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Abstract
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symmetry will give constraints on the potential which will lead to an integrable
system. A possible way to explore the integrability of supersymmetric quantum
mechanics was introduced in a paper by Crombrugghe and Rittenberg in 1983,
their method has been used as well as another approach based on expanding a
N = 1 system by introducing complex structures. N = 3 or more supersymmetry
is shown to give an integrable system.
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1 Populärvetenskaplig sammanfattning

Det finns två olika grupper av partiklar i naturen. En av dessa kallas för
fermioner och är den typ av partiklar som bygger upp all materia omkring
oss. Den andra typen av partiklar, som är ansvariga för att förmedla olika
typer av krafter, kallas för bosoner. Ett exempel på bosoner är fotoner som
förmedlar den elektromagnetiska kraften.

Det finns många olösta problem och oförklarade fenomen inom fysiken som
skulle vara närmare en lösning om det fanns en relation, eller symmetri,
mellan bosonerna och fermionerna. Den här möjliga symmetrin kallas för
supersymmetri och är ett viktigt område inom teoretisk fysik.

Ett fysikaliskt system kallas för integrerbart om det går att lösa dess rö-
relseekvationer. Det är ofta ett svårt problem att avgöra om ett system är
integrerbart eller inte, men genom att införa fler symmetrier i ett system
blir systemet mer regelbundet och enklare att lösa. Det är här kopplingen
mellan supersymmetri och integrabilitet går att se. Om det tillförs mer
supersymmetri till ett system kommer systemet även få andra symmetrier
vilket till slut kommer leda till att det blir integrerbart.

Genom att på ett systematiskt sätt tillföra supersymmetri till kvantmeka-
niska system har relationen mellan supersymmetri och integrabilitet utfors-
kats. Slutsatsen är att 3 supersymmetrier (ofta kallat N=3) är tillräckligt
för att göra ett system integrerbart. Detta har visats med två olika an-
greppssätt, dels genom att använda en metod som beskrivs i en artikel
från 1983 av Crombrugghe och Rittenberg, och dels genom en ny metod
som använder sig av så kallade komplexa strukturer.
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2 Introduction

Supersymmetry, often abbreviated SUSY, is a suggested symmetry in na-
ture which relates bosonic states to fermonic states. Supersymmetry was
first introduced by Gel’fand and Likhtman [1], Ramond [2] and Neveu and
Schwarz [3] in 1971 and plays an important part in most versions of string
theory, but has since then also been combined with other areas of physics
such as quantum field theory, where it has been suggested as a possible
solution to the well known hierarchy problem. Another very interesting
role of supersymmetry is that it increases the accuracy of the high energy
unification of the electromagnetic, strong and weak interactions.

The main idea of supersymmetry is that there exist operators which can
take a fermionic state and transform it into a bosonic state and vice versa.
A fermionic state has half-integer spin, and describes one or several matter
particles such as electrons and protons. A bosonic state has integer spin,
and describes one or several force carrying particles such as photons, who
carry the electromagnetic force, or Z-bosons, who is one of the particles
who carry the weak force. An important property of these different kinds
of particles is that they obey different statistics, fermions are forbidden to
be in the same quantum state as each other by the Pauli exclusion principle
while bosons have no such restrictions.

A consequence of supersymmetry is the, yet to be verified, existence of su-
persymmetric partner particles to the known particles. For example there
should be a bosonic partner to the electron, usually called the selectron
and so on. So far none of these, so called superpartners, have been found
in nature. If there were superpartners to the known particles with the same
mass as the ordinary particles, as one might expect from the theory, these
would have been discovered by now. Instead the current understanding is
that supersymmetry is a broken symmetry, where the superpartners are
allowed to have larger mass than the ordinary particles and that this has
made them escape detection. It is in the context of supersymmetry break-
ing where supersymmetric quantum mechanics (SQM) was first discussed
by Witten [4] in 1981 as a kind of simplified setting for supersymmetry.
Supersymmetric quantum mechanics will be the main area of this thesis
starting with a general introduction in section 4.

The concept of integrability can be described in various more or less tech-
nical ways. Some of these will be presented in section 3 of this thesis. The
intuitive picture of an integrable system is that the system is sufficiently
simple so that it is solvable and non-chaotic. A system will become more
constrained and typically simpler when more symmetries are included into
the system.
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The idea of supersymmetric quantum mechanics has been its own research
area since its introduction in 1981. The starting point of this thesis was to
review a a paper on SQM by Crombrugghe and Rittenberg from 1983 [5].
The two concepts of supersymmetry and integrability in quantum mechan-
ics are naturally related because supersymmetry will impose conditions on
the system which will lead to more symmetries, as well as restricting the
system in such a way that it will eventually become integrable when a cer-
tain amount of symmetry is introduced. This feature of supersymmetric
quantum mechanics is explored in the paper by Crombrugghe and Ritten-
berg (CR) and the results are presented in different sections of this thesis
starting with the ansatz for supercharges in section 6 and continued in the
form of an example with six supercharges in section 7.

The formalism for SQM developed in the CR paper proved hard to gener-
alize which lead to the introduction of another more modern description of
SQM based on the treatment on SQM in the book Mirror symmetry [6].
This new approach is explained in section 8 and it’s generalization to more
supersymmetry is introduced in section 9.

In this thesis we will impose different amounts of supersymmetry on quan-
tum mechanical systems and see how this changes the integrability of the
system. It can be seen that, when enough supersymmetry is introduced,
the system will become integrable, as will be shown in section 10.
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3 Integrability

A physical system is considered integrable in the Liouville sense, which
is the most common definition, if its equations of motion can be solved
by solving a finite number of algebraic equations and computing a finite
number of integrals. A brief introduction to the most important concepts
in integrability including the Liouville theorem will be given in this section.
Most of the material presented here is based on [7]. The content in this
section will be based on classical systems but everything that is said here
will also be true for quantum mechanical systems. The difference being
that quantum mechanical systems usually require different techniques for
finding conserved quantities, and by that determine the integrability of the
system. Unfortunately it is in general very hard to prove the opposite,
that a system is not integrable, so the SQM cases that will be the subject
of this thesis can only be divided in to those who are integrable and those
who may or may not be integrable.

3.1 The Liouville theorem

The state of a classical system can be described by a point in it’s phase
space given by coordinates in terms of momentum pi and position qi. The
equations of motion are then given by

q̇i =
dqi
dt

=
∂H

∂pi
, ṗi =

dpi
dt

= −∂H
∂qi

(1)

where H is the Hamilitonian of the system. It is also given that for any
function Fi

Ḟi = {Fi, H} (2)

where, in this section, {·, ·} denotes the Poisson bracket defined by

{A,B} =
∑
i

∂A

∂pi

∂B

∂qi
− ∂B

∂pi

∂A

∂qi
(3)

for the coordinates qi and pi we have that

{qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δij (4)
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As a side remark we note that in the quantum mechanical systems which
will be the subject of the rest of this thesis, the Poisson bracket for the co-
ordinates pi and qi will be changed to the commutator [·, ·] for the operators
pi and xi.

{·, ·} → i

~
[·, ·], ~ = 1 (5)

The Liouville theorem states that if we have a phase space with dimen-
sion 2n and we can find n functions in involution whose Poisson bracket
with the Hamiltonian vanish, the system will be integrable. Since H will
typically be among the Fis this means that a one dimensional system is
always integrable and a two dimensional system only needs one additional
conserved quantity to become integrable and so on.

{Fi, Fj} = 0, {Fj , H} = Ḟj = 0 (6)

This theorem is not very hard to prove and shows that the solutions to
the equations of motion are easy to find if the functions Fi are known. A
sketchy version of this proof is given in the appendix.

An example where this property is trivially seen is the harmonic oscillator

H =
n∑
i=1

1

2
(p2
i + ω2

i x
2
i ) (7)

where the conserved quantities are Fi = 1
2(p2

i + ω2
i x

2
i ).

3.2 Action angle variables and Lax pairs

There are several other ways to describe integrable systems, although they
will not be used in this thesis, two of them are an important part of a
general discussion on integrability.

Action-angle variables can be used to describe the phase space of a system
in such a way that it is foliated into submanifolds, who are spanned by
the angle variables. The other directions in the phase space will, as the
name suggests, be spanned by so called action variables. In most 2n (<
∞) dimensional cases the submanifolds will be n dimensional tori which
explains the term angle variables.
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Lax pairs are a way to reformulate a Hamiltonian system in terms of two
matrices L and M such that the equations of motions takes the form

L̇ = [M,L] (8)

The main point of describing the system in this way, is that the constants
of motion are relatively simple to find once the system has been recast into
Lax pairs.

The Liouville theorem states that it is possible to make a transformation
of an integrable the system into coordinates who are functions of the Fi
and some other variables Ψi. These can be used to construct action angle
variables which in turn can be used to create Lax pairs [7]. If we have the
coordinates

İj = 0, θ̇j =
∂H

∂Ij
(9)

and matrices Ei and Hi, i = 1, ..., n that are representations of the lie
algebra

[Hi, Hj ] = [Ei, Ej ] = 0, [Hi, Ej ] = 2δijEi (10)

We can then create the matrices L and M by

L =

n∑
j=1

IjHj + 2IjθjEj , M = −
n∑
j=1

∂H

∂Ij
Ej (11)

Which will satisfy the relation L̇ = [M,L]. However, there is usually no
need to express the system in terms of Lax pairs if the action angle variables
are already known.
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4 Supersymmetric Quantum Mechanics

Supersymmetric quantum mechanics was introduced as a simple example
of a supersymmetric system in order to highlight the breaking of super-
symmetry in a simple setting [4]. Since then it has been an active research
area, often used as a testing ground for new ideas in supersymmetry but
also as a research area in its own right. There is a number of introduc-
tory texts on SQM which give a nice introduction to the subject. Some
of the material covered there will be reproduced here for completeness,
and also to introduce some notation and terminology. First a very simple,
but quite illustrative, example will be given in the form of the supersym-
metric harmonic oscillator. This is a nice example where the introduction
of supersymmetry is very straightforward. This system will lead to the
SQM algebra which will be used in the rest of this thesis, sometimes in
a slightly modified form. After the harmonic oscillator is presented there
will be an example of how to calculate the conserved supercharges using
the Noether procedure. This will be followed by a more general, but still
simple example of N = 1 SQM.

4.1 The one dimensional SQM harmonic oscillator

This example can be found in any introductory text on supersymmeric
quantum mechanics, see for instance [8]. Since it is simple but still quite
illustrative it will be repeated here as a kind of crash course on basic SQM
concepts.

The standard harmonic oscillator with the Hamiltonian (constant factors
like Plancks constant ~ , masses m and the frequency ω will be suppressed
when possible)

HB =
1

2
(p2 + x2) =

1

2
(a†a+ aa†) = (a†a+

1

2
) (12)

where we have defined the bosonic annihilation and creation operators

a =
1

2
(x+ ip) and a† =

1

2
(x− ip) (13)

with the property

[a, a†] = 1 (14)
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This Hamiltonian has a very straightforward fermonic analog created by
introducing the new fermonic annihilation and creation operators ψ and
ψ† which satisfy

{ψ,ψ†} = 1 (15)

Where {·, ·} denotes the anticommutator {a, b} = ab+ ba. Using ψ and ψ†

we can construct the fermonic harmonic oscillator

HF =
1

2
(ψ†ψ + ψψ†) = (ψ†ψ − 1

2
) (16)

Note that we now have the opposite sign on the constant term due to the
difference in commutation and anti commutation condition on the opera-
tors between the bosonic and fermionic case. We now have one Hamiltonian
for bosonic states and one for fermionic states. The total Hamiltonian is
given by the sum of these which gives us the supersymmetric Hamiltonian

H = HB +HF = (a†a+ ψ†ψ) (17)

using the a and ψ we can now construct two new operators Q and Q† by

Q = aψ† and Q† = a†ψ (18)

commonly known as supercharges. One can check that

{Q,Q†} = aψ†a†ψ + a†ψaψ† = aa†ψ†ψ + a†aψψ† = (1 + a†a)ψ†ψ + a†aψψ†

= a†a+ ψ†ψ = H

(19)

and in a similar way that

[Q,H] = [Q†, H] = 0 (20)

together, the relations (19) and (20) is the so called superalgebra we want
to have for the supercharges.

The supercharges Q and Q† act on a state by exchanging one bosonic state
for one fermionic state and vice versa. So that

Q | nB, nF 〉 =| nB − 1, nF + 1〉,
Q† | nB, nF 〉 =| nB + 1, nF − 1〉

(21)
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Where | nB, nF 〉 denotes a state in Fock space where the number of bosons
in the system is nB and the number of fermions is nF . It should also be
noted that (ψ†)2 = 0 which means that nF can only take the values 1 or
0. An implication of this is that the degeneracy of the energy levels is two,
except for the ground state which has zero energy.

The supercharges acts as operators which exchanges bosons for fermions
and vice versa, while keeping the energy of the system constant. In other
words we have a symmetry in the system with respect to changing bosons
into fermions. This type of system which has one supercharge and its
Hemitian conjugate is referred to as a N = 1 system.

4.2 SQM algebra

So far we have only looked at the supersymmetric harmonic oscillator,
which is of course a simple and already very constrained system. What
about other systems?

We can use the superalgebra from above to define what we mean by a SQM
system, but there is also the possibility to generalize it a bit to include the
possibility of having more than Q and Q†. This can be done by using a
superalgebra

{Qi, Q†j} = 2Hδij

{Qi, Qj} = {Q†i , Q
†
j} = 0

[Qi, H] = [Q†i , H] = 0

(22)

Where we now allow for more than 2 supercharges. Imposing that the
Hamiltonian commute with more supercharges will of course put more
constraints on the potential. This is a central point for this thesis. In
fact we can guess that if we keep adding more supercharges, the system
will at some point be so restricted that it can have at most a quadratic
potential. At this point the system will essentially be a standard SQM
harmonic oscillator which is of course a very simple and solvable system.

4.3 A simple connection to integrability

The SQM algebra (22) above can be used immediately to find new symme-
tries in the system. This is a very straightforward way to see the connection
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between supersymmetry and the extra symmetries it leads to, which can
potentially make the SQM systems integrable.

If we consider the Hamiltonian H, a general supercharge Qi or Q
†
i together

with some additional known symmetries of the system which we can call
Fj . The given relations are

[Qi, H] = [Q†j , H] = 0

[Fj , H] = 0
(23)

It is now easy to see that we are able to construct extra symmetries by

F̂ki = [Fk, Qi] (24)

These new symmetries will also commute with the Hamiltonian, which can
be seen by the Jacobi identity, and are obviously consequences of supersym-
metry. This simple way of finding symmetries makes it easy to realize that
systems which already have a lot of symmetry will become very restricted
by construction when supersymmetry is introduced.

4.4 Graded vector spaces

The supercharges and Hamiltonian in supersymmetric quantum mechanics
form a closed algebra (22). Before we move on there is a comment that
should be made on the properties of this algebra. In the typical case
there would be a bracket operator that will give the relatationship between
different elements, in this case however we have two different kinds of
brackets depending on which elements we want to operate on. This type
of space is called a graded vector space. In this case we have a Z2 graded
vector space also known as a super vector space. We can think of this as
having a decomposition of the vector space into two separate spaces.

V = V0 ⊕ V1 (25)

The elements in this space have a property called parity, denoted by | · |,
which in this case can be either 0 or 1 depending on whether it belongs
to the even or odd part of the space which correspods to the bosonic and
fermionic elements respectively.
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|X] =

{
0, X ∈ V0

1, X ∈ V1
(26)

The bracket between two elements can now be defined as.

[X,Y ] = XY − (−1)|X||Y |Y X (27)

Throughout the rest of this thesis the symbol {· , ·} will always denote an
anti-commutator which means that we have two elements with odd parity
so that |X||Y | = 1 and [· , ·] will denote a standard commutator which
means that we have at least one even element so that |X||Y | = 0.

5 A representation of N = 1 SQM

Now that we have seen a very simple example of SQM we can move on to
a bit more general example. This is still very simple but also useful and
will be referred to and expanded on later.

If we use the ansatz often given in introductory texts on SQM

Q =
∑
i

ψ†i (pi − iWi(x)) , Q† =
∑
j

ψj(pj + iWj(x)) (28)

{ψi, ψj} = {ψ†i , ψ
†
j} = 0 , {ψ†i , ψj} = δij (29)

[pi, pj ] = [xi, xj ] = 0 , [pi, xj ] = −iδij (30)

satisfying the algebra

{Q,Q†} = 2H , {Q,Q} = {Q†, Q†} = 0 (31)

where ψi are odd variables representing the fermionic degrees of freedom
in the system with ψ†i as its conjugate momentum, pi is momentum and
Wi are functions of position x.

5.1 Calculating the supercharges

While it’s easy to verify that the ansatz (28) will give a reasonable Hamil-
tonian, by simply calculating the anti-commutator {Q,Q†} it is possible
to find the supercharges using a given Lagrangian. This will be done by
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using the so called Noether procedure, which is a standard method for cal-
culating conserved quantities. The method uses the assumption that the
variation of the action of the system vanishes. Consider simple system of
a single variable x with a Lagrangian given by

L =
1

2
ẋ2 − 1

2
(h′(x))2 +

i

2
(ψ̄ψ̇ − ˙̄ψψ)− h′′(x)ψ̄ψ (32)

With odd variables ψ and ψ̄. Together with the transformations

δx = εψ̄ − ε̄ψ
δψ = ε(iẋ+ h′(x))

δψ̄ = ε̄(−iẋ+ h′(x))

(33)

where ε is a fermonic variation parameter. If we let ε = ε(t) it’s possible
to calculate the conserved supercharges using the Noether procedure.

Setting the variation of the action to zero gives the conserved currents.

δS = δ

∫
L dt = 0 (34)

Computing this variation and inserting the transformations in (33)

δ

∫
L dt =

∫ (
ẋδ
(dx
dt

)
− h′(x)h′′(x)δ(x) +

i

2
(δ(ψ̄)ψ̇ + ψ̄δ(ψ)− δ( ˙̄ψ)ψ+

− ˙̄ψδ(ψ))− h′′(x)δ(ψ̄)ψ − h′′(x)ψ̄δ(ψ)
)
dt

=

∫ (
− ẍ(εψ̄ − ε̄ψ)− h′(x)h′′(x)(εψψ̄ − ε̄) +

i

2
ε̄ψ̇(−iẋ+ h′(x))+

+
i

2
ψ̄ε̇(iẋ+ h′(x)) +

i

2
ψ̄ε(iẍ+

d

dt
h′(x))− i

2
˙̄εψ(−iẋ+ h′(x))+

− i

2
ε̄ψ(−iẍ+

d

dt
h′(x))− i

2
˙̄ψε(iẋ+ h′(x))+

− ε̄ψ(−iẋ+ h′(x))h′′(x)− ψ̄ε(iẋ+ h′(x))h′′(x)
)
dt

=

∫ (
− ẍεψ̄ + ẍε̄ψ̄ − h′(x)h′′(x)εψ̄ + h′(x)h′′(x)ε̄ψ − i

2
˙̄εψ(−iẋ+ h′(x))+

− i

2
ε̄ψ(−iẍ+

d

dt
h′(x)) +

i

2
ψ̄ε̇(iẋ+ h′(x)) +

i

2
ψ̄ε(−iẍ+

d

dt
h′(x))+

− i

2
˙̄εψ(−iẋ+ h′(x))− i

2
ε̄ψ(−iẍ+

d

dt
h′′(x)) +

i

2
ψ̄ε̇(iẋ+ h′(x))+

+
i

2
ψ̄ε(−iẍ+

d

dt
h′(x))− ε̄ψ(−iẋ+ h′(x))h′′(x)− εψ̄(iẋ+ h′(x))h′′(x)

)
dt

=

∫
−i ˙̄εψ(−iẋ+ h′(x))− iε̇ψ̄(iẋ+ h′(x)) dt =

∫
−iε̇Q− i ˙̄εQ dt

(35)
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Noting that three ψ and ψ̄ in any combination multiply to zero removes
one of the terms resulting from differentiating h′′(x)ψ̄ψ in the first step.
Partial integration and inserting the transformations has been used in the
second step. And again partially integrating some terms in the third step.

We can now identify the supercharges

Q = ψ̄(iẋ+ h′(x))

Q = ψ(−iẋ+ h′(x))
(36)

We now see that this corresponds, up to a constant, to the ansatz for the
supercharges given in (28). The difference being that we have now derived
them from a Lagrangian.

5.2 Constraints on the potential

The hamiltonian for a system with the supercharges (28) is given by

{Q,Q†} =
∑
i,j

{ψ†i (pi − iWi), ψj(pj + iWj)}

=
∑
i,j

ψ†iψj [(pi − iWi), (pj + iWj)] + (pj + iWj)(pi − iWi){ψ†i , ψj}

=
∑
i,j

iψ†iψj([pi,Wj ]− [Wi, pj ]) +
∑
i

(pi + iWi)(pi − iWi)

=
∑
i,j

i

2
([ψ†i , ψj ] + δij)([pi,Wj ] + [pj ,Wi]) +

∑
i

(p2
i +W 2

i − i[pi,Wj ])

=
∑
i

p2
i +W 2

i +
∑
i,j

[ψ†i , ψj ]∂iWj = 2H

(37)

The functions Wi have so far been assumed to be arbitrary functions of
position. But we will now see that in order to satisfy the SQM algebra
we will have to impose some constraints on these functions. the condition
that {Q†, Q†} = 0 gives some conditions on W

{Q†, Q†} =
∑
i,j

{ψi(pi + iW ), ψj(pj + iW )}

=
∑
i,j

ψiψj [pi + iWi, pj + iWj ] + (pj + iWj)(pi + iWi){ψi, ψj}

=
∑
i,j

iψiψj([pi,Wj ] + [Wi, pj ]) =
∑
i,j

ψiψj(∂iWj − ∂jWi) = 0

(38)
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⇒ ∂iWj − ∂jWi = 0 (39)

which is solved by

Wi = ∂iW (40)

So we now have that all of the functions Wi have to be derivatives of some
function W . While this certainly limits the possible choices for the Wis it
is not possible to see that the system will be integrable. This means that
we will have to include more supersymmetry, this will be the topic of the
next section.
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6 A supercharge recipe

We will now move away from the standard formulations of SQM for a while
and take a look on another possible approach.

An article by Crombrugghe and Rittenberg (CR) from 1983 on SQM [5]
gives a recipe for creating SQM supercharges in a straightforward way
which will be described in this section. The method described in the ar-
ticle use an ansatz for supercharges based on the assumption that the
supercharges contain only linear terms in fermionic degrees of freedom.

The CR paper creates a framework that is very structured and can be used
to find additional symmetries in the system. Unfortunately the only con-
clusions drawn in the paper regarding extra symmetries and integrability
are only presented in a quite narrow setting, with a certain amount of di-
mensions and certain amounts of supersymmetry. This will be explained
briefly in subsection 6.4 below and in the discussion in section 11.

6.1 The setting

The ansatz made for the supercharges looks like

Qα =
1√
2

r∑
i=1

M∑
n=1

AαinCin (41)

where the second sum is over different particles. To avoid cluttering the
notations this will be suppressed here without loosing any vital properties
of the charges. The ansatz then looks like

Qα =
1√
2

r∑
i=1

Aαi Ci (42)

The Cis represent odd degrees of freedom with properties that will be
discussed below. The Ais are functions of even degrees of freedom, and it
will turn out that they have to be chosen in a specific way for this ansatz
to fulfill a SQM algebra and also give a reasonable Hamiltonian.

While this is a very nicely packaged form for the supercharges it has some
potential drawbacks. The supercharges are real which means that we get
a non standard form of the super algebra where the supercharges will anti
commute among each other and the anticommutator of a supercharge with
it self, not its conjugate, will produce the Hamiltonian.
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{Qα, Qβ} = 2Hδαβ , [Qα, H] = 0 (43)

It can be shown that a simple complex rotation of the supercharges will
give back the standard SQM algebra, so this is not a problem but only
slightly inconvenient. In the same way, the fermionic degrees of freedom
also satisfy an algebra which differs from the one usually seen in the SQM
literature. This means that the fermionic degrees of freedom will satisfy
an algebra which is not as naturally related to that of x and p as they are
in the standard formulation.

{Ci, Cj} = 2δij , [pi, xj ] = iδij (44)

This can of course be cured in the same way as with the supercharges
by simply making a complex rotation. But the standard analogy between
bosonic and fermionic variables, where their algebra differs by exchanging
commutation for anti-commutation is lost. This means that this ansatz
is arguably less physically intuitive than the usual ansatz given in the
previous section.

6.2 Constraints

We have now introduced the setting used for this representation of SQM.
There will of course be some restrictions on the different components of
the supercharges in (41). This will be done by making sure (43) is satisfied

{Qα, Qβ} =
1

2

r∑
i,j=1

(Aαi CiA
β
jCj +AβjCjA

α
i Ci)

=
1

2

r∑
i,j=1

(Aαi A
β
j {Ci, Cj} − [Aαi , A

β
j ]CjCi)

=
1

2

r∑
i,j=1

(Aαi A
β
j 2δij − [Aαi , A

β
j ]CjCi)

=

r∑
i=1

Aαi A
β
i −

1

2

r∑
i,j=1

[Aαi , A
β
j ]CjCi

=
r∑
i=1

Aαi A
β
i −

1

4

r∑
i,j=1

([Aαi , A
β
j ](CjCi − CjCi + 2δij)

=

r∑
i=1

Aαi A
β
i −

1

4

r∑
i,j=1

[Aαi , A
β
j ][Cj , Ci]−

1

2

r∑
i=1

[Aαi , A
β
i ]
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=
1

2

r∑
i=1

{Aαi , A
β
i } −

1

4

r∑
i,j=1

[Aαi , A
β
j ][Cj , Ci] = 2Hδαβ (45)

(45) should be 0 for α 6= β which gives us the condition

r∑
i=1

{Aαi , A
β
i } = 0 , α 6= β (46)

This can be fulfilled by using matrices O such that

Aαi =
∑
j

OαijA
N
j (47)

where N is the number of Qs and with orthogonal matrices Oα.

0 =
∑
i

{Aαi , A
β
i } =

∑
i,j,k

{OαijANj , O
β
ikA

N
k } =

∑
i,j,k

OαijO
β
ik{A

N
j , A

N
k } (48)

setting β = N gives us Oβ = I and we see that the Oαs are antisymmetric,
this gives us

OαOαT = −1 (49)

so the Oαs have to satisfy a Clifford algebra

{Oα, Oβ} = −2δαβ (50)

with this choice (46) will be automatically true, but any choice of As that
satisfies (46) will work.

In [5] properties of clifford algebras are discussed at length. However, the
only thing we need to know for this thesis is that there exist real valued
matrix representations of the Clifford algebras and that it is relatively easy
to find such representations. Therefore the discussion about these algebras
and their representations will be kept to a minimum here.

The last term in (45) can only cancel if the terms containing the same Ci
and Cj cancel

[Aαi , A
β
j ][Cj , Ci] + [Aαj , A

β
i ][Ci, Cj ]

⇒ ([Aαi , A
β
j ]− [Aαj , A

β
i ])[Cj , Ci] = 0

(51)
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so that

[Aαi , A
β
j ] = [Aαj , A

β
i ] , α 6= β (52)

Now that we have found the properties and restrictions of the bosonic
functions Ai the ansatz (42) is quite convenient, since it lets us construct
arbitrarily many supercharges as long as we can find matrices that satisfies
(50). On the other hand, the constraints on Ai given by (52) can become
a large system of differential equations depending on the x and p depen-
dence of the Ai functions. This will become clear when four and more
supercharges are used in later sections.

6.3 Correspondence with the standard formulation

Now we will find an example where this recipe is applied and see that it
corresponds to the standard formulation in the previous section. If we use
a very simple ansatz for the As:

AN1 = A1
1 = pn, AN2 = A1

2 = Wn (53)

together with

O2 =

(
0 1
−1 0

)
(54)

this will give us

A1
1 = pn , A1

2 = Wn , A2
1 = Wm , A2

2 = −pm (55)

so that the supercharges for the system will be

Q1 =
∑
n

C1npn + C2nWn

Q2 =
∑
m

C1mWm − C2mpm
(56)

Which will give supercharges that already look somewhat similar to the
supercharges (28) in the previous section. By applying constraints on the
As given by (52) we see that the potential term has to satisfy a relation
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[A1
1n, A

2
1m] = [pn,Wm] = [A1

1m, A
2
1n] = [pm,Wn] (57)

which gives us a condition on Wn

⇒ ∂nWm − ∂mWn = 0 (58)

which completely agrees with the previous section. The solution to this is
as before that

Wn = ∂nW (59)

The relation between the odd degrees of freedom in the two different cases
is easy to see if we make a rotation of the supercharges

Q =
1√
2

(Q1 − iQ2) (60)

and using the supercharges in (56) we get

Q =
1√
2

∑
i

C1ipi + C2iWi − iC1iWi + iC2ipi

=
1√
2

∑
i

(C1i + iC2i)pi − iWi(C1i + iC2i)

=
1√
2

∑
i

(C1i + iC2i)(pi − iWi)

(61)

From this we can easily identify the odd variables from the previous section
as

ψ†i =
1√
2

(C1i + iC2i) , ψi =
1√
2

(C1i − iC2i) (62)

We have seen that in this simple case it is easy to find the relation between
the ansatz made in the article by Crombrugghe and Rittenberg and the
more standard formulation found in most of the more recent papers on the
subject.

The restrictions that we have found on the potential term is so far not very
strong and it will in general not make the system integrable unless there
are also some other constraints on the potential.
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6.4 Extra symmetries

The CR paper presents some ways of finding extra symmetries in a SQM
system. There are a number of examples where this is investigated but
unfortunately they use a very specific setting i.e R2 and four supercharges
and so on. These turned out to be hard to generalize, and the goal for this
thesis is to find a relation between supersymmetry in quantum mechanics
and integrability in a more general context.

One way to find extra symmetries which are a consequence of supersym-
metry that is also presented in the paper by CR is based on the choice
of bosonic variables Ai and the different clifford matrices Oα (note that
Aαi =

∑
OαijAj . If we define f l by

[Aαj , A
β
k ] = i

∑
l

f ljkBl (63)

where the Bl are some operators and the f l are matrices. We get extra
symmetries in the form

Gk = gkij [Ci, Cj ] (64)

where gk is some matrix that commutes with f l. This symmetry is of
course a consequence of supersymmetry but it will only be something bi-
linear in Cis and not a very interesting symmetry. In fact, considering the
form of the Hamiltonian (45) it is not hard to guess that such symmetries
exist. Some of these symmetries can be found by realizing that the clifford
matrices Oα commute with fl but in general this does not aid much in
finding the relation between SQM and integrability.
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7 Adding more symmetry using Crombrugghe and
Rittenberg recipe

We have seen that we need to impose more supersymmetry on the systems
to make them integrable. In order to do so we will use the CR recipe
but in higher dimension. This will first be done with four supercharges,
corresponding to a N = 2 system, and we will se a simple way to relate
this to the previous results.

We will also use the ansatz to create a system with eight supercharges.
The constraints on the potential will then be calculated when using six of
these, which corresponds to aN = 3 system. This will constrain the system
to having at most a quadratic potential which corresponds to a harmonic
oscillator. Including two additional supercharges, creating a N = 4 system
will force the system to be free.

7.1 Systems with four supercharges

One possible way to create a system with four supercharges inspired by
the previous results is to add one more dimension. The natural ansatz for
the bosonic Ais in the supercharges will then be

A1 = px , A2 = py , A3 = ∂xW , A4 = ∂yW (65)

which gives us an ansatz for a supercharge

Q4 = pxiC1i + pyiC2i + ∂xiWC3i + ∂yiWC4i (66)

We note for later use, that in a complex setting

R2n = Cn, zi = xi + iyi (67)

the supercharge may be written

Q4 = pxiC1i + pyiC2i +
1

2
Re(∂ziW (z))C3i −

1

2
Im(∂ziW (z))C4i (68)

under the assumption that W is a holomorphic function.
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From (45) this ansatz gives us

2H = p2
xi + p2

yi +
1

4
(∂xiW )2 +

1

4
(∂yiW )2+

− 1

4
([pxi , ∂xjW ][C3j , C1i] + [pxi , ∂yjW ][C4j , C1i]+

+ [pyi , ∂xjW ][C3j , C2i] + [pyi , ∂yjW ][C4j , C2i])

= p2
xi + p2

yi +
1

4
(∂xiW )2 +

1

4
(∂yiW )2+

− 1

4
(∂xj∂xiW [C3j , C1i] + ∂xi∂yjW [C4j , C1i]+

+ ∂yi∂xjW [C3j , C2i] + ∂yi∂yjW [C4j , C2i])

(69)

The full set of supercharges are

Q1 = pyiC1i − pxiC2i + ∂yiWC3i − ∂xiWC4i

Q2 = ∂xiWC1i − ∂yiWC2i − pxiC3i + pyiC4i

Q3 = ∂yiWC1i + ∂xiWC2i − pyiC3i − pxiC4i

Q4 = pxiC1i + pyiC2i + ∂xiWC3i + ∂yiWC4i

(70)

Where the Clifford matrices in (47) are

O1 = iσ2 ⊗ 1
O2 = σ3 ⊗ iσ2

O3 = σ1 ⊗ 1σ2

(71)

and the conditions on the functions ∂iW from (52) are

∂xi∂xjW + ∂yi∂yjW = 0 (72)

which tells us that W is the real part of a holomorphic function. This
is a stronger condition than the one we had before, when Wi was only
restricted to be the partial derivatives of some function. However it is not
so restrictive that the system necessarily becomes integrable. We will see
that this result gives a good hint on an alternative ansatz for supercharges
later when we come back to N = 2 systems using complex variables where
the concept of holomorphic functions become very natural.

24



7.2 Systems with six supercharges

We will now use an ansatz for a system with six supercharges and see how
this adds more restrictions to the potential function. We need at least
five different Clifford matrices in order to get six supercharges using the
recipe. This means that we have to use eight by eight matrices. We will
use an ansatz for the supercharges in 4 dimensions and make use of the
recipe from CR. With this setup we can create eight supercharges which
in the complex case corresponds to a N = 4 system. A priori we can have
any functions Ai that can be functions of xi, i = 1, 2, 3, 4 but they will be
restricted when we impose that the Qs satisfy the supersymmetry algebra.
The eight supercharges we get when using

O1 = σ3 ⊗ iσ2 ⊗ 1 O2 = σ1 ⊗ iσ2 ⊗ 1
O3 = iσ2 ⊗ 1⊗ σ3 O4 = iσ2 ⊗ 1⊗ σ1

O5 = 1⊗ σ3 ⊗ iσ2 O6 = 1⊗ σ1 ⊗ iσ2

O7 = iσ2 ⊗ iσ2 ⊗ iσ2

(73)

will be

Q1 = p3C1 + p4C2 − p1C3 − p2C4 −A7C5 −A8C6 +A5C7 +A6C8

Q2 = A7C1 +A8C2 −A5C3 −A6C4 + p3C5 + p4C6 − p1C7 − p2C8

Q3 = A5C1 −A6C2 +A7C3 −A8C4 − p1C5 + p2C6 − p3C7 + p4C8

Q4 = A6C1 +A5C2 +A8C3 +A7C4 − p2C5 − p1C6 − p4C7 − p3C8

Q5 = p2C1 − p1C2 − p4C3 + p3C4 +A6C5 −A5C6 −A8C7 +A7C8

Q6 = p4C1 − p3C2 + p2C3 − p1C4 +A8C5 −A7C6 +A6C7 −A5C8

Q7 = A8C1 −A7C2 −A6C3 +A5C4 − p4C5 + p3C6 + p2C7 − p1C8

Q8 = p1C1 + p2C2 + p3C3 + p4C4 +A5C5 +A6C6 +A7C7 +A8C8

(74)

7.2.1 Complex supercharges

Using these Qs to find the restrictions on the As is inconvenient because
of the number of combinations of derivatives of As that can appear. This
is somewhat simplified if we instead consider complex supercharges.

If we define new, complex supercharges as linear combinations of the real
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supercharges in (74) in the following way:

Q̂1 =
1√
2

(Q4 + iQ1)

Q̂2 =
1√
2

(Q2 + iQ5)

Q̂3 =
1√
2

(Q3 + iQ6)

Q̂4 =
1√
2

(Q7 + iQ8)

(75)

the reason for this particular choice is not evident here but it is one of the
choices which makes it possible to redefine the variables in the supercharges
in a very convenient way.

We already have a hint from the standard form of the supercharges used
in (28) that it is helpful to create bosonic functions in the form

bi = (Ai(x) + ipi) (76)

and this combination of supercharges lets us define such variables in a
straightforward way.

It is obvious that the new Qs in (75) will satisfy the SQM algebra (85) for
complex supercharges if the real Qs in (74) satisfy the algebra (43) used
for real supercharges due to

Q̂a = Qi + iQj (77)

Which gives us that for a 6= b

{Q̂a, Q̂b} = {Qi + iQj , Qk + iQl}
= {Qi, Qk}+ i{Qi, Ql}+ i{Qj , Qk} − {Qj , Ql}
= H(δik + iδil + iδjk − δjl) = 0

(78)

and for a = b we get

{Q̂a, Q̂a} = {Qi + iQj , Qi + iQj}
= {Qi, Qi}+ i{Qi, Qj}+ i{Qj , Qi} − {Qj , Qj}
= H(δii + iδij + iδji − δjj) = 0

(79)

And in the case with one of the charges conjugated
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{Q̂a, Q̂†a} = {Qi + iQj , Qi − iQj}
= {Qi, Qi} − i{Qi, Qj}+ i{Qj , Qi} − {Qj , Qj}
= H(δii + iδij + iδji + δjj) = 2H

(80)

The new supercharges can be written

Q̂1 =
1√
2

(bi3ψ
i
1 + bi4ψ

i
2 + b̄i1ψ̄

i
3 + b̄i2ψ̄

i
4)

Q̂2 =
1√
2

(bi2ψ
i
1 + b̄i1ψ̄

i
2 − bi4ψi3 − b̄i3ψ̄i4)

Q̂3 =
1√
2

(bi4ψ̄
i
1 − bi3ψ̄i2 + bi2ψ̄

i
3 − bi1ψ̄i4)

Q̂4 =
1√
2

(bi1ψ
i
1 − b̄i2ψ̄i2 − b̄i3ψ̄i3 + bi4ψ

i
4)

(81)

where we have defined new variables inspired by the form of the super-
charges in (28).

ψi1 = Ci1 + iCi8 ψi2 = Ci2 + iCi7 ψi3 = Ci3 + iCi6 ψi4 = Ci4 + iCi5

bi1 = Ai8 + ipi1 bi2 = Ai7 + ipi2 bi3 = Ai6 + ipi3 bi4 = Ai5 + ipi4

These new supercharges will now have the standard algebra and the fermionic
variables will follow the relation given in (29). So we have used the recipe
to create eight supercharges, made a rotation of the charges and redefined
the fermionic variables. The end result is that we have a N = 4 algebra
with the standard properties created with the CR recipe.

Below we will give an example of how the restrictions on the bosonic func-
tions Ai can be calculated. This will be done with six of the supercharges,
which will correspond to a N = 3 system. The complete calculation is
quite lengthy, and what is given here is just a small part, but hopefully
enough to give a clear idea of the method.

{Q̂1, Q̂1} =
1

2
{bi3ψi1 + bi4ψ

i
2 + b̄i1ψ̄

i
3 + b̄i2ψ̄

i
4, b

j
3ψ

j
1 + bj4ψ

j
2 + b̄j1ψ̄

j
3 + b̄j2ψ̄

j
4}

=
1

2
([bi3, b

j
3]ψi1ψ

j
1 + [bi3, b

j
4]ψi1ψ

j
2 + [bi3, b̄

j
1]ψi1ψ̄

j
3 + [bi3, b̄

j
2]ψi1ψ̄

j
4+

+ [bi4, b
j
3]ψi2ψ

j
1 + [bi4, b

j
4]ψi2ψ

j
2 + [bi4, b̄

j
1]ψi2ψ̄

j
3 + [bi4, b̄

j
2]ψi2ψ̄

j
4+

+ [b̄i1, b
j
3]ψ̄i3ψ

j
1 + [b̄i1, b

j
4]ψ̄i3ψ

j
2 + [b̄i1, b̄

j
1]ψ̄i3ψ̄

j
3 + [b̄i1, b̄

j
2]ψ̄i3ψ̄

j
4+

+ [b̄i2, b
j
3]ψ̄i4ψ

j
1 + [b̄i1, b

j
4]ψ̄i4ψ

j
2 + [b̄i2, b̄

j
1]ψ̄i4ψ̄

j
3 + [b̄i2, b̄

j
2]ψ̄i4ψ̄

j
4) = 0

(82)
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for this to be true we have to impose

[bi2, b
j
4] = 0 [bi3, b̄

j
1] = 0 [bi3, b̄

j
2] = 0 [bi4, b̄

j
1] = 0

[bi4, b̄
j
2] = 0 [b̄i1, b̄

j
2] = 0

Since we are interested in the constraints on the functions Ai and not on
the bis we plug in the definitions of the bis

[Ai6, p
j
4] + [pi3, A

j
5] = 0 −[Ai6, p

j
1] + [pi3, A

j
8] = 0

−[Ai6, p
j
2] + [pi3, A

j
7] = 0 −[Ai5, p

j
1] + [pi4, A

j
8] = 0

−[Ai5, p
j
2] + [pi4, A

j
7] = 0 −[Ai5, p

j
2] + [pi4, A

j
7] = 0

−[Ai8, p
j
2]− [pi1, A

j
7] = 0

the conditions from {Q̂2, Q̂2} = 0 gives additional constraints

[Ai7, p
j
4] + [pi2, A

j
5] = 0 −[Ai8, p

j
3]− [pi1, A

j
6] = 0

−[Ai5, p
j
3] + [pi4, A

j
6] = 0

and in the same way {Q̂3, Q̂3} = 0 gives

[Ai5, p
j
1] + [pi4, A

j
8] = 0 [Ai6, p

j
2] + [pi3, A

j
7] = 0

{Q̂1, Q̂2} = 0 gives

[Ai8, p
j
2]− [pi1, A

j
7] = 0 −[Ai7, p

j
3]− [pi2, A

j
6] = 0

[pi3, A
j
6]− [pi2, A

j
7] = 0

using the above conditions the xi dependence of the A’s is reduced to

A8 = A8(x1), A7 = A7(x2), A6 = A6(x3), A5 = A5(x4)

and lastly the conditions

{Q̂1, Q̂3} = 0⇒ [Ai8, p
j
1] + [Ai7, p

j
2] = 0

{Q̂2, Q̂3} = 0⇒ [Ai6, p
j
3] + [Ai8, p

j
1] = 0

{Q̂1, Q̂
†
2} = 0⇒ [Ai8, p

j
1] + [pi4, A

j
5] = 0

(83)
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which gives the final form of the A’s

Ai8 = axi1, Ai7 = −axi2, Ai6 = −axi3, Ai5 = axi4

so that the b’s become

bi1 = axi1 + ipi1, bi2 = −axi2 + ipi2, bi3 = −axi3 + ipi3, bi4 = axi4 + ipi4

since all of the b’s will now commute, the hamiltonian for this system
becomes

2H =
1

2

4∑
n=1

(binb̄
i
n + [bin, b̄

i
n]ψ̄inψ

i
n) (84)

where [bin, b̄
i
n] = dn are constants, making this system a 4 dimensional

SQM harmonic oscillator. The differing signs on the a’s can be solved
by choosing a different ansatz, using other Q̂’s. This also means that the
N = 4 system where all of the Q̂’s are used, will become a free system.

The calculations above clearly illustrates why there is a need to find another
formulation of SQM which is easier to work with. Apart from being tedious
to work with, this method also make it very hard to see directly how the
increasing amount of symmetry affects the constraints on the potential.

The comments made on this result in the CR paper is essentially that there
is no reason to believe that something new and exciting will happen is we
generalize the system e.g by adding dimensions. This agrees with the result
we get in the later sections of this thesis when N = 3 is explored without
any assumptions of that kind.

The result we have from this calculation is useful even if it is done in
a restricted setting. We know that the SQM harmonic oscillator is an
integrable system, and this is what we are after. It is also shown in [5] that
using only five supercharges will actually constrain the potential to being
at most quadratic when working in R4. In this thesis we have chosen not
to look closer at this result since using an odd number of supercharges is
very hard to generalize into the standard setting of complex supercharges.

8 N = 2 using complex variables

We have seen that using an ansatz for real supercharges gives us an op-
portunity to generalize the form of the charges such that it is relatively
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easy to find as many supercharges as wee need. On the other hand, the
constraints on the potential become tedious to calculate, and the algebra
of the supercharges and the fermionic variables become different from the
standard perhaps more physical form. Instead we will take a look at a
N = 2 system using a complex variables in order to see if it can be gen-
eralized to create more supercharges in a methodical way. This will help
us find a systematic description of what happens to the conditions on the
potential when imposing more supersymmetry on the system. Most of the
material in this section is based on chapter 10 in the bookMirror symmetry
[6].

We want to use the standard SQM algebra

{Qα, Q†β} = 2Hδαβ , {Qα, Qβ} = {Q†α, Q
†
β} = 0 (85)

and define
zi = xi + iyi (86)

and also complex odd variables

ψi = ψx
i

+ iψy
i

, ψ†i = ψ†x
i

+ iψ†y
i

ψı̄ = ψx
i − iψyi , ψ†ı̄ = ψ†x

i − iψ†yi
(87)

so that
{ψi, ψ†ı̄} = {ψ†i, ψı̄} = 1 (88)

We want to find a set two supercharges and their conjugates who satisfy
(85). This can of course be done in a similar way as before by finding a
Lagrangian and a set of supersymmetry transformations and then using the
Noether procedure. Since this method has already been presented earlier
in this thesis and since finding supercharges is not the aim here we will
simply give a set of Qs. Using the results later in this chapter it can easily
be seen that this is completely in line with the supercharges found using
the Noether procedure in the N = 1 case shown in a previous section. We
will also present the relation between the supercharges given here and the
ones found using the recipe of Crombrugghe and Rittenberg.

We have the supercharges, with implicit sums over i.

Q+ = ψipi −
i

2
ψı̄∂ı̄W , Q− = ψ†ipi +

i

2
ψ†ı̄∂ı̄W

Q†+ = ψ†ı̄pı̄ +
i

2
ψ†i∂iW , Q†− = ψı̄pı̄ −

i

2
ψi∂iW

(89)

We want to find the conditions on the so far arbitrary function W . This
is of course done by imposing that the Qs obey the SQM algebra. Most
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of the terms here will vanish immediately due to the commutation and
anti-commutation properties of the fermionic and bosonic variables in the
supercharges.

{Q+, Q+} = − i
2

[pi, ∂̄W ]ψiψ̄ − i

2
[∂ı̄W,pj ]ψ

ı̄ψj

= −i[pi, ∂̄W ]ψiψ̄ = 0
(90)

the above expression gives the condition on W

∂i∂̄W = 0 (91)

which means that ReW and ImW must be harmonic functions, which
is the condition we have on the real part of a holomorphic function. As
expected this result is exactly the she as when we used the real supercharges
in (70).

We also calculate the conditions on W due to the conjugate supercharges.

{Q†+, Q
†
+} =

i

2
[pı̄, ∂jW ]ψ†ı̄ψ†j +

i

2
[∂iW,p̄]ψ

†iψ†̄

= i[pı̄, ∂jW ]ψ†ı̄ψ†j = 0
(92)

which gives the condition

∂ı̄∂jW = 0 (93)

which gives exactly the same condition as (91).

We have two more combinations to check.

{Q+, Q
†
−} = − i

2
[pi, ∂jW ]ψiψj − i

2
[∂ı̄W,p̄]ψ

ı̄ψ̄ = 0 (94)

the last expression is zero due to the symmetry in i↔ j in the commutators
of even variables and antisymmetry in i ↔ j in the products of ψ, so it
does not give any further constraints on W .

{Q+, Q−} =
i

2
{ψi, ψ†̄}∂̄Wpi +

i

2
[pi, ∂̄W ]ψiψ†̄+

− i

2
{ψı̄, ψ†j}pj∂ı̄W −

i

2
[∂ı̄W,pj ]ψ

ı̄ψ†j

= i(δij∂̄Wpi − δijpj∂ı̄W ) +
i

2
[pi, ∂̄W ]ψiψ†̄ − i

2
[∂ı̄W,pj ]ψ

ı̄ψ†j

= i[∂ı̄W,pi] +
i

2
[pi, ∂̄W ]ψiψ†̄ − i

2
[∂ı̄W,pj ]ψ

ı̄ψ†j = 0

(95)
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all three terms are zero due to condition (91) on W . The same condition
on W arise from the other combinations of Q.

The hamiltonian becomes

2H = {Q+, Q
†
+}

= {ψi, ψ†̄}p̄pi +
i

2
[pi, ∂jW ]ψiψ†j − i

2
[∂ı̄W,p̄]ψ

iψ†̄+

+
i

4
{ψı̄, ψ†j}∂ı̄W∂jW

= pipı̄ +
1

4
∂ı̄W∂iW +

i

2
([pi, ∂jW ]ψiψ†j + [p̄, ∂ı̄W ]ψı̄ψ†̄)

= pipı̄ +
1

4
∂ı̄W∂iW +

1

2
(ψiψ†j∂i∂jW + ψı̄ψ†̄∂̄∂ı̄W )

(96)

8.1 Relation to real supercharges

By using a rotation it is easy to find the relation between the supercharges
with in the N = 2 complex setting above and the real supercharges from
(70). We can see that

Q†+ =
1√
2

(Q1 − iQ2)

=
1√
2

(px(−C2 − iC1) + ipy(−iC1 − C2)+

+ Re ∂zW (z)(−C4 − iC3) + i Im ∂zW (z)(−iC3 − C4))

=
1√
2

(pz(−C2 − iC1) + ∂zW (z)(−iC3 − C4))

(97)

which means that we can identify the relation between the odd variables
in the two different formulations.

ψ†ı̄ = − 1√
2

(C2 + iC1)

ψ†i =
√

2(−C3 + iC4)

(98)

The rest of the supercharges and odd variables can be related in the same
way using the other two supercharges.
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9 Creating a more general ansatz

We have now seen that by using complex variables we can find a represen-
tation of N = 2 SQM. If we could find a way to rotate the supercharges
in (89) in such a way that it is easier to recognize the N = 1 (28) super-
charges among the four supercharges in N = 2 this would give a strong
hint on how to expand the system from N = 1 to N = 2 and then to
N = 3 in systematic way which would be very helpful to us. Finding such
a general ansatz for supercharges would make it much easier to see what
happens to the constraints on the potential when systematically adding
more supersymmetry to the system.

It turns out that it is quite straightforward to find this relation between
the N = 1 and N = 2 case, this will be shown in this section.

9.1 Compact form of the supercharges

By inserting the definition of the variables in the supercharges from (89)
and making a linear combination of the supercharges, we can calculate new
supercharges which will satisfy the same algebra. We start of by expanding
Q+ and Q†− in terms of their real variables x and y. The complex function
W is split into its real and imaginary partW = W1 +iW2 in the expression
below.

Q+ = ψx
i
pxi + ψy

i
pyi +

1

2
(ψx

i
(∂yiW1 − ∂xiW2)− ψyi(∂xiW1 + ∂yiW2)+

+ i(−ψxipyi + ψy
i
pxi −

1

2
(ψx

i
(∂xiW1 + ∂yiW2) + ψy

i
(∂yiW1 − ∂xiW2)))

= ψx
i
(pxi + ∂yiW1 − ipyi − i∂xiW1) + ψy

i
(pyi − ∂xiW1 + ipxi − i∂yiW1)

(99)

Q†− = ψx
i
pxi + ψy

i
pyi −

1

2
(ψx

i
(∂yiW1 − ∂xiW2)− ψyi(∂xiW1 + ∂yiW2)+

− i(−ψxipyi + ψy
i
pxi +

1

2
(ψx

i
(∂xiW1 + ∂yiW2) + ψy

i
(∂yiW1 − ∂xiW2)))

= ψx
i
(pxi − ∂yiW1 + ipyi − i∂xiW1) + ψy

i
(pyi + ∂xiW1 − ipxi − i∂yiW1)

(100)

The aim was to find the supercharges used in the N = 1 system (28), this
is done by using a rotation.
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1

2
(Q†− +Q+) = (ψx

i
(pxi − i∂xiW1) + ψy

i
(pyi − i∂yiW1)

=
∑
i

ψi(pi − i∂iW1)
(101)

We can now see that the N = 2 case is the same system as N = 1 with
additional supercharges added. The other two supercharges are given by
the rotation

1

2
(Q†− −Q+) = (ψx

i
(ipyi − ∂yiW1) + ψy

i
(−ipxi + ∂xiW1)

=
∑
ij

iψiJij(pj + i∂jW1)
(102)

where

Jij =

(
0 1
−1 0

)
(103)

The form of the supercharge in (102) gives a hint of how we can generalize
to include more supercharges into the system. The choice of the matrix
J corresponds to a specific choice of rotation we made. If we instead use
(102) as an ansatz and determine what conditions we have on J we can
find more matrices I, K and so on and use this to create systems with
more supersymmetry.

9.2 Complex structure

We will now use an anstatz inspired by (102). Note that the i in (102) has
been absorbed, this will of course only contribute an overall factor, and as
such it will not change the constraints on J .

Q1 =
∑
j

(pj − iWj)ψj (104)

together with
Q2 =

∑
j

(pj + iWj)Jjkψk (105)

The conditions we have to impose on J is determined by imposing the
standard SQM algebra (85). First let’s check {Q1†, Q2}
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{Q1†, Q2} =
∑
k

∑
ij

{(pk + iWk)ψ
†
k, (pi + iWi)Jijψj}

=
∑
k

∑
ij

[(pk + iWk), (pi + iWi)]Jijψ
†
kψj+

+ {ψ†k, ψj}(pi + iWi)(pk + iWk)Jij+

=
∑
k

∑
ij

[(pk + iWk), (pi + iWi)]Jijψ
†
kψj

+ (pi + iWi)(pj + iWj)Jij = 0

(106)

The first term vanishes due to Wi = ∂iW . For the last term to vanish we
have to impose Jij = −Jji

(pi + iWi)(pj + iWj)Jij + (pj + iWj)(pi + iWi)Jji

=
[
setting Jij = −Jji

]
= ((pi − iWi)(pj − iWj)− (pj − iWj)(pi − iWi))Jij

= i([pj ,Wi]− [pi,Wj ])Jij

= (∂j∂iW − ∂i∂jW )Jij = 0

(107)

We also get a condition on Jij from {Q1, Q1†} = {Q2, Q2†} = 2H

{Q1†, Q1} =
∑
ij

[(pj + iWj), (pi − iWi)]ψ
†
jψi + (pi − iWi)(pi + iWi)

= {Q2†, Q2} =
∑
kl

∑
ij

[(pk − iWk), (pi + iWi)]JijJklψ
†
lψj+

+ {ψ†l , ψj}(pi + iWi)(pk − iWk)JijJkl

=
∑
kl

∑
ij

[(pk − iWk), (pi + iWi)]JijJklψ
†
lψj+

+ (pi + iWi)(pk − iWk)JijJkj
(108)

so that
∑

j JijJkj = JJ t = I in order to get the same Hamiltonian. This
in turn means that J2 = J(J t)t = J(−J)t = −1.

These properties of J is exactly what we have for a complex structure. Note
that there is usually a metric multiplying the complex structure, but we
assume that we have a flat space so the metric will be an identity matrix.
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9.3 Constraints on the potential

In order for the first term in (108) to vanish we have to impose∑
ijk

[(pk − iWk), (pi + iWi)]Jijψkψj = 2
∑
ijk

∂k∂iWJijψkψj = 0 (109)

⇒
∑
i

∂k∂iWJijψkψj + ∂j∂iWJikψjψk

=
∑
i

(∂k∂iWJij − ∂j∂iWJik)ψkψj = 0
(110)

⇒
∑
i

∂iJi[j∂k]W = 0 (111)

where Wi = ∂iW has been used. The constraint on W is that it has to
be a holomorphic function with respect to the complex structure J . This
is a very useful result which will give us a natural way to describe the
constraints on W when we add more supercharges.

10 N = 3 using complex structure

In the last section we found a way to express supercharges by using a super-
charge of the same form as in a N = 1 system together with a supercharge
with a complex structure. The constraints on that system turned out to
be that the functionW had to be holomorphic with respect to the complex
structure. In this section it will be shown that adding more supercharges
by using another complex structure will create the same constraint for the
additional complex structure. There will also be more constraints on W
depending on the combination of the two complex structures used in the
new system. It is also shown that the choice of the second complex struc-
ture cannot be completely arbitrary but that they have to satisfy a specific
commutation relation.

10.1 Additional constraints

We will use the same supercharges and algebra as in the previous sec-
tion but with one additional charge added by using an additional complex
structure I.

Q3 =
∑
j

(pj + iWj)Ijkψk (112)
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Adding this extra Q gives constraints on the complex structures I and J
from

{Q2, Q3†} =
∑
ij

∑
kl

[(pi + iWi), (pk − iWk)]JijIklψjψ
†
l+

+ {ψj , ψ†l }(pk − iWk)(pi + iWi)JijIkl

(113)

First term has to be zero for all j and l:

∑
ij

∑
kl

[(pi + iWi), (pk − iWk)]JijIklψjψ
†
l

= 2
∑
ij

∑
kl

∂k∂iWJijIklψjψ
†
l = 0

(114)

⇒
∑
i

∑
k

∂k∂iWJijIkl =
∑
i

∑
k

∂j∂iWJikIkl

=
∑
i

∑
k

∂j∂lWJikIki = 0 ∀j, l
(115)

where (111) has been used. This term is zero if the product
∑

k JakIkb is
antisymmetric in a↔ b.

We can now see the relation we have to impose in the complex structures.

JI = −(JI)t = −ItJ t = −IJ (116)

So we know that J and I have to anticommute.

And we can also see that the product JI is a complex structure

(JI)(JI) = −JIIJ = JJ = −1 (117)

Apart from this constraint on the complex structure we also get additional
constraints on W . First of all W now has to be holomorphic with respect
to both J andI which is quite hard to satisfy and greatly limits the choice
of W . We also have to make the second term of (113) vanish. This will
also put a quite strong constraint on W .
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∑
ijk

(pk − iWk)(pi + iWi)JijIkj

=
∑
ijk

(iWipk − iWkpi)JijIkj

=
∑
ijk

iWipkJijIkj −
∑
ijk

iWipkJkjIij

=
∑
ijk

iWipkJijIkj +
∑
ijk

iWipkJijIkj

=
∑
ijk

iWiJijIkj(pk + pi) = 0

(118)

so that we have to impose ∑
ijk

∂iWJijIkj = 0 (119)

The condition that the potential has to be holomorphic with respect to
both I and J has been explored in a paper from 1983 by Alvarez-Gaumé
and Freedman [9] where it is concluded that the only solution is to have a
quadratic potential, which will make the system integrable.

10.2 Beyond N = 3

The natural way to continue would be to include yet another supercharge
like the one in (112) but with a third complex structureK. The constraints
on the potential resulting from this would of course be yet another holo-
morphicity condition on W and it also follows that W has to satisfy more
constraints similar to (119). Since the system is already integrable this will
not be explored further here. A remark on the third complex structure K,
which follows directly from the reasoning on J and I above is that we may
choose

K = IJ (120)

which leads us directly to the following properties of I,J and K

I2 = J2 = K2 = IJK = −1

IJ = −JI = K, KI = −IK = J, JK = −KJ = I
(121)

Which is the relation satisfied by quaternions. Among other things this
means that we have now exhausted the number of supercharges we can
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construct without using linear combinations of the four we already have.
This is because any new complex structure satisfying (121) can always be
written in terms of a linear combination of I, J , K and 1.
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11 Discussion

This thesis has investigated the constraints that arise on the potential of
a SQM hamiltonian as more supersymmetry is introduced into the sys-
tem. The purpose of this was to find at which point the system becomes
integrable due to the amount of symmetry imposed on the system. This
has been done by finding an ansatz for supercharges and systematically
imposing more supersymmetry on a general quantum mechanical system.

Supersymmetry in quantum mechanics was explored in a paper from 1983
by Crombrugghe and Rittenberg. The goal of this paper was not expressly
to find out under which circumstances and amounts of supersymmetry
quantum mechanical systems become integrable. The parts of the paper
which touches the extra symmetries that arise due to supersymmetry, and
weather or not this makes systems integrable are there mainly because it’s
natural relation to SQM, and it is never claimed in the paper that this
relation is fully explored and entirely conclusive.

In the CR paper an ansatz is used using real valued supercharges and a
slightly non standard SQM algebra. This is in itself not a very big issue
but it turns out that it makes it hard to generalize and analyze in the
general case, without making assumptions on how many dimensions one
has in relation to the amount of supersymmetry. This problem is due to
that the model is based on finding real matrix representations of elements
in a Clifford algebra and using these to construct the supercharges. In the
general case this means that one has to use technical properties of Clifford
algebra representations, which obscures the possible physical interpreta-
tions. Even under circumstances when the ansatz is easy to use, the paper
only goes so far as to conclude that systems with five supercharges in four
dimensions become integrable, and that there is no reason to believe that
anything new will happen when going to higher dimension. While this
seems reasonable, a more conclusive and less complicated reasoning would
be desirable. CR also presents a ways of finding some conserved quantities
that arise due to the addition of supersymmetry to a system. This is of
course relevant to the integrability of the system but most of the additional
symmetries that are presented are hard to generalize to a general case. The
additional odd symmetry discussed in 6.4 is also not very useful and there
are no conclusions drawn from this regarding the integrability of the SQM
systems.

The ansatz used in the CR paper is very concise and gives a compact form
on the conditions one has to impose on the bosonic part of the supercharges,
e.g the potential. The ansatz also benefits from being easy to use for
constructing supercharges in low number of dimensions when the clifford
matrices are easy to find. On the other hand, the fact that the algebra
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used for these supercharges is not the standard SQM algebra, also means
that the fermionic variables in the supercharges do not satisfy their usual
algebra. This makes the supercharges hard to interpret physically and also
hard to relate to other known formulations of SQM.

Instead of using the formulation of SQM from CR it is possible to find
a general way of writing supercharges using an ansatz inspired by the
simplest case of N = 1 SQM. This option has been explored and has
been compared and related to the result from using the CR ansatz. This
new ansatz makes it very straightforward to introduce more supercharges
into the system and has made it easy to express the kind of conditions on
the potential that arise from adding more supersymmetry.

It can be seen from this new formulation that, in N = 2 systems, the
restrictions on the system means that the potential has to correspond to
the real part of some holomorphic function. This is in agreement with the
result found in most introductory texts on SQM, but with this ansatz the
result is even easier to find than when using other formulations. There is
no conclusion drawn from this regarding the integrability of the system.
The reason for this is that there are no known results that points to that
this condition on the potential is a strong enough constraint to make the
system integrable. In N = 3 systems the potential is restricted to being the
real part of a function which is holomorphic with respect to two complex
structures, along with a constraint given by a combination of the coplex
structures. These constraints that arise from N = 3 are very hard to
satisfy and leads to that the system becomes integrable. This corresponds
to the finding of CR that the system is integrable when using six (actually
already at five according to CR) supercharges. In this case the potential
has to be the real part of a function which is holomorphic with respect to
two complex structures which, according to Alvarez-Gaumé and Freedman
[9], means that it can be at most quadratic, making the system integrable.
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Proof of Liouville theorem

We will now give a somewhat sketchy proof of the Liouvile theorem. The
purpose of this is to give an idea of how the conditions on the system and
its conserved quantities makes the system solvable rather than to give a
completely rigorous proof. The full version can be found in [7].

Consider a system with a phase space M of dimension 2n equipped with
a one form α =

∑
i pidqi and a symplectic two-form

ω = dα =
∑
j

dpj ∧ dqj (122)

If we define the vector field XA = ωij∂jA∂i it can be shown that (see for
instance [7] or [10])

{A,B} = XA(B) = ω(XA, XB) (123)

We want to be able to do a transformation so that the conserved quantities
Fi are among the coordinates of the system:

ω =
∑
j

dpj ∧ dqj =
∑
j

dFj ∧ dψj (124)

If we can find such a transformation the solutions of the equations of motion
will become trivial

Ḟj = {H,Fj} = 0,

ψ̇j = {H,ψj} =
∂H

∂Fj
= Ωj

(125)

The Ωjs will be time independent since they only depend on Fj . So the
solutions will be given by

F (t)j = F (0)j ,

ψ(t)j = ψ(0)j + Ωjt
(126)

We now introduce a new function S such that onMf given by Fj(p, q) = fi

S(F, q) =

∫ m

m0

α =

∫ q

q0

n∑
i

pi(f, q)dqi (127)
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If such a function exists, the integral in (127) cannot depend on the path
from m0 to m which means that we want

dα|Mf
= ω|Mf

= 0 (128)

The vector space XFi is tangent to Mf because XFi(Fj) = {Fi, Fj} = 0.
We can now see that ω|Mf

= ω(Fi, Fj) = {Fi, Fj} = 0. This makes it
possible to write

pi =
∂S

∂qi
(129)

and if we also define

ψi =
∂S

∂Fi
(130)

we see that

dS =
∑
i

ψidFi + pidqi (131)

and by using d2S = 0 we finally get

ω =
∑
j

dpj ∧ dqj =
∑
j

dFj ∧ dψj (132)

�
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