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Abstract

With the discovery of a particle consistent with the Standard Model (SM) Higgs at the Large
Hadron Collider (LHC) at CERN in 2012, the final ingredient of the SM has been found. The
SM provides us with a powerful description of the physics of fundamental particles, holding up
at all energy scales we can probe with accelerator based experiments. However, astrophysics and
cosmology show us that the SM is not the final answer, but e.g. fails to describe dark matter and
massive neutrinos. Like any non-trivial quantum field theory, the SM must be subject to a so-called
renormalization procedure in order to extrapolate the model between different energy scales. In
this context, new problems of more theoretical nature arise, e.g. the famous hierarchy problem
of the Higgs mass. Renormalization also leads to what is known as the metastability problem of
the SM: assuming the particle found at the LHC is the SM Higgs boson, the potential develops
a second minimum deeper than the electroweak one in which we live, at energy scales below the
Planck scale. Absolute stability all the way up to the Planck scale is excluded at a confidence level
of about 98%. For the central experimental SM values the instability occurs at scales larger than
∼ 1010 GeV.
One can take two viewpoints regarding this instability: assuming validity of the SM all the way

up to the Planck scale, the problem does not necessarily lead to an inconsistency of our existence.
If we assume our universe to have ended up in the electroweak minimum after the Big Bang,
the probability that it would have transitioned to its true minimum during the lifetime of the
universe is spectacularly small. If we on the other hand demand absolute stability, new physics
must modify the SM at or below the instability scale of ∼ 1010 GeV, and we can explore which
hints the instability might provide us with on this new physics.
In this work, the metastability problem of the SM and possible implications are revisited. We

give an introduction to the technique of renormalization and apply this to the SM. We then discuss
the stability of the SM potential and the hints this might provide us with on new physics at large
scales.





Sammanfattning

Standardmodellen inom partikelfysik är v̊ar bästa beskrivning av elementarpartiklarnas fysik. År
2012 hittades en ny skalär boson vid Large Hadron Collider (LHC) p̊a CERN, som är kompa-
tibel med att vara Higgs bosonen, den sista saknade delen av Standardmodellen. Men även om
Standardmodellen ger oss en väldigt precis beskrivning av all fysik vi ser i partikelacceleratorer,
vet vi fr̊an astropartikelfysik och kosmologi att den inte kan vara hela lösningen. T.ex. beskriver
Standardmodellen ej mörk materia eller neutrinernas massa. Som alla kvantfältteorier måste man
renormera Standardmodellen för att f̊a en beskrivning som fungerar p̊a olika energiskalor. När man
renormerar Standardmodellen hittar man nya problem som är mer teoretiska, t.ex. det välkända
hierarkiproblemet av Higgsmassan. Renormering leder ocks̊a till vad som kallas för metastabilitets-
problemet, dvs att Higgspotentialen utvecklar ett minimum som är djupare än det elektrosvaga
minimum vi lever i, p̊a högre energiskalor. Om vi antar att partikeln som hittades p̊a CERN är
Standardmodellens Higgs boson, är absolut stabilitet exkluderad med 98% konfidens. För centra-
la experimentiella mätningar av Standardmodells parametrar uppkommer instabiliteten p̊a skalor
över ∼ 1010 GeV.
Det finns tv̊a olika sätt att tolka stabilitetsproblemet: Om man antar att Standardmodellen är

den rätta teorien ända upp till Planckskalan, kan vi faktiskt fortfarande existera. Om vi antar att
universum hamnat i det elektrosvaga minimumet efter Big Bang är sannolikheten att det har g̊att
över till sitt riktiga minimum under universums livstid praktiskt taget noll. Dvs att vi kan leva i
ett metastabilt universum. Om vi å andra sidan kräver att potentialen måste vara absolut stabil,
måste n̊agon ny fysik modifiera Standardmodellen p̊a eller under instabilitetsskalan ∼ 1010 GeV. I
s̊a fall kan vi fundera p̊a vilka antydningar stabilitetsproblemet kan ge oss om den nya fysiken.

Den här uppsatsen beskriver Standardmodells metastabilitetsproblem. Vi ger en introduktion
till renormering och använder tekniken till Standardmodellen. Sen diskuteras stabiliteten inom
Standardmodellens potential och vilka antydningar problemet kan ge oss ang̊aende ny fysik.
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1 Introduction

The Standard Model of Particle Physics (SM) provides us with an astonishingly powerful de-
scription of the physics of fundamental particles at the energy scales reachable in high energy
experiments. With the discovery of a particle consistent with the SM Higgs at the LHC in 2012,
the last ingredient of the SM was found. Powerful as it is, we are also well aware of the incom-
pleteness of the SM, which e.g. fails to explain dark matter, the baryon asymmetry, or neutrino
masses. Answers to these questions may lie within the reach of the second LHC run started in
2015, but could well be hiding at much higher energy scales.
When extrapolating the known physics to greater energy scales, renormalization plays a crucial

role. The SM cannot be solved exactly but only as a perturbation about the non-interacting the-
ory, like any other realistic Quantum Field Theory (QFT) involving interactions. When computing
beyond the leading order, one encounters infinities due to so-called loops, the production and sub-
sequent annihilation of virtual particles. For renormalizable QFTs like the SM, a systematic and
well-defined treatment of these infinities is possible: the infinities are regulated by introducing an
auxiliary parameter and subsequently removing the dependency on this auxiliary parameter from
all physical observables of the theory. In the course of this renormalization procedure, the param-
eters of the theory become dependent on the energy scales involved in a physical process. When
analyzing the renormalized SM potential, one encounters the so-called (meta)stability problem: at
energies much higher than experimentally testable, the potential might develop a second minimum
deeper than the electroweak one.
The metastability problem has been known since the early days of the SM and been used to give

powerful constraints on physics on scales larger than the ones experimentally accessible. E.g., long
before the discovery of the top quark, the stability condition has been used to constrain its mass
(cf. [1–7] and references therein). After the top quark had been discovered at the Tevatron in 1994,
the stability bound was used to constrain the mass of the Higgs boson (cf. [8–14] and references
therein).
With the discovery of a SM Higgs like particle in 2012 at the LHC all parameters of the SM

are known and it appears that the model sits at a peculiar spot very close to the stability bound.
While the experimental data prefers a metastable potential with the second minimum occurring at
scales above ∼ 1010 GeV, the stable phase lies only a few standard deviations off the central values.
This has recently led to considerations of the stability bound with improved accuracy [15,16].
This work revisits the computation of the stability bounds on the SM potential’s parameters.

We compute the dominating one-loop contributions to the renormalized potential explicitly and
compare the results with the renormalization group equations available in the literature. We then
proceed to calculate the stability bound at two-loop order and compare with the available next-
to-next-to-leading-log precision results. Finally, we discuss the interpretation of the instability
problem and possible hints, the problem provides about the physics at larger scales.
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2 Renormalization

Realistic QFTs describing interacting particles cannot be solved exactly but only as a perturbation
series about the non-interacting theory. When calculating beyond the leading order one encounters
infinities due to loops, which in the case of renormalizable theories can be dealt with in a systematic
way, the so-called renormalization procedure. Introductions to renormalization may be found in
any standard QFT textbook, e.g. [17–19]. We demonstrate renormalization for a simple example,
the one-loop correction to φ4-theory.
Consider a complex scalar field φ with quartic self-interaction and mass m. The Lagrangian is

given by

L = ∂µφ
†∂µφ−m2φ†φ− λ

4

(

φ†φ
)2

, (2.1)

where throughout this work we use the metric tensor gµν = gµν = diag (+1,−1,−1,−1), and
natural units ~ = c = 1 unless noted explicitly. The Feynman-rules for this theory are1

= i
p2−m2+iǫ , = −iλ.

Calculating the propagator to first non-trivial order we find

= +

=
i

p2 −m2 + iǫ
+

i

p2 −m2 + iǫ

(

−iλ

∫

d4k

(2π)
4

i

k2 −m2 + iǫ

)

i

p2 −m2 + iǫ
, (2.2)

where p is the external momentum and k the loop-momentum. The integral over the loop-
momentum is obviously divergent and we postpone its calculation for a moment. The 4-point
interaction to first non-trivial order with stripped off propagators for external legs is given by

= + + +

p1

p2 p4

p3

= −iλ+ (−iλ)
2
i2
[

1

2
V (s) + V (t) + V (u)

]

(2.3)

where the s = (p1 + p2)
2
, t = (p1 − p3)

2
, and u = (p1 − p4)

2
are the Mandelstam variables and

the integral over the momentum is given by

V (p2) =

∫

d4k

(2π)
4

1

(p− k)2 −m2 + iǫ
· 1

k2 −m2 + iǫ
, (2.4)

1All Feynman diagrams in this work have been drawn with the Latex package AxoDraw [51]
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2 Renormalization

where we encounter a similar integral as above. In fact, one typically encounters such integrals
when calculating loop diagrams and it is thus worthwhile to find a general strategy to solve them.

2.1 Regularization

When calculating diagrams involving loops, one often encounters momentum-space integrals over
rational functions. It is convenient to solve these by bringing them into the form

I(F, n) =

∫

d4 ℓ

(2π)
4

F (ℓ)

(ℓ2 −∆)n
, (2.5)

where ℓ is the (possibly shifted) loop-momentum, F (ℓ) is a polynomial in ℓ and ∆ a function of
mass-dimension [∆] = 2 of external momenta and the masses. To complete the square in the
denominator and find the right ℓ one often introduces an integral over Feynman parameters:

1

A1A2 · · ·An
=

∫ 1

0

dx1 · · · dxn δ(
n
∑

i=1

xi − 1)
(n− 1)!

[x1A1 + x2A2 + · · ·+ xnAn]n
. (2.6)

For only two denominator factors this reduces to

1

AB
=

∫ 1

0

dx
1

[xA+ (1− x)B]2
. (2.7)

In our case we find that the integral from the propagator is already in the right form. The integral
from the 4-point vertex can be rewritten with the help of Feynman parameters:

V (p2) =

∫

d4k

(2π)
4

1

(p− k)2 + iǫ
· 1

k2 + iǫ

=

∫ 1

0

dx

∫

d4k

(2π)
4

1

[xp2 − 2xp · k + xk2 − xm2 + k2 −m2 − xk2 + xm2 + iǫ]
2

=

∫ 1

0

dx

∫

d4k

(2π)
4

1

[(k − xp)
2
+ x (1− x) p2 −m2 + iǫ]2

=

∫ 1

0

dx

∫

d4ℓ

(2π)
4

1

[ℓ2 + x (1− x) p2 −m2 + iǫ]
2 , (2.8)

where we shifted the integration variable ℓ ≡ k − xp.
Having brought integrals over loop momenta into the form of (2.5), we find that any term

proportional to odd powers of ℓ in the numerator will integrate to zero by symmetry since the
denominator is a function of ℓ2. Hence, the remaining task is to calculate integrals of the form

I(m,n) =

∫

d4ℓ

(2π)
4

(

ℓ2
)m

(ℓ2 −∆)
n . (2.9)

The integral can be Wick-rotated to a Euclidean metric by identifying

ℓ0 ≡ iℓ0E ⇒ ℓ2 = −ℓ2E , ddℓ = i ddℓE , (2.10)

where we consider d-dimensional space-time for generality. We can rewrite the integral in (2.9)

I(d)(m,n) = i (−1)
n+m

∫

ddℓE

(2π)
4

(

ℓ2E
)m

(ℓ2E +∆)
n . (2.11)

Since the integrand is a function of ℓ2E only, it is convenient to switch to spherical coordinates

I(d) (m,n) =
i (−1)

n+m

(2π)
d

∫

dΩd

∫ ∞

0

dℓE ℓd−1
E

(

ℓ2E
)m

(ℓ2E +∆)
n

=
i (−1)

n+m

2 (2π)
d

∫

dΩd

∫ ∞

0

d
(

ℓ2E
)

(

ℓ2E
)

d
2
−1+m

(ℓ2E +∆)
n , (2.12)
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2.1 Regularization

where
∫

dΩd is the surface of the d-dimensional unit sphere. In d = 4 dimensions
∫

dΩd = 2π2,
hence,

I(4) (m,n) =
i (−1)

n+m

16π2

∫ ∞

0

d
(

ℓ2E
)

(

ℓ2E
)1+m

(ℓ2E +∆)
n . (2.13)

For n > 2 + m the integral I(4)(m,n) converges and can immediately be calculated. For n 6=
2+m, I(4)(n,m) is divergent and must be regulated. A number of different regularization schemes
has been invented. We demonstrate three schemes in the following: cut-off, Pauli-Villars, and
dimensional regularization.

2.1.1 Cut-off regularization

The perhaps simplest regularization scheme is the so-called cut-off regularization, where one “cuts
off” the integration at some scale Λ by replacing

∫ ∞

0

d
(

ℓ2E
)

→
∫ Λ2

0

d
(

ℓ2E
)

. (2.14)

We explicitly calculate some integrals in cut-off regularization, e.g. for the cases I(0, 1) and I(0, 2)
encountered in the one-loop amplitudes of our φ4-theory. I (0, n) is convergent for n ≥ 3. For
n = 1 we find:

IΛ (0, 1) =
−i

16π2

∫ Λ2

0

d
(

ℓ2E
)

(

ℓ2E
)

(ℓ2E +∆)

=
−i

16π2

[

ℓ2E −∆log
(

ℓ2E +∆
)]Λ2

0

=
−i

16π2

(

Λ2 −∆log

(

Λ2

∆
+ 1

))

. (2.15)

For Λ → ∞ this diverges quadratically IΛ (0, 1) → −iΛ2/16π2. In the case n = 2 we find

IΛ (0, 2) =
i

16π2

∫ Λ2

0

d
(

ℓ2E
)

(

ℓ2E
)

(ℓ2E +∆)
2

=
i

16π2

[

∆

ℓ2E +∆
+ log

(

ℓ2E +∆
)

]Λ2

0

=
i

16π2

(

∆

Λ2 +∆
− 1 + log

(

Λ2

∆
+ 1

))

. (2.16)

Now we find only a logarithmic divergence I (0, 2) → i log
(

Λ2/∆
)

/16π2. Similarly, the integrals
I (m,n) can be calculated for all m,n. The degree of divergence will be given by D = 4+2m−2n.
However, while this regularization is simple to calculate it has drawbacks. E.g., it is not invariant
under shifting the integrating variable ℓ → ℓ + k as is done when bringing the momentum space
integrals into the form of (2.5). Hence, it is difficult to relate the Λ’s if one has more than one
integral in an amplitude, as for the case of the 4-point function (2.3).

2.1.2 Pauli-Villars regularization

In Pauli-Villars regularization one introduces a heavy field with mass M and the same quantum
numbers as the field in the loop, but opposite statistics. Since e.g. scalar fields with fermionic
statistics are physically meaningless one needs to remove these fields by taking the limitM → ∞ af-
ter integrating. In the case of the one-loop propagator in our φ4-model, Pauli-Villars regularization

5



2 Renormalization

is implemented by replacing the propagator in the divergent integral:
∫

d4ℓ

(2π)
4

1

ℓ2 + iǫ
→

∫

d4ℓ

(2π)
4

[

1

ℓ2 + iǫ
− 1

ℓ2 −M2 + iǫ

]

= − i

16π2

∫ ∞

0

d(ℓ2E)

[

ℓ2E
ℓ2E

− ℓ2E
ℓ2E +M2

]

= − i

16π2

[

ℓ2E − ℓ2E +M2 log(ℓ2E +M2)
]∞

0

= − i

16π2
M2 log

(

ℓ2 → ∞
M2

+ 1

)

. (2.17)

In the limit M → ∞ this is again quadratically divergent.

2.1.3 Dimensional regularization

We stated above that the integral I (m,n) is divergent if 4+2m−2n ≥ 0. If we however generalize
to d space-time dimensions, I (m,n) is divergent for d

2 +m−n ≥ 0. The basic idea of dimensional
regularization is to carry out integrals that are divergent in d = 4 in some dimension d < 4 where
they are convergent, and then continue the result analytically to d = 4. Thus, we need to consider
the integral

I(d) (m,n) =
i (−1)

n+m

2 (2π)
d

∫

dΩd

∫ ∞

0

d
(

ℓ2E
)

(

ℓ2E
)

d
2
−1+m

(ℓ2E +∆)
n (2.18)

The analytic continuation of the surface of a d-dimensional unit sphere is given by
∫

dΩd =
2πd/2

Γ(d/2)
. (2.19)

An simple argument for this is given in [17]: Starting from a Gaussian-integral one can write:

(√
π
)d

=

(
∫

dx e−x2

)d

=

∫

ddx e

(

−
d
∑

i=1

x2

i

)

=

∫

dΩd

∫ ∞

0

dxxd−1e−x2

=
1

2

∫

dΩd

∫ ∞

0

d
(

x2
) (

x2
)

d
2
−1

e−(x
2). (2.20)

This integral is the definition of the Γ-function. Hence,

(√
π
)d

=
1

2
Γ

(

d

2

)
∫

dΩd ⇔
∫

dΩd =
2πd/2

Γ(d/2)
(2.21)

Now we can rewrite our integral

I(d) (m,n) =
i (−1)

n+m

(4π)
d/2

Γ
(

d
2

)

∫ ∞

0

d
(

ℓ2E
)

(

ℓ2E
)

d
2
−1+m

(ℓ2E +∆)
n . (2.22)

To calculate this integral we make a coordinate transformation

ℓ2E ≡ ∆

(

1

x
− 1

)

, ⇒ d
(

ℓ2E
)

= −∆

x2
dx. (2.23)

This allows us to rewrite the integral

I(d) (m,n) = − i (−1)
n+m

(4π)
d/2

Γ
(

d
2

)

∫ 0

1

dx
∆

x2

[

∆
(

1
x − 1

)]
d
2
−1+m

[∆/x]
n

=
i (−1)

n+m
∆

d
2
+m−n

(4π)
d/2

Γ
(

d
2

)

∫ 1

0

dxxn−2

(

1

x
− 1

)
d
2
−1+m

=
i (−1)

n+m
∆

d
2
+m−n

(4π)
d/2

Γ
(

d
2

)

∫ 1

0

dxxn−m− d
2
−1 (1− x)

d
2
+m−1

. (2.24)
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2.1 Regularization

The remaining integral is the Beta-integral

∫ 1

0

dxxp−1 (1− x)
q−1

= B (p, q) =
Γ (p) Γ (q)

Γ (p+ q)
. (2.25)

Hence, we arrive at a general expression for our integral

I(d) (m,n) =
i (−1)

n+m

(4π)
d/2

· Γ
(

n−m− d
2

)

Γ
(

d
2 +m

)

Γ
(

d
2

)

Γ (n)

(

1

∆

)n−m− d
2

(2.26)

We again consider explicitly the case m = 0. Then, we find

I(d) (0, n) =
i (−1)

n

(4π)
d/2

· Γ
(

n− d
2

)

Γ (n)

(

1

∆

)n− d
2

(2.27)

For the divergent cases n < 2 we find

I(d) (0, 1) =
−i

(4π)
d/2

· Γ
(

1− d

2

)(

1

∆

)1− d
2

=
−i∆

16π2

(

4π

∆

)ε/2

Γ
(

−1 +
ε

2

)

, (2.28)

I(d) (0, 2) =
i

(4π)
d/2

· Γ
(

2− d

2

)(

1

∆

)2− d
2

=
i

16π2

(

4π

∆

)ε/2

Γ
(ε

2

)

, (2.29)

where we introduced d = 4− ε. Since Γ (x) has poles at −x ∈ N we find I(d) (0, 1) to be divergent
at d = 2, 4, 6, 8, . . . and I(d) (0, 2) to be divergent at d = 4, 6, 8, . . .. To check our procedure we also
calculate Id (0, 3), which should be regular at d = 4:

I(d) (0, 3) =
−i

(4π)
d/2

· Γ
(

3− d
2

)

Γ (3)

(

1

∆

)3− d
2

d→4−→ −i

32π2∆
. (2.30)

To make sense of the poles in the Γ-functions we use the expansion of Γ (x− n) near the poles
n = 0, 1, . . .:

Γ (x) =
1

x
− γ +O (x) , (2.31)

Γ (x− 1) = − 1

x
+ γ − 1 +O (x) , (2.32)

Γ (x− 2) =
1

2x
+

3− 2γ

4
+O (x) , (2.33)

Γ (x− 3) = − 1

6x
+

6γ − 11

36
+O (x) , (2.34)

where γ ≃ 0.57722 is the Euler-Mascheroni constant. We also expand the reoccurring

(

4π

∆

)ε/2

= 1 + ε · log (4π)− log∆

2
+

ε2

2
·
(

log (4π)− log∆

2

)2

+O
(

ε3
)

. (2.35)

Thus, we can write our divergent amplitudes as

I(4−ε) (0, 1) =
−i∆

16π2

(

1 +
ε

2
(log (4π)− log∆) +O (ε)

)

(

−2

ε
+ γ − 1 +O (ε)

)

=
i∆

16π2

(

2

ε
− γ + 1 + log (4π)− log∆ +O (ε)

)

, (2.36)

I(4−ε) (0, 2) =
i

16π2

(

1 +
ε

2
(log (4π)− log∆) +O (ε)

)

(

2

ε
− γ +O (ε)

)

=
i

16π2

(

2

ε
− γ + log (4π)− log (∆) +O (ε)

)

. (2.37)
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2 Renormalization

For our calculations of loop-diagrams it is useful to have a table of integrals I (m,n) in dimen-
sional regularization for the lowest values of m. We find

∫

ddℓ

(2π)
d

1

(ℓ2 −∆)
n =

i (−1)
n

(4π)
d/2

· Γ
(

n− d
2

)

Γ (n)

(

1

∆

)n− d
2

, (2.38)

∫

ddℓ

(2π)
d

ℓ2

(ℓ2 −∆)
n =

i (−1)
n+1

(4π)
d/2

· Γ
(

n− 1− d
2

)

Γ
(

d
2 + 1

)

Γ
(

d
2

)

Γ (n)

(

1

∆

)n−1− d
2

=
i (−1)

n+1

(4π)
d/2

· d
2
· Γ
(

n− 1− d
2

)

Γ (n)

(

1

∆

)n−1− d
2

, (2.39)

∫

ddℓ

(2π)
d

ℓ4

(ℓ2 −∆)
n =

i (−1)
n+2

(4π)
d/2

· Γ
(

n− 2− d
2

)

Γ
(

d
2 + 2

)

Γ
(

d
2

)

Γ (n)

(

1

∆

)n−2− d
2

=
i (−1)

n

(4π)
d/2

· d (d+ 2)

4
· Γ
(

n− 2− d
2

)

Γ (n)

(

1

∆

)n−2− d
2

. (2.40)

Besides being implemented comparatively easily in all orders of loops, one of the main advantages of
dimensional regularization is that it conserves all symmetries of the theory explicitly, in particular
gauge invariance.

2.2 Renormalization

In the section above we have found general schemes for the treatment of the divergent integrals
over internal momenta occurring in the computation of diagrams involving loops. In the following
we will compute such diagrams in dimensional regularization.

For our φ4-theory at one-loop level, we can now write down the one-loop amplitudes for the
propagator:

∆(1)(p) =
i

p2 −m2
+

i

p2 −m2

(

λM4−d

∫

ddk

(2π)
d

1

k2 −m2

)

i

p2 −m2

=
i

p2 −m2
+

i

p2 −m2

(

λM4−d −i

(4π)
d/2

Γ(1− d

2
)

(

1

m2

)1− d
2

)

i

p2 −m2

=
i

p2 −m2
+

i

p2 −m2

(

iλm2

16π2

(

2

ε
− γ + log

4πM2

m2
− 1 +O(ε)

))

i

p2 −m2
,

(2.41)

where we introduced an arbitrary mass scale M to keep the coupling constant λ dimensionless
when changing the dimensionality of the integral. For the integral appearing in the 4-point vertex
we find

V (p2) =

∫ 1

0

dxM4−d

∫

ddℓ

(2π)
d

1

[ℓ2 + x (1− x) p2 −m2 + iǫ]
2

=

∫ 1

0

dx
iM4−d

(4π)
d/2

Γ(2− d

2
)

(

1

m2 − x (1− x) p2

)2− d
2

=
i

16π2

∫ 1

0

dx

(

2

ε
− γ + log

(

4πM2

m2 − x (1− x) p2

)

+O(ε)

)

=
i

16π2

(

2

ε
− γ +

∫ 1

0

dx log

(

4πM2

m2 − x (1− x) p2

)

+O(ε)

)

. (2.42)
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2.2 Renormalization

With this, we can write down the 4-point amplitude at the one-loop level:

−iV(1) = −iλ+
5iλ2

32π2

(

2

ε
− γ +

1

5

∫ 1

0

dx

[

log

(

4πM2

m2 − x (1− x) s

)

+ 2 log

(

4πM2

m2 − x (1− x) t

)

+

+2 log

(

4πM2

m2 − x (1− x)u

)])

.

(2.43)

Through the regularization procedure we have succeeded to treat the infinities in a systematic
fashion, however, they are still present in the amplitudes. In order to arrive at physical observables
we have to renormalize our theory. In the course of this, one has to trade the “bare” parameters of
the theory (λ and m in our case) for renormalized, physical quantities. We start by rescaling the
fields, which we are always free to do. In general, every field in a theory is rescaled independently.

In our φ4-case there is only one field, which we rescale by:

φ = Z1/2φr, (2.44)

where we denote the “renormalized” field φr and Z is the field renormalization. The Lagrangian
(2.1) in terms of the rescaled field is

L = Z∂µφ
†
r∂

µφr −m2
0Zφ†

rφr −
λ0

4
Z2
(

φ†
rφr

)2
, (2.45)

where we now denote the bare coupling λ0 and the bare mass m0. They are eliminated by intro-
ducing the physically measure mass m and coupling λ and defining so-called counterterms

δZ ≡ Z − 1, δm ≡ m0Z
2 −m2, δλ ≡ λ0Z

2 − λ. (2.46)

The Lagrangian then becomes

L = ∂µφ
†
r∂

µφr −m2φ†
rφr −

λ

4

(

φ†
rφr

)2
+ δZ∂µφ

†
r∂

µφr − δmφ†
rφr −

δλ
4

(

φ†
rφr

)2
. (2.47)

The first three terms look like our familiar φ4 theory (2.1), but now in terms of the renormalized
mass and coupling. The corresponding Feynman rules are the same as given below (2.1), but
exchanging the bare parameters for the renormalized ones. The counterterms give rise to additional
Feynman rules:

= i
(

p2δZ −m2δm
)

, = −iδλ

Including these in our one-loop amplitudes, the propagator (2.41) becomes

∆(1)(p2) =
i

p2 −m2
+

i

p2 −m2

(

iλm2

16π2

(

2

ε
− γ + log

4πM2

m2
− 1

)

+ i
(

p2δZ −m2δm
)

)

i

p2 −m2
,

(2.48)
and the 4-point amplitude (2.43) becomes

−iV(1) = −iλ+
5iλ2

32π2

(

2

ε
− γ +

1

5

∫ 1

0

dx

[

log

(

4πM2

m2 − x (1− x) s

)

+ 2 log

(

4πM2

m2 − x (1− x) t

)

+

+2 log

(

4πM2

m2 − x (1− x)u

)])

− iδλ.

(2.49)

In order to make more sense of the counterterms, one has to introduce so-called renormalization
conditions. There are various renormalization schemes, which each have their advantages and
drawbacks. In the following, we demonstrate two schemes, “On-shell” and “MS” renormalization:
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2 Renormalization

2.2.1 On-shell scheme

On-shell renormalization is perhaps the physically most intuitive renormalization scheme. One
defines the loop-corrected amplitudes to be equal to physical amplitudes for on-shell particles, i.e.

∆(1)(p2 = m2) =
i

p2 −m2
, −iV(1)(s = 4m2, t = u = 0) = −iλ, (2.50)

where the first equation specifies the location and residue of the pole of the propagator. In our
case we can then immediately read off the counterterms from (2.48), (2.49)

δZ = 0, (2.51)

δm =
λ

16π2

(

2

ε
− γ + log

4πM2

m2
− 1

)

, (2.52)

δλ =
5λ2

32π2

(

2

ε
− γ + log

(

4πM2

m2

)

+
2

5

)

, (2.53)

using
∫ 1

0
dx log (1− 4x (1− x)) = −2. The advantage of this renormalization scheme is that we

are left with the physical propagator for an on-shell particle2, and λ is the physical coupling at
the chosen renormalization point s = 4m2, t = u = 0. The amplitudes become independent of the
arbitrary energy scale M . Drawbacks of the on-shell scheme are e.g. that it is quite cumbersome
to implement for more complicated theories and higher-order corrections, and more important, it
is not well defined in the massless limit m2 → 0. Furthermore, in confined theories like quantum
chromodynamics, the notion of on-shell particles loses its physical intuition.

2.2.2 MS scheme

A more general and easier implemented method is the class of minimal subtraction (MS) schemes.
In pure minimal subtraction, one defines the counterterms to absorb only the terms proportional to
(1/ε) appearing in divergent quantities. The arbitrary mass scaleM then remains in the amplitudes
and must be dealt with by introducing anM -dependency in the renormalized couplings and masses,
as we will see below.
Often more convenient is the modified minimal subtraction (MS) scheme. As we saw above,

the (1/ε)-terms are accompanied by γ and log(4π) terms. In MS renormalization one chooses the
counterterms to also absorb the (−γ + log(4π)) terms, which is equivalent to redefining the mass
scale M̃2 = 4πM2/eγ . Subtracting MS-counterterms, our one-loop expressions become

∆(1)(p2) =
i

p2 −m2
+

i

p2 −m2
· iλm

2

16π2

(

log
M̃2

m2
− 1

)

i

p2 −m2
, (2.54)

for the propagator (2.48), and for the 4-point function (2.49)

−iV(1) = −iλ+
iλ2

32π2

∫ 1

0

dx

[

log

(

M̃2

m2 − x (1− x) s

)

+ 2 log

(

M̃2

m2 − x (1− x) t

)

+

+2 log

(

M̃2

m2 − x (1− x)u

)]

.

(2.55)

2.3 Running couplings: β-functions and anomalous dimensions

When we regularized the one-loop divergences in dimensional regularization we introduced an
arbitrary mass scale M . Any physical quantity in the theory must not depend on this arbitrary
parameter. To achieve this, the renormalized couplings, masses, and field renormalizations must

2In the particular case of φ4-theory we find that the counterterm cancels the 1-loop contribution entirely and we
are in fact left with ∆(1)(p2) = i/(p2 −m2) for any p2.
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2.3 Running couplings: β-functions and anomalous dimensions

depend onM such as to cancel the dependency in physical quantities. This can e.g. be implemented
on the level of the theories’ Green’s functions Γ(ni), where the ni are the number of external fields
of type i. Then, the Greens’ functions have to satisfy a Callan-Symanzik equation

[

M
∂

∂M
+ βgi

∂

∂gi
+ niγi +miγmi

∂

∂mi

]

Γ(ni) = 0, (2.56)

where γi = M
2 · ∂Zi

∂M is called the anomalous dimension of the field i, describing the scaling of

the fields renormalization with M , and the β-functions βgi = M ∂gi
∂M describe the scaling of the

renormalized couplings gi. γmi
is the anomalous dimension of the mass parameters mi. In the

line of this argument and considering the general form of loop-corrections, we can understand the
arbitrary mass scale M2 as the scale of invariants built from external momenta involved in the
process. Hence, the β-functions can be interpreted as the scaling of the physical couplings with
the scale of involved momenta.
For our example, complex φ4-theory, there is only one kind of field φ, one coupling λ, and

one mass parameter m. From our results for the one-loop propagator and the amputated 4-point
function in MS renormalization (2.54), (2.55), we can immediately write down the corresponding
two- and four-point Green’s functions. For simplicity, we consider the massless limit. Then, the
Green’s functions are

Γ(2) =
i

p2
(2.57)

Γ(4) =

(

−iλ+
iλ2

32π2

∫ 1

0

dx

[

log

(

M2

−x (1− x) s

)

+ 2 log

(

M2

−x (1− x) t

)

+

+2 log

(

M2

−x (1− x)u

)]) 4
∏

i=1

i

p2i
(2.58)

The corresponding Callan-Symanzik equation is

[

M
∂

∂M
+ βλ

∂

∂λ
+ nφγφ

]

Γ(nφ) = 0, (2.59)

From the two-point Green’s functions we can immediately conclude that the anomalous dimension
is zero at the one-loop level: γφ = 0 +O(λ2). From Γ(4) we obtain

0 = M
2

M
· 5iλ

2

32π2
+ βλ (−i+O(λ)) +O(λ3) (2.60)

where we we omitted terms O(λ) from ∂Γ(4)/∂λ multiplying βλ, and O(λ3) terms coming from
the 4γφΓ

(4) terms. From (2.60) we can read off the one-loop contribution to the β-function:

βλ =
5λ2

16π2
+O(λ3). (2.61)

After this sketch of renormalization we are ready to compute the renormalized parameters of
the SM-potential. The general procedure we arrived at for doing so consists of computing the
divergent contributions to convenient Green’s functions in dimensional regularization, and after
subtracting off MS counterterms, obtaining the anomalous dimensions and β-functions of the theory
by applying the Callan-Symanzik equation to these Green’s functions.
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3 The SM Higgs potential at the one-loop

level

3.1 Model

In order to compute the effective Higgs potential we need to find the running of the quartic Higgs
self-coupling λ. At the one-loop level, the dominant contributions are given by the running of λ
through Higgs- and fermion-loops. Considering the size of the Yukawa couplings, the dominant
fermion-contribution will arise through the top quark’s Yukawa coupling. At the electroweak scale,
the strong coupling gs is also much larger than the electroweak couplings gY , g2. Hence, we consider
a simplified version of the SM, turning off the electroweak interaction gY = g2 = 0, and setting
all Yukawa couplings except for the top quark to zero. Since we are eventually interested in the
behavior at energies close to the Planck scale we calculate in the electroweak-unbroken phase.

The Lagrangian for this simplified theory is

L = L0 + LΦ + Lyt
+ LQCD, (3.1)

where the free Lagrangian L0 is given by

L0 = (∂µΦ)
2
+ qi/∂q. (3.2)

Φ = (φ+, φ0)
T

is the Higgs SU(2)-doublet and q are the quark fields. We use Feynman slash
notation /a ≡ γµaµ, where γµ are Dirac matrices. The interactions from the Higgs sector are given
by

LΦ = −µ2Φ†Φ− λ
(

Φ†Φ
)2

, (3.3)

Lyt
= −yt

(

tR (Φc)
†
TL + TLΦ

ctR

)

, (3.4)

where the left-handed t- and b-quarks are organized in an SU(2) doublet TL = (tL, bL)
T
and the

charge conjugated Higgs-doublet is given by Φc ≡ iσ2Φ
∗ = (φ∗

0,−φ−). The right handed top tR is
an SU(2) singlet. Left- and right-handed parts of the fields are obtained by the projectors

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) , (3.5)

where γ5 = i
4!ǫ

µνρδγµγνγργδ. The QCD sector is given by

LQCD = −1

4
GA

µνG
A,µν + gsq /A

A
TAq + Lgf + Lgh, (3.6)

where the AA
µ are the gluon fields, and the gluon field-strength tensor GA

µνT
A = i

gs
[Dµ, Dν ] is

given by the covariant derivative Dµ = ∂µ − igsA
A
µT

A, hence

GA
µν = ∂µA

A
ν − ∂νA

A
µ + gsf

ABCAB
µA

C
ν . (3.7)

The fABC are the structure constants of SU(3),

[

TA, TB
]

= ifABCTC , (3.8)
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3.2 One-loop amplitudes

where the TA are the SU(3) generators for the fundamental representation and can be written in
terms of the Gell-Mann matrices λA, using TA = λA/2. The ghost Lagrangian Lgh and gauge-fixing
Lagrangian Lgf in Rξ-gauge are given by

Lgf = − 1

2ξ

(

∂µAA
µ

)2
, Lgh = ∂µc

A∂µcA + gsf
ABC∂µc

AAB,µcC . (3.9)

Renormalizing the fields

Φ0 = Z
1/2
Φ Φr, QL,0 = (Zq

L)
1/2

QL,0, qR,0 = (Zq
R)

1/2
qR,r, A0 = Z1/2

g Ar, c0 = Z1/2
c cr,

(3.10)
the Lagrangian can be written as L = Lr + Lct, where Lr is our original Lagrangian (3.1) but in
terms of renormalized couplings and fields, and the counterterm Lagrangian is given by

Lct = δ(2Φ)∂µΦ
†∂µΦ− qi/∂

(

δ
(2q)
R PR + δ

(2q)
L PL

)

q − δ(2Φ)
µ Φ†Φ− δ

(4Φ)
λ

(

Φ†Φ
)2

+

− δ(tbΦ)
yt

(

tR (Φc)
†
TL + TLΦ

ctR

)

− δ(2g)
1

4

(

∂µA
A
ν − ∂νA

A
µ

)2
+

− δ(3g)gs

1

2
fABC

(

∂µA
A
ν − ∂νA

A
µ

)

AB,µAC,ν − δ(4g)gs

1

4

(

fABCAB
µA

C
ν

)2
+

+ δ(2c)∂µc
A∂µcA + δ(2cg)gs fABC∂µc

AAB,µcC + q /A
A
TA
(

δ
(2qg)
gs,R

PR + δ
(2qg)
gs,L

PL

)

q,

(3.11)

where the counterterms can be written in terms of the couplings and field renormalizations

δ(2Φ) = ZΦ − 1, δ
(2q)
R = Zq

R − 1, δ
(2q)
L = ZL − 1,

δ(2Φ)
µ = µ2

0ZΦ − µ2, δ
(4Φ)
λ = λ0Z

2
Φ − λ, δ(tbΦ)

yt
= yt,0

√

ZΦZt
RZ

t
L − yt,

δ(2g) = Zg − 1, δ(3g)gs = Z3/2
g gs,0 − gs, δ(4g)gs = Z2

gg
2
s,0 − g2s , δ(2c) = Zc − 1,

δ(2cg) = ZcZ
1/2
g gs,0 − gs, δ

(2qg)
gs,R

= Zq
RZ

1/2
g gs,0 − gs, δ

(2qg)
gs,L

= Zq
LZ

1/2
g gs,0 − gs.

(3.12)

We note, that in general left- and right-handed parts of the quark-fields are renormalized differently.
However, in this model this is only true for t- and b-quarks. For the lighter quarks u, d, c, and d we
find Zq

R = Zq
L, since we set their Yukawa couplings to zero and turned electroweak interactions off.

Hence, their only interaction is via QCD which does not distinguish between right- and left-handed
quarks.
We want to write down the Feynman rules for our model. For Yukawa- and Φ4-vertices it is

convenient to write the states in their SU(2)-representations. We denote SU(2)-indices with small
letters a, b, . . ., SU(3) indices in the fundamental representation with small bold letters i,j, . . .,
SU(3) indices in the adjoint representation with capital letters A,B, . . ., and Lorentz indices with
greek letters µ, ν, . . .. The corresponding states are shown in Fig. 3.1.
We can rewrite the interaction terms in terms of these states, using

Φ†Φ = Φ†aΦa, (3.13)
(

Φ†Φ
)2

=
(

δ c
a δ d

b + δ d
a δ c

b

)

Φ†aΦ†bΦcΦd, (3.14)

(Φc)
†
QL =

(

φ0 −φ+
)

·QL = −i (σ2)
b
a Φa (QL)b , (3.15)

QLΦ
c = QL

(

φ∗
0

−φ−

)

= i (σ2)
b
a

(

QL

)a
Φ†

b = −i (σ2)
a
b Φ

†
a

(

QL

)b
. (3.16)

The corresponding Feynman rules are displayed in Figures 3.2 and 3.3.

3.2 One-loop amplitudes

Having collected all the Feynman rules of our model, we are now prepared to calculate amplitudes.
We want to derive renormalization group equations at the one-loop level. To this end we need to
calculate the one-loop divergent amplitudes. We compute all diagrams in Feynman-’tHooft gauge
ξ = 1.
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3 The SM Higgs potential at the one-loop level

A,µ
= AA

µ

= Φa =

(

φ+

φ0

)

a

a
= (QL)a,i =

(

tL
bL

)

a,i

a, i

=
(

QL

)a,i
=
(

tL bL
)a,ia, i

= Φ†a =
(

φ− φ∗
0

)aa

= qR,i
i i = qiR

Figure 3.1: States for our Feynman rules in terms of the SU(2) multiplets.

=
i/p

p2+iǫδ
j

i

a, i
=

i/p

p2+iǫδ
b

a δ j
i

b, j

i j

a b
=

i
p2−µ2+iǫδ

b
a

A,µ B, ν
=

−i
p2+iǫ (g

µν− kµkν

p2+iǫ (1− ξ)) δAB

Figure 3.2: Feynman rules for propagators with momentum p going through.

3.2.1 Quark-propagators

At the one-loop level there are two different diagrams contributing to the propagator: a loop
involving a gluon and a loop involving a Higgs. Since all Yukawa couplings except for the top
are set to zero, the light quarks receive contributions from the gluon-loop diagram only. The left-
handed top and bottom and the right-handed top also receive contributions from the Higgs-loop
diagram.

We begin by calculating the gluon-loop contribution, given by

i j

k
=

i/p

p2+iǫ

[

−iΣ
(1)
g-loop (p)

] j

i

i/p

p2+iǫ ,

where p is the external momentum. The fermion-line now represents a right- or left-handed quark,
where we add a factor δ b

a in the case of a left-handed doublet. The contribution of the loop is
given by

[

−iΣ
(1)
g-loop(p)

] j

i
= (igs)

2
∫

d4k

(2π)
4 γµT

A k
i

i/k

k2 + iǫ
γνT

B j
k

−igµνδAB

(p− k)
2
+ iǫ

= g2s
[

TATBδAB

] j

i
(d− 2)

∫

d4k

(2π)
4

/k

k2 + iǫ

1

(p− k)
2 − iǫ

= 2g2sCF δ
j

i

∫

d4k

(2π)
4

/k

k2 + iǫ

1

(p− k)
2 − iǫ

, (3.17)

where CF ≡ TATA is the quadratic Casimir operator of SU(3) in the fundamental representa-
tion, and we use γµγνγµ = − (d− 2) γν . We calculate the integral in dimensional regularization,
compensating for dropping the dimension of the integral by introducing an arbitrary mass scale M

∫

d4k

(2π)
4 → M4−d

∫

ddk

(2π)
d
, (3.18)
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3.2 One-loop amplitudes

= igsγ
µTA j

i

i

j

A,µ

= yt (σ2)
b
a δ j

i

a

b, j

i

= yt (σ2)
a
b δ

i
j

a

b, j

i

= −2iλ
(

δ c
a δ d

b + δ d
a δ c

b

)

a

b

c

d

A, µ

C, ρ

B, ν

D, σ

= −ig2s
[

fABEfCDE (gµρgνσ − gµσgνρ)+

A,µ

C, ρ

B, ν

= gsf
ABC [gµν (k − p)

ρ
+

k
p

q

+ gρµ (q − k)
ν
]

+ gνρ (p− q)
µ
+

+ fACEfBDE (gµνgρσ − gµσgνρ)+

+ fADEfBCE (gµνgρσ − gµρgνσ)
]

Figure 3.3: Feynman rules for the vertices, omitting the ghost-gluon vertex. The corresponding
counterterm-vertices are obtained by replacing the coupling strengths with the corresponding
counterterm. Note, that for the 3-gluon vertex all momenta are incoming. The quarks in the
gqq-vertex can be understood as right- or left-handed quarks. For left-handed quarks in SU(2)-
doublet representation, add a δ b

a to the vertex, where a, b are the SU(2)-indices of the quark
states.

and using a Feynman parameter. The integral then becomes

∫

d4k

(2π)
4

/k

k2 + iǫ

1

(p− k)
2 − iǫ

→ M4−d

∫ 1

0

dx

∫

ddk

(2π)
d

/k

[xp2 − 2xp · k + xk2 + k2 − xk2 + iǫ]
2

= M4−d

∫ 1

0

dx

∫

ddk

(2π)
4

(

/k − x/p
)

+ x/p

[(k − xp)
2
+ x (1− x) p2 + iǫ]2

= M4−d
/p

∫ 1

0

dxx

∫

ddℓ

(2π)
d

1

[ℓ2 + x (1− x) p2 + iǫ]2

= M4−d
/p

∫ 1

0

dxx
i

(4π)
d/2

Γ

(

2− d

2

)(

1

−x (1− x) p2

)2− d
2

=
i

16π2 /p

∫ 1

0

dxx

(

4πM2

−x (1− x) p2

)ε/2

Γ
(ε

2

)

=
i

16π2 /p

∫ 1

0

dxx

(

2

ε
− γ + log

(

4πM2

−x (1− x) p2

)

+O (ε)

)

=
i

32π2 /p

(

2

ε
− γ + log

(

4πM2

p2

)

−
∫ 1

0

dx 2x log (−x (1− x)) +O (ε)

)

,

(3.19)

where we shifted the integral k → k − xp ≡ ℓ and dropped the term proportional to ℓ in the
third line since odd powers of ℓ integrate to zero from symmetry. The remaining momentum-space
integral in the third line can be found in our table of integrals in dimensional regularization. The
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3 The SM Higgs potential at the one-loop level

integral over the Feynman parameter in the last line can be done analytically, yielding
∫ 1

0

dx 2x log (−x (1− x)) = iπ − 2. (3.20)

Thus, the contribution from the gluon-loop diagram is

[

−iΣ
(1)
g-loop(p)

]

ij
= iδij/p

g2sCF

16π2

(

2

ε
− γ + log

(

4πM2

p2

)

+ 2− iπ

)

. (3.21)

The TL and tR propagators also receive 1-loop corrections from diagrams involving a Higgs. The
diagram for the TL propagator is given by

a, i b, j

k

=
i/p

p2+iǫ

[

−iΣ
(1)
L,loop (p)

] b, j

a ,i

i/p

p2+iǫ ,

where
[

−iΣ
(1)
L,loop (p)

] b, j

a ,i
= δ j

i y
2
t (σ2)

c
a (σ2)

b
c

∫

d4k

(2π)
4

i/k

k2 + iǫ
· i

(p− k)
2 − µ2 + iǫ

. (3.22)

We first note that

(σ2)
c
a (σ2)

b
c = − (σ2)

c
a (σ2)

b
c = −

[(

0 −i
i 0

)

·
(

0 −i
i 0

)] b

a

= −δ b
a . (3.23)

Thus we can rewrite
[

−iΣ
(1)
L,loop (p)

] b, j

a ,i
= δ j

i δ
b

a y2t

∫

d4k

(2π)
4

/k

k2 + iǫ
· 1

(p− k)
2 − µ2 + iǫ

. (3.24)

The integral is the same as in the case of the gluon-loop diagram but for an additional term µ2 in
the bosonic propagator. The computation works exactly as above and we find

[

−iΣ
(1)
L,loop (p)

] b, j

a ,i
= δ j

i δ
b

a y2tM
4−d

/p

∫ 1

0

dxx

∫

d4ℓ

(2π)
4

1

[ℓ2 + x (1− x) p2 − xµ2 + iǫ]2

= iδ j
i δ

b
a /p

y2t
32π2

(

2

ε
− γ +

∫ 1

0

dx 2x log

(

4πM2

xµ2 − x (1− x) p2

))

(3.25)

The remaining integral can again be done analytically, yielding
∫ 1

0

dx 2x log

(

4πM2

xµ2 − x(1− x)p2

)

= log

(

4πM2

µ2

)

+ 2− µ2

p2
−
(

1− µ2

p2

)

log

(

1− p2

µ2

)

p2≫µ2

−→ log

(

4πM2

µ2

)

+ 2− log

(

− p2

µ2

)

= log

(

4πM2

p2

)

+ 2− iπ

(3.26)

The contribution to the tR propagator from the loop involving a Higgs is identical up to the
SU(2)-indices:

i j

k

=
i/p

p2+iǫ

[

−iΣ
(1)
R,loop (p)

] j

i

i/p

p2+iǫ ,

where
[

−iΣ
(1)
R,loop(p)

]j

i
= δ j

i y
2
t (σ2)

c
d (σ2)

d
c

∫

d4k

(2π)
4

i/k

k2 − iǫ
· i

(p− k)
2 − µ2 + iǫ

(3.27)

= iδ j
i /p

y2t
16π2

(

2

ε
− γ +

∫ 1

0

dx 2x log

(

4πM2

xµ2 − x (1− x) p2

))

. (3.28)
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3.2 One-loop amplitudes

We note that Σ
(1)
R (p) = 2Σ

(1)
L (p). Considering the contributing diagrams we find that for the

(TL)a-propagator the only contribution comes from a loop containing a tR and a Φb, where the
SU(2) indices a 6= b. However, for the tR-propagator there is a contribution from a loop containing
(TL)1 = tL and a Φ2 = φ0, and from a loop containing a (TL)2 = bL and a Φ1 = φ+. Since the
contribution from each loop is as big as the total contribution in the QL-propagator case, the total
contribution is twice as large.
It is also worth noting that we find only logarithmic divergences for the fermionic propagators,

although simple power counting of the diagrams suggests linear divergences. Mathematically we
found that the linear term drops out due to the symmetry of the diagram. Note that this does not
rely on the fermion being massless: if the fermion had an effective mass m, e.g. from calculating
in the electroweak broken phase, the only modification of the integral would have been ∆ → xµ2−
x (1− x)m2 −x (1− x) p2 and we would again find no linear divergence for the mass counterterm,
but only a logarithmic one. Physically, this reflects the fact that the mass of the fermion is
protected by the chiral symmetry, i.e. we find an enhanced symmetry for m = 0.
The 1-loop divergences are absorbed in the corresponding counterterms

[

−iΣ
(1)
q,ct(p)

] j

i
= i/pδ

j
i δ

(2q)
R/L, (3.29)

to which we must add a factor δ b
a for an QL propagator. We recall, that in the modified minimal

subtraction scheme (MS) the counterterms absorb the terms proportional to
(

2
ε − γ + log (4π)

)

.
For the q = u, d, c, d, bR quarks we thus find

[

−iΣ(1)
q (p)

] j

i
= iδ j

i /p
g2sCF

16π2

(

log

(

M2

p2

)

+ 2− iπ

)

(3.30)

after subtracting the MS-counterterm

δ(2q) = −g2sCF

16π2

(

2

ε
− γ + log(4π)

)

. (3.31)

For the TL propagator we find

[

−iΣ
(1)
TL

(p)
] b, j

a ,i
= iδ j

i δ
b

a /p

[

g2sCF

16π2

(

log

(

M2

p2

)

+ 2− iπ

)

+

+
y2t

32π2

(

log

(

M2

µ2

)

+ 2− µ2

p2
−
(

1− µ2

p2

)

log

(

1− p2

µ2

))]

p2≫µ2

−→ iδ j
i δ

b
a /p

(

g2sCF

16π2
+

y2t
32π2

)(

log

(

M2

p2

)

+ 2− iπ

)

,

(3.32)

and the counterterm

δ
(2t)
L = −

(

g2sCF

16π2
+

y2t
16π2

)(

2

ε
− γ + log(4π)

)

. (3.33)

For the tR-propagator we find

[

−iΣ
(1)
tR (p)

] j

i
= iδ j

i /p

[

g2sCF

16π2

(

log

(

M2

p2

)

+ 2− iπ

)

+

+
y2t

16π2

(

log

(

M2

µ2

)

+ 2− µ2

p2
−
(

1− µ2

p2

)

log

(

1− p2

µ2

))]

p2≫µ2

−→ iδ j
i /p

(

g2sCF

16π2
+

y2t
16π2

)(

log

(

M2

p2

)

+ 2− iπ

)

,

(3.34)

with the counterterm

δ
(2T )
L = −

(

g2sCF

16π2
+

y2t
32π2

)(

2

ε
− γ + log(4π)

)

. (3.35)
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3 The SM Higgs potential at the one-loop level

3.2.2 Φ-propagator

The Φ-propagator receives corrections from two divergent diagrams at the one-loop level, one with
a fermion- and one with an Φ-loop. We begin by calculating the contribution of the fermionic loop:

k

=
i

p2−µ2+iǫ

[

−iΠ
(1)
f−loop

(

p2
)

] b

a

i
p2−µ2+iǫ ,

a b

where

[

−iΠ
(1)
f−loop

(

p2
)

] b

a
= −y2t δ

j
i δ

i
j (σ2)

c
a (σ2)

b
c

∫

d4k

(2π)
4 Tr

[

i/k

k2 + iǫ
·

i
(

/k − /p
)

(k − p)
2
+ iǫ

]

, (3.36)

with an extra factor (−1) for the fermionic loop. To work out the trace over the γ-matrices we
have to explicitly insert the projectors since we have a left- and a right-handed quark in the loop:

[

−iΠ
(1)
f−loop

(

p2
)

] b

a
= δ b

a 3i2y2t

∫

d4k

(2π)
4 Tr

[

(

1 + γ5
2

)

γµkµ
k2 + iǫ

(

1− γ5
2

)

γν (k − p)ν
(k − p)

2
+ iǫ

]

= −δ b
a 3y2t

∫

d4k

(2π)
4

Tr [γµγν ] + Tr [−γ5γ
µγ5γ

ν ]

4

kµ
k2 + iǫ

(k − p)ν
(k − p)

2
+ iǫ

= −δ b
a 3y2t

∫

d4k

(2π)
4

2Tr [γµγν ]

4

kµ
k2 + iǫ

(k − p)ν
(k − p)

2
+ iǫ

= −δ b
a 6y2t

∫

d4k

(2π)
4 g

µν kµ
k2 + iǫ

(k − p)ν
(k − p)

2
+ iǫ

, (3.37)

where we used Tr [γµγν ] = 4gµν , Tr [γ5γ
µγν ] = 0, {γµ, γ5} = 0, and (γ5)

2
= 1. We rewrite:

[

−iΠ
(1)
f−loop(p

2)
] b

a
= −δ b

a 6y2t

∫

d4k

2π4

k

k2 + iǫ
· k − p

(k − p)
2
+ iǫ

= −δ b
a 6y2t

∫ 1

0

dx

∫

d4k

(2π)
4

k2 − k · p
[xp2 − 2xp · k + xk2 + k2 − xk2 + iǫ]

2

= −δ b
a 6y2t

∫ 1

0

dx

∫

d4ℓ

(2π)
4

ℓ2 + (2x− 1) ℓ · p− x (1− x) p2

[ℓ2 + x (1− x) p2 + iǫ]2
, (3.38)

where we introduced ℓ ≡ k − xp. We can again drop the term proportional to ℓ in the numer-
ator since it will vanish upon integration, and calculate the remaining integral in dimensional
regularization,

[

−iΠ
(1)
f−loop(p

2)
] b

a
= −δ b

a 6y2t

∫ 1

0

dxM4−d

∫

ddℓ

(2π)
d

ℓ2 − x (1− x) p2

[ℓ2 + x (1− x) p2]
2 . (3.39)

We define ∆ ≡ −x (1− x) p2 and calculate the integral in two parts. We begin with the ∆-term:

M4−d

∫

ddℓ

(2π)
d

∆

[ℓ2 −∆]
2 = ∆M4−d i

(4π)
d/2

Γ

(

2− d

2

)(

1

∆

)2− d
2

=
i∆

16π2

(

4πM2

∆

)ε/2

Γ
(ε

2

)

=
i∆

16π2

(

2

ε
− γ + log (4π) + log

(

M2

∆

)

+ . . .

)

, (3.40)

where as power counting suggested we find poles at d = 4, 6, 8, . . .. We now turn to the ℓ2 term.
Power counting suggests this to be divergent for d ≥ 2. Carrying out the integral

M4−d

∫

ddℓ

(2π)
d

ℓ2

[ℓ2 −∆]
2 = − iM4−d

(4π)
d/2

d

2
Γ

(

1− d

2

)(

1

∆

)1− d
2

, (3.41)
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3.2 One-loop amplitudes

we indeed find poles at d = 2, 4, 6, . . .. The quadratic divergence corresponding to the pole at
d = 2 is independent of the external momenta and can hence be cancelled completely by the mass
renormalization. We can analytically continue to the pole at d = 4 and find:

M4−d

∫

ddℓ

(2π)
d

ℓ2

[ℓ2 −∆]
2 =− i∆

16π2

(

4πM2

∆

)ε/2
(

2− ε

2

)

Γ
(ε

2
− 1
)

=
i∆

8π2

(

2

ε
− γ +

1

2
+ log

(

4πM2

∆

)

+ . . .

)

.

(3.42)

Putting the pieces together we find for the contribution of the fermion-loop:

[

−iΠ
(1)
f−loop(p

2)
] b

a
= iδ b

a

3y2t
8π2

p2
∫ 1

0

dxx (1− x)

(

6

ε
− 3γ + 1 + 3 log

(

4πM2

−x (1− x) p2

))

= iδ b
a

3y2t
16π2

p2
(

2

ε
− γ +

1

3
+ log

(

4πM2

p2

)

−
∫ 1

0

dx 6x (1− x) log (−x (1− x))

)

.

(3.43)

The remaining integral over the Feynman parameter can again be done analytically, yielding
∫ 1

0

dx 6x (1− x) log (−x (1− x)) = −5

3
+ iπ, (3.44)

which we use to rewrite the fermion-loop contribution as

[

−iΠ
(1)
f−loop(p

2)
] b

a
= iδ b

a

3y2t
16π2

p2
(

2

ε
− γ + log

(

4πM2

p2

)

+ 2− iπ

)

. (3.45)

The contribution from the Φ-loop is

k

=
i

p2−µ2+iǫ

[

−iΠ
(1)
Φ−loop(p

2)
] b

a

i
p2−µ2+iǫ ,

a b

where
[

−iΠ
(1)
Φ−loop

(

p2
)

] b

a
= −2iλ

(

δ b
a δ c

c + δ c
a δ b

c

)

∫

d4k

(2π)
4

i

k2 − µ2 + iǫ
. (3.46)

Calculating the integral as before in dimensional regularization, we find

[

−iΠ
(1)
Φ−loop(p

2)
] b

a
= δ b

a 6λM4−d

∫

ddk

(2π)
d

1

k2 − µ2 + iǫ

= δ b
a 6λM4−d −i

(4π)
d/2

Γ

(

1− d

2

)(

1

µ2

)1− d
2

. (3.47)

This again has poles at d = 2, 4, 6, . . .. The quadratic divergence from the pole at d = 2 can once
more be cancelled by the mass counterterm and continuing analytically to d = 4 we find

[

−iΠ
(1)
Φ−loop(p

2)
] b

a
= −iδ b

a 6λ · µ2

16π2

(

4πM2

µ2

)ε/2

Γ
(

1− ε

2

)

= iδ b
a

3λµ2

8π2

(

2

ε
− γ + 1 + log (4π) + log

(

M2

µ2

))

. (3.48)

Putting together the contributions from the Φ and the fermion-loop we find for the 1-loop correction
to the Φ-propagator:

[

−iΠ(1)(p2)
] b

a
= −iδ b

a

[

3y2t
16π2

p2
(

2

ε
− γ + log

(

4πM2

p2

)

+ 2− iπ

)

+

+
3λµ2

8π2

(

2

ε
− γ + log

(

4πM2

µ2

)

+ 1

)]

.

(3.49)
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3 The SM Higgs potential at the one-loop level

We need to add the counterterm
[

−iΠ
(1)
ct (p2)

] b

a
= iδ b

a

(

p2δ(2Φ) − δ
(2Φ)
µ

)

. The field renormalization

ZΦ = δ(2Φ) + 1 is only logarithmically divergent. The quadratic divergence of the renormalized
mass µ2 corresponding to the poles at d = 2 in dimensional regularization leads to the Hierarchy
problem, which requires a finely tuned counter term to keep a small Higgs mass. After subtracting
the counterterms

δ(2Φ) = − 3y2t
16π2

(

2

ε
− γ + log(4π)

)

, δ(2Φ)
µ =

3λµ2

8π2

(

2

ε
− γ + log(4π)

)

, (3.50)

we are left with

[

−iΠ(1)(p2)
] b

a
= iδ b

a

[

3y2t
16π2

p2
(

log

(

M2

p2

)

+ 2− iπ

)

− 3λµ2

8π2

(

log

(

M2

µ2

)

+ 1

)]

. (3.51)

3.2.3 Φ4-vertex

There are eleven one-loop diagrams giving corrections to the Φ4 vertex: three diagrams with a
Φ-loop and eight diagrams with a fermionic loop. We begin by calculating the contribution from
the Φ-loops:

c, p3

e f

a, p1

b, p2 d, p4

c, p3

e f

a, p1

b, p2 d, p4

+ + = −iV
(1)
Φ4,Φ−loop(s, t, u),

c, p3a, p1

b, p2 d, p4

e

f

where

−iV
(1)
Φ4,Φ−loop(s, t, u) = (−2iλ)

2

[

1

2

(

δ e
a δ f

b + δ f
a δ e

b

)

(

δ c
e δ d

f + δ d
e δ c

f

)

i2V (s)+

+
(

δ c
a δ f

e + δ f
a δ c

e

) (

δ d
b δ e

f + δ e
b δ d

f

)

i2V (t)+

+
(

δ d
a δ f

e + δ f
a δ d

e

) (

δ c
b δ e

f + δ e
b δ c

f

)

i2V (u)
]

,

(3.52)

with the Mandelstam-variables

s = (p1 + p2)
2
, t = (p1 − p3)

2
, u = (p1 − p4)

2
. (3.53)

We find a symmetry factor 1/2 from the loop, which is cancelled for the t- and u-channel diagrams
since we can find identical diagrams from exchanging both incoming and outgoing momenta in the
diagrams. There is only one integral we need to calculate:

V
(

p2
)

≡
∫

d4k

(2π)
4

1

k2 − µ2 + iǫ
· 1

(p− k)
2 − µ2 + iǫ

=

∫ 1

0

dx

∫

d4k

(2π)
4

1

[xp2 − 2xp · k + xk2 − xµ2 + k2 − µ2 − xk2 + xµ2iǫ]
2

=

∫ 1

0

dx

∫

d4ℓ

(2π)
4

1

[ℓ2 − (µ2 − iǫ− x (1− x) p2)]
2

=
i

16π2

(

2

ε
− γ + log (4π) +

∫ 1

0

dx log

(

M2

µ2 − x (1− x) p2

))

. (3.54)
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3.2 One-loop amplitudes

Working out the SU(2)-index contractions, we find for the contribution from the Φ-loop diagrams

V
(1)
Φ4,Φ−loop(s, t, u) = − λ2

4π2

[

(

δ c
a δ d

b + δ d
a δ c

b

)

(

2

ε
− γ +

∫ 1

0

dx log

(

4πM2

µ2 − x (1− x) s

))

+

+
(

4δ c
a δ d

b + δ d
a δ c

b

)

(

2

ε
− γ +

∫ 1

0

dx log

(

4πM2

µ2 − x (1− x) t

))

+

+
(

δ c
a δ d

b + 4δ d
a δ c

b

)

(

2

ε
− γ +

∫ 1

0

dx log

(

4πM2

µ2 − x (1− x)u

))]

.

(3.55)

There are eight diagrams with a fermion-loop contributing to the Φ4 vertex:

+ . . . = −iV
(1)
Φ4,f−loop(s, t, u),

c, p3a, p1

b, p2 d, p4

e f
+

c, p3a, p1

b, p2 d, p4

e

f

where the dots indicate the diagrams with exchanged external momenta, and

−iV
(1)
Φ4,f−loop(s, t, u) = y4t δ

j
i δ

k
j δ l

k δ
i

l ×

×
[

(

(σ2)
e
a (σ2)

d
e (σ2)

f
b (σ2)

c
f + (σ2)

e
a (σ2)

c
e (σ2)

f
b (σ2)

d
f

) −i4

4
W (p2,−p3, p1)+

+ (a, p1 ↔ b, p2) + (c, p3 ↔ d, p4) +

(

c, p3 ↔ d, p4
a, p1 ↔ b, p2

)]

,

(3.56)

taking into account an extra (−1) for the fermion-loop and a symmetry factor 1/4. The integral
over the loop-momentum is given by

W (p, q, r) =

∫

d4k

(2π)
4 Tr

[

/k

k2 + iǫ
·

/k + /p

(k + p)
2
+ iǫ

·
/k + /p+ /q

(k + p+ q)
2
+ iǫ

·
/k + /p+ /q + /r

(k + p+ q + r)
2
+ iǫ

]

.

(3.57)
Working out the SU(2) index-structure we can rewrite the contribution from the fermion-loop
diagrams to

V
(1)
Φ4,f−loop(s, t, u) = −3iy4t

4

(

δ c
a δ d

b + δ d
a δ c

b

)

[W (p2,−p3, p1) +W (p1,−p3, p2)+

+W (p2,−p4, p1) +W (p1,−p4, p2)] .

(3.58)

We are left to evaluate the integral W (p, q, r). To work out the trace over the γ-matrices, we again
insert the projectors for the right- and left-handed quarks explicitly:

Tr [PLγ
µPRγ

νPLγ
ρPRγ

σ] = Tr [PLγ
µγνγργσ] =

1

2
Tr [γµγνγργσ] = 2 (gµνgρσ − gµρgνσ + gµσgνρ) .

(3.59)
We find

W (p, q, r) = 2

∫

d4k

(2π)
4

[

(gµνgρσ − gµρgνσ + gµσgνρ)
kµ (k + p)ν (k + p+ q)ρ (k + p+ q + r)σ

k2 (k + p)
2
(k + p+ q)

2
(k + p+ q + r)

2

]

,

(3.60)
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3 The SM Higgs potential at the one-loop level

where we suppressed the iǫ-terms in the denominator. This is a rational function in k, which in
principle can be integrated. One can do the integral, but we are only interested in the divergent
part of the integral. Power counting shows that there is a logarithmic divergence from the k4 term
in the numerator and all terms including external momenta are finite. Completing the square in
the denominator and shifting the integration variable accordingly the integral will take the from

W (p, q, r) = 2

∫

d4ℓ

(2π)
4

(

ℓ2
)2

+ ℓ2F2(p, q, r) + F4(p, q, r)

[ℓ2 −∆(p, q, r)]
4 , (3.61)

where we dropped terms with odd powers of ℓ in the numerator, since they will integrate to zero.
F2 and F4 are polynomials of degree 2 and 4 in the external momenta, respectively, and ∆ is a
polynomial of order 2 in the external momenta. Integrating this, we find

W (p, q, r) =
i

8π2

(

2

ε
− γ − 5

6
+ log (4π) + log

(

M2

∆(p, q, r)

))

+ finite terms. (3.62)

The integral depends only on bilinear combinations of the external momenta, as it must by Lorentz
invariance. Hence, it is possible to rewrite the dependency on the external momenta in terms of the
Mandelstam variables s, t, u. Exchanging momenta then corresponds to exchanging Mandelstam
variables and we find for the fermion-loop contribution

V
(1)
Φ4,f−loop(s, t, u) =

3y4t
8π2

(

δ c
a δ d

b + δ d
a δ c

b

)

[

2

ε
− γ − 5

6
+ log (4π)+

+
1

2
log

(

M2

∆(s, t, u)

)

+
1

2
log

(

M2

∆(s, u, t)

)]

.

(3.63)

Adding the contribution from the Φ-loop diagrams and subtracting the MS counterterm−iV
(1)
Φ4,ct =

−2i
(

δ c
a δ d

b + δ d
a δ c

b

)

δ
(4Φ)
λ we find for the one-loop correction

V
(1)
Φ4 = − λ2

4π2

[

(

δ c
a δ d

b + δ d
a δ c

b

)

(
∫ 1

0

dx log

(

M2

µ2 − x (1− x) s

))

+

+
(

4δ c
a δ d

b + δ d
a δ c

b

)

(
∫ 1

0

dx log

(

M2

µ2 − x (1− x) t

))

+

+
(

δ c
a δ d

b + 4δ d
a δ c

b

)

(
∫ 1

0

dx log

(

M2

µ2 − x (1− x)u

))]

+

+
3y4t
16π2

(

δ c
a δ d

b + δ d
a δ c

b

)

[

log

(

M2

∆(s, t, u)

)

+ log

(

M2

∆(s, u, t)
− 5

3

)]

,

(3.64)

where ∆(s, t, u) is some first order polynomial in the Mandelstam variables. The exact form is not
needed for the renormalization group equations, as we will see. The counterterm is given by

δ(4Φ) =

(

3λ2 − 3y4t
4π2

)

·
(

2

ε
− γ + log(4π)

)

. (3.65)

If we go to the symmetric point s = t = u this can be written as

V
(1)
Φ4 =

(

δ c
a δ d

b + δ d
a δ c

b

)

[

3y4t
8π2

(

log

(

M2

∆(s)

)

− 5

6

)

− 3λ2

2π2

∫ 1

0

dx log

(

M2

µ2 − x (1− x) s

)]

. (3.66)

For s ≫ µ2 we can again carry out the integral over the Feynman parameter and find

V
(1)
Φ4

s≫µ2

−→
(

δ c
a δ d

b + δ d
a δ c

b

)

[

3y4t
8π2

(

log

(

M2

∆(s)

)

− 5

6

)

− 3λ2

2π2

(

log

(

M2

s

)

+ 2− iπ

)]

. (3.67)
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3.2 One-loop amplitudes

3.2.4 Yukawa-vertex

The usual one-loop diagram contributing to the Yukawa vertex involving a Higgs in the loop does
not exist in our model, as can be seen from the Feynman diagrams shown in Figure 3.4. The
scalar propagators in the diagram cannot be closed. The reason for this is that the only possible
loop involving a scalar in this diagram would be the exchange of the real or imaginary part of
the neutral component of Φ only. The first correction to the Yukawa-vertex from diagrams with
Higgs-loops appears at the two-loop level. This diagram is logarithmically divergent, as can be
seen by power-counting, and is proportional to y5t . The only remaining one-loop correction comes

Figure 3.4: Feynman diagrams for the Yukawa vertex. There is no one-loop contribution, since
the scalar propagators in the left diagram cannot be connected. The right diagram is the two-
loop contribution to the Yukawa-vertex if the scalars do not interact and a three-loop diagram
otherwise.

from a similar diagram involving a gluon. The contribution is given by the graph

i

b, j

a
p

k

p′1

p′2

= −iV
(1)
tbΦ,g−loop(p, p

′
1, p

′
2),

where

−iV
(1)
tbΦ,g−loop(p, p

′
1, p

′
2) = yt (σ2)

c
a δ l

k (igs)
2
δ b
c

∫

d4k

(2π)
4 γµT

A k
i PL

i/k

k2 + iǫ
PR

i
(

/k − /p
)

(k − p)
2
+ iǫ

γνT
B j
l

−igµνδAB

(k − p′2)
2
+ iǫ

= −i (σ2)
b
a δ j

i ytg
3
sCF (γµPLγ

ργσγµ)

∫

d4k

(2π)
4

kρ
k2 + iǫ

(k − p)σ
(k − p)

2
+ iǫ

1

(k − p′2)
2
+ iǫ

= −i (σ2)
b
a δ j

i ytg
2
s4CF

∫

d4k

(2π)
4 PR

k · (k − p)

(k2 − iǫ) · ((k − p)2 + iǫ) · ((k − p′2)
2) + iǫ)

,

(3.68)

and where we contracted the γ-matrices using γµγργσγµ = 4gρσ. In order to evaluate the integral
one can introduce three Feynman parameters

1

ABC
=

∫ 1

0

dx dy dz δ(x+ y + z − 1)
2!

[xA+ yB + zC]3
. (3.69)
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3 The SM Higgs potential at the one-loop level

Then, the denominator in the integral can be rewritten as

D−1 =
[

(

k2 + iǫ
)

·
(

(p− k)
2
+ iǫ

)

·
(

(k − p′2)
2
+ iǫ

)]−1

=

∫ 1

0

dx dy dz
δ(x+ y + z − 1)

[k2 − 2k · (yp+ zp′2) + yp2 + zp′22 + iǫ]3

=

∫ 1

0

dy dz
1

[ℓ2 + y (1− y) p2 + z (1− z) p′22 − 2yzp · p′2 + iǫ]3
, (3.70)

where ℓ ≡ k − yp − zp′2. For brevity we also define ∆ ≡ −y (1− y) p′22 − z (1− z) p2 + 2yzp′2 · p.
Rewriting the numerator of the integral in terms of ℓ, we find

N = k · (k − p) = ℓ2 + Ñ1 + Ñ0, (3.71)

where Ñ1 contains all terms proportional to ℓ, which will integrate to zero by symmetry, and
Ñ0 = −y (y − 1) p2−z2p′22 +z (2y − 1) p ·p′2 are the terms independent of ℓ. Shifting the integration
variable k → ℓ we can thus rewrite the amplitude as

−iV
(1)
tbΦ,g−loop(p, p

′
1, p

′
2) = −i (σ2)

b
a δ j

i ytg
2
s4CF

∫ 1

0

dy dz

∫

d4ℓ

(2π)
4PR

ℓ2 + Ñ0

[ℓ2 −∆]3
. (3.72)

Power counting suggests a divergent contribution from the ℓ2-term and a finite contribution from
Ñ0. Calculating the integral in dimensional regularization, we find

∫

d4ℓ

(2π)
4

ℓ2

[ℓ2 −∆]
3 → −4M4−d

d

∫

ddℓ

(2π)
d

ℓ2

[ℓ2 −∆]3
=

4M4−d

d

i

(4π)
d/2

d

2
· Γ(2−

d
2 )

Γ(3)

(

1

∆

)2− d
2

=
i

16π2

(

4πM2

∆

)ε/2

Γ(
ε

2
) = − i

16π2

(

2

ε
− γ + log

(

4πM2

∆

))

, (3.73)

∫

d4ℓ

(2π)
4

1

[ℓ2 −∆]3
= M4−d −i

(4π)
d/2

· Γ(3−
d
2 )

Γ(3)

(

1

∆

)3− d
2

= − i

32π2
· 1

∆
. (3.74)

We are left to evaluate the integral over the Feynman parameters. However, we will learn nothing
new from this since we know that the result has the form

−iV
(1)
tbΦ,g−loop(p, p

′
1, p

′
2) = (σ2)

b
a δ j

i

ytg
2
sCF

4π2

(

2

ε
− γ + log

(

4πM2

∆′(p, p′2)

)

+ . . .

)

, (3.75)

where ∆′(p, p′2) is a second order function in the external momenta and “. . .” indicates finite terms.

The appropriate counterterm has the form −iV1
tbΦ,ct = (σ2)

b
a δ j

i δ
(tbΦ)
yt , hence, after subtracting

the MS counterterm

δ(tbΦ)
yt

= −ytg
2
sCF

4π2

(

2

ε
− γ + log(4π)

)

, (3.76)

we find

−iV
(1)
tbΦ(p, p

′
1, p

′
2) = (σ2)

b
a δ j

i

ytg
2
sCF

4π2

(

log

(

M2

∆′(p, p′2)

)

+ . . .

)

. (3.77)

3.3 β-functions and anomalous dimensions

In the previous sections we have calculated divergent amplitudes at the one-loop level in our model
in dimensional regularization and the MS scheme. Recalling the renormalization procedure de-
scribed in chapter 2, it remains to obtain the running parameters of the theory from requiring
physical quantities to be independent of the arbitrary mass scale M we introduced when regular-
izing the divergent diagrams. The Callan-Symanzik equation for our model reads

[

M
∂

∂M
+ βλ

∂

∂λ
+ βyt

∂

∂yt
+
∑

i

niγi + µγµ
∂

∂µ

]

Γ(ni) = 0, (3.78)
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3.3 β-functions and anomalous dimensions

where the Γ(ni) are the Green’s functions with ni external fields of type i = q, tr, TL,Φ, . . .,
γi = M

2
∂Zi

∂M is the anomalous dimensions of the field i describing the scaling of the field renor-

malization with the renormalization scale, and the β-functions βgi = M ∂gi
∂M describe the scaling

of the renormalized couplings. γµ is the anomalous dimension of the mass-parameter µ. In the
line of this argument and considering the form of the one-loop corrections, we can understand the
arbitrary M2 as the scale of invariants built from the external momenta involved in the process.
Hence, the β-functions can be interpreted as the scaling of the physical couplings with the scale of
external momenta.
We can take some shortcuts and obtain the anomalous dimensions and β-functions at the one-

loop level directly from the M -dependent parts of the one-loop amplitudes. We consider e.g. the
propagator for a q = u, b, c, s, bR quark,

∆q(p) =
i/p

p2 − iǫ
δ j
i

[

1− g2sCF

16π2
log

(

M2

p2

)

+ . . .

]

+ . . . , (3.79)

where the first “. . .” stands for finite contributions from the one-loop diagram, and the last “. . .”
for higher order corrections. From the form of the Callan-Symanzik equation (3.78) we can directly
obtain the anomalous dimension from the M -dependent part of the propagator by

i/p

p2 + iǫ
2γq = −M

∂

∂M
∆q, (3.80)

which yields

γ(1)
q = −M

2

∂

∂M

[

−g2sCF

16π2
log

(

M2

p2

)]

=
g2sCF

16π2
. (3.81)

Similarly, from our results for the one-loop propagators for tR, TL, and Φ

∆tR (p) =
i/p

p2
δ j
i

[

1− g2sCF

16π2
log

(

M2

p2

)

− y2t
16π2

log

(

M2

p2

)

+ . . .

]

+ . . . , (3.82)

∆TL
(p) =

i/p

p2
δ j
i δ

b
a

[

1− g2sCF

16π2
log

(

M2

p2

)

− y2t
32π2

log

(

M2

p2

)

+ . . .

]

+ . . . , (3.83)

∆Φ(p
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i

p2 − µ2
δ b
a

[
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p2 − µ2

3y2t
16π2

log
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p2

)

+
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p2 − µ2

3λ

8π2
log

(
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)

+ . . .

]

+ . . . ,(3.84)

we find the anomalous dimensions

γ
(1)
tR = −M

2

∂

∂M

[

−
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g2sCF

16π2
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16π2
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g2sCF
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+
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= γ(1)
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y2t
16π2

, (3.85)

γ
(1)
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= −M

2

∂

∂M

[

−
(

g2sCF

16π2
+

y2t
32π2

)

log

(
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p2

)]

=
g2sCF

16π2
+

y2t
32π2

= γ(1)
q +

y2t
32π2

, (3.86)

γ
(1)
Φ = −M

2

∂

∂M

[

− 3y2t
16π2

log

(

M2

p2

)]

=
3y2t
16π2

. (3.87)

Similarly, from the one-loop vertices

−iVΦ4 = −2i
(

δ c
a δ d

b + δ d
a δ c

b

)

[

λ+
3y4t
16π2

log

(

M2

∆(s)

)

− 3λ2

4π2
log

(

M2

s

)

+ . . .

]

, (3.88)

−iVtbΦ = (σ2)
b
a δ j

i

[

yt +
ytg

2
sCF

4π2
log

(

M2

∆′(p, p′2)

)

+ . . .

]

, (3.89)

where the “. . .” now indicates both finite contributions from the one-loop diagrams and higher
order contributions, we get

βλ = −M
∂

∂M

[(

3y4t
16π2

− 3λ2

4π2

)

log

(

M2

p̃2

)

+ 4λγΦ

]

=
3λ2

2π2
+

3λy2t
4π2

− 3y4t
8π2

, (3.90)

βyt
= −M

∂

∂M

[

ytg
2
sCF

4π2
log

(

M2

p̃2

)]

+ yt (γtR + γTL
+ γΦ) =

9y3t
32π2

− 3ytg
2
sCF

8π2
. (3.91)
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3 The SM Higgs potential at the one-loop level

We can already note a peculiar feature of the β-function of the quartic coupling λ: it is the only
SM-coupling with an β-function that is not proportional to its coupling. This opens the possibility
for λ to change sign at some scale M2. From (3.90) we see, that a large top Yukawa coupling can
drive λ negative at large scales if λ is sufficiently small at small scales.
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4 Extrapolation of the SM Higgs potential

With the discovery of a particle compatible with the SM Higgs at the LHC in 2012 the final
ingredient of the SM was found. We can now measure all the parameters of the SM, i.e. the
physical masses and coupling strengths, at energies up to ∼ 1TeV. Merging this experimental
input with the theoretical predictions for the running of the parameters we can thus explore the
behavior of the SM at scales much larger than the ones experimentally accessible. It has been
known for a long time that the SM Higgs potential could develop a second minimum deeper than
the electroweak one at energy scales below the Planck scale, or become non-perturbative at large
scales, depending on the SM parameters [1–16]. If we take the Higgs-like particle discovered at the
LHC to be the SM Higgs, the SM occupies a peculiar spot in the parameter space. It is metastable,
but sits only a few standard deviations off the region where it would remain stable up to the Planck
scale.

When investigating the stability of the SM Higgs potential, the proper object to consider is the
effective potential improved by renormalization group equations. Excellent introductions to the
effective potential and its computation can be found in [1,6] as well as in standard QFT textbooks,
e.g., [17,18]. However, as long as the instability occurs at scales well above the electroweak scale it
suffices to require λ ≥ 0 as a stability criterion to good approximation [3,25]. For the perturbativity
requirement we follow [12,14] and consider two bounds: if we demand λ ≤ π at the cut-off scale, the
two-loop correction is less than 25% of the one-loop contribution to the β-function of the quartic
coupling, and the perturbative expansion is still reliable. For λ = 2π at the cut-off, the two-loop
correction to the one-loop β-function is 50% and the model is on the verge of non-perturbativity.

In the previous chapter we calculated the dominant contributions to the running of the quartic
Higgs-coupling λ. We found

M
∂λ

∂M
= βλ =

3λ2

2π2
+

3λy2t
4π2

− 3y4t
8π2

, (4.1)

in our simplified model without electroweak interactions and all Yukawa couplings except for the
top quark set to zero. In this simplified model we already find the characteristic behavior of the
Higgs potential at large energies. If the quartic coupling is too large, i.e. the Higgs too heavy,
λ blows up at large energies and the model becomes non-perturbative. Eventually, the quartic
coupling will hit a Landau pole below the cutoff. If yt is too large, i.e. the top too heavy, the
y4t term in βλ will drive λ to negative values and the potential will become unstable. For even
larger top masses, the top Yukawa coupling will become non-perturbative, which leads in turn to
λ becoming non-perturbative as well. In order to compute the running couplings in our model, we
also need the β-function for the strong gauge coupling gs. It is well known for a long time, and
given by βgs = −7g3s/16π

2 at the one-loop level [26].

Besides the β-functions, one needs the values of the SM parameters at some convenient scale
as input when extrapolating to higher scales. Obtaining the renormalized parameters in the MS-
scheme from the physical observables, the so-called matching, is a non-trivial task [20–22]. Ready-
to-use expressions for the MS parameters at the two-loop level for the matching scale M = Mt,
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4 Extrapolation of the SM Higgs potential
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Figure 4.1: Phase space for the simplified model of chapter 3 for floating top and Higgs mass.
Green regions correspond to portions of the phase space for which the quartic Higgs coupling
λ turns negative for renormalization scales below the electroweak scale M ≤ v = 246GeV. For
such small instability scales, our simplified criterion for instability is no longer valid and one
must consider the full effective potential. In the red portion of the parameter space, λ becomes
negative below the Planck-scale v ≤ M ≤ MPl = 1.22 × 1019 GeV. For the white regions, the
quartic coupling stays positive all the way up to the Planck scale, and remains perturbative. In
the gray portion of the parameter space, π ≤ λ(M = MPl) ≤ 2π and the model is on the verge
of non-perturbativity. In the black region, λ(M = MPl) ≥ 2π and the model becomes non-
perturbative. The right panel shows parameter space around the central experimental values
Mh = 125.7GeV, Mt = 173.21GeV in more detail.

the top quark mass, are given in [16]:

λ(M = Mt) = 0.12711 + 0.00206 (Mh − 125.66)− 0.00004 (Mt − 173.10)± 0.00030th,(4.2)

µ(M = Mt) = 132.03 + 0.94 (Mh − 125.66) + 0.17 (Mt − 173.10)± 0.15th, (4.3)

yt(M = Mt) = 0.93558 + 0.00550 (Mt − 173.10)− 0.00042 · α3(MZ)− 0.1184

0.0007
+

−0.00042 · MW − 80.384

0.014
± 0.00050th, (4.4)

gY (M = Mt) = 0.35761 + 0.00011 (Mt − 173.10)− 0.00021 · MW − 80.384

0.014
, (4.5)

g2(M = Mt) = 0.64822 + 0.00004 (Mt − 173.10) + 0.00011 · MW − 80.384

0.014
, (4.6)

gs(M = Mt) = 1.1666 + 0.00314 · α3(MZ)− 0.1184

0.0007
− 0.00046 (Mt − 173.10) , (4.7)

where all masses are measured in GeV. The experimental values are [23]

αs(M
2
Z) = 0.1185± 0.0006,

MW

GeV
= 80.385± 0.015,

MZ

GeV
= 91.1876± 0.0021,

Mh

GeV
= 125.7± 0.4,

Mt

GeV
= 173.21± 0.51± 0.71.

(4.8)

The resulting phase space when extrapolating our simplified model to the Planck scale with floating
masses for the Higgs and the top quark is shown in Figure 4.1.
For a more thorough analysis of the SM’s stability one must include the electroweak interactions.

It is well known, that the β-functions for the non-Abelian gauge couplings in the SM are negative,
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while the β-function for the U(1) gauge coupling is positive. Hence, at some scale the weak
hypercharge U(1) coupling in the SM gY surpasses gs. It is also well known that in the SM the
SU(2)L coupling g2 becomes larger than gs for scales M & 1017 GeV. Hence, at large scales the
electroweak contributions will dominate the QCD contributions to the running of the top Yukawa
and the quartic Higgs coupling. The two-loop renormalization group equations for the full SM have
been known for a long time [26–28]. The three-loop β-functions for the full SM became available
in the last few years [29–31].
Including electroweak interactions, but again setting all Yukawa couplings except for the top to

zero, the one-loop β-functions for the gauge-couplings are given by [26]

β(1)
g1 =

g1
16π2

(

41

10
g21

)

, β(1)
g2 =

g2
16π2

(

−19

6
g22

)

, β(1)
gs =

gs
16π2

(

−7g2s
)

, (4.9)

with the U(1)Y hypercharge coupling gY in conventional SU(5) normalization g21 = 5
3g

2
Y . For the

top Yukawa and the quartic Higgs coupling the β-functions are [26–28]

β(1)
yt

=
yt

16π2

(

9

2
y2t −

17

20
g21 −

9

4
g22 − 8g3s

)

, (4.10)

β
(1)
λ =

1

16π2

(

24λ2 + 12y2t λ− 6y4t −
(

9

5
g21 + 9g22

)

λ+
27

200
g41 +

9

20
g21g

2
2 +

9

8
g42

)

. (4.11)

The two-loop β-functions are given by [26–28]

β(2)
g1 =

g1

(16π2)
2

[

199

50
g41 +

27

10
g21g

2
2 +

44

5
g21g

2
s −

17

10
y2t g

2
1

]

, (4.12)

β(2)
g2 =

g2

(16π2)
2

[

9

10
g21g

2
2 +

35

6
g42 + 12g22g

2
s −

3

2
y2t g

2
s

]

, (4.13)

β(2)
gs =

gs

(16π2)
2

[

11

10
g21g

2
s +

9

2
g22g

2
s − 26g4s − 2y2t g

2
s

]

, (4.14)

β(2)
yt

=
yt

(16π2)
2

[

−12y4t + 6λ2 − 12λy2t +
393

80
g21y

2
t +

225

16
g22y

2
t + 36g3sy

2
t+

+
1187

600
g41 −

9

20
g21g

2
2 +

19

15
g21g

2
3 −

23

4
g42 + 9g22g

2
s − 108g4s

]

, (4.15)

β
(2)
λ =

1

(16π2)
2

[

−312λ3 + 108

(

g21
5

+ g22

)

λ2 +

(

1887

200
g41 +

117

20
g21g

2
2 −

73

8
g42

)

λ+

+
305

16
g62 −

289

80
g21g

4
2 −

1667

400
g41g

2
2 −

3411

2000
g61+

−32g2sy
4
t −

8

5
g21y

4
t −

9

4
g42y

2
t + g21

(

63

10
g22 −

171

100
g21

)

y2t

+

(

17

2
g21 +

45

2
g22 + 80g2s

)

y2t λ− 144y2t λ
2 − 3y4t λ+ 30y6t

]

. (4.16)

The three-loop β-functions can be found in [29–31].
Figures 4.2 and 4.3 show a comparison between the running couplings found in our simplified

model at the one-loop level and when including electroweak interactions at the one-loop or two-loop
level. We find that the electroweak interactions make the SM potential more stable. Considering
the β-functions (4.10)-(4.16), we see that there are two reasons for this: the electroweak interactions
give a negative contribution to the running of yt, hence, reducing its effect of driving λ negative,
and a positive contribution to the running of λ itself. Figure 4.4 shows the phase space for floating
top quark and Higgs mass. The stable phase of the model occupies a larger portion of the parameter
space when including electroweak contributions, for the reasons described above. Due to the same
reasons, the model also remains perturbative for larger Mh: since yt evolves to smaller values at
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4 Extrapolation of the SM Higgs potential
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Figure 4.2: Comparison of the running couplings in the sim-
plified model of chapter 3 at the one-loop level and when
including electroweak contributions at the one-loop and
the two-loop level for the central experimental values
Mt = 173.21GeV, Mh = 125.7GeV. The top panel
shows the running of the Yukawa coupling for the top
quark and the middle panel the running of the quartic
Higgs coupling. In both panels, the solid red line cor-
responds to the simplified model, the dashed blue line
to the SM at the one-loop, and the dash-dotted black
line to the SM at the two-loop level. The bottom panel
shows the running of the gauge couplings. Blue cor-
responds to the strong coupling, black to the SU(2)L
coupling g2 and red to the U(1)Y coupling in conven-
tional normalization g21 = 5

3g
2
Y . In the case of the gauge

couplings, the difference between the one-loop and the
two-loop level evolution is not visible at this scale.
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Figure 4.3: Running of the quartic
Higgs coupling λ in the simplified
model (red solid line), the SM at
the one-loop (dashed blue line) and
the SM at the two-loop level (dash-
dotted black line) for different val-
ues of Higgs pole mass and the
top mass fixed to the central value
Mt = 173.21GeV. The top panel is
for Mh = 130GeV, where λ stays
positive up to Mpl for the SM two-
loop case. The middle panel is for
Mh = 136GeV, where λ stays posi-
tive up to Mpl for the SM one-loop
case, and the bottom panel is for
Mh = 149GeV, where λ stays pos-
itive for our simplified model.
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Figure 4.4: Comparison of the phase space for the SM for floating top and Higgs mass at the one-
loop level (left panel) and the two-loop level (right panel). Green regions correspond to portions
of the phase space for which the quartic Higgs coupling λ turns negative for renormalization
scales below the electroweak scale M ≤ v = 246GeV. For such small instability scales, our
simplified criterion for instability is no longer valid and one must consider the full effective
potential. In the red portion of the parameter space, λ becomes negative below the Planck-scale
v ≤ M ≤ MPl = 1.22× 1019 GeV. For the white regions, the quartic coupling stays positive all
the way up to the Planck scale, and remains perturbative. In the gray portion of the parameter
space, π ≤ λ(M = MPl) ≤ 2π and the model is on the verge of non-perturbativity. In the black
region, λ(M = MPl) ≥ 2π and the model becomes non-perturbative.

large scales than in our simplified model, the term proportional to ytλ in the one-loop beta-function
for λ contributes less. Additionally, the g21λ and g22λ terms give negative contribution and thus
keep λ from growing too large. As for our simplified model, we find that for Mh . 60GeV λ turns
negative below the electroweak scale v = 246GeV. Then, our simplified approach of requiring
λ ≥ 0 is no longer valid and one must consider the full effective potential. For Mt & 230GeV, we
find an instability due to the top Yukawa coupling becoming non-perturbative, which leads to λ
blowing up.
A comparison of the stable regions of the phase space between our simplified model of chapter

3 at the one-loop level and when including electroweak contribution at the one-loop and the two-
loop level is shown in Figure 4.5. In the vicinity of the central experimental value for the top mass
Mt = 173.21 ± 0.51stat. ± 0.71syst. [23], one can give a linear approximation of the bound for the
Higgs mass, for which the quartic coupling λ(M < MPl) ≥ 0. Then, the SM would be stable all
the way up to the Planck scale. In our simplified model this bound is given by

Mh > 149GeV + 1.89 (Mt − 173.25GeV) . (4.17)

When including electroweak contributions we find at the one-loop level

Mh > 136GeV + 2.18 (Mt − 173.25GeV) , (4.18)

and at the two-loop level

Mh > 130GeV + 2.12 (Mt − 173.25GeV)± 1GeV. (4.19)

The error on Mh for the two-loop bound is dominated by shifts to the top quark pole mass from
QCD corrections [14]. For the one-loop results we give no error, but from the results one can
readily conclude that for the one-loop results the uncertainty due to higher order corrections is
∼ 15GeV when including electroweak contributions and ∼ 20GeV for our simplified model.
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4 Extrapolation of the SM Higgs potential
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Figure 4.5: Comparison between the stable portions of phase space between our simplified model
of chapter 3 and when including electroweak contributions in the SM at the one-loop and two-
loop level. For the white portion of the phase space, λ ≥ 0 all the way to the Planck-scale
for our simplified model. The green and white regions corresponds to the region of the phase
space where λ ≥ 0 for the one-loop approximation. At the two-loop level, λ remains positive
all the way up to the Planck scale in the red, green and white portion of the parameter space.
The right panel shows the region around the central experimental values Mh = 125.7GeV,
Mt = 173.21GeV in more detail. The white solid line is the stability bound at the two-loop
level reported in [9] with the thin gray lines displaying the reported error. The dashed yellow
line is the bound at the three-loop level from [16], where the thickness of the line corresponds
to the reported error. Both bounds are valid in the vicinity of the measured top quark mass
Mt ≈ 173GeV, and the SM is stable in the region of phase space below the corresponding line.

Within the errors, our bounds agree with the ones found in the literature. At the two-loop
level, [9] finds

Mh > 127.9GeV + 1.92 (Mt − 174GeV)− 4.25GeV

(

αs − 0.124

0.006

)

± 1GeV

⇒ Mh > 130.4 + 1.92 (Mt − 173.25)± 1GeV,

(4.20)

for the value αs = 0.1185 we use and demanding stability up to a cut-off scale M = 1019 GeV
slightly smaller than our criterion MPl = 1.2× 1019 GeV. At the three-loop level, [16] finds

Mh > 129.1GeV + 2.0 (Mt − 173.10GeV)− 0.5GeV

(

αs(MZ)− 0.1184

0.0007

)

± 0.3GeV. (4.21)

Both bounds are displayed in Figure 4.5 together with our regions of stability.
Comparing this with the central experimental values for the top and Higgs mass [23]1

Mh

GeV
= 125.7± 0.4,

Mt

GeV
= 173.21± 0.51± 0.71, (4.22)

one finds the SM to lie just outside the stability region, but being compatible with stability all the
way up to the Planck-scale when deviating ∼ 2.5σ from the central values.

1Recently, an updated combined measurement for the Higgs mass Mh = 125.09 ± 0.24GeV was published by the
CMS and ATLAS collaborations [24]. The impact on our results is negligible.
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5 Interpretation of the instability. Hints to

new physics?

In the previous chapter, we saw that the experimental values suggest that the SM occupies a
peculiar spot in the parameter space: it lies just outside the stable region and develops a second
minimum deeper than the electroweak one at scales M & 1010 GeV. However, experimental and
theoretical uncertainties are too large as yet as to make a final statement on this instability.
Absolute instability, i.e. the quartic Higgs coupling λ ≥ 0 all the way up to the Planck scale, is
only excluded at about 98% confidence limit.
Even if we assume that the situation remains unchanged as experimental and theoretical un-

certainties become smaller, this does not necessarily lead to an inconsistency of the SM at scales
below MPl. As discussed e.g. in [10,14–16], one can trade requiring an absolutely stable potential
for demanding metastability: if we assume the universe to have fallen in the electroweak vacuum
during its evolution, we can compute the quantum tunneling rate to its true minimum. Comparing
the lifetime of the electroweak vacuum with the age of the universe, one can accept a metastable
situation where the lifetime of the electroweak vacuum is greater than the age of the universe. The
quantum tunneling probability is given by [14]

p = max
Φ<Λ

[

VUΦ
4e−8π2/3|λ(Φ)|

]

, (5.1)

where VU = τ4U is the space-time volume of the past light cone of the observable universe, and
τU = 13.7 ± 0.2Gyrs the lifetime of the universe. Φ is the field value of the Higgs field and the
quartic coupling λ must be evaluated at this field value, as discussed above. Λ is the cut-off scale
of our model. For the central experimental values of the SM and taking the cut-off scale to be
Λ = MPl, the Planck scale, we find p ∼ e−1000, hence, the SM has a spectacularly small probability
to tunnel to the true vacuum and is sitting well in the metastable phase. Considering the entire
phase space, [14] finds a metastability bound considering only quantum tunneling

Mh > 108.9GeV + 3.1 (Mt − 173.1GeV)− 3.5GeV

(

αs(MZ)− 0.1193

0.0028

)

± 3GeV (5.2)

in the vicinity of Mt = 173.1GeV.
The metastability bound given above neglects thermal or inflationary fluctuations in the early

universe. If one wants to take these into account, one has to assume a scale up to which standard
cosmology is valid. Assuming the electroweak vacuum to be stable against thermal fluctuations up
to temperatures as large as the Planck scale, [14] finds a metastability bound

Mh > 122.0GeV + 2.3 (Mt − 173.1GeV)− 2.3GeV

(

αs(MZ)− 0.1193

0.0028

)

± 3GeV. (5.3)

In the light of the metastability argument, the SM can survive all the way up to the Planck
scale without modifications. However, other problems besides the stability problem, e.g. neutrino
masses, the strong-CP problem, dark matter, the hierarchy problem of the renormalized Higgs
mass, or a quantized theory of gravity lead us to believe that new physics will appear below the
Planck scale. There have been many speculations whether the instability problem can provide
hints on new physics. Trivially, new physics must set in at or below the scale of M ∼ 1010 GeV, if
it is to keep the quartic Higgs coupling from turning negative. In the following, we will conduct
a short literature review of the connection of the SM potential and some of the aforementioned
problems.
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5 Interpretation of the instability. Hints to new physics?

5.1 Neutrino masses

Neutrinos in the SM are massless left-handed fermions. From neutrino oscillation experiments we
know however, that neutrinos must have small, non-degenerate masses. Neutrino masses can most
economically be introduced at low energies through the dimension five Weinberg operator [32]. At
tree-level, this operator can be realized through the three so-called seesaw mechanisms [33]. In
type-I seesaw, one introduces at least two heavy SU(2)L singlet fermions, the so-called right-handed
neutrinos. In type-II, one replaces the right-handed neutrinos with scalar SU(2)L triplets, and in
type-III with fermionic SU(2)L triplets.

Introducing new particles to the SM will alter the renormalization group equations for scales
larger than the new particles’ masses. Thus, it will modify the high energy behavior of the running
couplings and possibly influence the stability of the SM vacuum.
For type-I seesaw the situation looks unpromising: the heavy fermions will act similar to the

top quark’s effect on the quartic Higgs coupling, hence, making the model less stable [34,35]. The
case is different for type-III seesaw, although the new particles are fermionic. It has been shown
in [35,36], that type-III seesaw models can lower the absolute stability bound to Mh = 125GeV for
seesaw scales as small as ∼ 1TeV. The situation appears even more promising for type-II seesaw,
for which it has been shown in [37–39] that type-II seesaw with a seesaw scale as low as a TeV can
push the stability bound well below 125GeV.

5.2 The strong-CP problem and axions

QCD allows for a CP-breaking term Lθ = αs

8π θG
a
µνG̃

a,µν , where Gµν (G̃µν) is the (dual) gluon field
strength tensor, and θ a free dimensionless parameter of the SM. The most sensitive test of θ is the
electric dipole moment of the neutron, which restricts

∣

∣θ
∣

∣ . 10−10 [46]. θ = θ + arg detM is the
effective parameter and M the quark mass matrix. That θ, which parametrizes the CP-violation
of QCD, is at most of order 10−10 while theoretically expected to be of order 1, is the so-called
strong-CP problem.
In 1977, Peccei and Quinn proposed a solution of the strong-CP problem by introducing a new

global U(1)PQ symmetry broken at some scale fa [40]. Soon after, it was realized that the Goldstone
boson from breaking the U(1)PQ acquires an effective mass through its couplings to quarks, and
one finds a pseudoscalar pseudo-Goldstone boson, the so-called axion [41]. The original axion used
an fa of the order of the electroweak scale v and was soon ruled out experimentally. Soon after,
so-called invisible axion models where developed with much larger breaking scales fa ≫ v, notably
the KSVZ [42] and DFSZ [43] axions. The KSVZ axion employs a heavy fermion, which is a scalar
under SU(2)L, and an SU(3)c triplet, and a heavy complex scalar charged only under the new
U(1)PQ symmetry. The DFSZ axion uses a two Higgs doublet model and a heavy scalar SU(2)L
singlet, and ordinary quarks and leptons being charged under the new U(1)PQ. In both cases,
the scalars develop a non-vanishing vacuum expectation value below the breaking scale fa. Axion
models are arguably the best motivated solution to the strong-CP problem. Furthermore, they
provide a viable dark matter candidate (see [44–47] for recent reviews on axions and their role in
solving various problems in the SM).
Recently, an extended version of type-I seesaw including an KSVZ axion has been considered

in [48]. The model was shown to provide a stable electroweak vacuum all the way up to the Planck
scale for reasonable choices of the seesaw and axion parameters. In [49], it was shown that a DFSZ
axion also leads to a stable Higgs potential all the way up to the Planck scale. In both cases, the
threshold effects of the heavy scalars keep the quartic coupling λ from turning negative below MPl.

5.3 Quantum gravitational contributions

The discussion of metastability suffers from the problem, that the true vacuum of the SM potential
occurs at M = 1030 GeV ≫ MPl when considering the renormalization group improved effective
potential (cf. the left panel of Figure 5.1). Above the Planck scale, gravitational effects certainly
cannot be neglected anymore. Recently, the Higgs metastability problem has been considered in

34



5.3 Quantum gravitational contributions
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Figure 5.1: Left Panel: double logarithmic plot of the one-loop effective potential improved with
two-loop renormalization group equation for the central experimental values Mh = 125.7GeV,
Mt = 173.21GeV. The one-loop effective potential can be found in [16]. The vertical gray
dashed line indicates the Planck scale.
Right panel: double logarithmic plot of the one-loop effective potential improved by two-loop
renormalization group equation without gravitational corrections (solid orange line) and with
gravitational corrections for different values of couplings (dashed lines). Figure taken from [50],
see this paper for details.

the light of the SM coupled non-minimally to Einstein gravity [50]. The authors argue, that this
induces higher dimensional counterterms ∝ Φ6,Φ8 into the low-energy effective theory with a priori
undetermined couplings. Depending on the strength of these couplings, the true minimum of the
Higgs potential might be pushed below the Planck scale, or the potential might even become stable
(cf. the right panel of Figure 5.1 and [50] for details).
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6 Summary and conclusion

The SM provides us with a powerful description of the physics of elementary particles at the scales
we can measure in the laboratory. In order to obtain a model which can be applied on different
scales, we must subject the SM to a renormalization procedure. Thus, we obtain a model which
accurately describes physics up to the highest scales accessible with lab experiments of ∼ 1TeV.
The same techniques which allow us to extend the model from the MeV to the TeV scale can be
used to extend the SM to arbitrarily high energy scales and thus identify theoretical problems of
the model long before such scales may become experimentally accessible. We demonstrated the
fundamental concepts of renormalization, and explicitly calculated the dominant contributions to
the Higgs potential at high energies. We saw, that the top Yukawa coupling drives the quartic
Higgs coupling to small values and eventually negative. Hence, the SM potential develops a second
minimum deeper than the electroweak one at scales larger than M ∼ 108 GeV. In a more thorough
analysis including electroweak contributions and using two-loop renormalization group equations,
we found the SM to develop instabilities at scales larger than M ∼ 1010 GeV. Varying the top
quark and Higgs masses, we found that the SM sits right on the boundary to the region where the
potential becomes stable all the way up to the Planck scale. This scenario of absolute stability is
disfavored by about 98% confidence limit.
There are two basic possibilities to interpret the instability of the SM potential if it holds up

after reducing theoretical and experimental errors. The second minimum of the potential does not
necessarily point to inconsistencies of the SM below the Planck scale. If we assume the universe
to have ended up in the electroweak vacuum after the Big Bang, the probability that it would
have transitioned to the true vacuum during the lifetime of the universe is spectacularly small.
Hence, we can accept living in a metastable vacuum. If we however demand absolute stability, new
physics must appear at or below the instability scale of M ∼ 1010 GeV. Well motivated extensions
for new physics below the instability scale are e.g. the seesaw models explaining neutrino masses,
and axion models solving the strong-CP problem. The instability of the SM potential gets worse
if one implements realistic type-I seesaw models. On the other hand, one arrives at a potential
stable all the way up to the Planck scale for type-II or type-III seesaw models. The situation looks
even more promising when including axion models, which render the SM even with type-I seesaw
mechanism stable all the way up to the Planck scale.
It is fascinating, that we have the theoretical tools and experimental precision to allow for a

meaningful extrapolation of the SM from the TeV scale all the way up to the Planck scale. We
do not know if and when new physics will appear in this “desert”, but can only take the hints
nature gives us at the experimentally accessible energy scales. The SM seems to lie just outside
the stable region but well in the metastable phase where the lifetime of the electroweak vacuum is
much larger than the age of the Universe. If we however demand absolute stability, new physics
must appear at scales below ∼ 1010 GeV.
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