introduce quantum fluctuations dx# := ex*(t) and oz := eyp*(t) around a critical
point (zf, 1) on a manifold M, where ¢ is an infinitesimal number. Hence the scalar
field and the fermion field are given by

M (t) = ab + ext(t),
U () = v +evt ().
Substituting z/* and ¢"* into the quantities in (D.1]) yields

gul/(xg +ex®(t)) = g;w(xg) + 8>\9W(5’:3)5x)\ = gul/(xg) + (Fﬁ/\ugnu + F”)\,,g,w)exA;
T# g (x4 ex(t)) = T g () + O™y (2 )ex”;

1'? = eg°.

In Riemann normal coordinates we get the following simplifications:

G (24) = Oy
NG (25) = T xu(25) = T (25) = T (25) = 0;
05T 5 (15) 0.

Substituting g, (z§ + ex*(t)), ©'? and I'*,, (2§ + cx*(t)) together with =" and ¢ into
(D.1)) and keeping only terms of second order in quantum fluctuations yields

[ ][5 + e ()] [e2?] (0T wex”] [¥ + e ()] + O(<?)
=0, 040 ei?[0,17 yea”] + O(?)
11
=0, b hed® 5(8MFBQV —0,I",,)| ex” + O(%)
1

zéuylpg‘wg‘m"’éRﬁgwwﬁ + 0¥
where in the first equality we renamed the indices p to [, and vice versa, in the term
9,I'% ,,. In the second equality we used the identity *¢"w,, = @/J“z/)”%(ww — wy,) for a
generic tensor w,, = —w,,, associated to 0MF5 ov-

Going back to the variables z#(t) and v¥*(t) in the last equality, we arrive (after
renaming, and lowering, the index ) at the gauge choice (5.15b)):

v v 1 vV _&
YY" = éRag;wwﬂw T
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A final remark on the Riemann normal coordinates is in order here. We have as-
sumed that the geometry is locally Euclidean, i.e., flat around some point (zf,}) on
the manifold M. This local property does not imply that the curvature tensor R,
vanishes. We can visualize the Euclidean geometry on M as an arbitrary small tangent
plane on M. On the tangent plane there is no connection, thus I'*), = I'*y, =I"*,, = 0.
However, we can still move the tangent plane to an arbitrary point (z*,*) on the man-
ifold, and thereby changing the direction of the normal of the tangent plane, hence the
non-vanishing R” our = (%FB o — 0,8 on- The Riemann curvature tensor is coordinate
independent, thus in a general coordinate system we have the tensor

RB@W@) = auF'B@V(I) - &,Fﬁgu(x) - Fpgu(x)Fpr(x) + Fp@v(x)rﬁpu(x)-
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