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Abstract

Equivariant localisation is based on exploiting certain symmetries of some systems, generally represented
by a non-free action of a Lie group on a manifold, to reduce the dimensionality of integral calculations
that commonly appear in theoretical physics. In this work we present Cartan’s model of equivariant
cohomology in different scenarios, such as differential manifolds, symplectic manifolds or vector bundles
and we reproduce the main corresponding localisation results.
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Chapter 1

Introduction

Symmetries have been largely used during the last decades to simplify systems in mathematics and
theoretical physics, especially in the study of dynamical systems. In the beginning of the 1980s, the Dutch
mathematicians Hans Duistermaat and Gert Heckman observed that some integral operations common
in symplectic geometry could be simplified when certain symmetry conditions where met. More precisely,
they proved that some oscillatory integrals over compact symplectic manifolds could be reduced to easier
operations by establishing that the semi-classical approximation was, in fact, exact. Some months later,
Michael Atiyah and Raoul Bott showed that those results could be understood in terms of the so-called
equivariant cohomology, a concept introduced by Henri Cartan in the 1950s, but it was the French math-
ematicians Nicole Berline and Michele Vergne who in 1982 and 1983 derived the first general integration
formulae valid for Killing vector fields on general compact Riemannian manifolds. This was the birth of
what now is called equivariant localisation, the object of the present work.

Equivariant localisation is based on exploiting certain symmetries of some systems, generally rep-
resented by a non-free action of a Lie group on a manifold, to reduce the dimensionality of integral
calculations. Particularly interesting are the cases when this reduction, known as localisation, allows
a finite-dimensional integral to be expressed as a sum of a finite number of elements. Equivariant lo-
calisation can also be used to reduce path integral calculations -which appear very often in theoretical
physics even though they are not completely well defined from a mathematical point of view- to more
familiar and better defined finite-dimensional integrals, although this case lies out of the scope of this
work. Localisation properties can be explained in different mathematical languages. In this work we will
use Cartan’s equivariant cohomology terms, which are based on the creation of similar elements to the de
Rahm complex but taking into account the action of a Lie group on the manifold. To perform calculations,
we will introduce the concept of anti-commutative variables and do operations in the exterior bundle of
the manifold understanding it as a supermanifold. This will allow us to establish an invariance under
coordinate changes and proof the exactness of saddle-point approximations on our integral calculations.

The present work is structured as follows. On Chapter 2 we do a review of necessary mathematical
concepts, including differential geometry, Lie groups and algebras and the basics about supergeometry
and supermanifolds. It contains reproductions of the main references of this work [1, 2], as well as
[7]. On chapter 3 we study equivariant cohomology in different scenarios: manifolds, vector bundles,
symplectic manifolds and supermanifolds, following and reproducing mostly [1, 3]. Finally on Chapter
4 we develop localisation results on these scenarios, like the BERLINE-VERGNE and the DUISTERMAAT-
HECKMAN theorems. This chapter contains all the original work, providing more extended and detailed
proof of the results of [1, 19], illustrating them with examples and showing how the techniques can be
used as a prescription to non-compact scenarios.



Chapter 2

Mathematical Preliminaries

In this chapter we will review some necessary mathematical concepts of differential geometry, vector
bundles, Lie groups and an introduction to the concept of supermanifolds. If the reader is already
familiar with these concepts, we suggest to skip this chapter.

2.1 Review of Differential Geometry

2.1.1 Calculus on Differential Manifolds

Vectors, differential forms and tensors

We start by a short review on the calculus on differential manifolds following mostly [1, 2]. Let M be
a C* n-dimensional manifold, i.e. a paracompact Hausdorff topological space with an open covering
M =, U;, where each U; is homeomorphic to R™ and the local homeomorphisms induce C*°-coordinate
transformations on the overlapping regions. This means that locally the manifold can be treated as R"
even though the global properties of the manifold can be very different from the Euclidean space. In
particular, around each point p € M we can choose a neighbourhood U ~ R"™ and define local coordinates

x = (2!, 22,...,2™) using the local homeomorphisms. This allows to define tangent vectors of the form
0
V=Vt— 2.1
oxt (2.1)

that act on any f € C>®(U) as V(f) := V*0,f(p). The {9/0z"} span an n-dimensional R-vector
space called the tangent space at p, T, M. Generalising this concept, we can define vector fields V =
VH(x)0/0zH, where VH(x) € C*°(M). They are defined in the tangent bundle of M, the disjoint union
of the tangent spaces of all points in M

TM:= | | TuM. (2.2)
zeM

Any given R-vector space W has a dual R-vector space W*:= Homg (W, R), the space of linear functionals
on W. The dual space of the tangent space at a point p is called the cotangent space at p, T; M. Its dual

basis {dxz*} is defined by the relation
di < 0 ) o, (2.3)

ozv
and the disjoint union of all cotangent spaces forms the cotangent bundle

T"M:= | | Thm. (2.4)

reM
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These notions can be easily generalised using tensor products to define new spaces:

e The space of rank-(k,0) tensors at z, (T M)®F .= {T : LM ® b T,M — R, T multilinear},
with elements
T=T,. pd" ®.. ®dz"" (2.5)

e The space of rank-(0,1) tensors at x, (TyM)®!, with elements

0 0
— H1- T
T=T ! S R..® py (2.6)
e The space of rank-(k,1) tensors at x, (T*M)®* @ (T, M)®!, with elements
T=T/"" 9 9 dzh At 97
— tpur.pk Py ®...Q w RKdr™t Q... dx ( . )

and their corresponding tensor fields, where the components 77" (x) are C* functions on M.

The notation of partial derivatives and differentials is especially useful when it comes to C*° coordinate
transformations ' = (), since the chain rule applies in the usual form

0 oz 0 ozt

— =, dzt =

Oxr Ozt dx' Ox'

Moreover, since the tensor fields are defined globally in M, they must be coordinate-independent objects,
so the local coordinates must transform as

oM 9™ Pt OV
= e
o Oxtt Ok xler T OxlPk Tull...l/kl (‘T) (29)

da’. (2.8)

Tl;)\l‘..)\l, (I/>

1---Pk

in order to have TV = T.

Differential forms and the de Rahm Complex

Some of the most common objects in differential geometry are the differential forms. To be able to
define them, however, we must first define the exterior product, A, which is the multilinear antisymmetric
multiplication of elements of the cotangent space at x € M,

At A A dats =Y e(P) dat o) @ L@ datre, (2.10)
PeSy

where Sj is the permutation group of k elements and e(P) denotes the sign of the permutation p. So
for example dz A dy = dr ® dy — dy ® dx. The linear combinations of all these elements form the
antisymmetrisation of the k-th tensor power of the cotangent space at x,

AT M)BF = {a = lcummmcdsr’“ A A dx“’“} . (2.11)

k!

If we think again the components ay,.. ., as C* functions on M, we get the disjoint union of the
antisymmetrisation spaces at each = € M, called the k-th exterior power,

MM:= | | AT;M)®F (2.12)
reM
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Its elements are called differential k-forms, whose components are totally antisymmetric in their indices
1, -y - As particular cases, we have A°M = C®(M), A*M = T*M and A*M = {0} for k > n. The
direct sum of all the k—th exterior powers,

AM =P A*M, (2.13)
k=0

can be made into a graded-commutative algebra, called ezterior algebra of M, by considering the exterior
product A. Given o € AP M and 8 € AYM, we have a A 8 € APTIM, where

AB = A dz"t A ... A dxFett 2.14

« B (p+q)|(a ﬁ)ﬂl~~~ﬂp+q(x) € €T ( )

(Oé A B)Hlmﬂerq ('T) = Z G(P)aup(l)---MP(p) (x)ﬁHP(p+1)'“FLP(p+q) (Z‘) (2'15)
PeSpiq

Being graded-commutative means that 5 A a = (—1)P18 A a.

Finally, we would like to briefly introduce the de Rahm complex. To do so, we have to first introduce the
linear operator

d: A"M — AR M (2.16)
locally defined by
1
do = ) (do)py ..y () dHE A LA daHet (2.17)
0
(da)ﬂ1~~~ﬂk+l($) = Z E(P)Waup(z)mﬂp(m—n(w)' (2'18)
PcSky1

This operator is called exterior derivative and it is a graded derivation, meaning that it satisfies the
graded Leibniz property

dlaAB)=daAB+(—1Pards, acAPM,BeAIM. (2.19)

The exterior derivative has another very important property: it is nilpotent, d?> = 0. This property allows
us to build the so-called de Rahm complex (M, AM,d) in the following way. We start by defining two
important subspaces of AM:

o ker d = {a € AM : do = 0}, whose elements are called closed.
e imd ={a € AM : 38 € AM such that o = df}, whose elements are called ezact.

From the nilpotency of the exterior derivative it easily follows that every exact form is closed. Therefore
we can define the so-called k-th cohomology group

Ker djps
HY(M,R) 1= - CAM (2.20)

im djpr-104 ’

so that a, 8 € [a] if and only if a — 3 = dy for some v € A*~1 M.
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The de Rahm cohomology has many applications within theoretical physics. Two important results that
we shall not prove -but can be found in many textbooks like [6]- are the following:

Lemma 2.1 (Poincaré’s lemma). If dw = 0 in a star-shaped region S C M, then w = df for some 0 in
S. This is only true globally in M if w € [0].

/M aw=¢ K (2.21)

In particular, this implies that if OM = (), then integrals depend only on the cohomology class.

Theorem 2.2 (Stoke’s theorem).

2.1.2 Vector Bundles, Connections and Curvature
Definition of vector bundle

We briefly review the concept of vector bundle. For a more detailed explanation, we recommend [2, 6].
A vector bundle (E,m, M) of rank n consists of two differentiable manifolds E, M called the total space
and base space respectively, and a differentiable map m : E — M, so that each E, := 7~ !(z) has the
structure of an n-dimensional R-vector space Vr € M and the local triviality condition is satisfied: for
each x € M there is a neighbourhood U of x and a diffeomorphism ¢ : 7=1(U) — U x R™ so that Vy € U,
oy = ¢|p, : By — {y} x R™ is a vector space isomorphism. This condition basically says that locally the
vector bundle looks like the product M x R"™ even though its global properties might be very different.
In the particular case E = M x R", the bundle is called trivial.

The pair (U, ¢) is normally called a bundle chart and ¢ is the local trivialisation. If {U;} is an open covering
of M such that on each U; the bundle is trivial and ¢; : W’l(Ui) — U; x R™ are the corresponding local
trivialisations, then for each U; NU; # () we define the transition maps ¢;; : Uy " U; — GL(n,R) by the
expression

w0 (x,v) = (z,05(x)v), Yz eU;NU;, veR", (2.22)

where GL(n,R) is the general linear group of R™. As a consequence of the vector bundle definition, the
transition maps satisfy three important properties:

ii(r) =idgn  for z € U; (2.23)
@ij(a:)goji(x) = ian for z € Ul n Uj (2.24)
Vir(2)orj(z)pji(x) =idrn  for a € U;NU; NUy. (2.25)

Given a vector bundle (E,m, M), we define a section to be a differentiable map s : M — E such that
mos =idy. The space of sections of F is denoted by I'(E). The tangent bundle 7'M is an example of a
vector bundle and vector fields are examples of sections.
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Linear connections

An important object to be defined on a vector bundle is a (linear) connection. Let (E,m, M) be a vector
bundle and consider a map
V :T(E) - [(E) @ T(T: M), (2.26)

where the notation Vyo := Vo(V), ¢ € I'(E), V € T'(TM) is commonly used. We say that V is a
(linear) connection or covariant derivative if it satisfies the following properties:

e V is tensorial in V:
Vviwo =Vyo+ Vyo, VW eT,M, o eT'(E), (2.27)
Vyvo = fVyo, feceM), Vel (TM), o e(E). (2.28)
e V is R-linear in o:

Vv(oc+7)=Vyo+ Vyr, VeTuyM, o,71 € T(E). (2.29)

e The product rule is satisfied
Vv(fo)=V(f)o+ fVvo, fecrM), VvelT,M,ocecl(E). (2.30)

It is interesting to describe V in terms of local coordinates. To this end, consider a point zg € M, a
neighbourhood U and the corresponding coordinate vector fields 9/9z'. We can assume E|y ~ U x R"
and from the basis of R™ obtain a basis 1, ..., i, of T'(E|y). Then we can locally characterise a linear
connection V using the so-called Christoffel symbols I’;k defined by

V%,uj =: Ffj I (2.31)
where naturally 1 =1,...,d =dim M and j,k=1,...,n.

Consider now p € T'(E|y), which we can always write as u(y) = a*(y)ux(y), and a smooth curve c(t) in
U. Writing u(t) := p(c(t)) -which becomes a section along c(t)- and V (t) = é(t) = ¢'(t)0/dz", from the
definition of linear connection and Christoffel symbols we obtain:
Vymp(t) = Ve -2; (a" () (c(t))) = éi(t)vﬁ (a"(t)pr(c(t)))
NG i j
= ()57 (Wmn(e(t)) +¢ ()a" (T (c(t)) s (e(t))

= a" (t)pr(c(t)) + & (8)a" (T (e(t) s (e(1)), (2.32)

which looks like a linear system of first degree ODEs for the coefficients a'(t), ...,a™(t). Therefore, given
an initial value p(0) € E,( there is a unique solution for x(t) such that

Vé(t)/,l/(t) =0. (2.33)
This solution is called the parallel transport of u(0) along the curve c¢(¢).

The concept of parallel transport can help us give a geometric intuition to linear connections. Consider a
point 9 € F and the corresponding tangent space T, 2. There is a naturally distiguished subspace, called
the wertical subspace, Vy = E, C TyE, where & = 7(¢), but there is no distiguished complementary
subspace Hy to Vi in the sense that TyE = V,, ® Hy. However, given a linear connection V, we can
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parallel transport ¢ in the direction X for every X € T, M using a curve with ¢(0) = z, ¢(0) = X,
obtaining a curve (t) in each case. Then the space spanned by all vectors

d
%7/)(’5”15:0 =0 (2.34)

is complementary to Vi, obtaining the desired horizontal space. In this sense, we can say that V gives
a rule on how the fibres of neighbouring points are connected with each other, hence the name connection.

It is also interesting to observe that from (2.32) we can write in general

V(a* uy) = da* py, + a? Apg, (2.35)
where A € T'(gl(n,R) @ T*M|y) is the (n x n)—matrix-valued 1-form on U defined by A{c = F{kdxl. We
write V=d + A.

Once we have V : AP(E) — APTL(E), we can define its extension to product or dual bundles. Let
us consider E7, F5 vector bundles over M with their respective connections V1, V. Then the induced
connection V on the product bundle £y ® F5 is defined by the requirement

V(i ® p2) = Vipn @ pio + pi1 ® Vapa, pi € T(E;). (2.36)

In a similar manner, if E is a vector bundle and E* its dual bundle -i.e. the bundle over M with E}
as fibre space-, then if V is a connection on F, the induced connection V* on E* is defined by the
requirement

dv*(p) = v*(Vu) + (V') (), we E. v e E". (2.37)
If we think it coordinate-wise, from V =d + A,
0 = dp; (15) = i (Af i) + (A3 uf) (i) = AL + AT (2.38)

from which we conclude that A* = —AT. A particular case that we will use often is the bundle End(E).
If V is a connection on E, then the induced connection Vg in End(E)= E ® E* will be
VEo = V(o @ p}) = (dol)w @ p} + o5Ve(u © 1))
= (do})ps @ W5 + 05(Viaa) @ i + 0 ® (V' 4i5)
= (dof)ui @ pj + o5 Af e @ g1 + 03 AT i @ o
= (dof) s @ 1 + 0§ Af i @ 1 — 0 A s @ i (2-39)
=do + [A, o], (2.40)

where 0 = ojp; @ pj € T'(E® £*) = I'(End(E)).

The curvature of a vector bundle

It is useful to extend V from I'(E) to I'(F) ® AP(M) by imposing
Vip®@a) =Vuha+p®da, uweT(E), a e AP(M). (2.41)

It is customary to write AP(E) := I'(E) ® AP M. In these terms, we have now V : AP(E) — APTL(E),
which reminds us to d : APM — APTI M. We would be temptated to assume that V is also nilpotent,
but this is not true in general. The failure of V to be nilpotent, and therefore to build a complex, is
measured by the curvature of F,

F:=VoV:AYE)— A*(E). (2.42)
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If FF = 0 we say that the bundle is flat. Using the matrix A defined previously we can give a local
expression for F. Given u € A°(E) = T'(E) we have

F(p) = (d+ A)o (d+ A)p = (d+ A)(dpu + Ap) = d>pu + d(Ap) + Adp + AN Ap (2.43)
= (dA)u — Adp+ Adp+ AN Ap = (dA)p+ AN Ap, (2.44)

where the minus sign comes from the fact that A is a 1-form. We can thus compactly write F' = dA+AAA.

We can also think F' in (2.42) as F € A?2(E)®(AY(E))* = A%2(End(E)). This allows us to get the following
result:

Theorem 2.3 (Second Bianchi identity). If F' is the curvature of a connection V of a bundle E, then
VegF =0.

The proof is straightforward considering F = dA+ A A A and (2.40):

VeF =dF + [A,Fl =d(dA+ANA)+[A,dA+ ANA] =
=d’A+dANA—ANdA+ANAA+ANANA—dANA—ANANA=O (2.45)

The Levi-Civita connection

A manifold M is said to be Riemannian if it has a globally-defined non-degenerate tensor
g= guu(x) drt ® dxya (246)

which is called metric tensor or simply the metric. Consider now a vector bundle £ on M with a
connection V. The connection is said to be metric if

dg(p,v) =g(Vu,v)+ g(u, Vv), w,v € T(E). (2.47)
Take now the concrete case £ = T'M, i.e. the tangent bundle. V is said to be torsion-free if
VxY -VyX - [X,Y] =0, X, Y e TM. (2.48)

This condition is equivalent to saying that the Christoffel symbols are symmetric with regard to the two
lower indices. It is easy to proof (see [2]) that there exists one and only one connection on T'M which is
metric and torsion-free. This connection is referred to as the Levi-Civita connection and its Christoffel
symbols are given by

1
T = §9kl(3jgu +0igji — D19i5)- (2.49)

It is easy to see that I'*. = I'®. | so it is indeed torsion-free.

g v

The curvature R of this connection is normally given in terms of the Riemannian curvature temsor
coefficients Rklij as follows

o 0 0 i 1o}
k (ax m) ga1 ~ T g (2:50)
The first index can be lowered as Ryij := grm R 15, i.e.
o 0 o 0
Biis =9 (R (ax ax> prd amk) : (2:51)
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These coefficients present very useful symmetries, namely

Rklz’j = _leij (2.52)
Ry = — Ry (2.53)
Ryiij = Rijki (2.54)

(2.55)

Ryiij + Riiji + R = 0,

where (2.55) is commonly referred to as the first Bianchi identity. The coefficients can moreover be
explicitely calculated in terms of the Christoffel symbols
Ry = 0T — o, + T, I jl = T}, T} (2.56)

gm* il -

Characteristic classes

We will now define the notion of characteristic class, which is a cohomology class that does not depend
on the choice of the connection. Let H be a Lie group and b its Lie algebra. We say that a polynomial
P(z) is invariant on b if it is invariant under the adjoint action of H on b, i.e.

P(h™'Yh)=P(Y), heH,Y €. (2.57)

In particular, we can consider P to be a polynomial function on h-valued 2-forms on M. Then the
H-invariance implies
dP(a) =rP(Va), acA’M®eb, (2.58)

where r is the degree of P. A common choice is to take « to be the curvature F, so that then dP(F) =0
because of the second Bianchi identity. Then P(F') defines a cohomological class of M. The most
interesting property of this cohomological class is that it does not depend on the choice of V. Consider
the particular example of P(a) = Tr o™ and a continuous family of connections V,; with curvatures
F, = V,%. Then from

d d
ﬁFt = [Vt, dtvt] (2.59)
we find
d d _ d . d .
aTr F," = nTr (tht) Fr =t =nTr [Vt, (dtvt> F, 1] = dTr (dtvt) Frt (2.60)

so the difference between P(F') of two different connections is an exact form and therefore belongs to the
same cohomological class.

2.2 Lie Groups and Lie Algebras

We shall review the concepts of Lie groups and Lie algebras. More detailed explanations can be found
for example in [2, 7].
Adjoint representations of Lie groups and algebras

A Lie group is a manifold G equipped with group operations

G (inverse)

GxG — G (multiplication) G —
M (2.61)

(g,h) +— gh

10
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which are also differentiable maps. The general linear group of linear isomorphisms GL(n,R) with the
matrix product is an example of a Lie group. Other important examples of Lie groups are the closed
subsets of GL(n,R), which are collectively refered to as linear Lie groups.

A Lie algebra is an R-vector space A together with a bilinear map [-,-] : A x A — A, called the Lie
bracket, satisfying

[a,a] =0, Va € A, (2.62)

[a, [b, ] + [c, [a, b]] + [b, [c,a]] =0, Va,b,c € A, (2.63)

where (2.63) is called the Jacobi identity. From these properties follows immediately that the Lie bracket
is anticommutative: [b,a] = —[a,b]. The tangent space to a linear Lie group G at the identity element e,
g = T.G, together with the Lie bracket [X,Y] = XY — Y X is an important example of a Lie algebra.

Given a Lie group G, we can define the following three operations:

L,: G — G R,: G — (G Ad,: G — G

b > ab b — ba b > aba~l, (2.64)

which are called left translation, right translation and conjugation respectively. Clearly, Ad, = R,-10L,.
The three operations are diffeomorphisms and the last one is also an automorphism. It is particularly
interesting to differentiate the conjugation at the identity, since d(R,-1 0 Ly)e : TeG — TG, commonly
written as Ad, : g — ¢, is an isomorphism of Lie algebras, i.e. a linear isomorphism that preserves the
Lie bracket. The map

Ad: G — GL(g)

a — Ad, (2.65)

where GL(g) denotes the bijective linear maps on g, is called the adjoint representation of G. In
the case of a linear Lie group, it takes the simple form Ad(a)(X) = Ad,(X) = aXa™!, for a € G,
X € g. One can also differentiate the adjoint representation of G at the identity, dAd. : g — gl(g),
where gl(g) is the vector space End(g,g) of linear endomorphisms. This map, commonly written as
ad : g — gl(g) is a map of Lie algebras and it is called the adjoint representation of g. If G is a linear
Lie group, then ad(A)(B) = [A,B] = AB — BA, for A,B € g, and since ad preserves the Lie bracket:
ad([u,v]) = [ad(u), ad(v)], for u,v € g.

Left-invariant and right-invariant vector fields

Let G be a Lie group and X € I'(G). We say that X is a left-invariant vector field (vesp. right-invariant)
if
d(La)p(X (D)) = X(La(b)) = X(ab), Va,b € G, (2.66)

(resp.)
' d(Ry)p(X (b)) = X (Rq (b)) = X (ba), Va,beG. (2.67)

Since the two cases are totally analog, we will focus only on the left-invariant one. X being left-invariant
is equivalent to saying that the diagram

d(La)
¢ — 22 LG (2.68)
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is commutative. An interesting property of left-invariant vector fields is that taking b = e in (2.66) we
get
X(a) =d(Lq)e(X(€)), (2.69)

so X is determined by just one value, X (e) € g. Conversely, given any v € g we can define a vector field
vl (a) == d(La)e(v), Va € G, (2.70)

which is left-invariant because of the chain rule,
vt (ab) = d(Lap)e(v) = d(Lq © Lp)e(v) = d(La)p (0" (b)) (2.71)

and v (e) = v. Therefore, we conclude that the map X ~ X (1) is an isomorphism between the set of
left-invariant vector spaces on G and g. Moreover, the map

Gxg — TG
(a,v) +—— vE(a) (2.72)
is an isomorphism. Following the same procedure with right-invariant vector fields a similar isomorphism
is defined.

Relation between Lie groups and Lie Algebras

We have seen that the tangent space to a Lie group G at the identity element e, g = T.G is a Lie algebra.
The natural question arises of whether from g we can recover GG. Even though it cannot be always done
in a surjective way, there is a map that relates g to G (cf. [2, 7]), namely the exponential map, which for
linear Lie groups corresponds to the usual matrix exponentiation

1 1
eX ::I+X+§X2+§X3+..., X €y, (2.73)
with its usual properties as group homeomorphism:

® e(s+t)X — S X tX |

2.3 Supergeometry and supermanifolds

In this subsection we will review some basic notions of superanalysis and supergeometry. A more de-
tailed description of these concepts can be found in [8, 9, 10, 11, 12]. We will first introduce Grassmann
algebras and the corresponding rules of integration and derivation from a purely algebraic point of view.
Afterwards we will review the definition of supermanifold and some basic differential structures. We will
finish by considering some examples and giving them a geometrical meaning.

12



2. Mathematical Preliminaries

Grassmann algebras

Consider a set of anticommutative variables 6%, i = 1, ..., n satisfying
{6,67} =0, (2.74)

where {-, -} denotes the anticommutator. This means that 767 = —076" and (6")? = 0. The real algebra
=, generated by these elements is called the Grassmann algebra of n elements. The set {1,0°, 0767, 0°676%...},
where the indices are never repeated, form a basis of the corresponding vector space, so its dimension is
2n. A general element z € =,,, called sometimes supernumber, can always be decomposed in z = zg + zg,
where zp € R is called the body and

zg = E Efilm’ikeh'“ 0** (275)
k=1 "

is called the soul. Note that the soul is always nilpotent: (z5)"™! = 0. The coefficients f;, ;, € R are
not unique in general, but we can impose conditions to make them so. The most common one, and the
one that we will use, is to demand that they are completely antisymmetric in their indices.

We can also try to think of analytic functions f = f(6), but since the 6% are nilpotent, all Taylor series
will be finite and therefore of the form

. 1 . 1 .
f(0) = f(0,....0™) = fo+ f:6" + 5]%619] + gfij;ﬁl@]@k + ... (2.76)
which is exactly the same expression as for supernumbers. An interesting property is that if two functions
f1(0), f2(6) have only components of even degree -that is, involving an even number of anticommutative

variables-, then they commute: f1(0)f2(0) = f2(0)f1(6).

We can introduce the concept of derivation and integration in Grassmann algebras. The (left) derivative
with respect to #* is defined by the expression

{8‘3“91’} =4 (2.77)

In a similar fashion, we introduce the Berezin rules of integration:

/dei 0" =1, /dai 1=0, (2.78)
so that if d"0 := df™do™~1... d§* then
/d"& 0'0%.. 0™ = 1. (2.79)
In particular we see that only top-degree components are relevant.

Consider now a linear variable change ¢/ = A7;0%. Then imposing (2.79) on ¢’/ we see that

1 ;/dnw 301902--- (p'rl — /dn(P (A,ljleﬁ)(A,%zH’ﬁ)(A;’jneVn) :A11/1A12/2Aﬁn/dn90 gvrov2 . pvn

=A, A2 AL vy, /d"(p 016...0™ = (det A)/d"(p 016%... 0", (2.80)

13



2. Mathematical Preliminaries

where €,,,,. . is the Levi-Civita symbol and takes into account the sign of the permutation of the (6%).
From here we see that by imposing (2.79) to hold on (%), we get d"¢ = (det A)~1d". Observe that the
integration measure transforms in the opposite way of the usual measure dz™ under a variable change for
(x%), where we would have the determinant and not its inverse.

This fact has many interesting consequences. For example,
/ d"p d"0 e=?" Mi? = (det M) / d"p "0 e "% = (det M) / Ao d"0 e=? 0 e
= (det M) U dy d@’e“’e/] = (det M) U deo do'(1 — @9/)}
n
= (det M) [/ dp do’ 9’4,0] = det M, (2.81)

where we introduced the new variables 6, = M;;67 and used the fact that even functions commute. A
similar result, which will turn out to be very useful in this work, is the following: consider a skew-
symmetric matrix B € My, x2,, BT = —B, which can always be diagonalised using a unitary matrix U
as D = UTBU, where D is of the form

D= 0 A . (2.82)

Then, using variable change ¢/ = U7,;0* we have

n
/d2n0 6%913”9] :/d%go eész”@J :/d2n<p He)"“o%_lw%

k=1
/ > H/\W% T2k = H)\k_Pfaﬁ( ) = (det B)?, (2.83)
k=1 k=1

where Pfaff(B) denotes the Pfaffian of B. Here we used that det(U)=det(U~1)=1.

Supermanifolds

Grassman algebras are examples of vector superspaces. A vector superspace V is a vector space together
with a choice of two subspaces Vg, V; C V such that

V=Vy6Vy, (284)

i.e. a Zo-graded vector space. Elements of the subspace V are said to be even and elements of V; are
said to be odd. If dim Vo = m and dim V; = n, we say that V is (m|n)—dimensional. An important
example is when Vo = R™ and V; = R”, in which we normally write V = R™I"

We defined a manifold to be an object obtained by gluing together open subsets of R™ by means of

smooth transformations. This can be formulated in a purely algebraic way by identifying U C R™ with
the algebra C*°(U) and maps U — V with Homg(C*>®(U),C>(V')). We will try to generalise this notion

14
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using vector superspaces to get to the concept of supermanifold. To start with, identify an open subset
U, € R™" with the Zy-graded algebra C®(U) ® Z,,, where U C R™. If U = R™, then we get U,, = R™I",
Elements of C*°(U) ® E,, are of the form

1 o :
F= Z Efll’bk ({L‘)9 L. k7 = 1’ = T (285)
k

where f;, ;. are smooth functions on U totally antisymmetric in their indices. We can think of them
as functions depending on the commuting variables (z',...,2™) € U and the anticommuting variables
6',...,0" € Z,. In these terms, a map U,, — V,, where U,,, V;,» are superdomains, is specified by

(2t a™ 0L, i=1,..,m, (2.86)

[
éj = Oéj(l'la ...,mma917 .“7077.)7 .7 =1, ...,’I’Ll7 (287)

where (2!, ...,2™, 0, ...,0") are the coordinates in U, and (&',...,&™ 0%, ...,6"") are the coordinates in
V,r. With all these elements, we can define a supermanifold as a set of open subsets of R™" glued
together by means of invertible maps. Note that this definition is strictly algebraic.

Using the Berezin rules of integration (2.78), we can calculate the integral of a function F as in (2.85),

/ d"zd"0 F = n!/ d"x lf“l (x) :/ d"z fi, i, (x) (2.88)
Un U n! U

There are other concepts of differential geometry of manifolds that can be extended to supermanifolds.
Given U,, with coordinates (x!,...,2™) € U, 0*,...,6™ € =, we can define differential k-forms on U, to
be functions of commuting variables z!, ..., 2™, 6',...,6m and anticommuting variables ', ..., 6™, &', ..., #™
such that they are polynomial of degree k with respect to the variables &', ..., 2™, 6, e 6". These last
variables can be identified with the differentials dz?, df7 respectively. Note that their parity is the oppo-
site of the parity of the corresponding variable.

In these terms, we can generalise the de Rahm differential to supermanifolds:

R
= 7t ]
d=a'om 0/ o0 (2.89)

The odd tangent bundle

Given a supermanifold M, we can also introduce the notions of tangent bundle 7'M and cotangent bundle
T* M. We can also define the odd tangent bundle and odd cotangent bundle, 1T M and IIT* M by taking
the tangent and cotangent bundles and reversing the parity of the fibres. A section of TM or IIT M can
be understood as a vector field on M and a section of T* M or IIT M and IIT* M can be understood as
a differential 1-form, in a similar way as it happens with ordinary manifolds.

Let us now consider a concrete example that will be of particular importance in this work. Take an or-
dinary manifold M with local coordinates (z?, ...,2™) and think of it as a (m|0)-dimensional supermani-
fold. Consider now its odd tangent bundle ITT'M, which will have local coordinates (x!,...,z™, 0%, ..., ™),
where z!, ..., 2™ are commuting variables and ', ...,#™ are anticommuting variables. This suggests the
interesting identification #* ~ dz?, where the product 6?67 would correspond to the exterior product
dx’ A dz?. This establishes a correspondance between the algebra of smooth functions on IITM and the
exterior algebra of M, i.e. C®°(IIT M) ~ AM, in which differential forms on M are now understood as
functions on the odd tangent bundle.
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If we think of IIT'M as an (m|m)—dimensional supermanifold, we can define integration on it. A remark-
able property of this supermanifold is that its integration measure is invariant under a smooth variable
change 2’ = f(z) of the commutative variables. This is proven as follows:

e Under the change 2’ = f(x), the integration measure of the commutative part transforms as usual
d™z’ = det (%) dmz.
e From the identification §* ~ dz® and the chain rule (2.8) we have

. Of*
T v
0" =0 (2.90)

In particular, if we fix € M, (2.90) is a linear variable change in the ¢ and therefore as we saw in

—1
(2.80), the integration measure of the anticommutative part transforms as d™6" = det (%m) ame.

e If we combine both transformations we have

m m m .. gm n/ a af - m .. gmnl!
dmxd™0 = dmx'd™0 det | == ) det | == = dmx'd™y’, (2.91)
orm oTm Ox Ox o7Tm

so the integration measure is independent of the variable change. This corresponds geometrically to
the fact that integration of differential forms over a manifold is well-defined -i.e. it is independent
of the choice of local coordinates-.
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Chapter 3

Equivariant Cohomology

In this chapter we introduce the concept of Cartan’s equivariant cohomology in different scenarios. We will
start by introducing an action of a Lie group on a manifold and afterwards we will build the equivariant
complex in manifold, vector bundles, symplectic manifolds and supermanifolds.

3.1 Lie group actions on a manifold

Actions and orbits

We want now to generalise the concept of cohomology to manifolds on which a Lie group is acting. To
this end, consider a compact differentiable manifold M with 9M = @) and a Lie group G with Lie algebra
g. We say that G acts on M if there is a smooth map

GxM — M

(ga‘r) — g (31)

such that e-x =« for all z € M and g1 - (g2 - ) = (g1 - 92) - « for all g1,92 € G. We already saw two
examples that can be understood as group actions,

GxG — G Gxg — G

(a,9) +— Adu(g9) =aga™?! (a,X) + Ady(X)=aXa1!, (32)

where in the second case we assumed G to be a linear Lie group. Another common action is the so-called
natural coadjoint action

Ad*: Gxg* — ¢g*

(a,) +— Adia, (3.3)
where (Ad:a)(X) := a(a=!Xa). It satisfies the defining property (Ad}a)(Ad, (X)) = a(X).
Given an action G X M — M, we denote by M the set of invariant elements by G, that is,
ME ={zeM|Vgeq, g x=uzx} (3.4)

Similarly, given two manifolds M7, M5 with G-actions, we say that a map f : M; — Moy is equivariant
if

flg-2)=g flx), VzeM. (3.5)
Another natural concept to be defined is the orbit of x € M,
G-z:={g-x|geqG} (3.6)
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3. Equivariant Cohomology

Representations of G

We saw in section §2.2 that the elements of a Lie group G are represented in terms of elements of g by
the exponential map exp : g — G. In particular, each element g € G can be written as

g=e"X", (3.7)
where c® are constants and X are the generators of g, which obey the relations [X®, X?] = fabeXxe. fabe
are called the antisymmetric structure constants of the Lie algebra. In these terms, the space in which
the constants ¢ lie defines the Lie group manifold G. Also, if we think of the Lie algebra as the tangent
space of G at the unity, g ~ T, G, then we have

0

= 5.9
07 a_y

X (3.8)
These elements allow us to define some representations of G. The first one is the so-called adjoint
representation of G in terms of Hermitian matrices n x n, where n =dim G, whit the generators as

(ad X )y =i fobe. (3.9)

Consider now a path g; through G starting at the origin, gg = e. Since the action of G on M is smooth,
the path g; creates a continuous flow on the manifold, locally represented by g; - x = z(t), for t € R*. If
we think of this flow as a coordinate change, using the rule (2.9), g; also generates an action on AM by
using the pullback,

(9¢ - @)(x) = a(x(t)). (3.10)
A simple special case is A°M = C>°(M), where
(9 (@) = fz(t) = VD f(z),  fec=(Mm). (3.11)

In this expression, the vector field V(x) = V#(x)d/0z" is representing a Lie algebra element. It is related
to the flow by the expression #(t) = VH#(x(t)). If V* is the vector field corresponding to X of g, then
there is a representation of the Lie algebra in the space of C* functions by

Ve, VP(R) = febeve(h), Yh € C®(M). (3.12)

We can also understand this as a representation of the Lie group G in T M.

The Lie derivative
It is convenient to introduce the interior multiplication operator iy : AFM — AF=1 M, defined locally by

1
lya = WV‘“ (X)) gy () dah2 AdaH Ao N dat®, (3.13)

or using anticommutative variables,

0]
aor”
This operator is a graded derivation. For a general tensor T, iyT represents its component along the

V direction. It is also useful to study the infinitessimal behaviour of path actions, that is, when ¢ — 0.
This behaviour is given by the Lie derivative along V,

iy = V() (3.14)

Ly : A*M — AP M, (3.15)
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defined by
d
Lya(z(0)) = aa(m(t)) . (3.16)
t=0
It can be shown that this is equivalent to saying
Ly =diy, +iyd, (3.17)
so using anticommutative variables,
0 0 0 0
=d1 od = | OF —— v v w_Z
Ly = diy +iyd (0 axu) (v aev> T <v (w) (9 W)
ovry 0 o 0 oo\ 0 o 0
_ p 177 2 v _ 2 Yyvpu .
o <8x“> 0w T g ag TV (aev) gor V" o6 oan
0 0
— pH v w_ <
040,V )89” +V pTe (3.18)
Lie derivatives also constitute a representation of G, in this case in AM:
[Lva, Lin](a) = f%Lye(a), o€ AM. (3.19)

Moreover, it can be shown that its action on contractions is [iye, Lys](a) = [y (a).

3.2 Equivariant Cohomology on Manifolds

Equivariant differential forms

Our first goal is to extend the notion of cohomology to the space of orbits, which can be understood as
M modulo the action of G. A simple case is when the action is free, i.e. when for every z € M, g-x ==z
implies g = e. In this case the space of orbits, M /G, with the inherited topology becomes a differential
manifold of dimension dim (M/G) = dim M - dim G and we can simply define the G—equivariant
cohomology of M to be the usual cohomology of M/G,

HE(M) = HY(M/G). (3.20)

Nonetheless, if the G-action is not free, i.e. it has fixed points, then M /G can become singular. Given
x € M, its orbit has dimension dim G -z = dim G - dim G,, where G, := {g € G | g -« = z} is the
isotropy subgroup of x and might not be trivial for a non-free action. In this case, there would be no
smooth concept of dimensionality and therefore M /G cannot be a manifold, so we cannot simply use
(3.20) but more sophisticated methods should be introduced instead.

Consider the symmetric algebra over the dual vector space g*, S(g*), composed by all symmetric poly-
nomial functions of g. Let S(g*) ® AM be the set of symmetric polynomials of g that take values in the
exterior algebra of M. Then the action of G on S(g*) ® AM is given by

act: GxS(g)@AM — S(g") @AM

(9,) —  actya, (3.21)
where (actya)(X) =g (a(g7'Xg)) for g € G and X € g. We denote by
AgM = (S(g") @ AM)C (3.22)

19



3. Equivariant Cohomology

the G—invariant subalgebra, i.e. o € AgM if actya = a. Let us now think o € S(g*) ® AM as a map
a:g— AM. Then a is G—equivariant if

a(gXg ) =g-a(X) = aX)=g- (g 'Xg) <= a(X)=(actya)(X), (3.23)

which is equivalent to say that o € AgM. This means that the so-called equivariant differential forms
are exactly the elements of the G—invariant subalgebra AgM.

We can assign a Z-grading to P ® a € S(g*) ® AM with the formula
deg(P @ a) := 2deg(P) + deg(a), PeS(g), ae AM, (3.24)
so twice its degree as polynomial plus its degree as differential form. This allows us to write as well
AgM = é AEM. (3.25)
k=0
It is now time to introduce the equivariant exterior derivative, dy, defined by the expression
(dga)(X) = (d+iv)(a(X)), X €g,acS(g")eAM, (3.26)

where V' = ¢*V*% is the vector field on M corresponding to X = ¢*X* € g. Using anticommutative
variables this operator can be written as

0

(000)(X) = @+ i) (@) = (052 +V* 220) (a(x)) (327)

The first thing we have to check is that if « € AgM, then dgoo € AgM:
g+ (dg0)(X) = g (da) (X) + g - (iva)(X) = d(g - ) (X) +igvy 1a(X)
=da(gXg™") +igvg-1a(9XgTh) = (dga)(9Xg ™), (3.28)

so the condition (3.23) is satisfied.

It is easy to see that actually dg increases the degree of equivariant differential forms by one:
dg : AEM — AEFT M. (3.29)

Let {£€} be the basis of g* dual to {X%}, i.e. £2(X?) = §°. By linearity of d, it is enough to consider
elements of the form P*(¢)®al), where P* € S(g*) is a homogeneous polynomial of degree i, «/) € AJ M
is a differential j—form and 2i 4+ j = k. Then we can write

dg(P'(§) ® aV)) = P1(§) @ daV) + £°P'(¢) @ ivaal?, (3.30)

because
d(P*(§) ® aV))(X) = (P'(§) ® da')(X) (3.31)

and

iv(P(€) ® aW)(X) = PUEX) @ iva?) (X) = PHEX) @ deavaa?(X)
= PU&(X) ® iga(xyyaaP (X) = £1(X)P(£)(X) @ iveal) (X), (3.32)
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where we used that £*(X) = ¢*. Finally, if we compute the degrees

deg(PI (&) @daW) =2+ (j+1)=k+1
deg(¢*P (&) @ivea?) =2(i+ 1)+ (j —1) =k + 1, (3.33)

so dgov has degree k + 1.

Moreover, as it happened with the de Rahm exterior differential, dy is nilpotent in AgM. We have:

0 0 0 0 ovvy\ 0 00"\ 0
2 _ w_“ nw_Z v v —_ gk iz
dg (9 o TV aeu) (9 o TV am) b (6‘z“) aov TV (aeu) Dz
0 0 0 0

=0*(0,VY)=—— + V! =00, V" Vk— =L 3.34
OV g + V" Ok g OV ) gge + V" Gan = £V (8:34)
where we used the commutativity and anticommutativity properties of the variables. Since the equivari-
ant differential forms are precisely those that are G—invariant, if « € AgM then Ly« = 0 for any V

corresponding to a X € g and therefore (dg, A’é/\/l) builds a complex, called the equivariant complexz.

Following the same structure as in the de Rahm cohomology, we define
e cquivariantly closed forms o: dga = 0.
e cquivariantly exact forms a: 38 such that o = dgf3.
e (G-equivariant cohomology groups on M:

ker dg\AgM

HE(M) = (3.35)

im d k—1 ’
glAL M

and with this we managed to define a cohomology for M taking into account the action of G, which
was our initial goal. We can still make some final observations. For example, if G = {e}, then V =0
and the G-equivariant cohomology reduces to the usual de Rahm one. If we take M = {pt}, then
He(pt) = S(g*)¢, since there are no differential forms on a point. Finally, it is worth observing that if
a € AgM is equivariantly exact, then its top component a(®) € A" M is exact in the de Rahm sense.

3.3 Equivariant Cohomology on Fibre Bundles
Consider now a vector bundle (E,m, M). Assume F and M have G-actions that are compatible,
g-m(x)=m(g-x), Va € E, Vg € G, (3.36)

that is, 7 is an equivariant map. If moreover the G-action on F satisfies that the map v : E; — E,.; is
linear, we say that (E,w, M) is a G-equivariant vector bundle. These G-action can be extended to A(E)
by the Lie derivatives, as we did before. Following the same steps, we can also define the equivariant
E-valued differential forms:

Ac(E) = (S(g") @ A(E))¢ (3.37)
and assign the same Z-grading. As usual we write
(oo}
Ac(E) = P A&(E). (3.38)
k=0
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G also acts on the sections s € I'(E) as

(g-s)(x) = s(g7" ). (3.39)

Let now V be a linear connection on E that commutes with the action of G on A(E), i.e. [V,Ly] =0
for all V' corresponding to an X € g. We say that such V is a G-invariant connection. With it we can
define the so-called equivariant covariant derivative Vg as

(Vgo)(X) = (V +iv) (X)), Xeg, aceS(g")@AE), (3.40)

where V is again the vector field corresponding to X. As before, it can also be considered as an operator
Vg AL(E) — A’C“;H(E). Parallel to the bundle curvature, we can also define the equivariant curvature
Fy, by the expression

(Faa)(X) = (Vga)® + (Lva)(X). (3.41)

As a consequence of the usual Bianchi identity and that V is G-invariant, the equivariant curvature

satisfies the equivariant Bianchi identity:
Vg, Fg] =0. (3.42)

The difference between the equivariant curvature Fjj and the usual bundle curvature F'is normally referred
to as the moment map py,
(Fga)(X) = (Fa)(X) + pv (a(X)), (3.43)

where

Hy = ﬁv - [iv, V] (344)

If we take a local trivialisation U x W of E, where U C M, then we can regard the moment map as a
function p : AU @ W — g*. It is also important to observe that from the equivariant Bianchi identity
follows

V/Jv = ’ivF, (345)

or in other words, that a non-trivial moment map produces a non-zero vertical component of the connec-
tion V.

Equivariant characteristic classes

The notion of characteristic class that we saw in §2.1.2 can be generalised to equivariant bundles. Let
now P be a G-invariant polynomial and take the equivariant curvature V4 and the equivariant exterior
differential instead of the usual ones. Equation (2.58) generalises to

dgP(Fy) = 1P(VFy) = 0, (3.46)

so that P(Fy) is an equivariant cohomology class of AgM elements. We can evaluate P(Fy) on an
element X € g: P(F\(X) = P(Fv) =: Py(F), where V is the vector field corresponding to X. One of
the most common examples of an equivariant characteristic class is the equivariant Euler class,

E, = Pfafi(Fy). (3.47)

22



3. Equivariant Cohomology

3.4 Equivariant Cohomology on Symplectic Manifolds

Symplectic manifolds

We want now to apply the notions of equivariant cohomology on vector bundles to the particular case
of sympletic manifolds. A symplectic manifold is an even dimensional differential manifold M, dim
M = 2n, together with a globally defined non-degenerate closed 2-form w, called the symplectic form. In

local coordinates,

1
w= §ww(x)dm“ Adz”. (3.48)

The closedness condition dw = 0 becomes in local coordinates,
Opwur + Oy, + 0wy =0, (3.49)
and the non-degeneracy condition simply means that if we think of w(x) as a matrix, then
detw(x) # 0, Vo € M. (3.50)

The symplectic form defines a non-trivial de Rahm cohomology class [w] € H%(M;R) and by the Poincaré
lemma, we can always find locally a 1-form ¢ = 9, (x)dz* such that w = di, or in local coordinates,

W = Ot — B0, (3.51)

Such a 1-form is called symplectic potential. In case ¥ can be defined globally, we say that the system is
integrable.

A key concept in symplectic geometry are the so-called canonical or symplectic transformations, that is,
diffeomorphisms of M that leave w invariant. They are determined by functions F € C*°(M) in the

following way
¥ — 19F =49+ dF

V() — Opu(z) =9,(z)+ 0, F(x) (3.52)

so that by nilpotency
wp =dip = d¥ + d*F = di = w. (3.53)

F(x) is called the generating function of the canonical transformation.

The existence of w is important because it allows us, among other things, to define the following bilinear
function

(e AM@AM s AOM
(f,9) — {f, 9}w = w(df, dg)

called the Poisson bracket. In local coordinates,

{f7 g}w = WW/(‘T) auf(x) aug(w)ﬂ (355)

where wH” is the inverse matrix of w,,. The Poisson bracket satisfies the following properties:

(3.54)

e Antisymmetry: {f,g}v, = —{9, f}w-
e Leibniz property: {f,gh}w = 9{f, h}w + h{f,g9}w0-

e Jacobi identity: {f,{g,h}w}tw +{9:{h f}w}tw +{h,{f,9}w}w = 0. This is a consequence of w being
closed.
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These properties make {-,-},, a Lie bracket and (A°M, {-,-}.,) a Lie algebra, called the Poisson algebra of
(M, w). The relation of symplectic manifolds with the usual classical Hamiltonian mechanics is given by
Darboux’s theorem (see [13]), which states that locally there exists a system of coordinates (py,¢");i—;
on M, called Darboux coordinates, such that the symplectic 2-form looks like

w = dp, Ndg". (3.56)
In these terms,

{puspvte ={d",¢"}0 =0,  {Pp,¢"}0 =0y, (3.57)

and the symplectic potential can be written as ¥ = p,dg". A canonical transformation
¥ =pudg" = 9p =9+ dF = P,dQ", (3.58)
where (P, Q") are also Darboux coordinates. Therefore we have
pudg" — P,dQ" = dF. (3.59)

The exterior products of w with itself determine non-trivial 2k-forms on M. Especially important is the

2n-form "
dprg, = % = /det w(z) d*"z, (3.60)

which is a natural volume element invariant under canonical transformations, commonly referred to as
Liouville measure.

Symplectic line bundles

Assume now that there is a connected Lie group G acting on M, generating vector fields V¢ and satisfying
[V, V¥(h) = f*Ve(h). We assume also that this G-action is symplectic, meaning that it preserves the
symplectic structure

ﬁvaw = O, (3.61)

or in other words, G acts by symplectic transformations. Since dw = 0, this condition is equivalent to say
diyew = 0. Following the constructions of the last subchapter, define a complex line bundle 7 : L — M
with connection 1-form the symplectic potential 9. If, moreover, Ly .9 = 0, then the associated covariant
derivative V = d + ¢ is G-invariant and therefore L is an equivariant vector bundle. The associated
momentum map H : M — g% evaluated on X € g corresponding to V, is called the Hamiltonian
corresponding to V:

Hy =H(X) =Ly —[iv,V] =iv9 =V"Y,, (3.62)
which in particular implies that
dHV = —ivw, (363)
or in local coordinates,
OuHy (z) =V (x)wu (). (3.64)

In general we will assume Ly.?¥ = 0 instead of (3.61). If we can find a Hamiltonian that is globally
defined as a C* function, then we say that the group action is Hamiltonian. In these terms, a vector
field V' that satisfies (3.63) is said to be the Hamiltonian vector field associated with Hy, and we shall
call the triple (M,w, Hy) a Hamiltonian system or dynamical system.
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3. Equivariant Cohomology

The integral curves of a Hamiltonian system (M, w, Hy ), that is, the solutions z(t) such that @(t) =
V(z(t)), define the usual Hamilton equations of motion,

P(t) = W™ (2(t)) 9, Hy (2(t)) = {a*, Hy }o. (3.65)

This last expression, the Poisson bracket of a function f with the Hamiltonian, actually determines the
infinitessimal variation of any f along the integral curve z(t) of the dynamical system:

UHv)e = Lvf = Siaw)| (3.66)
t=0

If we express (3.65) in the Darboux coordinates we get the usual form of the Hamilton equations of
motion,

¢ = g}i’ Pp = _%' (3.67)
If we now calculate the curvature of the equivariant bundle 7 : L — M as in (3.41), we have
wg =w+ Hy (3.68)
and evaluating it at a X € g we get
(dgg) (X) = (d + iv)(w + Hy) = 0, (3.69)

S0 wy is equivariantly closed. We usually say that wg is the equivariant extension of the symplectic form
w, since it is the only extension from a closed 2-form to an equivariantly closed one.

3.5 Equivariant Cohomology on Supermanifolds

Superalgebras and superbundles

We will provide some basic definitions of supergeometry to start with. A superspace E is a Zo—graded
vector space, E = ET @ E~. If this space is provided with a product that respects the Z,—grading, i.e.
At AT C A where 4,5 = 0,1 (mod 2), then we say that it is a superalgebra. Two common examples
of a superalgebra are the following

e The exterior algebra of a vector space V,

ARV =) AV (3.70)
(—1)'==%1

e The algebra End(F) of endomorphisms of a superspace E,

End" := Hom(E*, Et) @ Hom(E~,E™)

End™ := Hom(E™*, E~) ® Hom(E~, E™). (3.71)
The supercommutator of a pair of elements of a superalgebra is defined as
[a,b] := ab — (—1)lal"Plpq, (3.72)
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3. Equivariant Cohomology

which satisfies the axioms of a Lie superalgebra:
o [a,b] + (~1)lI"b,a] = 0
i [a, [b7 CH = [[aa b]v C] + (_1)\a\-|b\ [ba [aa CH

We say that a superalgebra is supercommutative if [-,-] = 0. AV is an example of a supercommutative
superalgebra.

A superbundle on M is a vector bundle £ = £t ¢ £~, where £1, £~ are vector bundles on M. In other
words, it is a bundle whose fibres are superspaces. Let A(E) = I'(€) ® AM be the space of E-valued
differential forms on M. This space has an inherent Z—grading -the degree of the forms-, and we can
also define a Zy—grading defined by A(E) = AT(E) ® A~ (E), where

AEE) =D AP(EF) o Y ATFET). (3.73)

As a simple example, T'(E%) C AT(E).

If the fibres of a superbundle have a Lie superalgebra structure, then we can talk about a bundle of Lie
superalgebras &. Then A(®) is itself a Lie superalgebra with respect to the Lie superbracket

[ ® X1, 00 ® Xo] = (=1)XaHlozl (0 A an) @ [X1, X3, (3.74)
where aq,as € AM and X1, X5 € &,.

A slightly more sophisticated structure is the following: consider a module E over a superalgebra g,
provided with an action p : g — Diff(F). Generalising this, we can consider a superbundle £ on a
manifold M, where each fibre is a supermodule F, over a superalgebra &, with an action p, : &, —
Diff(€,). We can also talk about a global action p : & — Diff(€) by joining all the fibre actions. Finally
we can construct A(€) as a supermodule -which is defined in the same way as a superspace- for A(®)
with respect to the action p : A(&) — Diff(A(E€)), defined as

pla®@ X)(B@v) = (=)*Planp) @ (p(X)v), (3.75)

where o, € AM, X € &, and v € £,. An example of this structure is the bundle of Lie superalgebras
End(€) of a superbundle £ on M, since AM®E is a bundle of modules for the superalgebra AM®End(E).
In other words, A(End(&)) is a superalgebra that has A(£) as a supermodule.

It can be shown that a any differential operator on A(E) which supercommutes with the action of AM is
given by the action of an element of A(End(£)). Such operators are called local.

Superconnections

Given a superbundle £ over M, a superconnection is an odd-parity first-order differential operator
A:AE(E) = AT(E) (3.76)
which satisfies the Zs-Leibniz’s rule,

Ala A9) =da A+ (=1%o A AY, (3.77)

26



3. Equivariant Cohomology

where o« € AM and 9 € A(E). If A is a superconnection on &, then A is extended to act on A(End(£))
in a way consistent with the Zs-Leibniz’s rule,

Aa =[A q], a € A(End(€)). (3.78)

We observe that since [A,a] is an operator that commutes with the exterior multiplication by any
B € AM, Aa € A(End(E)).

In a similar way to bundle connections, the curvature of a superconnection A is defined as the operator
F := A? on A(€). The curvature is an example of a local operator, i.e. it is given by the action of a
differential form wr € A(End(£)), with even total degree and satisfying the Bianchi identity Awr = 0.
To see that its local, it is enough to see that it supercommutes with the multiplication by any o € AM:

(A2 a A =[A,[A a A ] = (d2a) A- = 0. (3.79)

And the Bianchi identity follows from the obvious calculation Awp = [A, A?] = 0. If A is a connection in
itself, then both curvatures coincide.

A superconnection A is entirely determined by its restriction to I'(£), which is an operator A : T'(E) —
A*(E) that satisfies
A(fs) =df ® s+ fAs, VfelC®M), seT(E). (3.80)

From here, we just have to extend the operator to all A(£) by the expression
AMa®s)=da®@s+ (-1)anAs,  YaeAM, seT(E). (3.81)

The expression (3.80) can help us get a better insight of the action of the superconnection. We can break
A, acting on T'(£), into its homogeneous components A; : T'(€) — A*(€)

A=A)g+A +Ay+ ... (3.82)
so that (3.80) becomes
A(fs) =Y _Ai(fs)=df @s+fY _ Ass. (3.83)
i=0 =0

If we decompose this equation degree-wise, we see that A;(fs) = df ® s+ fA;s, so A; is a covariant
derivative on £. Moreover, since A; has odd total degree, it preserves the Zs—grading of £, meaning that
it is a direct sum of covariant derivatives on the bundles £* and that therefore they are both preserved
by A;. For i # 1, A;(fs) = fA;s, i.e. A; is given by the action of a differential form w; € A(End(£)),
with w; being of odd total degree, following that A; are local operators.
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Chapter 4

Finite-dimensional Localisation

In this chapter we present the main results of localisation on the different scenarios considered in the
previous chapter and prove them using the language of equivariant cohomology.

4.1 Localisation Principle and the Berline-Vergne Theorem

Geometrical setting

One of the biggest applications of equivariant cohomology is the simplification of integral calculations
that appear in theoretical physics through so-called localisation processes. In this section we will analise
the most simple example of such localisation results. Let M be an even-dimensional compact orientable
manifold without boundary, 9M = ), and G a Lie group acting on the manifold G x M — M. For the
sake of simplicity, we will first assume that G = U(1) ~ S*. Let V € I'(TM) be the vector field on M
corresponding to the G-action. Our first step is to describe the equivariant cohomology corresponding
to this setting. Since dim G=1, u(1) = R and therefore the role of ¢ € S(u(1)*) is not relevant. It is
customary to set ¢ = 1, even though the final results can be proven to be independent of this choice. In
these terms, the equivariant exterior differential becomes
0 u 0

aon TV pon (1)
where V' = V#9/0x* is the expression of the vector field in local coordinates (2#). The operator dy acts
on the space of G-equivariant forms (i.e. G-invariant forms), Ay M = {a € AM | Lya = 0}. Define also
the set

dy = du(l) =d+1iy =06*

My :={x e M| V(x) =0}, (4.2)

often called the fized point locus of the G-action. For our purposes, in this chapter we will assume that
My, consists of the union of isolated points. Assume further that M has a G—invariant Riemannian

structure metric tensor g such that
Evg =0. (4.3)

Equation (4.3) translates in local coordinates to
gu)\ayv)\ + gu/\auVA + V)\a)\gul/ = 0. (44)

In this section we will work with the Levi-Civita connection on T M that we introduced in §2.1.2. The
Levi-Civita connection acts on vector fields V = V#9/0z* as

V,V# =9, VF+TH TV, (4.5)
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4. Finite-dimensional Localisation

It is interesting to see that the condition (4.3) can also be expressed as
GV, V4 gV, V= 0. (4.6)
This can be easily proven:
gu)\vﬂv)\ + g/t)\vVVA = gV)\a;LVA + gl/)\Fl);pr + g/t)\auv/\ + g,u)\Fl)/\pr
a1 p 1 p 1 p
= g0, V" + §V Ougpv + §V OpGuv — §V OvGup

1 1 1
+ g0,V + ivpaugp# + ivpapgw — gvpaug,,p

= gu)\ayv)\ + gu)\avv)\ + Vpapg;w =0, (47)

where we used (4.4) in the last step. In terms of Riemannian geometry, we say that these equations
express the fact that V is a Killing vector of the metric g. It is noteworthy that if M and G are compact,
then we can always find such a g so that V' is a Killing vector (by averaging over the Haar measure). Let
us observe that the existence of a Riemannian metric g allows us to construct an isomorphism between
the space of vector fields and the space of 1-forms:

™ — T*M (4.8)
Vio— B=g(V,) = g (@)VH(x)dx", '
which is an isomorphism because det g(z) # 0. In the particular case of V' being the vector field
corresponding to the G-action, 3 = g, V#8" presents the interesting property

0 0
£Vﬂ = <€H(8MVV)89V + Vﬂf?l’“) g,\pV*QF’

= (D, V") ga,VA01E + VEVA(0,90,)0” + VP g, (8,V)0°
= (0, VP g, V0" + VIV 0,00)0° + Vg, (0,V )67
= [92u (B V") + VF(Dugrp) + Gup(ONVH)] VAP = 0, (4.9)

where in the second last step we relabelled the first term (p <> p) and the last term (u <> A) and in the
last step we used (4.4). We can also calculate

) )
— [ g» w_= VA
dv 3 <9 5 TV 69#) g V'
= (0ugu )V 0H0* + gn (0, V010N + g, VIVY =: Qy + Ky, (4.10)
where 1
Qy =dB = §(QV)M9“0’\ (4.11)

is the 2-form with local components
() ux = 2((0pger)V” + 9ua (9, V")) (4.12)

and Ky is the C*° function
Ky =g, V'V". (4.13)
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4. Finite-dimensional Localisation

The Berline-Vergne Theorem

Consider now an equivariantly-closed form a € AgM, dya = 0. Our goal is to calculate [ m @ and show
that actually its value is determined by the values of @ on My,. This fact is known as the localisation
principle. To start with, consider first a closed form w in the de Rahm sense, dw = 0. Then, YA € AM,

/Mw+d/\ = /M w, (4.14)

because M = () and by Stokes’ theorem [, d\ = [, A = 0. In other words, the value of [, w depends
only on the cohomological class of w. In general, we can descend the integral map

/ D OARM — AR (pr) = 57FR
M

(4.15)
w o Juw
to a linear homomorphism of the cohomology groups
/ s H"(M;R) — HO(pt; R) = R. (4.16)
M

Consider now an equivariantly-closed form A. The condition dy A = 0 implies that its top component is
closed in the de Rahm sense, so the equivariant version of (4.14) is also true:

/ a+dyd = / (4.17)

Therefore, we can think the integration map as / : Hg(M) — Hg(pt) = S(g*)¢ by using the identifi-
M

(/M a) (X) = /M o(X), Xeg (4.18)

As it happened in the de Rahm case, [ v @ only depends on the equivariant cohomology class of o and
not of the particular representant, so we can always choose the one that is most convenient for us.

cation

We have now enough elements to introduce the first localisation result:

Theorem 4.1 (Berline-Vergne Theorem). Let M be an even-dimensional compact orientable man-
ifold without boundary, OM = 0, with an action U(1) x M — M. Let V € T(TM) be the vector field
on M corresponding to the U(1)-action and assume My = {x € M | V(z) = 0} consists only of isolated
points. Then if a is an equivariantly-closed form, dya =0, we have

/ a= Y (—277)"/2M (4.19)
M Pfaff 0V (x;)’ '

z; €My

where o9 is the 0-th component of c.

This theorem already expresses how powerful localisation results are. In this case, a finite-dimensional
integral is reduced to a simple sum. To prove the theorem, consider now the integral

Z(s) :/ ae svh :/ e SQvHEY) s €RT (4.20)
M M
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4. Finite-dimensional Localisation

and think of it as a function of the parameter s. Assume this function is regular and its limits s — 0"
and s — 400 exist. It is clear that the first one is the value we are interested in. Since deg 8 =1,

dy(Be *"P) = (dyB) e *"F — Bdy (e *7P). (4.21)
Reordering terms and multiplying by a:
a(dyB)e*WVF = ady(Be ™)+ aBdy(eVP) (4.22)
and using the fact that dya = 0 we have
a(dypB) e WP = dy(aBe *WP) + Bdy(ae*?VF) (4.23)
Using (4.23) we get

d d
£Z(s) = /M e WP = _ /M a(dyB)e W8 = — /M {dv(aﬂe*Sd‘/B) + Bdy(a e*Sd‘/ﬁ)} (4.24)

but since the first term is the integral of the total equivariant differential of a form, it vanishes. Regarding
the second term and using the fact that d3.8 = Ly = 0 we get

d
L2(s) = - /M By (ae—tP) = _ /M Bady (e=*vP) = 5 /M Ba(dB) e P —0.  (4.25)

Therefore the value of the integral does not depend on the parameter s, i.e. ae™*¥# ¢ [a]. The limit
s — +oo will be especially interesting for us, as it will make the localisation manifest and through the
Laplace approximation we will get the exact value of the integral. Let x; € My be a fixed point of the
vector field V. We can expand V(z) and g(x) around this point

V(@) = VL, + (0,V")),, (0 — 20) + O?) = (0,V*),, (& — 2:)" + O(a?) (4.26)
Guv(z) = uv),, T (Opgpu),, (T — )" + O(z?%) (4.27)

o

and from this we can expand 2y and Ky to the first non-vanishing order

Q) (@) = Ougn) @)V (@) + ga (2)(0,V7) () = (Ongyuw ) () V¥ () = g (2) (0N V) ()

= 9w, 0.V, — Guv),, (V") +O(z) (4.28)
1 1
(@) = Q) @00* = L (a1, OV, — gy (O2V"),)) +0()
= Oy, (0,V7)),, 0"0% + O(x) (4.29)

Ky (2) = g (@)V* @)V (2) = g, (0,V"),, (0,V"),, (2 — 20)" (x — 2:)7 + O(a7). (4.30)

i

We can now start the final calculation

/ a = lim ae W8 — lim ae S(Kv+Qv)
M s—00 [ g s—00 f A g
= lim d"x d"0 a(x)@) e—S[KV(I)+%(Qv)w(z)9“0*] (4.31)

S§— 00 M@AIM

but in the limit s — oo the integrand localises around My, so we can use the expansions (4.30) and
sum over all points in My, extending the integration domain to the whole R™ as the function vanishes
anyway away from the origin and it will be more convenient

— e 70 o0 (s _ vy, pHp>
slggo Z /7L®A?and fa (xl) exp( Sgy/\‘zv:(auv )‘I'ie 0 )
T, EMy

X exp (_Sg“”lmi (0pVE),, (0 V), (2 — )" (z — :cl)") . (4.32)
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But this is nothing else than a Gaussian integral times a Grassman Gaussian integral, as in (2.83), so we
can evaluate it exactly,

2 n
= Z a(o)(xi)Pfaff(—ngy)\‘xi(auv’/)) (2m)
v det (2 S Gy, (OV1)., (aavumi)
= 0 () /(—25)n v (2m)"
$§A o'V (x;) v/ (—2s)" Plaff (gu)\lwi (auv )Izz) \/(2S)n det(g/w)\mi det (5PVV)‘% det (aavu)‘m.
0) (.
— _ n/2 o (ml)
> (-2m) PRl OV (a7 (4.33)
z; €My

which is what we wanted to see.

It is important to observe that the invariance of the integration measure under linear variable changes
is the reason why the quadratic expansion is actually exact. To see this, consider the variable change
x — x/\/s, 0 = 0//s. Looking at (4.30), we can see that in the limit s — oo of s(Qy + Ky ), the only
terms that will not depend on a negative power of s are the ones explicitly written.

Interpretation of the denominator

We can try to give a geometrical interpretation to the denominator Pfaff OV (x;). We will need the fact
that the Lie derivative Ly of a vector field V is not only defined on AM, but can be extended to any
tensor (see [2]). In particular, it can be extended to vector fields W = WH9/0xH:

LOWY 9 aVY 9 :<waw _WuaV) 9 (.34

LyW =[V,W]=V OxH Oxv OxH Oxv O+ Ozt ) Ozv’

Let us now consider a point x; € My . Since V(z;) = 0, we can write the restriction of Ly to the space
Ty, M as
Ly, :

i

M — T, M

WE s —(0,V) (4.35)

le; WH’
which is a linear transformation. L,, is moreover invertible. To see this, let us assume that IW € T, M,
W # 0 such that L,,W = 0. Then consider the integral curve z(¢) such that x(0) = x; and £(0) = W.
All the points of this curve would be invariant under the action of V', which would be a contradiction
to x; being isolated, so L,, is indeed invertible. Another interesting property is that since L,, is the
Lie derivative of an action of a compact Lie group, it has only imaginary eigenvalues. Therefore, 3{e,}

oriented basis of Ty, M such that

0 —X\
A1 0
0 —Xo
Ly, = A2 0 , (4.36)
0 -\
Al 0
l=n/2,ie.
Lz.egjfl = )\jegj
i 4.37
Lyea; = —Ajegj—1 (4.37)
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In these terms, the denominator becomes
Pfaff OV (z;) = Pfaff (—L,,) = /det(—Ly,) = A1.. A (4.38)

Example: Equivariant localisation on the sphere

We will illustrate the Berline-Vergne theorem and its proof using a concrete example: the calculation
of the volume of the unit sphere S2. We will first remind how the volume is usually calculated. After
that, we will follow all the steps of the proof of Berline-Vergne’s theorem with our example and finally we
will apply the main result of the theorem directly. Naturally, the same result is expected in the three cases.

Let us parametrise S? using spherical coordinates (¢, ¢), where 0 < ¢ < 27 and 0 < ¢ < . The round
metric induced from its embedding in R? is

)
9= (Smo ¢ (1)) : (4.39)

SO Gpp = sin? ¢, 9go¢ = 0 and gg¢ = 1. The usual Riemannian volume form is

w=+/detgdz' A...\dz" =sin¢ do A do (4.40)

and integrating it over the manifold we get the total volume

27 ™
Vol = / w= / do do sin ¢ = / d(p/ d¢ sin ¢ = 4. (4.41)
52 52 0 0

Let us express the setting in the language of equivariant localisation. We have a manifold M = S2 and
consider a U(1) = S! action on S? consisting on turning the sphere in the ¢ direction, i.e. around its
vertical axis. This action keeps the volume form invariant, since it does not depend on the coordinate ¢,
so we can apply the equivariant localisation argument. The corresponding vector field to this action is

simply
0

= — 4.42
S (1.42)
so V¥ =1 and V¢ = 0. In IIT'S? the volume form can be expressed as w = sin ¢ #90?. The equivariant
exterior differential is 9 5 5 5 9
dy = 0" VH—— =09 — + 0%~ + —— 4.43
V= e T aer =V a0 T 6 T a6v (4.43)
We observe that the volume form w is not equivariantly closed,
0 0 0
dyw = (9@(% + 0¢a—¢ + aew) sin ¢ 6¥6% = sin ¢ 0%, (4.44)

where we used the anticommutativity of the variables and the derivatives. In order to apply the Berline-
Vergne theorem, we must find an equivariant extension of w, i.e. an equivariantly closed form « such
that its top component coincides with w. Take

a = w+ cos¢ = sin¢ 090 + cos ¢, (4.45)
which is equivariantly closed. Now consider the 1-form

B =gu V""" =g, ,V¥0? = sin? ¢ 6% (4.46)
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with
0 0 0
dy B = <9w&p + 9¢% + w) sin? ¢ 0¥ = —2sin ¢ cos ¢ 090% + sin? ¢. (4.47)
Here we easily recognise the 2-form Qy = —2sin ¢ cos ¢ 6¥6? and the function Ky = sin® ¢. We will also

need the exponential
e~ 5B — o=s(QHKy) _ (2ssingcosd 0707 —ssin’ ¢ _ (1 + 2ssin ¢ cos ¢ 9“’9¢) emssin’ ¢ (4.48)

We can now reproduce the calculation of the proof of Berline-Vergne’s theorem:

. —sd
Vol:/ w:/ a = lim e s h
nrs2 nTs2 s—=oo Jrrs2

= lim d¢ d6? d6* (sin ¢ 090° + cos ¢) (1 + 25 8in ¢ cos ¢ 9“90(1’) eosin’ @

$—=0 JrTs2

= lim dy de d0®do? {sin¢ 090% + cos ¢ + 2ssin? ¢cos ¢ 0°6°0°0° + 2s sin ¢ cos® ¢ 9¢9¢} eosin® ¢

§— 00 nrs2

. . . 2 —ssin? [0}
= lim dp do (sm ¢ + 2ssin ¢ cos ¢) e
2

S5—>00

2 -1 1
= — lim d(p/ dz(l — 25:62)675(17222) =27 lim 678/ dz(l+ 23302)6”2
0 1 -

S— 00 S— 00 1
1 2 Tx 271 1 1 2
=27 lim {675/ dze®® + 2se”° [—esm ] — 28673/ dr—e®” }
s—00 _1 2s —1 1 2s
=47 lim e *(e®) = 4, (4.49)
S— 00

where in the fifth line we introduced the variable change x = cos¢ and in the sixth we integrated by
parts. As expected, (4.41) and (4.49) coincide.

Finally, we will apply equation (4.19) to our problem. The fixed points of the U(1) action are the north
pole zx and the south pole xg Since the coordinate system (¢, ) is not well defined in these points,
and we are now concerned with the local behaviour of the field around the fixed points, we will consider
neighbourhoods Uy and Ug of zy, g respectively.

For Uy we introduce the local coordinates (z,y), defined simply as x = cos¢ and y = sin . The vector
field V is expressed in these terms as

—g—@g @3——5111 — +cosp— = — g—f—fcﬁ (4.50)
Qp  Opdxr  Opdy Y or San_ Yor Oy’ '

oV = ( (1) _(1) ) (4.51)

The Jacobian of V' is

so Pfaff 0V (zn) = —1.

In a similar fashion, for Ug we introduce the local coordinates (u,v), defined as u = cos ¢ and v = — sin .
Note that they have the opposite orientation as in Uy. This is because we are now in the southern
hemisphere and we parametrise the manifold as ”seen from the outside”. The field in these coordinates

) _0 o wo 0 b 0 0 452
Sy Opdu  dpdv Y ou You ’ '
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4. Finite-dimensional Localisation

The Jacobian of V' is

so Pfaft 0V (xg) = 1.

Using a(® = cos ¢ we find

A I I B

2 €My Pfaff OV (x;) Pfaff OV (zy)

1 -1
71'71 7r1 T,

which coincides with (4.41) and (4.49) as expected.

Prescription: Equivariant localisation on a paraboloid

(4.53)

al®(zg)

Pfaff OV (xs)

(4.54)

Besides thinking of concrete examples, as we just did with the sphere, we can also show that the calcula-
tions that appear in the proof of the Berline-Vergne theorem can be applied to other situations. In this
case we will consider a situation in which all initial requirements are satisfied but one: the manifold is
not compact. Therefore, we cannot talk about an example of the theorem but rather a prescription of
the technique used in the proof. In particular, it makes no sense to calculate the volume of the manifold,

since it is infinite.

Let us consider our manifold M to be the paraboloid 22 4+ 42 — z = 0 embedded in R3. We will use polar

coordinates (7, ¢), which relate to the coordinates in R? as:

X' =rcosyp
X% =rsing
X3 =2
which results in the induced metric
0X*0Xx”8
grrzﬁagTT:cos2g0+sin2<p+4r2:1+4r2
r r
5 0X* 9XP ( in o) + . 0
ro = 0qf——— ——— = Cos (—rsin 7 COoS psin p =
re B0y 9o P 2 psim e
0X*0XxP8
= =rZsin? ¢ + 1?2 cos® p = r2.

90 = %005, By

The form that would play the role of the volume form is then

(4.55)

(4.56)

(4.57)

(4.58)
(4.59)

w = +/det gdz' A ... Adx™ = r\/1+4r2dr Adp = /1 + 4r20760%. (4.60)

Consider the U(1) action given by rotation around the vertical axis, i.e.

_9
- 5
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4. Finite-dimensional Localisation

The equivariant exterior differential is then

0 0 0 0 0
= gF— H_—_ — " — _— _—
dy = 0" o+ Voo = 07— + 07 o0+ o0% (4.62)

As it happened with the sphere, in this case the volume form is not equivariantly closed either,

dyw = (9’"8 + 6% 00 + ) V144720709 = —r\/1+4r2 6", (4.63)

or dp  00%

so we must consider the equivariant extension

(1 +4r2)3/2 = p\/1 + 4r2076% + (1 +4r 2)3/2, (4.64)
Now consider the 1-form
B =guVH"0" =g, ,V70¥ = r20%, (4.65)
its equivariant derivative
0 0 0
= r__ $_~ __ 2p0p _ 20" ¥ 2 4.
dy (9 8r+9 830+8959>T9 r0"0% +r°, (4.66)

and the exponential
T 2 2
e SV B — 2570707 =T (1 —2sr0"0%)e™"". (4.67)

The so-called equivariant volume -since we cannot talk about the volume of a paraboloid in a literal
sense- will be then

Voleg z/ w :/ a = lim ae*vh
T M oTm s JuT M

= lim drdedf¥ do” < V14 4r2676¢ —|— 1 +4r )3/2> (1 —2sr6"0%)e —sr?
S§—>00 HTM

= lim drdpdf®do” { V1 +4r2070¢ + 45 1 + 4r2)3/2 — 25r2\/1 + 412070%07 0¥
S5—>00 HTM

1
—687‘(1 + 4r2)3/20T9“0} e~

1
lim drdp (r\/ 14+ 4r2 — gsr(l + 47“2)3/2) s’

§—00 M
[e°) 1 o0
=27 lim {/ drry/1 + dr2e—"" — 6/ drsr(l+ 47‘2)3/2€_ST2}
§—00 0 0
o > 101 I 2
=27 lim {/ drry/1+44r2e™" + 5 [2(1 + 4r2)3/2¢7sT ] - 6/ dréry/1 + 4r2e™°" }
5§—00 0 0 0
> 2 1 e 2 s
=27 ILm {/ drry/ 1+ 4r2e™" — B / drry/ 1+ 4r2e™°" } =5 (4.68)
s o0 0 0

where we integrated by parts in the seventh line. We can now compare this result with a direct applica-
tion of (4.19). The local behaviour of the vector field around the single fixed point -the origin zo- can
be expressed in the same coordinates and terms as the south pole of the sphere with the neighbourhood
Us. Therefore, Pfaff 0V (xo) = 1.
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4. Finite-dimensional Localisation

Using a(® = (1/12)(1 + 472)3/2 and we have

a@(z;) aO(z) 11

= _opyw2_Q T\ o @ W0 g - 2 T
Voleq ;V[ (2 SR oV (2 " Plaft OV (20) 1217 6
23 \%

(4.69)

which coincides with (4.68) as expected.

4.2 Localisation for Dynamical Systems: the Duistermaat-Heckman
Theorem

We will now use the localisation techniques to solve a family of integrals that usually appear when dealing
with dynamical systems. To do so, assume that the Hamiltonian function Hy defined on a 2n-dimensional
manifold M -as defined in §3.3- is a Morse function, i.e. that all its critical points z;, dHy (z;) = 0 are
isolated and that the Hessian matrix of H on those points is non-degenerate,

det Hy(x;) # 0, Hy(z) = (W) . (4.70)

Notice that the critical points of Hy coincide with the set My, because of (3.64). In statistical mechanics
there is an important quantity of interest called the classical partition function (see [17] for a detailed
description), which is the function

2r) = [ Lot = [ facl e ) (a7

n'

where for our purposes T will be a real parameter. While it is very seldom that an exact expression can
be found for (4.71), it is common to approximate its value for T' — oo using the so-called stationary-phase
approzimation (cf. [5]). This approximation is based on the following observations:

e For T'— o0, the integrant tends to damp to O.
e This implies that Z(T') can be assymptotically expanded in powers of 1/T.

e The larger T gets, the more the integrand of Z(T') tends to localise around the critical points of
Hy, ie. around My . To evaluate these contributions, we could repeat the same procedure as in
the previous section: expand both Hy and w around each z; € My and express Z(T') as an infinite
series of Gaussian moment integrals. If we only take into account the lowest order contribution and
sum over all x; € My, we get the standard lowest-order stationary-phase approximation to the
integral (4.71),

Z(T)<27r) Zg;ve*”v(w j:tt;i(( )) +O(1/T ). (4.72)

This expression was actually the one that gave rise to the equivariant localisation theory in 1982,
when Duistermaat and Heckman (see [15]) found a general class of Hamiltonian systems for which the
stationary-phase approximation gives the exact value of Z(T'), i.e. all O(1/T™*1) terms in (4.72) vanish.
If we consider our usual setting in which My, consists of isolated points, then the equivariant Darbouz
theorem (see [5]) says that not only we can find local Darboux coordinates (p,,¢") in which the sym-
plectic 2-form w looks like (3.56), but also we can locate the origin of the coordinates (p,,q¢") = (0,0)
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4. Finite-dimensional Localisation

on the fixed point z;. This means that the U(1)-action on M can be locally expressed as a set of linear
rotations, one for each (p,,¢") plane:

- 0 .0
_ N J_—
%4 jz::ls] (q] a7 +p 8%) , (4.73)

where ¢; are some weights yet to be specified. From (3.64) we have

n

H(z) = H(z:) + Y

j=1

£ 2
-5 +d), (4.74)
and therefore the solutions of (3.67) are simply circles around the critical points, p;(t), ¢?(t) ~ e*s*. This
gives a very graphical representation of both the U(1)-action on M and of the fact that the action pre-
serves the Darboux coordinates. We see that in this case, the Hamiltonian function is actually quadratic
and therefore the stationary-phase approximation is actually exact.

We can give an interpretation of this fact by using equivariant cohomology, as Atiyah and Bott pointed
out in 1984 (see [16]). Using the same setting as in §3.3, we can observe that Z(T) can be written as

2(T) = /M o, (4.75)

where a now is the inhomogeneous form

_ 1 resmyy Y rH Zn (=7) j
o = ﬁe V) — ﬁe v 2 Tw s (476)
whose 2j-component is
—TH w’
Oégj = e v (—T)nfjj' . (477)

Recalling that dywy = dy (w + Hy) = 0, we can find dya = 0 and therefore a simple application of the
Berline-Vergne theorem (4.19) gives us

2m\" e~ THv (i)
Z(T)_(_T) x;; Pfaff OV (z;) (4.78)

Choosing the right sign for the denominator can be sometimes difficult. Assume we are using the equiv-
ariant Darboux coordiates in which w(z;) is skew-diagonal with skew-eigenvalues 1 and the Hessian H(p)
is diagonal with eigenvalues €;(x;). Then from (3.64) we have (OV)|, = w™*(z;)H(z;), so (OV)|, is of
the form

51(3%‘) ()
—E€1(x;
(4.79)
en(x;)
—en(xi)

so Pfaff (x;) = (—=1)"e1(x;)...en(x;). We can therefore write directly

20 = () P [qetikes, (4.80)

This result is sometimes referred to as the Duistermaat-Heckman theorem or Duistermaat-Heckman in-
tegration formula.
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4. Finite-dimensional Localisation

Prescription: Symplectic localisation in the plane

As we did in §4.1, we are going to consider a particular case in which the manifold M is not compact and
therefore it cannot be considered an example of the theorem but rather a prescription of the techniques
used in the proof. One of the most simple examples of a symplectic manifold is the plane M = R? with
coordinates (p, q), together with the symplectic form

w=dpAdg=070". (4.81)

These coordinates are already Darboux coordinates. Consider now the usual U(1) action on R? and its
corresponding vector field

_, 2 _.2

~Poq Yoy
The only fixed point is the origin (p,q) = (0,0) so comparing to (4.73), A1(0) = —i and from (4.74) the
Hamiltonian will be

(4.82)

P’ +¢
5
We will first compute the integral Z(T) in the classical way, i.e., as in (4.71):

Hy = (4.83)

> 2

2m 0o
Z(T) = / we  THY :/ greie—z (P e z/ dy drre 2" =2r dre 1" = T (4.84)
TR? TR? 0 0 0

Let us now express the system in equivariant terms. We first find the equivariant exterior differential

dV:d+iV:9”2+0q£+pi
dp dq

a01 ~ Tar (4.85)

and we check that wy = w + Hy is equivariantly closed
) G, ) 0 P+
d =|(6P— 0‘1— — P07 + = pO®P + q0? — pf? — q07 = 0. 4.
vwy ( + +0p 89’1 89p> < 9 pot +q D q 0 ( 86)

The form o will be in this case

Le—T(wHV) - le—T(9p9q+%(P2+q2)) - %(1 — TPgT)e~ 3 @7 (4.87)

@ T T

and it is clear that its top component coincides with the integrand of (4.84). We can see that « is also
equivariantly closed

1
dya = 7 {=Tp0" - Tqb" +Tq0" + Tp0"} e~ s = o, (4.88)

Regarding the field V, its action is the same as in the neighbourhood Uy in the sphere example, so
applying the Berline-Vergne theorem:

a9(0) 11 27

which is the same result as in (4.84).

Finally, we will evaluate Duistermaat-Heckman integration formula directly. We have, as matrices

w(O)(_(l) é) H(O)(é ‘1)> (4.90)
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4. Finite-dimensional Localisation

so detw(0) = det H(0) = 1 and A(0) = 0. We finally have

27 _ detw(0) 2w
Z(T) = e THv(O) | 2 _ Z 4.91
@) =T detH(0) T (4.91)

which also gives the desired result.

4.3 Localisation for Degenerate Systems

So far we have been assuming that the vector field V' corresponding to the action of the Lie group G on
M is non-degenerate, i.e. that the set of fixed points My, consists of isolated points. In this section we
will drop this assumption and consider the case in which the vector field can possibly be degenerate. In
this case, the set of fixed points My becomes a sub-manifold of M (see [1, 2, 18] for more details) and
while the use of localisation techniques is still possible, we have to do some changes in the procedure.

The normal bundle

We will assume that V' is non-degenerate in the normal directions to My, which will allow to define
the so-called normal bundle Ny over My ([18]). Changing the order of the coordinates if necessary,
we can take local coordinates in a neighbourhood of My so that a point x € M can be written as
(2t ..., 2™ 2™ . 2™), where m = dim My and n = dim M, in such a way that the points of My, are
the ones with 2! = £™*+2 = .. = ™ = 0. We will use a triple index notation, where the latin indices
1,7, k... go from 1, ..., m, the first greek indices «, 3,7... go from m + 1, ...,n and the middle greek indices
A, i, V... combine the previous ones, i.e.

r = (z") = (2%, 2%), x € My iff 2% = 0. (4.92)
The tangent space T, M at € My, spanned by {9/dz"}, can be decomposed in the direct sum
ToM =T, My & (TyMy)*", (4.93)

where T, My is spanned by {8/82'} and (T, My )" is spanned by {9/02*}. The normal bundle Ay is
defined as the vector bundle over My whose fibres are (TxMV)J‘ and has the inherited metric connection
from T M. In this sense,

TMlMV =TMy &Ny (4.94)

as vector bundles. We will write NV, = (Tgc/\/lv)L to make notation easier.
By construction, the vector field V = V¥ (2, 2%)9/0x* satisfies
VE(x,0) =0 and V,VH(2",0) = 0;V*(x",0) = 0. (4.95)

If we consider the transformation L, for x € My, as we did in (4.34),(4.35), and use the property (4.95),
we conclude that the linear transformation will have the form

i (0 O
Lma(o Em)’ (4.96)

where L, : N, — N, is antisymmetric and non-degenerate, so in particular it can be considered as an
isomorphism. Using a linear transformation if necessary, we can assume that L, has the form (4.36).
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4. Finite-dimensional Localisation

More generally, Ly preserves the splitting T, M = T, My & N, so it can be considered as a fibre map
of the normal bundle.

We can also work out some of the basic elements of the normal bundle Ay, using coordinates. For example,
the sections of this bundle are simply the normal vector fields over My,

0
W =W%z")=— 4.97
() o (1.97)
the induced covariant derivative is simply the restriction of the covariant derivative of T M,
0 0
Vo —=1I¢ (4.98)

a7 Oz Y Qxh

and the Riemannian curvature tensor is the restriction of the one in T'M,

0 0 0 0
TV X _ps T
F <8a:’3’ 8xj> Oz R i OzP’ (4.99)

where R? «ij are the coefficients of the usual Riemannian curvature tensor of 7M. It is important to
observe that for Ny, we only take into consideration the components with two latin and two greek indices.

Normal coordinates

In order to simplify our calculations, let * € My and (z¢,2%) be normal coordinates around = (see [2]
for a detailed definition). The main properties of normal coordinates are that g, () = 6,, and that
the first derivatives of the metric vanish at x. The second order terms can be expressed in terms of the
Riemmanian curvature tensor in the following form:

1
G (x) = 0y — gRupwx”xU +O(2?). (4.100)
Using this, equation (4.4) can be approximated by
A 1 AN P O A 1 AN P O
5,“\(6,,‘/ )— gRMP)\U(aVV Yol x —|—6,,A(8MV )— gR,,pM(c’ﬂMV Yol x (4.101)
1 1
- gRM,\W(GpVA)x”x” - gRWl,,\(apVA)xpx” = 0. (4.102)

If we take the terms of zeroth order we get
5n (0, V) +6,,(0,V*) =0, (4.103)

which only states that (9V) is an antisymmetric matrix. More interesting is to take the second order
terms,

Rup)\a (8VV)\)-TP-TU + Rypka(auv)\)ﬂfpxa + RuAVo’ (8PV)\).TP.TU + RHUU,\(ﬁpVA)x”x” = O (4104)

We recall that (5‘uV>‘) = 0 if any of the two indices is latin. Consider the particular case p = i,v = j,
then the only non-vanishing terms are

ijg(&gV"*)xsx" + Rigﬂ(aeV”)xsx" =0, (4105)
and since this is true for arbitrary value of the coordinates, we get

(R'yijo + R'yjio’)(aevry) =0. (4106)
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4. Finite-dimensional Localisation

Expansions of the forms

In a similar fashion as in the proof of the Berline-Vergne theorem (§4.1), we can take advantage of the
invariance of the integration measure to rescale the variables and make higher order terms vanish in the
limit s — oo. In this case, though, we will only rescale the variables

1 1
¢ — —z9 ¢ — —06“. 4.107
o — e 7 (4.107)
We can now look for the expansions of 2y, and Ky around x € My and in terms of s. We start with
the expansion of (Qy):

()(@) = 5 () (2)06 = £ () ()06 + ﬁmvm 7)6°6"

- \[(Qv)m( 2)0'0° + 2—S(szv)aﬁ(ac)eaeﬁ. (4.108)

Let’s look at (4.108) term by term. We can write the first term as:

1

5 ()i (2)0'07 = [0i(g73V?) = 03(9iaV?)] 0°67

DN | =

1 o
=3 [(Digin )V + gia(0:VY) = (9;9i0) V> — gin(9;V))] 6767
1 o
=3 [(3 9i7)V7 = (99i,)V7]0'¢?

= _67§ [(Rjiyk + Rjkyi — Rijyk — Riky;)(0-V7 )] 0°67

- @[(ij& + Rjsyi — Rijys — Rioy;)(0:V7)a 2’10767 . (4.109)

We focus first on the part proportional to s~1/2. Writing the relation (4.106) as

(Rykji + Ryjii) (0:V7) = 0, (4.110)
we have
76%/; [(Rjiyk + Rjkyi — Rijoyke — Rikej)(0-V7)2%2*] 0767 = 0 (4.111)
because
- 6%/; [(Rjink + Rjkni — Rijyk — Riknj) (0:V 7 )a"a*] 007
B _6%/5 [(Rynji + Roiji = Roij = Reyjin) (0:V7)2"2*] 9707
= 6%/5 [(Rykji — Ryjik + Royji + Royjii) (0:V7)a%z"] 6707
= 6%/5 [(Rykji + Royjri + Roykji + Roji) (0:V7)2"2"] 0767 = 0, (4.112)

1

so this part vanishes. We focus now on the part proportional to s™1, writing the relation (4.106) as

(Ryijs + Ryjis)(0:V7) = 0. (4.113)
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4. Finite-dimensional Localisation

we have
1

- 6 —[(Ryjins + Rjsyi — Rijys — Rigyj)(0-V )2 20)0°07

[( Y05 + R’yz]é R'yéij 'y]zé)(a V’Y) ]01'9]'

1 o
[ voji = 5 (Ryjoi + Ryjis) + Rysji — §(R7j5i + Ryjis))(0:V )22’ | 6767
1 1 .
~ " 6s [ vogi = 5 Rysji + Bysji — ) Ry55i)(0:V7)x"a” | 6607
1 o
=5 Raoji(0:V)aa" 00 = 7R75ij(a€w)x8x59193. (4.114)
S

We look now at the second and third terms of (4.108):

(0 )ai(@)0°0° + 5—=(Q)ia(2)0'0* = [(Q)ai(@) = (v )ia ()] 070"

1 1
PNE 25 2\f
1
= T\/g [(30491'7)‘/7 + iy (0o V") = (0igar )V — gary (0:V7)
- (6igcw)vfy - ga'y(aivﬁy)) + (aagi'y)v’y + Giny (aav’y)] 9(191'
1

= % [(aacgi'y)‘/V + giw(aav’y) - (81'9017)‘/7] eaai

1 1 )
= NG (0iry — gRikwlzkzl)(ﬁaVV) 0%0*

1

3 [(Rm—yk + lem)(a VW)IkIE + (Ris’yk + Rik%)(aaVV):r’“x

— (Raiyk + Rarsi) (0:V )2k 251007 + O(s%/2) (4.115)

Regarding the part proportional to s~1/2, it vanishes because 8in(0aV7) = (0,V') = 0 and
Rikvl(aaVW)x’“xl = vaik(aavry)l’kl'l = —ka(aaVV)x’“xl = 0, (4.116)

where we used identity (4.110) and the antisymmetry properties of R. The part proportional to s—*
vanishes as well. To see it, first take relation (4.104) and consider the particular case p = o, v = 1,

RapAU(aiVA)xpxg + Ri,,Aa(aaV)‘)xpx” + RuAig(a‘,V)‘)xpx" + Ragix(ap\/)‘)x”x” =0. (4117)

Using again the properties of (8pV’\) we get

1 £ ,.,0
ﬁRMm(asVV)x 7 =0, (4.118)

1
Ripyo 0V )aP2? + —

\/gRom-g (0 V)t +

or more explicitely

1 1
Zklav'yl'l'—l-fRst-i-ka 8V7xx + —
“/( ) \[( 2l “/)( ) \/g

We can forget about the first term because using (4.110)

(Ra'yik: + Raki'y)(aev’y) + 0(8_1) =0. (4119)

Rikwl(aavv)l‘kxl = vaik(ﬁavv)xkxl = —Rwlk(aaVV)xkxl =0. (4.120)

43



4. Finite-dimensional Localisation

Rewriting Rait + Rakiy = —Rikya — Raity = —Rikva — Riayk We can see that equation (4.115) can be
rewritten as
1 ) .
7£[2(Rmk + Rigre) (0o V)2 2% — (Raink + Rakni) (0-V )2k 2510%0° + O(s73/2). (4.121)
Now, from

(Riewyk + Rikye) 0oV )2k 2" = (Rv,m + Ryein) (0o V7 )2k 2°
= (Rypic — Rykei — Ryike)(0aV7)2F
= (Rykic — Rykic — Ryine) (0aV7)a"2® = —Ryine(0aV")a"2° =0, (4.122)
and since
~(Raigk + Ratni) (0:V)2"2% = (Ruiky + Rakin)(0:-V7)2"a® =0 (4.123)
we conclude that the second and third term of (4.108) vanish.

Regarding the forth term of (4.108),
1 1
%(QV>11,3($>9Q'95 = % [&1(95}\‘/)\) - 85(9(1)\VA>} 9049/3

1
=5 (00982 V + 952 (06V>) = (989an) V> — gar(95V7))] 6267

1

—1/2 and the parts proportional to s~! are:

In this case there are no parts proportional to s

1 1
278 [gﬁ)\(aav)\) - ga)\(aﬁv)\))] gaeﬂ = %(Qv)aﬁaaeﬁa

where (Qy)qs is here evaluated at x.
In a similar fashion, we can expand the function Ky :
Ky = g (28, 2%) V(' )V (2%, %) = gy (2t )V (2, 2*)VO (2, 2

) 1/1 , 1
= gs(2*,0) — = (Rw-(sgxlxﬂ + —=Ryas52” )+ ngﬁmo‘xﬁ> < (0:V )z >

3\Vs Vs
L M) S
(gt e)
- égw(xi,0)(5’5‘/”)(8(‘/5)9:%( - 2—18(9\/)@(851/”’)93%4 (4.124)

As a conclusion, we see that
1 1 o1
s(Kv +Qv) —— §(QV)@(85V7)J:%< + §R75ij(85V7)x5:1:59’93 + 5(Qv)aﬁeaeﬂ. (4.125)
S oo

This has two main implications: on the one hand, all non-quadratic terms vanish and on the other hand,
we see that the only curvature coefficients that appear contain two greek and two latin indices, so the
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integration can be reduced to the normal bundle. More concretely,

/ a=lim [ ae”*™? = lim d"zd"0a(z, §)e Ky )
M S§—00 M S$—00 M®A1M
= lim dnxidnxadnaadﬂeia(aj, 0) exp |:—Sg’“/($i7 IO‘)V”(l‘i, l‘a)Vu(l‘?, xa) . %(Qv)w(ﬂﬁi7 xa)euey}

5§—00 M@AIM

, ) 1 1
= / dhz'd"x*d"9%d" 0" a(x, 0) exp [—(Qv)m(@v”)xax@“] exp [—(Qv)aﬁHO‘Hﬂ} X
MEALM 2 2

1 o
X exp [—2R75ij(85V7)335x6919]}

= i gngi (i i (—2m)t
= /MV®A1MV d"z'd"0 Oé(x ;0 )\/det[(QV)('y] det[agv,y](_1)L/2Pfaff[(ﬂv)ag]><

y (2m)- _
det[R, 50107 det[0.V]
a(zt, 0%

- a" g (- 2m) 2 - (4126)
/MV®A1MV Pfaff [(Qv )¢y + Reqyi07079]

where L is the codimension of each component M; of My. Being more explicit and recognising the
denominator as the equivariant Euler class, we can write

S a(z?, 6%)
o = dnxzdn91(72ﬂ)rk(Ml)/27’, (4127)
/M ;/Ml@)Ale By (R)n;

where A is the normal bundle of M;.

4.4 Localisation for Torus Group Actions

So far we have always considered the action of a unidimensional Lie group, G = U(1). In this section we
will drop this assumption and consider the action G x M — M of an arbitrary commutative Lie group.
An important property of such groups is that they can always be written as a torus T¢ = (S!)4, the
product of d > 1 circles, where d = dim G.

Let {X?}2_, be the basis of the Lie algebra g of G and let {¢?}?¢_; be the dual basis of g*, so
P (X)) = 59, (4.128)

Let V¢ € TM be the vector fields corresponding to X € g, which are expressed in the basis of local
coordinates as 5

Ve = Va”u'(l')w, a = 1, . d. (4129)

Then we can write the exterior equivariant derivative as

d d
— w_Z Al ha o T
dg=1®0 gy + Vet @ 0% (4.130)
and 5 5
dg® = ¢% @ (diya 4 iyad) = ¢° @ <eu(aHVa’”)36V + Va’”axu) =" @ Lya. (4.131)
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4. Finite-dimensional Localisation

The proof of the Berline-Vergne theorem is essentially the same as for the unidimensional case (§4.1),
but with the substitution V#(z) = ¢*V**#(z). The matrix (4.36) will look like

0 —¢' A1
DV 0
0 —" Ay
DY 0
., (4.132)
0 *gf)d/\Ld
¢ N1a 0
0 —¢N,.a
"Ny .4 0
SO
dim G I,
Pfaff (V) = (-1)" [N (4.133)
a=1 j=1

It is important to note how the result of the integration is not a number but an element of g*, as noted
in (4.18).

Prescription: Torus action in R??

We will now consider the multidimensional equivalent of the prescription in §4.2. As we pointed out
before, this is not an example of the theorem, but rather a prescription on how to apply the calculations
of its proof to the non-compact case. Let us consider M = R?" with coordinates (Pu,q*). The most
simple symplectic form for this case is
n n .
w = Z dp; A dg’ = Z 6P g9’ . (4.134)
j=1 j=1

Consider the T"-action where each X® corresponds to

0 0

Ve = pye—— — q*—. 4.135
Paga ~ 4 gm (4.135)
The only fixed point is the origin (p;,¢’) = (0,0). The corresponding Hamiltonians will be:
2 a2
He = 1% (4.136)
The equivariant exterior differential will be
- 0 a 0 0 0
dg = fPs — + 69 “Da — ¢p%q® 4.137
o= 2 (7 + 0" o 9o 1 ) s
and when applied to the equivariant symplectic form wg = w + H = w + ¢*H* we get
n 2 a2
a Da” +4q
d =d OP=64 o_
o= |55 (o 250
= <+¢“pa9p“ +6°q°07 — ¢ patP — ¢“q“9q“) =0. (4.138)

a=1
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4. Finite-dimensional Localisation

In the first place, we will consider the form « as defined in (4.76) and we will apply the Berline-Vergne
theorem. The Jacobian of the vector field is

0 ¢!
,¢1 0
oV = , (4.139)
0 o"
—¢" 0
because in this case [} = ... = [,, = 1. Therefore Pfaff 9V = (—1)"¢'...¢", so we will finally have
a9(0) 1 1 2r\" 1
ZM=-2n)"———=(-27n)"—or—————— = | = | ———. 4.14
(0 =27 sawavio) ~ 2 T Cyrgrgn ( T) oo (4.140)

In the second place, we will apply the Duistermaat-Heckman integration formula (4.80) directly. To do
so, we observe that

1 ot 0
0 0 ¢

w(0) = . H(0) = , (4.141)
0 1 om0

-1 0 0 ¢n

so detw(0) = 1 and det H(0) = ¢'%...¢"2. Finally we have

_ (2" o [detw(0) _ (2N [ 1 2m\" 1
Z(T)—<T> e~ TH(O detH(0) \ T o2 \T) gl (4.142)

which coincides with (4.140). It is worth observing that for n = 1 and phi' = 1 we recover (4.91).

47



Chapter 5

Outlook

In this work we have discussed how the presence of symmetries of a physical system represented as actions
of a Lie group on manifolds allow to define the equivariant cohomology. We have considered different
scenarios, such as ordinary differential manifolds, fibre bundles, symplectic manifolds and supermanifolds,
reproducing the approach of R. J. SzaBO, N. BERLINE e. al. [1, 3], namely the so-called Cartan’s model
of equivariant cohomology. We have also presented the main localisation results in these scenarios, based
on the BERLINE-VERGNE and DUISTERMAAT-HECKMAN theorems, developing the proofs in an extended
manner and illustrating the procedures both through examples and also through prescriptions on the use
of the techniques in non-compact scenarios.

Nonetheless, the localisation techniques presented in this work can be formally extended to more general
contexts and in particular to derive localisation formulae for path integrals in special cases by using
BRST quantisation techniques. Equivariant localisation is a topic that still attracts interest of both
mathematicians and physicists for the relations that it establishes between geometry and topology on one
side and quantum and topological field theories on the other. It should be observed, however, that in these
cases one must take into account that some problems are not entirely well defined from a mathematical
point of view and require further research in the topic. We refer the curious reader to [1, 3| for more
information.
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Sammanfattning pa Svenska

Symmetrier har i stor utstrickning anvénts under de senaste artiondena for att férenkla systemen i ma-
tematik och teoretisk fysik, speciellt i studier av dynamiska system. I borjan av 1980-talet konstaterades
att vissa integralberdkningar vanliga i symplektisk geometri skulle kunna forenklas nér vissa symmetri-
villkor uppfylldes. Med anvéndning av ekvivariantkohomologi, ett begrepp som inférdes av Henri Cartan
pa 1950-talet, generaliserades detta resultat nagra ar senare till fallet med Killingvektorfilt pa generella
kompakta Riemannmangfalder. I synnerhet visades att den stationira fasapproximationen faktiskt var
exakt. Detta var fodelsen av det som nu kallas ekvivariant lokalisering, féremalet for foreliggande arbete.

Ekvivariant lokalisering bygger pa att utnyttja vissa symmetrier av system, som vi representerar genom
en icke-fri Liegruppverkan pa en mangfald, for att minska dimensionerna av integralberdkningar. Sérskilt
intressanta dr de fall ndr denna reduktion, kind som lokalisering, tillater en dndligdimensionell integral
att uttryckas som en summa av ett dndligt antal element. Ekvivariant lokalisering kan ocksa anvéndas for
att forenkla sokvégen fran integralberdkningar till mer kénda och béttre definierade dndligdimensionella
integraler, men detta ligger utanfor ramen for detta arbete.

Lokaliseringsegenskaper kan uttryckas pa olika matematiska sprak. I detta arbete anvinder vi Cartans
modell for ekvivariantkohomologi, som bygger pa att skapa element liknande de till de Rham-komplexet
men med avseende pa en Liegruppverkan pa mangfalden. For att utfora berdkningar, introducerar vi
begreppet anti-kommutativa variabler och gor verksamheten i mangfaldens yttre knippe, som vi forstar
som en supermangfald. Pa sa sitt kan vi etablera en invarians under koordinattransformationer och ge
bevis pa exakthet av approximationer via sadelpunkter pa vara integrerade berdkningar.

Detta arbete inleds med en genomgang av nodviandiga matematiska begrepp, inklusive differentialgeome-
tri, Liegrupper och algebror och grunderna om supergeometri och supermangfalder. Efter detta studerar
vi ekvivariantkohomologi i olika scenarier: mangfalder, vektorknippen, symplektiska mangfalder och su-
permangfalder. Slutligen utvecklar vi de viktigaste lokaliseringsresultaten pa dessa scenarier, som Berline-
Vergnes och Duistermaat-Heckmans satser. Vi skriver ned bevisen for dessa resultat pa ett detaljerad och
utokad sétt, illustrerar dem med exempel och visar hur dessa tekniker kan anvindas som ett recept for
icke-kompakta scenarier.
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Resum en Catala

Les simetries s’han fet servir extensament durant les darreres décades per a simplificar sistemes dins de
les matematiques i la fisica teorica, especialment en l’estudi de sistemes dinamics. Al principi dels anys
80 es va observar que algunes operacions integrals comuns dins la geometria simplectica podien ésser
simplificades quan es complien certes condicions. Fent servir el llenguatge de la cohomologia equivariant,
un concepte introduit per Henri Caran als anys 50, es van generalitzar aquests resultats durant els anys
seglients al cas de camps vectorials de Killing sobre varietats de Riemann generals. En particular, es va
probar que ’aproximacié de la fase estacionaria era, de fet, exacta. Aixo va marcar el naixement del que
avui es coneix com a localitzacié equivariant, I’objecte d’aquest treball.

La localitzacié equivariant es basa en fer servir simetries de certs sistemes, representades com a una
accié no lliure d'un grup de Lie sobre una varietat, per a reduir la dimensionalitat dels calculs integrals.
Especialment interessants sén els casos en que aquesta reduccid, coneguda com a localitzacid, permet
expressar una integral de dimensi6 finita com a una suma d’un nombre finit d’elements. La localitzacié
equivariant també pot ser usada per a reduir integrals de cami a integrals de dimensi6 finita, molt més
conegudes i més ben definides, tot i que aixo queda fora de 'abast d’aquest treball.

Les propietats de la localitzacié poden ser expressades en diversos llenguatges matematics. En aquest
treball farem servir el model de Cartan per a la cohomologia equivariant, basat en la creacié d’elements
similars al complex de de Rahm pero tenint en compte I'accié d’un grup de Lie sobre la varietat. Per
a fer els calculs, introduim el concepte de variables anticommutatives i fem les operacions al feix fibrat
exterior de la varietat, entenent-lo com una supervarietat. Aix0d ens permet establir una invariancia sota
canvis de coordenades i provar I’exactitud de I’aproximacié del punt de sella en els nostres calculs.

Aquest treball comencga amb una revisié dels conceptes matematics necessaris, incloent la geometria
diferencial, els grups i algebres de Lie i nocions basiques de supergeometria i supervarietats. Després
d’aix0 estudiem la cohomologia equivariant en diversos escenaris: varietats diferencials, feixos fibrats,
varietats simplectiques i supervarietats. Finalment desenvolupem els resultats de localitzacié en aquests
escenaris, com els teoremes de Berline-Vergne o de Duistermaat-Heckman. Escrivim les proves d’aquests
resultats de manera detallada i extensa, il-lustrant-los amb exemples i mostrant com aquestes técniques
també poden ser usades com a prescripcié per a escenaris no compactes.
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Resumen en Espanol

Las simetrias se han usado extensamente durante las dltimas décadas para simplificar sistemas dentro
de las matematicas y la fisica tedrica, especialmente en el estudio de sistemas dindmicos. Al principio
de los anos 80 se observé que algunas operaciones integrales comunes dentro de la geometria simpléctica
podian ser simplificadas cuando se cumplian ciertas condiciones. Usando el lenguaje de la cohomologia
equivariante, un concepto introducido por Henri Cartan en los anos 50, se generalizaron estos resultados
durante los siguientes anos para el caso de campos vectoriales de Killing sobre variedades de Riemann
generales. En particular, se prob6 que la aproximacién de la fase estacionaria era, de hecho, exacta. Esto
marcé el nacimiento de lo que hoy se conoce como localizacién equivariante, el objeto del presente trabajo.

La localizacién equivariante se basa en el uso de las simetrias de ciertos sistemas, representadas como una
accién no libre de un grupo de Lie sobre una variedad, para reducir la dimensionalidad de los cédlculos
integrales. Especialmente interesantes son los casos en que esta reduccién, conocida como localizacion,
permite expresar una integral de dimensién finita como una suma de un nimero finito de elementos. La
localizacion equivariante también puede ser usada para reducir integrales de camino a integrales de di-
mension finita, mucho més conocidas y mejor definidas, aunque esto yace fuera del alcance de este trabajo.

Las propiedades de localizacién pueden ser expresadas en distintos lenguajes matematicos. En este tra-
bajo usamos el modelo de Cartan para la cohomologia equivariante, basado en la creacién de elementos
similares al complejo de de Rahm pero teniendo en cuenta la accién de un grupo de Lie sobre la variedad.
Para realizar los calculos, introducimos el concepto de variables anticonmutativas y hacemos las opera-
ciones en el haz fibrado exterior de la variedad, entendiéndolo como una supervariedad. Esto nos permite
establecer una invariancia bajo cambios de coordenadas y probar la exactitud de la aproximacién del
punto de sella en nuestros calculos.

El presente trabajo empieza con una revisién de los conceptos mateméaticos necesarios, incluyendo la geo-
metria diferencial, los grupos y algebras de Lie y nociones basicas de supergeometria y supervariedades.
Después estudiamos la cohomologia equivariante en distintos escenarios: variedades diferenciales, haces
fibrados, variedades simplécticas y supervariedades. Finalmente desarrollamos los resultados de localiza-
cién en estos escenarios, como los teoremas de Berline-Vergne o de Duistermaat-Heckman. Escribimos las
demostracionesde de Rahm de estos resultados de forma detallada y extensa, ilustrandolos con ejemplos
y mostrando cémo estas técnicas también pueden ser usadas como una prescripciéon para escenarios no
compactos.
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