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Summary in swedish

Inom Kvantfältteorin beräknas partikelinteraktioner med en mycket komplice-

rad oändligtdimensionell integral. 1948 föreslog den amerikanske fysikern Ri-

chard Feynman ett sätt att grafiskt approximera denna integral som än idag

används flitigt. Approximationen bygger p̊a s̊a kallade Feynman diagram, som

best̊ar av olika sorters linjer som sammankopplas i noder. Linjerna represen-

terar partiklar och noderna representerar interaktioner mellan partiklarna. En

naturlig fr̊aga efter introduktionen av Feynman Diagram är ”Givet ett antal

partiklar, hur många diagram finns det?”. Fysikaliskt kan detta översättas till

”P̊a hur många sätt kan partiklarna interagera?”. För f̊a partiklar eller f̊a inter-

aktioner är det enkelt att bara rita diagrammen och räkna dem, men för större

system blir detta tillvägag̊angssätt väldigt opraktiskt. Man måste allts̊a kunna

räkna dessa grafer p̊a n̊agot annat sätt. I denna tes räknas graferna genom att

utg̊a fr̊an en välkänd integral som kallas Gaussisk. Integranden ändras sedan

väldigt lite och korrektionstermer till följd av denna ändring räknas ut. Dessa

korrektionstermer kan tolkas som grafer.
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1 Introduction

In Quantum Field Theory, particle interactions are often calculated using Feyn-

man Diagrams. These diagrams, proposed by Richard Feynman in 1948, is
a convenient way to graphically approximate integrals. The path integrals in
Quantum Field Theory are often to complicated to calculate exactly, and Feyn-
man diagrams is the preferred method of approximation. It is known how much
particular diagrams contribute to the integral and it is therefore known which
diagrams to consider for an approximation of a certain order. Of particular in-
terest are the connected diagrams which describes one interaction. Disconnected
diagrams describes several interactions that should be studied individually. For
this reason, this thesis focuses mainly on connected diagrams.

The calculations in this thesis are rather the opposite of the graphical cal-
culations in Quantum Field Theory. We calculate finite dimensional integrals,
either exactly or to a certain order of approximation, and can from there count
the corresponding graphs. It is not at all obvious how and why some inte-
grals may be calculated graphically, so the first few sections contain definitions,
examples and basic results that will justify the usage of graphs in integral calcu-
lations. In particular the related concepts of Gaussian measures and the Wick

lemma are introduced and will be used throughout this thesis.
Regular graphs are counted with integrals over R. How much a graph con-

tributes to the integral depends on its number of vertices. The goal when
counting regular graphs is to count how many connected graphs there are given
a number of vertices. A different kind of graph, called fat graphs, are counted
with matrix integrals over HN , the space of all N ×N Hermitian matrices. For
fat graphs, the contribution depends on the number of vertices, as well as the
genus of the graph. Since the contribution of fat graphs depends on two things,
the goal is to count how many connected fat graphs there are given any genus
and any number of vertices.

After the introductional sections, it is explained how to visualize integrals
as graphs using the Wick lemma. It is also shown how to count connected
graphs. The concept of colored graphs is introduced and some basic properties
are discussed. Fat graphs are then introduced, which are the main object of
study in this thesis. In order to count fat graphs, orthogonal polynomials are
introduced. Finally, the formulation of the three-color problem is given, and
some related results are presented.

1.1 Gaussian measures

Let A ∈ R
N×N , be a symmetric and positive definite matrix. dµ(~x) defines a

Gaussian measure on R
N by [1]

dµ(~x) = exp

(
−~xT A

2
~x

)
dNx (1.1)

A is called the covariance matrix for the measure. A Gaussian measure where
the covariance matrix is an identity matrix is called standard. Note that a
Gaussian measure is even if and only if the covariance matrix is diagonal.

Orthogonally diagonalizing the matrix A, A = PTDP , changing the inte-
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gration variables to ~y = P~x and integrating over RN gives

∫

RN

dµ(~x) =

∫

RN

exp(−~yT
D

2
~y)dNy =

√
2π

N

√
det(D)

=
(2π)N/2

√
det(A)

(1.2)

where the last equality follows from the fact that P is orthogonal, PTP = I,
hence

det(PTP ) = 1 =⇒ det(A) = det(PTDP ) = det(D) (1.3)

The integral over RN of the measure

dµ̃(~x) =

√
det(A)

(2π)N/2
dµ(~x) (1.4)

is equal to 1. A measure whose integral over its domain is equal to 1 is called
normalized. From an arbitrary measure dΩ(v) on a space V , one can form a
normalized measure dΩ̃(v) by

dΩ̃(v) =
1∫

V
dΩ(v)

dΩ(v) (1.5)

1.2 Expectation values of monomials

The expectation value of a function, f : RN → R, with respect to the normalized
measure dµ̃(~x) is defined as

〈f(~x)〉 =
∫

RN

f(~x)dµ̃(~x) =

∫
RN f(~x)dµ(~x)∫

RN dµ(~x)
(1.6)

It will prove to be more practical to keep the integral in the denominator rather
than normalizing the measure itself.

A monomial is a polynomial in N variables with only one term. To calculate
expectation values of monomials, we start by defining the generating function

Z( ~J) by

Z( ~J) =

∫

RN

e−~xT A
2
~x+~xT ~JdNx =⇒ Z(0) =

∫

RN

dµ(~x) (1.7)

The next step in the calculation is taking a derivative of the generating function
at the origin. The result is

∂nZ

∂Ji1 . . . ∂Jin
(0) =

∫
xi1 . . . xindµ(~x) ⇐⇒ 1

Z(0)

∂nZ

∂Ji1 . . . ∂Jin
(0) = 〈xi1 . . . xin〉

(1.8)
There is no requirement for the indicies to be distinct. In fact for any even
measure, the expectation value of a monomial which is of odd degree in any
variable is identically zero.

We note that

−~xT A

2
~x+ ~xT ~J = −(~x−A−1 ~J)T

A

2
(~x−A−1 ~J) +

1

2
~JTA−1 ~J (1.9)
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Looking at the definition of Z( ~J) (1.7), and changing the variables of integration

to ~y = ~x−A−1 ~J ,we can calculate Z( ~J) explicitly. The answer is, with B = A−1

Z( ~J) = Z(0)e
1
2
~JTB ~J ⇐⇒ Z( ~J)

Z(0)
= e

1
2
~JTB ~J

The expectation values of monomials are now calculated with

〈xi1 . . . xin〉 =
∂n(e

1
2
~JTB ~J)

∂Ji1 . . . ∂Jin

∣∣∣∣
~J=0

(1.10)

For the important case of quadratic monomials, the formula reads

〈xixj〉 =
∂2(e

1
2
~JTB ~J)

∂Ji∂Jj

∣∣∣∣
~J=0

= Bij (1.11)

1.3 Graphs

A graph consists of two objects, edges and vertices. Vertices are represented by
dots and edges are represented by lines. [1] The vertices are connected by the
edges, and all edges must begin and end in a (not necessarily different) vertex.
Each vertex has a number of edges adjacent to it. The number of edges adjacent
to a vertex is called the degree of the vertex. The number of vertices in a graph
is called the order of the graph. All graphs of order 2, with vertices of degree 3
are shown in figure 2.2.

1.4 The Wick lemma

The Wick lemma is essential to this thesis. It is what allows us to compute
integrals using graphs. And by calculating the integrals exactly, we are able to
count the graphs in terms of contribution to the integral. TheWick lemma states
that for a normalized Gaussian measure, and for linear functions, f1, f2, . . . , f2k

〈f1f2 . . . f2k〉 =
∑

〈fp1
fq1〉 . . . 〈fpk

fqk〉 (1.12)

[1] where the sum is taken over qi > pi and pi+1 > pi, i.e all unique couplings.
A term in the right-hand side is called a Wick coupling. For 2k functions there
are (2k− 1)!! Wick couplings. A proof of the Wick lemma is given in Appendix
A.
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2 Expectation values of monomials graphically

2.1 One-dimensional integrals

The normalized standard Gaussian measure in one dimension is

dµ =
1√
2π

e−x2/2dx (2.1)

In one dimension, every monomial is a power of x. Since a one-dimensional
Gaussian measure is even, the expectation value of an odd power of x is iden-
tically zero. We will now calculate the expectation value for even powers of x
using the Wick lemma.

Let f1 = f2 = . . . = f2k = x. The Wick lemma states that

〈f1f2 . . . f2k〉 =
∑

coupl.

〈fp1
fq1〉〈fp2

fq2〉 . . . 〈fpk
fqk〉 (2.2)

From equation (1.11) we know that

〈fpi
fqi〉 = 〈x2〉 = B11 = 1 (2.3)

(2.4)

Hence all the summands in the right-hand side are equal to 1. Since there
are (2k − 1)!! Wick couplings of 2k functions

〈x2k〉 = (2k − 1)!! (2.5)

A convenient way of visualizing Wick couplings is with graphs. A power
xk is represented by a vertex of degree k, each edge representing an x. A
coupling 〈fifj〉 is then represented by connecting two edges. Figure 2.1 shows
the graphical representation of two vertices of degree 3 and figure 2.2 shows all
graphs of order 2 with vertices of degree 3. Once all the graphs are found, the
expectation value can be calculated with.

〈x2k〉 =
∑

W (Γ) (2.6)

Where the sum runs over all graphs and W (Γ) is the number of couplings that
result in the graph Γ.

We will now calculate 〈x6〉 graphically. This can be done in numerous ways,
as we are free to choose the number of vertices from 1 to 6 and may freely attach
6 edges to the vertices. This corresponds to writing x6 as a product of 1 to 6
powers of x. In this case we represent x6 as 2 vertices of degree 3.
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Figure 2.1: Two vertices of degree 3

These are the vertices and edges the graphs will consist of. There are two
ways of combining the edges to form different graphs. If two edges from the
first vertex are connected to form a loop, the remaining edge must be connected
to an edge from the second vertex. The remaining two edges from the second
vertex must then be connected to form another loop. If there is no loop in
the first vertex, all three edges must be connected to an edge from the second
vertex. The resulting graphs are shown in figure 2.2.

Figure 2.2: All graphs with two vertices of degree 3

Following the procedures described above, there are 3! = 6 Wick couplings
that result in the graph Γ1, and 32 = 9 Wick couplings that result in Γ2.
Equation (2.6) now reads

〈x6〉 = W (Γ1) +W (Γ2) = 15 = (6− 1)!! (2.7)

This agrees with equation (2.5). Alternatively, for a graph Γ of order ν with
vertices of degree µ, W (Γ) can be defined as the number of distinct labeled
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graphs one can form by labeling the edges of the vertices {1, 2, . . . , µ} and label
the vertices {1, 2, . . . , ν}. If Γ contains vertices of different degrees, say ν1
vertices of degree µ1, ν2 vertices of degree µ2 and so on, the vertices of degree
µi are labeled by {1µi

, 2µi
, . . . , νiµi

}. Vertices of different degrees can not have
the same label. It is this definition of W (Γ) that will be used from here on.

For a more graphically meaningful formula we will consider expectation val-
ues of the form

〈 1

ν1!

(
xµ1

µ1!

)ν1 1

ν2!

(
xµ2

µ2!

)ν2

· . . . · 1

νn!

(
xµn

µn!

)νn

〉 (2.8)

where µi 6= µj for i 6= j. The reason for this is that for ν vertices of degree µ,
there are (µ!)νν! ways to label the edges and the vertices. We have divided by
the total number of labelings of the entire graph.

Not all labelings result in distinct labeled graphs. Consider the graph Γ2

of figure 2.2. The label of the non-looped edges uniquely determines a labeled
graph. Since there are 3 ways to label both of the non-looped edges, there are
9 distinct labelings of Γ2. Figure 2.3 illustrates 2 distinct labelings of the edges
of one vertex that result in the same labeled graph.

Figure 2.3: Different labelings resulting in the same graph

The quantities to calculate now are

W (Γi)

ν1! . . . νn!(µ1!)ν1 . . . (µn!)νn
(2.9)

which can be interpreted as the number of distinct labeled graphs one can form
divided by the total number of labelings.

There are three symmetries a graph can have that makes distinct labelings
result in the same labeled graph. These symmetries are loops, multiple edges
between two vertices and vertex symmetry.

For a vertex with k loops, one can always switch the labels in a single loop
in 2k ways, as well as switch pairs of labels between loops in k! ways. So you
lose a total factor of

Lk = 2kk! (2.10)
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to a loop symmetry. It is possible for a graph to have multiple loops. For a
graph where one vertex has k1 loops, another vertex has k2 loops and so on up
to a vertex with kn loops, the total loop symmetry factor, L, equals

L =
n∏

i=1

Lki
(2.11)

For two vertices connected by p edges, one can switch pairs of labels in p!
ways. Hence the edge symmetry factor is

Ep = p! (2.12)

For a graph where two vertices are connected by p1 edges, two other vertices
are connected by p2 vertices and so on up to a pair of vertices connected by pm
edges, the total edge symmetry factor, E, is equal to

E =
m∏

j=1

Epj
(2.13)

The last factor is the vertex symmetry factor V . There is no nice formula to
calculate V , like there are for L and E. It is defined by the number of distinct
labelings of the vertices that result in the same labeled graph, disregarding the
labels of the edges.

The total symmetry factor, S, is defined by

S = L · E · V (2.14)

This symmetry factor is extremely important in the applications of Feynman
diagrams in Quantum Field Theory [5], and it shall prove to be important in
this thesis as well. As this symmetry factor corresponds to lost distinct labelings
due to symmetries of the graph, we get that

W (Γi)

ν1! . . . νn!(µ1!)ν1 . . . (µn!)νn
=

1

S(Γi)
(2.15)

Equation (2.6) now reads

1

ν1! · ν2! · . . . · νn!
〈
(
xµ1

µ1!

)ν1
(
xµ2

µ2!

)ν2

· . . . ·
(
xµn

µn!

)νn

〉 =
∑

Γi

1

S(Γi)
(2.16)

where the sum runs over all graphs with νj vertices of degree µj for j =
1, 2, . . . , n. The left-hand side of equation (2.16) is very easy to calculate using
equation (2.5). Calculating the right-hand side by drawing all graphs and find-
ing their symmetry factors can indeed be very complicated, especially for graphs
with many vertices of high degrees. We now have a simple way of summing the
inverse symmetry factors of all graphs with a given set of vertices. Equation
(2.16) is essentially the Wick lemma but formulated in the language of graphs
rather than expectation values and couplings.
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Returning to the case of 2 vertices of degree 3, the symmetry factors are

S(Γ1) = L0 · E3 · V = 1 · 3! · 2 = 12 (2.17)

S(Γ2) = (L1)
2 · E0 · V = 22 · 1 · 2 = 8 (2.18)

Which agrees with equation (2.15) since

W (Γ1)

2 · 3! · 3! =
6

72
=

1

12
=

1

S(Γ1)
(2.19)

W (Γ2)

2 · 3! · 3! =
9

72
=

1

8
=

1

S(Γ2)
(2.20)

2.2 Graph counting by integral perturbation

We now want to count the connected graphs that consist of k vertices of degree
4. A graph is connected if, given any 2 vertices, there is a continuous path that
starts in one vertex, moves through edges and vertices, and ends in the other
vertex. This is of course equivalent to the more intuitive idea of connectedness,
that the graph is not expressible as a union of smaller subgraphs. A graph that
is not connected is called disconnected. By convention the the graph without
vertices is disconnected.

In the case of 2 vertices of degree 3, it just so happened that the only 2
graphs one could form were both connected. In general there is no reason to
assume that all graphs are connected. In fact, given at least 3 vertices with an
even number of total edges, one can always form at least 1 disconnected graph.
Equation (2.16) counts all graphs, including disconnected ones, so we have to
take a different approach to only count connected graphs.

We start by considering the integral

Z(λ) =

∫

R

exp

(
−x2

2
− λ

4!
x4

)
dµ(x) =

∞∑

k=0

(−λ)k

k!

∫

R

(
x4

4!

)k

dµ(x) (2.21)

To make this integral useful for graph counting purposes, we divide both
sides of the equation by Z(0), yielding

Z(λ)

Z(0)
=

∞∑

k=0

(−λ)k

k!
〈
(
x4

4!

)k

〉 =
∞∑

k=0

(−λ)k
∑

Γ∈gk

1

S(Γ)
︸ ︷︷ ︸

zk

=

∞∑

k=0

zk(−λ)k

(2.22)

where gk is the set of all graphs with k vertices of degree 4.
Since the sum in zk is over all graphs, connected and disconnected, equation

(2.22) is still not the expression we are looking for. However, there is an easy way
to only consider the connected graphs, and the method is somewhat surprising.
In order to only consider connected graphs, we take the logarithm of equation
(2.22).

10



2.3 Graphical interpretation of the logarithm

We will now show that taking the logarithm of a generating function, such as
(2.22), is equivalent to only considering the connected graphs of each order. We
start by splitting every graph Γ into M connected subgraphs Γi.

Γ =
M⋃

i=1

(Γi) (2.23)

The number of vertices with k loops in Γ is the sum of the number of vertices
with k loops in the subgraphs. Similarly, the number of vertices connected by
p edges equals the sum of the number of vertices connected by p edges in the
subgraphs. Hence the loop- and edge symmetry factor of Γ is just the product
of the subgraphs’. The vertex symmetry factor however is a little different.
Suppose the graph Γ contains ν identical subgraphs. One can still relabel the
vertices in a subgraph in the same way as if it were the entire graph, but one can
also swap sets of labels from one subgraph to another. This swapping of sets
of labels can be done in ν! ways and we therefore pick up an extra symmetry
factor of ν!. Let Γ contain ν1 copies of Γ1, ν2 copies of Γ2, and so on up to νP .
The relation between the symmetry factor of Γ and its subgraphs’ symmetry
factors is

S(Γ) =

P∏

j=1

νj !S(Γj)
νj (2.24)

Let gck be the set of all connected graphs that one can form from k vertices.
Define Ek as

Ek =
∑

Γ∈gc
k

1

S(Γ)
(2.25)

Now consider the exponent

exp

( ∞∑

k=1

(−λ)kEk

)
=

∞∑

n=0

1

n!

( ∞∑

k=1

(−λ)kEk

)n

= (2.26)

=
∞∑

n=0

∑

ν1+...+νa=n

1

n!

(
n

ν1 . . . νa

)
(−λ)l1ν1+...+laν1Eν1

l1
. . . Eνa

la
(2.27)

where

(
n

ν1 . . . νa

)
is the multinomial coefficient which satisfies

(
n

ν1 . . . νa

)
=

n!

ν1!ν2! . . . νa!
(2.28)

for ν1+ν2+. . .+νa = n. This leads to the following expression for the exponent.

exp

( ∞∑

k=1

(−λ)kEk

)
=

∞∑

n=0

∑

ν1+...+νa=n

(−λ)
~l~ν
Eν1

l1
. . . Eνa

la

ν1! . . . νa!
(2.29)
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Every graph in Eν1

l1
. . . Eνa

la
is of order l1ν1 + . . . + laνa, and the factors in the

denominator is the same as the extra symmetry factors in (2.24), hence

exp

( ∞∑

k=1

(−λ)kEk

)
=
∑

(−λ)l1ν1+...+laνazl1ν1+...+laνa
=

∞∑

k=0

(−λ)kzk =
Z(λ)

Z(0)
⇐⇒

(2.30)

⇐⇒ log

(
Z(λ)

Z(0)

)
=

∞∑

k=1

(−λ)kEk (2.31)

Thus by taking the logarithm of a generating function, one only considers
the connected graphs of each order. Throughout this thesis, log refers to the
natural logarithm. [2]

2.4 Counting connected graphs explicitly

We now have all the tools we need to calculate the number of connected graphs
with M vertices of degree 4. The Taylor expansion of log(1 + λ) around λ = 0
takes the form of

log(1 + λ) = −
∞∑

n=1

(−λ)n

n
(2.32)

Calculating the logarithm of Z(λ)
Z(0) yields

log

(
Z(λ)

Z(0)

)
= log

(
1 +

∞∑

k=1

(−λ)k(4k − 1)!!

k!4!k

)
= −

∞∑

n=1

1

n

(
−

∞∑

k=1

(−λ)k(4k − 1)!!

k!4!k

)n

=

(2.33)

= −
∞∑

n=1

(−1)n

n

∞∑

k1,...,kn=1

(−λ)k1+...+kp

n∏

i=1

(4ki − 1)!!

ki!4!ki
=

∞∑

n=1

λn

n

∑

k1+...+kP=n

P∏

i=1

(4ki − 1)!!

ki!4!ki

(2.34)

Where the sum over k1 + k2 + . . . + kP runs from P = 1 to P = n and for
all combinations of number {ki}Pi=1 such that

∑P
i=1 ki = n. Comparing this to

equation (2.22), we get that

∑

Γ∈gc
n

1

S(Γ)
=

(−1)n

n

∑

k1+k2+...+kP=n

P∏

i=1

(4ki − 1)!!

ki!4!ki
(2.35)
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3 Basic colored graphs

So far we have only dealt with one-dimensional integrals. In one dimension, for
any coupling, 〈fifj〉 = 〈x2〉 = 1. So any edge can be connected with any other
edge to form a graph that contributes to the integral. For multi-dimensional
integrals this is not the case, as we will see.

In the application of Feynman diagrams in Quantum Field Theory, different
kinds of particles are represented by different kinds of lines. Solid lines represent
electrons, wavy lines represent photons etc. These are, of course, not colors but
the basic idea of being able to distinguish between lines is the same.

Consider the standard Gaussian measure in R
3

dµ = exp(−x2 + y2 + z2

2
)dxdydz =

∏

u=x,y,z

e−u2/2du (3.1)

We get similar equations for the expectation values

〈x2〉 = 〈y2〉 = 〈z2〉 = 1 (3.2)

〈xy〉 = 〈yz〉 = 〈zx〉 = 0 (3.3)

In other words, one can only couple an edge representing an x with another
edge representing an x and so on. This is graphically represented by coloring
the edges of the graph. Arbitrarily choosing the colors, x-green, y-red, z-blue,
the monomial xmynzk correspond to a vertex with m green edges, n red edges
and k blue edges. When coupling vertices of this kind, a red edge can only be
coupled with another red edge and so on.

By looking at the separated measure in equation (3.1), we see that it is
possible to rewrite the expectation value of a three-dimensional monomial as

〈xmynzk〉 = 〈xm〉〈yn〉〈zk〉 (3.4)

So there is a clear connection between expectation values of multi-dimensional
monomials and one-dimensional monomials. It is possible to count colored
graphs by considering all colors individually, and hence be back to the case
of non-colored graphs. There are however advantages of introducing colored
graphs. One advantage is when we want to consider connected graphs. It is
possible for the colored graph to be connected, even though none of the single
colors connect the entire graph. Figure 3.1 shows an example of such a graph.
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Figure 3.1: A connected colored graph

It is not at all obvious to determine how, if it’s even possible, to form a par-
ticular connected colored graph given a set of disconnected one-colored graphs.
It is much more practical to consider colored graphs right from the start.

Another advantage is that it allows for answers to questions like: ”In how

many ways can one color the edges of a graph such that . . .”
Of course, if not all of m,n and k are even

〈xmynzk〉 = 0 (3.5)

But if they all are even we can rename the powers

(m,n, k) → (2m, 2n, 2k) (3.6)

With this new notation, the graphically appropriate expectation value takes the
form

〈x
2m

2m!

y2n

2n!

z2k

2k!
〉 = 〈x2m〉

2m!

〈y2n〉
2n!

〈z2k〉
2k!

=
(2m− 1)!!(2n− 1)!!(2k − 1)!!

2m!2n!2k!
(3.7)

Calculating this graphically, we choose not to split the monomial into several
monomials. We must therefore consider 1 vertex with 2m green edges, 2n red
edges and 2k blue edges. The only possible graph, Γ, of such a vertex consists
of m green loops, n red loops and k blue loops, hence the symmetry factor Γ is

S(Γ) = L · E0 · V = Lm · Ln · Lk · 1 · 1 = 2m+n+km!n!k! =
2m!2n!2k!

(2m− 1)!!(2n− 1)!!(2k − 1)!!
(3.8)

Which is consistent with equations (3.7) and (2.16).
This model is easily generalized to N colors by considering integrals over the

standard Gaussian measure on R
N .
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4 Matrix integrals and fat graphs

Before we discuss matrix integrals and fat graphs, the concepts of maps and the
Euler Characteristic are introduced.

4.1 Surfaces, Maps and the Euler Characteristic

Throughout this thesis, all surfaces are assumed to be bounded, orientable and
without boundary. The genus g of a surface is an integer and equal to the
number of holes in the surface. There is only one surface for every non-negative
genus g, up to homeomorphism. Figure 4.1 shows surfaces of genus 1,2 and 3.

Figure 4.1: Surfaces of genus 1,2 and 3.

A map is a graph drawn on one or more surfaces such that [1]

• the edges do not intersect

• all the faces of the map are homeomorphic to an open disk

A face of a map is a region of the surface that lies inbetween the edges of the map.
A map drawn on a single surface is called connected, whereas a disconnected map
is drawn on several surfaces. Figure 4.2 shows a connected map with 4 vertices
of degree 4, drawn on a torus.
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Figure 4.2: A map on a torus

Let V be the number of vertices of a map, F the number of faces and E the
number of edges. The maps Euler Characteristic, χ, is defined as:

χ = V − E + F (4.1)

This χ depends only on the genus g of the surface that the map is drawn on.
The dependence satisfies [1]

χ = 2− 2g (4.2)

The map in figure 4.2 has 4 vertices, 8 edges and 4 faces. The Euler characteristic
of the map is therefore

χ = 4− 8 + 4 = 0 ⇐⇒ g = 1 (4.3)

This agrees with equation (4.2), as the torus indeed has genus 1.
When calculating matrix integrals in terms of maps, it is the Euler char-

acteristic that allows us to classify all maps in order of contribution to the
integral.

4.2 Integrals over Hermitian matrices

A complex square matrix M ∈ C
N×N is called Hermitian if its real part is sym-

metric and its imaginary part is antisymmetric. This is equivalent to requiring
that M† = M , where M† is the Hermitian conjugate of M .

Let HN be the space of all N × N Hermitian matrices, and let M = X +
iY . The antisymmetric matrix Y is uniquely determined by its strictly upper

triangular part. In other words, Y has N2−N
2 free components. X is uniquely

determined by its main diagonal and its strictly upper triangular part, and

hence has N2+N
2 free components. In total M has N2 free components, so the

space HN is N2-dimensional. We equip HN with the (non-standard) Gaussian
measure

dµ(M) = exp

(
−1

2
Tr(M2)

) N∏

m=1

dxmm

∏

m<n

dxmndymn (4.4)
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where xmn and ymn are the components of X and Y respectively. For m < n,
xmn and ymn are in the strictly upper triangular parts of X and Y respectively.

The trace of a Hermitian matrix equals

Tr(M2) =
N∑

m,n=1

MmnMnm =
N∑

m,n=1

|Mmn|2 = (4.5)

=
N∑

m=1

xmm + 2
∑

m<n

x2
mn + y2mn (4.6)

Since the space HN is of real dimension N2, we can view the integral over
HN as an integral over R

N2

Rewriting the Hermitian matrix M as the R
N2

-
vector (x11, x22, . . . , xNN , x12, x13, . . . , xN−1,N ), the covariance matrix A, takes
the diagonal form:

A = diag(1, 1, . . . , 1, 2, 2, . . . , 2) (4.7)

with N ones and N2 −N twos. The inverse matrix B follows immediately as

B = diag(1, 1, . . . , 1,
1

2
,
1

2
, . . . ,

1

2
) (4.8)

Thus we have from equation (1.11)

〈x2
mm〉 = 〈M2

mm〉 = 1 (4.9)

〈x2
mn〉 = 〈y2mn〉 =

1

2
(4.10)

Thus for m < n

〈MmnMnm〉 = 〈x2
mn + y2mn〉 =

1

2
+

1

2
= 1 (4.11)

〈MmnMmn〉 = 〈x2
mn − y2mn + 2ixmnymn〉 =

1

2
− 1

2
+ 0 = 0 (4.12)

All other products of two elements of M are also zero as they would involve
off-diagonal components of B, which are all zero. So the following formula holds

〈MmnMlk〉 = δnlδmk (4.13)

where δmn is the Kronecker delta.
This bares some resemblance to equations (3.2) and (3.3), as a coupling

〈MmnMlk〉 equals either 1 or 0. The components of the matrix M are linear
functions of N2 real variables and so they satisfy the requirements of the Wick
lemma, and equation (4.13) can be used to calculate every term in a Wick cou-
pling. This means that we should be able to calculate integrals over Hermitian
matrices graphically.

It is not obvious how to represent monomials in Mmn as vertices. We could
just rewrite a monomial in Mmn as a homogeneous polynomial in the real vari-
ables xmm, xmn and ymn, associate N2 colors to the variables and follow the
procedure of the previous sections. This is however not the route we wish to
take. To count graphs of N2 colors, it would be simpler to calculate integrals
of monomials over the standard Gaussian measure on R

N2

.
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We focus on calculating expectation values of traces of powers of M , for
reasons that will hopefully be clear by the end of this section. The trace of a
power of M is equal to

Tr(Mk) =
∑

i1,i2,...,ik

Mi1i2Mi2i3 . . .Miki1 (4.14)

This is represented graphically as a vertex

Figure 4.3: Graphical representation of Tr(Mk)

The n:th power of Tr(Mk), Tr(Mk)n, is represented by n vertices of the kind
shown in figure 4.3. Looking at equation (4.13), we see that it is important that
in which order the indicies appear. That is why there are arrows on the edges.
An edge with an arrow pointing away from the vertex can only be connected
with a vertex with an arrow pointing towards the vertex and vice versa. The
edges are coupled pairwise according to

Figure 4.4: Connection of edges corresponding to a coupling

By connecting all edges in this fashion, a fat graph1 is formed.

1A fat graph is sometimes called a ribbon graph.
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The connection in figure 4.4 corresponds to the coupling 〈Mi1i2Mjkj1〉. From
equation (4.13), we see that this coupling is non-zero iff

i2 = jk
i1 = j1

(4.15)

All the contributing Wick couplings of a monomial with 2k matrix elements
can be found with 2k index equalities. For a concrete example of the importance
of these index equalities, we calculate 2 Wick couplings of 〈Tr(M4)〉.

〈Tr(M4)〉 =
∑

i,j,k,l

〈MijMjkMklMli〉 =
∑

ind.

∑

coupl.

〈Mp1
Mq1〉〈Mp2

Mq2〉 (4.16)

Where the indicies pi, qi have 2 components, the sum over ind. runs over all
indicies and the sum over coupl. runs over all unique couplings. Consider first
the coupling

〈MijMjk〉〈MklMli〉 (4.17)

For this product to be non-zero equation (4.13) gives the index equalities

i = k
j = j
i = k
l = l

(4.18)

The only restriction from (4.18) is the requirement that i = k. When
summed over the indicies

∑

ind.

〈MijMjk〉〈MklMli〉 =
∑

ind.

δik =
N∑

i,j,k=1

1 = N3 (4.19)

N3 is called the contribution of the Wick coupling.
Now consider the second Wick coupling

〈MijMkl〉〈MjkMli〉 (4.20)

which leads to the index equalities

i = l
j = k
j = i
k = l

(4.21)

This is a much stronger restriction, namely i = j = k = l. This Wick couplings’
contribution is N . Every Wick coupling of matrices leaves a number of free
indicies. The former Wick coupling leaves 3 free indicies, the latter only 1. Call
this number of free indicies F , so that the contribution of a Wick coupling equals
NF

A trace of particular importance in this thesis is

Tr(M4)k =
∑

ind.

Mi11 i12
Mi12 i13

Mi13 i14
Mi14 i11

. . .Mik4
ik1

(4.22)
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which graphically is represented as

Figure 4.5: Vertices from Tr(M4)k

The fat graphs from powers of Tr(M4) are the simplest non-trivial fat graphs
to study, and a large part of this thesis is dedicated to them.

〈Tr(M4)k〉 =
∑

ind.

〈Mi11 i12
Mi12 i13

Mi13 i14
Mi14 i11

. . .Mik4
ik1

〉 =

=
∑

ind.

∑

couplings

〈Mp1
Mq1〉 . . . 〈Mp2k

Mq2k〉 =
∑

maps
NF

(4.23)

Note that the same map may appear many times in the sum in equation (4.23).
Graphically, a free index corresponds to a closed path in the fat graph. When
drawn on a surface, these closed paths all enclose a region of the surface. We
have already introduced the term faces for these regions, hence the contribution
of a map equals NF , where F is the number of faces of the map. We can now
calculate the contribution of a graph in terms of its Euler characteristic. Let
G be a fat graph formed by k vertices of degree 4. Before the coupling, every
vertex has 4 edges, so there are 4k in total. After the coupling, where we always
connect 2 edges to each other, the number of edges reduces to E = 4k

2 = 2k.
From equations (4.1) and (4.2) we get that

χ = 2− 2h = V − E + F = F − k (4.24)

where h is the genus of the surface. Let’s keep the −k in the left-hand side for
now. Equation (4.24) lets us express the contribution of a map in terms of the
genus of the surface it was drawn on.

We will now attempt to count connected maps from k vertices of degree 4.
We start in the same way as for graphs, by defining a generating function in the
form of an integral.

Z(g)

Z(0)
=

1

Z(0)

∫

HN

exp

(
−1

2
Tr(M2)− g

N
Tr(M4)

)
dM =

∞∑

k=0

(−g)k

Nkk!
〈Tr(M4)k〉

(4.25)

From here on the calculations differ from the ones already performed for graphs.
There has been no discussion about the symmetry factors of these fat graphs,
and that is for of a reason. The symmetry factor of graphs was a way to
determine how much each of the graphs contribute to the integral. For maps
the contribution is determined by the faces of the map, or the genus, h, of the
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surface it was drawn on. Using equations (4.23) and (4.24), we can express the
generating function as

Z(g)

Z(0)
=

∞∑

k=0

(−g)k

Nkk!

∑

maps
NF =

∞∑

k=0

(−g)k

k!

∑

maps
N2−2h ⇐⇒ (4.26)

where h is the genus of the map. The contribution of the maps is now solely
determined by their genus. It is clear that the maps that contribute the most
to the integrals are the ones drawn on a sphere, the surface of genus 0. Ap-
proximating a matrix integral by only considering the maps of genus 0 is called
the planar approximation.2 Because the contribution of a map is determined by
its genus, not the number of vertices, it is convenient to rewrite equation (4.26)
from a sum over vertices to a sum over genera.3 Let Gh be the set of all maps
of genus h, with vertices of degree 4, and let ρ(G) be the number of times the
map G arises from the couplings. The rewritten generating function takes the
form

Z(g)

Z(0)
=

∞∑

h=0

∑

G∈Gh

N2−2hρ(G)
(−g)k(G)

k(G)!
(4.27)

Let Gc
h be the set of connected maps of genus h. By the logarithm property

we get

1

N2
log

(
Z(g)

Z(0)

)
=

∞∑

h=0

N−2h
∑

Γ∈Gc
h

ρ(Γ)
(−g)k(Γ)

k(Γ)!

︸ ︷︷ ︸
eh(g)

=
∞∑

h=0

eh(g)N
−2h

(4.28)

A simple consequence of equation (4.28) is

lim
N→∞

1

N2
log

(
Z(g)

Z(0)

)
= e0(g) (4.29)

e0(g) is the planar graph approximation. Later we will use equation (4.29) to
determine e0(g) explicitly.

4.3 UN -invariant integrals

There is a way to simplify some integrals over HN by only explicitly integrating
over the matrices’ eigenvalues {λi}Ni=1. This reduces the integral over the N2-
dimensional space HN to an integral over R

N . There are however restrictions
on what measures this approach works for.

By the spectral theorem every Hermitian matrix is unitarily diagonalizable.
In other words, for a matrix M ∈ HN , there is a diagonal matrix Λ, and a
unitary matrix U ∈ UN such that

M = U †ΛU (4.30)

2The name comes from the fact that a graph that can be drawn on a sphere can also be

drawn on a plane.
3Genera is the plural of genus.

21



where U† is the Hemritian conjugate of U . Furthermore since the eigenvalues of
a Hermitian matrix are real, Λ is a real diagonal matrix. There are some degrees
of freedom in choosing the matrices U and Λ. One can position the eiqenvalues
on the diagonal of Λ in N ! ways. Any eigenvector can also be multiplied by an
arbitrary factor eiφ ∈ U1.

The restriction on the measure is that it needs to be unitary invariant. A
function f : CN×N → C is called unitary invariant if for any U ∈ UN

f(U †MU) = f(M) (4.31)

Since the trace operator is invariant under cyclic permutations, Tr(Mk) is uni-
tary invariant for all k.

The (non-Gaussian) measure

dµ(M) = exp

(
−1

2
Tr(M2)−

M∑

p=2

ḡp(Tr(M
2p))

)
dM (4.32)

where ḡp =
gp

Np−1 , is also unitary invariant, as it consists of a sum of traces.
So let ΩN be the volume of the unitary group UN . We can now simplify the
integral of (4.32) over HN to an integral over RN .

∫

HN

dµ(M) =
ΩN

N !(2π)N

∫

RN

∆(λ)2 exp

(
−1

2

N∑

i=1

λ2
i −

P∑

p=2

ḡp

N∑

i=1

λ2p
i

)
dNλ

(4.33)

The factor N !(2π)N comes from the ambiguity of choosing a diagonalization
of M . ∆(λ), the Jacobian for this change of variables, is the Vandermonde

determinant, which is defined as

∆(λ) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λ1 λ2 . . . λN

λ2
1 λ2

2 λ2
N

...
. . .

...

λN−1
1 λN−1

2 . . . λN−1
N

∣∣∣∣∣∣∣∣∣∣∣

(4.34)

Define, with dµ(M) as in equation (4.32), the function Z(ḡ) and the associ-
ated Z̄(ḡ) as

Z(ḡ) =

∫

HN

dµ(M) =
ΩN

(2π)NN !

∫

RN

exp

(
−1

2

N∑

k=1

λ2
k −

P∑

p=2

ḡp

N∑

i=1

λ2p
i

)
∆(λ)2dNλ =

ΩN

(2π)NN !
Z̄(g)

(4.35)
The integral Z(0) is also separable into a unitary part and an eigenvalue part.

So the generating function Z(ḡ)
Z(0) takes the form

Z(g)

Z(0)
=

ΩN

(2π)NN !
Z̄(ḡ)

ΩN

(2π)NN !
Z̄(0)

=
Z̄(g)

Z̄(0)
(4.36)
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5 Orthogonal polynomials

There are several ways of calculating and approximating the generating function
(4.36). One approach, which in principal could calculate (4.36) exactly, is to
use orthogonal polynomials. This section contains a comprehensible overview of
orthogonal polynomials and their application without much detail or justifica-
tion. In appendix C, a more rigorous treatment of orthogonal polynomials is
given.

Consider the measure

dν(λ) = exp

(
−1

2

∞∑

k=1

λ2
k −

P∑

p=2

ḡp
∑

i=1

λ2p
i

)
dNλ (5.1)

on R
N , as it appears in (4.35). It is separable into N real components. We want

to find orthogonal polynomials of one variable, so we shall find the orthogonal
polynomials with respect to one of the components of the measure (5.1). This
measure takes the form

dµ(λ) = exp(−1

2
λ2 −

P∑

p=2

ḡpλ
2p)dλ = e−V (λ)dλ (5.2)

The expectation value of a function f : R → R with respect to (5.2) is defined
as

〈f(λ)〉 =
∫

R

f(λ)dµ(λ) (5.3)

Note that we do not normalize the measure dµ(λ) here. Let two polynomials
Pn(λ) and Pm(λ), be orthogonal with respect to the measure (5.2), and let hn

be the norm of Pn(λ). By definition, they must satisfy

〈Pn(λ)Pm(λ)〉 = hn(ḡ)δmn (5.4)

where δnm is the Kronecker delta. The measure (5.2) depends on a number of
gp:s, hence the expectation value of a function of λ also depends on the gp:s. In
particular the coefficients of the polynomial Pn(λ) and its norm hn, depend on
the gp:s.

The polynomials satisfy the the well-known recursion formula [2]

λPn(λ) = Pn+1(λ)−AnPn(λ) +RnPn−1(λ) (5.5)

The coefficient Rn also depends on the ḡ:s in the measure. For an even measure
dµ, P2k(λ) is even and P2k+1(λ) is odd. By the parity of equation (5.5) it is
seen that Ak = 0 for an even measure. There is a known relation between the
norms hn and the coefficient Rn from equation (5.5)

hn = Rnhn−1 (5.6)

Equation (5.6) will prove to be very important for the integral in (4.35). From
partial integration of λP ′

n(λ)Pn(λ), we get

nhn = Rn

∫

R

dµV ′(λ)Pn(λ)Pn−1(λ) (5.7)
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Where by construction

V ′(λ) = λ+
∞∑

p=1

2(p+ 1)ḡp+1λ
2p+1

(5.8)

All the formulas are derived in appendix C. Equations (5.2) to (5.8) contain
all the information we need to calculate the generating function (4.35) in terms
of h0 and the Rn factors. Iterating equation (5.6) gives

hn = Rnhn−1 = RnRn−1hn−2 = . . . = RnRn−1 . . . R1h0 (5.9)

The Vandermonde determinant, ∆(λ), is easily expressed in terms of orthog-
onal polynomials according to,

∆(λ) =

∣∣∣∣∣∣∣∣∣

1 λ1 λ2
1 · · · λN−1

1

1 λ2 · · · · · · λN−1
2

...
. . .

1 · · · · · · λN−1
N

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

P0(λ1) P1(λ1) P2(λ2) · · · PN−1(λ1)

P0(λ2)
. . .

...
. . .

P0(λN ) PN−1(λN )

∣∣∣∣∣∣∣∣∣∣
(5.10)

The equality is again derived in appendix C. We can now use the explicit formula
for the determinant to calculate (4.35).

Z̄(ḡ) = N !h0(ḡ) . . . hN−1(ḡ) = N !h0(ḡ)
N

N∏

k=1

RN−k
k (ḡ) (5.11)

Where equation (5.9) was used for the second equality. Equation (5.11) is
the generating function (4.35) expressed only in terms h0 and the Rn:s. The
generating function for connected maps can be expressed as [2]

1

N2
log

(
Z(ḡ)

Z(0)

)
=

1

N
log

(
h0(ḡ)

h0(0)

)
+

1

N

N∑

k=1

(1− k/N) log

(
Rk(ḡ)

Rk(0)

)
(5.12)

For the planar graph approximation, we take the large-N limit of (5.12).
Now consider the integral (5.7). V ′(λ) is a polynomial in λ. Remembering

the recursion formula (5.5), we can view a λp-term as an operator taking Pn−1(λ)
to Pn(λ). This way, the integral becomes easy to visualize. Take Ps(λ) as the
s:th step in a stair, and λPs(λ) as moving up one step, staying put and moving
down one step. Each of these options is represented by 1 term in (5.5). So λp

corresponds to all paths with p moves. A path starting at the n−1:th step must
end at the n:th step, or else the integral (5.7) is zero. The moves contribute to
the path according to

• Moving up from step k: factor 1

• Staying put on step k: factor −Ak (=0 for an even measure)

• Moving down from step k: factor Rk
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Thus the integral becomes a sum of all paths like: [2]

∫

R

Pn(λ)(λ
pPn−1(λ))dµ(λ) = hn

∑

paths

Ra . . . Rb(−Ac) . . . (−Ad) = hnα
p
n

(5.13)
Where the sum runs over all paths of p moves from step n− 1 to step n.
For an even measure, there are some simplifications of this model. Firstly,

as V ′(λ) is odd, all paths consist of an odd number of moves. Furthermore
Ak = 0, so all moves must either be a move up or a move down. Inserting these
constraints in equation (5.13) and inserting it into equation (5.7), we get the
very useful equation [2]

n = Rn(g)


1 +

∑

p≥1

2(p+ 1)ḡp+1

∑

paths

Rs1 . . . Rsp


 (5.14)

In a path from step n− 1 to step n in 2p+ 1 moves, without standing still,

there must be p + 1 moves up and p moves down. Hence there are

(
2p+ 1

p

)

such paths. A simple consequence of equation (5.14) is that for gp ≡ 0

Rn(0) = n (5.15)
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6 Finding the planar graph approximation

In order to calculate the large-N limit of (5.12), we need to find an approximation
of Rk(ḡ) which is continuous in x = k

N . It is shown in appendix B that

Rk(g/N)

N
= r0(k/N) +O(N−2) (6.1)

where r0(x) is defined as the non-negative solution to

x = r0(x)


1 +

∑

p≥1

gp+1
(2p+ 2)!

p!(p+ 1)!
r0(x)

p−1


 (6.2)

for x ∈ [0, 1].
We now have everything we need to calculate the planar graph approxima-

tion for an arbitrary number of vertices of even degree. We note first that, with
x = k

N

Rk(ḡ)

Rk(0)
=

Rk(ḡ)/N

k/N
=

r0(x)

x
+O(N−1) =⇒ log

(
Rk(ḡ)

Rk(0)

)
= log

(
r0(x)

x

)
+O(N−1)

(6.3)

Hence, the large-N limit of (5.12) can be calculated as

e0(g) = lim
N→∞

(
1

N
log

h0(g)

h0(0)
+

1

N

N∑

k=1

(1− k/N)

(
Rk(g)

Rk(0)

)
= (6.4)

= lim
N→∞

1

N

N∑

k=1

(1− k/N) log

(
r0(k/N)

k/N

)
+O(N−1) =

∫ 1

0

(1− x) log(r0(x)/x)dx

(6.5)

Dealing with r0(x) in the integral is rather unpractical, since we have no explicit
formula for r0(x). Equation (6.2) gives a simple expression for x(r0). Let
a2 = r0(1), and change the variable of integration to r0. After partial integration
we get

e0(g) =
1

2
log(a2) +

1

2

∫ a2

0

r0x̄
′(r0)(2− r0x̄(r0))dr0 (6.6)

where x̄(r0) = x(r0)
r0

. Since x̄(r0) is a polynomial in r0 the integral in (6.6)
is easily calculated. For a polynomial of high degree however, the equation
x(a2) = 1 becomes difficult or impossible to solve exactly. By limiting ourselves
to vertices of low degrees, it is possible to get an explicit expression for (6.6).

For the simplest non-trivial case of only considering vertices of order 4, we
can calculate (6.6) explicitly. Equation (6.2) reduces to a quadratic polynomial
polynomial in r0. Dropping the subscript on g2, we get

x̄(r0) = 1 + 12gr0 =⇒ 1 = a2 + 12ga4 ⇐⇒ a2 =
−1 +

√
1 + 48g

24g
(6.7)

Which results in the planar graph approximation

e0(g) =
1

2
log(a2) +

1

24
(1− a2)(9− a2) = −2g + 18g2 + . . . (6.8)
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7 Counting graphs for higher genera

This section is again limited to the case where all vertices are of degree 4. In
principle ek(g) can be calculated for any k ∈ N with the method presented
here. Since the calculations get very complicated for larger values of k, we only
perform calculations for k = 0, 1.

With all vertices being of degree 4, the step-stair process becomes very sim-
ple. Every path starts from step n−1, and after 3 moves, ends at step n. There
are only 3 such paths, with down-moves on steps n − 1, n and n + 1. Hence
equation (5.14) reads

n = Rn(g/N)(1 + 4
g

N
(Rn−1(g/N) +Rn(g/N) +Rn+1(g/N))) ⇐⇒

⇐⇒ n

N
=

Rn(g/N)

N
(1 + 4g

Rn−1(g/N) +Rn(g/N) +Rn+1(g/N)

N
)

(7.1)

Let R̄k(g/N) = Rk(g/N)
k , x = n

N , ε = 1
N and define the analytic function

r(x) = xR̄n(g/N) =
Rn(g/N)

N
(7.2)

Equation (7.1) can now be rewritten as [2]

x = r(x) + 4gr(x)(r(x− ε) + r(x) + r(x+ ε)) (7.3)

Equation (7.3) shows that r is even in ε, and hence attains an expansion in the
even powers of ε.

r(x) =
∞∑

k=0

r2k(x)ε
2k (7.4)

Using equation (7.4), we can Taylor expand r(x+ ε) + r(x− ε) around ε = 0.

r(x+ ε) + r(x− ε) = 2
∞∑

n=0

r(2n)(x)

(2n)!
ε2n = 2

∞∑

n,k=0

ε2n+2k r
(2n)
2k (x)

(2n)!
= (7.5)

= 2
∞∑

N=0

ε2N
∑

k+p=N

(
r
(2n)
2k (x)

(2n)!

)
(7.6)

So (7.3) can be expanded in even powers of ε according to

x =
∞∑

k=0

r2k(x)ε
2k + 4g

∞∑

k=0

r2k(x)ε
2k




∞∑

k=0

r2k(x)ε
2k + 2

∞∑

N=0

ε2N
∑

k+p=N

(
r
(2n)
2k

(2n)!

)


(7.7)

where the superscripts (2n) is the 2n:th derivative with respect to x.
Taking out the component of ε2m we get

xδm0 = r2m + 4g


 ∑

n1+n2=m

r2n1
r2n2

+ 2
∑

n1+n2=m

r2n1

∑

k+p=n2

r2p2k
(2p)!


 (7.8)
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The first 2 components of this becomes, with (α = 1 + 48gx):

x = r0 + 4g(r20 + 2r20) = r0 + 12gr20 ⇐⇒ r0 =
−1 +

√
α

24g
(7.9)

0 = r2(1 + 24gr0) + 4gr0r
(2)
0 ⇐⇒ r2 = −4gr0r

(2)
0

α1/2
(7.10)

(7.11)

The derivatives of r0(x) up to second order are

r
(1)
0 = α−1/2 (7.12)

r
(2)
0 = −1

2
α−3/2α′ = −24gα−3/2 (7.13)

This gives the expression for r2(x)

r2(x) = − 4g

α1/2
r0(x)(−24gα−3/2) = 4g(24g)

r0(x)

α2

The r0(x) is kept in the formula which will be practical in the logarithmic
expansion of R̄k(g/N). An explicit formula for r4(x) is derived in appendix D.

We now return to the exact equation (5.12). We have already introduced

the quantity R̄k(ḡ) =
Rk(ḡ)

k = Rk(ḡ)
Rk(0)

. Remembering that ε = 1
N , we can expand

Rk(ḡ)

Rk(0)
=

r(x)

x
=

r0(x)

x
+

1

N2

r2(x)

x
+O(

1

N4
) (7.14)

so the expansion of log
(

Rk(ḡ)
Rk(0)

)
up to N−4 is

log

(
r0(x)

x
+

1

N2

r2(x)

x
+O(N−3)

)
= log

(
r0(x)

x

[
1 +

1

N2

r2(x)

r0(x)
+O(N−4)

])
=

(7.15)

= log(r0(x)/x) + log(1 +
1

N2

r2(x)

r0(x)
+O(N−4) = (7.16)

= log(r0(x)/x) +
1

N2

r2(x)

r0(x)
+O(N−4) (7.17)

In order to expand equation (5.12) in powers of 1
N we need to make use

of the Euler-Maclaurin formula. It states, for all the relevant powers in this
case, that a function f : [0, 1] → R which is 6 times continuously differnetiable
satisfies

1

N

N∑

k=1

f(k/N) =

∫ 1

0

f(x)dx+
1

2N
f(x)|10 +

1

2!6

1

N2
f (1)(x)|10 +O(N−4) (7.18)

where f (k)|10 = f (k)(1)−f (k)(0). So expanding f(k/N) = (1−k/N) log(R̄k(g/N))
as

f(x) = (1− x)

[
log

(
r0(x)

x

)
+

1

N2

(
r2(x)

r0(x)

)]
+O(N−4) (7.19)
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The Euler-Maclaurin formula can be used to calculate the generating function

up to N−4. Let α1 = 1 + 48g, ω = 24g and a2 = −1+
√
1+48g

24g . Calculating this

term by term, up to N−4 gives

1

2N
f(x)|10 = − 1

2N
f(0) = − ω2

12N3
(7.20)

1

12N2
f (1)(x)|10 =

1

12N2

(
ω

2
− log

(
2

1 +
√
α1

))
(7.21)

1

N2

∫ 1

0

(1− x)
r2(x)

r0(x)
dx =

1

24N2
(α1 − 1− log(α1)) (7.22)

∫ 1

0

(1− x) log

(
r0(x)

x

)
dx =

1

2
log(a2) +

3

8
+

1

2ω
+

1

12ω2
−

√
α1

12ω2
(1 + 5ω)

(7.23)

Combine these terms now to conclude

1

N

N∑

k=1

(1− k/N) log(R̄k(g/N)) =
1

2
log(a2) +

3

8
+

1

2ω
+

1

12ω2
−

−
√
α1

12ω2
(1 + 5ω) +

1

12N2

[
3

2
ω − log

(
2− a2

)]
− ω2

12N3
+O(N−4)

(7.24)

The last term might appear troublesome, since our prediction is that the
generating function can be expanded in even powers of 1

N . There is however a
term in (5.12) which we have yet to calculate. As it turns out, the terms of odd
power in 1

N cancel out. The remaining term is

1

N
log

(
h0(g/N)

h0(0)

)
(7.25)

h0(g/N) is the norm of the orthogonal polynomial of degree 0, P0(λ) ≡ 1. The

fraction h0(g/N)
h0(0)

is easily calculated using equation (2.5).

h0(g/N)

h0(0)
=

∞∑

k=0

(
− g

N

)k (4k − 1)!!

k!
= 1− 3

( g

N

)
+

105

2

( g

N

)2
+O(N−3)

(7.26)

Taylor expanding up to N−4, the formula now reads

log

(
1− 3

( g

N

)
+

105

2

( g

N

)2)
= −3

( g

N

)
+ 48

( g

N

)2
⇐⇒

⇐⇒ 1

N
log

(
h0(g/N)

h0(0)

)
= − ω

8N2
+

ω2

12N3
+O(N−4)

(7.27)

Adding (7.27) and (7.24) gives the expressions

e0(g) =
1

2
log

(−1 +
√
α1

ω

)
+

3

8
+

1

2ω
+

1

12ω2
− (1 + 5ω)

√
α1

12ω2
= −2g + 18g2 − . . .

(7.28)

e1(g) = − 1

12
log

(
2ω + 1−√

α1

ω

)
= −g + 30g2 − . . . (7.29)
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An explicit calculation of e2(g) is given in [2].
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8 Calculating the number of basic colored fat

graphs

8.1 Graphically

This section deals with fat graphs with colored edges. Since colored graphs are
counted using integrals over RN and fat graphs are counted using integrals over
HN , it is straight-forward to employ the previous techniques and count colored
fat graphs with integrals over k copies of HN , Hk

N . The simplest of the colored
fat graphs contains 2 colors and vertices of degree 2. As we will see, these graphs
can be counted exactly.

Analogously with the previous sections, we represent Tr(AB) as the vertex

Figure 8.1: Vertex representation of Tr(AB)

And as before, only edges of the same color may be connected and the arrows
of 2 connected edges must point in the same direction. For an even number of
vertices, there is a unique connected graph. A section of it is shown in figure
8.2.
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Figure 8.2: The only connected graph of order k.

There is no way to add another vertex to the graph in figure 8.2, keeping in
mind the coloring rules. Hence there are no allowed graphs for an odd number
of vertices. The graph 8.2 leads to the index equalities:

m1 = n2 = . . . = n2k (8.1)

n1 = m2 = . . . = m2k (8.2)

So its contribution is N2. There are (2k− 1)! ways to couple the edges into this
graph, hence we get the equality

〈Tr(AB)2k〉c = (2k − 1)!N2 (8.3)

8.2 By integral perturbation

Following the techniques of the previous sections, we define the generating func-
tion

Z(g)

Z(0)
=

1

Z(0)

∫

H2
N

exp

(
−Tr(

A2

2
+

B2

2
+ gAB)

)
dν(A)dν(B) = (8.4)

=
1

Z(0)

∫

H2
N

exp

(
−Tr(

A2

2
+

1

2
(B + gA)2)− 1

2
g2A2

)
dν(A)dν(B) = (8.5)

=
1

Z(0)

∫

HN

exp

(
−1

2
(1− g2) Tr(A2)

)
dν(A) =

1√
(1− g2)N

(8.6)
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Where equation (1.2) was used to obtain the last equality. Taking the logarithm
to only consider connected graphs we get

Z(g)

Z(0)
=
√

1− g2
−N2

=⇒ log

(
Z(g)

Z(0)

)
= −N2

2
log(1− g2) =

N2

2

∞∑

k=1

g2k

k
=

∞∑

k=1

(−g)k

k!
〈Tr(AB)k〉c

(8.7)

Finally we identify the gk components and conclude

〈Tr(AB)2k+1〉c = 0 (8.8)

〈Tr(AB)2k〉 = 2k!

2k
N2 = (2k − 1)!N2 (8.9)

This is exactly the same result as obtained by graphical reasoning.
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9 The three-color problem

In this, the final section of the thesis, the first steps of a solution to the three-

color problem is presented. The problem was solved by R. J. Baxter in 1969
[4]. The problem can be stated as: In how many ways is it possible to color the
links of a hexagonal lattice with 3 colors, such that all links meeting at a vertex
are of different colors? [3] The approach to count these graphs is very similar
to before, but a different kind of approximation is used. We start by defining
the generating function

Z(g)

Z(0)
=

1

Z(0)

∫
exp

(
−N Tr

(
A2 +B2 + C2

2
+ g(ABC +ACB)

))
d3ν

(9.1)
We need both ABC and ACB in the exponent in order to allow for all colorings.
The N in the exponent allows us to use the saddlepoint approximation. The
saddlepoint approximation works for a large N and a positive function f(x, g)
with saddlepoints at x∗i, in which case

∫
e−Nf(x,g)dx∫
e−Nf(x,0)dx

≈
∑

i e
−Nf(x∗i,g)

∑
i e

−Nf(x∗i,0)
(9.2)

where the saddlepoints x∗i depend on the parameter g. The planar approxima-
tion, e0(g), takes the simple form when the function only has one saddlepoint,
namely

e0(g) = lim
N→∞

1

N2
log

(
Z(g)

Z(0)

)
= − lim

N→∞

1

N
(f(x∗, g)− f(x∗, 0)) (9.3)

For this reason, we are looking for the saddlepoints in the large-N limit.
Returning to the integral (9.1), let D = AB +BA and complete the square

which, up to cyclic permutations, equals

C2

2
+ gCD =

1

2
(C + gD)2 − 1

2
g2D2

and the remaining trace equals

Tr(D2) = Tr((AB +BA)2) = Tr(ABAB +ABBA+BABA+BAAB) = 2Tr((AB)2 +BA2B)
(9.4)

So the integral takes the form

Z(g)

Z(0)
=

1

Z(0)

∫
exp

(
Tr

(
A2 +B2 + (C + gD)2

2
− g2(ABAB +BAAB)

))
d3ν =

=
1

Z(0)

∫
exp

(
Tr

(
A2 +B2

2
− g2(ABAB +BAAB)

))
d2ν

(9.5)
The measure in (9.5) is not unitary invariant in both components. In other
words, the measure is not invariant under the U2

N transformation

(A,B) → (U†
1AU1, U

†
2BU2) (9.6)
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for all U1, U2 ∈ UN . So we can not have both A and B in diagonal form
simultaneously. There is however a useful transformation that allows for one of
A and B to be in diagonal form. It is achieved by requiring U1 = U2 in (9.6).

(A,B) → (U †AU,U†BU) (9.7)

Clearly the measure (9.5) is invariant under this transformation, and it allows
us to diagonalize one of the matrices. But before we diagonalize a matrix, we
change the integration variable A to gA, so that(9.5) may be written as

Z(g)

Z(0)
=

1

Z(0)

∫
exp

(
Tr

(
(A/g)2 +B2

2
− (ABAB +BAAB)

))
d2ν (9.8)

Now diagonalize A as Amn = λnδmn:

A = diag(λ1, λ2, . . . , λN ) (9.9)

The trace of the terms including a B are now easily calculated as a quadratic
form. The individual terms as quadratic forms are, with Bmn = xmn + iymn

Tr(B2/2) =

N∑

m,n=1

BmnBnm

2
=

N∑

m,n=1

1

2
|Bmn|2 =

1

2

N∑

m=1

x2
mm +

∑

n>m

x2
mn + y2mn

(9.10)

Tr(BAAB) =
N∑

m,n=1

Bmnλ
2
nBnm =

N∑

m,n=1

λ2
n|Bmn|2 =

N∑

m=1

λ2
mx2

mm +
∑

n>m

(x2
mn + y2mn)(λ

2
n + λ2

m)

(9.11)

Tr(BABA) =
N∑

m,n,k,l=1

BmnAnkBklAlm =
N∑

m=1

λ2
mx2

mm +
∑

n>m

2λnλm(x2
mn + y2mn)

(9.12)

So the sum of the B-traces of equation (9.8) may be rewritten as

Tr

(
B2

2
− (ABAB +BAAB)

)
=

N∑

m=1

1

2
x2
mm − λ2

mx2
mm − λ2

mx2
mm +

+
∑

n>m

x2
mn + y2mn − 2λnλm(x2

mn + y2mn)− (x2
mn + y2mn)(λ

2
n + λ2

m) = (9.13)

=
1

2

N∑

m=1

x2
mm(1− (λm + λm)2) +

∑

n>m

x2
mn(1− (λm + λn)

2) + y2mn(1− (λn + λm)2)

(9.14)

Rewriting the matrixB as the RN2

vector ~B = (x11, x22, . . . , xNN , x12, y12, . . . , yN−1,N ),

the sum of traces are expressible as ~BTΩ ~B, with the matrix Ω ∈ R
N2×N2

Ω = diag

(
1

2
(1− (λ1 + λ1)

2), . . . ,
1

2
(1− (λN + λN )2), 1− (λ1 + λ2)

2, 1− (λ1 + λ2)
2, . . . , 1− (λN−1 + λN )2

)

(9.15)
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So the determinant of Ω is

N∏

m=1

(
1

2
− (λm + λm)2)

)
·
∏

m 6=n

(1− (λm + λn)
2) =

1

2N

∏

m

(1− (λm + λm)2)
∏

m 6=n

(1− (λm + λn)
2) =

=
1

2N

∏

m,n

(1− (λm + λn)
2) (9.16)

Hence integrating with respect to B gives

Z(g)

Z(0)
=

1

Z(0)

∫
exp

(
−N Tr

(
(A/g)2 +B2

2
− (ABAB +BAAB)

))
d2ν =

=
1

Z(0)

∫
∆(λ)2 exp

(
−N

g2

∑

i

λi/2

)∫
exp(−N ~BTΩ ~B)dBdNλ =

=
1

Z(0)

∫
∆(λ)2

1√
det(Ω)

exp(−N/g2
∑

i

λi/2) =

=
1

Z(0)

∫
exp

(
−N

(∑

i

(
1

g2
λ2
i /2)−

1

N
log(∆(λ)2) +

1

2N
log(det(Ω))

))
dNλ

(9.17)

So we are to find saddlepoints of the function

f(λ, g) =
∑

i

λ2
i

2g2
− 1

N

∑

m>n

log((λn − λm)2) +
1

2N

∑

m,n

log(1− (λm + λn)
2)

(9.18)

To find the saddlepoints, we set every partial derivative of f(λ, g) equal to 0.

0 =
∂V

∂λk
=

λk

g2
− 2

N

∑

m 6=k

1

λk − λm
+

1

N

N∑

m=1

1

1 + λk + λm
− 1

1− λk − λm

(9.19)

We want to find the saddlepoints in the large-N limit. Assuming that you can
define an increasing differentiable function λ : [0, 1] → R such that λ(k/N) = λk,
these terms converge, in the large-N limit, to the integrals

0 =
λ(k/N)

g2
− 2

∫ 1

0

1

λ(k/N)− λ(x)
dx+

∫ 1

0

(
1

1 + λ(k/N) + λ(x)
− 1

1− λ(k/N)− λ(x)

)
dx

(9.20)

Introducing the even and positive eigenvalue density u(λ) = dx
dλ , all the N

saddlepoint equations can be expressed as the single equation

0 =
λ

g2
− 2

∫ 2a

−2a

u(µ)

λ− µ
dµ+

∫ 2a

−2a

(
1

1 + µ+ λ
− 1

1− λ− µ

)
u(µ)dµ (9.21)

where the eigenvalues are assumed to lie in the interval [−2a, 2a], i.e λ(1) =
2a, λ(0) = −2a. This implies that u(λ) is normalized.

∫ 2a

−2a

u(λ)dλ =

∫ 2a

−2a

∂x

∂λ
(λ)dλ = x(2a)− x(−2a) = 1− 0 = 1 (9.22)
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Defining

W (λ) =

∫ 2a

−2a

u(µ)

λ− µ
dµ (9.23)

And since u(µ) is even

∫ 2a

−2a

u(µ)

λ− µ
dµ =

∫ 2a

−2a

u(µ)

λ+ µ
dµ (9.24)

The saddle-point equation becomes, for λ ∈ [−2a, 2a]

λ

g2
= 2W (λ) +W (1− λ)−W (1 + λ) = 2W (λ) +W (1− λ) +W (−1− λ)

(9.25)

From the definition of W (λ), equation (9.23), some properties of W (λ) can be
derived.

• W (λ) is analytic in the complex plane apart from the interval [−2a, 2a]

• W (λ) goes as 1/λ as |λ| → ∞

• W (λ) is real for λ ∈ R.

• for λ ∈ [−2a, 2a], limǫ→0+ ℑ(W (λ± iǫ)) = ∓πu(λ)

And for λ ∈ [−2a, 2a] and ǫ → 0+, let −γ2 be the properly oriented line between
2a+ 2iǫ and −2a+ 2iǫ

W (λ+ iǫ) =

∫ 2a

−2a

u(µ)

λ+ iǫ− µ
dµ =

∮

γ1−γ2

u(µ)

λ+ iǫ− µ
dµ+

∫

γ2

u(µ)

λ+ iǫ− µ
dµ =

(9.26)

= −2πiu(λ+ iǫ) +

∫ 2a+2iǫ

−2a+2iǫ

u(µ)

λ+ iǫ− µ
dµ (9.27)

With the change of variables µ′ = µ− 2iǫ, the integral becomes

∫ 2a

−2a

u(µ′ + 2iǫ)

λ− iǫ− µ′ dµ
′ = W (λ− iǫ) (9.28)

So

W (λ+ iǫ) = −2πiu(λ) +W (λ− iǫ) ⇐⇒ W (λ+ iǫ)−W (λ+ iǫ) = 2iℑ(W (λ+ iǫ)) =
(9.29)

= −2πiu(λ) ⇐⇒ ℑ(W (λ+ iǫ)) = −πu(λ) (9.30)

where a bar denotes the complex conjugation, and ℑ denotes the imaginary
part. From the definition of W (λ) it is clear that

W (λ̄) = W (λ) (9.31)

and hence

ℑ(W (λ− iǫ)) = ℑ(W (λ+ iǫ)) = +πu(λ) (9.32)
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So for ǫ > 0 approaching 0 we get

ℑ(W (λ± iǫ)) = ∓πu(λ) (9.33)

The first property, that the function is analytic on C \ [−2a, 2a] tells us that
W (λ) is of the form

W (λ) = f(λ) + g(λ)
√
λ2 − 4a2 (9.34)

where f(λ) and g(λ) are analytic in the whole complex plane, and the squareroot
is zero for λ ∈ [−2a, 2a] This is the beginning of the solution to the three-color
problem. A full solution is given in [3] and [4].
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10 Summary

Using generating functions defined by integrals has shown to be a very good
approach for counting graphs. The approach works for many different kinds of
graphs. We have found that for graphs with vertices of degree 4

e0(g) =
1

2
log

(−1 +
√
α1

ω

)
+

3

8
+

1

2ω
+

1

12ω2
− (1 + 5ω)

√
α1

12ω2
= −2g + 18g2 − . . .

e1(g) = − 1

12
log

(
2ω + 1−√

α1

ω

)
= −g + 30g2 − . . .

Following the same procedure in the calculations of e0(g) and e1(g), it is possible
to calculate ek(g) for any k by performing expansions of higher degrees, although
the complexity of these calculations grows rapidly for larger k. For manageable
calculations of ek(g) for a large k, an entirely new approach is probably needed.
The solution to the three-color problem is designed to single out the planar
approximation, and there is no apparent extension of the method that would
allow for calculations of higher genera.

A weakness of the generating function-approach is when one wishes to count
graphs with vertices of odd degree. There might be an issue with the convergence
of the integral that defines the generating function. In special cases this problem
can be avoided. Suppose we only allow vertices of degree 3. The intuitive
definition of the generating function

Z(g) =

∫ ∞

−∞
exp

(
−x2

2
− gx3

)
dx (10.1)

does not converge. But if we notice that there are no graphs of odd order, we

can instead integrate exp
(
−x2

2 − gx6
)
, and view x6 as 2 vertices of degree 3.

We do not lose any graphs in this process. If we want to count graphs with
vertices of different odd degrees however, this approach might be unusable.

Even though not many results were explicitly derived, this thesis contains
sufficient information for many different graphical calculations that have not
been performed here.
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A Proof of the Wick lemma

It suffices to prove the lemma for monomials. Let

f( ~J) =
1

2
~JTB ~J (A.1)

f( ~J) is a quadratic function of ~J and has the following derivatives at the origin

f(0) = 0

∂f

∂Ji
(0) = 0

∂2f

∂Ji∂Jj
(0) = Bij = 〈xixj〉

∂kf

∂Ji1 . . . ∂Jik
(0) = 0, k ≥ 3

(A.2)

It is worth noting that ∂2f
∂Ji∂Jj

is constant. From (1.8) we have

〈xi1 . . . xi2n〉 =
∂2n

∂Ji1 . . . ∂Ji2n
ef(

~J)| ~J=0 =
∂2n

∂Ji1 . . . ∂Ji2n

( ∞∑

k=0

f( ~J)k

k!

)
| ~J=0

(A.3)

From the derivatives at the origin it’s clear that only second derivatives of f( ~J)

have the possibility of being nonzero. Hence the only power of f( ~J) in the power
series that contributes to the sum is when k = n

〈xi1 . . . xi2n〉 =
∂2n

∂Ji1 . . . ∂Ji2n

f( ~J)n

n!
| ~J=0

(A.4)

With the notation

fi1i2,...in(
~J) =

∂nf

∂Ji1∂Ji2 . . . ∂Jin
( ~J) (A.5)

for n=1
〈xixj〉 =

∑

coupl.

〈xpxq〉 (A.6)

For n=2

〈xi1xi2xi3xi4〉 =
∂4

∂Ji1∂Ji2∂Ji3∂Ji4

(
f( ~J)2

2

)
=

=
∂3

∂Ji1∂Ji2∂Ji3
(fi4(

~J)f( ~J)) =
∂2

∂Ji1∂Ji2
((fi4i3f + fi4fi3) =

= fi4i3fi2i1 +
∂

Ji1
(fi4i2fi3 + fi4fi3i2) = fi4i3fi2i1 + fi4i2fi3i1 + fi4i1fi3i2 =

∑

coupl.

〈xp1
xq1〉〈xp2

xq2〉

(A.7)
Suppose for induction that

〈xi1xi2 . . . xi2n〉 =
∑

coupl.

〈xp1
xq1〉〈xp2

xq2〉 . . . 〈xpn
xqn〉 (A.8)

41



holds for n and n− 1. Then for n+ 1

〈xi1xi2 . . . xi2n+2
〉 = ∂2n+2

∂Ji1∂Ji2 . . . Ji2n+2

(
f( ~J)n+1

(n+ 1)!

)
=

=
1

(n+ 1)!

∂2n+1

∂Ji1∂Ji2 . . . ∂Ji2n+1

((n+ 1)fi2n+2
fn) =

=
∂n

∂Ji1∂Ji2 . . . ∂Jin
(
1

n!
fi2n+2i2n+1

fn +
1

(n− 1)!
fi2n+2

fi2n+1
fn−1) =

= fi2n+2i2n+1
〈xi1xi2 . . . xi2n〉+

∑

p1,q1

fi2n+2p1
fi2n+1q1〈xi1 . . . x̂p1

x̂q1 . . . xi2n〉 =

= fi2n+2i2n+1

∑

coupl.

〈xp1
xq1〉 . . . 〈xpn

xqn〉+
∑

p1,q1

fi2n+2p1
fi2n+1q1

∑

coupl.

〈xp2
xq2〉 . . . 〈xpn

xqn〉

(A.9)
where the hat over xp1

and xq1 means that they are excluded in the product. The
first term is a sum over all Wick couplings where xi2n+2

is coupled with xi2n+1
.

The second term is a sum over all Wick couplings where xi2n+2
is not coupled

with xi2n+1
. So the sum of the two terms is the sum of all Wick couplings, and

the Wick lemma is proved.

B Continuous approximation of Rk(ḡ)/N

In the steps-stairs process, moving from step k− 1 to step k in 2p+1 steps, the
highest possible step is p+ k and the minimum is k+ 1− p. The distance from

step k is bounded. Hence for any Rl(ḡ)
N appearing in the path-sum

Rl(0)−Rk(0) = l − k (B.1)

is bounded. Note that k runs from 1 to N , so Rk(ḡ) is not bounded in the large

N-limit. From equation (5.14) we know that Rk(ḡ)
N < 1.

So we know that

Rl(ḡ)−Rk(ḡ) = l − k +O(1/N) ⇐⇒ Rl = Rk(ḡ) + l − k +O(1/N) (B.2)

⇐⇒ Rl(ḡ)

N
=

Rk(ḡ)

N
+

l − k

N
+O(1/N2) (B.3)
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Where ḡ is a vector of all the ḡp:s.

k

N
=

Rk(ḡ)

N


1 +

∑

p≥1

2(p+ 1)ḡp+1

∑

paths

Rs1 . . . RsN


 =

=
Rk(ḡ)

N


1 +

∑

p=1

2(p+ 1)gp+1

∑

paths

(
Rk + s1 − k

N
+O(1/N2)

)
. . .

(
Rk + sp − k

N
+O(1/N2)

)
 =

=
Rk(ḡ)

N


1 +

∑

p=1

2(p+ 1)gp+1

∑

paths

(
Rk(ḡ)

N

)p

+
si − k

N

(
Rk(ḡ)

N

)p−1

+O(1/N2) =

=
Rk(ḡ)

N


1 +

∑

p=1

2(p+ 1)gp+1

(
Rk(ḡ)

N

)p(
2p+ 1

p

)
+

(
Rk(ḡ)

N

)p−1 ∑

paths

si − k

N


+O(1/N2)

(B.4)
Equation (5.14) can be expanded in the large N-limit as

(B.5)

Consider the sum
∑

paths

si − k (B.6)

for a path from step k − 1 to step k in 2p + 1 steps, where the down steps are
from steps si. Rewrite the sum as

∑

paths

si − k =

2p+1∑

n=0

Cn (B.7)

where Cn is the sum of all contributions from down steps on the n:th step of
the path. Let ub and db be the number of up steps and downsteps taken before
the n:th step respectively. Let ua and da be the number of up- and down steps
taken after the n:th step. They clearly satisfy the following equations

ub + db = n− 1 (B.8)

ua + da = 2p+ 1− n (B.9)

da + db = p− 1 (B.10)

ua + ub = p+ 1 (B.11)

The step one is on at the n:th step, s is

s = k − 1 + ub − db ⇐⇒ s− k = ub − db − 1 = da − ua + 1 (B.12)

Hence the contribution from that down step is

ub − db − 1 = 2ub − n = 2p+ 2− n− 2ua (B.13)

The number of paths with ub up steps before the n:th step is, for n ≤ p
(
n− 1
ub

)(
2p+ 1− n

ua

)
=

(
n− 1
ub

)(
2p+ 1− n
p+ 1− ub

)
(B.14)
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So, for n ≤ p

Cn =
n−1∑

ub=0

(2ub − n)

(
n− 1
ub

)(
2p+ 1− n
p+ 1− ub

)
(B.15)

And for n ≥ p+ 2

Cn =

2p+1−n∑

ua=0

(2p+ 2− n− 2ua)

(
n− 1

p+ 1− ua

)(
2p+ 1− n

ua

)
(B.16)

Hence, for n ≤ p ⇐⇒ 2p+ 2− n ≥ p+ 2

c2p+2−n =

n−1∑

u=0

(n− 2u)

(
2p+ 1− n
p+ 1− u

)(
n− 1
u

)
= −Cn =⇒

2p+1∑

n=0

Cn = Cp+1

(B.17)

Cp+1 =

p∑

u=1

(2u− p− 1)

(
p
u

)(
p

p+ 1− u

)
= [v = p+ 1− u] = (B.18)

=

p∑

v=1

(−2v + p+ 1)

(
p

p+ 1− v

)(
p
v

)
= −Cp+1 = 0 (B.19)

So equation (B.5) now reads

k

N
=

Rk(ḡ)

N

(
1 +

∑

p=1

(2p+ 2)!

p!(p+ 1)!
gp+1

(
Rk(ḡ)

N

)p
)

+O(1/N2) (B.20)

Clearly

lim
N→∞

Rk(ḡ)

N
= r0(x)

(
k

N

)
(B.21)

with r0(x) as defined in equation (6.2) So let

f =
Rk(ḡ)

N
− r0(k/N) =⇒ lim

N→∞
f = 0 (B.22)
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Plug this expression into equation (B.20)

k

N
= (r0(k/N) + f)

(
1 +

M∑

p=1

(2p+ 2)!

p!(p+ 1)!
gp+1

(
r0(k/N)p + pfr0(k/N)p−1 +O(f2)

)
+O(1/N2) =

(B.23)

= (r0(k/N)(1 +

M∑

p=1

(2p+ 2)!

p!(p+ 1)!
gp+1r0(k/N)p)

︸ ︷︷ ︸
k/N

+f

M∑

p=1

(2p+ 2)!

p!(p+ 1)!
gp+1pr0(k/N)p+

(B.24)

+f(1 +
M∑

p=1

(2p+ 2)!

p!(p+ 1)!
gp+1r0(k/N)p) +O(f2) +O(N−2) ⇐⇒ (B.25)

⇐⇒ f (1 +

M∑

p=1

(2p+ 2)!

p!(p+ 1)!
gp+1(p+ 1)r0(k/N)p)

︸ ︷︷ ︸
bounded

= O(f2) +O(N−2) =⇒ f = O(f2) +O(N−2)

(B.26)

Since we have allready established that limN→∞ f = 0,

f = O(f2) (B.27)

makes no sense. Hence

f =
Rk(ḡ)

N
− r0(k/N) = O(N−2) ⇐⇒ Rk(ḡ)

N
= r0(k/N) +O(N−2) (B.28)

C Orthogonal polynomials

There is a standard procedure for finding an orthogonal basis given an arbitrary
basis. This procedure is called Gram-Schmidt orthogonalization. We start with
the standard basis of polynomials

{1, λ, λ2, . . .} (C.1)

Starting from this basis, the orthogonal polynomial of degree n in the Gram-
Schmidt orthogonalization is defined as

Pn(λ) = λn −
n−1∑

k=0

〈λnPk(λ)〉
〈Pk(λ)2〉

Pk(λ) (C.2)

We introduce the notation hn for the norm of Pn(λ).

hn := 〈Pn(λ)
2〉 (C.3)

With this notation, equation (5.4) can be extended to a relation that holds for
all polynomials Pn(λ) and Pm(λ)

〈Pn(λ)Pm(λ)〉 = hnδnm (C.4)
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Any orthogonal polynomial from the Gram-Schmidt process, Pn(λ), can be
expressed as

Pn(λ) = λn +Qn−1 (C.5)

where Qn−1 is a polynomial of degree n− 1. Hence The set of{P0, P1, . . . , Pn}
forms a basis of Pn. This means that w.r.t dµ, Pn+1 is orthogonal to Pn. For
l = 0, 1, . . . , n− 2, λPl ∈ Pn−1 so 〈PlλPn〉 = 0.

λPn ∈ Pn+1 =⇒ λPn =
n+1∑

k=0

akPk (C.6)

and for l = 0, 1, . . . , n− 2

〈PlλPn〉 =
n+1∑

k=0

ak〈PlPk〉 = alhl = 0 ⇐⇒ al = 0 (C.7)

The remaining terms make up the recursion formula

λPn(λ) = an+1Pn+1(λ) + anPn(λ) + an−1Pn−1(λ) (C.8)

Identification of the λn+1 terms leads to the conclusion that an+1 = 1. Then by
just renaming the coefficients an = −An and an−1 = Rn, the recursion formula
is attained.

λPn(λ) = Pn+1(λ)−AnPn(λ) +RnPn−1(λ) (C.9)

For an even measure dµ, An ≡ 0. For an even dµ, 〈λ2k+1〉 = 0, and

P0(λ) = 1 (C.10)

P1(λ) = λ− 〈λ〉
h0

1 = λ (C.11)

Suppose for induction that Pk(−λ) = (−1)kPk(λ) for k ∈ {0, 1, . . . , n}, which
we know holds for n=0,1 then:

Pn+1(−λ) = (−λ)n+1 −
n∑

k=0

〈(−λ)n+1Pk(−λ)〉
hk

Pk(−λ) = (−1)n+1Pn+1(λ)

(C.12)

Thus

(−λ)Pn(−λ) = (−1)n+1(λPn(λ) = Pn+1(−λ))−AnPn(−λ) +RkPn−1(−λ) =
(C.13)

= (−1)n+1(Pn+1(λ) +An−1(λ))− (−1)nAn = (−1)n+1(Pn+1(λ)−AnPn(λ) +Rn(λ)) ⇐⇒
(C.14)

⇐⇒ Ak = 0 (C.15)

Let Qk be a polynomial of degree k. Because Pn is orthogonal to the space
of all polynomials of degree n− 1

hn = 〈PnPn〉 = 〈(λn +Qn−1)Pn〉 = 〈λnPn〉 (C.16)
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Observe that

λPn = λn+1 +Qn =⇒ 〈λPnPn+1〉 = 〈(λn+1 +Qn)Pn〉 = hn+1 (C.17)

Applying the recursion formula to λPn+1 yields

hn+1 = 〈PnλPn+1〉 = 〈Pn(Pn+2 −An+1Pn+1 +Rn+1Pn)〉 = Rn+1hn = hn+1

(C.18)

Since one can add or subtract columns in a determinant, the Vandermonde
determinant, ∆(λ), is expressible in terms of orthogonal polynomials as

∆(λ) =

∣∣∣∣∣∣∣∣∣

1 λ1 λ2
1 · · · λN−1

1

1 λ2 · · · · · · λN−1
2

...
. . .

1 · · · · · · λN−1
N

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

P0(λ1) λ1 λ2
1 · · · λN−1

1

P0(λ2) λ2 · · · · · · λN−1
2

...
. . .

P0(λN ) · · · · · · λN−1
N

∣∣∣∣∣∣∣∣∣
= (C.19)

=

∣∣∣∣∣∣∣∣∣∣

P0(λ1) λ1 − 〈λ1P0(λ1)〉
h0

P0(λ1) λ2
1 · · · λN−1

1

P0(λ2) λ2 − 〈λ2P0(λ2)〉
h0

P0(λ2) · · · · · · λN−1
2

...
. . .

P0(λN ) · · · · · · λN−1
N

∣∣∣∣∣∣∣∣∣∣

= (C.20)

=

∣∣∣∣∣∣∣∣∣

P0(λ1) P1(λ1) λ2
1 · · · λN−1

1

P0(λ2) P1(λ2) · · · · · · λN−1
2

...
. . .

P0(λN ) · · · · · · λN−1
N

∣∣∣∣∣∣∣∣∣
= . . . =

∣∣∣∣∣∣∣∣∣∣

P0(λ1) P1(λ1) P2(λ2) · · · PN−1(λ1)

P0(λ2)
. . .

...
. . .

P0(λN ) PN−1(λN )

∣∣∣∣∣∣∣∣∣∣
(C.21)

D Derivation of r2(x) and r4(x)

With (α = 1 + 48gx), equation (7.8) for m = 0, 1, 2 take the forms

x = r0 + 4g(r20 + 2r20) = r0 + 12gr20 ⇐⇒ r0 =
−1 +

√
α

24g

0 = r2(1 + 24gr0) + 4gr0r
(2)
0 ⇐⇒ r2 = −4gr0r

(2)
0

α1/2

0 = r4α
1/2 + 4g

(
3(r2)

2 + r2r
(2)
0 + r0r

(2)
2 +

1

12
r0r

(4)
0

)
⇐⇒

⇐⇒ r4 = − 4g

α1/2

(
3(r2)

2 + r2r
(2)
0 + r0r

(2)
2 +

1

12
r0r

(4)
0

)

A simple consequence of this is

α1/2 = 1 + 24gr0
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The derivatives of r0 up to 4th order are

r′0 = α−1/2

r
(2)
0 = −1

2
α−3/2α′ = −24gα−3/2

r
(3)
0 =

3

4
α−5/2(α′)2

r
(4)
0 = −15

8
α−7/2(α′)3 = −15(24g)3(α)−7/2

Thus r2 is

r2 = − 4g

α1/2
r0(−24gα−3/2) = 4g(24g)

r0
α2

and r2:s derivatives up to second order are

r′2 = 4g(24g)
r′0α

2 − 2αα′r0
α4

= 4g(24g)
α3/2 − 4α(24g)r0

α4
=

= 4g(24g)(α−5/2 − 4(24g)r0α
−3)

r
(2)
2 = 4g(24g)(−5

2
α−7/2α′ − 4(24g)(r′0α

−3 − 3α−4α′r0)) =

= 4g(24g)(−5(24g)α−7/2 − 4(24g)(α−7/2 − 6(24g)α−4r0) =

=
(24g)3

2α4
(−3 + 5(24g)r0)

So the formula for r4 becomes

r4 = − 4g

α1/2
(16 · 242g4r20α−43 + r0

1

2
(24g)3α−4(−3 + 5(24g)r0)− r0

15

12
(24g)3α−4(1 + 24gr0)−

−1

6
(24g)3r0α

−7/2) = −1

6
(24g)4α−9/2r0

(
2gr0 +

1

2
(−3 + 5(24g)r0)−

5

4
(1 + 24gr0)−

1

6
(1 + 24gr0)

)
=

= −1

6
(24g)4α−9/2r0(28gr0 −

35

12
) =

7

6
(24g)4α−9/2r0(−4gr0 +

5

12
) =

7

72
(24g)4α−9/2r0(5− 48gr0)
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