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Abstract

A modern and straight forward summary of the necessary tools and
concepts needed to understand and work with gauge theory in a fibre bun-
dle formalism. Due to the aim of being a quick but thorough introduction
full derivations are rarely included, but references to such are given where
they have been omitted. General Relativity, although being a geometric
theory, in the sense that the gravitational force is described by the cur-
vature of space-time, may not be derived from geometry like the other
fundamental forces as in Yang-Mills theory. Thus, a possibility of unifica-
tion lies in a geometrical derivation of gravity from gauge principles. By
applying the presented formalism to the case of Gravity such a derivation
is pursued along the lines of nonlinear realizations of the gauge group.
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1 introduction

Before any proper introduction and historical background are given we first
introduce the two main areas which will harmonize in this thesis, namely the
theory of fibre bundles and the concept of gauge theories. Since fibre bundles is
an entirely mathematical framework and the sole purpose of gauge theories is
to describe reality, the two subjects are introduced as the separate entities they
really are. The title of this thesis, indicating their correspondence, will become
clear as the reader moves on.

Firstly the concept of manifolds is briefly mentioned because fibre bundles
will be introduced as a natural generalization of that concept. Throughout this
thesis all manifolds are assumed to be differentiable and Haussdorf and all maps
are assumed to be smooth.

1.1 manifold

From a geometrical point of view we may start the mathematical representation
of our physical world with the notion of a manifold M. This manifold repre-
sents space, or at least the part of space we wish to include in our description.
Examples of 2-dimensional manifolds are the ordinary cylinder and the 2-sphere
S2.

Although the manifold may have a very complicated topology globally, its
defining property is to be locally homeomorphic to R™, m being the dimension
of our manifold. The homeomorphism ; from M to an open subspace U; of
R™ in called a chart

i M —=>U; CR™ (1.1)

and allows us to assign coordinates to the manifold by using those of U;, which
we may choose freely. If the manifold globally differs in topology from R™ we
need to apply a set of charts {U;, ;}, called an open covering of M, such that
the whole of M is covered and transitions between any two charts U; and U; is
carried out by differentiable, or smooth, transition functions v;; defined by

Yig =piop; U = U (1.2)

The transition functions need to be defined wherever there is an overlap between
two charts U; N U; # 0 and need to obey the following consistency conditions

Vi = idy,
Pig = 05! (1.3)
Yik = Yij o Yy

where idy, is the identity map on U;. The third and most restrictive of the

consistency conditions, called the cocycle condition, apply if there is an overlap
between three charts U; NU; NUy # 0. Considering our example-manifolds, one



chart is enough to cover the cylinder while the sphere needs two charts to avoid
coordinate singularities at the poles.

With a satisfying representation of space we now need a framework with
additional complexity to describe forces, particles and other things we wish to
incorporate in our description. Just like a plane may contain more structure
than a line one might argue that the most natural way to achieve additional
structure is to assign an additional manifold to every point of the manifold M.
The mathematics of such a structure is called the theory of fibre bundles. Fibre
bundles provide a framework to naturally incorporate gauge theories, possibly
covering all the complexity of our physical world.

1.2 fibre bundle

The manifold representing space M is called the base while the manifold de-
fined at each point of M are identical copies of a manifold F, called the fibre.
Furthermore, all these manifolds together are made to form a total space which
is also a manifold, denoted by U.

To make the total space a well defined manifold several maps have to be
introduced, one of which is a surjection w: U — M called the projection. The
subset of elements {u} € U which are projected down to a specific point p € M
is called the fibre at p, denoted F,,

mHp)=F,clU (1.4)

Note that although the fibres at different points are all isomorphic to the typical
fibre F they consist of elements u € U wheres the typical fibre is a manifold of
its own with elements f € F.

Exactly like we needed charts {Uj;, ¢;} to perform calculations on M we need
a set of diffeomorphisms to locally map U onto the direct product U; x F. This is
accomplished by the inverse of the local trivializations, the local trivialization
is defined the other way around:

i Ui x F—n Y U) cU (1.5)
so that ¢; ,(f) — 7 !(p) where ¢, , is the restriction of the local trivialization

tOp S Ui.

In addition, exactly like we needed smooth coordinate transformations from
U; to U; where they overlap U;NU; we now introduce the transition functions

tij(p) = l_); o d’j,p (16)

to smoothly paste the direct products {U; x F} together, forming a covering of
the total space Y. The transition functions are elements of a Lie group G called



the structure group which acts on F on the left. The given definitions form
a fibre bundle (U, 7, M, F,G), also denoted U — M.

In addition to the definition of the fibre bundle and its constituents we also
want to define a local map called a section s; from U; C M to the total space

si: Uy = U such that wos; =idy, (1.7)

The set of sections on U; is denoted I'(U;,U), in some cases the section may
be extended to the whole manifold and is then referred to as a global section
s € I'(M,U), but in general there are topological obstructions to this extension.
Note that by U; we refer to both the subset of R™ and the corresponding subset
of the manifold M.

1.3 gauge theory

Consider the simplest action for a charged complex scalar field
S = /d%(a“q/au@ —m2UW) (1.8)

This action remains invariant under multiplication of the fields by a complex
constant since U and W occurs in pairs in the Lagrangian. A Lie group whose
action leaves the Lagrangian invariant is called a symmetry group. In the
example considered the symmetry group is U(1), causing the transformations

U —hU | U e Y (1.9)
where A is the transformation parameter of the Lie group.

So far this is a global symmetry of the action since the group operation
is performed identically everywhere. If the action remains invariant under a
space-time dependent group operation the symmetry is promoted to a local
symmetry. In our example this corresponds to making the transformation pa-
rameter space-time dependent, A — A(z), and this is where the story of gauge
theories begins.

A gauge theory is a field theory where the action remains invariant under
local transformations of the symmetry group, which in this case is referred to
as the gauge group. The transformations under the action of the gauge group
are called gauge transformations and invariance under such transformations
is called gauge invariance.

But our action (1.8) is not invariant under gauge transformations since a
local group action fails to commute with the differential operators

0, £ MDD (1.10)



This is compensated for by introducing a new field A, called a gauge field, and
replacing the ordinary derivatives 0,, by covariant derivatives D,, defined by

DU = (8, —iA,)T (1.11)

such that the action of this new derivative transform covariantly under the gauge
transformations D,, — elA(“’)DM. That is; the change of the fields transform in
the same way as the fields themselves, and we now have

DMy = A@D (1.12)

In order to satisfy this condition it can be shown that A, need to transform

as
Ay — A, + 0,A(z) (1.13)

under gauge transformations. Rather than manually specifying the values of
the gauge field A, one introduces an additional, gauge invariant, term in the
Lagrangian

1
— Fu " (1.14)

where F* = 0j,A,) is the field strength of the electromagnetic force. The
equations of motion derived from this term gives the field equations for A,
specifying its values to be used in the covariant derivative D,. The new locally
gauge invariant action becomes

- - 1
S = /d%(DM\I/D“\IJ —m?eT — ZFWFW) (1.15)
Much in the same way the demand for local gauge invariance naturally leads

to the introduction of the other fundamental forces in the standard model, a
remarkable aspect of gauge theories!



2 fibre bundles & gauge theory

The first widely recognized gauge theory was formulated by Wolfgang Pauli in
the 1940s.[;) The formulation was based on work by Weyl, Fock, Klein and oth-
ers where the symmetry properties of the electromagnetic field had been related
to the U(1) group. Pauli later worked out a generalization of the theory to
higher dimensional internal spaces in the search for a unification including the
nuclear forces. But he abandoned the idea because he saw no way to give masses
to the corresponding gauge bosons.

In early 1950s Chen Ning Yang and Robert Mills independently of Pauli
formulated what would be recognized as Yang-Mills (YM) theory.5) Their the-
ory extended the gauge concept to the case of non-abelian gauge groups, in
particular SU(n). It took until the year of 1960 before the theory found ap-
plications in particle physics due to the concept of particles acquiring mass
through spontaneous symmetry breaking. After this breakthrough YM-theory
proved successful in the formulation of both electroweak unification and quan-
tum chromodynamics.

The theory of fibre bundles is purely mathematical but we will study the
theory from a physical point of view, throughoutly relating the mathematical
objects to the physics they represent in the context of gauge theories. For full
derivations, we refer to M. Nakahara (1990), which is the main source of the
material presented in this chapter. However, our aim is to give a more friendly
and straight to the point presentation, where the point is gauge theory applica-
tions.

Before any mathematical treatment a justification of the ‘duality’ between
gauge theory and fibre bundles may be given in terms of a short historical remark
concerning the following statement by Mayer:

A reading of the Yang-Mills paper shows that the geometric
meaning of the gauge potentials must have been clear to the authors,
since they use the gauge covariant derivative and the curvature form
of the connection, and indeed, the basic equations in that paper will
coincide with the ones derived from a more geometric approach. . . (3

But a reply by Yang falsifies this conclusion:

What Mills and I were doing in 1954 was generalizing Maxwell’s
theory. We knew of no geometrical meaning of Maxwell’s theory,
and we were not looking in that direction.y

The interesting and amusing fact that Mayer were convinced that Yang and
Mills were using fibre bundles although they were just generalizing gauge the-
ory shows the striking correspondence between the two concepts!



Realizing the gauge theories strong connection with geometry Yang con-
sulted the mathematician Jim Simons who pointed Yang in the direction of
fibre bundles. But when Yang tried to familiarize himself with the subject he
found that ‘The language of modern mathematics is too cold and abstract for
a physicist’ and invited Simons to give him and his colleagues lectures on fibre
bundles. Simons kindly accepted and gave a series of lectures on the subject
which we will review in this chapter.

2.1 vector bundles & fields

Given an m-dimensional manifold M a vector bundle V "+ M is a fibre bun-
dle whose fibre is a vector space. The prime example is the tangent bundle T M
where the fibre is a copy of R™ defined at each point of M and the structure
group is GL(m,R). Specifying a point in R™ defines a vector, hence sections
of T M are smooth vector fields on M which we denote by X (M) = T'(M, TM).

Sections on vector bundles also pointwisely obey the usual rules for vector
addition and multiplications with scalars, scalars being smooth functions f(p)
on M. Corresponding to the null vector is the null section sy with the prop-
erty ¢; (s0(p)) = (p,0) in any local trivialization.

In the theory of fibre bundles a complex scalar field ¥(x) defined on U; C M
is represented by a local section of a complex line bundle s, € I'(U;, C). More
generally, any field or wave function may be represented by a section of a vector
bundle. In the following we shall describe how the gauge transformations of
such a field is incorporated in the theory.

2.2 principal bundles & gauge transformations

A principal bundle P = M or P(M,G) is a fibre bundle whose fibre is
identical to its structure group G, thus P(M,G) is often referred to as a G-
bundle on M. On a principal bundle it is possible to introduce the right action
of G on P defined by

geg

P xG— P suchthat ug= ¢;(p, f;9) u e (p)

(2.1)

This is true in any local trivialization ¢; and corresponding f; € F since the
right action commutes with the left action

oi(p, fi9) = ¢i(p, tij fi9) = ;. £;9) (2.2)

Principal bundles play a crucial role in the description of gauge theories since
the fibre of P(M, G) is identified with the symmetry group of the gauge theory,
and the right action on P is identified with the corresponding gauge transfor-
mations. We will now see how this is done.



Gauge transformations of a complex scalar field ¥(p) defined on a manifold
M are represented by sections on a principal bundle P — M with typical fibre
U(1). Since a section is a map o: M — P the value of a section at a point o(p)
corresponds to an element of U(1) through a local trivialization

o(p) = oi(p,g(p) geUQ) (2.3)

To be able to represent the action of the identity element e € G across the
whole base manifold we need to introduce what is called the canonical local
trivialization ¢?. The canonical trivialization is given with respect to a local
section o; by

ai(p) = & (p, ¢) (2.4)
Unless the principal bundle is a direct product space P = M x F such sections
may only be defined locally. Once a canonical trivialization is defined all other
local sections 6;(p) may be expressed naturally in terms of the original section
0;(p) and a right action g;(p) € G in the following way

Gi(p) = 0i(p)gi(p) = 7 (p, €)gi(p) = Y(p, 9:) (2.5)

The different sections &; correspond to different gauges and the gauge transfor-
mations between them are carried out by the right action g; of the structure
group, U(1) in our case. If g; is constant the transformation is global, while
a local gauge transformation is carried out by a point dependent action g;(p),
which we may represent as ¢*(*) given a chart and a coordinate system.

2.3 associated bundles & field transformations

Having seen how sections on vector bundles represent fields, and how sections
on principle bundles may describe gauge transformations, we now present how
a principle bundle and a vector bundle may be associated in a way which nat-
urally let the gauge transformations act on the fields.

Consider a G-bundle P - M and a manifold V. A suitable representation
p of G allows the group to act on V, for example by some matrix representation.
A right action may now be defined on elements (u, v) in the product space P x,V
by

ge€g
(u,v) = (ug,p(g~")v) for weP (2.6)
veV

the associated vector bundle & is then defined by identifying the points
related by such a right action

(u,v) ~ (ug, p(g~")v) = (ug,v) = (u,p(g)v) VgegG (2.7

We denote the elements of £ by [(u, v)] and introduce the projection 7¢: £ —
M defined by 7¢(u,v) = w(u). Then & =% M is a fibre bundle with the same
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structure group G as its associated principal bundle P(M,G). The transition
functions ¢;; of course needs to be considered in the chosen representation p(t;;).

Consider the action
S = /d%(@ulllﬁ”\fl — m2UW) (2.8)

were the complex scalar field ¥(p) is described by a section s(p) on an asso-
ciated vector bundle (€, 7¢, M,C,U(1)) i.e. the manifold part V is a complex
line bundle C. Take a local section ¢;(p) on the principal bundle P(M,U(1))
associated with V and employ the canonical trivialization ¢? so that

(¢)) " (oi(p)) = (p,e)  VpeU (2.9)

which makes o;(p) correspond to e, the identity element of U(1). We now de-
fine a space-time dependent group action expressed by a section as ;(p) =
o:(p)gi(p), where g; € U(1). To make &; act on ¥(p) we choose the represen-
tation p: g;(p) — 2 and define a base section e on the associated vector
bundle

e=|[(oi(p),1)] € E=Px,V (2.10)

where 1 has been chosen as the basis vector in the complex line bundle. We
express our field ¥(p) as a section in that basis

U(ple = [(oilp), T(p))] ., TeV (2.11)
&(p) now corresponds to a local gauge transformation according to
Vp)e=[(a(p), ¥(p))] = [(0i(p)gi(p) . ¥(p))]
[(o:(p) , 2P W(p))] = AP W(p)e
where ¥/(p) is the transformed field.

(2.12)

o

In this way sections on a principal bundle P can represent gauge transforma-
tions on a field ¥, which in turn is represented by a section on a vector bundle
associated with P.

2.4 connection one-forms & gauge potentials

So far we have left the sections describing the field and its gauge transforma-
tions completely arbitrary. To approach our initial definition of a gauge theory,
with added gauge fields to ensure the gauge invariance of the Lagrangian, we in-
troduce a connection one-form w on the principal bundle, called an Ehresmann
connection, which we will connect to the gauge potential A, presented earlier.

First we introduce the fundamental vector field, denoted a, which is
generated by an element a in the Lie algebra g of the G-bundle P(M, G)

af(w) = & flue) (2.13)

t=0

11



where ue'® defines a curve in P which lies entirely within G, since 7(u) =
m(ue'®) = p. Hence the above equation defines a to be tangent to G, at every
point u € P.

Consider the tangent space 7, P of a point u € P and a separation of T, P
into a vertical V, P and a horizontal H,P subspace

TaP =V, P & H,P (2.14)

so that every vector & € T,P may be decomposed into a vertical ¥ and a
horizontal ¥ part

x=a" +af. (2.15)

The vertical direction is canonically defined by a, but the horizontal direction
is defined only through the choice of a connection. The connection one-form
is a Lie algebra valued one-form w € g® Q!(P) which defines such a separation
by projecting elements in 7, P onto g ~ V,/P. This projection is unique under
the following requirements

1. w(a)=a acg
2. Ryw =adj1w =g 'wy geg
where Ry is the right action by g and d,-1 is the adjoint action defined as above.
Given an open covering {U;} of M and local sections o; the pullback by this
section o may be used to define a local connection A; € g Q! (U;) correspond-

ing to w by
A =ofw (2.16)

This local form of the Ehresmann connection w is identified with the gauge
potential up to some Lie algebra factor. Since A; is a g-valued one-form it is
possible to expand it in the dual basis basis dz* and in terms on the Lie algebra
generators g,

Ay = Aiyda = A, guda” (2.17)

Given A; on the whole open covering {U;} of M the global connection w
may be constructed, but for w to be uniquely defined throughout P we must
have w; = w; on U; NUj. It can be showns) that this constraint forces the local
connections to transform as

Aj =t Astiy + t d () (2.18)

where d is the de Rham differential. On a U(1)-bundle where the transition
functions are just complex numbers ¢;; = e*MP) the transformation of A; may
be written in components as

Aj;t — e*iA(p)AiueiA(p) 4 €7iA(p)aM(6iA(p)) = A’iﬂ + ZaMA(p) (219)

12



where A; can be recognized as the gauge potential for the electromagnetic field.

The local form of the connection depend on the choice of local section o;
where the choice of section correspond to a particular gauge. If two sections
o; and &; are related by an element g; € G as 6; = 0;g; their corresponding
connections are related as

A = g7 Aigi + g7 1 d(g:) (2.20)

which in local coordinates becomes the gauge transformations of the gauge po-
tential. Note that A; is defined only locally on a chart U; and any global
information about the bundle is contained in the global connection w defined
on P, alternatively in {A4;}, a ‘covering’ of local connections.

2.5 field strengths & curvatures

The exterior covariant derivative d,, of a general vector valued r-form ¢ €
Q"(P) ® V acting on vectors @1, ..., T,.+1 € TP may be defined as

doo(xy, ..., xr41) Edd)(w{{,...,xf;l) (2.21)

where ff € 7, P is the horizontal part of x.

Now the definition of the curvature two-form Q € Q?(P) ® g is given as
the exterior covariant derivative of the connection one-form w

Q=d,w (2.22)
from which one may derive the structure equation|;
Qz,y) = dw(z,y) + [w(z),w(y)] =yecT.P (2.23)

where the bracket for vector valued forms a and § is an extension of the Lie
bracket [x,y], defined by

@z, fRyl=aNB [z, Yyl (2.24)

Just like the connection one-form the curvature two-form has a local descrip-
tion F; defined via the pull-back of a local defining section o;

Fi=0:Q (2.25)

where F; is in one-to-one correspondence with the field strength in the context
of gauge theories. Being defined in a vector bundle the structure equation for
F; may be written

Fi=dA; + A; AN A; (2.26)

13



Under gauge transformations and transition between overlapping charts U;
and Uj the field strength transform in the adjoint representation

Fi =g; ' Figi (2.27)
fj - ti_jlfjtij (228)

The symmetry in the relations stems from the fact that both operations essen-
tially are a change of defining section o; on the principal bundle. As A4; and F;
always will denote local objects we drop the i-index from here on.

From differential geometry we know that a two-form may be expanded in a
local coordinate basis as

1
F = 5]-"de“ A dx” (2.29)
so that the following relation holds for the components of F
Fuv = 0 Ay, — 0, A, + [Au, Al (2.30)

Since both forms in the above expression are g-valued they can be expanded
also in terms of the Lie algebra {g,} as A, = A,%9a and F, = F,,“g,. Using
[8a, 0b) = f,;, 0 we write down an equation in purely scalar valued quantities

F,%=0,A" — 0,4, + f,." A A°. (2.31)

Another important identity involving the curvature is the Bianchi identity
d,Q = 0 which in is its local form becomes

F=dF +[A,F] =0 (2.32)

In the case of our U(1) example we only have one generator, which commutes,
thus the structure equation and the Bianchi identity simplifies to

F=dA (2.33)
dF =0 (2.34)
the corresponding relations for the components becomes

F[l.l/ = a[J,AI/ - auA,u (235)
aAEtv+avFAp + a[LFl/)\ =0 (236)

2.6 parallel transport & horizontal lifts

Knowing that we can represent vector fields on M by sections in the tangent
bundle 7T M we want to extend the notion of parallel transport of vectors to
parallel transport of sections on a more general bundle. The generalization im-
portant to physics is parallel transport on a principal bundle P(M,G) and how
it is inherited by the bundles associated with it.

14



Consider a principal bundle P(M, G) and a curve v: [0,1] — M. A hori-
zontal lift is defined to be a corresponding curve 7: [0, 1] — P such that it lies
vertically above the original curve, 7(¥) = 7, and that the tangent vector to
4(t) always lies within H5;)P. Globally the latter condition is ensured using the
constraint of a vanishing connection one-form w(t) = 0, where t is the tangent
vector to J(t).

Choosing a local section o; (i.e. gauge fixing) a horizontal lift may be ex-
plicitly constructed locally using the local connection one-form A;, = ofw. The
construction makes use of the fact that the lift 4(¢) € P is related to the chosen
section o; by a corresponding right action g; by[g)

(1)

30 = o:(bO)a00) L ab0) =Teo( [

7(0)

A (v(t))da:") (2.37)

where o; is taken to be a section such that o;(v(0)) = 5(0) that is g; (v(0)) = e.
T is the time-ordering operator which arranges all terms A;,(¢1) and A, (t2)
in order of increasing time, from right to left. This is needed since the terms in
general do not commute. In the following g; (v(t)) and o;(7(t)) will be denoted
by just g;(t) and o;(t), but keep in mind the dependency on the original curve ~.

Parallel transport of a point uy € P along a curve y(¢): [0,1] — M, such
that ug € 7~1((0)), is ensured by transporting uy along a horizontal lift 7(¢)
where %(0) = ug and (1) = uy where u; becomes the parallel transported point.
This (horizontal) action commutes with the (vertical) right action which allows
us to intuitively transport points around in the principal bundle. Mathemat-
ically, the combination of right action and parallel transport defines a unique
transitive action on P, i.e. the group action takes any point v € P to any other
point in the bundle in exactly one way.

In order to work with fields we now want to parallel transport elements
[(u,v)] in a vector bundle £ associated to P. Employ the canonical trivialization
to a section o; € I'(U;, P) and choose a section s = [(04,v)] € I'(U;, £), choosing
a section s corresponds to fixing the gauge. Now consider a curve ~(¢): [0,1] —
M and a corresponding horizontal lift 5(¢) = o;(t)g;(t)

s(t) = [(os(t) , v(t))] = [(G(D)g; ' (1), v(D))]
[(3#) . g7 (®)o®)] = [(3(1) , 5(2))]
where the second line is obtained using the defining identification (2.7) of as-

sociated vector bundles. The section s(p) is parallel transported along a curve
~(t): [0,1] = M if 5(t) = 9(~y(¢)) is constant w.r.t. a horizontal lift 5(¢) € P.

(2.38)

It can be shown[ that this definition depends only on the curve () and the
connection w, and not on the choice of horizontal lift and local trivialization.
To conclude; the constraint on 4(¢) to ‘lie horizontally’ in P incorporates the
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structure of P into the parallel transport of a section s(t) € £ along a curve 7(t)
in M. How this works becomes visible in the above equation where g; ' (t) acts
on v(t) to compensate for the change of basis along ~(¢).

2.7 connection coefficients & representations

In the previous section we saw a remarkable result of formulating gauge the-
ory in a fibre bundle framework; the introduction of a connection one-form w
in the principle bundle P(M, G) completely specifies parallel transport in any
associated vector bundle &, up to representations. Here the result is made more
explicit in terms of matrices and coefficients.

First the choice of a local section o; over U; C M specifies a local connection
A by (2.16). Then a matrix representation p of the Lie algebra generators
{g.} is chosen to represent the group action on the vector bundle

p(ga) = (ga)aﬁ (239)

where o and [ are matrix indices. The representation is chosen such that the
elements of G may act on vectors in £ by usual matrix multiplication, this forces
an action on an n-dimensional associated vector bundle to be represented by
nxn matrices. If we now expand A in terms of {(ga)%4} we get a natural matrix
representation of the local connection one-form by carrying out the summation
over the Lie algebra index:

p(A) = A%(ga)" = A%. (2.40)

Without further derivation we present the remarkable result in our matrix
representation in the associated vector bundle

Ve = A%eq. (2.41)

{ea} being a basis of £. Given local coordinates {z,}, and expanding the
connection in the corresponding coordinate basis A = A,dz* the covariant
derivative along a basis vector V, is given by the matrix representation of the

components A,
Vues = Ajzeq (2.42)

where {Aﬁ,@} are a set of connection coefficients in £ and thus completely spec-
ifies the covariant derivative on the associated vector bundle.

2.8 frames, frame fields & frame bundles

Even if we have been working with frame fields throughout this presentation a
more rigorous treatment in terms of the presented notions will help us polish
up the story.
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Considering a k-dimensional vector bundle V over a manifold M equipped
with an atlas {U;, ¢;} so that ¢; *: 7= 1(U;) — U; x RF we may choose k linearly
independent local sections {ey} over U;, « = 1,2, ..., k. These sections are said
to define a frame field over U;. We will refer to the frame field at a particular
point p as the frame at that point {e,(p)}.

Given this setup we can express any vector v, at p as an element in 7, ~ R*,
the coordinates in R* become the components v, of the vector v, = vy'e,. Using
the local trivialization we may extend this notion from p € U; to the whole open
subset U; so that a vector field v; over U; may be expressed as

i (p, vf (p)) = vi(p) vp e U; (2.43)
and by definition we have
éi(p, {01,0%,...,1%,...,0%}) = en(p) (2.44)

To extend our notion outside the open subset U; we use a matrix represen-
tation p of the transition functions v;; given by

p(ij) = X5 ¥i; € GL(k,R) (2.45)
so that on a chart overlap U; N U; # 0 the frame field {e};} over Uj is given by
es(p) = X§(plealp)  VpeUiNU; (2.46)
The covariance of vectors under a change of basis
v=uvle, = vfe’ﬁ (2.47)
forces its components to transform by the inverse of X§

B _
vj = XBug

X;“Xg =05 (2.48)

Now when we have extended the notion from a point p to an open subset
U; and further out into neighbouring subsets one might be tempted to claim
that we have extended the notion to the whole manifold M. There are however
severe topological restrictions to this extension, see for example the ‘Hairy Ball
Theorem’. We won’t go down that rabbit hole here, but remember that the

only section which may always be globally defined is the null section.

We may however extend our notion in another direction by considering a
change of frame at p, naturally this action is also given through a matrix rep-
resentation of an element in G = GL(k,R).

é5(p) = Yseal) Ve - (2.49)

or by its inverse Y, for the components v of vectors v, € F,. From a given
frame at p we may, by the above relation, construct any other frame at p due
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to the transitivity of the action of G on F. By considering all frames at all
points p € U; we are thus led to the direct product space U; X, G where we may
describe the transition between any frame fields as a section Yg*(p) over U;

- Vp € U;
&) =Y5Wlealt)  yo iy, g (2.50)

For this to be true even outside U; we must form a bundle using the same
transition functions as in VV when we glue the pieces U; X ,G and U; x ,G together.
By doing so the above relation still holds for frame fields stretching across open
subsets. Following this line of reason we are naturally led to a principal bundle
associated with V which contains all its possible frame fields, such a bundle is
called a frame bundle FM. Given a frame field on V any other frame field
may be defined through a section in F M.
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3 the case of Gravity

Gravity as a gauge theory has been subject to waves of intense studies since the
birth of gauge theory itself. The driving force behind this attention is the idea
of a unifying theory, putting gravity on more or less equal footing with the other
fundamental forces, viz. electromagnetism, the strong force and the weak force.
General Relativity (GR), although being a fully satisfactory theory of gravity
has little in common with the current description of the other three forces. In
fact it is arguable whether gravity should be considered a force at all.

The ‘other’ three forces are considered mediated by fields which are natu-
rally described by gauge fields exactly as they have been presented in this thesis,
and all their interactions takes place in the background of space-time. In this
picture a force is something which alters a trajectory in space-time. GR, on
the contrary, describes gravity as the dynamical properties of space-time itself
and its ‘interaction’ do not alter the trajectory in space-time but rather changes
space-time itself.

However, this seemingly fundamental difference might just be a consequence
of the chosen starting point of the description. It might be the case that all
four forces can be ascribed to the properties of space-time, which is the idea of
unification which Einstein spent most of his career pursuing. It might just as
well be that gravity may be formulated as a gauge theory, which is the idea we
will elaborate on in this chapter.

3.1 tensor bundles in general

The simplest tensor bundle over M is the tangent bundle 7M. Recall the defi-
nition of the tangent space, or the tangent bundle at a point, 7, M as the union
of the tangent vectors at p € M to all curves in M passing through that point.
Instead of tangent vectors we may speak of the parameter derivative % of the
curve y(t), thus the tangent bundle is constructed solely by calculus on the base
manifold. Introducing coordinates {z#} on M naturally induces base vectors
in TM by describing the curves by these coordinates ~(z#(t)) so that their
parameter derivatives become aiu aai;, dropping the dependence on a specific
and extending to the whole base manifold result in the coordinate frame field!
8%‘ = 9, on M. Here the ;1 index indicates, not different components, but
different basis vectors. This intimate connection with the base manifold makes
it possible to consider a tangent bundle as soon as you have defined M. Fur-
thermore as soon as coordinates are chosen on M a natural set of base vectors

are induced on T M.

Given T M its dual, the cotangent bundle 7*M, is canonically defined as

LCommonly referred to as just the coordinate basis but here and throughout we refer to
all point dependent vectors as vector fields to make explicit their point dependency.
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a map

TM:TpM — R ¥pe M

d': a, — " 31

where the elements d” thus serve as a basis in the cotangent bundle and is re-
ferred to as the dual frame field, and arbitrary elements in 7 *M expressible in
that basis are dual vectors or the one-forms on M. Beware of our unorthodox
notation d* = dx* which is used to consistently distinguish between tensor and
scalar valued objects.

Regarding vectors as (1, 0) tensors and one-forms as (0, 1) tensors the notion
of tangent and cotangent bundles are easily generalized to arbitrary (a, b) tensor
bundles 7%°M as multilinear maps from vectors and one-forms to the real
numbers

TEM: MY TpMx X TIM X TAIM x ... — R Ype M (3.2)

b factors a factors

Given a manifold M one can immediately construct arbitrary tensor bundles,
and given coordinates they inherit frame fields so that an element T' € T%* M
may be expanded as

T=TH 18,®. . . 209,0d .. .0d" (3.3)

3.2 tensor bundles in general relativity

The space-time manifold M in General Relativity comes equipped with a covari-
ant derivative V,, with connection coefficients Fl’}u which expresses the change

of basis vector @, in the u-direction as a vector I‘,ﬁ‘#f))\ in the coordinate basis
V.0, =T,0, (3.4)

The dual frame field d” is related to the coordinate frame field by
a,d" =" (3.5)

in order to find how the covariant derivative V, acts on the dual frame field
we note that V,,(d”9,) = V,(0,) = 0 and use the Leibniz rule of the covariant
derivative

Vi (d”Bl,) = (Vudy)av +d” (Vﬂa’/)
= (Vud”)d, +d'T},0,
= (V,d" +d’T%,)8,=0 =
Vudt =-T,d"

(3.6)

Note that 9, and d" are viewed as (dual) basis vectors and not as differential
operators, the only operator acting on anything here is the covariant derivative.
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Knowing how the covariant derivative act on the frame field and its dual we
use the Leibniz rule, exemplified below, to perform covariant differentiation of
a (1,1) tensor field T =T 8\ ® d*

VT = (V,T)) 0\ @ d" + T (V,0)) @ d" + T8, @ (V,.d")
= (0,T%) 0\ @ d" + T (I',0,) ® d" + T, 0, ® (-I';,d") (3.7
= (0,1, +T3,T" —T%,1T°,)0\ ® d"

where the last step contains just reordering and relabeling of dummy indices.
Note how the covariant derivative reduces to ordinary partial differentiation on
scalar fields since scalars fields are unaffected by a change in curvature. From
(3.4) we have now derived the well known relation for the components of a (1,1)
tensor field

VMTAN = 8MT>\/% + FI)I\MTVN - FZNT)\V (38)
where generalization to arbitrary rank tensor fields follow the same pattern by
generating a minus sign for each form-index and a plus sign for each vector-
index. The most common special case is the covariant derivative acting on a

vector v = v 8
V0t = 9,0 + F,))Mv” (3.9)

Note that the connection coefficients are not tensors by themselves and thus
can not give a coordinate independent description of the curvature. Objects pro-
viding such a description may however be defined through the above expression.
V,.v* measures the change of a vector v along the p-direction compared to if it
had been parallel transported. The commutator between covariant derivatives
[D,, D,] acting on v thus measures the difference between parallel transport-
ing v along the u-direction followed by the v-direction, versus doing it in the
opposite order. Using the above definition we get

UT™ VK VTt pK

[Dy, D)0 = (0,15, — 0,1y, + T I7 —Tp 17, 0" — (I, — T7,) D0

R . Ty ™
(3.10)
where we have singled out two objects which one can prove transforms as ten-
sors. These are the Riemann tensor R*_  and the torsion tensor TWA. The
connection in GR is assumed to be torsion-free so that the above expression
reduces to
[Dy, Do = (8,0, — 9,0, + T, 7, —T) I} )v" = RY 0" (3.11)

UT VK [ 2l
Note that the torsion-free condition forces the connection coefficients to be sym-

metric in their lower indices

T,r=T,,-T),=0 = I, =I,, (3.12)

124 nv

The metric g in GR is a (0,2) type tensor field and may thus be expanded
as
g=gud" ®d" (3.13)
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In addition to the torsion free condition the connection in GR is demanded to be
compatible with the metric V,g = 0, this is a very reasonable constraint since it
ensures that the scalar product between two parallel transported vectors remains
the same. The metric compatibility together with the torsion-free condition is
the defining properties of the Levi-Civita connection V. The two constraints
kills exactly enough degrees of freedom to allow the connection coefficients to
be solved for in terms of the metricfg to produce another well known relation

1
Low = 59" Oulon + 00y — Oxyw) (3.14)

The fact the connection and the metric are dependent dynamical variables
allows the theory of General Relativity to be formulated completely in terms of
the metric. When we consider alternative descriptions of Gravity this will no
longer be the case.

3.3 general bundles in general relativity

Instead of describing the curvature of space-time by bundles directly inherited
from the base manifold M we will in the following sections develop a formalism
of more general fibre bundles. However, as previously stated, a fibre bundle
which we want to relate to gravity bears a special relation to space-time which
has huge impact on its construction. Because, in order to have any connection
with the curvature on M, which is what we want to describe, we need to intro-
duce a connection on our fibre bundle which is compatible with the metric, or at
least, the curvature of space-time. From another point of view; the connection
is required to induce a sensible curvature on M.

In the following we will present a fibre bundle formalism which is more
detached from the base manifold but still keep contact with its curvature. This
construction allows for a closer analogy with Yang-Mills theory, and actually
paves way for including YM as a special case of the theory.

3.4 orthonormal frame & vielbein

Instead of the coordinate induced frame field {8,} we may choose a frame field
{e.} dictated by orthonormality w.r.t. the metric g

g(€a;ep) = Tap (3.15)

where 7, are the components of the flat Minkowski metric 7. Now, we know
that the transformations which preserve the Minkowski metric are the Lorentz

transformations
ANy ea = Nab (3.16)

to preserve orthonormality we therefore restrict the change of basis to the fol-
lowing form
e, =Ale, (3.17)
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where A’ are the inverse Lorentz transformations. We call {e,} the orthonor-
mal frame field which, instead of being related to the coordinates, is related
to the curvature of M. The relation between our two frame fields define the
vielbein field e,

0, =c¢je, et € p(GL(4,R)) (3.18)

Since in GR the vielbein field takes values in the matrix representation p of
the GL(4,R) group it automatically has an inverse e”, satisfying

ele =61 ekel =58 (3.19)

v =
Using e the definition (3.15) may be expressed in components

€S ab = G (3.20)

from where we see that the vielbein may be used as an alternative to the metric
as the dynamical variable of GR. The inverse vielbein field also relates the dual
basis of the coordinate frame {d"} and the orthonormal frame {6°} by

d' = el 0%, = oy (3.21)

Considering the (1, 1) tensor field T" previously expressed in the coordinate frame
we may now transform its components into the new basis or express the tensor
in mixed components using the vielbein and its inverse

T,"=elT,* =T, " = ebel T, (3.22)

3.5 Lorentz bundle & spin connection

Having partially freed ourself from the coordinate dependency by the formalism
introduced in the previous section we are in a better position to connect GR
with our developed notion of fibre bundles.

Since the change between orthonormal frames is carried out by Lorentz trans-
formations (3.17) one is naturally led to consider a frame bundle F M with the
Lorentz group G = SO(1, 3) as its structure group.

In order to consider differentiation a connection one-form w is introduced
in the bundle to relate the group-space at nearby space-time points. The con-
nection takes values in the Lie algebra of G and needs to be represented by a
matrix to act on the frame field {e,} in V, the representation space of SO(1,3).
We take the adjoint representation and identify the resulting object wy, as the
spin connection, where a and b are matrix indices in V. The spin connection
is used to define the covariant derivative D,, in the orthonormal basis, just like
I‘f;l, in the coordinate basis

D#Tba = a#Tba + chTbC - wacha (3.23)
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Expressing an arbitrary vector v in a coordinate basis v#9, and in an or-
thonormal basis v*e, we demand the action of the corresponding covariant
derivatives V,, as in (3.9), and D, to result in the same vector v'. This leads
to the following relation between the two formalisms

a

nb
3.24
= effeb’\FZA — epdel (3.24)

= el + elehw
wzb
which can be manipulated into the vielbein postulate, which states the van-
ishing of the total covariant derivative of the vielbein

Vs = Ouel + wihel —T) el =0 (3.25)

Although we refer to R. Wald (1984) for a complete derivation of (3.24) and
(3.25) we want to point out that the vielbein and its inverse may always be used
to switch between the frame fields, and that covariant differentiation of mixed
objects is always carried out using the corresponding connection coefficients, as
in the above relation.

Since the spin connection behaves like a one-form we suppress the p index
and use differential geometry language to present the previous results in this
new formalism. First we note that the de Rham differential d of the vielbein
e® is not a covariant object. But just as we corrected the partial derivative
by the use of the spin connection we may also construct an external covariant
derivative d,, such that its action on e® yields a covariant object

d.oe® =de® + w A e’ (3.26)

This is nothing but the torsion tensor TIW)‘ expressed in a mixed basis, using
the vielbein, so that it may be viewed as a two-form which is vector valued in V

8T, =T, =T" =d,e (3.27)

Nz

Similarly the Riemann tensor may be expressed as a two-form

esag R, = R%,, = R, (3.28)

and together with the torsion identity we get the Mauer-Cartan structure
equations which completely specifies the curvature of M
T = de® + w? A eb
., Lo (3.29)
RY =dw® + w”, A w,

As when introducing the fibre bundle formalism we sometimes drop the
matrix indices too and signal that the objects takes values in the Lie algebra by
calligraphic letters, using our corrected differential d,, the structure equations
may be written as

T =d.e

(3.30)
R=dw+wAw
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Note that d,,w makes no sense since w is not a tensor and thus not covariant to
begin with. Using our shorthand notation we write down the Bianchi identities
as

d.,7T=RAe

3.31
d,R=0 ( )

Note that dR # 0. Besides being good looking this notation makes it easier
to overview the overall symmetries in the theory, but for the underlying under-
standing and for practical computations it is usually useless.

3.6 Poincare gauge theory

When we describe gravity in terms of the vielbein field e/ instead of the metric
components g, one should note that the vielbein has 16 independent compo-
nents wheres the metric, being symmetric, is reduced to having 10 independent
components. On the other hand we know that the metric is all we need to
describe space-time dynamics. The excess 6 degrees of freedom constitutes
our freedom to choose reference frame, which as we know should not alter the
physics. We have in a way introduced unnecessary information in the descrip-
tion which we then describe as a gauge theory like in the previous section. Thus,
in order to capture the dynamics of space-time we must also include the vielbein
in the description. The basic idea of the Poincare gauge theory (PGT) is to also
treat the vielbein e as a gauge field.

The most natural way of doing so is to extend the gauge group G to the
Poincare group 1S50(1, 3), which is the semi-direct product of the Lorentz group,
with generators bh;;, and the generators of translation p,. These generators
satisfy the Poincare algebra

[pa; pb] =0
[hij7 pa] = (Thaéz - 77ka5§)13b (332)
(Bijs brt] = nighje + njhie — nabje — njkba
where 71 is the Minkowski metric. The total gauge field A may then be decom-
posed into a Lorentz and a translational part, which may be expanded in the

generators Ny
A= wh; + e, (3.33)

Construct the covariant derivative
Dy =0y +wibij + €lpa (3.34)
and the corresponding field strengths

[D;u Du] = R/ijhij + Tﬁupa (335)
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which naturally also breaks up into two parts. The essence in PGT lies in
introducing a constraint of the form

7%, =0 (3.36)

which cuts the degrees of freedom of the theory down to 10 to match with
General Relativity. The above constraint also allows w, to be solved for in
terms of €}, [10]

1
Wyab = 56262\(9’“,)\ — QV)\M + Q)\;w) QMV)\ = (6M61C, — 6,,(3;)6)\0 (3.37)

and makes the spin connection dependent on the vielbein in the same way as the
Levi-Civita connection depend on the metric. It is precisely this feature of PGT
which makes it differ from standard gauging in Yang-Mills theory. In YM the
gauge fields are always independent wheres in the case of PGT the connection w
has to agree with the curvature of space-time which is dictated by the vielbein
e.

3.7 Einstein-Cartan action

The shift of focus from the metric g to a gauge field containing the vielbein e
and spin connection w leads us to revisit the Einstein-Hilbert (EH) action of
General Relativity. When a cosmological constant A is added to the picture this
action looks like

1 =
Sen = */ (R —2M)\/|g|dx* h=8rG
2% o

o— detg (3.38)

where R is the Ricci scalar and G the gravitational constant. Let us now do a
bit of rewriting to reach a form where the relation to e and w becomes clear.
First, define a metric weighted Levi-Civita symbol by

Euvie = V |g‘€,uy)\n (339)

where €, 5« is the usual Levi-Civita symbol. This allows us to replace the metric
volume form \/mdx‘1 in the action by %q“,)\,idm“ Adz? Adz™ Adx. Using the
Riemann tensor written as a gl(4, R) valued two-form R** bring the action into
the following form

1 A
Spp = — / v (A A da? NRM — —dz* A da” Adzt Ada®)  (3.40)
4k 6

since all terms are GL(4,R) invariant we can freely change to any basis. Going
to the orthonormal basis so that dz* — €%, and noting that in this frame
Eabed = €abed Since \/|g| = v/|n| = 1, yields the following form of the action

1 A
Spg = — / Cabea€® N ¥ A (RCd — —e“A ed) (3.41)
i o 6
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This is still nothing but the Einstein-Hilbert action in an orthonormal basis.
But now we just replace the Levi-Civita connection by the spin connection and
its corresponding curvature two-form R,,, and relax the constraint of vanishing
torsion, to obtain the Einstein-Cartan (EC) action

Sec = i/ €abeae® N eP A (Rz)d — ﬁec A ed) (3.42)
4k 4 6

Apart from utilizing e and w instead of the metric g the main difference between
the EH and the EC formulations of gravity is of course the allowance for torsion.
The torsion is however confined to matter fields, this can be seen by looking
at the corresponding equations of motion for the free field theory obtained by

varying e and w respectively

A
Cabed€” N (RZC - gec A ed) =0 (3.43)

€abeddw (ec A ed) =0

These equations reduces to Einsteins equations if there exist an inverse of the
vielbein field. That is, there exist a field e# such that

eheb = ob (3.44)

This demand is equivalent to adding a metric structure on M because an inverse
vielbein field may be used to define a nonsingular metric g, by

Guv = €1€ua (3.45)

Under these assumptions (3.43) reduce to usual equations of general relativity
since the inverse vielbein may be used to eliminate e’ from the equations

eZebARZ?, = Rﬁ =0 (3.46)
T =0
However, in the presence of matter fields the torsion will in general not vanish
since it is not a constraint of the theory like in PGT or GR. Due to the absence
of such a constraint the gauge fields e and w remain independent rendering EH
much more similar to YM-theory than the other gravitational theories which so
far have been presented.

3.8 de Sitter gauge theory

A possible geometrical approach on de Sitter gravity on a 4-dimensional space-
time manifold M lies in combining the spin connection w and the vielbein field
e into a unified SO(2,3) connection A by

A=w+e. (3.47)
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It is known, as will be shown in the following, that in order to correctly mimic
the properties of w and e in gravitational theories the connection A should
not transform under the full symmetry of G = SO(2,3). Instead a symmetry
broken by a nonlinear realization of G is considered. This is accomplished by a
separation of G into its Lorentz subgroup H = SO(1, 3) and the quotient space
K = G/H. In terms of the Lie algebras this splitting is written

g=hop (3.48)

where g and § are the Lie algebras of G and H respectively, and p contains the
generators of G which are not included in its sub-Lie algebra h. Let g4, b; and
po be the generators of the corresponding Lie algebras, then

{ga} = {bipa}. (3.49)

This splitting in the Lie algebra is invariant under Lorentz transformations. In
the following the splitting is assumed to correspond to a Cartan decomposition
so that the Lie algebra commutation relations may be generally written as

[bi.b;] = f;"bi
[Bi,pa) = fia"Po (3.50)
[paapb] = fabibi

Now turn the attention to the gauge fields corresponding to the presented
symmetries. Let barred symbols denote the usual, linear, Yang-Mills (YM)
fields of the full, unbroken, SO(2,3) symmetry and expand in terms of the Lie
algebra generators o - -

A= A% = H'b; + K%, (3.51)
A new gauge field A, corresponding to a nonlinear realization of SO(2,3) is
introduced according to the following identificationy;y;
A=k (d+ H'b; + K% )k k=P (3.52)
—_———
A

where d is the de Rham differential and the parameters £ € R'3 are a set of 4
scalar fields which, until contact with gravity is made, are left arbitrary. The

new gauge fields comprising A4 may be expressed in terms of £ and the barred
fields as

H} =H} (3.53)
K& = K&+ 0,6+ f4H (3.54)

The geometrical importance of ¢ as a Goldstone field will not be pursued here,
but note that the Lorentz gauge fields are independent of £, thus the subgroup
SO(1, 3) still generates linear transformations.
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In the neighbouhood of the identity of G a group element may be expressed
as g = kh. Specifying k by the scalar fields £ thus gives a unique correspondence
between g and an element h € H. Without referring to a specific k this relation
may generally be written as

gk=kh kK ek (3.55)

Using the above correspondence the new fields H® and K* has the following
transformation properties under the action of g € G

H' = hH'h™' + hdh™* (3.56)
K®=hK*h™! (3.57)

Concluding that K transform covariantly and do not mix with H' the
following splitting in the full covariant derivative D, is sensible

Dy, =8, + Hib; +Kp, =D, + K, (3.58)
N————
DM

In a nonlinear realization the generators p, no longer generates symmetries,
thus the only gauge degrees of freedom which are left is the Lorentz symmetry.
This can also be seen from a constructed relation

hk = hkh™'h (3.59)

by identifying k¥’ in comparing with (3.55). Here the gauge transformation
of an element h € H is seen to be independent of k, thus also on &, leaving
the Lorentz symmetry unbroken. From this fact D, in (3.58) is identified as
the usual covariant derivative, ie. the covariant derivative w.r.t. the remaining
symmetries.

D,=0,+H, (3.60)

The gauge fields K, also transform covariantly (3.57) thus ensuring the neces-
sary covariance of the object lA)H under G. In a linear realization the total of ZA)M
would of course also transform covariantly, but not separately in D, and K, as
in this case.

In order to make contact with gravity note that the spin connection wZi;

is nothing but the adjoint representation p of the Lorentz gauge field H; The
dotted indices corresponds to the orthonormal frame on M and are manipulated
with the Minkowski metric 7,;. The relation between Hj; and the vierbein eﬁ
has to be imposed by hand, in contrast with the previous relation, through

identifying the scalar field £ € RY® with the coordinates {z/} in My

€ = 5tat (3.61)
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This identification is possible because of the agreement in transformation prop-
erties of eZ and K, and in the dimension of the corresponding spaces dim M =
dim G/H. By this argumentation the connection A is identified with the spin
connection and vielbein:
i Loa
];{*; ;igb } = A, =w,+e, (3.62)
w u
Considering a principal bundle P(M, G) the above identifications puts the
base M in a one-to-one correspondence with the G/H part of the structure
group
M~G/H (3.63)

The dots on the indices are from here on dropped and ab will whenever possible
be denoted by just a so that the new commutation relations are just the ones in
(3.50) with ¢-indices replaced by a. But keep in mind the new indices intimate
connection with space-time as they correspond to the orthonormal frame field
on M. Taking values in the Lie algebra g = s0(2,3) = so(1,3) @ p the gauge
fields e}, and wy, may still be expanded in the generators so that ﬁu may be

n
rewritten as

23# =0, + wﬁf)a + €ba wl = wzb = nbcw/‘jc (3.64)

The full curvature ﬁw is related to ZSH in the usual sense
[Du, D] = Fhaa = Fioba + Fiba (3.65)

By calculating how the nonlinear realization and the splitting (3.64) in ’ZSM
carries through in the curvature two important results are found, the first being

(3.66)

a _ a a a b, e a_a b
flﬂ/ - auwu - 6uw1/ + fgé wuwu +fab el/eu

a
R,

where Rzyba = [D,, D, ] is the curvature with respect to the Lorentz subgroup H
and the remaining term will be shown to correspond to a cosmological constant.
The second result is obtained via an investigation of /7,

(3.67)

Ta __ a a a, & b __ a a
Frw = Ouey, — Opey, + fo,"wye, = Dyey, — Dyey,
—_——

Tt
where the torsion tensor 7, is identified. The choice of gauge (3.61) singles
out a specific 6-dimensional hypersurface in the 10-dimensional group space of

P(M,G). On this hypersurface 7, = 7, and there is no need for this identi-
fication to be imposed from outside.
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Attempting to construct an action in complete analogy with Yang-Mills the-
ory

I= / tr(xF A F) (3.68)

presents us with the problem that the Hodge star operator x depends explicitly
on the metric. Introducing another sort of dual * which instead acts on the Lie
algebra indices, according to «F® = ¢,; F = F;. The metric in the orthonormal
basis is just 7, which allows an action of the form

I= /tr(*]-'/\]-') = /e&gfﬁy}'iﬁe”““d‘lx (3.69)

This action is not invariant w.r.t. the full gauge group G due to the nonlinear
realization but rather w.r.t. the linearly realized subgroup H. Substituting
the relation Ff, = R%, + fabaef}ez into the above expression the following
decomposition of the action is obtained

I = /e&i) (RZVRBM + QRtel)’\eZ abi’ + eZeZeieifabdfcdi’)e“”)‘“d4x (3.70)

Note that the action, also in this expanded form, consists solely of H-covariant
objects (R, e and scalars) due to the nonlinear realization. Normally R is co-
variant but none of the gauge fields themselves.

The last two terms are precisely the Einstein-Cartan action so that we may
write

I= /tr(*R/\R) + Igc (3.71)

The first term is a topological term called the Fuler characteristic, being topo-
logical this term do not contribute to the equations of motion. Thus, de Sitter
gravity constitutes a geometric derivation of the Einstein-Cartan theory from
gauge principles in a way which bears striking similarities with the formulation
of Yang-Mills theory. Not being invariant under the full gauge group still dif-
ferentiates between the two theories.
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4 epilogue & outlook

The de Sitter gauge theory of gravity in the way which has been presented in the
previous section was invented and developed by Mansouri and MacDowell dur-
ing the late 1970s. What one may regard as unsatisfactory in their theory is the
failure of their action to be invariant under the full symmetry group SO(2,3),
which is the starting point for unifying the vielbein and spin connection.

The theory can be set up for a spontaneous symmetry breaking in a way
presented by Stelle and West[;5] a couple of years later. Their action regains
the full symmetry by the introduction of a new field which in a way compen-
sates for the deficiency in the Mansouri-MacDowell formulation. However, the
sole purpose of the introduced field is to break the symmetry, it has no physical
interpretation like the Higgs mechanism in the standard model. Thus one may
still ask if there exist a more natural, geometrically derivable, cause behind the
symmetry breaking.

Before addressing this question we introduce the notion of an extended tan-
gent space which, apart from being mathematically interesting, opens up new
doors for physical theories.

4.1 extended tangent bundle

We introduce the formalism of tangent bundles with higher dimensionality than
the base space. Our reference is a paper by Chamseddine from 20106 but we
keep the results slightly more general in order to connect it to our outlook.

Let M be a smooth m-dimensional manifold covered by an atlas with the
coordinate basis e, = d/0x", a metric and a metric inverse is then defined by

e e =0guw g =0 (4.1)

Following Chamseddine we now consider an N-dimensional tangent bundle
TM, where N > m, spanned by orthonormal vector fields v4 with respect to
the Minkowski metric

VA-UB =MNAB UACUCB = 5§ (4.2)
so that local Lorentz transformations A% preserve orthonormality
va = Ajvp AEADNAB = nep = Be - Up (4.3)

Note that 7 is constant whereas g generally is not. Greek indices run from 0 to
m — 1 and capital Latin indices run from 0 to N — 1.

We expand the coordinate basis e, in terms of the orthonormal basis v 4

e, = eﬁv,q (4.4)
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. . A . .
the vielbein e;; then gives an expression for g,

Juv = eﬁeanB (4.5)

Note that an inverse relation is not canonically defined since, in general, N
may be larger than d resulting in e;‘ not being invertible. We may, however,
define a useful object €’y by

e = g"'nape’ (4.6)
with the properties
et =46 but eﬁef # 68 (4.7)

In order to find an expression for e%ef along a canonical yet non-trivial path
we have to restrict ourselves to the case where NV = d + 1.34) In this case T M
may be spanned by {e,,n}, where n is a mutually orthogonal base vector. In
this new basis v4 may be expanded as

va =vhe, +nan. (4.8)

Using this expression for v4 in (4.4) and the orthogonality condition of n we
find

_ A v A A v _ v
e, =€ vie, +e, nan = e v) =0, (4.9)
——
0

By the relation e/je;) = §# we identify the components v% with those of e’} and
we obtain
vy =ehe, +nan. (4.10)

Writing out the metric n4p in this expansion we get
NAB = VA -UB :eie%gw—&—nATLBR (4.11)

multiplying this equation by 7?2, relabel C' — B, and solving for the first term

on the RHS we finally obtain an expression for efflef
eher =065 —nan®R = Pj (4.12)

where we see that it takes the form of a projection operator P satisfying
P4PS = Pj (4.13)

In the pursuit of this result we applied a certain frame {e,,n} which can
be seen as an analog to the Darboux frame in Riemannian geometry. A big
difference, however, is that no embedding of M is needed due to our extension
of the tangent space.
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4.2 symmetry reduction of SO(2,4)

The Lie group G = SO(2,4) is a common supergroup of; the de Sitter, the
anti-de Sitter and the Poincare symmetry groups. It is known that the action
of SO(2,4) on a 6-dimensional vector space which keeps a certain vector n
invariant is subject to the following symmetry reductions:

SO(1,4)

/X/ \

50(2,4) —o 150(1,3) S0(1,3)
~
™~ 50(2,3) /

where 4+, — and 0 indicates positive, negative and null norm of n respectively.
All subgroups are further reducible to the Lorentz group, which represent sym-
metries that should apply to space-time.

4.3 generalized Cartan geometry

In the light of the possibility of an extended tangent space and the symmetry
reductions of SO(2,4) one may anticipate a theory involving a Cartan SO(2,4)
connection where the corresponding Klein geometry[7) is dependent on the
change of curvature along a direction in space-time. This generalized theory
would reduce to the symmetry of SO(1,4), SO(2,3) or ISO(1,3) in the case of
constant curvature.

If there is no infinitesimal change in curvature along a given direction the
relevant Klein geometry would be I1.S0(1,3)/SO(1,3) resulting in Minkowski
space and Poincare symmetry. If the change is positive or negative the symme-
try group would be SO(1,4) or SO(2,3) respectively, with a curvature of the
corresponding Klein geometry matching that of space-time, infinitesimally and
given a direction.

Considering the extended tangent bundle this curvature dependent symme-
try breaking from SO(2,4) to one of its natural subgroups would be represented
by the norm of the extra base vector n introduced in the two previous sections.
The extended tangent space, being 5-dimensional, allows for topological actions
of the Chern-Simons type to be considered for the theory even though space-
time would still be 4-dimensional.

Another interesting feature of this theory result from the extension of the
local connection one-form into the n-direction of the tangent space. Since the
norm of n is related to the scalar curvature this extension become significant
only at the length scales of particles, where the curvature changes rapidly, re-
sulting in a dramatical change in the behaviour of gravity at the quantum level.
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Investigating such a two-folded spontaneously broken gauge theory, from
SO(2,4) down to SO(1, 3), the common stabilizing subgroup of SO(1,4), SO(2, 3)
and I50(1,3), would to be an interesting generalization and natural line of re-
search in the field of gravitational gauge theories.
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