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Abstract. Mathai-Quillen (MQ) formalism is a prescription to con-
struct a Gaussian shaped Thom form for a vector bundle. The aim
of this master thesis is to formulate a new Thom form representative
using geometrical aspects of Batalin-Vilkovisky (BV) quantization. In
the first part of the work we review the BV and MQ formalisms both
in finite dimensional setting. Finally, to achieve our purpose, we will
exploit the odd Fourier transform considering the MQ representative
as a function over the appropriate graded manifold.
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CHAPTER 1

Introduction

The Batalin-Vilkovisky (BV) formalism is widely regarded as the
most powerful and general approach to the quantization of gauge the-
ories. The physical novelty introduced by BV formalism is to make
possible the quantization of gauge theories that are difficult to quantize
with the Fadeev-Popov method. In particular, it offers a prescription
to perform path integrals for these theories. In quantum field theory
the path integral is understood as some sort of integral over infinite di-
mensional functional space. Up to now there is no suitable definition of
the path integral and in practice all heuristic understanding of the path
integral is done by mimicking the manipulations of finite dimensional
integrals. Thus, a proper understanding of the formal algebraic manip-
ulations with finite dimensional integrals is crucial for a better insight
to the path integrals. Such formalism firstly appeared in the papers
of Batalin and Vilkovisky [6, 7] while a clear geometric interpretation
was given by Schwarz in [11, 14]. This thesis will largely follow the
spirit of [15] where the authors described some geometrical properties
of BV formalism related to integration theory on supermanifolds. On
the odd tangent bundle there is a canonical way to integrate a function
of top degree while to integrate over the odd cotangent bundle we al-
ways have to pick a density. Although the odd cotangent bundle does
not have a nice integration property, it is however interesting because
of his algebraic property due to the BV structure on it.

Characteristic classes play an essential role in the study of global prop-
erties of vector bundles. Consider a vector bundle over a certain base
manifold, we would like to relate differential forms on the total space
to differential forms on the basis, to do that we would like to integrate
over the fiber and this is what the Thom class allows us. Basically the
Thom class can be thought as a gaussian shaped differential form of
top degree which has indices in the vertical direction along the fiber.
Mathai and Quillen [17] obtained an explicit construction of the Thom
class using Berezin integration, a technique widely used in physics lit-
erature. The physical significance of this construction was first pointed
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1. INTRODUCTION 5

out, in an important paper of Atiyah and Jeffrey [22]. They discovered
that the path integrals of a topological field theory of the Witten type
[25] are integral representations of Thom classes of vector bundles in
infinite dimensional spaces. In his classic work [18] Witten showed that
a topological gauge theory can be constructed by twisting N = 2 su-
persymmetric Yang-Mills theory. Correlation functions of the twisted
theory are non other than Donaldson invariants of four-manifolds and
certain quantities in the supersymmetric gauge theory considered are
determined solely by the topology, eliminating the necessity of com-
plicated integrals. In this way topological field theories are convenient
testing grounds for subtle non perturbative phenomena appearing in
quantum field theory.

Understanding the dynamical properties of non-abelian gauge fields
is a very difficult problem, probably one of the most important and
challenging problem in theoretical physics. Infact the Standard Model
of fundamental interactions is based on non-abelian quantum gauge
field theories. A coupling constant in such theories usually decreases
at high energies and blows up at low energies. Hence, it is easy and
valid to apply perturbation theory at high energies. However, as the
energy decreases the perturbation theory works worse and completely
fails to give any meaningful results at the energy scale called Λ. There-
fore, to understand the Λ scale physics, such as confinement, hadron
mass spectrum and the dynamics of low-energy interactions, we need
non-perturbative methods. The main such methods are based on su-
persymmetry and duality. Like any symmetry, supersymmetry imposes
some constraints on the dynamics of a physical system. Then, the dy-
namics is restricted by the amount of supersymmetry imposed, but we
still have a very non-trivial theory and thus interesting for theoretical
study. Duality means an existence of two different descriptions of the
same physical system. If the strong coupling limit at one side of the
duality corresponds to the weak coupling limit at the other side, such
duality is especially useful to study the theory. Indeed, in that case
difficult computations in strongly coupled theory can be done pertur-
batively using the dual weakly coupled theory.

The aim of this master thesis is to establish a relationship between
geometrical aspects of BV quantization and the Mathai-Quillen for-
malism for vector bundle. We will formulate a new representative of
the Thom class, called BV representative. To reach this goal we will use
the odd Fourier transform as explained in [15]. However, we will gen-
eralize this construction to the case of differential forms over a vector
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bundle. Lastly, we will show that our BV representative is authenti-
cally a Thom class and that our procedure is consistent.

The outline of the thesis is as follows. In section 2 we discuss some
basic notions of super linear algebra. We pay particular attention to
the Berezinian integration in all its details, by giving detailed proofs
of all our statements. In section 3 we treat the differential geometry
of supermanifolds. As main examples we discuss the odd tangent and
odd cotangent bundles. We also review the integration theory from
a geometric point of view, following the approach of [1]. In section 4
we briefly illustrate the Z-graded refinement of supergeometry, known
as graded geometry. In section 5 we define the odd Fourier transform
which will be an object of paramount importance trough all the the-
sis. Then, the BV structure on the odd cotangent bundle is introduced
as well as a version of the Stokes theorem. Finally, we underline the
algebraic aspects of integration within BV formalism. In section 6 we
explain the Mathai-Quillen (MQ) formalism. Firstly, we describe topo-
logical quantum field theories, then we introduce the notions of Thom
class and equivariant cohomology and eventually we give an explicit
proof of the Poincaré-Hopf theorem using the MQ representative. In
section 7 it is contained the original part of this work. Here, we discuss
our procedure to create a BV representative of the Thom class and
obtain the desired relationship between BV quantization and Mathai-
Quillen formalism. Section 8 is the conlusive section of this thesis where
we summarize our results and discuss open issues.



CHAPTER 2

Super Linear Algebra

Our starting point will be the construction of linear algebra in the
super context. This is an important task since we need these concepts
to understand super geometric objects. Super linear algebra deals with
the category of super vector spaces over a field k. In physics k is R or
C. Much of the material described here can be found in books such as
[2, 4, 5, 8, 12].

2.1. Super Vector Spaces

A super vector space V is a vector space defined over a field K with
a Z2 grading. Usually in physics K is either R or C. V has the following
decomposition

V = V0 ⊕ V1 (2.1)

the elements of V0 are called even and those of V1 odd. If di is the
dimension of Vi we say that V has dimension d0|d1. Consider two
super vector spaces V , W , the morphisms from V toW are linear maps
V → W that preserve gradings. They form a linear space denoted by
Hom(V,W ). For any super vector space the elements in V0 ∪ V1 are
called homogeneous, and if they are nonzero, their parity is defined to
be 0 or 1 according as they are even or odd. The parity function is
denoted by p. In any formula defining a linear or multilinear object
in which the parity function appears, it is assumed that the elements
involved are homogeneous.
If we take V = Kp+q with its standard basis ei with 1 ≤ i ≤ p + q ,
and we define ei to be even if i ≤ p or odd if i > p, then V becomes a
super vector space with

V0 =
p�

i=1

Kei V1 =
q�

i=p+1

Kei (2.2)

then V will be denoted Kp|q.
The tensor product of super vector spaces V and W is the tensor prod-
uct of the underlying vector spaces, with the Z2 grading

(V ⊗W )k = ⊕
i+j=k

Vi ⊗Wj (2.3)

7
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where i, j, k are in Z2. Thus

(V ⊗W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1)

(V ⊗W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0)
(2.4)

For super vector spaces V,W , the so called internal Hom , denoted by
Hom(V,W ), is the vector space of all linear maps from V to W . In
particular we have the following definitions

Hom(V,W )0 = {T : V → W |T preserves parity} (= Hom(V,W ));

Hom(V,W )1 = {T : V → W |T reverses parity}

For example if we take V = W = K1|1 and we fix the standard basis,
we have that

Hom(V,W ) =

��
a 0
0 d

�
|a, d ∈ K

�
;

Hom(V,W ) =

��
a b
c d

�
|a, b, c, d ∈ K

� (2.5)

If V is a super vector space, we write End(V ) for Hom(V, V ).

Example 2.1.1. Consider purely odd superspace ΠRq = R0|q over
the real number of dimension q. Let us pick up the basis θi, i =
1, 2, ..., q and define the multiplication between the basis elements sat-
isfying θiθj = −θjθi. The functions C∞(R0|q) on R0|q are given by the
following expression

f(θ1, θ2, ..., θq) =
q�

l=0

1

l!
fi1i2...ilθ

i1θi2 ...θil (2.6)

and they correspond to the elements of exterior algebra ∧•(Rq)∗. The
exterior algebra

∧
• (Rq)∗ = (∧even(Rq)∗)

��
∧

odd(Rq)∗
�

(2.7)

is a supervector space with the supercommutative multiplications given
by wedge product. The wedge product of the exterior algebra corresponds
to the function multiplication in C∞(R0|q).
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2.1.1. Rule of Signs. The ⊗ in the category of vector spaces is
associative and commutative in a natural sense. Thus, for ordinary
vector spaces U, V,W we have the natural associativity isomorphism

(U ⊗ V )⊗W � U ⊗ (V ⊗W ), (u⊗ v)⊗ w �−→ u⊗ (v ⊗ w) (2.8)

and the commutativity isomorphism

cV,W : V ⊗W � W ⊗ V, v ⊗ w �−→ w ⊗ v (2.9)

For the category of super vector spaces the associativity isomorphism
remains the same, but the commutativity isomorphism is subject to
the following change

cV,W : V ⊗W � W ⊗ V, v ⊗ w �−→ (−1)p(v)p(w)w ⊗ v (2.10)

This definition is the source of the rule of signs, which says that when-
ever two terms are interchanged in a formula a minus sign will appear
if both terms are odd.

2.2. Superalgebras

In the ordinary setting, an algebra is a vector space A with a mul-
tiplication which is bilinear. We may therefore think of it as a vector
space A together with a linear map A⊗A → A, which is the multipli-
cation. Let A be an algebra , K a field by which elements of A can be
multiplied. In this case A is called an algebra over K.
Consider a set Σ ⊂ A, we will denote by A(Σ) a collection of all possible
polynomials of elements of Σ. If f ∈ A(Σ) we have

f = f0 +
�

k≥1

�

i1,...,ik

fi1,...,ikai1 ...aik , ai ∈ Σ, fi1,...,ik ∈ K (2.11)

Of course A(Σ) is a subalgebra of A, called a subalgebra generated by
the set Σ. If A(Σ) = A, the set Σ is called a system of generators of
algebra A or a generating set.

Definition 2.2.1. A superalgebra A is a super vector space A, given
with a morphism , called the product: A ⊗ A → A. By definition of
morphisms, the parity of the product of homogeneous elements of A is
the sum of parities of the factors.

The superalgebra A is associative if (xy)z = x(yz) ∀ x, y, z ∈ A. A
unit is an even element 1 such that 1x = x1 = x ∀x ∈ A. By now we
will refer to superalgebra as an associative superalgebra with the unit.
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Example 2.2.2. If V is a super vector space, End(V ) is a superal-
gebra. If V = Kp|q we write M(p|q) for End(V ). Using the standard
basis we have the usual matrix representations for elements of M(p|q)
in the form

�
A B
C D

�
(2.12)

where the letters A,B,C,D denotes matrices respectively of orders p×
p, p × q, q × p, q × q and where the even elements the odd ones are,
respectively, of the form.

�
A 0
0 D

�
,

�
0 B
C 0

�
(2.13)

A superalgebra is said to be commutative if

xy = (−1)p(x)p(y)yx , ∀x, y ∈ A ; (2.14)

commutative superalgebra are often called supercommutative.

2.2.1. Supertrace. Let V = V0 ⊕ V1 a finite dimensional super
vector space, and let X ∈ End(V ). Then we have

X =

�
X00 X01

X10 X11

�
(2.15)

where Xij is the linear map from Vj to Vi such that Xijv is the pro-
jection onto Vi of Xv for v ∈ Vj. Now the supertrace of X is defined
as

str(X) = tr(X00)− tr(X11) (2.16)

Let Y, Z be rectangular matrices with odd elements, we have the fol-
lowing result

tr(Y Z) = −tr(ZY ) (2.17)

to prove this statement we denote by yik, zik the elements of matrices
Y and Z respectively then we have

tr(Y Z) =
�

yikzki = −

�
zkiyik = −tr(ZY ) (2.18)

notice that anologous identity is known for matrices with even elements
but without the minus sign. Now we can claim that

str(XY ) = (−1)p(X)p(Y )str(Y X), X, Y ∈ End(V ) (2.19)
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2.2.2. Berezinian. Consider a super vector space V , we can write
a linear transformation of V in block form as

W =

�
A B
C D

�
(2.20)

where here A and D are respectively p× p and q× q even blocks, while
B and C are odd. An explicit formula for the Berezinian is

Ber(W ) = det(A− BD−1C) det(D)−1 (2.21)

notice that the Berezinian is defined only for matrices W such that D
is invertible. As well as the ordinary determinant also the Berezinian
enjoys the multiplicative property, so if we consider two linear trans-
formations W1 and W2, like the ones that we introduced above , such
that W = W1W2 we will have

Ber(W ) = Ber(W1)Ber(W2) (2.22)

To prove this statement firstly we define the matrices W1 and W2 to
get

W1 =

�
A1 B1

C1 D1

�
, W2 =

�
A2 B2

C2 D2

�

=⇒ W =

�
A1A2 +B1C2 A1B2 +B1D2

C1A2 +D1C2 C1B2 +D1D2

� (2.23)

Using matrix decomposition we can write for W1

W1 =

�
1 B1D

−1
1

0 1

��
A1 − B1D

−1
1 C1 0

0 D1

��
1 0

D−1
1 C1 1

�

= X+
1 X

0
1X

−
1

(2.24)

obviously this is true also for W2. So now we want to compute the
following Berezinian

Ber(W ) = Ber(X+
1 X

0
1X

−
1 X

+
2 X

0
2X

−
2 ) (2.25)

As a first step we consider two block matrices X and Y such that

X =

�
1 A
0 1

�
, Y =

�
B C
D E

�
(2.26)

we can see that X resembles the form of X+
1 . Computing the Berezini-

ans we get

Ber(X)Ber(Y ) = det(B − CE−1D) det(E)−1 (2.27)

while

Ber(XY ) = det(B + AD − (C + AE)E−1D) det(E)−1 (2.28)
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after this first check we can safely write that

Ber(W ) = Ber(X+
1 )Ber(X

0
1X

−
1 X

+
2 X

0
2X

−
2 ) (2.29)

As a second step we consider once again two block matrices X and Y
now defined as

X =

�
A 0
0 B

�
, Y =

�
C D
E F

�
(2.30)

clearly now X resembles the form of X0
1 . Computing the Berezinians

we get

Ber(X)Ber(Y ) = det(A) det(B)−1 det(C −DF−1E) det(F )−1

= det(AC − ADF−1E) det(BF )−1
(2.31)

while

Ber(XY ) = det(AC − ADF−1B−1BE) det(BF )−1 (2.32)

so after this second step we conlude that

Ber(W ) = Ber(X+
1 )Ber(X

0
1 )Ber(X

−
1 X

+
2 X

0
2X

−
2 ) (2.33)

Now repeating two times more the procedure done in the first two steps
we get the following result

Ber(W ) = Ber(X+
1 )Ber(X

0
1 )Ber(X

−
1 X

+
2 )Ber(X

0
2 )Ber(X

−
2 ) (2.34)

Now we want to show the multiplicativity of Ber(X−
1 X

+
2 ) but we can’t

proceed as in the previous steps. In fact if we consider once again two
matrices X and Y such that

X =

�
1 0
C 1

�
, Y =

�
1 B
0 1

�
(2.35)

we have that
Ber(X)Ber(Y ) = 1

Ber(XY ) = det(1− B(1 + CB)−1C) det(1 + CB)−1 (2.36)

To guarantee the multiplicative property also in this case we have to
prove that

det(1− B(1 + CB)−1C) det(1 + CB)−1 = 1 (2.37)

We may assume that B is an elementary matrix, which it means that
all but one entry of B are 0, and that one is an odd element b. By this
property we see that (CB)2 = 0, consequently

(1 + CB)−1 = 1− CB (2.38)

and hence

1− B(1 + CB)−1C = 1− B(1− CB)C = 1− BC (2.39)
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Now we can use the general formula

det(1− BC) =
∞�

k=0

1

k!

� ∞�

j=1

(−1)2j+1

j
tr((BC)j)

�k

= 1− tr(BC)

(2.40)
Using the same formula we get the following result

det(1 + CB)−1 = (1 + tr(CB))−1 = (1− tr(BC))−1 (2.41)

where in the last passage we used (2.18). Eventually we can easily
verify that

det(1−B(1 + CB)−1C) det(1 + CB)−1

= (1− tr(BC))(1− tr(BC))−1 = 1
(2.42)

At this point we may write

Ber(W ) = Ber(X+
1 )Ber(X

0
1 )Ber(X

−
1 )Ber(X

+
2 )Ber(X

0
2 )Ber(X

−
2 )

= Ber(X+
1 X

0
1X

−
1 )Ber(X

+
2 X

0
2X

−
2 )

= Ber(W1)Ber(W2)
(2.43)

If we use another matrix decomposition for the matrix W defined in
(2.20) we get an equivalent definition of the Berezinian which is

Ber(W ) = det(A) det(D − CA−1B)−1 (2.44)

2.3. Berezin Integration

Consider the super vector space Rp|q, it admits a set of generators
Σ = (t1 . . . tp|θ1 . . . θq) with the properties

titj = tjti 1 ≤ i, j ≤ p (2.45)

θiθj = −θjθi 1 ≤ i, j ≤ q (2.46)

in particular (θi)2 = 0. We will referer to the (t1 . . . tp) as the even(bosonic)
coordinates and to the (θ1 . . . θq) as the odd(fermionic) coordinates. On
Rp|q, a general function g can be expanded as a polynomial in the θ’s:

g(t1 . . . tp|θ1 . . . θq) = g0(t
1 . . . tp)+· · ·+θqθq−1 . . . θ1gq(t

1 . . . tp). (2.47)

The basic rules of Berezin integration are the following
�

dθ = 0

�
dθ θ = 1 (2.48)
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by these rules, the integral of g is defined as
�

Rp|q
[dt1 . . . dtp|dθ1 . . . dθq]g(t1 . . . tp|θ1 . . . θq) =

�

Rp

dt1 . . . dtpgq(t
1 . . . tp)

(2.49)
Since we require that the formula (2.49) remains true under a change
of coordinates, we need to obtain the transformation rule for the inte-
gration form [dt1 . . . dtp|dθ1 . . . dθq]. In fact, although we know how the
things work in the ordinary(even) setting, we have to understand the
behavior of the odd variables in this process.

2.4. Change of Coordinates

Consider the simplest transformation for an odd variables

θ −→ �θ = λθ, λ constant. (2.50)

then the equations (2.48) imply
�

dθ θ =

�
d�θ �θ = 1 ⇐⇒ d�θ = λ−1dθ (2.51)

as we can see dθ is multiplied by λ−1, rather than by λ as one would
expect.
Now we consider the case of Rq, where q denotes the number of odd
variables, and perform the transformation

θi −→ �θi = f i(θ1 . . . θq) (2.52)

where f is a general function. Now we can expand f i in the following
manner

f i(θ1 . . . θq) = θkf i
k + θkθlθmf i

klm + . . . (2.53)

since the �θi variables has to respect the anticommuting relation (2.46),
the function f imust have only odd numbers of the θi variables in each
factor. Now we compute the product

�θq . . . �θ1 = (θkqf q
kq
+ . . . )(θkq−1f q−1

kq−1
+ . . . ) . . . . . . (θk1f 1

k1 + . . . )

= θkqθkq−1 . . . θk1f q
kq
f q−1
kq−1

. . . f 1
k1

= θqθq−1 . . . θ1εkq ...k1f q
kq
f q−1
kq−1

. . . f 1
k1

= θqθq−1 . . . θ1 det(F )

(2.54)

where in the last passage we used the usual formula for the determinant
of the F matrix. We are ready to perform the Berezin integral in the
new variables �θ�

d�θ1 . . . d�θq �θq . . . �θ1 =
�

d�θ1 . . . d�θq θqθq−1 . . . θ1 det(F ) (2.55)
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preserving the validity of (2.48) implies

d�θ1 . . . d�θq = det(F )−1dθ1 . . . dθq (2.56)

Using this result it is possible to define the transformation rule for
Berezin integral under this transformation

t −→ �t = �t(t1 . . . tp)

θ −→ �θ = �θ(θ1 . . . θq)
(2.57)

which is
�

Rp|q
[dt1 . . . dtp|dθ1 . . . dθq]g(t1 . . . tp|θ1 . . . θq)

=

�

Rp|q
[d�t 1 . . . d�tp|d�θ 1 . . . d�θq] det

�
∂t

∂�t

�
det

�
∂θ

∂�θ

�−1

g(�t 1 . . .�tp|�θ 1 . . . �θq)

(2.58)

From this formula is clear that the odd variables transforms with the
inverse of the Jacobian matrix determinant; the inverse of what happen
in the ordinary case. At this point a question naturally arises: provided
that we are respecting the original parity of the variables, what does
it happen if the new variables undergo a mixed transformation ? To
answer at this question we have to study a general change of coordinates
of the form

t −→ �t = �t(t1 . . . tp|θ1 . . . θq)

θ −→ �θ = �θ(t1 . . . tp|θ1 . . . θq)
(2.59)

The Jacobian of this transformation will be a block matrix

W =

�
A B
C D

�
=

�
1 0

CA−1 D

��
A 0
0 D−1

��
1 A−1B
0 D − CA−1B

�

= W+W 0W−
(2.60)

where A =
∂t

∂�t
and D =

∂θ

∂�θ
are the even blocks while B =

∂t

∂�θ
and

C =
∂θ

∂�t
are the odd ones. The matrix decomposition suggests that

we can think at the general change of coordinates as the product of
three distinct transformations represented by the three block matrices
in the right hand side of (2.60). At the moment we only know how to
deal with a transformation of the type (2.57) which have a Jacobian
matrix like W 0. To proceed further we have to analyze the remaining
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transformations

t −→ �t = �t(t1 . . . tp)

θ −→ �θ = �θ(t1 . . . tp|θ1 . . . θq)
(2.61)

t −→ �t = �t(t1 . . . tp|θ1 . . . θq)

θ −→ �θ = �θ(θ1 . . . θq)
(2.62)

Consider the case (2.61) then we rewrite the transformation as

t −→ �t = h(t1 . . . tp)

θ −→ �θ = g(t1 . . . tp|θ1 . . . θq)
(2.63)

where f and g are general functions. By formula (2.49) we know how to
perform the Berezin integration for a function F (t1 . . . | . . . θq). Using
the new variables will give

�
[d�t 1 . . . d�t p|d�θ1 . . . d�θq]F (�t 1 . . . | . . . �θq)

=

�
[d�t 1 . . . d�t p|d�θ1 . . . d�θq]

�
�F0(�t 1 . . .�t p)+ · · ·+�θq . . . �θ1 �Fq(�t 1 . . .�t p)

�

(2.64)

where we used (2.47). As we did in (2.53) we expand g as

gi(t1 . . . | . . . θq) = θkqgikq(t
1 . . . tp) + θkqθlqθmqgikqlqmq

(t1 . . . tp) + . . .
(2.65)

and similary to (2.54) we get

�θq . . . �θ1 = θq . . . θ1 det[G(t1 . . . tp)] (2.66)

Inserting this result inside (2.64) we obtain
�
[d�t 1 . . . | . . . d�θq]F (�t 1 . . . | . . . �θq) =

=

�
[d�t 1 . . . | . . . d�θq]

�
�F0(�t 1 . . .�t p)+

· · ·+ θq . . . θ1 det[G(t1 . . . tp)] �Fq(�t 1 . . .�t p)
�

(2.67)

as seen before if we want to achieve the same conclusion of (2.49) we
demand that

[d�t 1 . . . | . . . d�θq] = det[H(t1 . . . tp)] det[G(t1 . . . tp)]−1[dt1 . . . | . . . dθq]
(2.68)

The matrix W+ in equation (2.60) is the Jacobian of a change of coor-
dinates which is a special case of the one that we studied in (2.63). In
(2.68) we found that for this type of transformations, the integration
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form behaves exaclty as in (2.58). A similiar argument can be used
for transformations like (2.62) and consequently for W−. Finally, we
discovered the complete picture for the mixed change of coordinates
which is

[d�t 1 . . . | . . . d�θq] = det(A) det(D − CA−1B)−1[dt1 . . . | . . . dθq]

= Ber(W )[dt1 . . . | . . . dθq]
(2.69)

where in the last passage we used the definition given in (2.44). Equa-
tion (2.69) gives rise to the rule for the change of variables in Rp|q.
In fact, if we express the integral of a function g(t1 . . . | . . . tp) defined
on a coordinate system T = t1 . . . | . . . θq in a new coordinate system
�T = �t 1 . . . | . . . �θq the relation is

�
[dt1 . . . | . . . dθq]g(t1 . . . | . . . θq)

=

�
Ber

�
∂T

∂ �T

�
[d�t 1 . . . | . . . d�θq]g(�t 1 . . . | . . . �θq).

(2.70)

2.5. Gaussian Integration

Prior to define how to perform Gaussian integration with odd vari-
ables we will recall some results using even variables. For example con-
sider a p×p symmetric and real matrix A, then it is well known that we
can always find a matrix R ∈ SO(p) such that R�AR = diag(λ1 . . . λp),
where λi are the real eigenvalue of the matrix A. As a consequence we
get

Z(A) =

�
dt1 . . . dtp exp

�
−

1

2
t�At

�

=

�
dy1 . . . dyp exp

�
−

1

2
(Ry)�A(Ry)

�

=

�
dy1 . . . dyp exp

�
−

1

2

p�

i=1

λi(y
i)2

�

=
p�

i=1

� +∞

−∞
dyi exp

�
−

1

2
λi(y

i)2
�

=
p�

i=1

�
2π

λi

� 1
2

= (2π)
p
2 (detA)−

1
2

(2.71)

Moreover if we consider the case of 2p integration variables {xi} and
{yi},i = 1 . . . p, and we assume that the integrand is invariant under
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a simoultaneous identical rotation in all (xi, yi) planes then we can
introduce formal complex variables zi and z i defined as

zi =
xi + iyi
√
2

z i =
xi − iyi
√
2

(2.72)

The Gaussian integral now is
� �

p�

i=1

dzidz i

2πi

�
exp{−z iAijz

j
} = (detA)−1 (2.73)

in which A is an Hermitian matrix with non-vanishing determinant.
Now we turn our attention to the case of odd variables where we have
to compute the following integral

Z(A) =

�
dθ1 . . . dθ2q exp

�
1

2

2q�

i,j=1

θiAijθ
j

�
(2.74)

in which A is an antisymmetric matrix. Expanding the exponential in
a power series, we observe that only the term of order q which contains
all products of degree 2q in θ gives a non-zero contribution

Z(A) =
1

2qq!

�
dθ1 . . . dθ2q

�
�

i,j

θiAijθ
j

�q

(2.75)

In the expansion of the product only the terms containing a permu-
tation of θ1 . . . θ2q do not vanish. Ordering all terms to factorize the
product θ2q . . . θ1 we find

Z(A) =
1

2qq!
εi1...i2qAi1i2 . . . Ai2q−1i2q (2.76)

The quantity in the right hand side of (2.76) is called Pfaffian of the
antisymmetric matrix

Z(A) = Pf(A) (2.77)

As we did before, we consider two independent set of odd variables
denoted by θi and θ i, then we get

Z(A) =

�
dθ1dθ 1 . . . dθqdθ q exp

�
q�

i,j=1

θ iAijθ
j

�
(2.78)

The integrand can be rewritten as

exp

�
q�

i,j=1

θ iAijθ
j

�
=

q�

i=1

exp

�
θ i

q�

j=1

Aijθ
j

�
=

q�

i=1

�
1 + θ i

q�

j=1

Aijθ
j

�

(2.79)
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Expanding the product, we see that

Z(A) = εj1...jqAqjqAq−1jq−1 . . . A1j1 = det(A) (2.80)

which is,once again, the inverse of what happen in the ordinary case.
As a final example in which the superdeterminant makes its appearance
we shall evaluate the Gaussian integral

Z(M) =

� �
dt1 . . . | . . . dθq

�
exp

�
−

1

2

�
t1 . . . | . . . θq

�
M





t1
...
−

...
θq





�

(2.81)
here M is a block matrix of dimension (p, q) like

M =

�
A C
C� B

�
(2.82)

where A = A� and B = −B� are the even blocks and C the odd one.
The first step is to carry out the change of coordinates

ti −→ �t i = ti + A−1 ijCjkθ
k

θi −→ �θ i = θi
(2.83)

this is a transformation of (2.61) type with a unit Berezinian. Now the
integral takes the form

Z(M) =

� �
d�t 1 . . . | . . . d�θ q

�
exp

�
−

1

2

�
�t 1 . . . | . . . �θ q

�
�M





�t 1
...
−

...
�θ q





�

(2.84)

where �M has the diagonal block form

�M =

�
A 0
0 B + C�A−1C

�
(2.85)

We assume that the matrices A and B−C�A−1C are nonsingular with
A and B respectively symmetric and antisymmetric matrices. Then
there exist real orthogonal matrices O1 and O2, of determinant +1,
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which transform A and B into the

O�
1 AO1 = diag(λ1 . . . λp)

O�
2 BO2 = diag

��
0 iµ1

−iµ1 0

�
. . .

�
0 iµq

−iµq 0

��
(2.86)

where the (λi , µi) are respectively real eigenvalue of A and B. Next
we carry out a second transformation

�t i −→ �t i = Oi
1j
�t j

�θ i
−→ �θ i = Oij

2 [1q +B−1C�A−1C]
1
2
jk
�θ k

(2.87)

whose representative matrix denoted by J has the following Berezinian

Ber(J) = det([1q +B−1C�A−1C])−
1
2 (2.88)

Now plugging these transformation into (2.84) and using the integra-
tion rules founded in (2.71) and (2.77) we get

Z(M) = (2π)
p
2 det(A)−

1
2Pf(B)Ber(J)−1 (2.89)

Since for an antisymmetric matrix B we have Pf(B)2 = det(B) we
found that

Z(M) = (2π)
p
2 det(A)−

1
2Pf(B)Ber(J)−1

= (2π)
p
2 det(A)−

1
2 det(B)

1
2 det([1q +B−1C�A−1C])

1
2

= (2π)
p
2Ber(M)−

1
2

(2.90)



CHAPTER 3

Supermanifolds

Roughly speaking, a supermanifold M of dimension p|q (that is,
bosonic dimension p and fermionic dimension q) can be described lo-
cally by p bosonic coordinates t1 . . . tp and q fermionic coordinates
θ1 . . . θq. We cover M by open sets Uα each of which can be described
by coordinates t1α . . . | . . . θ

q
α. On the intersection Uα ∩ Uβ, the tiα are

even functions of t1β . . . | . . . θ
q
β and the θsα are odd functions of the same

variables. We call these functions gluing functions and denote them as
fαβ and ψαβ:

tiα = f i
αβ(t

1
β . . . | . . . θ

q
β)

θsα = ψs
αβ(t

1
β . . . | . . . θ

q
β). (3.1)

On the intersection Uα ∩ Uβ, we require that the gluing map defined
by f 1

αβ . . . | . . . ψ
q
αβ is inverse to the one defined by f 1

βα . . . | . . . ψ
q
βα, and

we require a compatibility of the gluing maps on triple intersections
Uα ∩ Uβ ∩ Uγ. Thus formally the theory of supermanifolds mimics the
standard theory of smooth manifolds. However, some of the geometric
intuition fails due to the presence of the odd coordinates and a rigorous
definition of supermanifold require the use of sheaf theory. Of course,
there is a huge literature on supermanifolds and it is impossible to give
complete references, nevertheless we suggest [1–5].

3.1. Presheaves and Sheaves

Let M be a topological space.

Definition 3.1.1. We define a presheaf of rings on M a rule R which
assigns a ring R(U) to each open subset U of M and a ring morphism
(called restriction map) ϕU,V : R(U) → R(V ) to each pair V ⊂ U such
that

• R(∅) = {0}
• ϕU,U is the identity map
• if W ⊂ V ⊂ U are open sets, then ϕU,W = ϕV,W ◦ ϕU,V

21
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The elements s ∈ R(U) are called sections of the presheaf R on
U . If s ∈ R(U) is a section of R on U and V ⊂ U , we shall write s|V
instead of ϕU,V (s).

Definition 3.1.2. A sheaf on a topological space M is a presheaf F
on M which fulfills the following axioms for any open subset U of M
and any cover {Ui} of U

• If two sections s ∈ F(U),š ∈ F(U) coincide when restricted to
any Ui, s|Ui = š|Ui, they are equal, s = š

• Given sections si ∈ F(Ui) which coincide on the intersections,
si|Ui∩Uj = sj|Ui∩Uj for every i, j there exist a section s ∈ F(U)
whose restriction to each Ui equals si, s|Ui = si

Naively speaking sheaves are presheaves defined by local conditions.
As a first example of sheaf let’s consider CM(U) the ring of real-valued
functions on an open set U of M , then CM is the sheaf of continuous
functions on M . In the same way we can define C∞

M and Ωp
M which

are respectively the sheaf on differentiable functions and the sheaf of
differential p-forms on a differentiable manifold M . At this point it is
interesting to underline the difference between sheaves and presheaves
and to do that we will use the familiar context of de-Rham theory. Let
M be a differentiable manifold, and let d : Ω•

M → Ω•
M be the de-Rham

differential. We can define the presheaves Zp
M of closed differential p-

forms, and B
p
M of exact p-forms. Z

p
M is a sheaf, since the condition

of being closed is local: a differential form is closed if and only if it
is closed in a neighbourhood of each point of M . Conversely B

p
M it’s

not a sheaf in fact if we consider M = R2, the presheaf B1
M of exact

1-forms does not satisfy the second sheaf axiom. This situation arise
when we consider the form

ω =
xdy − ydx

x2 + y2

which is defined on the open subset U = R2−{(0, 0)}. Since ω is closed
on U , there is an open cover {Ui} of U where ω is an exact form, ω|Ui ∈

B1
M(Ui) (Poincaré Lemma). But ω it’s not an exact form on U since its

integral along the unit circle is different from zero. In the interesting
reference [34] there is a more complete description of sheaf theory, as
well of other concepts of algebraic geometry, aimed to physicists. Right
now we are ready to define precisely what a supermanifold is by means
of the sheaf theory.

Definition 3.1.3. A real smooth supermanifold M of dimension p|q
is a pair (M,OM), where M is a real smooth manifold of dimension p,
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OM is a sheaf of commutative superalgebra such that locally

OM(U) � C
∞
M (U)⊗ ∧

•(Rq)∗ (3.2)

where U ⊂ M is an open subset and ∧•(Rq)∗ as defined in Example
2.1.1.

Although this statement is precise, it is not as much useful when
we are dealing with computations, let’s follow the approach of [15] and
illustrate this formal definition with a couple of concrete examples.

Example 3.1.4. Assume that M is smooth manifold then we can as-
sociate to it the supermanifold ΠTM called odd tangent bundle, which
is defined by the gluing rule

�t µ = �t µ(t) , �θ µ =
∂�t µ

∂t ν
θ ν , (3.3)

where t’s are local coordinates on M and θ’s are glued as dtµ. Here we
consider the fiber directions of the tangent bundle to be fermionic rather
than bosonic. The symbol Π stands for reversal of statistics in the fiber
directions; in the literature, this is often called reversal of parity. The
functions on ΠTM have the following expansion

f(t, θ) =
dimM�

p=0

1

p!
fµ1µ2...µp(t)θ

µ1θµ2 ...θµp (3.4)

and thus they are naturally identified with the differential forms,
C∞(ΠTM) = Ω•(M).

Example 3.1.5. Again let M be a smooth manifold and now we asso-
ciate to it another supermanifold ΠT ∗M called odd cotangent bundle,
which has the following local description

�t µ = �t µ(t) , �θµ =
∂t ν

∂�t µ
θν , (3.5)

where t’s are local coordinates on M and θ’s transform as ∂µ. The
functions on ΠT ∗M have the expansion

f(t, θ) =
dimM�

p=0

1

p!
fµ1µ2...µp(t)θµ1θµ2 ...θµp (3.6)

and thus they are naturally identified with multivector fields,
C∞(ΠT ∗M) = Γ(∧•TM).

The use of local coordinates is extremely useful and sufficient for
most purposes and we will follow this approach troughout this notes.
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3.2. Integration Theory

A proper integration theory on supermanifold requires the explana-
tion of what sort of object can be integrated. To achieve this result it
will be useful to reinterpret some result from sections (2.3 ,2.4) follow-
ing a geometrical approach [1]. Now let M be a compact supermanifold
of dimension p|q, as described in section 3.1. We introduce on M a line
bundle called Berezinian line bundle Ber(M). Ber(M) is defined by
saying that every local coordinate system T = t1 . . . | . . . θq on M deter-
mines a local trivialization of Ber(M) that we denote

�
dt1 . . . | . . . dθq

�
.

Moreover, if �T = �t1 . . . | . . . �θq is another coordinate system, then the
two trivializations of Ber(M) are related by

�
dt1 . . . | . . . dθq

�
= Ber

�
∂T

∂ �T

��
d�t 1 . . . | . . . d�θq

�
. (3.7)

see the analogy with formula (2.70). What can be naturally integrated
over M is a section of Ber(M). To show this, first let s be a section
of Ber(M) whose support is contained in a small open set U ⊂ M
on which we are given local coordinates t1 . . . | . . . θq, establishing an
isomorphism of U with an open set in Rp|q. This being so, we can view
s as a section of the Berezinian of Rp|q. This Berezinian is trivialized
by the section [dt1 . . . | . . . dθq] and s must be the product of this times
some function g:

s = [dt1 . . . | . . . dθq
�
g(t1 . . . | . . . θq). (3.8)

So we define the integral of s to equal the integral of the right hand
side of equation (3.8):

�

M

s =

�

Rp|q

�
dt1 . . . | . . . dθq

�
g(t1 . . . | . . . θq). (3.9)

The integral on the right is the naive Berezin integral (2.49). For this
definition to make sense, we need to check that the result does not
depend on the coordinate system t1 . . . | . . . θq on Rp|q that was used in
the computation. This follows from the rule (3.7) for how the sym-
bol

�
dt1 . . . | . . . dθq

�
transforms under a change of coordinates. The

Berezinian in this formula is analogous to the usual Jacobian in the
transformation law of an ordinary integral under a change of coordi-
nates as we have seen in section (2.4). Up to now, we have defined the
integral of a section of Ber(M) whose support is in a sufficiently small
region inM . To reduce the general case to this, we pick a cover ofM by
small open sets Uα, each of which is isomorphic to an open set in Rp|q,
and we use the existence of a partition of unity. On a smooth manifold,
one can find smooth functions hα on M such that each hα is supported
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in the interior of Uα and
�

α hα = 1. Then we write s =
�

α sα where
sα = shα. Each sα is supported in Uα, so its integral can be defined as
in (3.9). Then we define

�
M s =

�
α

�
M sα. To show that this doesn’t

depend on the choice of the open cover or the partition of unity we
can use the same kind of arguments used to define the integral of a
differential form on an ordinary manifold. The way to integrate over a
supermanifold M is found by noting this basic difference: on M , there
is not in general a natural way to have a section of the Berezinian,
on ΠTM the natural choice is always possible because of the of the
behaviour of the variables in pairs. Let’s study the integration on odd
tangent and odd cotangent bundles.

Example 3.2.1. On ΠTM the even part of the measure transforms
in the standard way

[d�t 1 . . . d�t n] = det

�
∂�t
∂t

�
[dt1 . . . dtn] (3.10)

while the odd part transforms according to the following property

[d�θ 1 . . . d�θ n] = det

�
∂�t
∂t

�−1

[dθ1 . . . dθn] (3.11)

where this transormation rules are obtained from Example 3.1.4. As
we can see the transformation of even and odd parts cancel each other
and thus we have�

[d�t 1 . . . | . . . d�θq] =
�

[dt1 . . . | . . . dθq] (3.12)

which corresponds to the canonical integration on ΠTM . Any function
of top degree on ΠTM can be integrated canonically.

Example 3.2.2. On ΠT ∗M the even part transforms as before

[d�t 1 . . . d�t n] = det

�
∂�t
∂t

�
[dt1 . . . dtn] (3.13)

while the odd part transforms in the same way as the even one

[d�θ 1 . . . d�θ n] = det

�
∂�t
∂t

�
[dθ1 . . . dθn] (3.14)

where this transormation rule are obtained from Example 3.1.5. We
assume that M is orientiable and choose a volume form

vol = ρ(t) dt1 ∧ ... ∧ dtn (3.15)
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ρ transforms as a densitity

�ρ = det

�
∂�t
∂t

�−1

ρ (3.16)

Now we can define the following invariant measure
�

[d�t 1 . . . | . . . d�θq]�ρ 2 =

�
[dt1 . . . | . . . dθq]ρ2 (3.17)

Thus to integrate the multivector fields we need to pick a volume form
on M .

Remark: A naive generalization of differential forms to the case of
supermanifold with even coordinates tµ and odd coordinates θµ leads
to functions F (t, θ|dt, dθ) that are homogeneous polynomials in (dt, dθ)
(note that dt is odd while dθ is even) and such forms cannot be inte-
grated over supermanifolds. In the pure even case, the degree of the
form can only be less or equal than the dimension of the manifold and
the forms of the top degree transform as measures under smooth coor-
dinate transformations. Then, it is possible to integrate the forms of
the top degree over the oriented manifolds and forms of lower degree
over the oriented subspaces. On the other hand, forms on a supermani-
fold may have arbitrary large degree due to the presence of commuting
dθµ and none of them transforms as a Berezinian measure. The cor-
rect generalization of the differential form that can be integrated over
supermanifold is an object ω on M called integral form defined as arbi-
trary generalized function ω(x, dx) onΠTM , where we abbreviated the
whole set of coordinates t1 . . . | . . . θq on M as x. Basically we require
that in its dependence on dθ1 . . . dθq, ω is a distribution supported at
the origin. We define the integral of ω over M as Berezin integral over
ΠTM �

M

ω =

�

ΠTM

D(x, dx)ω(x, dx) (3.18)

where D(x, dx) is an abbreviation for [dt1 . . . d(dθq)|dθ1 . . . d(dtp)]. The
integral on the right hand side of equation (3.18) does not depend on the
choice of coordinates in fact as we have seen before the two Berezinians,
one from the change of x and the other from the change of dx cancel
each other due to the twist of parity on ΠTM . On the left hand side
of equation (3.18) it’s crucial that ω is an integral form rather than
a differential form. Because ω(x) has compact support as a function
of even variables dθ1 . . . dθq the integral over those variables makes
sense. A similar approach to integrating a differential form on M would
not make sense, since if ω(x) is a differential form, it has polynomial
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dependence on dθ1 . . . dθq and the integral over those variables does not
converge.



CHAPTER 4

Graded Geometry

Graded geometry is a generalization of supergeometry. Here we
are introducing a Z-grading instead of a Z2-grading and many defi-
nitions from supergeometry have a related analog in the graded case.
References [32, 38] are standard introductions to the subject.

4.1. Graded Linear Algebra

A graded vector space V is a collection of vector spaces Vi with the
decomposition

V =
�

i∈Z

Vi (4.1)

If v ∈ Vi we say that v is a homogeneous element of V with degree
|v| = i. Any element of V can be decomposed in terms of homogeneous
elements of a given degree. A morphism f : V → W of graded vector
spaces is a collection of linear maps

(fi : Vi → Wi)i∈Z (4.2)

The morphisms between graded vector spaces are also referred to as
graded linear maps i.e. linear maps which preserves the grading. The
dual V ∗ of a graded vector space V is the graded vector space (V ∗

−i)i∈Z.
Moreover,V shifted by k is the graded vector space V [k] given by
(Vi+k)i∈Z. By definition, a graded linear map of degree k between
V and W is a graded linear map between V and W [k]. If the graded
vector space V is equipped with an associative product which respects
the grading then we call V a graded algebra. If for a graded algebra V
and any homogeneous elements v, v̌ ∈ V we have the relation

vv̌ = (−1)|v||v̌|v̌v (4.3)

then we call V a graded commutative algebra. A significant example
of graded algebra is given by the graded symmetric space S(V ).

Definition 4.1.1. Let V be a graded vector space over R or C. We
define the graded symmetric algebra S(V ) as the linear space spanned

28
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by polynomial functions on V
�

l

fa1a2...al v
a1va2 ...val (4.4)

where
vavb = (−1)|v

a||vb|vbva (4.5)

with va and vb being homogeneous elements of degree |va| and |vb| re-
spectively. The functions on V are naturally graded and multiplication
of function is graded commutative. Therefore the graded symmetric
algebra S(V ) is a graded commutative algebra.

4.2. Graded Manifolds

To introduce the notion of graded manifold we will follow closely
what we have done for the supermanifolds.

Definition 4.2.1. A smooth graded manifold M is a pair (M,OM),
where M is a smooth manifold and OM is a sheaf of graded commuta-
tive algebra such that locally

OM(U) � C
∞
M (U)⊗ S(V ) (4.6)

where U ⊂ M is an open subset and V is a graded vector space.

The best way to clarify this definition is by giving explicit examples.

Example 4.2.2. Let us introduce the graded version of the odd tangent
bundle. We denote the graded tangent bundle as T [1]M and we have
the same coordinates tµ and θµ as in Example 3.1.4, with the same
transformation rules. The coordinate t is of degree 0 and θ is of de-
gree 1 and the gluing rules respect the degree. The space of functions
C∞(T [1]M) = Ω•(M) is a graded commutative algebra with the same
Z-grading as the differential forms.

Example 4.2.3. Moreover, we can introduce the graded version T ∗[−1]M
of the odd cotangent bundle following Example 3.1.5. We allocate the
degree 0 for t and degree −1 for θ. The gluing preserves the degrees.
The functions C∞(T ∗[−1]M) = Γ(∧•TM) is graded commutative alge-
bra with degree given by minus of degree of multivector field.

A big part of differential geometry can be readily generalized to the
graded case. Integration theory for graded manifolds is the same to
what we already introduced in (3.2) since we look at the underlying
supermanifold structure. A graded vector fields on a graded mani-
fold can be identified with graded derivations of the algebra of smooth
functions.
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Definition 4.2.4. A graded vector field on M is a graded linear map

X : C∞(M) → C
∞(M)[k] (4.7)

which satisfies the graded Leibniz rule

X(fg) = X(f)g + (−1)k|f |fX(g) (4.8)

for all homogeneous smooth functions f, g. The integer k is called de-
gree of X.

A graded vector field of degree 1 which commutes with itself is
called a cohomological vector field. If we denote this cohomological
vector field with D we say that D endows the graded commutative
algebra of functions C∞(M) with the structure of differential complex.
Such graded commutative algebra with D is called a graded differential
algebra or simply a dg-algebra. A graded manifold endowed with a
cohomological vector field is called dg-manifold.

Example 4.2.5. Consider the shifted tangent bundle T [1]M , whose
algebra of smooth functions is equal to the algebra of differential forms
Ω(M). The de Rham differential on Ω(M) corresponds to a cohomo-
logical vector field D on T [1]M . The cohomological vector field D is
written in local coordinates as

D = θµ
∂

∂tµ
(4.9)

In this setting C∞(T [1]M) is an example of dg-algebra.



CHAPTER 5

Odd Fourier transform and BV-formalism

In this section we will derive the BV formalism via the odd Fourier
transformation which provides a map from C∞(T [1]M) to C∞(T ∗[−1]M).
As explained in [15] the odd cotangent bundle C∞(T ∗[−1]M) has an
interesting algebraic structure on the space of functions and employing
the odd Fourier transform we will obtain the Stokes theorem for the
integration on T ∗[−1]M . The power of the BV formalism is based on
the algebraic interpretation of the integration theory for odd cotangent
bundle.

5.1. Odd Fourier Transform

Let’s consider a n-dimensional orientable manifoldM , we can choose
a volume form

vol = ρ(t) dt1 ∧ · · · ∧ dtn =
1

n!
Ωµ1...µn(t) dt

µ1 ∧ · · · ∧ dtµn (5.1)

which is a top degree nowhere vanishing form, where

ρ(t) =
1

n!
εµ1...µnΩµ1...µn(t) (5.2)

Since we have the volume form, we can define the integration only along
the odd direction on T [1]M in the following manner

�
[d�θ 1 . . . d�θ n]�ρ −1 =

�
[dθ1 . . . dθn]ρ−1 (5.3)

The odd Fourier transform is defined for f(t, θ) ∈ C∞(T [1]M) as

F [f ](t, ψ) =

�
[dθ1 . . . dθn]ρ−1eψµθµf(t, θ) (5.4)

To make sense globally of the transformation (5.4) we assume that the
degree of ψ is −1. Additionally we require that ψµ transforms as ∂µ
(dual to θµ). Thus F [f ](t, ψ) ∈ C∞(T ∗[−1]M) and the odd Fourier
transform maps functions on T [1]M to functions on T ∗[−1]M . The
explicit computation of the integral in the right hand side of equation

31
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(5.4) leads to

F [f ](t, ψ) =
(−1)(n−p)(n−p+1)/2

p!(n− p)!
fµ1...µpΩ

µ1...µpµp+1...µn∂µp+1 ∧ · · · ∧ ∂µn

(5.5)
where Ωµ1...µn is defined as components of a nowhere vanishing top
multivector field dual to the volume form (5.1)

vol−1 = ρ−1(t) ∂1 ∧ · · · ∧ ∂n =
1

n!
Ωµ1...µn(t) ∂µ1 ∧ · · · ∧ ∂µn (5.6)

Equation (5.5) needs a comment, indeed the factor (−1)(n−p)(n−p+1)/2

appearing here is due to conventions for θ-terms ordering in the Berezin
integral; as we can see the odd Fourier transform maps differential
forms to multivectors. We can also define the inverse Fourier transform
F−1 which maps the functions on T ∗[−1]M to functions on T [1]M

F−1[ �f ](t, θ) = (−1)n(n+1)/2

�
[dψ1 . . . dψn]ρ

−1e−ψµθµ �f(t, ψ) (5.7)

where �f(t, ψ) ∈ C∞(T ∗[−1]M). Equation (5.7) can be also seen as a
contraction of a multivector field with a volume form. To streamline
our notation we will denote all symbols without tilde as functions on
T [1]M and all symbols with tilde as functions on T ∗[−1]M . Under the
odd Fourier transform F the differential D defined in (4.9) transforms
to bilinear operation ∆ on C∞(T ∗[−1]M) as

F [Df ] = (−1)n∆F [f ] (5.8)

and from this we get

∆ =
∂2

∂xµ∂ψµ
+ ∂µ(log ρ)

∂

∂ψµ
(5.9)

By construction ∆2 = 0 and degree of ∆ is 1. To obtain formula (5.9)
we need to plug the expression for D, found in (4.9), into (5.4) and to
bring out the two derivatives from the Fourier transform. The algebra
of smooth functions on T ∗[−1]M is a graded commutative algebra with
respect to the ordinary multiplication of functions, but ∆ it’s not a
derivation of this multiplication since

∆( �f �g ) �= ∆( �f )�g + (−1)|
�f | �f∆(�g ) (5.10)

We define the bilinear operation which measures the failure of ∆ to be
a derivation as

{ �f, �g } = (−1)|
�f |∆( �f �g )− (−1)|

�f |∆( �f)�g − �f∆(�g) (5.11)
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A direct calculation gives

{ �f, �g } =
∂ �f
∂xµ

∂�g
∂ψµ

+ (−1)|
�f | ∂ �f
∂ψµ

∂�g
∂xµ

(5.12)

which is very reminiscent of the standard Poisson bracket for the cotan-
gent bundle, but now with the odd momenta.

Definition 5.1.1. A graded commutative algebra V with the odd bracket
{ , } satisfying the following axioms

{v, w} = −(−1)(|v|+1)(|w|+1)
{w, v}

{v, {w, z}} = {{v, w}, z}+ (−1)(|v|+1)(|w|+1)
{w, {v, z}}

{v, wz} = {v, w}z + (−1)(|v|+1)|w|w{v, z}

(5.13)

is called a Gerstenhaber algebra [9].

It is assumed that the degree of bracket { , } is 1.

Definition 5.1.2. A Gerstenhaber algebra (V, ·, { , }) together with an
odd, anticommuting, R-linear map which generates the bracket { , }

according to

{v, w} = (−1)|v|∆(vw)− (−1)|v|(∆v)w − v(∆w) (5.14)

is called a BV algebra [10]. ∆ is called the odd Laplace operator (odd
Laplacian).

It is assumed that degree of ∆ is 1. Here we are not showing that the
bracket (5.14) respect all axioms (5.13), however to reach this result is
also necessary to understand that the BV bracket enjoys a generalized
Leibniz rule

∆{v, w} = {∆v, w} − (−1)|v|{v,∆w} (5.15)

Summarizing, upon a choice of a volume form on M the space of func-
tions C∞(T ∗[−1]M) is a BV algebra with ∆ defined in (5.9). The
graded manifold T ∗[−1]M is called a BV manifold. A BV manifold
can be defined as a graded manifold M such that the space of function
C∞(M) is endowed with a BV algebra structure. As a final comment
we will give an alternative definition of BV algebra.

Definition 5.1.3. A graded commutative algebra V with an odd, an-
ticommuting, R-linear map satisfying

∆(vwz) = ∆(vw)z + (−1)|v|v∆(wz) + (−1)(|v|+1)|w|w∆(vz)

−∆(v)wz − (−1)|v|v∆(w)z − (−1)|v|+|w|vw∆(z)
(5.16)

is called a BV algebra.
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An operator ∆ with these properties gives rise to the bracket (5.14)
which satisfies all axioms in (5.13). This fact can be seen easily in
the following way: using the definition (5.14), to show that the second
equation in (5.13) holds, we discover the relation (5.16). For a better
understanding of the origin of equation (5.16) let’s consider the func-
tions f(t), g(t) and h(t) of one variable and the second derivative which
satisfies the following property

d2(fgh)

dt2
+

d2f

dt2
gh+ f

d2g

dt2
h+ fg

d2h

dt2
=

d2(fg)

dt2
h+

d2(fh)

dt2
g + f

d2(gh)

dt2
(5.17)

This result can be regarded as a definition of second derivative. Basi-
cally the property (5.16) is just the graded generalization of the second
order differential operator. In the case of C∞(T ∗[−1]M), the ∆ as in
(5.9) is of second order.

5.2. Integration Theory

Previously we discussed different algebraic aspects of graded man-
ifolds T [1]M and T ∗[−1]M which can be related by the odd Fourier
transformation upon the choice of a volume form on M . T ∗[−1]M has
a quite interesting algebraic structure since C∞(T ∗[−1]M) is a BV al-
gebra. At the same time T [1]M has a very natural integration theory.
The goal of this section is to mix the algebraic aspects of T ∗[−1]M
with the integration theory on T [1]M using the odd Fourier transform
defined in (5.1). The starting point is a reformulation of the Stokes the-
orem in the language of the graded manifolds. For this purpose it is use-
ful to review a few facts about standard submanifolds. A submanifold
C of M can be described in algebraic language as follows. Consider the
ideal IC ⊂ C∞(M) of functions vanishing on C. The functions on sub-
manifold C can be described as quotient C∞(C) = C∞(M)/IC . Locally
we can choose coordinates tµ adapted to C such that the submanifold
C is defined by the conditions tp+1 = 0, tp+2 = 0 , . . . , tn = 0 (dimC = p
and dimM = n) while the rest t1, t2, . . . , tp may serve as coordinates for
C. In this local description IC is generated by tp+1, tp+2, . . . , tn. The
submanifolds can be defined purely algebraically as ideals of C∞(M)
with certain regularity condition. This construction leads to a general-
ization for the graded settings. Let’s collect some particular examples
which are relevant to fulfill our task.
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Example 5.2.1. T [1]C is a graded submanifold of T [1]M if C is sub-
manifold of M . In local coordinates T [1]C is described by

tp+1 = 0, tp+2 = 0 , . . . , tn = 0 , θp+1 = 0 , θp+2 = 0 , . . . , θn = 0
(5.18)

thus tp+1, ..., tn, θp+1, ..., θn generate the corresponding ideal IT [1]C.

Functions on the submanifold C∞(T [1]C) are given by the quotient
C∞(T [1]M)/IT [1]C . Moreover the above conditions define a natural
embedding i : T [1]C → T [1]M of graded manifolds and thus we can
define properly the pullback of functions from T [1]M to T [1]C.

Example 5.2.2. There is another interesting class of submanifolds,
namely odd conormal bundle N∗[−1]C viewed as graded submanifold of
T ∗[−1]M . In local coordinate N∗[−1]C is described by the conditions

tp+1 = 0, tp+2 = 0 , . . . , tn = 0 , ψ1 = 0 , ψ2 = 0 , . . . , ψp = 0
(5.19)

thus tp+1, . . . , tn, ψ1, . . . , ψp generate the ideal IN∗[−1]C.

All functions on C∞(N∗[−1]C) can be described by the quotient
C∞(T ∗[−1]M)/IN∗[−1]C . The above conditions define a natural embed-
ding j : N∗[−1]C → T ∗[−1]M and thus we can define properly the
pullback of functions from T ∗[−1]M to N∗[−1]C. At this point we can
relate the following integrals over different manifolds by means of the
Fourier transform

�

T [1]C

[dt1 . . . dtp|dθ1 . . . dθp] i∗ (f(t, θ)) =

= (−1)(n−p)(n−p+1)/2

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ j∗ (F [f ](t, ψ))

(5.20)

Equation (5.20) needs some comments. On the left hand side we are
integrating the pullback of f ∈ C∞(T [1]M) over T [1]C using the well
known integration rules defined troughout section (3.2). On the right
hand side we are integrating the pullback of F [f ] ∈ C∞(T ∗[−1]M) over
N∗[−1]C. We have to ensure that the measure [dt1 . . . dtp|dψ1 . . . dψn−p] ρ
is invariant under a change of coordinates which preserve C.

Proof. Let’s consider the adapted coordinates tµ = (ti, tα) such
that ti (i, j, k = 1, 2, . . . , p) are the coordinates along C and tα (α, β, γ =
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p+1, . . . , n) are coordinates transverse to C. A generic change of vari-
ables has the form

�t i = �t i(tj, tβ) �t α = �t α(tj, tβ) (5.21)

then all the transformations preserving C have to satisfy

∂�t α

∂tk
(tj, 0) = 0

∂�t i

∂tβ
(tj, 0) = 0 (5.22)

These conditions follow from the general transformation of differentials

d�t α =
∂�t α

∂t k
(tj, tγ)dtk +

∂�t α

∂t β
(tj, tγ)dtβ (5.23)

d�t i = ∂�t i

∂t k
(tj, tγ)dtk +

∂�t i

∂t β
(tj, tγ)dtβ (5.24)

in fact if we want that adapted coordinates transform to adapted coor-
dinates we have to impose equations (5.22). On N∗[−1]C we have the
following transformations of odd conormal coordinate ψα

�ψα =
∂tβ

∂�t α
(ti, 0)ψβ (5.25)

Note that ψα is a coordinate on N∗[−1]C not a section, and the invari-
ant object will be ψαdtα. Under the above transformations restricted
to C our measure transforms canonically

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ(ti, 0) = [d�t 1 . . . d�t p|d �ψ 1 . . . d �ψ n−p] �ρ(�t i, 0)
(5.26)

where ρ transforms as (3.16). �
The pullback of functions on the left and right hand side con-

sists in imposing conditions (5.18) and (5.19) respectively. Since all
operations in (5.20) are covariant, (respecting the appropriate gluing
rule), the equation is globally defined and independent from the choice
of adapted coordinates. Let’s recap two important corollaries of the
Stokes theorem for differential forms emerging in the context of ordi-
nary differential geometry. The first corollary is that the integral of an
exact form over a closed submanifold C is zero and the second one is
that the integral over closed form depends only on the homology class
of C �

C

dω = 0

�

C

α =

�

�C

α (5.27)

where α and ω are differential forms, dα = 0, C and �C are closed
submanifolds in the same homology class. These two statements can
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be rewritten in the graded language
�

T [1]C

[dt1 . . . dtp|dθ1 . . . dθp] Dg = 0 (5.28)

�

T [1]C

[dt1 . . . dtp|dθ1 . . . dθp] f =

�

T [1] �C

[dt1 . . . dtp|dθ1 . . . dθp] f (5.29)

where Df = 0 and we are working with pullbacks of f, g ∈ C∞(T [1]M)
to the submanifolds. Next we can combine the formula (5.20) with
(5.28) and (5.29). Then we get the following properties to which we
will refer as Ward identities

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ ∆�g = 0 (5.30)

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ �f =

�

N∗[−1] �C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ �f

(5.31)
where ∆ �f = 0 and we are dealing with the pullbacks of �f, �g ∈ C∞(T ∗[−1]M)
to N∗[−1]C. We can interpret these statements as a version of Stokes
theorem for the cotangent bundle.

5.3. Algebraic Aspects of Integration

On the graded cotangent bundle T ∗[−1]M there is a BV algebra
structure defined on C∞(T ∗[−1]M) with an odd Lie bracket defined
in (5.12) and an analog of Stokes theorem introduced in section (5.2).
The natural idea here is to combine the algebraic structure on T ∗[−1]M
with the integration and understand what an integral is in this setting.
On a Lie algebra g we can define the space of k-chains ck as an element
of ∧kg. This space is spanned by

ck = T1 ∧ T2 · · · ∧ Tk (5.32)

where Ti ∈ g and the boundary operator can be defined as

∂(T1∧T2∧...∧Tk) =
�

1≤i<j≤k

(−1)i+j+1[Ti, Tj]∧T1∧...∧ �Ti∧...∧ �Tj∧...∧Tn

(5.33)
where �Ti denotes the omission of argument Ti. The usual Jacobi iden-
tity guarantee that ∂2 = 0. A dual object called k-cochain ck also
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exist, it is a multilinear map ck : ∧kg → R such that the coboundary
operator δ is defined like

δck(T1 ∧ T2 ∧ · · · ∧ Tk) = ck (∂(T1 ∧ T2 ∧ · · · ∧ Tk)) (5.34)

where δ2 = 0. This gives rise to what is usually called Chevalley-
Eilenberg complex. If δck = 0 we call ck a cocycle. If there exist a
bk−1 such that ck = δbk−1 then we call ck a coboundary. In this way
we can define a Lie algebra cohomology Hk(g,R) which consists of co-
cycles modulo coboundaries. We are interested in the generalization of
Chevalley-Eilenberg complex for the graded Lie algebras. Let’s intro-
duce W = V [1], the graded vector space with a Lie bracket of degree
1. The k-cochain is defined as a multilinear map ck(w1, w2, . . . wk) with
the property

ck(w1, . . . , wi, wi+1, . . . , wk) = (−1)|wi||wi+1|ck(w1, . . . , wi+1, wi, . . . , wk)
(5.35)

The coboundary operator δ is acting as follows

δck(w1, . . . , wk+1)

=
�

(−1)sijck
�
(−1)|wi|+1[wi, wj], w1, . . . , �wi, ..., �wj, ..., wk+1

�

(5.36)

where sij is defined as

sij = |wi|(|w1|+ · · ·+ |wi−1|)+ |wj|(|w1|+ · · ·+ |wj−1|)+ |wi||wj| (5.37)

The sign factor sij is called the Koszul sign; it appear when we move
wi, wj at the beginning of the right hand side of equation (5.36). The
cocycles, coboundaries and cohomology are defined as before. Now
we introduce an important consequence of the Stokes theorem for the
multivector fields (5.30) and (5.31).

Theorem 5.3.1. Consider a collection of functions f1, f2 . . . fk ∈

C∞(T ∗[−1]M) such that ∆fi = 0 for each i. Define the integral

ck(f1, f2, . . . fk;C) =

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ f1(t, ψ) . . . fk(t, ψ)

(5.38)
where C is a closed submanifold of M . Then ck(f1, f2, . . . fk) is a co-
cycle i.e.

δck(f1, f2, . . . fk) = 0 (5.39)

Additionally ck(f1, f2, . . . fk;C) differs from ck(f1, f2, . . . fk; �C) by a
coboundary if C is homologous to �C, i.e.

ck(f1, f2, . . . fk;C)− ck(f1, f2, . . . fk; �C) = δbk−1 (5.40)
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where bk−1 is some (k − 1)-cochain.

This theorem is based on the observation by A. Schwarz in [40] and
the proof given here can be found in [15].

Proof. Equation (5.38) defines properly a k-cochain for odd Lie
algebra in fact

ck(f1, . . . , fi, fi+1, . . . , fk;C) = (−1)|fi||fi+1|ck(f1, . . . , fi+1, fi, . . . , fk;C)
(5.41)

this follows from the graded commutativity of C∞(T ∗[−1]M). Equation
(5.30) implies that

0 =

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ ∆(f1(t, ψ) . . . fk(t, ψ)) (5.42)

Iterating the ∆ operator property (5.11), we obtain the following for-
mula

∆(f1f2...fk) =
�

i<j

(− 1)sij(−1)|fi|{fi, fj}f1 . . . �fi . . . �fj . . . fk

sij = (−1)(|f1|+···+|fi−1|)|fi|+(|f1|+···+|fj−1|)|fj |+|fi||fj |
(5.43)

where we used ∆fi = 0. Combining (5.42) and (5.43) we discover that
ck defined in (5.38) is a cocycle

δck(f1, ..., fk+1;C)

=

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ ∆(f1(t, ψ) . . . fk(t, ψ)) = 0

(5.44)

where we have adopted the definition for the coboundary operator
(5.36). Next we have to exhibit that the cocycle (5.38) changes by
a coboundary when C is deformed continuously. Consider an infinites-
imal transformation of C parametrized by

δCt
α = εα(ti) δCψi = − ∂iε

α(ti)ψα (5.45)

where the index convention is the same of section (5.2). In this way a
function f ∈ C∞(T ∗[−1]M) changes as

δCf(t, ψ)
��
N∗[−1]C

= εα∂αf − ∂iε
α(ti)ψα∂ψjf

��
N∗[−1]C

= −{εα(ti)ψα, f}
��
N∗[−1]C

(5.46)
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Using ∆ we can rewrite equation (5.46) as

δCf(x, ψ)
��
N∗[−1]C

= ∆(εα(xi)ψαf) + εα(xi)ψα∆(f)
��
N∗[−1]C

(5.47)

The first term vanishes under the integral. If we look at the infinitesi-
mal deformation of f1 · · · fk, we have

δC ck(f1, . . . , fk;C) = δbk−1(f1, . . . , fk) (5.48)

where

bk−1(f1, · · · fk−1;C) =

�

N∗[−1]C

[dt1 . . . dtp|dψ1 . . . dψn−p] ρ εα(xi)ψα f1 · · · fk−1

(5.49)
Under an infinitesimal change of C, ck changes by a coboundary. If we
look now at finite deformations of C, we can parameterize the defor-
mation as a one-parameter family C(t). Thus, for every t, we have the
identity

d

dt
ck(f1, . . . , fk;C(t)) = δbk−1(f1, . . . , fk;C(t)) (5.50)

integrating both sides we get the formula for the finite change of C

ck(f1, . . . , fk;C(1))− ck(f1, . . . , fk;C(0)) = δ

1�

0

dt bk−1
C(t) (5.51)

This concludes the proof of Theorem 5.3.1. �
At this point we can perform the integral (5.38) in an explicit way.

We assume that the functions fi are of fixed degree and we will use the
same notation for the corresponding multivector fi ∈ Γ(∧•TM). If we
pull back the functions, the odd integration in (5.38) gives

ck(f1, . . . , fk;C) =

�

C

if1if2 · · ·fk vol (5.52)

where if is the usual contraction of a differential form with a multivec-
tor. Note that the volume form in (5.52) it is originated by the product
of the density ρ with the total antisymmetric tensor ε coming from the
ψ-term ordering in the integral. In our computation we also assumed
that all vector fields are divergenceless. Only if n− p = |f1|+ · · ·+ |fk|
the integral gives rise to cocycle on Γ(∧•TM) otherwise the integral
is identically zero due to the property of Berezin integration. In our
combination of algebraic and integration aspects on T ∗[−1]M we saw
that BV integral produces cocycle with a specific dependence on C.
This result can be used also as a definition for those kind of integrals.
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5.4. Geometry of BV Quantization

The physical motivation for the introduction of BV formalism is
to make possible the quantization of field theories that are difficult to
quantize by means of the Fadeev-Popov method. In fact in the last
years there has been the emergence of many gauge-theoretical models
that exhibit the so called open gauge algebra. These models are char-
acterized by the fact that the gauge transformation only close on-shell
which means that if we compute the commutator of two infinitesimal
gauge transformation we will find a transformation of the same type
only modulo the equation of motion. Models with an open gauge alge-
bra include supergravity theories, the Green-Schwarz superstring and
the superparticle, among others. This formalism firstly appeared in the
papers of Batalin and Vilkovisky [6, 7] while a clear geometric interpre-
tation was given by Schwarz in [11, 14]. A short but nice description
of BV formalism can also be found in [13]. Here we will try to resume
some aspects of the Schwarz approach in a brief way. Let’s review some
facts about symplectic geometry that will be useful in the sequel.

Definition 5.4.1. Let w be a 2-form on a manifold M , for each p ∈ M
the map wp : TpM × TpM → R is skew-symmetric bilinear on the
tangent space to M at p. The 2-form w is said symplectic if w is closed
and wp is symplectic for all p ∈ M i.e. it is nondegenerate , in other
words if we define the subspace U = {u ∈ TpM |wp(u, v) = 0, ∀ v ∈

TpM} then U = {0}.

The skew-symmetric condition restrict M to be even dimensional
otherwise w would not be invertible.

Definition 5.4.2. A symplectic manifold is a pair (M,w) where M is
a manifold and w is a symplectic form. If dimM = 2n we will say that
M is an (n|n)-dimensional manifold.

The most important example of symplectic manifold is a cotangent
bundle M = T ∗Q. This is the traditional phase space of classical
mechanics, Q being known as the configuration space in that context.

Example 5.4.3. A cotangent bundle T ∗Q has a canonical symplectic
2-form w which is globally exact

w = dθ (5.53)

and hence closed. Any local coordinate system {qk} on Q can be ex-
tended to a coordinate system {qk, pk} on T ∗Q such that θ and w are
locally given by

θ = pkdq
k w = dqk ∧ dpk (5.54)
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On any symplectic manifold it’s always possible to choose a local
coordinate system such that w takes the form (5.54). This property is
known as Darboux’s theorem. Using a general local coordinate system
(z1, . . . , z2n) on M we can write the Poisson bracket as

{F,G} =
∂F

∂zi
wij(z)

∂G

∂zj
(5.55)

where wij(z) is an invertible matrix and its inverse wij(z) determines

w = dziwijdz
j (5.56)

which is exactly the symplectic form.

Definition 5.4.4. A submanifold L ⊂ M is called isotropic if

tiwij(x)�t j = 0 (5.57)

for every pair of tangent vectors t,�t ∈ TxL.

Definition 5.4.5. Assuming that dimL = (k|k) we define a Lagrangian
manifold as an isotropic manifold of dimension (k|n − k) where 0 ≤

k ≤ n.

Now we will drag this concepts in the supergeometry framework.

Definition 5.4.6. Let’s consider an (n|n)-dimensional supermanifold
M equipped with an odd symplectic form w. We will refer to M as a
P -manifold.

If the P -manifold M is also equipped with a volume, by means of
density ρ, we can define an odd second order differential operator ∆
which is related to the divergence of a vector field onM . If the operator
∆ satisfy ∆2 = 0 we will refer to M as an SP -manifold.

Example 5.4.7. Following the spirit of this approach let’s consider the
odd Laplacian (5.9), basically the SP -manifold just described is exactly
the same of what we called a BV manifold in section (5.1).

Example 5.4.8. If L is a Lagrangian submanifold of an SP -manifold
it is singled out by the equation

tk+1 = · · · = tn = 0 ψ1 = · · · = ψk = 0 (5.58)

see the analogy with equation (5.19). The odd conormal bundle N∗[−1]C
described in section (5.2) is a Lagrangian submanifold.

Let’s consider a function f defined on a compact SP -manifold M
satisfying ∆f = 0. The following expression

�

L

fdσ (5.59)
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where L is a Lagrangian submanifold of M and dσ the volume element
upon it, does not change by continuous variations of L; moreover, L
can be replaced by any other Lagrangian submanifold �L which is in
the same homology class. In the case when f = ∆g the integral (5.59)
vanishes. Sometimes this result is called Schwarz theorem and it’s
exactly the geometric counterpart of what we described in (5.2) and
(5.3).

5.4.1. The BV Gauge Fixing. The problem of quantization in
quantum field theory is to make sense of certain path integrals of the
form

Z =

�

M
e−S/� (5.60)

where M is the manifolds where the fields are evaluated and there
exist a Lie group G , which is the gauge symmetry group, acting on
M. S is the action of the gauge theory considered and it can be seen
as a function on S ∈ Fun(M/G). Gauge symmetry of S implies that
the Hessian of action in any stationary point is degenerate and the
perturbative expansion is not well-defined. The quantization in BV
formalism is done by computing the partition function Z of (5.60) on
a Lagrangian submanifold L instead of M

Z =

�

L

e−S/� (5.61)

What we usually call gauge fixing here is just the choice of a specific
Lagrangian submanifold, the gauge invariance of the theory is guaran-
teed by the invariance of the partition function Z under the change of
gauge fixing condition as stated by the Schwarz theorem. Thus, the
partition function Z has to be invariant under deformations of the La-
grangian submanifold L in the space of fields. For any function f , the
integral

�
L f is invariant under such deformations if ∆f = 0. Taking

f = e−S/�, we obtain the BV quantum master equation ∆e−S/� = 0
that leads to

− �∆S +
1

2
{S, S} = 0 (5.62)

Eventually we can resume in its entirely the BV quantization proce-
dure: the starting point is considering a classical action functional and
constructing a solution to (5.62); we will call a function f , defined on
an SP -manifold M , a quantum observables if it obeys to

− �∆f +
1

2
{f, S} = 0 (5.63)



5.4. GEOMETRY OF BV QUANTIZATION 44

and the expression

�f� =

�

L

fe−S/� (5.64)

has the meaning of the expectation value of f and it depends only
on the homology class of L. Essentially we obtain all the expecta-
tion values for the physical observables in terms of deformation of
the action. The choice of a Lagrangian submanifold corresponds to
a gauge fixing for the theory. Certainly in the quantization procedure
we should consider ill-defined infinite-dimensional integrals however all
the statements about integral (5.59) are proved rigorously only in the
finite-dimensional case. In addition it is very difficult to define the no-
tion of infinite-dimensional SP -manifold and to construct the operator
∆. Nevertheless we can use the framework of perturbation theory to
quantize gauge theories using the BV formalism.



CHAPTER 6

The Mathai-Quillen Formalism

The Mathai-Quillen formalism, introduced in [17], provides a par-
ticular representative of the Thom class, using differential forms on the
total space of a vector bundle. Characteristic classes are essential in
the study of global properties of a vector bundle, for this reason the
explicit construction given by Mathai and Quillen by means of Berezin
integration, it’s a higly important mathematical discovery.
However, in this section, we would like to stress the physical relevance
of this formalism which is closely related to topological quantum field
theories.

6.1. General Remarks on Topological Quantum Field
Theories

Let’s consider a quantum field theory defined over a manifold X
equipped with a Riemannian metric gµν . In general the partition func-
tion and correlation functions of this theory will depend on the back-
ground metric. We will say that a quantum field theory is topological
if there exists a set of operators in the theory, known as topological
observables, such that their correlation functions do not depend on the
metric. If we denote these operators by Oi then

δ

δgµν
�Oi1 . . .Oin� = 0 (6.1)

Topological quantum field theories (TQFT), largely introduced by E.
Witten, may be grouped into two classes. The Schwarz type [20] the-
ories have the action and the observables which are metric indepen-
dent. This guarantees topological invariance as a classical symmetry
of the theory and hence the quantum theory is expected to be topo-
logical. The most important example of a TQFT of Schwarz type is
3D Chern-Simons gauge theory. The Witten type [25] theories (also
called cohomological TQFTs) have the action and the observables that
may depend on the metric, but the theory has an underlying scalar
symmetry carried by an odd nilpotent operator Q acting on the fields
in such a way that the correlation functions of the theory do not de-
pend on the background metric. In a cohomological theory physical

45
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observables are Q-cohomology classes. The path integrals of a coho-
mological topological field theory are integral representations of Thom
classes of vector bundles in infinite dimensional spaces. This was first
pointed out in an important paper of Atiyah and Jeffrey [22] where
they generalized the Mathai-Quillen formalism to the infinite dimen-
sional case. Adopting this point of view gives some advantages. First
of all, it provides a proof that finite dimensional topological invariants
can be represented by functional integrals, the hallmark of topological
field theories. Moreover, it offers some insight into the mechanism of
localization of path integrals in supersymmetric quantum field theory;
a very pervasive technique in modern theoretical physics.
In his classic works [18, 19] Witten showed that by changing the cou-
pling to gravity of the fields in an N = 2 supersymmetric theory in
two or four dimensions, a TQFT theory of cohomological type was ob-
tained. This redefinition of the theory is called twisting. We suggest to
the reader the reference [29] which works out in detail all this procedure.
For a brief review look at [28]. The interesting idea in supersymmet-
ric quantum field theory is that fermionic degrees of freedom cancel
bosonic degrees of freedom to such extent that the infinite dimensional
path integral of the QFT reduces to a finite dimensional integral over
certain geometrical spaces called moduli spaces. Now, from another
point of view we know [25] that all the topologically twisted QFTs fit
in the following paradigm

(1) Fields: Represented by φi. These might be, for example, con-
nections on a principal bundle.

(2) Equations: We are interested in some equations on the fields
s(φi), where s is a generic section. Usually these are partial
differential equations.

(3) Symmetries: Typically the equations have a gauge symmetry.

The main statement, as before, is that the path integral localizes to

M = Z(s)/G (6.2)

where M is what we called moduli space, Z(s) = {φ : s(φ) = 0} and G

is the group of symmetry. These kind of spaces are all of the form (6.2)
and they share three properties. They are finite dimensional, gener-
ically noncompact and generically singular. The last two properties
pose technical problems that we will not discuss.

Example 6.1.1. As an example of what we discussed let’s consider the
Yang-Mills gauge theory with the following basic data

(1) A closed, oriented , Riemannian 4-manifold (X, gµν).
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(2) A principal bundle P → X for a compact Lie group G with
Lie algebra g.

(3) An action of the form

S =

�

X

tr(F ∧ ∗F ) (6.3)

Here our fields φi will be A ∈ A = Conn(P ). In D = 4, ∗ : Ω2(X) →
Ω2(X) and ∗2 = 1|Ω2(X), so that we may define the eigenspaces Ω2,+(X)
and Ω2,−(X) with eigenvalues under ∗ of +1 and 1, respectively:

Ω2(X) = Ω2,−(X)⊕ Ω2,+(X) (6.4)

Our bundle of equations will be

E = A× Ω2,+(X, ad g) (6.5)

where Ω2,+(X, ad g) is the space of self-dual two forms with values in
the adjoint of the Lie algebra g. Then our section will be

s(A) = F+
A = F + ∗F (6.6)

Notice that F+
A = 0 is one of the possible extremal configurations of

(6.3). Eventually our group of symmetry will be

G = Aut(P ) ∼ Map(X,G) (6.7)

In this particular example the path integral of the theory localizes to the
moduli space of istantons MSD defined as

MSD = {A ∈ A |F+
A = 0}/G (6.8)

The lesson that we learn here is that certain versions of QFTs can
be used to study the geometry of certain geometrical spaces using path
integrals, from a mathematical point of view we are studying intersec-
tion theory in moduli spaces applying the language of physics. Let’s
see how mathematicians looks at path integrals in this context. Here,
of course, we just considered an infinite dimensional situation, we had
an infinite dimensional space A, an infinite dimensional bundle E over
it and a quotient over an infinite dimensional group G. Anyway, just
to understand the concepts, we will forget for the moment about the
infinite dimensional case to avoid further technicalities.

6.2. Euler Class

Definition 6.2.1. Consider a real vector bundle π : E → X over
a manifold X. We will assume that E and X are orientable, X is
closed and the rank (fiber dimension) of E satisfies rk(E) = 2m ≤

dim(X) = n. The Euler class of E is an integral cohomology class
e(E) ∈ H2m(X).
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For m = 1 the Euler class can be defined easily, see [16], but for
higher rank bundle a similar construction, although possible in princi-
ple, becomes unwieldy. For an extensive discussion of the Euler class
of a vector bundle we suggest [35]. In spite of this circumstance there
are other three ways to compute the Euler class of a vector bundle.
The first of these is done by counting the zeros of a certain section of
the bundle, this is known as Hopf theorem. The second makes use of
the theory of characteristic classes producing an explicit representative
e∇(E) of e(E) which depends on the curvature Ω∇ of a connection ∇

on E. This explicit representative have the following form

e∇(E) = Pf
�Ω∇

2π

�
(6.9)

Finally, the third way is in terms of the Thom class of E which we
will describe in the following section. When rk(E) = dim(X), e.g if
E = TX, then H2m(X) = Hn(X) and we can consider, instead of
e(E), its evaluation on the fundamental class [X]

χ(E) = e(E)[X] (6.10)

χ(E) is called Euler number and we can think to the pairing with
fundamental class [X] as the concept of integrating over the manifold
X. Let’s obtain the Euler number in terms of the first two descriptions
of e(E) that we had given before. Looking to the Hopf theorem from
this perspective we can obtain the Euler number as the signed sum
over the zeros of a generic section s of E

χ(E) =
�

xk : s(xk)=0

degs(xk) (6.11)

Moreover we can obtain it also from the integral

χ(E) =

�

X

e∇(E) (6.12)

If we match the formulae (6.11) and (6.12) we can realize that the
Hopf theorem is basically an example of localization, by localization
we mean that the integral of a differential form of top degree on the
manifold X, in this case e∇(E), it’s converted to a sum of a discrete
set of points as in (6.11).

Example 6.2.2. In Yang-Mills Example 6.1.1 we took the space of
solutions of the self-dual equation MSD, which is a quotient of a subset
of the space of all connections A, and the path integral over the space
of all connections localizes just to the path integral over the space of
self-dual connections.
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To prove that (6.11) and (6.12) are basically the same thing we need
the Mathai-Quillen representative of the Thom class which is roughly
speaking a generalization of (6.9) that depends also on a generic section
s of E. Thus, making the appropriate choice of a section, it’s possible to
show that the Mathai-Quillen representative gives a formula for χ(E)
that smoothly interpolates between (6.11) and (6.12).

6.3. Thom Class

Given a vector bundle π : E → X we can define the cohomology
class of the total space H•(E) and the cohomology class of the base
manifold H•(X).The Thom class of a vector bundle allows us to relate
this cohomology classes. Typically we are used to consider the standard
de Rham cohomologyH•(E) but in this situation is better to adopt, for
reasons that we will see soon, the cohomology with compact support
H•

c (E) which in a very natural way is defined for differential forms
with compact support. In physics a more natural notion than compact
support is rapid decrease: i.e., Gaussian decay at infinity. Cohomology
for forms with rapid decrease is the same as cohomology with compact
support [17]. From now on we will always refer to the rapid decrease
cohomology group H•

rd(E). For forms with rapid decrease there exist
a push-forward map π∗ called integration along the fibers. In local
coordinates and for trivial bundle, this is the operation of integrating
along the fibers the part of α ∈ Ω•

rd(E) which contains a vertical 2m-
form (remember that rk(E) = 2m) and considering the outcome as a
differential form on X. In this way we have a globally well defined
operation

π∗ : Ω
•
rd(E) → Ω•−2m(X) (6.13)

From this result, we can understand that there is a Poincaré lemma
also for the rapid decrease cohomology

π∗ : H
•
rd(E) � H•−2m(M) (6.14)

This correspondence leads to the introduction of the so called Thom
isomorphism, which is the inverse of π∗

T : H•(X) −→ H•+2m
rd (E) (6.15)

Definition 6.3.1. The image of 1 ∈ H0(X) under the Thom isomor-
phism determines a cohomology class Φ(E) ∈ H2m

rd (E), called the Thom
class of the oriented vector bundle E.

Clearly π∗Φ(E) = 1 and if we take a differential form α ∈ H•(X)
the Thom isomorphism is explicitly realized as

T (α) = π∗(α) ∧ Φ(E) (6.16)
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The Thom class has two key properties that allow us to realize the
importance of the discovery of Mathai and Quillen. Let s : X → E
be any section of E, then s∗Φ(E) is a closed form and its cohomology
class coincides with the Euler class e(E)

s∗Φ(E) = e(E) (6.17)

This perspective on the Euler class is really intriguing: provided that
we can find an explicit differential form representative Φ∇(E) of Φ(E),
depending on a connection ∇ on E, we can use a section s to pull it
back to X obtaining

es,∇(E) = s∗Φ∇(E) (6.18)

which is an explicit representation of the Euler class e(E). The second
property is called localization principle and it is deeply related to what
we said about the relationship between cohomology classes of the bun-
dle and of the base space. Let α ∈ Ω•(E) be a differential form on the

Figure 6.1. Mathai-Quillen construction of a Thom form

total space then �

E

α ∧ Φ(E) =

�

X

α|X (6.19)

where α|X is the restriction of α to the base manifold X. This result is
a direct consequence of integration along the fibers which is a natural
concept for differential forms with rapid decrease. Mathai and Quillen
interpreted the Thom class of a vector bundle as a gaussian shaped dif-
ferential form which has indices only in the vertical direction along the
fiber. Basically they constructed a volume form of Gaussian-like shape
along the fiber satisfying (6.19), this differential form representative is
exactly what we needed to pull back, via section s, to prove (6.18).
We can also write the localization principle from the point of view of
the base manifold. To do that let’s pick a submanifold i : S → X and
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Figure 6.2. The zero set of a generic section

denote by Z(s) the zero locus of a section s of E as in fig. 6.2. If s is
a generic section then

�

Z(s)

i∗O =

�

X

s∗(Φ(E)) ∧ O (6.20)

where s∗(Φ(E)) ∧ O ∈ Ω•(X). In the application to topological field
theory we interpret s as s(φ) = Dφ where φ is a field in the space
of all fields C and D is some differential operator. Then (6.20) is the
key property which allows us to localize the integral to the subspace
Dφ = 0. Before proceeding further, let’s return for a while on our
final statement from section (6.2). Let’s assume that we have our
representative of the Thom class satisfying (6.18) and that we choose
the zero section s0 : X → E. Then, for a reason that will be clear later
on, the pullback of Φ∇(E) via the zero section will be

s∗0Φ∇(E) = e∇(E) = Pf
�Ω∇

2π

�
(6.21)

Now let’s assume that s is a generic section, then we can multiply it
by a parameter t ∈ R and analyze the pullback (ts)∗Φ∇. The limit
t → ∞ is represented by a section which goes very large away from
the zeros (fig. 6.3). When we pullback using this section the Thom
form is almost zero. In fact if we consider a region where the section is
large this happens because we have been taking a representative which
decays really fast at infinity. When we pullback to the base manifold
we get a zero contributions to the integral from the regions where the
sections aren’t zero. In the neighborhood of the zeros of the sections
only critical points contributes to the integral. This argument clarify
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Figure 6.3. An arbitrary section which goes large away
from the zeros

what we said before and it can be considered as an abstract proof of
the Hopf theorem. A final important remark is that for any section
s the pullback s∗Φ(E) is independent from the choice of s. Any two
sections of E are homotopic as maps from X to E, and homotopic
maps induce the same pullback map in cohomology. We can take any
section of E to pullback the Thom form obtaining a differential form
over the base manifold X, but when we integrate this form over the
base we still get the same result. This property can be easily recovered
from the Mathai-Quillen representative and it’s intimately related with
the property of ordinary Gaussian integration and Berezin integration.
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6.4. Equivariant Cohomology

The Mathai-Quillen is better formulated in the context of equi-
variant cohomology, which we will briefly review here. The interested
reader should consult [17, 21, 24, 39] for detailed expositions on the
subject. Equivariant cohomology appears when we want to study a
topological space X with the action of a group G. We will denote by
g the Lie algebra of G. Some of what follows is only rigorously true
when G is compact, but the formal discussion can be applied to any
group. In particular, in topological field theory, it is applied to infinite
dimensional groups. If we consider our topological space X to be a
G-manifold, then X has an action x → g · x, for all x ∈ X and g ∈ G.
The action of G is said to be free if, for any x ∈ X,

g · x = x ⇐⇒ g = 1 (6.22)

that is, there are no nontrivial isotropy groups. If the action of G is free
on X, then the quotient space X/G forms the base space of a principal
G bundle

X ←−−− G

π
�

X/G

(6.23)

where the quotient space is smooth. From here we can easily under-
stand that if G acts freely, the equivariant cohomology of X is just

H•
G(X) = H•(X/G) (6.24)

In many cases of interest to physics and mathematics, the group action
is not free and for this reason we need to create an appropriate extension
of the de Rham cohomology. Topologically, equivariant cohomology is
usually defined as the ordinary cohomology of the space

XG = EG×G X (6.25)

where EG is called universal G-bundle. EG is a very special space
which we can always associate to a group G, satisfying:

• G acts on EG without fixed points.
• EG is contractible.

There are also algebraic definitions of equivariant cohomology. These
alternative definitions are the so-called Weil, BRST and Cartan models
of equivariant cohomology which we will briefly recall here.
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6.4.1. Weil Model. In the study of the differential geometry of
a principal bundle P with Lie algebra g we encounter the so-called
Weil algebra W(g). Let us recall its definition; for more details see,
for example, [21]. The Weil algebra is a dg-algebra, see (4.2), with
g-valued generators ω, φ of degrees 1 and 2 respectively. We define a
differential operator dW which acts on the generators as

dWω = φ−
1

2
[ω, ω] dWφ = −[ω, φ] (6.26)

It may be seen that dW is nilpotent, d2W = 0. These are the relations
that are valid for a connection ω and curvature φ on a principal bundle
P . Basically we can interpret φ and ω as algebraic counterparts of the
curvature and the connection. Moreover, we can define a connection
simply as a homomorphism W(g) → Ω•(P ). We can also introduce two
derivations of the Weil algebra: the interior derivative or contraction

ιaω
b = δba ιaφ

b = 0 (6.27)

(where ω = ωaea, φ = φaea, with ea a basis for g) and the Lie derivative

La = ιadW + dWιa (6.28)

For the Weil model of equivariant cohomology we consider the algebra
W(g)⊗Ω•(X). Algebraically, the replacement X → EG×X is analo-
gous to Ω(X) → W(g)⊗ Ω(X). On this algebra we have the action of
the operators ιa and La, now defined as ιa = ιa ⊗ 1 + 1⊗ ιa etc. Here
we write ιa = ι(Va), with Va the vector field on X corresponding to the
Lie algebra element ea. One then restricts to the so-called basic forms
η ∈ W(g)⊗ Ω∗(X) which satisfy ιaη = Laη = 0. Basic forms are hori-
zontal and G-invariant differential forms. The equivariant cohomology
groups are then defined as

H•
G(X) = H•((W(g)⊗ Ω•(X))basic, dT ) (6.29)

where
dT = dW ⊗ 1 + 1⊗ d (6.30)

is the differential.

6.4.2. Cartan Model. Following what we did previously, we start
by defining the Cartan algebra C(g) which is obtained by simply putting
ω = 0 in the Weil algebra and is generated by the single variable φ
of degree two. The Cartan model is a simpler model of equivariant
cohomology based on the Cartan algebra C(g) = S(g∗). The starting
point is now the algebra S(g∗)⊗ Ω•(X), but as differential we choose

dC = 1⊗ d− φa
⊗ ιa. (6.31)
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This operator satisfies (dC)2 = −φa⊗La and thus only defines a complex
on theG-invariant forms. The Cartan model of equivariant cohomology
is now defined as

H•
G(X) = H•((S(g∗)⊗ Ω•(X))G, dC). (6.32)

It is possible to show that the definitions (6.29) and (6.32) are equiv-
alent and agree with the topological definition. This last statement is
best understood in the context of the so-called BRST model of equi-
variant cohomology and it was originally shown by Kalkman in [23, 24].

6.5. Universal Thom Class

We will now show how to construct a nice explicit representative
for Φ(E) by first constructing a “universal” representative [17]. While
E might be twisted and difficult to work with, we can replace construc-
tions on E by equivariant constructions on a trivial bundle. Let E be
an orientable real vector bundle such that rk(E) = 2m, with standard
fiber V . Since E is orientable the structure group G of the bundle can
be reduced to SO(V ) and we will denote its Lie algebra by gs. We can
identify E as a bundle associated to a principal SO(V ) bundle P → X,
where P is the SO(V ) bundle of all orthonormal oriented frames on E

π : P × V → E =
P × V

G
(6.33)

Recall that when given a principal G-bundle π : P → X, a differential
form α on P descends to a form on X if the following two conditions are
satisfied: first, given vector fields Vi , α(V1, . . . , Vq) = 0 whenever one
of the Vi is vertical. In this case α is said to be horizontal. Second, α is
invariant under the G action. The forms that satisfy both conditions
are called basic. We already encountered basic differential forms in
(6.4.1). In particular, if we consider the principal bundle (6.33) we
have an isomorphism

Ω•(P ×G V ) � Ω•(P × V )basic (6.34)

Suppose now that P is endowed with a connection A ∈ Ω1(P, gs) and
associated curvature Ω ∈ Ω2(P, gs), and consider the Weil algebra,
W(gs). As gs = so(2m) the generators are antisymmetric matrices
Aab (of degree 1) and Ωab (of degree 2). The property that W(g)
provides a universal realization of the relations defining the curvature
and connection on P gives the Chern-Weil homomorphism

w : W(g) → Ω•(P ) (6.35)
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defined in a natural way through the expansions

A = AαTα Ω = ΩαTα (6.36)

where {Tα}α=1,...,dim(G) is a basis of g, and Aα ∈ Ω1(P ), Ωα ∈ Ω2(P ).
For G = SO(2m), the map w is just the correspondence between the
generators of W(gs) and the entries of the antisymmetric matrices for
the curvature and connection in P . The Chern-Weil homomorphism
maps the universal connection and curvature in the Weil algebra to
the actual connection and curvature in P . Combined with the lifting
of forms from V to P × V , we obtain another homomorphism

w ⊗ π∗
2 : W(g)⊗ Ω•(V ) → Ω•(P × V ) (6.37)

where π2 : P × V → V is the projection on the second factor. This is
the geometric context of the Mathai-Quillen construction and the cor-
respondence between the de Rham theory on P and the Weil algebra,
W(gs), suggests the following definition.

Definition 6.5.1. A form U ∈ W(gs) ⊗ Ωrd(V ) will be called a uni-
versal Thom form (in the Weil model) if it satisfies:

(i) U is basic
(ii) QU = 0, where Q = dW + d
(iii)

�
V U = 1

The reason U is useful is that if we choose a connection ∇ on E
compatible with the fiber metric, then we can obtain a representative
Φ∇(E) of the Thom class as follows. As we have noted, a connection
on E, (equivalently, a connection on P ) is the same thing as a choice
of Weil homomorphism w : W(gs) → Ω•(P ). We then have a diagram:

W(gs)⊗ Ω•(V )
w⊗π∗

2 > Ω•(P × V )

(W(gs)⊗ Ω•(V ))basic

∧

w⊗π∗
2

> Ω•(P × V )basic

∧

Ω•(E)

π∗
∧

w
>

(6.38)

Applying the Weil homomorphism combined with the lifting of forms,
w ⊗ π∗

2, to U ∈ W(gs)⊗ Ω•(V ) gives (w ⊗ π∗
2)(U) ∈ Ω•(P × V ). This

form is then a basic closed differential form which descends to a form
in Ω•(E) , that is,

Φ∇(E) = w(U) (6.39)
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for some form Φ∇(E) ∈ H2m
rd (E). Using the defining properties of the

Thom class of E described in (6.3), we see that properties (i), (ii) and
(iii) suffice to prove that w(U) represents the Thom class of E. Finally,
we have used here the Weil model of equivariant cohomology but it is
also possible to construct a universal class in the Cartan or BRST
model. For more details, see [21].

6.6. Mathai-Quillen Representative of the Thom Class

The universal Thom form U of Mathai and Quillen is an element
in W(gs)⊗ Ω•(V ) given by

U = (2π)−mPf(Ω) exp

�
−

1

2
ξ2 −

1

2
∇ξa(Ω−1)ab∇ξb

�
(6.40)

In this expression the ξa are fiber coordinates on V , ∇ξa is the exterior
covariant derivative of ξa such that ∇ξa = dξa + Aa

bξ
b and Ωab, Aab

are the antisymmetric matrices of generators in W(gs). As we can see,
U is SO(V ) invariant, then a necessary condition for (i) is that U be
horizontal. This is achieved by inserting the covariant derivative, in
fact ∇ξ is horizontal

ι(Va)∇ξa = 0 (6.41)

so U is horizontal. Thus, U is basic, checking property (i). In the
universal Thom form the Ω−1 is slightly formal, but makes perfectly
sense if we expand the exponential and we combine with the Pfaffian.
In this way we get a volume form on the fiber which is what we need to
integrate. As stated in [17] the curvature matrix is never invertible in a
geometric situation. Nevertheless, by introducing the Weil algebra and
equivariant forms, we can obtain a universal algebraic situation where
the curvature matrix can be assumed invertible. To prove the remaing
properties it’s convenient to take into account another representation
of the universal Thom form based on Berezin integration. The Pfaffian
of a real antisymmetric matrix Kab can be written as

Pf(K) =

�
dχ exp{χaK

abχb/2} (6.42)

where χa is a real odd variable. See section (2.5). It is easy to write
the universal Thom form as

U = (2π)−m

�
dχ exp{−ξ2/2 + χaΩ

abχb/2 + i∇ξaχa} (6.43)

and the expansion of this expression leads precisely to (6.40). From
this representation it is obvious that

�
V U = 1. The reason is that to

get a top form on V we have to take the term in the exponential with
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the top degree of dξ. This also pulls off the top form in χ. Then, since
the χ and dξa anticommute

�

V

U =
1

(2π)m

�

V

�
dχ e−ξ2/2 i2m

(2m)!

�
dξaχa

�2m

=
1

(2π)m

�

V

dξ1 ∧ · · · ∧ dξ2m e−ξ2/2 = 1

(6.44)

It remains to show that U is closed. In order to write a manifestly closed
expression for U we enlarge the equivariant cohomology complex to

W(gs)⊗ Ω•(V )⊗ Ω•(ΠV ∗) (6.45)

and consider the following differential

QW = dW ⊗ 1⊗ 1 + 1⊗ d⊗ 1 + 1⊗ 1⊗ δ (6.46)

dW is the Weil differential defined in (6.4.1), while δ is the de Rham
differential in ΠV ∗. To do that we first introduce an auxiliary bosonic
field Ba, which has the meaning of a basis of differential forms for the
fiber. In this way we have a pair of fields (χa, Ba) associated to the
fiber V . The action of δ on this fields is explicitly

δ

�
χa

Ba

�
=

�
0 1
0 0

��
χa

Ba

�
(6.47)

Notice that Q2
W = 0. Expanding the action and doing the Gaussian

integral on B leads to the representation

U =
1

(2π)2m

�
dχdBe−QW (Ψ) (6.48)

where the so called “gauge fermion” is given by

Ψ = χa(iξ
a +

1

4
Aabχb +

1

2
Ba) (6.49)

Acting with δ on Ψ we get

δΨ = Ba
∂Ψ

∂χa
(6.50)

then

QWΨ = (dW + d)Ψ +Ba
∂Ψ

∂χa
(6.51)

We can get rid of the δ-action on Ψ because it produces a term which
is a total derivative with respect to χ and this term integrates to zero
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because of Berezin integral properties. The advantage of this represen-
tation is that

�
QW

�
· · ·

�
= (d+ dW)

� �
· · ·

�
(6.52)

Since the integrand is QW-closed, it immediately follows from (6.52)
that U is Q-closed in W(gs) ⊗ Ω•(V ). Thus, we have finally proven
that U satisfies criteria (i), (ii) and (iii) of section (6.5) and hence U is
a universal Thom form.

Example 6.6.1. Let’s consider the Thom class of a trivial vector bun-
dle X × V → X. In this simple case, the Thom class is just a nor-
malized generator of H2m

rd (V ). Using an inner product on V and an
orientation, we get a volume form dξ1 ∧ . . .∧ dξ2m and the Thom class
is represented by f dξ1 ∧ . . . ∧ dξ2m, where f is a function on V such
that

�
V f = 1. We will restate this trivial result in a complicated way

now, the purpose is to show that the choice of gauge fermion (6.49)
it is not arbitrary but it has a precise geometrical meaning. Here, the
cohomology complex will be

Ω•(X)⊗ Ω•(V )⊗ Ω•(ΠV ∗) (6.53)

and the differential

Q = dX ⊗ 1⊗ 1 + 1⊗ dV ⊗ 1 + 1⊗ 1⊗ δ (6.54)

where dX and dV are, respectively, the ordinary de Rham differential
on the base manifold X and on the fiber V while δ is defined as before.
Then, the Thom class representative can be written as

Φ(E) =
1

(2π)2m

�
dχdBe−Q(Ψ) (6.55)

where

Ψ = iχaξ
a +

1

2
χaB

a (6.56)

indeed, if we compute both the Gaussian and the Berezin integral we
find the expected result.

Now we would like to generalize the Example 6.6.1 to the case where
the trivial bundle X×V → X is replaced by an oriented vector bundle
E → X. To do this we must give E a connection ∇ and we will denote
the local one form by Aab. In this way to covariantize the gauge fermion
(6.56) we must add a third term to it

Ψ = iχaξ
a +

1

2
χaB

a +
1

2
χaA

abχb (6.57)
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which is precisely the same expression for (6.49). In this way we see
that the representation of (6.56) it is simply related to (6.49) by the
shift: Ba = Ba − A b

aχb.

6.6.1. Pullback of Thom Class. Henceforth, we will not con-
sider anymore the universal Thom class U instead we will work with
its image under the w map defined in (6.38)

Φ(E) = w(U) ∈ H2m
rd (E) (6.58)

here we dropped the ∇ symbol to gain a more convenient notation. Let
be E an orientable real vector bundle of rank 2m with fiber V over the
base manifold X, the Mathai-Quillen representative of the Thom class
is defined by

Φ(E) = (2π)−m

�
dχ exp{−ξ2/2 + χaΩ

abχb/2 + i∇ξaχa} (6.59)

Now Φ(E) is a closed differential form in Ω•
rd(E) and Ω is really the

curvature of the connection on E. Let s : X → E be a section of E.
As we said previously in section (6.3), the pullback of Φ(E) trough
a generic section s will descends to a differential form on X which is
precisely es,∇(E) as defined in (6.18). Using (6.59) we can represent it
as a Berezin integral

es,∇(E) = (2π)−m

�
dχ exp{−s2/2 + χaΩ

abχb/2 + i∇saχa} (6.60)

In our notation es,∇(E) is obtained from (6.59) by replacing the fiber
coordinate ξ by s(x). As a consistency check, note that, as follows from
(6.42), es=0,∇(E) = e∇(E), i.e., the pullback of the Mathai-Quillen form
by the zero section gives back the Euler class of E. We just proved
(6.21). Let us denote by xµ, a set of local coordinates on the base
manifold X. The form es,∇(E) can be rewritten in a compact way with
the help of odd real variables θµ

es,∇(E) = (2π)−m

�
dχ exp{−s2/2 + χaΩ

ab
µνθ

µθνχb/2 + iχa(∇µs)
aθµ }

(6.61)
where we identified θµ ↔ dxµ. If rk(E) = dim(X) we can evaluate the
Euler number by computing

χ(E) = (2π)−m

�

X

dxdθdχ exp{−s2/2+χaΩ
ab
µνθ

µθνχb/2+iχa(∇µs)
aθµ }

(6.62)
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6.6.2. Example: Poincaré-Hopf Theorem. We now work out
the computation of the Euler number for the case of E = TX where
X is a Riemannian manifold with metric gij. We take the Levi-Civita
connection on TX. Let V = V i∂i be a section of TX. Then, considered
as an element of C∞(ΠTX),

V ∗(Φ(TX))

=
1

(2π)2m

�
dχ

√
g exp

�
−
1

2
gijV

iV j + iχj(∇kV )jθk +
1

2
χiR

ij
klθ

kθlχj

�

(6.63)

Replacing V by tV for t ∈ R we get

V ∗(Φt(TX))

=
1

(2π)2m

�
dχ

√
g exp

�
−
t2

2
gijV

iV j + t iχj(∇kV )jθk +
1

2
χiR

ij
klθ

kθlχj

�

(6.64)

To evaluate the Euler number we have to perform the following integral

χ(TX)

=
1

(2π)2m

�
dxdθdχ

√
g exp

�
−
t2

2
gijV

iV j + t iχj(∇kV )jθk +
1

2
χiR

ij
klθ

kθlχj

�

(6.65)

Letting t → ∞ we see that this integral is concentrated at the zeroes,
P , of the vector field V . Let’s assume that there exist a local coordinate
system {xi} such that

V i = V i
jx

j +O(x2) (6.66)

in the neighborhood of a zero of V , this means that we are choosing
a section which vanishes linearly at x = 0. Using the supergeometry
notation we can write

(∇V )i = V i
jθ

j +O(x) (6.67)

Now we do the integral (6.65) in the neighborhood of x = 0. As t → ∞

the Gaussian approximation gives an integral over χ and θ leading to
a factor of

(−1)m
√
g det(V )

The bosonic Gaussian integral yields

1
√
g det(V )
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Thus, the boson and fermion determinants cancel up to sign and the
contribution of the fixed point is just

sign det(V ) = degV (P ) (6.68)

With this result we proved the Poincaré-Hopf theorem, which is a spe-
cial case of the Hopf theorem that we introduced in (6.11). We could
have also choose the limit t → 0 to evaluate the integral (6.65). In that
case we easily recover the result, which is

χ(TX) = Pf

�
R

2π

�
(6.69)

usually this result is called Gauss-Bonnet theorem. In summary, the
Mathai-Quillen representative gives a formula for the Euler character
that interpolates smoothly between the Gauss-Bonnet and Poincaré-
Hopf formulae for χ(TX). We can generalize this last statement also
to the case of a generic vector bundle E and generic section s. Then the
Mathai-Quillen representative interpolates between (6.11) and (6.12).
With this example in mind we can now comprehend perfectly the final
statement of section (6.2).



CHAPTER 7

BV representative of the Thom Class

The goal of this section is to formulate a new representative of
the Thom class using the ideas of BV formalism. In particular, to
achieve this result, we will apply the odd Fourier transform defined
in (5.1). From a mathematical point of view, we are defining the odd
Fourier transform for differential forms on vector bundles and obtaining
consequently representatives for the Thom class of arbitrary vector
bundles. This problem was raised in a paper by Kalkman [23] and this
section can be seen as a solution to that.

7.1. Geometry of T [1]E

Let be E an orientable real vector bundle of rank 2m with fiber V
over the base manifold X, as we already seen in (6.6.1) the Mathai-
Quillen representative of the Thom class is defined by

Φ(E) = (2π)−m

�
dχ exp{−ξ2/2 + χaΩ

abχb/2 + i∇ξaχa} (7.1)

where ξ’s are fiber coordinates, χ’s are fermionic variables and ∇ξa

is the exterior covariant derivative of ξa. The presence of covariant
derivative may sound strange since to integrate Φ(E) along the fibers
we just need to put a term of the form dξaχa in the exponential in
order to get a top form on Ω•(V ). The problem of a term like this, in
the formula above, is that it will affect the covariance. Both ξ and χ
transforms as a section but dξ not, in fact

�ξa = tab (x)ξ
b
⇒ d�ξa = ∂µt

a
b (x)dx

µξb + tab (x)dξ
b (7.2)

Before proceeding further, we have to clarify one point. In the study
of differential geometry on total space of a vector bundle E → X we
would like to divide up the coordinates into two sets: basic coordinates
xµ and fiber coordinates ξa. Similarly, the anticommuting variables
separate into θµ = dxµ and �λa = dξa. At this point it is very con-
venient to employ the extra data of a connection ∇ on E to restore
the covariance for the action of the differential d on T [1]E. In this
context T [1]E is the graded manifold that we can naturally associate
to E and following Example 4.2.2 we will identify smooth functions on

63
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T [1]E with differential forms on E, C∞(T [1]E) = Ω•(E). Using the
connection ∇ we can establish the following isomorphism

T [1]E � E ⊕ E[1] ⊕ T [1]M

(xµ, ξa)
∨

λa
∨

θµ
∨

(7.3)

where λa is the new anticommuting fiber coordinates that transforms
as a section of E. Following [27], what we just did is a reduction of
the structure group of the sheaf of functions on T [1]E by means of a
connection. In this way, our sheaf of functions will be generated by vari-
ables (xµ, θµ; ξa, λa) with (θµ; ξa, λa) transforming linearly across patch
boundaries on the base manifold X. So, we can write out explicitly the
action of the differential on the variables as

dxµ = θµ

dθµ = 0

∇ξa ≡ λa = dξa + Aa
µ bθ

µξb

∇λa = dλa + Aa
µ bθ

µλb = 1
2Ω

a
bµνθ

µθνξb

(7.4)

where Aa
µ b is the local expression for the connection 1-form and Ωa

bµν

is the local expression for the curvature 2-form. Summarizing, we dis-
covered that in the case of the total space of a vector bundle, the fiber
variable λa should be considered as the covariant differential ∇ξa.

7.2. Odd Fourier Transform Revisited

Let’s consider all the notations introduced in (7.1), the form Φ(E)
can be rewritten as

Φ(E) = (2π)−m

�
dχ exp{−ξ2/2 + χaΩ

ab
µνθ

µθνχb/2 + iλaχa} (7.5)

It is helpful to consider also the following notation

Φ(E) = (2π)−m

�
dχ exp(Ψ) (7.6)

where
Ψ = −ξ2/2 + χaΩ

ab
µνθ

µθνχb/2 + iλaχa (7.7)

From the point of view of the base manifold X, the odd Fourier trans-
form is a way to relate T [1]X and T ∗[−1]X, see (5.1). In this sub-
section, we would like to look at the odd Fourier transform from the
point of view of total space E and think of it as a tool to relate T [1]E
and T ∗[−1]E. Again, in the study of T ∗[−1]E it is useful to reduce
the structure group of the the sheaf of functions using the extra data
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of the connection previously introduced. We create the following iso-
morphism

T ∗[−1]E � E ⊕ E∗[−1] ⊕ T ∗[−1]M

(xµ, ξa)
∨

σa

∨
ψµ

∨
(7.8)

where σa is the dual variable with respect to λa introduced in (7.1). It
is important to stress that (7.3) and (7.8) are examples of non canon-
ical splitting, these splittings are possible only upon the choice of a
connection ∇. Thus, the generalization of odd Fourier transform for
differential forms on a vector bundle will maps functions on T [1]E to
functions on T ∗[−1]E

F : C∞(T [1]E) → C
∞(T ∗[−1]E) (7.9)

and the corresponding action on the coordinates will be

(xµ, θµ; ξa, λa)
F
−→ (xµ, ψµ; ξ

a, σa) (7.10)

Being a differential forms on E, the Mathai-Quillen representative (7.5)
can be identified with a smooth functions on T [1]E

Φ(E) ∈ C
∞(T [1]E) (7.11)

then it is natural to ask how it would look the odd Fourier transform
of Φ(E). Precisely, we have

F [Φ(E)] = ΦBV (E) = (2π)−m

�
dθρ(x)−1

�
dλρ(ξ)−1

�
dχ exp{�Ψ}

(7.12)
where �Ψ is expressed as

�Ψ = −ξ2/2 + 1
2χaΩab

µνθ
µθνχb − iχaλa + ψµθµ + σaλa (7.13)

After some manipulation, it is possible to show that

ΦBV (E) = (2π)−m

�
dθρ−1

x ρ−1
ξ exp{−ξ2/2 + σaΩ

ab
µνθ

µθνσb/2 + ψµθ
µ
}

(7.14)
From now on, we will refer to ΦBV (E) as the BV representative for the
Thom class of the vector bundle E which should be considered as a
smooth functions on T ∗[−1]E. The expression (7.13) transforms nicely
because of the covariantization procedure that we adopted. In conclu-
sion, we have seen that providing a generalization of the odd Fourier
transform to the case of a vector bundle we can define a new Thom
class representative which is the BV representative ΦBV (E) defined in
(7.12).
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7.3. Analysis of the BV Representative

Looking at the explicit expression for ΦBV (E) it appears clearly
that we have a rapid decay object, which integrates to 1 upon proper
Berezin integrations. However, to be sure that the procedure that we
followed to contruct this new representative is correct we have to check
all the properties in the definition of the Thom class i.e. we have to
check that ΦBV (E) is closed which is less evident. At this stage it is
worth to spend some words to prove that also the MQ representative
Φ(E) is closed.

Proof. The standard exterior derivative, acting on Ω(E), will look
like

D = dxµ ∂

∂xµ
+ dξa

∂

∂ξa
(7.15)

Observing what we described in (7.1), the convenient way to express
D is really

D = θµ
∂

∂xµ
− Aa

µ bθ
µξb

∂

∂ξa
+ λa ∂

∂ξa
= ∇+ λa ∂

∂ξa
(7.16)

where ∇ is the usual covariant derivative. In this way we get

DΦ(E) = (2π)−m

�
dχ exp(Ψ)

�
∇Ψ+ λa ∂Ψ

∂ξa

�
(7.17)

then

λa ∂Ψ

∂ξa
= −ξaλ

a

∇Ψ = +i∇νA
a
µ bθ

µθνξbχa = −iξaΩ
ab
µνθ

µθνχb

(7.18)

and

∇Ψ+ λa ∂Ψ

∂ξa
= −ξaλ

a
− iξaΩ

ab
µνθ

µθνχb (7.19)

where we used the Bianchi identities ∇Ω = 0,∇A = Ω and the anti-
symmetry of Ωab. Using the properties of Berezin integration we can
always write

Φ(E) = (2π)−m

�
dχ exp(Ψ) + (2π)−m

�
dχ

∂

∂χ
exp(Ψ) (7.20)

since the last term integrates to zero. At this point we can express
(7.17) as

DΦ(E) = (2π)−m

�
dχ exp(Ψ)

�
− ξaλ

a
− iξaΩ

ab
µνθ

µθνχb + iξa
∂Ψ

∂χa

�

= 0
(7.21)
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indeed

iξa
∂Ψ

∂χa
= ξaλ

a + iξaΩ
ab
µνθ

µθνχb (7.22)

In this way we proved that Φ(E) is a closed differential form, as it
should be, since this is a defining property for the Thom class. �

To show that ΦBV (E) is closed we cannot simply apply the operator
D but we have to transform it to get the proper differential operator on
T ∗[−1]E. Doing that, we will obtain an odd Laplacian operator that
we will denote ∆BV . The Fourier transformation for (7.16) will be

∆BV =
∂2

∂xµ∂ψµ
− Aa

µ bξ
b ∂2

∂ψµ∂ξa
+

∂2

∂ξa∂σa
(7.23)

It is not difficult to understand how we got this formula indeed we
followed the same considerations of (5.1). However, for the sake of
simplicity, here we assumed that all the ρ’s are constant. Thus, also
ΦBV (E) is closed in fact

Proof. By (5.8) we know that

∆BV F [Φ(E)] = F [DΦ(E)] (7.24)

To verify this statement we firstly calculate the following expression

∆BV exp(�Ψ) = exp(�Ψ)

�
∂�Ψ
∂xµ

∂�Ψ
∂ψµ

− Aa
µ bξ

b ∂�Ψ
∂ξa

∂�Ψ
∂ψµ

+
∂�Ψ
∂ξa

∂�Ψ
∂σa

�

= exp(�Ψ)

�
θµ

∂�Ψ
∂xµ

− Aa
µ bθ

µξb
∂�Ψ
∂ξa

+ λa ∂�Ψ
∂ξa

�

= exp(�Ψ)(D�Ψ)

(7.25)

then we have

∆BV F [Φ(E)] = (2π)−m

�
dθρ(x)−1

�
dλρ(ξ)−1

�
dχ∆BV exp(�Ψ)

= (2π)−m

�
dθρ(x)−1

�
dλρ(ξ)−1

�
dχ exp(�Ψ)(D�Ψ)

= F [DΦ(E)] = 0
(7.26)

where the last equality follows from (7.21). �
Finally, the BV representative ΦBV (E) is effectively a representa-

tive for the Thom class of E. In the language of BV quantization,
introduced in (5.4.1), the fact that ΦBV (E) is closed mean that we
have found a solution to the master equation. The outcome of this sec-
tion is that we have found a nice relationship between two seemingly
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unrelated subjects such as the BV formalism and the Mathai-Quillen
formalism.



CHAPTER 8

Conclusions

The focus of this thesis was the construction of a new representative,
for the Thom class of a vector bundle, called BV representative. This
representative has been constructed using the odd Fourier transform
developed in [15, 23]. In (7.1) and (7.2) we shown how it is possible
to generalize the odd Fourier transform to the case of a vector bundle.
Considering the MQ Thom form as a smooth function over T [1]E, we
obtained the corresponding BV representative defined over T ∗[−1]E.
In (7.3) we also shown that our BV representative is closed under the
action of a suitable differential operator, this means that the BV rep-
resentative is a solution to the BV master equation. In view of these
results, chapter 7 is a proof for the following theorem

Theorem 8.0.1. The BV representative ΦBV (E) is a multivector
field representative for the Thom class of a vector bundle and it is a
solution to the BV master equation.

The present work can be seen as a first step in the process of un-
derstanding BV quantization from the point of view of Mathai-Quillen
formalism. Indeed, on one hand we have the MQ construction which
is a concrete prescription that can be used to calculate Euler class and
its infinite dimensional generalization is very well understood, being
the basis of all cohomological topological field theories. On the other
hand we have the BV quantization which is, algebraically, a very pow-
erful technique but we still have a lack of knowledge on what we are
effectively computing in this formalism. Moreover, the path integral
manipulations in BV formalism are understood only formally and the
finite dimensional setting provides only a good heuristically compre-
hension of the problem. Understanding completely BV quantization is
a very deep problem, far beyond the aim of this thesis, but it is also a
fertile ground for future investigations and interesting discoveries.
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