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Supervisor: Dr. Giuseppe Dibitetto

Subject reader: Prof. Dr. Ulf Danielsson
Examiner: Dr. Andreas Korn

FYSAST
FYSMAS1028



Abstract

We have a look at compactification as a special way of explain-
ing why we only observe 4 spacetime dimensions although theories as
string or M-theory require more. In particular, we treat compactifica-
tion of 11-dimensional supergravity, which is the low energy limit of
M-theory, on S4×T 3. At first, we present the basic ideas behind those
theories and compactification. Then we introduce important concepts
of supersymmetry and supergravity. Afterwards, our particular case
of compactification is treated, where we first review the results for the
compactification on S4 before we calculate the scalar potential from
the reduction ansatz for a so-called twisted torus.

Sammanfattning

Vi betraktar kompaktifiering som ett särskilt sätt att förklara varför
vi bara observerar 4 rumtidsdimensioner även fast teorier som sträng-
eller M-teori kräver fler. I synnerhet behandlar vi kompaktifiering av
11-dimensionell supergravitation, vilken är l̊agenergigränsen för M-
teori, p̊a S4 × T 3. Först presenterar vi de grundläggande idéerna
bakom dessa teorier och kompaktifiering. Sedan introducerar vi vik-
tiga begrepp för supersymmetri och supergravitation. Därefter be-
handlas v̊art särskilda fall av kompaktifiering, varvid vi först granskar
resultaten av kompaktifiering p̊a S4 innan vi beräknar skalärpoten-
tialen fr̊an reduktionsansatsen för en s̊a kallad vriden torus.

Zusammenfassung

Wir betrachten Kompaktifizierung als eine besondere Möglichkeit,
zu erklären weshalb wir nur 4 Raumzeitdimensionen beobachten, ob-
wohl Theorien wie String- oder M-Theorie mehr benötigen. Insbeson-
dere behandeln wir die Kompaktifizierung von 11-dimensionaler Su-
pergravitation, die der niederenergetische Grenzfall von M-Theorie ist,
auf S4 × T 3. Als erstes präsentieren wir die grundlegenden Ideen, die
hinter diesen Theorien und Kompaktifizierung stehen. Anschließend
wird unser spezifischer Fall von Kompaktifizierung behandelt, wobei
wir zuerst die Ergebnisse der Kompaktifizierung auf S4 wiedergeben,
bevor wir das skalare Potential mit Hilfe des Reduktionsansatzes für
einen sogenannten verdrehten Torus berechnen.
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1 Introduction

In this thesis we will have a look at compactification of the low energy limit
of M-theory, which is known to be 11-dimensional supergravity. Compacti-
fication is a procedure to come from a higher-dimensional theory to a lower-
dimensional theory by replacing some of the dimensions of the original theory
by a small compact manifold. Therefore, it is an important tool for con-
necting theories as string or M-theory with phenomenology since it leads to
explanations why only our four spacetime dimensions are directly observed.
In this thesis we will investigate the compactification on S4 × T 3.

The current chapter provides a conceptual introduction to string theory, M-
theory and compactification. Before we present them, we will motivate those
theories by the desire for a consistent theory of quantum gravity. Further,
we will give a short example for a compactification in string theory, i.e.
Kaluza-Klein reduction of a bosonic string. T-duality will be mentioned as
an interesting feature of string theory.

In the subsequent chapter we will learn about supergravity. As an prepa-
ration for this, we will first introduce important concepts of supersymmetry,
i.e. superalgebras, spinors in arbitrary dimensions, on- and off-shell super-
symmetry and supermultiplets. Afterwards, we will shortly present the first
order formulation of general relativity, 11-dimensional supergravity, coset
spaces and superspace.

Chapter 3 deals with our particular example of compactification. At first, we
will review the Kaluza-Klein reduction of D = 11 supergravity on S4. This
means that we will state the ansätze for the linearised and the non-linearised
cases. We will also look on the resulting 7-dimensional gauged supergravity.
Following this, we will introduce the idea of a twisted torus before we per-
form the reduction of 7-dimensional supergravity on such a torus, i.e. on T 3.
Our aim is to obtain the scalar potential from this reduction.

In the last chapter we will summarise our conclusions and dare an outlook.
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1.1 Quantum gravity

The 20th century brought us two pillars of modern physics: Einstein’s theory
of gravity - the so-called general relativity - and quantum theory describing
physics on atomic and subatomic level. Each of these theories offered new
spectacular insights into nature and both have been tested experimentally
very well. In most situations one can ignore either one of those because clas-
sical gravity is too weak to be relevant for basically all processes on quantum
level while quantum physical effects are irrelevant if one wants to describe
the behaviour of the majority of large and massive objects in the universe,
e.g. stars or planets. Nevertheless, it is proposed that there could be objects
that fall into the regime of both theories. Those would be infinitely small
but accompanied by an infinite curvature of spacetime. Prominent examples
are black holes and our universe at the moment of big bang (or big crunch).
According to Einstein’s theory, those would be spacetime singularities. This
means that a very large amount of mass is gathered at one point in spacetime
which leads to a local infinite mass density. Infinities in physics are usually
considered to hint at a limitation of a theory. In the case of spacetime singu-
larities, a quantum theory of gravity, which would be an UV-completion of
general relativity, might be able to avoid their appearance. However, general
relativity and quantum physics do not go hand in hand. In fact, until today
there is no consistent framework that is proven to be a correct unification of
both theories. Certainly, there are various attempts to quantum gravity but
besides huge theoretical challenges, it is intricate to verify them experimen-
tally. Direct quantum gravitational experiments seem to be impossible at all.
Therefore, one tries to make indirect observations of quantum gravitational
effects, e.g. in cosmology.

1.2 String theory

Currently, string theory is a leading approach to quantum gravity. It natu-
rally includes the graviton which is proposed to be the force carrier of gravity.
In addition, string theory also addresses open questions in the standard model
of particle physics and could be a candidate for a theory unifying all known
fundamental forces in nature. It is often appreciated for its usage of beautiful
mathematics and led to new inspiration for several mathematical areas, e.g.
topology. Since the turn of the millennium, string theoretical concepts ad-
ditionally found application in the fields of superconductivity, early universe
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cosmology, fluid mechanics and quantum information [1].

In string theory one considers extended one-dimensional objects called strings
instead of point-like particles. They are able to vibrate as for example a gui-
tar string. Depending on its vibrational mode, we interpret a string as a
particle with specific properties that we can observe, e.g. as an electron.
Strings can be open or closed like a circle. Open strings belong to the Yang-
Mills sector (includes gauge fields) and closed strings belong to the gravity
sector. Due to the question of its mathematical consistency, string theory has
to be formulated in more than our four well-known spacetime dimensions.
The easiest example is the bosonic string theory in 26 dimensions (D = 26).
However, it contains only bosons and in addition a hypothetical type of parti-
cle, the so-called tachyon, which is proposed to have a negative mass-squared.
The latter is considered to be unnatural. Such issues are solved by incorpo-
rating supersymmetry in string theory. Supersymmetry assigns a fermionic
(bosonic) ’superpartner’ to each boson (fermion) of the standard model. In
this way the tachyon is removed from the theory but, as desired, fermions
appear. The resulting theories are named superstring theories and describe
bosonic and fermionic particles. They are formulated in D = 10 dimensions.

1.3 M-theory

There are five known D = 10 superstring theories: [2]

• Type I,

• Type IIA,

• Type IIB,

• E8 × E8 heterotic,

• SO(32) heterotic.

Each of these theories is acceptable as a theory of quantum gravity and pref-
erence is only given in particular situations. For instance, the E-heterotic
(abbreviation for E8×E8 heterotic) theory is preferred in attempts to make
contact with particle physics [2]. Nonetheless, five theories of quantum grav-
ity which are equally good in fulfilling their purpose would go over the top.
Hence, one could expect that there is a more fundamental theory of which
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each superstring theory is a special limit. Indeed, nowadays most string re-
searchers are convinced that this theory is existing. It is called M-theory,
whereby the meaning of the M is ambiguous. M-theory is formulated in 11
spacetime dimensions and is still under construction since it is only known in
bulk. So far one knows that its fundamental objects are so-called p-branes,
which also appear in string theories. A p-brane is just a p-dimensional phys-
ical object with certain properties. For instance, a 1-brane is a fundamental
string as we know it from string theory and a 2-brane is a 2-dimensional sur-
face. In principle, branes are only generalisations of the concept of a point
particle for arbitrary dimensions. M-theory is governed by 2-branes and 5-
branes as their magnetic duals. Well-known are also the procedures to come
from M-theory to type IIA or E-heterotic string theory. Dualities connect
the other three types of superstring theories to those two. Furthermore, one
knows that M-theory’s low energy limit is 11-dimensional supergravity - a
theory of gravity predicted by supersymmetry [3, 4].

1.4 Why compactify?

A striking property of string and M-theory is that they are usually formulated
in more than our four spacetime dimensions. However, we do not encounter
these extra dimensions in our daily life and so far we did not observe them
in any experiment. So the questions arise where and how these additional
dimensions are hiding. If string and M-theory claim to be theories of our
real physical world, they are required to provide an answer to those ques-
tions. The most common answer is compactification of the extra dimensions.
This means that, in contrast to our four spacetime dimensions, these do not
have infinite extension and have the shape of a particular compact manifold,
e.g. a sphere or a torus. Strings or branes can then be wrapped around
them. Depending on the size of the compact dimension and the number of
windings of a string or brane around it, we should be able to observe various
quantised energy states which we can interpret as different particles in our
experiments. In order for these states to correspond to particles we already
know, the compact dimensions have to be in the order of the Planck length
(around 10−35m) [4]. This would elegantly explain why we did not directly
observe any extra dimensions yet and why they do not even seem to play a
role on the atomic level of our world.

To get an idea of a compactified dimension one can think about a theory

4



proposed by Theodore Kaluza and Oscar Klein in the early 1920s [5, 6]. It
was an attempt to unify gravity and electromagnetism by taking a fourth
space dimension into account. This additional dimension was thought to be
shaped as a circle with very small radius. One can imagine the resulting 5-
dimensional spacetime by replacing all points in our ordinary 3-dimensional
space by a circle. Since it is so small, we cannot observe the extra dimen-
sion directly. To imagine other compactifications one could just replace each
single point in space with the respective compact manifold.

1.5 Kaluza-Klein reduction of bosonic string theory

As an example for a compactified theory, we will now have a look at the
compactification of D = 26 closed bosonic string theory on a circle. We will
follow [7] and [8]. In particular, we will mostly make use of the notation and
elaboration in [8].

1.5.1 Kaluza-Klein reduction in field theory

At first, we discuss compactification in field theory as a good approximation
since stringy behaviour does not show up if we consider a compact dimension
with a size much larger than the string length scale ls :=

√
α′.

We start considering a 26-dimensional field theoretical toy model of a mass-
less scalar φ(x0, ..., x25) on a manifold M26 and compactify it on a circle with
radius R � ls. As the compactified dimension we choose x25. Since it is
compactified on a circle, it fulfils x25 ≡ x25 + 2πR. Hence, we can Fourier
expand φ in terms of x25:

φ(x0, ..., x25) =
∑
k∈Z

exp(ikx25/R)φk(x
0, ..., x24) , (1.1)

where the 2π in the numerator in the exponent got cancelled out by the cir-
cumference of the circle.

In the 25-dimensional space M25 we would in principal observe each sin-
gle field φk(x

0, ..., x24). However, we will now see that in the case of low
energies only one field would be observable.
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The momentum component of a field φk(x
0, ..., x24) in the compactified di-

mension is given by p25 = k
R

. By using the mass-shell condition

0 = p2 = p2
M25

+ p2
25 , (1.2)

and p2
M25

= −m2, we find: mk = k
R

.

The observable mass of a scalar field is anti-proportional to the radius of the
circle. This means the smaller the circle the larger the field’s mass. Hence,
if our experiments reach only energies E � 1

R
, then we cannot observe any

massive fields of this theory. So only the field φ0 would be observable for us
because it is massless. In this way physics of 25 dimensions is reproduced
for low energies by compactification of a 26-dimensional spacetime. This
particular procedure is called Kaluza-Klein reduction.

1.5.2 Closed bosonic string

Now we finally go to bosonic string theory in 26 dimensions. We consider a
closed bosonic string on a 26-dimensional manifold M26 and then compactify
the theory on a circle such that we obtain a manifold M25 ×KR, where KR

is a circle of radius R. We choose again the 25th space dimension as the
compact dimension. Since the metric of the resulting space is still flat (a
circle as a 1-torus is locally flat), the Polyakov worldsheet action remains the
same after compactification:

S = − 1

4πα′

∫
d2σ
√
−ggαβ∂αXµ∂βX

νηµν , (1.3)

where ηµν is the flat Minkowski metric, Xµ(σ, τ) are worldsheet fields, gαβ is
the worldsheet metric and g := det(g). The worldsheet is the 2-dimensional
surface spanned by a string propagating in time.

Next, we want to investigate the mass spectrum of the bosonic string in the
compactified theory. The hamiltonian of the uncompactified theory looks
like:

H =
l

4πα′p+

l∫
0

dσ[2πα′ΠiΠi +
1

2πα′
∂σX

i∂σX
i] , (1.4)
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where l is the length of the string, p+ is a longitudinal momentum and Πi is
the momentum density conjugate to X i.

Now we have to incorporate the boundary conditions of a closed string. For
the dimensions i = 1, ..., 24 they are:

X i(σ + l, τ) = X i(σ, τ) . (1.5)

Since we compactify the 25th space dimension on a circle, we have to take
the periodicity into account by adding 2πRw with w ∈ Z as a winding
number. This number counts how often the string is winding around the
circle. The more often a string is winded around, the higher is the energy of
the corresponding state. We get:

X25(σ + l, τ) = X25(σ, τ) + 2πRw . (1.6)

By using the mode expansion for the boundary conditions for X25,

X25(σ, τ) = x25+ p25
p+
τ+ 2πRw

l
σ+i

√
α′

2

∑
n∈Z\{0}

[α
i
n

n
e−2πin(σ+τ)/l + α̃i

n

n
e2πin(σ−τ)/l] ,

and using the result that p25 has to be quantised as p25 = k
R

with k ∈ Z, one
obtains as the hamiltonian for the compactified theory (after integration):

H =
24∑
i=2

p2
i

2p+
+

(k/R)2

2p+
+

R2w2

2α′2p+
+

1

α′p+
(N + Ñ − 2) , (1.7)

where the N , Ñ are the level numbers of the state.

The mass spectrum is calculated by the following formula:

m2 = 2p+H −
24∑
i=2

p2
i . (1.8)

For the uncompactified theory this gives:

m2
uncomp. =

2

α′
(N + Ñ − 2) . (1.9)
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For the compactified theory we obtain for the mass in 25 dimensions:

m2
comp. =

k2

R2
+
R2

α′2
w2 +

2

α′
(N + Ñ − 2) . (1.10)

If we compare both mass spectra, then we see that they differ by a summand
k2

R2 + R2

α′2w
2. This means that in addition to the states in the uncompactified

case we have momentum (correspond to k) and winding states (correspond
to w).

As we stated for the field theoretical Kaluza-Klein reduction, stringy effects
only appear if we consider a radius in the order of the string scale ls. In any
other case we would not have any winding states in our spectrum since the
compact dimension would be too large for the string to wind around it. We
can see the effect of R’s value if we have a look at the massless states. In
the non-compact theory massless states correspond to N = Ñ = 1 while in
the compactified theory we could have more massless states coming from the

winding in the case k = N = Ñ = 0 with w = 2
√
α′

R
. Here we observe that

for R > 2
√
α′ the condition w ∈ Z cannot be fulfilled anymore. Hence, the

string cannot wind entirely around the compact dimension and the stringy
effects disappear for large values of R.

1.6 T-duality

In the end of this chapter we want to have a short look at a remarkable
feature of string theory - T-duality. A theory on a circle KR is T-dual to a
theory on a circle Kα′/R if both theories describe the same physics.

If we consider the mass spectrum we derived for the compactified theory,
then we see that it is invariant under a T-duality transformation R→ α′

R
:

m2
comp.

T→ R2

α′2
k2 +

w2

R2
+

2

α′
(N + Ñ − 2) . (1.11)

k and w exchanged roles but both can take the same values since k, w ∈ Z.
Therefore, the spectrum is still the same after the transformation. We can
just rename them, w ↔ k, and obtain exactly the same spectrum as before.

This result is quite interesting in the limit R→∞ (large circle in the original
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theory and small circle in the T-dual theory). If we consider pure momentum
states (k-term is the only contribution) before the transformation, then we
see that they become massless in this limit. This corresponds to a decom-
pactification of the theory. This makes sense since the compactified theory
becomes infinitely large in this limit. However, if we consider pure winding
states of the T-dual theory in this limit, then we see that they become mass-
less instead. By defining the new radius R′ := α′/R, we see that the circle in
the T-dual theory becomes 0-dimensional. This is again a decompactification
in that sense that the compactified dimension vanishes.

2 Supersymmetry and supergravity

In this section we want to take a more detailed look at supersymmetry (ab-
breviated as SUSY) and supergravity (abbreviated as SUGRA) because we
will make heavy use of them in the rest of this thesis.

As references for this section we will use the introductions in [9, 11]. In
particular, we will use their notations and we will always refer to them un-
less we explicitly give another reference. [9] are lecture notes by Horatiu
Nastase. The content we used from those notes is based on the references
[15] and [25] - [39].

A far more detailed introduction to SUSY and SUGRA can be found for
example in [12].

2.1 Supersymmetry

Supersymmetry describes a symmetry between fermions and bosons. As
already mentioned earlier in this thesis, it assigns a fermionic (bosonic) su-
perpartner to each boson (fermion) of a supersymmetric theory (e.g. the
SUSY-extended standard model). It is a powerful tool to simplify certain
calculations and arose from considerations about the possible symmetries in
particle physics.

There exists a special convention for naming superpartners. Bosonic su-
perpartners of standard model fermions are named like these fermions but
with an additional s as first letter (e.g. squarks for quarks or selectron for an
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electron). Fermionic superpartners of standard model bosons are named like
these bosons but with -ino as suffix (e.g. gluino for a gluon or gravitino for
a graviton). Following the rules for Italian masculine suffixes, we denote the
plural of a fermionic superpartner with -ini as ending (e.g. gluini or gravitini).

In the following we will introduce the concepts of supersymmetry that are
relevant for this thesis.

2.1.1 Superalgebra

At first, we introduce the concept of a superalgebra or graded Lie algebra.
Such an algebra distinguishes between even and odd generators. While for
example the Lorentz generatorsMµν of the SO(1, 3) Lorentz group, the gener-
ators of translation symmetries Pµ and the generators of internal symmetries
of particle physics Tr are considered to be even, the novel supercharges Qi

a

(irreducible spinors) are considered to be odd. Using this classification, the
generators of the graded Lie algebra fulfil:

[even, even] = even, {odd, odd} = even, [even, odd] = odd . (2.1)

The supercharges Qi
α are in the spinor representation of the Lorentz group,

where α is a spinor index and i ∈ {1, ...,N} is an internal index. N denotes
the number of different supercharges we can have in the theory. They fulfil
the supersymmetry algebra: [10]

{Qi
α, Q

j
β} = 2(γµC)αβδ

ijPµ , (2.2)

where C is the charge conjugation matrix. Acting with Qi
α on a boson field

gives a spinor field and vice versa. More explicitly, Qi
α relates two fields whose

helicity differs by 1/2. In this way the supercharges give us supersymmetry
as a symmetry between bosons and fermions:

δboson = fermion , δfermion = boson . (2.3)

The symmetry variation δ is given by

δε = εαQα , (2.4)

where ε is the variation or symmetry law parameter.
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2.1.2 Spinors in D dimensions

Here we will discuss spinors in various dimensions since later we will consider
them in theories with D > 4. Many details about spinors in higher dimen-
sions can be found in [16].

In every dimension there is always a so-called spinor representation (or Dirac
representation) for the Lorentz group SO(1, D − 1), where the Lorentz gen-
erators are defined by

γµν :=
1

2
[γµ, γν ] . (2.5)

The Dirac matrices are satisfying the Clifford algebra

{γµ, γν} = 2gµν , (2.6)

where gµν is the SO(1, D − 1) invariant metric.

These matrices take spinors into spinors:

(γµ)αβχ
β = χ̃α . (2.7)

Dirac spinors have 2[[D/2]]+1 real components, where [[x]] is the integer part
of x. However, the Dirac representation is reducible. Therefore, we must im-
pose either the Weyl (chirality), the Majorana (reality) or even both condi-
tions (Majorana-Weyl spinors) in order to obtain irreducible representations.

The Weyl condition is

γD+1χ = ±χ , (2.8)

where + (−) stands for right-(left-)handed spinors ,

while the Majorana condition is

χC := χTC = χ̄ := χ†iγ0 , (2.9)

where C is the charge conjugation matrix relating γm with γTm.

The Weyl spinor condition exists only in even dimensions. If we cannot
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define a Majorana condition in N > 1 cases, then we can at least define
a symplectic Majorana condition for spinors containing N = 1 spinors as
components. We cannot define a usual Majorana condition in the case of
pseudo-reality, which means that there is no complex conjugate of a spinor,
i.e. (χ∗)∗ = −χ.

Different from Dirac spinors, Majorana and chiral spinors have 2[[D/2]] real
components. Albeit, Majorana-Weyl spinors have even only 2[[D/2]]−1 real
components. [16]

For convenience one usually uses Majorana spinors in supersymmetry.

The parameter of the SUSY transformation law εiα (e.g. in D = 2 Wess-
Zumino model δφ = ε̄αψ

α) is also a spinor.

2.1.3 On- and off-shell SUSY

Supersymmetry is a symmetry between bosons and fermions. Therefore, the
number of degrees of freedom of bosons has to be the same as for fermions.
They can match on-shell or off-shell, which corresponds to on-shell super-
symmetry or off-shell supersymmetry, respectively.

In general, supersymmetry is formulated on-shell. For example, in the simple
D = 2 Wess-Zumino model we can consider one Majorana fermion ψ with
one degree of freedom on-shell and one real scalar φ with as well one degree
of freedem on-shell. Their respective SUSY variation is given by

δψ = /∂φε (2.10)

and

δφ = ε̄ψ . (2.11)

However, we can also consider the D = 2 Wess-Zumino model off-shell. In
this case a Majorana fermion has two degrees of freedom off-shell, while a real
scalar still has only one degree of freedom. To cure this problem we need to
introduce an additional scalar field F . This field has to be auxiliary because
we want to obtain our former result if we go back to the on-shell case. Aux-
iliary means that this field is non-dynamical and has no propagating degree
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of freedom. More concretely, it has no kinetic term in the Lagrangian. Its
equation of motion is given by F = 0.

In the off-shell formulation, the SUSY variations are

δψ = /∂φε+ Fε , (2.12)

δφ = ε̄ψ (2.13)

and

δF = ε̄/∂ψ . (2.14)

In more complex models, where the mismatch in the degrees of freedom off-
shell could be larger, one might have to introduce more auxiliary fields, which
of course could also be vectors or tensors. However, there are also theories
with high N in which no off-shell supersymmetry exists.

2.1.4 Supermultiplets

Supermultiplets are the representations of supersymmetry that include the
superpartners. More specifically, they are the irreducible representations of
the super-Poincaré algebra (see 2.2.2 for more about this algebra). This
means that the supermultiplets are closed under Lorentz and SUSY trans-
formations.

These multiplets cannot contain any fields with spin higher than 2 since
there cannot be an interacting quantum field theory containing such fields.
This requirement restricts the number of possible supercharges in a super-
symmetrical theory because supercharges are filling the supermultiplets with
fields of increasing helicity [40](eigenvalues of helicity range from −S to +S,
where S denotes the spin of a field).

Since we are mostly interested in supergravities, we will now only consider
the supermultiplets which usually appear in these theories. Those are gravity,
vector, chiral, hyper- and tensor multiplets. The gravity multiplets contain
all on-shell SUSY fields and in particular they are the smallest multiplets
containing the graviton (and its superpartner gravitino). The vector multi-
plets contain only fields up to spin 1 and exist only for N ≤ 4. Chiral and
hypermultiplets contain the same types of fields (spin 0 and 1/2). However,
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in 4 dimensions, chiral multiplets exist only in N = 1 theories, while hyper-
multiplets are only existing in N = 2 theories. The tensor multiplets contain
antisymmetric tensors, which can be dualised to scalars (vectors) in 4 (5)
dimensions. Therefore, tensor multiplets rather appear in higher dimensions.

In the following tables we summarise the field contents of the different multi-
plets in 4 dimensions. These tables are adapted from [12]. Be aware that the
N = 7 gravity multiplet and the N = 3 vector multiplet are not mentioned
since they do not exist in the sense that they are not consistent and imply
N = 8/N = 4, respectively.

field spin N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 8
gµν 2 1 1 1 1 1 1 1
ψµ 3/2 1 2 3 4 5 6 8
Aµ 1 - 1 3 6 10 16 28
λ 1/2 - - 1 4 11 26 56
φ 0 - - - 2 10 30 70

Table 1: Field content of the gravity multiplets in D = 4

field spin N = 1 N = 2 N = 4
Aµ 1 1 1 1
λ 1/2 1 2 4
φ 0 - 2 6

Table 2: Field content of the vector multiplets in D = 4

field spin N = 1 N = 2
λ 1/2 1 2
φ 0 2 4

Table 3: Field content of the chiral and hypermultiplets in D = 4
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2.2 Supergravity

Equipped with knowledge about supersymmetry, we can now look at our
major theory of interest - supergravity. At first, we will introduce another
formulation of general relativity which turns out to be highly relevant for
SUGRA. Subsequently, we will see how supergravity can be defined and
which is its highest possible dimension. Afterwards, we will shortly intro-
duce the concepts of coset space and superspace. In the end, 11-dimensional
supergravity will be presented.

2.2.1 First order formulation of general relativity

General relativity can be seen as a gauge theory, where the Christoffel sym-
bols Γµνρ(g), defined by the metric, act like gauge fields of gravity and the
Riemann tensors Rµ

νρσ(Γ) are their field strengths. However, general relativ-
ity can also be formulated as a gauge theory in terms of other objects. Those
objects are the vielbein eaµ and the spin connection ωabµ . In the following, we
will discuss these two objects.

Locally any space is flat on a scale much smaller than its curvature. So
spacetime can be described in terms of locally inertial frames. This means
that we have a local Lorentz invariance. Such inertial frames are described
by vielbeine eaµ which are defined by

gµν(x) = eaµ(x)ebν(x)ηab , (2.15)

where ηab is the Minkowski metric, µ is a curved index (general coordinate
transformations) and a is a new so-called flat index (local Lorentz gauge
transformations). Sometimes a is also referred to as internal index. The
metric gµν and the vielbein eaµ have the same number of degrees of freedom
and therefore descriptions in terms of any of these two objects are equivalent.

If we want to operate on objects with internal indices as a, we need to have
a corresponding derivative. Therefore, we introduce the spin connection ωabµ
as connection for the action of the Lorentz group on spinors.

The covariant derivative on spinors is given by

Dµψ = ∂µψ +
1

4
ωabµ γabψ , (2.16)
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and the covariant derivative on objects with mixed indices is given by

DµG
a
ν = ∂µG

a
ν + ωabµ G

b
ν − ΓρµνG

a
ρ . (2.17)

One usually demands Dµe
a
ν = 0 (vielbein postulate).

We can construct a field strength for the spin connection:

Rab
µν(ω) = ∂µω

ab
ν − ∂νωabµ + ωabµ ω

bc
ν − ωacν ωcbµ . (2.18)

It can be related to our well-known Riemann tensor by

Rab
ρσ(ω(e)) = eaµe

νbRµ
νρσ(Γ(e)) , (2.19)

which means that this new field strength is just the Riemann tensor with
two flattened indices. eνb is the inverse vielbein with raised flat index b.

The local Lorentz transformations and translations generate the Poincaré
algebra iso(1, 3)

[Mµν ,M
ρσ] = −2δ

[ρ
[µMν]

σ] , (2.20)

[Pµ,Mνρ] = ηµ[νPρ] , (2.21)

[Pµ, Pν ] = 0 , (2.22)

where Mµν = M[µν] and Pµ are again the generators of the SO(1, 3) Lorentz
transformations and the translations, respectively.

General relativity can be obtained in the so-called first order formulation
as a gauge theory by gauging the iso(1, 3) algebra by using the vielbein and
the spin connection as gauge fields [41, 42, 43]. First order formulation ba-
sically means that the action (here Einstein-Hilbert) becomes first order in
derivatives of propagating fields.

2.2.2 From GR to SUGRA and degrees of freedom

There are two ways to define a supergravity: Either we supersymmetrise
general relativity or we take a supersymmetric model and make its super-
symmetry local.

16



To supersymmetrise general relativity we extend its local bosonic spacetime
symmetries to superalgebras. In the case of the aforementioned iso(1, 3) al-
gebra, we promote it to the super-Poincaré algebra by adding (2.2) and the
following bracket relations:

[Mµν , Q
i
α] = −1

4
(γµν)α

βQi
β , (2.23)

[Pµ, Q
i
α] = 0 . (2.24)

To make a supersymmetry local we have to make the transformation pa-
rameter εα local. Of course we also have to introduce a covariant derivative
containing a new gauge field. It turns out that this gauge field is in fact ψµα,
which is the gravitino - the supersymmetric partner of the graviton. Here µ
denotes a curved index and α is a flat index, i.e. a local Lorentz spinor index.

The gravitino is a spin 3/2 field. Since it is the supersymmetric part-
ner of the graviton, there has to be a SUSY transformation of the kind
ψµα = Qα(graviton). Usually we interpret the metric as the graviton field.
However, the index structure of this transformation urges us to conclude that
we need an object with only one index instead. Since we know that descrip-
tions in terms of the metric or the vielbein are equivalent, we can interpret
the vielbein as the graviton field instead. For this reason, the first order
formulation is quite important in supergravity.

As a supersymmetric theory SUGRA has to fulfil the condition that the num-
ber of degrees of freedom of its fermions matches the one of its bosons. We
will now state the on-shell number of degrees of freedom for different types
of SUGRA fields in D dimensions. The letter n denotes here the number of
components of a spinor (see 2.1.2 for spinor components in D dimensions).

Scalar 1
Gauge field Aµ D − 2
Graviton gµν (D − 1)(D − 2)/2− 1
S = 1/2 spinor n/2
Gravitino ψαµ (D − 3)n/2
Antisymmetric tensor Aµ1...µr (D − 2)...(D − 1− r)/(1 · 2 · ... · r)

Table 4: Degrees of freedom for different fields in D dimensions
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2.2.3 The highest dimension of supergravity

In theories with local supersymmetry as supergravity, the maximal amount
of supercharges (spinor components) is 32. Therefore, a supergravity with
32 supercharges is called maximal supergravity. A SUGRA with 16 super-
charges is called half-maximal. Minimal supergravities are those which are
N = 1 and extended supergravities are those which are N > 1.

The closure of the supermultiplets under SUSY transformations is the rea-
son for the limitation to maximal 32 supercharge components in any theory
with local SUSY. In 4 dimensions any supercharge changes the helicity by
1/2. This means that the N = 8 case, which corresponds to 32 supercharge
spinor components, already covers the helicity range from −2 to +2. Ad-
ditional supercharges would require fields with spin S ≥ 5/2. However, for
such fields there are no known consistent interactions. [16]

Supergravities are not formulated in dimensions higher than 11 because any
higher dimension would lead after dimensional reduction on a torus to N ≥ 8
in 4 dimensions. This would be in contrast to the statement that the N = 8
SUGRA is the maximal supergravity in 4 dimensions. A detailed explana-
tion of this can be found in [12]. In short, it says that a toroidal dimensional
reduction of D ≥ 12 supergravity would lead to an extension of the gravity
multiplet such that it also contains fields with spin of at least 5/2, i.e. addi-
tional gravitons with higher spin would have to be introduced. However, as
explained above, this is not possible. [12]

Therefore, D = 11 is the maximal dimension for supergravity. The D = 11
SUGRA is unique since its simplest (Majorana) spinor has 32 components
and so only N = 1 is permitted. In this way, it is simultaneously maximal
and minimal.

2.2.4 D = 11 supergravity

Now we introduce D = 11 supergravity in more detail since it is the one we
will dimensionally reduce in the next section.

Since it has a maximal supersymmetry, its field content is restricted to
a single massless supermultiplet, which is the gravity multiplet. There-
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fore, 11-dimensional supergravity contains the vielbein (graviton) eµ
m and

a Majorana-gravitino ψµα. However, the graviton has only 44 degrees of
freedom while the gravitino has 128. This means that bosonic and fermionic
degrees would not match, which cannot be. Hence, there has to be another
field. We see that an antisymmetric 3-tensor field Aµνρ would close that gap
because it has exactly 84 degrees of freedom (see table 4). So the field con-
tent of 11-dimensional supergravity is {eµm, Aµνρ;ψµα}.

We can define a field strength for the 3-tensor field

Fµνρσ = 24∂[µAνρσ] := ∂µAνρσ + 23 terms . (2.25)

Here we used the anti-symmetrisation notation for tensor indices (see for
example [13]). It is defined by

A[µ1...µr] :=
1

r!

∑
P∈Sr

sgn(P )AµP (1)...µP (r)
, (2.26)

where Sr is the symmetric group of order r with permutations P of subindices
1, ..., r as elements. The sign of P is defined by

sgn(P ) :=

{
+1 if P is even

−1 if P is odd
. (2.27)

Likewise, we can also define a symmetrisation for tensor indices by

A(µ1...µr) :=
1

r!

∑
P∈Sr

AµP (1)...µP (r)
. (2.28)

The Lagrangian of D = 11 SUGRA is given by

L =− e

2k2
R(e, ω)− e

2
ψ̄µΓµνρDρ

(
ω + ω̂

2

)
− e

48
F 2
µνρσ

−
√

2

384
k[ψ̄µΓµαβγδνψ

ν + 12ψ̄αΓβγψδ](Fαβγδ + F̂αβγδ)

−
√

2

6 · (24)2
kεµ1...µ11Fµ1...µ4Fµ5...µ8Aµ9µ10µ11 ,

(2.29)

where e := det(eµ
m), k is the Newton constant, εµ1...µ11 is the Levi-Civita

tensor in 11 dimensions and Γ denotes a gamma matrix in 11 dimensions.
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More precisely, the 11-dimensional gamma matrices are defined by (see [15])

Γa = τa ⊗ γ5 (2.30)

for a = 0, ..., 6 and

Γ6+m = I⊗ γm (2.31)

for m = 1, ..., 4. τ is a 7-dimensional and γ a 4-dimensional ”gamma” matrix.

Furthermore, we use

ΓM1...Mr := Γ[M1 ...ΓMr] . (2.32)

A hat ˆ denotes a supercovariant object. Such an object’s local SUSY trans-
formation does not contain any ∂µε term.

The supercovariant extensions of ω(e) and Fαβγδ are given by

ω̂µmn(e) = ωµmn(e) +
1

8
(ψ̄αΓαµmnβψ

β) (2.33)

and

F̂αβγδ = 24

[
∂[αAβγδ] +

1

16
√

2
ψ̄[αΓβγψδ]

]
. (2.34)

2.2.5 Coset spaces

Certain manifolds can be expressed as a coset G/H = {g ∈ G | g ∼ gh, h ∈
H} of a continuous group G and a continuous subgroup H ⊂ G. Such a man-
ifold is called coset manifold or coset space. By multiplying with a group
element g ∈ G we can move from one point on the manifold to another.

A famous example for a coset manifold is the n-sphere

Sn =
SO(n+ 1)

SO(n)
, (2.35)

where SO(n+ 1) is the group of invariances of the sphere and SO(n) is the
group of rotations that leave a point of the sphere invariant.
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Definition 1 A maximal compact subgroup Hmax is a group with compact
topology and fulfilment of the following maximality condition:

Hmax ⊆ H ⊆ G⇒ Hmax = H ∨H = G .

The fields of maximal and half-maximal supergravities transform in certain
irreducible representations of their global symmetry groupG. IfHmax denotes
a maximal compact subgroup of G, then all physical scalar degrees of freedom
of those SUGRAs span the coset space G/Hmax. Those scalars are divided
into dilatons and axions and their total number equals the dimension of
the coset space. The number of dilatons is #dilatons = 11 − D, where
D denotes as usual the number of dimensions of the supergravity theory.
This means that after a reduction from the SUGRA in the highest possible
dimension we have a dilaton for each reduced dimension. It further means
that there are no dilatons in 11 dimensions. The number of axions is thus
just #axions = Dcoset +D − 11, where Dcoset is the coset space dimension.

2.2.6 Superspace

In principle, supersymmetry and therefore also supergravity can be formu-
lated by using the superspace formalism. We will not make use of it in our
further treatment but since it is in general an important concept, we will
quickly introduce it here. A far more detailed introduction can be found for
example in [35].

The superspace formalism is a formalism with built-in supersymmetry. In
practice this means that instead of fields that only depend on the position,
we will consider fields in a space with fermionic coordinates θA besides the
bosonic xµ. This is done in such a way that SUSY is manifest and such fields
are called superfields.

The coordinates θA are just ordinary Grassmann numbers, satisfying

{θ, θ} = 2θ2 = 0 , (2.36)

which means that a Taylor expansion of an arbitrary function f(θ) is maximal
of order θ:

f(θ) = a+ bθ . (2.37)
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D = 4 superspace can be defined as a coset

super-Poincaré group

Lorentz group
(2.38)

because it is invariant under the super-Poincaré group and a Lorentz trans-
formation does not change any of its points.

In the superspace formalism, two new objects called Supervielbein EA
M(x, θ)

and super-spin connection ΩAB
M (x, θ) appear, which are just the superspace

analogues of vielbein and spin connection. Hence, they can also be used to
define a covariant derivative on the superspace. The description of general
relativity generalised to superspace by using the supervielbein and super-spin
connection is named super-geometric approach.

3 Compactification on S4 × T 3

Here we will perform a compactification of 11-dimensional supergravity on
S4 × T 3. We split our treatment into two parts. At first, we review the
Kaluza-Klein reduction of D = 11 SUGRA on S4 to the maximal D = 7
gauged supergravity done by Nastase, Vaman and van Nieuwenhuizen [14,
15]. Afterwards, we perform the twisted compactification of D = 7 SUGRA
on T 3.

3.1 Kaluza-Klein reduction on AdS7 × S4

In this subsection we will mostly follow [9] but also make use of the original
papers [14, 15]. If we not denote it otherwise, we will always refer to one of
those three references.

There are several maximally supersymmetric backgrounds for 11-dimensional
supergravity. Most interesting for compactification are the cases AdS4 × S7

and AdS7 × S4. Until recently, the latter one was the only case with a full-
known solution to the non-linear ansatz for Kaluza-Klein reduction of D = 11
SUGRA.

Our aim is to obtain the maximal gauged supergravity in 7 dimensions with
gauge group SO(5)g by this reduction. In particular, we will write down
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ansätze with which we could reproduce properties of D=7 SUGRA as for
example, its SUSY transformations. Already in the ungauged case (but also
in the gauged theory) we have local composite SO(5)c symmetry. It is some
kind of fake gauge symmetry since it has gauge fields that are not indepen-
dent but compositions of the scalars in the theory.

Until further notice we will use the following conventions for indices (as in
[14, 15]):

Λ, Π, ... ∈ {0, ..., 10} are curved vector indices in 11 dimensions.

M, N, ... ∈ {0, ..., 10} are flat vector indices in 11 dimensions.

α, β, ... ∈ {0, ..., 6} are curved vector indices in 7 dimensions.

a, b, ... ∈ {0, ..., 6} are flat vector indices in 7 dimensions.

µ, ν, ... ∈ {1, 2, 3, 4} are curved vector indices in 4 dimensions.

m, n, ... ∈ {1, 2, 3, 4} are flat vector indices in 4 dimensions.

I, J, ... ∈ {1, 2, 3, 4} are USp(4) indices.

3.1.1 First order formulation

Initially, we will give the first order formulation for the antisymmetric tensor
field for 11-dimensional supergravity before we turn to the linear ansatz and
the full non-linear reduction on S4.

The Lagrangian in first order formulation of the 11-dimensional supergravity
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is given by

L =− E

2k2
R(E,Ω)− E

2
Ψ̄ΛΓΛΠΣDΠ

(
Ω + Ω̂

2

)
ΨΣ

+
E

48
(FΛΠΣΩFΛΠΣΩ − 48FΛΠΣΩ∂ΛAΠΣΩ)

− k
√

2

6
εΛ0...Λ10∂Λ0AΛ1Λ2Λ3∂Λ4AΛ5Λ6Λ7AΛ8Λ9Λ10

− k
√

2

8
E[Ψ̄ΠΓΠΛ1...Λ4ΣΨΣ + 12Ψ̄Λ1ΓΛ2Λ3ΨΛ4 ]

1

24

(
F + F̂

2

)
Λ1...Λ4

,

(3.1)

where

E = det(EΛ
M) , (3.2)

R(E,Ω) = RΛΠ
MN(Ω)EM

Λ EN
Π , (3.3)

RΛΠ
MN(Ω) = (∂ΛΩΠ

MN + ΩΛ
M
PΩΠ

NP − ∂ΠΩΛ
MN − ΩΠ

M
PΩΛ

NP ) , (3.4)

DΠ

(
Ω + Ω̂

2

)
ΨΣ = ∂ΠΨΣ +

1

4

[
Ω MN

Π + Ω̂ MN
Π

2

]
ΓMNΨΣ , (3.5)

F̃Λ1...Λ4 = (
F + F̂

2
)Λ1...Λ4 = 24

[
∂[Λ1AΛ2Λ3Λ4] +

1

16
√

2
Ψ̄[Λ1ΓΛ2Λ3ΨΛ4]

]
, (3.6)

FΛΠΣΩ := 24∂[ΛAΠΣΩ] (3.7)

and FΛΠΣΩ fulfils the equation of motion FΛΠΣΩ = FΛΠΣΩ.

For convenience we define:

FΛΠΣΩ := FΛΠΣΩ +
BMNPQE

M
Λ EN

ΠE
P
ΣE

Q
Ω√

E
, (3.8)
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where BMNPQ is an auxiliary field we introduced in the 11-dimensional space
to guarantee gauge invariance.

Here we denoted a vielbein in 11 dimensions by a big letter E. Vielbeine
in lower dimensions are still denoted by a small e.

Ω is the D = 11 spin connection and related to its supercovariant version by

Ω MN
Π = Ω̂ MN

Π − 1

8
Ψ̄ΛΓΛΠ

MN
ΣΨΣ . (3.9)

Using this, we can write down the following SUSY transformation rules:

δEM
Λ =

k

2
ε̄ΓMΨΛ , (3.10)

δΨΛ =
DΛΩ̂ε

k
+

√
2

12
(ΓΛ1...Λ4

Λ − 8δΛ1
Λ ΓΛ2Λ3Λ4ε

F̂Λ1...Λ4

24
) (3.11)

+
1

24
(bΓΛ1...Λ4

Λ

BΛ1...Λ4√
E
− aΓΛ1Λ2Λ3

BΛΛ1Λ2Λ3√
E

)ε ,

δAΛ1Λ2Λ3 = −
√

2

8
ε̄Γ[Λ1Λ2ΨΛ3] , (3.12)

δBMNPQ =
√
Eε̄[aΓMNPE

Λ
QRΛ(Ψ) + bΓMNPQΛR

Λ(Ψ)] . (3.13)

RΛ(Ψ) is the gravitino field equation, given by

RΛ(Ψ) = −ΓΛΠΣDΠΨΣ −
√

2

4
k
F̂Λ1...Λ4

24
ΓΛΛ1...Λ5ΨΛ5 − 3

√
2k
F̂ΛΠΣΩ

k
ΓΠΣΨΩ .

(3.14)

The constants a, b are free parameters and can be fixed by requiring consis-
tency of the reduction on S4 to the values a = −2/3 and b = 1/3 (see [15]).
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We obtain a description of the background by making use of the Freund-
Rubin ansatz

Fµνρσ =
3√
2

1

RS4

(det(
◦
e
m

µ )(x))εµνρσ , (3.15)

where RS4 denotes the radius of S4.

A circle ◦ above a quantity denotes that this object belongs to the back-

ground (e.g.
◦
e
m

µ as a background vielbein).

In the AdS7 × S4 background the Einstein equations are

Rµν −
1

2

◦
gµνR =

1

6
(FµΛΠΣF

ΛΠΣ
ν − 1

8

◦
gµνF

2) = −9

4

1

R2
S4

◦
gµν , (3.16)

Rαβ −
1

2

◦
gαβR =

1

48

◦
gαβF

2 =
9

4

1

R2
S4

◦
gαβ (3.17)

with maximally symmetric solution

Rµν
mn(

◦
e

(4)
) =

1

R2
S4

(
◦
e
m

µ (x)
◦
e
n

ν (x)− ◦e
m

ν (x)
◦
e
n

µ(x)) , (3.18)

Rαβ
ab(
◦
e

(7)
) = −1

4

1

R2
S4

(
◦
e
a

α(y)
◦
e
b

β(y)− ◦e
a

β(y)
◦
e
b

α(y)) . (3.19)

3.1.2 Linear ansatz

Now we look at the linear ansatz since in the original work it was used as a
starting point for the consistent non-linear reduction.

By x we denote compact and by y non-compact coordinates.

We expand every field of the 11-dimensional theory as follows:

Φαµ(y, x) =
∑
I

φα,I(y)Y I
µ (x) (bosons) , (3.20)

ΨZ(y, x) =
∑
I

Ψz1
I (y)Y I,z2(x) (fermions) . (3.21)
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φ is a 7-dimensional field and Y is a spherical harmonic. The spinor index
Z ∈ {1, ..., 32} splits up into Z = z1⊕ z2, where z1 is a spinor index on AdS7

and z2 on S4.

Now we write down ansätze for the metric, the gravitino, the antisymmetric
tensor and the auxiliary field.

We split the metric into the background metric and a fluctuation

gΛΠ =
◦
gΛΠ + khΛΠ , (3.22)

where the 7-dimensional fluctuation is given by the ansatz

hαβ(y, x) = hαβ(y)−
◦
gαβ(y)

5
(hµν(y, x)

◦
g
µν

(x)) , (3.23)

(hαβ(y) is the 7-dimensional graviton fluctuation),

the fluctuation with mixed indices is given by

hµα(y, x) = Bα,IJ(y)V IJ
µ (x) , (3.24)

(Bα,IJ(y) is the gauge field and V IJ
µ (x) are the 10 Killing vectors on S4)

and the fluctuation with compact indices is given by

hµν(y, x) = SIJKL(y)ηIJKLµν (x) , (3.25)

(SIJKL(y) are scalars in the 14 representation of USp(4) and ηIJKLµν (x) is the
corresponding spherical harmonic [15]).

Now we look at the gravitini. For the gravitino with compact index we
use the ansatz

Ψµ(y, x) = λJ,KL(y)γ
1/2
5 ηJKLµ (x) , (3.26)

where γ
1/2
5 = i−1

2
(1 + iγ5) .

The fermions λJ,KL(y) with J,K, L ∈ {1, 2, 3, 4} are in the 16 representa-
tion of USp(4) and ηJKLµ (x) is the corresponding spherical harmonic [15].
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For the gravitino with non-compact index we use

Ψα(y, x) = ψαI(y)γ
±1/2
5 ηI(x)− 1

5
ταγ5γ

µΨµ(y, x) , (3.27)

where ηI(x) is a Killing spinor (see 3.1.3), τα is a ”gamma” matrix in 7 di-

mensions, γµ is a Dirac matrix in 4 dimensions and γ
−1/2
5 = 1+i

2
(iγ5 − 1) .

Next, we look at the ansatz for the antisymmetric tensor. With only compact
indices it is given by

Aµνρ(y, x) =

√
2

40

√
◦
gεµνρσD

σhλλ , (3.28)

(with hλλ = hµν(y, x)
◦
g
µν

(x)),

with only one non-compact index it is given by

Aαµν(y, x) =
i

12
√

2
Bα,IJ(y)η̄I(x)γµνγ5η

I(x) , (3.29)

and with only non-compact indices by

Aαβγ(y, x) =
1

6
Aαβγ,IJ(y)φIJ5 (x) , (3.30)

(Aαβγ,IJ(y) are antisymmetric, symplectic-traceless tensors in the 5 repre-
sentation of USp(4) and φIJ5 (x) = η̄Iγ5η

J is the corresponding spherical har-
monic [15]).

Since there is no independent field with two non-compact indices, this case
is given by

Aαβµ = 0 . (3.31)

Finally, the ansatz for the auxiliary field is

Bαβγ,IJ =
1

5

(
Sαβγ,IJ +

1

6
εαβγ

δεηζDδSεηζ,IJ

)
(3.32)

with the 7-dimensional supergravity field Sαβγ,IJ .
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3.1.3 Killing spinors and spherical harmonics

Here we will have a closer look at Killing spinors and spherical harmonics
which are relevant for our elaboration. At first, we state what a Killing spinor
is and write down some useful relations. Afterwards, we express the spherical
harmonics in terms of Killing spinors.

Definition 2 [17] A Killing spinor is a spinor field η on a Riemannian spin
manifold that satisfies for all vector fields X

∇Xη = βX · η ,

where β ∈ C.

The Killing spinor ηI fulfils the following relations

◦
Dµη

I =
i

2
γµη

I , (3.33)

◦
Dµη̄

I = − i
2
η̄Iγµ , (3.34)

η̄IηJ = ΩIJ (3.35)

and

ηαJ η̄
J
β = −δαβ , (3.36)

where Ω is the constant antisymmetric USp(4)-invariant metric, α, β ∈ {1, 2, 3, 4}
are spinor indices, ηαJ = ηαIΩIJ and ηαI = [exp(−i

2
xµδmµ γ

m)]α
β
ΩβI .

According to [18], Ω looks like

ΩIJ =

(
ε 0
0 ε

)
with ε =

(
0 1
−1 0

)
. (3.37)

Now all spherical harmonics can be given as constructions out of Killing
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spinors.

The scalar spherical harmonics are given by

Y A =
1

4
(γA)IJφ

IJ
5 , (3.38)

where φIJ5 = η̄Iγ5η
J is the scalar field harmonic and Y A satisfies

Y AY A = 1 . (3.39)

A, ... ∈ {1, ..., 5} are vector indices of the SO(5)g gauge group and the 5-

dimensional Dirac matrices γA are given by

γA = {iγµγ5, γ5} . (3.40)

What happens here is that the 4-dimensional matrices get embedded in 5
dimensions by splitting up the index A such that A = µ ⊕ 5. So the fifth
5-dimensional Dirac matrix is the 4-dimensional γ5.

From this we can obtain the matrices (γA)IJ by using the lowering and raising
rules for USp(4) indices

XI = XJΩJI , (3.41)

XJ = Ω̃IJXJ . (3.42)

One has Ω̃IJΩJK = δJK .

Further, we can write the Killing vectors in terms of the Killing spinors
as

V IJ
µ = V JI

µ = η̄Iγµη
J . (3.43)

We can also introduce

V AB
µ = − i

8
(γAB)IJV

IJ
µ (3.44)

and

V IJ
µ = iV AB

µ (γAB)IJ . (3.45)
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They all satisfy the Killing equation

◦
D(µVν) = 0 . (3.46)

Next, conformal Killing vectors are given by

CIJ
µ = −CJI

µ = η̄Iγµγ5η
J (3.47)

and satisfy

CIJ
µ ΩIJ = 0 . (3.48)

Again we can also introduce

CA
µ =

i

4
CIJ
µ (γA)IJ =

◦
DµY

A = ∂µY
A . (3.49)

They all satisfy the conformal Killing equation

◦
D(µCν) =

1

4

◦
gµν(

◦
D
ρ

Cρ) . (3.50)

The spherical harmonic for the metric fluctuation with compact indices is
the sum of two spherical harmonics with different eigenvalues of the operator
�:

ηIJKLµν = ηIJKLµν (−2)− 1

3
ηIJKLµν (−10) , (3.51)

where �ηIJKLµν (a) = aηIJKLµν (a) .

We can rewrite them in terms of objects we defined earlier:

ηIJKLµν (−2) = CIJ
(µ C

KL
ν) −

1

4

◦
gµνC

IJ
λ CλKL , (3.52)

ηIJKLµν (−10) =
◦
gµν

(
φIJ5 φKL5 +

1

4
CIJ
λ CλKL

)
. (3.53)

The spherical harmonic for the gravitino with compact index is also the sum
of two spherical harmonics but they differ in their eigenvalues of the kinetic
operator:

ηJKLµ = ηJKLµ (−2) + ηJKLµ (−6) , (3.54)
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where γν
◦
Dνη

JKL
µ (a) = aηJKLµ (a) .

Again we can rewrite them in terms of objects we defined earlier:

ηJKLµ (−2) = 3(ηJCKL
µ − 1

4
γµγ

νηJCKL
ν ) , (3.55)

ηJKLµ (−6) = γµ(ηJφKL5 − 1

4
γνηJCKL

ν ) . (3.56)

3.1.4 Non-linear ansatz

Finally, we look at the non-linear ansatz. Again A, B, ... ∈ {1, ..., 5} are
SO(5)g vector indices and I, J, ... ∈ {1, ..., 4} are spinor indices. i, j, ... ∈
{1, ..., 5} are SO(5)c vector indices and I ′, J ′, ... ∈ {1, ..., 4} are spinor indices.

Now we are writing down ansätze for the vielbein, the gravitini, the SUSY
parameter, the field strength of the antisymmetric tensor and the auxiliary
field.

Instead of an ansatz for the metric (as in the linear ansatz) we have this
ansatz for the vielbein

Ea
α(y, x) = eaα(y)∆−1/5(y, x) , (3.57)

where ∆(y, x) = det(Em
µ )/det(

◦
e
m

µ ) .

Further, we make a gauge choice such that

Ea
µ = 0 . (3.58)

Em
α is given by the ansatz

Em
α (y, x) = Bµ

α(y, x)Em
µ (3.59)

with

Bµ
α(y, x) = −2BAB

α V µ,AB , (3.60)
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where V µ,AB is the corresponding Killing vector.

The ansatz for Em
µ is a bit more complicated:

Em
µ =

1

4
∆2/5Πi

AC
A
µ C

mBtr(U−1γiUγB) . (3.61)

Πi
A are scalars parametrising the coset SL(5,R)/SO(5)c .

U I′
I is an USp(4) matrix that relates SO(5)g spinor indices with those of

SO(5)c. It fulfils

(Ω̃ · UT · Ω)I I′ = −(U−1)I I′ . (3.62)

The 11-dimensional metric is given by

ds2
11 = ∆−2/5gαβdy

αdyβ + ∆4/5T−1
AB(dY A + 2BACY C)(dY B + 2BBDY D) ,

(3.63)

where TAB = (Π−1)Ai (Π−1)Bj δ
ij .

Next, we look at the gravitini ansätze. We divide the gravitini ΨM := EΛ
MΨΛ

into Ψm := EΛ
mΨΛ and Ψa := EΛ

a ΨΛ . They are given by

Ψa = ∆1/10(γ5)−pψa −
A

5
τaγ5γ

m∆1/10(γ5)qψm (3.64)

and

Ψm = ∆1/10(γ5)qψm . (3.65)

Following [15], it turns out that A = 1 and p = q = −1/2 are required.

The fields ψα and ψm can be written as

ψα(y, x) = ψαI′(y)U I′
I(y, x)ηI(x) (3.66)

and

ψm(y, x) = λJ ′K′L′(y)UJ ′
J(y, x)UK′

K(y, x)UL′
L(y, x)ηJKLm (x) . (3.67)
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The ansatz for the SUSY parameter ε is

ε(y, x) = ∆1/10(γ5)−1/2ε(y, x) (3.68)

with

ε(y, x) = εI′(y)U I′
I(y, x)ηI(x) . (3.69)

Now we turn to the field strength ansätze.

The ansatz for the field strength with only compact indices is
√

2

3
Fµνρσ = εµνρσ

√
det(

◦
g)

[
1 +

1

3

(
T

YAYBTAB
− 5

)
(3.70)

− 2

3

(
YA(T 2)ABYB
(YATABYB)2

− 1

)]
.

With only one non-compact index it is
√

2

3
Fµνρα = ∂[µ

(
εABCDEB

AB
α CC

ν C
D
ρ]

TEFYF
Y · T · Y

)
(3.71)

+

√
◦
gεµνρσC

σ
A

1

3

(
∂αT

ABYB
YATABYB

− TABYB
(YATABYB)2

(YC∂αT
CDYD)

)
.

With two non-compact indices it is
√

2

3
Fµναβ =

2

3

[
∂[α

(
εABCDEB

AB
β] C

C
µ C

D
ν

TEFYF
Y · T · Y

)
(3.72)

+ 2∂[µ

(
εABCDEB

AF
[α YFB

BC
β] C

D
ν]

TEGYG
Y · T · Y

)]
.

With three non-compact indices it is
√

2

3
Fµαβγ = ∂µAαβγ (3.73)

+
4

3
∂µ

(
εABCDEB

AB
[α BCF

β YFB
DG
γ] YG

TEHYH
Y · T · Y

)
− 2∂[α

(
εABCDEB

AB
β BCF

γ] YFC
D
µ

TEGYG
Y · T · Y

)
+ ∂µ

(
εABCDE(∂[αB

AB
β +

4

3
BAF

[α BFB
β )BCD

γ] Y
E

)
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and with only non-compact indices it is

√
2

3
Fαβγδ = 4∂[αAβγδ] (3.74)

+ 4∂[αεABCDE

(
4

3
BAB
β BCF

γ YFB
DG
δ] YG

TEHYH
Y · T · Y

+ (∂βB
AB
γ +

4

3
BAF
β BFB

γ )BCD
δ] Y E

)
,

where

Aαβγ =
8i√

3
Sαβγ,BY

B . (3.75)

We can also summarise these results in form language:

√
2

3
F(4) = εABCDE

(
−1

3
DY ADY BDY CDY D (T · Y )E

Y · T · Y

)
+

4

3
DY ADY BDY CD[

(T · Y )D

Y · T · Y
]Y E

+ 2FAB
(2) DY

CDY D (T · Y )E

Y · T · Y
+ FAB

(2) F
CD
(2) Y

E) + d(A) ,

(3.76)

where

FAB
(2) = 2(dBAB + 2(B ·B)AB) (3.77)

and

DY A = dY A + 2BAB · YB . (3.78)

Finally, the ansatz for the auxiliary field is

Bαβγδ√
E

=− 24
√

3i∇[αSβγδ],AY
A +
√

3iεαβγδ
εηζTABSεηζ,BYA

+ 9εABCDEF
BC
[αβ F

DE
γδ] Y

A + 2− fermi terms .

(3.79)

3.1.5 Maximal D=7 gauged supergravity

By using those reduction ansätze, we obtain the maximal D = 7 gauged
supergravity, where the global symmetry group SO(5) is gauged to SO(5)g.
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In 7 dimensions the maximal supergravity is N = 4.

A special formalism to gauge a theory is the so-called embedding tensor
formalism. It describes a constant tensor Θ, the embedding tensor, which
completely specifies the gauged theory. Our short description of this for-
malism is entirely based on [11], whose corresponding treatment is based on
[44, 45, 46], and [19]. More detailed dealings with this topic can be found
there.

If V denotes the representation of SO(5) in which the vector BAB
α of the

ungauged theory transforms, then the embedding tensor is a map

Θ : V → so(5) , (3.80)

where so(5) is the Lie algebra of SO(5).

The embedding tensor defines the gauge-covariant derivative

Dµ = ∂µ − gBAB
µ ΘAB,C

DtCD , (3.81)

where g is a gauge coupling constant and tCD are the generators of so(5).

Further, Θ also explicitly finds the generators XAB of SO(5)g among the
generators of the global symmetry group by

XAB = ΘAB,C
DtCD . (3.82)

According to [19], for our special case (D = 7 SUGRA from S4 reduction),
the embedding tensor is given by

ΘAB,C
D = δD[AYB]C , (3.83)

where YBC is, for the SO(5) case, a 5-dimensional unit matrix. In general,
this matrix could be more complicated.

After this short introduction to the embedding tensor formalism, we now
turn towards other aspects of our theory.
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The 7-dimensional maximal gauged supergravity model includes the follow-
ing fields:

eaα (vielbein) ,

ψI
′

α (gravitini) ,

BAB
α = −BBA

α (SO(5)g vector) ,

ΠA
i (scalars) ,

Sαβγ,A (antisymmetric tensor) ,

λI
′

i (spin 1/2 fields) .

Their SUSY transformations are given by

δeaα =
1

2
ε̄τaψa , (3.84)

ΠA
iΠB

jδBAB
α =

1

4
ε̄γijψα +

1

8
ε̄ταγ

kγijλk , (3.85)

δSαβγ,A =− i
√

3

8m
ΠA

i(2ε̄γijkψ[α + ε̄τ[αγ
lγijkλl)ΠB

jΠC
kFBC

βγ] (3.86)

− i
√

3

4m
δijΠA

jD[α(2ε̄τβγ
iψγ] + ε̄τβγ]λ

i)

+
i
√

3

12
δABΠ−1

i
B

(3ε̄τ[αβγ
iψγ] − ε̄ταβγλi) ,

Π−1
i
A
δΠA

j =
1

4
(ε̄γiλ

j + ε̄γjλi) , (3.87)

δψα =∇αε−
1

20
mTταε−

1

40
(τα

βγ − 8δβατ
γ)γijεΠA

iΠB
jFAB

βγ (3.88)

+
im

10
√

3
(τα

βγδ − 9

2
δβατ

γδ)γiεΠ−1
i
A
Sβγδ,A ,

δλi =
1

16
ταβ(γklγi −

1

5
γiγkl)εΠA

kΠB
lFAB
αβ (3.89)

+
im

20
√

3
ταβγ(γi

j − 4δji )εΠ
−1

j
A
Sαβγ,A

+
1

2
m(Tij −

1

5
T )γjε+

1

2
ταγjPαij ,
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where m = 1/RS4 .

Pαij and the composite connection ∇α = ∂α +Qα are given by

Π−1
i
A

(δBA∂α + gBαA
B)ΠB

kδkj = Qαij + Pαij , (3.90)

where Qαij is the antisymmetric and Pαij is the symmetric part.

The Lagrangian is quite long and therefore we only give the two terms we
are interested in:

L = eR− 1

2
em2(T 2 − 2TijT

ij) + ... , (3.91)

where Tij = (Π−1)Ai (Π−1)Bj δAB .

A complete version of the Lagrangian can be found e.g. in [14] or [15].

As usual, the first term contains the 7-dimensional Ricci scalar. We will
later use it for our next reduction step. The second term can be interpreted
as −2eΛ

(7)
eff. with an effective cosmological constant Λ

(7)
eff. formed by scalars.

The (7) indents that this constant belongs to the 7-dimensional theory. In
the non-shown terms all the other fields appear but in this thesis we are only
interested in gravity and the scalars.

3.2 Compactification on a twisted T 3

After we reviewed the Kaluza-Klein reduction of 11-dimensional SUGRA
on S4, we will now perform the compactification of maximal 7-dimensional
gauged supergravity on a twisted 3-torus in order to obtain a supergravity in
4 spacetime dimensions. In particular, we want to obtain a scalar potential
in our lower-dimensional theory.

As long as we do not denote it differently, our explanations will follow [11]
whose treatment of this topic is based on [21].

3.2.1 What is a twisted torus?

A twisted torus is a torus which we promoted to a group manifold. This
means that we are considering an object with the topology of a torus T d but
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with the geometry of a d-dimensional group G.

Here we will clarify what a group manifold is and introduce important con-
cepts which we will need to use this kind of objects for our work. Later we
will see how the twisting of the torus appears in practice.

Definition 3 [13] A Lie group is a differentiable manifold G which has a
group structure such that the following group operations are differentiable:

(1) · : G×G→ G ,

(g1, g2) 7→ g1 · g2 ,

(2) −1 : G→ G ,

g 7→ g−1 .

The manifold G is also called a group manifold. An easy example for such a
group manifold is

S1 = {p = exp(iθ) | θ ∈ [0, 2π)} . (3.92)

Obviously, this manifold has the group structure of U(1) = {z ∈ C | |z| = 1}.

On a group manifold we can introduce a coordinate system {ym}m=1,...,dim(G)

in order to parametrise group elements g(y) ∈ G.

In addition, we can always define two types of translations on G:

Definition 4 [13] Let h, g ∈ G . Then the diffeomorphisms ΛL(h) : G→ G
(left-translation) and ΛR(h) : G→ G (right-translation) are defined by

ΛL(h)g := hg

ΛR(h)g := gh .

In principle, both kind of translations give equivalent theories [13]. There-
fore, it is sufficient to just focus on one of them. Usually one chooses the
left-translation.
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The left-translation induces a map (see [13])

ΛL∗(h) : TgG→ ThgG . (3.93)

By using this map we can define left-invariance:

Definition 5 [13] Let X be a vector field on G. Then X is a left-invariant
vector field if ΛL∗(h)X|g = X|hg .

Now we can introduce a set of left-invariant 1-forms {σm}, which fulfil

Tmσ
m = g−1dg , (3.94)

where Tm are the generators of G and d := dym∂/∂ym.

We can express these 1-forms as

σm = Um
n(y)dyn , (3.95)

where Um
n(y) is a function on G and {dym} is a 1-form coordinate basis.

Later we will refer to U as the twist matrix.

The y-independent structure constants of G can be written in terms of U
as

fmn
p = −2(U−1)qm(U−1)rn∂[qU

p
r] . (3.96)

By the left-invariant 1-forms σm a class of metrics on G is defined for which
the left-translation ΛL(h) is an isometry. Those metrics are of the following
form:

ds2
G = gmnσ

m ⊗ σn . (3.97)

{Lm} denotes a basis of Killing vectors that generate the isometries defined
by ΛL(h). Those Killing vectors fulfil

[Lm, Ln] = fmn
pLp . (3.98)
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3.2.2 Twisted toroidal reduction

In this part we will actually perform the compactification on a twisted torus.
As before, we will denote the coordinates of the compact space with y and
the coordinates of the spacetime with x.

Here we use the following index conventions:

µ, ν, ρ, σ are 4-dimensional curved indices.

a, ..., f are 4-dimensional flat indices.

m, ..., v are 3-dimensional curved indices.

i, j, k, l and in rare cases also g, h are 3-dimensional flat indices.

Whenever we run out of indices, we use the capital versions of those in-
dices as well. An index with a hat ˆ or an object with such a hat like a
metric or vielbein belongs to the 7-dimensional theory.

The usual torus reduction ansatz for the metric is

dŝ2 = exp(2αφ)ds2 + exp(2βφ)Mmn(dym + Amµ)(dyn + Anν) , (3.99)

where α and β are constants, ds is the 4-dimensional spacetime line
element, φ is a dilaton, Amµ are three new vectors and Mmn is a symmetric
matrix.

A toroidal reduction is consistent. However, it does not give masses to the
scalar fields as the dilaton φ. We want masses for those fields because oth-
erwise we could not explain why we did not observe those fields in our ex-
periments yet. One way to obtain masses is to compactify on a manifold
that is not a torus. Unfortunately, one often encounters difficulties with the
consistency of non-toroidal reductions. Compactification on a twisted torus
is an interesting case because it is consistent but also creates a potential for
the scalars as we will determine it later.

As previously described, we obtain a twisted torus by promoting a torus
to a group manifold. This practically means that we replace dym by
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σm = Um
n(y)dyn, which introduces a y-dependence in the metric and the

vielbein. Of course we do not want this dependence in our 4-dimensional
theory but luckily it will turn out that all Um

n(y) will be combined in a way
such that they give us the y-independent structure constants of our group
manifold as they are defined in (3.96).

The twisted toroidal reduction ansatz for the metric is

dŝ2 = exp(2αφ)ds2 + exp(2βφ)Mmn(σm + Amµ)(σn + Anν) (3.100)

and the Lagrangian of the 7-dimensional theory is

L̂ = êR̂− 2êΛ
(7)
eff. + ... , (3.101)

as seen before.

We want to perform the reduction by using the vielbein formalism instead
of the metric. A suitable vielbein is obtained by following the respective
treatment in [20].

Since the matrix Mmn is symmetric, we can write it as

Mmn = LimL
j
nδij . (3.102)

This helps us to find our 7-dimensional vielbein, which we can now write as

ê â
µ̂ =

(
exp(αφ)e a

µ exp(βφ)LimA
m
µ

0 exp(βφ)L i
nU

n
m

)
, (3.103)

where e a
µ is the vielbein of the 4-dimensional spacetime.

We write the 7-dimensional Minkowski metric η̂âb̂ by using the 4-dimensional
Minkowski metric ηab as

η̂âb̂ =

(
ηab 0
0 δij

)
(3.104)

and can now check whether our vielbein is correct.

If our vielbein is the correct choice, then

ĝµ̂ν̂ = ê â
µ̂ ê

b̂
ν̂ η̂âb̂ (3.105)
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has to be fulfilled.

Indeed, after contracting the indices, we obtain

ê â
µ̂ ê

b̂
ν̂ η̂âb̂ = exp(2αφ)e a

µ e
b
ν ηab

+ exp(2βφ)(LimL
j
pA

m
µA

p
νδij + LimL

j
qA

m
µU

q
pδij

+ LinL
j
pU

n
mA

p
νδij + LinL

j
qU

n
mU

q
pδij)

= exp(2αφ)gµν + exp(2βφ)Mmn(AmµA
n
ν + AmµU

n
q

+ Um
pA

n
ν + Um

pU
n
q)

= ĝµ̂ν̂ ,

which is exactly what we wanted.

We will also need the inverse vielbein, which we determine to be

ê µ̂

b̂
=

(
exp(−αφ)e µ

b − exp(αφ)e µ
a A

q
µ(U−1)pq

0 exp(−βφ)Lqi (U
−1)pq

)
, (3.106)

where Lmi L
n
j δ

ij = Mmn gives us the inverse of Mmn.

In addition, we want U and L to be constructed such that

det(U) = det(L) = 1 . (3.107)

With this construction we can easily calculate the determinant of the vielbein
and obtain

ê = e exp((4α + 3β)φ) . (3.108)

We are mainly interested in the scalar potential V which we want to deter-
mine from the reduction ansatz. Therefore, we can simplify our vielbein by
setting the vectors Amµ to zero because they will anyway not appear in the
interesting terms. This reduces possibly appearing covariant derivatives to
partial derivatives and gives us the following vielbein

ê â
µ̂ =

(
exp(αφ)e a

µ 0
0 exp(βφ)L i

nU
n
m

)
. (3.109)
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Of course the determinant is unchanged by this simplification.

Now we want to calculate the Ricci scalar R̂ by using the twisted reduc-
tion ansatz. We expect it to give us the 4-dimensional Ricci scalar R plus
some additional terms. One of those extra terms should be our scalar poten-
tial.

The first step towards the Ricci scalar is the determination of the compo-
nents of the connection one-form ω̂r̂ŝ. We denote the t̂ component of ω̂r̂ŝ by
ω̂t̂,r̂ŝ. Note that those are the components with solely flat indices and that
the connection one-form is antisymmetric in its indices:

ω̂r̂ŝ = −ω̂ŝr̂ . (3.110)

Naturally, all components are antisymmetric in their last two indices as well.

Due to this antisymmetry, we just need to compute ω̂c,ab, ω̂c,aj, ω̂c,ij, ω̂k,ab,
ω̂k,aj and ω̂k,ij.

Following [21] we can determine the components by

ω̂t̂,r̂ŝ = −Ω̂t̂r̂,ŝ + Ω̂r̂ŝ,t̂ − Ω̂ŝt̂,r̂ , (3.111)

where

Ω̂r̂ŝ,t̂ =
1

2
(ê µ̂
r̂ ê

ν̂
ŝ − ê

µ̂
ŝ ê

ν̂
r̂ )∂ν̂ êµ̂t̂ . (3.112)

Ω̂r̂ŝ,t̂ is obviously antisymmetric in its first two indices.

In the following, we list the relevant Ω̂ components:

Ω̂ab,c = exp(−αφ)(Ωab,c +
1

2
α(∂νφ)(ηace

ν
b − ηbce ν

a )) , (3.113)

Ω̂aj,c = 0 , (3.114)

Ω̂ca,j = 0 , (3.115)
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Ω̂ij,c = 0 , (3.116)

Ω̂ci,j = −1

2
exp(−αφ)e ν

c (β(∂νφ)δij + Lpi (∂νL
k
p)δkj) , (3.117)

Ω̂ij,k =
1

4
exp(−βφ)fqp

rLlrδlk(L
q
iL

p
j − L

q
jL

p
i ) . (3.118)

Using these results, we obtain the following components of the connection
one-form:

ω̂c,ab = exp(−αφ)(ωc,ab + α(∂νφ)(ηace
ν
b − ηbce ν

a )) , (3.119)

ω̂c,aj = 0 , (3.120)

ω̂c,ij = exp(−αφ)e ν
c (∂νL

k
p)L

p
[iδj]k , (3.121)

ω̂k,ab = 0 , (3.122)

ω̂k,aj = −1

2
exp(−αφ)e ν

a (2β(∂νφ)δkj + (∂νL
l
p)(L

p
jδlk + Lpkδlj)) , (3.123)

ω̂k,ij =
1

4
fqp

r exp(−βφ)Llr[2L
q
[iL

p
j]δlk − 2Lq[kL

p
i]δlj − 2Lq[jL

p
k]δli] . (3.124)

We will need the components of the connection one-form with one curved
index. Those are obtained by

ω̂µ̂,r̂ŝ = ê t̂
µ̂ ω̂t̂,r̂ŝ . (3.125)

The non-vanishing components are

ω̂µ,ab = e c
µ [ωc,ab + α(∂ρφ)(ηace

ρ
b − ηbce

ρ
a )] , (3.126)

ω̂µ,ij = (∂µL
k
p)L

p
[iδj]k , (3.127)
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ω̂m,ij =
1

4
fqp

rUn
m[2Lq[iL

p
j]Mnr − 4δ[q

nL
p]
[i δj]lL

l
r] , (3.128)

ω̂n,aj = −1

2
exp((β − α)φ)e ν

a U
m
n[2β(∂νφ)δkjL

k
m (3.129)

+ (∂νL
l
p)(L

p
jL

k
mδlk + hpmδlj)] ,

where hpm here denotes the 3-dimensional metric of the compact space.

In order to now obtain the Ricci scalar, we follow [21] again:

R̂ = êµ̂r̂êν̂ŝR̂µ̂ν̂r̂ŝ , (3.130)

where the components of the Riemann tensor are given by

R̂µ̂ν̂r̂ŝ = 2∂[µ̂ω̂ν̂],r̂ŝ + 2ω̂ t̂
[µ̂,r̂ ω̂ν̂],t̂ŝ . (3.131)

We make use of the antisymmetry property of the components:

Rµ̂ν̂r̂ŝ = −Rν̂µ̂r̂ŝ = −Rµ̂ν̂ŝr̂ . (3.132)

Due to this antisymmetry, we only need to care about 9 components. In
terms of the connection one-form components we find:

R̂µνab = 2∂[µω̂ν],ab + 2ω̂ c
[µ,a ω̂ν],cb , (3.133)

R̂µνaj = 0 , (3.134)

R̂µνij = 2∂[µω̂ν],ij + 2ω̂ k
[µ,i ω̂ν],kj , (3.135)

R̂µnab = 0 , (3.136)

R̂µnaj = ∂µω̂n,aj + ω̂ c
µ,a ω̂n,cj , (3.137)

R̂µnij = 2∂[µω̂n],ij + 2ω̂ k
[µ,i ω̂n],kj , (3.138)

46



R̂mnab = 2ω̂ k
[m,a ω̂n],kb , (3.139)

R̂mnaj = 2∂[mω̂n],aj + 2ω̂ k
[m,a ω̂n],kj , (3.140)

R̂mnij = 2∂[mω̂n],ij + 2ω̂ k
[m,i ω̂n],kj + 2ω̂ c

[m,i ω̂n],cj , (3.141)

where by, for example, ω̂ c
[µ,a ω̂ν],cb we mean an antisymmetrisation in µ and ν.

This means that the indices on the other side of the comma are not affected
by the antisymmetrisation.

As we can see, most of the Riemann tensor components are non-zero. How-
ever, if we want to compute the Ricci scalar, 4 of those terms must be con-
tracted with vielbein components that are zero. Hence, our Ricci scalar is
given by:

R̂ = R̂µνabê
µaêνb + R̂µnaj ê

µaênj + R̂nµjaê
nj êµa + R̂mnij ê

miênj (3.142)

= R̂µνabê
µaêνb + 2R̂µnaj ê

µaênj + R̂mnij ê
miênj .

In terms of the connection one-form the Ricci scalar is

R̂ = 2∂[µω̂ν],abê
µaêνb + 2ω̂ c

[µ,a ω̂ν],cbê
µaêνb + 2∂µω̂n,aj ê

µaênj (3.143)

+ 2ω̂ c
µ,a ω̂n,cj ê

µaênj + 2∂[mω̂n],ij ê
miênj + 2ω̂ k

[m,i ω̂n],kj ê
miênj

+ 2ω̂ c
[m,i ω̂n],cj ê

miênj .

We split up our computation in parts and obtain for the first two terms

2[∂[µω̂ν],ab + ω̂ c
[µ,a ω̂ν],cb]ê

µaêνb = exp(−2αφ)[R− 6α(∂µ∂
µφ) (3.144)

− 2α(∂µe
c
ν )e ν

c (∂µφ)− 4α(∂µe
ν
a )eµa(∂νφ)

− 4α(∂νφ)ωf,
fce ν

c − 6α2(∂φ)2] .

The third term is

2∂µω̂n,aj ê
µaênj = −6β exp(−2αφ)[(β − α)(∂φ)2 + (∂νφ)(∂µe

ν
a)e

µa (3.145)

+ (∂ν∂
νφ)] .

For the fourth term we get

2ω̂ c
µ,a ω̂n,cj ê

µaênj = −6β exp(−2αφ)(∂νφ)[ωe,
eceνc + 3α(∂νφ)] . (3.146)
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The fifth and sixth term are given by

2[∂[mω̂n],ij + ω̂ k
[m,i ω̂n],kj]ê

miênj = −1

4
exp(−2βφ)[2fqp

rfrs
qMps (3.147)

+ fqp
rftu

sM qtMpuMsr] .

Finally, the last term is

2ω̂ c
[m,i ω̂n],cj ê

miênj = exp(−2α)(
1

4
tr(∂µM∂µM−1)− 6β2(∂φ)2) . (3.148)

We often made use of (∂νL
l
p)(M

pqLkqδlk +Lpl ) = 0 . Results for the terms be-
fore the contractions with the vielbeine can be found in the section Appendix.

Now we have everything together to write down our Ricci scalar or even
the Lagrangian. However, we do not know anything about the constants α
and β yet. When we look at (3.145), we can see that our 4-dimensional Ricci
scalar has a prefactor exp(−2αφ), which becomes e exp((2α + 3β)φ) if we
also consider the vielbein determinant. Our aim is to reproduce the usual
4-dimensional Einstein-Hilbert Lagrangian. Therefore, this prefactor has to
be simply e. This requirement gives us the following relation between α and
β:

α = −3

2
β (3.149)

and tells us that the vielbein determinant is

ê = e exp(2αφ) . (3.150)

Plugging in all these results into (3.101), we obtain

e−1L =R− 10

3
α2(∂φ)2 +

1

4
tr(∂µM∂µM−1) + V − 2 exp(2αφ)Λ

(7)
eff. (3.151)

− 2α[(∂µ∂
µφ) + (∂µφ)(∂µe

c
ν )e ν

c ] + ...

for the 4-dimensional Lagrangian. Hereby we identified

V = −1

4
exp(2(α− β)φ)[2fqp

rfrs
qMps + fqp

rftu
sM qtMpuMsr] . (3.152)

Our total scalar potential is then given by

V = −V + 2 exp(2αφ)Λ
(7)
eff. , (3.153)
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which we can interpret as a new effective cosmological constant−2Λ
(4)
eff., where

the (4) indicates that this constant belongs to our 4-dimensional spacetime.

Of course we also want that our kinetic term of the scalar field φ has the
usual prefactor −1/2. This additional requirement leads us to

α2 =
3

20
. (3.154)

The terms −2α[(∂µ∂
µφ) + (∂µφ)(∂µe

c
ν )e ν

c ] can be ignored since they will in-
tegrate out in the Einstein-Hilbert action.

All in all, our final result is

e−1L = R− 1

2
(∂φ)2 +

1

4
tr(∂µM∂µM−1)− 2Λ

(4)
eff. + ... . (3.155)

Before we close this chapter, we want to argue why the last two terms can
be integrated out. In particular, we will show that those two terms actually
are a covariant divergence. It is defined by (see e.g. [22]):

∇µV
µ(x) =

1

e
∂µ(eV µ(x)) (3.156)

for a vector field V (x).

If we expand this definition, then we find

∇µV
µ(x) = ∂µV

µ(x) +
1

e
V µ(x)(∂µe) . (3.157)

Obviously, we can identify the first term in this expansion with (∂µ∂
µφ) for

V µ = ∂µφ. What remains to show is the identification (∂µe
c
ν )e ν

c = 1
e
(∂µe)

for e being the determinant of our 4-dimensional vielbein.

For this we use the following formulas for the determinant of an n-dimensional
vielbein and its inverse, which can be found, for example, in [23]:

det(e a
µ ) =

1

n!
εµ1µ2...µnεa1a2...ane

a1
µ1
e a2
µ2
...e an

µn , (3.158)
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det(e µ
a ) =

1

n!
εµ1µ2...µnε

a1a2...ane µ1
a1
e µ2
a2
...e µn

an . (3.159)

Since we know that the following is true for an invertible matrix M,

det(M−1) =
1

det(M)
, (3.160)

we can write

1

e
· e = det(e a

µ )det(e µ
a ) (3.161)

for our n = 4-dimensional vielbein e a
µ .

Since 1/e · e = 1, we know

εµ1...µ4εa1...a4εν1...ν4ε
b1...b4e a1

µ1
...e a4

µ4
e ν1
b1
...e ν4

b4
= (4!)2 . (3.162)

This (4!)2 is the result of a sum of terms which are all proportional to 4 since
each of them resulted from one to four factors like δcc = 4 which appear due
to the contractions of vielbeine with inverse vielbeine. This means that, if
for some reason, one contraction like e c

ρ e
ρ
c is taken out of each term, we get

only 3! · 4! as a result.

Keeping this in mind, we now look at the derivative of the determinant
of a 4-dimensional vielbein, which turns out to be

∂ρe = 4 · 1

4!
εµ1...µ4εa1...a4(∂ρe

a1
µ1

)e a2
µ2
e a3
µ3
e a4
µ4

(3.163)

because we can exchange and rename indices such that we get the upper
result.

If we now multiply this derivative with the determinant of the inverse viel-
bein, vielbeine and inverse vielbeine are of course contracted again. However,
due to the derivative, one pair will not give us a 4 but (∂µe

c
ρ )e ρ

c instead.
Therefore, we obtain

1

e
(∂µe) =

4

4!
· 3! · 4!

4!
(∂µe

c
ρ )e ρ

c , (3.164)
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which is exactly our desired identification and hence we conclude

(∂µ∂
µφ) + (∂µφ)(∂µe

c
ν )e ν

c = ∇µ(∂µφ) . (3.165)

If we now consider this term in the action, we see∫
e∇µ(∂µφ)d4x =

∫
∂µ(e(∂µφ))d4x = 0 (3.166)

because the scalar field φ and all its derivatives vanish at the boundaries.

4 Conclusions and outlook

In this final chapter of our thesis we want to have a look back at what we
did and also state what more could be done.

This thesis dealt with the compactification of 11-dimensional supergravity
on S4 × T 3. We wanted to describe a way to come from an 11-dimensional
theory to a theory in our well-known 4 spacetime dimensions. Our final
objective was the determination of a scalar potential which appears in the
4-dimensional theory due to the reduction on a twisted torus.

The first chapter was devoted to string and M-theory as well as to the concept
of compactification. We explained why we need to compactify theories and
went through a simple example for a compactification, i.e. the Kaluza-Klein
reduction of a bosonic string.

In the second chapter we first introduced some relevant concepts of super-
symmetry. Afterwards, we presented aspects of supergravity. Particularly
important was the introduction of 11-dimensional supergravity since it was
the theory we considered in the first part of chapter 3.

Initially, we reviewed the Kaluza-Klein reduction of D = 11 supergravity
on S4 to 7-dimensional N = 4 gauged supergravity in the third chapter. Af-
ter that, we shortly discussed this supergravity theory in 7 dimensions before
we compactified it on a twisted torus to 4-dimensional supergravity. From
this compactification we obtained

V = −1

4
exp(2(α− β)φ)[2fqp

rfrs
qMps + fqp

rftu
sM qtMpuMsr] ,
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which resembles the result of [21] if we put in our choice for the vielbein.
Also the treatment in [24] seems to indicate that our result is correct since
they use a comparable reduction ansatz but it is important to note that they
compactify a different theory.

Our total scalar potential was

V =
1

4
exp(2(α− β)φ)[2fqp

rfrs
qMps + fqp

rftu
sM qtMpuMsr] + 2 exp(2αφ)Λ

(7)
eff. ,

which was interpreted as a term including a new effective cosmological con-
stant Λ

(4)
eff..

For sure, there are many more things we could do. For example, we could
perform our calculations for the twisted toroidal reduction without ignor-
ing the vectors Amµ . However, this would not affect our scalar potential of
course. Further, we could investigate different choices for our group mani-
fold to which we promoted the torus. A more complex but interesting task
would be to also derive the SUSY transformation rules from the twisted re-
duction. Certainly, it might also be interesting to look at compactifications
on S4 ×M3, where M3 is a compact manifold other than a twisted torus.
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Appendix

Here we give the terms in the Ricci scalar (3.143) before we contracted them
with the vielbeine:

2[∂[µω̂ν],ab + ω̂ c
[µ,a ω̂ν],cb] = 2∂[µ(ων],ab) + 2ω c

[µ,aων],cb (A1)

+ 4α[(∂ρφ)(∂[µe
c
ν])ηc[ae

ρ
b] + (∂ρ∂[µφ)e c

ν]ηc[ae
ρ
b] ]

+ 2α(∂ρφ)(ηac(∂[µe
ρ
b )− ηbc(∂[µe

ρ
a ))e c

ν]

+ 4αηdce f
[µ e

e
ν] [ωf,ad(∂ρφ)ηe[ce

ρ
b] + ωe,cb(∂ρφ)ηf [ae

ρ
d] ]

+ 8α2ηdce f
[µ e

e
ν](∂ρφ)(∂σφ)ηe[ce

σ
b] ηf [ae

ρ
d] ,

2∂µω̂n,aj =− exp((β − α)φ)Um
n{[(β − α)(∂µφ)eνa + ∂µe

ν
a] (A2)

· [2β(∂νφ)δkjL
k
m + (∂νL

l
p)(L

p
jL

k
mδlk + hpmδlj)]

+ eνa[2β(∂2
µνφ)δkjL

k
m + 2β(∂νφ)δkj(∂µL

k
m)

+ (∂2
µνL

l
p)(L

p
jL

k
mδlk + hpmδlj)

+ (∂νL
l
p)((∂µL

p
j)L

k
mδlk + Lpj(∂µL

k
m)δlk)]} ,

2ω̂ c
µ,a ω̂n,cj = − exp((β − α)φ)eeµe

ν
cU

m
nη

dc (A3)

· [ωe,ad + α(∂ρφ)(ηaee
ρ
d − ηdee

ρ
a)]

· [2β(∂νφ)δkjL
k
m + (∂νL

l
p)(L

p
jL

k
mδlk + hpmδlj)] ,

2[∂[mω̂n],ij + ω̂ k
[m,i ω̂n],kj] = fqp

r(∂[mU
s
n])[L

q
[iL

p
j]Msr − 2h[q

s L
p]
[i δj]lL

l
r] (A4)

+
1

4
fqp

rftu
vU s

[mU
w
n][L

q
[iL

p
k]Msr − 2h[q

s L
p]
[i δk]hL

h
r ]

· [Lt[lLuj]Mwv − 2h[t
wL

u]
[l δj]gL

g
v]δ

kl

2ω̂ c
[m,i ω̂n],cj =− 1

2
exp(2(β − α))U q

[mU
r
n]e

ν
de
ρ
cη
dc (A5)

· [2β(∂νφ)δkiL
k
q + (∂νL

l
p)(L

p
iL

k
qδlk + hpqδli)]

· [2β(∂ρφ)δKjL
K
r + (∂ρL

L
s )(LsjL

K
r δLK + hsrδLj)] ,

53



References

[1] Michael J. Duff, String and M-theory: answering the critics, 2012,
arXiv:1112.0788v3 [physics.hist-ph]

[2] Paul K. Townsend, Four Lectures on M-theory, 1997,
arXiv:hep-th/9612121v3

[3] Michael J. Duff, M-theory (The theory formerly known as strings), 1996,
http://cds.cern.ch/record/308935/files/9608117.pdf?version=1

[4] Michael J. Duff, The Theory Formerly Known as Strings, Scientific
American, February 1998, 64-69

[5] Theodor Kaluza, On the Problem of Unity in Physics,
Sitzungsber.Preuss.Akad.Wiss.Berlin (Math.Phys.) 1921, 1921, 966-972

[6] Oscar Klein, Quantum Theory and Five-Dimensional Theory of Rela-
tivity., Z.Phys. 37, 1926, 895-906

[7] Joseph Polchinski, String Theory, Volume I, An Introduction to the
Bosonic String, Cambridge University Press, 2008

[8] Angel M. Uranga, Toroidal compactification of closed bosonic string the-
ory, Lecture notes, http://members.ift.uam-csic.es/auranga/lect7.pdf

[9] Horatiu Nastase, Introduction to supergravity, Lecture notes, 2012,
arXiv:1112.3502v3 [hep-th]

[10] J. N. Tavares, Introduction to Supersymmetry,
http://cmup.fc.up.pt/cmup/cv/IntroducaoSupersimetria.pdf

[11] Giuseppe Dibitetto, Gauged Supergravities and the Physics of Extra
Dimensions, 2012, arXiv:1210.2301v1 [hep-th]

[12] Daniel Z. Freedman and Antoine Van Proeyen, Supergravity, Cambridge
University Press, Reprinted 2013

[13] Mikio Nakahara, Geometry, Topology and Physics, Second Edition, Tay-
lor & Francis Group, 2003

54



[14] Horatiu Nastase, Diana Vaman and Peter van Nieuwenhuizen, Consis-
tent nonlinear KK reduction of 11d supergravity on AdS7 × S4 and
self-duality in odd dimensions, 1999, arXiv:hep-th/9905075v3

[15] Horatiu Nastase, Diana Vaman and Peter van Nieuwenhuizen, Consis-
tency of the AdS7 × S4 reduction and the origin of self-duality in odd
dimensions, 2000, arXiv:hep-th/9911238v3

[16] Antoine Van Proeyen, Tools for supersymmetry, 2002,
arXiv:hep-th/9910030v6

[17] Helga Baum, Thomas Friedrich, Ralf Grunewald, Ines Kath, Twistors
and Killing spinors on Riemannian manifolds, Teubner-Texte zur Math-
ematik, Band 124, B.G. Teubner Verlagsgesellschaft, 1991

[18] K.Pilch and P. van Nieuwenhuizen, P.K. Townsend, Compactification of
d=11 supergravity on S4 (or 11 = 7 + 4, too), Nuclear Physics, B242,
1984, 377-392

[19] Henning Samtleben and Martin Weidner, The maximal D=7 super-
gravities, 2005, arXiv:hep-th/0506237v1

[20] Aybike Çatal-Özer, Duality twists on a group manifold, 2006,
arXiv:hep-th/0606278v1

[21] J. Scherk and J. H. Schwarz, How to Get Masses from Extra Dimensions,
Nucl.Phys. B153 (1979) 61-88

[22] Petr Hajicek, An Introduction to the Relativistic Theory of Gravitation,
Springer Science & Business Media, 2008

[23] Dimitri Vey, Multisymplectic formulation of vielbein gravity. De Donder-
Weyl formulation, Hamiltonian (n-1)-forms, 2015,
arXiv:1404.3546v3 [math-ph]

[24] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Consistent Group and
Coset Reductions of the Bosonic String, 2003, arXiv:hep-th/0306043v2

[25] P. West, Introduction to supersymmetry and supergravity,
World Scientific, 1990

55



[26] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Uni-
versity Press, 1992

[27] P. van Nieuwenhuizen, Supergravity, Phys. Rept. 68 (1981) 189

[28] P. van Nieuwenhuizen, Les Houches 1983, Proceedings, Relativity,
groups and topology II

[29] P. J. E. Peebles, Principles of physical cosmology, Princeton University
Press, 1993

[30] C. W. Misner, K. S. Thorne and J. A. Wheeler, Gravitation, W. H.
Freeman and Co., 1970

[31] L.D. Landau and E. M. Lifchitz, Mechanics, Butterworth-Heinemann,
1982

[32] R. M. Wald, General relativity, University of Chicago Press, 1984

[33] S. V. Ketov, Solitons, monopoles and duality: from sine-Gordon to
Seiberg-Witten, Fortsch. Phys. 45 (1997) 237, [arXiv:hep-th/9611209]

[34] L. Alvarez-Gaume, S. F. Hassan, Introduction to S-duality in N=2 su-
persymmetric gauge theory, (A pedagogical review of the work of Seiberg
and Witten), Fortsch. Phys. 45 (1997) 159, [arXiv:hep-th/9701069]

[35] S. J. Gates, M. T. Grisaru, M. Rocek and W. Siegel, Superspace or one
thousand and one lessons in supersymmetry, Front. Phys. 5 (1983) 1,
[arXiv:hep-th/0108200]

[36] Steven Weinberg, The quantum theory of fields, vols. 1,2,3, Cambridge
University Press, 1995, 1996 and 2000

[37] M. Dine, Supersymmetry and string theory, Beyond the Standard
Model, Cambridge University Press, 2007

[38] F. Ruiz Ruiz and P. van Nieuwenhuizen, Lectures on supersymmetry and
supergravity in (2+1)-dimensions and regularization of supersymmetric
gauge theories, published in: Tlaxcala 1996, Recent developments in
gravitation and mathematical physics (2nd Mexican School on Gravita-
tion and Mathematical Physics, Tlaxcala, Mexico, 1-7 Dec 1996)

56



[39] E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-
dimensions, Phys. Lett. B 76 (1978) 409

[40] W. Nahm, Supersymmetries and their Representations, Nucl.Phys. B135
(1978) 149

[41] R. Utiyama, Invariant theoretical interpretation of interaction,
Phys.Rev. 101 (1956) 1597-1607

[42] T. Kibble, Lorentz invariance and the gravitational field, J.Math.Phys.
2 (1961) 212-221

[43] S. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity
and Supergravity, Phys.Rev.Lett. 38 (1977) 739

[44] H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-
dimensions, Phys.Rev.Lett. 86 (2001) 1686-1689,
arXiv:hep-th/0010076 [hep-th]

[45] B. de Wit, H. Samtleben, and M. Trigiante, On Lagrangians and
gaugings of maximal supergravities, Nucl.Phys. B655 (2003) 93-126,
arXiv:hep-th/0212239 [hep-th]

[46] B. de Wit and H. Samtleben, Gauged maximal supergravities and hi-
erarchies of nonAbelian vector-tensor systems, Fortsch.Phys. 53 (2005)
442-449, arXiv:hep-th/0501243 [hep-th]

57


	Introduction
	Quantum gravity
	String theory
	M-theory
	Why compactify?
	Kaluza-Klein reduction of bosonic string theory
	Kaluza-Klein reduction in field theory
	Closed bosonic string

	T-duality

	Supersymmetry and supergravity
	Supersymmetry
	Superalgebra
	Spinors in D dimensions
	On- and off-shell SUSY
	Supermultiplets

	Supergravity
	First order formulation of general relativity
	From GR to SUGRA and degrees of freedom
	The highest dimension of supergravity
	D=11 supergravity
	Coset spaces
	Superspace


	Compactification on S4 T3
	Kaluza-Klein reduction on AdS7 S4
	First order formulation
	Linear ansatz
	Killing spinors and spherical harmonics
	Non-linear ansatz
	Maximal D=7 gauged supergravity

	Compactification on a twisted T3
	What is a twisted torus?
	Twisted toroidal reduction


	Conclusions and outlook

