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Abstract

In this master thesis we introduce the basics of supersymmetry in
terms of superspace and superfields. We then show that a two-dimensional
sigma model admits N=(2,2) supersymmetry iff the target space geom-
etry is bi-hermitian. In order for the supersymmetry algebra to close
off-shell, auxiliary fields are needed in the model. These are introduced
via a formulation of the model in terms of N=(2,2) semi-chiral superfields.
We then introduce generalized complex geometry, and define generalized
Kähler geometry (GKG). Since bi-hermitian geometry and (GKG) are
equivalent, we then try to realize GKG directly from the sigma model. In
doing so, we must redefine the auxiliary fields into fields transforming in
T ∗, and we discuss different ways to make such redefintions.
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1 Introduction

In this master thesis we will look at the connections between supersym-
metric sigma models and complex geometry. We will see that when we
impose enough supersymmetry on the sigma model, certain restrictions
on the geometry in the target space will arise. We will concentrate on
a two-dimensional sigma model, since that is the dimension relevant for
string theory. With one supersymmetry, no restrictions will arise. It is
when we make the model N=(2,2) supersymmetric that interesting things
will happen. First we will show that if we have a N =(2,2) sigma model
with chiral superfields, the geometry of the target space has to be Kähler.
More generally, without any restrictions on the N=(2,2) superfields, we
will show that the geometry has to be bi-hermitian. This will be referred
to as the ’Gates, Hull and Roček theorem’ (GHR-theorem). Bi-hermitian
means that there are two complex structures, and the metric is hermitian
with the respect to both of them, and the complex structures are covari-
antly constant.

We will also look at a generalization of complex geometry, called Gen-
eralized Complex Geometry (GCG). In ordinary complex geometry we
have complex structures, mapping the tangent space to itself. In GCG we
have a Generalized Complex Structure, mapping the sum of the tangent
space and the cotangent space to itself. One remarkable fact is that there
is a subclass of GCG’s, called Generalized Kähler Geometry (GKG), which
is equivalent to the bi-hermitian geometry mentioned above. Therefore it
should be possible to realize GKG in the target space directly from the
sigma model. In doing so, we will need fields living in the cotangent space.
These fields have to be auxiliary, since we want the physical properties of
the sigma model to be the same. These auxiliary fields are also needed
when the complex structures do not coummute, in order for the algebra
to close off-shell. The auxiliary fields can be defined in different ways, and
we get different GCS.

When we realize GKG in the target space from a sigma model, we will
closely follow the paper [1]. In addition to what is done in that paper, we
here define the auxiliary fields in the model differently, and we will there-
fore obtain a different set GCS’s, but with the auxiliary fields integrated
out, the model looks the same as in [1].

The thesis will be organized as follows: section 2 will consist of some
background material in order to introduce supersymmetry, including a
very short introduction to Lie Groups, the Poincaré Group, and represen-
tations thereof. In section 3 we will introduce the supersymmetry algebra,
and the Super-Poincaré group, and start looking for representations of this
larger group, inspired by the way of proceeding in the Poincaré case. We
will introduce superfields and superspace, a generalization of Minkowski
space. We will also introduce the sigma model. In section 4 we will look
at the parts needed of complex geometry in order to see the connection to
supersymmetry. In section 5 we will make the sigma model supersymmet-
ric, and in section 6 there will the first example on how the restrictions
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of the geometry in target space arise from the N=(2,2) supersymmetric
sigma model. Section 7 treats the GRH-theorem, and in section 8 we look
at the basics of GCG. In section 9 and 10 we talk about how to identify ge-
ometrical objects from supersymmetry transformations, and how to treat
auxiliary fields. In sections 11 and 12 we will realize GKG from the sigma
model, and in section 13 there will be a discussion about the results. In
the appendix we will look at a special case of the general model treated in
section 12, and see simplifications that can be made. In the appendix we
will also discuss how the results obtained in section 12 can be understood
from a geometrical point of view.
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2 Background material

In this thesis we will discuss the connection between supersymmetric
sigma models and geometry. Here we present some background mate-
rial which is needed in order to develop supersymmetry. Of course, much
more background material could be included. Also, the treatment of the
material I have included is far from rigorous or exhaustive. This section
is based on the reference [2].

2.1 Lie groups

Loosely speaking, a Lie Group is a group where the group elements de-
pend smoothly on a set of parameters, εa, a=1,2 . . . They play a central
role in physics. For example, if you want to describe rotations, the angle
of rotation will be the parameter that the group elements will depend
smoothly on. First, we define what a representation of a group is:

A representation of a group is an assignment of each element of the group
g, to a linear operator that acts on elements of a linear vector space,

g → D(g) (2.1)

such that the identity of the group is mapped to the identity operator, and
the group multiplication law is preserved, that is

D(e) = 1, (2.2)

D(g1)D(g2) = D(g1g2). (2.3)

In a given representation, since the group elements depends smoothly on
the parameters, we can expand a group element around the identity, with
infinitesimal parameters:

D(ε) ≈ 1 + iεaXa. (2.4)

The same index upstairs and downstairs implies summation over that
index. That convention will be used throughout this master thesis. The
Xa are called the generators of the group. It can be shown that one can
always write a general group element as

D(ε) = eiεaXa

. (2.5)

Since it’s a group, we should have

eiαaXa

eiβaXa

= eiδaXa

(2.6)

for some δa as a function of αa and βa. Since the operators do not nec-
essarily commute, in general we have eAeB 6= eA+B . Therefore δa is not
simply δa = αa +βa. Instead, one has to use the Baker-Hausdorff formula

eAeB = e(A+B+ 1
2 [A,B]+...). (2.7)

By using Baker-Hausdorff on the left hand side of (2.6), and then ex-
panding the exponential, it can be shown that a necessary and sufficient
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condition for it to be true for some δa = δa(αa, βa) is that the generators
fulfill the following identity:h

Xa, Xb
i

= fab
c Xc, (2.8)

where [A, B] is the commutator between A and B and fab
c are constants

called the structure constants. The above relation between the generators
is called the Lie Algebra of the group. The explicit form of the generators
depend on the representation used, but the structure constants do not.

2.2 The Poincaré group

An example of a Lie group is the Poincaré group. In four space-time
dimensions it contains 10 generators. 4 for translations in space-time, 3
for rotations in space and 3 for boosts. It is sometimes denoted ISO(1,3).
Here the SO(1,3)-part is for the rotations in space-time, and the I includes
the translations. Its Lie Algebra is given by

[Pµ, Pν ] = 0 (2.9)

[Pµ, Jρσ] = i(ηµρPσ − ηµσPρ) (2.10)

[Jµν , Jρσ] = i(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ). (2.11)

The translations are generated by Pµ. The rotations and boosts are gen-
erated by Jµν , which by itself forms the Lorentz group, denoted SO(1,3).
Jµν is antisymmetric, so it has six independent components, as it should.

We want to find how the coordinates in Minkowski space transforms under
the Poincaré group. We also need to find how functions over Minkowski
space transform. To see how a coordinate transforms, we will define
Minkowski space as the quotient space (Poincaré group/Lorentz group).
The reason to take this complicated approach is that it is easy to gener-
alize to the supersymmetric case. A point x in Minkowski space is then
given by

h(x) = eixµPµ . (2.12)

The action of the Poincaré group on the coordinates of this quotient space
is given by left multiplication:

h(gx) = h(x′) ≡ gh(x)(modSO(1, 3)). (2.13)

In this thesis, we will never have to ”mod out” any Lorentz transfor-
mations, but this is the proper way to define it. If g = e(iηνPν) is a
translation, we can calculate how a translation changes the coordinates:

h(x′) = e(iηνPν)e(ixµPµ) = ei(ηµ+xµ)Pµ = h(η + x). (2.14)

This follows since two different generators of translations commute. There-
fore, not too surprising,

x′ = x + η ⇒ δx = η. (2.15)
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Later on, when we’ve introduced superspace and superfields, we will gen-
eralize this procedure, and then we will have non-vanishing commutators
between generators of translations, and therefore a more nontrivial result.

2.3 Field representations of the Poincaré group

A field over Minkowski space is just a function from Minkowski space
into some other vector space, xµ → f(xµ). When we make a coordinate
change, xµ → x′µ, the fields will change into new fields of the new coor-
dinates, f(xµ) → f ′(x′µ), in some way. There are different types of fields.
For example, a scalar field is defined by the following transformation law:

f(xµ) = f ′(x′µ). (2.16)

Under an infinitesimal coordinate transformation xµ → xµ + δxµ, the
scalar field transforms as

δf(x) ≡ f ′(x)− f(x) = f ′(x′ − δx)− f(x) = −δxµ∂µf(x), (2.17)

where we made a Taylor expansion in the last line. For an infinitesimal
transformation, we also have

δf(x) = iηµPµf(x), (2.18)

where Pµ is the representation of the generator of translations acting on
scalar fields. If we plug in (2.15) into (2.18), and compare to (2.17), we
can see that the generators of translation are represented by

Pµ = i∂µ (2.19)

when acting on scalar fields.

2.4 Spinors

Another representation of the Lorentz group is carried by so called spinors.
In this thesis we will use two component spinors denoted Ψα. α will take
the two values {+,-}. The following matrices are very useful in spinor
space:

Cαβ =

„
0 i
−i 0

«
Cαβ =

„
0 −i
i 0

«
. (2.20)

We can rise and lower spinor indices with them as follows:

Ψα = ΨβCβα Ψα = CαβΨβ . (2.21)

One can show, that if Ψα transforms with N , Ψα will transform with the
inverse N−1, so the product ΨαΨα will be invariant. In this sense, the
Cαβ acts like a metric in spinor space.
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3 Supersymmetry

In nature there are two types of particles, bosons and fermions. The
main difference between them is that they obey different statistics. The
reason for this is that there can only be one fermion per quantum state,
whereas for bosons there are no such restrictions. It is possible to extend
the Poincaré group to include fermionic generators Qα. These generators
transform bosons into fermions and fermions into bosons. They transform
as spinors under the Lorentz group, and therefore carry a spinor index.
This new group will be called the Super-Poincaré group. The main refer-
ences for the material on supersymmetry are [3] and [4].

3.1 Super-Poincaré algebra

The algebra for this new group will look slightly different in different di-
mensions. In this master thesis we will consider supersymmetry in two
dimensions. In addition to (2.9), the Super-Poincaré algebra in two di-
mensions reads

[Pµ, Qα] = 0

[Jµν , Qα] = ([ρµ, ρν ])β
α Qβ

{Qα, Qβ} = ρµ
αβPµ.

(3.1)

The last line is the anticommutator between the supersymmetry genera-
tors, and ρµ satisfies the Clifford algebra {ρµ, ρν} = 2ηµν . We see that the
Q’s are invariant under translation, transforms as a spinor under Lorentz-
transformations, and that the anticommutator between two Q’s is a trans-
lation.

Now we need to find a representation of the Super-Poincaré group. For
this, we introduce superspace. Superspace is parametrized by the normal
commuting variables xµ, and in addition to those, we have anticommuting
variables θα. The anticommuting variables are called Grassman variables,
and we group them into a two-component spinor„

θ+

θ−

«
. (3.2)

Functions on superspace are called superfields. Since the Grassman vari-
ables anticommute, θiθj + θjθi = 0, it follows that θ2

i = 0. Therefore
we can expand any superfield in the anticommuting variables, and the
expansion will terminate eventually. For example, a function of one single
anticommuting variable has the general form

f(θ) = a + bθ a, b ∈ R.

When we work with Grassman variables, we have to know how to differen-
tiate them. Later we will construct supersymmetric actions of superspace,
so we need to know how to integrate them, too.
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3.2 Grassman Calculus

Differentiation is defined by

∂θα

∂θβ
≡ ∂βθα = δα

β . (3.3)

We want the integral of a superfield over superspace to resemble the inte-
gral

R∞
−∞ of ordinary functions over ordinary coordinates. So we demand

the integral to be linear and invariant under translations, that isZ
dθ
X

Cifi(θ) =
X

Ci

Z
dθfi(θ) and

Z
dθf(θ + ε) =

Z
dθf(θ).(3.4)

Since f(θ) = a + bθ, these two conditions give usZ
dθ(a + bθ + bε) = (a+bε)

Z
dθ+b

Z
dθθ =

Z
dθ(a + bθ) = a

Z
dθ+b

Z
dθθ.

(3.5)
Comparing the second line with the last line we see that this can only
hold if bε

R
dθ = 0. b

R
dθθ on the other hand is arbitrary. This leads to

the definition Z
dθ = 0 and

Z
dθθ = 1. (3.6)

If we have several variables θ1, θ2 . . . θn, we getZ
dθjθi = δij and

Z
dθi = 0 (3.7)

Finally, from these definitions we can see that we have a connection be-
tween differentiation and integration:Z

dθ =
∂

∂θ
. (3.8)

This last line will be useful when we start to construct supersymmetric
Lagrangians.

3.3 Representations of Supersymmetry

Now we need to find a representation of the supersymmetry translation
generators, Qα, acting on superfields. We will follow the same procedure
as we did in the Minkowski space case. We define Superspace as the
quotient (Super-Poincaré group/Lorentz group). An element in this space
is written

h(x, θ) = ei(xµPµ+θαQα). (3.9)

For a supersymmetry translation g = eiεαQα in superspace, we can calcu-
late how the coordinates changes:

h(x′, θ′) = gh(x) = eiεαQαei(xµPµ+θβQβ)

= e
i((xµ− i

2 εαρ
µ
αβ

θβ)Pµ+(εα+θα)Qα)
= h(x− i

2
ερθ, ε + θ),

(3.10)
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where we used the Baker-Hausdorff formula and the supersymmetry al-
gebra, equations (2.7) and (3.1). From this we see that the coordinates
changes as

δθα = εα

δxµ = − i

2
εαρµ

αβθβ .
(3.11)

A scalar superfield changes as

δφ(x, θ) = φ′(x′ − δx, θ′ − δθ)− φ(x, θ) = −δxµ∂µφ− δθα∂αφ. (3.12)

In terms of the supersymmetry generator this change is written as

δφ = iεαQαφ. (3.13)

Plugging in (3.11) in (3.12) and comparing to (3.13), we find that the
generators are represented by

Qα = i
∂

∂θα
+

1

2
ρµ

αβθβ∂µ (3.14)

when acting on scalar superfields.

In addition to the supersymmetry generators, we want to have derivatives
on superfields. We want these derivatives to be supertranslation-invariant,
so they should anticommute with the generators. They are called covari-
ant derivatives, and are found to be

Dα =
∂

∂θα
+

i

2
ρµ

αβθβ∂µ (3.15)

The coviariant derivatives obey the same algebra as the supersymmetry
generators.

As mentioned above, a superfield can be expanded in the Grassman vari-
ables. The coefficients in the expansion are called the component fields,
and will be fields over the commuting variables. For example, if we have
a function of two Grassman variables, φ(xµ, θα), α = {+,−}, we will get

φ(x, θ) = A(x) + θαΨα(x) + θαθαF (x).

With the use of our covariant derivatives, we can define the component
fields by

A(x) ≡ φ(x, θ)|
Ψ± ≡ D±φ(x, θ)|

F (x) ≡ D+D−φ(x, θ)|,
(3.16)

where the bar in the end of each line means putting θ = 0 in the expression.
This way of writing will be very convenient when start writing actions over
superspace. The reason is this relation, which can be seen from (3.8) and
(3.15): Z

dθα = Dα|. (3.17)
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3.4 Sigma Models

A sigma model is a set of maps φi from a manifold Σ, with coordinates
x, to a target manifold T . The map is given by extremizing the action

S =

Z
Σ

gij(φ)∂µφ(x)i∂µφ(x)jdx. (3.18)

where gij is the metric of the target space.

The equations of motion for a free string in String theory is derived by
extremizing the area that the string sweeps out in space-time. The area
is written as an integral over the world sheet of a string, and in a certain
gauge the action looks like a two-dimensional Sigma model. So Σ will be
the world sheet of a string, and T will be space-time.

We can extend Σ to a superspace, to make our sigma model world sheet
supersymmetric. When we do that, we will find connections between the
amount of supersymmetry on the sigma model, and the geometry on the
target manifold. It will turn out that the geometry will be different kinds
of complex geometry. We will therefore now have a brief look of what
complex geometry is.
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4 Complex Geometry

We will here give a brief introduction to complex manifolds. We assume
that the basic aspects of differential geometry are known, and refer to [5]
for a more complete treatment.

4.1 Complex Manifolds

If M is an even-dimensional differentiable manifold, one can locally intro-
duce complex coordinates. If {xµ, yν} are the original coordinates,

z = x + iy

z̄ = x− iy
(4.1)

can be taken as the complex coordinates. The target space and dual space
will be spanned by the following bases

∂

∂z
=

∂

∂x
− i

∂

∂y

∂

∂z̄
=

∂

∂x
+ i

∂

∂y

dz = dx + idy

dz̄ = dx− idy.

(4.2)

The basis vectors of the tangent space are called holomorphic and anti-
holomorphic vectors. If the transition functions between different patches
with complex coordinates are holomorphic, M is called a complex mani-
fold. On a complex manifold one can globally define a tensor J that maps
the target space to itself. It acts on the basis vectors as

J
∂

∂z
= i

∂

∂z

J
∂

∂z̄
= −i

∂

∂z̄

(4.3)

It follows that J2 = −1. The tensor J can be used to construct a projection
operator:

P± =
1

2
(1∓ iJ) (4.4)

It will project out the holomorphic and anti-holomorphic part of a vec-
tor, and the tangent space is split into one holomorphic and one anti-
holomorphic part.

Next we will look at the case when we have a manifold M with a ten-
sor J which fulfills J2 = −1. What does it take for M to be a complex
manifold? The reason we do this, is that in the sigma models further on,
this is the case we will find.

M is called an almost complex manifold if it has a tensor that fulfills
J2 = −1. Like above we can define projection operators, and the tangent
space will be split into on holomorphic and one anti-holomorphic part,
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but not necessarily with the basis above. If the Lie bracket of two holo-
morphic vectors is again holomorphic, J is called integrable. This will be
the case if

P− [P+X, P+Y ] = 0 ∀X, Y ∈ TpM+ (4.5)

where TpM+ denotes the holomorphic part of the tangent space. The
above equation is equivalent to the vanishing of the so called Nijenhuis
tensor, which in coordinate form is defined as (The bracket [ , ] around
indices means anti-symmetrization with respect to those indices.)

Nρ
µν = Jρ

λ∂[νJλ
µ] + ∂λJρ

[νJλ
µ] (4.6)

This can be seen by plugging in (4.4) in (4.5) and expanding. If the Ni-
jenhuis tensor vanishes M is a complex manifold. That is, one can choose
complex coordinates, and the transition functions between different such
patches will be holomorphic.

4.2 Kähler Manifolds

In this section we will introduce some definitions that in the end will al-
low us to define what we mean by a Kähler manifold. It will be those
manifolds that will arise later.

If M is a complex manifold, and the metric tensor obeys

J i
kgijJ

j
l = gkl (4.7)

then g is called a hermitian metric, and M is called an hermitian manifold.

From the definition of a hermitian metric, it follows that on a hermitian
manifold, J is antisymmetric in the following way:

J i
kgijJ

j
l = gkl = glk ⇒

J i
kgijJ

j
l J l

m = J l
mglk ⇒

−J i
kgijδ

j
m = −J i

kgim = J l
mglk

(4.8)

Therefore, on an hermitian manifold, we can define a two-form, the Kähler
form:

Ω = Jk
i gkjdxi ∧ dxj (4.9)

In complex coordinates, the Kähler form is

Ω = 2igµν̄dzµ ∧ dz̄ν̄ . (4.10)

We will use bars over the anti-holomorphic indices. If the Kähler form is
closed, dΩ = 0, then the hermitian manifold is called a Kähler manifold.
For a Kähler manifold, the metric will obey

gµν̄,λ = gλν̄,µ gµν̄,λ̄ = gµλ̄,ν̄ (4.11)
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The comma means differentiation with respect to the variable after the
comma. This can be shown from the definition dΩ = 0. If

gµν̄ = ∂µ∂ν̄K (4.12)

for some function K, (4.11) will be satisfied. It can be shown that the con-
verse is also true, any Kähler metric can be expressed as (4.12), locally.
K is called the Kähler potential.

Finally it can be shown that a hermitian manifold is a Kähler manifold if
and only if

∇µJ = 0 (4.13)

where ∇µ is the Levi-Civita connection associated with the metric g.
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5 Supersymmetric Sigma Models

In this section we will make the sigma model supersymmetric. The model
will then contain both bosons and fermions, and they are transformed into
each other under a supersymmetry transformation.

5.1 Supersymmetry on the world sheet

We can extend the string world sheet to a superspace by introducing
anti-commuting variables, and letting the fields living on the world sheet
become superfields:

φ(σ, τ) → φ(σ, τ, θ+, θ−). (5.1)

The supersymmetric generalization of the sigma model given above, equa-
tion (3.18), is

S =

Z
d2xd2θgij(φ)Dαφi(x, θ)Dαφj(x, θ)

= 2i

Z
d2xd2θgij(φ)D+φi(x, θ)D−φj(x, θ).

(5.2)

We can expand the superfield living on the world sheet in the anti-
commuting variables:

φ(x, θ) = A(x) + θαΨα(x) + θαθαF (x). (5.3)

We can plug this expansion into (5.2) and then integrate out the Grassman
variables. The equations of motion derived from the resulting expression
will show that F(x) is an auxiliary field, its field equation will give F = 0.
It can also be shown that A(x) describes a boson, and Ψ(x) a fermion.

Now we want to find out what happens to the components of a superfield
under a superfield transformation. With the supersymmetry generators
given by

Qα = i
∂

∂θα
+

1

2
ρµ

αβθβ∂µ (5.4)

we find

δ(ε)φ ≡ iεαQαφ ≡ δA(x) + θαδΨα + θαθαδF (x) =

iεα

„
i

∂

∂θα
+

1

2
ρµ

αβθβ∂µ

«
(A(x) + θαΨα(x) + θαθαF (x)) .

(5.5)

We identify what is in front of each power of θ to find that the components
transforms as

δA(x) = −εαΨα, (5.6)

δΨα =
i

2
εαρµ

αβ∂µA(x)− εαF (x), (5.7)

δF (x) = εαρµ
αβ∂µΨβ(x). (5.8)

We see that the bosonic field A(x) is transformed into a fermionic field,
and vice versa. When performing the integral, only the θαθα component of
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a superfield will be non-vanishing, because of (3.7). Since δF (x) is a total
derivative under a supersymmetry transformation, we see that an action
written in terms of superfields will be invariant under a supersymmetry.
This can also be seen by exploiting the relationZ

dθ = D| (5.9)

and observing that D| = −iQ| (c.f. equations (3.14) and (3.15)). Namely,
if we have an arbitrary function of superfields, L(φ), under a supersym-
metry it transforms as

δS =

Z
d2xd2θδL(φ) =

Z
d2xD2εαQαL(φ)| = −

Z
d2xD2iεαDαL(φ)|=̇0

(5.10)
where the last equality means ’0 up to total derivatives’ and follows from
the algebra of the covariant derivatives, especially from the fact that
D2
± ∝ ρµ∂µ.

5.2 The algebra in light-cone coordiantes

We now make a specific choice of the matrices ρµ:

`
ρ0´α

β
=

„
0 i
−i 0

«
`
ρ1´α

β
=

„
0 i
i 0

« (5.11)

Plugging this matrices into the anticommutator between the Q’s in (3.1)
gives us

{Q±, Q±} = 2Q2
± = (ρµ)γ

± Cγ±Pµ = ∂0 ± ∂1

{Q+, Q−} = (ρµ)γ
+ Cγ−Pµ = 0

(5.12)

where Cαβ is the spinor space metric, equation (2.20).

If we make a change of coordinates to so called light-cone coordinates,

ξ++ = σ + τ

ξ= = σ − τ
(5.13)

we get a very nice look of the algebra for the N=(1,1) and supersymmetry
generators:

Q2
+ = i∂++, Q2

− = i∂=, {Q+, Q−} = 0 (5.14)

where ∂++
=

= 1
2

(∂0 ± ∂1). These coordinates will be used in what follows.
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6 The first example of the connection be-
tween supersymmetry and complex geom-
etry

In the last section, we constructed a N=(1,1) supersymmetric sigma model.
Now we want to impose more supersymmetry on the sigma model, and
make it N=(2,2) supersymmetric. We will do this by writing a manifestly
N=(2,2) supersymmetric action, which upon reduction to its N=(1,1) form
again looks like (5.2). However, we will see that now the metric is not
arbitrary anymore, it must be Kähler.

6.1 A Sigma Model with chiral fields

When we want to write a manifestly N=(2,2) supersymmetric action, we
will need four Grassman variables, and four covariant derivatives. From
two independent N=(1,1) subalgebras, we can construct complex N=(2,2)
covariant derivatives:

Dα =
1

2
(D1

α + iD2
α)

D̄α =
1

2
(D1

α − iD2
α).

(6.1)

In the N=(1,1) sigma model, equation (5.2), we only want N=(1,1) scalar
superfields to be present. One kind of superfields which will provide us
with this are chiral superfields. A chiral superfield is defined by

D̄±φ = 0. (6.2)

The complex conjugate of a chiral superfield is called an anti-chiral su-
perfield, and obeys the complex conjugate of the above. We will see that
when we reduce a manifestly N=(2,2) action with chiral superfields, only
the scalar part will survive.

6.2 The reduction to its N=(1,1) form

The most general manifestly N=(2,2) supersymmetric action of chiral and
anti-chiral fields is written as

S =

Z
d2ξd2θd2θ̄K(φa, φ̄ā). (6.3)

where K(φa, φ̄ā) is a real valued function, and the index {a} label different
fields. We want to reduce this to a manifest N=(1,1) action, and compare
to (5.2). Going backwards, using (6.1), we can define N=(1,1) covariant
derivatives and supersymmetry generators:

Dα = Dα + D̄α (6.4)

Qα = i
`
Dα − D̄α

´
. (6.5)
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Let φ be our N=(2,2) chiral field. We can expand φ in the second set of
Grassman variables, and denote the lowest component in the expansion
by X, that is

φa| = Xa. (6.6)

Xa is a N=(1,1) scalar superfield. As usual, when integrating the Grass-
man variables, we will use the connection between integration and differ-
entiation,

R
dθ = D|. In this case, we can also use equation (6.1) to show

that
R

d2θd2θ̄ = D2D̄2| = − i
2
D2Q+Q−|. Therefore we need to know how

Qα acts on Xa. Using (6.4), (6.5) and (6.2) we find that

Q±Xa = iD±Xa

Q±X̄ ā = −iD±X̄ ā.
(6.7)

Now we have everything we need to reduce (6.3) to its N=(1,1) form:

S =

Z
d2ξd2θd2θ̄K(φa, φ̄ā) =

Z
d2ξD2D̄2K(φa, φ̄ā)| = − i

2

Z
d2ξD2Q+Q−K(φa, φ̄ā)|

= − i

2

Z
d2ξD2

“
Kab̄D+XaD−X̄ b̄ + KābD+X̄ āD−Xb

”
,

(6.8)

where Ka ≡ ∂K
∂Xa , and so on. As expected, only the scalar field in the

φ-expansion survived. Let us group Xa and X̄ ā into a vector XA, with
the collective index {A} = {a, ā}. Then we can write the result as

S =

Z
d2ξd2θd2θ̄K(φa, φ̄ā) = − i

2

Z
d2ξD2

“
gABD+XAD−XB

”
. (6.9)

Where the matrix gAB is

gAB =

„
0 Kab̄

Kāb 0

«
. (6.10)

Comparing to (5.2) and keeping (4.12) in mind, we see that the target
space of the N=(2,2) sigma model has to be Kähler. The Lagrangian in
the original sigma model serves as the Kähler potential.
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7 The Gates, Hull and Roček theorem

In the last section, we started with a manifestly N=(2,2) supersymmetric
sigma model. Reduceding it to N=(1,1)-form, we found that the target
space geometry has to be Kähler. In this section, we will take the opposite
path. We will start with a manifestly N=(1,1) model. Then we will
investigate what must be fulfilled if we demand that the model has a
second supersymmetry. The action we will use is

S =

Z
d2ξd2θD+φµ(x, θ)Eµν(φ)D−φν(x, θ). (7.1)

where Eµν = gµν + Bµν . Now we have included a antisymmetric back-
ground field Bµν = −Bνµ. This model is manifestly N=(1,1) supersym-
metric, since it is written in terms of N=(1,1) superfields. The second
supersymmetry has to act on the fields as

δ2(ε)φµ = ε+D+φνJµ
(+)ν + ε−D−φνJµ

(−)ν , (7.2)

where Jµ
(±)ν are two tensor fields in the target space. This ansatz is unique

for dimensional reasons.

We now demand two things. Firstly, the second supersymmetry must
obey the supersymmetry algebra, (5.14). That is, the commutator of two
supersymmetry transformations must close to a translation:

[δ2(ε1), δ2(ε2)] = εα
1 εβ

2{Qα, Qβ} = 2iε+1 ε+2 ∂++ + 2iε−1 ε−2 ∂=. (7.3)

Secondly, the action (7.1) should be invariant under (7.2).

Performing the calculations, we find the following conditions: (For de-
tails, we refer to [6].)

• The action is invariant under the second supersymmetry provided
that:

Jµ
(±)ρgµν = −gµρJµ

(±)ν (7.4)

∇±ρ Jµ
(±)ν = Jµ

(±)ν,ρ + Γ±µ
ρσ Jσ

(±)ν − Γ±σ
ρν Jµ

(±)σ = 0, (7.5)

where Γ±µ
ρν is defined by

Γ±µ
ρν = Γµ

ρν ± gµσHσρν . (7.6)

Γµ
ρν are the Christoffel symbols formed by the metric gµν(φ), and

Hσρν is the torsion, determined by the field Bµν(φ):

Hσρν =
1

2
(Bµρ,σ + Bρσ,µ + Bσµ,ρ) . (7.7)

• The supersymmetry algebra is fulfilled provided that the tensors J(±)

obey

Jµ
(±)νJρ

(±)µ = −δρ
ν (7.8)

Nρ
µν = Jρ

(±)λ∂[νJλ
(±)µ] + ∂λJρ

(±)[νJλ
(±)µ] = 0. (7.9)

20



This will be refered to as the ’Gates, Hull and Roček theorem’(GHR-
theorem).

What do all these conditions mean? Keeping the section about Complex
Geometry in mind, equation (7.8) means that the two tensors J± are com-
plex structures. Equation (7.9) shows that these two complex structures
are integrable, so the target manifold is a Complex Manifold. Further,
comparing (7.4) and (4.8), we see that the metric has to be hermitian
with the respect to both complex structures. Finally, we see from (7.5)
that J± has to be constant with respect to a torsionful connection. The
geometry with the objects (g, J±, H) fulfilling these conditions is called a
bi-hermitian geometry

However, there is one more complication. Only if the two complex struc-
tures commute, closure of the algebra is achieved off-shell. If the two
complex structures do not commute, we have to use the field equations
derived from the action to get the algebra to close. That is unwanted,
since then this result only works for this particular model, and we want it
to be as general as possible. In order to get off-shell closure of the algebra,
one way out is to introduce auxiliary fields. We will see examples below
of how this can be done.

(This general result agrees with the special case treated in the last section.
There we found that what corresponds to Eij is symmetric, so Bij ≡ 0.
The extra term in the Christoffel symbols, eq. (7.6), therefore vanishes.
Then (4.13) is fulfilled. Also, J+ = J−, so we are not forced to use the
field equations in order to get the algebra to close.)

A recent generalization of complex geometry, called generalized complex
geometry, naturally contains the bi-hermitian geometry in its framework.
In generalized complex geometry, one considers maps from T ⊕ T ∗ to it-
self. If we introduce auxiliary fields that transform in T ∗, we can hope
to realize generalized complex geometry in the target space directly from
the sigma model. We will now introduce the basic aspects of generalized
complex geometry.
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8 Generalized Complex Geometry

In complex geometry, we have a (1,1)-tensor which squares to -1. This
tensor is usually denoted by J, and is called an almost complex structure.
If this tensor obeys certain integrability conditions, the manifold is a com-
plex manifold. Generalized complex geometry was introduced in [7] and
developed in [8]. In Generalized complex geometry, one considers maps
from the sum of the tangent space and its dual space, T ⊕ T ∗, to itself.
We will see below that generalized complex geometry contains ordinary
complex geometry as a special case. This summary of the basics aspects
of this new geometry follows very closely the paper [10].

8.1 Basics of Generalized Complex Geometry

Let us write an element in T ⊕ T ∗ as X + ξ, where X ∈ T and ξ ∈ T ∗.
On T ⊕ T ∗, we have a natural pairing of the elements:

〈X + ξ, Y + η〉 = iXη + iY ξ. (8.1)

where iXη is the interior product. Given a coordinate basis (∂µ, dxµ), the
interior product between X and η is simply Xµηµ. This pairing defines a
metric I on T ⊕ T ∗, which in the given coordinate basis is:

I =

„
0 1d

1d 0

«
. (8.2)

A generalized almost complex structure J is a map

J : T ⊕ T ∗ → T ⊕ T ∗ (8.3)

which obeys J 2 = −1, and I has to be hermitian with respect to J , that
is:

J tIJ = I. (8.4)

Similarly to ordinary complex geometry, J has eigenvalues ±i, and T⊕T ∗

splits into two pieces, determined by the eigenvalue of the elements. The
generalized almost complex structure can be used to define projection
operators onto these two pieces: Π± = 1

2
(1∓ iJ ). As before, J is called

integrable if the bracket between two elements in the +i part of T ⊕ T ∗

is still in the +i part. The difference is that it is not the Lie Bracket this
time, it is something called the Courant Bracket1, defined by

[X + ξ, Y + η]C = [X, Y ] + LXη + LY ξ − 1

2
d (iXη − iY ξ) . (8.5)

The first bracket is the normal Lie Bracket, the L’s denote the Lie deriva-
tive, and d is the exterior derivative. The generalized almost complex
structure is integrable if

Π∓ [Π± (X + ξ) , Π± (Y + η)]C = 0. (8.6)

1The Courant Bracket does not in general fulfil the Jacobi identity. However, if there is
a subspace L ⊂ T ⊕ T ∗ which is closed under the Courant Bracket and isotropic with the
respect to the natural pairing, the Courant Bracket does satisfy the Jacobi identity. This is a
reason to demand hermicity of the natural pairing, equation (8.4).
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We see that if we only consider the tangent space, everything above, apart
from the condition of hermicity of I, reduces to the description of ordi-
nary complex geometry. Finally, in the coordinate basis (∂µ, dxµ), the
generalized almost complex structure J can be written as

J =

„
J P
L K

«
, (8.7)

where J : T → T , P : T ∗ → T , L : T → T ∗, K : T ∗ → T ∗ are the tensor
fields Jµ

ν , P µν , Lµν and Kν
µ . In terms of these tensors, the condition

J 2 = −1 can be rewritten as

J2 + PL = −1

JP + PK = 0

LP + K2 = −1

KL + LJ = 0

(8.8)

and the condition about hermicity of the metric with the respect to the
generalized complex structure, J tIJ = I, can be written as

J = −Kt

P = −P t

L = −Lt.

(8.9)

8.2 Examples of Generalized Complex Geometry

The ordinary complex geometry is included in the generalized complex
geometry. This is because if we have a complex structure, we can form a
generalized complex structure by:

JJ =

„
J 0
0 −J t

«
. (8.10)

This object fulfills (8.3), (8.4) and (8.6) as long as J is a complex structure.

Another example is a symplectic structure. A symplectic structure is a
two-form ω which fulfills dω = 0. A Kähler manifold has both a complex
structure and a symplectic structure. In this case

Jω =

„
0 −ω−1

ω 0

«
. (8.11)

is a generalized complex structure.

8.3 Generalized Kähler Geometry

As mentioned above, if we have a Kähler manifold, we can form two
generalized complex structures, Jω and JJ . Using equations (4.7) and
(4.10), it is not hard to show that these two commute. Also, the product
of the two will be

− JJJω =

„
0 g−1

g 0

«
≡ G, (8.12)
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which is positive definite.

Inspired by these results, Gualteri [8] made the following definition:

A generalized complex manifold is said to be generalized Kähler if there
are two commuting generalized complex structures J1 and J2, such that
G ≡ −J1J2 is a positive definite metric on T ⊕ T ∗.

It is shown in [8] that there is a map between the bi-hermitian geometry
discussed above, and generalized Kähler geometry. Namely, the geomet-
rical objects on a bi-hermitian manifold, (J±, g, B), defines a generalized
Kähler geometry with generalized complex structures

J1,2 = −1

2

„
1 0
B 1

«„
J+ ± J− −

`
ω−1

+ ∓ ω−1
−
´

ω+ ∓ ω− −
`
J t

+ ± J t
−
´ «„ 1 0

−B 1

«
, (8.13)

where ω± = gJ±.

Remark:The defintion of generalized Kähler geometry is inspired by the
Kähler geometry, in which the metric is always Riemannian. Therefore
the generalized Kähler metric is defined to be positive definite. In bi-
hermitian geometry the metric is not necessarily positive definite, it can
have different signatures. The definition of generalized Kähler geometry
should therefore be extended to metrics with arbitrary signature.

We now want to start looking for sigma models, which realizes gener-
alize Complex Geometry in the target space. Doing so, we must in some
way introduce fields which lie in T ∗.
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9 How to read off the complex structures

In the next sections we will have explicit expressions for the second su-
persymmetry that the fields in the action undergo. From those we will
read off geometrical objects, which will turn out to be complex structures
and generalized complex structures. But which are the guiding principles
when reading off the geometrical objects? We will for example come across
the case where we have the set of fields {X, Ψα}. Here X are bosonic and
serves as coordinates, and Ψα are fermionic fields, which transforms in
the tangent space. The second supersymmetry transformation will then
always have the form

δ

„
X
Ψα

«
= εMD

„
X
Ψα

«
. (9.1)

ε is the transformations parameter. The matrix D is a matrix of covariant
derivatives, which is needed in order to

• Make sure that bosonic fields are transformed into fermionic fields,
and vice versa.

• Make sure that the Lorentz transformations properties are the same
on both sides of the equation.

Since the covariant derivatives are odd objects, for example D+Ψ− will
be bosonic. The insertion of the derivatives makes all the objects on the
right hand side transform in the tangent space, and M is a tensor

M : T → T (9.2)

In the previous section, when we treated chiral fields, we saw an example
of this structure, equation (6.7). In the notation introduced here, equation
(6.7) would be written as

δ±
„

Xa

X̄ ā

«
= ε±

„
i 0
0 −i

«„
D± 0
0 D±

«„
Xa

X̄ ā

«
. (9.3)

If we instead want to realize generalized complex geometry, we will need
fields transforming in the co-tangent space. If {Sα} are such fields, the
second supersymmetry transformation will be of the form

δ

„
X
Sα

«
= εMD

„
X
Sα

«
, (9.4)

where now M is a map

M : T ⊕ T ∗ → T ⊕ T ∗. (9.5)

In the examples we will encounter, we will see that this M turns out to
be a generalized complex structure.
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10 Auxiliary fields

As seen in the GHR-theorem, we will in general need auxiliary fields in
the action in order to get the supersymmetry algebra to close off-shell. In
order to realize generalized complex geometry in the target space directly
from the sigma model, we would like these auxiliary fields to transform in
the co-tangent space.

10.1 Ambiguity in choosing the auxiliary fields

Below, we will introduce so called semi-chiral N=(2,2) superfields, intro-
duced in [11]. When reduced to a N=(1,1) action, the semi-chiral fields
will leave us with both bosonic and fermionic N=(1,1) fields. The bosonic
ones will be our coordinates in the target space. The fermionic fields will
be transforming in the tangent space under a change of coordinates, and
their field equations will turn out to be algebraic. This means that they
are auxiliary, using their field equations we can solve for them in terms of
the bosonic fields.

But instead of using their field equations to eliminate them, we will re-
define them into fields transforming in the co-tangent space. We will
then use their supersymmetry transformations in order to identify trans-
formations T ⊕ T ∗ → T ⊕ T ∗. However, there is an ambiguity in the
redefinitions. We will investigate two natural redefinitions, and both will
lead to objects which fulfill everything that is needed in order to obtain
the status as generalized complex structures, with one difference: one of
them will not fulfill equation (8.4), that is J tIJ = I, whereas the other
one will.

The reason we are interested in these investigations is that if we inte-
grate out the auxiliary fields, we know from the GHR-theorem that the
second supersymmetry transformation will provide us with two complex
structures. We also know that we can form generalized complex structures
with the aid of the Gualteri map, equation (8.13). However, that map is
pretty complicated, and we would like to find a shorter way to introduce
generalized complex geometry directly from the sigma model, with the
help of auxiliary fields.

10.2 Going from N=(1,1) to N=(2,2) with auxil-
iary fields

We will here take a little detour before beginning the big investigations.
In the next sections, we will start with a manifestly N=(2,2) supersym-
metric sigma model. We will then reduce it to its N=(1,1) form in order
say something about the geometry in the target space, and especially hope
to identify generalized complex geometry. Another approach would have
been to do as with did arriving to the GHR-theorem. We could start
with a manifestly N=(1,1) supersymmetric sigma model, and included
fields transforming in the co-tangent space. These fields must be auxil-
iary, since we do not want any new physical degrees of freedom. We could
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then make an ansatz of the most general second supersymmetry transfor-
mation that these fields can undergo, and see if we find any restrictions
to the geometry in the target space. However, this approach is difficult,
for at least two different reasons.

Firstly there is not a unique way to introduce auxiliary fields in the action.
For example, both

S =

Z
d2ξd2θ

“
S+iE

ijS−j + S(+iD−)φ
i
”

(10.1)

and

S =

Z
d2ξd2θ

“
D+φiEijD−φj + S+iA

ijS−j

”
(10.2)

gives (7.1) back when S± are integrated out. In the first action, Eij is
the inverse of Eij , and in the second action, Aij is an arbitrary invertible
matrix.

Secondly, if we choose one of the possible extensions of (7.1), and we
want to see what it takes for it to have a second supersymmetry, we
have to make an ansatz for the second supersymmetry. When we have
the auxiliary spinor fields at hand, the most general form of the second
supersymmetry reads ([14]):

δ(±)φµ = ε±
“
D±φνJ(±)µ

ν + S±µP (±)µν
”

δ(±)S±µ = ε±
“
i∂++

=
φνL(±)

µν −D±S±νK(±)ν
µ + S±νS±σN (±)νσ

µ

+ D±φνD±φρM (±)
µνρ + D±φνS±σQ(±)σ

µν

”
δ(±)S∓µ = ε±

“
D±S∓νR(±)ν

µ + D∓S±νZ(±)ν
µ + D±D∓φνT (±)

µν

+ S±ρD∓φνU (±)ρ
µν + D±φνS∓ρV (±)ρ

µν

+ D±φνD∓φρX(±)
µνρ + S±νS∓ρY (±νρ

µ

”
.

(10.3)

The (±)-superscript on the objects on the right hand side label different
tensors, and are not spinor indices. This ansatz is more general than the
supersymmetry transformations we discussed in the last section. For ex-
ample SαSβ is bosonic, and φ can be transformed into that object. These
transformations are derived in the following way: First you identify the
dimension of the different ingredients, namely the fields, the transforma-
tion parameters and the covariant derivatives. On the right hand side we
take the different possible combinations matching the dimension of the left
hand side. We also have to match the transformation properties under
the rest of the Super Poincaré group, that is matching the spinor indices.

These transformations should be compared to (7.2). The introduction
of auxiliary fields complicate things considerably. If one tries the same
program as before, namely demand closure of the algebra and invariance
of the action under this second supersymmetry, one will end up with
more than a hundred differential and algebraic equations that must be
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fulfilled, see for example [10]. The question of what is the geometry of
the target space in this very general case has not been finally resolved yet.

So, instead of starting with a N=(1,1) model with auxiliary fields, and
demanding it to have a second supersymmetry, we will start with a man-
ifestly N=(2,2) supersymmetric model. We will then reduce it to its
N=(1,1) form, and in this way try to identify the geometry, similarly
as was done in the first example.
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11 Generalized Kähler Geometry from a
topological model

In this section we will start from a manifestly N=(2,2) supersymmetric
action, and reduce it to its N=(1,1) form. After the reduction, will try
to identify the geometry. The way of proceeding will be similar to the
case when we found the ordinary Kähler geometry in the target manifold.
We will use so called semi-chiral fields, which will be defined below. With
these fields, we will have auxiliary fields left after the reduction.

11.1 Topological model

We will start with a topological model, that is, a model with no dynamics.
The reason we do this is for the calculation to be as simple as possible, but
still we get an interesting result. We will use the same notation as above,
with the N=(2,2) spinor derivatives Dα and D̄α. From them we form the
N=(1,1) derivatives and the non-manifest supersymmetry generators as

Dα = Dα + D̄α

Qα = i
`
Dα − D̄α

´
.

(11.1)

We now define complex left and right semi-chiral fields as fields that obey

D̄+XL = 0

D−XR = 0.
(11.2)

These semi-chiral fields will after the reduction leave us with (auxiliary)
spinor N=(1,1) fields, together with the scalar fields. From the semi-chiral
fields we define the N=(1,1) superfields XL, XR, ΨL− and ΨR+ as

XL| = XL

XR| = XR

Q−XL| = ΨL−

Q+XR| = ΨR+

(11.3)

where the bar means independent of the second pair of θ′s.

In our topological model we will use left semi-chiral fields only, so the
action is

S =

Z
d2ξd2θd2θ̄K(XL, X̄L). (11.4)

When reducing this action to its N=(1,1) form, we need to know how the
Q’s act on the fields. This we find from (11.1) and (11.2). For example
(from now on we suppress the label of the semi-chiral fields, since we are
only considering the left going ones)

iD+ −Q+ = 2iD̄+ =⇒ (iD+ −Q+)X = 2iD̄+X = 0

=⇒ Q+X| = Q+X = iD+X.
(11.5)
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Performing the same exercise with the other fields we find

Q+X = iD+X

Q−X = Ψ−

Q+Ψ− = iD+Ψ−

Q−Ψ− = −i∂=X

Q+X̄ = −iD+X̄

Q−X̄ = Ψ̄−

Q+Ψ̄− = −iD+Ψ̄−

Q−Ψ̄− = −i∂=X̄.

(11.6)

Integrating out the second set of θ′s, we find the action to be

S =

Z
d2ξd2θd2θ̄K(X, X̄) =

Z
d2ξD2D̄2K(X, X̄)| = − i

2

Z
d2ξD2Q+Q−K(X, X̄)|

= − i

2

Z
d2ξD2Q+

`
KaΨa

− + KāΨ̄ā
−
´
|

= − i

2

Z
d2ξD2

“
iKabD+XbΨa

− − iKab̄D+X̄ b̄Ψa
−

+iKaD+Ψa
− + iKābD+XbΨ̄ā

− −Kāb̄D+X̄ b̄Ψ̄ā
− − iKāD+Ψ̄ā

−

”
= − i

2

Z
d2ξD2

“
2iKab̄D+XaΨ̄b̄

− − 2iKābD+X̄ āΨb
−

”
,

(11.7)

where we in the last step has performed partial integration on the Ki-
terms, and as usual assumed that the fields vanishes on the boundary. By
defining the index {A} = {a, ā}, and the matrix

ωAB =

„
0 2iKab̄

−2iKāb 0

«
(11.8)

we can write the result in a more compact way as

S = − i

2

Z
d2ξD2

“
D+XAωABΨB

−

”
. (11.9)

ωAB is a symplectic form. As a final touch, we define

SA− = ωABΨB
− (11.10)

and we get

S = − i

2

Z
d2ξD2

“
D+XASA−

”
(11.11)

SA− is a field that lies in T ∗, so by looking at the supersymmetry trans-
formations of XA and SA−, we hope to identify a generalized complex
geometry in the target manifold.
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11.2 Identifying the geometry

Now we have a model with fields in T ⊕ T ∗, D+XA and SA−. What we
will do now is to calculate how XA and SA− transforms under the second
supersymmetry, which is generated by (11.1). In these transformations,
we will identify different tensors, and we will show that these tensors are
the ones you need in order to form a generalized complex structure. In
this subsection, the calculations will follow the ones made in [1]. In the
next subsection, we will modify the way of obtaining the supersymmetry
transformations of the auxiliary fields, and this modified method will give
us a simpler calculation.

Equation (11.6) can be written in a more compact way with our new
index A:

Q+XA = JA
B D+XB Q+ΨA

− = JA
B D+ΨB

− (11.12)

Q−XA = ΨA
− Q−ΨA

− = −i∂=XA (11.13)

where

JA
B =

„
iδa

b 0
0 −iδa

b

«
(11.14)

is a complex structure. With equations (11.12), (11.13) and (11.10), we
can calculate how XA and SA− transforms under (11.1):

δ(+)XA = ε+JA
B D+XB

δ(−)XA = ε−Q−XA = ε−ΨA
− = ε−ωABSB−

δ(+)SA− = δ(+)
“
ωABΨB

−

”
= δ(+) (ωAB)ΨB

− + ωABδ(+)
“
ΨB
−

”
= ∂E (ωAB) δ+

“
XE
”

ΨB
− + ε+ωABJB

C D+ΨC
−

= ∂E (ωAB) δ+
“
XE
”

ΨB
− + ε+D+

“
ωABJB

C ΨC
−

”
− ε+∂E (ωAB) D+

“
XE
”

JB
C ΨC

−

= −ε+D+SB−JB
A − ε+∂E (ωAB) D+

“
XE
”

JB
C ωCDSD− + ∂E (ωAB) δ+

“
XE
”

ωBDSD−

= −ε+D+SB−JB
A + ε+∂E

“
ωCD

”
D+

“
XE
”

JB
C ωABSD− − ∂E

“
ωBD

”
δ+
“
XE
”

ωABSD−

= −ε+D+SB−JB
A + ωAB

“
ε+JB

C D+

“
XE
”
− δB

C δ(+)
“
XE
””

∂E

“
ωCD

”
SD−

δ(−)SD− = δ(−)
“
ωABΨB

−

”
= ∂E (ωAB) δ(−)

“
XE
”

ΨB
− + ωABδ(−)

“
ΨB
−

”
= −iε−ωAB∂=XB + ∂E (ωAB) δ(−)

“
XE
”

ωBDSD−.

(11.15)

This is a special case of the general case, equation (10.3). Typically, when
trying to plug in the general ansatz in a N=(1,1) model, and see what it
takes for it to admit N=(2,2) supersymmetry, the higher index tensors in
(10.3) turn out to be derivatives of the two-index tensors. Therefore, we
will here identify the two-index tensors, and hope that they gives us the
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generalized complex structures. In the (+)-transformations we have the
tensors

J : T → T

J t : T ∗ → T ∗
(11.16)

and we identify the map JJ : T ⊕ T ∗ → T ⊕ T ∗

JJ =

„
J 0
0 −J t

«
. (11.17)

From the (-)-transformation we have the two maps

ω : T → T ∗

ω−1 : T ∗ → T
(11.18)

which gives a second map Jω : T ⊕ T ∗ → T ⊕ T ∗

Jω =

„
0 ω−1

−ω 0

«
. (11.19)

From the section about generalized complex geometry, we know that these
two objects are indeed generalized complex structures. Actually, a man-
ifold with these two general complex strucures is generalized Kähler. So
we have seen that in our topological model, the target manifold has to be
generalized Kähler.

11.3 Another way to obtain the result

Instead of making the redefintion (11.10), we can keep the two fields,
D+XA and ΨA

−, living in one tangent space each. We can then formally
take two copies of the tangent space, and identify the maps

M± : T1 ⊕ T2 → T1 ⊕ T2

from the non-manifest supersymmetry transformation that the fields un-
dergo. In the notation introduced in equation (9.1), we find the non-
manifest transformation from equations (11.12) and (11.13) to be

δ+

„
X
Ψ−

«
= ε+M(+)D(+)

„
X
Ψ−

«
δ−
„

X
Ψ−

«
= ε−M(−)D(−)

„
X
Ψ−

« (11.20)

where the matrices D(±) and M(±) are given by

D(+) =

„
D+ 0
0 D+

«
M(+) =

„
J 0
0 J

«
(11.21)

D(−) =

„
D2
− 0
0 I

«
M(−) =

„
0 I
−I 0

«
. (11.22)

I denotes the identity matrix. What we seek for is a map from T ⊕ T ∗

to itself. The action (11.9) provides us with a map from T to T ∗, namely
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ωAB , given by eq. (11.8). So we can map our fields (D+X, Ψ−) living in
T1⊕T2, to fields (D+X, ωΨ−) living in T ⊕T ∗ by the map ω̂ : T1⊕T2 →
T ⊕ T ∗ given in matrix form by

ω̂ =

„
I 0
0 ω

«
. (11.23)

Combining the maps M(±) and ω̂, we get two maps J± : T⊕T ∗ → T⊕T ∗

given by

J+ = ω̂M(+)ω̂
−1 =

„
I 0
0 ω

«„
J 0
0 J

«„
I 0
0 ω−1

«
=

„
J 0
0 −J t

«
J− = ω̂M(−)ω̂

−1 =

„
I 0
0 ω

«„
0 I
−I 0

«„
I 0
0 ω−1

«
=

„
0 ω−1

−ω 0

«,

(11.24)

where we used the property ωJ = −J tω, which is true because of the spe-
cial form of the matrices ω, equation (11.8). We see that this result agrees
with the one in the previous section, and the calculations are simpler. In
the sections to come, we will use this method when treating the auxiliary
fields.
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12 Generalized Kähler Geometry from the
sigma model

In this section we will treat the full N=(2,2) action with both left and
right semi-chiral fields. After the reduction to its N=(1,1) form, we will
have auxiliary fields left. In order to find generalized complex geometry
in the target space, we will redefine the auxiliary fields into fields that
transform in T ∗. This can be done in different ways, and we will find
different generalized complex structures. No matter how we redefine the
auxiliary fields, when we integrate them out, we will end up with the good
old N=(1,1) supersymmetric action (7.1). We will again follow [1], and in
addition to what is done in that paper, we will try a new redefintion of
the auxiliary fields.

When we have both left and right semi-chiral fields, the action reads

S =

Z
d2ξd2θd2θ̄K(XL, X̄L, XR, X̄R). (12.1)

When reducing this action to its N=(1,1) form, the calculations will pro-
ceed as in the previous section.

When integrating out the second pair of θ’s, we need to know how Q±
acts on the different fields. This we find from equations (11.1), (11.2) and
(11.3). Using these definitions we find

Q+XA
L = JA

B D+XB
L

Q+XA′
R = ΨA′

R+

Q+ΨA
L− = JA

B D+ΨB
L−

Q+ΨA′
R+ = −∂++XR

Q−XA
L = ΨA

L−

Q−XA′
R = JA′

B′D−XB′
R

Q−ΨA′
R+ = JA′

B′D+ΨB′
R+

Q−ΨA′
R+ = JA′

B′D−ΨB′
R+,

(12.2)

where JA
B and JA′

B′ are complex structures of the form

JA
B =

„
iδa

b 0
0 −iδā

b̄

«
. (12.3)
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We find the N=(1,1) form of the action to be

S =

Z
d2ξd2θd2θ̄K(XL, X̄L, XR, X̄R) = − i

2

Z
d2ξD2Q+Q−K(XL, X̄L, XR, X̄R)| =

= − i

2

Z
d2ξD2

“
D+XA

L mAB′D−XB′
R + ΨA′

R+nA′BΨB
L−

+ΨA
L−(2iωL

ABD+XB
L + ipAB′D+XB′

R )

−ΨA′
R+(2iωR

A′B′D−XB′
R + iqA′BD−XB

L )
”
,

(12.4)

where the matrices are given by

mAB′ =

„
−Kab′ Kab̄′

Kāb′ −Kāb̄′

«
nA′B =

„
Ka′b Ka′ b̄

Kā′b Kā′ b̄

«
(12.5)

pAB′ =

„
Kab′ Kab̄′

−Kāb′ −Kāb̄′

«
qA′B =

„
Ka′b Ka′ b̄

−Kā′b −Kā′ b̄

«
(12.6)

ωL
AB =

„
0 Kab̄

−Kāb 0

«
ωR

A′B′ =

„
0 Ka′ b̄′

−Kā′b′ 0

«
. (12.7)

12.1 Two different ways of obtaining Generalized
Complex Structures

We will now discuss two different ways of obtaining generalized complex
structures in the target space. The first approach will be to redefine the
auxiliary fields into fields transforming in T ∗, with the redefinition in-
spired by the field equations that one finds for the auxiliary fields. Then
we will look at the second supersymmetry transformation that the fields
undergo, and from that read off maps from T ⊕ T ∗ to itself. We will
verify that these maps fulfil everything needed in order to be generalized
complex structures, except that the natural paring is not hermitian with
respect to them. This first approach is the one pursued in [1].

The second approach will be similar to the first one, but this time the
redefinition of the fields will be inspired by the one we did for the topo-
logical model, equation (11.10). We will see that this redefinition gives
us generalized complex structures which preserve the natural pairing, and
the expressions will be much simpler.

12.2 Generalized Complex Geometry in the tar-
get space, version 1

The field equations obtained by varying the action are

nA′BΨB
L− −

“
2iωR

A′B′D−XB′
R + iqA′BD−XB

L

”
= 0

ΨA′
R+nA′B −

“
2iωL

ABD+XB
L + ipAB′D+XB′

R

”
= 0.

(12.8)
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These equations are algebraic, and very easy to solve. We find solutions
to be

ΨA
L− = uAA′ “

2iωR
A′B′D−XB′

R + iqA′BD−XB
L

”
ΨA′

R+ = uAA′ “
2iωL

ABD+XB
L + ipAB′D+XB′

R

”
,

(12.9)

where uAA′
is the inverse of nA′A.

Inspired by these equations, we define the fields S± by

uAA′
SA′− ≡ ΨA

L− − uAA′ “
2iωR

A′B′D+XB′
R + iqA′BD−XB

L

”
uAA′

SA+ ≡ ΨA′
R+ − uAA′ “

2iωL
ABD+XB

L + ipAB′D+XB′
R

”
.

(12.10)

If we insert this in the action, equation (12.4), we find

S = − i

2

Z
d2ξD2

“
−2D+XA

L ωL
ABuBB′

qB′CD−XC
L

D+XA
L

“
mAA′ − 4ωL

ABuBB′
ωR

B′A′

”
D−XA′

R

+D+XA′
R pAA′uAB′

qB′BD−XB
L + 2D+XA′

R pAA′uAB′
ωR

B′C′D−XC′
R + SA+uAB′

SB′−

”
≡ − i

2

Z
d2xD2 `D+φtED−φ + St

+US−
´
.

(12.11)

In the last step switched to matrix notation, and introduced the matrices

φ =

„
XA

L

XA′
R

«
(12.12)

S+ =

„
SA+

0

«
(12.13)

S− =

„
0

SA′−

«
(12.14)

E =

„
−2ωLuq m− 4ωLuωR

ptuq 2ptuωL

«
U =

„
0 uAB′

0 0

«
(12.15)

E is the sum of the metric and the B-field, and we see that the action has
the form (10.2). If the fields S± are integrated out, we will get back the
original sigma model (7.1).

12.2.1 The Generalized Complex Structures

We will here calculate how the fields {XL, XR, S−, S+} transforms under
the second supersymmetry, which is generated by Q±. If we group the
original fields {XL, XR, ΨL−, ΨR+} into a column vector0BB@

XL

XR

ΨL−
ΨR+

1CCA (12.16)
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we find from equation (12.2) that the second supersymmetry acts on the
fields as

δ+

0BB@
XL

XR

ΨL−
ΨR+

1CCA = ε+M(+)D(+)

0BB@
XL

XR

ΨL−
ΨR+

1CCA

δ−

0BB@
XL

XR

ΨL−
ΨR+

1CCA = ε−M(−)D(−)

0BB@
XL

XR

ΨL−
ΨR+

1CCA
(12.17)

where the matrices D(±) and M(±) are given by

D(+) =

0BB@
D+ 0 0 0
0 D2

+ 0 0
0 0 D+ 0
0 0 0 I

1CCA M(+) =

0BB@
J 0 0 0
0 0 0 I
0 0 J 0
0 −I 0 0

1CCA (12.18)

D(−) =

0BB@
D2
− 0 0 0
0 D− 0 0
0 0 I 0
0 0 0 D−

1CCA M(−) =

0BB@
0 0 I 0
0 J 0 0
−I 0 0 0
0 0 0 J

1CCA . (12.19)

Here M(±) are maps M(±) : T1 ⊕ T2 → T1 ⊕ T2. With the redefinition
(12.10), we map the fields Ψ± to the cotangent space. The map is given
by

C =

0BB@
I 0 0 0
0 I 0 0

−2iωL −ip 0 nt

−iq −2iωR n 0

1CCA (12.20)

The inverse of C is given by

C−1 =

0BB@
I 0 0 0
0 I 0 0

iuq 2iuωR 0 u
2iutωL iutp ut 0

1CCA . (12.21)

With this transformation, we get the two maps J± : T ⊕ T ∗ → T ⊕ T ∗

by:

J+ = CM(+)C
−1

=

0BB@
J 0 0 0

2iutωL iutp ut 0
2(putωL − iωLJ) (putp− nt) −iput 0

(inJuq − iqJ + 4ωRutωL) 2(ωRutp + nJuωR) −2iωRut nJu

1CCA
J− = CM(−)C

−1

=

0BB@
iuq 2iuωR 0 u
0 J 0 0

2(ωLuq + intJutωL) (−ipJ + 4ωLuωR + intJutp) ntJut −2iωLu
quq − n 2(quωR − iωRJ) 0 −iqu

1CCA

.

(12.22)
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These are the two maps found in [1], obtained with the new method. They
fulfil J 2 = −1, and they also commute, [J+,J−] = 0 (see [1]). In [1] it
is also shown that their product gives a metric on T ⊕ T ∗. It is easy to
see that the top right corners of the two generalized complex does not
fulfil equation (8.9). Therefore, the natural pairing, equation (8.2), is not
hermitian with respect to these objects, that is

J t
±IJ± 6= I. (12.23)

Actually, some simplifications can be made in equation (12.22). We have
the following connections between the matrices in (12.5):

p = −iJnt

q = −iJn.
(12.24)

So we find

putωL − iωLJ = −iJntutωL − iωLJ = iωLJ − iωLJ = 0

putp− nt = (−iJnt)ut(−iJnt)− nt = nt − nt = 0

quq − n = (−iJn)u(−iJn)− n = n− n = 0

quωR − iωRJ = (−iJn)uωR + iJωR = −iJωR + iJωR = 0.

(12.25)

This inserted in (12.22) gives us

J+ =

0BB@
J 0 0 0

2iutωL iutp ut 0
0 0 −iput 0

(inJuq − iqJ + 4ωRutωL) 2(ωRutp + nJuωR) −2iωRut nJu

1CCA

J− =

0BB@
iuq 2iuωR 0 u
0 J 0 0

2(ωLuq + intJutωL) (−ipJ + 4ωLuωR + intJutp) ntJut −2iωLu
0 0 0 −iqu

1CCA
.

(12.26)

12.3 Generalized Complex Geometry in the tar-
get space, version 2

In this section we will make the same redefinition of the auxiliary fields
as we did for the topological model. After this is done, we will identify
two Generalized Complex Structures, and this time they will not only be
less complicated, but also will the natural pairing I be hermitian.

We start by making the redefinitions of the auxiliary fields Ψ into fields
that transform in the co-tangent space:

SA− ≡ ωL
ABΨB

L−

SA′+ ≡ ωR
A′B′ΨB′

R+

(12.27)
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which in matrix form looks like0BB@
I 0 0 0
0 I 0 0
0 0 ωL 0
0 0 0 ωR

1CCA (12.28)

If we carry along M(±) with these redefinitions, we get two transforma-
tions T ⊕ T ∗ to itself:

J+ = ω̂M(+)ω̂
−1 =

0BB@
J 0 0 0
0 0 0 (ωR)−1

0 0 −J t 0
0 −ωR 0 0

1CCA (12.29)

and

J− = ω̂M(−)ω̂
−1 =

0BB@
0 0 (ωL)−1 0
0 J 0 0

−ωL 0 0 0
0 0 0 −J t

1CCA . (12.30)

That these objects fulfil conditions J 2
± = −1 and J t

±IJ± = I is easy
to check. They are also integrable, which can be checked using equation
(8.6) (Equation (8.6) is written in coordinate form in [10], and with those
coordinate relations integrability follows quite easily. Integrability for the
structures obtained in the previous section, equation (12.26), we have not
checked, since they are much more complicated) They are therefore gen-
eralized complex structures.

They also commute, and their product is

G = −J+J− =

0BB@
0 0 −J(ωL)−1 0
0 0 0 (ωR)−1J t

−J tωL 0 0 0
0 ωRJ 0 0

1CCA . (12.31)

From equation (12.7), we see that

−J tωL = i

„
0 Kab̄

Kāb 0

«
≡ gL

ωRJ = i

„
0 Ka′ b̄′

Kā′b′ 0

«
≡ gR,

(12.32)

where we in the last steps denoted the matrices by gL/R, because of the
obvious similarities with a Kähler metric. With these names , the product
between the two generalized complex structures can be written as

G =

0BB@
0 0 (gL)−1 0
0 0 0 (gR)−1

gL 0 0 0
0 gR 0 0

1CCA . (12.33)
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This again looks like the generalized Kähler metric one forms from the
data provided from a Kähler manifold. However, the metric in the target
space of the sigma model is identified to be the symmetric part of equation
(12.15), which involves gL/R in a complicated manner.

To make sure that everything is consistent, we must check that we get the
original action, equation (7.1), when the auxiliary fields are integrated out.

With the redefinitions (12.27), our action (12.4) now reads

S = − i

2

Z
d2ξD2

“
D+XA

L mAB′D−XB′
R + ωA′B′

R SB′+nA′AωAB
L SB−

ωAB
L SB−(2iωL

ACD+XC
L + ipAB′D+XB′

R )

−ωA′B′
R SB′+(2iωR

A′C′D−XC′
R + iqA′BD−XB

L )
”
,

(12.34)

where ωAB
L , ωA′B′

R are the inverses of ωL
AB , ωR

A′B′ .

The field equations for S± are

ωA′B′
R SB′+nA′AωAB

L − (2iωL
ACD+XC

L + ipAB′D+XB′
R )ωAB

L = 0

ωA′B′
R nA′AωAB

L SB− − ωA′B′
R (2iωR

A′C′D−XC′
R + iqA′BD−XB

L ) = 0

(12.35)

with the solutions

SB′+ = ωR
B′A′(2iωL

ACD+XC
L + ipAC′D+XC′

R )uAA′

SB− = ωL
BAuAA′

(2iωR
A′C′D−XC′

R + iqA′CD−XC
L ).

(12.36)

Plugging this into (12.34), we get

S = − i

2

Z
d2ξD2

“
D+XA

L mAA′D−XA′
R

+(2iωL
ACD+XC

L + ipAC′D+XC′
R )uAA′

(2iωR
A′B′D−XB′

R + iqA′BD−XB
L )

−(2iωL
ACD+XC

L + ipAC′D+XC′
R )uAA′

(2iωR
A′B′D−XB′

R + iqA′BD−XB
L )

−(2iωL
ACD+XC

L + ipAC′D+XC′
R )uAA′

(2iωR
A′B′D−XB′

R + iqA′BD−XB
L )
”

= − i

2

Z
d2ξD2

“
−2D+XA

L ωL
ABuBB′

qB′CD−XC
L

D+XA
L

“
mAA′ − 4ωL

ABuBB′
ωR

B′A′

”
D−XA′

R

+D+XA′
R pAA′uAB′

qB′BD−XB
L + 2D+XA′

R pAA′uAB′
ωR

B′C′D−XC′
R

”
.

(12.37)

Everything works out as it should, and we end up with the same action
as before, equation (12.11) (except for the auxiliary fields).
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12.4 Possible modifications

We saw above that we can get generalized complex structures which pre-
serves the natural pairing from the sigma model with semi-chiral fields.
But, the auxiliary fields occurs in the action (12.34) in a complicated
way, and their field equations are non-trivial. It would be preferred to
introduce auxiliary fields in a manner similar to what is done in (12.11).
Then we can read off the complex structures in the top-left corner of the
generalized complex structures, since the field equations for the auxiliary
fields are S± = 0. But with the redefinitions made in equation (12.10),
the generalized complex structures do not preserve the natural pairing.
It is therefore natural to seek for yet another redefinition of the auxiliary
fields, such that the generalized complex structures preserve the natural
pairing. After the redefinition we would still like to have the generalized
complex structures in the form

J± =

„
J± ∗
∗ ∗

«
. (12.38)

Achieving this may also take us one step closer to understand the Gualteri-
map directly from the sigma model, because of the structure of the map,
equation (8.13).

With the objects we have at hand, the most general redefinition of the
auxiliary fields which preserves the top left corner is

S̃A′+ = ΩB′

A′(+)SB′+

S̃A− = ΩB
A(−)SB−.

(12.39)

The plan is to calculate how the generalized complex structures obtained
in equation (12.22) changes under the above field transformations, and
then choose Ω± such that the transformed generalized complex structures
preserve the natural pairing. This seems to be hard to do. For example,
J+ would transform into

J̃ =

0B@
J 0 0 0

2iutωL iutp utΩ−1
(+) 0

0 0 −iΩ(+)putΩ−1
(+) 0

Ω(−)(inJuq−iqJ+4ωRutωL) 2Ω(−)(ω
Rutp+nJuωR) −2iΩ(−)ωRut Ω(−)nJuΩ−1

(−)

1CA .

(12.40)
It is impossible to choose a non-trivial Ω+ such that equation (8.9) is
fulfilled.
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13 Discussion

In this thesis we have investigated the connection between supersymmetric
sigma models and the geometry in the target space. We have seen that if a
sigma model has N=(2,2) supersymmetry, the target space geometry has
to be bi-hermitian. In order for the algebra to close off-shell in general, one
has to introduce auxiliary fields. Via the Gualteri map, equation (8.13),
a bi-hermitian geometry is equivalent to a subset of Generalized Complex
Geometry (GCG), namely Generalized Kähler Geometry (GKG). In GCG
one considers the sum of the tangent space and the cotangent space. Since
we know that bi-hermitian geometry and GKG are equivalent, we have
tried to realize GKG straight from the sigma model with the help of the
auxiliary fields, which we have constructed to transform in the co-tangent
space.

We have mainly focused on a manifestly N=(2,2) supersymmetric action
with semi-chiral fields. After the reduction, the semi-chiral fields leave
us with auxiliary spinor fields which transforms in the tangent space. In
order to realize GCG, we need fields transforming in the co-tangent space.
We have therefore redefined the auxiliary fields into fields transforming
in T ∗. However, there is an ambiguity in how to redefine the auxiliary
fields, and different redefinitions obtain different things. With the natural
redefinition inspired by the field equations for the auxiliary spinors, equa-
tion (12.10), the Generalized Complex Structures (GCS) do not leave the
natural pairing invariant, they do not fulfil equation (8.4). If we instead
make the redefinition as in equation (12.27), we end up with GCS that do
fulfill (8.4), but the price we paid was to end up with a messy action. No
matter how we redefine the auxiliary fields, upon integrating them out we
always end up with the same N=(1,1) sigma model.

What we ultimately have searched for is a set of auxiliary fields such
that the Gualteri map is understood directly from the sigma model. That
is, from the sigma model with semi-chiral fields we can integrate out the
auxiliary fields. After this is done, we can read off the metric, the B-
field and complex structures. From this data we can form GCS from the
Gualteri map, equation (8.13). These structures will be given in terms
of derivatives of the Lagrangian we used in the N=(2,2) action. In the
other approach we would keep the auxiliary fields. We would define them
in such a way that we can, from their supersymmetry transformations,
read of the same GCS as we get from the Gualteri map. By looking at
equation (8.13), it seems like a first step would be to at least define the
auxiliary fields such that we have the complex structures in the top left
corner. However, in the last section we saw that if we require the GCS to
at the same time preserve the natural pairing, this seems to be hard to do.

In the appendix, we will choose a particularly simple Lagrangian, and see if
we can get a manageable look of the GCS obtained from the Gualteri map.
Even with this simple Lagrangian, what we get from the Gualteri map is
a mess. This gives an indication that it might be hard to understand
the Gaulteri map directly from the sigma model written in Lagrangian
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form. However, such a direct realization of the Gualteri map has been
achieved in the Hamiltonian formulation of the sigma model, where less
of the supersymmetry is manifest (see [12] and [13]). Therefore, pursuing
a realization of the Gualteri map from the Lagranian formulation of the
sigma model seems worthwhile.
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14 Appendix 1 - Looking for solutions

As seen from equation (12.15), the expression for the metric in the general
N=(2,2) sigma model with semi-chiral fields is pretty complicated. Here
we will choose a simple form of the potential K(XL, X̄L, XR, X̄R), and see
what simplifications can be made.

We will choose the Lagranian K to be

K = XA
LδAA′XA′

R + KL(XL, X̄L) + KR(XR, X̄R)

≡ KLR(XL, X̄L, XR, X̄R) + KL(XL, X̄L) + KR(XR, X̄R).
(14.1)

This is a model with the fields {XL, XR} coupled together with a simple
coupling KLR.

Since this K is a special case of the general K in equation (12.1), we can
re-use the results from that section. With the auxiliary fields integrated
out we found the N=(1,1) form of the action to be

S = − i

2

Z
d2ξD2

“
−2D+XA

L ωL
ABuBB′

qB′CD−XC
L

D+XA
L

“
mAA′ − 4ωL

ABuBB′
ωR

B′A′

”
D−XA′

R

+D+XA′
R pAA′uAB′

qB′BD−XB
L + 2D+XA′

R pAA′uAB′
ωR

B′C′D−XC′
R

”
≡ − i

2

Z
d2xD2 `D+φtED−φ

´
,

(14.2)

where the matrices in the first line are given by (12.5), and the sum of the
metric and B-field E is given by equation (12.15). With the special form
of K, (14.1), these matrices read

mAA′ = −
„

δaa′ 0
0 δā′ā

«
pAA′ =

„
δaa′ 0
0 −δāā′

«
(14.3)

nA′A =

„
δa′a 0
0 δāā′

«
qA′A =

„
δa′a 0
0 −δā′ā

«
(14.4)

ωL
AB =

„
0 KL

ab̄

−KL
āb 0

«
ωR

A′B′ =

„
0 KR

a′ b̄′

−KR
ā′b′ 0

«
. (14.5)

This inserted in E gives

E =

„
−2ωLuq m− 4ωLuωR

ptuq 2ptuωR

«
=

„
−2iJωL −I − 4ωLωR

I −2iJωR

«
. (14.6)
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14.1 The complex structures

The non-manifest supersymmetry transformations of {XL, XR} are as
usual found from equations (11.1) and (11.2), and we find them to be

δ+XA
L ≡ ε+Q+XA

L = ε+JA
B D+XB

L

δ+XA′
R ≡ ε+Q+XA′

R = ε+ΨA′
R+ = ε+

“
2iuAA′

ωL
ABD+XB

L iuAA′
pAB′D+XB′

R

”
δ−XA

L ≡ ε−Q−XA
L = ε−ΨA

L− = ε−
“
2iuAA′

ωR
A′B′D−XB′

R + iuAA′
qA′BD−XB

l

”
δ−XA′

R ≡ ε−Q−XA′
R = ε−JA′

B′D−XB′
R ,

(14.7)

where the last lines in the two middle equations follows from the field equa-
tions for the spinors, equation (12.9). We know from the GHR-theorem
that we can read off two complex structures from these transformations,
one from the (+)-transformation and one from the (-)-transformation:

J+ =

„
J 0

2iutωL iutp

«
J− =

„
iuq 2iuωR

0 J ′

«
.

(14.8)

Plugging in the matrices (14.3) we find the complex strucutres

J+ =

„
J 0

2iωL J ′

«
J− =

„
J 2iωR

0 J ′

«
.

(14.9)

These two tensors fulfills J2
± = −1, and [J+, J−] 6= 0, as expected.

14.2 The metric

The matrix E is the sum of the B-field and the metric, and we extract the
metric by taking its symmetric part:

g =
E + Et

2
=

1

2

„
−2iJωL −I − 4ωLωR

I −2iJ ′ωR

«
+

1

2

„
−2i(ωL)tJ t I

−I − 4(ωR)t(ωL)t −2i(ωR)tJ ′t

«
= −2

„
iJωL ωLωR

ωRωL iJ ′ωR

«
.

(14.10)

This follows from the facts that the ω’s are antisymmetric, J is symmetric
and ωJ = −Jω. This metric should be hermitian with respect to both
complex structures, which in its simplified form is given by equation (14.9).
A not too long calculation yields that

J t
±gJ± = g (14.11)
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so the metric is indeed bi-hermitian. We extract the B-field from the
antisymmetric part of E:

B =
E− Et

2
=

„
0 −(I + 2ωLωR)

I + 2ωRωL 0

«
. (14.12)

Since we are dealing with a bi-hermitian metric, we can form two Kähler
forms:

Ω+ = J t
+g =

„
−2iωL + 4iωLωRωL −2JωLωR

2J ′ωRωL 2iωR

«
Ω− = J t

−g =

„
−2iωL 2JωLωR

−2J ′ωRωL −4iωRωLωR + 2iωR

«
.

(14.13)

14.3 The Generalized Complex Structures

Now we have all the objects we need in order to form generalized com-
plex structures. From the section about generalized complex geometry,
we know that a manifold with the objects {J±, g, B} always defines a
generalized Kähler geometry, with generalized complex structures

J± = −1

2

„
1 0
B 1

«„
J+ ± J− −

`
Ω−1

+ ∓ Ω−1
−
´

Ω+ ∓ Ω− −
`
J t

+ ± J t
−
´ «„ 1 0

−B 1

«
. (14.14)

In this matrix, we want to take the inverse of the Ω’s. By looking at
equation (14.13), we see that this is complicated. I have tried, and so
far I have only reached the result that the resulting generalized complex
structures will be very complicated.

We have arrived at this point by choosing the mixed part of the Lagrangian
as simple as possible, and keeping the left and right parts general. Still,
the generalized complex structures formed by the Gualteri-map are very
complicated.
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15 Appendix 2 - A geometrical approach

In the previous sections, we have used a manifestly N=(2,2) supersym-
metric model with semi-chiral fields, and showed that the geometry of the
target space is generalized Kähler, or equivalently, bi-hermitian. We have
also showed that the use of chiral fields instead of semi-chiral fields gives
rise to ordinary Kähler geometry, which is a special case of generalized
Kähler, in the target space. There is a third kind of fields that one can
define, called twisted chiral fields:

D̄+χ = D−χ = D+χ̄ = D̄−χ̄ = 0. (15.1)

These fields gives rise to bi-hermitian geometry in the target space, too.
(The twisted chiral fields can be re-defined into chiral fields, only when
both fields are present in a model one has to distinguish between the two).

One can ask oneself how many different fields is it possible to define,
that will give rise to bi-hermitian geometry? The answer is: no more
than these three. This can be proven in the following way:

First we start with a manifestly N=(2,2) supersymmetric sigma model,
with a Lagrangian a general function of chiral, twisted chiral and semi-
chiral fields: K = K(φ, χ, XL, XR). We reduce it down to its N=(1,1)
form, and read off the geometrical objects {J±, g, B}. We did this in the
last section, with a special case of the function K. In the general case,
everything will be much more complicated, but at the end of the day (or
week) you end up with expressions for the geometrical objects, in these
coordinates (the fields in the action serves as coordinates in the target
manifold).

Then we take a second, geometrical, approach. We start with a bi-
hermitian manifold, and show that we can find coordinates in which
{J±, g, B} looks exactly as the ones arising from the sigma model. So
for any bi-hermitian manifold, chiral, twisted chiral and semi-chiral fields
can be used as coordinates.

As a bonus, it is also shown that there exists a generalized Kähler po-
tential, namely a function in which the geometry is encoded. This is the
case in ordinary Kähler geometry, where the metric is given as second
derivatives of a function, the Kähler potential, see equation (4.12). In
the case of generalized Kähler geometry, the metric will still be given by
second derivatives of a function, but this time in a nonlinear manner.

Below I will sketch how the proof is made. The proof involves some geo-
metrical technicalities, which I will not treat with any rigor. The whole
proof is found in [9].

15.1 The split of the tangent space

We can decompose the tangent space into

T = ker[J+, J−]⊕ coker[J+, J−]. (15.2)
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It was shown already in [6] that for the kernel of the commutator between
the two complex structures, chiral and twisted chiral fields could be chosen
as coordinates. The problem was the co-kernel. Were the semi-chiral fields
enough, or do we need more? Now we will show that they are enough.

15.2 The coker[J+, J−]

We will assume that ker[J+, J−] = 0, for simplicity. Important for the
whole proof are so called Poisson structures. A Poisson structure is an
antisymmetric bi-vector πµν that satisfies the differential equation

πµν∂νπρσ + πρν∂νπσµ + πσν∂νπνρ = 0. (15.3)

If π is invertible, then π−1 is a symplectic structure. This is the property
that we will use.

We find in [9] that given a bi-hermitian manifold with objects (J±, g, B),
the following object is a Poisson structure:

σ = [J+, J−]g−1. (15.4)

Since we assume [J±, J±] 6= 0, σ is invertible, and σ−1 ≡ Ω is a symplectic
structure. It can be shown that it is possible to choose so called Darboux
coordinates for Ω. This can be done with respect to either one of the
complex structures. Let {q, q̄, p, p̄} be Darboux coordinates in which J+

looks like

J+ =

0BB@
i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

1CCA ≡
„

J 0
0 J

«
. (15.5)

In these coordinates, Ω looks like

Ω = dqa ∧ dpa + dq̄ā ∧ dp̄ā (15.6)

If we instead choose Darboux coordinates {Q, Q̄, P, P̄} where J− looks
like

J− =

0BB@
i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

1CCA ≡
„

J 0
0 J

«
, (15.7)

then Ω looks like

Ω = dQa′ ∧ dP a′ + dQ̄ā′ ∧ dP̄ ā′ (15.8)

We now have two sets of coordinates, {q, q̄, p, p̄} and {Q, Q̄, P, P̄}, in which
the symplectic structure Ω looks the same. From classical mechanics, we
know that a coordinate transformation {p, q} → {P, Q} which preserves Ω
is called a canonical transformation. In such a coordinate transformation,
we have a generating function K, which always is a function of half the
old coordinates, an half of the new ones.
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Let K depend on the old coordinates {q} and on the new coordinates
{P}. The canonical transformation is then generated by the function
K(q, P ), and you find the new coordinates from the equations

p =
∂K

∂q

Q =
∂K

∂P
.

(15.9)

Now we will choose to be in the coordinates {q, P}. Since J+ is a (1,1)-
tensor, it will be given by

J+ =

„
∂(q, p)

∂(q, P )

«−1„
J 0
0 J

«„
∂(q, p)

∂(q, P )

«
(15.10)

in the new coordinates. We find the transformation matrix to be„
∂(q, p)

∂(q, P )

«
=

„
1 0
∂p
∂q

∂p
∂P

«
=

 
1 0

∂2K
∂q2

∂2p
∂P∂q

!
, (15.11)

where the last step follows from (15.9).

We introduce the notation

KLR ≡
„

Kaa′ Kab̄′

Kāb′ Kāb̄′

«
. (15.12)

The subscript L means differentiation with respect to {qa, q̄ā}, and the

subscript R means differentiation with respect to {P a′ , P̄ ā′}. The reason
we choose these subscripts is that we will identify the coordinates {q, P}
with the fields {XL, XR}.

If we now compute J+ in the {q, P} coordinates, we find

J+ =

„
1 0

−(KLR)−1KLL (KLR)−1

«„
J 0
0 J

«„
1 0

KLL KLR

«
=„

J 0
(KLR)−1CLL (KLR)−1JKLR

« (15.13)

where CLL = JKLL−KLLJ . Let us stop here for a while, and compare to
what we got from the sigma model. In the previous section, we treated the
sigma model with semi-chiral fields, and we ended up with the following
J+ and J−:

J+ =

„
J 0

2iutωL utJp

«
J− =

„
iuq 2iuωR

0 J ′

«
,

(15.14)

where {u = n−1, p, ωL} are given by equations (12.5). In the new notation,
these matrices can be written as

n = KRL

q = JKRL

2iωL = CLL.

(15.15)
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If we now compare what we got from the sigma model, (15.14) with what
we got from the geometric construction, equation (15.13), we see that they
are the same.

Similarly, we can compute J−, which we now have in {Q, P} coordinates,
in the {q, P} coordinates. We find

J− =

„
∂(Q, P )

∂(q, P )

«−1„
J 0
0 J

«„
∂(Q, P )

∂(q, P )

«
. (15.16)

The transformation matrix is now„
∂(Q, P )

∂(q, P )

«
=

„ ∂Q
∂q

∂Q
∂P

0 1

«
=

 
∂2K
∂q∂P

∂2p
∂P∂P

0 1

!
, (15.17)

where the last step again follows from (15.9). So J− is given by

J− =

„
(KRL)−1 −KRL)−1KRR

0 1

«„
J 0
0 J

«„
KRL KRR

0 1

«
=„

(KRL)−1JKRL (KRL)−1CRR

0 J

«
,

(15.18)

where CRR = JKRR −KRRJ . If we make the notational modification as
above, we see from equation (15.14) that this is the same expression for
J− as we got from the sigma model in the previous section.

Finally, we compute Ω in {q, P}-coordinates. In the coordinates {q, p}
it looks like

Ω =

„
0 1
−1 0

«
. (15.19)

Since Ω is a (0,2)-tensor, it transforms as„
∂(Q, P )

∂(q, P )

«t„
0 1
−1 0

«„
∂(Q, P )

∂(q, P )

«
(15.20)

when we make the change of coordinates {q, p} → {q, P}. Therefore we
find Ω in the mixed coordinates to be:

Ω =

„
1 (KLL)t

0 (KLR)t

«„
0 1
−1 0

«„
I 0

KLL KLR

«
=„

0 KLR

−KRL 0

«
.

(15.21)

In the calculation we have used (KLR)t = KRL.

From (15.4) we find the metric to be

g = Ω[J+, J−]. (15.22)

Since Ω, J+ and J− all are given in terms of second derivatives of K in
these coordinates, the metric g will also be given in terms of second deriva-
tives of K. Therefore, it is natural to refer to K as a generalized Kähler
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potential.

To compute g is a bit cumbersome, and equally cumbersome is it to com-
pute the metric which one obtains from the sigma model with semi-chiral
fields. Luckily, the final result of the two calculations again agrees.

Here we illustrate the result with K such that KLR = KRL = I (as
in the calculation we did with the sigma model in the previous section).
We then find that

[J+, J−] =

„
J 0

2iCLL J

«„
J 2iCRR

0 J

«
−
„

J 2iCRR

0 J

«„
J 0

2iCLL J

«
=„

4CRRCLL 4iJCRR

4iCLLJ −4CLLCRR

«
.

(15.23)

Since CRR = ωR and CLL = ωL, we find the metric to be

g = Ω[J+, J−] = −4

„
iJωL ωLωR

ωRωL iJωR

«
, (15.24)

which up to an overall factor agrees with the metric we found from the
sigma model with semi-chiral fields, equation (14.10).

15.3 The general case

In the last section we treated the case ker[J+, J−] = 0, and showed that
semi-chiral fields can be used as coordinates for the co-kernel. In the
general case, both the kernel and the co-kernel of [J+, J−] will be non-
empty. In this case, more tools from Poisson geometry are needed, and it
is shown in [9] that in the general case, it is possible to find coordinates
where all the geometrical objects looks the same as they do when we have
a sigma model with chiral, twisted chiral and semi-chiral fields. Also in
the general case there exists a function K in which builds up the metric,
a generalized Kähler potential.
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