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Abstract

The geometry of non-conformal supersymmetric non-linear sigma mod-
els in one and two dimensions are reviewed. Transformations of the
Osp(1]2) subgroup of the superconformal group are derived and then used
in finding geometrical constraints on the target space of an N = (1,1)
sigma model reduced to an N = 1 sigma model.

Contents
1 Introduction

2 Real geometry
2.1 Manifolds . . . . . ...
2.2 Riemannian manifolds . . . . . .. .. ... .. 0L
2.3 The Lie derivative, the covariant derivative, torsion and curvature
2.4 Killing vector fields . . . . . .. ... L o

3 Complex geometry
3.1 Complex manifolds . . . . ... ... ... 0oL
3.2 Hermitian manifolds and Kéhler manifolds . . . . . . . ... ...
3.3 Hyperkéhler and pseudo-Kahler . . . . . ... ... ... ... ..
3.4 Bihermitian geometry . . . . ... oL Lo
3.5 Symplectic manifolds . . . . . . ... oL

4 Generalized complex geometry
5 Minkowski space, the Poincaré group and fields

6 Non-supersymmetric sigma models
6.1 BosonicmodelinD=2 ... ... ... ... ... .......
6.2 Bosonic modelin D=1 . ... ... .................

7 Supersymmetry
7.1 The supersymmetry algebra . . . . . .. ... ...
7.2 Superspace and its operators . . . . . .. .. ... ...
7.3 Superfields . . ... ...
7.4 The massless case in two dimensions . . . . ... ... ... ...
7.5 One-dimensional case. . . . . . . ... ... ... .........

8 Supersymmetric sigma models
81 D=2 N=(1,1) ... . .
8.1.1 The superfield and closure of the algebra . . . . ... ..
8.1.2 Thesigmamodel . . . . .. ... ... .. ... ...
8.1.3 The equations of motion . . . . . ... ... ... .....
82 D=2N=(1,0) ... ..
83 D=1,N=1 ... . .

13

15

18
18
19

20
20
21
23
24
26



9 Extending and reducing supersymmetries and dimensions 33
9.1 Going between N = (1,1) and N = (2,2) sigma modelsin D =2 33

9.2 Reduction from N = (1,1)in D=2to N=1in D=1 .. ... 34
9.3 Reduction from N =(2,0)in D=2toN=1inD=1 ... .. 36
10 Conformal theory 36
10.1 D >3 . e 37
10.2 D=2 . . e 38
10.3 The Polyakov action revisited . . . . . . ... .. ... ... ... 39
104 D=1 . . o0 40
11 Superconformal theory 42
111 D=2, N=(1,1) . . . ... i 42
112 D=1, N =1 . oo e 42
11.2.1 Introduction . . . . . . .. ... ... ... ... ..., 42
11.2.2 Construction of the Osp(1|2) algebra . . . . . . . ... .. 44

12 Superconformal invariance of the reduced D = 1, N = 1 sigma
model 48
13 Summary and discussion 56
A Notations and conventions 56
A1 Spinors . ... 57
A.2 The supersymmetric parameter 6 . . . . . . ... ... .. .... 59
A.3 The Baker-Campbell-Haussdorff formulas . . . . . ... ... .. 61
B Derivations 61
B.1 Derivation of the superalgebra. . . . . . ... ... ... ..... 61
B.2 Derivation of the superalgebra: an alternative way . . ... . .. 64
C Reduction from N =(1,1) to N =1 65
D An alternative introduction to supersymmetry 68

1 Introduction

Supersymmetry is a proposed symmetry between bosons and fermions. It asserts
that every boson and every fermion have their fermionic respectively bosonic so-
called superpartner which in every aspect resemble the original particles except
that their respective spins differ by one half. Since also their masses should
equal, superparticles would have long been discovered, but since this is not the
case the symmetry needs to be broken somehow, would it still be a symmetry of
nature. Unbroken supersymmetry, being the case of massless particles, is still
an interesting field of research.



Non-linear sigma models were first introduced by Gellman and Lévy in 1960
to describe spinless mesons called o-mesons. However, in today’s language non-
linear sigma models are understood to be a set of maps from a parameter space,
or worldsheet, to a manifold, which we will call target space. Introducing D
bosonic fields as maps, they can be seen as coordinates on the D-dimensional
target manifold thus fixing its geometry. Different configurations of parameter
space will result in different target space geometries.

This master thesis is written as a review article covering some of the more
important stuff needed for doing research in this vast field. At the end I will
even touch on research by analyzing the constraints needed for a dimensionally
reduced sigma model to be superconformally invariant. In writing this the-
sis and deciding which calculations to include, I have always had in mind the
nearly uninitiated student that I was when this project started. Therefore some
lengthy derivations, which for some may seem trivial, are included under the
motto better one too many, while other, due to their length, have been omitted
nevertheless.

In sections 2, 3, 4 and 5 the geometrical background needed is treated. Sec-
tion 2 comprises an introduction to real geometry in the language of manifolds.
This is extended to complex geometry in section 3, which also contains a short
compilation of the most important complex geometries. In section 4 generalized
complex geometry is introduced, which have been shown to contain symplectic
and complex geometry as special cases, thus being more general than both of
them seperatly. Finally, in section 5 Minkowski space, treated as a quotiant
space of the Poincaré group and the Lorentz group, is parametrized, and we
take a look at how transformations work.

Section 6, 7, 8 and 9 deal with supersymmetric bosonic non-linear sigma
models and how they transform under the super-Poincaré group, not including
conformal transformations i.e.. Bosonic non-linerar sigma models in one and
two dimensions are described in section 6. In section 7 supersymmetry is in-
troduced and a few supersymmetric sigma models are analyzed in section 8.
Section 9 deals with the geometrical constraints on target space implicated by
extending and reducing the number of supersymmetries and dimensions of the
sigma model.

The final sections 10, 11, 12 and 13 are dedicated to conformal theory. In
section 10 non-supersymmetric conformal theory is introduced for different num-
bers of dimensions, and then in section 11 extended to the supersymmetric cases.
In section 11 we also explicitly show how to construct superconformal transfor-
mations in one dimension. Finally, in section 12 we use this machinery on one
of the reduced models in section 9, thus showing the geometrical constraints
needed for the original non-reduced sigma model to be dimensionally reducable
to a superconformal sigma model. In section 13 these results are discussed and
some paths for further investigation are proposed.

In the appendices notations and other conventions are collected (appendix
A), togehter with some lengthier derivations and calculations (appendix B),
and an explicit reduction of the sigma model used in section 12 (appendix C).
Finally, appendix D comprises an introduction to the main idea of supersym-



metry in terms of ordinary bosonic and fermionic fields, i.e., without the use of
superfields.

2 Real geometry
2.1 Manifolds

Geometry is best described in the language of manifolds. In short a manifold is
a topological space which is homeomorphic! to R™ locally but not necessarily
globally. This means that on every sufficiently small part U; of our manifold
we can draw a coordinate system with the help of a coordinate function ¢;,
and that there exists an infinitely differentiable map 1);; between the coordinate
functions of two overlapping subsets U; and U; of the manifold. The more formal
definition reads: M is an m-dimensional differentiable manifold if

1. M is a topological space

2. There exists a family of pairs {(U;, ¢;)}, called charts, on M such that the
family of open sets {U;} covers M and for each U; there is a homeomor-
phism ¢, : U; — U] € R™

3. The map v;; = ¢; o gpj_l from ¢;(U; NU; # 0) to ¢;(U; N U;) is infinitely
differentiable

Next we introduce a differentiable map f between an m-dimensional manifold
M and an n-dimensional manifold N. Taking a chart (U, ¢) on M and a chart
(V,4), f can be presented in coordinates by

pofop t:R™ 5 R" (1)
If f is a homeomorphism and x = 1) o f o ¢! is invertible and both z and its
inverse are C'°, then f is called a diffeomorphism, and M and N are said to be
diffeomorphic to each other.

If f maps from a manifold to the real numbers R, f is called a function, and we
have the coordinate presentation

fop ™ :R™ 5 R. (2)

We also define a curve on a manifold as a map from an open interval (a,b) to
the manifold. We can then introduce vectors on M as tangent vectors to the
curve, the set of which at point p defines the tangent space T, M. An arbitrary
vector is written X = X# 52 where {e,} = {32} are the basis vectors of T), M.
Dual vectors, or one-forms as they are also called, are defined on the cotangent
space at p, denoted T, M, and are written w = w,,dz*, where {dx"} constitutes

Lf: X; — Xs is said to be homeomorphic if it is continuous and has an inverse f—! :
X9 — X1



the basis in Ty M. Note that T, M and T; M have the same dimension as the
manifold. The inner product between a one-form and a vector is defined by

(1) = W XV (e, 20 = w0, X8 = w0, X¥. 3)

We generalize vectors and one-forms to objects with arbitrary number of upper
and lower indices: a tensor of type (g,r) is an object that maps ¢ elements of
T, M and r elements of T, M to a real number, and is written

0 0

T = T
Vi.-Vr Oxtt Oxta

o™t ... da"". (4)

Next we define the exterior derivative. The action of the exterior derivative d,

on an r-form 1

w = ﬁwﬂl»--ﬂrdﬂfﬂl A - A datr (5)
is defined by
- 0 v M1 e
drw = ﬁ(@wyl...m»)déﬂ Adz* A - A dotr. )

Usually the subscript r is dropped and the exterior derivative is thus written d.
We examplify this with the (antisymmetric) two-form w = %wwdm“ Ada¥:

1
dw = E(ww)p)dxp A dz* A dxt
11 o o ) L
= §§(Wuwpd$p Ndxt N da” + wypdet Adat A de? 4+ wpydat A de? A dat
+ Wpy7udl'# Adx? A dx” + wup#Adm# Adz? A dzP + Wyu7pdl‘p Adz” A da’,"u)
11
- §§(°‘JW»P — Wupw T Wopw — Wouu + Wop = Wop,p)dx? Adxt A dx”
11
B §§(w’“j’p + Wop,w T Wopw + Wop,u + Wop,u + Wy p)da? A dat A dx”
1 v
= ﬁ(wuu,p + UJPIMV + wVp,H)dxp A dw“ A d{L’ . (7)

Comparing with a three-form
g b — L 7 v p_ 1 2 I v
H = H,,,dz"dz"dxf = gprdx ANdz¥ ANdxP = gHWpdcc Adz* Ndx¥, (8)
we see that H = dw can be expressed as

Hywp = wpv,p + Wop,w + Wop,u- (9)

A form w that can be written as the exterior derivative of another form (such
as H in our example) is called exact. If dw = 0, w is called closed.



2.2 Riemannian manifolds

We define a Riemannian metric g as a type (0,2) tensor field on M satisfying
at each point

1. gp(U, V) =g,(V,U)
2. ¢g,(U,U) > 0, where equality holds only for U = 0

where U,V € T, M. A pseudo-Riemannian metric also satisfies the first relation
but the second is now

2. if g,(U,V) =0 for any U, then V = 0.

If a differentiable manifold M admits a (pseudo-)Riemannian metric g, the pair
(M, g) is said to be a (pseudo-)Riemannian manifold. With the help of the
metric we can define the inner product between two vectors instead of between
a vector and a one-form. g,(U, ) is simply associated with a one-form wy and
we get (wy, V) = ¢,(U, V).

2.3 The Lie derivative, the covariant derivative, torsion
and curvature

The Lie derivative LxY of a vector field Y = Y“a% along the flow of a vector
field X = X “&% tells us how Y changes along the flow of X, the flow being
defined as a curve whose tangent in every point is parallel to the vector field.
We have

LxY = (X"0,Y" —Y"9,X")e, = [X,Y]. (10)
The Lie derivative can act on an arbitrary tensor A5l £» in the following way

[21]

Hi---fn Y P AHL---Hn P M1 P 25y 2
(EXA)Ul...VkL _X AV1. " +X ,lllA ..I;Lk + +X ,l/kAlll i

VEk,P pr2. e Vg—1p

— X AT — e = X AR (11)
We exemplify this by the Lie derivative of H*":
(LxH)" ,=X"H", — X! H"™ — XY H'" + X" HW,_. (12)

Noting that £xY also depends on the derivative of X, we introduce the covariant
derivative Vx as a generalization of directional derivatives from functions to
tensors. For X = X*e, and Y = Y"e, we have

oy
VxY = X“(W + Y”F’\W)e,\, (13)

where the connection coefficients F)\u are defined by

v

Ve, = e,\F)‘W. (14)



The covariant derivative describes the change of a vector Y in the direction of
the vector X. The terms in the parenthesis of (13) is written

oY
A
VY=o

We can generalize the covariant derivative to arbitrary tensors by

A v
+TA, Y. (15)

A1 Ap 9 A1 Ap
VVtmmuq _a'/tmmuq

+ F)\l tx)\g...)\p N I‘\)‘p tkl...)\p_ln

VK K1 Hq VK K1 Mg
_T" Al Ap TR A1 Ap
r up,ltﬁ,p,g.../l,q r yuqtul...uq_ln' (16)

We are now ready to define the torsion tensor
T(X,Y):=VxY - Vy X — [X,Y]. (17)
In components of the basis {e,} and dual basis {e"} = {dz"} we get

T = T’\We)\e“e”

ue/\ H VA u@e* VU A uey H Y
=e @@\—i—e e’ en—e @@\—e el en—e @ey—i—e 86#61'
= e”e”(F)‘#V — F)‘WL)GA, (18)
ie.,
T, =T, -T%,. (19)
(0)X

We call a torsion-less connection I'
the metric it is written

@ Levi-Civita connection. In terms of

0)A 1
r®, = 39" G + G = Gpor)- (20)
From (19) we see that the Levi-Civita connection is symmetric in its lower
indices. We are now able to decompose the general connection into a torsionless

and a torsionfull part
1
., = r“mw + §T*W. (21)

This can be generalized to

1
I‘(i))\uu — I\(O))\MU Zl: §T>\HV7 (22)

or 1
r# =10 4 5g*lT, (23)

with a covariant derivative VEL ). One source of torsion may be an antisymmetric

tensor B,,, connected to the ordinary metric g, by

E;UJ = Guv + Buua (24)



i.e.,

1 1 1 1
Guv = iE(Ml/) = Q(El“/ + EVM)’ BIW = QE[[U/] = i(EIW - Euu), (25)

where we implicitly have made clear our definition of symmetrization and an-
tisymmetrization of indices. Torsion can then be interpreted as the exterior
derivative of the B-field, T' = dB, or in components

Tn/,u/ = (dB)Ii/,LV = BH;L,V + B/,LV,I{ + Bun,u (26)
The Riemann curvature tensor is defined
R(X,Y,Z)=VxVyZ —-VyVxZ— Vix.v)%, (27)

which in our coordinates becomes

RH)\NV = 8MIWV>\ - &,FKW\ + FnVAFK,m - Fny,AFKVn' (28)
Contracting the indices we get the Ricci tensor
Rl“’ = R)\P)‘V’ (29)
and the scalar curvature
R:=¢""R,.. (30)

These definitions generalize in the obvious way under I'* ,, — &% 4o
y13%

R%,,, — R®" Ry, — R™ . (31)

Apv

2.4 Killing vector fields

We close this section with a short introduction to Killing vector fields. These
are fields along which the metric g is constant, i.e., a vector field X is a Killing
vector field if
Lxg=0. (32)

Following a more detailed approach we first define an isomorphism. A diffeo-
morphism f : M — M on a (pseudo-)Riemannian manifold (M, g) is said to be
an isomorphism if

Oy> 0yP

2 27 4. = g, (p), 33

ot 5w 9o (f(2)) = 9, () (33)

where x and y are the coordinates of p and f(p) respectively. If f : z¥ —
" + eX* we then have

Oz + eX) O(zP + eXP)
Ox# Ox”

This gives us the Killing equation

gap(x + €X) = g (). (34)

X0¢ g + 0, X%ger + 0, X gue = (Lxg) = 0. (35)



A vector field X satisfying this equation is said to be a Killing vector field.
Geometrically this means that the inner product between two vectors is constant
along a Killing vector field.

We can generalize the Killing vector field by

Lxg=cxy, (36)

where cx € C. X is now called a homothetic Killing vector field [9].

3 Complex geometry

3.1 Complex manifolds

Complex manifolds are similarly defined as the real manifolds. To this end we
introduce a complex valued function f : C™ — C and say that it is holomorphic
if f = f1 + ifs satisfies the Cauchy-Riemann relations for each z* = x* + iy*:

Oh _0f Ok _ Of

= =— 37

Oxkt  Oyr’ OxH oyr (37)

Similarly a map (f!,...,f") : C™ — C" is holomorphic if each function f*
A=1,...,n is holomorphic. M is then said to be a complex manifold if

1. M is a topological space

2. There exists a family of pairs {(U;, ¢;)}, called a chart, on M such that
the family of open sets {U;} covers M and for each U; there is a homeo-
morphism ¢; : U; — U € C™

3. The map ¢;; = <p,;ogpj_1 from ¢, (U;NU; # 0) to ¢;(U;NU;) is holomorphic

We note that the complex dimension, dimcM = m, is half the real dimension,
dimrM = 2m. Therefore the tangent space T, M is spanned by 2m vectors

9 o 0 9
{@7...78‘r7m’87y17...78y7m}, (38)

and the cotangent space T,y M by
{dwl,...7dxm;dy1,...,dym}. (39)

A linear map J, : T,M — T, M can be defined by

0 0 0 0
h(gem) = oy P(5y5) = gar (40)
which means that
J? = —idr,u, (41)

10



where id is the identity map?. This defines an almost complex structure.
Roughly speaking we can see it like this: an m-dimensional complex mani-
fold M with vectors Z = X 4 iY is a 2m-dimensional real manifold with an
almost complex structure J, telling us how to relate the m-dimensional real
vector fields X and Y. We see that in the base (38) J, takes the form

n=(0 ) (12)

(o) (1 0" )= () ()

where I, is the m X m unit matrix. We define new vectors

since

0 17 0 .0
5o = 37 ~ 1) (4)
0 170 .0
55 = 33 * 1)’ (45)
and corresponding one-forms
dz" = dz" + idy", dz" = daz" — idy". (46)

These vectors and one-forms span the 2m-dimensional complex vector space
T,M € and its dual space oM C respectively. Now, extending the definition of

the almost complex structure to T, M®, we find

0 -0 0 0
v g g g (47)

This gives in these coordinates

il, 0
J ( 0 —il,, ) (48)

and we see that the complex manifold can be seperated into two disjoint vector
spaces:

T,M® =T,M* & T,M", (49)

with
T,M* ={Z € T,M"|J,Z = +iZ}. (50)
Z = Z“a% € T,M™ is called a holomorphic vector, while Z = Z“a% eT,M~

is called an anti-holomorphic vector. T, M is called integrable if and only if

X,Y € T,M* = [X,Y] € T,M*, (51)

2The identity map on a set M is defined such that it always returns its argument.

11



where [ , ] is the Lie bracket. Using projection operators P* := %(1 FiJ)
this can be written

PF[PEX, P*Y]=0, X,Y €T,M. (52)
This condition can also be expressed introducing the Nijenhuis tensor N(X,Y)
N(X,Y) = [X,Y] + JJJX,Y] + J[X,JY] — [JX, JY]. (53)

(51) and (52) are now identical to N(X,Y) =0, by a theorem proved by New-
lander and Nirenberg.

3.2 Hermitian manifolds and Kahler manifolds

The Riemannian metric g of a complex manifold M is called a Hermitian metric
and the pair (M, g) is said to be a Hermitian manifold if at each point p € M

gp(Jva pr) = gp(X7 Y) (54)

for any X,Y € T, M and J is the almost complex structure. Another way to
define a Hermitian manifold is to demand that a complex structure is preserved
by the Riemannian metric of a real manifold, i.e

JtgJ = g. (55)
We define a tensor field 2 by
0, (X,Y) =g,(J,X,Y), X, Y e T,M, (56)
and call it the Kéhler form.  may also be written
Q =igupdz! NdZ¥ = —J,pdz? NdZ". (57)

A Hermitian manifold (M, g) is said to be a Kéahler manifold if the corresponding
Kaéhler form is closed (df2 = 0), and the metric g is called the Kéhler metric of
M. It can be shown that a Hermitian manifold is Kéahler if and only if

Vu.J =0. (58)
The Kahler metric can locally be written

0?K

= Gz

where /C is a function called the Kéahler potential.

12



3.3 Hyperkahler and pseudo-Kahler

A hyperkéahler manifold is a quaternionic analogue to the Kahler manifold. In-
stead of one complex structure we have three complex structures I, J and K,
that need to satisfy the quaternion algebra:

PP=J=K=-1
1J=-JI =K, JK=-KJ=1, Kli=—-IK=/J (60)
This gives us a quaternion-Kéhler manifold. Imposing the condition that the
scalar curvature vanishes we have a hyperkahler manifold.
In a pseudo-Kihler manifold two of the structures are real, i.e, for J? = —1 we
have I? = K% = 1.
3.4 Bihermitian geometry

Bihermitian geometry involves two complex structures
2
with respect to which the metric should be separately Hermitian
Jiy9J(z) = g- (62)
The complex structures should also be covariantly constant
VE Jey =0 (63)

with respect to a torsionful connection I'(+).

3.5 Symplectic manifolds

We start this subsection by defining degeneracy of two-forms on a finite-dimensional
vector space V. A two-form f(z,y) on V is called degenerate if there exists a
nonzero x € V such that f(z,y) = 0 for every y € V. Else it is called non-
degenerate, i.e, if f(z,y) = 0 for all y € V implies x = 0 then f is called
non-degenerate.

A symplectic form w is a closed (dw = 0) non-degenerate two-form. A smooth
manifold equipped with a symplectic form is called a symplectic manifold.

4 Generalized complex geometry

Generalized complex geometry was introduced by Hitchin [11] and elaborated
by Gualtieri [12]. It was found to interpolate between complex geometry and
symplectic geometry and also to include bihermitian geometry. We generalize
the complex structure from being an endomorphism on the tangent bundle J :

13



TM — TM to also include the co-tangent bundle J : TM & T*M — TM &
T*M, still requiring
J?=—1. (64)

With X, Y € TM and &, € T*M, an element of TM & T*M can be written
X +¢ and the natural pairing 7 is defined by (X +&£,Y +n) = txn+ ¢ty &, where
tx is the interior product (also called interior or inner multiplication). This
pairing needs to be Hermitian with respect to 7,

J'TT =1. (65)

Analogous to the ordinary case we can define projection operators Il := %(1 +
iJ) and the integrability condition becomes

Ha M (X +6), e (Y +1n)]e =0, (66)
where we have introduced the relevant bracket called the Courant bracket:
1
(X +&Y +nle:=[X, Y]+ Lxn— Ly~ §d(bx77*LY§)- (67)

It is also possible to include a closed three-form H. The H-twisted Courant
bracket is then defined by

(X +&Y +ng:=[X,Y])+Lxn—LyE— %d(LXn —uw&)+ixtyH.  (68)

In the basis {9, dz"} we have

_ 0 14
7= ( 1, 0 ) (69)
J P
7=(7 &) (70)
where
J:TM — TM, P:T"M — TM,
L:TM —T*M, K:T*M — T*M. (71)

We explicitly work out the constraints on (70) that follows from condition (64).
We have

s (7P J P\ _ [ J2+PL JP+PK\ ([ —-1; 0
"\ L K L K ) \ LJ+KL LP+K? - 0 -14 /°
72)
From Hermicity (65) we also have
Jt Lt 0 1 J P
tr g d
729= (3 0 ) (0 ) (1 &)

14



o JL+Lt T +L'P N\ [0 1 73)
“\PLt+Ktg PE+EKP )T\ 1, 0 )

Combining the constraints from (72) and (73) we get
JI—K, P'——pP,  IL'—=_L (74)

Letting only J (and therefore also J® = —K) be nonzero in (70) we get the
corresponding matrix of the ordinary complex structure J in terms of generalized

complex geometry
J 0

For a symplectic structure w we get

T, = ( g *“671 > (76)

From these relations we can form a metric

0 Jw ! 0 g!
ngjw(th 0 ><g 0 )7 (77)

where g is the ordinary Kéahler metric. Now, if there exist two commuting gener-
alized complex structures J;, and J» (such as J; and J,,), and G = —J1J2 is a
positive definite metric on TM @& T* M, then the generalized complex geometry
is called generalized Kéahler.

5 Minkowski space, the Poincaré group and fields

Minkowski space, M, can be seen as the quotient space of the Poincaré group
and the Lorentz group

1SO(D —1,1)/SO(D —1,1). (78)

To understand this, we introduce an equivalence relation ~ between two ele-
ments g; and g of a group G. We say that g1 is equivalent to g2, g1 ~ go, if
there exists an element f of the subgroup F' to G such that

g1 =920 f. (79)

G can then be seperated into equivalence classes. The set of all equivalence
classes is called the left coset and is denoted G/F. Identifying G with the
Poincaré group and F with the Lorentz group we let every point in the Minkowski
space correspond to the (infinte) set of elements in ISO(D — 1,1) which are
equivalent up to a Lorentz transformation. Thus we can use the translation
generator P to express a point h(x) in M by a parameter x:

h(z) = e Fe1 (80)
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We let a group element g = e?*"Xa with generator X and parameter a act on h
from the left

g0 h(x) = h(z')o f, (s1)

and mod out any element f = 39" Mav in the Lorentz group on the right-hand
side:

h(z')o f ~ h(z") (82)
Thus we have found a coordinate transformation
h(z) — h(z") (83)
or simply
z— . (84)

Fields can also be viewed as representations of the Poincaré group, thus also
transforming under Poincaré transformations

¢p—¢. (85)
For scalar fields we choose a representation with the defining property
¢'(2') = ¢(). (86)
Expanding under an infinitesimal transformation x — z’ = x + a we have
¢ (2') = ¢ (2) + a0y (z) + -+ = d(x) + dp(x) + a® Dy () + - - - = p(x), (87)
giving
d0p(x) = —a®0,0(x), (88)
where we have defined
0¢(z) == ¢'(x) — p(). (89)

We can also write, using one of the Baker-Campbell-Haussdorff formulas (ap-
pendix A.3),

QS/(JZ) — eia“Xa(b I)efia“Xa

= ¢(x) + [d(x), —ia" X, + ...
= ¢(x) +i[a®X,, d(x)] + ... (90)
for any generator X,, and thus
d¢(x) = ila" Xq, ¢()], (91)
i[aaXa>¢($>] = —a" a¢($)' (92)

Other fields such as spinor and vector fields have representations which trans-
form differently.
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We will use the Poincaré algebra in the following form

[P, Py =0
[Maba Pc] = 7;"’}c[apb] = Meals — NevPa
[Maba Mcd] = inc[aMb]d - i’rld[aMb]m (93)

where P, is the generator of translations and M,;, the generator of rotations in
space-time, i.e., boosts and spatial rotations. From the algebra we can deduce
the coordinate changes they will generate. For an infinitesimal translation we
have

g= 61’(1"Pa7 (94)

thus giving,

goh(x)= ¢i10" Pagia" Py _ exp(ia® P, + iz’ Py + %[iaaPa, ibeb])
— oxp (i(a® + 2P, — %aaxb[Pa, Py)) = @+ (g5)
We see that the coordinates transform as
2% = 2’ =2+ a” = 62 = a”. (96)
From (92) we have

i[aaPa,ng(a:)] = —a" a¢(33)
= [Paa ¢(I)] =100, (97)

and we define an operator A
P, :=10,. (98)

Similarly, for a Lorentz transformation we have
go h(JC) _ eéw“bMabeiachc ~ e%wabMabeimCPceféw“bMab
i, ,a i, ,a 'L

= 2% Mar(] 4 2P, + .. )e 2% Mav = 1 4 j2°P, + [iz°P,, —§wabMab] + ...
1

=1+ iz°P, — §wabxc[Mab, Pl+...

e i ab,.c i ab,.c

=1+1wx Pc—iw T 77¢an+§</-2 Ny Py + ...
i i

=1+iz%P; — iwabzcncaégPd + iwabxcncb(Sde + ...

= ei(fd—%wabraﬁf-"%w“bmb‘si)ﬁ7 (99)

giving us an infinitesimal coordinate transformation

1 1
A L gL iwab(—xacsg + 246%) = da = iwab(—xacsg + 230%).  (100)
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We have

j 1
(59" Mup, §(@)] = =5 (~af + 2438 0a6 (@)
= [Map, ()] = i(=240p + 104) (), (101)
and we define an operator acting on scalar fields

My, = —ix(,0). (102)

6 Non-supersymmetric sigma models

A sigma model is a set of maps X*# : ¥ — T from a parameter space ¥ with
coordinates £ € ¥,a = 1,...,D, and a target space T with coordinates X* &
T,u=0,1,...,d —1, and an action which gives the dynamics of the system.

6.1 Bosonic model in D=2

Starting from the action of a classical string
S=-T / dA, (103)

where T is the tension of the string, inducing a metric on the world surface

_9XM XY

ab — “Aep pvy 104
Yab = e pgn (104)

and using the fact that proper ”generalized volume”

dV = dP&+/— detyqp (105)
is invariant under diffeomorphisms, we arrive at the Nambu-Goto action

S = fT/dQ&/f det Yap- (106)

This is equivalent to the Polyakov action
T 2 ab
S =5 [ dV=hn "y, (107)

where h := det hyp is the independent metric of the world sheet, as can be seen
from varying the action with respect to hyp and setting 65 = 0.
In the conformal gauge (section 10.3) the Polyakov action takes the form

S = g / d?Enu, 0, X 0" X" . (108)
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We generalize the target space metric 7,, by g., = g, (X) and introduce an
antisymmetric tensor B, = By, (X) in the background

Eun(X) = gu(X) + By (X). (109)
In light-cone coordinates, 2+ := %(51 +£2), we get
S=T / d?204 4 X"E,,0-X". (110)

In the following, we will skip the factor T" for simplicity. From 45 = 0 we obtain
the field equations:

oL oL
i.e.,
aL v i v v
8++W E 6++(Epl,a:X ) = EPV7M8++X 8:X + Epy6++a:X
oL v
0= a(O_Xr) O—(01+ X"Eyp) = 044 0-X"Eyp + 04 4 XV Eyp ,0-X
% =04 4 XV By p0-X", (112)
which gives
oL oL oL

0= 50, xn " =a@_x  axr

= (B + Epup) 014 0=X" + (Epupu + Eppv — By p) 014 XM 0=X"

= 20p04 4+ O=X" + (Gpvu + Gupw = Guvip + Bovw + Bupw — Buv,p) 044 XHO_X".
(113)

Multiplying with %g”p gives

1 v
0= 8++8:X” T §gﬁp(gl’ﬂﬁﬂ + Gupy = Guv,p — BVPaM - Bpu,u - B/w,p)aJrJrXHa:X
. 1 _
= 0y 0_X"+ (00— 59" To) 01 XMO_X¥ = viJo_x" =0, (114)
where T' = dB is the torsion. This implies that the target space 7 is Riemannian
with torsion.

6.2 Bosonic model in D=1

The one-dimensional bosonic sigma model we will simply state:

1 L.
S = i/dthX“X” (115)
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7 Supersymmetry

7.1 The supersymmetry algebra

Starting from the Poincaré group (93) and an internal group

it was shown in 1967 by Coleman and Mandula [18] that, under certain general
assumptions and in the context of Lie algebra, the largest symmetry group
containing both the Poincaré group and an internal group necessarily must be
a direct product group of them, implying

[P,,Br] =0,
[M;LuaBI} 0. (117)

By introducing a graded Lie algebra including not only commutators but also
anti-commutators (and thus altering the original assumptions), it was however
later realized by Haag, Lopuszanski and Sohnius [19] that the group can be
expanded in a non-trivial way. To this end we divide the generators into an
even (bosonic) and an odd (fermionic) class obeying the rules:

[even, even| = even,
[even, odd] = odd,
{odd, 0dd} = even, (118)

and generalize the Jacobi identity to

[[B1, B2], B3] + [[Bs, Bi], B2 + [[B2, Bs], B1] =0
[[B1, B, F5| + [[Fs, B1], Ba] + [[B2, F3], B1] = 0,
{[By, Fo], Fs} + {[By, Fs], B} + [{Fy, Fs}, By] =0
0

{F1, B2}, Fs] + [{F1, Fs}, Fa| + [{F2, F3}, Fi] =0, (119)

where B denotes even generators and F' odd. We classify the Poincaré generators
and the internal group generators as even and introduce N odd generators
Q',i=1,2,...,N. Using these rules we are able to derive the super-Poincaré
algebra (appendices B.1, B.2).

[P, Py) =
[Map, Pe] = ch[apb],
[Mab, Mea] = inejaMyja — Maja My,
[Pa, Bi] = [May, Bi] = 0,
[Bi, Bj] = fzj "B,
P,

[Qa

[Qé Pa] = 0,
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Q1 Ma] = —5 (o).},

(Qh Mu) = 5(5u)”

{QL, Q) = X" eap,

{Qa, Qa} = X esp,

{QL.Ql} = 5”Pad,

QL. Bl = (5",

(Qar Bl = (51)',

[x"7,0) = (X", ]—07 (120)

where O is any operator and the complex constants X’/ are called central
charges. In this master thesis we will not discuss central charges nor internal
groups. Thus the algebra simplifies greatly, the non-zero part being

[Maba Pc} = Z.77c[apb]7
[Maba Mcd} = Z.77c[a]\4b]cl - ind[aMb]ca

[Q{)uMab} _5(0'(11)) Q[%
[Q({wMab} = %(5ab)dﬁég,
{Qh, Q) = 20" Pag. (121)

A further simplification can be done by only considering the massless case as
we will see in section 7.4.

7.2 Superspace and its operators

In the same way as the Minkowski space can be seen as the quotient space of
the Poincaré group and the Lorentz group

1SO(D —1,1)/SO(D — 1,1), (122)

superspace can viewed as the quotient space of the super-Poincaré group and
the Lorentz group:
SISO(D —1,1)/SO(D — 1,1). (123)

A point in this space is written
h(z,0) = ei(zP+0Q+§Q) _ ei(xapa+9aQa+§de)7 (124)
for two-component Weyl spinors where o = 1,2 and & = 1,2 (appendix A). In

the same way as z® acts as a parameter for the translation generator P,, we
now also have two anticommuting parameters, 8¢ and 8,4, acting as paramaters
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for the left-handed and right-handed supersymmetric generators Q. and Q¢

respectively. An infintesimal transformation by @ gives
i6°Qp iz Patif® Qu+ifaQ® _
— ia" Pati(0°+€6")Qa+i05 Q% + 41167 Qs,i04 Q%1 +...
— i Pati(0%+6%)Qa+i05Q% —£°8% (o) ga Pat ..
— i@ +iE% (0")aa0%) Pati(07+£67)Qa+05Q%
We see that @, generates a coordinate shift

1% — 1'% = 2% + i (0%) 0a 0% = 62% = iY(0) a0
9@-)9&:9@#59@:0.

We get

[i£*Qa, ¢(,0,0)]
= [Qa. é(z,0,0)]
Thus we can define a differential operator
Qo =100 — (0")aa0* 0y = 106 — 0% Oua.,
Q% = €PQp = —i0* + 04(5,)%0% = —id* + 0,0°°.

—(£%00 + 16*(0")ac0%04) 9(x, 0., 0)
(100 — (0")aa0%04) (0, ).

An infinitesimal transformation generated by Q,
eiEBQBeimaPa+i0°‘Qa+i§de _
— i@ Patif Qa+i(0a+€a) QY+ 41i€,Q7 0 Qul ...
— i@ Patif0*Qa+i(Bs+Ea) Q¥ +6%(0) 48" Purt...
— (@ i€ (0)aa) Patif¥ Qat+i(fa+Ea) Q¥ ...
)
gives a coordinate transformation
2% — 1'% = 2% + £99Y(0Y) 0 = 62% = i£Y9%(0Y) aq
0" =0 =0t 500 =0
0% — /% = 6% + £* = §0% = £°,

and thus

[ingdv d)(xv 07 0_)] _(gdad + igdaa (Ua)adaa)¢(m7 97 é)
= —i€%Qa, ¢(@,0,0)] = (=E%0s — i€70%(0)aada)d(, 6,0)
= [Qda (b(.’L‘, 6’ é)] = (_i&i + ea(aa)adaa)¢(xa 9) g)

We define a differential operator

Qo = —105 + 0%(0%)0a00 = —i04 + 0%0na,
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Q% = PQ; = 0% — (3,)20,0" = 0% — 0,0°°. (132)

We will also need differential operators, Dy, Dy, that anticommute with the
supersymmetry operators:

{DaaQﬁ}:{DaaQB}:{Dd7Q5}:{Dd7QB}:O' (133)
If we take them to be

D, =0, — i(a“)adéd(?a = 0y — 10%0na,

D* = e’ Dg = —0% +i04(5,)%*0" = —0* + 050",

Dd = —0y + i@“(a“)adaa = —04 +10%04q,

D% = ¥ Dy = 0% —i(74) 020" = 8% — i,0°%, (134)
this is indeed the case. We also have

{Dq4,Dg} = {Da,DB} =0, (135)

but note that -
{Dq, DB} = 22’(0“)058(1 = 22’8&[3. (136)

The reason for introducing these operators, which we will call the covariant
derivatives, is that the supersymmetry derivatives, d, and J, does not anti-
commute with the supersymmetry operators:

s (ig“@aqﬁ(x, a,é)) = 95 (5¢($,9, é)) 4 5(aﬁ¢(x, 0, é)). (137)

Using instead the covariant derivatives we have
Dy (56(2,0,0)) = 5(Dao(x.6,9)). (138)

7.3 Superfields

Since 6 and 6, anticommute with themselves, a Taylor expansion in these
parameters terminates after only a few terms. The verticle line denotes the 6-
and 0-free part.

d)(x, 0, é) = ¢(‘T7 0, é)'
+0%(Dad(2,0,0))] + 0a (D ¢(,0,0))|

+ 50°0° (Da Dy (2,0,0))| + 6°0a (D D62, 0,0) | + 180, (D* D (x0,0))

1 _ _ _ 1 - . _
+ 69‘1959@ (DoaDgD%¢(x,0,0))| + goaedeg (DoD*DP¢(x,0,0))|

L sz 7 A& )
+ 53¢ 0°0405(DaDpD*DP(x,6,0))|. (139)
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We use that

1 1 1
0°0°D,Ds = —Zeaﬂmeveaﬁ[ﬁpg = Zeaﬁ%memépg = 5976VD5D5,
(140)
to simplify and to define new fields:

(x,0,0) = a(z) + 0% (z) 4 04E% + 0%,d(z) + 0%(0%) aab%eq(x)
+ 050%f () + 00,045 () + 0%050%ha () + 0%0,050% (). (141)

If we impose constraints on the superfield we can simplify further. For example,
a constraint - B
Ds¢(x,0,0) =0, (142)

gives a chiral field, while a constraint
Doo(x,0,6) =0, (143)
gives an antichiral field. It can be shown that after a translation
Y = 2% +i0%(0") 0a %, (144)
we can write the chiral field superfield
S(z,0) = aly) + 0% (y) + 0“0,d(y), (145)

and similarly for the antichiral superfield.

7.4 The massless case in two dimensions

A massless particle is characterized by P*P, = 0. Taking P, = (P,+P) this
will indeed be the case in a two-dimensional Minkowski space with metric n =
diag(—1,+1). A plus corresponds to a particle moving to the right and a minus
to a left-mover. Introducing light-cone coordinates

1 1
= — (2% + 2t), = = — (20 — 2t), 146
ﬂ( ) \/5( ) (146)
with a metric
a 0 1
== (] 5 ). (147

we arrive at the algebra
{Q},Q1}=20""Py,
{QL.Q7y =25"" P
{QL,Q7y =o. (148)

We thus make a distinction between right- and left-moving supersymmetries.
In fact it is possible to have different numbers of right-moving supersymmetries
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I=0,1,...,q than left-moving I’ = 0,1,...,p. We will label such a theory a

N = (p, q) theory. Analogous to (124) we write a point in this space

+ ot - g _ (Tt Py tia= P_tioF QL +i07, QY
Wz, 07,08, ...,07,05,...)=lie Prefia PeAifr Qi 4i0, Q)

and a group element

eie"‘Qa )

Thus an infinitesimal transformation by Q% becomes

. . = . .n— ’
6i§jQie(m++P+++w P_+i0F QY +i6,Q")

(149)

(150)

) . ) e~ L .
= oxp (i Py +ia”P_ + i8] + €)@+ i07Q" + LiEE Q07 QL))

. - . o 1
= exp (iz* oy +ixTP- +i(0] +&0)QL +0,QL + 5¢707(Q1, Q1))

= exp (ie™ Pyy +ie™Po (0] + QL +i0,Q7 +671¢ 0] Py y)

= exp (i(att —i8"TEFOT )Py +ix= P +i(0F + 60)QL +i05,QT).  (151)

This implies a coordinate change

{ St = —isTIgtor

807 = ¢&F,

giving

16 QL o (,0)]
= QL. ¢(z,0)]

where we have defined

8_{_ = —

We get a representation

010 =3j,

—(&7 0% =161 07044)9(x,0)
(i0L + 677 0% 0,4 )o(x,0),

oLoy, = 0.

QL =iol +46"7050, .

A similar calculation gives

We define covariant derivatives

QL =id" +46"705,0-.

D_Ii_ L= 8_{_ + i5U0}'8++,

DI =o" +is" 7 0;5,0-,

and notice that

D} =i0sy.
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It is possible to replace §77 in (148) by an arbitrary symmetric matrix n’”/,
which, if invertible, can be transformed to

7_ (1. O

for v+t = p. This means that we let er square to — P, for some I instead of
+ P44, and we call this a twisted supersymmetry. Allowing for non-invertible
matrices, n’/ can be further generalized to

L, 0 0
=1 0 -1, 0 |, (160)
0 0 0,

where u 4+t + v = p, i.e., we let er square to 0 for some I. Similarly s
generalizes to 1’ "/ for the left-moving symmetries.

7.5 One-dimensional case

We will also consider the one-dimensional case:
{Q1,Q7y =25 P. (161)
A parametrization of the superspace
h(t,01,0s,...,05) = WP F01Q) (162)
and an infinitesimal transformation
Cli€1QD) (P +i0,Q7) _ oy (itP +i(0y + £:61)Q7 + %[i&@]7 i0,Q7))
=exp (itP +i(0; + £60)Q7 + £,0,6" P)

= exp (i(t —i&10,0")P +i(0; + £65)Q7) (163)
gives
ot = —i{IHJ(S”
{ 50, = €151 (164)
and
[i6:Q", ¢(t,0)] = —(£1650] — 610,67 0,)o(t,0)
= [Q",¢(t,0)] = (105 + 056" 0,) (¢, 0) (165)
where 9 9
S - Y
o} = 507 O 1= o (166)

We define an operator .
Q' == i0) + 056" 0, (167)
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and a covariant derivative
DI =8} +i6;6" 0, (168)

which squares to
D? = io,. (169)

Similar to the two-dimensional case we can twist the algebra, thus generalizing
(161) to
{Q", Q7Y =2¢""P, (170)

where 717 is given by (159).

8 Supersymmetric sigma models

In this section we will review the calculation methods for obtaining supersym-
metric sigma models. We will to some extend follow section 4 and appendices
A1l and A2 in [5], but possible with even more detailed calculations.

81 D=2 N-= (1,1)
8.1.1 The superfield and closure of the algebra
We expand the field
(2, 0) = XH(x) + 0Tk (2) + 04" (x) + 6707 FH(z), (171)

where

Xt =¢"|, ¢y =Dy¢"| F' = —DyDxo"|, (172)
and the relavant operators and covariant derivatives are
Qs =i0s + 0% 01y, Piy =104y
Dy =04+ ieiaii. (173)

The closure of the algebra is essential The commutator of two transformations
must never lead outside of the algebra or the superspace. We have

St = 6XH + 0T oyt + 076yt + 0107 SF*, (174)
but also
3¢t = i[eQ, 9] = ieQeH = (ie" Q4 +ie” Q)"
= (—€T0; +ie" 070,y — e 0_ +ic 07 0=)p"
= (=€t — e Yt) + 0T (—iet O X — e FF) + 07 (—ie 0-X* + et FH)
+ 9+0_(—Z.6_8:wi +ie+5++1/)ﬁ), (175)
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which means that

OXH = —etyll — ey, Pl = —iet Oy XH — e FH,

Y = im0 XM 4 eFFH, ER = —jed ot 1 icto, g, 170

A second transformation gives
80, @* =(ieS €7 01y XH +ie, €] O-X" + efe] F* — e5 ¢ FH)
+ 07 (ief €f 04 P +ief ey Dy ! —iey € O (! +iey € O_y)
+ 07 (iey €f Oyl + i€y e 0" +ieg ef 044" +ief e O_y)
+ 00 (—ey € 0=01 4 X* +ie, €] O—F" + €5 €] 041 O X"
i el Dy ), (177)
so that
[Oes, 0cy J0H =(2i€] €] Oy + 2iey €7 O-X") + 07 (2ie € 0410 + 2ie; €7 O_y!)
+ 07 (2ief € Oy P! + 2iey €] D)
+ 0107 (2ief €] 04 L F* + 2ie; e O=F*")
—(26f e Prs + 265 7 P_)g", (178)
which is exactly what we would have expected since
[0cs, 0c, J9H = [i€2Q, i1 Q" = lieg Q +ie; Qi€ Qy + ey Q)"

= (361 {Q+, Q1 } + 36 {Q-,Q-})o" =2(eJ e Py + 62_61_13(:)¢‘)‘~
179

In fact, letting the operators work on the corresponding superfield-expansion
(like (173) on (171)) they will never lead us out of the superfield, and we say
that the superspace formalism is manifestly supersymmetric.

8.1.2 The sigma model

The bosonic non-supersymmetric sigma model in two dimensions reads
S = / d?x0y X'E,,0-X". (180)
To make the sigma model supersymmetric we make an ansatz
S = / d*zd*0D' X" E,, D" X", (181)

and try to find m,n € N such that the non-supersymmetric model can be
recovered in some sense by reducing the supersymmetry. We try m =1,n =1

D¢t = (aa% +i0F 0y ) (XM + 0T + 07" + 0707 F)
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- wi + o0~ F*+ + Z'9+8++XH + Z'9+9_8++¢E
o)
D_¢" = (55= +i070=) (X" + 079 + 6792 + 6767 F")
=YY — 0T FY +i0"0-X" — 000" (182)

Since
Di¢"D_¢" = —0T0 0, XFO_X" + ... (183)

already m = 1,n = 1 may return the bosonic action as one of its terms. We
check this.

S = / d*xd*0D, ¢"E,, D_¢"
— [ eD.D_(D6"E,D-6")
= [ 4D\ (DD 6" B D¢ — D" Byue D67 D"
+ D4+ ¢"E,D_D_¢")|

= /dzx(D+D_D+¢“EWD_¢” +D_D¢"E,, D1 9" D_¢"

+D_D ¢"E,D D _¢' —DyD,¢"E,,.D_¢"D_X"

+ D1¢"Epyro D1 ¢" D_X"D_¢" + D1 ¢"E,,, Dy D_¢" D_¢"

+ Dy D.¢"E,,D_D_¢" — D §"E,,;D+¢"D_D_¢"

+ D1 ¢"E,, Dy D_D_¢")| (184)

The seventh term gives us
/ d*xD; D4 ¢"E,,D_D_¢"|= — / d?x04 4+ X" E,,0-X" (185)

which is the bosonic action, and we conclude that we can write the two-dimensional
N = (1,1) action as

S = / d*xd*0D; ¢"E,, D_¢". (186)

8.1.3 The equations of motion

The equations of motion are derived from 65 = 0, leading to the Euler-Lagrange
equations D; (L> 9L — (). We have

O(D;pH) opr

oL (D4 ¢7) OE,, o O(D-97)

_ EgrD-¢7 = D16 5o D67 = Dy Eyr S
ADygn) ~ d(Dygn) D=0 P 5 gy -0~ P By
— §7EprD_¢" —0—0=EpyD_¢7 (187)
oL 8(D+¢0) T o OE;r °F a(D—(vbT)

- EorD_¢7 = Do 5 "D 67 = D4¢" Eqprs
Do) ~ aD_gm) D=0 = P G gy P~ D" Eer gy

29



=0-0- D ¢°Eyr0, = —Dy¢"E,y (188)

aﬁ T K T T
D+ (W) = D_t'_(EM-,—D_d) ) - EM7—7;§D+¢ D—¢ + EMTD+D—¢ (189)

oL , - . .
D_ (W) =D_(~D+¢"Eyu) = Dy D_¢"Epy + D¢ Eou~nD—¢(5190)

87‘6 _ 8(D+¢U) 6EO'T 8(D—¢T)
opr— Oor O+ O
=0+ D4¢°EyryD_¢" +0 =D ¢ Eyr ,D_¢" (191)

EUTD—¢T + D+¢o

D—¢T + D+¢UEUT

Combining these we have
oL ) oL

0= (5ipgm) ~ g

= Epr D1 ¢"D_¢" + EyyDyD_¢" + Dy D_¢"E,y + Dy ¢” Egp nD_¢"
— D467 Epr D¢

= (EMT + ETM)D+D—¢T + (Eur,a + EO’M.T - Ear,;A)D+¢UD—¢T

= 204r D D_¢" + (Eprio + Eapr — Ear) D467 D_¢7 (192)

0= g%, D D¢ + 26" (Byrs + Bopr ~ Bor)Dy 6" D"
=D,D_¢"
+ [%g"“ (uroc + Gopr = Goryu) + %g’”‘ (Bur,o + Bou,r — ng)] D, ¢”D_¢7
= DyD_§7 + (0, — gD 67D
=DyD_¢"+T " D, ¢"D_¢"
— VD g, (193
We have found the equations of motion:
vi)D_¢m =0, (194)
which imply that the target-space geometry is Riemannian with torsion.
8.2 D=2 N=(1,0)
We expand the superfield
(2, 0F) = XH(x) + 0T ¢k (z) = XH(x) + 0yH (), (195)
where

Xt(x) =",  ¢"(z) = D¢"|, (196)
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and
Qi =Q=1i0p+00,y, Di:=D=0y+i00,y,  Pii=1idry. (197)
An infinitesimal transformation gives

¢ = [ieQ, ¢"] = i€QeH = (—€dy + 100, 1) (X" + p*)

= —ept 4+ i€ XH = OXH + 00y*, (198)
implying that
OXH = —eyt
{ (S’l/)u = *Z.Ga_;,__‘_XH. (199)

A second transformation
562561¢)# = (—626@ + i€208++X’u) = i62618++X# + 9(i€2€18++’(/)#), (200)
shows explicitly that the algebra closes

[562,561] = i(6261 - 6162)8++X“ -|— 9(i(€261 — 6162)8++'I/JM)
= ieaer04 4 X" + 0(2ieaer 04 ") = 26961 Py L. (201)

The non-supersymmetric sigma-model reads
S = / d?x0y X'E,,0-X", (202)
and we try a supersymmetric action
S = / d*xd9D¢" E,,, 0_¢" = / d*xrD(D¢"E,,,, 0-¢")|
= /de(quﬁ“EWa:(ﬁ” — D¢'E,,, ,DPO0—¢" — DP"'E,,,,0-D¢")|
. / (i 4 ¢ Byy0—” — 9 By 0 ¢" — WP E,,0-3").  (203)

We see that (202) is contained in an action

S = —i / d*xd9D¢" E,, 0—¢" . (204)
We derive the equations of motion:
oL v ”w v v
3D =D(E,,0-¢") = E,, ,D¢"0=¢" + E,,0-D¢
oL
0= 55 gy = O~(D" Eyp) = 0-D¢" By & DY E,1,0-4"
oL y
907 =D¢"'E,, ,0—¢", (205)
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leading to

oL oL oL
= D _ _—
V=P oo T =at0-en) o
= (Eup + Epu)a:DWL + (Epv,u + EMLV - Euu,p)D¢H8:¢V
= 29up0=D¢" + (gpv,u + Gupw — Guvp + Bovp + Bup,w + Bup,p) D 0-¢".
(206)

Multiplying with %g"p gives

o 1 o v
0=0-Dg¢? + 59 P (gpwu + Gup,v = Juvp + Bovp + Bupw + wa) D¢*o-¢

o 0)o 1 o v
— 9_D¢’ + (F( - 59 T,Wp)DqﬁHa:qs
= 0-Dg" + (107, + Lo, )o—e" Do”
U= pv 29 prp | ==
— 8:D¢a + F(+)UHV8:¢/LD¢V
=V Dg, (207)
where in the third line we have used that

r® e Ty = Ty, (208)

W v’

and relabelled p <> v. Hence the geometry of the target space is Riemannian
with torsion.

83 D=1N=1

The bosonic non-supersymmetric sigma model in one dimension reads:
S = / dt g, X' XY (209)

We make an ansatz
S = /dtd@g#,,DmW‘D"(é”, (210)

and try to find m,n € N such that the non-supersymmetric sigma model can
be recovered by reducing the supersymmetry.

Dot = (% + w%) (X™(t) + 0N (1)) = N +i0X" (211)

At first it seems that already m = 1,n = 1 may give such a term, but since
00 = 0 we have to discard this. Next we try n = 2:

D*¢¥ = i%qﬁ” =iX" — i\ (212)
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and we actually find a suitable term:
D' DY = —9XHXY + ...

We perform a more formal check.

1
S = -5 / dtdfg,, De" D*¢”

% / dtdOg,, D" "

- 7%/dtD(g,wD¢’L¢'>V)|

- ‘% / dt(gyuwr DG™ D" $” + g, D* 0" — g, DO DY)

; ) 1 Lo ; )
= /dt(—%gw,TxMX” + 39 XX + %gw)\“)\”)

(213)

(214)

The second term is indeed the bosonic action, and we state our result again:

S = % / dtdfg,, D" ¢

(215)

9 Extending and reducing supersymmetries and

dimensions

9.1 Going between N = (1,1) and N = (2,2) sigma models

inD =2
A N =(1,1) sigma model in D =2

S = / d*xd*0D; ¢"E,,(¢)D_¢",
can be extended to a N = (2,2) sigma model by an ansatz
836 = €" D¢ ST e D¢ IS,
that should fulfill

[05°(61), 03 (e3)] = —2iei' ey O
[01,02] =0
[6 (1), 85 (¢3)] = 0.

Then the N = (1,1) action (216) is invariant if and only if

JE) are almost complex structures

JETGJ®H) = @ (leaves the metric invariant)
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(217)

(218)

(219)
(220)



J[(f)“Jéi)”ﬂW‘T] = T>,r (leaves torsion invariant) (221)
NGB = JH79,057 — (e v) =0 (222)
\SSNASSIIET (223)

This algebra closes on-shell. If, in addition, [J(*),.J(=)] = 0, the algebra also
closes off-shell. If, however, [J(+),J(_)] # 0, we can make the algebra close
off-shell by including additional auxiliary spinorial N = (1,1) fields in the La-
gragian.

A N = (2,2) sigma model in D =1

S = / d*xd?0d*0K (¢, ¢) (224)
can also be reduced to a N =1 model in D = 2
2K _
S =—2 [ d*zd* D% D,d"|. 225
[ o SE D DL (225)

9.2 Reduction from N=(1,1)in D=2to N=1in D=1
A manifest N = (1,1) sigma model in D = 2

S = / d*xd*0D4 ¢"E,,, D_¢" (226)

was directly reduced to an N = 1 sigma model in one dimension in [5] and then
compared to the most general N = 1 one-dimensional action. We recalculate
the reduction in appendix C and obtain the following action:

Sg = / dtdf[ — iG DX 0, X" — G " DY¥ — Gy p0" DX V9P
1 aa A 1 N son P
t+ 5T 00" = STy DXHDX")? + Db DX"Y)], (227)

where X* are bosonic superfields and ’(/AJM are fermionic superfields. The most
general N = 1 one-dimensional action is given in [6]

7 ) 1 . . 1
So = [ dtdb] = 59506067 + e DI DS DY — Jhas D

1 . 1 .
- §habw“D¢1Ai”c ¢+ glabcwwbwc — i fia DY
1 1 ) )
+ §miabww"D¢z + 3 nija DY D], (228)

where ¢ are bosonic superfields, ¥® are fermionic superfields and Aibc is a

connection between them. Letting the bosonic and fermionic superfields point
to the same targetspace, and treat their respective coordinates equally we get

7 1 1
Sa = /dtd@[ - §9WD¢“815¢U + écw,ngzS“ng”D(b” — ihwqﬁ”DW’
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1 1 ‘ ,
- ih,uchyﬁpqu(rbywp + éluupwuwywp - nyy@d’”l/f

1 1
+ imuupwy'l/)ngbu + in;wngﬁuDd)pr]

j 1 1
= / dtdf[ — %ngqﬁ“@t(b” + écwquﬁ“D¢”Dq§” — §hw¢“D¢”
1 1 . L,V
- i(h/mAqu + m/wp)quﬁbuwp + glqu@[’Md}V@/Jp - Zflwat(bl w
1
+ §anD¢“D</>”W’]- (229)

Comparing the reduced action with the most general action we find that all
terms except f,,,0¢¢*1)” can be recovered, provided that

Guv = hpy = 2G 0, Cuvp = Spvp, Juw =0,
Livp = —Npvp = Tp, huwAT )+ My = 2G 0 p, (230)

where S),,, is totally symmetric, symmetric in two indices or zero. With S,,,, =
G v,p this is fulfilled. These results are slightly different from those obtained
in [5]. We conclude that the targetspace geometry of the reduced model has
additional restrictions compared to the most general case.

A reduction can also be performed via an N = 2a sigma model [5]. The
most general such model is

S = [ dta?0( D16 By Do + 1, D10 D1 + 1y, D2 D2’ (231)

where [ and m correspond to non-Lorentz invariant terms in D = 2. If [ and
m are set to zero we are back with the dimensional reduced model (227). If,
however, they are nonzero a more general model for N = 1 can be obtained

. 1
S = / dtd [ —iG L D" — (G + s )VHVY” + §SWTD¢“D¢”D¢DT

1 . ey
+ (Huvr = Tyr (DO DT + 51/)”1#”1/)7) = 2it " P |, (232)
where
1
L;,Ll/T = 9 (luu,r + ll/'r,u + l'ru,l/)
Mum— = §(muu,‘r +myr, + mru,u)

Spv =l — My
Ly =l + My,
Spvr = Lyyr — Mpur
Tyvr = Lyvr + Myyr. (233)
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Again comparing with the most general form (228), we find that all terms can
be recovered if

Yuv = Guv, hw = Gy + Suw, hywr = Guyr + Spvr
f,uy = t,ul/’ I/.LVT = H,um— - T[LVT? n[Ll/T:HMDT - T[LVT?
h/_L)\ (Au)i + Mypr = G,uu,‘r + Suv,T- (234)

But since H, S and T by construction are closed, while all couplings in the
general case are arbitrary, the general case is not fully recovered. The conclusion
drawn in [5] is that neither the direct reduction from N = (1,1) to N =1 nor
a reduction via N = 2a recovers the most general case. Thus restrictions not
present in the general case has to be imposed on the final sigma models.

9.3 Reduction from N =(2,0)in D=2to N=1in D=1

The most general renormalizable Lorentz-invariant N = (2,0) sigma model in
D = 2 is given by

S = / dPxd?0, [— %(Kua@“ — Kpdy ®) + fo, U0 + fo00W0 4 fal—,qﬁqﬁ)]
(235)

By reducing one supersymmetry and writing in terms of real N = (1,0) fields,
we get the N = (1,0) model in D =2

S=— / d2xdb, [i(GW + B D 0, 0" + Gabwawb], (236)
and by reducing the dimension, finally, we arrive at the N =1 model in D =1

S = / dtdo [iGWD(zw(zS” + éHWTDqS“DqS”D(;ST + Gabwawb] (237)

10 Conformal theory

A conformal transformation leaves the angel between any two crossing lines
invariant, or in other words the metric is left invariant up to a coordinate de-
pendent scale. This condition can be written as [8]

9o (') = M) g (). (238)

Note that with A(x) = 1 we are back with the Poincaré group, which actu-
ally can be seen as a subgroup of the conformal group. Now, any change in
coordinates up to a term O(e?) can be written

ot — ' =2t + e (x), (239)
which corresponds to a change in the metric:

Guv = Guv — (8u€u - aueu) (240)
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Requiring (240) to be a conformal transformation, we have
Ouev + Ovep = f(2)gpn- (241)
Then by taking the trace
f(z) = %Bpep, (242)

where D is the dimension of the metric. We insert (241) in (242) and get
25 0
Ou€r + 0vey = Bape G- (243)

From this relation we can find (see [8] for details)

(D — 1)9"9,0,¢" = 0. (244)

10.1 D >3
In D > 3 (244) tells us that ¢, is at most quadratic in x:

€p = ay + b’ + cppprta’ (245)

The first term gives an infinitesimal translation z’* = z* + a*, which has D
generators
P, = —i0,. (246)

The second term can be divided into an even and an odd term. The odd
term corresponds to an infinitesimal rotation a’* = §# + m#,, and have %
generators

L,, =i(z"0, —x"9,). (247)

The even term corresponds to a new transformation, the infinitesimal scale or
dilation transformation z/# = (1 + a)z*, which has only one generator

D = —iz"d),. (248)

Finally, the last term corresponds to another new transformation, the infinites-
imal Special Conformal Transformation (SCT), z'* = x* + 2aVb,x* — x¥x, b,
where b, := ¢ ,,. The corresponding D generators are written

K, = —i(2z,2"0, — 2"x,0,). (249)

The finite transformations are written as follows:

P = gh + a? translation
't = M* ¥ rotation
Jj/'“' = ax“ dilation

H_ Vo bt
_ x x7x,
= T 2a, 1 bbyar ey SCT (250)
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We finally state the commutation relations for the generators, which define the
conformal group [7]:

D,P,] =iP,
D,K,| = —iK,
K, P)| = 2i(guD — L)

Ky, L] = i(gputs — gpu K )
va L;w] = i(gpﬂpv - gpupu)

Lyws Lpol = i(GvpLipo + GuoLvp — JupLve = GuoLyp) (251)
10.2 D=2
As seen from the discussion on general dimensions the condition
ox'P Ox'°
oo o = A (252)
and the coordinate change
= 't =2t + e (z), (253)
lead to 5
Ouey + Ope, = 5(6 €)My (254)

In two dimensions and after a Wick rotation to a Euclidean metric (UW =
diag(+1,+1)) this becomes

8060 = a1€1a 8061 = —8160, (255)

which we recognize as the Cauchy-Riemann relations (37). We therefore intro-
duce complex coordinates

1
z =20 4 izt e =€ e, 82:5(3071'31)

z =2 — izt E=¢€ —i€, 0z =

1
5(80 +1i04) (256)
in which (255) becomes

8z€ = —656, 826 = 85€ (257)

A Laurent expansion around z = 0 of a conformal transformation yields

2 =z+e(z) =2+ Z en(—2"T), €, constants,
nez

=242 =2+ E(-2""), & constants, (258)
neZ
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and the infinite number of generators are given by

1y, ln=—2""0;. (259)

I =—2
They obey the so-called Witt algebra

[l 1]
[l 1]
[l n]

We interpret [_1, lg + lo, i(lo — l};), and [y1 as the generators of translations,
dilations, rotations and special conformal transformations respectively. Note
the ambiguities that arise at z = 0 and z = co. In fact only {I_1,lp,l+1} are
globally defined on the Riemann sphere S$? = C U oo.

Allowing for a central charge ¢, the Witt algebra can be extended to the
Viraso algebra

(m ) m+n
(m — ) m+n
0. (260)

N‘ N‘N

1—62(771 — D)m(m + 1)dmn.o, (261)
which reduces back to the Witt algebra when m,n = —1,0, 1. ~

A field ¢(z, %) is called a primary field of conformal dimension (h,h) if it,
under a conformal transformation z — f(z), transforms as

[Lm7 Ln] = (m - n)L7n+n +

69 > 9.9 = ()" (%) s, 7o, (262)
Up to second order in e this means
#(2,2) = ¢(2,2) + (hO.€ + €0, + hOs€ + €0:)p(2, 2), (263)
or _
de.ed(2,Z) = (hd e + €0, + hdz€ + €05)d(z, Z). (264)
The Laurent expansion around z = Z = 0 reads
$(z,2) = Y I, (265)

n,meZ

Fields with only z-dependence, ¢ = ¢(z), are called chiral or holomorphic fields,
while fields with only Z-dependence are called anti-chiral or anti-holomorphic.

10.3 The Polyakov action revisited

We return for a moment to the Polyakov action ((107) with (104) inserted and
a string tension 7' = 1)

- / d? e/ —hh ™0, X0 XV 1,00 (266)

This action is invariant under the following symmtery transformations:

39



1. Poincaré transformations in target space

XM =wh XY +a", wu =Wy,  Oh® =0, (267)

2. Reparametrizations of the world sheet coordinates

afe ofd
@ @ hap = ——Ned- 268
T _>f (.T), b axa axb d ( )
3. Weyl transformations on the world sheet, i.e., rescaling
hap — €9 hgy,  6XF =0, (269)

Combining reparametrizations and Weyl transformations we see that the two-
dimensional Polyakov action indeed is invariant under conformal transforma-
tions (cf. (238)). This is what allowed us to choose the conformal gauge in
section 6.1. The reasoning goes as follows. The world-sheet metric hy, has
four componenets, but since it is symmetric only three are independent. By
reparametrization two of the remaining components can be choosen arbitrarly
and the remaining components can be gauged away by a Weyl transformation.
Thus a flat world-sheet metric, such as the Minkowski metric

Nab = ( _61 ? ) , (270)

can be choosen. In section 6.1 we then chose light-cone coordinates which
gave us the action (110). Here we will, however, follow the previous subsection
and perform a Wick rotation to Euclidean world-sheet coordinates and then
introduce complex coordinates. The bosonic non-linear sigma model then takes
the form

S— / 2470, X" (2, 2)9: X" (2, 2) By (X). (271)

This is conformally invariant if X# are primary fields with vanishing conformal
dimensions (h, h) = (0,0), i.e.,

XM(f(2), F(2)) = X*(2,2). (272)

104 D=1

Next we will look at a subgroup S1(2, R) of the one-dimensional conformal group
Conf(R). This subgroup contains the usual translations P, dilations D and
special conformal transformations K. In [3] the algebra takes the form

[D,K] =K
[P,D] =P
[Rm:%ﬂ (273)



and a Lagrangian

1
L= iguyatqb“@tgb” + A,00" —V(9), (274)

of a non-relativistic spinning particle in a magnetic field A and with a scalar
potential V', is shown to be invariant (appendix ??) under a transformation

0" = —ea(t)0sp + eX (¢, @), (275)

provided X* is a vector field on the target space satisfying the following condi-
tions:

1
VuXy) = 50049

at*XvVgu,u + XVFU[I. = a,uf
BaV + XPO,V = 0./, (276)

where F,, = 20;,A,], a is a generator of the SI(2,R) group and the function
f = f(t,¢) arises because the invariance is up to a surface term. This means
that a homothetic motion generated by the vector field X is needed. Another
possibility is the existence of two commuting homothetic motions generated by
the vector fields Y and Z on the target space.

In [4] the S1(2,R) algebra is parametrized by

€(t) = ep + 2tep + t2eg, (277)
and takes the form
[5627561] = 5(626’1—616'2)‘ (278)
Defining generators
Sep =i€pP,  Ogepr =iepD, e p = iegK, (279)
this gives
[P,D] = —2iP, |P,K]=—iD, [D,K]=—2K. (280)
With a bosonic superfield
OH = XH 40\, (281)
and a fermionic superfield
U4 =iyt +i0FA, (282)

the conformal transformations are asserted to be

o1
6. X" = —eX" + 3¢D"(X),

41



o1
BN = —eN! + SEAM(X, ),

S =~ + LeBA(X, ),

a1
S FA = —eF4 + 5e'BA(X, F), (283)

for some vector fields D, A, E and B.

11 Superconformal theory

11.1 D=2, N=(1,1)
The N = (1,1) action

S = / d*xd*0D, ¢"E,, D_¢", (284)

is classically conformally invariant. However, going to the quantum case this is
no longer the case. It can be shown [10] that (284) is conformally invariant at
one-loop if there exists a function ® such that

R(Y) —2V(,V, & — 2T, "V, & = 0. (285)

11.2 D=1, N=1
11.2.1 Introduction

We will consider the Osp(1]|2) subgroup of the conformal group. This group
contains the generators for translation P, dilation ﬁ7 special conformal trans-
formation K, supersymmetry transformation ), and the special superconformal
transformation S, and has the following algebra:

[P,P]=0, [P,D]=2P, [P,K]|=iD, [P,Q]=0, [P,S] = —Q,
[D,D]=0, [D,K]=2iK, [D,Q]=-iQ, [D,S]=S,
[K,K] =0, K,Q] =S, [K,S] =0,
{Q,Q}=2P, {Q,S}=—iD,
{S,5} = —2iK.
(286)

The generators then take the form

P =id,, D = 2itd, + 00y, K = it?8, + it00y,

. , (287)
Q =00, +ids, S =—ithd, + tdy.

These generators, however, cannot be promoted to operators working on super-
fields the way we did in equations (163)-(167). How would one, e.g., continue
from . N

16D pi(tP+0Q) _ ei(t+act)P+i(0+%0§)Q+i§D (288)
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to find the coordinate changes and from them the operators? One way is per-
haps to consider a quotient space where we mod out not only the Lorentz group
but also the dilations and the special conformal transformations. This route
we will not follow here. Instead we will follow section 10.4 and let a closed
homothety D* in the target space act on the superfields.

Extending the conformal transformations (283) it is shown in [4] that N
separate Osp(1]2) algebras is satisfied by the conformal transformations

S XH = —eXH + %éD“(X)
|
DN = =M + Sé(D" A = W)

S = —egh — L5+ 1)

. 1
S FA = —eF4 — F€(B+ 2)F4, (289)
with
Q = Og + 100, D = 0y — 00, (290)
and
Q0" = I," D®" + ¢} , U4, QU =, ,DUP — A O, (291)
as long as
Lpli", = (Lp = Ble) s = (Lp + Ble/' 4y =0, (292)
foreach¢=1,...,N — 1 and B is a constant

Concentrating on the most general N = 1 action with only dimensionless
coupling, which is cited as

j o1 1
S = / dtd&(%D(I)“(I)” + GG D DEDP” — 5hAB\IJAD\IfB
1

7 v\ A
SN AD® D T,

(293)

1 . 1
+ EZABC\PA\IJB\I!C —if A @t + §mMABD<I)“\I'A\IIB +

it was found that the conditions for invariance under dilations are

(Lp —2)gw =0,
(Lp —2)euwp =0,
Lphap = (284 2)has,
Lplapc = 36+ 2)lac,
CDqu = (ﬁ + 2)qu7
Lpmyap = (26 +2)muaB,
Lpnuwa = (B+2)numa, (294)
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and that the conditions for invariance under special conformal invariance are

D, =0.K,
D¥eppp =0,
D¥myap =0,
D”(n,“,A — V/_l,fVA) =0. (295)

11.2.2 Construction of the Osp(1]2) algebra

In this section we will review how to find the transformations of the Osp(1|2)
algebra. We follow [4], but with bosonic and fermionic superfields given respec-
tively by

B = XM 4 ON, WA = 4 OFA. (296)

Thus, as before, the conformal transformations are parametrized by
e(t) = ep + 2tep + tPex, (297)

giving for the SI(2,R) group

[0ess 0] = O(ener—eren)- (298)
and with generators
cp =i€pP,  Ogepi =iepD,  Oepr = i€k K, (299)
we get A . A
[P,D] = —2iP, [P,K] = —iD, [D,K] = -2iK. (300)

We make a more general ansatz than in (283) for the conformal transformations,
letting D, A, E and B depend on all the fields X, A\, ¢ and F

S XM = —eXH+ %éD“(X, A\, F),

S = —el + %éA"(X, A, F),

Syt = —ep? + %éEA(X, A, F),

6 FA = —el4 + %éBA(X, A\, F). (301)
We also note that A and E are Grassmann-odd, which means that they anti-

commute with A and 1. These transformations are easily shown to close under
(298). For example

. 1
5ese X1 =00y (—1 XV 4 361 DY)
= — 10,0, X"
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oD" oD oD# oD#
Iz M Ay A
+ (aX” S X+ NV 5‘2A * A der¥ toFa gpadet )
:EléQXH+€1€2X“7%élé.2D#
L1 aD L, ODE, A, aD B
Elgz(aXvX T w”’ i)
ap* . 1. . 9Dw L1
+ *61 (8X”( GQX + §€2D ) + O\ (762)\ + §€2A )
8D/"‘ A 1 . A aD” A 1 . A
+gpaedt +3aB + G cab !+ jant)
:ElégXu+€1€2X“7%é1.€.2D#
Lo (D", 0D, A, D",
- jlaé+ae) (G X+ G aw”’ orat”)
1 oD# oD# oOD# oD#
D¥ + AY + EA + BA 2
+ 6162(@)( oA DA OFA ) (@02
. 1
[562,661] :(elég — 626'1>X“ + (6162 — 6261)X” — 5(6.1'6'2 — égél)Du
I (0D e, ODMS, aD"
+§(€162+61€2—(62€1+6261))(8XVX + 8)\”)\ 3@/}Aw + A F )
Lo ey (0D ODM 0D ODE
+Z(€162_6261)(8X”D + 8)\1/14 81/) E 8 B )
1
- (626'1 — 616.2)XM + 5815(626'1 — Glég)DM
:6(626'1*616'2)XM7 (303)

where we have used that €1e9 = exe€7.

We want to extend our model to a supersymmetric one. First we inves-
tigate how ordinary bosonic and fermionic fields acts under a supersymmetry
transformation

5@ = iCQP" = iC(iDp + 00,) (X" + ON') = —CN + O(—i¢X ")
= 0c X"+ 05\ (304)

Defining Q to act on ordinary fields we get after similar calculations on the
fermionic superfields

S XM = —CA\ = (QXH
S = —iCXH = COM
St = —(F* = ¢y
OcFA = —i¢ = CQFA (305)
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The anti-commutator of two supertransformations thus becomes

8,00, X = —(10e, A = —iCa(1 X" (306)

[0¢y, 0c, | XH = —i(CoCr — QG) XH = =20 XM = 2i(6¢yc, XH) = 2i(iG2( P) XM

= 20, PX" (307)
[0¢,, ¢, X" ={(2Q, G QIXH = —({Q, Q}X* = {Q, Q} X* = 2P X",
(308)

with similar calculations for the other fields. It is also easy to check that
[P, Q] = 0 for all fields.

Next we will incorporate the action of Q to the conformal transformations.
For the algebra to close we will have to include the special superconformal

transformations S, which we define from the commutator of K and Q. The full
algebra reads [4].

[P,P]=0, [P,D|=-2iP, |[P,K|=—iD, [P,Q]=0, [P,S] = —iQ,
[D, D] =0, [D,K] = —2iK, [D,Q]=iQ, [D,S]=—iS,
[K,K] =0, [K,Q]=iS, [K,S]=0,
{Q,Q} =2P, {Q,5}=D,
{5,5} = 2K.
(309)

Before we find the transformations of S, we work out the constraints that
[D, Q] = iQ puts on the vector fields D, A, E and B of (301). We have

oD, AD" ., 9D’ . 9D’
N i X oA i ). (310)

[(526Dt, 5C]XM = EDg( — AH +

[02ept, 0] XH = [iep D, CQIX* = iepC[D, Q)X " = iep((iQ) X" = —ed: X" = epC A

(311)
DM ODH . ODH oD* .
P v _ v A
= A Nt N —igw X~ goal iz (312)
. oDH . D" . OD" . oD" .
12 EY) K v— Y- A_ 4
[Baepes ac N = iep (2X X N g ol
QAR QAR . QAR . QAP .
+Hgxe X + g X~ igga = gav). 31

[O2ept, 0] M = iepC[D, QM = —epCOM = —epdc M = iep(X* (314)

_L0AR ODF\ .. ODF.  ,ODF QAN
_xHu _ v v A
- 0=X +(axv axv)X v (8¢A+8FA)1/)
ODH .. OAR . 9AR
— GERPA iGN i P (315)
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We insert (312) in (315) and find

02D+ . o’ . OD* . 0%*DH .
0=2——"  NX"+2—— X" — N +2—— _FByA
ovoxe " X P2 gEagw VT T o N T gpagget Y
oD* . 4 . 0?°Dr
— — 22— F2 )\, 1
OFA Yoxvapal (316)
If D* = D#(X) this is satisfied and (312) becomes
oODH
AP = AF(X,N) = =M\ + XY AV =i =\ DE A", (317)
Same procedure on 14 and F4 gives
OEA oEA ., OFA OE" .
BA:—FA— n . XH 7FB—'7 B 1
8X“)\ +’La>\u +a?/)B ZaFB’(/} 9 (3 8)
and
4 OBA . 0BA . OEA., OEA .,  0BA .
0 =2 — XM XM A — B B
VT o o v X "oy T ars?
OEA . oBA oBA
———FB mg FB 1
SFF Z(?X“)\ +Z(‘9¢B , (319)
respectively. Together we get
OEA . OEA ., OEA . PEA
= — B B B Y v yw
0="2ox X"~ o ~arrt Tiomax M X
82EA . . 32EA . aZEA
2% thBX# 4 20— FCP — 2% —— B 320
+igrorE Y X 2gpEgee VT~ Yigxugge A (320)
which is satisfied by E4 = E4(y) and we get
BA = —F4 oA FB = —FA 4 AA PP 321
= — + 81/}73 =: — + B . ( )
Now we are ready for the transformations of S
Ocpt2, 0c] X = e (M = —ieg (K, Q| X* = —ex (SXH (322)
= SXH = —tA\H (323)

We introduce the antisymmetric paramater £ and write a transformation 6¢ =

&S. Thus we get
Oer XH = =&,

(324)

In the same way, acting on the \*, ¢»* and F4 with [0c .2, 6¢] and again using

[K, Q] = —iS gives

S\ = —it XM + i€ DM,
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Serip™ = —EtFA,
Ser FA = —ict 4 i€ BA. (325)

The rest of the transformations can be checked to fulfil the algebra without
further restrictions, and we conclude that the complete set of Osp(1]2) trans-
formations are given by (305), (324), (325) and

1
0 XM = —eX" + ZeDM(X),
; L, 1, v
0N = —eA — —éXNF + —éDF NV,
2 2
41
Ot = —e + SEBA(Y),

a1 1
S FA = —eF4 — §éFA + §éEA’ sFE. (326)

12 Superconformal invariance of the reduced D =
1, N =1 sigma model

The D = 2, N = (1,1) action is superconformally invariant at one-loop if the
function ® described in section 11.1 exists. Thus a dimensional reduction can be
performed the same way as in section C, either directly or via a N = 2a sigma
model, adding the corresponding constraints on the target space to the existence
of ®. However, the actions obtained from these reductions are in general not
superconformally invariant (not considering the existence of ®). It is interesting
to ask whether these actions can be made superconformally invariant by the
method described in section 11.2. If that is the case, what new constraints are
put on the target space and how do they compare to the existence of ®7 In
other words, what are the restrictions on the target space for a N = (1,1) sigma
model in D = 2 to be reducible to a N = 1 sigma model in D = 1 which is
superconformally invariant?
We recall the directly reduced action (227)

Sp= / dtdd( — iG . DX"9, X" — Guh" DY — G " DXV 2P

- %TWDX#DX”W + éTMzﬁ%"qﬁp), (327)
with bosonic superfields
XH(t,0) = XH"(t) + 09H(t), (328)
and fermionic superfields
PH(t,0) = PH(t) + OF(t). (329)

In components (327) expands to

Sp = / dt( — iG o pP Y XY + Gy X1 XY +iG i pH”
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— G PP FY — Gy FPFY + 0G0
- Guu,pn'l/}md;“wy'l[}p - G,ul/,pFMwV@Z}p + iG,uu,p'lZ)MXV'lZ}p - Guu,p&ulbqu

7 . o v, 1 v
2Tuyp,&¢n¢“¢u¢p - 'LTquX'uw ¢p - 5 W,ﬂﬂ“w F?

1 | -
T Ty R g O

(330)
We will act on one term at a time with the transformations (cf.(326))
S XM = —eXM+ %éD“(X),
et =~ — et 4 ZEDH
bt = —e + %éE"(if)
S FH = —eFH — %éF“ + ;éggj Fv. (331)

We work out the first term in detail.

0c(— iG Ly p PP XY) = —iG . po 0 X TPPYP XY — 0G0 AP PH XV
- iGp,V,p'(/)p(sez/)“Xy - iGul/,pwpdjuatéeXu

Gy X XTGP = $EG DX 0P
. . 7 . 7. S
- i€Gu o XTGP+ S G p XY — 2 G ,DP G XV 0"
. - . 7. - 7. L o
+ ZGGHV,pX '(/JP'l/JH + ieG,u,l/,pX '(/}p'(/)u - §€Gul/,pDH,gX 1/)p¢

.. 2 . NV i s v i 5 v '
+ ZEG/LV,pX 1/’%’” + ZeG/uz,pX 1;[}/)7;[}“ - §€G,uu,pD ¢p¢# - §€G/Lu,pD 70’X 7/}pr
=04(1€G 1, X VPP Y1)
i. o o o o v
- §e(D Guvpo + D% ,Govp+ D° ,Grop+ DGy o) X PPYH
406Gy, X VPP — %eGW,pDVWW (332)

C o 1 . .

6:(Gus X X) = 0u(—€Gu XP X¥) + SE(D G+ D Gy + D° Gl XXV
— ¢G W XP XY + €G D' XY (333)

8 (iG ")) = By(—ieG ") + %é(D"GuW +D? Gy + D, G
— ieGu MY + %éD”,WGMpX"w”w” + %%D’{VGM,WW (334)
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7 " 1, o o " v
5ol = Gl B ) = 0 G g B F) — LD G+ D G PP F

1. . OE°"
— *G(E Ggl/,p - 87’(/}”

5 G o, p V" )PP F” (335)

1
0 = G F*F*) = Ou(¢Gy I F”) = 5Gu y D" FIF”
1 Ryl OEY
_ ¢ p v I3 p
QeGW(&/}pFF RS _F?)

(336)

5. (iGWszzZ”) = Oy(—ieGuPH ") + 3eGW,,,DP1/3MZV + %éGWE‘%Z”

EGWW ai o+ feGWw“E" (337)

56( - Guu,pnlbﬂ@;#wyip) = 3t(—€GW,pn1/)Kl/)V1;#1/~)p)
(D Gp,u pRO + De Gua PR + DU p,u pa)wﬁw wuwp

l\')\r—*w\r—l

(E le pPE EuGﬂu,un)¢H¢y1;p (338)

de ((Gpu,u - GW,p)J)H%/}VFp) =0 (e(G’,,,,,M - Gu»,p)%/}lli/;”Fp)

1 . g o L
- §€(D (Gpww - Guvypa) +D ,V(Gpo,u Go, p))w W FP

oE° 1 p
o0 YYPHF (339)

1. y 1,
+ §€(GPV7M = Guu,p) M"Y F? — §€(Gw,u = Guvo)
GG 0 X09) = DG X G) + 5D G+ D7 G ) X5
i, "y 7 i v in T
+ §€(ij7p — Gpup) B XYyYP + §€GMV7PD PP (340)
1 Kool oo V0T 0 1 Koo o VT 0
55( - iT,u.l/p,l-iw 1/1 w 1/1 ): at(§6Tuup,n7/) 7/} 1/) 7/) )
1 : g o (o} K
- ZG(D T/,Lup,m: +D ”uTJup,n +D° T/,m'p P D ,LLl/p a)¢ ¢”¢ ¢p

+ 3T Y (0 — EP) (341)
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O = 1Ty X9 0) = 00 1€) Tap X167 )
—*G(D T#Vpcr"‘DU TUVP+DU IWP)XMw wp

+ GTquX ¢ ('(/) Ep)_

2 76uupD#’¢)D1;p) (342)

2

1 1
§Tﬂup¢”¢”F’J) = 3t(7T,uupf¢)uwpr)

— fE(DUT;wp ot DN Tevp + DN ;mp)wu'd]VFp

Oc( —

1 , OEP .
+Z€THVP¢NQ/} ( awlﬁF ) (343)
1 S Lo 1 - o
66(6Tuup7ﬁwnw#wywp) = (_7€Tuup,nwﬁwﬂwuwp) + EéTuyp,nwK/ (1/)“ + 3E’L)¢V¢p
1
+ 356D Tuvpio + D7 Tovp.o )" Y (344)

1 - 1, -
5e(§Tuup7/’“7/’VFp) = at(**eT#Vp@/’MU’VFp)

1 DE? - N\ - 1 -
B 3 MV P L ¢ TV P
+ e (T 07 2B + T D J 5 F? o € DTG0 F? (345)

Next we will eliminate the auxiliary fields F'* by their equations of motion
(where £ is the Lagrangian):

oL oL ~
- ) = Pah SV LRy o _ ©sv
0 oOF° at(aFU) G/w,pw w 50 GIWCS(TF GMVF 50
1

- 1
= G pOEP P — Gy P 9¥ 68 — 5 Luwp" 970G + Tuup¢“¢”5p (346)

= F* :%GM(QGWF”)
- 1G>\0 (Guo,p + Gop.u up, )’(/J WL GAGT’MVG (WLW/ - ’(/;#,(;V)
- F(O)Auyw%ﬁ MV (’l/)#wy 7;#7}/) (347)

Eliminating F' and collecting terms according to their fields gives
X:

1, oy -
+ ie(DPGW,p + D Gp + D Gy — 2G ) X' XY + €D'G W X
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1 o .
=5¢l(Lp — 2G| X! XY + eD" G X7 (348)

y:
P
%é(aw,p — Gy ) B XV + %GWE“QZ” + %EGWJJ"E” (350)
M:
= S(ED ~ Gy = D Gyl X6 + (L~ DG
+ LD G+ DP Gy (351)
P
- %é[DUTW,U + D% Torp+ D% Trop — Ty p) X000
- %gD#TMpr”q;P (352)
P
% DG por + D G p) G p XV 5407 + %éGHV,pDPz;MqZV
R (353)
Pipip:
+ EeEUGW,pTV 0B — léE“(Gp,,,u — Guup)T7, g P
8 P 8
b 3B Ty
=ZéE”(GMF(°>“WT’;g — Tyiag WP (354)
Y

. o 1
+€EH[GMUF(O) qu(O)paB + 5(Gua,py — Gpauv) + 4 TuppT 0 10" ¢a¢6 (355)

2

Y

1 K
—Zé[E”GMF(O) o Tns 4 B Tap — 2B T0, 0% Jurgeg?  (356)
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1

B Ty T, 0 000 (357)
Ypipip:
1 . K K K 6EKT T Tp o Ve B

+ Ef(D Tlujp,n +D #Tm}p +D 7,,T’;mp + 8159 nrK T [LVp) agw w w w
1 oE" oE"

— D" . Gy + Gy TP gbrap¥peepP 358
55D Gpm+apr t o5 Gor)T7,, T g0 "y (358)
YYp:

1 0 O, OE" o L0 1w B

— EE[DKGN(GVUF Ma) + DK’QGVUF Lk + WGNUF MQ]T 5p¢a¢ ¢p¢
1 “ (0) OE" (O)o’ OE" (0)o v a, B 7
Z [D GI/O' RF + aw GVH + 81# GRO'F W]T@,ﬂ/) 1/) 1/)’)1/1“
1 o -
i [D Tﬁpﬂ arx T D* ﬁTlipp. ot D" Tﬁn,u ot D" Tﬁp# K Tﬁpu,a}w ng)pwu
1 0)o @ 7
i [D Tﬁpg P D* ngpa + D" Tﬁna' ]P( ) a,uz/} ¢’81/Jp1/1“

(359)
Yy
+é[D’”"8 (e r©e )—|—D'/" G 10 6EH Jo ]F(O)P ¢awﬁ¢u¢u
K\ po B po K 81;9 i up av
1. OE" OE" (0)o  (0)p 8.7

~Lipra,. PP ArET | O | a B
S€[D"Gpon+ e —Gpp+ p S A
1 -~

+ 5 [DKGMIB,VQK + Dﬁ,ﬁGun,wx + DK’aGp,B,ul-c] ?ﬁal/)ﬁ?/f”wy
1 . K K K oE" P a1 BTV

— 7€[D Taﬂp,n + D QTHBP + D /BTa[ﬁ‘/p + — afBr — Ta,@p]T ij ’l/} w w
16 ’ ’ oYr
1 OE" ST

. K o, B v

— E€[D THV/LN + TWTMVKT/M/p] Tpa5¢ w ¢”¢
1 oE" oOE" ST
—[D" o Gro + =G| T? 5T, WPl 360

+ 16 [D Gpcf,n + a'll)PG + 31/}0 Gp :I af ,uuw PrPH ( )
Diii:

1o, 0)o p 0o, OE” O v pdmdod

= 2D (Gl ) 4+ Dy Guo T 2 G T, | T
1. . OE" OE" 0o qw T Ta T8

_ ge[D Gau,fc + TJ)UGHV + WGUH}F PHT a[ﬂl)pl/ﬂ“’w 1/}
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5 OE" OE" Ov o pTuial
[D GUV,R + TJ}(YGHV + 67/1/’;1/(;’(7){}1—‘ p#T aﬁ¢p¢“¢ djﬁ
OE" ) .
[DHTpau kt+ —— aw pak + Tpau] (0) wplb“?/) ¢ﬂ

[DKTuaﬁp,m + DK7pTuaB,n - Tua,@,p] W)?;“@%Lﬁ (361)

+
— »Jk\)—* OO\H
[\9"_‘

—?726[1) On(TypT", ) = 2Typ T", 5| 01" )4 (362)

For invariance under the Osp(1]2) group (348)-(362) need to sum to zero
according to their field compositions. For E¥ = E# (1)) # 0 we see from (349)
and (357) that E* YH Our first guess is simply E# = Bi¢# for a constant f.
We get

X:

0 =5é(D"Gp+ D° G + D? G — 2G) XM XY 4 €DHG, X

:%é(LD — 2)G XM XY + EDPG, X (363)
P
0= Le(cn - 20 X0+ (LD — 2)Cu

+ ;eD LGt + ’eGW,pD”w#wP + %éDPWGWwa” (364)
pi:

{ . ~
0=-— ié(DaTuup,o + Da,uTaup + DU,VTAWP + (6 - 1)TMVP)XMwpr

T

— GED Ty (365)
i
i, - o Y ZNTA
0 :§€(D Guvpo + D7 ,Guop + B(Gpv,p — Gpw#))X (Gl
DG+ G + 507G i (300
Yy

]- . K K K
0 :T6€(D T/,LVT,n + D 7#T‘nur +D ,yT,LLK,T

1
— (2= B)Tr = 5D Garn L%, ) T, 6 607 (367)
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Yy
1
0 :é{ - Z(D’“TWU”M + DH,MTMW,/J + Dﬁ,uTuwm + DR,pTuvo,ﬁ)

1 a K a T
+ Z [DHaH(GTaF(O) UH) + D yM(GTozF(O) O’KZ) + B(G‘rma - Gau7r):|T

vp
+ %Twmp
+ i [D”Tuw,n + D" Topr + D" Tyrr — (1 — B)TW] ror
Lo O  pa (O v, pJ0
— (DG +2G) (07, 1%, —TO7, 19, ) Py yrd” (368)
Yy
0= [f ~(D" G ppe + D G pps + D Gy )
- %( “Gprpur + D" GPT,R)F(O)TW - g(Gaumu = Gpvon)
+ 5 (DG~ G + D% (G~ G ) )T,
+ B(Grvp — GPV»T)F(O)T %TPUTTT
2D T Ty = 1 (D T+ D e + D Ty ) T
L1 ﬁ T, T, §(D”Gm,,{ +2G,o) 007 1O
+iEQWGMﬁ+aGnJW@T%4w%W&%“ (369)
0= [12(1) Typoyire + D" Toper )
—1[Prod@ar©@e,,) + D (G, )
= B(Grp = Gupr) + (D Gorp + 2G0T, | T7,,
351‘; L e — @TVPTF(“”W ~ i o
(370)
Py

1 o
D7 g T, ) T g5 5007 (371)

1 ag
0= 16 (D THVPU + (4/8+3) prp T 2
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13 Summary and discussion

After reviewing one- and two-dimensional bosonic non-linear sigma models and
the geometrical constraints they put on the target space by requiring invariance
under the super-Poincaré group, we reviewed conformal and superconformal
theory. Led by an article by Maloney et al. [4], we constructed the transforma-
tions of the Osp(1]|2) subgroup of the superconformal group in one dimension
(305), (324), (325) and (326), which turned out to require the target space to
include a bosonic vector field D*(X) and also a fermionic vector field E*(v))
associated with it. We then used these transformations on a directly reduced
model of a two-dimensional N = (1,1) sigma model (227). In this way we
found the geometrical constraints on the target space needed for the already
classically superconformally invariant N = (1,1) model to be reducable to a
one-dimensional superconformally invariant N = 1 model. These were found to
be rather complicated as seen by setting the sum of (348)-(362) to zero. (349)
and (357) forced us to the restriction E* o ¢* and in (363)-(371) we have set
Bt = ﬁd;“ for any constant 8. This is where this master thesis ends, but to
continue a little bit further we note that in (352) there seems to be one term
missing. If we could add a term

—%DJ,‘,TW,)XW’W, (372)

we would get the much nicer looking constraint

(ED - 1)T;wp = 0. (373)
By letting E* = D“y,ﬂ/;" or even BV = DHWlZJU — By (cf. second line in (289))
this term actually arises from (349). Since g)E(Z = 0 from (320) we then also

need D* = 0. However, preliminary calculations show that not all ”missing”
terms can be recovered, suggesting one of the following options

1. there are no simpler expressions than (363)-(371), and the analysis of the
constraints and whether they are consistent has to continue from there

2. there have been calculation errors

3. there are errors in the method used, either in the derivation of the Osp(1]2)
transformations or in their application to the reduced sigma model

A complete recalculation to exclude possible calculation errors is needed. An
analysis of how the fermionic superfields of the reduced model relate to the
fermionic superfields of the most general model (228) is also welcome.

A Notations and conventions

We will denote the flat Minkowski space metric n and use the sign convention
that
Nap = 00 = diag(—1,+1,+1, +1). (374)
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The Pauli matrices (including our convention for a o’-matrix) are

o_-o0o_( 10 1_ a1 (01
o2 0’(0 1 5 g = —0 = 1 0 s
0—2—&2—<? —02)’ 03_53_(3 _01> (375)

A space-time derivative will be written in either of the two forms:

0 0

Oz @ Oz,

o°. (376)

A.1 Spinors

In the so-called Weyl or chiral representation

W (0 oo (-1 0
’y_<0_a O)v 75_(0 1)’ (377)

the four-component Dirac spinor ¥ p breaks up into two two-component parts
Up = Lo 378
D — XTd ’ ( )

with spinor indices a = 1,2 and & = 1,2. We define the conjugate spinor field
by ¥p := ¥iyY which then reads

@D:\pg(? é):(xa ). (379)

We call the field £ a ’left-handed Weyl spinor’ since the left-handed projection
operator Py, = (1 — 75)/2 projects out this part of the Dirac spinor

PO, — ( S ) , (380)

and similarly for the right-handed projection operator Pgr = (1 + v5)/2 with
the field xT. We also define the four-component Majorana field as a Dirac field
where £ = y, i.e

w=( &) (e 6 (351)

Spinor indices are antisymmetric, which means that two adjacent indices
give a minus sign when they are interchanged
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This will also apply when one or both indices are dotted, e.g. fO‘XTB = —mea,
or, in our convention, when both indices are the same. We introduce the fol-
lowing notation:

X =E&"%a = —Xal” (383)
€t =ax® = —¢%xa

We also note that

£ =88 = —€a8", (384)
while, of course,
5(1504 =0=¢&ua- (385)
We introduce the antisymmtric symbol € with the convention
€2 = —M =y = —€pp =1, el =2 =€ =€p=0
12 = —2t = €59 = —€j5 = 1, =22 = €] = €359 =0, (386)
or
() = ~(can) = () = ~(eap) = ( ) (387)
T T \es/ ™ Ve T -1 o0 )
We have B
Pegy = GQﬁGIBd =2. (388)
We also write
“Peg, = e g™ = 85, edﬁem = eweﬁd = 5;‘ (389)

This antisymmetric symbol can be used to raise and lower spinor indices the
following way

ba=capt’s =P = XY= (300)
We note that now (383) can be written
EX = E%%a = E%apx” = —xPeapt® = X epal® = X6 = X&, (391)

and similarly for dotted indices. We can explicitly write out the components of
(384)

€8 = E%apt” = enné + end® + Eenné! + Pennt?
= £ + ¢ =20%¢. (392)

We will always (at least in theory) move the antisymmetric symbol to a position
immediately to the left of the index we want to raise or lower. The reason is
the following

£%, = E%apEP = €2Peop = —€EPeg, £ —€2¢,. (393)
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For objects with two spinor indices we obviously run into trouble, but we may
think of it like this

(O_a)ac'x _» (O_a)(eab’)ﬁ(Edﬂ)ﬁw _ Eaﬁ(da)ﬁﬁﬁdﬂ — 76aﬁ(0a)6ﬁ6ﬂd’ (394)

where we used quotation marks to indicate that this is just a way to think, and
bold letters indicate the actual indices of o®. We see that

(Ua)ozd _ Eaﬁedlé((}a)da7 (5_a)da _ Eaﬁedﬂ((fa)ﬂg. (395)

It is often convenient to introduce a spinor notation also for vectors. We do
this for a vector V, accordingly:

Vad = (a“)adVa. (396)
We then have )
Vo= —5(&a)davm (397)
since . .
(0" aa(5a)"? = 205587 (398)
Other useful relations are
(0%)aa(0a) g5 = —2€apess
(5a)aa(5a)ﬁﬂ _ _26a6€d,8
[(6%)ax(8")77 + (6%)ay (6%)7°] = —20**6),
(@) (0")ya + (8°)7(0)4a] = =205, (399)
We also define
1 L L
(Uab)o/g = _Z((Ua)a"y(o-b)‘y,ﬁ - (o-b)a"y<0-a)%8)
_ & 1, s _ N
(Gab) = —1((0,1) Y(on)y5 = (05)7(0a)5)- (400)

A.2 The supersymmetric parameter 6

00 = 000 = 0%capt’, 00 = 0.0% = 0,70, (401)

fends to 0005 = Seasld, Bl = —Le, 00
aVp = 56104[3 ) 7(5.4 7[3..’ - :5.6.017[37 3 (402)

6208 = -3 aBgy, 908 = 560‘599.

We also have i

by = 5(0“)015-9&(5“)”97. (403)

We will write the spinor derivatives in the following way
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They will work in the following way

0,0° =30 946 = of
6a05 = —€ap 6@0& = —edB
0,0° = 050° =0
9ol =0 dabl =0
aY3 avB . 405
30‘9’6 — _eaﬁ 80't07ﬂ — —.EQB ( )
80‘?5. =03 0%, = 62‘
30“9_5 =0 30:“95 =0
%05 =0 0% =0
We have e.g.
0 0 0
_— = — ) = _— 7y = 7 = = — . 4
89a (95) 890‘ (6/3’)’9 ) 65’)’ aga (9 ) 65"/604 €Ba €ap ( 06)
The indices are raised and lowered with an extra minus sign
af — _H« aBa. — _Ha
€*? 03 0% ¢ 3@ 0 (407)

eagaﬁ = 04 edBaﬁ = —04.

Since the spinor derivative carries its own spinor index it will anticommute with
every other object that carries an odd number of spinor indices. For example

0205 = 0300, Oady = —0;0a, (408)

but
000y = 0,04. (409)

The product rule becomes
Da(0°07) = 0,(0°)07 4 0,0°(07)
= 0a(07)07 — 0°0,(67)
=6867 — 5765, (410)

We easily work out

S (06) = 0, (00) = 200, 2 (B) = 0, (9) = 20,
22 (00) = 0°(00) = —20%, 29 (30) = (00) = 20° (411)

The same rule applies for a spinor ¥, e.g.,

Oa(P0) = 00 (09) = tha,  0%(Y0) = 0°(0Y) = —°. (412)

Integration turns out to be equal to a derivative. We have

1 G_ 1.5 5 ap
fez—qdmdwqw, f@z—qd%@ﬁw, (413)

60



which leads to

1 1
/fe%:42/ﬁwwﬁw%:4Z%@/M%Ww

1 0 0 1 0
- _ - - _- —92¢8
46(1,8 aga 80[3 (96) 46015 aea( 20 )
1 (o34 1 (o3
:i%ﬁmgziﬂq

=1

Similarly
/ 2000 = 1.

A.3 The Baker-Campbell-Haussdorff formulas

(414)

(415)

There are two very useful formulas which go under the name Baker-Campbell-

Haussdorff. The first is

oo

_ 1
e BAel = Z EVLB](TL)

n=0
[A, Bl = A, [A, Bl(n+1) = [[4, Bl(n), B]

and thus
e PAeP = A+ (A B]+

The second formula reads

, = A, B
C ﬁAB] %Pk&M}
@_[M¢&m]}
and thus
e*e” = A+ B+ 5[4 B+ (48], B] + - [[A[4.B]] +...

B Derivations

B.1 Derivation of the superalgebra

(416)

(417)

(418)

We want to derive the superalgebra. To this end we change to the more conve-

nient spinor notation (appendix A.1):

Puo = (Ua)ocdzpa € (1/27 I/Q)a
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1
Mo = Lot € 1,0)
— 1
Md 3 = _5(6ab)dﬁMab S (07 1);
Qo € (1/2,0),
QL € (0,1/2). (420)
We see that in accordance with (118)
{Q4,Q4} € (1/2,1/2), (421)
which leads to -
{QL, Q%Y = C' Paa, (422)

for some complex components C'/. Taking the adjoint we get

(QL.Q1} =1{Q, QLY = C7 Py = OV Pog, (423)

showing that C!7 is Hermitian (C!/ = C’T) which enables us to choose a basis
where C7 is diagonal. For future convenience we also rescale the generators
Q' such that

{Qh, QLY = 26" Pag. (424)
Next we have
{QF, Q%Y € (12— 1/2,0) & (124 1/2,0) = (0,0) & (1,0). (425)

Since {Q},Q}} = {Q},QL} we can write this with one part that is antisym-
metric in both types of indices and one part that is symmetric:

{in Qé} = XIJEaﬁ + YIJMQB» (426)

where X7/ and €,5 are antisymmetric in their respective indices and Y/ and
M,p are symmetric. To determine X'/ and Y!’/ we move on to the next
commutator. We have

[Qa Pagl € (/2 = 1/2,%/2) = (0,1/2), (427)
since there is no generator (1/2 4 1/2,1/2) = (1, 1/2) in this representation. Thus
QL Pyl = 27 easQl, (428)

with adjoint ~ B
Q4 Pasl = 27 ¢,5Q3 (429)

for some complex constants Z!;, which we will determine with help of the
generalized Jacobi identities (119).

0 = [[Pac, Pggl, Q3] + [[Q5, Pacl, Pag] + [P, @A), Pac]
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=0+ ZIJEW[Q&]’ P@;’;] - ZIJGVB[QZ,PM] =
= ZIJZJK%B(EVQQ;; + 676@5)
= 2,77 e 5645(0565 + 6305)QE (430)

=720,727 =(Z2) =0 (431)

0= {[Paéu QéL Qi} + {[Paéca Qi]a Qé} + [{Qév Q:{}Pad} =
= —2"5¢6a{Q7, QL } = 27k {Qh, Q) + [X €5y + YT/ My, Pas] =

1
= 7" 1€5a20"E Py — 77 60026 K Py, + YIJ§(0'ab)ﬁ,y(Uc)ad[Mab, P.]

1 . .
= 20"K 7! g Pys — 2015 Z7 oo Pas + 5Y” (™) 5 (09) e (1ca Py — iMet P

1 -0 _a . a
- —QZUeﬁaP,m - 2ZJI€A/QPB@ + §YI'](O'C)ad (Z(O’ b),@’yncapb - z(ab )mncapb)
= 2750 Prs — 277 €0 Pos + 1Y (09) 06 (0™) gy Nea Py- (432)

In the last line we have used that (0%%),5 = —(0%*)s. Multiplying with €7
and noting that (0%%),% = 0 we get

0=2Z"781P,s — 2727158 P + iV (0™) ,*(0°) acsca Po
=27"p,, —2271P,, (433)

which gives
AR AL (434)

From (431) and (434) we conclude that Z = 0 and thus also Y = 0. We have
[QL, Mag] € (1—1/2,0) = (1/2,0), (435)
since there is no generator (3/2,0). We write
[QF, Map] = (bab) " Qf
[71' Mab] (Bab)ﬂdQlIgv (436)

and get
0= {[Mab7 Qé]v Qi} + {[Mabu Qi]a ery} + [{Q'va Q:]/}v Mab]
= _(bab)yB{Qé7 Qi} - (Bab),@;y{Qﬁ"]a ery} + 261J[P'yﬁ/7 Mab]
= —(bap), 26" Py — (Ba,,)ﬁ'ﬁz(sﬂpﬁ — 26176 . [Map, P,]

= —2(bav), 6" Pgs — 2@0‘25”1)75 —2617(0) 4 (10 Py — it Pa)

= ~2(bav), 6" 05 Py — 2(ban)” 677 6] Py
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67 (02)14/(0) % = (00)23(52)*7 ) Py (437)

This is zero if

2(bas), 05 = i(0a)q3 ()" (438)
2(bab)ﬁ#55 = _i(aa)ﬁﬁ(ab)v’?'
Multiplying the first line with 6; and the second line with Jg we get
4(bab)'yﬁ = i(aa)’y"y(ﬁb)ﬁﬁ 439
40V = _i(5.)87 . (439)
(bab) 4 i(5a)"7(0) -
Since My, = —Mp, we also have by, = —bpg and bgp = —bpa, and we get
' N i — \A .
A(bab)y” = 2(bab),” = 2(bba),” = 5(0a)y3(G)77 = 5(06)15(5a)” = —2i(0ws),
X 7 L i(=\f i (5 0\ e
40w)”, = 2(bab)’s = 200)", = =537 (005 + 5(3)77 (00) 5 = 2i(0w)”,
(440)
or
(bav)” = =5 (0an), (441)
(bab)ﬂ;y = %(aﬁb)
The remaining commutator is
Q4. Bl = (1) ,Qx, (442)

where (S;)! 7 can be shown to form a representation of the internal group. The
complex constants X’/ can be shown to commute with every other operator
and we call them central charges. We can now write down the full N-extended
super-Poincaré algebra (120).

B.2 Derivation of the superalgebra: an alternative way
We want to derive
[ f)UM,U«V] = (buu)gQ%~ (443)
To this end we use the following generalized Jacobi identity
(M, Mro), QL] + [[Q4, M), Myo] + [Mro, QL) M, ] =0. (444)
First term is
(e Moo = NrMyuo = NopMyr + 119y Myr ), Q4]
=0ru[Myo, Q4] = 17, [Myuors Q] = o [Mur, Q) + 10w [Myur, Q3
= — 110 (bu0) 2 Qb + 17 (b ) §Q + 11 (bur) Q5 — o (bur Qs
:( - nTu(bwr)g + nw(buo)g + nou(bm—)g - Uau(buT)g)Q%7 (445)
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second term

[(buu)gngM‘m] - (buv)g[anM‘m] = (buu)g(b‘m)ngy = (buu)l(bm)gQ@m)

and the third term

[*(brﬂ)gQ%,Muu} = *(b‘m)'g[Q%aMuu] = (b‘ra) ( ) Ql = ( )Zz(bw/)g@}ﬂ
(447)
Equation (444) then equals

(= i (buo ) + 1 (B )+ T () = o (B )
+ (b )L (0re)? = (bro)L(b)2) Qs
:( - Wru(bua)g + nTV(bHO' 6,6; + nau(bu‘l’)g - nUV(bMT)g + [blﬂ” bTU]g)QfB’ (448)

which is zero if

[b;wa b'ro’]g = +777'u(b )B - nru(buo)ﬂ - nou(bl/r)g + nau(b,uT)g
= nT[u(bu]U) UU[M(bU]T)IB (449)

(b.,)2 corresponds to a representation of the Lorentz algebra and we choose the

(0,3) @ (1,0)-representation. We arrive at

. 1 .
Qi M) = 5(010)3Q-

C Reduction from N = (1,1) to N =1

The two-dimensional N = (1, 1) sigma model reads

S = / d*xd*0D;¢"E,, D_¢",

¢ (w,0) = XH(x) + 019k (x) + 079 (x) + 0107 FV(x),
Dy =04+ z’Hi@ii, Q4+ =10+ + Hiaii. (450)

Let all fields be independent of the spatial coordinate of the worldsheet. Thus
O++ = 0. Define

0 := 7(9++9) 0:= \%(m—a—),

D= 7(D++D) By + 00,

D= %(m— D_) = 9 +i00,

Y= 7(¢++W) (G \7(1/4*1/)“) (451)
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The superfields become
G(t,07,07) = XF(t) + 0T (t) + 07 (t) + 0107 FF(t)
= XH(t) 4 0*(t) 4+ 0*(t) — 0OF (t). (452)

Let 6 = 0 and define new bosonic superfields X* (t,0) and new fermionic super-
fields y* (¢, 6):

$lgg = X" () + 69 (t) =2 X"(t,0)

Dot = V' (t) + 100, X" (t) = DX"(t,0)
Dot |5_o = V" (t) + OF () =: 4" (t,0)
DD¢"|5_y = FH(t) +i00,0" (t) = Dy (t,0). (453)

We call the reduced action Sg,

Sp = / dtd0*td9~ D, E,,D_¢" = — / dtdode [\%(D + D)¢~EW\%

1 2 v " YL 2 v » Y4
—i/dtdQD[D(b“Ew,D(b — D¢"E,,D¢” + DY*E,,, D¢ — D' E,,, Do ]|é=0

(D~ D)é"]

—% / dtd0[ — DDE,,, D¢ — D¢ E,,,, ,D¢” D¢” + D! E,,,, DD¢”
+ DD¢"E,y D¢” + D" Ey,,, ;D¢ D¥ + DH E,, D*¢¥
+ D?¢"E,,, D¢ — DO*E,,,, ,D¢? D$* + D¢* E,,, DD$”
— D*¢"E,, D¢" + DY"E,,, ,D¢* D" + D" E,., D*¢"]|5_,

1 n 2% Ll n U % v
- / dtdd[ — DY E,,, DX” — DXV E,,, ) DX” + DXV E,, Di)

+ DY B )" + DXPE,, pbP0Y + DXPE,,i0, X"
+i0, X" E,, DX" — " E,, )P DX + " E,, Di”
- iatX'uE;uﬂLV + &HEHV,/)'&F)Z;V + ZzﬂEuuiath] (454)

For greater clearity we label the rows A,B,C,D, and columns 1,2,3, and analyse
the terms:

A1+4+A3:
~DYME,,DX" + DX"E,,,D{" = (E,, — E,,)DX"Dy" = 2b,, DX" D",
(455)
A2: R A R R o
—DX"E,, b DXY = b, ,DX*DX" 9", (456)
B1+C3:

DYF By + 1" By DUV = (Eyy + Eup )" DYY = 2G,, 0P DY, (457)
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B2+C2:

DXHE,y 0P =" By y? DXV = (B p+Euyp o) DXPOPYY = 2G,,, P DX V1P,

(458)
B3+C1:
DX"E,,i0, X" +i9, X" E,,DX" = DX"(E,, +E,,,)i0; X" = 2iG,,DX"9,X",
(459)
D1+Da3:
—i0, X" B )’ + P E,i0 XV = —id, XM (B — By )" = —2ib, 8, X",
(460)
D2:
&ME;W,/J'JJP@V = - uu,ptﬁulzjuzﬁp = —bﬂu,pﬂ;“?ﬁyi)p
1 Sy 1 S
= _g(bul/,p - bpu,u - bup,u)¢#¢ wp = _gTuupd)#w d)pa (461)

where T' = db. The action becomes
Sn=—y / 4td0[2b,, DXV DY + by DX* DXV + 2G0# Di
+ 260, DX + 216 DXFO K — 2y DK1Y — ST 07
= / dtdf| — b, DX"Dyp” — %b,w,pDX“DX%LP — G DY

~ PN N N A A 1 N oa A
~ G " DXV — iGluy DXPOXY 4 iy, O XH) 4 2T g0 47).

(462)
Noting that
D(bu, DX")") = by, ,DXP DX " + b, D2 XY — b, DX D"
= %(byw + by ) DXP DX VP + by, 0, X P90 — b, DX DY,
(463)

and that
1 X)XV )P 1 )XY )P 1 ) XY )P
—f(bl,pw—}—bp“’,j)DX DX"y —§bW7pDX DXVyY? = §TW,,DX DXVyP,

2
(464)
we finally arrive at

Sg = / dtdf| — iG ., DX 3, X" — G )" DY¥ — Gy yh" DXV P

1 an 1 . £ n £
+ éTwpw“w”w” — QTWPDX”DX”wP + D(bWDX“W’)]. (465)
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D An alternative introduction to supersymme-
try

We will now introduce the basic concepts of supersymmetry by means of fields
in ordinary four-dimensional space-time. We will follow the outline of Martin
[20]. To this end we write down an action for a left-handed Weyl fermion
(appendix A.1l) together with a boson described by a complex scalar field ¢.

S = /d4$(ﬁboson + ['fermion) (466)

For simplicity we will only consider the massless non-interaction case, thus only
including the kinectic terms

‘Cboson = —auﬁb* ,u¢> ‘Cfermion = “/}L (6—H)daa}1«wa (467)

We want a supersymmetry transformation ) to change a boson into a fermion
and vice versa, i.e., roughly

Q|boson >= |fermion >, Q|fermion >= |boson > . (468)

Using the language of fields we thus write an infinitesimal change of the scalar
field '
8¢ = ey, 00" = et (469)

where € is an infintesimal and anticommuting Weyl fermion inserted because
bosons and fermions obey opposite statistics. It then follows that

3Lposon = —0"0¢*Dyup — 1 $*,0¢ = —OM(eh 1) Db — 999 (%)
= —€L 0140, — €0"pa 00" (470)

We want our action S to be invariant under a supersymmetry transformation
55 = [ %26 Lucson + O Lamion) =0 (a71)

i.e., if we can find the infinitesimal transformation for ¥ such that §Lyoson +
6 Ltermion = 0 up to a surface term, our problem is be solved. If we take

0ho = —i(0")aae@ud,  OYL = ie¥(0M)0a0ud", (472)
this will indeed be the case. We have
0 Lrormion = 100} (0")** Dutba + i} (5") 408000
= i[ieﬁ (0")8ad [ (@) 3 0tpa + i} (3)500, | —i(0”) 3¢ 0

= —(0")5a(0") 0 ba B d” + Y (575 (07) (510D, 000 (473)
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Using that

(0")aa(0")0,0,0 = = [(0")aa(0”)*0,0,¢ + (6”)as(0")*?,0,0)

=N =

= = [(6")aa(0")* + (6")aa(0")?) 0,000,  (474)

[\

where we have made use of the commutation of partial derivatives 9,0, = 0,,0,,
and that ‘ .
(0")aa (") = (0")aa(8")*P = =257, (475)

the first term gives (suppressing the indices)
—e0”0"0,10,¢" = —0,(ec”7"10,¢") + ea”c"1)0,,0,¢"
1
= —0u(ea” "0, ¢") + 5e(o“a—” +0”6")10,0,¢"

1
= —0,(ec” "0, ¢") + 56(—27}“”)’(/)8M&,¢*
= —0u(e0"d"0,¢") — ep0,0" P
= —0,(ec”"0,¢") — 0, (0" ™) + €00 ¢*, (476)
and the second term

Viaha”9,0,0 = %uﬂ(&”au + 570’90,

= S0 (-20)1 0,0,

_ _w’rg‘aﬂau(b

= —0u(ye'0"0) + D piel o

= —Ou('ptore) + o, ptore, (477)

Together we have

O Lrcrmion = 0" Y0,0" + 00,0 — 0”0V, 0" + v s” + Y1),
(478)
and we see that this cancels the bosonic lagrangian (470) up to a surface term.
We also need to verify that the algebra closes under these transformations,
i.e., that the commutator of two supersymmetry transformations necessarily is
a symmetry of the theory. For the bosonic field we have

[552, 561]¢ = 562 (561 (b) - 661 (552¢)
=~ (a(e"dh)a — e2l0e])a) (180), (479)

and we get (up to a factor) the space-time translation P, = 9, which of course
is a symmetry of the theory. In the following we will use the notation
(0" €)a = (0")aae®,  (F3")* := el ("), (480)

&

69



The fermionic field transforms according to

[562»5 ] = 52(5511/104)* 61(5521/)04)
= 62( ‘7”61 u¢) ( Z(0%2) #¢)
—i(0"e}))adp (e >+z< eb)adju(e11))
= <a“>m<e£aef — €l%€5) (10, )p.- (481)

Since the 1 we started with and the ¢ at the end have different indices this is
not yet a symmetry, but using the Fierz rearrangement identity

Xa&ng = —€an’ x5 — 10X Es, (482)
we can rewrite this
(0")aa(eh el — €1%5)(10,) 5 = (07€b)ae] (10,)5 — (07€] )a€s (i0,1) 5

= —e1a(i0,)" (0"eh) 5 — (10,1)ale}a") €15

+ €20 (10,9)" (0" €]) 5 + (10,1)a(€]0%) 2

= [(0")sael® = 0" pack| (00

+ [eraela = eaele] (@970, 05, (483)
The first term is again the translation operator (times a factor), but the rest of
the terms only vanish by use of the equations of motion ¢#0,¢ = 0, i.e., they
only vanish on-shell. By introducing an auxiliary field F', we can however make

the algebra close even off-shell. Let F' be a complex scalar field that transforms

as
§F = —ic'a"9,1, SF* =id,iahe. (484)

A lagrangian
‘Cauxiliary = F*Fa (485)

then transforms as
S Lauxitiary = 10,0161 eF — ie'a" 0, F*. (486)
Letting the fermionic field mix with the auxiliary field under a transformation
o = —i(o"e)abud + €aF, 0L =i(ca")adud” + LT, (487)
the fermionic langrangian becomes
0 Liermion = (601 (6")** Otba + i} (67) 2D, (5¢00)
= i(i(c0")adu@" + L") (") Dyt
—|—sz (a“)a“a ( i(o”e )a(‘),,¢—|—eaF)
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= eauwaﬂ(b* + e’rauwfauqb
= 0 (o a"00,0" + ot + Tutorg)
+ el F*(a") 30,10 + i) (6") ¥ ead),, F, (488)
where we have used (478) in the last line. The last two terms can be written as
i F*61 0,0 + i1 6+€0, F = ie! F*6" 0,1 + 0, (i) T6"eF) — i0,¢ 16" €F, (489)
so the full fermionic lagrangian reads
OLtermion = 0" 0, 6" + 10" 0,0
— 8(60”6“1&&,(}5* + epdHo* + T orp — iWﬁ“eF)
+ il F*5" 0,9 — i, 5" F. (490)

We see that this still cancels the bosnic langranigan but now also the auxil-
iary one up to surface terms. The commutator of two transformations of the
fermionic field (483) now gets the following additional terms

Ses (€10 F) = bey (€30 F) = —ierach ,(6")PD,105 + ieaac] (54) 70005, (491)

which cancel the last two terms in (483). Finally we have

6esbe P = 00, ( = (i€l 0,0))
= —iel 4 (0")°°0, ( —i(0") el 0,6 + i€l F)
= —ei&“o”eé@uaﬂé + ie‘;&“egauF
= el el 040, 0 + €lo"ex (10, F), (492)
so that
Jey0e, — 0ey0e, ) F = (eleh — e}e])0" 0,6 + (e]" ez — €5 e1) (10, F
(Oey0e, — dey0ec, ) (163 — €3€1)0" 0,9 + (€10 €2 — €30"€1) (10, F)
= (elgtey — ehater) (10, F), (493)
since 6155 = e{degd = e;deld = egel. Thus we conclude that the langragian

L=—-0"¢*0,p + i ey + F*F (494)

really has a supersymmetry off-shell.
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