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Abstract

The geometry of non-conformal supersymmetric non-linear sigma mod-
els in one and two dimensions are reviewed. Transformations of the
Osp(1|2) subgroup of the superconformal group are derived and then used
in finding geometrical constraints on the target space of an N = (1, 1)
sigma model reduced to an N = 1 sigma model.
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1 Introduction

Supersymmetry is a proposed symmetry between bosons and fermions. It asserts
that every boson and every fermion have their fermionic respectively bosonic so-
called superpartner which in every aspect resemble the original particles except
that their respective spins differ by one half. Since also their masses should
equal, superparticles would have long been discovered, but since this is not the
case the symmetry needs to be broken somehow, would it still be a symmetry of
nature. Unbroken supersymmetry, being the case of massless particles, is still
an interesting field of research.
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Non-linear sigma models were first introduced by Gellman and Lévy in 1960
to describe spinless mesons called σ-mesons. However, in today’s language non-
linear sigma models are understood to be a set of maps from a parameter space,
or worldsheet, to a manifold, which we will call target space. Introducing D
bosonic fields as maps, they can be seen as coordinates on the D-dimensional
target manifold thus fixing its geometry. Different configurations of parameter
space will result in different target space geometries.

This master thesis is written as a review article covering some of the more
important stuff needed for doing research in this vast field. At the end I will
even touch on research by analyzing the constraints needed for a dimensionally
reduced sigma model to be superconformally invariant. In writing this the-
sis and deciding which calculations to include, I have always had in mind the
nearly uninitiated student that I was when this project started. Therefore some
lengthy derivations, which for some may seem trivial, are included under the
motto better one too many, while other, due to their length, have been omitted
nevertheless.

In sections 2, 3, 4 and 5 the geometrical background needed is treated. Sec-
tion 2 comprises an introduction to real geometry in the language of manifolds.
This is extended to complex geometry in section 3, which also contains a short
compilation of the most important complex geometries. In section 4 generalized
complex geometry is introduced, which have been shown to contain symplectic
and complex geometry as special cases, thus being more general than both of
them seperatly. Finally, in section 5 Minkowski space, treated as a quotiant
space of the Poincaré group and the Lorentz group, is parametrized, and we
take a look at how transformations work.

Section 6, 7, 8 and 9 deal with supersymmetric bosonic non-linear sigma
models and how they transform under the super-Poincaré group, not including
conformal transformations i.e.. Bosonic non-linerar sigma models in one and
two dimensions are described in section 6. In section 7 supersymmetry is in-
troduced and a few supersymmetric sigma models are analyzed in section 8.
Section 9 deals with the geometrical constraints on target space implicated by
extending and reducing the number of supersymmetries and dimensions of the
sigma model.

The final sections 10, 11, 12 and 13 are dedicated to conformal theory. In
section 10 non-supersymmetric conformal theory is introduced for different num-
bers of dimensions, and then in section 11 extended to the supersymmetric cases.
In section 11 we also explicitly show how to construct superconformal transfor-
mations in one dimension. Finally, in section 12 we use this machinery on one
of the reduced models in section 9, thus showing the geometrical constraints
needed for the original non-reduced sigma model to be dimensionally reducable
to a superconformal sigma model. In section 13 these results are discussed and
some paths for further investigation are proposed.

In the appendices notations and other conventions are collected (appendix
A), togehter with some lengthier derivations and calculations (appendix B),
and an explicit reduction of the sigma model used in section 12 (appendix C).
Finally, appendix D comprises an introduction to the main idea of supersym-
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metry in terms of ordinary bosonic and fermionic fields, i.e., without the use of
superfields.

2 Real geometry

2.1 Manifolds

Geometry is best described in the language of manifolds. In short a manifold is
a topological space which is homeomorphic1 to Rm locally but not necessarily
globally. This means that on every sufficiently small part Ui of our manifold
we can draw a coordinate system with the help of a coordinate function ϕi,
and that there exists an infinitely differentiable map ψij between the coordinate
functions of two overlapping subsets Ui and Uj of the manifold. The more formal
definition reads: M is an m-dimensional differentiable manifold if

1. M is a topological space

2. There exists a family of pairs {(Ui, ϕi)}, called charts, on M such that the
family of open sets {Ui} covers M and for each Ui there is a homeomor-
phism ϕi : Ui → U ′i ∈ Rm

3. The map ψij = ϕi ◦ ϕ−1
j from ϕj(Ui ∩ Uj 6= ∅) to ϕi(Ui ∩ Uj) is infinitely

differentiable

Next we introduce a differentiable map f between an m-dimensional manifold
M and an n-dimensional manifold N . Taking a chart (U,ϕ) on M and a chart
(V, ψ), f can be presented in coordinates by

ψ ◦ f ◦ ϕ−1 : Rm → Rn. (1)

If f is a homeomorphism and x = ψ ◦ f ◦ ϕ−1 is invertible and both x and its
inverse are C∞, then f is called a diffeomorphism, and M and N are said to be
diffeomorphic to each other.
If f maps from a manifold to the real numbers R, f is called a function, and we
have the coordinate presentation

f ◦ ϕ−1 : Rm → R. (2)

We also define a curve on a manifold as a map from an open interval (a, b) to
the manifold. We can then introduce vectors on M as tangent vectors to the
curve, the set of which at point p defines the tangent space TpM . An arbitrary
vector is written X = Xµ ∂

∂xµ , where {eµ} = { ∂
∂xµ } are the basis vectors of TpM .

Dual vectors, or one-forms as they are also called, are defined on the cotangent
space at p, denoted T ∗pM , and are written ω = ωµdx

µ, where {dxµ} constitutes

1f : X1 → X2 is said to be homeomorphic if it is continuous and has an inverse f−1 :
X2 → X1
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the basis in T ∗pM . Note that TpM and T ∗pM have the same dimension as the
manifold. The inner product between a one-form and a vector is defined by

〈ω,X〉 = ωµX
ν〈dxµ, ∂

∂xν
〉 = ωµX

νδµν = ωµX
µ. (3)

We generalize vectors and one-forms to objects with arbitrary number of upper
and lower indices: a tensor of type (q, r) is an object that maps q elements of
T ∗pM and r elements of TpM to a real number, and is written

T = Tµ1...µq
ν1...νr

∂

∂xµ1
. . .

∂

∂xµq
dxν1 . . . dxνr . (4)

Next we define the exterior derivative. The action of the exterior derivative dr
on an r-form

ω =
1

r!
ωµ1...µrdx

µ1 ∧ · · · ∧ dxµr (5)

is defined by

drω =
1

r!

( ∂

∂xν
ωµ1...µr

)
dxν ∧ dxµ1 ∧ · · · ∧ dxµr . (6)

Usually the subscript r is dropped and the exterior derivative is thus written d.
We examplify this with the (antisymmetric) two-form ω = 1

2ωµνdx
µ ∧ dxν :

dω =
1

2
(ωµν,ρ)dx

ρ ∧ dxµ ∧ dxµ

=
1

2

1

3!
(ωµν,ρdx

ρ ∧ dxµ ∧ dxν + ωµρ,νdx
ν ∧ dxµ ∧ dxρ + ωρµ,νdx

ν ∧ dxρ ∧ dxµ

+ ωρν,µdx
µ ∧ dxρ ∧ dxν + ωνρ,µdx

µ ∧ dxν ∧ dxρ + ωνµ,ρdx
ρ ∧ dxν ∧ dxµ)

=
1

2

1

3!
(ωµν,ρ − ωµρ,ν + ωρµ,ν − ωρν,µ + ωνρ,µ − ωνµ,ρ)dxρ ∧ dxµ ∧ dxν

=
1

2

1

3!
(ωµν,ρ + ωρµ,ν + ωρµ,ν + ωνρ,µ + ωνρ,µ + ωµν,ρ)dx

ρ ∧ dxµ ∧ dxν

=
1

3!
(ωµν,ρ + ωρµ,ν + ωνρ,µ)dxρ ∧ dxµ ∧ dxν . (7)

Comparing with a three-form

H = Hµνρdx
µdxνdxρ =

1

3!
Hµνρdx

µ ∧ dxν ∧ dxρ =
1

3!
Hµνρdx

ρ ∧ dxµ ∧ dxν , (8)

we see that H = dω can be expressed as

Hµνρ = ωµν,ρ + ωρµ,ν + ωνρ,µ. (9)

A form ω that can be written as the exterior derivative of another form (such
as H in our example) is called exact. If dω = 0, ω is called closed.
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2.2 Riemannian manifolds

We define a Riemannian metric g as a type (0, 2) tensor field on M satisfying
at each point

1. gp(U, V ) = gp(V,U)

2. gp(U,U) ≥ 0, where equality holds only for U = 0

where U, V ∈ TpM . A pseudo-Riemannian metric also satisfies the first relation
but the second is now

2’. if gp(U, V ) = 0 for any U , then V = 0.

If a differentiable manifold M admits a (pseudo-)Riemannian metric g, the pair
(M, g) is said to be a (pseudo-)Riemannian manifold. With the help of the
metric we can define the inner product between two vectors instead of between
a vector and a one-form. gp(U, ) is simply associated with a one-form ωU and
we get 〈ωU , V 〉 = gp(U, V ).

2.3 The Lie derivative, the covariant derivative, torsion
and curvature

The Lie derivative LXY of a vector field Y = Y µ ∂
∂xµ along the flow of a vector

field X = Xµ ∂
∂xµ tells us how Y changes along the flow of X, the flow being

defined as a curve whose tangent in every point is parallel to the vector field.
We have

LXY = (Xµ∂µY
ν − Y µ∂µXν)eν = [X,Y ]. (10)

The Lie derivative can act on an arbitrary tensor Aµ1...µn
ν1...νk

in the following way
[21]

(LXA)µ1...µn
ν1...νk

=XρAµ1...µn
ν1...νk,ρ

+Xρ
,ν1A

µ1...µn
ρν2...νk

+ · · ·+Xρ
,νk
Aµ1...µn
ν1...νk−1ρ

−Xµ1
,ρA

ρµ2...µn
ν1...νk

− · · · −Xµ1
,ρA

µ1...µn−1ρ
ν1...νk

. (11)

We exemplify this by the Lie derivative of Hµν
ρ:

(LXH)µνρ = XκHµν
ρ,κ −Xµ

,κH
κν

ρ −Xν
,κH

µκ
ρ +Xκ

,ρH
µν
κ. (12)

Noting that LXY also depends on the derivative ofX, we introduce the covariant
derivative ∇X as a generalization of directional derivatives from functions to
tensors. For X = Xµeµ and Y = Y νeν we have

∇XY = Xµ
(∂Y λ
∂xµ

+ Y νΓλµν

)
eλ, (13)

where the connection coefficients Γλµν are defined by

∇µeν = eλΓλµν . (14)
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The covariant derivative describes the change of a vector Y in the direction of
the vector X. The terms in the parenthesis of (13) is written

∇µY λ :=
∂Y λ

∂xµ
+ ΓλµνY

ν . (15)

We can generalize the covariant derivative to arbitrary tensors by

∇νtλ1...λp
µ1...µq =∂νt

λ1...λp
µ1...µq

+ Γλ1

νκt
κλ2...λp
µ1...µq + · · ·+ Γ

λp
νκt

λ1...λp−1κ
µ1...µq

− Γκνµ1
tλ1...λp
κµ2...µq − · · · − Γκνµq t

λ1...λp
µ1...µq−1κ. (16)

We are now ready to define the torsion tensor

T (X,Y ) := ∇XY −∇YX − [X,Y ]. (17)

In components of the basis {eµ} and dual basis {eµ} = {dxµ} we get

T = Tλµνeλe
µeν

= eµ
∂eλ

∂eµ
eλ + eµeνΓλµνeλ − eµ

∂eλ

∂eµ
eλ − eνeµΓλνµeλ − eµ

∂eν

∂eµ
eν + eµ

∂eν

∂eµ
eν

= eµeν(Γλµν − Γλνµ)eλ, (18)

i.e.,
Tλµν = Γλµν − Γλνµ. (19)

We call a torsion-less connection Γ
(0)λ

µν a Levi-Civita connection. In terms of

the metric it is written

Γ
(0)λ

µν =
1

2
gλκ(gµκ,ν + gνκ,µ − gµν,κ). (20)

From (19) we see that the Levi-Civita connection is symmetric in its lower
indices. We are now able to decompose the general connection into a torsionless
and a torsionfull part

Γλµν = Γ
(0)λ

µν +
1

2
Tλµν . (21)

This can be generalized to

Γ
(±)λ

µν = Γ
(0)λ

µν ±
1

2
Tλµν , (22)

or

Γ(±) = Γ(0) ± 1

2
g−1T, (23)

with a covariant derivative∇(±)
µ . One source of torsion may be an antisymmetric

tensor Bµν connected to the ordinary metric gµν by

Eµν = gµν +Bµν , (24)
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i.e.,

gµν =
1

2
E(µν) =

1

2
(Eµν + Eνµ), Bµν =

1

2
E[µν] =

1

2
(Eµν − Eνµ), (25)

where we implicitly have made clear our definition of symmetrization and an-
tisymmetrization of indices. Torsion can then be interpreted as the exterior
derivative of the B-field, T = dB, or in components

Tκµν = (dB)κµν = Bκµ,ν +Bµν,κ +Bνκ,µ (26)

The Riemann curvature tensor is defined

R(X,Y, Z) = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (27)

which in our coordinates becomes

Rκλµν = ∂µΓκνλ − ∂νΓκµλ + ΓηνλΓκµη − ΓηµλΓκνη. (28)

Contracting the indices we get the Ricci tensor

Rµν := Rλµλν , (29)

and the scalar curvature
R := gµνRµν . (30)

These definitions generalize in the obvious way under Γκµν → Γ
(±)κ

µν to

Rκλµν → R
(±)κ

λµν Rµν → R
(±)

µν . (31)

2.4 Killing vector fields

We close this section with a short introduction to Killing vector fields. These
are fields along which the metric g is constant, i.e., a vector field X is a Killing
vector field if

LXg = 0. (32)

Following a more detailed approach we first define an isomorphism. A diffeo-
morphism f : M →M on a (pseudo-)Riemannian manifold (M, g) is said to be
an isomorphism if

∂yα

∂xµ
∂yβ

∂xν
gαβ(f(p)) = gµν(p), (33)

where x and y are the coordinates of p and f(p) respectively. If f : xµ 7→
xµ + εXµ we then have

∂(xα + εXα)

∂xµ
∂(xβ + εXβ)

∂xν
gαβ(x+ εX) = gµν(x). (34)

This gives us the Killing equation

Xξ∂ξgµν + ∂µX
ξgξν + ∂νX

ξgµξ = (LXgµν) = 0. (35)
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A vector field X satisfying this equation is said to be a Killing vector field.
Geometrically this means that the inner product between two vectors is constant
along a Killing vector field.
We can generalize the Killing vector field by

LXg = cXg, (36)

where cX ∈ C. X is now called a homothetic Killing vector field [9].

3 Complex geometry

3.1 Complex manifolds

Complex manifolds are similarly defined as the real manifolds. To this end we
introduce a complex valued function f : Cm → C and say that it is holomorphic
if f = f1 + if2 satisfies the Cauchy-Riemann relations for each zµ = xµ + iyµ:

∂f1

∂xµ
=
∂f2

∂yµ
,

∂f2

∂xµ
= − ∂f1

∂yµ
(37)

Similarly a map (f1, . . . , fn) : Cm → Cn is holomorphic if each function fλ

λ = 1, . . . , n is holomorphic. M is then said to be a complex manifold if

1. M is a topological space

2. There exists a family of pairs {(Ui, ϕi)}, called a chart, on M such that
the family of open sets {Ui} covers M and for each Ui there is a homeo-
morphism ϕi : Ui → U ′i ∈ Cm

3. The map ψij = ϕi◦ϕ−1
j from ϕj(Ui∩Uj 6= ∅) to ϕi(Ui∩Uj) is holomorphic

We note that the complex dimension, dimCM = m, is half the real dimension,
dimRM = 2m. Therefore the tangent space TpM is spanned by 2m vectors{ ∂

∂x1
, . . . ,

∂

∂xm
;
∂

∂y1
, . . . ,

∂

∂ym

}
, (38)

and the cotangent space T ∗pM by{
dx1, . . . , dxm; dy1, . . . , dym

}
. (39)

A linear map Jp : TpM → TpM can be defined by

Jp

( ∂

∂xµ

)
=

∂

∂yµ
, Jp

( ∂

∂yµ

)
= − ∂

∂xµ
, (40)

which means that
J2
p = −idTpM , (41)
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where id is the identity map2. This defines an almost complex structure.
Roughly speaking we can see it like this: an m-dimensional complex mani-
fold M with vectors Z = X + iY is a 2m-dimensional real manifold with an
almost complex structure J , telling us how to relate the m-dimensional real
vector fields X and Y . We see that in the base (38) Jp takes the form

Jp =

(
0 −Im
Im 0

)
(42)

since ( ∂

∂xµ
,
∂

∂yµ

)(
0 −Im
Im 0

)
=
( ∂

∂yµ
,− ∂

∂xµ

)
, (43)

where Im is the m×m unit matrix. We define new vectors

∂

∂zµ
:=

1

2

( ∂

∂xµ
− i ∂

∂yµ

)
(44)

∂

∂z̄µ
:=

1

2

( ∂

∂xµ
+ i

∂

∂yµ

)
, (45)

and corresponding one-forms

dzµ := dxµ + idyµ, dz̄µ := dxµ − idyµ. (46)

These vectors and one-forms span the 2m-dimensional complex vector space
TpM

C and its dual space T ∗pM
C respectively. Now, extending the definition of

the almost complex structure to TpM
C, we find

Jp
∂

∂zµ
= i

∂

∂zµ
, Jp

∂

∂z̄µ
= −i ∂

∂z̄µ
. (47)

This gives in these coordinates

Jp =

(
iIm 0
0 −iIm

)
, (48)

and we see that the complex manifold can be seperated into two disjoint vector
spaces:

TpM
C = TpM

+ ⊕ TpM−, (49)

with
TpM

± = {Z ∈ TpMC|JpZ = ±iZ}. (50)

Z = Zµ ∂
∂zµ ∈ TpM

+ is called a holomorphic vector, while Z = Zµ ∂
∂z̄µ ∈ TpM

−

is called an anti-holomorphic vector. TpM
± is called integrable if and only if

X,Y ∈ TpM± ⇒ [X,Y ] ∈ TpM±, (51)

2The identity map on a set M is defined such that it always returns its argument.
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where [ , ] is the Lie bracket. Using projection operators P± := 1
2 (1 ∓ iJ)

this can be written

P∓[P±X,P±Y ] = 0, X, Y ∈ TpM. (52)

This condition can also be expressed introducing the Nijenhuis tensor N(X,Y )

N(X,Y ) := [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]. (53)

(51) and (52) are now identical to N(X,Y ) = 0, by a theorem proved by New-
lander and Nirenberg.

3.2 Hermitian manifolds and Kähler manifolds

The Riemannian metric g of a complex manifold M is called a Hermitian metric
and the pair (M, g) is said to be a Hermitian manifold if at each point p ∈M

gp(JpX, JpY ) = gp(X,Y ) (54)

for any X,Y ∈ TpM and J is the almost complex structure. Another way to
define a Hermitian manifold is to demand that a complex structure is preserved
by the Riemannian metric of a real manifold, i.e

J tgJ = g. (55)

We define a tensor field Ω by

Ωp(X,Y ) = gp(JpX,Y ), X, Y ∈ TpM, (56)

and call it the Kähler form. Ω may also be written

Ω = igµν̄dz
µ ∧ dz̄ν = −Jµν̄dzµ ∧ dz̄ν . (57)

A Hermitian manifold (M, g) is said to be a Kähler manifold if the corresponding
Kähler form is closed (dΩ = 0), and the metric g is called the Kähler metric of
M . It can be shown that a Hermitian manifold is Kähler if and only if

∇µJ = 0. (58)

The Kähler metric can locally be written

gµν̄ =
∂2K

∂zµ∂z̄ν
, (59)

where K is a function called the Kähler potential.
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3.3 Hyperkähler and pseudo-Kähler

A hyperkähler manifold is a quaternionic analogue to the Kähler manifold. In-
stead of one complex structure we have three complex structures I, J and K,
that need to satisfy the quaternion algebra:

I2 = J2 = K2 = −1

IJ = −JI = K, JK = −KJ = I, KI = −IK = J (60)

This gives us a quaternion-Kähler manifold. Imposing the condition that the
scalar curvature vanishes we have a hyperkähler manifold.
In a pseudo-Kähler manifold two of the structures are real, i.e, for J2 = −1 we
have I2 = K2 = 1.

3.4 Bihermitian geometry

Bihermitian geometry involves two complex structures

J2
(±) = −1, (61)

with respect to which the metric should be separately Hermitian

J t(±)gJ(±) = g. (62)

The complex structures should also be covariantly constant

∇(±)J(±) = 0 (63)

with respect to a torsionful connection Γ(±).

3.5 Symplectic manifolds

We start this subsection by defining degeneracy of two-forms on a finite-dimensional
vector space V . A two-form f(x, y) on V is called degenerate if there exists a
nonzero x ∈ V such that f(x, y) = 0 for every y ∈ V . Else it is called non-
degenerate, i.e, if f(x, y) = 0 for all y ∈ V implies x = 0 then f is called
non-degenerate.

A symplectic form ω is a closed (dω = 0) non-degenerate two-form. A smooth
manifold equipped with a symplectic form is called a symplectic manifold.

4 Generalized complex geometry

Generalized complex geometry was introduced by Hitchin [11] and elaborated
by Gualtieri [12]. It was found to interpolate between complex geometry and
symplectic geometry and also to include bihermitian geometry. We generalize
the complex structure from being an endomorphism on the tangent bundle J :
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TM → TM to also include the co-tangent bundle J : TM ⊕ T ∗M → TM ⊕
T ∗M , still requiring

J 2 = −1. (64)

With X,Y ∈ TM and ξ, η ∈ T ∗M , an element of TM ⊕ T ∗M can be written
X+ ξ and the natural pairing I is defined by (X+ ξ, Y +η) = ιXη+ ιY ξ, where
ιX is the interior product (also called interior or inner multiplication). This
pairing needs to be Hermitian with respect to J ,

J tIJ = I. (65)

Analogous to the ordinary case we can define projection operators Π± := 1
2 (1±

iJ ) and the integrability condition becomes

Π∓[Π±(X + ξ),Π±(Y + η)]c = 0, (66)

where we have introduced the relevant bracket called the Courant bracket:

[X + ξ, Y + η]c := [X,Y ] + LXη − LY ξ −
1

2
d(ιXη − ιY ξ). (67)

It is also possible to include a closed three-form H. The H-twisted Courant
bracket is then defined by

[X + ξ, Y + η]H := [X,Y ] + LXη − LY ξ −
1

2
d(ιXη − ιY ξ) + ιXιYH. (68)

In the basis {∂µ, dxµ} we have

I =

(
0 1d
1d 0

)
(69)

J =

(
J P
L K

)
, (70)

where

J : TM → TM, P : T ∗M → TM,

L : TM → T ∗M, K : T ∗M → T ∗M. (71)

We explicitly work out the constraints on (70) that follows from condition (64).
We have

J 2 =

(
J P
L K

)(
J P
L K

)
=

(
J2 + PL JP + PK
LJ +KL LP +K2

)
=

(
−1d 0

0 −1d

)
.

(72)
From Hermicity (65) we also have

J tIJ =

(
J t Lt

P t Kt

)(
0 1d
1d 0

)(
J P
L K

)
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=

(
J tL+ Lt J t + LtP
P tL+KtJ P tK +KtP

)
=

(
0 1d
1d 0

)
. (73)

Combining the constraints from (72) and (73) we get

J t = K, P t = −P, Lt = −L. (74)

Letting only J (and therefore also J t = −K) be nonzero in (70) we get the
corresponding matrix of the ordinary complex structure J in terms of generalized
complex geometry

JJ =

(
J 0
0 −J t

)
. (75)

For a symplectic structure ω we get

Jω =

(
0 −ω−1

ω 0

)
. (76)

From these relations we can form a metric

G = −JJJω =

(
0 Jω−1

J tω 0

)
=

(
0 g−1

g 0

)
, (77)

where g is the ordinary Kähler metric. Now, if there exist two commuting gener-
alized complex structures J1 and J2 (such as JJ and Jω), and G = −J1J2 is a
positive definite metric on TM ⊕ T ∗M , then the generalized complex geometry
is called generalized Kähler.

5 Minkowski space, the Poincaré group and fields

Minkowski space, M, can be seen as the quotient space of the Poincaré group
and the Lorentz group

ISO(D − 1, 1)/SO(D − 1, 1). (78)

To understand this, we introduce an equivalence relation ∼ between two ele-
ments g1 and g2 of a group G. We say that g1 is equivalent to g2, g1 ∼ g2, if
there exists an element f of the subgroup F to G such that

g1 = g2 ◦ f. (79)

G can then be seperated into equivalence classes. The set of all equivalence
classes is called the left coset and is denoted G/F . Identifying G with the
Poincaré group and F with the Lorentz group we let every point in the Minkowski
space correspond to the (infinte) set of elements in ISO(D − 1, 1) which are
equivalent up to a Lorentz transformation. Thus we can use the translation
generator P to express a point h(x) in M by a parameter x:

h(x) = eix
aPa1 (80)
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We let a group element g = eia
aXa with generator X and parameter a act on h

from the left
g ◦ h(x) = h(x′) ◦ f, (81)

and mod out any element f = e
i
2ω

abMab in the Lorentz group on the right-hand
side:

h(x′) ◦ f ∼ h(x′) (82)

Thus we have found a coordinate transformation

h(x)→ h(x′) (83)

or simply
x→ x′. (84)

Fields can also be viewed as representations of the Poincaré group, thus also
transforming under Poincaré transformations

φ→ φ′. (85)

For scalar fields we choose a representation with the defining property

φ′(x′) = φ(x). (86)

Expanding under an infinitesimal transformation x→ x′ = x+ a we have

φ′(x′) = φ′(x) + aa∂aφ
′(x) + · · · = φ(x) + δφ(x) + aa∂aφ(x) + · · · = φ(x), (87)

giving
δφ(x) = −aa∂aφ(x), (88)

where we have defined
δφ(x) := φ′(x)− φ(x). (89)

We can also write, using one of the Baker-Campbell-Haussdorff formulas (ap-
pendix A.3),

φ′(x) = eia
aXaφ(x)e−ia

aXa

= φ(x) + [φ(x),−iaaXa] + . . .

= φ(x) + i[aaXa, φ(x)] + . . . (90)

for any generator Xa, and thus

δφ(x) = i[aaXa, φ(x)], (91)

or
i[aaXa, φ(x)] = −aa∂aφ(x). (92)

Other fields such as spinor and vector fields have representations which trans-
form differently.
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We will use the Poincaré algebra in the following form

[Pa, Pb] = 0

[Mab, Pc] = iηc[aPb] = iηcaPb − iηcbPa
[Mab,Mcd] = iηc[aMb]d − iηd[aMb]c, (93)

where Pa is the generator of translations and Mab the generator of rotations in
space-time, i.e., boosts and spatial rotations. From the algebra we can deduce
the coordinate changes they will generate. For an infinitesimal translation we
have

g = eia
aPa , (94)

thus giving,

g ◦ h(x) = eia
aPaeix

bPb = exp(iaaPa + ixbPb +
1

2
[iaaPa, ix

bPb])

= exp
(
i(aa + xa)Pa −

1

2
aaxb[Pa, Pb]

)
= ei(a

a+xa)Pa . (95)

We see that the coordinates transform as

xa → x′a = xa + aa ⇒ δxa = aa. (96)

From (92) we have

i[aaPa, φ(x)] = −aa∂aφ(x)

⇒ [Pa, φ(x)] = i∂aφ, (97)

and we define an operator
P̂a := i∂a. (98)

Similarly, for a Lorentz transformation we have

g ◦ h(x) = e
i
2ω

abMabeix
cPc ∼ e i2ω

abMabeix
cPce−

i
2ω

abMab

= e
i
2ω

abMab(1 + ixcPc + . . . )e−
i
2ω

abMab = 1 + ixcPc + [ixcPc,−
i

2
ωabMab] + . . .

= 1 + ixcPc −
1

2
ωabxc[Mab, Pc] + . . .

= 1 + ixcPc −
i

2
ωabxcηcaPb +

i

2
ωabxcηcbPa + . . .

= 1 + ixdPd −
i

2
ωabxcηcaδ

d
bPd +

i

2
ωabxcηcbδ

d
aPd + . . .

= ei(x
d− 1

2ω
abxaδ

d
b+ 1

2ω
abxbδ

d
a)Pd , (99)

giving us an infinitesimal coordinate transformation

xd → x′d = xd +
1

2
ωab(−xaδdb + xbδ

d
a)⇒ δxd =

1

2
ωab(−xaδdb + xbδ

d
a). (100)
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We have

[
i

2
ωabMab, φ(x)] = −1

2
ωab(−xaδdb + xbδ

d
a)∂dφ(x)

⇒ [Mab, φ(x)] = i(−xa∂b + xb∂a)φ(x), (101)

and we define an operator acting on scalar fields

M̂ab := −ix[a∂b]. (102)

6 Non-supersymmetric sigma models

A sigma model is a set of maps Xµ : Σ → T from a parameter space Σ with
coordinates ξ ∈ Σ, a = 1, . . . , D, and a target space T with coordinates Xµ ∈
T , µ = 0, 1, . . . , d− 1, and an action which gives the dynamics of the system.

6.1 Bosonic model in D=2

Starting from the action of a classical string

S = −T
∫
dA, (103)

where T is the tension of the string, inducing a metric on the world surface

γab =
∂Xµ

∂ξa
∂Xν

∂ξb
ηµν , (104)

and using the fact that proper ”generalized volume”

dV = dpξ
√
−det γab (105)

is invariant under diffeomorphisms, we arrive at the Nambu-Goto action

S = −T
∫
d2ξ
√
−det γab. (106)

This is equivalent to the Polyakov action

S = −T
2

∫
d2ξ
√
−hhabγab, (107)

where h := dethab is the independent metric of the world sheet, as can be seen
from varying the action with respect to hab and setting δS = 0.
In the conformal gauge (section 10.3) the Polyakov action takes the form

S =
T

2

∫
d2ξηµν∂aX

µ∂aXν . (108)
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We generalize the target space metric ηµν by gµν = gµν(X) and introduce an
antisymmetric tensor Bµν = Bµν(X) in the background

Eµν(X) = gµν(X) +Bµν(X). (109)

In light-cone coordinates, x±± := 1√
2
(ξ1 ± ξ2), we get

S = T

∫
d2x∂++X

µEµν∂=X
ν . (110)

In the following, we will skip the factor T for simplicity. From δS = 0 we obtain
the field equations:

∂a
∂L

∂(∂aXρ)
− ∂L
∂Xρ

= 0, (111)

i.e.,

∂++
∂L

∂(∂++Xρ)
= ∂++(Eρν∂=X

ν) = Eρν,µ∂++X
µ∂=X

ν + Eρν∂++∂=X
ν

∂=
∂L

∂(∂=Xρ)
= ∂=(∂++X

µEµρ) = ∂++∂=X
µEµρ + ∂++X

µEµρ,ν∂=X
ν

∂L
∂Xρ

= ∂++X
µEµν,ρ∂=X

ν , (112)

which gives

0 = ∂++
∂L

∂(∂++Xρ)
+ ∂=

∂L
∂(∂=Xρ)

− ∂L
∂Xρ

= (Eρµ + Eµρ)∂++∂=X
µ + (Eρν,µ + Eµρ,ν − Eµν,ρ)∂++X

µ∂=X
ν

= 2gµρ∂++∂=X
µ + (gρν,µ + gµρ,ν − gµν,ρ +Bρν,µ +Bµρ,ν −Bµν,ρ)∂++X

µ∂=X
ν .

(113)

Multiplying with 1
2g
κρ gives

0 = ∂++∂=X
κ +

1

2
gκρ(gνρ,µ + gµρ,ν − gµν,ρ −Bνρ,µ −Bρµ,ν −Bµν,ρ)∂++X

µ∂=X
ν

= ∂++∂=X
κ + (Γ

(0)κ
µν −

1

2
gκρTρµν)∂++X

µ∂=X
ν = ∇(−)

++∂=X
κ = 0, (114)

where T = dB is the torsion. This implies that the target space T is Riemannian
with torsion.

6.2 Bosonic model in D=1

The one-dimensional bosonic sigma model we will simply state:

S =
1

2

∫
dtgµνẊ

µẊν (115)
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7 Supersymmetry

7.1 The supersymmetry algebra

Starting from the Poincaré group (93) and an internal group

[Bi, Bj ] = f k
ij Bk, (116)

it was shown in 1967 by Coleman and Mandula [18] that, under certain general
assumptions and in the context of Lie algebra, the largest symmetry group
containing both the Poincaré group and an internal group necessarily must be
a direct product group of them, implying

[Pν , BI ] = 0,

[Mµν , BI ] = 0. (117)

By introducing a graded Lie algebra including not only commutators but also
anti-commutators (and thus altering the original assumptions), it was however
later realized by Haag, Lopuszanski and Sohnius [19] that the group can be
expanded in a non-trivial way. To this end we divide the generators into an
even (bosonic) and an odd (fermionic) class obeying the rules:

[even, even] = even,

[even, odd] = odd,

{odd, odd} = even, (118)

and generalize the Jacobi identity to[
[B1, B2], B3

]
+
[
[B3, B1], B2

]
+
[
[B2, B3], B1

]
= 0,[

[B1, B2], F3

]
+
[
[F3, B1], B2

]
+
[
[B2, F3], B1

]
= 0,{

[B1, F2], F3

}
+
{

[B1, F3], F2

}
+
[
{F2, F3}, B1

]
= 0,[

{F1, F2}, F3

]
+
[
{F1, F3}, F2

]
+
[
{F2, F3}, F1

]
= 0, (119)

whereB denotes even generators and F odd. We classify the Poincaré generators
and the internal group generators as even and introduce N odd generators
Qi, i = 1, 2, . . . , N . Using these rules we are able to derive the super-Poincaré
algebra (appendices B.1, B.2).

[Pa, Pb] = 0,

[Mab, Pc] = iηc[aPb],

[Mab,Mcd] = iηc[aMb]d − iηd[aMb]c,

[Pa, Bl] = [Mab, Bl] = 0,

[Bi, Bj ] = f k
ij Bk,

[QIα, Pa] = [Q̄Iα̇, Pa] = 0,
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[QIα,Mab] = − i
2

(σab)
β
α QIβ ,

[Q̄Iα̇,Mab] =
i

2
(σ̄ab)

β̇

α̇
Q̄I
β̇
,

{QIα, QJβ} = XIJεαβ ,

{Q̄Iα̇, Q̄Jα̇} = X̄IJεα̇β̇ ,

{QIα, Q̄Jα̇} = 2δIJPαα̇,

[QIα, Bl] = (Sl)
I
JQ

J
α,

[Q̄α̇, Bl] = (S̄l)
I
JQ̄

J
α̇,

[XIJ ,O] = [X̄IJ ,O] = 0, (120)

where O is any operator and the complex constants XIJ are called central
charges. In this master thesis we will not discuss central charges nor internal
groups. Thus the algebra simplifies greatly, the non-zero part being

[Mab, Pc] = iηc[aPb],

[Mab,Mcd] = iηc[aMb]d − iηd[aMb]c,

[QIα,Mab] = − i
2

(σab)
β
α QIβ ,

[Q̄Iα̇,Mab] =
i

2
(σ̄ab)

β̇
α̇ Q̄I

β̇
,

{QIα, Q̄Jα̇} = 2δIJPαα̇. (121)

A further simplification can be done by only considering the massless case as
we will see in section 7.4.

7.2 Superspace and its operators

In the same way as the Minkowski space can be seen as the quotient space of
the Poincaré group and the Lorentz group

ISO(D − 1, 1)/SO(D − 1, 1), (122)

superspace can viewed as the quotient space of the super-Poincaré group and
the Lorentz group:

SISO(D − 1, 1)/SO(D − 1, 1). (123)

A point in this space is written

h(x, θ) = ei(xP+θQ+θ̄Q̄) = ei(x
aPa+θαQα+θ̄α̇Q̄

α̇), (124)

for two-component Weyl spinors where α = 1, 2 and α̇ = 1̇, 2̇ (appendix A). In
the same way as xa acts as a parameter for the translation generator Pa, we
now also have two anticommuting parameters, θα and θ̄α̇, acting as paramaters
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for the left-handed and right-handed supersymmetric generators Qα and Q̄α̇

respectively. An infintesimal transformation by Q gives

eiξ
βQβeix

aPa+iθαQα+iθ̄α̇Q̄
α̇

=

= eix
aPa+i(θα+ξα)Qα+iθ̄α̇Q̄

α̇+ 1
2 [iξβQβ ,iθ̄α̇Q̄

α̇]+...

= eix
aPa+i(θα+ξα)Qα+iθ̄α̇Q̄

α̇−ξβ θ̄α̇(σa)βα̇Pa+...

= ei(x
a+iξα(σa)αα̇θ̄

α̇)Pa+i(θα+ξα)Qα+θ̄α̇Q̄
α̇

. (125)

We see that Qα generates a coordinate shift xa → x′a = xa + iξα(σa)αα̇θ̄
α̇ ⇒ δxa = iξα(σa)αα̇θ̄

α̇

θα → θ′α = θα + ξα ⇒ δθα = ξα

θ̄α̇ → θ̄′α̇ = θ̄α̇ ⇒ δθ̄α̇ = 0.
(126)

We get

[iξαQα, φ(x, θ, θ̄)] = −
(
ξα∂α + iξα(σa)αα̇θ̄

α̇∂a
)
φ(x, θ, θ̄)

⇒ [Qα, φ(x, θ, θ̄)] =
(
i∂a − (σa)αα̇θ̄

α̇∂a
)
φ(x, θ, θ̄). (127)

Thus we can define a differential operator

Q̂α := i∂α − (σa)αα̇θ̄
α̇∂a = i∂α − θ̄α̇∂αα̇,

Q̂α = εαβQ̄β = −i∂α + θ̄α̇(σ̄a)α̇α∂a = −i∂a + θ̄α̇∂
αα̇. (128)

An infinitesimal transformation generated by Q̄,

eiξ̄β̇Q̄
β̇

eix
aPa+iθαQα+iθ̄α̇Q̄

α̇

=

= eix
aPa+iθαQα+i(θ̄α̇+ξ̄α̇)Q̄α̇+ 1

2 [iξ̄β̇Q̄
β̇ ,iθαQα]+...

= eix
aPa+iθαQα+i(θ̄α̇+ξ̄α̇)Q̄α̇+θα(σa)αβ̇ ξ̄

β̇Pa+...

= ei(x
a+iξ̄α̇θα(σa)αα̇)Pa+iθαQα+i(θ̄α̇+ξ̄α̇)Q̄α̇+..., (129)

gives a coordinate transformation xa → x′a = xa + ξ̄α̇θα(σa)αα̇ ⇒ δxa = iξ̄α̇θα(σa)αα̇
θα → θ′a = θa ⇒ δθα = 0
θ̄α̇ → θ̄′α̇ = θ̄α̇ + ξ̄α̇ ⇒ δθ̄α̇ = ξ̄α̇,

(130)

and thus

[iξ̄α̇Q̄
α̇, φ(x, θ, θ̄)] = −(ξ̄α̇∂α̇ + iξ̄α̇θα(σa)αα̇∂a)φ(x, θ, θ̄)

⇒ −iξ̄α̇[Q̄α̇, φ(x, θ, θ̄)] = (−ξ̄α̇∂α̇ − iξ̄α̇θα(σa)αα̇∂a)φ(x, θ, θ̄)

⇒ [Q̄α̇, φ(x, θ, θ̄)] = (−i∂α̇ + θα(σa)αα̇∂a)φ(x, θ, θ̄). (131)

We define a differential operator

ˆ̄Qα̇ := −i∂α̇ + θα(σa)αα̇∂a = −i∂α̇ + θα∂αα̇,
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ˆ̄Qα̇ = εα̇β̇ ˆ̄Qβ̇ = i∂α̇ − (σ̄a)α̇αθα∂
a = i∂α̇ − θα∂αα̇. (132)

We will also need differential operators, Dα, D̄α̇, that anticommute with the
supersymmetry operators:

{Dα, Q̂β} = {Dα,
ˆ̄Qβ̇} = {D̄α̇, Q̂β} = {D̄α̇,

ˆ̄Qβ̇} = 0. (133)

If we take them to be

Dα := ∂α − i(σa)αα̇θ̄
α̇∂a = ∂α − iθα̇∂αα̇,

Dα = εαβDβ = −∂α + iθ̄α̇(σ̄a)α̇α∂a = −∂α + iθ̄α̇∂
αα̇,

D̄α̇ := −∂α̇ + iθα(σa)αα̇∂a = −∂α̇ + iθα∂αα̇,

D̄α̇ = εα̇β̇D̄β̇ = ∂α̇ − i(σ̄a)α̇αθα∂
a = ∂α̇ − iθα∂αα̇, (134)

this is indeed the case. We also have

{Dα, Dβ} = {D̄α̇, D̄β̇} = 0, (135)

but note that
{Dα, D̄β̇} = 2i(σa)αβ̇∂a = 2i∂αβ̇ . (136)

The reason for introducing these operators, which we will call the covariant
derivatives, is that the supersymmetry derivatives, ∂α and ∂α̇, does not anti-
commute with the supersymmetry operators:

∂β

(
iξαQ̂αφ(x, θ, θ̄)

)
= ∂β

(
δφ(x, θ, θ̄)

)
6= δ
(
∂βφ(x, θ, θ̄)

)
. (137)

Using instead the covariant derivatives we have

Dβ

(
δφ(x, θ, θ̄)

)
= δ
(
Dβφ(x, θ, θ̄)

)
. (138)

7.3 Superfields

Since θα and θ̄α̇ anticommute with themselves, a Taylor expansion in these
parameters terminates after only a few terms. The verticle line denotes the θ-
and θ̄-free part.

φ(x, θ, θ̄) = φ(x, θ, θ̄)|
+ θα

(
Dαφ(x, θ, θ̄)

)
|+ θ̄α̇

(
D̄α̇φ(x, θ, θ̄)

)
|

+
1

2
θαθβ

(
DαDβφ(x, θ, θ̄)

)
|+ θαθ̄α̇

(
DαD̄

α̇φ(x, θ, θ̄)
)
|+ 1

2
θ̄α̇θ̄β̇

(
D̄α̇D̄β̇φ(x, θ, θ̄)

)
|

+
1

6
θαθβ θ̄α̇

(
DαDβD̄

α̇φ(x, θ, θ̄)
)
|+ 1

6
θαθ̄α̇θ̄β̇

(
DαD̄

α̇D̄β̇φ(x, θ, θ̄)
)
|

+
1

12
θαθβ θ̄α̇θ̄β̇

(
DαDβD̄

α̇D̄β̇φ(x, θ, θ̄)
)
|. (139)
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We use that

θαθβDαDβ = −1

4
εαβθγθγεαβD

δDδ =
1

4
εαβεβαθ

γθγD
δDδ =

1

2
θγθγD

δDδ,

(140)
to simplify and to define new fields:

φ(x, θ, θ̄) = a(x) + θαbα(x) + θ̄α̇c̄
α̇ + θαθαd(x) + θα(σa)αα̇θ̄

α̇ea(x)

+ θ̄α̇θ̄
α̇f(x) + θαθαθ̄α̇ḡ

α̇(x) + θαθ̄α̇θ̄
α̇ha(x) + θαθαθ̄α̇θ̄

α̇i(x). (141)

If we impose constraints on the superfield we can simplify further. For example,
a constraint

D̄α̇φ(x, θ, θ̄) = 0, (142)

gives a chiral field, while a constraint

Dαφ(x, θ, θ̄) = 0, (143)

gives an antichiral field. It can be shown that after a translation

ya = xa + iθα(σa)αα̇θ̄
α̇, (144)

we can write the chiral field superfield

S(x, θ) = a(y) + θαbα(y) + θαθαd(y), (145)

and similarly for the antichiral superfield.

7.4 The massless case in two dimensions

A massless particle is characterized by P aPa = 0. Taking Pa = (P,±P ) this
will indeed be the case in a two-dimensional Minkowski space with metric η =
diag(−1,+1). A plus corresponds to a particle moving to the right and a minus
to a left-mover. Introducing light-cone coordinates

x++ :=
1√
2

(x0 + x1), x= :=
1√
2

(x0 − x1), (146)

with a metric

(ηab) = (ηab) =

(
0 1
1 0

)
, (147)

we arrive at the algebra

{QI+, QJ+} = 2δIJP++

{QI
′

− , Q
J′

− } = 2δI
′J′P=

{QI+, QJ
′

− } = 0. (148)

We thus make a distinction between right- and left-moving supersymmetries.
In fact it is possible to have different numbers of right-moving supersymmetries
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I = 0, 1, . . . , q than left-moving I ′ = 0, 1, . . . , p. We will label such a theory a
N = (p, q) theory. Analogous to (124) we write a point in this space

h(x, θ+
1 , θ

+
2 , . . . , θ

−
1′ , θ

−
2′ , . . . ) = e(ix++P+++ix=P=+iθ+I Q

I
++iθ−

I′Q
I′
− ), (149)

and a group element
eiε

αQα . (150)

Thus an infinitesimal transformation by QI+ becomes

eiξ
+
J Q

J
+e(ix++P+++ix=P=+iθ+I Q

I
++iθ−

I′Q
I′
− )

= exp
(
ix++P++ + ix=P= + i(θ+

I + ξ+
I )QI+ + iθ−I′Q

I′

− +
1

2
[iξ+

J Q
J
+, iθ

+
I Q

I
+]
)

= exp
(
ix++P++ + ix=P= + i(θ+

I + ξ+
I )QI+ + iθ−I′Q

I′

− +
1

2
ξ+
J θ

+
I [QJ+, Q

I
+]
)

= exp
(
ix++P++ + ix=P= + i(θ+

I + ξ+
I )QI+ + iθ−I′Q

I′

− + δJIξ+
J θ

+
I P++

)
= exp

(
i(x++ − iδJIξ+

J θ
+
I )P++ + ix=P= + i(θ+

I + ξ+
I )QI+ + iθ−I′Q

I′

−
)
. (151)

This implies a coordinate change{
δx++ = −iδIJξ+

J θ
+
I

δθ+
I = ξ+

I ,
(152)

giving

[iξ+
I Q

I
+, φ(x, θ)] = −(ξ+

I ∂
I
+ − iδIJξ+

I θ
+
J ∂++)φ(x, θ)

⇒ [QI+, φ(x, θ)] = (i∂I+ + δIJθ+
J ∂++)φ(x, θ), (153)

where we have defined

∂I+ :=
∂

∂θ+
I

, ∂I+θ
+
J = δIJ , ∂I+θ

−
I′ = 0. (154)

We get a representation

Q̂I+ = i∂I+ + δIJθ+
J ∂++. (155)

A similar calculation gives

Q̂I
′

− = i∂I
′

− + δI
′J′θ−J′∂=. (156)

We define covariant derivatives

DI
+ : = ∂I+ + iδIJθ+

J ∂++,

DI′

− : = ∂I
′

− + iδI
′J′θ−I′∂=, (157)

and notice that
D2
± = i∂±±. (158)
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It is possible to replace δIJ in (148) by an arbitrary symmetric matrix ηIJ ,
which, if invertible, can be transformed to

ηIJ =

(
1u 0
0 −1t

)
, (159)

for u+ t = p. This means that we let QI+ square to −P++ for some I instead of
+P++, and we call this a twisted supersymmetry. Allowing for non-invertible
matrices, ηIJ can be further generalized to

ηIJ =

 1u 0 0
0 −1t 0
0 0 0v

 , (160)

where u + t + v = p, i.e., we let QI+ square to 0 for some I. Similarly δI
′J′

generalizes to ηI
′J′ for the left-moving symmetries.

7.5 One-dimensional case

We will also consider the one-dimensional case:

{QI , QJ} = 2δIJP. (161)

A parametrization of the superspace

h(t, θ1, θ2, . . . , θN ) = e(itP+iθIQ
I), (162)

and an infinitesimal transformation

e(iξIQ
I)e(itP+iθJQ

J ) = exp
(
itP + i(θJ + ξIδ

I
J)QJ +

1

2
[iξIQ

I , iθJQ
J ]
)

= exp
(
itP + i(θJ + ξIδ

I
J)QJ + ξIθJδ

IJP
)

= exp
(
i(t− iξIθJδIJ)P + i(θJ + ξIδ

I
J)QJ

)
(163)

gives {
δt = −iξIθJδIJ
δθJ = ξIδ

I
J

(164)

and

[iξIQ
I , φ(t, θ)] = −(ξIδ

I
J∂

J
θ − iξIθJδIJ∂t)φ(t, θ)

⇒ [QI , φ(t, θ)] = (i∂Iθ + θJδ
IJ∂t)φ(t, θ) (165)

where

∂Iθ :=
∂

∂θI
, ∂t :=

∂

∂t
. (166)

We define an operator
Q̂I := i∂Iθ + θJδ

IJ∂t, (167)
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and a covariant derivative

DI = ∂Iθ + iθJδ
IJ∂t, (168)

which squares to
D2 = i∂t. (169)

Similar to the two-dimensional case we can twist the algebra, thus generalizing
(161) to

{QI , QJ} = 2ηIJP, (170)

where ηIJ is given by (159).

8 Supersymmetric sigma models

In this section we will review the calculation methods for obtaining supersym-
metric sigma models. We will to some extend follow section 4 and appendices
A1 and A2 in [5], but possible with even more detailed calculations.

8.1 D = 2, N = (1, 1)

8.1.1 The superfield and closure of the algebra

We expand the field

φµ(x, θ) = Xµ(x) + θ+ψµ+(x) + θ−ψµ−(x) + θ+θ−Fµ(x), (171)

where
Xµ = φµ|, ψµ± = D±φ

µ|, Fµ = −D±D∓φµ|, (172)

and the relavant operators and covariant derivatives are

Q̂± = i∂± + θ±∂±±, P±± = i∂±±

D± = ∂± + iθ±∂±±. (173)

The closure of the algebra is essential The commutator of two transformations
must never lead outside of the algebra or the superspace. We have

δφµ = δXµ + θ+δψµ+ + θ−δψµ− + θ+θ−δFµ, (174)

but also

δφµ = i[εQ, φµ] = iεQ̂φµ = (iε+Q̂+ + iε−Q̂−)φµ

= (−ε+∂+ + iε+θ+∂++ − ε−∂− + iε−θ−∂=)φµ

= (−ε+ψµ+ − ε−ψ
µ
−) + θ+(−iε+∂++X

µ − ε−Fµ) + θ−(−iε−∂=X
µ + ε+Fµ)

+ θ+θ−(−iε−∂=ψ
µ
+ + iε+∂++ψ

µ
−), (175)
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which means that

δXµ = −ε+ψµ+ − ε−ψ
µ
−, δψµ+ = −iε+∂++X

µ − ε−Fµ,
δψµ− = −iε−∂=X

µ + ε+Fµ, δFµ = −iε−∂=ψ
µ
+ + iε+∂++ψ

µ
−.

(176)

A second transformation gives

δε2δε1φ
µ =(iε+2 ε

+
1 ∂++X

µ + iε−2 ε
−
1 ∂=X

µ + ε+2 ε
−
1 F

µ − ε−2 ε
+
1 F

µ)

+ θ+(iε+2 ε
+
1 ∂++ψ

µ
+ + iε+2 ε

−
1 ∂++ψ

µ
− − iε−2 ε

+
1 ∂++ψ

µ
− + iε−2 ε

−
1 ∂=ψ

µ
+)

+ θ−(iε−2 ε
+
1 ∂=ψ

µ
+ + iε−2 ε

−
1 ∂=ψ

µ
− + iε+2 ε

+
1 ∂++ψ

µ
− + iε+2 ε

−
1 ∂=ψ

µ
+)

+ θ+θ−(−ε−2 ε
+
1 ∂=∂++X

µ + iε−2 ε
−
1 ∂=F

µ + ε+2 ε
−
1 ∂++∂=X

µ

+ iε+2 ε
+
1 ∂++F

µ), (177)

so that

[δε2 , δε1 ]φµ =(2iε+2 ε
+
1 ∂++ + 2iε−2 ε

−
1 ∂=X

µ) + θ+(2iε+2 ε
+
1 ∂++ψ

µ
+ + 2iε−2 ε

−
1 ∂=ψ

µ
+)

+ θ−(2iε+2 ε
+
1 ∂++ψ

µ
− + 2iε−2 ε

−
1 ∂=ψ

µ
−)

+ θ+θ−(2iε+2 ε
+
1 ∂++F

µ + 2iε−2 ε
−
1 ∂=F

µ)

=(2ε+2 ε
+
1 P++ + 2ε−2 ε

−
1 P=)φa, (178)

which is exactly what we would have expected since

[δε2 , δε1 ]φµ = [iε2Q, iε1Q]φµ = [iε+2 Q+ + iε−2 Q−, iε
+
1 Q+ + iε−1 Q−]φµ

= (ε+2 ε
+
1 {Q+, Q+}+ ε−2 ε

−
1 {Q−, Q−})φµ = 2(ε+2 ε

+
1 P++ + ε−2 ε

−
1 P=)φµ.

(179)

In fact, letting the operators work on the corresponding superfield-expansion
(like (173) on (171)) they will never lead us out of the superfield, and we say
that the superspace formalism is manifestly supersymmetric.

8.1.2 The sigma model

The bosonic non-supersymmetric sigma model in two dimensions reads

S =

∫
d2x∂++X

µEµν∂=X
ν . (180)

To make the sigma model supersymmetric we make an ansatz

S =

∫
d2xd2θDm

+X
µEµνD

n
−X

ν , (181)

and try to find m,n ∈ N such that the non-supersymmetric model can be
recovered in some sense by reducing the supersymmetry. We try m = 1, n = 1

D+φ
µ =

( ∂

∂θ+
+ iθ+∂++

)(
Xµ + θ+ψµ+ + θ−ψµ− + θ+θ−Fµ

)
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= ψµ+ + θ−Fµ + iθ+∂++X
µ + iθ+θ−∂++ψ

µ
−

D−φ
ν =

( ∂

∂θ−
+ iθ−∂=

)(
Xν + θ−ψν+ + θ−ψν− + θ+θ−F ν

)
= ψν− − θ+F ν + iθ−∂=X

ν − iθ+θ−∂=ψ
ν
+ (182)

Since
D+φ

µD−φ
ν = −θ+θ−∂++X

µ∂=X
ν + . . . (183)

already m = 1, n = 1 may return the bosonic action as one of its terms. We
check this.

S =

∫
d2xd2θD+φ

µEµνD−φ
ν

=

∫
d2xD+D−(D+φ

µEµνD−φ
ν)|

=

∫
d2xD+(D−D+φ

µEµνD−φ
ν −D+φ

µEµν,τD−φ
τD−φ

ν

+D+φ
µEµνD−D−φ

ν)|

=

∫
d2x(D+D−D+φ

µEµνD−φ
ν +D−D+φ

µEµν,τD+φ
τD−φ

ν

+D−D+φ
µEµνD+D−φ

ν −D+D+φ
µEµν,τD−φ

τD−X
ν

+D+φ
µEµν,τσD+φ

σD−X
τD−φ

ν +D+φ
µEµν,τD+D−φ

τD−φ
ν

+D+D+φ
µEµνD−D−φ

ν −D+φ
µEµν,τD+φ

τD−D−φ
ν

+D+φ
µEµνD+D−D−φ

ν)| (184)

The seventh term gives us∫
d2xD+D+φ

µEµνD−D−φ
ν |= −

∫
d2x∂++X

µEµν∂=X
ν (185)

which is the bosonic action, and we conclude that we can write the two-dimensional
N = (1, 1) action as

S =

∫
d2xd2θD+φ

µEµνD−φ
ν . (186)

8.1.3 The equations of motion

The equations of motion are derived from δS = 0, leading to the Euler-Lagrange

equations Di

(
∂L

∂(Diφµ)

)
− ∂L

∂φµ = 0. We have

∂L
∂(D+φµ)

=
∂(D+φ

σ)

∂(D+φµ)
EστD−φ

τ −D+φ
σ ∂Eστ
∂(D+φµ)

D−φ
τ −D+φ

σEστ
∂(D−φ

τ )

∂(D+φµ)

= δσµEστD−φ
τ − 0− 0 = EµτD−φ

τ (187)

∂L
∂(D−φµ)

=
∂(D+φ

σ)

∂(D−φµ)
EστD−φ

τ −D+φ
σ ∂Eστ
∂(D−φµ)

D−φ
τ −D+φ

σEστ
∂(D−φ

τ )

∂(D−φµ)
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= 0− 0−D+φ
σEστδ

τ
µ = −D+φ

σEσµ (188)

D+

( ∂L
∂(D+φµ)

)
= D+(EµτD−φ

τ ) = Eµτ,κD+φ
κD−φ

τ + EµτD+D−φ
τ (189)

D−

( ∂L
∂(D−φµ)

)
= D−(−D+φ

σEσµ) = D+D−φ
σEσµ +D+φ

σEσµ.κD−φ
κ

(190)

∂L
∂φµ

=
∂(D+φ

σ)

∂φµ
EστD−φ

τ +D+φ
σ ∂Eστ
∂φµ

D−φ
τ +D+φ

σEστ
∂(D−φ

τ )

∂φµ

= 0 +D+φ
σEστ,µD−φ

τ + 0 = D+φ
σEστ,µD−φ

τ (191)

Combining these we have

0 = Di

( ∂L
∂(Diφµ)

)
− ∂L
∂φµ

= Eµτ,κD+φ
κD−φ

τ + EµτD+D−φ
τ +D+D−φ

σEσµ +D+φ
σEσµ,κD−φ

κ

−D+φ
σEστ,µD−φ

τ

= (Eµτ + Eτµ)D+D−φ
τ + (Eµτ,σ + Eσµ.τ − Eστ,µ)D+φ

σD−φ
τ

= 2gµτD+D−φ
τ + (Eµτ,σ + Eσµ.τ − Eστ,µ)D+φ

σD−φ
τ (192)

⇔ 0 = gκµgµτD+D−φ
τ +

1

2
gκµ(Eµτ,σ + Eσµ,τ − Eστ,µ)D+φ

σD−φ
τ

= D+D−φ
κ

+
[1

2
gκµ(gµτ,σ + gσµ,τ − gστ,µ) +

1

2
gκµ(Bµτ,σ +Bσµ,τ −Bστ,µ)

]
D+φ

σD−φ
τ

= D+D−φ
τ + (Γ

(0)κ
στ −

1

2
gκµTµστ )D+φ

σD−φ
τ

= D+D−φ
τ + Γ

(−)κ
στD+φ

σD−φ
τ

= ∇(−)
+ D−φ

τ . (193)

We have found the equations of motion:

∇(−)
+ D−φ

τ = 0, (194)

which imply that the target-space geometry is Riemannian with torsion.

8.2 D = 2, N = (1, 0)

We expand the superfield

φµ(x, θ+) = Xµ(x) + θ+ψµ+(x) =: Xµ(x) + θψµ(x), (195)

where
Xµ(x) = φµ|, ψµ(x) = Dφµ|, (196)
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and

Q̂+ := Q̂ = i∂θ + θ∂++, D+ := D = ∂θ + iθ∂++, P̂±± = i∂±±. (197)

An infinitesimal transformation gives

δφµ = [iεQ, φµ] = iεQ̂φµ = (−ε∂θ + iεθ∂++)(Xµ + θψµ)

= −εψµ + iεθ∂++X
µ = ∂Xµ + θ∂ψµ, (198)

implying that {
δXµ = −εψµ
δψµ = −iε∂++X

µ.
(199)

A second transformation

δε2δε1φ
µ = (−ε2∂θ + iε2θ∂++X

µ) = iε2ε1∂++X
µ + θ(iε2ε1∂++ψ

µ), (200)

shows explicitly that the algebra closes

[δε2 , δε1 ] = i(ε2ε1 − ε1ε2)∂++X
µ + θ(i(ε2ε1 − ε1ε2)∂++ψ

µ)

= 2iε2ε1∂++X
µ + θ(2iε2ε1∂++ψ

µ) = 2ε2ε1P̂++ψ
µ. (201)

The non-supersymmetric sigma-model reads

S =

∫
d2x∂++X

µEµν∂=X
ν , (202)

and we try a supersymmetric action

S′ =

∫
d2xdθDφµEµν∂=φ

ν =

∫
d2xD(DφµEµν∂=φ

ν)|

=

∫
d2x(D2φµEµν∂=φ

ν −DφµEµν,ρDφρ∂=φ
ν −DφµEµν∂=Dφ

ν)|

=

∫
d2x(i∂++φ

µEµν∂=φ
ν − ψµEµν,ρψρ∂=φ

ν − ψµEµν∂=ψ
ν). (203)

We see that (202) is contained in an action

S = −i
∫
d2xdθDφµEµν∂=φ

ν . (204)

We derive the equations of motion:

D
∂L

∂(Dφρ)
= D(Eρν∂=φ

ν) = Eρν,µDφ
µ∂=φ

ν + Eρν∂=Dφ
ν

∂=
∂L

∂(∂=φρ)
= ∂=(DφµEµρ) = ∂=Dφ

µEµρ +DφµEµρ,ν∂=φ
ν

∂L
∂φρ

= DφµEµν,ρ∂=φ
ν , (205)
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leading to

0 = D
∂L

∂(Dφρ)
+ ∂=

∂L
∂(∂=φρ)

− ∂L
∂φρ

= (Eµρ + Eρµ)∂=Dφ
µ + (Eρν,µ + Eµρ,ν − Eµν,ρ)Dφµ∂=φ

ν

= 2gµρ∂=Dφ
µ + (gρν,µ + gµρ,ν − gµν,ρ +Bρν,µ +Bµρ,ν +Bνµ,ρ)Dφ

µ∂=φ
ν .

(206)

Multiplying with 1
2g
σρ gives

0 = ∂=Dφ
σ +

1

2
gσρ
(
gρν,µ + gµρ,ν − gµν,ρ +Bρν,µ +Bµρ,ν +Bνµ,ρ

)
Dφµ∂=φ

ν

= ∂=Dφ
σ +

(
Γ

(0)σ
µν −

1

2
gρσTµνρ

)
Dφµ∂=φ

ν

= ∂=Dφ
σ +

(
Γ

(0)σ
µν +

1

2
gρσTµνρ

)
∂=φ

µDφν

= ∂=Dφ
σ + Γ

(+)σ
µν∂=φ

µDφν

= ∇(+)
= Dφσ, (207)

where in the third line we have used that

Γ
(0)σ

µν = Γ
(0)σ

νµ, Tµνρ = −Tνµρ, (208)

and relabelled µ ↔ ν. Hence the geometry of the target space is Riemannian
with torsion.

8.3 D = 1, N = 1

The bosonic non-supersymmetric sigma model in one dimension reads:

S =

∫
dtgµνẊ

µẊν (209)

We make an ansatz

S =

∫
dtdθgµνD

mφµDnφν , (210)

and try to find m,n ∈ N such that the non-supersymmetric sigma model can
be recovered by reducing the supersymmetry.

Dφµ =
( ∂
∂θ

+ iθ
∂

∂t

)(
Xµ(t) + θλµ(t)

)
= λµ + iθẊµ (211)

At first it seems that already m = 1, n = 1 may give such a term, but since
θθ = 0 we have to discard this. Next we try n = 2:

D2φν = i
∂

∂t
φν = iẊν − iθλ̇ν (212)
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and we actually find a suitable term:

DφµD2φν = −θẊµẊν + . . . (213)

We perform a more formal check.

S = −1

2

∫
dtdθgµνDφ

µD2φν

=
i

2

∫
dtdθgµνDφ

µφ̇ν

= − i
2

∫
dtD(gµνDφ

µφ̇ν)|

= − i
2

∫
dt(gµν,τDφ

τDφµφ̇ν + gµνD
2φµφ̇ν − gµνDφµDφ̇ν)|

=

∫
dt(− i

2
gµν,τλ

τλµẊν +
1

2
gµνẊ

µẊν +
i

2
gµνλ

µλ̇ν) (214)

The second term is indeed the bosonic action, and we state our result again:

S =
i

2

∫
dtdθgµνDφ

µφ̇ν (215)

9 Extending and reducing supersymmetries and
dimensions

9.1 Going between N = (1, 1) and N = (2, 2) sigma models
in D = 2

A N = (1, 1) sigma model in D = 2

S =

∫
d2xd2θD+φ

µEµν(φ)D−φ
ν , (216)

can be extended to a N = (2, 2) sigma model by an ansatz

δ2φ = ε+D+φ
νJ (+)µ
ν + ε−D−φ

νJ (−)µ
ν , (217)

that should fulfill

[δ±2 (ε±1 ), δ±2 (ε±2 )] = −2iε±1 ε
±
2 ∂±±

[δ1, δ2] = 0

[δ±2 (ε±1 ), δ∓2 (ε∓2 )] = 0. (218)

Then the N = (1, 1) action (216) is invariant if and only if

J (±) are almost complex structures (219)

J (±TGJ (±) = G (leaves the metric invariant) (220)
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J
(±)µ
[λ J (±)ν

ρ T|µν|τ ] = Tλρτ (leaves torsion invariant) (221)

N (±)τ
µν = J (±)σ

µ ∂[σJ
(±)τ
ν] − (µ↔ ν) = 0 (222)

∇(±)
τ J (±)µ

ν = 0 (223)

This algebra closes on-shell. If, in addition, [J (+), J (−)] = 0, the algebra also
closes off-shell. If, however, [J (+), J (−)] 6= 0, we can make the algebra close
off-shell by including additional auxiliary spinorial N = (1, 1) fields in the La-
gragian.
A N = (2, 2) sigma model in D = 1

S =

∫
d2xd2θd2θK(φ, φ) (224)

can also be reduced to a N = 1 model in D = 2

S = −2

∫
d2xd2θ

∂2K

∂φµ∂φ̄ν
DαφµDαφ̄

ν |. (225)

9.2 Reduction from N = (1, 1) in D = 2 to N = 1 in D = 1

A manifest N = (1, 1) sigma model in D = 2

S =

∫
d2xd2θD+φ

µEµνD−φ
ν (226)

was directly reduced to an N = 1 sigma model in one dimension in [5] and then
compared to the most general N = 1 one-dimensional action. We recalculate
the reduction in appendix C and obtain the following action:

SR =

∫
dtdθ

[
− iGµνDX̂µ∂tX̂

ν −Gµνψ̂µDψ̂ν −Gµν,ρψ̂µDX̂νψ̂ρ

+
1

6
Tµνρψ̂

µψ̂νψ̂ρ − 1

2
TµνρDX̂

µDX̂νψ̂ρ +D(bµνDX̂
µψ̂ν)

]
, (227)

where X̂µ are bosonic superfields and ψ̂µ are fermionic superfields. The most
general N = 1 one-dimensional action is given in [6]

SG =

∫
dtdθ

[
− i

2
gijDφ

i∂tφ
j +

1

6
cijkDφ

iDφjDφk − 1

2
habψ

aDψb

− 1

2
habψ

aDφiA b
i cψ

c +
1

6
labcψ

aψbψc − ifia∂tφiψa

+
1

2
miabψ

aψbDφi +
1

2
nijaDφ

iDφjψa
]
, (228)

where φi are bosonic superfields, ψa are fermionic superfields and A b
i c is a

connection between them. Letting the bosonic and fermionic superfields point
to the same targetspace, and treat their respective coordinates equally we get

SG =

∫
dtdθ

[
− i

2
gµνDφ

µ∂tφ
ν +

1

6
cµνρDφ

µDφνDφρ − 1

2
hµνψ

µDψν
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− 1

2
hµκA

κ
ν ρψ

µDφνψρ +
1

6
lµνρψ

µψνψρ − ifµν∂tφµψν

+
1

2
mµνρψ

νψρDφµ +
1

2
nµνρDφ

µDφνψρ
]

=

∫
dtdθ

[
− i

2
gµνDφ

µ∂tφ
ν +

1

6
cµνρDφ

µDφνDφρ − 1

2
hµνψ

µDψν

− 1

2
(hµκA

κ
ν ρ +mµνρ)ψ

µDφνψρ +
1

6
lµνρψ

µψνψρ − ifµν∂tφµψν

+
1

2
nµνρDφ

µDφνψρ
]
. (229)

Comparing the reduced action with the most general action we find that all
terms except fµν∂tφ

µψν can be recovered, provided that

gµν = hµν = 2Gµν , cµνρ = Sµνρ, fµν = 0,

lµνρ = −nµνρ = Tµνρ, hµκA
κ
ν ρ +mνµρ = 2Gµν,ρ, (230)

where Sµνρ is totally symmetric, symmetric in two indices or zero. With Sµνρ =
Gµν,ρ this is fulfilled. These results are slightly different from those obtained
in [5]. We conclude that the targetspace geometry of the reduced model has
additional restrictions compared to the most general case.

A reduction can also be performed via an N = 2a sigma model [5]. The
most general such model is

S =

∫
dtd2θ

(
D1φ

µEµνD2φ
ν + lµνD1φ

µD1φ
ν +mµνD2φ

µD2φ
ν
)
, (231)

where l and m correspond to non-Lorentz invariant terms in D = 2. If l and
m are set to zero we are back with the dimensional reduced model (227). If,
however, they are nonzero a more general model for N = 1 can be obtained

S =

∫
dtdθ

[
− iGµνDφµφ̇ν − (Gµν + sµν)ψµ∇ψν +

1

3
SµντDφ

µDφνDφDτ

+ (Hµντ − Tµντ )(DφµDφνψτ +
1

3
ψµψνψτ )− 2itµν φ̇

µψν
]
, (232)

where

Lµντ :=
1

2
(lµν,τ + lντ,µ + lτµ,ν)

Mµντ :=
1

2
(mµν,τ +mντ,µ +mτµ,ν)

sµν := lµν −mµν

tµν := lµν +mµν

Sµντ := Lµντ −Mµντ

Tµντ := Lµντ +Mµντ . (233)
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Again comparing with the most general form (228), we find that all terms can
be recovered if

gµν = Gµν , hµν = Gµν + sµν , hµντ = Gµν,τ + Sµντ ,

fµν = tµν , Iµντ = Hµντ − Tµντ , nµντ=Hµντ − Tµντ ,
hµλ(Aν)λτ +mνµτ = Gµν,τ + sµν,τ . (234)

But since H, S and T by construction are closed, while all couplings in the
general case are arbitrary, the general case is not fully recovered. The conclusion
drawn in [5] is that neither the direct reduction from N = (1, 1) to N = 1 nor
a reduction via N = 2a recovers the most general case. Thus restrictions not
present in the general case has to be imposed on the final sigma models.

9.3 Reduction from N = (2, 0) in D = 2 to N = 1 in D = 1

The most general renormalizable Lorentz-invariant N = (2, 0) sigma model in
D = 2 is given by

S =

∫
d2xd2θ+

[
− i

2
(Kµ∂+Φµ−Kµ̄∂+Φµ̄) + fabΨ

aΨb + fab̄Ψ
aΨb̄ + fāb̄Ψ

āΨb̄)
]
.

(235)
By reducing one supersymmetry and writing in terms of real N = (1, 0) fields,
we get the N = (1, 0) model in D = 2

S = −
∫
d2xdθ+

[
i(Gµν +Bµν)Dφµ∂+φ

ν +Gabψ
a∇ψb

]
, (236)

and by reducing the dimension, finally, we arrive at the N = 1 model in D = 1

S =

∫
dtdθ

[
iGµνDφ

µφ̇ν +
1

3
HµντDφ

µDφνDφτ +Gabψ
a∇ψb

]
. (237)

10 Conformal theory

A conformal transformation leaves the angel between any two crossing lines
invariant, or in other words the metric is left invariant up to a coordinate de-
pendent scale. This condition can be written as [8]

g′ρσ(x′) = Λ(x)gµν(x). (238)

Note that with Λ(x) = 1 we are back with the Poincaré group, which actu-
ally can be seen as a subgroup of the conformal group. Now, any change in
coordinates up to a term O(ε2) can be written

xµ → x′µ = xµ + εµ(x), (239)

which corresponds to a change in the metric:

gµν → gµν − (∂µεν − ∂νεµ) (240)
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Requiring (240) to be a conformal transformation, we have

∂µεν + ∂νεµ = f(x)gµν . (241)

Then by taking the trace

f(x) =
2

D
∂ρε

ρ, (242)

where D is the dimension of the metric. We insert (241) in (242) and get

∂µεν + ∂νεµ =
2

D
∂ρε

ρgµν . (243)

From this relation we can find (see [8] for details)

(D − 1)∂µ∂µ∂νε
ν = 0. (244)

10.1 D ≥ 3

In D ≥ 3 (244) tells us that εµ is at most quadratic in x:

εµ = aµ + bµνx
ν + cµνρx

νxρ (245)

The first term gives an infinitesimal translation x′µ = xµ + aµ, which has D
generators

Pµ = −i∂µ. (246)

The second term can be divided into an even and an odd term. The odd
term corresponds to an infinitesimal rotation x′µ = δµν +mµ

ν and have D(D−1)
D

generators
Lµν = i(xµ∂ν − xν∂µ). (247)

The even term corresponds to a new transformation, the infinitesimal scale or
dilation transformation x′µ = (1 + α)xµ, which has only one generator

D = −ixµ∂µ. (248)

Finally, the last term corresponds to another new transformation, the infinites-
imal Special Conformal Transformation (SCT), x′µ = xµ + 2xνbνx

µ − xνxνbµ,
where bµ := cρρµ. The corresponding D generators are written

Kµ = −i(2xµxν∂ν − xνxν∂µ). (249)

The finite transformations are written as follows:

x′µ = xµ + aµ translation

x′µ = Mµ
νx

ν rotation

x′µ = αxµ dilation

x′µ =
xµ − xνxνbµ

1− 2bρxρ + bσbσxτxσ
SCT (250)
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We finally state the commutation relations for the generators, which define the
conformal group [7]:

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i(gµνD − Lµν)

[Kρ, Lµν ] = i(gρµKν − gρνKµ)

[Pρ, Lµν ] = i(gρµPν − gρνPµ)

[Lµν , Lρσ] = i(gνρLµσ + gµσLνρ − gµρLνσ − gνσLµρ) (251)

10.2 D = 2

As seen from the discussion on general dimensions the condition

ηρσ
∂x′ρ

∂xµ
∂x′σ

∂xν
= Λ(x)ηµν (252)

and the coordinate change

xµ → x′µ = xµ + εµ(x), (253)

lead to

∂µεν + ∂νεµ =
2

D
(∂ · ε)ηµν . (254)

In two dimensions and after a Wick rotation to a Euclidean metric (ηµν =
diag(+1,+1)) this becomes

∂0ε0 = ∂1ε1, ∂0ε1 = −∂1ε0, (255)

which we recognize as the Cauchy-Riemann relations (37). We therefore intro-
duce complex coordinates

z = x0 + ix1, ε = ε0 + iε1, ∂z =
1

2
(∂0 − i∂1)

z̄ = x0 − ix1, ε̄ = ε0 − iε1, ∂z̄ =
1

2
(∂0 + i∂1) (256)

in which (255) becomes

∂z ε̄ = −∂z̄ε, ∂zε = ∂z̄ ε̄ (257)

A Laurent expansion around z = 0 of a conformal transformation yields

z′ = z + ε(z) = z +
∑
n∈Z

εn(−zn+1), εn constants,

z̄′ = z̄ + ε̄(z̄) = z̄ +
∑
n∈Z

ε̄n(−z̄n+1), ε̄n constants, (258)
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and the infinite number of generators are given by

ln = −zn+1∂z, l̄n = −z̄n+1∂z̄. (259)

They obey the so-called Witt algebra

[lm, ln] = (m− n)lm+n

[l̄m, l̄n] = (m− n)l̄m+n

[lm, l̄n] = 0. (260)

We interpret l−1, l0 + l̄0, i(l0 − l̄0), and l+1 as the generators of translations,
dilations, rotations and special conformal transformations respectively. Note
the ambiguities that arise at z = 0 and z = ∞. In fact only {l−1, l0, l+1} are
globally defined on the Riemann sphere S2 = C ∪∞.

Allowing for a central charge c, the Witt algebra can be extended to the
Viraso algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m− 1)m(m+ 1)δm+n,0, (261)

which reduces back to the Witt algebra when m,n = −1, 0, 1.
A field φ(z, z̄) is called a primary field of conformal dimension (h, h̄) if it,

under a conformal transformation z → f(z), transforms as

φ(z, z̄)→ φ′(z, z̄) =
(∂f
∂z

)h(∂f̄
∂z̄

)h̄
φ(f(z), f̄(z̄)). (262)

Up to second order in ε this means

φ(z, z̄)→ φ(z, z̄) + (h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄)φ(z, z̄), (263)

or
δε,ε̄φ(z, z̄) = (h∂zε+ ε∂z + h̄∂z̄ ε̄+ ε̄∂z̄)φ(z, z̄). (264)

The Laurent expansion around z = z̄ = 0 reads

φ(z, z̄) =
∑
n,m̄∈Z

z−n−hz̄m̄−h̄φn,m̄. (265)

Fields with only z-dependence, φ = φ(z), are called chiral or holomorphic fields,
while fields with only z̄-dependence are called anti-chiral or anti-holomorphic.

10.3 The Polyakov action revisited

We return for a moment to the Polyakov action ((107) with (104) inserted and
a string tension T = 1)

S = −1

2

∫
d2x
√
−hhab∂aXµ∂bX

νηµν . (266)

This action is invariant under the following symmtery transformations:
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1. Poincaré transformations in target space

δXµ = ωµνX
ν + aµ, ωµν = −ωνµ, δhab = 0. (267)

2. Reparametrizations of the world sheet coordinates

xa → fa(x), hab =
∂fc

∂xa
∂fd

∂xb
hcd. (268)

3. Weyl transformations on the world sheet, i.e., rescaling

hab → eg(x)hab, δXµ = 0. (269)

Combining reparametrizations and Weyl transformations we see that the two-
dimensional Polyakov action indeed is invariant under conformal transforma-
tions (cf. (238)). This is what allowed us to choose the conformal gauge in
section 6.1. The reasoning goes as follows. The world-sheet metric hab has
four componenets, but since it is symmetric only three are independent. By
reparametrization two of the remaining components can be choosen arbitrarly
and the remaining components can be gauged away by a Weyl transformation.
Thus a flat world-sheet metric, such as the Minkowski metric

ηab =

(
−1 0
0 1

)
, (270)

can be choosen. In section 6.1 we then chose light-cone coordinates which
gave us the action (110). Here we will, however, follow the previous subsection
and perform a Wick rotation to Euclidean world-sheet coordinates and then
introduce complex coordinates. The bosonic non-linear sigma model then takes
the form

S =

∫
dzdz̄∂zX

µ(z, z̄)∂z̄X
ν(z, z̄)Eµν(X). (271)

This is conformally invariant if Xµ are primary fields with vanishing conformal
dimensions (h, h̄) = (0, 0), i.e.,

X ′µ(f(z), f̄(z̄)) = Xµ(z, z̄). (272)

10.4 D = 1

Next we will look at a subgroup Sl(2,R) of the one-dimensional conformal group
Conf(R). This subgroup contains the usual translations P , dilations D̂ and
special conformal transformations K. In [3] the algebra takes the form

[D̂,K] = K

[P, D̂] = P

[P,K] =
1

2
D̂, (273)
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and a Lagrangian

L =
1

2
gµν∂tφ

µ∂tφ
ν +Aµ∂tφ

µ − V (φ), (274)

of a non-relativistic spinning particle in a magnetic field A and with a scalar
potential V , is shown to be invariant (appendix ??) under a transformation

∂εφ
µ = −εa(t)∂tφ+ εXµ(t, φ), (275)

provided Xµ is a vector field on the target space satisfying the following condi-
tions:

∇(µXν) =
1

2
∂tagµν

∂tX
νgνµ +XνFνµ = ∂µf

∂taV +Xµ∂µV = −∂tf, (276)

where Fµν = 2∂[µAν], a is a generator of the Sl(2,R) group and the function
f = f(t, φ) arises because the invariance is up to a surface term. This means
that a homothetic motion generated by the vector field X is needed. Another
possibility is the existence of two commuting homothetic motions generated by
the vector fields Y and Z on the target space.

In [4] the Sl(2,R) algebra is parametrized by

ε(t) = εP + 2tεD + t2εK , (277)

and takes the form
[δε2 , δε1 ] = δ(ε2ε̇1−ε1ε̇2). (278)

Defining generators

δεP = iεPP, δ2εDt = iεDD̂, δεKt2 = iεKK, (279)

this gives

[P, D̂] = −2iP, [P,K] = −iD̂, [D̂,K] = −2iK. (280)

With a bosonic superfield
Φµ = Xµ + iθλµ, (281)

and a fermionic superfield

ΨA = iψA + iθFA, (282)

the conformal transformations are asserted to be

δεX
µ = −εẊµ +

1

2
ε̇Dµ(X),
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δελ
µ = −ελ̇µ +

1

2
ε̇Aµ(X,λ),

δεψ
A = −εψ̇A +

1

2
ε̇EA(X,ψ),

δεF
A = −εḞA +

1

2
ε̇BA(X,F ), (283)

for some vector fields D, A, E and B.

11 Superconformal theory

11.1 D = 2, N = (1, 1)

The N = (1, 1) action

S =

∫
d2xd2θD+φ

µEµνD−φ
µ, (284)

is classically conformally invariant. However, going to the quantum case this is
no longer the case. It can be shown [10] that (284) is conformally invariant at
one-loop if there exists a function Φ such that

R(+)
µν − 2∇(µ∇ν)Φ− 2T κ

µν ∇κΦ = 0. (285)

11.2 D = 1, N = 1

11.2.1 Introduction

We will consider the Osp(1|2) subgroup of the conformal group. This group
contains the generators for translation P , dilation D̂, special conformal trans-
formation K, supersymmetry transformation Q, and the special superconformal
transformation S, and has the following algebra:

[P, P ] = 0, [P, D̂] = 2iP, [P,K] = iD̂, [P,Q] = 0, [P, S] = −Q,
[D̂, D̂] = 0, [D̂,K] = 2iK, [D̂,Q] = −iQ, [D̂, S] = S,

[K,K] = 0, [K,Q] = S, [K,S] = 0,

{Q,Q} = 2P, {Q,S} = −iD̂,
{S, S} = −2iK.

(286)
The generators then take the form

P = i∂t, D̂ = 2it∂t + iθ∂θ, K = it2∂t + itθ∂θ,

Q = θ∂t + i∂θ, S = −itθ∂t + t∂θ.
(287)

These generators, however, cannot be promoted to operators working on super-
fields the way we did in equations (163)-(167). How would one, e.g., continue
from

eiξD̂ei(tP+θQ) = · · · = ei(t+xt)P+i(θ+ 1
2 θξ)Q+iξD̂, (288)
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to find the coordinate changes and from them the operators? One way is per-
haps to consider a quotient space where we mod out not only the Lorentz group
but also the dilations and the special conformal transformations. This route
we will not follow here. Instead we will follow section 10.4 and let a closed
homothety Dµ in the target space act on the superfields.

Extending the conformal transformations (283) it is shown in [4] that N
separate Osp(1|2) algebras is satisfied by the conformal transformations

δεX
µ = −εẊµ +

1

2
ε̇Dµ(X)

δελ
µ = −ελ̇µ +

1

2
ε̇(Dµ

,νλ
ν − λµ)

δεψ
A = −εψ̇A − 1

2
ε̇(β + 1)ψA

δεF
A = −εḞA − 1

2
ε̇(β + 2)FA, (289)

with
Q = ∂θ + iθ∂t, D = ∂θ − iθ∂t, (290)

and

QiΦ
µ = I µi νDΦν + e µi AΨA, QiΨ

A = I Ai BDΨB − e Ai µΦ̇µ, (291)

as long as
LDI µi ν = (LD − β)e µi A = (LD + β)e µi A = 0, (292)

for each i = 1, . . . , N − 1 and β is a constant

Concentrating on the most general N = 1 action with only dimensionless
coupling, which is cited as

S =

∫
dtdθ

( i
2
DΦµΦ̇ν +

1

6
cµνρDΦµDΦνDΦρ − 1

2
hABΨADΨB

+
1

6
lABCΨAΨBΨC − ifµAΦ̇µΨA +

1

2
mµABDΦµΨAΨB +

1

2
nµνADΦµDΦνΨA

)
,

(293)

it was found that the conditions for invariance under dilations are

(LD − 2)gµν = 0,

(LD − 2)cµνρ = 0,

LDhAB = (2β + 2)hAB ,

LDlABC = (3β + 2)lABC ,

LDfµA = (β + 2)fµA,

LDmµAB = (2β + 2)mµAB ,

LDnµνA = (β + 2)nµνA, (294)

43



and that the conditions for invariance under special conformal invariance are

Dµ = ∂µK,

Dµcµνρ = 0,

DµmµAB = 0,

Dν(nµνA −∇µfνA) = 0. (295)

11.2.2 Construction of the Osp(1|2) algebra

In this section we will review how to find the transformations of the Osp(1|2)
algebra. We follow [4], but with bosonic and fermionic superfields given respec-
tively by

Φµ = Xµ + θλµ, ΨA = ψA + θFA. (296)

Thus, as before, the conformal transformations are parametrized by

ε(t) = εP + 2tεD + t2εK , (297)

giving for the Sl(2,R) group

[δε2 , δε1 ] = δ(ε2ε̇1−ε1ε̇2). (298)

and with generators

δεP = iεPP, δ2εDt = iεDD̂, δεKt2 = iεKK, (299)

we get
[P, D̂] = −2iP, [P,K] = −iD̂, [D̂,K] = −2iK. (300)

We make a more general ansatz than in (283) for the conformal transformations,
letting D, A, E and B depend on all the fields X, λ, ψ and F

δεX
µ = −εẊµ +

1

2
ε̇Dµ(X,λ, ψ, F ),

δελ
µ = −ελ̇µ +

1

2
ε̇Aµ(X,λ, ψ, F ),

δεψ
A = −εψ̇A +

1

2
ε̇EA(X,λ, ψ, F ),

δεF
A = −εḞA +

1

2
ε̇BA(X,λ, ψ, F ). (301)

We also note that A and E are Grassmann-odd, which means that they anti-
commute with λ and ψ. These transformations are easily shown to close under
(298). For example

δε2δε1X
µ =δε2(−ε1Ẋµ +

1

2
ε̇1D

µ)

=− ε1∂tδε2Xµ

44



+
1

2
ε̇1

(∂Dµ

∂Xν
δε2X

µ +
∂Dµ

∂λν
δε2λ

µ +
∂Dµ

∂ψA
δε2ψ

A +
∂Dµ

∂FA
δε2F

A
)

=ε1ε̇2X
µ + ε1ε2Ẍ

µ − 1

2
ε̇1ε̈2D

µ

− 1

2
ε1ε̇2

(∂Dµ

∂Xν
Ẋν +

∂Dµ

∂λν
λ̇ν +

∂Dµ

∂ψA
ψ̇A +

∂Dµ

∂FA
ḞA
)

+
1

2
ε̇1

(∂Dµ

∂Xν
(−ε2Ẋν +

1

2
ε̇2D

ν) +
∂Dµ

∂λν
(−ε2λ̇ν +

1

2
ε̇2A

ν)

+
∂Dµ

∂ψA
(−ε2ψ̇A +

1

2
ε̇2E

A) +
∂Dµ

∂FA
(−ε2ḞA +

1

2
ε̇2B

A
)

=ε1ε̇2X
µ + ε1ε2Ẍ

µ − 1

2
ε̇1ε̈2D

µ

− 1

2
(ε1ε̇2 + ε̇1ε2)

(∂Dµ

∂Xν
Ẋν +

∂Dµ

∂λν
λ̇ν +

∂Dµ

∂ψA
ψ̇A +

∂Dµ

∂FA
ḞA
)

+
1

4
ε̇1ε̇2

(∂Dµ

∂Xν
Dν +

∂Dµ

∂λν
Aν +

∂Dµ

∂ψA
EA +

∂Dµ

∂FA
BA
)
, (302)

[δε2 , δε1 ] =(ε1ε̇2 − ε2ε̇1)Xµ + (ε1ε2 − ε2ε1)Ẍµ − 1

2
(ε̇1ε̈2 − ε̇2ε̈1)Dµ

+
1

2
(ε1ε̇2 + ε̇1ε2 − (ε2ε̇1 + ε̇2ε1))

(∂Dµ

∂Xν
Ẋν +

∂Dµ

∂λν
λ̇ν +

∂Dµ

∂ψA
ψ̇A +

∂Dµ

∂FA
ḞA
)

+
1

4
(ε̇1ε̇2 − ε̇2ε̇1)

(∂Dµ

∂Xν
Dν +

∂Dµ

∂λν
Aν +

∂Dµ

∂ψA
EA +

∂Dµ

∂FA
BA
)

=− (ε2ε̇1 − ε1ε̇2)Xµ +
1

2
∂t(ε2ε̇1 − ε1ε̇2)Dµ

=δ(ε2 ε̇1−ε1ε̇2)X
µ, (303)

where we have used that ε1ε2 = ε2ε1.

We want to extend our model to a supersymmetric one. First we inves-
tigate how ordinary bosonic and fermionic fields acts under a supersymmetry
transformation

δζΦ
µ = iζQΦµ = iζ(i∂θ + θ∂t)(X

µ + θλµ) = −ζλµ + θ(−iζẊµ)

= δζX
µ + θδζλ

µ. (304)

Defining Q to act on ordinary fields we get after similar calculations on the
fermionic superfields

δζX
µ = −ζλµ = ζQXµ

δζλ
µ = −iζẊµ = ζQλµ

δζψ
A = −ζFA = ζQψA

δζF
A = −iζψ̇A = ζQFA (305)
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The anti-commutator of two supertransformations thus becomes

δζ2δζ1X
µ = −ζ1δζ2λµ = −iζ2ζ1Ẋµ (306)

[δζ2 , δζ1 ]Xµ = −i(ζ2ζ1 − ζ1ζ2)Ẋµ = −2iζ2ζ1Ẋ
µ = 2i(δζ2ζ1X

µ) = 2i(iζ2ζ1P )Xµ

= −2ζ2ζ1PX
µ (307)

[δζ2 , δζ1 ]Xµ = {ζ2Q, ζ1Q}Xµ = −ζ2ζ1{Q,Q}Xµ ⇒ {Q,Q}Xµ = 2PXµ,
(308)

with similar calculations for the other fields. It is also easy to check that
[P,Q] = 0 for all fields.

Next we will incorporate the action of Q to the conformal transformations.
For the algebra to close we will have to include the special superconformal
transformations S, which we define from the commutator of K and Q. The full
algebra reads [4].

[P, P ] = 0, [P, D̂] = −2iP, [P,K] = −iD̂, [P,Q] = 0, [P, S] = −iQ,
[D̂, D̂] = 0, [D̂,K] = −2iK, [D̂,Q] = iQ, [D̂, S] = −iS,

[K,K] = 0, [K,Q] = iS, [K,S] = 0,

{Q,Q} = 2P, {Q, S} = D̂,
{S, S} = 2K.

(309)
Before we find the transformations of S, we work out the constraints that
[D̂,Q] = iQ puts on the vector fields D, A, E and B of (301). We have

[δ2εDt, δζ ]X
µ = εDζ

(
−Aµ +

∂Dµ

∂Xν
λν − i∂D

µ

∂λν
Ẋν − ∂Dµ

∂ψA
FA + i

∂Dµ

∂FA
ψ̇
)
, (310)

[δ2εDt, δζ ]X
µ = [iεDD̂, ζQ]Xµ = iεDζ[D̂,Q]Xµ = iεDζ(iQ)Xµ = −εδζXµ = εDζλ

µ

(311)

⇒ Aµ = −λµ +
∂Dµ

∂Xν
λν − i∂D

µ

∂λν
Ẋν − ∂Dµ

∂ψA
FA + i

∂Dµ

∂FA
ψ̇ (312)

[δ2εDt, δζ ]λ
µ = iεDζ

(
2Ẋµ − ∂Dµ

∂Xν
Ẋν − ∂Dµ

∂λν
λ̇ν − ∂Dµ

∂ψA
ψ̇A − ∂Dµ

∂FA
ḞA

+i
∂Aµ

∂Xν
λν +

∂Aµ

∂λν
Ẋν − i ∂A

µ

∂ψA
FA − ∂Aµ

∂FA
ψ̇
)
, (313)

[δ2εDt, δζ ]λ
µ = iεDζ[D̂,Q]λµ = −εDζQλµ = −εDδζλµ = iεDζẊ

µ (314)

⇒ 0 =Ẋµ +
(∂Aµ
∂λν

− ∂Dµ

∂Xν

)
Ẋν − ∂Dµ

∂λν
λ̇ν −

(∂Dµ

∂ψA
+
∂Aµ

∂FA

)
ψ̇A

− ∂Dµ

∂FA
ḞA + i

∂Aµ

∂Xν
λν − i ∂A

µ

∂ψA
FA. (315)
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We insert (312) in (315) and find

0 =2
∂2Dµ

∂λν∂Xρ
λρẊν + 2i

∂2Dµ

∂FA∂λν
Ẋνψ̇A − ∂Dµ

∂λν
λ̇ν + 2

∂2Dµ

∂FA∂ψB
FBψ̇A

− ∂Dµ

∂FA
ḞA − 2i

∂2Dµ

∂Xν∂ψA
FAλν . (316)

If Dµ = Dµ(X) this is satisfied and (312) becomes

Aµ = Aµ(X,λ) = −λµ +
∂Dµ

∂Xν
λν =: −λµ +Dµ

,νλ
ν . (317)

Same procedure on ψA and FA gives

BA = −FA − ∂EA

∂Xµ
λµ + i

∂EA

∂λµ
Ẋµ +

∂EA

∂ψB
FB − i ∂E

A

∂FB
ψ̇B , (318)

and

0 =ψ̇A − ∂EA

∂Xµ
Ẋµ − ∂BA

∂λ
Ẋµ − ∂EA

∂λµ
λ̇µ − ∂EA

∂ψB
ψ̇B +

∂BA

∂FB
ψ̇B

− ∂EA

∂FB
ḞB − i∂B

A

∂Xµ
λµ + i

∂BA

∂ψB
FB , (319)

respectively. Together we get

0 =− 2
∂EA

∂Xµ
Ẋµ − ∂EA

∂λµ
λ̇µ − ∂EA

∂FB
ḞB + 2

∂2EA

∂λµ∂Xν
λνẊµ

+ 2i
∂2EA

∂λµ∂FB
ψ̇BẊµ + 2

∂2EA

∂FB∂ψC
FC ψ̇B − 2i

∂2EA

∂Xµ∂ψB
FBλµ, (320)

which is satisfied by EA = EA(ψ) and we get

BA = −FA +
∂AA

∂ψB
FB =: −FA +AA,BF

B . (321)

Now we are ready for the transformations of S

[δεKt2 , δζ ]X
µ = εKζλ

µ = −iεKζ[K,Q]Xµ = −εKζSXµ (322)

⇒ SXµ = −tλµ (323)

We introduce the antisymmetric paramater ξ and write a transformation δξt =
ξS. Thus we get

δξtX
µ = −ξtλµ. (324)

In the same way, acting on the λµ, ψA and FA with [δεKt2 , δζ ] and again using
[K,Q] = −iS gives

δξtλ
µ = −iξtẊµ + iξDµ,
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δξtψ
A = −ξtFA,

δξtF
A = −iξtψ̇A + iξEA. (325)

The rest of the transformations can be checked to fulfil the algebra without
further restrictions, and we conclude that the complete set of Osp(1|2) trans-
formations are given by (305), (324), (325) and

δεX
µ = −εẊµ +

1

2
ε̇Dµ(X),

δελ
µ = −ελ̇µ − 1

2
ε̇λµ +

1

2
ε̇Dµ

,νλ
ν ,

δεψ
A = −εψ̇A +

1

2
ε̇EA(ψ),

δεF
A = −εḞA − 1

2
ε̇FA +

1

2
ε̇EA,BF

B . (326)

12 Superconformal invariance of the reduced D =
1, N = 1 sigma model

The D = 2, N = (1, 1) action is superconformally invariant at one-loop if the
function Φ described in section 11.1 exists. Thus a dimensional reduction can be
performed the same way as in section C, either directly or via a N = 2a sigma
model, adding the corresponding constraints on the target space to the existence
of Φ. However, the actions obtained from these reductions are in general not
superconformally invariant (not considering the existence of Φ). It is interesting
to ask whether these actions can be made superconformally invariant by the
method described in section 11.2. If that is the case, what new constraints are
put on the target space and how do they compare to the existence of Φ? In
other words, what are the restrictions on the target space for a N = (1, 1) sigma
model in D = 2 to be reducible to a N = 1 sigma model in D = 1 which is
superconformally invariant?

We recall the directly reduced action (227)

SR =

∫
dtdθ

(
− iGµνDX̂µ∂tX̂

ν −Gµνψ̂µDψ̂ν −Gµν,ρψ̂µDX̂νψ̂ρ

− 1

2
TµνρDX̂

µDX̂νψ̂ρ +
1

6
Tµνρψ̂

µψ̂νψ̂ρ
)
, (327)

with bosonic superfields

X̂µ(t, θ) = Xµ(t) + θψµ(t), (328)

and fermionic superfields

ψ̂µ(t, θ) = ψ̃µ(t) + θFµ(t). (329)

In components (327) expands to

SR =

∫
dt
(
− iGµν,ρψρψµẊν +GµνẊ

µẊν + iGµνψ
µψ̇ν
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−Gµν,ρψρψ̃µF ν −GµνFµF ν + iGµνψ̃
µ ˙̃
ψν

−Gµν,ρκψκψ̃µψνψ̃ρ −Gµν,ρFµψνψ̃ρ + iGµν,ρψ̃
µẊνψ̃ρ −Gµν,ρψ̃µψνF ρ

− 1

2
Tµνρ,κψ

κψµψνψ̃ρ − iTµνρẊµψνψ̃ρ − 1

2
Tµνρψ

µψνF ρ

+
1

6
Tµνρ,κψ

κψ̃µψ̃νψ̃ρ +
1

2
Tµνρψ̃

µψ̃νF ρ
)
. (330)

We will act on one term at a time with the transformations (cf.(326))

δεX
µ = −εẊµ +

1

2
ε̇Dµ(X),

δεψ
µ = −εψ̇µ − 1

2
ε̇ψµ +

1

2
ε̇Dµ

,νψ
ν ,

δεψ̃
µ = −ε ˙̃

ψµ +
1

2
ε̇Eµ(ψ̃)

δεF
µ = −εḞµ − 1

2
ε̇Fµ +

1

2
ε̇
∂Eµ

∂ψ̃ν
F ν . (331)

We work out the first term in detail.

δε(− iGµν,ρψρψµẊν) = −iGµν,ρσδεXσψρψµẊν − iGµν,ρδεψρψµẊν

− iGµν,ρψρδεψµẊν − iGµν,ρψρψµ∂tδεXν

=iεGµν,ρσẊ
νẊσψρψµ − i

2
ε̇Gµν,ρσD

σẊνψρψµ

+ iεGµν,ρẊ
νψ̇ρψµ +

i

2
Gµν,ρẊ

νψρψµ − i

2
ε̇Gµν,ρD

ρ
,σẊ

νψσσµ

+ iεGµν,ρẊ
νψρψ̇µ +

i

2
ε̇Gµν,ρẊ

νψρψµ − i

2
ε̇Gµν,ρD

µ
,σẊ

νψρψσ

+ iε̇Gµν,ρẊ
νψρψµ + iεGµν,ρẌ

νψρψµ − i

2
ε̈Gµν,ρD

νψρψµ − i

2
ε̇Gµν,ρD

ν
,σẊ

σψρψµ

=∂t(iεGµν,ρẊ
νψρψµ)

− i

2
ε̇(DσGµν,ρσ +Dσ

,µGσν,ρ +Dσ
,νGµσ,ρ +DσGµν,σ)Ẋνψρψµ

+ iε̇Gµν,ρẊ
νψρψµ − i

2
ε̈Gµν,ρD

νψρψµ (332)

δε(GµνẊ
µẊν) = ∂t(−εGµνẊµẊν) +

1

2
ε̇(DρGµν,ρ +Dρ

,µGρν +Dρ
,νGµρ)Ẋ

µẊν

− ε̇GµνẊµẊν + ε̈GµνD
µẊν (333)

δε(iGµνψ
µψ̇ν) = ∂t(−iεGµνψµψ̇ν) +

i

2
ε̇(DρGµν,ρ +Dρ

,µGρν +Dρ
,νGµρ)ψ

µψ̇ν

− iε̇Gµνψµψ̇ν +
i

2
ε̇Dρ

,νσGµρẊ
σψµψν +

i

2
ε̈Dρ

,νGµρψ
µψν (334)
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δε(−Gµν,ρψρψ̃µF ν) = ∂t(εGµν,ρψ
ρψ̃µF ν)− 1

2
ε̇(DσGµν,ρσ +Dσ

,ρGµν,σ)ψρψ̃µF ν

− 1

2
ε̇(EσGσν,ρ −

∂Eσ

∂ψν
Gµσ,ρψ̃

µ)ψρF ν (335)

δε(−GµνFµF ν) = ∂t(εGµνF
µF ν)− 1

2
ε̇Gµν,ρD

ρFµF ν

− 1

2
ε̇Gµν

(∂Eµ
∂ψρ

F ρF ν + Fµ
∂Eν

∂ψρ
F ρ
)

(336)

δε(iGµνψ̃
µ ˙̃
ψν) = ∂t(−iεGµνψ̃µ ˙̃

ψν) +
i

2
ε̇Gµν,ρD

ρψ̃µ
˙̃
ψν +

i

2
ε̇GµνE

µ ˙̃
ψν

+
i

2
ε̇Gµνψ̃

µ ∂E
ν

∂ψ̃ρ
˙̃
ψρ +

i

2
ε̈Gµνψ̃

µEν (337)

δε(−Gµν,ρκψκψ̃µψνψ̃ρ) = ∂t(−εGµν,ρκψκψνψ̃µψ̃ρ)

+
1

2
ε̇(DσGµν,ρκσ +Dσ

,νGµσ,ρκ +Dσ
,κGµν,ρσ)ψκψνψ̃µψ̃ρ

+
1

2
ε̇(EµGµν,ρκ − EµGρν,µκ)ψκψνψ̃ρ (338)

δε

(
(Gρν,µ −Gµν,ρ)ψ̃µψνF ρ

)
= ∂t

(
ε(Gρν,µ −Gµν,ρ)ψνψ̃µF ρ

)
− 1

2
ε̇
(
Dσ(Gρν,µσ −Gµν,ρσ) +Dσ

,ν(Gρσ,µ −Gµσ,ρ)
)
ψνψ̃µF ρ

+
1

2
ε̇(Gρν,µ −Gµν,ρ)EµψνF ρ −

1

2
ε̇(Gσν,µ −Gµν,σ)

∂Eσ

∂ψ̃ρ
ψνψ̃µF ρ (339)

δε(iGµν,ρψ̃
µẊνψ̃ρ) = ∂t(−iεGµν,ρẊνψ̃µψ̃ρ) +

i

2
ε̇(DσGµν,ρσ +Dσ

,νGµσ,ρ)Ẋ
νψ̃µψ̃ρ

+
i

2
ε̇(Gµν,ρ −Gρν,µ)EµẊνψ̃ρ +

i

2
ε̈Gµν,ρD

νψ̃µψ̃ρ (340)

δε(−
1

2
Tµνρ,κψ

κψµψνψ̃ρ) = ∂t(
1

2
εTµνρ,κψ

κψµψνψ̃ρ)

− 1

4
ε̇(DσTµνρ,κσ +Dσ

,µTσνρ,κ +Dσ
,νTµσρ,κ +Dσ

,κTµνρ,σ)ψκψµψνψ̃ρ

+
1

4
ε̇Tµνρ,κψ

κψµψν(ψρ − Eρ) (341)
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δε(− iTµνρẊµψνψ̃ρ) = ∂t(iε)TµνρẊ
µψνψ̃ρ)

− i

2
ε̇(DσTµνρ,σ +Dσ

,µTσνρ +Dσ
,νTµσρ)Ẋ

µψνψ̃ρ

+
i

2
ε̇TµνρẊ

µψν(ψ̃ρ − Eρ)− i

2
ε̈µνρD

µψνψ̃ρ) (342)

δε(−
1

2
Tµνρψ

µψνF ρ) = ∂t(
1

2
Tµνρψ

µψνF ρ)

− 1

4
ε̇(DσTµνρ,σ +Dκ

,µTκνρ +Dκ
,νTµκρ)ψ

µψνF ρ

+
1

4
ε̇Tµνρψ

µψν(F ρ − ∂Eρ

∂ψ̃κ
Fκ) (343)

δε(
1

6
Tµνρ,κψ

κψ̃µψ̃νψ̃ρ) = ∂t(−
1

6
εTµνρ,κψ

κψ̃µψ̃νψ̃ρ) +
1

12
ε̇Tµνρ,κψ

κ(ψ̃µ + 3Eµ)ψ̃νψ̃ρ

+
1

12
ε̇(DσTµνρ,κσ +Dσ

,κTµνρ,σ)ψκψ̃µψ̃νψ̃ρ (344)

δε(
1

2
Tµνρψ̃

µψ̃νF ρ) = ∂t(−
1

2
εTµνρψ̃

µψ̃νF ρ)

+
1

4
ε̇
(
Tµνρ(ψ̃

µ + 2Eµ) + Tµνσ
∂Eσ

∂ψ̃ρ
ψ̃µ
)
ψ̃νF ρ +

1

4
ε̇Tµνρ,σD

σψ̃µψ̃νF ρ (345)

Next we will eliminate the auxiliary fields Fµ by their equations of motion
(where L is the Lagrangian):

0 =
∂L
∂Fσ

− ∂t
( ∂L
∂Ḟσ

)
= −Gµν,ρψρψ̃µδνσ −GµνδµσF ν −GµνFµδνσ

−Gµν,ρδµσψνψ̃ρ −Gµν,ρψ̃µψνδρσ −
1

2
Tµνρψ

µψνδρσ +
1

2
Tµνρψ̃

µψ̃νδρσ (346)

⇒ Fλ =
1

2
Gλσ(2GσνF

ν)

=− 1

2
Gλσ(Gµσ,ρ +Gσρ,µ −Gµρ,σ)ψρψ̃µ − 1

4
GλσTµνσ(ψµψν − ψ̃µψ̃ν)

=− Γ
(0)λ

µνψ
µψ̃ν − 1

4
Tλµν(ψµψν − ψ̃µψ̃ν) (347)

Eliminating F and collecting terms according to their fields gives
X:

+
1

2
ε̇(DρGµν,ρ +Dρ

,µGρν +Dρ
,νGµρ − 2Gµν)ẊµẊν + ε̈DµGµνẊ

ν
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=
1

2
ε̇[(LD − 2)Gµν ]ẊµẊν + ε̈DµGµνẊ

ν (348)

ψ:

− i
2
ε̇TµνρẊ

µψνEρ (349)

ψ̃:

+
i

2
ε̇(Gµν,ρ −Gρν,µ)EµẊνψ̃ρ +

i

2
GµνE

µ ˙̃
ψν +

i

2
ε̈Gµνψ̃

µEν (350)

ψψ:

− i

2
ε̇[(LD − 2)Gµν,ρ −Dσ

,µνGρσ]Ẋνψρψµ +
i

2
ε̇(LD − 2)Gµνψ

µψ̇ν

+
i

2
ε̈(DρGµρ,ν +Dρ

,νGµρ]ψ
µψν (351)

ψψ̃:

− i

2
ε̇[DσTµνρ,σ +Dσ

,µTσνρ +Dσ
,νTµσρ − Tµνρ]Ẋµψνψ̃ρ

− i

2
ε̈DµTµνρψ

νψ̃ρ (352)

ψ̃ψ̃:

+
i

2
ε̇[DσGµν,ρσ +Dσ

,νGµσ,ρ]Gµσ,ρẊ
νψ̃µψ̃ρ +

i

2
ε̇Gµν,ρD

ρψ̃µ
˙̃
ψν

+
i

2
ε̈Gµν,ρD

νψ̃µψ̃ρ +
i

2
ε̇Gµνψ̃

µ ∂E
ν

∂ψ̃ρ
˙̃
ψρ (353)

ψψψ:

+
1

8
ε̇EσGσν,ρT

ν
ραβ −

1

8
ε̇Eµ(Gρν,µ −Gµν,ρ)T ραβψ

νψαψβ

+
1

4
ε̇EρTµνρ,σψ

σψµψν

=
1

4
ε̇Eµ(GµκΓ

(0)κ
ρνT

ρ
αβ − Tµαβ,ν)ψνψαψβ (354)

ψψψ̃:

+ε̇Eµ[GµσΓ
(0)σ

ρνΓ
(0)ρ

αβ +
1

2
(Gµα,βν −Gβα,µν) +

1

4
TµβρT

ρ
αν ]ψνψαψ̃β (355)

ψψ̃ψ̃:

−1

4
ε̇[EµGµκΓ

(0)κ
ρνT

ρ
αβ + EµTµαβ,ν − 2EµTµαρΓ

(0)ρ
νβ ]ψνψ̃αψ̃β (356)
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ψ̃ψ̃ψ̃

+
1

8
ε̇EµTµνρT

ρ
αβψ̃

νψ̃αψ̃β (357)

ψψψψ:

+
1

16
ε̇(DκTµνρ,κ +Dκ

,µTκνρ +Dκ
,νTµκρ +

∂Eκ

∂ψ̃ρ
Tµνκ − Tµνρ)T ραβψ

µψνψαψβ

− 1

32
ε̇(DκGρσ,κ +

∂Eκ

∂ψ̃ρ
Gκσ +

∂Eκ

∂ψ̃σ
Gρκ)TσµνT

ρ
αβψ

µψνψαψβ (358)

ψψψψ̃:

− 1

4
ε̇
[
Dκ∂κ(GνσΓ

(0)σ
µα) +Dκ

,αGνσΓ
(0)σ

µκ +
∂Eκ

∂ψ̃ν
GκσΓ

(0)σ
µα

]
T νβρψ

αψβψρψ̃µ

− 1

4
ε̇
[
DκGνσ,κΓ

(0)σ
µα +

∂Eκ

∂ψ̃σ
GνκΓ

(0)σ
µα +

∂Eκ

∂ψ̃ν
GκσΓ

(0)σ
µα

]
T νβρψ

αψβψρψ̃µ

− 1

4
ε̇
[
DκTβρµ,ακ +Dκ

,βTκρµ,α +Dκ
,ρTβκµ,α +Dκ

,αTβρµ,κ − Tβρµ,α
]
ψαψβψρψ̃µ

+
1

4
ε̇
[
DκTβρσ,κ +Dκ

,βTκρσ +Dκ
,ρTβκσ +

∂Eκ

∂ψ̃σ
Tβρκ

]
Γ

(0)σ
αµψ

αψβψρψ̃µ

(359)

ψψψ̃ψ̃:

+ ε̇
[
Dκ∂κ(GρσΓ

(0)σ
µβ) +Dκ

,βGρσΓ
(0)σ

µκ +
∂Eκ

∂ψ̃ρ
GκσΓ

(0)σ
µβ

]
Γ

(0)ρ
ανψ

αψβψ̃µψ̃ν

− 1

2
ε̇
[
DκGρσ,κ +

∂Eκ

∂ψ̃σ
Gκρ +

∂Eκ

∂ψ̃ρ
Gσκ

]
Γ

(0)σ
µβΓ

(0)ρ
ανψ

αψβψ̃µψ̃ν

+
1

2

[
DκGµβ,νακ +Dκ

,βGµκ,να +Dκ
,αGµβ,νκ

]
ψαψβψ̃µψ̃ν

− 1

16
ε̇
[
DκTαβρ,κ +Dκ

,αTκβρ +Dκ
,βTακρ +

∂Eκ

∂ψ̃ρ
Tαβκ − Tαβρ

]
T ρµνψ

αψβψ̃µψ̃ν

− 1

16
ε̇
[
DκTµνρ,κ +

∂Eκ

∂ψ̃ρ
TµνκTµνρ

]
T ραβψ

αψβψ̃µψ̃ν

+
1

16

[
DκGρσ,κ +

∂Eκ

∂ψ̃ρ
Gκσ +

∂Eκ

∂ψ̃σ
Gρκ

]
T ραβT

σ
µνψ

αψβψ̃µψ̃ν (360)

ψψ̃ψ̃ψ̃:

− 1

4
ε̇[Dκ∂κ(GνσΓ

(0)σ
µρ) +Dκ

,ρGνσΓ
(0)σ

µκ +
∂Eκ

∂ψ̃ν
GκσΓ

(0)σ
µρ

]
T ναβψ

ρψ̃µψ̃αψ̃β

− 1

8
ε̇
[
DκGσν,κ +

∂Eκ

∂ψ̃σ
Gκν +

∂Eκ

∂ψ̃ν
Gσκ

]
Γ

(0)σ
ρµT

ν
αβψ

ρψ̃µψ̃αψ̃β
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+
1

8
ε̇
[
DκGσν,κ +

∂Eκ

∂ψ̃σ
Gκν +

∂Eκ

∂ψ̃ν
Gσκ

]
Γ

(0)ν
ρµT

σ
αβψ

ρψ̃µψ̃αψ̃β

− 1

4
ε̇
[
DκTµαν,κ +

∂Eκ

∂ψ̃ν
Tµακ + Tµαν

]
Γ

(0)ν
ρβψ

ρψ̃µψ̃αψ̃β

+
1

12
ε̇
[
DκTµαβρ,κ +Dκ

,ρTµαβ,κ − Tµαβ,ρ
]
ψρψ̃µψ̃αψ̃β (361)

ψ̃ψ̃ψ̃ψ̃:

− 1

32
ε̇
[
Dκ∂κ(TµνρT

ρ
αβ)− 2TµνρT

ρ
αβ

]
ψ̃µψ̃νψ̃αψ̃β (362)

For invariance under the Osp(1|2) group (348)-(362) need to sum to zero
according to their field compositions. For Eµ = Eµ(ψ) 6= 0 we see from (349)
and (357) that Eµ ∝ ψ̃µ Our first guess is simply Eµ = βψ̃µ for a constant β.
We get

X:

0 =
1

2
ε̇(DρGµν,ρ +Dρ

,µGρν +Dρ
,νGµρ − 2Gµν)ẊµẊν + ε̈DµGµνẊ

ν

=
1

2
ε̇(LD − 2)GµνẊ

µẊν + ε̈DµGµνẊ
ν (363)

ψψ:

0 =− i

2
ε̇(LD − 2)Gµν,ρẊ

νψρψµ +
i

2
ε̇(LD − 2)Gµνψ

µψ̇ν

+
i

2
ε̈Dρ

,νGµρψ
µψν +

i

2
ε̈Gµν,ρD

νψµψρ +
i

2
ε̇Dρ

,νσGµρẊ
σψµψν (364)

ψψ̃:

0 =− i

2
ε̇(DσTµνρ,σ +Dσ

,µTσνρ +Dσ
,νTµνρ + (β − 1)Tµνρ)Ẋ

µψνψ̃ρ

− i

2
ε̈DµTµνρψ

νψ̃ρ (365)

ψ̃ψ̃:

0 =
i

2
ε̇
(
DσGµν,ρσ +Dσ

,νGµσ,ρ + β(Gµν,ρ −Gρν,µ)
)
Ẋνψ̃µψ̃ρ

+
iβ

2
ε̇(DρGµν,ρ +Gµν)ψ̃µ

˙̃
ψν +

i

2
ε̈DνGµν,ρψ̃

µψ̃ρ (366)

ψψψψ:

0 =
1

16
ε̇
(
DκTµντ,κ +Dκ

,µTκντ +Dκ
,νTµκτ

− (2− β)Tµντ −
1

2
DκGατ,κT

α
µν

)
T τρσψ

µψνψρψσ (367)
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ψψψψ̃:

0 =ε̇
[
− 1

4
(DκTµνσ,ρκ +Dκ

,µTµκσ,ρ +Dκ
,νTµκσ,ρ +Dκ

,ρTµνσ,κ)

+
1

4

[
Dκ∂κ(GταΓ

(0)α
σµ) +Dκ

,µ(GταΓ
(0)α

σκ) + β(Gτµ,σ −Gσµ,τ )
]
T τνρ

+
1− β

4
Tµνσ,ρ

+
1

4

[
DκTµντ,κ +Dκ

,µTκντ +Dκ
,νTµκτ − (1− β)Tµντ

]
Γ

(0)τ
ρσ

− 1

8
(DκGτα,κ + 2Gτα)(Γ

(0)τ
µσT

α
νρ − Γ

(0)τ
νρT

α
µσ)
]
ψµψνψρψ̃σ (368)

ψψψ̃ψ̃:

0 =ε̇
[
− 1

2
(DκGσν,ρµκ +Dκ

,νGσκ,ρµ +Dκ
,µGσν,ρκ)

− 1

2
(DκGρτ,µκ +Dκ

,µGρτ,κ)Γ
(0)τ

νσ −
β

2
(Gσµ,ρµ −Gρν,σµ)

+
1

2

(
Dκ(Gτν,ρκ −Gρν,τκ) +Dκ

,ν(Gτκ,ρ −Gρκ,τ )
)

Γ
(0)τ

µσ

+ β(Gτν,ρ −Gρν,τ )Γ
(0)τ

µσ −
β + 1

2
TρστT

τ
µν

− 1

16
DκTρστ,κT

τ
µν −

1

16
(DκTµντ,κ +Dκ

,µTκντ +Dκ
,νTµκτ )T τρσ

+
1− β

2
TµντT

τ
ρσ +

1

2
(DκGτα,κ + 2Gτα)Γ

(0)τ
µρΓ

(0)α
νσ

+
1

16
(DκGτα,κ + 2Gτα)T τµνT

α
ρσ

]
ψµψνψ̃ρψ̃σ (369)

ψψ̃ψ̃ψ̃:

0 =ε̇
[ 1

12
(DκTνρσ,µκ +Dκ

µTνρσ,κ)

− 1

4

[
Dκ∂κ(GταΓ

(0)α
νµ) +Dκ

,µ(GταΓ
(0)α

νκ)

− β(Gτµ,ν −Gνµ,τ ) + (DκGατ,κ + 2Gατ )Γ
(0)α

µν

]
T τρσ

+
3β + 1

12
Tνρσ,µ −

β + 1

2
TνρτΓ

(0)τ
µσ −

1

4
DκTνρτ,κΓ

(0)τ
µσ

]
ψµψ̃νψ̃ρψ̃σ

(370)

ψ̃ψ̃ψ̃ψ̃:

0 =
1

16
ε̇
(
DσTµνρ,σ + (4β + 3)Tµνρ −

1

2
DσGρκ,σT

κ
µν

)
T ραβψ̃

µψ̃νψ̃αψ̃β (371)
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13 Summary and discussion

After reviewing one- and two-dimensional bosonic non-linear sigma models and
the geometrical constraints they put on the target space by requiring invariance
under the super-Poincaré group, we reviewed conformal and superconformal
theory. Led by an article by Maloney et al. [4], we constructed the transforma-
tions of the Osp(1|2) subgroup of the superconformal group in one dimension
(305), (324), (325) and (326), which turned out to require the target space to
include a bosonic vector field Dµ(X) and also a fermionic vector field EA(ψ̃)
associated with it. We then used these transformations on a directly reduced
model of a two-dimensional N = (1, 1) sigma model (227). In this way we
found the geometrical constraints on the target space needed for the already
classically superconformally invariant N = (1, 1) model to be reducable to a
one-dimensional superconformally invariant N = 1 model. These were found to
be rather complicated as seen by setting the sum of (348)-(362) to zero. (349)
and (357) forced us to the restriction Eµ ∝ ψ̃µ and in (363)-(371) we have set
Eµ = βψ̃µ for any constant β. This is where this master thesis ends, but to
continue a little bit further we note that in (352) there seems to be one term
missing. If we could add a term

− i
2
Dσ

,ρTµνρẊ
µψνψ̃ρ, (372)

we would get the much nicer looking constraint

(LD − 1)Tµνρ = 0. (373)

By letting Eµ = Dµ
,νψ̃

ν or even Eµ = Dµ
,νψ̃

ν − βψ̃µ (cf. second line in (289))

this term actually arises from (349). Since ∂Eµ

∂Xν = 0 from (320) we then also
need Dµ

,νρ = 0. However, preliminary calculations show that not all ”missing”
terms can be recovered, suggesting one of the following options

1. there are no simpler expressions than (363)-(371), and the analysis of the
constraints and whether they are consistent has to continue from there

2. there have been calculation errors

3. there are errors in the method used, either in the derivation of the Osp(1|2)
transformations or in their application to the reduced sigma model

A complete recalculation to exclude possible calculation errors is needed. An
analysis of how the fermionic superfields of the reduced model relate to the
fermionic superfields of the most general model (228) is also welcome.

A Notations and conventions

We will denote the flat Minkowski space metric η and use the sign convention
that

ηab = ηab = diag(−1,+1,+1,+1). (374)
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The Pauli matrices (including our convention for a σ0-matrix) are

σ0 = σ̄0 =

(
1 0
0 1

)
, σ1 = −σ̄1 =

(
0 1
1 0

)
,

σ2 = −σ̄2 =

(
0 −i
i 0

)
, σ3 = −σ̄3 =

(
1 0
0 −1

)
(375)

A space-time derivative will be written in either of the two forms:

∂

∂xa
= ∂a,

∂

∂xa
= ∂a. (376)

A.1 Spinors

In the so-called Weyl or chiral representation

γa =

(
0 σa

σ̄a 0

)
, γ5 =

(
−1 0
0 1

)
, (377)

the four-component Dirac spinor ΨD breaks up into two two-component parts

ΨD =

(
ξα
χ†α̇

)
, (378)

with spinor indices α = 1, 2 and α̇ = 1̇, 2̇. We define the conjugate spinor field
by Ψ̄D := Ψ†γ0 which then reads

Ψ̄D = Ψ†D

(
0 1
1 0

)
=
(
χα ξ†α̇

)
. (379)

We call the field ξ a ’left-handed Weyl spinor’ since the left-handed projection
operator PL = (1− γ5)/2 projects out this part of the Dirac spinor

PLΨD =

(
ξα
0

)
, (380)

and similarly for the right-handed projection operator PR = (1 + γ5)/2 with
the field χ†. We also define the four-component Majorana field as a Dirac field
where ξ = χ, i.e

ΨM =

(
ξα
ξ†α̇

)
, Ψ̄M =

(
ξα ξ†α̇

)
. (381)

Spinor indices are antisymmetric, which means that two adjacent indices
give a minus sign when they are interchanged

ξαχβ = −χβxα ξαχβ = −χβξα, ξαχβ = −χβξα. (382)
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This will also apply when one or both indices are dotted, e.g. ξαχ†β̇ = −χ†β̇ξα,
or, in our convention, when both indices are the same. We introduce the fol-
lowing notation:

ξχ : = ξαχα = −χαξα (383)

ξ†χ† : = ξα̇χ
α̇ = −ξα̇χα̇

We also note that
ξξ = ξαξα = −ξαξα, (384)

while, of course,
ξαξα = 0 = ξαξα. (385)

We introduce the antisymmtric symbol ε with the convention

ε12 = −ε21 = ε21 = −ε12 = 1, ε11 = ε22 = ε11 = ε22 = 0

ε1̇2̇ = −ε2̇1̇ = ε2̇1̇ = −ε1̇2̇ = 1, ε1̇1̇ = ε2̇2 = ε1̇1̇ = ε2̇2 = 0, (386)

or

(εαβ) = −(εαβ) = (εα̇β̇) = −(εα̇β̇) =

(
0 1
−1 0

)
. (387)

We have
εαβεβα = εα̇β̇εβ̇α̇ = 2. (388)

We also write

εαβεβγ = εγβε
βα = δαγ , εα̇β̇εβ̇γ̇ = εγ̇β̇ε

β̇α̇ = δα̇γ̇ . (389)

This antisymmetric symbol can be used to raise and lower spinor indices the
following way

ξα = εαβξ
β , ξα = εαβξβ , χ†α̇ = εα̇β̇χ

†β̇ , χ†α̇ = εα̇β̇χ†
β̇
. (390)

We note that now (383) can be written

ξχ = ξαχα = ξαεαβχ
β = −χβεαβξα = χβεβαξ

α = χβξβ = χξ, (391)

and similarly for dotted indices. We can explicitly write out the components of
(384)

ξξ = ξαεαβξ
β = ξ1ε11ξ

1 + ξ1ε12ξ
2 + ξ2ε21ξ

1 + ξ2ε22ξ
2

= −ξ1ξ2 + ξ2ξ1 = 2ξ2ξ1. (392)

We will always (at least in theory) move the antisymmetric symbol to a position
immediately to the left of the index we want to raise or lower. The reason is
the following

ξαξα = ξαεαβξ
β = ξαξβεαβ = −ξαξβεβα 6= −ξαξα. (393)
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For objects with two spinor indices we obviously run into trouble, but we may
think of it like this

(σa)αα̇ = ”(σa)(εαβ)β(εα̇β̇)β̇” = εαβ(σa)ββ̇ε
α̇β̇ = −εαβ(σa)ββ̇ε

β̇α̇, (394)

where we used quotation marks to indicate that this is just a way to think, and
bold letters indicate the actual indices of σa. We see that

(σa)αα̇ = εαβεα̇β̇(σ̄a)α̇α, (σ̄a)α̇α = εαβεα̇β̇(σa)ββ̇ . (395)

It is often convenient to introduce a spinor notation also for vectors. We do
this for a vector Va accordingly:

Vαα̇ := (σa)αα̇Va. (396)

We then have

Va = −1

2
(σ̄a)α̇αVαα̇, (397)

since
(σa)αα̇(σ̄a)β̇β = −2δβαδ

β̇
α̇. (398)

Other useful relations are

(σa)αα̇(σa)ββ̇ = −2εαβεα̇β̇

(σ̄a)α̇α(σ̄a)β̇β = −2εαβεα̇β̇[
(σa)αγ̇(σ̄b)γ̇β + (σb)αγ̇(σ̄a)γ̇β

]
= −2ηabδβα[

(σ̄a)β̇γ(σb)γα̇ + (σ̄b)β̇γ(σa)γα̇
]

= −2ηabδβ̇α̇. (399)

We also define

(σab)
β
α := −1

4

(
(σa)αγ̇(σ̄b)

γ̇β − (σb)αγ̇(σ̄a)γ̇β
)

(σ̄ab)
α̇
β̇

= −1

4

(
(σ̄a)α̇γ(σb)γβ̇ − (σ̄b)

α̇γ(σa)γβ̇
)
. (400)

A.2 The supersymmetric parameter θ

θθ = θαθα = θαεαβθ
β , θ̄θ̄ = θ̄α̇θ̄

α̇ = θ̄α̇ε
α̇β̇ θ̄β̇ (401)

leads to
θαθβ = 1

2εαβθθ, θ̄α̇θ̄β̇ = − 1
2εα̇β̇ θ̄θ̄,

θaθβ = − 1
2ε
αβθθ, θ̄α̇θ̄β̇ = 1

2ε
α̇β̇ θ̄θ̄.

(402)

We also have

θαθ̄β̇ =
1

2
(σa)αβ̇ θ̄γ̇(σ̄a)γ̇γθγ . (403)

We will write the spinor derivatives in the following way

∂

∂θα
:= ∂α,

∂

∂θα
:= ∂α,

∂

∂θ̄α̇
:= ∂α̇,

∂

∂θ̄α̇
:= ∂α̇. (404)
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They will work in the following way

∂αθ
β = δβα ∂α̇θ̄

β̇ = δβ̇α̇
∂αθβ = −εαβ ∂α̇θ̄β̇ = −εα̇β̇
∂αθ̄

β̇ = 0 ∂α̇θ
β = 0

∂αθ̄β̇ = 0 ∂α̇θβ = 0

∂αθβ = −εαβ ∂α̇θ̄β̇ = −εα̇β̇
∂αθβ = δαβ ∂α̇θ̄β̇ = δα̇

β̇

∂αθ̄β̇ = 0 ∂α̇θβ = 0
∂αθ̄β̇ = 0 ∂α̇θβ = 0

(405)

We have e.g.

∂

∂θα
(θβ) =

∂

∂θα
(εβγθ

γ) = εβγ
∂

∂θα
(θγ) = εβγδ

γ
α = εβα = −εαβ . (406)

The indices are raised and lowered with an extra minus sign

εαβ∂β = −∂α εα̇β̇∂β̇ = −∂α̇

εαβ∂
β = −∂α εα̇β̇∂

β̇ = −∂α̇.
(407)

Since the spinor derivative carries its own spinor index it will anticommute with
every other object that carries an odd number of spinor indices. For example

∂α∂β = −∂β∂α, ∂α∂β̇ = −∂β̇∂α, (408)

but
∂α∂a = ∂a∂α. (409)

The product rule becomes

∂α(θβθγ) = ∂α(θβ)θγ + ∂αθ
β(θγ)

= ∂α(θβ)θγ − θβ∂α(θγ)

= δβαθ
γ − δγαθβ . (410)

We easily work out

∂
∂θα (θθ) = ∂α(θθ) = 2θα,

∂
∂θ̄α̇

(θ̄θ̄) = ∂α̇(θ̄θ̄) = −2θ̄α̇,
∂
∂θα

(θθ) = ∂α(θθ) = −2θα, ∂
∂θ̄α̇

(θ̄θ̄) = ∂α̇(θ̄θ̄) = 2θ̄α̇.
(411)

The same rule applies for a spinor ψ, e.g.,

∂α(ψθ) = ∂α(θψ) = ψα, ∂α(ψθ) = ∂α(θψ) = −ψα. (412)

Integration turns out to be equal to a derivative. We have

d2θ = −1

4
dθαdθβεαβ , d2θ̄ = −1

4
dθ̄α̇θ̄β̇ε

α̇β̇ , (413)
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which leads to∫
d2θ θθ = −1

4

∫
dθαdθβεαβθθ = −1

4
εαβ

∫
dθαdθβθθ

= −1

4
εαβ

∂

∂θα

∂

∂θβ
(θθ) = −1

4
εαβ

∂

∂θα
(−2θβ)

=
1

2
εαβε

βγδαγ =
1

2
δγαδ

α
γ

= 1. (414)

Similarly ∫
d2θ̄θ̄θ̄ = 1. (415)

A.3 The Baker-Campbell-Haussdorff formulas

There are two very useful formulas which go under the name Baker-Campbell-
Haussdorff. The first is

e−BAeB =

∞∑
n=0

1

n!
[A,B](n) (416)

[A,B](0) = A, [A,B](n+1) =
[
[A,B](n), B

]
and thus

e−BAeB = A+ [A,B] + . . . (417)

The second formula reads

eAeB = exp
[ ∞∑
n=1

1

n!
Cn(A,B)

]
(418)

C1 = A+B, C2 = [A,B]

C3 =
1

2

[
[A,B], B

]
+

1

2

[
A, [A,B]

]
C4 =

[[
A, [A,B]

]
, B
]
.

and thus

eAeB = A+B +
1

2
[A,B] +

1

12

[
[A,B], B

]
+

1

12

[
[A, [A,B]

]
+ . . . (419)

B Derivations

B.1 Derivation of the superalgebra

We want to derive the superalgebra. To this end we change to the more conve-
nient spinor notation (appendix A.1):

Pαα̇ = (σa)αα̇Pa ∈ (1/2, 1/2),
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Mαβ =
1

2
(σab)αβMab ∈ (1, 0),

M̄α̇β̇ = −1

2
(σ̄ab)α̇β̇Mab ∈ (0, 1),

QIα ∈ (1/2, 0),

Q̄Iα̇ ∈ (0, 1/2). (420)

We see that in accordance with (118)

{QIα, Q̄Jα̇} ∈ (1/2, 1/2), (421)

which leads to
{QIα, Q̄Jα̇} = CIJPαα̇, (422)

for some complex components CIJ . Taking the adjoint we get

{Q̄Iα̇, QJα} = {QJα, Q̄Iα̇} = CJIPαα̇
!
= C̄IJPαα̇, (423)

showing that CIJ is Hermitian (CIJ = C̄JI) which enables us to choose a basis
where CIJ is diagonal. For future convenience we also rescale the generators
QI such that

{QIα, Q̄Jα̇} = 2δIJPαα̇. (424)

Next we have

{QIα, QJβ} ∈ (1/2− 1/2, 0)⊕ (1/2 + 1/2, 0) = (0, 0)⊕ (1, 0). (425)

Since {QIα, QJβ} = {QJβ , QIα} we can write this with one part that is antisym-
metric in both types of indices and one part that is symmetric:

{QIα, QJβ} = XIJεαβ + Y IJMαβ , (426)

where XIJ and εαβ are antisymmetric in their respective indices and Y IJ and
Mαβ are symmetric. To determine XIJ and Y IJ we move on to the next
commutator. We have

[QIα, Pββ̇ ] ∈ (1/2− 1/2, 1/2) = (0, 1/2), (427)

since there is no generator (1/2 + 1/2, 1/2) = (1, 1/2) in this representation. Thus

[QIα, Pββ̇ ] = ZIJεαβQ̄
J
β̇
, (428)

with adjoint
[Q̄Iα̇, Pββ̇ ] = Z̄IJεα̇β̇Q

J
β , (429)

for some complex constants ZIJ , which we will determine with help of the
generalized Jacobi identities (119).

0 =
[
[Pαα̇, Pββ̇ ], QIγ

]
+
[
[QIγ , Pαα̇], Pββ̇

]
+
[
[Pββ̇ , Q

I
γ ], Pαα̇

]
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= 0 + ZIJεγα[Q̄Jα̇, Pββ̇ ]− ZIJεγβ [Q̄J
β̇
, Pαα̇] =

= ZIJ Z̄
J
Kεα̇β̇(εγαQ

K
β + εγβQ

K
α )

= ZIJ Z̄
J
Kεα̇β̇εγδ(δ

δ
γδ
ε
β + δδβδ

ε
α)QKε (430)

⇒ ZIJ Z̄
J
K = (ZZ̄)I K = 0 (431)

0 = {[Pαα̇, QIβ ], QJγ}+ {[Pαα̇, QJγ ], QIβ}+
[
{QIβ , QJγ}Pαα̇

]
=

= −ZIJεβα{QJγ , Q̄Kα̇ } − ZJKεγα{QIβ , Q̄Iα̇}+ [XIJεβγ + Y IJMβγ , Pαα̇] =

= −ZIKεβα2δJKPγα̇ − ZJKεγα2δIKPβα̇ + Y IJ
1

2
(σab)βγ(σc)αα̇[Mab, Pc]

= −2δJKZIKεβαPγα̇ − 2δIKZJKεγαPβα̇ +
1

2
Y IJ(σab)βγ(σc)αα̇(iηcaPb − iηcbPa)

= −2ZIJεβαPγα̇ − 2ZJIεγαPβα̇ +
1

2
Y IJ(σc)αα̇

(
i(σab)βγηcaPb − i(σba)βγηcaPb

)
= −2ZIJεβαPγα̇ − 2ZJIεγαPβα̇ + iY IJ(σc)αα̇(σab)βγηcaPb. (432)

In the last line we have used that (σba)αβ = −(σab)αβ . Multiplying with εβγ

and noting that (σab) α
α = 0 we get

0 = 2ZIJδγαPγα̇ − 2ZJIδβαPβα̇ + iY IJ(σab) α
α (σc)αα̇ηcaPb

= 2ZIJPαα̇ − 2ZJIPαα̇, (433)

which gives
ZIJ = ZJI . (434)

From (431) and (434) we conclude that Z = 0 and thus also Y = 0. We have

[QIα,Mαβ ] ∈ (1− 1/2, 0) = (1/2, 0), (435)

since there is no generator (3/2, 0). We write

[QIα,Mab] = (bab)
β
α QIβ

[Q̄Iα̇,Mab] = (b̄ab)
β̇

α̇
Q̄I
β̇
, (436)

and get

0 = {[Mab, Q
I
γ̇ ], Q̄Jγ̇}+ {[Mab, Q̄

J
γ̇ ], QIγ}+

[
{QIγ , Q̄Jγ̇},Mab

]
= −(bab)

β
γ {QIβ , Q̄Jγ̇} − (b̄ab)

β̇

γ̇
{Q̄J

β̇
, QIγ}+ 2δIJ [Pγγ̇ ,Mab]

= −(bab)
β
γ 2δIJPβγ̇ − (b̄ab)

β̇

γ̇
2δIJPγβ̇ − 2δIJσcγγ̇ [Mab, Pc]

= −2(bab)
β
γ δIJPβγ̇ − 2(b̄ab)

β̇

γ̇
δIJPγβ̇ − 2δIJ(σc)γγ̇(iηcaPb − iηcbPa)

= −2(bab)
β
γ δIJδβ̇γ̇Pββ̇ − 2(b̄ab)

β̇

γ̇
δIJδβγPββ̇
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+ iδIJ
(

(σa)γγ̇(σ̄b)
β̇β − (σb)γγ̇(σ̄a)β̇β

)
Pββ̇ (437)

This is zero if {
2(bab)

β
γ δβ̇γ̇ = i(σa)γγ̇(σ̄b)

β̇β

2(b̄ab)
β̇

γ̇
δβγ = −i(σ̄a)β̇β(σb)γγ̇ .

(438)

Multiplying the first line with δγ̇
β̇

and the second line with δγβ we get{
4(bab)

β
γ = i(σa)γγ̇(σ̄b)

β̇β

4(b̄ab)
β̇

γ̇
= −i(σ̄a)β̇γ(σb)γγ̇ .

(439)

Since Mab = −Mba we also have bab = −bba and b̄ab = −b̄ba, and we get{
4(bab)

β
γ = 2(bab)

β
γ − 2(bba) β

γ
!
= i

2 (σa)γγ̇(σ̄b)
γ̇β − i

2 (σb)γγ̇(σ̄a)γ̇β = −2i(σab)
β
γ

4(b̄ab)
β̇

γ̇
= 2(b̄ab)

β̇
γ̇ − 2(b̄ba)β̇

γ̇

!
= − i

2 (σ̄a)β̇γ(σb)γγ̇ + i
2 (σ̄b)

β̇γ(σa)γγ̇ = 2i(σ̄ab)
β̇

γ̇

(440)
or {

(bab)
β
γ = − i

2 (σab)
β
γ

(b̄ab)
β̇

γ̇
= i

2 (σ̄ab)
β̇

γ̇
.

(441)

The remaining commutator is

[QIα, Bl] = (Sl)
I
JQ

J
α, (442)

where (Sl)
I
J can be shown to form a representation of the internal group. The

complex constants XIJ can be shown to commute with every other operator
and we call them central charges. We can now write down the full N-extended
super-Poincaré algebra (120).

B.2 Derivation of the superalgebra: an alternative way

We want to derive
[Qiα,Mµν ] = (bµν)βαQ

i
β . (443)

To this end we use the following generalized Jacobi identity[
[Mµν ,Mτσ], Qiα

]
+
[
[Qiα,Mµν ],Mτσ

]
+
[
[Mτσ, Q

i
α],Mµν

]
= 0. (444)

First term is

[(ητµMνσ − ητνMµσ − ησµMντ + ησνMµτ ), Qiα]

=ητµ[Mνσ, Q
i
α]− ητν [Mµσ, Q

i
α]− ησµ[Mντ , Q

i
α] + ησν [Mµτ , Q

i
α]

=− ητµ(bνσ)βαQ
i
β + ητν(bµσ)αβQ

i
β + ησµ(bντ )βαQ

i
β − ησν(bµτ )βαQ

i
β

=
(
− ητµ(bνσ)βα + ητν(bµσ)βα + ησµ(bντ )βα − ησν(bµτ )βα

)
Qiβ , (445)
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second term

[(bµν)βαQ
i
β ,Mτσ] = (bµν)βα[Qiβ ,Mτσ] = (bµν)βα(bτσ)γβQ

i
γ = (bµν)γα(bτσ)βγQ

i
β ,
(446)

and the third term

[−(bτσ)βαQ
i
β ,Mµν ] = −(bτσ)βα[Qiβ ,Mµν ] = −(bτσ)βα(bµν)γβQ

i
γ = −(bτσ)γα(bµν)βγQ

i
β .

(447)
Equation (444) then equals(

− ητµ(bνσ)βα + ητν(bµσ)βα + ησµ(bντ )βα − ησν(bµτ )βα

+ (bµν)γα(bτσ)βγ − (bτσ)γα(bµν)βγ
)
Qiβ

=
(
− ητµ(bνσ)βα + ητν(bµσ)βα + ησµ(bντ )βα − ησν(bµτ )βα + [bµν , bτσ]βα

)
Qiβ , (448)

which is zero if

[bµν , bτσ]βα = +ητµ(bνσ)βα − ητν(bµσ)βα − ησµ(bντ )βα + ησν(bµτ )βα

= ητ [µ(bν]σ)βα − ησ[µ(bν]τ )βα. (449)

(bµν)βα corresponds to a representation of the Lorentz algebra and we choose the
(0, 1

2 )⊕ ( 1
2 , 0)-representation. We arrive at

[Qiα,Mµν ] =
1

2
(σµν)βαQ

i
β .

C Reduction from N = (1, 1) to N = 1

The two-dimensional N = (1, 1) sigma model reads

S =

∫
d2xd2θD+φ

µEµνD−φ
ν ,

φµ(x, θ) = Xµ(x) + θ+ψµ+(x) + θ−ψµ−(x) + θ+θ−Fµ(x),

D± = ∂± + iθ±∂±±, Q± = i∂± + θ±∂±±. (450)

Let all fields be independent of the spatial coordinate of the worldsheet. Thus
∂±± = ∂t. Define

θ :=
1√
2

(θ+ + θ−), θ̃ :=
1√
2

(θ+ − θ−),

D :=
1√
2

(D+ +D−) = ∂θ + iθ∂t

D̃ :=
1√
2

(D+ −D−) = ∂θ̃ + iθ̃∂t

ψµ :=
1√
2

(ψµ+ + ψµ−), ψ̃µ :=
1√
2

(ψµ+ − ψ
µ
−). (451)
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The superfields become

φµ(t, θ+, θ−) = Xµ(t) + θ+ψµ+(t) + θ−ψµ−(t) + θ+θ−Fµ(t)

= Xµ(t) + θψµ(t) + θ̃ψ̃µ(t)− θθ̃Fµ(t). (452)

Let θ̃ = 0 and define new bosonic superfields X̂µ(t, θ) and new fermionic super-

fields ψ̂µ(t, θ):

φµ|θ̃=0 = Xµ(t) + θψµ(t) =: X̂µ(t, θ)

Dφµ|θ̃=0 = ψµ(t) + iθ∂tX
µ(t) = DX̂µ(t, θ)

D̃φµ|θ̃=0 = ψ̃µ(t) + θFµ(t) =: ψ̂µ(t, θ)

DD̃φµ|θ̃=0 = Fµ(t) + iθ∂tψ̃
µ(t) = Dψ̂µ(t, θ). (453)

We call the reduced action SR,

SR =

∫
dtdθ+dθ−D+EµνD−φ

ν = −
∫
dtdθdθ̃

[ 1√
2

(D + D̃)φµEµν
1√
2

(D − D̃)φν
]

= −1

2

∫
dtdθD̃

[
DφµEµνDφ

ν −DφµEµνD̃φν + D̃φµEµνDφ
ν − D̃φµEµνD̃φν

]
|θ̃=0

= −1

2

∫
dtdθ

[
−DD̃EµνDφν −DφµEµν,ρD̃φρDφν +DφµEµνDD̃φ

ν

+DD̃φµEµνD̃φ
ν +DφµEµν,ρD̃φ

ρD̃φν +DφµEµνD̃
2φν

+ D̃2φµEµνDφ
ν − D̃φµEµν,ρD̃φρDφν + D̃φµEµνDD̃φ

ν

− D̃2φµEµνD̃φ
ν + D̃φµEµν,ρD̃φ

ρD̃φν + D̃φµEµνD̃
2φν
]
|θ̃=0

= −1

2

∫
dtdθ

[
−Dψ̂µEµνDX̂ν −DX̂µEµν,ρψ̂

ρDX̂ν +DX̂µEµνDψ̂
ν

+Dψ̂µEµνψ̂
ν +DX̂µEµν,ρψ̂

ρψ̂ν +DX̂µEµνi∂tX̂
ν

+ i∂tX̂
µEµνDX̂

ν − ψ̂µEµν,ρψ̂ρDX̂ν + ψ̂µEµνDψ̂
ν

− i∂tX̂µEµνψ̂
ν + ψ̂µEµν,ρψ̂

ρψ̂ν + ψ̂µEµνi∂tX̂
ν
]

(454)

For greater clearity we label the rows A,B,C,D, and columns 1,2,3, and analyse
the terms:
A1+A3:

−Dψ̂µEµνDX̂ν +DX̂µEµνDψ̂
ν = (Eµν − Eνµ)DX̂µDψ̂ν = 2bµνDX̂

µDψ̂ν ,
(455)

A2:
−DX̂µEµν,ρψ̂

ρDX̂ν = bµν,ρDX̂
µDX̂νψ̂ρ, (456)

B1+C3:

Dψ̂µEµνψ̂
ν + ψ̂µEµνDψ̂

ν = (Eνµ + Eµν)ψ̂µDψ̂ν = 2Gµνψ̂
µDψ̂ν , (457)

66



B2+C2:

DX̂µEµν,ρψ̂
ρψ̂ν−ψ̂µEµν,ρψ̂ρDX̂ν = (Eµν,ρ+Eνµ,ρ)DX̂

µψ̂ρψ̂ν = 2Gµν,ρψ̂
µDX̂νψ̂ρ,
(458)

B3+C1:

DX̂µEµνi∂tX̂
ν+i∂tX̂

µEµνDX̂
ν = DX̂µ(Eµν+Eνµ)i∂tX̂

ν = 2iGµνDX̂
µ∂tX̂

ν ,
(459)

D1+D3:

−i∂tX̂µEµνψ̂
ν + ψ̂µEµνi∂tX̂

ν = −i∂tX̂µ(Eµν − Eνµ)ψ̂ν = −2ibµν∂tX̂
µψ̂ν ,

(460)
D2:

ψ̂µEµν,ρψ̂
ρψ̂ν = −Eµν,ρψ̂µψ̂νψ̂ρ = −bµν,ρψ̂µψ̂νψ̂ρ

= −1

3
(bµν,ρ − bρν,µ − bµρ,ν)ψ̂µψ̂νψ̂ρ = −1

3
Tµνρψ̂

µψ̂νψ̂ρ, (461)

where T = db. The action becomes

SR = −1

2

∫
dtdθ

[
2bµνDX̂

µDψ̂ν + bµν,ρDX̂
µDX̂νψ̂ρ + 2Gµνψ̂

µDψ̂ν

+ 2Gµν,ρψ̂
µDX̂νψ̂ρ + 2iGµνDX̂

µ∂tX̂
ν − 2ibµν∂tX̂

µψ̂ν − 1

3
Tµνρψ̂

µψ̂νψ̂ρ
]

=

∫
dtdθ

[
− bµνDX̂µDψ̂ν − 1

2
bµν,ρDX̂

µDX̂νψ̂ρ −Gµνψ̂Dψ̂ν

−Gµν,ρψ̂µDX̂νψ̂ρ − iGµνDX̂µ∂tX̂
ν + ibµν∂tX̂

µψ̂ν +
1

6
Tµνρψ̂

µψ̂νψ̂ρ
]
.

(462)

Noting that

D(bµνDX̂
µψ̂ν) = bµν,ρDX̂

ρDX̂µψ̂ν + bµνD
2X̂µψ̂ν − bµνDX̂µDψ̂ν

=
1

2
(bνρ,µ + bρµ,ν)DX̂µDX̂νψ̂ρ + ibµν∂tX̂

µψ̂ν − bµνDX̂µDψ̂ν ,

(463)

and that

−1

2
(bνρ,µ + bρµ,ν)DX̂µDX̂νψ̂ρ − 1

2
bµν,ρDX̂

µDX̂νψ̂ρ =
1

2
TµνρDX̂

µDX̂νψ̂ρ,

(464)
we finally arrive at

SR =

∫
dtdθ

[
− iGµνDX̂µ∂tX̂

ν −Gµνψ̂µDψ̂ν −Gµν,ρψ̂µDX̂νψ̂ρ

+
1

6
Tµνρψ̂

µψ̂νψ̂ρ − 1

2
TµνρDX̂

µDX̂νψ̂ρ +D(bµνDX̂
µψ̂ν)

]
. (465)
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D An alternative introduction to supersymme-
try

We will now introduce the basic concepts of supersymmetry by means of fields
in ordinary four-dimensional space-time. We will follow the outline of Martin
[20]. To this end we write down an action for a left-handed Weyl fermion ψ
(appendix A.1) together with a boson described by a complex scalar field φ.

S =

∫
d4x(Lboson + Lfermion) (466)

For simplicity we will only consider the massless non-interaction case, thus only
including the kinectic terms

Lboson = −∂µφ∗∂µφ, Lfermion = iψ†α̇(σ̄µ)α̇α∂µψα (467)

We want a supersymmetry transformation Q to change a boson into a fermion
and vice versa, i.e., roughly

Q|boson >= |fermion >, Q|fermion >= |boson > . (468)

Using the language of fields we thus write an infinitesimal change of the scalar
field

δφ = εαψα, δφ∗ = ε†α̇ψ
†α̇, (469)

where ε is an infintesimal and anticommuting Weyl fermion inserted because
bosons and fermions obey opposite statistics. It then follows that

δLboson = −∂µδφ∗∂µφ− ∂µφ∗∂µδφ = −∂µ(ε†α̇ψ
†α̇)∂µφ− ∂µφ∗∂µ(εαφα)

= −ε†α̇∂
µψ†α̇∂µφ− εα∂µψα∂µφ∗. (470)

We want our action S to be invariant under a supersymmetry transformation

δS =

∫
d4x(δLboson + δLfermion) = 0, (471)

i.e., if we can find the infinitesimal transformation for ψ such that δLboson +
δLfermion = 0 up to a surface term, our problem is be solved. If we take

δψα = −i(σµ)αα̇ε
†α̇∂µφ, δψ†α̇ = iεα(σµ)αα̇∂µφ

∗, (472)

this will indeed be the case. We have

δLfermion = iδψ†α̇(σ̄µ)α̇α∂µψα + iψ†α̇(σ̄µ)α̇α∂µδψα

= i
[
iεβ(σν)βα̇∂νφ

∗
]
(σ̄µ)α̇α∂µψα + iψ†α̇(σ̄µ)α̇α∂µ

[
− i(σν)αβ̇ε

†β̇∂νφ
]

= −εβ(σν)βα̇(σ̄µ)α̇α∂µψα∂νφ
∗ + ψ†α̇(σ̄µ)α̇α(σν)αβ̇ε

†β̇∂ν∂µφ. (473)
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Using that

(σµ)αα̇(σν)α̇β∂µ∂νφ =
1

2

[
(σµ)αα̇(σν)α̇β∂µ∂νφ+ (σν)αα̇(σµ)α̇β∂ν∂µφ

]
=

1

2

[
(σµ)αα̇(σν)α̇β + (σν)αα̇(σµ)α̇β

]
∂µ∂νφ, (474)

where we have made use of the commutation of partial derivatives ∂µ∂ν = ∂ν∂µ,
and that

(σµ)αα̇(σ̄ν)α̇β − (σµ)αα̇(σ̄ν)α̇β = −2ηµνδβα, (475)

the first term gives (suppressing the indices)

−εσν σ̄µ∂µψ∂νφ∗ = −∂µ(εσν σ̄µψ∂νφ
∗) + εσν σ̄µψ∂µ∂νφ

∗

= −∂µ(εσν σ̄µψ∂νφ
∗) +

1

2
ε(σµσ̄ν + σν σ̄µ)ψ∂µ∂νφ

∗

= −∂µ(εσν σ̄µψ∂νφ
∗) +

1

2
ε(−2ηµν)ψ∂µ∂νφ

∗

= −∂µ(εσν σ̄µψ∂νφ
∗)− εψ∂µ∂µφ∗

= −∂µ(εσν σ̄µψ∂νφ
∗)− ∂µ(εψ∂µφ∗) + ε∂µψ∂

µφ∗, (476)

and the second term

ψ†σ̄µσν∂ν∂µφ =
1

2
ψ†(σ̄µσν + σ̄νσµ)ε†∂µ∂νφ

=
1

2
ψ†(−2ηµν)ε†∂µ∂νφ

= −ψ†ε†∂µ∂µφ
= −∂µ(ψ†ε†∂µφ) + ∂µψ

†ε†∂µφ

= −∂µ(ε†ψ†∂µφ) + ε†∂µψ
†∂µφ, (477)

Together we have

δLfermion = ε∂µψ∂µφ
∗ + ε†∂µψ†∂µφ− ∂

(
εσν σ̄µψ∂νφ

∗ + εψ∂µφ∗ + ε†ψ†∂µφ
)
,

(478)
and we see that this cancels the bosonic lagrangian (470) up to a surface term.

We also need to verify that the algebra closes under these transformations,
i.e., that the commutator of two supersymmetry transformations necessarily is
a symmetry of the theory. For the bosonic field we have

[δε2 , δε1 ]φ = δε2(δε1φ)− δε1(δε2φ)

= −
(
ε1(σµε†2)α − ε2(σµε†1)α

)
(i∂µφ), (479)

and we get (up to a factor) the space-time translation Pµ = i∂µ which of course
is a symmetry of the theory. In the following we will use the notation

(σµε)α̇ := (σµ)αα̇ε
α, (ε†σ̄µ)α := ε†α̇(εµ)α̇α. (480)
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The fermionic field transforms according to

[δε2 , δε1 ]ψα = δε2(δε1ψα)− δε1(δε2ψα)

= δε2
(
− i(σµε†1)α∂µφ

)
− δε1

(
− i(σµε†2)α∂µφ

)
= −i(σµε†1)α∂µ(ε2ψ) + i(σµε†2)α∂µ(ε1ψ)

= (σµ)αα̇(ε†α̇2 εβ1 − ε
†α̇
1 εβ2 )(i∂µ)ψβ . (481)

Since the ψ we started with and the ψ at the end have different indices this is
not yet a symmetry, but using the Fierz rearrangement identity

χαξ
βηβ = −ξαηβχβ − ηαχβξβ , (482)

we can rewrite this

(σµ)αα̇(ε†α̇2 εβ1 − ε
†α̇
1 εβ2 )(i∂µ)ψβ = (σµε†2)αε

β
1 (i∂µψ)β − (σµε†1)αε

β
2 (i∂µψ)β

= −ε1α(i∂µψ)β(σµε†2)β − (i∂µψ)α(ε†2σ̄
µ)βε1β

+ ε2α(i∂µψ)β(σµε†1)β + (i∂µψ)α(ε†1σ̄
µ)βε2β

=
[
εβ2 (σµ)βα̇ε

†α̇
1 − ε

β
1 (σµ)βα̇ε

†α̇
2

]
(i∂µ)ψα

+
[
ε1αε

†
2α̇ − ε2αε

†
1α̇

]
(σ̄µ)α̇β(i∂µ)ψβ . (483)

The first term is again the translation operator (times a factor), but the rest of
the terms only vanish by use of the equations of motion σ̄µ∂µψ = 0, i.e., they
only vanish on-shell. By introducing an auxiliary field F , we can however make
the algebra close even off-shell. Let F be a complex scalar field that transforms
as

δF = −iε†σ̄µ∂µψ, δF ∗ = i∂µψ
†σ̄µε. (484)

A lagrangian
Lauxiliary = F ∗F, (485)

then transforms as

δLauxiliary = i∂µψ
†σ̄µεF − iε†σ̄µ∂µψF ∗. (486)

Letting the fermionic field mix with the auxiliary field under a transformation

δψα = −i(σµε†)α∂µφ+ εαF, δψ†α̇ = i(εσµ)α̇∂µφ
∗ + ε†α̇F

∗, (487)

the fermionic langrangian becomes

δLfermion = i(δψ†α̇)(σ̄µ)α̇α∂µψα + iψ†α̇(σ̄µ)α̇α∂µ(δψα)

= i
(
i(εσν)α̇∂νφ

∗ + ε†α̇F
∗
)

(σ̄µ)α̇α∂µψα,

+ iψ†α̇(σ̄µ)α̇α∂µ

(
− i(σνε†)α∂νφ+ εαF

)
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= ε∂µψ∂µφ
∗ + ε†∂µψ†∂µφ

− ∂µ
(
εσν σ̄µψ∂νφ

∗ + εψ∂µφ∗ + ε†ψ†∂µφ
)

+ iε†α̇F
∗(σ̄µ)α̇α∂µψα + iψ†α̇(σ̄µ)α̇αεα∂µF, (488)

where we have used (478) in the last line. The last two terms can be written as

iε†F ∗σ̄µ∂µψ + iψ†σ̄µε∂µF = iε†F ∗σ̄µ∂µψ + ∂µ(iψ†σ̄µεF )− i∂µψ†σ̄µεF, (489)

so the full fermionic lagrangian reads

δLfermion = ε∂µψ∂µφ
∗ + ε†∂µψ†∂µφ

− ∂
(
εσν σ̄µψ∂νφ

∗ + εψ∂µφ∗ + ε†ψ†∂µφ− iψ†σ̄µεF
)

+ iε†F ∗σ̄µ∂µψ − i∂µψ†σ̄µεF. (490)

We see that this still cancels the bosnic langranigan but now also the auxil-
iary one up to surface terms. The commutator of two transformations of the
fermionic field (483) now gets the following additional terms

δε2(ε1αF )− δε1(ε2αF ) = −iε1αε†2β̇(σ̄µ)β̇β∂µψβ + iε2αε
†
1β̇

(σ̄µ)β̇β∂µψβ , (491)

which cancel the last two terms in (483). Finally we have

δε2δε1F = δε2

(
− (iε†1σ̄

µ∂µψ)
)

= −iε†1α̇(σ̄µ)α̇α∂µ

(
− i(σν)αβ̇ε

†β̇
2 ∂νφ+ iε†2α̇F

)
= −ε†1σ̄µσνε

†
2∂µ∂νφ+ iε†1σ̄

µε2∂µF

= ε†1ε
†
2∂
µ∂µφ+ ε†1σ̄

µε2(i∂µF ), (492)

so that

(δε2δε1 − δε2δε1)F = (ε†1ε
†
2 − ε

†
2ε
†
1)∂µ∂µφ+ (ε†1σ̄

µε2 − ε†2σ̄µε1)(i∂µF )

= (ε†1σ̄
µε2 − ε†2σ̄µε1)(i∂µF ), (493)

since ε†1ε
†
2 = ε†1α̇ε

†α̇
2 = ε†2α̇ε

†α̇
1 = ε†2ε

†
1. Thus we conclude that the langragian

L = −∂µφ∗∂µφ+ iψ†σ̄µ∂ψ + F ∗F (494)

really has a supersymmetry off-shell.
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