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Abstract

The nature of the dark matter is still a mystery even seventy years after

the �rst mention of it. Designing the invisible mass we probe by looking

carefully at the galaxies and clusters of galaxies, this new sort of matter is

still subject to many speculations. In this paper, we will �rst present the

evidence that have lead to the hypothesis of dark matter. We will then

show a way to explain its present energy density via the freeze-out of the

interactions, leading to an estimate of the cross-section and the mass of the

hypothetic dark matter particle. Then, we will describe how such a massive

particle can be predicted to be stable by looking at the supersymmetric

candidate for dark matter. We will �nally conclude on how the experiment

might help constraining the model and re�ning it.
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Introduction

Since the Einstein's equations of general relativity in 1915 and the proposed

model of the universe by Friedmann, Robertson, Walker and Lemaître, we

know that it exists a strong link between how the universe expands and how

much matter there is inside. If we consider a �at universe, the link de�nes a

critical energy density ρc that must have the universe if this theory is correct.

H2 =
8πG

3
ρc, (1)

where H is the Hubble constant and G the gravitation constant. One

can introduce the notation Ω = ρ/ρc which is the contribution of a species

to the critical density. When the curvature of our 4-dimensional universe

is taken into account, the Friedmann's equation transforms in a inequality.

As a result, an universe denser than the critical density will have a positive

curvature, so a shape like a sphere and will be closed - ie �nite. A contrario,

with less than the critical density, the curvature will be negative and the

universe open, ie in�nitely extended in space - as for the intermediate case,

a �at and also in�nite universe. One possibility consists in measuring the

density of our universe - a not so easy task. For decades, this has lead people

to think that our universe was negatively curved, since the density was much

less than the critical one.

However, one can also think the other way around. If we instead measure

the curvature of the universe at a su�ciently large scale, we will be able to

know its density. The Wilkinson Microwave Anisotropy Probe - WMAP

for short - has con�rmed with a high precision what previous results had

already pin pointed out : it is very close to be �at, that is to say that

there is a density of energy almost equal to the critical density predicted by

Friedmann's equation. But this mission also con�rmed that all our visible

universe, all the 'light' matter - what we can see - contributes only up to

ΩLM ' 0.4% of this density so that the previous conclusion about the open

universe, though wrong, was due to a real problem : we do not see the

majority of the energy content of the universe. In a word, what constitutes

the bulk of the universe is yet to be understood.

On the other hand, some observations raised �rst by Zwicky [14] in 1937,

and that will be discussed in the section 1 tend to prove that we are making

a mistake by estimating the mass of the galaxies and the clusters of galaxies
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by just measuring the emitted light. This underestimation could lead to

almost a factor of one hundred, huge discrepancy but still not enough to

produce all the critical density. It will be discussed here the reason why this

unseen dark matter is thought to be non baryonic, that is to say di�erent

from the matter we are accustomed to see around us, and thus the need to

consider a yet-to-be observed dark matter particle ψ that would account for

the missing matter part of the energy density of the universe.

To explain how this particle would have reached our times without being

detected and completely annihilated, we will discuss in the section 2 the

mechanism of freeze-out in detail and produce a natural constraint on the

mass and cross-section values of this hypothetic particle. This calculation

has lead to build up the new generation of detectors in order to check these

regions. We will then detail the mechanism of coannihilation that can change

considerably the relic density in some particular cases that will eventually

show up in the case of supersymmetry.

The Standard Model being short of the prediction of such a particle,

one has to search elsewhere a theory to predict it. There are several pos-

sibles models that produce a potential dark matter candidate, but I have

chosen here to present only the supersymmetric candidate. In the section 3,

I will thus present the ideas behind the supersymmetry, as well as the actual

candidate, and try to show how the going-on experiments are constraining

the model, and how recent results might lead to a new formulation of the

breaking of supersymmetry. Due to the limited time of the internship, I have

decided not to go into the mathematical details of supersymmetry but rather

try to uncover the main ideas and the general line of thought under it, in

order to present a general picture.
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1 The evidence for dark matter

The problem that arises when we calculate the energy density of the light

matter is that we assume a ratio mass/luminosity being the same than the

one we observe from nearby stars. This issue has �rst been pointed-out by

Zwicky in his paper from 1937 where he remarks that this assumption might

be inconsistent. Indeed, there could be some unseen matter - therefore dark

- that could either absorb the radiation from the galaxies, either not emit

any light. In any case, this additional term would lead us to underestimate

by a large factor the actual mass of this humongous objects.

Here follows the various features that Zwicky shown at the time to illus-

trate his point, and that now have been veri�ed with higher accuracy to be

correct.

1.1 Rotation curves of galaxies

Let us consider a typical spiral galaxy. If we assume that the bulb in the

center is roughly spherical, we have that

F = −GM(r)m
r2

er = ma = −mv2(r)
r

er (2)

v(r) =

√
1
r

√
GM(r) (3)

In the expression of the gravitational force, only the mass enclosed by

the orbit is considered. For a spherical distribution, one can expect the mass

of the inside bulge to scale as r3, hence to give the speed a linear behaviour

by the eq. (3). When one leaves the bulge, as the matter distribution depart

from spherical one, the mass will not increase as fast as r3, so the dependence

will become �atter and �atter until, at the border of the galaxy, the inside

mass being a constant, one could expect a r−1/2 decay.

However, observations of orthoradial speeds of isolated stars and gas

clouds outside the border of the visible galaxy [12] show a departure from

that prediction (see �g. (1.1)). The �atness of the curve indicates that

the mass is still increasing outside the visible arms with a r2 power law,

indicating the presence of an unseen matter. This additional amount of

mass might lead us to underestimate the total mass of a galaxy by a factor
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of 5 or 10.

Figure 1: Rotation speed of galaxy, in units of luminous radius

One possible interpretation for that phenomenom is to claim that the

laws of physics are no more valid at the large galactic scale, and that for

large distances, the gravitational force scale as r−1 instead of the r−2. This

claim made by the MOdi�ed Newtonian Dynamic - MOND for short - is

a way to describe these rotation curves. Though, this static model does

not explain the other problems raised by the observations, namely the same

problems of invisible mass but at the cluster scale.

1.2 Gravitational lensing, virial theorem and other evidence

In the theory of general relativity, we know that the light coming from behind

a massive object will be bended towards the object. In a word, the location

of a background of very distant stars will be distorted when for instance a

cluster of galaxies will pass in front of it. We are able with that data to go

back to the mass of the object, and here the result is even more critical : the

underestimate of the total mass of a cluster would be of order one hundred !

It exist another evidence of this discrepancy when one looks in the kine-

matic motion of the galaxies inside a cluster. If one applies the Virial theo-

rem, assuming that the cluster is in statistical equilibrium, with the various
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speeds of the elements one can determine the mass of the total cluster. Here,

the result is the same, meaning that the actual mass is far greater than what

we collect from the light only.

Yet another way to determine the amount of dark matter in the clusters

that have not been raised by Zwicky is to look at very large scale motion. Our

local cluster is indeed falling in our neighbor Virgo cluster. By characterising

this infall, we are able to determine the masses involved, and this result also

leads to a higher value than expected.

The interesting point with all these di�erent methods is that they use

various independant physical principles and yet lead to the same result. This

allows us to be con�dent enough on our current interpretation.

Moreover, the observation of the bullet cluster has clearly shown the dis-

parity between the light matter barycenter and the total mass barycenter

via gravitational lensing. This can be seen as a strong proof for dark matter

hypothesis, but it is actually possible to explain this feature without making

the assumption of an unknow matter. In [4] one of the dynamical develop-

ment of the MOND theory is developped and simulated and they succeed

in getting a di�erent barycenter than the visible one. However, in this new

development of the theory, known as generalised Einstein-Aether theories,

they modify general relativity law by adding a vector �eld of non-zero time-

like component. The point is then that the �uctuations of this �eld can be

the seeds of baryonic matter collapse, but that a high value of this �eld can

still remain where there is no baryonic matter around. In a nutshell, the

unknown dark matter particles are replaced by an unknow vector �eld. To

discriminate between the two models seems for now very di�cult, so one has

to make one hypothesis to choose between the two. Here, I have decided to

focus on the dark matter hypothesis.

1.3 The baryonic abundance

If the dark matter hypothesis is picked up, it follows that we do not see an

important part of the matter that constitutes the universe. But that does not

imply a priori that it is some new kind of matter. One can think of all the

normal baryonic matter that would escape our detection by being too faint,

such as neutron stars, black holes or intergalactic medium - the fermionic

matter, due to its very low mass, does not contribute signi�cantly to the
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energy density of the universe. Is all this would be enough to explain these

nearly two orders of magnitude discrepancy ? That is what was thought be-

fore someone proposed a way to calculate independantly the baryon density

in the universe and compare it with the total amount of mass we measure

with these new methods. One possibility is to look at the nucleosynthesis.

During the �rst minutes after the Big Bang, the temperature was so high

that nuclear fusion happened. During this short time, the protons merged to

create stable atoms of Deuterium, Helium 3 and 4, Lithium 6 . In order to

calculate theoretically the abundances of these elements at the end of the Big

Bang Nucleosynthesis - BBN - one has to introduce the number of baryons

per photons. Since we are able to calculate the number density of photons

via general relativity, one can go back to the actual mass density of baryons

The point is that the abundances of the species after this process will depend

more or less strongly on this parameter. It appears that the Deuterium has

the strongest dependancy : if one is able to measure its abundance in the

very early universe, so before anything happened to it, one can deduce the

value of the free parameter and conclude about the mass density of the total

baryons in the universe.

This work has been done and the outcome is that Ωbaryons = 4.4± 0.4%.

This de�nitively rules out the baryons for being the sole responsible for the

missing mass of the universe, and even for being enough to explain the mass

of the cluster of galaxies. Indeed, the WMAP experiment has estimated the

total amount of matter in the universe to be Ωmatter = 27%. One thus clearly

need to look for something else, another particle, to explain this missing 23%.
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2 Dark matter particle

I have described so far the evidence that prove that something is amiss.

What is this something ? If we assume that all the matter and energy we

are seeing today was here since the beginning, after the in�ation, then this

particle that constitutes the dark matter should have also been there.

2.1 Desired properties a priori

Let us consider a hypothetical particle ψ and its antipartner ψ, of mass mψ.

First of all, this particle should be quite massive to account for this huge

missing mass and despite its low density. We will see in the section 3 how

such a massive particle can be stable and not decay into normal matter. It

also should not interact directly with light, so being neutral, and colorless as

well. We also want it to interact weakly with the normal matter, otherwise

we would already have detected it, and that leads with the previous condition

of the interaction via the exchange of a Z0 neutral weak boson.

Concerning the reactions involved, we want to take the easiest hypothesis

possible. Thus we will consider only the processes of annihilation and pair

creation ψ+ψ � i+ i and state that they will be predominent, with i being

a priori anything, photons, electrons, neutrinos, etc...

2.2 Freeze-out, equilibrium departure

2.2.1 Statistical description

Once all this assumed, the next step is to place the calculation in the context.

This dark matter particle should have been in thermal equilibrium in the

very beginning of the universe, at least, as all the rest of the particles. The

problem is the following : if a species stays in thermal equilibrium, when

the universe cools down, the pair īi will not have enough thermal energy to

annihilate and pair create ψψ. But if the dark matter particle still continue to

annihilate, its density will drop drastically with time and its today's density

will be negligible. Somehow, one has to think of a mechanism to drop out

of this equilibrium and to keep the particle in a constant density.

This is called the decoupling. For di�erent species the precise mechanism

can vary whether there a particle-antiparticle number density symmetry or

not, but we will here consider the simple case where there is such a thing.
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In this case, we can get a visual picture of how it works by considering the

fact that the universe expands as it cools. Hence, if the universe expands

more rapidly than the particle/antiparticle annihilate themselves, there is a

moment where annihilation will be very unlikely to happen since the partners

will be so far away from each other. It is the freeze-out of interactions - in

other terms, the reaction goes out of equilibrium. The particles remain at

the same density that they had at that moment and from that point are

only diluted in the universe, but no more annihilated. These relics from the

past are a way to explain the presence of dark matter today, even if it tells

nothing yet about the nature of that particle.

This simpli�ed picture is not su�cient to explain for instance all the

remaining baryons in the universe. For that, one has to claim an original

unbalance between matter and antimatter. However, for dark matter it is not

compulsory to add this original asymmetry, I will thus consider for the rest

of the calculation that nψ = nψ. In order to treat properly this problem, one

has to wonder how to describe the evolution of the density of such species.

The density being linked with the phase space distribution (or measure

for the mathematicians) f(xµ, pµ), with xµ and pµ the four position and the

four momentum respectively, the important equation that one will have to

solve is the Boltzmann equation,

L̂[fψ] = Ĉ[fψ], (4)

where L̂ is the Liouville operator and Ĉ is the collision operator. Basi-

cally, this equation states that the evolution of a particle distribution is a

function of its interaction and of the environnement. In covariant formalism,

the Liouville operator can be expressed :

L̂ = pα
∂

∂xα
− Γαβ γp

βpγ
∂

∂pα
. (5)

The Christo�el's symbols that appear in the expression illustrate the

fact that how particles evolve in the space depends on how the space is

measured. One has thus to assume a metric to continue the calculation, in

order to obtain an expression for the Christo�el's symbols. From now on,
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the greek indices will run from 0 to 3 and the latin letters will only cover 1 to

3. Since we have settled the problem after the in�ation, we can reasonnably

assume that the variations of density are weak, and so that the Robertson

Walker (RW) metric is a good description of the geometry of the universe

from that moment until today. Moreover, since this is happening during the

radiation dominated era, the primordial �uctuations of density are frozen-in

and do not evolve or contribute to these events. The RW metric writes :

ds2 = dt2 −R(t)2

{
dr2

1− kr2
+ r2dθ2 + r2 sin2 θ dφ2

}
, (6)

where the convention c = 1 has been picked, and r is dimensionless so

R(t) is the cosmic scale factor and has a dimension of length. This last

factor actually describes the stretching of the universe, the actual distance

between two points. The choice of this metric implies that the distribution

function will also be homogeneous and isotropic - because the spacial term

has a common factor in front - that is to say that the only dependance of

f in terms of xµ is with respect to time, and in terms of pµ is with respect

to the energy. From now on, the calculation will be in the natural system

of units imposing c = ~ = kB = 1, implying the equivalence between mass,

energy, temperature, inverse time and inverse length. We can then compute

the only Christo�el's symbols that will be relevant :

Γ0
i j = −Ṙ

R
gij , (7)

where the dot denotes the derivation with respect to time. With this

expression one can get :

L̂ = E
∂

∂t
− Ṙ

R
|p|2 ∂

∂E
. (8)

The next step is to �nd the evolution of the number density of our par-

ticle, where it has been de�ned as usually as :
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nψ(t) =
g

(2π)3

∫
d3pψfψ(E, t) =

g

(2π)3

∫
4π|pψ|2dpψfψ(E, t), (9)

with g denoting the number of internal degrees of freedom. After an

integration by part that brings the factor 3 and the sign change and by

using EdE = pdp and E2 = p2 + m2, the Boltzmann equation (4) rewrites

as follows,

∂nψ(t)
∂t

+ 3Hnψ(t) =
g

(2π)3

∫
Ĉ[fψ]

d3pψ
Eψ

(10)

Where H = Ṙ
R , the Hubble parameter has been introduced. One has now

to deal with the collision part. In a very general way, one should consider

all the possible collisions and scattering processes. However, our supposed

particle interacts weakly with its environnement, so one can limit the study

only to the annihilation - pair creation channel with other particle, and

neglect all the possible scattering processes. Even with this drastic - though

justi�ed - simpli�cation the equation will need a numerical solving. The

collisionnal term becomes

g

(2π)3

∫
Ĉ[fψ]

d3pψ
Eψ

= −
∫
dΠψdΠψdΠidΠi(2π)4δ4(pψ + pψ − pi − pi) (11)

. . .
{
|M|2

ψ+ψ→i+i fψfψ(1± fi)(1± fi) − . . .

. . . |M|2
i+i→ψ+ψ

fifi(1± fψ)(1± fψ)
}
,

with a plus sign if the considered species is a boson, and a minus sign if

it is a fermion, and where dΠa = ga
(2π)3

d3pa

2Ea
.

The other basic assumptions one can make are the T invariance - invari-

ance with respect to time reversal - and the Maxwell-Boltzmann distribution

for any species, regardless of their spin statistic. The �rst one is motivated

despite the fact that for some cases the T invariance is broken in weak

interactions because it allows us to equalize the matrix elements of the an-

nihilation and pair creation. This is, to be honnest, a weak argument, but

the actual description of the di�erence between the two matrix elements is,
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as far as I know, not clearly established. Again, this is a toy calculation,

and we will see in the following parts that there are cases where it does not

apply perfectly. To be correct, every time one predicts a potential candi-

date, one should check each hypothesis made along the calculation to see if

it breaks somewhere. The second approximation provides us a formula for

the distribution function of the species if in equilibrium, that is to say :

fi(Ei) = exp(−Ei − µi
T

) and 1± fi ' 1, (12)

where the Boltzmann constant is taken equal to 1, µi and Ei respectively
the chemical potential and the energy of the i particle. It is a well accepted

fact that in the beginning, the universe was very close to be in thermal equi-

librium. What we search to do here is to precisely caracterize the moment

where one of the species went out of that equilibrium. This ideal distribu-

tion will thus be used as an initial condition and as the actual distribution

of the other species, assumed lighter and more interacting, so still in thermal

equilibrium when ψ decoupled. The Boltzmann equation (10) becomes

ṅψ + 3Hnψ = −
∫
dΠψdΠψdΠidΠi|M|

2(2π)4δ4(pψ + pψ − pi − pi)
(
fψfψ − fifi

)
.

(13)

The equation looks at last like something we can talk about. The evo-

lution of the time variation of the number density of a species is driven by

the expansion of the universe - a dilution term, characterized by the Hubble

factor H - on one side, and on the other side of the interaction with the other

particles. If the collision term was stricly zero, we would �nd straightfor-

wardly the R−3 dependence of nψ. To interpret the second term in a simple

way, it will need again some manipulations.

As said previously, the i species are considered to be in thermal equilib-

rium all the time during the phenomenon we describe here. It makes sense

because of the more numerous interactions : it is easier for it to achieve ther-

mal equilibrium. This assumption will let us replace the fi in the collisional

term by (12). We can assume furthermore than the chemical potential of the

i species is 0. Indeed, for the photons it is rigourosly equals to zero, and for
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other species, during the phase we are studying, the energy is much greater

than the chemical potential. It also re�ects the fact that they are in thermal

equilibrium, so that their number density is conserved.

By looking at the RHS of (13), one can see that the integration of the

energy part of the dirac term will lead to Ei+Ei = Eψ+Eψ. Hence, the fifi
will transform after integration into exp(−Eψ+Eψ

T ). This term corresponds

to a feqψ f
eq

ψ
, 'eq' designing the equilibrium value. Indeed, this would be

the phase space distribution of ψ if it would stay in equilibrium. From

that, it is straightforward to see that these distribution terms will lead after

integration over dΠψdΠψ to number density terms. Remembering that it has

been assumed a symmetry between ψ and ψ, so that nψ = nψ, one �nds:

ṅψ + 3Hnψ = − < σψ+ψ↔i+i|v| >
(
n2
ψ − (neqψ )2

)
, (14)

Where < σψ+ψ↔i+i|v| > designs the thermally averaged annihilation

cross section times velocity and is given by (15) which can be rewritten

as (16) to keep the symmetry in the expression. One has however to note

the assumption made here concerning the matrix element |M|2. Indeed, it

depends a priori on all the four-impulsions of both the initial and �nal state.

It could thus appears wrong to think that it will be the same for the part

in equilibrium and the part out of equilibrium, and so that the factorization

in (14) comes a bit too early. However, one has also to remember that far

from equilibium, the collision term does not play a great role any more. In

conclusion, this approximation is good as long as the species stay close to

their equilibrium value, and becomes bad when this collision term becomes

negligible. It is thus a quite reasonnable approximation.

< σψ+ψ↔i+i|v| > =
1

2Eψ2Eψ

∫
dΠidΠi(2π)4|M|2 (15)

=
1(

neqψ
)2∫ dΠψ . . . dΠi|M|

2(2π)4δ4(pψ + pψ − pi − pi)e
−Eψ/T e−Eψ/T . (16)

If we, at last, make the sommation over all the di�erent annihilation

channels - ie for all the di�erent i's - we have the �nal expression
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ṅψ + 3Hnψ = − < σ|v| >
(
n2
ψ − (neqψ )2

)
. (17)

At that time, one thing that can be done to see more clearly the e�ect of

interaction is to suppress the e�ect of dilution, by placing our analysis in a

comoving volume. One can thus introduce the entropy density s and de�ne

the variable Y ≡ nψ
s . Considering that the entropy of a comoving volume is

conserved - sR3 = constant - one can see that the LHS of (13) rewrites

ṅψ + 3Hnψ = sẎ . (18)

Moreover, it is convenient to make another variable change. So far, the

evolution of the density was given with respect to time. To continue, one

will have to assume an analytic shape for the cross section, and it is usually

given as a function of temperature. It is thus useful to use the variable

x = m/T where T is the temperature of the universe and m any mass scale,

which for simpli�cation purposes we will take it equals to mψ. The relation

between the time and the temperature varies according to the era. Since our

study takes place in the radiation dominated era - that is to say before the

decoupling of the CMB and the beginning of the matter dominated era - the

relation straigthforwardly given by Friedmann's equation is the following :

t = 0.301g−1/2
∗

mPl

T 2
= 0.301g−1/2

∗
mPl

m2
ψ

x2 =
x2

2 ·H(m)
(19)

Where the Hubble parameter - with a dimension of inverse time - has

been introduced to simplify the following expressions. mPl refers to the

Planck mass, and g∗ is the total number of e�ectively massless degrees of

freedom (species with mass mi << T ) given by :

g∗ =
∑

i bosons

gi

(
Ti
T

)4

+
7
8

∑
i fermions

gi

(
Ti
T

)4

(20)

This quantity is thus calculated thanks to the standard model, for run-

ning the summation over all species still in equilibrium at the given time.
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Since it is only the equilibrium particles that participate in that, it does not

matter if we discover more massive particles, it will not change that value.

It is fairly constant over large range of values, since it will vary only when

a species decouples. One has also to note here that even though we are

interested in the present day density of the particle, we do not take into

account the matter dominated era to compensate the expression of time in

terms of temperature. We do so because the decoupling happens during the

radiation dominated era, and from then is completely decoupled from the

rest of the universe, as the radiation. One can thus still use the relation for

the temperature from the radiation phase to determine the evolution of the

dark matter.

We eventually end with the rewriting of (17) as follows

dY

dx
=
−x < σ|v| > s

H(m)
(
Y 2 − Y 2

eq

)
(21)

Introducing H(x) ≡ x−2H(m), the proper Hubble constant, and Γ ≡
neq < σ|v| > the inverse mean free time of �ight between two collisions,

both being of inverse time dimension, we can even cast this equation into a

meaningful shape :

x

Yeq

dY

dx
= − Γ

H(x)

((
Y

Yeq

)2

− 1

)
(22)

This shape allows us to make a consistency check of the equation. Let us

assume the decoupling has occured, so that Γ
H(T ) is small, even with respect

to the departure from equilibrium. Hence the RHS of (22) will be less than

order unity. Then, we can see that x
∆x

∆Y
Y ∼ Γ

H(T ) , so that ∆Y
Y ∼ ∆x

x
Γ

H(T ) .

Namely, even for large variation of x - ie of time - the relative variation of

the number of particles in a comoving volume is low : this is the freeze out.

2.2.2 Cold relics

The more widely accepted model today is to say that the dark matter parti-

cles decoupled when they were already non relativistic - ie cold. This means

that the particle is massive enough, hence the name of Weakly Interacting
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Massive Particle. It exist also a description through warm relics, of lesser

mass, that could also explain the dark matter, but I have decided here to

treat only the �rst case since it corresponds to the future calculation for the

supersymmetric candidate. To determine the remaining density of this cold

dark matter particle, one has to assume a temperature dependency of the

cross section.

The relation between the annihilation cross section and the speed is a

function of the type of interaction. < σ|v| >∝ vp with p = 0, 2, . . . for
respectively a S-wave, P-wave . . . The equipartition of energy gives that v ∝
T 1/2 hence the chosen parametrization of the cross section

< σ|v| >= σ0

(
T

mψ

)n
= σ0x

−n (23)

With n = 0, 1, . . . for respectively a S-wave, P-wave . . . The equation can

thus be rewritten in the form

dY

dx
= −λx−n−2(Y 2 − Y 2

eq), (24)

where λ =
[
x < σ|v| > s

H(m)

]
x=1

and Yeq = 0.145
(
g

g∗S

)
x3/2e−x,

and where it has been used that s scales as R−3 so as x−3 since T scales

as R−1.

From that point one can solve the equation numerically - since Yeq is a

fonction of x, this equation does not accept any exact solution. The results

are shown on �g. 2 . The point, however, is to �nd a constraint on the value

of the cross section or the mass of the particle according to the density it

implies. With such a numerical solving, it will not be possible to reach this

constraint. Luckily enough, one can also make a further assumption that

leads to a rather good estimate [9] of the ending value. In the paper, they

claim a precision of order 5%. I have checked the validity for meaningful

values of λ, i.e. around 1010. One has to note however that for bigger and

bigger λ, the convergence of the di�erential equation is becoming harder and
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harder. I have used ode113, a numerical solver implemented in Matlab using

the Runge-Kutta method. To improve the convergence, one has to take a

huge number of points, and the time becomes very important. With 10000
points on a linear scale from 1 to 200, with λ = 1e8 the precision is of order

1%. For smaller values of λ, the error lies within 10%, and further on the

computation takes more than a dozen of minuts to proceed, I thus did not

checked. But it appears that this approximation is a very good one for the

domain we are interested in. Let us just rewrite once more the equation

introducing ∆ = Y − Yeq:

∆′ = −Y ′eq − λx−n−2∆(2Yeq + ∆). (25)

Let us introduce the value xF , which corresponds to the temperature,

hence the time, where the particle decouples. For late times, that is for

x � xF , we know that the departure from equilibrium will be great, thus

that Y � Yeq, or ∆ ' Y . The equation can now be solved

∆′ = −λx−n−2∆2 (26)∫ ∆=Y∞

∆=0

d∆
∆2

= −
∫ x=+∞

x=xF

λx−n−2dx (27)

∆∞ = Y∞ =
n+ 1
λ

xn+1
F (28)

The point consists now in determining xF . In order to do this, one can

recall the de�nition we took for the decoupling, which was the time were

the expansion rate of the space becomes of the same order that the inverse

mean free time for a collision (see eq. (22) and discussion). Namely, the

freeze-out criterion becomes H(xF ) ' Γ(xF ). Given that s = 2π2

45 g∗ST
3 =

2π2

45 g∗Sx
−3m3

ψ we end up with

xF ' ln
(

0.0873
g

g
1/2
∗S

mPlmψ σ0

)
− (n− 1/2) ln(xF ) (29)

⇒ xF ' ln
(

0.0873
g

g
1/2
∗S

mPlmψ σ0

)
− (n− 1/2) ln

(
ln
(

0.0873
g

g
1/2
∗S

mPlmψ σ0

))
(30)

The passage from eq. (29) to (30) being justi�ed by the fact that every-
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Figure 2: Numerical solution of the eq.(24) for values of λ of 103,104 and
105.

thing is expressed with units where c = ~ = 1. This way, the logarithm of

the big parenthesis is a big positive number, and since xF is of order ten,

one can in �rst approximation take xF equal to the �rst logarithm and end

up with eq. (30).

The last step consists now in giving a value to σ0 still mysterious so

far. To do this, one must now assume something about the nature of these

particles.

2.2.3 Dirac heavy neutrinos

One possibility is for instance to consider the case of Dirac heavy stable

neutrino. The interaction process is thus through the exchange of a Z0
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weak boson. The annihilation proceeds only through the s-wave channel,

thus n = 0 and σ0 ' c2G
2
Fm

2
ψ/2π for a mass lower than mZ/2 and σ0 ∝

1/m2
ψ for a mass greater than mZ/2, with c2 ' 14 - it corresponds to the

number of annihilation channels open, here the three other neutrino families,

e− e+, µ− µ+, uū, dd̄, ss̄, with all the fermions (anti fermions) of helicity

−1
2 (+1

2), and three colors for each of the quarks u, d and s- and GF =
1.16637× 10−5 GeV−2 the Fermi coupling constant [9]. Indeed the variation

of behaviour comes from the fact that for a lower mass, the scale of energy

is such that the Fermi coupling constant will appear, so one has to �nd

this m2 dependancy to keep the homogeneity. After that scale of energy,

the only relevant scale becomes the mass of the particle, and thus the m−2

dependancy.

The fact that the dependency in mass changes over a certain value will

lead to two possible values for the mass with only one value for the cross

section. Taking g = 2 for a massive spin 1/2 particle and g∗S ' g∗ ' 60
(at that time few particles had already decoupled), the Planck mass mPl =
1.2209× 1019 GeV, we �nd for xF

xF ' 18 + 3 ln (mψ in GeV) (31)

Y∞ =
n+ 1
λ

xn+1
F =

1
λ
xF (32)

= 4× 10−11(mψ in GeV)−3

[
1 +

3
18

ln(mψ in GeV)
]

(33)

One can notice here that the cold relics approximation is veri�ed since

xf ∼ O(10), we have that TF /mψ ' O(0.1) - in other terms, the termal

agitation at the time of decoupling was lower than the rest energy. Now we

can change back the variable to the number density and the mass density,

and at last divide by the critical density
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ρ0 = n0 ×mψ = Y∞ × s0 ×mψ = Y∞ × 2970× (102)3 ×mψ (34)

ρ0 = 2.09× 10−28.(mψ in GeV)−2

[
1 +

3
18

ln(mψ in GeV)
]

(35)

Ωψψ = 2× ρ0

ρc
=

2ρ0

3H2/8πG
=

2ρ08πG
3(100 km/s/Mpc)2h2

(36)

Ωψψh
2 ' 3.7× 10−42 1

σ0 in m2
(37)

The important point to notice here is the presence in the denominator

of σ0. That is to say, the weaker the particle interacts, the denser it will be

today. Indeed, the small interaction implies an earlier decoupling, an earlier

departure from the equilibrium, at a time where the equilibrium value was

high. We know today with the precise measurements that this density should

be 0.23±0.04. This leads to a lower and an upper bond for the cross section

in general, and the mass for this model. The wanted particle must thus lie

within this limit to be still a good candidate for dark matter. All calculation

done, this give the following boundaries for the candidate for dark matter :

1.4× 10−41 m2 6 σ0 6 1.9× 10−41 m2 (38)

1.8 GeV 6 mψ 6 2.1 GeV (39)

or 1.9 TeV 6 mψ 6 2.3 TeV (40)

This particularly low value of cross-section justi�es the hypothesis a pos-

teriori of a weakly interacting particle. Indeed this value lies typically in the

range of values of weak process cross-sections. It actually �ts so well that it

has been called the WIMP miracle : it is too beautiful to be true. And, as

a matter of fact, latest experiments have already ruled out the hypothesis of

a 4th generation neutrino. Concerning the �rst case, a neutrino lighter than

the Z boson, that would lead to a spontaneous desintegration into a pair ψψ.

But the latest measurements of the width of the boson have ruled out this

possibility. And for the particle with a mass larger than the Z mass, it has

been ruled out by the bounds set by direct detection [7].
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2.3 Short presentation of coannihilation

To conclude on this calculation, one has to talk of the possibility of coanni-

hilation. Indeed, there is a way to modi�y the present day mass density of

the hypothetic dark matter particle by taking into account another partner

with a quite similar mass. By doing so, one can explain the presence of

the correct mass density without constraining so directly the mass of the

particles involved. There are two other cases where the classical calculation

does not apply (see [6]) - namely the case where the relic particle could an-

nihilate into slightly heavier particle, or when the annihilation takes place

near a pole in the cross-section - but I will only treat here the problem of

coannihilation since it will become in a handy later. The point to consider

this deviation from normal computation is to be sure not to make a big

mistake when calculating the relic density of dark matter when taking into

account models that predicts close to degenerate masses, as it is the case for

supersymmetry. The only di�erence is now that we will consider not only

one possible ψ particle, but several ψk with masses mk, that we will choose

conventionnaly to be mk < ml for k < l. Our previous particle will now be

called ψ1.

Before going into the details, one has to remember two things. First of

all, this ψ1 is still considered to be stable at cosmological scale, in opposition

to ψk for k 6= 1 which can decay. However, we shall make another assump-

tion that I will justify later, namely that these new particles can not decay

spontaneously into Standard Model particle, because it would violate a con-

served quantum number. Hence, you have to respect this implicit symmetry

when taking into account the possible reactions - this will be discussed more

precisely in the section on supersymmetric candidate. Let us see now more

precisely how this modify the previous calculation. The relative abundance

of these species at freeze-out can be estimated in a �rst way by the usual

ratio :

nψk
nψl

=
e−mk/TF

e−ml/TF
(41)

Hence, if it exist a ψk , k > 1 particle with a mass close enough to mψ1 ,

this particle could play a non negligible role in the previous calculation.
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Indeed, if we are to take into account all processes that would change the

density of ψk, we would have to consider the following reactions, for all l :

ψk + ψl ←→ i+ i′ (42)

ψk + i←→ ψl + i′ (43)

ψl ←→ ψk + i+ i′ (44)

Once again, other reactions are forbidden by symmetry argument. Con-

cerning the nature of i′ in eq (43), it will be imposed by the choice of i, they

are clearly not independent if one has to conserved the quantum numbers.

For l = 1, the reaction (44) will not occur, and if we consider that it occurs

for all other particles, we can assume that today the only remaining particle

is ψ1 since all other have eventually decayed into it. We have now a set of

N Boltzmann equations, one for each ψk :

ṅk + 3Hnk = −
∑
i,l

[
< σkl|v| > (nknl − neqk n

eq
l )

−
(
< σ′kl|v| > (nkni)− < σ′lk|v| > (nlni′)

)
− Γkl(nk − neqk )

]
, (45)

where the cross-sections and reaction rates σkl, σ
′
kl, σ

′
lk and Γkl are re-

spectively the one of reactions (42), (43), (43) in reverse direction, and (44).

If we say that all ψk particles will eventually decay into ψ1, to compare the

result with the �rst part, one has to take into account the total number

density of all the particles, n =
∑

k nk. After adding all the Boltzmann

equation, one �nds

ṅ+ 3Hn = −
∑
k,l

< σkl|v| > (nknl − neqk n
eq
l ) (46)

Indeed, the terms corresponding to reactions (43) compensate two by

two, and for the Γ terms, we will now show that their contribution to this

equilibrium is negligible since these rate of reaction are much faster. Indeed,

one can estimate the di�erence between the rates of reaction of type (42)
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compared with those of type (43) and (44). The behaviour of the particles

will be di�erent since at the temperature of freeze-out, the ψk will be non

relativistic whereas the i will be relativistic. If one de�nes

n(p) =
g

e
ε(p)
T ± 1

with ε2(p) = p2 +m2 (47)

n(T ) =
∫ ∞

0

d3p

(2π)3

g

e( ε(p)
T )

. (48)

For non relativistic particles, we get

ε ' m and n(p) ' ge−m/T

n ∼ (mT )3/2e−m/T , (49)

and for relativistic particles,

ε ' p and n(p) ' g/(e−p/T ± 1)

n ∼ T 3 . (50)

Hence, we can derive the di�erent reaction rate of equation of type (42)

and (43) :

nk nl σkl ∼ T 3m
3/2
k m

3/2
l σkl exp(−(mk +ml)/T ) (51)

nk ni σ
′
kl ∼ T 9/2m

3/2
k σ′kl exp(−mk/T ). (52)

Hence the rate of the second type of reaction over the �rst one is

ni
nl

=
(
T

ml

)3/2

exp(ml/T ), (53)

which for a freeze-out value of xF ' 30, has a value of O(1011), if we
assume that the cross-section for the di�erent processus are roughly of the

same magnitude. This result allows us to make a further hypothesis : since
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the freeze-out is determined by reactions of type (42), and that the other

ones occur more rapidly, we can assume that the distribution of particles in

ψk remains in equilibrium during the whole process, namely nk/n ' neqk /n
eq.

This explains how the Γ terms are cancelled in (46). Introducing

rk =
neqk
neq

=
gk(1 + ∆k)3/2 exp(−x∆k)

ge�
, (54)

with : ge� =
N∑
k=1

gk(1 + ∆k)3/2 exp(−x∆k), (55)

one can rewrite eq. (46) into

ṅ+ 3Hn =− < σe�|v| > (n2 − n2
eq), (56)

with : σe� =
∑
ij

σijrirj . (57)

One can see now the similarity with the previous calculation, the cross-

section being a di�erent expression of the several involved particles. So it is

possible to do exactly the same computation than before, the ending estimate

being modi�ed by replacing σ0 by σe� and g by ge�. Namely :

xF ' ln
(

0.0873
ge�

g
1/2
∗S

mPlmψ σe�

)
− (n− 1/2) ln(xF ) (58)

⇒ xF ' ln
(

0.0873
ge�

g
1/2
∗S

mPlmψ σe�

)
− (n− 1/2) ln

(
ln
(

0.0873
g

g
1/2
∗S

mPlmψ σe�

))
(59)

At this point, once again, one need to separate cases to express σe�. To

start with the most striking example, let us consider that a squark (q̃) has a

mass very close to the one of the LSP. In that case, the cross-section σkl will

not be all the same. Indeed one expects by looking to the Feynman diagrams

that
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σ22(q̃ ¯̃q −→ gg) '
(αs
α

)
σ12(ψ1q̃ −→ qg) (60)

'
(αs
α

)2
σ11(ψ1ψ̄1 −→ qq̄) (61)

where g denotes the gluon, αs and α respectively the strong and elec-

troweak coupling. Let us call A = αs/α. If we keep our simple model where

the cross-section is independent of the temperature - n=0 - we have that

σ22 = Aσ12 = A2σ11 with A ' 20. The e�ective cross-section can now be

rewritten as :

σe� = σ11

(
1 +Aω

1 + ω

)2

(62)

with : ω = (1 + ∆)3/2 exp(−x∆)g2/g1 (63)

and : ge� = g1(1 + ω) (64)

For the degenerate case, ∆ = 0, σe� = σ11(1 + Ag2/g1)2/(1 + g2/g1) '
σ11(Ag2/g1)2/(1+g2/g1)2. If a single squark is degenerate in mass, g2/g1 = 3
and it leads to a factor 200 less in relic density. We see that this behaviour

can have a signi�cant impact on the ending value for the constraint, it is

thus crucial to take it into account.
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3 The Supersymmetric candidate

We have seen in the previous part that the mass that should have this hy-

pothetic dark matter particle is of order of several TeV. There is thus a big

theoretical problem if we only consider the standard model, namely how such

a massive particle can be stable ? We know that the only stable particles

are the electron and the proton, everything heavier will eventually decay. To

explain this, one must think of a way to protect this dark matter particle, to

prevent it from decaying into normal matter. All the models that want to

predict such a particle will thus have to �nd a way to explain this stability

at such a high mass.

It should be noted that this problem of dark matter particle is not the

only theoretical issue scientists are facing in this �eld. The hierarchy prob-

lem, the low vacuum energy expectation value, all these are being thought

right now in the di�erent optic of the various theories. Concerning super-

symmetry, one of the most apreciated feature is usually considered to be

the prediction of the right amount of dark matter, and the proper interac-

tion cross-section values. Some recent results have however shown that our

current understanding of supersymmetry breaking might not be correct and

seems ruled out by some observations, and I will try to explain quickly why

in the last part of this section.

Once again, I will not go in the mathematical details of supersymmetry,

for various reasons, and I have just tried here to extract the important ideas

and way of thinking of this theory to be able to discuss and think about

it. Thus in the �rst parts I will present supersymmetry and their candidate

for dark matter. I will then conclude this section with a discussion on the

hypothesis of this model, and by presenting some arguments against this

idea, in order to keep our awareness on the fact that this is not the only

possibility.

3.1 Basic Ideas about supersymmetry, MSSM

Supersymmetry is one of the possible way to explain how a massive particle

of order TeV can be stable. The idea behind this theory is to state that there

should be a symmetry between fermions and bosons. The supersymmetric

transformation will thus take the standard model particles and change their

spin number to 0 for a fermion superpartner (a scalar boson) and to 1/2
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for a boson superpartner (a spin 1/2 fermion). If one de�nes the parity

R = (−1)2S+L+3B, with S, L and B respectively the spin, leptonic and

baryonic quantum number, one can see that all standard model particles

have a parity of +1 while all supersymmetric particles have a parity of -1.

If the R-parity is conserved throughout the interactions - i.e. if we impose

this conservation by forcing a symmetry on the lagrangian, then the Lightest

Supersymmetric Particle - LSP for short - will be stable and will not decay

into lighter normal matter. This is a good way to ensure the stability at

cosmological scales of dark matter.

There are two 'however'. First of all, the symmetry between fermions

and bosons is clearly broken at our scale of energy, we do not see a unique

fermion spontaneously transforming into a unique boson, hence the mass of

the superpartners will be higher than standard model particles. Thus one

has to think of a way to break this supersymmetry. The second point is

: what is this LSP ? Luckily enough, these are only two sides of the same

coin, because the way the supersymmetry is broken will sort out the di�erent

candidates and tell us which one is the lightest, so which one can be our dark

matter particle.

3.2 Soft breaking of supersymmetry

Before going any further, one can simplify things as much as possible by

making several assumptions. First of all, one has to understand that if the

supersymmetry was perfect, this model would not add a priori any new pa-

rameter, since the masses of the superpartners will be the same than their

Standard Model equivalents. There is however one new parameter added

even if the supersymmetry is unbroken. Indeed, for this theory to explain

mass, it needs not one but two Higgs �elds, because you can not produce

the masses with only one due to the holomorphy [1]. It thus adds a cou-

pling parameter µ between the two Higgs �elds. The name given to these

new partners are a bit more exotic than usual names, with the higgsino,

wino, bino, gravitino, etc... They are denoted with a ˜ over the name of the

Standard Model partners.

But, as said previously, the supersymmetry is broken at our scale, so

one should have in principle to consider in the most general case a complete

breaking of symmetry, introducing a huge number of free parameters. Here
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comes the soft breaking idea, stating that the supersymmetry is not broken

for any-dimensional operator, but only for the ones with dimension lower

than 3. The number of parameter is drastically reduced, becoming of around

one hundred, and making the theory renormalizable - nice property that

would tend to prove that we are in the good way by doing this. This is still

way too much, though, and to simplify more, one calls in the naturalness.

Some of this new coe�cients have been bounded by experiment to be less

than O(10−5), and by invoking the naturalness, one claims that they are

exactly zero, otherwise it produces unnaturally low values. Whether this

argument is correct or not will be discussed in the last part, but the fact is

that it brings the number of non-zero new parameters to six plus the �rst

one, µ, for a total of seven. If we assume in addition that we consider only

standard model particles and not more exotic ones, then supersymmetry

implies that there is only one supersymmetric partner. This simplest model

is called the MSSM, Minimal SuperSymmetric Model.

One has also to note that the list of the possible candidates is not that

large. Indeed, there are only seven particles that are electrically neutral and

colorless in the MSSM, the three sneutrinos, the gravitino and the four neu-

tralino - these last are a mixing of the superpartners of the neutral gauge and

two neutral Higgs bosons. The lightest sneutrino has already been ruled out

since if it exist it should interact in a very similar way than a 4th generation
Dirac neutrino, and hence should have already been observed. The gravitino

interact via gravitation, so is not within the same orders of magnitude than

the weak process and so is ruled out as a WIMP. We will thus discuss about

the neutralinos in the following. Since these neutralinos are a mixing from

di�erent particles, the mixing mass matrix will give the proportion of each

sort of particle in the LSP. The point is, depending on the fraction of certain

particles - one speaks of wino and bino fraction - the reactions will not be the

same, and thus the relic density will change. According also to the mixing

terms, some particle might have a mass close to the one of the LSP and thus

change the result in the sense of the section 2.3.

The whole calculation is long and requires to take into account all the

Feynman diagrams possible. To ease this process, a public available tool

named DarkSUSY has been released. This calculate directly the relic density

of the LSP given the 7 free parameters in the beginning, and take into account

all the recent results on the constraints given by the detection of dark matter.
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By doing so, the models are still possible or discarded, and one can adjust

the free parameters to keep the theory right.

3.3 Experimental detection, constraint, the end of the MSSM?

There are di�erent ways to look for dark matter and try to contraint the

values of the mass. One is the direct detection : once a candidate picked up,

one can compute the scattering cross-section with normal particles, set up

huge detector and wait for a collision. This type of experiment has already

ruled-out the heavy Dirac neutrino. One other way is to look indirectly to

the traces of annihilation of dark matter - which is expected to be a very

faint signature since their low density, but hopefully discernable. This is

one of the mission of the Fermi Space Telescope for instance. By looking at

these annihilation rate, or rather by not seeing them under a certain amount,

one can progressively, as the precision increase, rule out a larger part of the

MSSM phase space.

Recent data from the Fermi Space Telescope tend to show [1] that the

MSSM is no more able to explain the relic density. To be more precise, the

phase space is thus constrained that one can not adjust this theory anymore

to predict a model not ruled out by the experimentation : with the detection

constraint, it is no more possible to have the proper relic density. The next

idea is then to change the way the supersymmetry is broken, to add a new

free parameter in the theory and to be able to tune it to match experiment.

This is called the Beyond Minimal SuperSymmetry Model, BMSSM, and is

being developped by considering a �ve order term in the Lagragian that has

a broken supersymmetry. By doing so, the part of the phase space available

is restored and some set of values of the BMSSM are candidates to verify

both detection and cosmological constraints.

3.4 Discussion

As we have seen along this section, the supersymmetric model adopts a

top-down approach. It has potentially a huge number of free parameter,

and try to reduce this number to a meaningfull one by using naturalness as

a criterion. What is really naturalness ? It is apparently hard to de�ne,

and it more or less states that physical constants should not be too large

or two small, that if you compare two physical terms and that the ratio is
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constraint to be under a very small value, then it is probable that its exact

value is actually zero. This is far from being a rigourous de�nition, and the

question is how can we decide under which ratio this works ? How can we

say it is not natural to have a very low value ? The fact is that this sort of

intuition on how the nature really is can help to solve problems, but to rely

on it too much might well lead to a wrong orientation. What if nature is

no more 'natural' over a certain scale ? How can we be sure the principles

we got from our experience of physics at our energy scale will still be valid

at higher energy ? The history of science is rich in misunderstanding of

unknow processes, and to try to constraint our theories with this strong a

priori about how the nature should be seems a bit dangerous. One has thus

to be careful when using these not very precise tools in order to keep doing

science (see [13] for a more complete discussion on that subject).

The good point if we �nally observe a supersymmetric particle is that

it will �x the parameters and thus give us an idea of how supersymmetry

is broken, and how are the more massive particles. The details of the La-

grangian might vary but it will not change things since higher order terms

are suppressed by dimension analysis. The set of supersymmetric particles

will thus be �xed and we will be able to make predictions about it.
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Conclusion

We have �rst seen in this work that if we are to explain properly the mat-

ter density of the universe, one can exhibit a yet-to-be-observed particle

that is non-baryonic. Indeed, through Big-Bang nucleosynthesis, it has been

proven that the baryons could explain only up to 4% of the total critical

density, while the matter density is around 27%. Several other evidence are

also pointing out the presence of some invisible mass in galaxies and galaxy

clusters. It has been derived afterwards that the presence in a signi�cative

proportion of dark matter today can be explained by claiming the existence

of a new particle, stable at cosmological scales, that interacts weakly with

the Standard Model particles. The precise calculation of its relic density is

to be followed carefully since the presence of particles of approximatively

the same mass can make a huge di�erence in the result, in both raising and

lowering it down.

In the second part, we have had a �rst insight in the way of predict-

ing such a stable particle via looking at one the most supported candidate

: supersymmetry. By imposing the conservation of a certain parity, one

can �nd the way to 'protect' the lightest supersymmetric particle and ac-

tually prevent it from decaying into a Standard Model one, and thus open

the room for a dark matter heavy lightly interacting particle. The details

of the calculations as well as the precise theory of supersymmetry have not

been investigated here, but we have shown how by varying the free parame-

ter of the theory one can predict the relic density and thus have a check of

the validity of this realisation. The other informations given by the public

available tool DarkSUSY are most useful to confront the prediction to the

on going experimentations. Finally, we have seen that our current under-

standing of the soft breaking of supersymmetry is questionned by the latest

results of the Fermi Space Telescope, and that the MSSM might have to be

extendend into a BMSSM to survive this new result. The subject is thus still

in need of further experiment before one could tell whether this theory or

another is right or wrong. And it might be that the LHC will �nd or not the

supersymmetric particles, allowing us to have a clearer view on this 'dark'

subject.
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