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Populärvetenskaplig Sammanfattning

I denna avhandling ger vi en översikt över symplektisk geometri och kontaktgeometri
för att sedan tillämpa vår kunskap på några specifika exempel. Översikten innehåller de
viktigaste inslagen hos symplektisk geometri och kontaktgeometri, och de olika konstruk-
tioner som vi kan skapa på dessa typer av manifolds (en manifold är ett topologiskt rum
som lokalt ser ut som det Euklidiska rummet).

Både symplektisk geometri och kontaktgeometri härstammar från studier av klassisk
mekanik. Symplektisk geometri användes först av Joseph Louis Lagrange 1808 i en uppsats
om planeternas rörelser och kontaktgeometri av Sophus Lie 1872 i studiet av differentia-
lekvationer. Senare har både symplektiska manifolds och kontakt manifolds blivit mycket
viktiga inom klassisk mekanik. Rummet av koordinater och rörelsemängd har i den klassis-
ka mekaniken visat sig vara en symplektisk manifold, och tillägget av en tidskoordinat ger
oss en kontakt manifold. Kontaktgeometri har många fler tillämpningar inom områden så
som geometrisk optik, klassisk mekanik, termodynamik och geometrisk kvantisering.

Anledningen till att vi studerar egenskaperna hos symplektiska manifolds och kontakt
manifolds, för nurvarande, är deras tillämpning inom modern teoretisk fysik. I många fall
utgör dessa manifolds bakgrundsrummet där en hel del nya teorier utvecklas, och genom
att förstå deras egenskaper kan vi ytterligare öka vår kunskap i den underliggande fysi-
ken. I denna avhandling utforskar vi några konstruktioner som är mycket populära och
användbara i många tillämpningar inom teoretisk fysik.
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Abstract

In this project we present some applications of symplectic and contact geometry on
3-manifolds. In the first section we introduce the notion of symplectic manifolds and
various geometrical objects associated with them, such as the moment map and the Delzant
polytope. We also investigate symplectic cuts which are used to create new manifolds from
given symplectic manifolds. In the second section we review all the basic definitions that
arise from contact geometry such as the contact structure, the contact form and the Reeb
vector. Several examples are also used in order to clarify these definitions. In the final
section we apply the aforementioned notions to the specific case of Lens spaces, which are
3-manifolds. We also propose a possible application on 5-manifolds which would further
expand what was discussed here.

1 Introduction
The first mention of the word symplectic was made by Hermann Weyl in his book The Classical
Groups. However, the symplectic structure was defined by Joseph Louis Lagrange in 1808 (under
a different name) in a paper about the slow variations of the orbital elements of the planets in
the solar system.

Symplectic geometry is an even dimensional geometry and measures the sizes of 2-dimensional
objects rather than the 1-dimensional lengths and angles (which are part of Riemannian geom-
etry). Therefore symplectic geometry is mostly associated with the field complex numbers. The
concept of a symplectic structure was firstly defined in the study of classical mechanical systems
(e.g. a planet orbiting the sun). In order to determine the trajectory of a such a system (for
example, a unit mass moving in a straight line), we must know its position q and momentum p
at any one time. This pair of real numbers (q, p) gives a point on the plane R2. The symplectic
structure ω is defined as ω = dp∧ dq and is an area form in the plane. By integrating ω we can
measure the area A of a region S in the plane. This area is invariant through the evolution of
the system (for a conservative dynamical system).

The space defined by the positions (qi) and momenta (pi) is called phase space. If N is a
manifold, then the cotangent bundle M = T ∗N can be described by (qi, pi) where qi are the
coordinates of points p ∈ N and pi are the coordinates of 1-forms (covectors) living in T ∗pN for
each point p. It can be proven that the phase space is the same thing as a symplectic manifold.

Contact geometry, on the other hand, can be thought of as the odd-dimensional counterpart
of symplectic geometry. It was also motivated by the study of classical mechanics and specifically
in the context of the extended phase space which includes, aside from position and momentum,
the time variable. Historically, we can say that contact geometry was first mentioned in 1872
when Sophus Lie introduced the contact transformation as a geometric tool to study systems
of differential equations. Contact geometry has many applications in fields such as geometrical
optics, classical mechanics, thermodynamics and geometric quantization.

The counterpart of the symplectic form ω, in contact geometry, is the contact 1-form α.
Without going into the details here, the 2-form ω = dα can be proven to be a symplectic form.
This means that from any contact manifold M we can create a natural symplectic bundle of
rank one smaller that the dimension of M .

2 Symplectic Geometry
In this section we introduce symplectic manifolds and their properties, the moment map, sym-
plectic reduction, toric manifolds and the Delzant construction and finally symplectic cuts. We
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also give several examples, some of which will be further investigated once we have defined
contact manifolds. More in depth analysis on these subjects can be found in Ana Cannas da
Silva’s lectures [1] and Eugene Lerman’s notes [2] and paper [3].

2.1 Symplectic Manifolds

Let M be a manifold and ω a differential 2-form on M . This means that ∀p ∈ M we have a
map ωp : TpM × TpM → R which is skew-symmetric and bilinear on the tangent space to M at
p, and ωp varies smoothly with p. The 2-form ω is closed if it satisfies the differential equation
dω = 0, where d is the de Rham differential. ω is non-degenerate at a point p if the equation
ω(Xp, Yp) = 0 for all tangent vectors Xp ∈ TpM implies that Yp = 0, where Yp ∈ TpM .

Definition 2.1. A symplectic form ω on a manifold M is a closed 2-form which is non-
degenerate at each point p of M . The pair (M,ω) is called a symplectic manifold.

Using linear algebra we can prove that if M is symplectic then its dimension is even
dimTpM = dimM = 2n. Moreover, the exterior power ωn = ω ∧ · · · ∧ω is a volume form. This
means that any symplectic manifold (M,ω) is canonically oriented. The form ωn/n! is called
Liouville volume of (M,ω).

Example 2.2. Let our manifold be M = R2n. A point p on the manifold can be described
using the 2n coordinates x1 . . . xn, y1, . . . , yn. The standard symplectic form on R2n is

ω0 =
n∑
i=1

dxi ∧ dyi (2.1)

The set of vectors {(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

,

(
∂

∂y1

)
p

, . . . ,

(
∂

∂yn

)
p

}
(2.2)

is a symplectic basis of the tangent space TpM .

Example 2.3. Let M = Cn with coordinates z1, . . . , zn. Then the form

ω0 =
i

2

n∑
i=1

dzi ∧ dz̄i (2.3)

is symplectic. Using the identification of spaces Cn ∼= R2n, zi = xi + yi, this form is equal to the
previous one.

Definition 2.4. Let (M1, ω1) and (M2, ω2) be symplectic manifolds of the same dimension
dimM1 = dimM2 = 2n and let ϕ : M1 → M2 be a diffeomorphism. We say that ϕ is a
symplectomorphism if ϕ∗ω2 = ω1. By the definition of the pullback this means that for the
tangent vectors X, Y ∈ TpM1 we have

(ϕ∗ω2)p (X, Y ) = (ω2)ϕ(p) (dϕp(X), dϕp(Y )) (2.4)

Using this definition we would like to classify symplectic manifolds up to symplectomorphism.
The Darboux theorem helps us do that locally.
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Theorem 2.5 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold and let p be a
point in M . Then there is a coordinate chart (U , x1, . . . xn, y1, . . . , yn) centered at p such that

ω|U =
n∑
i=1

dxi ∧ dyi (2.5)

This theorem shows us that any symplectic manifold (M2n, ω) is locally symplectomorphic
to (R2n, ω0), where ω0 is the standard form that we defined before.

For the purposes of this thesis we will only be interested in Kähler manifolds which are a
subset of symplectic manifolds. Therefore we give their definition here.

Definition 2.6. A Kähler manifold is a symplectic manifold (M,ω) equipped with an integrable
compatible almost complex structure. The symplectic form ω is then called a Kähler form.

It follows from this definition that M is complex manifold and that for the differential forms
on M we have

Ωk(M ;C) =
⊕
`+m=k

Ω`,m and d = ∂ + ∂̄ (2.6)

2.2 Moment Map

Definition 2.7. Let (M,ω) be a symplectic manifold. A vector field X on M is symplectic if
the contraction ιXω is closed. A vector field X is Hamiltonian if ιXω is exact.

Using Cartan’s formula we can show that the flow of X preserves ω since its Lie derivative
is zero

LXω = d ◦ ιXω + ιX ◦ dω = 0 (2.7)

For a Hamiltonian vector field we have ιXω exact, so we can find a smooth function H : M → R

such that ιXω = dH. The flow of X also preserves H since

LXH = ιX ◦ dH = ιXιXω = 0 (2.8)

This implies that each integral curve of X, {ρt(x) | t ∈ R} must be contained in a level set of H

H(x) = (ρ∗tH) (x) = H (ρt(x)) (2.9)

The function H is called the Hamiltonian function for the vector field X.

Let (M,ω) be a symplectic manifold and G a Lie group that acts on it. Also, suppose that
the action of any g ∈ G preserves the symplectic form ω. Let g be the Lie algebra of G, g∗ its
dual and 〈., .〉 : g∗ × g→ R the pairing between them. Every element of the Lie algebra X ∈ g
induces a vector field X# ∈ TpM on the manifold, called fundamental vector field. Since the
action of G preserves the symplectic form it follows that ιX#ω is closed for all X ∈ g

σ∗ω = ω ⇒ LX#ω = 0⇒ d ◦ ιX#ω = 0 (2.10)

Definition 2.8. A moment map for the G-action on (M,ω) is a map µ : M → g∗ such that

d〈µ,X〉 = ιX#ω , ∀X ∈ g (2.11)

where the function 〈µ,X〉 : M → R is defined by 〈µ,X〉(x) = 〈µ(x), X〉 ≡ µX(x) Now we can
write

dµX = ιX#ω (2.12)
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which means that the function µX is a Hamiltonian function for the vector field X#. The map
µ should also be equivariant with respect to the coadjoint action on g∗

µ(g.x) = g.µ(x) = Adg−1µ(x) (2.13)

If such a map µ exists then the group action is called Hamiltonian action and the vector
(M,ω,G, µ) is called Hamiltonian G-space.

Example 2.9. The simplest example of a moment map is that of a circle action T1 = S1 on the
complex plane C. This can then be generalized to any manifold Cd. The circle group T1 = U(1)
is defined as

T1 = {ξ ∈ C : |ξ| = 1} (2.14)
so an element of the group can be represented by eit, t ∈ R. The Lie algebra elements of the
group can be identified with the complex line t = {it : t ∈ R} This toric action on C is defined
as

σ : T1 × C→ C(
eit, z

)
→ eitz

Each component of the moment map µ : C→ R∗ will be given by

dµX = ιX#ω (2.15)

where ω is the standard action on C. So we only need to compute the fundamental vector field
X# and then contract with ω. The definition of the fundamental vector field (acting on a point
of the manifold) yields

X#(z) =
d

dt

∣∣∣∣
t=0

σ
(
eit, z

)
=

d

dt

∣∣∣∣
t=0

(
eitz
)

= iz (2.16)

Going back to the definition of the complex number z = x+ iy = r cos θ+ i r sin θ we can easily
find that iz can be written as

iz =
∂z

∂θ
(2.17)

which means that
X# =

∂

∂θ
(2.18)

If we make a change to the complex coordinates z and z̄ we get

X# =
∂z

∂θ

∂

∂z
+
∂z̄

∂θ

∂

∂z̄
= i

(
z
∂

∂z
− z̄ ∂

∂z̄

)
(2.19)

The contraction of this vector field with ω is

dµX = ιX#ω = −1

2
(zdz̄ + z̄dz) (2.20)

So finally, the moment map is written as

µ(z) = −1

2
|z|2 + λ (2.21)

where λ ∈ R. Another way to obtain the same result is to write the standard form in polar
coordinates

ω =
i

2
dz ∧ dz̄ = rdr ∧ dθ (2.22)

and contract with X# = ∂/∂θ to get

dµX = −rdr ⇒ µ = −r
2

2
+ λ (2.23)
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Example 2.10. Now we generalize the previous example to d dimensions. We have the toric
action of Td on Cd defined by

σ :
((

eit1 , . . . , eitd
)
, (z1, . . . , zd)

)
→
(
eit1z1, . . . , e

itdzd
)

(2.24)

This group and its algebra are d dimensional and are defined as

G = Td = U(1)× · · ·U(1) (2.25)

and
g = t = u1 ⊕ · · · ⊕ u1 ∼= R⊕ · · · ⊕R = Rd (2.26)

Thus we will have d linearly independent fundamental vectors X#
i , i = 1, . . . , d given by

X#
i (z) = izi (2.27)

where z = (z1, . . . , zd). Following the same procedure as in the previous example we obtain

X#
i =

∂

∂θi
= i

(
zi
∂

∂zi
− z̄i

∂

∂z̄i

)
(2.28)

The moment map now is µ : Cd → (Rd)∗ and each of its components will be

µXi = −1

2
|zi|2 + λi (2.29)

The full moment map is then

µ(z) = −1

2

(
|z2

1 |, . . . , |zd|2
)

+ λ (2.30)

where λ = (λ1, . . . , λd).

Example 2.11. In this example we will have the action of an 1-dimensional group on a d-
dimensional manifold. Specifically, we will have the circle group N = T1 acting on Cd. We will
consider the circle group as a subgroup of the d-dimensional torus G = Td using the inclusion
map (in this particular example we choose all the weights to be equal to 1)

i : N → G

eit →
(
eit, . . . , eit

)
and its pullback between their dual Lie algebras

i∗ : g∗ = (Rd)∗ → n∗ = R∗ (2.31)

Now the group N can act on Cd as

σ : i(N)× Cd → Cd(
i(eit), (z1, . . . , zd)

)
→
(
eitz1, . . . , e

itzd
)

Now we of course have just one fundamental vector field which is

X#(z) = i (z1, . . . , zd) (2.32)
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or equivalently

X# =
∂

∂θ1

+ · · ·+ ∂

∂θd
= i

d∑
i=1

(
zi
∂

∂zi
− z̄i

∂

∂z̄i

)
(2.33)

The moment map will be the pullback by i of the moment map for the full group G, meaning
that

µN = i∗ ◦ µ : Cd → n∗ = R∗ (2.34)

The contraction of ω by our field X# is easy to calculate and we finally have

µN(z) = −1

2
|z|2 + λ (2.35)

where |z|2 = |z1|2 + · · ·+ |zd|2.

Example 2.12. This last example will be the moment map of the action of a torus Td on the
symplectic manifold CPd. We will use the (d + 1) homogenous coordinates and work on the
coodinate neighborhood U0 where

U0 = {[z0 : z1 : · · · : zd] | z0 6= 0} (2.36)

The symplectic form on CPd is known to be the Fubini-Study form

ωFS =
i

2
∂∂̄ log

(
zµz̄µ
z0z̄0

)
(2.37)

where the repeated index µ implies summation. This form can be easily obtained by the Kähler
potential for CPd. The standard action of Td on CPd is defined as

σ : Td × CPd → CPd(
(eit1 , . . . , eitd), [z0 : z1 : · · · : zd]

)
→
[
z0 : eit1z1 : · · · : eitdzd

]
The fundamental vector fields are the same as the ones we found before

X#
i =

∂

∂θi
= i

(
zi
∂

∂zi
− z̄i

∂

∂z̄i

)
(2.38)

The moment map is then

µ([z]) = − 1

2|z|2
(
|z1|2, |z2|2 . . . , |zd|2

)
+ λ (2.39)

In the case of d = 2 we have

µ([z]) = −1

2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2

)
(2.40)

with λ = 0. The image of this moment map is the triangle (polytope) on the 2D plane with
vetrices at (0, 0), (−1/2, 0) and (0,−1/2).
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2.3 Symplectic Reduction

The symplectic reduction is the process of creating a principal G-bundle from a Hamiltonian G-
space (M,ω,G, µ), where M is symplectic, equipped with a symplectic form on the base of the
bundle. This is stated in the Marsden, Weinstein, Meyer theorem for a symplectic manifold. A
detailed proof of this theorem can be found in [2].

Theorem 2.13 (Marsden - Weinstein - Meyer). Consider a (proper) Hamiltonian action of
a Lie group G on a symplectic manifold (M,ω) with a corresponding moment map µ : M → g∗.
Suppose 0 is a regular value of µ. Then µ−1(0) is a submanifold of M . Moreover, the action of
G on µ−1(0) has zero-dimensional stabilizer groups (locally free action). Let i : µ−1(0) ↪→M be
the inclusion map. Then,

• the orbit space Mr = µ−1(0)/G is a manifold

• π : µ−1(0)→ µ−1(0)/G is a principal G-bundle

• there is a symplectic form ωr on Mr satisfying i∗ω = π∗ωr

Definition 2.14. The pair (Mr, ωr) is called symplectic reduction of (M,ω) with respect to
G and µ.

Example 2.15. As we showed before, the 1-dimensional action of N = T1 on Cd yields the
moment map

µ(z) = −1

2

(
|z1|2 + |z2|2 + · · ·+ |zd|2

)
+ λ (2.41)

By choosing λ = 1/2, the zero level set Z = µ−1(0) is

Z =
{
|z1|2 + |z2|2 + · · ·+ |zd|2 = 1 | (z1, . . . , zd) ∈ Cd

}
(2.42)

which is of course the (2d − 1)-sphere Z = S2d−1. The orbit space Mr = Z/N is the (2d − 2)-
dimensional sphere which is isomorphic to CPd−1.

Mr = S2d−1/S1 ∼= S2d−2 ∼= CPd−1 (2.43)

Therefore we have the principal bundle

S1 ↪→ S2d−1 → CPd−1 (2.44)

The symplectic manifold we obtained is (CPd−1, ωFS) where ωFS is the Fubini-Study form we
defined before. For d = 2 we get the Hopf bundle.

Example 2.16. Let N = T1 act on C2 by

eit(z1, z2) =
(
eiktz1, e

itz2

)
(2.45)

for k > 2. This means that the inclusion map i : N → G, where G = T2 is the standard toric
action on C2, is defined by

i(eit) =
(
eikt, eit

)
(2.46)

The moment map µN : C2 → R is

µ(z) = −1

2

(
k|z1|2 + |z2|2

)
+ λ (2.47)
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Then, if λ > 0, zero is is a regular value of the moment map and

µ−1(0) =
{
k|z1|2 + |z2|2 = 2λ | (z1, z2) ∈ C2

}
(2.48)

is a 3-dimensional ellipsoid. If we choose any point (z1, 0) we realize that the action on µ−1(0)
is not free. The stabilizer group at these points is

Zk =
{

ei 2π`
k | ` = 0, 1, . . . , k − 1

}
(2.49)

The resulting reduced space µ−1(0)/S1 is then an orbifold called Teardrop orbifold or conehead.
It has one cone singularity with cone angle 2π/k, meaning that it is a point with orbifold
structure group Zk. This example was presented here in order to illustrate that we can have
extensions of the symplectic reduction procedure. In this case we obtained an orbifold, which
roughly speaking is a singular manifold where each singularity is locally modeled on Rm/Γ, for
some finite group Γ ⊂ GL(n,R).

Example 2.17. Consider the N = T1 action on C3

eit(z1, z2, z3) =
(
eitz1, e

itz2, e
−iptz3

)
(2.50)

where p is an integer greater than zero. The moment map of this action is

µ(z) = −1

2

(
|z1|2 + |z2|2 − p|z3|2

)
+ λ (2.51)

The zero level set is

Z = µ−1(0) =
{
|z1|2 + |z2|2 − p|z3|2 = C | (z1, z2, z3) ∈ C3

}
(2.52)

where C = 2λ. The resulting reduced space Mr = Z/N is

Mr =
{
|z1|2 + |z2|2 − p|z3|2 = C , (z1, z2, z3) ∼

(
eitz1, e

itz2, e
−iptz3

)
| (z1, z2, z3) ∈ C3

}
(2.53)

It can be proven that this manifold is diffeomorphic to the total space of the line bundle O(−p)
over CP1 which is defined as

O(−p) =
{

(z1, z2, z3) ∈ C3 | (z1, z2, z3) ∼
(
αz1, αz2, α

−pz3

)
, α ∈ C

}
(2.54)

The real dimension of the manifold is dimRMr = 4 and it should be noted that the set Z is
unbounded and that Mr in non-compact.

2.4 Delzant Construction

Definition 2.18. A (symplectic) toric manifold is a 2n-dimensional compact connected sym-
plectic manifold (M2n, ω) equipped with an effective Hamiltonian action of a n-torus G = Tn

and a corresponding moment map µ : M → Rn.

Definition 2.19. A Delzant polytope ∆ in (Rn)∗ is a convex polytope satisfying

• simplicity: there are n edges meeting at each vertex

• rationality: the edges meeting at the vertex p are rational in the sense that each edge is
of the form p+ tui, t ≥ 0 where ui ∈ (Zn)∗
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• smoothness: for each vertex, the corresponding u1, . . . , un can be chosen to be a Z-basis
of Zn.

Delzant showed that symplectic toric manifolds can be classified (as Hamiltonian spaces) by
a set of polytopes. Let ∆ be a Delzant polytope in (Rn)∗ (space of the image of the moment
map of a toric manifold, dual to Rn) with d facets (a facet is a (d− 1)-dimensional face of the
polytope). Let vi ∈ Zn, i = 1, . . . , d be the primitive (vi cannot be written as vi = kvj where
k ∈ Zn and |k| > 1), outward-pointing normal vectors to the facets of ∆. The Delzant polytope
∆ can then be described as an intersection of halfspaces

∆ = {x ∈ (Rn)∗ | 〈x, vi〉 ≤ λi , i = 1, . . . , d , λi ∈ R} (2.55)

Theorem 2.20 (Delzant theorem). Toric manifolds are classified by Delzant polytopes. Specif-
ically, there is a 1− 1 correspondence between a toric manifold and a polytope

{toric manifold} −→ {Delzant polytope}
(M2n, ω,Tn, µ) 7−→ µ(M)

Next we will show that the theorem is surjective (as can be found in more detail in [1] and
more examples in [4]), meaning that given a Delzant polytope we can recover the corresponding
toric manifold

∆n −→ (M2n, ω,Tn, µ) (2.56)

Let ei with i = 1, . . . , d be the standard Cartesian basis of Rd. We define the map π that maps
Rd to Rn (n is the dimension of the polytope)

π∗ : Rd −→ Rn (2.57)
ei −→ vi (2.58)

Its easily proven that the map π is surjective and maps Zd onto Zn. Thus, π∗ induces a surjective
map (π) between tori

Rd/2πZd Rn/2πZn

Td Tn 1

π

We give the following names to our groups and their algebras

G = Td , g = Rd , H = Tn , h = Rn (2.59)

We define a subgroup of G named N by

N ≡ ker(π) ⊂ G (2.60)

and n is its Lie algebra. This enables us to create an exact sequence of tori, which in turn
induces an exact sequence on their Lie algebras

1 N G = Td H = Tn 1

0 n g = Rd h = Rn 0

i π

i∗ π∗

11



The dual exact sequence of these algebras is

0 h∗ = (Rn)∗ g∗ =
(
Rd
)∗

n∗ 0π∗ i∗

Now we specify our manifold M to be Cd. This is a Kähler manifold and admits the sym-
plectic form ω = i

2

∑
dzµ ∧ dz̄µ. We make this into a toric manifold by equipping it with the

standard Hamiltonian action of G = Td

(eiθ1 , . . . , eiθd) · (z1, . . . , zd) = (eiθ1z1, . . . , e
iθdzd) (2.61)

The moment map for this action is µ : Cd →
(
Rd
)∗

µ(z1, . . . , zd) = −1

2

(
|z1|2, . . . , |zd|2

)
+ const. (2.62)

and we choose the constant to be equal to (λ1, . . . , λd). If we restrict the action on Cd to the
subgroup N we find that it is Hamiltonian with moment map

i∗ ◦ µ : Cd → n∗ (2.63)

We will use the notation i∗ ◦ µ ≡ µN for convenience.

Cd g∗ =
(
Rd
)∗

n∗

µN

µ

i∗

Let Z = µ−1
N (0) be the zero-level set. It can be proven that the set Z is compact and N acts

freely on Z. Then 0 ∈ n∗ is a regular value of µN . The real dimension of Z is

dimR Z = d+ n (2.64)

Using the Marsden-Weinstein-Meyer theorem we know that the orbit space M∆ = Z/N is also
a compact manifold and its dimension is

dimRM∆ = d+ n− (d− n) = 2n (2.65)

where d−n is the dimension of the group (and its algebra) N . The point-orbit map p : Z →M∆

is a principal N -bundle over M∆ and the inclusion of Z is j : Z ↪→ Cd. There also exists a
symplectic form ω∆ on M∆ obeying

p∗ω∆ = j∗ω (2.66)

In diagrammatic form the principal bundle is

N Z Cd

M∆

j

p

It can be proven that the symplectic manifold (M∆, ω∆) is a toric manifold equipped with the
action of Tn and its moment map image is

µ∆(M∆) = ∆ (2.67)
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Example 2.21. We give a simple example in order to illustrate the procedure of obtaining a
toric manifold from a Delzant polytope. This procedure however is exactly the same for any
polytope. We start from the polytope ∆ defined as

∆ =
{

(x1, x2) ∈ (R2)∗ |x1 ≥ 0 , x2 ≥ 0 , x1 + x2 ≤ 1
}

(2.68)

This is a triangle with vetrices at (0, 0), (1, 0) and (0, 1). From the definition of ∆ we easily
obtain λ1 = λ2 = 0 and λ3 = 1. Also, the three normal to the faces vectors are v1 = (−1, 0),
v2 = (0,−1) and v3 = (1, 1). The number of faces is d = 3 meaning that G = T3 and the
dimension that the polytope lives in is n = 2, so we have H = T2. The pushforward of the map
π between the Lie algebras of the groups is

π∗ : R3 −→ R2

ei −→ vi

and it is easy to obtain it in matrix form

π∗ =

(
−1 0 1
0 −1 1

)
(2.69)

So the action of π∗ on a general element of g is

π∗(A,B,C) = (−A+ C,−B + C) (2.70)

Thus, the map π between the groups G and H is

π(a, b, c) = (a−1c, b−1c) (2.71)

The group N , which is the group we are performing the reduction with, is defined by

N = ker π = {(a, b, c) ∈ G | a = b = c} (2.72)

This means that the inclusion map i : N → G is

i : a→ (a, a, a) and i∗ : A→ (A,A,A) (2.73)

with a ∈ N and A ∈ n. The pullback i∗ can be obtained from the definition of the inner product
between the Lie algebra and its dual. We take X = A ∈ n and Y = i∗(C1, C2, C3) ∈ n∗ (where
(C1, C2, C3) ∈ g) and we have

〈Y,X〉 = 〈i∗(C1, C2, C3), A〉
= 〈(C1, C2, C3), i∗A〉
= 〈(C1, C2, C3), (A,A,A)〉
= C1A+ C2A+ C3A

so we obtain
i∗ : (C1, C2, C3)→ C1 + C2 + C3 (2.74)

Note that instead of these steps we could just calculate the fundamental vector fields for the
action of the group N . The moment map of the action of G on C3 for this example is

µ(z) = −1

2

(
|z1|2, |z2|2, |z3|3

)
+ (λ1, λ2, λ3)

= −1

2

(
|z1|2, |z2|2, |z3|3

)
+ (0, 0, 1)

13



Now we restrict this action to the subgroup N using the previously defined pullback of i

µN(z) = i∗ ◦ µ = −1

2

(
|z1|2 + |z2|2 + |z3|3

)
+ 1 (2.75)

The zero level set Z = µ−1
N (0) is then

Z =
{
|z1|2 + |z2|2 + |z3|2 = 2 | (z1, z2, z3) ∈ C3

}
(2.76)

which is a 3-sphere. The resulting toric manifold is M∆ = S3/S1 ∼= CP2 equipped with the
standard toric action of H = T2. This result was expected since we already calculated the
moment map image for CP2 in a previous example and found out that it was a triangle.

Example 2.22. Here we start from the T1 action on C3 from example 2.17 and proceed with
drawing the corresponding Delzant polytope. The group N acting on C3 can be defined by

N =
{(

eit, eit, e−ipt
)
∈ T3

} ∼= S1 (2.77)

We call this action an S1-action with weights (1, 1,−p) and we will use this type of definition
multiple times in the future. We recall that the moment map and the zero level set were

µ(z) = −1

2

(
|z1|2 + |z2|2 − p|z3|2

)
+ λ (2.78)

and
Z = µ−1(0) =

{
|z1|2 + |z2|2 − p|z3|2 = C | (z1, z2, z3) ∈ C3

}
(2.79)

respectively. Since the dimension of N is 1 and the dimension of G is 3 we have d = 3 and n = 2
(using the symbols defined in this section). This means that we will obtain a polytope which
is 2-dimensional and has 3 faces (and therefore 3 normal vectors to the faces). Using the exact
sequence which we defined before for d = 3 and n = 2 we obtain H = T2. π is the map between
G and H. The group N is the kernel of the map π, so we get

N = ker π =
{

(a, b, c) ∈ G | a = b, c = a−p
}

(2.80)

From this kernel we can obtain the map π while recognizing that this map is not unique. The
action on π on an element of G can be

π(a, b, c) = (ab−1, b−pc−1) (2.81)

We could have chosen a different form for this map, but in the end the resulting polytope would
be exactly the same geometrically. The only difference would be its location on the x− y plane.
The push forward π∗ : g ∼= R3 → h ∼= R2 is then

π∗(A,B,C) = (A−B,−pB − C) (2.82)

By its definition, π∗ maps the standard basis ei to the normal to the faces vectors ui. Its matrix
form is

π∗ =

(
−1 1 0
0 −p −1

)
(2.83)

This means that the three normal vectors are

v1 = (−1, 0) , v2 = (1,−p) , v3 = (0,−1) (2.84)
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The Delzant polytope corresponding to these vectors will consist of points (x, y) such that

− x ≤ λ1 , x− py ≤ λ2 , −y ≤ λ3 (2.85)

By choosing λ1 = λ3 = 0 we obtain

x ≥ 0 , y ≥ 0 , x− py ≤ λ (2.86)

This polytope is non-compact and this fact was to be expected since the original manifold Mr

was not compact either. We note that this means that the polytope is not considered Delzant
(since Delzant’s original definition applies only to compact manifolds) but it satisfies all the
Delzant conditions: simplicity, rationality and smoothness.

Example 2.23. Here we will use another way to obtain the previous result. Consider the zero
level set of the previous example (2.22)

Z = µ−1(0) =
{
|z1|2 + |z2|2 − p|z3|2 = C | (z1, z2, z3) ∈ C3

}
(2.87)

This is part of a 2-dimensional plane embedded in R3 (part of a plane because all its coordinates
are greater than 0). For simplicity we will denote this plane as

x+ y − pz = C (2.88)

where x, y, z are the moduli of zi squared. This means that x, y, z ≥ 0. We claim that by
rotating this plane to make it parallel to the x − y plane we will obtain the moment map
polytope. The normal vector to Z is n = (1, 1,−p). To rotate the plane Z to be parallel to
the x − y plane is equivalent to rotating n into n′ = (0, 0,−1). This must be done through
an SL(3,Z) transformation, meaning that the rotation matrix must have determinant equal to
1 and integer entries. Since the numbers 1, 1, and −p are coprimes (more on that later) we
know that it is possible to find such a transformation (which will not be unique). We choose
the matrix A ∈ SL(3,Z) as

A =

 −1 1 0
p 0 1
−1 0 0

 (2.89)

The position vector of a point belonging to the plane Z can be written as

vᵀ =
(
x y x+y−C

p

)
(2.90)

The inner product between the normal to the plane vector n and a position vector v is fixed
and equal to C. We want this inner product to be invariant. After the rotation we obtain the
new vectors n′ and v′ where v′ = Bv for some B ∈ SL(3,Z)

v′
ᵀ · n′ = C ⇒ (Bv)ᵀ (An) = C ⇒ vᵀ (BᵀA)n = C (2.91)

from which we obtain

B =
(
A−1

)ᵀ
=

 0 1 0
0 0 1
−1 −1 p

 (2.92)

Therefore, the points x′, y′, z′ of the rotated plane are related to x, y, z via the equation x′

y′

z′

 =

 0 1 0
0 0 1
−1 −1 p

 x
y

x+y−C
p

 (2.93)

15



or
x′ = y , y′ =

x+ y − C
p

= z , z′ = −C (2.94)

So the rotated plane is parallel to the x′ − y′ plane but shifted by −C in the z′ direction. From
the previous equations we immediately obtain

x′ ≥ 0 and y′ ≥ 0 (2.95)

We also have
y′ =

1

p
(x+ y − C) ≥ 1

p
(y − C) (2.96)

where we used x ≥ 0. We also have y = x′ so we finally get

y′ ≥ 1

p
(x′ − C) (2.97)

The polytope defined by this equation plus the relations x′, y′ ≥ 0 is the same as the one we
obtained in the previous example (with λ = C). It is the polytope enclosed by the lines x′ = 0,
y′ = 0 and py′ = x− C.

note: We can obtain the same result by rotating the constrains of the problem. In this ex-
ample the constraints are

x+ y − pz = C and x, y, z ≥ 0 (2.98)

The first constrain can be written as

(
x y z

) 1
1
−p

 = C =⇒
(
x y z

)
A−1A

 1
1
−p

 = C (2.99)

or (
x′ y′ z′

) 0
0
−1

 = C (2.100)

which gives us z′ = −C. Doing the same for the other constrains yields the rest of the relations.

Remark 2.24. Consider a vector with n integer entries a1, . . . , an. We would like to find which
conditions should be met for this vector, in order for us to be able to rotate it to (0, 0, . . . 1)
using an SL(n,Z) transformation. We start from the 2-dimensional case. Consider a vector v
with integer entries and a matrix M ∈ SL(2,Z) defined by

v =

(
a
b

)
and M =

(
x y
z w

)
(2.101)

where xw − yz = 1 since the determinant of M must be equal to 1. Then we demand that(
x y
z w

)(
a
b

)
=

(
0
1

)
(2.102)

From the condition
za+ wb = 1 (2.103)

we realize that a and b must be coprimes. If they are coprimes then M can take the form

M =

(
b −a
z w

)
(2.104)

By using induction we can generalize this result to any dimension and find an expression for M.
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Example 2.25. Now we give the final and easiest way to calculate the normal vectors of the
Delzant polytope corresponding to the action of a group N . This will be done by rotating the
weights of the action in order to turn it into the action of a group N ′. Then using the simpler
action of N ′ we can obtain the map π′∗, from which we can find the original π∗. These can be
easily illustrated using as an example the 1-dimensional action N ∼= T1 with weights (1, 1,−p).
We want to find a matrix M ∈ SL(3,Z) to rotate the weights (1, 1,−p) into (0, 0, 1). One
possible matrix M is

M =

 1 −1 0
p 0 1
1 0 0

 (2.105)

Now we have the group N ′ with weights (0, 0, 1)

N ′ = kerπ′ =
{

(a, b, c) ∈ T3 | a = b = 1 , c
}

(2.106)

which means that π′ maps an element to (1, 1) only when a = b = 1. Thus, the action of π′ can
be

π′
(
a b c

)
=
(
a b

)
(2.107)

which is of course not unique (we could have any combination of a and b for each entry). Then
the push-forward π′∗ in matrix form will be

π′∗ =

(
1 0 0
0 1 0

)
(2.108)

The action of π′∗ on the element (0, 0, 1) will of course give zero. Similarly, the action of π∗ on
(1, 1,−p) will also give zero. So, by inserting M and its inverse in the inner product we can
obtain π∗. We have

π′∗

 0
0
1

 = 0⇒ (π′∗ ·M)

M−1

 0
0
1

 = 0⇒ (π′∗ ·M)

 1
1
−p

 = 0 (2.109)

This means that
π∗ = π′∗ ·M (2.110)

From the form of π′∗ we can easily see that π∗ is equal to the first two rows of M.

π∗ =

(
1 −1 0
p 0 1

)
(2.111)

The normal vectors are the columns of π∗ and they produce the same (geometrically) polytope
as the one we obtained before.

Similar to the Delzant polytope we can define the polyherdal cone which is more general and
can be defined for a torus G. For our purposes, a cone will be a polytope where all λis are zero.

Definition 2.26 (Cones). Let g∗ be the dual Lie algebra of a torus group G. A subset C ⊂ g∗

is a rational polyhedral cone if there exists a finite set of vectors {vi} in the integral lattice ZG
of G such that

C =
⋂
{n ∈ g∗ | 〈n, vi〉 ≤ 0} (2.112)

We assume that the set {vi} is minimal and that each vector vi is primitive (meaning that
∀s ∈ (0, 1) we have svi /∈ ZG). A rational polyhedral cone with non-empty interior is good
if the annihilator of a linear span of a codimension k-space, where 0 < k < dimG, is the Lie
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algebra of a subtorus H of G and the normals to the face form a basis of the integral lattice ZH
of H. That is, if

{0} 6= C ∩
k⋂
j=1

{
n ∈ g∗ | 〈n, vij〉 ≤ 0

}
(2.113)

is a face of C for some {i1, . . . , ik} ∈ {1, . . . N} then{
k∑
j=1

ajvij | aj ∈ R

}
∩ ZG =

{
k∑
j=1

mjvij |mj ∈ Z

}
(2.114)

and
{
vij
}
is independent over Z.

Example 2.27. Consider once more the action of the 1-dimensional group N ∼= T1 with weights
(1, 1,−p) on C3. The cone corresponding to this action is found from the relations giving its
polytope but with all λis equal to zero. We therefore have

x ≥ 0 , y ≥ 0 , y ≥ 1
p
x (2.115)

It is obvious that the relation y ≥ 0 becomes unnecessary and the cone is enclosed between the
lines x = 0 and y = x/p. This means that we only have 2 normal vectors, namely

v1 = (−1, 0) and v2 = (1,−p) (2.116)

The moment map which corresponds to this cone is

µ(z) = −1

2

(
|z1|2 + |z2|2 − p|z3|2

)
(2.117)

and the zero level set is

Z = µ−1(0) =
{
|z1|2 + |z2|2 − p|z3|2 = 0 | (z1, z2, z3) ∈ C3

}
(2.118)

The action of N is not free on Z at the point (0, 0, 0). Therefore, Z is not a manifold since
there is a singularity at 0. This is solved either by not including 0, or, as we will see later, by
restricting the problem to a specific part of the moment map image.

Example 2.28. Now we consider the action of the 1-dimensional group N ∼= T1 ⊂ T4 with
weights (p+ q, p− q,−p,−p) on C4, where p and q are integers, greater than zero, coprimes and
p > q. The moment map for this action is

µ(z) = −1

2

(
(p+ q)|z1|2 + (p− q)|z2|2 − p|z3|2 − p|z4|2

)
(2.119)

where we have λi = 0, ∀λi since we are interested in the cone and not the polytope. The zero
level set is

Z = µ−1(0) =
{

(p+ q)|z1|2 + (p− q)|z2|2 − p|z3|2 − p|z4|2 = 0 | (z1, z2, z3, z4) ∈ C4
}

(2.120)

In order to find π∗, and therefore the normal to the cone vectors, we will rotate the weights of
the action. Since the values of the weights are coprimes we know that it is guaranteed to find
such a transformation in SL(4,Z). We will perform the transformation using the following steps

p+ q
p− q
−p
−p

 −→


0
p− q

1
−p

 −→


0
0
1
0

 (2.121)
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where we start from the fact that p+q and −p (entries 1 and 3) are coprimes and thus satisfying
Beizout’s identity

a (p+ q) + b (−p) = 1 (2.122)

for some a, b ∈ Z. A matrix that performs the full transformation is

M =


−p 0 −(p+ q) 0

−(p− q)a 1 −(p− q)b 0
a 0 b 0
p a 0 p b 1

 (2.123)

As we have seen before, we can immediately obtain π∗ from M . In this case π∗ will consist of
the rows 1, 2 and 4 of M.

π∗ =

 −p 0 −(p+ q) 0
−(p− q)a 1 −(p− q)b 0

p a 0 p b 1

 (2.124)

The normal to the cone vectors are

v1 =

 −p
−(p− q)a

p a

 , v2 =

 0
1
0

 , v3 =

 −(p+ q)
−(p− q)b

p b

 , v4 =

 0
0
1

 (2.125)

Now we specify p and q in order to investigate the cone further. Lets assume p = 2 and q = 1.
Then we have

a(3) + b(−2) = 1 (2.126)

from which we find a = −1 and b = −2. The map π∗ takes the form

π∗ =

 −2 0 −3 0
1 1 2 0
−2 0 −4 1

 (2.127)

and the 4 normal vectors are

v1 =

 −2
1
−2

 , v2 =

 0
1
0

 , v3 =

 −3
2
−4

 , v4 =

 0
0
1

 (2.128)

From the relations
〈r, vi〉 ≤ 0 , r ∈

(
R3
)∗

, r = (x, y, z) (2.129)

we obtain the 4 conditions that define the inside of the cone. We have

−2x+ y − 2z ≤ 0 , (c1)

y ≤ 0 , (c2)

−3x+ 2y − 4z ≤ 0 , (c3)

z ≤ 0 , (c4)

The faces of the cone are the normal planes to the vectors vi that are shown below

P1 :

P2 :

P3 :

P4 :

−2x+ y − 2z = 0

y = 0

−3x+ 2y − 4z = 0

z = 0

(2.130)
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The next step is to find which plane is next to which, or said differently, find the ordering of
planes P1, P2, P3 and P4. The procedure we follow is to find the intersection of planes Pi∩Pj for
i, j = (1, 2, 3, 4) and check if it obeys the cone conditions, meaning that it lies inside the cone.

P1 ∩ P2 : x = −z −→ (c3, c4) −→ 7

P1 ∩ P3 : x = 0 −→ (c2, c4) −→ 3

P1 ∩ P4 : 2x = y −→ (c2, c3) −→ 3

P2 ∩ P3 : 3x = −4z −→ (c1, c4) −→ 3

P2 ∩ P4 : y = z = 0 −→ (c1, c3) −→ 3

P3 ∩ P4 : 3x = 2y −→ (c1, c2) −→ 7

(2.131)

From these we see that the ordering of the planes is: P1, P3, P2, P4, P1.

2.5 Symplectic Cuts

Suppose (M,ω) is an arbitrary symplectic manifold equipped with a Hamiltonian circle action
having moment map µ : M → R∗. Now consider the product manifold

M ′ = (M × C, ω ⊕ (−i)dw ∧ dw̄) (2.132)

where w is the coordinate on C. If the circle action S1 acts freely on a level set µ−1(ε) then ε
is a regular value of the moment map

Φ(m,w) = µ(m)− |w|2 (2.133)

of M ′ which arises from the action

eiθ(m,w) = (eiθm, e−iθw) (2.134)

The manifold Mµ>ε (points of the original manifold for which the moment map is greater than
ε) embeds as an open dense submanifold into the reduced space

Mµ≥ε := Φ−1(ε)/S1 =
{

(m,w) ∈M × C | µ(m)− |w|2 = ε
}
/S1 (2.135)

and the difference Mµ≥ε −Mµ>ε is symplectomorphic to the reduced space µ−1(ε)/S1. Topo-
logically, Mµ≥ε is the quotient of the manifold with boundary Mµ≥ε by the equivalence relation
∼ where m′ ∼ m iff µ(m) = µ(m′) = ε and m = eiθm′ for the action eiθ ∈ S1 (the action is
1-dimensional but not necessarily diagonal). Using the same procedure but for

eiθ(m,w) = (eiθm, eiθw) (2.136)

we can define
Mµ≤ε :=

{
(m,w) ∈M × C | µ(m) + |w|2 = ε

}
/S1 (2.137)

The symplectic manifold µ−1(ε)/S1 is embedded in both Mµ≥ε and Mµ≤ε as a codimension 2
submanifold but with opposite normal bundles. If we glue Mµ≥ε and Mµ≤ε along the reduced
space µ−1(ε)/S1 we recover the original manifold M . The Symplectic Cutting is defined as
the operation that produces Mµ≥ε and Mµ≤ε.

Example 2.29. We start from the symplectic manifold M = Cn equipped with the symplectic
form

ω = −i
∑

dzj ∧ dz̄j (2.138)

20



We choose the diagonal Hamiltonian action on M with moment map µ(z) = |z|2 where we
denote z = (z1, . . . , zn) and |z|2 = |z1|2 + · · ·+ |zn|2. Then there exists a Hamiltonian S1 action
on

M ′ = (M × C, ω ⊕ (−i)dw ∧ dw̄) (2.139)

given by
eiθ(z, w) = (eiθz, eiθw) (2.140)

with a momentum map
φ(z, w) = µ(z)− |w|2 = |z|2 − |w|2 (2.141)

The ε-level set Φ−1(ε) is a disjoint union of two S1-invariant manifolds

Φ−1(ε) =
{

(z, w) ∈M ′ | µ(z) > ε & w = eiθ
√
µ(z)− ε

}⊔{
(z, 0) ∈M ′ | µ(z) = ε

}
(2.142)

The first manifold is equivariantly diffeomorphic to the product of

Mµ>ε = {z ∈M | µ(z) > ε} (2.143)

and of the circle S1 (since the contribution of w in this case is just the circle eiθ). The second
manifold is diffeomorphic to the ε-level set µ−1(ε). From this we deduce that the manifoldMµ>ε

embeds into the reduced space Mµ≥ε = Φ−1(ε)/S1 as an open dense symplectic manifold. The
remaining set Mµ≥ε −Mµ>ε is isomorphic to the reduced space µ−1(ε)/S1. The set Mµ≥ε can
be thought of as a removal of the ball of radius

√
ε (from the original manifold) centered at the

origin and then a collapse of the fibers of the Hopf fibration in the boundary of the remaining
set

{z ∈ Cn | |z|2 ≥ ε} (2.144)

This is exactly the ε-blow up of the origin of Cn.

note: Following the same procedure we can find that for M = Cn the manifold Mµ≤ε is
isomorphic to the projective space CPn (similarly to a previous example). We can think of this
CPn as Cn blown up at infinity by an (∞− ε) amount.

Remark 2.30 (Cuts and Polytopes). Suppose the torus group G acts on a compact sym-
plectic manifold (M,ω) with a moment map µ : M → g∗. Then µ(M) is a rational convex
polytope in g∗. Now let n ∈ g generate a circle subgroup N = S1

n of G. Then the action of
N on (M,ω) is Hamiltonian with moment map µn = i∗ ◦ µ : M → n∗ where i : N → G is the
inclusion map. The actions of N and G commute. If we cut M at ε ∈ R using µn we get two
Hamiltonian G-orbifolds Mµn≥ε and Mµn≤ε . Their moment polytopes are

∆1 = µ(M) ∩ {x ∈ G∗ | 〈n, x〉 ≥ ε} (2.145)

and
∆2 = µ(M) ∩ {x ∈ G∗ | 〈n, x〉 ≤ ε} (2.146)

Example 2.31. Let M = C2 and take the S1 action with weights (1,−1) on M . Then we have
an S1 action on M ′ = M × C defined as

eiθ(z1, z2, w) = (eiθz1, e
−iθz2, e

−iθw) (2.147)

The moment map for M is
µ(z1, z2) = |z1|2 − |z2|2 (2.148)
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and for M ′ we have
Φ(z1, z2, w) = |z2|2 − |z2|2 − |w|2 (2.149)

The reduction at the ε-level of Φ is

Mµ≥ε = Φ−1(ε)/S1 =
{

(z1, z2, w) ∈ C2 × C | |z1|2 − |z2|2 − |w|2 = ε
}
/S1 (2.150)

For simplicity we set ε = 0 and exclude the point (0, 0, 0) from consideration since the action
is not free there (this will not matter because we will restrict the problem on a 3-sphere). Now
µ−1(0) is the set (z1, z2) that satisfies |z1|2 = |z2|2. This is the line y = x on the x − y plane
(with |z1|2 = x and |z2|2 = y). The set Φ−1(0) is |z1|2 = |z2|2 + |w|2. The set’s projection on the
x− y plane is the area under the y = x line (x > y). Similarly, we define the action on M × C

eiθ(z1, z2, w) = (eiθz1, e
−iθz2, e

iθw) (2.151)

with moment map Ψ
Ψ(z1, z2, w) = |z1|2 − |z2|2 + |w|2 (2.152)

Then we have

Mµ≤0 = Ψ−1(0)/S1 =
{

(z1, z2, w) ∈ C2 × C | |z1|2 − |z2|2 + |w|2 = 0
}
/S1 (2.153)

The projection of the set Ψ−1(0) on the x − y plane is the area y > x. Now we restrict to the
3-sphere defined by

S3 =
{

(z1, z2) ∈ C2 | |z1|2 + |z2|2 = k
}

(2.154)

If for the moment we do not consider the reduction by S1, we see that the line µ−1(0) splits this
sphere into two parts S3

+ and S3
− with common boundary at

|z1|2 = |z2|2 = k/2 (2.155)

These two parts are written as

S3
+ =

{
(z1, z2) ∈ S3 | |z1|2 ≤ k/2 ≤ |z2|2

}
(2.156)

and
S3
− =

{
(z1, z2) ∈ S3 | |z2|2 ≤ k/2 ≤ |z1|2

}
(2.157)

Both S3
+ and S3

− are homeomorphic to solid tori. Their common boundary is |z1| = |z2| =
√
k/2

which is the product of two circles S1 × S1. Thus, their common boundary is a torus. On S3
+

we choose z1 as the disk coordinate z1 := d ∈ D2 and we map z2 to z2/|z2| which represents a
circle coordinate z2 := s ∈ S1. We have

(z1, z2)S3
+
7→ (z1, z2/|z2|) = (d, s) = (reiα, eiβ) (2.158)

and similarly on S3
−

(z1, z2)S3
−
7→ (z1/|z1|, z2) = (s, d) = (eiα′ , r′eiβ′) (2.159)

We see that on their common boundary we need to glue the s-cycle of one solid torus to the
d-cycle of the other to recover the original S3. Now, by imposing the cut we will need to take
the reduction by S1 at the boundary of each solid torus S3

+ and S3
−. We start from S3

+ and we
approach its boundary |z1| = |z2| =

√
k/2. At the boundary we will have (z1, z2)S3/S1 where

S1 is the action with weights (1,−1). This means that we have an equivalence relation ∼ (at
the boundary) given by

(z1, z2) ∼ (z′1, z
′
2) if (z′1, z

′
2) = (eiθz1, e

−iθz2) (2.160)
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at µ(z1, z2) = 0. At the boundary we have two angles α and β representing z1 and z2 which are
meridians and longitudes (disk coordinate and circle coordinate). The equivalence means that

(α, β) ∼ (θ + α,−θ + β) (2.161)

This reduces the two original dimensions to one. When θ goes from 0 to 2π, −θ goes from
0 to −2π. This is a (p, q) = (1,−1) torus knot. We can therefore picture the equivalence at
the boundary as a collapse (after a 2πq/p twist) of every longitude to a point, and thus all the
longitudes collapsing on a meridian. Now let us picture the solid torus cut across a chosen half-
plane (a meridian). This gives us a solid cylinder with identified ends. The equivalence relation
then identifies further all of the boundary of the cylinder to a circle. This is homeomorphic
to a solid ball D3 with upper and lower hemispheres identified via orthogonal projection. For
more information on this subject (and nice pictures) see [5]. This is proven to be the Lens space
L(1, q) which is by definition the 3-sphere S3. So, the collapsing of the boundary of S3

+ due to
the symplectic cut gives us S3. The same is true for S3

−. After this analysis we conclude that
the symplectic cut of a 3-sphere produces two S3 (whereas the simple cut would give us 2 solid
tori).

3 Contact Geometry
In this section we define contact manifolds, explain their relation to symplectic manifolds, in-
troduce the Reeb vector field and clarify these definitions by giving several examples. We also
define group actions on contact manifolds, and the cones that arise form these actions, by mak-
ing use of the symplectic manifolds that are related to said contact manifolds. This section is
mainly based on Geiges [6], Etnyre’s lecture notes [7] and Lerman’s papers [8] and [9].

3.1 Contact Manifolds

Definition 3.1 (Hyperplane field). LetM be a (2n+1)−dimensional manifold. A hyperplane
field ξ onM is a smooth subbundle of the tangent bundle TM (ξ ⊂ TM) such that ξp = TpM∩ξ
is a 2n-dimensional subspace of TpM , ∀p ∈M . ξ is a subbundle of codimension 1.

Example 3.2. Let M = Σ × S1 be a 3-manifold and Σ a surface. Then ∀p = (x, θ) ∈ Σ × S1

let ξp = TxΣ ⊂ TpM . We see that ξ is a plane field on M .

Definition 3.3 (Contact 1-form). Let M be a (2n+ 1)-dimensional manifold and α a 1-form
on M . At each point p ∈M we have a linear map

αp : TpM → R (3.1)

Then kerα is either a hyperplane or all of TpM . If we assume that α never maps all of TpM to
zero, then ξ = kerα is a hyperplane field (in the previous example, ξ is defined through α = dθ).
It can be proven that locally we can always represent a plane field as the kernel of a 1-form. A
1-form that satisfies the relation

α ∧ (dα)n 6= 0 (3.2)

which means that it vanished nowhere, is called a contact 1-form. The form Ω = α∧ (dα)n is
a top, volume form ((2n+ 1) form). The fact that Ω 6= 0 means that M is orientable.

Definition 3.4 (Contact Manifold). A hyperplane field ξ is called a contact structure if
it can be defined as

ξ = kerα (3.3)

where α is a contact form. The pair (M, ξ) is called a contact manifold.
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Remark 3.5. The condition α ∧ (dα)n is independent of the specific choice of α and it is only
a property of ξ = kerα. Any other form α′ defining the same hyperplane field ξ must be of the
form λα for some smooth function λ : M → R \ {0}. Then the condition for λα becomes

(λα) ∧ (d(λα))n = (λα) ∧ (λ ∧ dα + dλ ∧ α)n = λn+1α ∧ (dα)n 6= 0 (3.4)

Remark 3.6. Let ξ = kerα be a hyperplane field (α is not a contact form). The Frobenius
integrability theorem states that ξ is integrable iff its sections are close under the Lie bracket.

X, Y ∈ ξ =⇒ [X, Y ] ∈ ξ (3.5)

Since ξ = kerα, if X, Y are sections of ξ then α(X) = α(Y ) = 0. Thus, if ξ is integrable then
α([X, Y ]) = 0. Then from the identity

dα(X, Y ) = LX (α(Y ))− LY (α(X))− α([X, Y ]) (3.6)

we obtain dα|ξ = 0 or equivalently α ∧ dα = 0. The contact condition is exactly the opposite
of this.

Remark 3.7. The contact condition can be also formulated as (dα)n|ξ 6= 0. Then ∀p ∈ M
the 2n-dimensional subspace ξp ⊂ TpM is a vector space on which dα defines a skew-symmetric
form of maximal rank. This means that (ξp, dα|ξp) is a symplectic vector space. Therefore,
there exists a complex bundle structure J : ξ → ξ compatible with dα.

Remark 3.8. Given a (2n+1)-dimensional manifoldM and a point p ∈M , a contact element
of M with contact point p is a 2n-dimensional linear subspace of the tangent space to M at p
(it is another name for the hyperplane ξp). The contact element can then be given by the kernel
of a 1-form α and, as we saw before, it can also be given by the kernel of λα with λ 6= 0. From
this we realize that the space of all contact elements of M can be identified with a quotient of
the cotangent bundle T ∗M

PT ∗M = T ∗M/ ∼ (3.7)

where for αi ∈ T ∗pM we have

α1 ∼ α2 ⇐⇒ ∃λ 6= 0 : α1 = λα2 (3.8)

A contact structure on M is a smooth distribution of contact elements (denoted by ξ) which
is generic at each point. The genericity condition is that ξ is non-integrable. This condition of
course translates to α ∧ (dα)n 6= 0.

Remark 3.9. The restriction of ω = dα to a hyperplane ξ is a non-degenerate 2-form. This
construction provides any contact manifold (M, ξ) with a natural symplectic bundle of rank one
smaller than the dimension of M .

Example 3.10. We provide the manifold M = R2n+1 with the Cartesian coordinates

(x1, y1, . . . , xn, yn, z)

Then the 1-form

α1 ≡ dz +
n∑
i=1

xidyi (3.9)

is a contact form. The contact structure ξ1 = kerα1 is called the standard contact structure
on R2n+1. Using Darboux’s theorem (as we did for a symplectic manifold and the standard
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symplectic form) it can be proven than for a (2n+ 1)-dimensional manifold M the contact form
on a neighborhood U ⊂M can be written as the standard contact form. Let p be a point of M .
Then we can define the coordinates (x1, y1, . . . , xn, yn, z) on a neighborhood U ⊂ M of p such
that p = (0, . . . , 0) and

α|U = dz +
n∑
i=1

xidyi (3.10)

There also exists a more symmetric form for the standard contact structure on R2n+1. It is given
by the kernel of the contact form

α2 = dz +
n∑
i=1

(xidyi − yidxi) (3.11)

Definition 3.11 (Contactomorphism). Two contact manifolds (M, ξ) and (M ′, ξ′) are con-
tactomorphic if there exists a diffeomorphism φ : M →M ′ with Tφ(ξ) = ξ′, where Tφ : TM →
TM ′ denotes the differential of φ. If ξ = kerα and ξ′ = kerα′, this is equivalent to saying that
α and φ∗α′ determine the same hyperplane field, and thus it is equivalent to the existence of a
function f : M → R \ {0} such that φ∗α′ = f α. If we can find a function f such that f = 1
everywhere, the contactomorphism is called strict.

Remark 3.12. In the previous example (3.10) there exists a strict contactomorphism

φ :
(
R2n+1, α1

)
→
(
R2n+1, α2

)
(3.12)

given by

φ(x,y, z) =

(
x + y

2
,
y − x

2
, z +

x · y
2

)
(3.13)

This means that the contact structure ξ2 = kerα2 is equivalent to ξ1.

Example 3.13. By using polar coordinates on R2n+1 we have

(xi, yi, z) 7→ (ri, ϕi, z) for i = 1, . . . , n (3.14)

Then the contact form α2 is written as

α2 = dz +
n∑
i=1

r2
i dϕi (3.15)

Example 3.14. Now we use R3 in order to be able to visualize our results. We take the contact
form on R3

α1 = dz + xdy (3.16)

Then we have dα1 = dx ∧ dy, so the contact condition is

α1 ∧ dα1 = dz ∧ dx ∧ dy 6= 0 (3.17)

which verifies our definition of α1. The contuct structure ξ1 = kerα1 is spanned by{
∂

∂x
, x

∂

∂z
− ∂

∂y

}
(3.18)

Thus, a vector X ∈ ξ1 can be written as

X = k
∂

∂x
+ λ

(
x
∂

∂z
− ∂

∂y

)
(3.19)
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and its easy to check that X ∈ kerα1. We see that ξ1 lies on the x− y plane when x = 0. If we
move to the point (1, 0, 0) then ξ1 is spanned by{

∂

∂x
,
∂

∂z
− ∂

∂y

}
(3.20)

So ξ1 is tangent to the x-axis but it is tilted clockwise by 45◦. So if we start at (0, 0, 0) we obtain
a horizontal plane (on x− y) and as we move along the x-axis the plane twists in a left handed
manner (clockwise). When we reach ∞ the twist will be 90◦.

Example 3.15. We take R3 again, but now we use cylindrical coordinates (r, θ, z). The contact
form is then written as

α2 = dz + r2dθ (3.21)

Since α2 ∧ dα2 = 2rdr ∧ dθ ∧ dz 6= 0, ξ2 = kerα2 is a contact structure. At the point (r, θ, z)
the contact plane ξ2 is spanned by {

∂

∂r
, r2 ∂

∂z
− ∂

∂θ

}
(3.22)

So when r = 0 (on the z-axis) ξ2 lies on the x − y plane. As r grows and we move out on any
line perpendicular to the z-axis the planes ξ2 will twist clockwise. So in this example we get the
same result as in the previous one, but now everything is symmetric about the z-axis.

Example 3.16. Let M = S3 embedded into R4. Then the contact form on S3 can be written
as

α0 = (x1dy1 + x2dy2 − y1dx1 − y2dx2) |S3 (3.23)

using the Cartesian coordinates of R4. The points (x1, x2, y1, y2) are restricted on

x2
1 + x2

2 + y2
1 + y2

2 = 1 (3.24)

which is the S3 equation. Now we prove that α0 is actually a contact form and thus can define
a contact structure ξ0. We have

α0 = xidyi − yidxi and dα0 = 2dxj ∧ dyj (3.25)

where i, j = 1, 2 and a repeated index implies summation. Then the contact condition is

α0 ∧ dα0 = (xidyi − yidxi) ∧ (2dxj ∧ dyj)

= 2x2 · dy2 ∧ dx1 ∧ dy1 + 2x1 · dy1 ∧ dx2 ∧ dy2−
− 2y2 · dx2 ∧ dx1 ∧ dy1 − 2y1 · dx1 ∧ dx2 ∧ dy2

which means that α0∧dα0 is zero only when (x1, x2, y1, y2) = (0, 0, 0, 0). But this cannot happen
since we are restricted on the sphere. Thus α0 is a contact form on S3. Now let

f(x1, x2, y1, y2) = x2
1 + x2

2 + y2
1 + y2

2 (3.26)

Then S3 can be described as

S3 =
{

(x1, x2, y1, y2) ∈ R4 | f(x1, x2, y1, y2) = 1
}

(3.27)

or equivalently
S3 = ker(f − 1) = f−1(1) (3.28)
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The tangent space TpS3 at a point p = (x1, x2, y1, y2) is given by

TpS
3 = ker dfp = ker (2x1dx1 + 2x2dx2 + 2y1dy1 + 2y2dy2) (3.29)

Now we will make use of the complex structure J on C2 in order to prove a very useful way of
writing the contact structure ξ. We know that R4 ∼= C2 where zj = xj + iyj for j = 1, 2. The
complex structure acts on xj and yj as

Jxj = yj , Jyj = −xj (3.30)

The complex structure induces a complex structure on each tangent space by

J
∂

∂xj
=

∂

∂yj
, J

∂

∂yj
= − ∂

∂xj
(3.31)

We will prove that the plane field at a point p

ξp = TpS
3 ∩ ξ (3.32)

is the set of complex tangencies to S3

ξp = TpS
3 ∩ J

(
TpS

3
)

(3.33)

and therefore the contact structure is ξ = J (TpS
3). Using our previous definition we have

J(TpS
3) = ker (dfp ◦ J) (3.34)

Since J takes vectors and produces vectors, dfp ◦ J is still an 1-form. When we act with it on
the basis vectors we get

dfp ◦ J
(

∂

∂xj

)
= 2yj and dfp ◦ J

(
∂

∂yj

)
= −2xj (3.35)

The inner product of this 1-form with a general vector X defined by

X = a
∂

∂x1

+ b
∂

∂x2

+ c
∂

∂y1

+ d
∂

∂y2

(3.36)

is
〈(dfp ◦ J) , X〉 = 2y1a+ 2y2b− 2x1c− 2x2d (3.37)

and therefore dfp ◦ J is written as

dfp ◦ J = −2x1dy1 − 2x2dy2 + 2y1dx1 + 2y2dx2 (3.38)

which is dfp ◦ J = −2α0. Since α0 and −2α0 obviously have the same kernel, we finally have

ξ0 = J
(
TpS

3
)

= ker (dfp ◦ J) |S3 (3.39)

Example 3.17. The previous example can be easily generalized to the sphere S2n+1 embedded
in R2n+2. We use the Cartesian coordinates (xi, yi) for i = 1, . . . , (n + 1). The contact form is
then

α0 =
n+1∑
i=1

(xidyi − yidxi) |S2n+1 (3.40)
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Again we regard S2n+1 as the unit sphere in Cn+1 with complex structure J . Then, at each
point p ∈ S2n+1 the contact structure is given by

ξp = TS2n+1 ∩ J
(
TS2n+1

)
(3.41)

If we denote with r the radial coordinate on R2n+2 we have

r2 =
n+1∑
i=1

(
x2
i + y2

i

)
and rdr =

n+1∑
i=1

(xidxi + yidyi) (3.42)

and therefore
TpS

3 = ker (rdr) (3.43)

Similarly to the previous example we obtain

α0 = −rdr ◦ J (3.44)

Example 3.18. Another important example is the space of contact elements. LetN be a smooth
n-dimensional manifold. As defined before, a contact element is a hyperplane in a tangent space
to N . The space of contact elements of N is the collection of pairs (p, ξp) consisting of a point
p ∈ N and a contact element ξp ⊂ TpN . This space can be naturally identified with the
projectivised cotangent bundle PT ∗N by associating with a hyperplane ξp ⊂ TpN the linear
map αξp : TpN → R (well defined up to a multiplication by a non-zero scalar) with kerαξp = ξp.
The space PT ∗N is a manifold of dimension (2n− 1) and it carries a natural contact structure.
Let π be the bundle projection map π : PT ∗N → N . For an element α ≡ αξp ∈ PT ∗N , let ξ
be the hyperplane in Tα (PT ∗N) such that Tπ(ξ) is the hyperplane ξp in Tπ(α)N = TpN defined
by α. Then ξ defines a contact structure on PT ∗N . Now lets explore this proposition in more
detail. Let (q1, . . . , qn) be the local coordinates on N and (p1, . . . , pn) the corresponding dual
coordinates in the fibres of the cotangent bundle T ∗N . Then the coordinates of a covector
(1-form) are given by

(q1, . . . , qn, p1, . . . , pn) =

(
n∑
j=1

pjdqj

)
(q1,...,qn)

(3.45)

Therefore, a point (q1, . . . , qn, [p1 : · · · : pn]) of the projectivised cotangent bundle PT ∗N defines
the hyperplane

α ≡
n∑
j=1

pjdqj = 0 (3.46)

in TpN , where p = (q1, . . . , qn). By construction, the natural contact structure ξ on PT ∗N is
defined by

ξ = ker

(
n∑
j=1

pjdqj

)
(3.47)

Note that the kernel is well defined in terms of the coordinates on PT ∗N but the 1-form α is not.
To verify the contact condition we restrict to affine subspaces of the fibre. For example, over
the open set {p1 6= 0}, ξ is defined in terms of the affine coordinates p′j = pj/p1, for j = 2, . . . , n
by the equation

dq1 + p′2dq2 + · · ·+ p′ndqn = 0 (3.48)

which is exactly the description of the kernel of the contact form α1 on R2n−1. This is easy to
see by setting

q1 = z , xi = p′i , yi = qi for i = 2, . . . , n (3.49)
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3.2 Reeb and Liouville vector fields

Definition 3.19 (Reeb vector field). Let M be a (2n + 1)-dimensional manifold and α a
contact form on it. The Reeb vector field Rα is then defined by the equations

dα (Rα, ·) ≡ 0 (3.50)

α(Rα) ≡ 0 (3.51)

The 2-form dα|TpM is a skew symmetric form of maximal rank 2n. This implies that it has a
1-dimensional kernel for each p ∈M . Then the first equation defines a unique line field 〈Rα〉 on
M . From the contact condition α ∧ (dα)n 6= 0 we deduce that α is non trivial on the line field
Rα, so we use the second equation (normalization condition) to make Rα into a global vector
field. Every contact vector field X transverse to ξ can be written as a Reeb vector field for some
1-form α.

Example 3.20. We will calculate the Reeb vector Rα on the 3-sphere S3 (embedded in C2).
We take

f(z1, z2) = |z1|2 + |z2|2 (3.52)

and define the sphere as S3 = {(z1, z2) ∈ C2 | f = 1}. The tangent space to S3 at the point p is
given by ker(dfp) as we already saw before

TpS
3 = ker (z̄1dz1 + z1dz̄1 + z̄2dz2 + z2dz̄2) (3.53)

The contact form α is then written as α = dfp ◦ J , where J is the complex structure on C2

defined by

J
∂

∂z
= i

∂

∂z
and J

∂

∂z̄
= −i

∂

∂z̄
(3.54)

To find α we need to act with dfp ◦ J on the basis vectors in order to compute its components.
We find

α = i
2

(z1dz̄1 − z̄1dz1 + z2dz̄2 − z̄2dz2) (3.55)

where the 1/2 is there by convention. The Reeb vector satisfies these conditions

dα(Rα, ·)|TS3 = 0 and α(Rα) = 1 (3.56)

First we write Rα in a general form

Rα = a
∂

∂z1

+ b
∂

∂z̄1

+ c
∂

∂z2

+ d
∂

∂z̄2

(3.57)

The 2-form dα is

dα = i dz1 ∧ dz̄1 + i dz2 ∧ dz̄2

= i dz1 ⊗ dz̄1 − i dz̄1 ⊗ dz1 + i dz2 ⊗ dz̄2 − i dz̄2 ⊗ dz2

Then for dα(Rα, ·)|TS3 we have

dα(Rα, ·)|TS3 = i a dz̄1 − i b dz1 + i c dz̄2 − i d dz2 ≡ 0 (3.58)

Since this 1-form is restricted on the sphere f = |z1|2 + |z2|2 = 1, it should be proportional
to the 1-form dfp which is also zero on the sphere (S3 is a 3-dimensional submanifold of the
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4-dimensional manifold C2 and therefore we only have a 1-dimensional subspace normal to S3

at each point p ∈ S3). We have

dα(Ra, ·)|TS3 ∼ z̄1dz1 + z1dz̄1 + z̄2dz2 + z2dz̄2 (3.59)

so we obtain
a ∼ −i z1 , b ∼ i z̄1 , c ∼ −i z2 , d ∼ i z̄2 (3.60)

where the proportionality constant will of course be the same for all the components. We name
this constant ε. So far we have

Rα = i ε

(
−z1

∂

∂z1

+ z̄1
∂

∂z̄1

− z2
∂

∂z2

+ z̄2
∂

∂z̄2

)
(3.61)

Now we make use of the normalization condition α(Rα) = 1 and obtain

α(Rα) = −ε
2

(
2|z1|2 + 2|z2|2

)
= 1 (3.62)

and since we are on S3 we get ε = −1. Therefore, the Reeb vector is

Rα = i

(
z1

∂

∂z1

− z̄1
∂

∂z̄1

+ z2
∂

∂z2

− z̄2
∂

∂z̄2

)
(3.63)

If we write zj = rje
iθj the Reeb vector is written as

Rα =
∂

∂θ1

+
∂

∂θ2

(3.64)

This is the fundamental vector coming from the diagonal action of S1 on C2. A constant level
set of the moment map is of course S3.

Definition 3.21 (Liouville Vector Field). Let (N,ω) be a symplectic manifold of dimension
(2n + 2). We know that ω is a closed (dω = 0) and non-degenerate (ω2n+1 6= 0) 2-form on N .
A vector field X is called Liouville vector field if

LXω = ω (3.65)

where LX is the Lie derivative along the vector X. Using Cartan’s formula we get

LXω = (d ◦ ιX + ιX ◦ d)ω = d (ιXω) (3.66)

Using the Liouville vector condition we obtain

d (ιXω) = ω (3.67)

The 1-form α = ιXω defines a contact form on any hypersurface M ⊂ N transverse to X. This
can be proven as follows

α ∧ (dα)n = ιX ω ∧ (d(ιXω))n = ιX ω ∧ ωn = 1
n+1

ιXω
n+1 (3.68)

which is a volume form on M .

Example 3.22. Let N = R2n+2 equipped with ω =
∑n+1

i=1 (dxi ∧ dyi) be our symplectic mani-
fold. Then

X =
n+1∑
j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
=
r

2

∂

∂r
(3.69)

is a Liouville vector field. Using this vector field we recover the standard contact structure on
S2n+1 by

ιXω = α (3.70)
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3.3 Contact Hamiltonians

A vector field X on the contact manifold (M, ξ = kerα) is called an infinitesimal automor-
phism of the contact structure if the local flow of X preserves ξ. We denote the flow of X by
ψt : M →M with

d

dt
ψt = X ◦ ψt (3.71)

The condition for X to be an infinitesimal automorphism can be written as Tψt(ξ) = ξ, which
is equivalent to LXα = λα for some function λ : M → R. The local flow of X preserves α iff
LXα = 0.

Theorem 3.23. With a fixed choice of contact form α there is a one to one correspondence
between infinitesimal automorphisms X of ξ = kerα and smooth functions H : M → R+. This
correspondence is given by

X 7→ HX = α(X)

H 7→ XH ,

{
α(XH) = H
ιXHdα = dH(Rα)− dH

with XH defined uniquely by these equations.

The fact that XH is uniquely defined by the above follows from the fact that dα is non-
degenerate on ξ and that Rα ∈ ker (dH(Rα)α− dH) (which follows from α(Rα) = 1). Now lets
see why the above theorem is true. Let X be an infinitesimal automorphism of ξ. We define
HX = α(X) and have

LXα = d ◦ ιXα + ιX ◦ dα = dHX + ιXdα = λα (3.72)

where we used ιXα = α(X) which is true for 1-forms. We apply this equation to the Reeb vector
Ra and obtain

dHXRα + ιXdαRα = λα(Rα) =⇒ dHX(Rα) = λ (3.73)

So the vector X satisfies the equations

α(X) = HX and ιXdα = dHX(Rα)α− dHX (3.74)

From this we have that XHX = X. Now, going in the other direction, we start from a function
H : M → R and XH as defined in the theorem. We get

LXHα = ιXHdα + d (α(XH)) = dH(Rα)α (3.75)

using the definition. So we get that XH is an infinitesimal automorphism of ξ (because dH(Rα)
is a function).

3.4 Group Actions on Contact Manifolds

This section is based on Lerman’s paper “Contact Toric Manifolds" [9]. In this paper Lerman
gives the analog of the moment map and the Delzant polytope for contact manifolds. We start
by giving some definitions of previously defined notions, but in a different way.

Definition 3.24. The 1-form α is contact if αp 6= 0 ∀p ∈M and dα|ξ is non-degenerate, where
ξ = kerα is a codimension-1 distribution. Thus the vector bundle ξ →M has even dimensional
fibers ξp and M is odd dimensional.
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Definition 3.25. A codimension-1 distribution ζ on a manifold M is co-orientable if its anni-
hilator ζ0 ∈ T ∗M is an oriented line bundle, i.e. it has a nowhere vanishing global section. It is
co-oriented if one component ζ0

+ of ζ0 \ {0} (ζ minus the zero section) is chosen.

Definition 3.26. A co-oriented contact structure ξ on a manifoldM is a co-oriented codimension-
1 distribution such that ξ0 \ {0} is a symplectic submanifold of the cotangent bundle T ∗M . We
denote the chosen component of ξ0 \ {0} by ξ0

+ and refer to it as symplectization of (M, ξ).
note: We know that ξ0

+ is a line bundle on M and that M is odd-dimensional. Therefore the
line bundle is even dimensional.

Remark 3.27. The distribution ξ ⊂ TM is a co-oriented contact structure iff there is a contact
form α with kerα = ξ. Given ξ we choose α to be a section of the line bundle ξ0\{0} →M . If f
is any function fromM to R, then efα defines the same contact structure ξ. Thus, a co-oriented
contact structure can be thought of as a conformal class of contact forms.

Lemma 3.28. Let G be a compact group that acts properly on the manifold M preserving a
co-oriented codimension-1 distribution ζ and its co-orientation. Then, the lifted action of G on
T ∗M preserves a component ζ0

+ of ζ0 \ {0}. This means that there is a G-invariant 1-form β
on M such that ζ = ker β and β(M) ⊂ ζ0

+.

Definition 3.29. Let the group G act on a manifold M and preserve a 1-form β. The corre-
sponding β-moment map Ψβ : M → g∗ determined by β is defined as

〈Ψβ(x), X〉 = βx(XM(x)) (3.76)

∀x ∈ M and ∀X ∈ g. XM is the fundamental vector field corresponding to X and is given by
XM(x) = d

dt

∣∣
t=0

(
etX
)
x. If dβ is a symplectic form, then Ψβ is a symplectic moment map.

According to the previous definition, if α is a contact form, Ψα could potentially be a contact
moment map. But we know that efα is also a contact form and therefore Ψefα = efΨα. So we
need to find a moment map that does not have this problem. Let G act on M and preserve
a co-oriented contact structure ξ. The lift of the action of G to the cotangent bundle T ∗M
preserves a component ξ0

+ of ξ0 \ {0}. Let Φ be the moment map from the cotangent bundle to
the dual algebra of G, meaning Φ : T ∗M → g∗. Then Φ is given by

〈Φ(q, p), X〉 = 〈p,XM(q)〉 (3.77)

∀q ∈M , ∀p ∈ T ∗qM and ∀X ∈ g. The restriction Ψ = Φ|ξ0+ of Φ on ξ0
+ ⊂ T ∗M depends only on

the action of the group and on the contact structure. We have

Ψ : ξ0
+ → g∗ (3.78)

If α is any invariant contact form with kerα = ξ and α(M) ∈ ξ0
+ then

〈α∗Ψ(q, p), X〉 = 〈α∗Φ(q, p), X〉 = 〈αq, XM(q)〉 = 〈Ψα(q), X〉 (3.79)

Therefore, Ψ ◦ α = Ψα, meaning that Ψ = Φ|ξ0+ is a universal moment map.

Definition 3.30. Let (M, ξ) be a co-oriented contact manifold equipped with the action of a
Lie group G which preserves the contact structure and its co-orientation. On M there exists
an invariant 1-form α with kerα = ξ and α(M) ⊂ ξ0

+. Then, the α-moment map Ψα for the
action of G on (M,α) and the moment map Ψ for the action of G on the symplectization ξ0

+

are related by
Ψ ◦ α = Ψα (3.80)

We will refer to Ψ : ξ0
+ → g∗ as the moment map for the action of a Lie group G on a co-oriented

contact manifold (M, ξ), or equivalently, as the contact moment map.
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Definition 3.31 (Contact quotients). Let M be a manifold and G a Lie group which acts
on it and preserves a 1-form β. We denote the corresponding moment map by Ψβ : M → g∗. If
the zero level set Ψ−1

β (0) is a manifold and the action of G is free and proper on Ψ−1(0) then
β descends to a 1-form β0 on M0 := Ψ−1(0)/G. If β is a contact form, then β0 is also contact.
The manifold M0 and the contact structure on M0 defined by β depend only on the contact
structure defined by β and not on β itself.

Definition 3.32. Let the Lie group G be a torus Tn. The action of G on a contact manifold
(M, ξ) is completely integrable if it is effective, preserves the contact structure ξ and if 2 dimG =
dimM + 1. A contact toric G manifold is a co-oriented contact manifold (M, ξ) equipped
with a completely integrable action of a torus G. Then, the action of G on a component ξ0

+ of
ξ0 \ {0} is a completely integrable Hamiltonian action, and therefore ξ0

+ is a symplectic toric
manifold.

Definition 3.33 (Moment Cone). Let (M, ξ) be a co-oriented contact manifold equipped
with the action of a Lie group G preserving the contact structure ξ and its co-orientation. Also
let Ψ : ξ0

+ → g∗ denote the corresponding moment map. The moment map cone is defined to
be the set

C(Ψ) := Ψ(ξ0
+) ∪ {0} (3.81)

If α is a G-invariant contact form with ξ = kerα and α(M) ⊂ ξ0
+ then

C(Ψ) = {t f | f ∈ Ψα(M) , t ∈ [0,∞)} (3.82)

where Ψα : M → g∗ is the α-moment map.

4 Applications

4.1 Lens space L(p, 1) moment map image

Let M be C3 and let the S1 group N with weights (1, 1,−p) act on it. As we have already
proven before, the moment map for this action on M is

µ(z) = −1

2

(
|z1|2 + |z2|2 − p|z3|2

)
+ λ (4.1)

The zero level set is

Z = µ−1(0) =
{
|z1|2 + |z2|2 − p|z3|2 = C | (z1, z2, z3) ∈ C3

}
(4.2)

where C = 2λ. The resulting reduced space Mr = Z/N is

Mr =
{
|z1|2 + |z2|2 − p|z3|2 = C , (z1, z2, z3) ∼

(
eiθz1, e

iθz2, e
−ipθz3

)
| (z1, z2, z3) ∈ C3

}
(4.3)

The polytope for the non-compact manifold Mr lives in 2 dimensions and has 3 faces. The
normals to the faces are

v1 = (−1, 0) , v2 = (1,−p) , v3 = (0,−1) (4.4)

The Delzant polytope corresponding to these vectors is the space bounded by the lines

x′ = 0 , y′ = 0 , py′ = x′ − C (4.5)
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where x′ and y′ belong in h∗. According to our previous definitions, the dimension of Z is
dimZ = d + n = 5 and the dimension of Mr is dimMr = 2n = 4. If we now restrict the
manifold by fixing |z3| we will obtain a 3-manifold. Another way to see this is the following. We
start from Z

r2
1 + r2

2 − p r2
3 = C (4.6)

where we used the notation zi = eiϕi . Now we fix r3 and we get

r2
1 + r2

2 = C + p r2
3 = C ′ =⇒ r2

2 = C ′ − r2
1 (4.7)

Therefore we have r1, ϕ1, ϕ2, ϕ3 independent and the dimension of the manifold is 4 so far. Now
we need to apply the reduction by the group N = (1, 1,−p) which will bring the dimension
down to 3. The reduction induces the equivalence relation(

r1eiϕ1 , r2eiϕ2 , r3eiϕ3
)
∼
(
r1ei(ϕ1+θ), r2ei(ϕ2+θ), r3ei(ϕ3−pθ)

)
(4.8)

This equivalence relation tells us that all the above the points are to be identified. So we can
choose one representative in this class of points. To do this we fix ϕ3 and for simplicity we
set ϕ3 = 0. But this is not the same as the equivalence relation yet. When θ = 2πk/p for
k = 0, . . . , (p − 1), we obtain the same phase for z3 which means that we over-counted a point
p times. Thus we need to further identify points by taking the reduction with respect to the
discrete group Zp where

Zp =
{

ei2πk/p , k = 0, . . . , p− 1
}

(4.9)

We then have
(z1, z2) ∼

(
e2πik/pz1, e

2πik/pz2

)
(4.10)

To summarize, the initial equivalence relation is equivalent to choosing a representative in the
class of points that are to be identified, and if we over-counted, take the reduction by a discrete
group. This means that instead of taking a reduction with respect to a continuous variable, we
just identify the problematic points. In our case we start from our initial equivalence relation,
fix ϕ3 and take the reduction only when θ = 2πk/p

(z1, z2, z3) ∼
(
e2πik/pz1, e

2πik/pz2, e
−2πikr3eiϕ3

)
(4.11)

In our case r3 is also fixed, so the third entry is not important for our considerations. So far we
have

|z1|2 + |z2|2 = C ′ , (z1, z2) ∼
(
e2πik/pz1, e

2πik/pz2

)
(4.12)

This is by definition the Lens space L(p, 1). Now we would like to find where this Lens space lies
in the moment map picture for Mr. Renaming again |z1|2 = x, |z2|2 = y and |z3|2 = z = const.,
the constrain that defines L(p, 1) is written as

x+ y − pz = C =⇒ x+ y = C ′ =⇒
(
x y z

) 1
1
0

 = C ′ (4.13)

By inserting in this constraint A and A−1, where A was defined previously as

A =

 −1 1 0
p 0 1
−1 0 0

 (4.14)
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we obtain

(
x y z

)
A−1A

 1
1
0

 = C ′ =⇒
(
x′ y′ −C

) 0
p
−1

 = C ′ (4.15)

or
py′ + C = C ′ =⇒ y′ =

C ′ − C
p

(4.16)

Therefore, for any y′ > 0 and y′ = const., we obtain the Lens space L(p, 1). So L(p, 1) is a
horizontal line on the moment map image. This is shown in the figure below.

Figure 1: L(p, 1) moment map image

It can be easily proven that if instead of |z3| = const. we take the restriction

|z1|2 + |z2|2 + |z3|2 = 1 (4.17)

we obtain the same result; the Lens space defined by y′ = const.. We know that geometrically,
any line that intersects both x′ = 0 and py′ = x−C will be the Lens space L(p, 1) (if we rotate
the moment map image the geometry stays the same. So we can rotate it to make the line
of L(p, 1) horizontal with respect to the moment map image). So we want to find when the
restriction

a|z1|2 + b|z2|2 + c|z3|2 = 1 (4.18)

is equivalent to |z1|2 + |z2|2 + |z3|2 = 1. Using (x, y, z) again and rotating the constrain with A
we find (

x y z
) a

b
c

 = 1 =⇒
(
x′ y′ −C

) b− a
pa+ c
−a

 = 1 (4.19)

Thus, the line defined by
(b− a)x′ + (pa+ c)y′ = 1− aC (4.20)

must intersect both x′ = 0 and py′ = x′ − C. We also note that we must have gcd(a, b, c) = 1
in order for (a, b, c) to be able to get rotated to (1, 1, 1) by an SL(3,Z) transformation.
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4.2 Lens space L(p, q) moment map image

Let M = C3 again, but now N ∼= S1 has weights (1, q,−p) where p and q are coprime integers.
Its action on M is defined by

(z1, z2, z3) 7−→
(
eiθz1, e

iqθz2, e
−ipθz3

)
(4.21)

The moment map for the action is

µ(z) = −1

2

(
|z1|2 + q|z2|2 − p|z3|2

)
+ λ (4.22)

and the zero level set is

Z = µ−1(0) =
{
|z1|2 + q|z2|2 − p|z3|2 = C | (z1, z2, z3) ∈ C3

}
(4.23)

where C = 2λ. The resulting reduced space Mr = Z/N is

Mr =
{
|z1|2 + |z2|2 − p|z3|2 = C , (z1, z2, z3) ∼

(
eiθz1, e

iqθz2, e
−ipθz3

)
| (z1, z2, z3) ∈ C3

}
(4.24)

Here we note that the action of N is not free on Z at any point (0, z2, 0). Thus the resulting
space Mr is an orbifold. Here we will again restrict on |z3| = const. and therefore we will not
consider the points of the form (0, z2, 0). The moment map image for Mr is now bounded by
the lines

x′ = 0 , y′ = 0 , py′ = qx′ − C (4.25)
as we can easily find by rotating the constrains using

A =

 −q 1 0
p 0 1
−1 0 0

 (4.26)

The normal outward pointing vectors are now

v1 = (−1, 0) , v2 = (q,−p) , v3 = (0,−1) (4.27)

Following the same procedure as before, the resulting space for |z3| = const. will be

L(p, q) =
{
|z1|2 + |z2|2 = C ′ | (z1, z2) ∼

(
e2πik/pz1, e

2πikq/pz2

)}
(4.28)

where k = 0, . . . , (p− 1). Now we perform a symplectic cut on Mr which intersects the base of
the moment map image and the Lens space. This is shown in the next figure.

Figure 2: L(p, q) moment map image
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Lets assume that the normal vector to the cut is v = (−q′, p′) where p′ and q′ are coprimes.
Then the left part of the image is the Lens space L(p′, q′) (it works similarly to the cut of the
3-sphere that we investigated before). For the right part of the cut we need to be more careful
though. The normal vectors to the cut line and to the right boundary line are v and v2 and their
inner product is v2 · v = k for some k. If we perform an SL(2,Z) transformation to rotate v to
(1, 0) we must perform the inverse (and transposed) transformation to v2 in order to keep their
inner product fixed. This transformation will also be an SL(2,Z) transformation and therefore
the resulting vector will still have coprime entries. So the right part of the cut will also be some
Lens space.

4.3 Outlook

Symplectic cuts on contact manifolds become even more interesting when we move to 5D contact
manifolds. Let M = C4 and N ∼= S1 a circle group acting on M . Also let Mr be the manifold
that comes from the reduction by N and C(Mr) the moment cone that corresponds to it. The
moment cone is 3-dimensional and its facets (planes forming the cone) are 2-dimensional. We
then choose a 2D plane that intersects all the facets of the cone and restrict the problem there.
This plane represents a 5D contact manifold. For example let M ∼= C4 and N be the circle
group with weights (p + q, p − q,−p,−p) where p and q are coprimes and p > q. The moment
cone, as we saw before, is bounded by four 2-dimensional planes. If we restrict to the plane

|z1|2 + |z2|2 + |z3|2 + |z4|2 = 1 (4.29)

we obtain a contact manifold whose moment map image intersects the cone. We can now perform
symplectic cuts on this manifold as we did for the Lens space. The difference is that now we
perform the cuts on a 2D plane instead of a line, and therefore we have much more freedom of
choice. Let us consider the cuts that are shown in the next figure.

Figure 3: Cuts on 5D contact manifold

The line segments a, b, c and d belong to the 4 facets of the cone. These are Lens spaces
which is something that we can deduce by looking at the previous application (each facet of the
cone is a 2D cone and a restriction to a line would potentially give us a Lens space). The two
symplectic cuts that we can see in the figure intersect at the point A and produce 4 contact
manifolds. It is of great interest to investigate what exactly happens at the point A. This is
something that could not happen in the case of a 3D contact manifold.
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A Lens Spaces
Lens spaces are a class of 3-manifolds, but they can also be defined for higher dimensions.

Definition A.1. A Lens space L(p, q) is the 3-manifold obtained by gluing the boundaries of
two solid tori together such that the meridian of the first goes to a (p, q)-curve on the second.
A (p, q)-curve is a curve that wraps around the longitude p times and around the meridian q
times.

Lens spaces can also be defined as the quotients of the 3-sphere by the discrete group Zp.

Definition A.2. The 3-dimensional Lens spaces L(p, q) are quotients of S3 by Zp actions. Let
p and q be coprime integers and consider S3 as the unit sphere in C2

S3 =
{

(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1
}

(A.1)

Then the action of Zp on S3 is

(z1, z2) 7−→
(
e2πi/pz1, e

2πiq/pz2

)
(A.2)

is free, as p and q are coprime. The resulting quotient space is called Lens space L(p, q)

L(p, q) = S3/Zp (A.3)

This definition can be easily generalized to any higher odd dimension.

Definition A.3. Let p, q1, . . . , qn be integers such that all qi are coprime to p and consider
S2n−1 as the unit sphere in Cn. The Lens space L(p, q1, . . . , qn) is the quotient of S2n−1 by the
free Zp-action generated by

(z1, . . . , zn) 7−→
(
e2πiq1/pz1, . . . , e

2πiqn/pzn
)

(A.4)

Therefore, in 3-dimensions we have L(p, 1, q).

Now we explore the glued tori model for L(p, q) a little further. Let p, q ∈ Z be coprime and
pick m,n ∈ Z such that mq − np = 1. This means that the matrix

A =

(
m p
n q

)
(A.5)

has detA = 1. Let S1 ×D2 be a solid torus thought of as a subset of C2

S1 ×D2 =
{

(z, w) ∈ C2 | |z| = 1 , |w| ≤ 1
}

(A.6)

The boundary of the solid torus is a regular torus and is

T 2 = ∂
(
S1 ×D2

)
= S1 × ∂D2 = S1 × S1 (A.7)

T 2 can also be described as a subset of C2. We have

T 2 =
{

(z, w) ∈ C2 | |z| = |w| = 1
}

(A.8)

Now let U and V be two solid tori and let ϕA : ∂U → ∂V be the map

ϕA(t, s) = (tmsp, tnsq) (A.9)

associated to the matrix A. The Lens space L(p, q) is the identification space of the disjoint
union U t V with respect to the partition P given by

P =
{
{x}, {y}, {z, ϕA(z)} | x ∈ Ů , y ∈ V̊ , z ∈ ∂U

}
(A.10)

which means that L(p, q) is obtained by gluing two solid tori U and V along their boundary
∂U ∼= T 2 ∼= ∂V using ϕA as the gluing map.
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Example A.4. We take p = 0 and q = 1 and use the solid tori model. L(0, 1) is the result of
gluing together two copies of a solid torus T together via some homeomorphism h : ∂T → ∂T
which makes a meridian into a (0, 1) torus knot. This is of course just a meridian, so h can be
chosen as the identity i : ∂T → ∂T . Two meridians glued together along their border give an
S2. Doing this for all meridians (considering all gluing along the longitude S1) we finally obtain

L(0, 1) ∼= S1 × S2 (A.11)

Example A.5. Now we choose p = 2 and q = 1. Using the quotient definition L(2, 1) is written
as

L(2, 1) = S3/Z2 (A.12)

where the action of Z2 is defined as

(z1, z2) 7−→
(
eπiz1, e

πi
2

)
(A.13)

Therefore, two points z and z′ are equivalent

(z′1, z
′
2) ∼ (z1, z2) (A.14)

if they are related by
(z′1, z

′
2) =

(
emπiz1, e

mπiz2

)
for m = 0, 1 (A.15)

So the points z and −z on the sphere are identified together

(z1, z2) ∼ (−z1,−z2) (A.16)

This means that L(2, 1) is S3 with antipodal points identified. By definition, this is the 3-
dimensional real projective space

L(2, 1) ∼= RP3 (A.17)
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