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Abstract

Quantum entanglement is employed as a resource throughout quantum information science.
However, before entanglement can be put to intelligent use, the issues of its production
and detection must be considered.
This thesis proposes four schemes for producing the bound entangled Smolin state. Three
of these schemes produce the Smolin state by means of general quantum gates acting on
different initial states - an all-zero state, a GHZ-state and two combined Bell states. The
fourth scheme is based on one-qubit operations acting on two-photon states produced by
SPDC.
Furthermore, a maximum overlap entanglement witness detecting entanglement in the
Smolin state is derived. This witness is measurable in three measurement settings with
the maximal noise tolerance p=2/3.
Lastly, simplified entanglement witnesses for the 4-, 6- and 8-qubit unitary invariant states
are derived. These witnesses are measurable in three measurement settings with noise
tolerances p=0.1802..., p=0.1502... and p=0.0751..., respectively.
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CHAPTER 1

INTRODUCTION

In the distance I could hear
Words of wisdom whizzing by my ear

- S. S. V.

Entanglement is the ”spooky action at a distance”[1] which makes certain composite quan-
tum systems1 behave as if its components were connected, regardless of the isolation and
spatial distance between these components.
The connection in an entangled system is such that observations of one part of the sys-
tem correlate to observations of some other part, with correlations stronger than classical
physics will allow.
Indeed, entanglement follows as a natural consequence of the principles of quantum mech-
anics, whereas a classical treatment of the subject leads to a number of difficulties and
paradoxes[2].

The premise for entanglement is that once two systems have interacted, they should be
regarded as one single system. A full description of the constitutent parts by themselves
does not necessarily give full knowledge of the behavior of the system as a whole[2].

The correlations of entangled states were first recognized by Schrödinger as aVerschränkung
der Voraussagen[3], roughly Entanglement of Predictions, referring to the intertwined pre-
dictions made by quantum theory about the outcomes of measurements on entangled sys-
tems.
The non-local properties of entanglement, the ”spooky action at a distance”, which makes
it utterly incompatible with classical physics, led Einstein, Podolsky and Rosen (EPR) to
propose the idea that quantum mechanics needed extra, or hidden, variables to explain
the non-locality while remaining a local theory[4]. However, should such hidden variables
exist, the theory of quantum mechanics would be rendered incomplete. Later, in a seminal
paper[5], Bell presented an upper limit of the strength of the correlations of local hidden

1E.g. two electrons, two photons or two atoms.
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variable theories such as the one laid out by EPR. It turned out that quantum mechanical
experiments with entangled particles, notably those of Aspect et al.[6], violated this limit,
thus refuting EPR and implying that quantum mechanics is indeed a complete non-local
theory sans hidden variables.

The field of quantum computation emerged in the early 1980’s with the realization that
certain calculations could be elegantly performed using the features of quantum mechan-
ics. The simulation of quantum systems is a natural example of such a computation,
since quantum systems obviously would simulate themselves best[7]. However, quantum
computation extends beyond problems in the quantum realm, providing faster, albeit prob-
abilistic, solutions to classically hard problems[8]. The ultimate goal, however distant, is a
general purpose quantum computer, which would be able to solve diverse problems with-
out the need for redesigning the computer hardware for each new type of computation[9].
To specific quantum algorithms, as well as to general quantum computers, entanglement
provides parallelism impossible to reach by classical means[8] and a means to transport
arbitrary quantum states by teleportation[10].

For quantum computation, entanglement is a resource as real and useful as electric current
and electric voltage are for classical systems, and like these quantities, entanglement can
easily be disturbed by extraneous interference. Entanglement that has been degraded can
be improved by a process known as distillation. The process involves gathering several
degraded, but still slightly entangled states and by means of local quantum operations
and classical communication producing one or several highly entangled states[12]. The
discovery of bound entangled entangled states, states that contain entanglement but cannot
be distilled, provide a means to examine the phenomenon of distillability in its seams.
The Smolin bound entangled four-partite state[13] takes a special place among other bound
entangled states due to its symmetric construction and its unlockable entanglement. The
unlockability means that a maximally entangled state can be produced by simply bringing
together two of the four subsystems. Discovered in 2000, the Smolin state has since found
its place in quantum computation by its application in quantum secret sharing[14] and
remote information concentration[15].

An alternative approach to avoid the effects of interference is to choose to operate with
entangled states that are not susceptible to certain types of noise[11]. One family of such
states, the n-lateral unitary invariant singlet states, are unaffected by the quantum channel
along which they are propagated, as long as it untarily transforms each qubit of the state
in the same manner. In e.g. a photonic system this means that the common reference
direction for the polarization analyzers can be chosen freely, regardless of the orientation
of the photon source. Detection and measurement of entanglement content of the 4-lateral
unitary invariant state are found in [16].

This report will describe four approaches to producing the Smolin state, along with the
machinery needed to examine its entanglement content and analyze its symmetry proper-
ties. The report finishes with a chapter presenting simplified entanglement witnesses for
the 4-, 6- and 8-qubit unitary invariant singlet states.
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CHAPTER 2

THEORY

If it’s all right with Dirac, it’s all right with me.
- E. F.

Below, the basic elements of the Dirac formalism for quantum mechanics are recapitulated,
along with the building blocks for quantum gate networks and photonic systems.

2.1 Hilbert spaces, kets and bras

The state space of a quantum mechanical system S is a complex Hilbert space HS whose
elements |ψi〉S are called kets [17]. A particular state of S, ψS , can be represented by a
one-dimensional subspace of HS , for instance c|ψS〉S , c ∈ C \ 0. Each ket |ψi〉S has one
unique dual bra S〈ψi| in the dual space H∗S . The bra corresponding to a ket |ψ〉 is given
by the isomorphism φ, 〈ψ| = φ(|ψ〉). φ is chosen so that

φ(c|ψ〉) = c∗〈ψ|, c ∈ C (2.1.1)
φ(|ψ1〉+ |ψ2〉) = φ(|ψ1〉) + φ(|ψ2〉) = 〈ψ1|+ 〈ψ2| (2.1.2)

2.1.1 Inner product

The inner product of |ψ1〉 and |ψ2〉 is defined [18]

〈|ψ1〉, |ψ2〉〉 = φ(|ψ1〉)|ψ2〉 = 〈ψ1||ψ2〉 ≡ 〈ψ1|ψ2〉 ∈ C, (2.1.3)
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which has the following properties

Conjugate symmetry:
〈ψ1|ψ2〉 = 〈ψ2|ψ1〉∗ (2.1.4)

Sesquilinearity:
(2.1.1)⇒ 〈a|ψ1〉, b|ψ2〉〉 = a∗b〈ψ1|ψ2〉 (2.1.5)

(2.1.2)⇒ 〈|ψ1〉+ |ψ2〉, |ψ3〉+ |ψ4〉〉 = 〈ψ1|ψ3〉+ 〈ψ1|ψ4〉
+〈ψ2|ψ3〉+ 〈ψ2|ψ4〉. (2.1.6)

Iff 〈ψ1|ψ2〉 = 0, |ψ1〉 and |ψ2〉 are said to be orthogonal. The isomorphism φ guarantees
non-degeneracy of the inner product.
For the symmetric product, (2.1.4) leads to 〈ψ|ψ〉 ∈ R. Furthermore, non-negativity is
postulated

〈ψ|ψ〉 ≥ 0 (2.1.7)
⇒ 〈ψ|ψ〉 = 0 iff |ψ〉 = |0〉. (2.1.8)

2.1.2 Norm

The norm of |ψ〉 is ‖|ψ〉‖ =
√
〈ψ|ψ〉 . Positive homogeneity, subadditivity and positive

definiteness of the norm are guaranteed by its construction.

Provided that a ket |ψ〉 is not a null ket, it can be normalized

ˆ|ψ〉 =
1√
〈ψ|ψ〉

|ψ〉. (2.1.9)

Since both ˆ|ψ〉 and |ψ〉 both refer to the same physical state, we might as well require that
all kets belonging to physical states shall be normalized.

2.1.3 Outer product

The outer product of |ψ1〉 and |ψ2〉 is defined |ψ1〉〈ψ2|. Due to its associativity one very
useful combination of products is

(|ψ1〉〈ψ2|) |ψ3〉 = |ψ1〉 (〈ψ2|ψ3〉) (2.1.10)

2.1.4 Tensorial product

The tensorial product of |ψ1〉A and |ψ2〉B, belonging to Hilbert spaces HA and HB respec-
tively, is

|ψ3〉C = |ψ1〉A ⊗ |ψ2〉B, (2.1.11)

where |ψ3〉C belongs to the composite space HC = HA ⊗HB. Also,

N⊗
n=1

|ψn〉 ≡ |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉︸ ︷︷ ︸
Nfactors

≡ |ψ1ψ2 . . . ψn〉 (2.1.12)
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and

|ψ〉⊗N ≡
N⊗
n=1

|ψ〉. (2.1.13)

Any other product-like combinations, e.g.

A〈ψ1|ψ2〉B, |ψ1〉A ∈ HA, |ψ2〉B ∈ HB, HA 6= HB, (2.1.14)

are simply non-sensical and consequently not allowed.

2.1.5 Matrix representation

For a finite-dimensional Hilbert space H of dimension dim(H) = d we can define an or-
thonormal basis as {|ψi〉}di=1 where 〈ψi|ψj〉 = δij . Now an arbitrary vector can be repre-
sented as[17]

|ψ〉 =
d∑
i=1

ai|ψi〉, ai ∈ C

where
∑d

i=1 a
∗
i ai = 1 implies that |ψ〉 is normalized to unity.

The coefficients ai are
ai = 〈ψi|ψ〉. (2.1.15)

Given the orthonormal basis above, one matrix representation of a ket is

|ψ〉 .=


a1

a2
...
ad

 , (2.1.16)

The isomorphism between H and H∗ is represented by a complex conjugation followed by
transposition, giving the dual vector of |ψ〉 as

〈ψ| .=


a1∗
a2∗
...
ad∗


T

=
(
a∗1 a∗2 . . . a∗d

)
. (2.1.17)

Using the matrix representations of bras and kets the usual theorems of matrix algebra are
valid, giving the inner product

〈φ|ψ〉 .=
(
a∗1 a∗2 . . . a∗d

)


b1
b2
...
bd

 =
d∑
i=1

a∗i bi, (2.1.18)

|φ〉 =
d∑
i=1

ai|φi〉, |ψ〉 =
d∑
i=1

bi|ψi〉, ai, bi ∈ C,
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the outer product

|φ〉〈ψ| .=


a1

a2
...
ad

( b∗1 b∗2 . . . b∗d
)

=


a1b
∗
1 a1b

∗
2 . . . a1b

∗
d

a2b
∗
1 a2b

∗
2 . . . a2b

∗
d

...
...

. . .
...

adb
∗
1 adb

∗
2 . . . adb

∗
d

 , (2.1.19)

and the tensor product as the Kronecker product

|φ〉A ⊗ |ψ〉B .
=



a1


b1
b2
...
be



a2


b1
b2
...
be


...

ad


b1
b2
...
be





=



a1b1
a1b2
...

a1be
a2b1
a2b2
...

a2be
...

adb1
adb2
...

adbe



(2.1.20)

|φ〉A =
d∑
i=1

ai|φi〉A ∈ HA and |ψ〉B =
e∑
i=1

bi|ψi〉B ∈ HB, e = dim(HB).

Bases for composite Hilbert spaces are constructed

{|ψij〉C}i=1...d, j=1...e, |ψij〉C = |φi〉A ⊗ |ψj〉B, (2.1.21)

for which the matrix representations are produced in exactly the same manner as above.

2.2 Linear operators

The Dirac formalism allows us to construct linear operators on the Hilbert-space as follows,

Θ =
∑

i,j=1..d

cij |ψi〉〈ψj |, cij ∈ C, (2.2.1)

where {|ψi〉}di=1 is an orthonormal basis as those above. Using (2.1.19), the matrix repre-
sentation of Θ is

Θ
.
= (cij) (2.2.2)

2.2.1 Trace

The trace of a linear operator is defined

Tr(Θ) =
∑
i

〈ψi|Θ|ψi〉,

where the |ψi〉 belong to an orthonormal basis as above.
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2.2.2 Transposition

The transposition ΘT of a linear operator Θ is simply the operator expansion

Θ =
∑

i,j=1..d

cij |ψi〉〈ψj |, cij ∈ C, (2.2.3)

with kets and bras reversed

ΘT =
∑

i,j=1..d

cij |ψj〉〈ψi|, cij ∈ C, (2.2.4)

In matrix representation this resolves to the normal matrix transpose.

2.2.3 Eigenvalues

The eigenvalue equation in the Dirac formalism is

Θ|ψ〉 = θ|ψ〉, θ ∈ C, (2.2.5)

in analogy with other notational paradigms.

2.2.4 Hermitian adjoint

The Hermitian adjoint of an linear operator is denoted by the dagger † and is a complex
conjugation followed by transposition

Θ† = (Θ∗)T
.
= (c∗ij)

T . (2.2.6)

It follows that while Θ operates on kets, Θ† rather operates on bras

Θ|ψ〉 =

 ∑
i,j=1..d

cij |ψi〉〈ψj |

 |ψ〉 =
∑

i,j=1..d

cij〈ψj |ψ〉|ψi〉 (2.2.7)

〈ψ|Θ† = 〈ψ|

 ∑
i,j=1..d

c∗ij |ψj〉〈ψi|

 =
∑

i,j=1..d

c∗ij〈ψ|ψj〉〈ψi| (2.2.8)

Obviously the result in (2.2.8) is the corresponding bra of (2.2.7).
An operator for which

Θ = Θ† (2.2.9)

is called Hermitian. By the spectral theorem[19], Hermiticity guarantees that the operator
has real eigenvalues and orthogonal eigenvectors spanning the Hilbert space.

2.2.5 Observables

An observable is a Hermitian operator corresponding to a experimentally measureable
quantity. An eigenvalue of an observable is the measurement outcome if the system mea-
sured upon was in the corresponding eigenstate.
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2.2.6 The density operator

The density operator ρ describes an ensemble of states |ψi〉 along with their probabilistic
mixture, given by the coefficients pi.

ρ =
∑
i

pi|ψi〉〈ψi|, pi ∈ R+ and
∑
i

pi = 1,

where the |ψi〉 are normalized to unity. This gives ρ the following properties:

ρ = ρ† (Hermiticity) (2.2.10)
∀|ψ〉 : 〈ψ|ρ|ψ〉 ≥ 0 (Positivity) (2.2.11)

Tr(ρ) = 1 (Unit trace). (2.2.12)

The density operator ρ is sometimes called the state1 of the system, since it provides a full
description of the ensemble. A pure state refers to the case where only one single state
|ψ1〉 is present in the ensemble, whereas a mixed state ρ contains multiple terms.

2.2.7 Expectation value

The quantity
〈Θ〉 = 〈ψ|Θ|ψ〉 (2.2.13)

corresponds to the expectation value of repeated measurement of observable Θ on the state
vector |ψ〉.
The expectation value of a observable acting on a density operator is given by

〈Θ〉 = Tr(Θρ), (2.2.14)

which is easily seen by choosing the orthonormal basis for the trace as the normalized
eigenkets of Θ, expanding ρ in this basis and directly calculating (2.2.14).
If the state is an eigenstate of Θ, the mean value is its corresponding eigenvalue.

2.2.8 Spin observables and Pauli matrices

The identity operator along with the spin observables and their corresponding Pauli ma-
trices are:

I ≡ σ0 = |0〉〈0|+ |1〉〈1| .=
(

1 0
0 1

)
σx ≡ σ1 = |1〉〈0|+ |0〉〈1| .=

(
0 1
1 0

)
σy ≡ σ2 = i|1〉〈0| − i|0〉〈1| .=

(
0 −i
i 0

)
σz ≡ σ3 = |0〉〈0| − |1〉〈1| .=

(
1 0
0 −1

)
.

(2.2.15)

σ0 represents a ”null” measurement, retrieving no information about the state of the system.
σ1, σ2 and σ3 serve as observables for the spin components of a spin-1

2 particle measured

1This convention will be used throughout this report, since the reader is not too likely to confuse
ensemble states with state kets or state bras.
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along the x-, y- and z-axis respectively. Here, the σi are normalized to give ±1 rather than
the usual ±~/2 when acting on their eigenstates.
The σi have the properties

σi = σ†i (Hermiticity) (2.2.16)

σ†iσi = I (Unitarity) (2.2.17)
σiσj = δijI + iεijkσk (Product property) (2.2.18)

Tr(σi) = 2δ0i (Trace: two or zero) (2.2.19)

Tr(σ†iσj) = 2δij (Mutual orthogonality) (2.2.20)
(2.2.21)

where in (2.2.18), εijk is the antisymmetric Levi-Civita symbol which is +1 (−1) for (i, j, k)
that are cyclic (non-cyclic) permutations of (1, 2, 3) and otherwise 0.
The σi constitute a basis for all linear operators acting on a two-dimensional Hilbert space;
any linear operator on a two-dimensional Hilbert space can be formed as

Θ =

3∑
i=0

ciσi, ci ∈ C. (2.2.22)

2.2.9 Tensorial product

It is clear that the tensorial product (2.1.11) of kets and bras immediately gives a tensorial
product for linear operators on HA and HB as ΘA ⊗ ΘB. Consequently,

⊗N
n=1 Θn and

Θ⊗N follow the same conventions as (2.1.12) and (2.1.13).

2.2.10 Local decomposition

The tensorial product of bases of operators on the spaces {Hn}Nn=1, dim(Hn) = 2, provides
a basis for operators on the composite space HA =

⊗N
n=1Hn. Assuming the {σi} is the

basis for each subsystem, the elements of the new basis are all the

σi1,i2,...,iN =
N⊗
n=1

σin , (2.2.23)

for which (i1, i2, . . . , iN ) ∈ {0, 1, 2, 3}N .
An arbitrary linear operator on HA can now be expressed

ΘA =
∑

∀(i1,i2,...,iN )∈{0,1,2,3}N
ci1,i2,...,iNσi1,i2,...,iN

=
∑

∀(i1,i2,...,iN )∈{0,1,2,3}N
ci1,i2,...,iN

N⊗
n=1

σin , (2.2.24)

ci1,i2,...,iN ∈ C,

where the sum includes all 4N possible σi1,i2,...,iN ’s. Since each σi acts locally on its sub-
system, the expression (2.2.24) is called a local decomposition of the operator ΘA.
For any given linear operator ΘA on HA the coefficients ci1,i2,...,iN are given by

ci1,i2,...,iN = Tr(ΘAσi1,i2,...,iN ) (2.2.25)
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A local decomposition of a density operator have to contain σ0 in order to fulfill (2.2.12)
and have ci1,i2,...,iN ∈ R to maintain hermiticity (2.2.10), and especially have c0,0,...,0 = 1
to give (2.2.11).

2.2.11 Partial trace

Let QAB be an operator on the composite Hilbert space HA ⊗HB, then the partial trace
of the part of the system belonging to HA is defined by:

TrA(QAB) =

dA∑
i=1

A〈ψi|QAB|ψi〉A, (2.2.26)

where {|ψi〉A}dAi=1 is an orthonormal basis in HA and dA the dimension of this space.

2.2.12 Partial transpose

Let Q be an operator on the composite Hilbert space HA⊗HB, then partial transposition
(PT) of HA is defined by:

QTA ≡ (TA ⊗ IB)Q, (2.2.27)

where TA is the transposition operator on HA while IB is the identity operator on HB.
Partial transposition for HB is defined analogously.

2.2.13 Local Operations and Classical Communication

Local (quantum) Operations and Classical Communication (LOCC) refers to experiments
where the experimenters are restricted to performing local operations on a system and
communicating information, e.g. measurement outcomes, among themselves using only
classical communication[20]. In practice this means that under LOCC, the operators ap-
plicable to a composite system A take the form

ΘA =
⊗
i

θai , (2.2.28)

where θai are operators on the local subsystems ai.
LOCC imposes some constraints on what can be done to a quantum system, for instance,
one cannot increase the amount of entanglement through LOCC and Bell-measurement,
as well as two-qubit quantum gates, are unachievable.

2.2.14 Non-local operations

In contrast to LOCC, non-local operations can be performed on multiple parties under
the requirement that the parties involved are brought together. These operations include
multi-qubit quantum gates, creation and increase of entanglement and Bell measurement
(see section 2.4.2). Non-local operations can be achieved by contructing their operators
according to (2.2.1), using inseparable states (see section 2.4) as the basis states.
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2.3 Ancillary systems

Extra, or ancillary, Hilbert spaces may be added to a primary Hilbert space to facilitate
certain operations. These operations include the creation of mixtures of states and the
selecting of valid subspaces from the primary Hilbert space.

2.3.1 Mixing of States

Let {|φi〉A}di=1 be the states belonging to the primary Hilbert space HA to be proba-
bilistically mixed, while the normalized and mutually orthogonal {|ψi〉B}di=1 belong to an
ancillary Hilbert space HB, with d ≤ dim (HB). Then prepare

|φ〉AB =
∑
i

ci|φi〉A|ψi〉B, (2.3.1)

with ci ∈ C and
∑

i c
2
i = 1. A mixed state is now produced by tracing out the ancillary

part.
ρmixed = TrB

(
|φ〉AB〈φ|

)
=
∑
i

c2
i |φ〉Ai 〈φ|. (2.3.2)

2.3.2 Post-selection

To select a subset of states from a larger set of states produced by an experimental setup,
additional criteria may be imposed on the set of states. This post-selection can be done
using an ancillary system connected to the primary system and projecting the set of com-
posite states on the appropriate ancillary states to yield the subset.
Let {ρAi }di=1 be the set of states belonging to the primary Hilbert space HA, while the
normalized and mutually orthogonal {|ψi〉B}di=1 belong to the ancillary Hilbert space HB.
d ≤ dim (HB). One possible composite system is given by

ρAB =
∑
i

ρAi ⊗ |ψi〉B〈ψi|.

A particular state, e.g. ρAj , 1 ≤ j ≤ d, is post-selected by projecting on |ψj〉B,

ρps =B 〈ψj |ρAB|ψj〉B = ρAj .

Post-selection is often used in multi-detector setups where the experiment might not always
produce a particle at each detector. By post-selecting the state with regard to the number
of particles at the detectors, one can isolate the circumstance where particles are present
at all the detectors.

2.4 Separability and entanglement

A quantum state ρ on H =
⊗n

i=1Hi, n > 1, is separable iff it can be written on the form

ρ =
∑
j

pj

n⊗
i=1

ρi, pj ∈ R+ and
∑
j

pj = 1, (2.4.1)

where ρi ∈ Hi.
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If no such sum can be found then the state is inseparable, or entangled.
If n = 2 then the state is called biseparable and if n = 3 the state is called triseparable. In
general, if ρ fullfills (2.4.1), n implies n-separability. Obviously,

{ρ : ρ =
∑
j

pj

n⊗
i=1

ρi} ⊂ {ρ : ρ =
∑
j

p′j

n−1⊗
i=1

ρ′i} ⊂ ... ⊂ {ρ : ρ =
∑
j

p′′j

2⊗
i=1

ρ′′i }. (2.4.2)

2.4.1 Bell states and GHZ states

Examples of entangled states are the Bell states, or EPR pairs,

|Ψ−〉 ≡ |Ψ1〉 = 1√
2

(|01〉 − |10〉)

|Ψ+〉 ≡ |Ψ2〉 = 1√
2

(|01〉+ |10〉)

|Φ+〉 ≡ |Ψ3〉 = 1√
2

(|00〉+ |11〉)

|Φ−〉 ≡ |Ψ4〉 = 1√
2

(|00〉 − |11〉),

(2.4.3)

and the GHZ n-qubit state

|GHZn〉 =
1√
2

(|0〉⊗n + |1〉⊗n), n ≥ 3. (2.4.4)

From the local decomposition of e.g. ρΨ− = |Ψ−〉〈Ψ−|,

ρΨ− =
1

4
(I⊗ I− σx ⊗ σx − σy ⊗ σy − σz ⊗ σz),

it can be seen that it does not factor into an expression similar to (2.4.1), where all factors
fulfill (2.2.10), (2.2.11) and (2.2.12). On the other hand, the state ρsep = |00〉〈00| has the
local decomposition

ρsep =
1

4
(I⊗ I + I⊗ σz + σz ⊗ I + σz ⊗ σz) =

1

2
(I + σz)⊗

1

2
(I + σz),

which clearly is separable.
For the general density operator ρ, finding out whether or not the criterion (2.4.1) is
fulfilled can be a grueling task, which is why much research has had the aim to find
alternate criteria. We will review some of these findings in sections 2.4.3, 2.4.4 and 2.4.5
below.

2.4.2 Bell measurement

To determine the Bell state content of a given two-qubit state ρ, it can be measured in the
non-local orthonormal basis

{Ψi}4i=1, (2.4.5)

which gives a projected state

ρ
BM
−→

ρp =

4∑
i=1

Tr(|Ψi〉〈Ψi|ρ)|Ψi〉〈Ψi|. (2.4.6)

Observe that generally ρ 6= ρp. An example of complete Bell measurement can be found
in [21].
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2.4.3 Bell inequalities

A Bell inequality[5] impose constraints on predicitions of measurements on a physical
system so that if the system sustains classical correlations, the inequality is fulfilled. Such
inequalities were employed by Bell to discard theories for quantum correlations assuming
local realism since these would need additional, Lorentz invariant mechanisms to add the
quantum behavior. A variant of the original Bell inequality is the Clauser-Horne-Shimony-
Holt (CHSH) inequality[22]2

|〈A⊗B〉+ 〈A⊗B′〉+ 〈A′ ⊗B〉 − 〈A′ ⊗B′〉| ≤ 2, (2.4.7)

where A,A′, B and B′ are operators such that the eigenstates of each operator are orthog-
onal to those of the other operators. A state which violates a Bell inequality evidently
exhibits non-classical correlations, in other words, the state is entangled. A common way
of writing (2.4.7) is

|E(1, 1) + E(1, 2) + E(2, 1)− E(2, 2)| ≤ 2. (2.4.8)

2.4.4 The Positive Partial Transpose criterion

The Positive Partial Transpose (PPT) criterion[23] [24], or Peres-Horodecki criterion, states
that a state ρ on HC = HA ⊗HB, dimHA=2, dim(HB)=2 or 3, is separable iff

∀|ψ〉C : C〈ψ|ρTA |ψ〉C ≥ 0 (2.4.9)

This gives a simple mechanism to identify separability (entanglement); simply look for a
positive (negative) partial transpose.
In higher dimensions the situation is more complicated, and the PPT criterion becomes
weaker, stating only that separable states have PPT. Moreover, in higher dimensions the
PPT criterion might prove impractical since it requires a full knowledge of the density
matrix of the state, something which for e.g. a 2⊗N Hilbert space would require 4N

measurement settings.

2.4.5 Entanglement witnesses

The notion that the separable states form a convex and compact set, together with Hahn-
Banach theorem, gives that any inseparable state can be separated3 from the separable
states by a hyperplane[25]. This is visualized in fig. 2.1.
From this follows that for any entangled state there exists an entanglement witness (EW)
observable which defines a hyperplane in Hilbert space such that the entangled state is on
one side of it, while all separable states are on the other side[24]. Convention has become
that the witness shall assign a negative expectation value to the states on same side as the
entangled state and a positive semi-definite expectation value to all other.
That is, for an EW W:

Tr(Wρ)

{
≥ 0 ⇒ ρ is separable or inseparable
< 0 ⇒ ρ is inseparable , (2.4.10)

2Due to its clarity, the ”CH74” paper[22] was preferred over the original 1969 paper by Clauser, Horne,
Shimony and Holt.

3No pun intended.
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S

ρ

E

W

Figure 2.1: The separable states S and a particular entangled state ρ in the set of entangled
states E, can be separated by a hyperplane defined by the witness operator W .

so that a negative expectation value always implies entanglement. Fig. 2.1 illustrates the
relationships between the separable states, the entangled state and the witness operator.
A common flavor of EW is the maximum overlap witness

W = αI⊗n − ρ, (2.4.11)

for an n-qubit state ρ, where α = max〈Ψsep|ρ|Ψsep〉 for all separable states |Ψsep〉. For
PPT entangled states some tuning of the witness is required [26].
Maximum overlap witnesses can sometimes be tedious to measure due to complex local
decompositions, which is why other variants, such as Stabilizer Witnesses [27], have been
developed. A stabilizing operator is an operator Sj for which a particular state Ψ is left
invariant:

SjΨ = Ψ. (2.4.12)

A stabilizer is a group of such operators, and entanglement witnesses may be formed

W = c0I−
∑
i

Si, (2.4.13)

where Si are stabilizing operators, and

c0 = max
ρ∈P

〈
∑
i

Si 〉, (2.4.14)

with P as the set of all separable (n-separable) states. Here, the validity of the entanglement
witness depends on the local commutation properties of the stabilizing operators; locally
non-commuting operators ensure that there does not exist any separable state giving a
negative value of the witness.

2.4.6 Distillability

States ρd that are entangled are called distillable[12] when it is possible to ”distill” maximal
entanglement from some number n such states by means of LOCC. That is,

ρ⊗nd LOCC−−−−−−−→ ρmax. (2.4.15)

The resulting state ρmax has the equivalent amount of entanglement of a singlet state
between some of its subspaces.
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An undistillable state is impossible to teleport faithfully. Separable states are trivially
undistillable since it is impossible to increase the amount of entanglement in a system by
LOCC. See [12] for some examples and background on distillation schemes.

2.4.7 Bound entanglement

States that are entangled, yet undistillable, are called bound entangled (BE) states. It
has been shown in [28] that a positive partial transpose (PPT) over a certain cut implies
undistillability over said cut. This is why there has been some effort to theoretically char-
acterize families of entangled states that have PPT over some cut, while being entangled
over this cut. Indeed, such states exist, Acín et al. [29] give a family of tri-partite BE
states

ρb
.
=

1

n



1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 1

c 0 0 0
0 0 0 0 0 1

b 0 0
0 0 0 0 0 0 1

a 0
1 0 0 0 0 0 0 1


, (2.4.16)

a, b, c > 0 and n = 2 + a+ b+ c+ 1/c+ 1/b+ 1/a, for which an entanglement witness and
a scheme of production was presented in Hyllus et al.[30].
Also notable is the family of BE states of Horodecki et al. [31]

ρb
.
=

1

7b+ 1



b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0
0 0 b 0 0 0 0 b
0 0 0 b 0 0 0 0

0 0 0 0 1+b
2 0 0

√
1−b2
2

b 0 0 0 0 b 0 0
0 b 0 0 0 0 b 0

0 0 b 0
√

1−b2
2 0 0 1+b

2


, (2.4.17)

0 < b < 1, which have a PPT, but can be shown to be entangled.
The Smolin state[13], with which the present paper is concerned, is bound entangled but
has unlockable entanglement. It does not, however, have the ”simultaneous PPT and
entanglement” property of the states above. This state is described in more detail in
chapter 3.

2.5 Quantum Gates

Quantum gates are simple canonical unitary, and thus reversible, operators that can be
used to produce more complex quantum circuits with well defined outputs[32].

2.5.1 The Hadamard gate

The Hadamard gate operates on a single qubit and rotates it

H =
1√
2

((|0〉+ |1〉) 〈0|+ (|0〉 − |1〉) 〈1|) , (2.5.1)
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It can be represented by the matrix

H
.
=

1√
2

(
1 1
1 −1

)
. (2.5.2)

Fig. 2.2 shows the symbol for the Hadamard gate.

HA

Figure 2.2: A Hadamard gate acting on the qubit A.

2.5.2 The CNOT gate

The Controlled NOT gate operates on two qubits A and B and flips B if A is |1〉

CNOTAB = |00〉AB〈00|+ |01〉AB〈01|+ |10〉AB〈11|+ |11〉AB〈10|, (2.5.3)

Its matrix representation is

CNOT
.
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.5.4)

Fig. 2.3 shows the symbol for the CNOT gate.

+

A

B

Figure 2.3: A CNOT gate acting on the qubits A and B.

2.5.3 The controlled phase flip gate

The Controlled Phase flip gate operates on two qubits A and B and flips the phase of B
π radians if A is |1〉.

P = |00〉AB〈00|+ |01〉AB〈01|+ |10〉AB〈10| − |11〉AB〈11|, (2.5.5)

with the matrix representation

P
.
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.5.6)

This is a special case of the Controlled Phase gate, but for our purposes this will suffice.
Fig. 2.4 shows the symbol for the Controlled Phase Flip gate.
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P

A

B

Figure 2.4: A Controlled Phase Flip gate acting on the qubits A and B.

2.6 Photonic Systems

The Hamiltonian for photons propagating in a mode i is the quantum mechanical harmonic
oscillator [17]

H = ~ω(a†iai + 1/2), (2.6.1)

where
[ai, a

†
i ] = 1. (2.6.2)

This Hamiltonian has orthonormal eigenstates |ni〉 with corresponding eigenvalues Eni =
~ω(ni + 1/2), where the number ni corresponds to the number of photons in mode i. The
eigenstates satisfy

ai|ni〉 =
√
ni |ni − 1〉, (2.6.3)

and
a†i |ni〉 =

√
ni + 1 |ni + 1〉. (2.6.4)

Since the operator ai (a
†
i ) can be said to annihilate (create) a quantum of energy in the

harmonic oscillator, the name annihilation (creation) operator is appropriate. Again, in a
photonic system, the annihilation and creation of quanta corresponds to the annihilation
and creation of photons.
For photons it will be useful to denote the polarization mode along with the spatial mode
of the photons, an annihilation (creation) operator for spatial mode i and polarization
mode j will consequently be denoted a(†)

ij . Occasionally additional mode information may
be appended to the subscript.
A qubit in spatial mode i can be encoded on a photon as

|0〉i .
= |vi〉 ≡ |1iv〉 = a†iv|0iv〉 (2.6.5)

|1〉i .
= |hi〉 ≡ |1ih〉 = a†ih|0ih〉. (2.6.6)

2.6.1 Beam splitters

The general beam splitter[33] (GBS) operates on incoming photons in two spatial modes
1 and 2 (See fig. 2.5)
and transforms it to outgoing photons in the same modes according to

a†1v → t1va
†
1v + ir1va

†
2v

a†1h → t1ha
†
1h + ir1ha

†
2h

a†2v → t2va
†
2v + ir2va

†
1v

a†2h → t2ha
†
2h + ir2ha

†
1h,

21



a2v, a2h

a1v, a1h

a2v, a2h

a1v, a1h

Figure 2.5: General beam splitter operating on the spatial modes 1 and 2.

where t2ij is the probability density of a photon in spatial mode i to be transmitted in this
same mode, keeping its polarization j and r2

ij is the probability density of a photon being
reflected from spatial mode i to the other spatial mode, also keeping its polarization.
Its matrix representation is

SGBS =


t1v 0 ir2v 0
0 t1h 0 ir2h

ir1v 0 t2v 0
0 ir1h 0 t2h

 . (2.6.7)

To obtain the matrix description of the GBS we have introduced the operator basis below
for the two spatial and the two polarization modes.

a1v
.
=


1
0
0
0

 a1h
.
=


0
1
0
0

 a2v
.
=


0
0
1
0

 a2h
.
=


0
0
0
1

 (2.6.8)

To maintain unitarity of the GBS, the r’s and t’s must satisfy t2i + r2
i = 1, for i ∈

{1v, 1h, 2v, 2h} and t1ir2i − t2ir1i = 0, where i ∈ {v, h}.
There are two common specializations of the GBS, the symmetric beamsplitter (BS) and
the polarizing beamsplitter (PBS), their respective constraints and operations are given
below.

The symmetric beam splitter

The operation of the symmetric beam splitter:

ti = ri = 1√
2
, i ∈ {1v, 1h, 2v, 2h} ⇒



a†1v → 1√
2

(a†1v + ia†2v)

a†1h →
1√
2

(a†1h + ia†2h)

a†2v → 1√
2

(a†2v + ia†1v)

a†2h →
1√
2

(a†2h + ia†1h)
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whose matrix representation is

SBS =
1√
2


1 0 i 0
0 1 0 i
i 0 1 0
0 i 0 1

 . (2.6.9)

The polarizing beam splitter

The operation of the polarizing beamsplitter:

tiv = rih = 1, tih = riv = 0, i ∈ {1, 2} ⇒



a†1v → a†1v

a†1h → ia†2h

a†2v → a†2v

a†2h → ia†1h

whose matrix representation is

SPBS =


1 0 0 0
0 0 0 i
0 0 1 0
0 i 0 0

 . (2.6.10)

2.6.2 Wave plates

Wave plates[33] are birefringent crystals that can be used to manipulate the polarization
of photons by delaying one polarization component, i.e. shifting, or retarding, their phase.

a1v, a1h a1v, a1h

Figure 2.6: General wave plate operating on spatial mode 1.

For a general WP of thickness d, the phase retardation is given by

2πc = 2π(c0 +m) =
2π∆n d

λ
, c0 ∈ [0, 1[ , m ∈ Z+ (2.6.11)

where the birefringence ∆n = nslow − nfast, i.e. the difference in refractive indices of
the slow and the fast axes of the crystal. 2πc0 is the zero-order retardation and the
term m corresponds to the full-wave phase shifts added when using a crystal thicker than
d = λ/∆n. The unitary operation of a general wave plate on photons in spatial mode j is:

a†jv → (e−2πci cos2 φ+ sin2 φ) a†jv + 1
2(1− e−2πci) sin(2φ) a†jh

a†jh → 1
2(1− e−2πci) sin(2φ) a†jv + (cos2 φ+ e−2πci sin2 φ) a†jh
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Here, φ is the angle from the fast axis of the WP to the vertical polarization plane. Its
matrix representation is

ScWP =

(
e−2πci cos2 φ+ sin2 φ 1

2(1− e−2πci) sin 2φ
1
2(1− e−2πci) sin 2φ cos2 φ+ e−2πci sin2 φ

)
(2.6.12)

Since the waveplate has only one spatial mode, with two polarization modes, the basis of
the matrix is reduced to:

a1v
.
=

(
1
0

)
a1h

.
=

(
0
1

)
.

The operation of the WP can be specialized to the cases where c = 1
2 +nλ and c = 1

4 +nλ,
n ∈ Z, which correspond to a half-wave plate (HWP) and a quarter-wave plate (QWP)
respectively. Their operations on photons in mode j are given below.

The half-wave plate

Operation of the half-wave plate

a†jv → (sin2 φ− cos2 φ) a†jv + sin(2φ) a†jh

a†jh → sin(2φ) a†jv + (cos2 φ− sin2 φ) a†jh

,

its matrix representation

SHWP =

(
sin2 φ− cos2 φ sin 2φ

sin 2φ cos2 φ− sin2 φ

)
The quarter-wave plate

Operation of the quarter-wave plate

a†jv → (sin2 φ− i cos2 φ) a†jv + 1
2(1 + i) sin(2φ) a†jh

a†jh → 1
2(1 + i) sin(2φ) a†jv + (cos2 φ− i sin2 φ) a†jh.

and its matrix representation

SQWP =

(
sin2 φ− i cos2 φ 1

2(1 + i) sin 2φ
1
2(1 + i) sin 2φ cos2 φ− i sin2 φ

)
.

Wave plates as phase shifts

A wave plate may be employed as a variable phase shift by varying the length photons
travel through it. One variation on this theme is to fix φ = 0 and then tilt the wave plate
an angle θ around the slow axis. Since the length the photons will travel through the
crystal (disregarding the effects of refraction etc.) now is d′ = d/ cos(θ), the phase shift is
changed. By (2.6.11), c′ = c/ cos(θ). This gives the operation

a†jv → e−2πc′i a†jv = e
−2πci
cos θ a†jv

a†jh → a†jh

.
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with the matrix representation

ScθWP =

(
e
−2πci
cos θ 0
0 1

)

2.6.3 Non-linear optics

The polarization density in a crystal can be expanded in a power series

Pi = ε0

(
χ

(1)
ij Ej + χ

(2)
ijkEjEk + χ

(3)
ijklEjEkEl...

)
.

For linear crystals the higher order susceptibility tensors, such as χ(2)
ijk are negligibly small

compared to χ(1)
ij so that linear interactions will dominate. However, for strong fields or

high optical non-linearities, the higher order tensors come into play, giving rise to new
phenomena. Among these are e.g. Spontaneous Parametric Down-Conversion which has
become an important tool in quantum optics.

Spontaneous Parametric Down-Conversion

With the contributions of higher order terms, the polarization density can couple one
photon to two or more photons. When multiple incoming photons are coupled to produce
one outgoing photon the process is referred to as a sum frequency process, and conversely,
when one incoming photon is coupled to multiple outgoing photons the process is called a
difference frequency process or Spontaneous Parametric Down-Conversion. ”Spontaneous”
refers to the quantum fluctuations giving rise to the process, while ”Parametric” means
that the state of the crystal is not altered by the operation. ”Down-Conversion” simply
means that the frequency of the outgoing photons is less than that of the incoming photon.
In order for these processes to take place for the conversion of one photon into two and
vice versa, two criteria have to be fulfilled:

k0 = k1 + k2 (2.6.13)
ω0 = ω1 + ω2, (2.6.14)

where the ki are the wave vectors and the ωi the angular frequencies of the photons. The
criteria are recognized as the preservation of momentum and the preservation of energy
respectively.
Type I processes are those where the two photons share the same polarization, where in
type II processes they have opposite polarization.

Crystals that exhibit high non-linearities include e.g. LBO (LiB3O4) and BBO (β-BaB2O4).
The crystal can be cut to accommodate either type I or type II processes. In the case of
two photon SPDC, a single type II crystal can be used directly with an unpolarized laser
[?] (in mode i) to produce a |Ψ+〉 (in modes j and k), consequently,

a†i
Type II
−→ a†jha

†
kv − a

†
jva
†
kh. (2.6.15)

The modes j and k are taken to be located in the intersections between the extraordinary
and the ordinary light cones on the output side of the crystal.
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The type I crystal, however, outputs pairs of equally polarized photons (into modes j and
k) of polarization opposite to that of the beam (mode i),

a†iv
Type I
−→ a†jha

†
kh

a†ih
Type I
−→ a†jva

†
kv.

(2.6.16)

Here, the output modes j and k occur anywhere around a cone on the output side of
the crystal, although always at diametrally opposed positions, due to eqs. (2.6.13) and
(2.6.14). As a result, |Φ+〉 can be obtained by pumping two stacked type I BBO’s with a
laser of a†iv+a†ih polarization. For the purpose of producing polarization entangled photons
the type II crystal has been the most frequently used, although it has been shown [34] that
type I crystals can produce sources for entanglement several orders of magnitude brighter.

26



CHAPTER 3

THE SMOLIN STATE

It’s not stupid, it’s advanced.
- T. T.

3.1 Properties of the Smolin state

Smolin [13] found that a mixture of Bell states

ρABCDS =
1

4

4∑
i=1

|Ψi〉AB〈Ψi| ⊗ |Ψi〉CD〈Ψi|, (3.1)

where {|Ψi〉}4i=1 = {|Ψ−〉, |Ψ+〉, |Φ+〉, |Φ−〉}, produces an entangled state which is not
distillable, i.e. bound entangled, but which is possible to ”unlock” to a distillable configu-
ration.
This state is somewhat different from previous examples of bound entangled states in sec-
tion 2.4.7. It does not have a PPT over a cut where it is also entangled, but rather one have
to envision that the bound entanglement comes from it being separable at every partition
that separates two parties from the other two. Only by bringing together any two parties,
or unlocking the state, is it possible to distill maximal entanglement from it. It seems
questionable if bound entanglement of the Smolin state stems from the same phenomenon
as for the PPT entangled states of section 2.4.7. The matrix representation of the Smolin
state density is shown in fig. 3.1, revealing its remarkable symmetry.

A second way of writing the Smolin state is as a combination of GHZ-states,

ρABCDS =
1

4

4∑
i=1

|ΨGHZ
i 〉ABCD〈ΨGHZ

i |, (3.2)

where
[|ΨGHZ

i 〉]4i=1 =
[

1√
2

(|0000〉+ |1111〉), 1√
2

(|1100〉+ |0011〉),
1√
2

(|1010〉+ |0101〉), 1√
2

(|1001〉+ |0110〉)
]
.
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Figure 3.1: Matrix representation of the density operator ρS of the Smolin state

Each of these GHZ-states correspond to one of the four ”squares” in the density matrix, as
seen in fig. 3.1. Finally, a third way of viewing the Smolin state is as its local decomposition

ρABCDS =
1

16

4∑
i=1

σ⊗4
i , (3.3)

where {σi}4i=1 = {I, σx, σy, σz}. All these three versions of the Smolin state all seem
peculiarly symmetric and simple, which is going to be a great help when trying generate
or analyze the state in reality.

Here is a summary of the properties of the Smolin state.

1. Symmetry under interchange of parties. This can easiest be seen from the local
decomposition (3.3). Switching any two factors of any term does not affect the state.
The symmetry property is explored to some extent in section 3.3.5.

2. Entanglement. The state violates the PPT criterion at the cut A|BCD, since

ρS
TA |ψ〉 = λ|ψ〉 ⇒ min λ < 0 (3.4)

and given the symmetry property, it does so in every partition where one party
is separated from the other three i.e. in every 1|3 partition. This also rules out
separability in the finer cases of the 1|1|2 and 1|1|1|1 partitions.
A Bell inequality and two entanglement witnesses are given in sections 3.3.1, 3.3.2
and 3.3.3, providing further proof of the entanglement of ρS .

3. Non-distillability. Every party is separated from every other across a separable cut
[35]. This property follows from the facts that the state is separable across the
cut AB|CD by construction and that it has the symmetry property above, giving
separability in every 2|2 cut. Since no entanglement can be distilled across a separable
cut, the state is non-distillable.
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Separation Cut Distillability

A|B|C|D A|BCD Not distillable, "locked" configuration

A|B|CD A|BCD Distillable, "unlocked", altruistic configuration

A|BCD A|BCD Distillable

A|B|CD AB|CD Not distillable, separable cut

AB|CD AB|CD Not distillable, separable cut

Figure 3.2: Distillability summary. ”Separation” shows how the four parties are separated,
i.e. parties not separated by a ”|” are considered local, thus capable of performing Bell
measurements. ”Cut” refers to the cut over which entanglement distillation is attempted.
”Distillability” shows the success/failure of the distillation. Permutations of A, B, C and
D does not affect the distillability.

4. Unlockability. The entanglement of the state can be unlocked by bringing two parties
together since these parties can perform a Bell-measurement to determine which Bell
state they had and communicate the results to the other parties which then will share
the same pure Bell-state.

It is worth mentioning that there are no states in lower dimensions than 2⊗4 that have
properties similar to ρABCDS , although Augusiak and Horodecki [36] have generalized the
concept of the Smolin state to higher dimensions.
The plethora of exotic features of the Smolin state motivates further study. Below are
presented four approaches to producing the Smolin state.

3.2 Generation of the Smolin state

The Smolin state admits generation in a variety of ways, however, all approaches must
involve the mixing of several pure states. Below are presented three setups based on
quantum gates, producing the Smolin state starting from an all zero state, two Bell states
and a GHZ state respectively. These setups require six qubits to get the desired result,
discarding two of these in the mixing process. Although these setups are general in the
sense that they do not have features endemic to any particular technology, reproducing
these in a purely photonic framework will be difficult. Hence, a fourth solution is proposed.
This solution uses four qubits encoded on four photons and relies on a ”manual” mixture
of the pure states initially produced.

3.2.1 A network of quantum gates, starting from an all-zero state

The first setup, using fundamental quantum gates to produce ρABCDS , is similar to the one
presented for the Acín et al. state [29] in Hyllus et al. [30] First there is a preparation
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stage where four qubits for the ρABCDS and the ancillae are prepared, followed by a modifi-
cation stage where the ancillae interact with the state qubits and finally a trace-out of the
ancillae. All in all this requires 7 CNOT-gates, 3 Hadamard-gates and six qubits including
the ancillae. These resources compare well to those of e.g. Hyllus et al.

Presented below is a diagram over the quantum network used to obtain the Smolin state.

|0〉A

|0〉B

|0〉C

|0〉D

|0〉E

|0〉F

H

H

H

+

︷ ︸︸ ︷Preparation

+

+

+

+

︷ ︸︸ ︷Modification

+ +

︷ ︸︸ ︷Trace

Figure 3.3: Setup 1: Quantum network for the Smolin state

Noting that the Smolin state can be written as a combination of four 4-party GHZ states
as follows,

ρABCDS =
1

4

4∑
i=1

|ΨGHZ
i 〉ABCD〈ΨGHZ

i |, (3.2.1)

where
[|ΨGHZ

i 〉]4i=1 =
[

1√
2

(|0000〉+ |1111〉), 1√
2

(|1100〉+ |0011〉),
1√
2

(|1010〉+ |0101〉), 1√
2

(|1001〉+ |0110〉)
]
,

the stategy of the setup is to produce all |ΨGHZ
i 〉, and couple each of these to a specific

ancilla configuration. This will give ρABCDS as the sum (3.2.1) upon tracing out the ancil-
lae. The calculation is described in section A.1.

3.2.2 A network of quantum gates, starting from a GHZ-state

Should the experimental setup provide a four-partite GHZ-state initially, the preparation
stage of setup 1 can be largely omitted, resulting in a second simplified setup:

3.2.3 A network of quantum gates, starting from two bell states

Some sources of entanglement readily provide EPR-pairs, from which the Smolin state can
be produced by a third setup presented in fig. 3.5. The stategy of the setup is to produce
all |Ψi〉, by flipping qubits and shifting phases while coupling each these to a specific ancilla
configuration. This will give ρABCDS upon tracing out the ancillae.
Note that the setup is independent of which EPR-pair is used initially.
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Figure 3.4: Setup 2: Quantum network for the Smolin state, starting from a four-partite
GHZ-state.
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Figure 3.5: Setup 3: Quantum network for the Smolin state, starting from two EPR-pairs

3.2.4 A photonic system

Below is presented a photonic setup which is specifically designed to avoid use of the
immense resources (currently) required to produce one of the setups above in a photonic
regime. This setup is based on a standard pulsed Type-II SPDC source of entangled
photons, which is employed to produce Bell-pairs. The remainder of the setup is quite
similar to setup 3 above in the sense that it takes two identical Bell states and randomly
flips the state and phase of the qubits, producing a symmetric mixture of all the Bell states,
the Smolin state. The pivotal difference is that the purely photonic setup uses ”manual”
mixing of the Bell states.
Here follows an outline of the process, for the full calculation, see appendix A.4 on page
48.

Stage 1, Production of a Bell State: The pump laser (see fig. 3.6) produces a polar-
ization entangled photon pair in |Ψ+〉 when it impinges on the BBO.

Stage 2, Transformation to an Arbitrary Bell State: The filters F1 and F2 increase
the decoherence length of the photons so that they become more suitable for coinci-
dence measurement. The entangled state meets the quarter-wave plate QWP1, which
is oriented with its fast axis parallel to the vertical axis. By tilting QWP1 around
an axis perpendicular to the incident light, the difference in optical path length gives
tunable shifts in phase. Thus the phase of the state can be adjusted to either +1 or
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≡
PA PBS
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SPAD1

Figure 3.6: A photonic setup for the Smolin state, where a laser impinges on a Type-II
BBO crystal, producing an entangled pair of photons which passes through the filters F1
and F2 to increase its coherence length. QWP1 is either set to leave the state unchanged
or flip its phase. HWP1 is either set to leave the state unchanged or flip the polarization
of one of the photons. The beam splitters BS1 and BS2 distribute each of the photons
either directly to the polarization analyzers PA1 and PA3, or via the delay lines DL1, DL2
to PA2 and PA4.

−1.

HWP1 has two settings: either flip one bit of the entangled state, or leave it un-
touched. QWP1 and HWP2 together makes it possible to produce all four Bell-states.

Stage 3, Mixing of Two Bell States The two beam splitters BS1 and BS2 distribute
incident photons either to the delay line (DL1 or DL2 respectively) or to the branch
that goes directly to the detectors. This gives the probability 1

4 that both photons
from a given down-conversion go into the delay lines. The same probability is valid
for the case where the two photons go directly to the detectors. Since the laser is
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operated in pulsed mode the photons in both of these cases come from the same
pulse. The length of the delay lines is such that it compensates for the time between
consecutive laser pulses. The case where the photons of a laser pulse go into the
delay lines, while the photons from the following pulse go directly to the detectors,
will yield a fourfold coincidence at the detectors. This occurs with a probability of
1
16 .

Now, keeping the settings for QWP1 and HWP2 constant until a fourfold coincidence is
registered at the detectors will yield one of the states: |Φ+〉⊗2, |Φ−〉⊗2, |Ψ+〉⊗2, |Ψ−〉⊗2.
Randomly re-adjusting the settings after the coincidence will produce each of the states
above with equal probability, giving ρABCDS at the detectors.

3.3 Analysis of the Smolin state

Once ρABCDS has been produced follows the work to verify its characteristic features, such
as entanglement, undistillability, unlockability, symmetry under interchange of parties, and
maximal entanglement. Here is proposed a scheme that might be useful in this work.

3.3.1 Bell inequality

Augusiak and Horodecki gave a CHSH-type Bell inequality for the Smolin state in [35].
The inequality is

|E(1, 1, 1, 1) + E(1, 1, 1, 2) + E(2, 2, 2, 1)− E(2, 2, 2, 2)| ≤ 2. (3.3.1)

Evaluating the inequality with

O1111 = σx ⊗ σx ⊗ σx ⊗
1√
2

(σx + σz) (3.3.2)

O1112 = σx ⊗ σx ⊗ σx ⊗
1√
2

(σx − σz) (3.3.3)

O2221 = σz ⊗ σz ⊗ σz ⊗
1√
2

(σx + σz) (3.3.4)

O2222 = σz ⊗ σz ⊗ σz ⊗
1√
2

(σx − σz) (3.3.5)

⇒ |E(1, 1, 1, 1) + E(1, 1, 1, 2) + E(2, 2, 2, 1)− E(2, 2, 2, 2)|
= |Tr ((O1111 +O1112 +O2221 −O2222)ρS) | = 2

√
2 , (3.3.6)

which clearly is a violation of the inequality. The state is maximally entangled in the sense
that it exhibits the same degree of violation of the Bell inequality as would a Bell state or
GHZ state.

3.3.2 Entanglement witness

To rule out triseparability for the biseparable Smolin state the following witness is con-
structed.

WS = αI⊗4 − ρS , (3.3.7)
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where α = max〈Ψtri|ρS |Ψtri〉 for all tripartite states |Ψtri〉. This maximum occurs for e.g.
|Ψtri〉 = |0〉|0〉|Φ+〉 and turns out be α = 1

8 . The resulting witnesses has four eigenvalues
−1

8 and twelve at 1
8 and a local decomposition

WS =
1

16
(I⊗4 − σ⊗4

x − σ⊗4
y − σ⊗4

z ), (3.3.8)

from which it follows that it can be measured in 3 measurement settings. The expectation
value of WS for ρS is

〈WS〉ρS = −1

8
(3.3.9)

Since WS has multiple negative eigenvalues it must give negative values for other states
than the Smolin state. For example

〈WS〉Ψi = −1

8
. (3.3.10)

Noise tolerance

Mixing the Smolin state with the completely depolarized state, or white noise state,
ρnoise = 1

16I
⊗4 gives the noisy state

ρSn =
p

16
I⊗4 + (1− p)ρS , p ∈ [0, 1] (3.3.11)

The noise tolerance is the largest p for which the criterium

〈WS〉ρSn < 0 (3.3.12)

is valid. This is the maximum amount of white noise for which detection of entanglement
is possible. Solving for p gives p = 2

3 . This is also the maximum amount of white noise
tolerable by any witness for the Smolin state, since above this limit the Smolin state ceases
to be entangled[35].

3.3.3 Entanglement witness in stabilizer formalism

Above, the witnessWS was treated as a maximum overlap witness, but it can just as easily
be seen as a stabilizer witness as those of Tóth and Gühne[27] (see section 2.4.5). The
operators Sx = σ⊗4

x and Sz = σ⊗4
z are easily seen to be stabilizing operators of the Smolin

state, since
σ⊗4
x ρS = σ⊗4

z ρS = ρS . (3.3.13)

It is evident from the local decomposition of the Smolin state (3.3) that these two operators
indeed form a complete stabilizer, because the other possible stabilizing operators σ⊗4

y and
I⊗4 can be formed as products of the earlier two. As required for a stabilizer for witnesses,
these operators are locally non-commuting. However, with respect to 2:2 partitions they
do commute:

[σ⊗2
z , σ⊗2

x ] = (iσy)
⊗2 − (−iσy)⊗2 = 0. (3.3.14)

This simply means that the witness will not be able rule out biseparability of the Smolin
state, but the objective here is to rule out triseparability, so we proceed.
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A stabilizer witness ruling out full separability can be formed by

W ′S = c0I⊗4 − Sx − Sz − SxSz, (3.3.15)

where

c0 = max
ρ∈P

〈Sx + Sz〉, (3.3.16)

and P denotes the set of all separable states. To rule out triseparablility, c0 would be
maximum over the set of triseparable states. It turns out both maxima coincide at c0 = 1
for e.g. |Ψsep〉 = |0〉|0〉|0〉|0〉 and |Ψtri〉 = |0〉|0〉|Φ+〉. Thus, the resulting witness is

W ′S = I⊗4 − Sx − Sz − SxSz = I⊗4 − σ⊗4
x − σ⊗4

y − σ⊗4
z , (3.3.17)

which is recognized as the witness from section 3.3.2 without the constant factor. Obviously
its noise tolerance is the same. The last SxSz term can be dropped to save an analyzer
setting when measuring the witness in practice:

W ′′S = I⊗4 − Sx − Sz (3.3.18)

This witness has the slightly lower noise tolerance of p = 1
2 , but it is also the witness that

requires the least number of measurements of any possible witness for the Smolin state.
This can be seen by noting that removing one more setting would result in

max
ρ∈P

〈Sx〉 = max
ρ∈P

〈Sz〉 = 〈Sx〉ρS = 〈Sz〉ρS = 1, (3.3.19)

giving useless witnesses of the form W ′′′S = c0I⊗4 − Sj with j = x, y, z.

3.3.4 Measurement and discrimination

From the local decomposition of ρS (3.3) it is obvious that the state gives non-zero expec-
tation values when measured in the bases σ⊗4

x , σ⊗4
y and σ⊗4

z . The expectation values when
measuring these observables are

〈σ⊗4
x 〉ρS = 〈σ⊗4

y 〉ρS = 〈σ⊗4
z 〉ρS = 1. (3.3.20)

For all other bases the expectation values are zero. To discriminate between ρS and a pure
state

|Ψpure〉 =

4∑
i=1

|Ψi〉|Ψi〉

as well as other sums of Bell states, the observables σiσiσjσj , σiσjσjσi and σiσjσiσj ,
i, j ∈ {0, 1, 2, 3}, i 6= j, can be measured, since these give zero expectation value with ρS
but non-zero result with other combinations of Bell states.
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3.3.5 Bell state analysis

Analyzing the Bell state content can reveal symmetries in ρS . For example all the schemes
below should give the same result, thus showing that

ρS = 1
4

∑4
i=1 |Ψi〉AB|Ψi〉CD〈Ψi|AB〈Ψi|

= 1
4

∑4
i=1 |Ψi〉AC |Ψi〉BD〈Ψi|AC〈Ψi|

= 1
4

∑4
i=1 |Ψi〉AD|Ψi〉BC〈Ψi|AD〈Ψi|.

(3.3.21)

Tests like standard entanglement swapping as such become superfluous since these schemes
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Figure 3.7: Three setups performing Bell measurement (BM) on the Smolin state ρABCDS

to reveal party interchange symmetry.

represent a more general experiment.
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CHAPTER 4

THE UNITARY INVARIANT STATES

Plus ça change, plus c’est la même chose.
- A. K.

The n-qubit singlet states |S(n)
n 〉 are n-laterally unitary invariant[11], meaning that if an

unitary operator U is applied to each qubit, the state remains the same, i.e.

U⊗n|S(n)
n 〉 = |S(n)

n 〉. (4.1)

This also implies that correlations between qubits remain the same for sets of measurements
differing by an n-lateral unitary transformation. For example, when detecting |S(n)

n 〉 in
a photonic framework, an offset angle of the polarization analyzers will not effect the
experiment outcome, as long as all analyzers have the same offset.
The n-qubit singlet states themselves are given by

|S(2)
n 〉 =

1
n
2 !
√

n
2 + 1

∑
∀ (i,j,...,m)∈P (0...01...1)

z!
(n

2
− z
)

!(−1)
n
2
−z|ij...m〉, (4.2)

where n is even, P (0...01...1) is the set of all possible permutations of n/2 zeros and n/2
ones and z is the number of zeros in the first n/2 positions. For n = 2 this is the familiar
two-qubit singlet

|S(2)
2 〉 = |Ψ−〉 =

1√
2

(|01〉 − |10〉) . (4.3)

For n = 4 we get

|S(2)
4 〉 =

1

2
√

3
(2|0011〉 − |0101〉 − |0110〉 − |1001〉 − |1010〉+ 2|1100〉) . (4.4)

For brevity we will henceforth call the ”n-laterally unitary invariant states” just ”invariant
states”. (Phew!) The n-lateral unitary invariance draws to mind the stabilizer formalism
as presented in [27] and briefly discussed in sections 2.4.5 and 3.3.3. Evidently, every n-
lateral unitary operator acts as a stabilizing operator for these states. This is why finding a
stabilizer entanglement witnesses for an invariant state seems to be feasible task. Below are
presented three witnesses for the 4-qubit, 6-qubit and 8-qubit invariant states respectively.
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4.1 Stabilizer-based witness for the 4-qubit invariant state

A maximum overlap witness for the 4-qubit invariant state is given in [16]:

W4 =
3

4
I⊗4 − |S(2)

4 〉〈S
(2)
4 |. (4.1.1)

The factor 3
4 is the maximum overlap between |S(2)

4 〉 and all product states. This witness
was shown to be measurable in 15 measurement settings and it provides a noise tolerance
of p = 4

15 = 0.2667.... The objective here will be to use the stabilizer framework to simplify
this witness with respect to the number of measurements, while maintaining a high noise
tolerance.

The simplest stabilizing operators for this state (4.4) are obviously the 4-lateral unitaries:

S1 = σ⊗4
x (4.1.2)

S2 = σ⊗4
y (4.1.3)

S3 = σ⊗4
z . (4.1.4)

These operators leave the (4.4) intact, but it was already known from section 3.3.3 that they
only suffice to show that the state is not triseparable. Biseparability remains unproven. To
remedy this, it is necessary to stray somewhat from the stabilizer formalism. Let’s begin
with the local decomposition of (4.4).

ρS4 = (4.1.5)

|S(2)
4 〉〈S

(2)
4 | = 1

16

(
IIII + xxxx+ yyyy + zzzz (4.1.6)

+
2

3

(
xyyx+ yxxy + xyxy + yxyx

)
(4.1.7)

+
2

3

(
xzzx+ zxxz + xzxz + zxzx

)
(4.1.8)

+
2

3

(
zyyz + yzzy + zyzy + yzyz

)
(4.1.9)

+
1

3

(
II(xx+ yy + zz) + (xx+ yy + zz)II

)
(4.1.10)

−1

3

(
xx(yy + zz) + yy(xx+ zz)

+zz(xx+ yy)
)

(4.1.11)

−2

3

(
IxIx+ IxxI + xIxI + xIIx

)
(4.1.12)

−2

3

(
IyIy + IyyI + yIyI + yIIy

)
(4.1.13)

−2

3

(
IzIz + IzzI + zIzI + zIIz

) )
(4.1.14)

Here, the tensor product ⊗ is implicit between each factor of every term and the Pauli
matrices σx, σx and σx are denoted x, y and z respectively. The stabilizer terms (4.1.2) -
(4.1.4) are visible on line (4.1.6). These terms together require 3 measurement settings, i.e.
measuring the observables xxxx, yyyy and zzzz. Trying to get the most out these settings,
the terms on rows (4.1.10) and (4.1.12)-(4.1.14), containing only one variety of the Pauli
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matrices along with the identity matrix, become interesting. However, when asserted as
stabilizing operators, these terms fail. This can be seen by e.g.:

IIxx|S(2)
4 〉 = IIxx

1

2
√

3
(2|0011〉 − |0101〉 − |0110〉 − |1001〉 − |1010〉+ 2|1100〉)

=
1

2
√

3
(2|0000〉 − |0110〉 − |0101〉 − |1010〉 − |1001〉+ 2|1111〉)

6= |S(2)
4 〉

Apparently, IIxx did transform the ”inner” terms among themselves nicely, but destroyed
the two remaining terms. This goes for every other similar combination of one type of
Pauli matrix and the identity opertor. (From here on, such a combination will be called
a Non-Mixed Pauli operator or NMP for short.) However, the sum of these terms is a
stabilizing operator:

ΘNMP = 1
6

( 1

3

(
II(xx+ yy + zz) + (xx+ yy + zz)II

)
(4.1.15)

−2

3

(
IxIx+ IxxI + xIxI + xIIx

)
(4.1.16)

−2

3

(
IyIy + IyyI + yIyI + yIIy

)
(4.1.17)

−2

3

(
IzIz + IzzI + zIzI + zIIz

) )
. (4.1.18)

Note that the original terms have been multiplied by 8
3 to give obtain a correct normaliza-

tion when ΘNMP is applied to the invariant state:

ΘNMP |S(2)
4 〉 = |S(2)

4 〉, (4.1.19)

which proves that ΘNMP is indeed a stabilizing operator. It may be possible that some
subsets of these terms also stabilizes |S(2)

4 〉.

Following the subsequent steps of the stabilizer witness programme (e.g. calculating over-
laps) yields a witness detecting the |S(2)

4 〉, but which has a poor noise tolerance. The
stabilizer framework is jettisoned here, since it was found that a much better witness was
produced by leaving the coefficients for the stabilizing terms intact as they stand in the
local decomposition (4.1.6)-(4.1.14). This witness is described below.

4.1.1 Reduced witness for the 4-qubit invariant state

Extracting the NMP’s along with the 4-lateral Pauli operators from the local decomposi-
tion, gives a reduced witness:

W ′4 = c0IIII−
1

16

(
xxxx+ yyyy + zzzz

+
1

3

(
II(xx+ yy + zz) + (xx+ yy + zz)II

)
−2

3

(
IxIx+ IxxI + xIxI + xIIx

)
−2

3

(
IyIy + IyyI + yIyI + yIIy

)
−2

3

(
IzIz + IzzI + zIzI + zIIz

) )
. (4.1.20)
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The value of the constant c0 is dictated by the equation

W ′4 ≥ αW4, for some α > 0, (4.1.21)

which restrictsW ′4 to detecting fewer inseparable states than the maximum overlap witness
W4, thus ensuring that the resulting witness will detect true multi-qubit entanglement, if
any entanglement at all. Within the bounds of (4.1.21), c0 ought to be minized to allow
for greater noise tolerance. The function

min(eig(W ′4)c0=0
− αmin(eig(W ′4)) (4.1.22)

has exactly one global maximum which occurs for α = 5
12 , giving a minimum c0 of 11

24 .
Using this value for c0 gives a witness with a noise tolerance of p = 5

27 = 0.1802..., not far
from the noise tolerance p = 0.2667... of the maximum overlap witness.

4.2 Generalizations of the 4-qubit reduced witness

The reduced witness W ′4 above can be expressed

W ′4 = c
(4)
0 IIII− 1

16

∑
p∈P4

tr(pρS4)p, (4.2.1)

where P4 is the set of all unique permutations of all 4-qubit-NMP’s with an even, non-
zero, number of Pauli operators, including the 4-lateral operators of (4.1.2)-(4.1.4). This
is exactly the terms of (4.1.20). The constant c(4)

0 is derived from comparison with the
maximum overlap witness, as above. It is now easy to see that this recipe can be expanded
to higher dimensions. The n-dimensional witness candidate is:

Wn = c
(n)
0 I⊗n − 1

2n

∑
p∈Pn

tr(pρSn)p, n even, (4.2.2)

where Pn is the set of all unique permutations of all n-qubit-NMP’s with an even, non-zero,
number of Pauli operators, including the n-lateral operators σ⊗nx , σ⊗ny and σ⊗nz . In analogy
with the 4-dimensional case, the constant is derived from

W ′n ≥ αWn, for some α > 0, (4.2.3)

where Wn is the maximum overlap witness.

4.2.1 Reduced witness for the 6-qubit invariant state

The approach above works fine for n = 6, where the witness has c(6)
0 = 0.3142... and a noise

tolerance p = 0.1502.... The maximum overlap witness for n = 6 has a noise tolerance of
p = 0.3386..., so the reduced witness is about half that. However, the reduced witness is
still measurable in three settings while the maximum overlap witness with its 544 terms
would require on the order of hundreds of measurements1.

1Usually, some rearrangements can be made, allowing measurement several terms in one setting.
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4.2.2 Reduced witness for the 8-qubit invariant state

For n = 8, the reduced witness has c(8)
0 = 0.2281... and p = 0.0751.... The noise tolerances

for the maximum overlap witness for n = 8 is p = 0.3765.... Again, since the maximum
overlap witness has so many terms, 8320 to be exact, the reduced three setting witnessW ′8
might prove useful in spite of its rather low noise tolerance.

4.2.3 Venturing further

When testing the witness candidate for n = 10, with c(10)
0 = 0.1778..., a noise tolerance of

p = 0 was found. Consequently, the witness candidate was discarded as invalid. Obviously,
the ”cross-Pauli” terms, such as (4.1.7)-(4.1.9), make up a larger and larger portion of the
invariant states as dimensionality increases, reducing the importance of the NMP’s, thus
decreasing the noise tolerance. In order for a reduced witness of higher dimensionality to
be useful, it must incorporate additional ”cross-Pauli” terms. It is possible that there is a
simple scheme for attaining these witnesses, but that is well beyond the scope of this report.

The calculations the reduced witnesses were performed in MATLAB with the program-
files are shown in Appendix B.
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CHAPTER 5

CONCLUSION AND OUTLOOK

The future is here. It’s just not widely distributed yet.
- W. G.

5.1 The Smolin state

This report set out to show a realistic way of creating a bound entangled state in exper-
iment. The Smolin state became the obvious candidate due to its remarkable properties,
which not only grant it a special place among the bound entangled states, but also reduce
the resources needed to produce and analyze it. Four experimental setups that produce
the Smolin state were presented. Three of these were based on standard quantum gates,
differing in their initial conditions and using 10, 6 and 6 gates, respectively. Now, in 2009,
constructing quantum gates is still a hard task, which is why a fourth setup was pursued.
Working only with single-qubit operations and a two-photon entanglement source, this
setup demonstrates a way of creating bound entanglement which is already well within
reach today.

With an experiment already producing the Smolin state, one has the task of examin-
ing its entanglement content. For this purpose an entanglement witness was derived. This
witness was measurable in only three measurement settings, a feature stemming from the
unique symmetry properties of the state. The noise tolerance for this witness was p = 2

3 ,
which is maximal, since above this limit the Smolin state ceases to be entangled. It was
subsequently shown that this derived maximum overlap witness coincided with a witness
produced by means of the stabilizer formalism. The latter approach also gave another,
simplified witness measurable in a minimal two settings, while providing a noise tolerance
p = 1

2 .

Finally, means to discriminate the Smolin state from other Bell state combinations and an
experimental setup for examining the symmetry properties of the state were given.
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The setups and tools above are suggestions for a real experiment yet to be performed.
Some of the theoretic groundwork has thus been laid, while other aspects have not been
elaborated upon. One of these is the calculational task involved in setting up and tuning a
photonic system, which would have to be undertaken when an experiment is within grasp.
It seems highly probable that when the Smolin state is produced this would be in a pho-
tonic framework, since other systems would be hard pressed to reach the sufficient number
of qubits and/or complexity of the operations performable on these.

Regardless of the manner in which the Smolin state is produced, its production would
provide insight into exotic phenomena around quantum entanglement, such as bound en-
tanglement, unlockability and the effects of bipartite entanglement combined with party
interchange symmetry. Apart from these aspects, the Smolin state can be put to use in
quantum computation with e.g. quantum secret sharing and remote information concen-
tration.
As a final note on the Smolin state, it is fitting to mention that recently, Wang and
Ying[37] showed that stabilizers may be employed to produce families of bound entangled
and unlockable states, including the Smolin state and its generalizations[36]. Not only do
these contructions reproduce the Smolin state in a very simple manner, but they explain
all of its properties with magnificent clarity.

5.2 The invariant states

While this report was dedicated to the generation of the Smolin from early on, a second
parallel theme soon appeared, concerning the n-lateral unitary invariant states. These
states had been shown to withstand noise well and were already used in experiments in the
case of n = 4. However, as for most 4-qubit states, the maximum overlap entanglement
witness used to verify its entanglement content required many measurement settings, in
this case 15. A way was sought to reduce the complexity and the number of measurements
of the witness and its higher dimensional counterparts.

Starting by using the stabilizer framework and continuing by extracting terms from the
local decomposition of the 4-qubit invariant state, a witness was produced which was mea-
surable in three settings and provided a noise tolerance of p = 5

27 = 0.1802... to be compared
to that of the original 15 setting witness at p = 0.2667.... The witness detects genuine
multipartite entanglement. The procedure used for this witness proved to be adaptable to
higher dimensional invariant states, generating three setting witnesses for the 6-qubit and
8-qubit witnesses with noise tolerances of p = 0.1502... and p = 0.0751..., respectively. Al-
though the corresponding maximum overlap witnesses have noise tolerances around p = 1

3 ,
they require a number of measurements on the orders of 100’s, and in the case of 8-qubits,
1000’s, of measurements, thus justifying their replacement by a three setting witness with
a low noise tolerance.

When trying to move beyond 8 qubits, the three setting approach of the witnesses above
did not suffice. In these higher dimensional cases, the witnesses presented in this thesis
still provide a good basis in the search for a simplified witness where additional terms of
the local decomposition of the particular invariant state are taken into account.
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APPENDIX A

CALCULATIONS FOR GENERATION
OF THE SMOLIN STATE

A.1 Calculation of the yield of the first setup

Below are the calculations for the state produced by setup 1 as described on page 29 and
presented in fig. 3.3.

Stage 1, Preparation: The preparation stage sets up the ancillae and produces a 4-party
standard GHZ state.

|0〉A|0〉B|0〉C |0〉D|0〉E |0〉F ≡ |000000〉 HA, HE , HF
=⇒

1
2
√

2
(|0〉+ |1〉) |000〉 (|0〉+ |1〉) (|0〉+ |1〉) CNOTAB , CNOTAC , CNOTAD

=⇒

1
2
√

2
(|0000〉+ |1111〉) (|00〉+ |01〉+ |10〉+ |11〉)

(A.1.1)

Stage 2, Modification: The second stage modifies the qubits of the produced GHZ state
and couples these to the ancillae.

1
2
√

2
(|0000〉+ |1111〉) (|00〉+ |01〉+ |10〉+ |11〉) CNOTEA, CNOTFB

=⇒

1
2
√

2

(
(|0000〉+ |1111〉) |00〉+ (|0100〉+ |1011〉) |01〉+
(|1000〉+ |0111〉) |10〉+ (|1100〉+ |0011〉) |11〉

)
CNOTEC , CNOTFC

=⇒

|ΨS〉ABCDEF= 1
2
√

2

(
(|0000〉+ |1111〉) |00〉+ (|0110〉+ |1001〉) |01〉

+(|1010〉+ |0101〉) |10〉+ (|1100〉+ |0011〉) |11〉
)

= 1
2

(
|ΨGHZ

1 〉|00〉+ |ΨGHZ
4 〉|01〉+ |ΨGHZ

3 〉|10〉+ |ΨGHZ
2 〉|11〉

)

(A.1.2)
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Stage 3, Trace: Finally, from the state |ΨS〉 we get,

TrE,F |ΨS〉ABCDEF 〈ΨS | =
1

4

4∑
i=1

|ΨGHZ
i 〉ABCD〈ΨGHZ

i | = ρABCDS . (A.1.3)

A.2 Calculation of the yield of the second setup

Since stage 1 of setup 1 produces a GHZ state, the calculation of the yield of setup 2 is
simply stage 2 and 3 along with the preparation of the ancillae of setup 1 in the section
above.

A.3 Calculation of the yield of the third setup

Below are the calculations for the state produced by setup 3 as described on page 30 and
presented in fig. 3.5. To simplify matters, the initial EPR-pair is chosen to Ψi = Ψ4 = Φ+,
it is however clear that the result will be the same regardless of which Ψi s used.

|Φ+〉AB|Φ+〉CD|00〉EF = 1
2(|00〉+ |11〉)(|00〉+ |11〉)|00〉 HE , HF

=⇒

1
4(|00〉+ |11〉)(|00〉+ |11〉)(|0〉+ |1〉)(|0〉+ |1〉) CNOTEB , CNOTED

=⇒

1
4 ((|00〉+ |11〉)(|00〉+ |11〉)|0〉+ (|01〉+ |10〉)(|01〉+ |10〉)|1〉(|0〉+ |1〉)) PFA, PFC

=⇒

|ΦS〉ABCDEF=1
4((|00〉+ |11〉)(|00〉+ |11〉)|00〉+ (|00〉 − |11〉)(|00〉 − |11〉)|01〉
+(|01〉+ |10〉)(|01〉+ |10〉)|10〉+ (|01〉 − |10〉)(|01〉 − |10〉)|11〉)

= 1
2(|Φ+〉|Φ+〉|00〉+ |Φ−〉|Φ−〉|01〉+ |Ψ+〉|Ψ+〉|10〉+ |Ψ−〉|Ψ−〉|11〉)

Once |ΦABCDEF
S 〉 is obtained, the Smolin state is produced by the trace:

TrE,F |ΦS〉ABCDEF 〈ΦS | =
1

4

4∑
i=1

|Ψi〉|Ψi〉ABCD〈Ψi|〈Ψi| = ρABCDS (A.3.1)

A.4 Calculation of the yield of the fourth setup

Below are the calculations for the state produced by setup 4 as described on page 31 and
presented in fig. 3.6. The strategy of setup 4 is similar to that of setup 3 but differing
in that no ancillae are used to provide the mixing, since a six-photon system may be too
taxing to set up.
A single photon passing the BBO results in the following state

O1 =
1√
2

(a†1va
†
2h + a†1ha

†
2v), (A.4.1)

which passes HWP2,

O1
HWP2

=⇒ O2 = 1√
2

((
(cos2 φ− sin2 φ)a†1v + (sin 2φ)a†1h

)
a†2h

+
(
(sin 2φ)a†1v + (sin2 φ− cos2 φ)a†1h

)
a†2v

) (A.4.2)
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We will only be interested in φ = φ1 = 0 and φ = φ2 = π
2 for which we can conveniently

write
O3 = O

2
φ∈{φ1=0, φ2=π

2
}

= 1√
2

(
(δφφ1a

†
1v + δφφ2a

†
1h)a†2h

+(δφφ2a
†
1v − δφφ1a

†
1h)a†2v

) (A.4.3)

Taking into account QWP1

O3
QWP1

=⇒

O4 = 1√
2

(
(δφφ1a

†
1v + δφφ2a

†
1h)e

−2πci
cos θ a†2h + (δφφ2a

†
1v − δφφ1a

†
1h)a†2v

) (A.4.4)

It is only the values of θ where e
2πci
cos θ = ±1 that we will concern ourselves with. These

occur at

θ+ = arccos

(
2c

1 + 2n

)
, n ∈ Z+ (A.4.5)

θ− = arccos
( c
n

)
, n ∈ Z+ \ 0. (A.4.6)

Again for convenience,

O5 = O
4
θ∈{θ+, θ−} = 1√

2

(
(δθθ+ − δθθ−)(δφφ1a

†
1v + δφφ2a

†
1h)a†2h

+(δφφ2a
†
1v − δφφ1a

†
1h)a†2v

) (A.4.7)

Passing the beam splitters BS1 and BS2 gives

O5
BS1,BS2

=⇒

O6= 1
2
√

2

(
(δθθ+ − δθθ−)(δφφ1(a†Av + ia†Bv) + δφφ2(a†Ah + ia†Bh))(a†Ch + ia†Dh)

+(δφφ2(a†Av + ia†Bv)− δφφ1(a†Ah + ia†Bh))(a†Cv + ia†Dv)
) (A.4.8)

To proceed we must take into account that the laser used in this setup is pulsed. Photons
belonging to different laser pulses can be thought of as existing in different temporal modes.
This will reflect in annihilation (creation) operators by the appending of a third quantum
number. These will consequently follow the convention, a(†)

spt, where s, p and t are spatial,
polarization and temporal modes respectively. As an example, a†1v2 represents a vertically
polarized photon in spatial mode 1 and temporal mode 2. In analogy to the spatial modes,
the temporal modes are orthogonal.
Keeping θ and φ constant between pulses, O6 becomes

O6(t)= 1
2
√

2

(
(δθθ+ − δθθ−)(δφφ1(a†Avt + ia†Bvt) + δφφ2(a†Aht + ia†Bht))(a

†
Cht + ia†Dht)

+(δφφ2(a†Avt + ia†Bvt)− δφφ1(a†Aht + ia†Bht))(a
†
Cvt + ia†Dvt)

)
.

(A.4.9)
Looking at the combined state from two consequtive pulses in temporal modes t = 1 and
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t = 2 passing through the delay lines DL1 and DL2

O6(1)⊗O6(2) DL1,DL2
=⇒

O7 = 1
2
√

2

(
(δθθ+ − δθθ−)(δφφ1(a†Av1 + ia†Bv2) + δφφ2(a†Ah1 + ia†Bh2))(a†Ch1 + ia†Dh2)

+(δφφ2(a†Av1 + ia†Bv2)− δφφ1(a†Ah1 + ia†Bh2))(a†Cv1 + ia†Dv2)
)

⊗ 1
2
√

2

(
(δθθ+ − δθθ−)(δφφ1(a†Av2 + ia†Bv3) + δφφ2(a†Ah2 + ia†Bh3))(a†Ch2 + ia†Dh3)

+(δφφ2(a†Av2 + ia†Bv3)− δφφ1(a†Ah2 + ia†Bh3))(a†Cv2 + ia†Dv3)
)

(A.4.10)
Post-selecting O7, keeping only the case where four photons are present at the detectors
PA1-PA4, which happens when all photons are in temporal mode t = 2, results in

O8(θ, φ) = −1
8

(
(δθθ+ − δθθ−)(δφφ1a

†
Bv + δφφ2a

†
Bh)a†Dh + (δφφ2a

†
Bv − δφφ1a

†
Bh)a†Dv

)
⊗
(
(δθθ+ − δθθ−)(δφφ1a

†
Av + δφφ2a

†
Ah)a†Ch + (δφφ2a

†
Av − δφφ1a

†
Ah)a†Cv

)
.

(A.4.11)
Evaluating O8 at the different combinations of θ and φ gives the following four outcomes

O8(θ−, φ1) = −1

8

(
a†Bva

†
Dh + a†Bha

†
Dv

)
⊗
(
a†Ava

†
Ch + a†Aha

†
Cv

)
(A.4.12)

O8(θ−, φ2) = −1

8

(
a†Bha

†
Dh − a

†
Bva

†
Dv

)
⊗
(
a†Aha

†
Ch − a

†
Ava

†
Cv

)
(A.4.13)

O8(θ+, φ1) = −1

8

(
a†Bva

†
Dh − a

†
Bha
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†
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†
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)
⊗
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†
Ch + a†Ava

†
Cv

)
(A.4.15)

Letting these operators act on the photon number ground state |0〉 ≡ |0000〉BDAC ,

O8(θ−, φ1)|0〉 = −1

8

(
|vh〉+ |hv〉

)⊗2
= −1

4
|Ψ+〉 ⊗ |Ψ+〉 (A.4.16)

O8(θ−, φ2)|0〉 = −1

8

(
|hh〉 − |vv〉

)⊗2
= −1

4
|Φ−〉 ⊗ |Φ−〉 (A.4.17)

O8(θ+, φ1)|0〉 = −1

8

(
|vh〉 − |hv〉

)⊗2
= −1

4
|Ψ−〉 ⊗ |Ψ−〉 (A.4.18)

O8(θ+, φ2)|0〉 = −1

8

(
|hh〉+ |vv〉

)⊗2
= −1

4
|Φ+〉 ⊗ |Φ+〉, (A.4.19)

gives the Bell states up to a common constant.
By randomly selecting a θ ∈ {θ−, θ+} and a φ ∈ {φ1, φ2} after each recorded four-fold
coincidence at the detectors, the full Smolin state is produced.

∑
θ=θ−,θ+

1

2

∑
φ=φ1,φ2

1

2

(
O8(θ, φ)|0〉

)(
〈0|O†8(θ, φ)

)
=

1

16

4∑
i=1

1

4
|Ψi〉 ⊗ |Ψi〉〈Ψi| ⊗ 〈Ψi| ∝ ρABCDS ,

(A.4.20)
as required. The factor 1

16 is the portion of the initially produced EPR pairs that gives
rise to fourfold coincidences.

50



APPENDIX B

CALCULATIONS FOR REDUCED
WITNESSES FOR THE 4-, 6-, 8- AND

10-QUBIT INVARIANT STATES

Below are presented the MATLAB files used to calculate the reduced witnesses of chapter
4.

B.1 Witnesses_for_the_Invariant_States_01.m

%%Filename: Witnesses_for_the_Invariant_States_01.m
clear all
for dim=[4:2:10]

’========================================’
tic;
dim
%%The Invariant State of dimension dim
invariant_state=invariant(dim);
invariant_state=invariant_state*invariant_state’;

%%Constructing the projector witness
’Projector witness’
max_overlap_non_permuted=overlap(invariant_state)
max_overlap=max_subset_overlap(invariant_state)
projector_witness=max_overlap*eye(2^dim)-invariant_state;
noise_tolerance_projector=...

noise_tolerance(projector_witness, invariant_state)

%%Constructing the reduced witness
’Reduced witness’
reduced_witness=pauli_trace_out(invariant_state);
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alpha=maximum(-reduced_witness, projector_witness, [0,1], 6);
c0=min(eig(alpha*projector_witness))-min(eig(-reduced_witness))
t=max_subset_overlap(reduced_witness);
if t>c0

’Not a viable witness, does not discriminate biseparable states.’
return;

end;
reduced_witness=c0*eye(2^dim)-reduced_witness;
min_eig=min(eig(reduced_witness))
reduced_witness_on_invariant_state=trace(reduced_witness*invariant_state)
noise_tolerance_reduced=noise_tolerance(reduced_witness, invariant_state)

save([’variables for the ’, num2str(dim), ’-qubit invariant state’]);
time_for_calculation=toc

end;
return;

B.2 invariant.m

%%Filename: invariant.m
%Constructs an invariant state of dimension n
function sum_n2=invariant(n)
v=[zeros(1,n/2),ones(1,n/2)];
%All permutations
p=perms(v);
%Corrected permutations
np=zeros(1,n);
psize=size(p);
for i=1:psize(1)

flag=0;
npsize=size(np);
for j=1:npsize(1)

if(np(j,:)==p(i,:))
flag=1;

end %if
end %for
if(flag==0)

np(npsize(1)+1,:)=p(i,:);
end %if

end %for
npsize=size(np);
np=np(2:npsize(1),:);

%Construct the helper vector
helper=1/2*cumprod(2*ones(1,n));
%Parser
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parts=np*helper’;
no_of_z=n/2-sum(np(:, 1:n/2),2);
id_n=eye(2^n);
parts=id_n(parts+1, :);
sum_n2=0;
zsize=size(no_of_z);
for i=1:zsize(1)

sum_n2=sum_n2+factorial(no_of_z(i))...
*factorial(n/2-no_of_z(i))*(-1)^(n/2-no_of_z(i))*parts(i,:);

end %for
sum_n2=sum_n2’/(factorial(n/2)*sqrt(n/2+1));

B.3 overlap.m

%%Filename: overlap.m
%Returns the maximum overlap between all bipartite states and rho.
function max_eig=overlap(rho)
n=log2(length(rho));
parts=cumsum(ones(1,n));
max_eig=-Inf;
for i=1:(n-1)

div=nchoosek(parts,i);
divsize=size(div);
for j=1:divsize(2)

max_eig_temp=max(eig(keep(rho, div(j,:))));
if(max_eig_temp>max_eig)

max_eig=max_eig_temp;
end

end
end

B.4 max_subset_overlap.m

%%Filename: max_subset_overlap.m
%Finds the overlap between state and symmetrized
%biseparable states based on invariant states.
function max_overlap=max_subset_overlap(state)

dim=log2(length(state));
biseparables=construct_biseparables(dim);
max_overlap=-Inf;
for i=[1:length(biseparables)]

max_overlap=max(trace(biseparables{i}*state), max_overlap);
end;
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B.5 construct_biseparables.m

%%Filename: construct_biseparables.m
%Calculates all the possible symmetrized
%biseparable states based on invariant states.
function res=construct_biseparables(dim)
order=[dim:-1:1];
counter=1;
res={};
for i=[2:2:dim/2]

inv1=invariant(dim-i);
inv2=invariant(i);
inv1=inv1*inv1’;
inv2=inv2*inv2’;

center=right_shift_vector(order, (dim-i)/2);
res{counter}=reorder(mkron(inv1, inv2), center);
counter=counter+1;

end;

B.6 noise_tolerance.m

%%Filename: noise_tolerance.m
%Calculates the noise tolerance of an entanglement witness
%for a particular state.
function p=noise_tolerance(witness, state)
p=-trace(witness*state)/(trace(witness)/length(witness)-trace(witness*state));

B.7 pauli_trace_out.m

%%Filename: pauli_trace_out.m
%Returns all the Non-Mixed Pauli operators and n-lateral
%Pauli ops for the given state. It is assumed that the
%state has the same for x, y and z NMPs.
function res=pauli_trace_out(state)
I=sqrt(-1);
x=[0,1;1,0];
y=[0,-I;I,0];
z=[1,0;0,-1];
p={x,y,z};

qubits=log2(length(state));
res=zeros(length(state));
for i=[1:length(state)-1]

c=bin(i,qubits);
if(mod(num_set_bits(c),2)==0)
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ci=bin_invert(c);
p_opx=c(1)*x+ci(1)*eye(2);
p_opy=c(1)*y+ci(1)*eye(2);
p_opz=c(1)*z+ci(1)*eye(2);
for j=[2:qubits]

p_opx=mkron(p_opx, c(j)*x+ci(j)*eye(2));
p_opy=mkron(p_opy, c(j)*y+ci(j)*eye(2));
p_opz=mkron(p_opz, c(j)*z+ci(j)*eye(2));

end;
t=trace(state*p_opx)/length(state);

res=res+t*p_opx;
res=res+t*p_opy;
res=res+t*p_opz;

end;
end;

B.8 maximum.m

%%Filename: maximum.m
%A (very) simple method for finding the alpha at the maximum of
%eig(test_witness-alpha*projector_witness) for a given
%interval of alpha.
function res=maximum(test_witness,projector_witness, alpha_interval, level)
max_value=-Inf;
max_alpha=-Inf;
no_of_intervals=100;
for alpha=linspace(alpha_interval(1),alpha_interval(2),no_of_intervals)

eigs=eig(test_witness-alpha*projector_witness);
if eigs(1)>max_value

max_value=eigs(1);
max_alpha=alpha;

end
end;

level=level-1;
if level>0

half_interval=1.0*(alpha_interval(2)-alpha_interval(1))/no_of_intervals;
res=maximum(test_witness, projector_witness,...
[max_alpha-half_interval,max_alpha+half_interval], level);

else
res=max_alpha;

end
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