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Abstract

In this thesis I consider an attractively interacting, degenerate Fermi gas close
to the unitary limit, where the two-particle scattering length is much larger than
the inter-particle distance and the interaction range is vanishingly small. In this
limit there are problems with traditional perturbation theory, since there is no
small dimensionless parameter that can be used in an expansion. To overcome
these problems, a new model was recently proposed by Y. Nishida and D. T.
Son. By treating the gas in d = 4− ε spatial dimensions, where ε is assumed to
be a small quantity, it is possible to do a perturbative expansion in ε, in terms of
Feynman diagrams. In this thesis this ε-expansion model is studied and used to
calculate the density of the boson condensate, the fermion number density and
the chemical potential of the fermion gas, in the vicinity of the unitary point.
The results are then extrapolated to three spatial dimensions and compared to
results from various experiments and quantum Monte Carlo calculation.
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1 Introduction

1 Introduction

At zero temperature, a Fermi gas with an attractive pairwise interaction of any
strength will form a superfluid [1]. The nature of this superfluid is, however,
highly dependent on the interaction strength. With a strong enough interaction,
fermion pairs can form dimers, i.e. two-particle bound states. The Fermi gas
then effectively turns into an interacting Bose gas. Already in 1925 Albert Ein-
stein realized that at sufficiently low temperature, such a gas should condensate
into a state where every particle is in the single dimer ground state. Such a
state is today known as a Bose–Einstein condensate (BEC) (see Ref. [2] for a
review).

If the attraction between the fermions on the other hand is weak, no lo-
calized bound states can form. But even though there are no dimer formation,
fermions close to the Fermi surface tend to form pairs, as was shown by Bardeen,
Cooper, and Schrieffer [3]. These pairs, commonly called Cooper pairs, consist
of fermions of opposite momenta and antiparallell spins. Even though these
pairs are not localized in space, but rather correlated in momentum space, they
still can condensate in a way similar to the Bose–Einstein condensation of the
dimers of the strong coupling regime — the pairs have total spin zero, and
consequently behave as bosons. The BCS theory was published in 1957 as a,
extraordinarily successful, microscopic theory of superconductivity and is re-
viewed in Ref. [4]. A central result of this theory is that the dispersion relation
of the fermions around the Fermi surface develop a gap, i.e. there is a minimum
excitation energy above the Fermi energy. Much insight to the physics of the
gas can be gained through calculations of this gap.

Thus weakly and strongly interacting superfluid Fermi gases have long been
separately well understood. Little was known, though, about the relation be-
tween them until the work by Legget [5] and later Nozières and Schmitt-Rink [6],
who applied the gap equation from the BCS mean field theory, which is quan-
titatively valid only in a weak interaction and high density regime, to fermions
with an arbitrary strong interaction. The result was a mean field model where
the BCS state was treated as a variational ground state, which in a continuous
fashion connected the two types of fermionic superfluids, thereby demonstrating
that they are two regimes of the same phenomena.

1.1 The BCS–BEC crossover

The transition from the BCS side to the BEC side — the BCS–BEC crossover —
occurs continuously without any phase transition [5, 6]. Thus the extended BCS
theory can be used to get some qualitative results also on the BEC side. But
while the gap equation correctly gives the binding energy for a pair of fermions,
it fails to take into account the interaction between these dimers, and thus fails
to describe physical properties of the BEC side [7], and one has to go beyond
the BCS mean-field equation to do quantitative calculations.

Since there is no hope for an exact solution to the full equations of a large
system of interacting fermions, the natural way to proceed to get quantitative
results would be using a perturbation theory with an expansion in some small
quantity. If one were to keep the BCS gap equation as a starting point, the
natural quantity to expand in would be the strength of interaction between the
dimers. But this is not small on the BEC side [7].
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1.1 The BCS–BEC crossover

For a system of attractively interacting fermions with particle density n,
there are three different intrinsical length scales, the range of the interaction
potential r0, the two-particle scattering length a, and the inter-particle distance
n−1/3.

As a system undergoes a BCS–BEC crossover, the two-particle scattering
length a strongly varies in magnitude. The range of the interaction r0, in con-
trast, remains fairly constant throughout the crossover. There are two principal
cases which we need to differentiate between. Fermions with an interaction for
which r0 � n1/3 are referred to as being in the narrow-resonance regime. It is
then possible to build on the BCS mean field theory and construct simple mod-
els which are good approximations all through the BCS–BEC crossover, e.g. the
two-channel model which we will discuss briefly at the end of this section [7, 8].
If, on the other hand, r0 � n1/3 and r0 � a, then the fermions are said to be
in the wide-resonance regime. Here the problems with the BCS gap equation
is much worse. This regime is also more relevant to the recent experimental
realization of these systems, which we will discuss below. Thus I will, in this
thesis, from now on assume that we consider fermions in the wide-resonance
regime.

I will also assume that the fermions interact exclusively through an s-wave
channel, so that scattering particles always have a two-particle wave function
with zero angular momentum. This is, at least at low energies, a good ap-
proximation since higher angular momentum scattering is suppressed by the
centrifugal barrier.

At zero temperature an interacting Fermi gas in the wide-resonance regime
is, across the BCS–BEC crossover, characterized by the dimensionless number
η = 1/(apF), where a is the two-particle scattering length and pF is the Fermi
momentum of the corresponding non-interacting Fermi gas. For a weakly inter-
acting system the scattering length is small and negative, and hence η is a large
negative number. The ground state of such a system is a BCS superfluid where
the fermions are paired in momentum space. A strongly interacting system, on
the other hand, has a small positive scattering length which means that η is
large and positive. Now the fermions will form two-body bound states due to
the strong attraction. In the ground state these bound states will Bose–Einstein
condensate, and hence this corresponds to the BEC-side of the crossover. A
system of interacting fermions with a diverging scattering length, i.e. η ≈ 0 is
commonly referred to as a unitary Fermi gas [9].

Given this, a natural expansion parameter is the so called gas parameter
which is given by an1/3. For a gas that is dilute enough, this is a small quantity
in both the BCS and BEC limits. But as seen above the two-particle scattering
amplitude diverges in the unitary limit. Thus this description fails to describe
the physics of the crossover region itself [7].

The simplest kind of model is a one-channel model, where one only considers
a gas of fermions with a pairwise interaction. In contrast to this it is possible to
construct a two channel model, where a boson field, describing the bound states,
is manually introduced in addition to the fermions [8]. The benefit of this is that
the interaction width, which in a one-channel model always is vanishingly small,
can now be treated as a free parameter. In the narrow-resonance regime, it is
then possible to make an expansion in terms of the small quantity γ = 1/(pFr0).
But as already stated, we are mainly interested in wide resonances, and then
the parameter γ will not be a small quantity to make an expansion in. From
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1.2 The Feshbach resonance

a fundamental point of view, a one-channel approach seems more attractive,
since it more closely models the basic problem of a Fermi gas with an attractive
interaction. But a two-channel model have a phenomenological appeal, since it
more accurately describes the physics of a system with a resonant interaction,
which is used in experimental setups.

1.2 The Feshbach resonance

In recent years, the problem of a Fermi gas in the BCS–BEC crossover has
received much new interest. This is mainly due to the experimental success
in producing degenerate atomic Fermi gases of 6Li and 40K [10, 11]. In these
experiments, atoms are cooled down in a magnetic trap. The atoms are prepared
to form a mixture of two different spin states, which are coupled by the hyperfine
interaction. The interaction between two atoms depend on their total spin,
in such a way that there is a possibility to form a quasibound state for one
combination of spins, but not for the other. Thus atom can scatter through
this intermediate dimer state — so called Feshbach resonant scattering [8]. By
applying an external magnetic field the energy gap between the two spin states
will shift due to the Zeeman splitting, making it possible to vary the interaction
strength, and hence the scattering length, in a controlled manner. Using this
technique of scattering through a Feshbach resonance, it has been possible to
experimentally verify many of the properties of a Fermi gas that undergoes
a BCS–BEC crossover. Some of these result will be discussed in section 4.8,
where we will compare them to the results that we have calculated using an
ε-expansion approach.

1.3 The unitary Fermi gas

The unitary Fermi gas is characterized by the limits a → ∞ and r0 → 0. The
only remaining quantity that has the physical dimension of length is the inter-
particle distance, given by n1/3, where n is the fermion particle number density.
The energy scale of the system can then be given in terms of the Fermi energy

of a non-interacting gas with the same density, εF = ~
2

2m (3π2n)2/3. The only
other available quantity with the dimension of energy is the chemical potential
µ of the fermions. But this is also uniquely determined by fixing the number
density n. Thus by considering only the physical dimensions in the problem, we
expect that energy per particle of a Fermi gas in the unitary limit will be given
by an expression of the form

E

n
=

3

5
ξ0εF, (1)

where ξ0 is a dimensionless constant depending only on the ratio µ/εF, which
is assumed to be of the order of unity. The numerical prefactor is given for
later convenience. When we generalize to a Fermi gas in an arbitrary number
of dimensions d, this prefactor will turn out to depend on d, and so will the
parameter ξ0. A property like E that is determined using purely dimensional
arguments, and thus independent of the specific details of the inter-particle
interaction, is said to be universal [12].

Due to this independence of the microscopic details of the interaction, a
Fermi gas at unitarity has been considered as a starting model for describing
vastly different physical systems. One example of the usage of the unitary
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1.4 The ε-expansion

Fermi gas is to treat it as an idealization of dilute nuclear matter. This idea
has been useful in creating models of the physics of neutron stars [13, 14].
Furthermore Chen et al. have suggested that there is an important relation to
high TC superconductors [15]. Finally Nishida and Abuki have developed a
relativistic generalization of the whole BCS–BEC crossover and suggested that
there are some relevance to QCD, and more specifically to models of cold dense
quark matter and of the quark-gluon plasma [16].

1.4 The ε-expansion

While the universal properties of the unitary Fermi gas makes it interesting as a
model of various physical systems, they also complicate a theoretical description.
As we have seen many properties of the gas can be expressed in terms of the
parameter ξ0. But this parameter is of the order of unity and thus not useful for
a perturbative expansion. Because of this, much of the research on the subject
has been limited to numerical Monte Carlo calculations. Recently, however,
there have been a couple of generalizations to the problem, which have enabled
an analytical description even at unitarity. Veillette et al. [17] considered an
arbitrary number of spin-1/2 fermion flavors with a Sp(2N) symmetry, noticing
that the mean field theory has an exact solution for N → ∞ and then deriving
corrections in terms of the small parameter 1/N . In the end the physical limit
of N → 1 is taken.

In this thesis I will describe another technique for introducing a small pa-
rameter that can be used for perturbation theory. I will consider a Fermi gas
around the unitary limit in d = 4 − ε spatial dimensions, where ε is assumed
to be perturbatively small, and then derive a perturbation theory i terms of ε.
This technique of working in almost four spatial dimensions and then in the end
extrapolate to the usual three was first used by Wilson and Fisher, in the calcu-
lation of critical exponents of generalized Ising and Heisenberg models [18, 19].
Recently Nishida and Son [9, 20] used it to describe a Fermi gas in the unitary
limit. There have also been various elaborations of Nishida’s and Son’s original
paper. Nishida [21] treated a unitary Fermi gas at a finite temperature; Arnold
et al. [22] made the first next-to-next-leading-order calculation; Rupak et al.
[23] treated a Fermi gas with a finite spin polarization; and Chen and Nakano
[24] expanded this technique to be useful all along the BCS–BEC crossover.

Many of the results in this thesis were first derived in Ref. [9] or Ref. [24]. I
will, however, be able to derive these results using a conceptually simpler model.
I will also present the, sometimes rather involved, calculations in much more
detail. Some of the differences between the treatments will be further discussed
in section 5.

2 Two-particle scattering in the unitary limit

To better understand our problem, we start by considering two-particle scat-
tering of fermions with a four-fermion point interaction. The Lagrangian of the
system is given by

L =
∑

σ=↑,↓

ψ†
σ

(

i∂t +
∇2

2m

)

ψσ + c0ψ
†
↑ψ

†
↓ψ↓ψ↑, (2)
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2 Two-particle scattering in the unitary limit

where c0 is a coupling constant. The fermions have a propagator

iG(p0,p) =
i

p0 − εp + iδ
, (3)

where εp = p2

2m .
The T -matrix amplitude for two-particle scattering in vacuum is given by

an infinite sum of bubble diagrams, which can be summed as a geometric series

iT (p0,p) =� +� +� + · · ·

(4)

= ic0

∞
∑

n=0

(iM)n =
ic0

1 − iM , (5)

where ic0 × iM is the one-bubble diagram, i.e. the second diagram of the above
expansion. Hence

iM = ic0

∫

dk

(2π)d+1

i
p0

2 + k0 − εp
2
+k + iδ

i
p0

2 − k0 − εp
2
−k + iδ

(6)

= ic0

∫

dk

(2π)d

∫

dk0

2π

1

k0 −
(

εp

2
+k − p0

2 − iδ
)

1

k0 −
(

p0

2 − εp

2
−k + iδ

) . (7)

Performing the k0 integral by closing the contour around the pole in the upper
half of the complex plane, this gives

iM = −c0
∫

dk

(2π)d

1
(

p0

2 − εp

2
−k + iδ

)

−
(

εp

2
+k − p0

2 − iδ
) (8)

= c0

∫

dk

(2π)d

1

εp

2
+k + εp

2
−k − p0 − iδ

(9)

= c0

∫

dk

(2π)d

1

2εk − p0 + εk

2 − iδ
. (10)

Hence

T (p0,p)−1 =
1

c0
−
∫

dk

(2π)d

1

2εk − p0 +
εp

2 − iδ
. (11)

The integral in eq. (11) has an ultraviolet divergence but can be performed
using dimensional regularization. Since we will need to calculate such integrals
repeatedly in this thesis, there is, in appendix A, a collection of some formulas
that are useful when performing integrals in an arbitrary number of dimensions
d.

Letting ∆ = m
( εp

2 − p0 − iδ
)

and changing to spherical coordinates, eq. (11)
can be written as

iM = c0

∫

dΩ

(2π)d

∫

d|k|mkd−1

k2 + ∆
, (12)
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2 Two-particle scattering in the unitary limit

where dΩ is a d-dimensional volume element. Changing variables of integration
to z = p2/∆ gives

iM = c0
m

2
∆

d
2
−1

∫

dΩ

(2π)d

∫

dz
z

d
2
−1

1 + z
, (13)

which can be integrated using the formulas (A2) and (A3), giving

iM = c0

(m

4π

)
d
2

Γ
(

1 − d
2

)

Γ
(

d
2

)

(

−p0 +
εp

2
− iδ

)
d
2
−1

. (14)

Appendix B contains a short review of some relations involving the two-
particle scattering length. Among other things, it is shown that at threshold,
i.e. when p0 → 0 and p → 0, the two-particle scattering cross section is given
by

σ = 4πa2. (B33)

But in the unitary limit the scattering amplitude a goes to infinity, and so does
the cross section. The only contribution to the cross section that could diverge
in this way is the scattering amplitude T . Thus T (0, 0)−1 = 0 in the unitary
limit. From eq. (14) and eq. (11) we see that iM will vanish at threshold and
thus that, in this limit, |c0| → ∞. Putting d = 4−ε and using the approximation
(see eq. (A4))

Γ(−1 + ε) = −1

ε
+ γ − 1 + O(ε), (15)

where γ ≈ 0.5772 is the Euler-Mascheroni constant, we get,

iT (p0,p) ≈ −
(

4π

m

)2− ε
2 1

Γ
(

−1 + ε
2

)

i
(

−p0 +
εp

2 − iδ
)1− ε

2

(16)

= −
(

4π

m

)2− ε
2 − ε

2

1 − ε
2 (−γ + 1 + O(ε))

i
(

−p0 +
εp

2 − iδ
)1− ε

2

(17)

= −8π2ε

m2

i

p0 − εp

2 + iδ
+ O(ε2). (18)

This expression has a very interesting form. If we define

g2 =
8π2ε

m2
(19)

and

D(p0,p) =
1

p0 − εp

2 + iδ
, (20)

the T -matrix can, to leading order in ε, be written as

iT (p0,p) ≈ (ig)2iD(p0,p). (21)

D(p0,p) has the form of a propagator of a particle with mass 2m, which will be
interpreted as a bound state of two fermions. Eq. (21) means that we, close to
four spatial dimensions, can treat the process of two-body scattering as medi-
ated by an intermediate boson, formed by a resonance. The effective coupling
between the fermions and the bound state is given by g ∼ √

ε, which is small
near four dimensions. Using this picture it should be possible to construct a
perturbative expansion for the unitary Fermi gas close to four spatial dimen-
sions.
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2.1 Binding energy

2.1 Binding energy

We want to describe not only a Fermi gas in the unitary limit, but also a gas in
the vicinity of this limit. A good way to access this neighborhood is to consider
the binding energy of a bound pair of fermions. In appendix B it is shown that
if two particles scatter at very low energy in an attractive potential which have
a range much shorter than the scattering length, then the binding energy of a
bound state of the two particles are given by

εb ≈ 1

ma2
, (22)

where m is the mass of each of the particles. This can be rewritten in terms of
the dimensionless parameter η = 1

apF
as

εb ≈ η2p2
F

m
= 2η2εF, (23)

where εF =
p2
F

2m is the Fermi energy of the free Fermi gas.
Following Ref. [25], we will now calculate the binding energy εb by assuming

that the two-particle scattering amplitude T has a pole at zero momentum
transfer, i.e. T−1(−εb, 0) = 0. According to eq. (11) this will be given by

1

c0
= Γ

(

1 − d

2

)

(m

4π

)
d
2

ε
d
2
−1

b . (24)

At d = 4 − ε this gives, to leading order in ε

1

c0
≈ −εb

2ε

(m

2π

)2

= −εb
g2
. (25)

A true bound state, with a positive binding energy, can only form if c0 < 0.
But later we want to use the connection between εb and η to get access to both
sides of the region around the unitary limit, and then we need to consider also
a positive c0. Hence we will use the above expressions also in the c0 > 0 case,
even though there is no interpretation in terms of a binding energy.

There is another sign problem that we need to consider. If we express the
εb-factor in eq. (24) in terms of η, using eq. (23), we get a term of the form
(η2)d/2−1. But when we in the end want to take the d → 3 limit, this gives
|η|. Thus we will not be able to distinguish between the BCS and BEC sides,
where the sign of η differs. To accommodate this we will simply let |η| → η in
three spatial dimensions. If one would want to treat this more rigorously, this
treatment should correspond to the prescription in Ref. [24], where there is an
assumed extra factor of sgn(a) in front of the expression for 1/c0 in eq. (24).

3 Perturbation theory using an ε-expansion

We now want to use the above observations to derive a perturbative expansion
for an attractive Fermi gas close to unitarity. We start with a gas of fermions
which have the same kind of four fermion interactions as those in eq. (2), but
which also have a chemical potential µ. Thus the Lagrangian is given by

L̂ =
∑

σ=↑,↓

ψ†
σ

(

i∂t +
∇2

2m
+ µ

)

ψσ + c0ψ
†
↑ψ

†
↓ψ↓ψ↑. (26)
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3 Perturbation theory using an ε-expansion

We want to rewrite L̂ so that all terms in it are quadratic in the ψ:s. This
can be done using a Hubbard-Stratonovich transformation. But first we write
L̂ in terms of the Nambu-Gorkov fields Ψ and Ψ†, which are given by1

Ψ(x) =

(

ψ↑(x)

ψ†
↓(x)

)

, Ψ†(x) =
(

ψ†
↑(x) ψ↓(x)

)

. (27)

Later we will also need to write these fields in momentum space. Fourier ex-
pansion gives the corresponding expressions

Ψ(p) =

(

ψ↑(p)

ψ†
↓(−p)

)

, Ψ†(p) =
(

ψ†
↑(p) ψ↓(−p)

)

. (28)

To understand how to introduce Ψ and Ψ† into L̂, we consider the free
Lagrangian

L̂0 = Ψ†

(

i∂t +

(∇2

2m
+ µ

)

σ3

)

Ψ, (29)

where σi and σ± = 1
2 (σ1± iσ2) are the Pauli matrices. Using partial integration

and then fermion anti-commutativity we get

L̂0 = ψ†
↑

(

i∂t +
∇2

2m
+ µ

)

ψ↑ + ψ↓

(

i∂t −
∇2

2m
− µ

)

ψ†
↓ (30)

= ψ†
↑

(

i∂t +
∇2

2m
+ µ

)

ψ↑ −
[(

i∂t +
∇2

2m
+ µ

)

ψ↓

]

ψ†
↓ (31)

= ψ†
↑

(

i∂t +
∇2

2m
+ µ

)

ψ↑ + ψ†
↓

(

i∂t +
∇2

2m
+ µ

)

ψ↓, (32)

where a constant term from the anti-commutation relation has been left out.
Moreover we note that

Ψ†σ−Ψ =
(

ψ†
↑ ψ↓

)

(

0
ψ↑

)

= ψ↓ψ↑, (33)

so that

(

Ψ†σ−Ψ
)† (

Ψ†σ−Ψ
)

=
(

Ψ†σ+Ψ
) (

Ψ†σ−Ψ
)

= ψ†
↑ψ

†
↓ψ↓ψ↑. (34)

Hence the Lagrangian of eq. (26) can be written as

L̂ = Ψ†

(

i∂t +

(∇2

2m
+ µ

)

σ3

)

Ψ + c0
(

Ψ†σ+Ψ
) (

Ψ†σ−Ψ
)

. (35)

Now we can perform a Hubbard-Stratonovich transformation on eq. (35).
To do this we introduce an auxiliary complex scalar field φ and consider

∆L̂ = − 1

c0

(

φ∗ − c0Ψ
†σ+Ψ

) (

φ− c0Ψ
†σ−Ψ

)

(36)

= − 1

c0
φ∗φ+ Ψ†σ+Ψφ+ Ψ†σ−Ψφ∗ − c0

(

Ψ†σ+Ψ
) (

Ψ†σ−Ψ
)

. (37)

1This formalism was independently introduced first by Gorkov [26] and then by Nambu
[27] in the context of the BCS theory of superconductivity. For a review see Ref. [4].
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3 Perturbation theory using an ε-expansion

In the path integral
∫

DφDφ∗e−
∫

dx∆L̂, (38)

the field φ can be integrated out since, for any constant c (with respect to φ),
an integral of the type

∫

DφDφ∗e−
∫

dx(φ∗−c∗)(φ−c) (39)

can be calculated by shifting variables to φ′ = φ− c, giving
∫

Dφ′Dφ′∗e−
∫

dxφ′∗φ′

= 1. (40)

Thus we can shift L̂ by ∆L̂ without changing the physics it describes. We
denote the shifted Lagrangian by L = L̂ + ∆L̂,

L = Ψ†

(

i∂t +

(∇2

2m
+ µ

)

σ3

)

Ψ − 1

c0
φ∗φ+ Ψ†σ+Ψφ+ Ψ†σ−Ψφ∗. (41)

The ground state of this system is a superfluid state where φ condenses. To
describe this we expand φ around the vacuum expectation value 〈φ〉 = φ0, by
introducing

φ = φ0 + gϕ. (42)

The Lagrangian L is symmetric under the transformations

Ψ → ei α
2

σ3Ψ, φ→ eiαφ. (43)

Thus we can absorb the overall phase into α and choose φ0 to be real. We also
assume that the coupling constant g behave as g ∼ √

ε. Later we will show that
g is, essentially, the same constant as the one we met in section 2.

There is no propagator for the boson field in L. To be able to describe
interactions in terms of a dynamic boson field, we manually add a kinetic term
to L and then later subtract the same term. Since a boson consists of two
fermions it has mass 2m and chemical potential 2µ. Hence the extra term will
have the form

ϕ∗

(

i∂t +
∇2

4m
+ 2µ

)

ϕ.

With this addition we can write our Lagrangian as L = L0 +L1 +L2, where

L0 = Ψ†

(

i∂t +

(∇2

2m
+ µ

)

σ3 + φ0(σ+ + σ−)

)

Ψ

+ ϕ∗

(

i∂t +
∇2

4m
+ µB

)

ϕ− φ2
0

c0
,

(44)

L1 = gΨ†σ+Ψϕ+ gΨ†σ−Ψϕ∗, (45)

L2 = −gφ0

c0
(ϕ + ϕ∗) − ϕ∗

(

i∂t +
∇2

4m
+ 2µ

)

ϕ, (46)

and where µB = 2µ− g2

c0
is the effective chemical potential of the bosons.

10



3 Perturbation theory using an ε-expansion

�iG �iD
�igσ+ �igσ−�−ig φ0

c0	−ig φ0

c0
−iΠ0

Figure 1: Feynman rules from the LagrangianL = L0+L1+L2. The propagators
in the first row come from L0 while the vertices in the second row are given by
L1 and the tadpoles and counter term of the last two rows come from L2. Solid
lines denote fermion propagators while dashed lines denote boson propagators.

By formally treating L1 and L2 as small perturbations to L0 we can get a
number of Feynman rules that can be used to understand our Fermi gas. These
rules are described below and are summarized in figure 1.

The L0 term describe two types of non-interacting particles, a fermion quasi-
particle and a boson. In momentum space the boson propagator is given by

D(p0,p) =
(

p0 −
εp

2
+ µB + iδ

)−1

. (47)

We note the similarity between this expression and the boson propagator given
previously in eq. (20). The fermion propagator is given by

G(p0,p) =

(

p0 − εp + µ φ0

φ0 p0 + εp − µ

)−1

(48)

=
1

p2
0 − E2

p + iδ

(

p0 + εp − µ −φ0

−φ0 p0 − εp + µ

)

, (49)

where Ep is the energy of a fermion, i.e.

Ep =
√

(εp − µ)2 + φ2
0. (50)

L1 gives two fermion–boson interaction vertices. These vertices are propor-
tional to the coupling constant g which is small in the limit of small ε. Finally
L2 gives two boson tadpoles and a counter term that are needed to avoid double
counting of some diagrams that we get from L0 and L1. This last term cancels
the manually added boson propagator in L0. The counter term is given by

− iΠ0(p0,p) = −i
(

p0 −
εp

2
+ 2µ

)

. (51)

11



3.1 Two-particle scattering revisited

The basis of the ε-expansion treatment of the unitary Fermi gas is the ob-
servation by Nussinov and Nussinov [28] that in four dimensions, the ground
state of the gas is a gas of free bosons. We can see this by considering the wave
function Φ of two bound fermions with zero binding energy. In d spatial dimen-
sions this wave function behave as Φ(r) ∼ 1/rd−2. For d ≥ 4 the normalization
integral

∫

ddr|Φ(r)|2 has a singularity at r → 0. Thus the bound states have
zero size and cannot interact with each other.

At zero temperature such a boson gas will condense. But the chemical
potential of a Bose–Einstein condensate vanishes [29]. Hence, in the unitary
limit,

µB = 2µ− g2

c0
= O(ε). (52)

From section 2.1 we know that −g2/c0 = εb (1 + O(ε)). Thus the above relation
also can be written as

2µ+ εb = O(ε). (53)

Furthermore we will assume that µ ∼ O(ε) while φ0 ∼ O(1). These assumption
will later be explicitly checked.

3.1 Two-particle scattering revisited

We now return to the problem of two-particle scattering in the unitary limit.
In section 2 we saw that the amplitude for two-particle scattering, described by
the diagram �↓↑ ↓

↑

,

where the shaded circle indicates the T -matrix, and the scattering particles
carry momentum p

2 ± k before scattering and p

2 ± k′ after scattering, is given
by

iT (p)× ψ†
↑

(p

2
+ k′

)

ψ†
↓

(p

2
− k′

)

ψ↓

(p

2
− k

)

ψ↑

(p

2
+ k

)

. (54)

In the unitary limit and close to four dimensions, the T -matrix is, as seen in
section 2, given by

iT = −8π2ε

m2

i

p0 − εp

2 + iδ
+ O(ε2). (18)

In terms of the Nambu-Gorkov fields Ψ and Ψ†, we can write

Ψ†
(

k′ +
p

2

)

σ+Ψ
(

k′ − p

2

)

=
(

ψ†
↑

(

p

2 + k′
)

ψ↓

(

p

2 − k′
)

)

(

ψ†
↓

(

p

2 − k′
)

0

)

= ψ†
↑

(p

2
+ k′

)

ψ†
↓

(p

2
− k′

)

12



3.2 The boson propagator

and

Ψ†
(

k − p

2

)

σ−Ψ
(

k +
p

2

)

=
(

ψ†
↑

(

k − p

2

)

ψ↓

(

p

2 − k
)

)

(

0
ψ↑

(

p

2 + k
)

)

= ψ↓

(p

2
− k

)

ψ↑

(p

2
+ k

)

.

Thus the corresponding two-particle scattering diagram is given by

�k + p

2 k + p′

2

k − p

2 k − p′

2

k + p

2 k + p′

2

k − p

2 k − p′

2

where the thick dashed lines indicates the exact boson Green’s function which
we will denote by ∆(p). From this diagram we then get the scattering amplitude

− ig2∆(p) × Ψ†
(

k′ +
p

2

)

σ+Ψ
(

k′ − p

2

)

× Ψ†
(

k − p

2

)

σ−Ψ
(

k +
p

2

)

= −ig2∆(p) × ψ†
↑

(p

2
+ k′

)

ψ†
↓

(p

2
− k′

)

ψ↓

(p

2
− k

)

ψ↑

(p

2
+ k

)

. (55)

3.2 The boson propagator

To be able to compare the two-particle scattering amplitudes of eq. (54) and
eq. (55), we need to calculate the exact boson propagator ∆(p). To the lowest
order in ε this consists of the plain boson propagator D(p) together with the
counter term from L2 and a boson self energy diagram. We start by calculating
this diagram. To make some quite complex expressions a little more readable
we introduce the following short hand notation:

ε± = εk±p

2
, (56)

e± =
√

ε2
k±p

2

+ φ2
0, (57)

E± =
√

(εk±p

2
− µ)2 + φ2

0. (58)

The simplest boson self energy diagram that contributes is then given by

−iΠ1 =k + p

2

k − p

2

(59)

= −g2

∫

dk

(2π)d+1
Tr
[

σ−G
(

k +
p

2

)

σ+G
(

k − p

2

)]

(60)

= −g2

∫

dk

(2π)d+1
Tr
[

G11

(

k +
p

2

)

G22

(

k − p

2

)]

. (61)

On first sight this diagram seems to give an O(ε) contribution to ∆(p), in which
case it could be ignored for now, since we are only interested in calculating ∆(p)

13



3.2 The boson propagator

to the lowest order. However the above integral has an ultraviolet divergence,
and when the integration is performed using dimensional regularization this
gives an extra 1

ε contribution to Π1. Hence Π1 is, in effect, of order O(1) and
we need to take it’s contribution into account. But, since this O(1) behavior is
an effect of the ultraviolet behavior of the diagram, we only need to consider
the large p limit.

Before taking this limit we perform the k0 integral by closing the contour in
the upper half of the complex plane.

−iΠ1 = −g2

∫

dk

(2π)d+1

k0 + p0

2 + ε+ − µ
(

k0 + p0

2

)2 − E2
+ + iδ

k0 − p0

2 − ε− + µ
(

k0 − p0

2

)2 − E2
− + iδ

(62)

= ig2

∫

dk

(2π)d

[

1

2E+

E+ − ε+ + µ

p0 − E− + E+

p0 + E+ + ε− − µ

p0 + E− + E+

+
1

2E−

E− + ε− − µ

p0 + E+ − E−

p0 − E− + ε+ − µ

p0 − E+ − E−

]

.

(63)

We will later see that, in the unitary limit, µ is small compared to εk±p

2
and

φ0. Using this assumption we expand the above integral up to first order in µ,
keeping in mind the µ dependence of E±. The first term of −iΠ1 then gives

1

2e+

(

1 +
ε+
e2+
µ

) e+ − ε+ +
(

1 − ε+

e+

)

µ

p0 − e− + e+

p0 + e+ + ε− −
(

1 + ε+

e+

)

µ

p0 + e+ + e−

×
(

1 +

(

ε+
e+

− ε−
e−

)

µ

p0 + e+ − e−

)(

1 +

(

ε+
e+

+
ε−
e−

)

µ

p0 + e+ + e−

)

,

(64)

while the second term gives

1

2e−

(

1 +
ε−
e2−
µ

) e− + ε− −
(

1 + ε−

e−

)

µ

p0 − e− + e+

p0 − e− + ε+ −
(

1 − ε−

e−

)

µ

p0 − e+ − e−

×
(

1 +

(

ε+
e+

− ε−
e−

)

µ

p0 + e+ − e−

)(

1 −
(

ε+
e+

+
ε−
e−

)

µ

p0 − e+ − e−

)

.

(65)

As previously argued, we are mainly interested in the ultraviolet behavior of
these terms, i.e. of the limit e± → ε±. If we plug this into the above expressions
we see that the first term vanishes while the second one gives

1

2ε−

(

1 +
µ

ε−

)

2ε− − 2µ

p0 − ε+ − ε−

(

1 − 2µ

p0 − ε+ − ε−

)

=
1

p0 − ε+ − ε−
− 2µ

(p0 − ε+ − ε−)
2 .

=
1

p0 − 2εk +
εp

2

− 2µ
(

p0 − 2εk +
εp

2

)2 .

(66)

Hence the ultraviolet behavior of −iΠ1 is given by

−iΠ1 → ig2

∫

dk

(2π)d

1

p0 − 2εk − εp

2

− ig2

∫

dk

(2π)d

2µ
(

p0 − 2εk − εp

2

)2 . (67)
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3.2 The boson propagator

The first of these integrals was calculated previously (see eq. (10)), and the
second integral can be calculated using exactly the same method, again using
some formulas from appendix A. The result for d = 4 − ε is

−iΠ1 = ig2 m
2

8π2ε

(

p0 −
εp

2
+ 2µ

)

(1 + O(ε)) . (68)

We can now write down the exact boson propagator i∆(p) in the unitary
limit to the leading order. As noted above it consists of the pure propaga-
tor iD(p), the counter term −iΠ0 and the boson self energy amplitude −iΠ1.
Together these give

i∆(p) =Æ (69)

=� +� +� + · · ·

(70)

= iD(p) − iD(p) (iΠ0 + iΠ1) iD(p) + O(ε) (71)

= iD(p) +

(

g2 m
2

8π2ε
− 1

)

iD(p)
(

p0 −
εp

2
+ 2µ

)

D(p) + O(ε). (72)

We also need to expand D(p) to O(ε).

D(p) =
(

p0 −
εp

2
+ µB + iδ

)−1

(73)

≈ 1

p0 − εp

2 − iδ
− µB
(

p0 − εp

2 + iδ
)2 + O(ε2), (74)

where we have used the assumptions that µB is of order ε.
At last we can compare our two expressions for the two-particle scattering

amplitude, eq. (54) and eq. (55). For the O(1) terms to be equal the renormal-
ized coupling constant g should be given by

g =

√
8π2ε

m
. (75)

With this value for g the O(1) contribution from Π1 is exactly cancelled by the
Π0 counter term. Hence the exact propagator is given by

i∆(p) = iD(p) + O(ε). (76)

We also note that this expression for g is the same as the one anticipated in
section 2.

There is one final complication to the value of g — we need to consider
it’s physical dimension. Let M , L and T indicate dimensions of mass, length
and time respectively. We use units with ~ = 1, and hence ML2 = T . In such
units a non-relativistic field such as Ψ or ϕ should have dimensions L−d/2, while
the Lagrangian L should have dimensions L−dT−1. From L we then see that
the dimensions of g then should be Ld/2−2M−1. Thus eq. (75) gives the right
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3.3 Power counting

dimensions for d exactly equal to four. For other values of d we need to add an
extra factor to get the units right. With this extra factor, g is given by

g =

√
8π2ε

m

(

mφ0

2π

)ε/4

, (77)

where a factor of (2π)−ε/4 has been introduced for later convenience. Clearly
this does not change the fact that the O(1) contributions to the boson self energy
vanishes in the unitary limit.

3.3 Power counting

We have seen above that, as anticipated, the renormalized coupling constant
g is proportional to

√
ε and hence small when we consider a system in close

to four spatial dimensions. We now want to do a systematic expansion in ε in
terms of Feynman diagrams. To do this we need to be able to calculate the
proportionality factor of each diagram in terms of powers of ε. A given diagram
will consist of a number of fermion–boson vertices, which each will bring a factor
of g ∼ √

ε. Hence a näıve expectation would be that a diagram would behave
as εNg/2, where Ng is the number of fermion–boson vertices of the diagram.
We may also use the assumptions that µ and µB are of order O(ε) to further
simplify the resulting expressions by expanding them to the appropriate order
in ε.

There will however be exceptions to this simple rule for some diagrams that
contain integrals that have ultraviolet divergences at d = 4. Such a divergence
will, at d = 4 − ε give rise to inverse powers of ε, thereby lowering the ε-pro-
portionality of the diagram compared to the näıve expectation.

In four dimensions, any loop integral will, in the ultraviolet region, behave
as

∫

dp ∼
∫

dp εp ∼ p6, (78)

while each fermion or boson propagator behaves as G(p) ∼ p−2 or D(p) ∼ p−2.
Thus a diagram containing L loops, PF fermion propagators and PB boson
propagators, can be expected to diverge as pD, where D is called the superficial
degree of divergence, and is given by

D = 6L− 2PF − 2PB. (79)

The number of loop integral in a diagram is

L = (PF + PB) − (Ng − 1), (80)

since there is a momentum integral for each propagator and a delta function
for each vertex, and since one of the delta functions is used for momentum
conservation. If a diagram has EF external fermions and EB external bosons,
then the number of vertices will be

Ng =
2PF + EF

2
= 2PB + EB , (81)

since each vertex involves one boson and two fermions and each propagator has
to be connected to two vertices. Together these relations give

D = 6 − 2(EF + EB). (82)
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3.3 Power counting

�
(a)

�
(b)

�
(c)

�
(d)

�
(e)

�
(f)

Figure 2: The six different types of diagram where an ultraviolet divergence
may occur according to eq. (82).

Hence only diagrams with no more than three external lines may contain inverse
powers of ε coming from ultraviolet divergence. There are only six different
kinds of diagrams that potentially contain ultraviolet divergences. These are
illustrated in figure 2. Note that the conservation of the number of fermions
means that any diagram with an odd number of external fermions vanishes.

By now looking in more detail on the analytical properties of the two propa-
gators, we will be able to reduce the number of diagrams that have an ultraviolet
divergence even further. We start by splitting the propagators into advanced
and retarded parts, G(p) = GA(p) +GR(p), where GA(p) has poles only in the
upper half of the complex plane, and GR(p) only in the lower half plane. We
will then get

GR(p0,p) =
1

2Ep

1

p0 − Ep + iδ

(

p0 + εp − µ −φ0

−φ0 p0 − εp + µ

)

, (83)

GA(p0,p) = − 1

2Ep

1

p0 + Ep − iδ

(

p0 + εp − µ −φ0

−φ0 p0 − εp + µ

)

, (84)

DR(p0,p) =
1

p0 − εp

2 − µB + iδ
, (85)

DA(p0,p) = 0. (86)

We want to know how these propagators behave in the ultraviolet limit. To
get the behavior of G11 and G22 we examine the residues at the different poles
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3.3 Power counting

in p0 in the limit εp � φ0, µ. For GR these residues are

ResGR
11 =

Ep + εp

2Ep

≈ 1 (87)

ResGR
22 =

Ep − εp

2Ep

=

√

(εp − µ)2 + φ2
0 − εp

2Ep

(88)

≈
εp − µ+ 1

2
µ2+φ2

0

εp
− εp

2εp

≈ 1

4

φ2
0

ε2p
, (89)

with the ultraviolet behavior ResGR
11 ∼ O(1) and ResGR

22 ∼ p−4. Close to the
pole, these residues will be multiplied by a factor p−1

0 ∼ p−2. GA can be treated
in an exactly equivalent way. Now we can write down the behavior of all the
propagators in the ultraviolet limit.

GR
11 ∼ GA

22 ∼ DR ∼ p−2

GR
22 ∼ GA

11 ∼ p−6

G12 ∼ G21 ∼ p−4

(90)

To find if there any divergent diagrams for which we need to adjust our
power counting rules, we will consider skeleton diagrams of the different types
in figure 2 and look for divergences.

Fermion self energy. The first diagram we look at is the fermion self energy,
figure 2(c). The one-loop order corrections are given by

Σ =�p k

p− k

p
+�p k p

k − p

(91)

= g2

∫

dk

(2π)d+1
(σ+G(k)σ−D(p− k) + σ−G(k)σ+D(k − p)) (92)

The non-zero components of this expression are

Σ11 = g2

∫

dk

(2π)d+1
G22(k)D(p− k) (93)

Σ22 = g2

∫

dk

(2π)d+1
G11(k)D(k − p). (94)

The first k0-integral can be performed by closing the contour in the upper
half plane and the second one by closing it in the lower half plane. Then
both integrands will behave as k−8 at large k and there will be no ultraviolet
divergences.

Boson self energy. There are a number of one-loop diagrams that contribute
to the boson self energy, figure 2(d). First we have the diagrams� and� ,
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3.3 Power counting

which both give the same kind of integrand,

Tr σ−G
(

k +
p

2

)

σ−G
(

k − p

2

)

= G12

(

k +
p

2

)

G12

(

k − p

2

)

∼ k−8. (95)

Hence neither of these diagrams possess any ultraviolet divergence.

We also have the diagram�
which was already considered in section 3.1. There we saw that this diagram
contains an ultraviolet divergence. This divergence makes the contribution to
the boson self energy of order O(1) instead of the expected O(ε). In the same
section we also saw that this divergence was cancelled exactly by the counter
term from L2. Taking this into account, the behavior of this diagram is, as
expected,� +� = O(ε). (96)

Fermion–boson vertices. Now let us look at the fermion–boson vertex of
figure 2(e). In the case of in-going boson the one-loop diagrams contributing
are

Γ =�p
q

k

p− k
p+ q

k + q + p
q

k

p+ q
p− k

k + q (97)

= −g2

∫

dk

(2π)d+1
[σ+G(k + q)σ+G(k)σ−D(p− k)

+ σ−G(k + q)σ+G(k)σ+D(k − p)].

(98)

Again we get two non-vanishing components,

Γ11 = −g2

∫

dk

(2π)d+1
G21(k + q)G22(k)D(p− k) (99)

Γ22 = −g2

∫

dk

(2π)d+1
G11(k + q)G21(k)D(k − p). (100)

Using the large k behavior from eqs. (90) we see that neither of these terms
will diverge in the ultraviolet. The two diagram which we get by reversing the
direction of the external boson in eq. (97) will result in very similar expressions
and will not give any divergences.

Three boson vertices. There is a number of different three boson vertices
of the type of figure 2(f) which differ in the directions of the external bosons.
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3.3 Power counting

In one-loop order such a diagram will give

! +" (101)

These two diagrams will give an integrand of the form

Tr[σ±G(p1)σ±G(p2)σ±G(p3) + σ±G(−p1)σ±G(−p2)σ±G(−p3)]. (102)

By considering the ultraviolet behavior of expressions of the forms σ±G(p)σ±
and G(p)σ±G(k) one easily sees that non of these terms can contain any diver-
gence.

Boson tadpole To the leading order the boson tadpole, figure 2(b), is given
by the diagrams # +$
where the second term is one of the boson tadpoles of L2, giving a contribution
of −i gφ0

c0
. The first diagram is given by the integral

g

∫

dk

(2π)d+1
Tr [σ+G(k)] = g

∫

dk

(2π)d+1
G21(k). (103)

The total boson tadpole should vanish in all orders of ε, since the vacuum
expectation value of the original boson field φ is, by definition, φ0. This re-
quirement will lead us to an equation for φ0. In the next section we will derive
a similar equation by instead demanding that φ0 minimizes the effective. We
can then check that if φ0 is a solution to the gap equation corresponding to first
order in ε, the boson tadpole do vanish to the same order. This is explicitly
done in section 4.3. We thus get% +& = O(ε1/2). (104)

This agrees with our expectations.

Vacuum bubble. The only remaining type of diagram is the vacuum bubble,
figure 2(a). Since the advanced boson propagator vanishes, so does any boson
vacuum bubble. The simplest fermion bubble is given by the diagram'
which is finite. We postpone explicit calculation of it’s value to the next section.
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4 Thermodynamic relations

In this section we have shown that there only are two kinds of diagrams
that do not behave according to our näıve expectation due to ultraviolet diver-
gences. We also saw that these divergences can be cancelled by the use of the
counter term and tadpoles from the L2 term of the Lagrangian. Thus, as long
as we remember to add the counter terms whenever we encounter one of these
diagrams, we can perform a perturbative expansion by counting the ε-factors
from the coupling constant g. In the unitary limit, where, as previously men-
tioned, µ, µB ∼ O(ε), we also need to expand in these quantities to really get
an expression which contain terms only up to a given order in ε.

4 Thermodynamic relations

Now that we know the Feynman rules and the rules for counting powers of ε
in the unitary Fermi gas, we will use them to calculate some thermodynamic
quantities that describe the physics of the gas. We begin by looking at the
effective potential.

4.1 The effective potential

Consider the partition function, which is given by

Z[φ0] =

∫

DΨDΨ†DϕDϕ∗ exp

[

i

∫

dxL
]

. (105)

This can be calculated by writing

Z[φ0] =

∫

DΨDΨ†DϕDϕ∗ exp

[

i

∫

dx(L0 + L1 + L2)

]

(106)

≈
∫

DΨDΨ†DϕDϕ∗ exp

[

i

∫

dxL0

]

×
(

1 + i

∫

dx(L1 + L2) + · · ·
) (107)

The constant part of L0 can be taken out of the integral. Each integration
over the two terms quadratic in Ψ and ϕ respectively will give a functional
determinant factor. The sum over terms involving interactions can then be
represented by a sum over Feynman diagrams. Since the above expression does
not involve any external fields, each diagram in this sum will be a connected
vacuum diagram. Hence

Z[φ0] = exp

(

i

∫

dxL0[φ0]

)

det(G̃−1)[det(D̃−1)]−1

×
(

1 +

∫

dx
∑

conn. diag. + · · ·
) (108)

≈ exp

(

i

∫

dxL0[φ0]

)

det(G̃−1)[det(D̃−1)]−1

× exp

(
∫

dx
∑

conn. diag.

)

,

(109)
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4.1 The effective potential

F + ( + )
Figure 3: Vacuum diagrams that contribute to the effective potential up to

order O(ε). F denotes the constant contribution
φ2

0

c0
. The one-loop diagram is

of order O(1) while the two-loop diagram is of order O(ε).

where G̃−1 and D̃−1 represents the coefficients of the quadratic terms of L0.
Now we can define the effective action Γ[φ0] satisfying

Z[φ0] = eiΓ[φ0]. (110)

The effective action is then given by

Γ[φ0] = −i logZ[φ0] (111)

= −φ
2
0

c0

∫

dx− i log det(G̃−1) + i log det(D̃−1)

− i

∫

dx
∑

conn. diag.

(112)

All of the terms in our expression for Γ contain a volume factor (V T ), from
the integration over all of space-time. We can now finally define the effective
potential Veff by

Γ[φ0] = −(V T )Veff(φ0). (113)

Veff =
φ2

0

c0
+ i

∫

dp

(2π)d+1
log detG−1(p)

− i

∫

dp

(2π)d+1
log detD−1(p) + i

∑

conn. diag. (114)

When we have calculated Veff we can use it to calculate φ0. We have assumed
φ0 to be the vacuum expectation value of the boson field φ. Thus the effective
potential Veff(φ0) = V0(φ0) + V1(φ0) + V2(φ0) + O(ε2) will have a minimum at
some φ0 = φ̄0, i.e.

∂Veff

∂φ0

∣

∣

∣

∣

φ0=φ̄0

= 0. (115)

The effective potential also gives the fermion particle number n:

n = − ∂Veff

dµ

∣

∣

∣

∣

φ0=φ̄0

. (116)

In this thesis we will calculate the effective potential up to next-to-leading
order. The diagrams that contributes to this order are shown in figure 3. As
already seen, the first term is given by

V0(φ0) =
φ2

0

c0
. (117)
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4.1 The effective potential

The one-loop diagram gives the determinant term

V1(φ0) = i

∫

dp

(2π)d+1
log detG−1(p) − i

∫

dp

(2π)d+1
log detD−1(p). (118)

The p0 in the first integral can be calculated by considering

∂

∂Ep

∫

dp0

2π
log(p2

0 − E2
p + iδ) =

∫

dp0

2π

2Ep

p2
0 − E2

p + iδ
= i. (119)

An integration over Ep gives

V1(φ0) = −
∫

dp

(2π)d
Ep, (120)

where an infinite term independent of Ep, and hence of φ0, has been ignored.

Using the same procedure to calculate the second integral in eq. (118) gives

∂

∂
( εp

2 + µB

)

∫

dp0

2π
log
(

p0 −
εp

2
− µB + iδ

)

=

∫

dp0

2π

1

p0 − εp

2 − µB + iδ
= 0, (121)

since the contour integral can be integrated in the upper half plane.

Since µ ∼ ε and φ0 is O(1) we expand the integrand of V1 in µ:

Ep =

√

(εp − µ)
2

+ φ2
0 ≈

√

ε2p + φ2
0 −µ

εp
√

ε2p + φ2
0

+µ2 1
√

ε2p + φ2
0

+ · · · . (122)

The first term will give a O(1) contribution to Veff. The integral over the second
term has an ultraviolet divergence, hence it will be of order O(1) instead of O(ε).
The integral over the third term is finite and will thus give an O(ε2) contribution
which can be neglected.

Using the same method as previously, first changing variables of integra-
tion to spherical coordinates and then to z = (εp/φ0)

2, these integrals can be
performed. The result is

V1(φ0) = − 1

2Γ
(

d
2

)

(

mφ0

2π

)
d
2

×
(

Γ
(

d
4

)

Γ
(

− 1
2 − d

4

)

Γ
(

− 1
2

) φ0 −
Γ
(

d
4 + 1

2

)

Γ
(

− d
4

)

Γ
(

1
2

) µ

)

. (123)

This should be evaluated at d = 4 − ε. We want to calculate Veff to next-
to-leading order, hence we have to evaluate the above expression to O(ε). To
do this we need to expand the Γ factors. There is a singularity in the second
term, making it O(1) instead of O(ε). This singular term can be expanded as
previously using eq. (A4). The convergent Γ functions can be Taylor expanded
using the digamma function ψ(x) = d

dx log Γ(x), see appendix A. The result
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4.1 The effective potential

will be

V1(φ0) =
φ0

3

(

1 +
7 − 3(γ + log 2)

6
ε

)(

mφ0

2π

)
d
2

− µ

ε

(

1 +
1 − 2(γ − log 2)

4
ε

)(

mφ0

2π

)
d
2

+ O(ε2). (124)

The two-loop diagram from figure 3 gives the contribution

V2(φ0) = g2

∫

dp dq

(2π)2d+2
Tr [σ−G(p)σ+G(q)]D(p− q) (125)

= g2

∫

dp dq

(2π)2d+2
G11(p)G22(q)D(p− q) (126)

= g2

∫

dp dq

(2π)2d+2

p0 + εp − µ

p2
0 − E2

p + iδ

q0 − εq + µ

q20 − E2
q + iδ

× 1

p0 − q0 − εp−q

2 + µB + iδ
.

(127)

We can perform the p0 and q0 integrals by closing the first contour in the upper
half plane and the second one in the lower half plane. The remaining integral is

V2(φ0) = −g
2

4

∫

dp dq

(2π)2d

(Ep − εp + µ) (Eq − εq + µ)

EpEq

(

Ep + Eq +
εp−q

2 + µB

) . (128)

This integral converges in four dimensions. Together with the factor of g2 in
front of it, this means that the contribution from V2 to Veff will be at least of
order ε. Hence we only need to consider the constant contribution from the
integral and thus can calculate it at d = 4. Since µ ∼ ε we can also ignore any
µ in V2. If we introduce

ep =
√

ε2p + φ2
0, (129)

we can write V2 as

V2(φ0) = −g
2

4

∫

dp dq

(2π)2d

(ep − εp) (eq − εq)

epeq

(

ep + eq +
εp−q

2

) . (130)

To simplify this we can change to spherical coordinates. In four dimensions the
spherical volume element is given by

dp = p3dp sin2 θdθ sinωdω dφ. (131)

Since the only angular dependence in eq. (130) is in the term

εp−q

2
=

(p − q)2

4m
=
εp

2
+
εq

2
− p · q

2m
=
εp

2
+
εq

2
−√

εpεq cos θ, (132)

all integrals over the angular variables except one are trivial. By changing the
radial variables to x = εp/φ0 and y = εq/φ0 and, for convenience, introducing
the functions f(x) =

√
x2 + 1 and g(x, y) = f(x) + f(y) + x+y

2 , we get

V2(φ0) = −ε
(

mφ0

2π

)d/2
φ0

π

∫ ∞

0

dx

∫ ∞

0

dy

∫ π

0

dθ

× (f(x) − x) (f(y) − y)

f(x)f(y)

xy sin2 θ

g(x, y) −√
xy cos θ

. (133)
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4.2 The gap equation

This integral has to be calculated using numerical methods. The result can be
written as

V2(φ0) = −Cε
(

mφ0

2π

)d/2

φ0, (134)

where the constant C can be calculated to (see Ref. [9])

C ≈ 0.14424. (135)

We can now write down the full effective potential to next-to-leading order
in the unitary limit.

Veff(φ0) = V0(φ0) + V1(φ0) + V2(φ0) (136)

=
φ2

0

c0
+

[

φ0

3

(

1 +
7 − 3(γ + log 2)

6
ε− 3Cε

)

− µ

ε

(

1 +
1 − 2(γ − log 2)

4
ε

)

]

(

mφ0

2π

)
d
2

+ O(ε2).

(137)

4.2 The gap equation

Now that we have calculated the effective potential we can use it to find an
equation for the gap φ0. We get this equations by minimizing Veff with respect
to φ0, i.e. we want to find φ̄0 such that

∂Veff

∂φ0

∣

∣

∣

∣

φ0=φ̄0

= 0. (116)

In the unitary limit this condition gives the equation

φ0 =
2µ

ε
[1 + (3C − 1 + log 2)ε]

− 2

c0
φ

ε/2
0

(

2π

m

)d/2 [

1 +

(

3C − 1 +
γ + log 2

2

)

ε

]

+ O(ε2). (138)

From eq. (24) we can expand 1/c0 to next-to-leading order in ε, getting

1

c0
= − 1

2ε

(

1 +
1 − γ + log 2

2
ε

)

(m

2π

)d/2

ε
1−ε/2
b + O(ε2). (139)

Inserting this into eq. (138) we get

φ0 =
2µ

ε

[

1 + (3C − 1 + log 2)ε
]

+
εb
ε

(

φ0

εb

)ε/2 [

1 +

(

3C − 1

2
+ log 2

)

ε

]

+ O(ε2). (140)

The leading order solution is thus given by

φ0 =
2µ+ εb

ε
+ O(ε). (141)

Since φ0 is O(1) we see that the solution to the gap equation confirms our
previous assumption that µ ∼ ε.
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4.3 The boson tadpole

4.3 The boson tadpole

Before we continue our calculation of thermodynamic quantities for the unitary
Fermi gas, we return to the problem of the vanishing of the boson tadpole. As
we have already seen, the leading order contribution to the boson tadpole is
given by the diagrams* ++ ,

which gives

Ξ = g

∫

dp

(2π)d+1
G21(p) − ig

φ0

c0
(142)

= ig
φ0

2

∫

dp

(2π)d

1

Ep

− ig
φ0

c0
. (143)

By expanding the integral to first order in µ we can write this as

Ξ = ig
φ0

2

∫

dp

(2π)d





1
√

ε2p + φ2
0

+ µ
εp

(

ε2p + φ2
0

)3/2



− ig
φ0

c0
(144)

= − ig
2

[

(

mφ0

2π

)2

− µ
m2φ0

2π2ε

]

− ig
φ0

c0
+ O(ε3/2) (145)

= − ig
2

(

mφ0

2π

)2

+ 2i
µφ0

g
− ig

φ0

c0
+ O(ε3/2) (146)

= −iφ0

g

[

g2m2

8π2
φ0 − 2µ+

g2

c0

]

+ O(ε3/2) (147)

= −iφ0

g

[

εφ0 − 2µ+
g2

c0

]

+ O(ε3/2). (148)

Substituting in the leading order gap equation solution, φ0 = (2µ+ εb)/ε, and
using the fact that εb = −g2/c0 + O(ε2), we see that to the leading order the
boson tadpole vanishes, as anticipated.

4.4 The fermion number density

If we now solve eq. (140) for µ/ε and substitute the result into the expression
for Veff, and at the same time use eq. (139) to rewrite the φ2

0/c0 term, we get
the following expression for Veff at the minimizing point φ0:

Veff = −φ0

6



1 +

(

17

12
− γ + log 2

2
− 3C

)

ε− 3

4

(

εb
φ0

)

d
2−1





(

mφ0

2π

)d/2

.

(149)

Using this solution we can also calculate the fermion particle number density
n. Differentiating our expression for Veff with respect to the chemical potential,
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4.4 The fermion number density

we get

n = −∂Veff

∂µ

=
1

2







[

1 +

(

5

4
− γ + log 2

2
− 3C

)

ε

]

− 1

2

(

εb
φ0

)

d
2−1







(

mφ0

2π

)d/2
∂φ0

∂µ
.

(150)

We now need to be somewhat careful to get the order of the different terms right.
As we soon will see ∂φ0/∂µ is of order O(ε−1). We also consider εb/φ0 ∼ O(ε).
Thus the first term in the above expression is of order O(ε−1), while the second
one is of order O(1). From the solution to the gap equation, eq. (140), we can
calculate the derivative

∂φ0

∂µ
=

2

ε
[1 + (3C − 1 + log 2) ε] +

1

2

(

εb
φ0

)

d
2−1

∂φ0

∂µ
+ O(ε) (151)

=
2

ε



1 +
1

2

(

εb
φ0

)

d
2−1

+ (3C − 1 + log 2) ε



+ O(ε). (152)

Insertion of this into our previous expression for n, keeping only terms up to
O(1), now yields

n =
1

ε

(

1 +
1 + 2 log 2 − 2γ

4
ε

)(

mφ0

2π

)d/2

+ O(ε). (153)

Using the definition of the coupling constant g we can rewrite the expression
for n as

n =

(

1 +
1 + 2 log 2 − 2γ

4
ε

)

2φ2
0

g2
. (154)

The quantity nb = φ2
0/g

2 can be interpreted as the number density of the bosons
in the condensate. The vacuum expectation value φ0 thus is rescaled by a factor
of 1/g, in analogy with the rescaling of the dynamical field ϕ. In the ε → 0
limit, the above expression for n approaches 2φ2

0/g
2 = 2nb. Since each boson

consists of two fermions, this is a confirmation of the remark made by Nussinov
and Nussinov [28] — in four dimensions the unitary Fermi gas becomes a gas of
condensated bosons.

In calculating n we got an O(1) cancellation between terms in εb/φ0 from
the derivative ∂Veff/∂µ and the inner derivative ∂φ0/∂µ, making the final result
dependent only on the boson density nb and on the dimension of space, through
ε. Thus we cannot use this result to observe the evolution of e.g. the relative
boson condensate density nb/n as we move away from unitarity. This indicates
that in d = 4, the boson condensate density is already maximized in the unitary
limit, again in accordance with the remark by Nussinov and Nussinov. Hence
this cancellation is not expected in higher orders in ε. This is also confirmed by
the next-to-next-to-leading-order calculation by Arnold et al. [22].

To compare our interacting Fermi gas with a non-interacting one, we need
to fix the energy scale. To do this we use the Fermi energy εF of the free
gas with the corresponding particle density. The density n of the free gas can
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4.5 The chemical potential

be calculated by integrating over all filled states. Remembering that we are
interested in fermions with two spin states, we get, in d dimensions,

n = 2

∫

|p|<pF

dp

(2π)d
= 2

∫

dΩ

(2π)d

∫ pF

0

dppd−1 (155)

=
2

(4π)
d
2

pd
F

Γ
(

d
2 + 1

) . (156)

Hence the Fermi energy of the free Fermi gas, εF =
p2
F

2m , is given by

εF =
2π

m

(

1

2
Γ

(

d

2
+ 1

)

n

)
2
d

. (157)

Substituting in our previous expression for n in the unitary regime, eq. (153),
we get

εF =
φ0

ε2/d

(

1 − 1 − 1 log 2

4
ε

)

(1 + O(ε)) . (158)

4.5 The chemical potential

We now want to derive an expression for the chemical potential µ of the Fermi
gas close to unitarity, in terms of the Fermi energy εF of the corresponding free
fermion gas. To do this we again solve eq. (140), the gap equation solution, for
µ. If we then divide this by the above expression for εF, we get

µ

εF
=
ε1+2/d

2

[

1 −
(

3C − 5

4
(1 − log 2)

)

ε

]

− 1

2

εb
εF

(

εb
φ0

)−ε/2
(

1 +
ε

2

)

+ O(ε7/2), (159)

or, by a second usage of eq. (158),

µ

εF
=
ε1+2/d

2

[

1 −
(

3C − 5

4
(1 − log 2)

)

ε

]

− 1

2

(

εb
εF

)1−ε/2
(

1 +
ε

2
+
ε

4
log ε

)

+ O(ε7/2). (160)

We have to be a bit careful in the last term. If we just were to expand the
εb/εF factor to the next-to-leading order in ε we would get

(

εb
εF

)1−ε/2

=

(

εb
εF

)(

1 − ε

2
log

εb
εF

)

+ O(ε7/2). (161)

This would reproduce the result of Nishida and Son [9]. But we are interested
in the explicit variation of this quantity around unitarity and this expression is
problematic in the ε → 1, |εb/εF| � 1 limit. To get around this problem, we
use a prescription inspired by Chen and Nakano [24]. First we define

Q(εb) =
1

ε

[

(

εb
εF

)−ε/2

− 1

]

. (162)
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Taylor expansion of Q(εb) gives

Q(εb) ≈
1

ε

(

1 − ε

2
log

εb
εF

+ · · · − 1

)

, (163)

which we will treat as an O(1) expression, even though it contains higher order
terms as well. Thus we can write

1

2

(

εb
εF

)1−ε/2
(

1 +
ε

2

)

=
1

2

εb
εF

[

1 + εQ(εb)
] (

1 +
ε

2

)

+ O(ε7/2) (164)

=
1

2

εb
εF

[

1 + εQ(εb) +
ε

2

]

+ O(ε7/2) (165)

=
1

2

εb
εF

[

(

εb
εF

)−ε/2

+
ε

2

]

+ O(ε7/2). (166)

Eq. (160) then becomes

µ

εF
=
ε1+2/d

2

[

1 −
(

3C − 5

4
(1 − log 2)

)

ε

]

− 1

2

εb
εF

[

(

εb
εF

)−ε/2

+
ε

2
+
ε

4
log ε

]

+ O(ε7/2). (167)

The result in eq. (167) then agrees with that of Ref. [24].

4.6 Other thermodynamic quantities

For a free Fermi gas in d spatial dimensions, we can calculate the total energy
density by integrating

E = 2

∫

|p|<pF

p

(2π)d

p2

2m
(168)

=
2

m

1

(4π)d/2

1

Γ
(

d
2

)

pd+2
F

d+ 2
. (169)

Using the previously integrated expression for n in terms of pF, eq. (156), this
gives

E =
p2
F

2m

d

d+ 2
n =

d

d+ 2
nεF. (170)

But E is also given by the thermodynamic relation

E = µn− P, (171)

and, at zero temperature, the chemical potential of a free Fermi gas is given by
µ = εF. Thus we also get that

P =

(

1 − d

d+ 2

)

nεF =
2

d+ 2
nεF. (172)

In the unitary limit, where εb/εF → 0, there are only two quantities with the
dimension of energy remaining, εF and µ. But both of these are uniquely given
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4.6 Other thermodynamic quantities

by the particle density and the dimensionality of space. Thus we can define the
universal parameter ξ0 such that µ→ ξ0εF when εb → 0. By purely dimensional
arguments, we would then expect it to be possible to write the energy density
and pressure per particle in the form

E

n
=

d

d+ 2
α(ξ0)εF,

P

n
=

2

d+ 2
β(ξ0)εF, (173)

where α(ξ0) and β(ξ0) are some analytical functions. We are now going to
check that we can get relations of this form from our previous calculations, and
calculate corrections for a Fermi gas in the vicinity of unitarity.

From eq. (167) we can write ξ0 as

ξ0 =
ε1+2/d

2

[

1 −
(

3C − 5

4
(1 − log 2)

)

ε

]

+ O(ε7/2). (174)

We also note that, for d = 4 − ε,

d

d+ 2
=

2

3

(

1 − ε

12

)

+ O(ε2),
2

d+ 2
=

1

3

(

1 +
ε

6

)

+ O(ε2). (175)

We start by calculating the pressure. This is given by the minimized effective
potential as P = −Veff(φ0). Dividing expression (149) for the effective potential
with the particle density from eq. (153) and the Fermi energy gives

P

nεF
=
ε

6

φ0

εF

[

1 −
(

7

6
− log 2 − 3C

)

− 3

4

(

εb
φ0

)d/2−1
]

(176)

=
ε1+2/d

6

[

1 +

(

17

12
− 5

4
log 2 − 3C

)

ε

]

− ε

8

φ0

εF

(

εb
φ0

)d/2−1

(177)

=
1

3

(

1 +
ε

6

)

ξ0 −
ε

8

(

εb
εF

)d/2−1

(178)

=
2

d+ 2
ξ0 −

ε

8

(

εb
εF

)d/2−1

, (179)

which has the anticipated form, and where we again refrain from expanding the
(

εb

εF

)d/2−1

term.

To calculate E we start from eq. (171) and use eqs. (167), (174) and (179)
to get

E

nεF
=

µ

εF
− P

nεF
(180)

=

(

1 − 2

d+ 2

)

ξ0 −
1

2

εb
εF

[

(

εb
εF

)−ε/2

+
ε

2
+
ε

4
log ε

]

+
ε

8

εb
εF

(181)

=
d

d+ 2
ξ0 −

1

4

εb
εF

[

3

2

(

εb
εF

)−ε/2

+ ε+
ε

2
log ε

]

. (182)

Thus we have seen that both the pressure and the energy can be expressed in
the form of eq. (173), with both the unknown coefficients given simply by ξ0, so
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that the energy scale of the unitary Fermi gas is set by the universal parameter
ξ0 and given by the expression ξ0εF, as stated in section 1.3.

Now we can define the parameter ξ, which is the ratio between the energy
per particle of a Fermi gas close to unitarity, at a given µ and εb, to the energy
per particle of the corresponding free Fermi gas. By dimensional arguments we
already saw that ξ|εb=0 = ξ0 = µ/εF. Since E = d

d+2εF for a free gas, we get

ξ =
d+ 2

d

E

nεF
(183)

= ξ0 −
d+ 2

4d

εb
εF

[

3

2

(

εb
εF

)−ε/2

+ ε+
ε

2
log ε

]

. (184)

4.7 Extrapolation to three spatial dimensions

The above results are obtained in a theory where ε = 4−d is a small number. But
we would want to have results for the physical case of three spatial dimensions,
which corresponds to setting ε = 1. Looking at our results for µ/εF, eq. (167), we
see that the order ε corrections in the first term is small compared to the lowest
order term, even at ε = 1. The second term of this equation is proportional to
εb/εF which is also small in the vicinity of unitarity. Thus one could hope that
this expression is useful even in this limit.

To get the explicit expressions at d = 3 we just have to let ε→ 1 in eq. (167).
This gives

µ

εF
→ 9 − 12C − 5 log 2

8
− 1

2

√

εb
εF

− 1

4

εb
εF
. (185)

This can be expressed in terms of the parameter η using the relation εb = 2η2εF
from eq. (23). We then get2

µ

εF
→ 0.475− 0.707η − 0.5η2. (186)

In the unitary limit, η → 0, this gives the universal parameter

ξ0 ≈ 0.475. (d = 3) (187)

Thus, by taking the ε→ 1 limit of eq. (184), we get the following result for the
universal parameter in the vicinity of unitarity:

ξ → 0.475 − 0.884η − 0.833η2. (188)

There are, however, doubt in the validity of this näıve extrapolation to three
spatial dimensions. The smallness of the next-to-leading-order (NLO) correction
to ξ0 gave us hope of a meaningful result at ε = 1. But without knowledge of
higher order terms, there is no reason to expect that the expansion is convergent
in this limit. Thus the next-to-next-to-leading-order (NNLO) results by Arnold
et al. [22] are very interesting. For the parameter ξ0 in the unitary limit the
result is discouraging — the O(ε2) is almost as big as the leading term, and

2Näıvely the second term should be written as −0.707|η|. As commented on in section 2.1,
this is replaced by a linear term to accommodate the loss of the sign of the scattering length
a (and hence of η) in our four-dimensional treatment.
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4.8 Comparison with experiments and simulations

has the opposite sign. This emphasizes the statement by the authors that in a
simple minded application of the ε-expansion it is important to quit when one
is ahead. Still it is possible to better the situation by taking into consideration
also the behavior of the theory close to two spatial dimensions This is done by
Nishida and Son [9], who, in addition to the four-dimensional case, consider
a unitary Fermi gas for d = 2 + ε. The resulting expression for ξ0 is given
by ξ0 = 1 − ε + O(ε2). By using this as a boundary condition at d = 2 and
applying a Padé approximation to perform a Borel summation, taking into
account terms up to NLO from the ε-expansion in four dimensions, they get the
result ξ0 ≈ 0.378 ± 0.013. Including also the corrections from NNLO, Arnold
et al. [22] get ξ0 ≈ 0.367±0.010. In the next section we will compare our results
to those of various experimental measurements and Monte Carlo calculations.
We will then see that neither the results of Ref. [9], nor those of Ref. [22], are
obvious improvements of the result of näıve extrapolation to ε = 1.

4.8 Comparison with experiments and simulations

As explained in the introduction, there has, in recent years, been a number of
experiments where fermionic atom gases have successfully been condensed into
superfluids, and where it has been possible to control the interaction strength
in such a way that a unitary Fermi gas is created [30–35]. In many of these
experiments, one of the goals has been to determine the value of the universal
parameter at the unitary point, ξ0. There has also been a number of projects
that do theoretical calculations on the unitary Fermi gas by means of quantum
Monte Carlo methods [36–42]. In figure 4 our result for ξ0 from eq. (187) is
compared to the results of various experiments, Monte Carlo simulations and
analytical calculations. The measured and calculated values used to create this
figure are tabulated in table 1.

It is hard to extract results on the variation of ξ in the vicinity of unitar-
ity from published experimental data. Furthermore most Monte Carlo studies
mainly focus on other physical aspects of Fermi gases in the unitary limit, such
as non-zero temperature effects and spin-polarized gases. There are, however,
two articles where explicit results from Monte Carlo calculations of the energy
per particle in a wider region of the BCS–BEC crossover are given [36, 37]. In
figure 5 these results are compared to the ε → 1 extrapolation of the ξ results
from the next-to-leading-order ε-expansion, eq. (188).

5 Discussion

Although we have the same starting point as, and arrive at the same expressions
for ξ0 and ξ as Chen and Nakano [24], and Nishida and Son [9], there are some
differences in the formalisms that I want to comment on.3 One difference is in
the way the Lagrangian L = L0 +L1 +L2 is divided. In this thesis we keep the
terms in the chemical potentials µ and µB together with the kinetic terms in L0.
Since we only really consider the neighborhood of unitarity, where, as we have

3As noted in section 4 there are some places where the results of Ref. [24] and Ref. [9]
differ, and where we are able to reproduce both results, but choose one of them in order to
make a better comparison with data from other calculations for the BCS–BEC crossover, see
e.g. the discussion leading to eq. (167).
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Figure 4: Different results for the value of ξ0, the universal parameter in the uni-
tary limit. The dashed line indicates the result ξ0 ≈ 0.475 from the ε-expansion.
This is compared with the results from various experimental measurements (N),
Monte Carlo calculations (×) and analytical calculations (+). For references and
details of the different values see table 1(a) for the experimental data (points
i–vi), table 1(b) for the results from Monte Carlo calculations (points vii–xiii)
and table 1(c) for results from analytical calculations (points xiv–xvii).
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5 Discussion

Table 1: Compilation of results of the measurements/calculations of the param-
eter ξ0, as reported by a number of different sources. These are to be compared
to the value ξ0 ≈ 0.475 given by the ε-expansion when we extrapolate to three
spatial dimensions. The roman numerals indicates the corresponding point in
figure 4.

(a) Experimental measurements

Author(s) ξ0

i Bourdel et al. [34] 0.36 ± 0.15
ii Bartenstein et al. [33] 0.32+0.10

−0.13

iii Partridge et al. [32] 0.46 ± 0.05
iv O’Hara et al. [31] 0.90 ± 0.07
v Gehm et al. [30] 0.74 ± 0.07
vi Kinast et al. [35] 0.51 ± 0.04

(b) Monte Carlo calculations

Author(s) ξ0

vii Astrakharchik et al. [36] 0.42 ± 0.01
viii Chang et al. [37] 0.44 ± 0.01
ix Carlson et al. [41] 0.44 ± 0.01
x Lee and Schäfer [40] 0.07 – 0.42
xi Lee [39] 0.25 ± 0.03
xii Carlson and Reddy [38] 0.42 ± 0.01
xiii Bulgac et al. [42] 0.44

(c) Analytical calculations

Method Author(s) ξ0

xiv BCS mean field see Ref. [17] < 0.5906
xv Large-N expansion Veillette et al. [17] 0.28
xvi ε-exp. (NLO) (Padé) Nishida and Son [9] 0.378 ± 0.013
xvii ε-exp. (NNLO) (Padé) Arnold et al. [22] 0.267 ± 0.010

ε-exp. (NLO) (ε = 1) This thesis and Ref. [9] 0.475
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Figure 5: The universal parameter ξ as an function of η in the vicinity of the
universal point. The result from eq. (188) is given by the full thick line. The
markers indicate the calculations by Astrakharchik et al. [36] (N), and Chang
et al. [37] (�).
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6 Conclusions

seen, both µ/φ0 and µB/φ0 can be treated as O(ε), we could have put these
terms in L1 together with the fermion–boson interactions, which are of order
O(ε1/2). This is what Nishida and Son do. Instead we choose to make use of
the smallness of µ and µB by doing Taylor expansions of the amplitudes. One
advantage of this is that the Feynman rules become somewhat simpler. If we
were to treat µ and µB as perturbations we would get two more vertices — a µ
insertions to the fermion propagator and a µB insertion to the boson propagator.
This difference can be illustrated with the following equation, where the lines
with short dashes on the right hand side represent boson propagators on at
µB = 0 and the gray circle in the propagator represent an insertion of a factor
of µB ., =- +. + O(ε2).

Moreover there would be more divergent diagrams, such as a boson self energy
one-fermion-loop diagram with a µ insertion. To cancel these we would have to
split the counter term into two and use the different terms to cancel different
divergences. All of this is automatically taken care of in our formalism, at the
expense of manual Taylor expansion of amplitudes.

Another advantage of keeping the chemical potentials in the propagators is
that it should lead to an easier generalization to the full BCS–BEC crossover,
where µ and µB can not be assumed small. Chen and Nakano do treat the full
BCS–BEC crossover in the ε-expansion using a scheme much like the one in this
thesis, but they split the Lagrangians in different ways on the BEC and unitary
sides, where at least µB can be expected to be small, compared to the BCS side
where neither µ nor µB can be treated perturbatively. This means that they
have to redo much of the basic calculations separately in the two cases. Instead
it should be possible to use the same Lagrangian and do most of the checking of
the power counting rules once, and only consider the different limits separately
in the explicit calculation of Veff — where one has to use that εb is small in
the unitary limit, φ0 is small on the BCS side, and µB in the BEC limit. The
calculations required to do this may be a bit more complicated, but there is an
arguable conceptual advantage in sticking to one case as far as possible.

There is also a difference between the formalism in the treatment of the
renormalized coupling constant g. Nishida and Son [9] simply take as an ansatz
the expression for g and then show that the boson self energy renormalization
vanishes. That this second step works out seems somewhat coincidental. Their
different splitting of L, which gives two different O(ε) diagrams that has to
cancel against different counter terms, enhances this feeling even more. In this
thesis we instead saw that the same expression for g is uniquely determined by
consistency requirements for the two-particle scattering amplitude and consid-
erations of physical dimensions.

6 Conclusions

In this thesis we have seen that it is possible to perform a perturbative expansion
of a Fermi gas in the vicinity of unitarity using an ε-expansion. This approach
was based on the observation by Nussinov and Nussinov that in four spatial
dimensions, the ground state of the unitary Fermi gas is a gas of non-interacting
bosons.
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6 Conclusions

We started by noticing that in d = 4 − ε spatial dimensions, the full two-
particle scattering amplitude T , in the unitary limit have the form of a boson
propagator times the square of a coupling constant, which is proportional to√
ε and thus small when considered close to four dimensions. This gives us a

possibility to interpret the scattering of two particles in vacuum as mediated
by an intermediate resonance, which we treat as a virtual boson. The strong
fermion–fermion point interaction hence renormalizes into a weak interaction
over a distance, mediated by a scalar boson field.

Inspired by this observation we then considered a gas at finite density and
derived a number of Feynman rules that enabled us to perform perturbative
expansions. We also showed that the different terms in such an expansion
behave as expected when it comes to factors of ε, with two exceptions — there
is one boson self energy diagram and one type of boson tadpole diagram that,
due to ultraviolet divergences, give one factor of ε less than expected. But among
our Feynman rules there were two types of counter terms, and using these it
was possible to cancel the divergent terms. Thus it is possible to perform a
perturbative expansion by writing down a number of diagrams, and calculations
will work out as expected as long as the counter terms are used when needed.

As a demonstration of this perturbative technique we calculated the effective
potential to the next-to-leading-order in ε. This result could then be used to
calculate the boson and fermion number densities, and the pressure and ground
state energy of the gas. By dimensional arguments we saw that, in the unitary
limit, the energy per particle could be expressed as ξ0εF, where εF was the
Fermi energy of a free Fermi gas of the same density, and ξ0 = µ/εF was a
dimensionless constant, which we were able to calculate as a function of the
number of spatial dimensions d only.

For a Fermi gas in the vicinity of unitarity, we derived corrections to the
energy per particle ξεF, in terms of the binding energy of a bound pair of
fermions. This could in turn be related to the parameter η = 1/(apF), which
can be used to characterize a Fermi gas in the BCS–BEC crossover.

To be able to draw conclusions for the physical case of three spatial dimen-
sions, we performed a näıve extrapolation to ε = 1, giving us an expression for
the universal parameter ξ in terms of only η. Thus we were able to compare
our result to experimental measurements as well as quantum Monte Carlo cal-
culations. In the unitary limit, a variety of different figures are reported for the
value of ξ0, but the general agreement with our result of ξ0 ≈ 0.475 is quite
good. Also our expression for ξ in the region agreed well with the results of
Monte Carlo calculations in the region −0.5 ≤ η ≤ 0.5.

We also compared our results with those of Nishida and Son [9] — who in
addition to the four-dimensional side also took into account the behavior at d =
2 as a boundary condition — and to the results of the next-to-next-to-leading-
order calculation by Arnold et al. [22]. However neither of these elaborations
of the näıve next-to-leading-order results made an obvious improvement when
compared to data from experiments and Monte Carlo calculations.
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A Some useful formulas

A Some useful formulas

This appendix presents some formulas that frequently turn out to be useful in
dimensional regularization, where one has to calculate integrals in an arbitrary
number of dimensions, d. The relations listed here are derived or referenced in
Ref. [43].

The d-dimensional volume element dk can be written, using spherical coor-
dinates, as

dk

(2π)d
=

dΩd

(2π)d
d|k||k|d−1, (A1)

where dΩd is the solid angle element. Often the integrand has a spherical symme-
try. The angular part of the integral can then be computed using the following
formula for the area of a unit sphere in d dimensions:

∫

dΩd

(2π)d
=

2π
d
2

(2π)d

1

Γ(d
2 )

=
2

(4π)
d
2

1

Γ(d
2 )
. (A2)

To perform the radial integration, we can often perform a change of variables
and then use the formula

∫ ∞

0

dz
zm−1

(1 + z)m+n
=

Γ(m)Γ(n)

Γ(m+ n)
. (A3)

When using the above formulas we have to evaluate the Γ function in various
points. This function has singularities at x = 0,−1,−2, . . . . Close to these poles
Γ can be expanded as

Γ(−n+ x) =
(−1)n

n!

(

1

x
− γ + 1 + · · · + 1

n
+ O(x)

)

, (A4)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.
At points that are not singularities of Γ we can use an ordinary Taylor

expansion. In doing this we can calculate the derivative of Γ(x) as [44]

d

dx
Γ(x) = ψ(x)Γ(x), (A5)

where ψ(x) is the digamma function which satisfies the recurrence relation

ψ(x+ 1) = ψ(x) +
1

x
, (A6)

and takes the values

ψ(1) = −γ, (A7)

ψ
(

1
2

)

= −γ − 2 log 2. (A8)

As an example of using these formulas we calculate the following integral,
which is encountered many times in this thesis:

iM =

∫

dk

(2π)d

1

(εk + ∆)n
. (A9)
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This integral has an ultraviolet divergence if n ≤ 2. We are now going to
calculate iM to leading order in ε for this case. First we change to spherical
coordinates in accordance with eq. (A1).

iM =

∫

dΩ

(2π)d

∫

d|k| kd−1

(εk + ∆)n
. (A10)

By changing variables of integration to z = εk

∆ this becomes

iM =
(2m)

d
2

2
∆

d
2
−n

∫

dk

(2π)d

∫

dz
z

d
2
−1

(z + 1)n
. (A11)

Now we can use eq. (A3) and eq. (A2) to perform the integrals. This gives

iM =
(m

2π

)
d
2

∆
d
2
−n Γ

(

n− d
2

)

Γ(n)
. (A12)

In d = 4 − ε spatial dimensions, we can now finally use the approximation of
eq. (A4) to write iM to the first order in ε as

iM =
m2

4π2
∆2−nΓ

(

n− 2 +
ε

2

)

(A13)

=
(−1)n

(2 − n)!

m2

2π2ε
∆2−n (1 + O(ε)) . (A14)

This result can now directly be used to calculate e.g. the following integral from
the thesis:

ig2

∫

dk

(2π)d

1

p0 − 2εk − εp

2 + 2µ
= −i g

2

2

∫

dk

(2π)d

1

εk + 1
2

(

−p0 +
εp

2 − 2µ
)

(A15)

= ig2 m
2

8π2ε

(

p0 −
εp

2
+ 2µ

)

(1 + O(ε)) . (A16)
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B The two-particle scattering length

B The two-particle scattering length

This section presents a simple derivation of the relation between the scattering
length and the binding energy of a pair of interacting particles. The subject is
treated in much more depth in e.g. Ref [45].

Consider a particle scattering against a spherically symmetric potential V of
range r0. Far outside the potential, the incident wave function is a plane wave
eikz , where k =

√
2µE and µ is the reduced mass of the system. To find the

scattering amplitude we need to solve the Schrödinger equation
[

−∇2

2µ
+ V (r)

]

ψ(r) = −Eψ(r). (B17)

This equation is separable and spherically symmetric. Hence we can expand the
total wave function as

ψ(r) =
∑

l

ul(r)

r
Pl(cos θ), (B18)

where Pl are spherical Legendre functions. The radial part of the Schrödinger
equation is then given by

[

− d2

dr2
+
l(l + 1)

r2
+ 2µV (r) − k2

]

ul(r) = 0. (B19)

For r > r0 the solutions to eq. (B19) can be written in terms of spherical
Bessel and Neumann functions. In the region r → ∞, we can use the asymptotic
behavior of these functions to write the radial wave functions as

ul(r)

r
→ al

sin
(

kr − π
2 l + δl

)

kr
, (B20)

where δl are real valued phase shifts, and al constants.
The total wave function should, at least for big r, be a superposition of the

incoming plane wave, and an outgoing scattered spherical wave,

ψ(r) = eikz + f(θ)
eikr

r
. (B21)

The plane wave part can be expanded into angular momentum eigenstates,

eikz = eikr cos θ =
∑

l

(2l + 1)iljl(kr)Pl(cos θ), (B22)

where jl(z) are spherical Bessel functions and Pl are Legendre polynomials. For
large r this becomes

∑

l

(2l+ 1)il
sin
(

kr − π
2 l
)

kr
Pl(cos θ). (B23)

By comparing eqs. (B21) and (B23) with eqs. (B18) and (B20) we can iden-
tify the coefficients al. This gives the radial wave function

ul(r)

r
= (2l + 1)ileiδl

sin
(

kr − π
2 l + δl

)

kr
, (B24)
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and the scattering amplitude

f(θ) =
1

k

∑

l

(2l + 1)eiδl sin δlPl(cos θ). (B25)

Integrating dσ
dΩ = |f(θ)|2, we get the total cross-section

σ =
4π

k2

∑

l

(2l + 1) sin2 δl. (B26)

Now we consider scattering at very low energy, i.e. k ≈ 0. In this limit only
the S-wave (l = 0) part of the wave function will contribute. For r > r0 the
radial Schrödinger equation will then simply be

d2u

dr2
= 0, (B27)

which has the solution
u0(r) = A(r − a), (B28)

where A is an unimportant constant and a is a constant of dimension length
called the scattering length.

In addition to eq. (B28), u0(r) is, according to the previous treatment of
scattering against a potential, also given by

u0(r) = lim
k→0

1

k
sin(kr + δ0). (B29)

Using these two expressions for u0(r), we can write the logarithmic derivative
of u0(r) in two different ways:

d

dr
log u0 = lim

k→0
k cot(kr + δ0) =

1

r − a
. (B30)

Even though this expression gives the true wave function only for r > r0, we
can take the r → 0 limit, which gives

lim
k→0

k cot(δ0) = −1

a
. (B31)

By the previous expression for the scattering amplitude we now have

f(θ) =
eiδl sin δl

k
=

1

k cot δl − ik
, (B32)

and hence

σ = 4π lim
k→0

∣

∣

∣

∣

1

k cot δl − ik

∣

∣

∣

∣

2

= 4πa2. (B33)

From eq. (B28) we see that the scattering length gives the zero-intersection
of the exterior radial wave function. If the potential is repulsive a > 0, and
roughly of order r0. An example of this is given in figure 6(a). For an attractive
potential, the scattering length can, on the other hand, be arbitrary large, and
of both signs. In the case of a weak attractive potential, the scattering length
is negative, as seen in figure 6(b). If the interaction strength is increased there
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B The two-particle scattering length

will be a change of sign, as indicated in figure 6(c), which shows the case of a
strong attractive potential. Thus, for an attractive potential, |a| gets small in
both the strong and the weak attraction limits. The change of sign is related to
the development of a bound state, as intuitively can be seen from the plots in
figure 6. The unitary limit, where |a| → ∞, thus corresponds to the threshold
limit for bound state formation. To see the relation between the scattering
length and the possibility to form bound states more clearly, we will now derive
a relation between the scattering length and the binding energy of such a state.

Assume that we have an attractive potential well of depth V0 < 0 and
range r0m and that we can form a bound state with an energy E that is small
(|E| � |V0|) but negative. For r > r0 the wave function is given by e−κr, with
κ =

√

2µ|E| � 1/r0. Expanding this we get e−κr ≈ 1 − κr + . . . , which is of
the same form as the scattering wave function u0(r), for a very large a.

Now consider the wave function inside the well. Both in the case of a bound
state at energy E < 0 and in the case of scattering at E > 0 this will, as long
as |E| � |V0|, be given by sin k′r, where

k′2

2µ
= E − V0 ≈ |V0|. (B34)

Since the inside wave functions in the two cases are essentially equal, we can
equate the logarithmic derivatives of the outside wave functions at the boundary,

−κe
−κr

e−κr

∣

∣

∣

∣

r=r0

=
1

r − a

∣

∣

∣

∣

r=r0

, (B35)

or, for r0 � a ,

κ ≈ 1

a
. (B36)

Thus the binding energy εb of the bound state is given by

εb =
κ2

2µ
≈ 1

2µa2
. (B37)

Hence we can calculate the binding energy of a loosely bound state, by measur-
ing the cross-section for scattering at very low energies, provided that a is big
compared to the range of the potential, r0.
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r

r0

a

a > 0

(a) Repulsive potential

r

r0

|a|

a < 0

(b) Weak attractive potential

r

r0

a

a > 0

(c) Strong attractive potential

Figure 6: Plot of u0(r) versus r for three different potential wells. The dashed
lines show the extrapolation of the linear exterior wave function. Intuitively the
zero-intersection of this line gives the scattering length a, as indicated in the
figure.

43



Bibliography

Bibliography

[1] L. D. Landau and E. M. Lifshitz, Statistical physics part 2, vol. 9 of Course

of theoretical physics (Pergamon press, Oxford, 1980).

[2] I. M. Khalatnikov, An introduction to the theory of superfluidity (W. A.
Benjamin, New York, 1965).

[3] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

[4] J. R. Schrieffer, Theory of superconductivity (Benjamin, New York, 1964).

[5] A. J. Legget, in Modern trends in the theory of condensed matter, edited
by A. Pekalski and J.Przystawa (Springer-Verlag, Berlin, 1980), pp. 13–27.

[6] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys 59, 195 (1985).

[7] J. Levinsen and V. Gurarie, Phys. Rev. A 73, 053607 (2006).

[8] V. Gurarie and L. Radzihovsky, Ann. Phys. 322, 2 (2007),
cond-mat/0611022.

[9] Y. Nishida and D. T. Son (2006), cond-mat/0607835.

[10] S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin,
J. Hecker Denschlag, and R. Grimm, Science 302, 2101 (2003).

[11] M. Greiner, C. A. Regal, and D. S. Jin, Nature 426, 537 (2003).

[12] T.-L. Ho, Phys. Rev. Lett. 92, 090402 (2004), cond-mat/0309109.

[13] G. Bertsch, in The Proceedings of the 10th International Conference on

Recent Progress in Many-Body Theories, edited by R. F. Bishop, K. A.
Gernoth, N. R. Walet, and Y. Xian (World Scientific, Singapore, 2000).

[14] H. Heiselberg and M. Hjorth-Jensen, Phys. Rep. 328, 237 (2000).

[15] Q. Chen, J. Stajic, S. Tan, and K. Levin, Phys. Rep. 412, 1 (2005).

[16] Y. Nishida and H. Abuki, Phys. Rev. D 72, 096004 (2005),
hep-ph/0504083.

[17] M. Y. Veillette, D. E. Sheehy, and L. Radzihovsky (2006),
cond-mat/0610798.

[18] K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).

[19] K. G. Wilson, Phys. Rev. Lett. 28, 548 (1972).

[20] Y. Nishida and D. T. Son, Phys. Rev. Lett. 97, 050403 (2006),
cond-mat/0604500.

[21] Y. Nishida (2006), cond-mat/0608321.

[22] P. Arnold, J. E. Drut, and D. T. Son (2006), cond-mat/0608477.

[23] G. Rupak, T. Schaefer, and A. Kryjevski (2006), cond-mat/0607834.

44

cond-mat/0611022
cond-mat/0607835
cond-mat/0309109
hep-ph/0504083
cond-mat/0610798
cond-mat/0604500
cond-mat/0608321
cond-mat/0608477
cond-mat/0607834


Bibliography

[24] J.-W. Chen and E. Nakano (2006), cond-mat/0610011.

[25] G. Rupak (2006), nucl-th/0605074.

[26] L. P. Gorkov, Sov. Phys. JETP 7, 505 (1958).

[27] Y. Nambu, Phys. Rev. 117, 648 (1960).

[28] Z. Nussinov and S. Nussinov (2005), cond-mat/0410597.

[29] L. D. Landau and E. M. Lifshitz, Statistical physics, vol. 5 of Course of

theoretical physics (Pergamon, Oxford, 1969).

[30] M. E. Gehm, S. L. Hemmer, S. R. Granade, K. M. O’Hara, and J. E.
Thomas, Phys. Rev. A 68, 011401 (2003), cond-mat/0212499.

[31] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E.
Thomas, Science 298, 2179 (2002), cond-mat/0212463.

[32] G. B. Partridge, W. Li, R. I. Kamar, Y.-a. Liao, and R. G. Hulet, Science
311, 503 (2006), cond-mat/0511752.

[33] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag,
and R. Grimm, Phys. Rev. Lett. 92, 120401 (2004), cond-mat/0401109.

[34] T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teich-
mann, L. Tarruell, S. J. J. M. F. Kokkelmans, and C. Salomon, Phys. Rev.
Lett. 93, 050401 (2004), cond-mat/0403091.

[35] J. Kinast, A. Turlapov, J. E. Thomas, Q. Chen, J. Stajic, and K. Levin,
Science 307, 1296 (2005), cond-mat/0502087.

[36] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev.
Lett. 93, 200404 (2004), cond-mat/0406113.

[37] S. Y. Chang, J. Carlson, V. R. Pandharipande, and K. E. Schmidt, Phys.
Rev. A 70, 043602 (2004), physics/0404115.

[38] J. Carlson and S. Reddy, Phys. Rev. Lett. 95, 060401 (2005),
cond-mat/0503256.

[39] D. Lee, Phys. Rev. B 73, 115112 (2006), cond-mat/0511332.
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