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Abstract

A modern and straight forward summary of the necessary tools and

concepts needed to understand and work with gauge theory in a �bre bun-

dle formalism. Due to the aim of being a quick but thorough introduction

full derivations are rarely included, but references to such are given where

they have been omitted. General Relativity, although being a geometric

theory, in the sense that the gravitational force is described by the cur-

vature of space-time, may not be derived from geometry like the other

fundamental forces as in Yang-Mills theory. Thus, a possibility of uni�ca-

tion lies in a geometrical derivation of gravity from gauge principles. By

applying the presented formalism to the case of Gravity such a derivation

is pursued along the lines of nonlinear realizations of the gauge group.
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1 introduction

Before any proper introduction and historical background are given we �rst
introduce the two main areas which will harmonize in this thesis, namely the
theory of �bre bundles and the concept of gauge theories. Since �bre bundles is
an entirely mathematical framework and the sole purpose of gauge theories is
to describe reality, the two subjects are introduced as the separate entities they
really are. The title of this thesis, indicating their correspondence, will become
clear as the reader moves on.

Firstly the concept of manifolds is brie�y mentioned because �bre bundles
will be introduced as a natural generalization of that concept. Throughout this
thesis all manifolds are assumed to be di�erentiable and Haussdorf and all maps
are assumed to be smooth.

1.1 manifold

From a geometrical point of view we may start the mathematical representation
of our physical world with the notion of a manifoldM. This manifold repre-
sents space, or at least the part of space we wish to include in our description.
Examples of 2-dimensional manifolds are the ordinary cylinder and the 2-sphere
S2.

Although the manifold may have a very complicated topology globally, its
de�ning property is to be locally homeomorphic to Rm, m being the dimension
of our manifold. The homeomorphism ϕi from M to an open subspace Ui of
Rm in called a chart

ϕi : M→ Ui ⊂ Rm (1.1)

and allows us to assign coordinates to the manifold by using those of Ui, which
we may choose freely. If the manifold globally di�ers in topology from Rm we
need to apply a set of charts {Ui, ϕi}, called an open covering ofM, such that
the whole ofM is covered and transitions between any two charts Ui and Uj is
carried out by di�erentiable, or smooth, transition functions ψij de�ned by

ψij = ϕi ◦ ϕ−1
j : Uj → Ui (1.2)

The transition functions need to be de�ned wherever there is an overlap between
two charts Ui ∩ Uj 6= ∅ and need to obey the following consistency conditions

ψii = idUi

ψij = ψ−1
ji

ψik = ψij ◦ ψjk

(1.3)

where idUi is the identity map on Ui. The third and most restrictive of the
consistency conditions, called the cocycle condition, apply if there is an overlap
between three charts Ui ∩Uj ∩Uk 6= ∅. Considering our example-manifolds, one
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chart is enough to cover the cylinder while the sphere needs two charts to avoid
coordinate singularities at the poles.

With a satisfying representation of space we now need a framework with
additional complexity to describe forces, particles and other things we wish to
incorporate in our description. Just like a plane may contain more structure
than a line one might argue that the most natural way to achieve additional
structure is to assign an additional manifold to every point of the manifoldM.
The mathematics of such a structure is called the theory of �bre bundles. Fibre
bundles provide a framework to naturally incorporate gauge theories, possibly
covering all the complexity of our physical world.

1.2 �bre bundle

The manifold representing space M is called the base while the manifold de-
�ned at each point ofM are identical copies of a manifold F , called the �bre.
Furthermore, all these manifolds together are made to form a total space which
is also a manifold, denoted by U .

To make the total space a well de�ned manifold several maps have to be
introduced, one of which is a surjection π : U →M called the projection. The
subset of elements {u} ∈ U which are projected down to a speci�c point p ∈M
is called the �bre at p, denoted Fp

π−1(p) = Fp ⊂ U (1.4)

Note that although the �bres at di�erent points are all isomorphic to the typical
�bre F they consist of elements u ∈ U wheres the typical �bre is a manifold of
its own with elements f ∈ F .

Exactly like we needed charts {Ui, ϕi} to perform calculations onM we need
a set of di�eomorphisms to locally map U onto the direct product Ui×F . This is
accomplished by the inverse of the local trivializations, the local trivialization
is de�ned the other way around:

φi : Ui ×F → π−1(Ui) ⊂ U (1.5)

so that φi,p(f) 7→ π−1(p) where φi,p is the restriction of the local trivialization
to p ∈ Ui.

In addition, exactly like we needed smooth coordinate transformations from
Ui to Uj where they overlap Ui∩Uj we now introduce the transition functions

tij(p) ≡ φ−1
i,p ◦ φj,p (1.6)

to smoothly paste the direct products {Ui ×F} together, forming a covering of
the total space U . The transition functions are elements of a Lie group G called
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the structure group which acts on F on the left. The given de�nitions form
a �bre bundle (U , π,M,F ,G), also denoted U π−→M.

In addition to the de�nition of the �bre bundle and its constituents we also
want to de�ne a local map called a section si from Ui ⊂M to the total space

si : Ui → U such that π ◦ si = idUi (1.7)

The set of sections on Ui is denoted Γ(Ui,U), in some cases the section may
be extended to the whole manifold and is then referred to as a global section
s ∈ Γ(M,U), but in general there are topological obstructions to this extension.
Note that by Ui we refer to both the subset of Rm and the corresponding subset
of the manifoldM.

1.3 gauge theory

Consider the simplest action for a charged complex scalar �eld

S =

∫
d4x(∂µΨ∂µΨ̄−m2ΨΨ̄) (1.8)

This action remains invariant under multiplication of the �elds by a complex
constant since Ψ and Ψ̄ occurs in pairs in the Lagrangian. A Lie group whose
action leaves the Lagrangian invariant is called a symmetry group. In the
example considered the symmetry group is U(1), causing the transformations

Ψ→ eiΛΨ , Ψ̄→ e−iΛΨ̄ (1.9)

where Λ is the transformation parameter of the Lie group.

So far this is a global symmetry of the action since the group operation
is performed identically everywhere. If the action remains invariant under a
space-time dependent group operation the symmetry is promoted to a local

symmetry. In our example this corresponds to making the transformation pa-
rameter space-time dependent, Λ→ Λ(x), and this is where the story of gauge
theories begins.

A gauge theory is a �eld theory where the action remains invariant under
local transformations of the symmetry group, which in this case is referred to
as the gauge group. The transformations under the action of the gauge group
are called gauge transformations and invariance under such transformations
is called gauge invariance.

But our action (1.8) is not invariant under gauge transformations since a
local group action fails to commute with the di�erential operators

∂µe
iΛ(x)Ψ 6= eiΛ(x)∂µΨ (1.10)
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This is compensated for by introducing a new �eld Aµ called a gauge �eld, and
replacing the ordinary derivatives ∂µ by covariant derivatives Dµ de�ned by

DµΨ ≡ (∂µ − iAµ)Ψ (1.11)

such that the action of this new derivative transform covariantly under the gauge
transformations Dµ → eiΛ(x)Dµ. That is; the change of the �elds transform in
the same way as the �elds themselves, and we now have

DµeiΛ(x)Ψ = eiΛ(x)DµΨ (1.12)

In order to satisfy this condition it can be shown that Aµ need to transform
as

Aµ → Aµ + ∂µΛ(x) (1.13)

under gauge transformations. Rather than manually specifying the values of
the gauge �eld Aµ one introduces an additional, gauge invariant, term in the
Lagrangian

−1

4
FµνF

µν (1.14)

where Fµν ≡ ∂[µAν] is the �eld strength of the electromagnetic force. The
equations of motion derived from this term gives the �eld equations for Aµ,
specifying its values to be used in the covariant derivative Dµ. The new locally
gauge invariant action becomes

S =

∫
d4x(DµΨDµΨ̄−m2ΨΨ̄− 1

4
FµνF

µν) (1.15)

Much in the same way the demand for local gauge invariance naturally leads
to the introduction of the other fundamental forces in the standard model, a
remarkable aspect of gauge theories!
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2 �bre bundles & gauge theory

The �rst widely recognized gauge theory was formulated by Wolfgang Pauli in
the 1940s.[1] The formulation was based on work by Weyl, Fock, Klein and oth-
ers where the symmetry properties of the electromagnetic �eld had been related
to the U(1) group. Pauli later worked out a generalization of the theory to
higher dimensional internal spaces in the search for a uni�cation including the
nuclear forces. But he abandoned the idea because he saw no way to give masses
to the corresponding gauge bosons.

In early 1950s Chen Ning Yang and Robert Mills independently of Pauli
formulated what would be recognized as Yang-Mills (YM) theory.[2] Their the-
ory extended the gauge concept to the case of non-abelian gauge groups, in
particular SU(n). It took until the year of 1960 before the theory found ap-
plications in particle physics due to the concept of particles acquiring mass
through spontaneous symmetry breaking. After this breakthrough YM-theory
proved successful in the formulation of both electroweak uni�cation and quan-
tum chromodynamics.

The theory of �bre bundles is purely mathematical but we will study the
theory from a physical point of view, throughoutly relating the mathematical
objects to the physics they represent in the context of gauge theories. For full
derivations, we refer to M. Nakahara (1990), which is the main source of the
material presented in this chapter. However, our aim is to give a more friendly
and straight to the point presentation, where the point is gauge theory applica-
tions.

Before any mathematical treatment a justi�cation of the `duality' between
gauge theory and �bre bundles may be given in terms of a short historical remark
concerning the following statement by Mayer:

A reading of the Yang-Mills paper shows that the geometric
meaning of the gauge potentials must have been clear to the authors,
since they use the gauge covariant derivative and the curvature form
of the connection, and indeed, the basic equations in that paper will
coincide with the ones derived from a more geometric approach. . . [3]

But a reply by Yang falsi�es this conclusion:

What Mills and I were doing in 1954 was generalizing Maxwell's
theory. We knew of no geometrical meaning of Maxwell's theory,
and we were not looking in that direction.[4]

The interesting and amusing fact that Mayer were convinced that Yang and
Mills were using �bre bundles although they were just generalizing gauge the-
ory shows the striking correspondence between the two concepts!
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Realizing the gauge theories strong connection with geometry Yang con-
sulted the mathematician Jim Simons who pointed Yang in the direction of
�bre bundles. But when Yang tried to familiarize himself with the subject he
found that `The language of modern mathematics is too cold and abstract for
a physicist' and invited Simons to give him and his colleagues lectures on �bre
bundles. Simons kindly accepted and gave a series of lectures on the subject
which we will review in this chapter.

2.1 vector bundles & �elds

Given an m-dimensional manifoldM a vector bundle V π−→M is a �bre bun-
dle whose �bre is a vector space. The prime example is the tangent bundle TM
where the �bre is a copy of Rm de�ned at each point of M and the structure
group is GL(m,R). Specifying a point in Rm de�nes a vector, hence sections
of TM are smooth vector �elds onM which we denote by X (M) = Γ(M, TM).

Sections on vector bundles also pointwisely obey the usual rules for vector
addition and multiplications with scalars, scalars being smooth functions f(p)
onM. Corresponding to the null vector is the null section s0 with the prop-
erty φ−1

i (s0(p)) = (p, 0) in any local trivialization.

In the theory of �bre bundles a complex scalar �eld Ψ(x) de�ned on Ui ⊂M
is represented by a local section of a complex line bundle si ∈ Γ(Ui,C). More
generally, any �eld or wave function may be represented by a section of a vector
bundle. In the following we shall describe how the gauge transformations of
such a �eld is incorporated in the theory.

2.2 principal bundles & gauge transformations

A principal bundle P π−→ M or P(M,G) is a �bre bundle whose �bre is
identical to its structure group G, thus P(M,G) is often referred to as a G-
bundle onM. On a principal bundle it is possible to introduce the right action
of G on P de�ned by

P × G → P such that ug = φi(p, fig) ∀ g ∈ G
u ∈ π−1(p)

(2.1)

This is true in any local trivialization φi and corresponding fi ∈ F since the
right action commutes with the left action

φi(p, fig) = φi(p, tijfjg) = φj(p, fjg) (2.2)

Principal bundles play a crucial role in the description of gauge theories since
the �bre of P(M,G) is identi�ed with the symmetry group of the gauge theory,
and the right action on P is identi�ed with the corresponding gauge transfor-
mations. We will now see how this is done.
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Gauge transformations of a complex scalar �eld Ψ(p) de�ned on a manifold

M are represented by sections on a principal bundle P π−→M with typical �bre
U(1). Since a section is a map σ : M→ P the value of a section at a point σ(p)
corresponds to an element of U(1) through a local trivialization

σ(p) = φi
(
p, g(p)

)
g ∈ U(1) (2.3)

To be able to represent the action of the identity element e ∈ G across the
whole base manifold we need to introduce what is called the canonical local
trivialization φ0

i . The canonical trivialization is given with respect to a local
section σi by

σi(p) = φ0
i (p, e) (2.4)

Unless the principal bundle is a direct product space P =M×F such sections
may only be de�ned locally. Once a canonical trivialization is de�ned all other
local sections σ̃i(p) may be expressed naturally in terms of the original section
σi(p) and a right action gi(p) ∈ G in the following way

σ̃i(p) = σi(p)gi(p) = φ0
i (p, e)gi(p) = φ0

i (p, gi) (2.5)

The di�erent sections σ̃i correspond to di�erent gauges and the gauge transfor-
mations between them are carried out by the right action gi of the structure
group, U(1) in our case. If gi is constant the transformation is global, while
a local gauge transformation is carried out by a point dependent action gi(p),
which we may represent as eiΛ(x) given a chart and a coordinate system.

2.3 associated bundles & �eld transformations

Having seen how sections on vector bundles represent �elds, and how sections
on principle bundles may describe gauge transformations, we now present how
a principle bundle and a vector bundle may be associated in a way which nat-
urally let the gauge transformations act on the �elds.

Consider a G-bundle P π−→M and a manifold V. A suitable representation
ρ of G allows the group to act on V, for example by some matrix representation.
A right action may now be de�ned on elements (u, v) in the product space P×ρV
by

(u, v)→
(
ug, ρ(g−1)v

)
for

g ∈ G
u ∈ P
v ∈ V

(2.6)

the associated vector bundle E is then de�ned by identifying the points
related by such a right action

(u, v) ∼
(
ug, ρ(g−1)v

)
=⇒ (ug, v) =

(
u, ρ(g)v

)
∀g ∈ G (2.7)

We denote the elements of E by [(u, v)] and introduce the projection πE : E →
M de�ned by πE(u, v) = π(u). Then E πU−→M is a �bre bundle with the same
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structure group G as its associated principal bundle P(M,G). The transition
functions tij of course needs to be considered in the chosen representation ρ(tij).

Consider the action

S =

∫
d4x(∂µΨ∂µΨ̄−m2ΨΨ̄) (2.8)

were the complex scalar �eld Ψ(p) is described by a section s(p) on an asso-
ciated vector bundle (E , πE ,M,C, U(1)) i. e. the manifold part V is a complex
line bundle C. Take a local section σi(p) on the principal bundle P(M, U(1))
associated with V and employ the canonical trivialization φ0

i so that

(φ0
i )
−1
(
σi(p)

)
= (p, e) ∀p ∈ Ui (2.9)

which makes σi(p) correspond to e, the identity element of U(1). We now de-
�ne a space-time dependent group action expressed by a section as σ̃i(p) =
σi(p)gi(p), where gi ∈ U(1). To make σ̃i act on Ψ(p) we choose the represen-
tation ρ : gi(p) → eiΛ(p) and de�ne a base section e on the associated vector
bundle

e =
[(
σi(p) , 1

)]
∈ E = P ×ρ V (2.10)

where 1 has been chosen as the basis vector in the complex line bundle. We
express our �eld Ψ(p) as a section in that basis

Ψ(p)e =
[(
σi(p) , Ψ(p)

)]
, Ψ ∈ V (2.11)

σ̃(p) now corresponds to a local gauge transformation according to

Ψ′(p)e ≡
[(
σ̃(p) , Ψ(p)

)]
=
[(
σi(p)gi(p) , Ψ(p)

)]
ρ
=
[(
σi(p) , e

iΛ(p)Ψ(p)
)]

= eiΛ(p)Ψ(p)e
(2.12)

where Ψ′(p) is the transformed �eld.

In this way sections on a principal bundle P can represent gauge transforma-
tions on a �eld Ψ, which in turn is represented by a section on a vector bundle
associated with P.

2.4 connection one-forms & gauge potentials

So far we have left the sections describing the �eld and its gauge transforma-
tions completely arbitrary. To approach our initial de�nition of a gauge theory,
with added gauge �elds to ensure the gauge invariance of the Lagrangian, we in-
troduce a connection one-form ω on the principal bundle, called an Ehresmann
connection, which we will connect to the gauge potential Aµ presented earlier.

First we introduce the fundamental vector �eld, denoted a, which is
generated by an element a in the Lie algebra g of the G-bundle P(M,G)

af(u) =
d

dt
f(ueta)

∣∣∣
t=0

(2.13)
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where ueta de�nes a curve in P which lies entirely within Gp since π(u) =
π(ueta) = p. Hence the above equation de�nes a to be tangent to Gp at every
point u ∈ P.

Consider the tangent space TuP of a point u ∈ P and a separation of TuP
into a vertical VuP and a horizontal HuP subspace

TuP = VuP ⊕HuP (2.14)

so that every vector x ∈ TuP may be decomposed into a vertical xV and a
horizontal xH part

x = xV + xH . (2.15)

The vertical direction is canonically de�ned by a, but the horizontal direction
is de�ned only through the choice of a connection. The connection one-form

is a Lie algebra valued one-form ω ∈ g⊗Ω1(P) which de�nes such a separation
by projecting elements in TuP onto g ' VuP. This projection is unique under
the following requirements

1. ω(a) = a a ∈ g

2. Rgω = adg−1ω ≡ g−1ωg g ∈ G

where Rg is the right action by g and dg−1 is the adjoint action de�ned as above.

Given an open covering {Ui} ofM and local sections σi the pullback by this
section σ∗i may be used to de�ne a local connection Ai ∈ g⊗Ω1(Ui) correspond-
ing to ω by

Ai ≡ σ∗iω (2.16)

This local form of the Ehresmann connection ω is identi�ed with the gauge
potential up to some Lie algebra factor. Since Ai is a g-valued one-form it is
possible to expand it in the dual basis basis dxµ and in terms on the Lie algebra
generators ga

Ai = Aiµdxµ = A a
iµ gadx

µ (2.17)

Given Ai on the whole open covering {Ui} of M the global connection ω
may be constructed, but for ω to be uniquely de�ned throughout P we must
have ωi = ωj on Ui∩Uj . It can be shown[5] that this constraint forces the local
connections to transform as

Aj = t−1
ij Aitij + t−1

ij d(tij) (2.18)

where d is the de Rham di�erential. On a U(1)-bundle where the transition
functions are just complex numbers tij = eiΛ(p) the transformation of Ai may
be written in components as

Ajµ = e−iΛ(p)AiµeiΛ(p) + e−iΛ(p)∂µ(eiΛ(p)) = Aiµ + i∂µΛ(p) (2.19)
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where Ai can be recognized as the gauge potential for the electromagnetic �eld.

The local form of the connection depend on the choice of local section σi
where the choice of section correspond to a particular gauge. If two sections
σi and σ̃i are related by an element gi ∈ G as σ̃i = σigi their corresponding
connections are related as

Ãi = g−1
i Aigi + g−1

i d(gi) (2.20)

which in local coordinates becomes the gauge transformations of the gauge po-
tential. Note that Ai is de�ned only locally on a chart Ui and any global
information about the bundle is contained in the global connection ω de�ned
on P, alternatively in {Ai}, a `covering' of local connections.

2.5 �eld strengths & curvatures

The exterior covariant derivative dω of a general vector valued r-form φ ∈
Ωr(P)⊗ V acting on vectors x1, . . . ,xr+1 ∈ TuP may be de�ned as

dωφ(x1, . . . ,xr+1) ≡ dφ(xH1 , . . . ,x
H
r+1) (2.21)

where xH ∈ HuP is the horizontal part of x.

Now the de�nition of the curvature two-form Ω ∈ Ω2(P) ⊗ g is given as
the exterior covariant derivative of the connection one-form ω

Ω ≡ dωω (2.22)

from which one may derive the structure equation[7]

Ω(x,y) = dω(x,y) + [ω(x),ω(y)] x,y ∈ TuP (2.23)

where the bracket for vector valued forms α and β is an extension of the Lie
bracket [x,y]g de�ned by

[α⊗ x, β ⊗ y] ≡ α ∧ β ⊗ [x,y]g (2.24)

Just like the connection one-form the curvature two-form has a local descrip-
tion Fi de�ned via the pull-back of a local de�ning section σi

Fi = σ∗i Ω (2.25)

where Fi is in one-to-one correspondence with the �eld strength in the context
of gauge theories. Being de�ned in a vector bundle the structure equation for
Fi may be written

Fi = dAi +Ai ∧ Ai (2.26)
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Under gauge transformations and transition between overlapping charts Ui
and Uj the �eld strength transform in the adjoint representation

Fi = g−1
i Figi (2.27)

Fj = t−1
ij Fjtij (2.28)

The symmetry in the relations stems from the fact that both operations essen-
tially are a change of de�ning section σi on the principal bundle. As Ai and Fi
always will denote local objects we drop the i-index from here on.

From di�erential geometry we know that a two-form may be expanded in a
local coordinate basis as

F =
1

2
Fµνdxµ ∧ dxν (2.29)

so that the following relation holds for the components of F

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ] (2.30)

Since both forms in the above expression are g-valued they can be expanded
also in terms of the Lie algebra {ga} as Aµ = A a

µ ga and Fµν = F a
µν ga. Using

[ga, gb] = f c
ab gc we write down an equation in purely scalar valued quantities

F a
µν = ∂µA

a
ν − ∂νA a

µ + f a
bc A b

µ A
c
ν . (2.31)

Another important identity involving the curvature is the Bianchi identity
dωΩ = 0 which in is its local form becomes

F = dF + [A,F ] = 0 (2.32)

In the case of our U(1) example we only have one generator, which commutes,
thus the structure equation and the Bianchi identity simpli�es to

F = dA (2.33)

dF = 0 (2.34)

the corresponding relations for the components becomes

Fµν = ∂µAν − ∂νAµ (2.35)

∂λFµν+∂νFλµ + ∂µFνλ = 0 (2.36)

2.6 parallel transport & horizontal lifts

Knowing that we can represent vector �elds on M by sections in the tangent
bundle TM we want to extend the notion of parallel transport of vectors to
parallel transport of sections on a more general bundle. The generalization im-
portant to physics is parallel transport on a principal bundle P(M,G) and how
it is inherited by the bundles associated with it.
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Consider a principal bundle P(M,G) and a curve γ : [0, 1] → M. A hori-

zontal lift is de�ned to be a corresponding curve γ̃ : [0, 1]→ P such that it lies
vertically above the original curve, π(γ̃) = γ, and that the tangent vector to
γ̃(t) always lies withinHγ̃(t)P. Globally the latter condition is ensured using the
constraint of a vanishing connection one-form ω(t) = 0, where t is the tangent
vector to γ̃(t).

Choosing a local section σi (i. e. gauge �xing) a horizontal lift may be ex-
plicitly constructed locally using the local connection one-form Aiµ = σ∗i ω. The
construction makes use of the fact that the lift γ̃(t) ∈ P is related to the chosen
section σi by a corresponding right action gi by[6]

γ̃(t) = σi
(
γ(t)

)
gi
(
γ(t)

)
, gi

(
γ(t)

)
= T exp

(∫ γ(t)

γ(0)

Aiµ
(
γ(t)

)
dxµ

)
(2.37)

where σi is taken to be a section such that σi
(
γ(0)

)
= γ̃(0) that is gi

(
γ(0)

)
= e.

T is the time-ordering operator which arranges all terms Aiµ(t1) and Aiν(t2)
in order of increasing time, from right to left. This is needed since the terms in
general do not commute. In the following gi

(
γ(t)

)
and σi

(
γ(t)

)
will be denoted

by just gi(t) and σi(t), but keep in mind the dependency on the original curve γ.

Parallel transport of a point u0 ∈ P along a curve γ(t) : [0, 1]→M, such
that u0 ∈ π−1(γ(0)), is ensured by transporting u0 along a horizontal lift γ̃(t)
where γ̃(0) = u0 and γ̃(1) = u1 where u1 becomes the parallel transported point.
This (horizontal) action commutes with the (vertical) right action which allows
us to intuitively transport points around in the principal bundle. Mathemat-
ically, the combination of right action and parallel transport de�nes a unique
transitive action on P, i. e. the group action takes any point u ∈ P to any other
point in the bundle in exactly one way.

In order to work with �elds we now want to parallel transport elements
[(u, v)] in a vector bundle E associated to P. Employ the canonical trivialization
to a section σi ∈ Γ(Ui,P) and choose a section s = [(σi, v)] ∈ Γ(Ui, E), choosing
a section s corresponds to �xing the gauge. Now consider a curve γ(t) : [0, 1]→
M and a corresponding horizontal lift γ̃(t) = σi(t)gi(t)

s(t) =
[(
σi(t) , v(t)

)]
=
[(
γ̃(t)g−1

i (t) , v(t)
)]

=
[(
γ̃(t) , g−1

i (t)v(t)
)]

=
[(
γ̃(t) , ṽ(t)

)] (2.38)

where the second line is obtained using the de�ning identi�cation (2.7) of as-
sociated vector bundles. The section s(p) is parallel transported along a curve
γ(t) : [0, 1]→M if ṽ(t) = ṽ(γ(t)) is constant w. r. t. a horizontal lift γ̃(t) ∈ P.

It can be shown[7] that this de�nition depends only on the curve γ(t) and the
connection ω, and not on the choice of horizontal lift and local trivialization.
To conclude; the constraint on γ̃(t) to `lie horizontally' in P incorporates the
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structure of P into the parallel transport of a section s(t) ∈ E along a curve γ(t)
inM. How this works becomes visible in the above equation where g−1

i (t) acts
on v(t) to compensate for the change of basis along γ(t).

2.7 connection coe�cients & representations

In the previous section we saw a remarkable result of formulating gauge the-
ory in a �bre bundle framework; the introduction of a connection one-form ω
in the principle bundle P(M,G) completely speci�es parallel transport in any
associated vector bundle E , up to representations. Here the result is made more
explicit in terms of matrices and coe�cients.

First the choice of a local section σi over Ui ⊂M speci�es a local connection
A by (2.16). Then a matrix representation ρ of the Lie algebra generators
{ga} is chosen to represent the group action on the vector bundle

ρ(ga) = (ga)αβ (2.39)

where α and β are matrix indices. The representation is chosen such that the
elements of G may act on vectors in E by usual matrix multiplication, this forces
an action on an n-dimensional associated vector bundle to be represented by
n×n matrices. If we now expand A in terms of {(ga)αβ} we get a natural matrix
representation of the local connection one-form by carrying out the summation
over the Lie algebra index:

ρ(A) = Aa(ga)αβ = Aαβ . (2.40)

Without further derivation we present the remarkable result in our matrix
representation in the associated vector bundle

∇eβ = Aαβeα. (2.41)

{eα} being a basis of E . Given local coordinates {xµ}, and expanding the
connection in the corresponding coordinate basis A = Aµdxµ the covariant
derivative along a basis vector ∇µ is given by the matrix representation of the
components Aµ

∇µeβ = Aαµβeα (2.42)

where {Aαµβ} are a set of connection coe�cients in E and thus completely spec-
i�es the covariant derivative on the associated vector bundle.

2.8 frames, frame �elds & frame bundles

Even if we have been working with frame �elds throughout this presentation a
more rigorous treatment in terms of the presented notions will help us polish
up the story.
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Considering a k-dimensional vector bundle V over a manifold M equipped
with an atlas {Ui, φi} so that φ−1

i : π−1(Ui)→ Ui×Rk we may choose k linearly
independent local sections {eα} over Ui, α = 1, 2, . . . , k. These sections are said
to de�ne a frame �eld over Ui. We will refer to the frame �eld at a particular
point p as the frame at that point {eα(p)}.

Given this setup we can express any vector vp at p as an element in Fp ' Rk,
the coordinates in Rk become the components vαp of the vector vp = vαp eα. Using
the local trivialization we may extend this notion from p ∈ Ui to the whole open
subset Ui so that a vector �eld vi over Ui may be expressed as

φi
(
p, vαi (p)

)
= vi(p) ∀p ∈ Ui (2.43)

and by de�nition we have

φi(p, {01, 02, . . . , 1α, . . . , 0k}) = eα(p) (2.44)

To extend our notion outside the open subset Ui we use a matrix represen-
tation ρ of the transition functions ψij given by

ρ(ψij) = Xα
β ψij ∈ GL(k,R) (2.45)

so that on a chart overlap Ui ∩ Uj 6= ∅ the frame �eld {e′β} over Uj is given by

e′β(p) = Xα
β (p)eα(p) ∀p ∈ Ui ∩ Uj (2.46)

The covariance of vectors under a change of basis

v = vαi eα = vβj e
′
β (2.47)

forces its components to transform by the inverse of Xα
β

vβj = Xβ
αv

α
i Xα

γX
γ
β = δαβ (2.48)

Now when we have extended the notion from a point p to an open subset
Ui and further out into neighbouring subsets one might be tempted to claim
that we have extended the notion to the whole manifoldM. There are however
severe topological restrictions to this extension, see for example the `Hairy Ball
Theorem'. We won't go down that rabbit hole here, but remember that the
only section which may always be globally de�ned is the null section.

We may however extend our notion in another direction by considering a
change of frame at p, naturally this action is also given through a matrix rep-
resentation of an element in G = GL(k,R).

ẽβ(p) = Y αβ eα(p)
p ∈ Ui
Y αβ ∈ ρ(G)

(2.49)

or by its inverse Y βα for the components vαp of vectors vp ∈ Fp. From a given
frame at p we may, by the above relation, construct any other frame at p due
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to the transitivity of the action of G on F . By considering all frames at all
points p ∈ Ui we are thus led to the direct product space Ui×ρ G where we may
describe the transition between any frame �elds as a section Y αβ (p) over Ui

ẽβ(p) = Y αβ (p)eα(p)
∀p ∈ Ui
Y αβ ∈ Ui ×ρ G

(2.50)

For this to be true even outside Ui we must form a bundle using the same
transition functions as in V when we glue the pieces Ui×ρG and Uj×ρG together.
By doing so the above relation still holds for frame �elds stretching across open
subsets. Following this line of reason we are naturally led to a principal bundle
associated with V which contains all its possible frame �elds, such a bundle is
called a frame bundle FM. Given a frame �eld on V any other frame �eld
may be de�ned through a section in FM.
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3 the case of Gravity

Gravity as a gauge theory has been subject to waves of intense studies since the
birth of gauge theory itself. The driving force behind this attention is the idea
of a unifying theory, putting gravity on more or less equal footing with the other
fundamental forces, viz. electromagnetism, the strong force and the weak force.
General Relativity (GR), although being a fully satisfactory theory of gravity
has little in common with the current description of the other three forces. In
fact it is arguable whether gravity should be considered a force at all.

The `other' three forces are considered mediated by �elds which are natu-
rally described by gauge �elds exactly as they have been presented in this thesis,
and all their interactions takes place in the background of space-time. In this
picture a force is something which alters a trajectory in space-time. GR, on
the contrary, describes gravity as the dynamical properties of space-time itself
and its `interaction' do not alter the trajectory in space-time but rather changes
space-time itself.

However, this seemingly fundamental di�erence might just be a consequence
of the chosen starting point of the description. It might be the case that all
four forces can be ascribed to the properties of space-time, which is the idea of
uni�cation which Einstein spent most of his career pursuing. It might just as
well be that gravity may be formulated as a gauge theory, which is the idea we
will elaborate on in this chapter.

3.1 tensor bundles in general

The simplest tensor bundle overM is the tangent bundle TM. Recall the de�-
nition of the tangent space, or the tangent bundle at a point, TpM as the union
of the tangent vectors at p ∈M to all curves inM passing through that point.
Instead of tangent vectors we may speak of the parameter derivative d

dt of the
curve γ(t), thus the tangent bundle is constructed solely by calculus on the base
manifold. Introducing coordinates {xµ} on M naturally induces base vectors
in TM by describing the curves by these coordinates γ(xµ(t)) so that their
parameter derivatives become ∂

∂xµ
∂xµ

∂t , dropping the dependence on a speci�c γ
and extending to the whole base manifold result in the coordinate frame �eld1

∂
∂xµ = ∂µ on M. Here the µ index indicates, not di�erent components, but
di�erent basis vectors. This intimate connection with the base manifold makes
it possible to consider a tangent bundle as soon as you have de�ned M. Fur-
thermore as soon as coordinates are chosen onM a natural set of base vectors
are induced on TM.

Given TM its dual, the cotangent bundle T ∗M, is canonically de�ned as

1Commonly referred to as just the coordinate basis but here and throughout we refer to

all point dependent vectors as vector �elds to make explicit their point dependency.
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a map

T ∗pM : TpM−→ R ∀p ∈M
dµ : ∂ν 7→ δµν

(3.1)

where the elements dµ thus serve as a basis in the cotangent bundle and is re-
ferred to as the dual frame �eld, and arbitrary elements in T ∗M expressible in
that basis are dual vectors or the one-forms onM. Beware of our unorthodox
notation dµ ≡ dxµ which is used to consistently distinguish between tensor and
scalar valued objects.

Regarding vectors as (1, 0) tensors and one-forms as (0, 1) tensors the notion
of tangent and cotangent bundles are easily generalized to arbitrary (a, b) tensor
bundles T a,bM as multilinear maps from vectors and one-forms to the real
numbers

T a,bp M : TpM×TpM× . . .︸ ︷︷ ︸
b factors

×T ∗pM×T ∗pM× . . .︸ ︷︷ ︸
a factors

−→ R ∀p ∈M (3.2)

Given a manifold M one can immediately construct arbitrary tensor bundles,
and given coordinates they inherit frame �elds so that an element T ∈ T a,bM
may be expanded as

T = Tµ1...µa
ν1...νb

∂µ1
⊗ . . .⊗ ∂µa ⊗ d

ν1 ⊗ . . .⊗ dνb (3.3)

3.2 tensor bundles in general relativity

The space-time manifoldM in General Relativity comes equipped with a covari-
ant derivative ∇µ with connection coe�cients Γλνµ which expresses the change

of basis vector ∂ν in the µ-direction as a vector Γλνµ∂λ in the coordinate basis

∇µ∂ν = Γλνµ∂λ (3.4)

The dual frame �eld dµ is related to the coordinate frame �eld by

∂νd
µ = δµν (3.5)

in order to �nd how the covariant derivative ∇µ acts on the dual frame �eld
we note that ∇µ(dν∂ν) = ∇µ(δνν ) = 0 and use the Leibniz rule of the covariant
derivative

∇µ
(
dν∂ν

)
=
(
∇µdν

)
∂ν + dν

(
∇µ∂ν

)
=
(
∇µdν

)
∂ν + dνΓκνµ∂κ

=
(
∇µdν + dλΓνλµ

)
∂ν = 0 =⇒

∇µdλ = −Γλµνd
ν

(3.6)

Note that ∂µ and dµ are viewed as (dual) basis vectors and not as di�erential
operators, the only operator acting on anything here is the covariant derivative.
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Knowing how the covariant derivative act on the frame �eld and its dual we
use the Leibniz rule, exempli�ed below, to perform covariant di�erentiation of
a (1, 1) tensor �eld T = Tλκ∂λ ⊗ d

κ

∇µT =
(
∇µTλκ

)
∂λ ⊗ dκ + Tλκ

(
∇µ∂λ

)
⊗ dκ + Tλκ∂λ ⊗

(
∇µdκ

)
=
(
∂µT

λ
κ

)
∂λ ⊗ dκ + Tλκ

(
Γνλµ∂ν

)
⊗ dκ + Tλκ∂λ ⊗

(
−Γκνµd

ν
)

=
(
∂µT

λ
κ + ΓλνµT

ν
κ − ΓνκµT

λ
ν

)
∂λ ⊗ dκ

(3.7)

where the last step contains just reordering and relabeling of dummy indices.
Note how the covariant derivative reduces to ordinary partial di�erentiation on
scalar �elds since scalars �elds are una�ected by a change in curvature. From
(3.4) we have now derived the well known relation for the components of a (1, 1)
tensor �eld

∇µTλκ = ∂µT
λ
κ + ΓλνµT

ν
κ − ΓνκµT

λ
ν (3.8)

where generalization to arbitrary rank tensor �elds follow the same pattern by
generating a minus sign for each form-index and a plus sign for each vector-
index. The most common special case is the covariant derivative acting on a
vector v = vλ∂λ

∇µvλ = ∂µv
λ + Γλνµv

ν (3.9)

Note that the connection coe�cients are not tensors by themselves and thus
can not give a coordinate independent description of the curvature. Objects pro-
viding such a description may however be de�ned through the above expression.
∇µvλ measures the change of a vector v along the µ-direction compared to if it
had been parallel transported. The commutator between covariant derivatives
[Dµ, Dν ] acting on v thus measures the di�erence between parallel transport-
ing v along the µ-direction followed by the ν-direction, versus doing it in the
opposite order. Using the above de�nition we get

[Dµ, Dν ]vλ = (∂µΓλνκ − ∂νΓλµκ + ΓλµτΓτνκ − ΓλντΓτµκ︸ ︷︷ ︸
Rλκµν

)vκ − (Γτµν − Γτνµ︸ ︷︷ ︸
T τ
µν

)Dτv
λ

(3.10)
where we have singled out two objects which one can prove transforms as ten-
sors. These are the Riemann tensor Rλκµν and the torsion tensor T λ

µν . The
connection in GR is assumed to be torsion-free so that the above expression
reduces to

[Dµ, Dν ]vλ =
(
∂µΓλνκ − ∂νΓλµκ + ΓλµτΓτνκ − ΓλντΓτµκ

)
vκ = Rλκµνv

κ (3.11)

Note that the torsion-free condition forces the connection coe�cients to be sym-
metric in their lower indices

T λ
µν = Γλµν − Γλνµ = 0 =⇒ Γλµν = Γλνµ (3.12)

The metric g in GR is a (0, 2) type tensor �eld and may thus be expanded
as

g = gµνd
µ ⊗ dν (3.13)
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In addition to the torsion free condition the connection in GR is demanded to be
compatible with the metric ∇µg = 0, this is a very reasonable constraint since it
ensures that the scalar product between two parallel transported vectors remains
the same. The metric compatibility together with the torsion-free condition is
the de�ning properties of the Levi-Civita connection ∇. The two constraints
kills exactly enough degrees of freedom to allow the connection coe�cients to
be solved for in terms of the metric[9] to produce another well known relation

Γλµν =
1

2
gλκ(∂µgνκ + ∂νgκµ − ∂κgµν) (3.14)

The fact the connection and the metric are dependent dynamical variables
allows the theory of General Relativity to be formulated completely in terms of
the metric. When we consider alternative descriptions of Gravity this will no
longer be the case.

3.3 general bundles in general relativity

Instead of describing the curvature of space-time by bundles directly inherited
from the base manifoldM we will in the following sections develop a formalism
of more general �bre bundles. However, as previously stated, a �bre bundle
which we want to relate to gravity bears a special relation to space-time which
has huge impact on its construction. Because, in order to have any connection
with the curvature onM, which is what we want to describe, we need to intro-
duce a connection on our �bre bundle which is compatible with the metric, or at
least, the curvature of space-time. From another point of view; the connection
is required to induce a sensible curvature onM.

In the following we will present a �bre bundle formalism which is more
detached from the base manifold but still keep contact with its curvature. This
construction allows for a closer analogy with Yang-Mills theory, and actually
paves way for including YM as a special case of the theory.

3.4 orthonormal frame & vielbein

Instead of the coordinate induced frame �eld {∂µ} we may choose a frame �eld
{ea} dictated by orthonormality w. r. t. the metric g

g(ea, eb) = ηab (3.15)

where ηab are the components of the �at Minkowski metric η. Now, we know
that the transformations which preserve the Minkowski metric are the Lorentz
transformations

Λ c
a Λ d

b ηcd = ηab (3.16)

to preserve orthonormality we therefore restrict the change of basis to the fol-
lowing form

e′a = Λ b
a eb (3.17)
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where Λ b
a are the inverse Lorentz transformations. We call {eµ} the orthonor-

mal frame �eld which, instead of being related to the coordinates, is related
to the curvature of M. The relation between our two frame �elds de�ne the
vielbein �eld eaµ

∂µ = eaµea eµa ∈ ρ(GL(4,R)) (3.18)

Since in GR the vielbein �eld takes values in the matrix representation ρ of
the GL(4,R) group it automatically has an inverse eµa , satisfying

eµae
a
ν = δµν eµae

b
ν = δba (3.19)

Using eµa the de�nition (3.15) may be expressed in components

eaµe
b
νηab = gµν (3.20)

from where we see that the vielbein may be used as an alternative to the metric
as the dynamical variable of GR. The inverse vielbein �eld also relates the dual
basis of the coordinate frame {dµ} and the orthonormal frame {θa} by

dµ = eµaθ
a θaeb = δab (3.21)

Considering the (1, 1) tensor �eld T previously expressed in the coordinate frame
we may now transform its components into the new basis or express the tensor
in mixed components using the vielbein and its inverse

T µ
ν = eµaT

a
ν = ebνT

µ
b = ebνe

µ
aT

a
b (3.22)

3.5 Lorentz bundle & spin connection

Having partially freed ourself from the coordinate dependency by the formalism
introduced in the previous section we are in a better position to connect GR
with our developed notion of �bre bundles.

Since the change between orthonormal frames is carried out by Lorentz trans-
formations (3.17) one is naturally led to consider a frame bundle FM with the
Lorentz group G = SO(1, 3) as its structure group.

In order to consider di�erentiation a connection one-form ω is introduced
in the bundle to relate the group-space at nearby space-time points. The con-
nection takes values in the Lie algebra of G and needs to be represented by a
matrix to act on the frame �eld {ea} in V, the representation space of SO(1, 3).
We take the adjoint representation and identify the resulting object ωaµb as the
spin connection, where a and b are matrix indices in V. The spin connection
is used to de�ne the covariant derivative Dµ in the orthonormal basis, just like
Γλµν in the coordinate basis

DµT a
b = ∂µT

a
b + ωaµcT

c
b − ωcµbT a

c (3.23)
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Expressing an arbitrary vector v in a coordinate basis vµ∂µ and in an or-
thonormal basis vaea we demand the action of the corresponding covariant
derivatives ∇µ, as in (3.9), and Dµ to result in the same vector v′. This leads
to the following relation between the two formalisms

Γνµλ = eνa∂µe
a
λ + eνae

b
λω

a
µb

ωaµb = eaνe
λ
bΓνµλ − eλb ∂µeaλ

(3.24)

which can be manipulated into the vielbein postulate, which states the van-
ishing of the total covariant derivative of the vielbein

∇µeaν = ∂µe
a
ν + ωaµbe

b
ν − Γλµνe

a
λ = 0 (3.25)

Although we refer to R. Wald (1984) for a complete derivation of (3.24) and
(3.25) we want to point out that the vielbein and its inverse may always be used
to switch between the frame �elds, and that covariant di�erentiation of mixed
objects is always carried out using the corresponding connection coe�cients, as
in the above relation.

Since the spin connection behaves like a one-form we suppress the µ index
and use di�erential geometry language to present the previous results in this
new formalism. First we note that the de Rham di�erential d of the vielbein
ea is not a covariant object. But just as we corrected the partial derivative
by the use of the spin connection we may also construct an external covariant
derivative dω such that its action on ea yields a covariant object

dωe
a ≡ dea + ωab ∧ eb (3.26)

This is nothing but the torsion tensor T λ
µν expressed in a mixed basis, using

the vielbein, so that it may be viewed as a two-form which is vector valued in V

eaλT
λ

µν = T a
µν = T a = dωe

a (3.27)

Similarly the Riemann tensor may be expressed as a two-form

eaλa
κ
bR

λ
κµν = Rabµν = Ra

b (3.28)

and together with the torsion identity we get the Mauer-Cartan structure

equations which completely speci�es the curvature ofM

T a = dea + ωab ∧ eb

Ra
b = dωab + ωac ∧ ωcb

(3.29)

As when introducing the �bre bundle formalism we sometimes drop the
matrix indices too and signal that the objects takes values in the Lie algebra by
calligraphic letters, using our corrected di�erential dω the structure equations
may be written as

T = dωe

R = dω + ω ∧ ω
(3.30)
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Note that dωω makes no sense since ω is not a tensor and thus not covariant to
begin with. Using our shorthand notation we write down the Bianchi identities
as

dωT = R∧ e
dωR = 0

(3.31)

Note that dR 6= 0. Besides being good looking this notation makes it easier
to overview the overall symmetries in the theory, but for the underlying under-
standing and for practical computations it is usually useless.

3.6 Poincare gauge theory

When we describe gravity in terms of the vielbein �eld eµa instead of the metric
components gµν one should note that the vielbein has 16 independent compo-
nents wheres the metric, being symmetric, is reduced to having 10 independent
components. On the other hand we know that the metric is all we need to
describe space-time dynamics. The excess 6 degrees of freedom constitutes
our freedom to choose reference frame, which as we know should not alter the
physics. We have in a way introduced unnecessary information in the descrip-
tion which we then describe as a gauge theory like in the previous section. Thus,
in order to capture the dynamics of space-time we must also include the vielbein
in the description. The basic idea of the Poincare gauge theory (PGT) is to also
treat the vielbein e as a gauge �eld.

The most natural way of doing so is to extend the gauge group G to the
Poincare group ISO(1, 3), which is the semi-direct product of the Lorentz group,
with generators hij , and the generators of translation pa. These generators
satisfy the Poincare algebra

[pa, pb] = 0

[hij , pa] = (ηiaδ
b
k − ηkaδbi )pb

[hij , hkl] = ηijhjl + ηjlhik − ηilhjk − ηjkhil

(3.32)

where η is the Minkowski metric. The total gauge �eld A may then be decom-
posed into a Lorentz and a translational part, which may be expanded in the
generators

A = ωijhij + eapa (3.33)

Construct the covariant derivative

Dµ = ∂µ + ωijµ hij + eaµpa (3.34)

and the corresponding �eld strengths

[Dµ,Dν ] = Rijµνhij + T aµνpa (3.35)
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which naturally also breaks up into two parts. The essence in PGT lies in
introducing a constraint of the form

T aµν = 0 (3.36)

which cuts the degrees of freedom of the theory down to 10 to match with
General Relativity. The above constraint also allows ωijµ to be solved for in
terms of eaµ [10]

ωµab =
1

2
eνae

λ
b (Ωµνλ − Ωνλµ + Ωλµν) Ωµνλ = (∂µe

c
ν − ∂νecµ)eλc (3.37)

and makes the spin connection dependent on the vielbein in the same way as the
Levi-Civita connection depend on the metric. It is precisely this feature of PGT
which makes it di�er from standard gauging in Yang-Mills theory. In YM the
gauge �elds are always independent wheres in the case of PGT the connection ω
has to agree with the curvature of space-time which is dictated by the vielbein
e.

3.7 Einstein-Cartan action

The shift of focus from the metric g to a gauge �eld containing the vielbein e
and spin connection ω leads us to revisit the Einstein-Hilbert (EH) action of
General Relativity. When a cosmological constant Λ is added to the picture this
action looks like

SEH =
1

2k

∫
M

(R− 2Λ)
√
|g|dx4 k = 8πG

g = det g
(3.38)

where R is the Ricci scalar and G the gravitational constant. Let us now do a
bit of rewriting to reach a form where the relation to e and ω becomes clear.
First, de�ne a metric weighted Levi-Civita symbol by

εµνλκ =
√
|g|εµνλκ (3.39)

where εµνλκ is the usual Levi-Civita symbol. This allows us to replace the metric

volume form
√
|g|dx4 in the action by 1

4!εµνλκdx
µ ∧ dxν ∧ dxλ ∧ dxκ. Using the

Riemann tensor written as a gl(4,R) valued two-form Rλκ bring the action into
the following form

SEH =
1

4k

∫
M
εµνλκ

(
dxµ ∧ dxν ∧Rλκ − Λ

6
dxµ ∧ dxν ∧ dxλ ∧ dxκ

)
(3.40)

since all terms are GL(4,R) invariant we can freely change to any basis. Going
to the orthonormal basis so that dxµ → ea, and noting that in this frame
εabcd = εabcd since

√
|g| =

√
|η| = 1, yields the following form of the action

SEH =
1

4k

∫
M
εabcde

a ∧ eb ∧
(
Rcd − Λ

6
ec ∧ ed

)
(3.41)
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This is still nothing but the Einstein-Hilbert action in an orthonormal basis.
But now we just replace the Levi-Civita connection by the spin connection and
its corresponding curvature two-form Rω, and relax the constraint of vanishing
torsion, to obtain the Einstein-Cartan (EC) action

SEC =
1

4k

∫
M
εabcde

a ∧ eb ∧
(
Rcdω −

Λ

6
ec ∧ ed

)
(3.42)

Apart from utilizing e and ω instead of the metric g the main di�erence between
the EH and the EC formulations of gravity is of course the allowance for torsion.
The torsion is however con�ned to matter �elds, this can be seen by looking
at the corresponding equations of motion for the free �eld theory obtained by
varying e and ω respectively

εabcde
b ∧
(
Rbcω −

Λ

3
ec ∧ ed

)
= 0

εabcddω
(
ec ∧ ed

)
= 0

(3.43)

These equations reduces to Einsteins equations if there exist an inverse of the
vielbein �eld. That is, there exist a �eld eµa such that

eµae
b
µ = δba (3.44)

This demand is equivalent to adding a metric structure onM because an inverse
vielbein �eld may be used to de�ne a nonsingular metric gµν by

gµν = eaµeνa (3.45)

Under these assumptions (3.43) reduce to usual equations of general relativity
since the inverse vielbein may be used to eliminate eaν from the equations

eνae
λ
bRabµν ≡ Rλµ = 0

T aµν = 0
(3.46)

However, in the presence of matter �elds the torsion will in general not vanish
since it is not a constraint of the theory like in PGT or GR. Due to the absence
of such a constraint the gauge �elds e and ω remain independent rendering EH
much more similar to YM-theory than the other gravitational theories which so
far have been presented.

3.8 de Sitter gauge theory

A possible geometrical approach on de Sitter gravity on a 4-dimensional space-
time manifoldM lies in combining the spin connection ω and the vielbein �eld
e into a uni�ed SO(2, 3) connection A by

A = ω + e. (3.47)
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It is known, as will be shown in the following, that in order to correctly mimic
the properties of ω and e in gravitational theories the connection A should
not transform under the full symmetry of G = SO(2, 3). Instead a symmetry
broken by a nonlinear realization of G is considered. This is accomplished by a
separation of G into its Lorentz subgroup H = SO(1, 3) and the quotient space
K = G/H. In terms of the Lie algebras this splitting is written

g = h⊕ p (3.48)

where g and h are the Lie algebras of G and H respectively, and p contains the
generators of G which are not included in its sub-Lie algebra h. Let gA, hi and
pa be the generators of the corresponding Lie algebras, then

{gA} = {hi, pa}. (3.49)

This splitting in the Lie algebra is invariant under Lorentz transformations. In
the following the splitting is assumed to correspond to a Cartan decomposition
so that the Lie algebra commutation relations may be generally written as

[hi, hj ] = f k
ij hk

[hi, pa] = f b
ia pb

[pa, pb] = f i
ab hi

(3.50)

Now turn the attention to the gauge �elds corresponding to the presented
symmetries. Let barred symbols denote the usual, linear, Yang-Mills (YM)
�elds of the full, unbroken, SO(2, 3) symmetry and expand in terms of the Lie
algebra generators

Ā = ĀAgA = H̄ihi + K̄apa (3.51)

A new gauge �eld A, corresponding to a nonlinear realization of SO(2, 3) is
introduced according to the following identi�cation[11]

Ā = k−1
(
d +Hihi +Kapa︸ ︷︷ ︸

A

)
k k = eξ

apa (3.52)

where d is the de Rham di�erential and the parameters ξ ∈ R1,3 are a set of 4
scalar �elds which, until contact with gravity is made, are left arbitrary. The
new gauge �elds comprising A may be expressed in terms of ξ and the barred
�elds as

Hi
µ = H̄i

µ (3.53)

Ka
µ = K̄a

µ + ∂µξ
a + faibH̄

i
µξ
b (3.54)

The geometrical importance of ξ as a Goldstone �eld will not be pursued here,
but note that the Lorentz gauge �elds are independent of ξ, thus the subgroup
SO(1, 3) still generates linear transformations.

28



In the neighbouhood of the identity of G a group element may be expressed
as g = kh. Specifying k by the scalar �elds ξ thus gives a unique correspondence
between g and an element h ∈ H. Without referring to a speci�c k this relation
may generally be written as

gk = k′h k, k′ ∈ K (3.55)

Using the above correspondence the new �elds Ha and Ki has the following
transformation properties under the action of g ∈ G

H̃i = hHih−1 + hdh−1 (3.56)

K̃a = hKah−1 (3.57)

Concluding that Ka transform covariantly and do not mix with Hi the
following splitting in the full covariant derivative D̂µ is sensible

D̂µ = ∂µ +Hi
µhi︸ ︷︷ ︸

Dµ

+Ka
µpa = Dµ +Kµ (3.58)

In a nonlinear realization the generators pa no longer generates symmetries,
thus the only gauge degrees of freedom which are left is the Lorentz symmetry.
This can also be seen from a constructed relation

hk = hkh−1︸ ︷︷ ︸
k′

h (3.59)

by identifying k′ in comparing with (3.55). Here the gauge transformation
of an element h ∈ H is seen to be independent of k, thus also on ξ, leaving
the Lorentz symmetry unbroken. From this fact Dµ in (3.58) is identi�ed as
the usual covariant derivative, i e. the covariant derivative w. r. t. the remaining
symmetries.

Dµ = ∂µ +Hµ (3.60)

The gauge �elds Kµ also transform covariantly (3.57) thus ensuring the neces-

sary covariance of the object D̂µ under G. In a linear realization the total of D̂µ

would of course also transform covariantly, but not separately in Dµ and Kµ as
in this case.

In order to make contact with gravity note that the spin connection ωȧ
µḃ

is nothing but the adjoint representation ρ of the Lorentz gauge �eld Hi
µ. The

dotted indices corresponds to the orthonormal frame onM and are manipulated
with the Minkowski metric ηȧḃ. The relation between Ha

µ and the vierbein eȧµ
has to be imposed by hand, in contrast with the previous relation, through
identifying the scalar �eld ξ ∈ R1,3 with the coordinates {xµ} inM[13]

ξa = δaµx
µ (3.61)
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This identi�cation is possible because of the agreement in transformation prop-
erties of eȧµ and Ka

µ, and in the dimension of the corresponding spaces dimM =
dimG/H. By this argumentation the connection A is identi�ed with the spin
connection and vielbein:

Hi
µ
ρ
= ωȧ

µḃ

Ka
µ ' eȧµ

}
=⇒ Aµ = ωµ + eµ (3.62)

Considering a principal bundle P(M,G) the above identi�cations puts the
base M in a one-to-one correspondence with the G/H part of the structure
group

M' G/H (3.63)

The dots on the indices are from here on dropped and ȧḃ will whenever possible
be denoted by just â so that the new commutation relations are just the ones in
(3.50) with i-indices replaced by â. But keep in mind the new indices intimate
connection with space-time as they correspond to the orthonormal frame �eld
on M. Taking values in the Lie algebra g = so(2, 3) = so(1, 3) ⊕ p the gauge

�elds eaµ and ωaµb may still be expanded in the generators so that D̂µ may be
rewritten as

D̂µ = ∂µ + ωâµhâ + eaµpa ωâ = ωabµ = ηbcωaµc (3.64)

The full curvature F̂µν is related to D̂µ in the usual sense

[D̂µ, D̂ν ] = F̂AµνgA = F âµνhâ + F̃aµνpa (3.65)

By calculating how the nonlinear realization and the splitting (3.64) in D̂µ
carries through in the curvature two important results are found, the �rst being

F âµν = ∂νω
â
µ − ∂µωâν + f â

b̂ĉ
ωb̂νω

ĉ
µ︸ ︷︷ ︸

Râµν

+f â
ab e

a
νe
b
µ (3.66)

whereRâµνhâ = [Dµ,Dν ] is the curvature with respect to the Lorentz subgroupH
and the remaining term will be shown to correspond to a cosmological constant.
The second result is obtained via an investigation of F̂aµν

F̃aµν = ∂µe
a
ν − ∂νeaµ + f a

ĉb ω
ĉ
νe
b
µ = Dµeaν −Dνeaµ︸ ︷︷ ︸

T aµν

(3.67)

where the torsion tensor T aµν is identi�ed. The choice of gauge (3.61) singles
out a speci�c 6-dimensional hypersurface in the 10-dimensional group space of
P(M,G). On this hypersurface F̃aµν = T aµν and there is no need for this identi-
�cation to be imposed from outside.
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Attempting to construct an action in complete analogy with Yang-Mills the-
ory

Ĩ =

∫
tr(?F ∧ F) (3.68)

presents us with the problem that the Hodge star operator ? depends explicitly
on the metric. Introducing another sort of dual ∗ which instead acts on the Lie
algebra indices, according to ∗F â = εâb̂F

â = Fb̂. The metric in the orthonormal
basis is just ηab which allows an action of the form

I =

∫
tr(∗F ∧ F) =

∫
εâb̂F

â
µνF b̂λκεµνλκd4x (3.69)

This action is not invariant w. r. t. the full gauge group G due to the nonlinear
realization but rather w. r. t. the linearly realized subgroup H. Substituting
the relation F âµν = Râµν + f â

ab e
a
νe
b
µ into the above expression the following

decomposition of the action is obtained

I =

∫
εâb̂
(
RâµνRb̂λκ + 2Râµνebλeaκf b̂

ab + eaµe
b
νe
c
λe
d
κf

â
ab f

b̂
cd

)
εµνλκd4x (3.70)

Note that the action, also in this expanded form, consists solely of H-covariant
objects (R, e and scalars) due to the nonlinear realization. Normally R is co-
variant but none of the gauge �elds themselves.

The last two terms are precisely the Einstein-Cartan action so that we may
write

I =

∫
tr
(
∗R ∧R

)
+ IEC (3.71)

The �rst term is a topological term called the Euler characteristic, being topo-
logical this term do not contribute to the equations of motion. Thus, de Sitter
gravity constitutes a geometric derivation of the Einstein-Cartan theory from
gauge principles in a way which bears striking similarities with the formulation
of Yang-Mills theory. Not being invariant under the full gauge group still dif-
ferentiates between the two theories.
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4 epilogue & outlook

The de Sitter gauge theory of gravity in the way which has been presented in the
previous section was invented and developed by Mansouri and MacDowell dur-
ing the late 1970s. What one may regard as unsatisfactory in their theory is the
failure of their action to be invariant under the full symmetry group SO(2, 3),
which is the starting point for unifying the vielbein and spin connection.

The theory can be set up for a spontaneous symmetry breaking in a way
presented by Stelle and West[15] a couple of years later. Their action regains
the full symmetry by the introduction of a new �eld which in a way compen-
sates for the de�ciency in the Mansouri-MacDowell formulation. However, the
sole purpose of the introduced �eld is to break the symmetry, it has no physical
interpretation like the Higgs mechanism in the standard model. Thus one may
still ask if there exist a more natural, geometrically derivable, cause behind the
symmetry breaking.

Before addressing this question we introduce the notion of an extended tan-
gent space which, apart from being mathematically interesting, opens up new
doors for physical theories.

4.1 extended tangent bundle

We introduce the formalism of tangent bundles with higher dimensionality than
the base space. Our reference is a paper by Chamseddine from 2010[16] but we
keep the results slightly more general in order to connect it to our outlook.

Let M be a smooth m-dimensional manifold covered by an atlas with the
coordinate basis eµ = ∂/∂xµ, a metric and a metric inverse is then de�ned by

eµ · eν = gµν gµλgλν = δµν (4.1)

Following Chamseddine we now consider an N -dimensional tangent bundle
TM, where N ≥ m, spanned by orthonormal vector �elds vA with respect to
the Minkowski metric

vA · vB = ηAB ηACηCB = δAB (4.2)

so that local Lorentz transformations ΛBA preserve orthonormality

ṽA = ΛBAvB ΛACΛBDηAB = ηCD = ṽC · ṽD (4.3)

Note that η is constant whereas g generally is not. Greek indices run from 0 to
m− 1 and capital Latin indices run from 0 to N − 1.

We expand the coordinate basis eµ in terms of the orthonormal basis vA

eµ = eAµvA (4.4)
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the vielbein eAµ then gives an expression for gµν

gµν = eAµ e
B
ν ηAB (4.5)

Note that an inverse relation is not canonically de�ned since, in general, N
may be larger than d resulting in eAµ not being invertible. We may, however,
de�ne a useful object eµA by

eµA = gµνηABe
B
ν (4.6)

with the properties
eµAe

A
ν = δµν but eµAe

B
µ 6= δBA (4.7)

In order to �nd an expression for eµAe
B
µ along a canonical yet non-trivial path

we have to restrict ourselves to the case where N = d+ 1.[16] In this case TM
may be spanned by {eµ,n}, where n is a mutually orthogonal base vector. In
this new basis vA may be expanded as

vA = vνAeν + nAn. (4.8)

Using this expression for vA in (4.4) and the orthogonality condition of n we
�nd

eµ = eAµ v
ν
Aeν + eAµ nA︸ ︷︷ ︸

0

n =⇒ eAµ v
ν
A = δνµ (4.9)

By the relation eµAe
A
ν = δµν we identify the components vνA with those of eνA and

we obtain
vA = eνAeν + nAn. (4.10)

Writing out the metric ηAB in this expansion we get

ηAB = vA · vB = eµAe
ν
Bgµν + nAnBR (4.11)

multiplying this equation by ηCB , relabel C → B, and solving for the �rst term
on the RHS we �nally obtain an expression for eµAe

B
µ

eµAe
B
µ = δBA − nAnBR ≡ PAB (4.12)

where we see that it takes the form of a projection operator PAB satisfying

PAC P
C
B = PAB (4.13)

In the pursuit of this result we applied a certain frame {eµ,n} which can
be seen as an analog to the Darboux frame in Riemannian geometry. A big
di�erence, however, is that no embedding ofM is needed due to our extension
of the tangent space.
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4.2 symmetry reduction of SO(2, 4)

The Lie group G = SO(2, 4) is a common supergroup of; the de Sitter, the
anti-de Sitter and the Poincare symmetry groups. It is known that the action
of SO(2, 4) on a 6-dimensional vector space which keeps a certain vector n
invariant is subject to the following symmetry reductions:

SO(1, 4)

SO(2, 4) 0 -

+

-

ISO(1, 3) - SO(1, 3)

-

−
-

SO(2, 3)

-

where +, − and 0 indicates positive, negative and null norm of n respectively.
All subgroups are further reducible to the Lorentz group, which represent sym-
metries that should apply to space-time.

4.3 generalized Cartan geometry

In the light of the possibility of an extended tangent space and the symmetry
reductions of SO(2, 4) one may anticipate a theory involving a Cartan SO(2, 4)
connection where the corresponding Klein geometry [17] is dependent on the
change of curvature along a direction in space-time. This generalized theory
would reduce to the symmetry of SO(1, 4), SO(2, 3) or ISO(1, 3) in the case of
constant curvature.

If there is no in�nitesimal change in curvature along a given direction the
relevant Klein geometry would be ISO(1, 3)/SO(1, 3) resulting in Minkowski
space and Poincare symmetry. If the change is positive or negative the symme-
try group would be SO(1, 4) or SO(2, 3) respectively, with a curvature of the
corresponding Klein geometry matching that of space-time, in�nitesimally and
given a direction.

Considering the extended tangent bundle this curvature dependent symme-
try breaking from SO(2, 4) to one of its natural subgroups would be represented
by the norm of the extra base vector n introduced in the two previous sections.
The extended tangent space, being 5-dimensional, allows for topological actions
of the Chern-Simons type to be considered for the theory even though space-
time would still be 4-dimensional.

Another interesting feature of this theory result from the extension of the
local connection one-form into the n-direction of the tangent space. Since the
norm of n is related to the scalar curvature this extension become signi�cant
only at the length scales of particles, where the curvature changes rapidly, re-
sulting in a dramatical change in the behaviour of gravity at the quantum level.
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Investigating such a two-folded spontaneously broken gauge theory, from
SO(2, 4) down to SO(1, 3), the common stabilizing subgroup of SO(1, 4), SO(2, 3)
and ISO(1, 3), would to be an interesting generalization and natural line of re-
search in the �eld of gravitational gauge theories.
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