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The doping of a wide band gap insulator offers an opportunity to increase the 

coupling between free carriers and magnetic impurities under the magnetic polaron 

model, leading to an enhanced in the Curie temperature of the host compound, critical for 

the fabrication of devices with magnetic properties. Some rare earth elements have large 

intrinsic magnetic moments due to unfilled 4d orbitals, and have been readily 

incorporated in materials for optical applications. Here the rare earths gadolinium and 

cerium were explored either as dopants or as part of the high-K semiconducting 

compound for the fabrication of magnetic heterojunction devices with magnetic 

properties.  

This thesis work explores the effects of rare earth gadolinium and cerium as 

dopants in high-K compounds such as EuO, HfO2 and Gd2O3. The thesis begins with an 

exemplary tale of a local moment wide band gap system (although not rare earth based), 

and a success in achieving negative magneto-resistance in a heterojunction structure with 

chromium-doped hydrogenated diamond-like carbon (Cr-DLC). In the quest for similar 

results, we explored the rare earth compounds by means of their electronic band structure 

using photoemission spectroscopy (PES) and inverse photoemission spectroscopy (IPES) 

to provide insight into the material functionality and applicability as an electronic device. 

Rectifying (diode-like) properties were observed in all the heterostructure and each 

heterojunction device exhibited unique properties that make them suitable for different 



applications such as neutron detection or spin electronics applications. Remarkable 

results were observed on the EuO compound with the inclusion of 4% Gd content. The 

system undergoes a non-metal to metal transition as suggested by the appearance of filled 

electron pockets. The device properties resemble those of a tunnel junction diode, which 

might be related to a band bending at the interface of the film, likely due to surface 

overoxidation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

Acknowledgement 
 

The outcome of this work has strongly depended upon a collective group of people, who 

have spent their time and trust on an individual who happens to love what he does. The 

following list has no order. 

 

To God, for all the events that have led to this day. Thank you…!  

 

To my beloved wife Olha Ketsman, who has been extremely patient and caring during 

the realization of this work. Thank you so much for your love, understanding and 

support.    

 

To my father Juan, my sister Sheila and her husband Jose, my aunts Carmen and Maria, 

my grandpa Juan  and my grandmother Carmen and the rest of my family. Thank you for 

your support from day zero and for always being there for me. 

 

To my group members Yaroslav Ketsman, Lingmei Kong, Xin Zhang, Tao Weng, 

Shicao, George Peterson and Thomas Scott, who each in their own way has contributed 

toward my intellectual gain. To Ning Wu for his kindness and good will, for always 

finding the time to help me no matter how busy he was. To Keisuke Fukutani, for his 

great support, friendship and all the philosophical conversations that made this journey 

even more interesting and fruitful.  

 

To my dear friend Shawn Langan, one of the kindest person I have ever met… thank you 

for all your support troughout these years and thank you for treating me like family. 

 

To my dear friend Thomas A. George, thank you for all your support and the numerous 

days of Mountain Dew breaks that were accompanied by physics lessons and self-

improvement hints so that I could improve my skills every day. 

 

To Dr. Snow Balaz and Catherine Haley for all their help and attentions when I moved in.  

 

To my friend James Glassbrener, a talented scientist who always found the time to 

entertain my questions, and always managed to answer them in a simple way. Thank you 

for everything. 

 

To Professor Luis G. Rosa for his encouragement, time and support before and during  

my graduate studies. Thank you for teaching me so many valuable lessons 

 

To Professor Nicholas Pinto for all of his help and enthusiasm regarding my graduate and 

undergraduate carriers. 

 

To Professor Claudio Guerra Vela, who inspired me to go beyond by his excellent style 

of portraying science. You really made a difference! 

 

To Professor Ivelisse Rubio Canabal, who took an infinite amount of her time to provide 

me with the necesary tools so I could succeed. Thank you so much! 

 



To Yaroslav Lsosovjy, whose great expertise in UHV system, made this work successful, 

you are the master of the UHV systems… you really are! 

 

To Ihor Ketsman, for all his help and technical support in the laboratory. His devotion to 

detailed and careful experimentation taught me a lot. 

 

To Professor Carolina Illie, for all her support, kindness and cheerfulness. You always 

had the right words, thank you for that. 

 

To my Committee Members Profesor Natale Ianno and Professor Eva Schubert for their 

time invested in this work. Your interest and detailed critique improved my work. 

 

To Jerry L. Hudgins, who have taught me the qualities of a true leader. His kindness, 

support and time invested in me will be forever appreciated. Thank you for always 

providing me with the 110%. 

 

And last, but no least, Peter Dowben, from whom if I were to describe his incredible 

character, another thesis project must be written. Thank you for your unconditional trust 

and optimism. For extending your lessons beyond those related to science and for 

teaching me that I can make a difference even when sitting at my desk. Hope the 

following schematic summarizes your contributions at this stage of my career. Thank you 

so much for everything! 

 

 
 

Table of Contents 
 

List of Acronyms ……………………...……………………..………..……………....... iv 



i 

 

Table of Contents 
 

List of Acronyms ……………………...……………………..………..……………....... iv 

 

List of Figures ……….……………………..…………………………………….....….. vi 

 

List of Tables ……………………………………………………………………..….... xiii 

 

Chapter 1 Introduction 
 

1.1 Introduction ...……..………... ……………………………...……………….. 1 

 

  1.1.1 Magnetic Semiconductors …………………………………………. 2 

 

References …………………………………………………………………….…. 7 

 

Chapter 2 Experimental Techniques: The Electronic Band Structure 
 

2.1 Photoemission Spectroscopy …………………………………………….… 10 

 

2.1.1 Photoemission Spectroscopy as an Energy Probe Technique ….… 10 

 

  2.1.2 The Photoemission Process …………………………………….… 13 

 

2.1.3 Ultraviolet Photoemission Spectroscopy (UPS) …………………. 21 

 

`  2.1.4 X-ray Photoemission Spectroscopy ……………………………… 24 

 

  2.1.5 Resonant Photoemission Spectroscopy …..……….……………… 22 

 

  2.1.6 Matching the Photoemission and the Theoretical Density of States.30 

 

  2.1.7 Connection between Photoemission and Reciprocal Space ..…….. 32 

 

  2.1.8 Charging Considerations in PES …………………………………. 36 

 

2.2 Inverse Photoemission Spectroscopy (IPES) ………………….…………… 38 

 

2.3 Neutron Detectors …...…………………………………...………………… 39 

 

2.4 X-ray Absorption Fine Structure ..…………………………….…………… 44 

 

References …………………………………………………………………..….. 50 

 

 

 

 



ii 

 

Chapter 3 Sample preparation, Crystallographic Structure and Composition 

 

3.1 Sample Growth Method ……………………………………………………. 53 

 

3.1.1 Hybrid plasma-assisted PVD/CVD process ……….…...………… 53 

 

3.1.2 Pulsed Laser Deposition …...…………………………………..… 55 

 

3.2 Crystallographic and Local Structure Studies using X-ray Absorption Fine 

      Structure and X-ray Diffraction ..…………...……………………………… 58 

 

3.2.1 The Local Structure of Amorphous Diamond like Carbon doped with 

              Chromium …………………………………………………...…… 59 

 

3.2.2 Gadolinium Occupancy in Semiconducting Hafnium Oxide ….… 64 

 

3.2.3 Structural Phase Transition in Gd:HfO2  ……………………….… 66 

 

3.2.4 Comparison of Gd:HfO2 and Gd2O3 Monoclinic Crystal Structure.67 

 

       3.2.5 The (111) Polar Surface in Gd:EuO …………….………………... 68 

 

References ……………………………………………………………………… 72 

 

Chapter 4 Magnetoresistive Effects in Chromium doped Diamond-like Carbon 

Heterostructure 

 

4.1 Why Study Chromium doped Diamond-like Carbon? ……………………... 76 

 

4.2 The Role of Chromium and Chromium Carbide Precipitates ……….……... 77 

 

4.3 Heterojunctions with Silicon Substrates ……………………………….…... 82 

 

References ……………………………………………………………………… 90 

 

Chapter 5 Electronic Band Structure and Transport Caracterization for Magnetic 

Dilute Semiconductors using High k Dielectric Materials 

 

5.1 A Comparison of Gd2O3 and HfO2: Gd Electronic Band Structure ………... 94 

 

5.1.1 The Experimental and Theoretical Band Structure ………………. 94 

 

5.1.2 Heterojunctions using Silicon as a p-type or n-type Substrate …. 106 

  

5.2 The Effect of Rare Earth Doping (Gd and Ce) in the Electronic Band Structure 

      of EuO Films ……...………………………………………..……..………. 108 
 



iii 

 

5.2.1 The Valence Band, Conduction Band and Filling of Electron  

          Pockets .…………………………………………………...……. 108 

 

5.2.2 Band Bending at the EuO:Gd (111) Polar Surface ……………... 117 

 

5.2.3 Magnetic Dependence in Heterojunction Structure ……......…… 122 

 

 References …………………………………………………………………….. 124 

 

Chapter 6 The Local Metallicity of Gadolinium doped Compound Semiconductors 

 

6.1 Resonant Photoemission as a Probe for Local Metallicity ……..………… 130 

 

 6.2 Resonant Photoemission in EuO films ……………………...……………. 132 

 

            6.3 Comparing the Gd 4d to 4f Photoemission Resonance for Gd in Various Host 

                  Semiconductors …....………………………………………...……………. 138 

 

6.4 Across the Nonmetal to Metal Transition in Gd0.04Eu0.96O ………………. 141 

 

 References ………………………………………………………....………….. 143 

 

Chapter 7 Gadolinium Based Neutron Detectors 
 

7.1 Why Building Neutron Detectors? ..……………………..……………...… 146 

  

7.2 Neutron Detection via Auger Electrons ……………....…………………... 146 

 

7.3 Single Neutron Capture Detection ………….………………………….…. 149 

 

7.4 Fine Structure in the Neutron Capture Pulse Height Spectra ……...……… 153 

 

References ……………………………………………………………..……… 158 

 

Chapter 8 Conclusions and Pending Future 
 

8.1 What have we learned? ………………...……………………………….… 161 

 

8.2 What is Next? …………………...………………………………………… 163 

 

 

 



iv 

 

List of Acronyms  
 

ARPES Angle Resolved Photoemission 

BZE  Brillouin Zone Edge 

CAMD Center for Advanced Microstructures & Devices 

CB  Conduction Band 

CBM  Conduction Band Minimum 

CIS  Constant Initial State Spectroscopy 

CVD   Chemical Vapor Deposition 

DFT  Density Functional Theory 

DLC  Diamond-like Carbon 

DMO   Dilute Magnetic Oxides 

DMS   Dilute Magnetic Semiconductor 

DOS  Density of States 

EXAFS  Extended x-ray Absorption Fine Structure 

FCC  Face Centered Cubic 

FM  Ferromagnetic 

FL   Fermi Level 

FT  Fourier Transform 

GMR  Giant Magneto Resistance 

IPES   Inverse photoemission Spectroscopy 

MBE   Molecular Beam Epitaxy 

NIM  Normal Incidence Monochromator 

PES   Photoemission Electron Spectroscopy 

 



v 

 

PLD   Pulsed Laser Deposition 

 

PVD   Physical Vapor Deposition 

RPES   Resonant Photoemission Spectroscopy 

TGM  Toroidal Grating Monochromator 

UHV   Ultra High Vacuum 

UPS  Ultraviolet Photoemission 

VB  Valence Band 

VBM  Valence Band Maximum 

VUV  Vacuum Ultraviolet 

XAFS   X-ray Absorption Fine Structure 

XANE   X-ray Absorption near Edge Structure. 

XAS   X-ray Absorption 

XPS  X-ray Photoemission 

XRD   X-ray Diffraction 

 

 



vi 

 

List of Figures 
 

Figure 1.1.1 A two-dimensional lattice for (a) an undoped nonmagnetic semiconductor 

crystal, and a dilute magnetic semiconductor with a random distribution of magnetic 

dopants ions in the lattice with (b) a paramagnetic behavior and (c) a ferromagnetic 

coupling due to the introduction of donor defects. The dashed circle represents the Bohr 

radius of the electron due to the defect .………………………………………………… 2 

 

Figure 1.1.2 Schematic of the physical geometry from which the GMR is observed along 

with a R vs B plot showing the effect of the magnetic field on the resistance of the 

structure .………………………………………………………………………………… 4 

 

Figure 2.1.1 Schematic of a perturbed system due to an electromagnetic wave from the 

point of view of energy levels …………………………………………………..……… 11 

 

Figure 2.1.2 The main elements of the photoemission process. The picture representing 

the light source is a dual anode x-ray lamp and the detector is a hemispherical angle 

resolved electron analyzer, both elements are inside a ultra-high vacuum chamber as 

denoted by the dashed lines ……………………………………..................................... 18 

 

Figure 2.1.3 (a) The ultra-high vacuum chamber employed for the PES process at the 

spectroscopy laboratory in the University of Nebraska and the geometrical set up of the 

PES elements both (b) into and (c) out of the chamber ……………………….……….. 20 

 

Figure 2.1.4 Picture of the ultraviolet source employed in our studies. Taken from the 

Thermo Electron Corporation website …………………………………………………. 21 

 

Figure 2.1.5 A typical valence band spectra obtain from UPS. The dashed line indicates 

the secondary electron tail and is due to inelastic scattering of the electrons before 

reaching the analyzer. Subsequent steps are shown on the top right portion of the figure 

………………………………………...………………...………………………………. 22 

 

Figure 2.1.6 Energy level diagram describing the ultraviolet photoemission process ... 23 

 

Figure 2.1.7 Energy level diagram describing the X-ray photoemission process …...… 24 

 

Figure 2.1.8 (a) The physical geometry of the X-rays source and (b) a schematic of the of 

the X-ray source. Figure (a) was taken from the Thermo Scientifics application note 

31057 

.………………………………………………………………………………………….. 25 

 

Figure 2.1.9 A (a) schematic and (b) picture of the storage ring in CAMD …………... 27 

 

Figure 2.1.10 (a) The 3m TGM beamline and (b) a picture of the TGM ….………….. 28 

 

Figure 2.1.11 (a) The UHV chamber used for the high resolution angle resolved 

photoemission spectroscopy and (b) the resonant photoemission experiments ………... 29  



vii 

 

Figure 2.1.12 The relation between the density of state from a (a) theoretical and (b) 

experimental point of view.  (c) The reference energy between the two DOS distribution 

…………………………………………………………………………………………... 31 

 

Figure 2.1.13 Schematic of the electron propagation along the solid vacuum interface 

……………………………………………………………………………………..……. 33 

 

Figure 2.1.14 (a) The first Brillouin zone for a face centered cubic (FCC) lattice and (b) 

the wavevectors along the direction perpendicular to the surface of a film and the 

wavevector along the direction parallel to the surface of the film ……….…………….. 36  

 

Figure 2.2.1 Energy level diagram summarizing the IPES process ………………….... 38 

 

Figure 2.2.2 Schematic of the inverse photoemission process ………………………... 39 

 

Figure 2.3.1. A schematic showing (a) the p-n junction geometry and (b) the depletion 

region and neutral region of a diode ………………………………………………….... 40 

 

Figure 2.3.2. A p-n junction diode in (a) forward and (b) reverse bias operation ….…. 40 

 

Figure 2.3.3 The neutron detection mechanism for a diode detector. The neutrons are 

incident into a moderator (usually a hydrocarbon plastic) to slow them down. Cadmium 

foil is used to test for Gamma sensibility although a thin foil of lead is sometime used 

……………………………………………………………………………………..……. 42 

 

Figure 2.3.4 Single-chip pulse counting and binning electronics block diagram. The 

design occupies a total silicon area of 10mm2 fabricated in a 0.35μm CMOS technology 

(see text). The charge sensitive amplifier (CSA) and analog-to-digital converter (ADC) 

are indicated schematically …………………………………………………………….. 43  

 

Figure 2.4.1 A hypothetical x-ray absorption spectra ……………………………….… 45 

 

Figure 2.4.2 Schematic of x-ray absorption in terms of an energy diagram and the 

absorption probability spectra for the case where (a) there are no neighbors and (b) the 

photo-electron can scatter from a neighboring atom.  …………………………………. 47  

 

Figure 2.4.3 Schematics of experimental setup for XAFS measurement in fluorescence 

mode from CAMD ……………………………………………………………………... 48 

 

Figure 3.1.1 Survey of vacuum deposition techniques ………………………………... 54 

 

Figure 3.1.2 (a) Schematic of the pulsed laser deposition process and (b) geometrical set 

up inside the UHV chamber ……………………………………………………………. 56 

 

Figure 3.2.1 The X-ray absorption near-edge structure (XANES) spectra for the Cr-DLC 

films along with pure Cr and Cr carbide (Cr3C2). The spectra are normalized and 

translated along the y-axis (intensity) for clarity ………………………………………. 62 



viii 

 

Figure 3.2.2 The Fourier transform of the extended X-ray absorption fine structure 

spectra (EXAFS) for the Cr-DLC films along with pure Cr carbide (Cr3C2). The spectra 

are translated along the y-axis (intensity) for clarity …………………………………... 63 

 

Figure 3.2.3 (a) The kχ(k) of 3% Gd doped HfO2 extracted from the Gd L3-edge EXAFS 

spectra ………………………………………………………………………………….. 65 

 

Figure 3.2.4. The Fourier transform (FT) of 3% Gd-doped HfO2 EXAFS data. The 

oscillating curve (dashed lines) is the imaginary part of the Fourier transform of the data. 

The envelope (solid lines) are the magnitudes of the Fourier transform. The 3% data are 

transformed with a square window between 2.8 and 9.4 Å
−1

. The peak assignment is 

based on HfO2 ……………………………………………………………….…………. 65 

 

Figure 3.2.5 Part of the XRD pattern for 3%, 10%, and 15% Gd doped doped HfO2. The 

3% Gd doped films are consistent with that of the HfO2 in a simple monoclinic structure. 

The 10% doped samples are mixed monoclinic and majority cubic phases, as indicated, 

while 15% Gd-doped samples are in a fluorite phase. In the fluorite fcc phase, the lattice 

constant increases with increased Gd doping ………………....……………………..… 66 

 

Figure 3.2.6 (a) Part of the XRD pattern of the film is shown in figure. X-ray diffraction 

patterns of PLD grown Gd2O3 (upper panel) and 3% Gd doped HfO2 (lower panel). The 

bar diagrams included in each panel are the standards of monoclinic Gd2O3 and HfO2, 

respectively. For 3% Gd doped HfO2 (lower panel), the XRD is consistent with that of 

HfO2 in a simple monoclinic structure. (b) Structure of Gd2O3, with the packing of the 

ions in Gd2O3 as viewed along the b-axis. The green and red spheres represent 

gadolinium and oxygen atoms respectively. The Gd .. Gd interactions are not shown 

…………………………………………………………………………………………... 68 

 

Figure 3.2.7 X-ray-diffraction pattern for PLD-grown (a) EuO, (b) Gd-doped EuO films 

on Si(100) and (c) Ce:EuO ………………………………………………………….…. 69 

 

Figure 4.2.1 Cr3C2 precipitates only at high doping levels, with the precipitates at higher 

concentration at the interfaces ……………………………………………………….… 78 

 

Figure 4.2.2 Photoemission from a 25% chromium doped DLC film (black) deposited on 

silicon, compared to undoped DLC film (red). The photon energy was 70 eV and the 

photoelectrons were collected along the surface normal ………………………………. 79 

 

 

Figure 4.2.3 The photoemission spectra of the 11.0 % Cr-doped DLC film on silicon as a 

function of photon energy. The photoelectrons were collected along the surface normal 

…………………………………………………………………………………………... 80 

 

Figure 4.2.4 Hysteresis loops and virgin magnetization curves of Cr-DLC with 3 % Cr at 

(a) 20 Kelvins and (b) 10 Kelvins …………………………………………………….... 81 

 



ix 

 

Figure 4.3.1 The I –V curves from Cr-DLC films in a heterojunction with n-type silicon, 

as a function of temperature, for different chromium doping levels (a) 5.0 %, (b) 11.0 %, 

(c) 15 % and (d) 20 % ………………………………………………………………….. 83 

 

Figure 4.3.2 The I–V curves from the 11 % Cr (a) and 15 % Cr (b) Cr-DLC film to n-

type silicon heterojunction devices with changing applied magnetic field. The change in 

forward current, as a function of the magnetic field, for Cr-DLC film to n-type silicon 

heterojunction devices at 11.0 % Cr (c), and 15.0 % Cr (d). Forward bias voltage was 2.0 

V in panels (c) and (d). All data were acquired at room temperature. In the first trial 

(blue) negative magnetoresistance was observed, but in subsequent trials (red) little or no 

magnetoresistance was found without application of a large field …………………..… 84 

 

Figure 4.3.3 The I–V curves from a 11 % Cr Cr-DLC film to n-type silicon 

heterojunction device after magnetization of the sample in a field of 1.0 T. The increase 

of the negative magnetoresistance is quite evident, and plotted in the inset for 2 V 

forward bias ………………………………………………………………………….… 85 

 

Figure 4.3.4 The resistance of the 11% Cr-doped DLC/silicon heterojunction diode is 

dependent on voltage in the reverse bias, as indicated in model calculations. The forward 

bias does not have the same dependence, because the function      is constant with 

   . The schematic is the ideal of the effective circuit for the model calculations 

……………………………………………………………………………………….….. 86 

 

Figure 4.3.5 In the forward bias, in simple model calculations, the resistance of the 11% 

Cr-doped DLC/silicon heterojunction diode decreases as the applied magnetic field 

increases ………………………………………………………………………………... 89 

Figure 5.1.1 Different bands intensities for pristine and Gd-doped films of HfO2. The 

photon energy used was 100 eV and the light incidence angle is 45°. All photoelectrons 

were collected along the surface normal at T = 320 °C ………………………...……… 95 

 

Figure 5.1.2 The photoemission spectrum of the valence band Gd2O3   ̅   . The 

various components contributing to the valence band structure are indicated and major 

contributions to the photoemission features indicated. The photon energy is 117 eV and 

the light incidence angle is 45°. All photoelectrons were collected along the surface 

normal at T = 240 °C …………………………………………………………………… 96 

 

Figure 5.1.3 Resonant photoemission spectra for photon energies through the 4d → 4f 

resonance for Gd doped films of HfO2. Light incidence angle is 45°. All photoelectrons 

were collected along the surface normal ……………………………………………….. 97 

 

Figure 5.1.4 The resonant photoemission spectra for photon energies through the 4d → 

4f resonance for Gd2O3. Light incidence angle is 45◦. All photoelectrons were collected 

along the surface normal ……………………………………………………………… 98 

 

 



x 

 

Figure 5.1.5 The resonant photoemission intensities through the 4d→ 4f resonance for 

Gd2O3 (a) and Gd doped films of HfO2 (b). ForGd2O3, there are seen to be two Gd 4f 

components at a binding energy of about 8.7–9.5 eV below the Fermi level and the 

‘shoulder’ at a binding energy of 11–12 eV, which are assigned as bulk (black) and 

surface (red) components respectively ………………………………………..…...…. 99 

 

Figure 5.1.6. The calculated density of states for monoclinic (type B) Gd2O3. The 

monoclinic Gd2O3 density of states (DOS) has been broadened with a Gaussian width 0.2 

eV. The total density of states has been projected onto each atomic species (gadolinium 

and oxygen) showing the strong Gd 4f character at the DOS peak around E =-6.3 eV and 

the major oxygen 2p character hybridized with Gd 5d orbitals over the energy range of 

−5 to 0 eV …………………………………………………………………………….. 102 

 

Figure 5.1.7 The dispersion of the Gd 4f component, with changing photon energy. The 

critical points are indicated, assuming no inner potential and the predicted lattice spacing 

of 23.7 Å along       ……………………………………..………………………. 104 

 

Figure 5.1.8 A heterojunction diode constructed from Gd-doped HfO2 on silicon, for 

various Gd-doping concentrations. With oxygen vacancies, the Gd doping generated 

acceptor states, in 3% Gd-doped HfO2, are over compensated and doped hafnium oxide 

forms a rectifying diode on p-type silicon (a). The 10% Gd-doped HfO2 is not 

overcompensated by oxygen vacancies and does not form a rectifying diode on ptype 

silicon (b) but does do so on n-type silicon (c) …………….…………………………. 107  

 

Figure 5.2.1. The simulated (solid line) and experimental (dashed line) photoemission 

spectra for undoped EuO, with corrections for the combined excited-state density of 

states. The DFT/GGA calculations of density of states (DOS) were performed with fixed 

occupancies for treating the excited states ……………………………………….…… 109 

 

Figure 5.2.2 Combined ARPES and IPES spectra for (a) undoped EuO film, (b) 

Eu0.96Gd0.04O (111) film, and (c) same as (b) but after sputtering. A photon energy of 60 

eV was used, with light incident at 45° and photoelectrons collected along the surface 

normal. For the IPES spectra the electrons are incident along the surface normal …... 113 

 

Figure 5.2.3 The photoemission spectra obtained for Eu0.96Gd0.04O (111) films as a 

function of the photon energy. The angle of incidence was 45
◦
 and all photoelectrons 

were collected along the surface normal at T = 300 K …………………………….…. 115 

 

Figure 5.2.4 (a) The Fermi level intensity (blue) plotted as a function of k⊥, along the 

[111] direction. (b) The dispersion of the Eu 4f weighted band at the valence-band 

maximum, along the (111) direction or wave vector normal to the surface, k⊥. Both 

results were extracted from the photon energy dependent ARPES spectra. BZE indicates 

the Brillouin-zone edge. The intensity of the Eu 4f weighted band (+), at the valence-band 

maximum, along the k⊥ (111) direction, is also plotted in (a) ……………………...… 115 

 

 

 



xi 

 

Figure 5.2.5 The Fermi-level intensity plotted as a function of the parallel momentum k|| 

along the ΓM direction, for photon energies of (a) 40 eV and (b) 25 eV. For k|| along the 

ΓM direction, the relative intensity has been also plotted 300–400 meV below the Fermi 

level (green) and at the Fermi level (red), to illustrate the roughly parabolic shape of the 

electron pocket about the surface Brillouin-zone edge at 40 eV .……………….…..... 117 

 

Figure 5.2.6 Calculated structure of the O-terminated EuO(111) surface. Only half of the 

slab is shown, the other half being symmetric. For interlayer spacings see Table 5.2.1. In 

the figure, large spheres are Eu atoms; small spheres: O atoms………………………. 120 

 

Figure 5.2.7 Site-projected DOS for all Eu and O atoms of the 27-monolayer slab of Gd-

doped-EuO with (111) surfaces. A model with empirical adjustments is used (see text). 

(a) Eu site-projected DOS where the unoccupied DOS is multiplied by 5 (as indicated). 

(b) O site-projected DOS; unoccupied DOS is multiplied by 10 (as indicated). The 

numbering of the sites starts at the surface …………………………………...………. 121 

 

Figure 5.2.8 I-V curves for (a) undoped EuO(100) film as a function of temperature, (b) 

Eu0.96Gd0.04O (111) film at room temperature. The curve marked (i) is for zero field; the 

curve marked (ii) is for an external magnetic field of 1000 Oe ……………………..... 123 

 

Figure 6.2.1 Valence band spectra obtained from the photoemission density of state for 

(a) EuO and (b) Eu0.96Gd0.04O films grown on p-type Si (100). The composition of the 

spectra was determine by the Gaussian distributions and the photoemission feature were 

classified as arising from largely the (A) Eu 4d5/2 and electron pockets of the conduction 

band minimum, (B) Eu 4d3/2 (C) O 2s, (D) O 2s and (E) Gd 4f and Eu 4f final state 

(satellite) contributions. Photoelectrons were collected along the surface normal. 

Measurements for both films were taken using synchrotron light with photon energy of 

60 eV and incidence angle of 45°. Binding energy is denoted in terms of E-EF …...… 133 

 

Figure 6.2.2 (a) The photoemission spectra for photon energies through the Gd and Eu 

4d to 4f super koster Kronig photoemission resonance for Eu0.96Gd0.04O films. (b) The 

resonant photoemission intensities, as a function of photon energy i.e. constant initial 

state spectra, for the valence feature at (i) 0.5 eV, (ii) 2.3 eV, (iii) 6.1 eV and (iv) 9.2 eV 

below the Fermi level. Light was incident at 45°. Photoelectrons were collected along the 

surface normal. Binding energy is denoted in terms of E-EF ……………………...…. 135 

 

Figure 6.3.1 Valence band photoemission spectra “on” (photon energy of 147 eV) and 

“off” (photon energy of “off” with h= 140, 139.7 and 132 eV for Eu0.96Gd0.04O, 

Gd0.03Ga0.97N, Gd0.03Hf0.97O2 respectively) the Gd 4d to 4f resonant photoemission 

feature obtained for (a) Eu0.96Gd0.04O, (b) Gd0.03Ga0.97N and (c) Gd0.03Hf0.97O2. All 

photoelectrons were collected along the normal to the film surface. Binding energy is 

denoted in terms of E-EF ……………………………………………………………… 139 

 

Figure 6.3.2 Constant initial state valence intensity as a function of photon energy in the 

region of Gd 4f contributions to the valence band (-9 eV binding energy, E-EF.) in Gd 

doped (a) GaN (3%), (b) HfO2 (3%) and (c) EuO (4%) host systems ………………... 141 

 



xii 

 

Figure 6.4.1 Resonant photoemission intensity as a function of photon energy for the Eu 

4f weighted features in the valence band at about -2 eV binding energy (E-EF) in (a) EuO 

and (b) Eu0.96Gd0.04O films. The decrease in intensity suggests a major change in 

metallicity with the inclusion of 4% percent Gd ……………………………………... 141 

 

Figure 7.2.1. A summary of the major decay routes for 
158

Gd in the excited state through 

emission of high energy gamma rays, low-energy gamma rays, x-rays, internal (IC) and 

Auger Coster–Kronig (ACK) conversion electrons as 
157 

Gd(n,γ ) → 158 Gd + γ + x-rays 

+ IC e
−
 + ACK e

−
 ……………………………………………………………………... 148 

 

Figure 7.3.1 A heterojunction diodes constructed from Hf0.85Gd0.15O1.92 on n-type silicon. 

The Hf0.85Gd0.15O1.92 is not overcompensated by oxygen vacancies and does not form a 

rectifying diode on p-type silicon but does do so on n-type silicon ………………….. 150 

 

Figure 7.3.2 Pulse height spectra obtained using Hf1−xGdx O2−0.5x combined contributions 

of Gd–O, and Gd–Hf single-scattering paths as well as several multiple-scattering (+MS) 

paths …………………………………………………………………………………... 151 

 

Figure 7.3.3. The pulse height spectra of Hf0.85Gd0.15O1.92 on n-type Si(100) samples with 

thermalized neutrons from a PuBe source with a flux of 600 neutrons s
−1

 incident on the 

diode, compared with an MCNP 5.0 simulation, modified to account for suppression of 

the pulses of pulse height less than 200 mV in experiment …………………….…….. 152 

 

Figure 7.4.1. A sampling of a time domain pulse height spectra using Hf0.85 Gd0.15 O1.92 

on n-type Si(100) samples irradiated with thermalized neutron from a PuBe with a flux of 

600 neutrons cm
−2

 s
−1

 . The offset of the baseline from 0 V is not meaningful, and a 

consequence of the display routine …………………………………………………… 156



xiii 

 

List of Tables 
 

Table 3.2.1 Structural parameters for Cr-DLCs and Cr3C2 obtained from curve fitting 

Sample Model fit …………………………………………………………………..…… 64 

 

Table 5.2.1 The interlayer spacing calculated for EuO(111) as indicated in Figure 5.2.6. 

The layer spacings are oscillatory in the region of the surface, as indicated. The layers 

spacing are giving in units of Å ……..………………………………..…………...….. 120 

 

Table 6.3.1. Summary the photon energy for resonant photoemission intensity maximum, 

the width of the Gd 4d to 4f photoemission resonance, in photon energy and the intensity 

ration of “on” resonance at a photon energy of 147 eV to the “off” resonant intensity at a 

photon energy of eV ………………………………………………………………..…. 140

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Chapter 1 Introduction 
 

This thesis explores how the inclusion of a small percent of magnetic impurity 

affects the magnetization properties and electronic band structure of a set of different host 

semiconducting compound materials. Much of the emphasis will be on gadolinium which 

we employed, both as a dopant and as a member of the compound itself, given its 

valuable intrinsic properties (particularly the large magnetic moment of 7.3 µB per atom). 

Key questions towards the ensemble of this work are: Can we make heterojunction 

devices out of these materials? If we do fabricate devices, do they exhibit magnetic 

dependence? What is the role of gadolinium in highly correlated semiconductor systems, 

given the large on-site energy due to the half-filled 4f orbital (4f
7
).  

In fact addressing the latest question is quite complex. Gadolinium is usually 

treated as having a stable 3+ valence state when inserted into host semiconductors. The 

electrons in the 4f orbitals remain fairly localized to the ion vicinity, likely due to the 

partial screening provided from the outermost closed subshells. This leads to the situation 

in which the electrons with the lowest energy does not correspond to the outermost shell 

of the atom, but a shell located underneath, hence, the 4f electron are somewhat restricted 

from interacting directly with the neighbor atoms surrounding the ion. Yet, we found that 

the effect of increasing the gadolinium concentration is very different in each particular 

semiconductor. In most cases, the 4f electrons form part of the valence band and directly 

contribute to strong hybridization between the ion and neighboring atoms.  
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Nonetheless, before diving into the complexity of these issues, let’s not deviate 

from our major goal (i.e. devices with magnetic properties). On this behalf, let’s point out 

the road that led to the foundations of this work from a historical point of view. 

 

1.1 Magnetic Semiconductors 

A magnetic semiconductor is a material that exhibit both, ferromagnetic behavior 

and semiconducting properties simultaneously. Ferromagnetism refers to a material with 

the ability to remain magnetized after the application of an external magnetic field and a 

semiconductor is a material with a small electronic band gap and the ability to partly 

conduce current. In contrast, a dilute magnetic semiconductor (DMS) refers to the same 

type of material with the difference that is doped with atoms that possess an intrinsic 

magnetic moment (such as Gd). The idea behind these devices relies on increasing the 

Curie temperatures of our compounds via the interaction of magnetic impurities and free 

carriers form via defect in the compound structure as shown in Figure 1.1.1. 

 
Figure 1.1.1 A two-dimensional lattice for (a) an undoped nonmagnetic semiconductor crystal, 

and a dilute magnetic semiconductor with a random distribution of magnetic dopants ions in the 

lattice with (b) a paramagnetic behavior and (c) a ferromagnetic coupling due to the introduction 

of donor defects. The dashed circle represents the Bohr radius of the electron due to the defect. 
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As simple as the concept behind DMS materials sounds, it turns out that the 

physics of these materials is fairly complex. To understand their true value we must gain 

insight on the importance of DMSs. To this end, a brief history of spintronics research 

must be reviewed. The portmanteau “spintronics” is a combination of both spin (an 

intrinsic property of electrons) and electronics (field concerned with circuitry design). 

The name fits quite well to this technology as it exploits the spin of the electron in 

addition to the electron charge as seen in conventional devices such as diodes and 

transistors. In 2007, Albert Fert and Peter Grùnberg won the Nobel Prize in physics for 

their independent work in the discovery of the giant magnetoresistance (GMR) back in 

1988 [1, 2], an event which some considered as the birth of spintronics. The GMR effect 

is observed when two metallic ferromagnetic layers are separated by a nonmagnetic 

material (usually a few nm thick). Depending on the net magnetization of the two 

ferromagnetic materials the electrical resistance will change as shown in Figure 1.1.2. For 

parallel alignment the resistance is low whether for antiparallel alignment the resistance 

is high. 

This phenomenon has led to applications such as read heads for modern hard 

drives, magnetic sensors and tunnel magnetoresistance. There are several reviews of 

GMR [3] and spintronics applications [4-6] available, with a more detailed description of 

this field and the application mentioned above. For the purpose of this work it suffice to 

understand that a magnetic field can influence the resistance of a material, and hence the 

current through it. 
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Unfortunately, there is a downside with all the applications mentioned above as 

their implementation is limited to the use of ferromagnetic metals. Ferromagnetic 

materials are not susceptible to an applied electric field, resulting in difficulties if one  

 

 
Figure 1.1.2 Schematic of the physical geometry from which the GMR is observed along with a 

R vs B plot showing the effect of the magnetic field on the resistance of the device structure. 

 

wants to exploit the charge of the carrier. Semiconductor materials are much more 

sensitive to electric field dependence [7] and are indeed one of the reasons for many 

dilute magnetic semiconductor (DMS) studies. Imagine a world in which you can merge 

the current semiconducting technology with magnetism (memory) in a single material… 

great things will come from it!  The first DMS studies were performed in the late 70’s  
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and were heavily considered in the 80’s. Among these, II-IV and III-V based DMSs such 

as (Zn, Mn)Se and (Ga, Mn)As were popular. Special efforts were invested in (Ga, 

Mn)As [8] and (In, Mn)As [9] as ferromagnetic order was achieved by Hideo Ohno’s and 

co-workers with a Curie temperature of 140 K at the time [8], although TC of 180 K were 

later achieved by careful growth of the material. In 2000, Dietl’s [10] came up with a 

model (based on that by Zener [11]) to explain the ferromagnetic behavior in these 

materials and triggered a search for room temperature magnetism. This model does 

provide good insights in the description of the experimental data, but some fundamental 

aspects of these complex materials are still controversial. There is still an ongoing debate 

as whether or not one can identify an impurity band in materials with high Tc and 

whether the charge transport and magnetic interaction are mediated by localized or 

extended states, as these states are close to the Fermi level. High doping concentrations 

result in a wider impurity band and can lead to a mixing with the valence band [12].  

There is another type of potential ferromagnetic semiconductor material, the 

dilute magnetic oxides (DMOs) which are more pertinent to this work. Perhaps, the most 

popular model today is that proposed by Coey [13] in which ferromagnetic exchange is 

mediated by shallow donor electrons that form bound magnetic polarons. If overlap of 

these occurs, a spin-split impurity band can be created. Since the carriers are expected to 

couple strongly to the magnetic moments, DMOs might be a route for interesting 

spintronics applications. Ferromagnetism above room temperature has been reported, but 

the results are irreproducible and observed only in non-crystal films (and bulk material), 

in which case, the effects can be attributable to magnetic secondary phases. This opens up  
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a more philosophical question regarding the definition of a DMOs material [14], despite 

of how the material is define, we show here that interesting spintronics applications are 

indeed possible. 

It must be noted that these materials are still in the testing phase and one should 

see them as a source for new and interesting physics, as device implementation is by no 

means routine at this stage. Even though the word “application” is commonly and 

repetitively used, only few devices are clearly possible at least with functionalities at 

room temperature. In order to reach more applications, a better understanding of the 

physics must be attained first. 

As a closing note and although not the core topic of this thesis work, the 

implementation of gadolinium on our compounds might lead to interesting applications 

unrelated to magnetism or magnetic properties. Neutron detection applications may be 

possible due to the gadolinium high neutron capture cross section. This is indeed 

promising as there is now a large demand and an increase in usage of radiation detection 

technologies for applications in homeland security, nonproliferation, and national 

defense. This concept was put to test with a Gd:HfO2 films on Si(100) heterostructures in 

which a successful pulsed height spectra was obtained as shown later in this work. 
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Chapter 2  

Experimental Techniques 

 

“It doesn't matter how beautiful your theory 

is, it doesn't matter how smart you are. If it 

doesn't agree with experiment, it's wrong” 

  

-Richard P. Feynman - 

 

 

At the beginning of this work we undertook to the quest of constructing devices with 

magnetic properties. But in order to construct heterojunction devices one must be very 

cautious of the quality of the films that are implemented, as the quality factors are 

correlated to the electronic properties of the materials. This chapter seeks to introduce the 

experimental techniques adopted throughout this study to characterize the 

crystallographic structure of the materials and their electronic properties. Most of the 

emphasis will be on photoemission spectroscopy, as this method provides a more 

comprehensive insight regarding the electronic band structures of solid materials, which 

we consider key in the development of this work.  

 

 

 

 

 

 



10 
 

2.1 Photoemission Spectroscopy 

Photoemission (also known as photoelectron) spectroscopy (PES) refers to the 

process in which an electron is removed from a solid material after the absorption of a 

photon. The first evidence of this phenomenon dates back to 1887 where Heinrich Hertz 

detect electrons emitted from a secondary arc due to irradiation of ultra violet light [1]. It 

was not until 1905 that Einstein offered an explanation of this effect [2], which is now 

referred to as “the photoelectric effect”. This is as far as I go regarding the history of 

photoemission spectroscopy. For a historical perspective regarding PES, the papers 

written by Bonzel (et al.) and Reitner (et al.) are strongly recommended [3, 4].  For better 

understanding of the content offered throughout this work, I rather focus on the analytical 

part of the PES process and how to connect it to the electronic structure of a material. 

 

2.1.1 Photoemission Spectroscopy as an Energy Probe Technique 

 On this modern age, if ones feel the urge to “probe” the location of an individual, 

one only needs to call to their cellphone and ask “where are you?” This process will 

automatically give the location of the individual by exploiting “a property” that the 

individual had… a cellphone. If ones want to know the height of a tall building, just place 

a meter stick (or any long object) next to the building and perpendicular to the floor and 

measure its height and the length of the shadow it casts on the floor. Then, measure the 

length of the shadow cast by the building and you are set to go. Due to a geometrical 

condition called similarity, one can determine the height of the building using the 

recorded parameter. In the atomic level there is no difference and one must exploit the  
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atomic properties of the particles in order to gain information regard it. In the case of the 

photoemission process, we can exploit our knowledge of the kinetic energy of the 

electron (a “property “the electron have by just being in motion with some speed) at the 

moment is detected, then by conservation of energy (see equation 2.1.5) one can gain 

information from which orbital the electron came from when it was inside the sample. 

Let’s use the following example to validate my claim and as an attempt to capture 

the essence of the PES process. Imagine that an electron is in an initial state described by 

the wavefunction    and with energy   . Suddenly, the atom absorb a photon of  

energy    and the electron undergo a transition from that initial state into a final state 

described by a wavefunction    with energy    as shown in Figure 2.1.1. 

 

 

Figure 2.1.1 Schematic of a perturbed system due to an electromagnetic wave from the point of 

view of energy levels. 

 

Throughout this process energy must be conserve providing us with the expression 
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which means that the energy of an electron in the final state is the same as the energy the 

electron had in the initial state plus the energy provided by the photon. If we assume that 

the electron can have different final states, each with certain probability but all with the 

same energy    (generally called degenerate states), we can represent the final state of 

the electron as an expansion in terms of its eigenstates as 

 

                                                                       ∑    

 

                                                             

 

where    can be thought as a probability coefficient (when taking the modulus square) 

and    as the wavefunction describing a specific final state. Under this assumption we 

can assign an eigen energy    to each eigenstate   . This will allow us to write the 

degenerate final state energy as 

 

                                                                                                                                            

 

where    is the energy of the electron by just being in the   state (or orbital energy in the 

case of a real solid) and    is the kinetic energy of the electron once is ejected outside the 

solid. Substituting equation 2.1.3 into 2.1.1 one obtain  
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where          and is refer to as the binding energy of the electron. Equation 2.1.4 

elegantly summarize the idea behind photoemission, that is, if one knows the photon 

energy that causes the electron excitation and the kinetic energy once the electron is 

removed from the solid, one can acquire information about which state the electron was 

inside the solid. In the laboratory one knows the value of the photon energy and using an 

electron energy analyzer one can determine the kinetic energy of the electron. I must 

remind you that equation 2.1.4 is incomplete as I just discuss an idealized and simplistic 

case. In a real solid one must account for the “experimental” work function which is 

slightly more complicated than that discussed in modern physics books (i.e. energy 

required to remove an electron from a metallic surface). 

 

2.1.2 The Photoemission Process  

In essence, the photoemission process is based on the ejection of electrons from 

the surface of a material immediately after light absorption. It is this loose definition that 

have led to the short “photon goes in and electron goes out”.  Generally speaking, there is 

nothing wrong with its definition, except that it hides the real complexity of the process.   

From the microscopic point of view, the photoemission process refers to an 

electron in an initial bound state    transitioning to a final state    immediately upon 

light absorption as seen in Section 2.1.1. However, in this attempt allow me to upgrade 

the derivation with a slightly more rigorous approach.  One must keep in mind that the 

following calculation lies within the one-electron approximation (electrons interactions 

among themselves are neglected) and that the derivation has been purposely written to  
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avoid mathematical details. For a detailed mathematical description, I suggest the book 

by H fner [5]. A more elegant (but more complex) approach within the Green’s functions 

formalism can be found in [6].  

Regressing to the system depicted in Figure 2.1.1 for clarity, before the absorption 

takes place, one can solve the time dependent Schrödinger equation 

 

                                                                  
     

  
  ̂                                                              

 

where  ̂ represent the Hamiltonian operator and      the wavefunction of the electron. 

The Hamiltonian operator for this scenario takes the form  

 

                                                        ̂      
  

   
                                                         

 

with    being the Laplacian and      the potential energy of electron. An arbitrary state 

satisfying (2.1.6) have the form 

 

                                                                  ∑     
 
  
 

 

 

                                                       

 

as long as the system is unperturbed (electron does not interact with the photon). To 

describe the system when the perturbation is on, one must modify equation 2.1.7 given  
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that the system is no longer described by stationary states. The perturbation effects can be 

taken into account by modifying the Hamiltonian of the system as  

 

                                                                    ̂                                                                       

 

where      describe the form of the perturbation and    is the Hamiltonian describing 

the unperturbed system. Substituting equation 2.1.8 into 2.1.6 (keeping in mind that now 

the Hamiltonian is described by equation 2.1.9) one obtain  

 

                                               
      

  
 ∑     ⟨  | |  ⟩ 

 
  
 

 

 

                                         

 

where ⟨  | |  ⟩ is the matrix element that relate the perturbation to the initial and final 

state of the electron. The matrix element can be read as “a perturbation of the form   

acting on the state   , leave the system in a final state   ”, which is what is depicted in 

Figure 2.1.1. If integration of equation 2.1.10 is performed one can obtain the value of 

     . Moreover, knowledge of       leads to knowledge of the transition probability 

(probability that a transition from an initial state to a final state will occur) through the 

relation 

 

                                                                          |     |
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Unfortunately, the result obtained once (2.1.11) is solved, suggest     is infinite as   

 . If instead one chooses to work with the transition probability per unit time (    
   

 
) 

one can eliminate that complication and obtain  

 

                                                 
  

 
 |⟨  | |  ⟩|

 
 (        )                                    

 

This equation is known as the Fermi Golden Rule and it gives the transition rate between 

an excitation from an initial state to a final state due to a perturbation  . Notice that the 

delta function  (        ) ensures that energy is conserved during the transition.  

I have been talking about a “perturbation” since the beginning of the section, but 

what is a perturbation? In this case a perturbation is the effect caused in the system due to 

the interaction of the electromagnetic field with the atom in which the electron is bound 

to. Mathematically, the electromagnetic perturbation is of the form 

 

                                        
   

   
    

   

  
    

  

    
| |                                  

 

where   is the vector potential and   is a scalar potential. Since we have the freedom to  

choose the potential that define the electromagnetic field of the light wave, we can 

choose 
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so the perturbation can be simplified to 

 

                                                      
   

   
    

  

     
| |                                                

 

Under the assumption that the field is weak | |  is negligible and that the momentum 

operator of the electromagnetic wave is       , we can further simplify equation 

2.1.16 as 

 

                                                                          
 

   
                                                            

 

Therefore, the transition rate can be rewritten as 

 

                                          
  

 

 

   
 |⟨  |   |  ⟩|

 
 (        )                             

 

Once the states    and    are specified we can described the transition rate due to an 

electromagnetic perturbation (absorption of a photon). I must insist that this approach 

assume that electrons do not interact with each other, which is usually in good agreement 

with experiments if correlation effects are negligible (not the case in this thesis work). A 

more realistic approach must take into account the interaction between the     
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electrons around (many body approach). Nonetheless, this example provides good insight 

regarding the dynamics of the photoemission process.  

From the macroscopic point of view, the photoemission process mainly consists 

on the elements shown in Figure 2.1.2. A light source is used to provide an incident beam 

of photons and an electron analyzer to detect the ejected electrons by means of their 

kinetic energy. 

 
 
Figure 2.1.2 The main elements of the photoemission process. The picture representing the light 

source is a dual anode x-ray lamp and the detector is a hemispherical angle resolved electron 

analyzer, both elements are inside a ultra-high vacuum chamber as denoted by the dashed lines. 

 

 

Upon photon absorption, electrons are excited from an initial state (also referred as an 

occupied state) into a final state as discussed above. If the electron gains enough energy 

UHV 

Chamber 
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such as to overcome the work function of the system, it will be ejected from the material 

carrying along a kinetic energy    which is then detected by the angle resolved electron 

analyzer. This process obeys conservation of energy trough the relation 

 

                                                                                                                                     

 

where    is the energy of the photon,    is the kinetic energy of the emitted electron,  

|  | is the binding energy of the bounded electron and   is the work function. Equation 

2.1.5 is a reminiscent of the energy conservation during the Einstein photoelectric process 

(1905) and is commonly referred to as the photoemission equation. It should be 

emphasized that the effective work function in this equation is not a property of the solid 

material per se but of the system configuration itself (i.e. solid material and electron 

analyzer setup [7]). This process requires ultra-high vacuum conditions (ideally in the 

order of 10
-10

 Torr) which are achieved by the implementation of the PES elements into a 

UHV chamber pumped with a roughing pump and a turbo molecular pump connected in 

series. Figure 2.1.3 (a) shows one of the PES systems used to collect our data.  
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Figure 2.1.3 (a) The ultra-high vacuum chamber employed for the PES process at the 

spectroscopy laboratory in the University of Nebraska and the geometrical set up of the PES 

elements both (b) into and (c) out of the chamber. 

 

For this study it was customary to have the beam of photons at an incident angle close to 

45° and to collect electrons normal to the surface (except for the data taken with angle 

resolved photoemission). Also, a typical practice (implemented in our work) is to 

reference the PES data to the Fermi level of a metal (either clean gold or clean copper), 

this is particularly useful when dealing with semiconducting material and insulator in 

which the Fermi level is not clearly defined.  

Photoemission spectroscopy find most of its applications in studies of the 

electronic properties of the electrons in a solid, molecules and surfaces and in the 

determination of relative elemental composition at the surface of the film. The  

 

(a) (b) 

(c) 

Analyzer 

X-ray lamp 

UV lamp 
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experimental measurement of band structure has depended upon two key approaches: de 

Hass-van Alphen, and angle-resolved photoemission and inverse photoemission. Indeed 

PES was originally proposed as a method for extracting the experimental band structure 

by Sir Nevil Mott [8]. 

 

2.1.3 Ultraviolet Photoemission Spectroscopy 

Ultraviolet photoemission spectroscopy, usually abbreviated UPS, follows the 

same mechanism as discussed above except that the energy of the incident photons lies in 

the range of 10 eV to 1000 eV. The name ultra violet is adopted because the wavelength 

of these photons lies in the ultraviolet region of the light spectra. The first measured 

valance band photoemission spectra date back to 1964 and is attributable to Spicer, who 

measured the d band from copper [9]. It is customary to use vacuum ultraviolet (VUV) 

discharge lamps in the laboratory, with photon energies ranging from 10 eV to 45 eV. For 

our experiment we use an ultraviolet source from Thermo Electron Corporation, which 

provide a photon energy of 21.23 eV via a He Iα line. The physical geometry of the lamp 

is shown in Figure 2.1.4.  

 

Figure 2.1.4 Picture of the ultraviolet source employed in our studies. Taken from the Thermo 

Electron Corporation website. 
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A typical valence band photoemission spectrum is shown in Figure 2.1.5. Before 

extracting information of the spectra it is common practice to subtract the background 

noise of this spectrum which is due to electrons that went through inelastic scattering.  

 
 
Figure 2.1.5 A typical valence band spectra obtain from UPS. The dashed line indicates the 

secondary electron tail and is due to inelastic scattering of the electrons before reaching the 

analyzer. Subsequent steps are shown on the top right portion of the figure. 

 

This background follows a decaying exponential function. However, in some cases, the 

subtraction of a straight line can be used in good approximation. Then, the spectrum is  
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deconvoluted into Gaussian distributions, which are then assigned to a specific orbital or 

to a strong weighted contribution from an orbital. Sometimes the software employed for 

the UPS measurements do not convert the kinetic energy of the electron into binding 

energies, nor take into consideration the workfunction of the system. In those cases one 

can use equation 2.1.5 to obtain an energy conversion. Once the energy is converted into 

binding energy one can reference the data to the Fermi level of the metal as discussed 

above. 

What makes this technique valuable is the high resolution possible in these 

measurements, but complications exist as the photoemission cross sections are not always 

well defined for photons of low energy. Second, the low energy allows probing the 

electrons orbiting in the valence band of the solid as shown in Figure 2.1.6. In the context 

of this work, UPS will prove very useful as it will give us information about the bonding 

of the material and combined with inverse photoemission (see Section 2.2) provide an 

estimate of the solid electronic band gap.  

 

Figure 2.1.6 Energy level diagram describing the ultraviolet photoemission process. 
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2.1.4 X-ray Photoemission Spectroscopy  

X-ray photoemission spectroscopy (XPS) also obeys the same process underlined 

on Section 2.1.1 with the difference that the photons causing the electronics excitations 

have energies in the range of 1000 eV-10 keV. Since photon energies are far greater than 

those used in the UPS process, electrons from the core levels can be removed from the 

material as depicted in Figure 2.1.7 and detected by the electron analyzer.  

 

Figure 2.1.7 Energy level diagram describing the X-ray photoemission process. 

 

This technique will allow for the extraction of chemical oxidation states, elemental 

composition and in some cases extract the effective Debye temperature of the solid, 

which may accompany a phase transition. The development of a high resolution XPS 

analyzer for the studies of core level binding energies is reported to begin with the work 

done by Siegbahn [10]. A typical X-ray source in the laboratory uses either aluminum or 

magnesium for the anode material which can provide energies of 1486.6 eV with the Al- 

Kα line or 1253.6 eV with the Mg-Kα line. The main reason to have two anodes in the x-

rays source is due to Auger electron spectroscopy lines that are formed in during the 
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photoemission process. This Auger lines are constant in kinetic energy and totally 

dependent on the anode used. Sometimes, these lines can overlap in the energy range of 

an energy band from the compound, burying the signal from the solid or interfering with 

the signal. By changing the anode, one can change the position of the Auger line, so the 

overlapping of the signal will not occur.  

 

 

Figure 2.1.8 (a) The physical geometry of the X-rays source and (b) a schematic of the of the X-

ray source. Figure (a) was taken from the Thermo Scientifics application note 31057. 

 

Electrons are emitted from a thoria-coated iridium filament (to provide high emission and 

longer usage of the cathode) and accelerated towards the anode due to the electric field 

formed by the potential difference of 15 keV as shown in Figure 2.1.8 (b). When the 

electrons strike either the magnesium or aluminum anode, they lose energy causing a 

deceleration hence emitting light in the x-ray regime. However, the x-ray light must be 

filtered to reduce bremsstrahlung irradiation and to minimize the contamination of the 

sample in the UHV chamber due to thermal desorption from the internal structures of the 
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x-ray source. To this end, an aluminum window is placed at the aperture of the source as 

shown in Figure 2.1.8 (b).  

 

2.1.5 Resonant Photoemission Spectroscopy 

Resonant photoemission also results in the same final state described in Section 

2.1.1 except that the photon energy provided by the light source is varied over a wide 

range. The photon energy can be selected from a continuous set of values (5.0 eV up to 

1500 eV) with the implementation of a monochromator and a synchrotron source. A 

synchrotron light source refers to the combination of a particle accelerator, a storage ring 

and a set of beamlines. The process starts out by producing thermal electrons via an 

electron gun. These electrons are then accelerated by a large electric field and directed 

into a linear accelerator (LINAC). At the exit of the LINAC electrons had gain a huge 

amount of energy due to microwave light absorption, so they leave the accelerator with 

speeds close to the speed of light. From the LINAC they enter to what is called the 

booster ring in which the electrons are forced to travel in a circular path by means of 

magnetic forces due to bending magnets. This results in electrons with energies in the 

order of GeV. The next stage is to feed this beam into the storage ring where the electron 

beam will be traveling in a quasi-circular path, reinforce periodically with accelerators to 

keep their speed almost constant. How do we get light out of this ring? Right before the  

beam line, there is a bending magnet which will cause the electrons to accelerate as it 

curves, this will cause light emission which will be directed into the specific beamline. 

The actual process is easier said than done! One must use extra instrumentation to keep 

the electron beam focused, ultra high vacuum conditions to avoid scattering events, and 
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electron injections to maintain the flow of electrons. After light is emitted, the need of a 

monochromator is imperative to reduce the energy of the photons.  

 Our experiments on resonant photoemission spectroscopy (RPES) and high 

resolution angle resolved photoemission spectroscopy (ARPES) were performed in the 

Center of Advanced Microstructures & Devices (CAMD) in Baton Rouge, Louisiana. 

Figure 2.1.9 shows a schematic of the storage ring in CAMD along with their beamlines. 

The 3m toroidal grating monochromator (TGM) and the normal incidence 

monochromator (NIM) beamline that were employed for our experiments  

 

  
                                  (a)                                                                (b) 
 
Figure 2.1.9 A (a) schematic and (b) picture of the storage ring in CAMD. Taken from [11, 12]. 

 

 

A schematic of the beamline and a picture of the 3m TGM is shown in Figure 2.1.10.  
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Figure 2.1.10 (a) The 3m TGM beamline and (b) a picture of the TGM. Taken from [13, 14]. 

 

For the sake of completeness, the UHV chambers employ in the experiment are shown in 

Figure 2.1.11. 

There are two main advantages when using a synchrotron source. One, the 

variation of photon energy allows for the mapping of the electronic band structure along 

the growth direction of the compound (assuming the compound has a strong texture). 

Second, the photoemission cross section of the elements has an energy dependence so 

resonance studies on rare earth and some transition metals can be performed. Among  

 

(a) 

(b) 
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(a) (b) 

 
Figure 2.1.11 (a) The UHV chamber used for the high resolution angle resolved photoemission 

spectroscopy and (b) the resonant photoemission experiments. (a) was taken from [15]. 

 

other advantages are high intensity and brightness, small beam size spot and variable 

polarization. Given the nature of the light polarization from a Synchrotron source (and if 

symmetry permits), one can select to probe contribution from one orbital or another as 

permitted by the photoemission selection rules. 

Regarding the studies reported in this work, RPES will prove extremely useful 

when we purposely scan through the resonant regions of gadolinium and europium rare-

earth elements to study the resonances processes taking place in the solid, and high 

resolution ARPES will be used to map the electronic band structure near the Fermi level. 

A whole chapter (Chapter 6) is devoted into discussing resonant effect and how these 

affected by the conductivity of the sample in question. 

 

2.1.6 Matching the Photoemission and the Theoretical Density of States  
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It is important to understand the means in which the experimental density of states 

(DOS) is obtain and how is compared to experiments. Having study the basic features of 

the PES process, it is worth expanding the relationships between the theoretical band 

structure of a solid and the electron energy distribution derived or established in the PES 

process. As shown in Figure 2.1.12, the electron energy distribution of the photoemission 

spectra often gives a replica of the electron energy distribution in the solid, although 

slightly modified (changing cross-sections, matrix element effects, quantum selection 

rules and the fact that is a final state spectroscopy means photoemission is not and cannot 

be an exact reproduction of the ground state density of states). In the theoretical DOS 

calculation (Figure 2.1.12 (a)) the energy levels corresponding to the core electrons is 

represented by a delta function (straight line in the E v.s. N(E) plot), whereas the valence 

band electrons, being more delocalized, undergoes dispersion as suggested by the 

quadratic increase in the density of state. Notice that the Fermi level dictates the energy 

of the electron at the highest occupied state in the solid at temperature      , and the 

vacuum level represents the energy that must be overcome to release the electron from 

the solid. The spectrum measured by the photoemission process (also referred as the 

photoemission density of state) resembles quite closely the solid density of state as shown 

in Figure 2.1.12 (b). The core levels electron energies are broader due non-idealities such 

as inelastic collision of the detected electrons and instrumentation resolution. 
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                                        (a)                                           (b) 

 

 

Figure 2.1.12 The relation between the density of state from a (a) theoretical and (b) 

experimental point of view.  (c) The reference energy between the two DOS distribution. 

 

 

The valence band also undergoes changes due to finite temperature effects as seen by the 

tail extending above the Fermi level, but overall, both DOS are qualitatively similar. A 

major difference between these two DOS measurements is the energy scale in which they 

are measured. The theoretical calculation alludes to what happens inside the solid 

whereas the experiment makes reference to what happens outside the material. This is  

 

 

(c) 
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why usually PES is referred to as a final state measurement in order to determine an 

initial state, whereas in theory one builds an initial state. As shown in Figure 2.1.12 (c), if 

one wants to compare the two density of states, an adjustment in energy must be made. 

The energy conservation expression [equation (2.1.5)] takes care of this problem. 

 

2.1.7 Connection between Photoemission and Reciprocal Space 

In a crystalline material, atoms are placed in a periodic lattice, usually called a 

bravais lattice. A bravais lattice is an infinite array of discrete points with an arrangement 

and orientation that appears exactly the same, from whichever of the points the array is 

viewed. Schrodinger equation tells us that the wavefunction of the electron moving 

throughout the lattice must adopt the periodicity of the crystal if one wants to describe the 

states in which the electrons are inside the solid. Due to the wave nature of the electron, 

knowledge of the exact position of the electrons is not possible. However, not all hope is 

lost… for each wavefunction (or state) allowed by the Schrodinger equation, the electron 

will have a definite wavelength or momentum through the de Broglie relation 

 

                                                                              
 

 
                                                                      

 

This is, for each wavefunction the Schrodinger equation allows, we can know to a large 

certainty, the wavelength corresponding to the electron in that state (or the wavevector 

through the relation   
  

 
). Each of the allowed   values form a space on its own, this 

space is called reciprocal space.  
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To summarize the above in short words, electrons that contribute to the electronic 

band structure are delocalized in real space (i.e. their exact position is unknown), instead, 

we defined a new space, called reciprocal space (or k-space), in which the energy of each 

electron is well define (are known accurately) through the wavevector  . For this reason, 

all theoretical calculations yield energy expressions in terms of the wavevectors. In a   

vs   plot, each   point is interpreted as a possible state an electron can occupy or is 

occupying based on the placement of the Fermi level. However, measurements of the 

PES process only provide us with the kinetic energy of the electron and the emission 

angle of the ejected electron. Well… how do we construct the experimental electronic 

band structure with that information? This question is quite subtle, let’s make use of 

Figure 2.1.13 in an attempt to bring clearness to the problem. 

 

 

Figure 2.1.13 Schematic of the electron propagation along the solid vacuum interface.  

 

After the electron make the transition from the valence band into the conduction 

band, it will propagate trough the crystal with wavevector     . Once outside the sample, 

we can describe with a wavevector     . The transmission of the electron trough the 
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surface into the vacuum requires that the wavevector component parallel to the surface to 

be conserved, this is, 

 

                                                                                                                                                   

 

but     is given by√
   

        , hence  

 

                                                                  √
   

  
                                                             

 

 

Unfortunately, for its component normal to the surface there is a key complication. The 

potential step across the solid-vacuum interface    is not a conserved quantity and has to 

be corrected by an additional potential term (often called the inner potential. In the 

simplest assumption, one can assume a free electron in the final state inside of the crystal 

with parabolic dispersion given by 

 

                                                                    
    

 

   
                                                              

 

Once the electron is in the vacuum side, conservation of energy dictates that  
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However,        is our reference level for the measured kinetic energy in the PES 

process, hence, by substituting equation 2.1.9 into 2.1.10 and solving for     we obtain 

 

                                                               √
   

  
                                                             

 

It turns out that the photoemission results can be directed related to the reciprocal space 

through the relations 2.1.8 and 2.1.11. These relationships are of extreme importance, as 

they unify the PES results with the reciprocal space of a solid. The meaning of these 

wavevectors is summarized in Figure 2.1.14. Note that for each value of the electron 

kinetic energy and/or each value of the emission angle,  different values of    or     are 

obtained. When these different wavevectors values are plotted with the measured energy 

(this process is referred as mapping into k-space), it results in the electronic band 

structure of the solid. An example of this can be seen in Figure 5.2.4 and Figure 5.2.5 in 

Chapter 5. 
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                                     (a)                                                              (b) 

Figure 2.1.14  (a) The first Brillouin zone for a face centered cubic (FCC) lattice and (b) the 

wavevectors along the direction perpendicular to the surface of a film and the wavevector along 

the direction parallel to the surface of the film. 

 

2.1.8 Charging Considerations in PES 

One key ingredient in the photoemission process is the compensation of the 

electron lost in the ejection. This is usually fulfilled by “grounding” the sample to a vast 

source of electrons (say Earth). In a metal and many semiconductors the replacement of 

the lost electron is fast and does not interfere with the results of the experiment. 

Unfortunately in high k insulators (such as the ones in this work) this charge 

compensation represents a bit of a problem. In this type of materials a positive potential 

can develop in the region where the light beam is incident since the ejected electron 

cannot be compensated leaving behind a positive charge at the surface. The positive 

charge accumulates and interacts electrostatically with the ejected electron, reducing its  
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kinetic energy. The problem with this phenomenon is that the electron analyzer base it 

detection capabilities in the electron kinetic energy. This charging effect will lead to 

energy bands shifted from their actual position.  If the charging is very strong, the shift in 

binding energy can be such as to bury the band in the secondary electron tail, or can lead 

to a decrease in the photoemission intensity. To complicate this even further, if the 

charging is non-uniform, electrons in different regions of the material can feel different 

retarding potential. This will result in broadenings of the electronic bands and sometimes 

even distortions. It is common to make a distinction between lateral and vertical 

differential charging as discussed in [16]. 

However, several approaches and studies have been performed to solve this 

problem [17]. The use of a reference material such as carbon [18] or a gold layer [19] has 

been implemented, as well as the use of a very thin layer on a conducting substrate [20]. 

Flood guns [21] have been successfully used to supply electron to the surface of the film 

compensating whatever hole is created in the photoemission process. An alternate way to 

get around this problem is to heat the material at elevated temperatures. This approach is 

the one used in this work. The idea consists on promoting valence electrons to the 

conduction band where they can travel freely and recombine with any hole in their 

trajectory. One might claim that the electronics properties at these high temperatures 

might be altered and might not resemble those at room temperature, but in fact changes 

are not that drastic so one can make analogies between both limits.  In cases in which 

charging is strong, useful information can be extracted in terms of the activation energy 

of the material.  
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2.2 Inverse Photoemission Spectroscopy   

Inverse photoemission is a technique that is used to probe the unoccupied density 

of state of a crystalline material. As suggested by the name (although not a spectroscopy 

itself), inverse photoemission is the “inverse of the photoemission process, loosely 

speaking “electron goes in and photon goes out”. Formally, low energy electrons are 

directed into the film, these electrons then couple to a higher energy state and decays to a 

lower energy state. During the decay between the energy levels,  a photon is emitted with 

some energy characteristic of the transition (i.e. the photon energy is equal to the energy 

difference between the energetic levels) as Figure 2.2.1 suggest. The electrons are 

supplied by an electron gun and the photons are detected using a Geiger-Muller detector 

as denoted in Figure 2.2.2 [22]. 

 

 

Figure 2.2.1 Energy level diagram summarizing the IPES process. 
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Figure 2.2.2 Schematic of the inverse photoemission process. 

 

Given the low energy of the electrons this technique is very surface sensitive 

(meaning that one can probe most of the surface details and less of the bulk details, 

unlike the case of photoemission). This also means that the surface of the material must 

be treated carefully depending on the experiment to be performed, as contaminant signal 

can be picked, affecting the reliability of the data.  

 

2.3 Neutron Detectors  

There are currently two mechanisms used for the detection of neutrons; 

scintillation and the use of semiconductor to form diodes detectors. We adopted the later 

for neutron testing using Gd:HfO2 films on p-type Si(100). In general, when an n-type 

material (such as Gd:HfO2) is deposited on a p-type material they form a p-n junction 

which result in a rectifying diode. Since electrostatic equilibrium conditions must persist 

between the two materials when unbiased, charge transfer between the two materials will 

lead to the formation of a depletion region (Figure 2.3.1).  This will result in a band 

bending near the interphase of both materials, resulting in the formation of a potential  
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step as shown in Figure 2.3.2. The potential step dependence on the bias voltage is what 

one wants to exploit in these devices as the polarity of the bias voltage will determine 

how much current will flow through the device. 

  

 
Figure 2.3.1. A schematic showing (a) the p-n junction geometry and (b) the depletion region and 

neutral region of a diode.  

 

  

                                                    (a)                                                                                (b) 

Figure 2.3.2. A p-n junction diode in (a) forward and (b) reverse bias operation. 
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We are interested in the reverse bias mode for neutron detection for two reasons. 

First, the number of carriers in this bias mode is very small at operating temperatures 

resulting in small leakage currents through the material in the absence of radiation. This 

will facilitate the detection of the energy deposited by the incident radiation once the 

neutron capture event takes place. Secondly, after the electron-hole pairs are formed by 

charged particle excitation, the carriers need to be separated as fast as possible, before 

recombination occurs, if one wants to detect a pulse. In this configuration the depletion 

region can extend into the bulk of the material resulting in a strong electric field 

throughout the depleted region, which will facilitate the carrier transport 

A typical setup is depicted in Figure 2.3.3. Plastic (with large hydrogen content) is 

used to slow down the neutrons so detection can be achieved as the neutron capture cross 

section is higher at lower energies. Also a cadmium or lead foil can be implemented to 

discriminate from Gamma-rays signals. Once the nuclear reaction occurs, electron-hole 

pairs will travel through the material and injected into the contacts, where detection will 

occur in the form of a pulse. Unfortunately, these pulses are weak and one requires an 

amplification stage to have signals strong enough to be detected by both the pulse counter 

and the amplifier. 
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Figure 2.3.3 The neutron detection mechanism for a diode detector. The neutrons are incident 

into a moderator (usually a hydrocarbon plastic) to slow them down. Cadmium foil is used to test 

for Gamma sensibility although a thin foil of lead is sometime used. 

 

The neutron capture pulse height spectra will be taken using a curie plutonium–beryllium 

source which provided 2.2 x 10
4
 thermal to epithermal neutrons cm

−2
 s

−1
, as calibrated by 

foil activation methods. The diodes were reverse biased with 2V, a value well below the 

breakdown voltage. The pulse height spectra gathering electronics were developed and 

implemented in a single-chip solution. The pulse counting and binning electronics is 

based on a solution that integrates a custom low-power microcontroller core, I/O 

hardware, timers, SRAM and a low-power radiation sensor front-end on a single chip 

using a 0.35μm CMOS technology. The design choices have been driven by low 

operating power, small chip area, reliable communication and robustness constraints. The  
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overall detection and binning architecture are schematically shown in Figure 2.3.4. The 

neutron capture pulse sensor front-end is based on a charge sensitive amplifier (CSA) 

circuit that has significant reduction in power consumption [23], compared with [24]. 

This effective multichannel detector design allows the peak current available to the CSA 

to be more than 20 times the dc bias level by utilizing an adaptive bias scheme that 

dynamically scales the bias current during a particle detection event.  

 

 

Figure 2.3.4 Single-chip pulse counting and binning electronics block diagram. The design 

occupies a total silicon area of 10mm2 fabricated in a 0.35μm CMOS technology (see text). The 

charge sensitive amplifier (CSA) and analog-to-digital converter (ADC) are indicated 

schematically. 

 

 

This permits the amplifier to stay in the linear region allowing more accurate 

characterization of neutron capture detector events. The microcontroller core responsible 

for processing the particle events for binning and transmitting the data to a host system is 

a standard 16 bit RISC architecture with 28 instructions implemented with a clock speed 

of 8 MHz. The core consumes 17 000 digital gates with an estimated extra 3000 gates 

required for a test access port. Communication with the chip is accomplished with a 3V 

USB-to-serial communications device. The entire circuit consumes between 39 and  
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400μW of power depending on the particle detection rate. The maximum possible analog 

to- digital converter (ADC) conversion rate, and therefore particle detection rate, is 300 

000 samples s
−1

, but here we have exploited the large charge/voltage integration times 

available, for better pulse height resolution. A conversion gain of 833μVfC
−1

, 

corresponding to 1.2 pF of integration capacitance, has been utilized. With an 8-bit ADC 

resolution, 256 bins were created using an incremental bin resolution of 5.64 fC/bin, 

which corresponds to 4.7 mV after charge-to voltage conversion. A diode bias level of 

2V has been used with a bias resistor value of 20 kohms 

 

 

2.4 X-ray Absorption Fine Structure  

X-ray absorption spectroscopy (XAS) is a technique used for determining the 

absorption coefficient of a material as a function of photon energy via the comparison of 

the incoming light intensity and the outgoing light intensity. This provides useful 

information about the chemical and physical states of an atom. A typical absorption 

spectra obtained from this technique is shown in Figure 2.4.1. Due to the information 

provided by different segments of the spectra, is common to divide the absorption edge 

spectra into three different regions. The first region is named the pre-edge region and it 

contains information about ligand fields and oxidation states. The second region is refers 

as x-ray absorption near edge structure (XANES) and provide information about the 

oxidation states and coordination chemistry. The third region is referred as extended x-

ray absorption fine structure (EXAFS) and provides information about the distance, 

coordination numbers and species of the neighbors of the absorbing atom. 
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Figure 2.4.1 A hypothetical x-ray absorption spectra. 

 

Although there is no clear distinction, the XANES region is around 30-50 eV of the main 

absorption edge. The rest is considered as part of the EXAFS region. 

 This process starts with the absorption of an x-ray photon by a core level electron. 

If the x-ray photon energy is equal (or higher) to the binding energy of the core level 

electron, this electron can be promoted to a continuum where it behaves as a wave with 

wavelength given by 
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√   

        

                                                        

 

In the case where there are no neighbors, the electron propagates with an absorption 

probability as depicted in as shown in Figure 2.4.2 (a). When the same process takes 

place but the neighbor’s atoms are included into the picture, the electrons that are excited 

from the absorbing atom can suffer scattering from neighboring atoms and returning to 

the absorbing atom resulting in a modulation of the absorption coefficient or 

wavefunction at the absorbing atom site. 

Macroscopically, the XAFS set up consist of the instrumentation as shown in 

Figure 2.4.3. The x-ray beam is generated by a synchrotron which is then 

monocromatized and energetically tuned up by a monochromator. Then, the intensity of 

the incident light is recorded and compared do that detected in the fluorescence or 

transmitted detector, depending of the mode being implemented. Synchrotron radiation is 

implemented due to its high intensity and photon energy tunable characteristic. Since our 

samples are thin films, the fluorescent mode was employed as is known to be more 

sensitive to films with low elemental concentrations (in the transition mode the signal is 

overwhelm by large background absorption). The connection between the absorption 

coefficient and the intensities detected in the fluorescence mode is 
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                                                                            (a) 

 

                                                                            (b) 

 

Figure 2.4.2 Schematic of x-ray absorption in terms of an energy diagram and the absorption 

probability spectra for the case where (a) there are no neighbors and (b) the photo-electron can 

scatter from a neighboring atom. This figure was taken from [25]. 
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This is very useful because from a theoretical stand point, the EXAFS part can be 

described by 

 

                                                                     [      ]                                                    

 

where       represents the absorption coefficient of the absorbing atom as if there were  

no neighbor atoms (no scattering) and      is a function that describe the oscillatory 

behavior right after the rising edge. The function       is usually known,      can be 

determine experimentally, this means that the form      can be calculated. 

 

 
Figure 2.4.3 Schematics of experimental setup for XAFS measurement in fluorescence mode 

from CAMD. 

 

This in turn will allow for the identification of near neighbors coordination shells which 

can be modeled using the EXAFS equation 

 

                                     ∑
   

      
 
 
 

   

          

   
    [          ]
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For the sake of clarity,        is the scattering amplitude,       is the phase shift,    is the 

number of neighboring atoms,    is the distance to the neighbor atom,   
  is the disorder 

in the neighbor distance. The subscript   represent the individual coordination shells of 

identical atoms at approximately the same distance from the central atom and the 

exponent  
 

   

     accounts for inelastic scattering and the core hole lifetime. Equation 

(2.4.4) will allows us to know  ,   and   
  and since       depends on the atomic 

number Z of the neighboring atom, EXAFS is sensitive to the atomic species of the 

neighboring atom. It is customary to multiply      by a power of   to emphasize the 

oscillation. 

This equation implies that XAFS can probe about 5 Å or so, so it is perceived as a 

local probe technique. The XAFS oscillation will consists of different frequencies that 

correspond to different distances for each coordination shell, which will lead to the use of 

Fourier transforms in the analysis. The values for       and       are included in the 

FEFF software. 
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Chapter 3 

Sample Preparation, Crystallographic Structure 

and Composition 
 

 

“It is most necessary to avoid rusticity in any way, 

whether in material, design, or execution”  

 

-George Edmund Street-  

 

 

Both experimental and theoretical insights provide evidence that these materials can form 

heterojunction devices. But before heading towards that goal, one must face the challenge 

of growing these materials on substrates. Growing the material on substrates is not 

enough since one must do so with the highest quality possible (by these I mean the 

arrangements of the atoms must be as periodic as possible). To explore these issues, we 

discuss the methods used for deposition of the films studied in this work and some of the 

experimental techniques that will allow us to determine to some extent their quality, 

composition and structural geometry.  

From this section one can start seeing the effects that rare earth dopants have in 

the crystallographic structure of these semiconducting compounds by means of the local 

and bulk structure measurements performed.  
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3.1 Sample Growth Method 

To paint, the painter needs to transfer the paint from the can into the surface to be 

coated. However the outcome depends on the medium that is used to transfer the paint. A 

paintbrush, a roll painter, a painting gun, even the hand will do the job, but the finish on 

the wall will be entirely different. Loosely speaking, the deposition process can relate to 

that in that it consists of taking material from one place (a source or target material) and 

transfers it into another place (a substrate). Vapor is usually the medium used to do the 

transfer, this means that these processes must evaporate the target material (material to be 

deposited or vaporized) and then collect it via condensation at the substrate. Although 

conceptually the deposition sounds like an easy task, extreme caution must be 

implemented as slight changes in parameters such as the chamber pressure, background 

gases, temperature, the material to be deposited and the method for evaporation play an 

important role in the process and can affect the outcome of the film deposition. This 

section is concerned with the growth techniques used for the deposition of thin films. 

 

3.1.1 Hybrid plasma-assisted PVD/CVD process 

The chromium doped diamond-like carbon thin films (Cr-DLC) were synthesized 

using the hybrid plasma-assisted PVD/CVD deposition technique by collaborators (Dr. 

Varshni Singh group) at Louisiana State University. A physical vapor deposition (PVD) 

process refers to a method for thin film deposition via the condensation of a vaporized 

form of the target material onto a substrate. The word “physical” stands on the fact that 

no chemical reaction is involved during the deposition and “vapor” due to the phase in  
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which the target material is present just before the deposition is performed. This type of 

deposition is too general so is customary to separate it in different branches as shown in 

Figure 3.1.1.  

 

 

Figure 3.1.1 Survey of vacuum deposition techniques. Adapted from [1]. 

  

On the other hand, chemical vapor deposition (CVD) is the process by which one can 

produce films with high levels of purity via chemical reactions. This technique relies on 

exposing a substrate to a precursor. The target material vapor then reacts (or decomposes) 

with the precursor on the surface of the substrate resulting in a film. The deposition can 

result in a metal, semiconductor or even alloy compounds. In the hybrid plasma-assisted 

PVD/CVD process, the reaction is activated by creating plasma in the vapor phase. As 

the name suggest involves a chemical decomposition of a precursor gas and the 

vaporization of a target material. 

The 3%, 5%, 11% 15% and 20% chromium doped diamond-like carbon thin films 

were grown using this technique [2-4]. Silicon (100) was used as the substrate material 

for the film deposition. All substrate were cleaned ultrasonically in acetone and dried in  
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air. Before the deposition, the chamber filled with argon several times to purge the 

vacuum chamber while the background pressure was pumped down to 1.33 x 10
-4

 Pa 

before each flush. The silicon substrates were sputter cleaned using ionized argon for 20 

minute at 3.3 Pa with a bias voltage of 1500 V. The process involved magnetron 

sputtering from a Cr target (99.5% Cr) in an Ar/CH4 discharge with a ratio of 1: 5.33 and 

total flow rate 47.5 sccm. The substrate was biased at -1000 V and placed 16 cm from the 

magnetron target. The Cr content in the Cr-DLC films was varied by operating the 

magnetron under current control and modulating the current between 100 mA and 350 

mA, as described elsewhere [2]. The chamber pressure was maintained at 2.66 Pa. After 

deposition, the substrate was cooled inside the chamber in an argon atmosphere. The 

temperature of the substrate during deposition was maintained below 100 C. Two small 

areas were masked on each sample surface to determine the films thickness an optical 

profilometer. The carbon and chromium content in the films was determined as described 

in [2]. 

 

3.1.2 Pulsed Laser Deposition 
  

The pulsed laser deposition technique (a branch under PVD deposition) consists of an 

incident high power pulsed laser that strikes the surface of the target material. The energy 

transfer between the laser and the surface will form an ablation plume that will result in 

the evaporation of a thin layer of the target material. This process is a non-equilibrium 

process since the surface (or outermost layers about 1000 Å) of the target material is 

extremely perturbed due to the short laser pulses (50 ns) while below is cooled. 
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Figure 3.1.2 show a schematic of the process. Due to the strong temperature gradient, 

periodic turns of material vapor are produce and deposit on the substrate material via 

condensation, resulting in a film with composition nearly identical of that of the target 

surface. This is one the reason why the PLD process is thought to be advantageous in 

growing thin films.  

 

          

                                              (a)                                                                     (b) 
 

Figure 3.1.2 (a) Schematic of the pulsed laser deposition process and (b) geometrical set up 

inside the UHV chamber. The pictures were adapted from [5, 6]. 

 

The remaining of the samples (as shown below) used for this work were grown 

using PLD deposition by Professor Jinke Tang group at the University of Wyoming. 

These are europium oxide (EuO), gadolinium doped europium oxide (Gd:EuO), cerium 

doped europium oxide (Ce:EuO), gadolinium oxide (Gd2O3) and gadolinium doped 

hafnium oxide (Gd:HfO2). The dopant content will be specified where discussed. 
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Gd2O3 and Gd:HfO2 Compounds: 

The Gd:HfO2 films were deposited on both p-type and n-type silicon (100) 

substrates, at a growth rate of about 0.15 Å/s. The HfO2 and Gd:HfO2 targets were 

prepared using standard ceramic techniques (refers to the mixing of a percent of each of 

the powders and compress them to form a solid target) using high purity HfO2 and Gd2O3 

powders [7, 8]. The gadolinium concentration in these compounds was 3%, 10% and 

15%. The Gd2O3 was grown on Si (100) using a pure Gd2O3 target.  

Before the deposition, the Si (100) substrates were cleaned with diluted HF acid, 

rinsed with acetone, and then immediately put into the vacuum chamber.  Before 

deposition, the surface of the Si substrate was sputter cleaned in a plasma of H2 (8%) and 

Ar (92%) mixture created by a DC sputtering gun operating in the reverse bias mode.  

The chamber was pumped to a base pressure of 3 x 10
−7

 Torr and the deposition was 

carried out in a mixture of H2 and Ar (8% H2) to introduce the necessary oxygen 

vacancies.  The vacuum was maintained at 10
−5

 Torr during the deposition with a 

substrate temperature of 500 °C.  The doping level was determined from the target 

composition, with companion measurements using near edge X-ray absorption 

spectroscopy (NEXAFS), and on separate samples by X-ray emission spectroscopy (XES 

or EDAX) on similarly prepared samples. The complementary spectroscopies show that 

the films and the target have essentially the same composition. 

 

EuO, Gd:EuO, Ce:EuO Compounds: 

There are known complications to the growth of EuO on a silicon substrate. Key 

among the problems is that the presence of a high oxygen partial pressure at the initial  
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stages of the EuO film growth leads to formation of Eu
3+

 (indicative of Eu2O3) at the 

Si/EuO interface [9, 10]. Methods for preparing EuO films reported so far include 

reactive thermal evaporation of Eu and molecular beam epitaxy (MBE) under ultrahigh 

vacuum in the presence of oxygen gas [9-13].  For this work, we used pulsed laser 

deposition (PLD) for the growth of EuO films and EuO films with their corresponding 

rare earth dopant on Si (100), shown previously to be viable [14]. Hydrofluoric acid (HF) 

and acetone were used to clean the silicon wafers. Before the deposition, the silicon 

wafers were annealed at 750 
◦
C in vacuum, at a pressure of 10

−5
 Torr of pure H2 gas 

(99.995%) to reduce the native SiO2 surface layer from the wafers. All samples were 

grown on these wafers using PLD at room temperature. The targets used in the PLD 

process were either Eu (99.9%), Ce (99.9%) or Gd (99.9%) metal or a mixture of Eu with 

Gd (or Ce (99.9%)), as described previously [14]. We chose the gadolinium substitution 

level of 4% which was reported optimal [11].  

 

3.2 Studies of the Crystallographic and Local Structure using X-ray 

Absorption Fine Structure and X-ray Diffraction 
 

A building consist of two infrastructures; the frame or foundation in which the 

whole support relies, and the design which assign a space, form and shape of the frame. 

An arquitect is a person who plans, designs and supervised the construction of a building. 

Its job is to ensure that its employee’s ensemble the building piece by piece by rigorous 

implementation of the blueprints. A similar situation happens with a film or material after 

deposition. A film is compose of a lattice (periodic arrange of points that follow some 

symmetry) and a basis which is the specific atom or molecule that is assign to each point. 

In this sense, a material scientist plays “sort of” the same role as the arquitect but in the 
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microscopic world. Once the deposition is performed, knowledge of the crystallographic 

structure (building’s frame) and its local environment (building design) is necessary for 

characterization of the films. Unfortunately, due to lack of human perception at small 

scales, a material scientist can only study the structure and local environments of films by 

means of experimental techniques such as the ones discussed in Section 2.4. 

Following that line, x-ray absorption near edge Structure and extended x-ray 

absorption fine structure were implemented to study the local structure of Cr-DLC and 

Gd:HfO2 films. The measurements were done at the Center for Advanced Microstructures 

and Devices (CAMD) synchrotron facility. The data was collected at the DCM beamline 

and monochromatic light was obtained by using a double crystal monochromator of 

Lemonnier type [15]. The energy resolution was approximately 2.0 eV and spectra were 

acquired in the fluorescent yield mode, using a Ge detector (Canberra). 

X-ray diffraction provided evidence of the effects in the crystallographic structure 

cause by the dopant inclusion. The most remarkable effects are seen in Gd:HfO2 in which 

a change in crystal structure is evident as the dopant concentration increases, and in 

Gd:EuO in which the crystal structure remain invariant but the direction of growth along 

a very unstable surface is preferred. 

 

3.2.1 The local structure of amorphous Diamond like Carbon doped 

with Chromium 
 

The x-ray absorption (XAS) data at the K- edge of Cr (5989.2 eV) was collected 

using a monochromatic X-ray beam from the Synchrotron source in CAMD. The incident 

beam intensity (Io) was monitored with an ionization chamber. XAS spectra were 

recorded in fluorescence mode for the Cr-DLC films using a 13 element germanium 
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detector. EXAFS spectra were recorded over an energy range of 5700 – 6970 eV with 1 

eV steps and XANES spectra were recorded from 5910 – 6400 eV with 0.2 eV steps in 

the near edge region. Data for pure Cr and Cr3C2 (standards) were recorded in 

transmission detection mode.  

 XANES data were fitted with a linear pre-edge for background removal and 

normalized to the 6300 - 6400 eV post-edge regions of the spectra using the WinXAS 

software package [16, 17].  The EXAFS data were extracted and analyzed utilizing the 

UWXAFS software package [15]. The position of the adsorption edge Eo was set at the 

first inflection point of the Cr spectrum, and the extracted EXAFS signal was Fourier 

transformed over the region of 2.0 Å
-1

 to 11 Å
-1

, using a Hanning window function. 

Refined structural parameters were obtained from nonlinear least square fitting in R- 

space over a range of 1.2 Å to 3.0 Å, encompassing the first two peaks representing 

Cr...C and Cr...Cr, in the single scattering approximation.  Theoretical phase and 

amplitude functions were calculated using FEFF8, a computer program for ab initio 

calculation of EXAFS and XANES spectra using multiple-scattering theory [16].  The 

amplitude reduction factor S
2

0 was determined by fitting the EXAFS data of the Cr3C2 

powder standard yielding a value of 0.72. 

XANES spectra were obtained from selected Cr-DLC films with Cr content of 

about 1 %, 0.4 %, 1.5 %, 2.8 % and 11.8 % along with pure Cr, Cr-III oxide (Cr2O3) and 

Cr carbide (Cr3C2) samples are shown in Figure 3.2.1. The chemical state of the 

absorbing atom determines the position of the absorption edge, E0 (5989.2 eV for Cr). 

This is usually defined as the first inflection point in the absorption spectrum. We know 

that Cr is in a neutral state in metallic Cr, in the Cr (III) oxidation state in Cr2O3 and 

probably bracket the oxidation state of chromium in Cr3C2, consistent with the near-edge 
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absorption spectra of Figure 3.2.1. Therefore, as expected, Figure 3.2.1 shows that the 

chemical state of the absorbing Cr atom is different in metallic Cr, Cr3C2 and Cr2O3, in 

agreement with data reported by Pantelouris et al. [18] and prior work [30]. The pre-edge 

structure for the Cr-DLC films is similar to that observed in Cr3C2 (but not in Cr). This 

suggests that the Cr atom in these films has a chemical state similar to the state of Cr in 

Cr3C2. These results [30] are in agreement with those reported by Singh and Meletis [19], 

where the TEM observations on Cr-DLC film with 4.8 at.% Cr showed crystalline 

nanoclusters, 2–5 nm in size, embedded in the amorphous matrix. This result differs 

somewhat from the work of Gassner et al. [20] on Cr-doped films of amorphous 

hydrogenated carbon made via unbalanced dc magnetron sputtering, where the as-

deposited films contain a metastable fcc CrC which transforms into Cr3C2 and Cr7C3 

precipitates upon annealing. 

 

Figure 3.2.1 The X-ray absorption near-edge structure (XANES) spectra for the Cr-DLC films 

along with pure Cr and Cr carbide (Cr3C2). The spectra are normalized and translated along the y-

axis (intensity) for clarity. 
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The analysis of the XANES spectra of the Cr-DLC films shows that the chemical state 

and the local environment around the absorbing Cr atoms remains essentially the same in 

the films with Cr content ≥1.5 %. With lower Cr content (0.4 and 0.1 at.%), a different 

local environment compared to that in the rest of the Cr-DLC films and Cr3C2 is evident 

[30]. It was also observed that the amplitude of the white line increases with diminishing 

Cr content in the films. This increase suggests a decrease in the electron density around 

the absorber atom and can be attributed to the sharing of electrons by the Cr atoms, 

present on the interface of nanoclusters, and the hydrogenated carbon in the matrix. The 

nanocluster size is expected to decrease with decreasing the Cr content resulting in the 

increase in the surface to volume Cr atom ratio. Indeed, the reduction in size of metal 

nucleated nanocluster inclusions, with decreasing metal content has been observed and 

reported for Co-DLC [21], Co–C [22] and Ti-DLC [23] as well as Ti-doped amorphous- 

C [24], Ni-doped amorphous-C [25, 26]. If such a surface effect plays a dominant role in 

changing the shape of XANES spectra with changing Cr content in the films, Figure 3.2.2 

illustrates the Fourier transform of the extended X-ray absorption (EXAFS) spectra of Cr 

carbide and Cr- DLC films. The spectra of the films with relatively higher Cr content 

(11.8 and 2.8 at.%) show two peaks (1.5 and 2.1 Å) corresponding to the two sub-shells 

(Cr. . . C and Cr. . . Cr) of the first coordination shell [30]. No significant features were 

observed above 2.6 Å in the radial distribution curves (Figure 3.2.2). This absence of an 

indication of order suggests a highly disordered (amorphous) structure with short-range 

order that is mainly limited to the first coordination shell. The spectrum for the Cr carbide 

shows a shoulder around the same distance as the first peak of the films. This is mostly 

due to the contribution from Cr. . . C bonds. The main peak centered around 2.0 Å shows 

the contribution mainly from the Cr. . . Cr bonds. The second peak of the films with 1.5 
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% and 0.4 % of chromium drifts to the right side and is at 2.2 and 2.5 Å, respectively. 

Since the Cr. . . Cr bond lengths are nearly the same (Table 3.2.1), this could be attributed 

to the artifacts introduced due to higher noise level in the EXAFS spectra of these films. 

The first sub-shell conforms to Cr. . . C bond contributions. 

 
Figure 3.2.2 The Fourier transform of the extended X-ray absorption fine structure spectra 

(EXAFS) for the Cr-DLC films along with pure Cr carbide (Cr3C2). The spectra are translated 

along the y-axis (intensity) for clarity. 

 

The corresponding coordination number (number of nearest C neighbors) remains nearly 

constant (around 4.0) with decreasing Cr content except for the film with ∼0.4 % Cr. In 

the latter film, the coordination number increases significantly (becomes 6.6), indicating 

a breakdown of the carbide structure and dispersion of the Cr atoms in the matrix. Also, 

the bond length is nearly the same for all the films and is similar to that of Cr3C2 powder. 
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Sample Model Fit [30] NCr-C RCr-C (Å) NCr-Cr R Cr-Cr (Å) 

Cr3C2  4.0 ± 0.0 2.20 ± 0.0 11.0 ± 0.0 2.70 ± 0.0 

Cr/C 0.007; 0.4% Cr  6.6 ± 0.67 2.25 ± 0.01 2.0 ± 0.92 2.76 ± 0.1 

Cr/C 0.030; 1.5%  Cr  3.6 ± 0.4 2.17 ± 0.013 3.2 ± 0.58 2.77 ± 0.01 

Cr/C 0.050; 2.8%  Cr 70% Cr3C2 and 

30% of 0.1 at% Cr 

film. 

3.9 ± 0.56 2.25 ± 0.04 4.2 ± 0.82 2.79 ± 0.06 

Cr/C 0.230; 11.8%  Cr 87% Cr3C2 and 

13% of 0.1 at% Cr 

film 

3.9 ± 0.3 2.18 ± 0.01 5 ± 0.7 2.75 ± 0.01 

 

Table 3.2.1 Structural parameters for Cr-DLCs and Cr3C2 obtained from curve fitting Sample 

Model fit [30]  

 

3.2.2 Gadolinium Occupancy in Semiconducting Hafnium Oxide 

Gd L3 edge x-ray adsorption near edge structure (XANES) and extended x-ray absorption 

fine structure (EXAFS) spectra of 3% doped sample were collected. Magnitude and 

imaginary part of the Fourier transformed (FT) kχ(k) of the Gd L3 edge for 3% samples is 

shown in Figure 3.2.3. While the magnitude of the Fourier transformed kχ(k) is not 

precisely the pair radial distribution function, this does provide an indication of the radial 

spacing of atoms in the vicinity of Gd. The first peak at ∼0.8–2.5 Å corresponds to the 

single scattering contribution of Gd–O pairs. A multi-peak structure at ∼2.5–5.2 Å is due 

to combined contributions of Gd–O, and Gd–Hf single-scattering paths as well as several 

multiple scattering paths, as summarized in Figure 3.2.4.  
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Figure 3.2.3 (a) The kχ(k) of 3% Gd doped HfO2 extracted from the Gd L3-edge EXAFS spectra. 
 

 
Figure 3.2.4. The Fourier transform (FT) of 3% Gd-doped HfO2 EXAFS data. The oscillating 

curve (dashed lines) is the imaginary part of the Fourier transform of the data. The envelope 

(solid lines) are the magnitudes of the Fourier transform. The 3% data are transformed with a 

square window between 2.8 and 9.4 Å−1
. The peak assignment is based on HfO2.  

 



66 

In other words, we find that Gd occupies the Hf site in HfO2, consistent with expectations 

[27, 7]. 

 

3.2.3 Structural phase transition in Gd:HfO2 

X-ray diffraction (XRD) provides evidence of the Gd doping effects in the 

structure of the Gd:HfO2 films as shown in Figure 3.2.5. At low doping concentrations 

(3%), the structure crystalize in the monoclinic structure as determined by the scattering 

angle at 28° and with texture along the (-111) crystallographic plane. With an increased 

level of 10% Gd doping, a new cubic structural phase is seen as indicated by the XRD 

feature at an angle of 29.2° with strong textured along (111) direction, still retaining a 

small component of the monoclinic phase.  

 

 
Figure 3.2.5 Part of the XRD pattern for 3%, 10%, and 15% Gd doped doped HfO2. The 3% Gd 

doped films are consistent with that of the HfO2 in a simple monoclinic structure. The 10% doped 

samples are mixed monoclinic and majority cubic phases, as indicated, while 15% Gd-doped 

samples are in a fluorite phase. In the fluorite fcc phase, the lattice constant increases with 

increased Gd doping. Taken from [28]. 
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For a doping level of 15% Gd, no monoclinic phase is visible in the XRD spectra, 

consistent with the face centered cubic fluorite phase in XRD.  

  

3.2.4 Comparison of Gd:HfO2 and Gd2O3 Monoclinic Crystal Structure 

 Both X-ray diffraction and extended X-ray adsorption fine structure spectroscopy 

show that 3% Gd doped HfO2 films and Gd2O3 films grown on Si (100) are highly 

textured. As noted above, the X-ray diffraction patterns show that the resulting 

approximately 250 nm thick 3% Gd doped HfO2 films are in a single monoclinic phase 

with strong texture growth, with about 3% strain compared with the undoped HfO2 

(Figure 3.2.6 (a)) [12,15]. From the largest peak near 28 degree (2), it is estimated that 

the lattice spacing for (-111) is increased by            , from 0.3147(1) nm for the 

undoped HfO2 films to 0.3177(1) nm for Gd-doped samples (Figure 3.2.5).  The peak is 

shifted to lower angles by 0.338°. For Gd2O3, the X-ray diffraction is consistent with 

highly textured monoclinic Gd2O3, not the more expected cubic structure [28, 29]. But 

the substrate has a strong influence on the texture and crystal structure of the Gd2O3 film 

[30, 31], as is clearly the case here. The textured structure is such that the (-402) planes 

mostly lie along the surface of the film. Some (401) and (202) planes are also found to 

orient parallel to the surface of the film.  Only the (h0l) planes (planes parallel to the b 

axis) are grown parallel to the surface.  The lattice spacing along the <-402> direction is 

about 0.2965 nm and the lattice spacing for <401> and <202> is 0.3033 nm and 0.3402 

nm, respectively.  The Gd2O3 unit cell is large with inequivalent Gd (three) and oxygen 

atoms (in a number of inequivalent sites) as schematically shown in Figure 3.2.6 (b). The  

repeat along the surface normal is eight times the (-402) layer spacing or about 2.372 nm 
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Figure 3.2.6 (a) Part of the XRD pattern of the film is shown in figure. X-ray diffraction patterns 

of PLD grown Gd2O3 (upper panel) and 3% Gd doped HfO2 (lower panel). The bar diagrams 

included in each panel are the standards of monoclinic Gd2O3 and HfO2, respectively. For 3% Gd 

doped HfO2 (lower panel), the XRD is consistent with that of HfO2 in a simple monoclinic 

structure. (inset) Structure of Gd2O3, with the packing of the ions in Gd2O3 as viewed along the b-

xis. The green and red spheres represent gadolinium and oxygen atoms respectively. The Gd .. Gd 

interactions are not shown. 

 

3.2.5 The (111) polar Surface in Gd:EuO 

The XRD provides an excellent indication that both the EuO and Gd doped EuO 

films are high quality europium oxide films. Figure 3.2.7 shows the XRD patterns of both 

EuO and Gd:EuO films. No impurity phase was observed in either the EuO or the 

Gd:EuO films, where the substrates were annealed at 750 °C for a shorter time. For The 

Gd:EuO films, there is evidence of silicide formation as peaks of EuSi were observed in 

some films [see Fig. 3.2.7 (a)]. The substrates were annealed at 750 °C for a longer time 

for these oxygen deficient films. Europium in the laser-induced plume tends to react with 
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Silicon to form EuSi, in this case because it is less likely to have residual SiO on the 

surface of the substrates that prevents the reaction of Eu and Si.  

 
Figure 3.2.7 X-ray-diffraction pattern for PLD-grown (a) EuO, (b) Gd-doped EuO films on 

Si(100) and (c) Ce:EuO. 

 

As can be seen, for the EuO1-x films, the XRD is dominated by the (200) diffraction line 

as expected from prior work [32, 33]. For the Eu0.96Gd0.04O films the dominant XRD 

feature is (111) indicating that the preferential texture growth has altered with just this 

small amount of Gd doping. The lattice constants determined from the (200)/(111) peaks 

for the Gd-doped, oxygen deficient, and stoichiometric EuO are consistent with the 

presence of Gd and O vacancies. While a = 0.5131 nm for EuO, this lattice constant 
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decreases to 0.5106 nm for EuO1-x. Upon Gd doping, the unreduced sample Eu0.96Gd0.04O 

has a lattice constant of nm because of the smaller Gd radius, but this value decreases 

further to 0.5091 nm for Eu0.96Gd0.04O when the film is oxygen deficient. Evidently 4% 

Gd doping induces a 0.0013–0.0015 nm reduction in the lattice parameter while oxygen 

vacancies independently result in a reduction of 0.0025–0.0027 nm.  While the changes 

in lattice constant are expected from lattice change, the changes in texture growth are a 

little unusual, but could be the result of a change in interfacial strain, although small. 

Although we do not believe these changes are a result of a crystallographic phase change, 

as with the inclusion of 4% of Gd in the cubic (Fm3m) lattice EuO is expected to remain 

a soluble random alloy of the same crystal structure [34], such a possibility cannot be 

ruled out. We find no evidence of Eu metal either as bulk precipitates or at the surface in 

either XRD or x-ray photoemission in any of our samples.  

 As shown in Figure 3.2.7 (c), the XRD pattern of Eu0.98Ce0.02O1-x is consistent 

with a film having the fcc rock salt crystal structure expected of EuO. It shows that the 

stacking planes are mostly aligned with the <200> orientation as reported from prior 

works [5,11] The XRD provides a good indication that the Ce:EuO film is of high quality 

and strongly textured.  As in the case of EuO and Gd:EuO, there is evidence of silicide 

formation as peaks of EuSi2 were observed in the film. The lattice constants a determined 

from the (200) peaks for Eu0.98Ce0.02O1-x are consistent with the presence of Ce. While a 

= 0.5131 nm for EuO, this value decreases to 0.5105 nm for Eu0.98Ce0.02O1-x because of 

the smaller Ce
3+

 radius and oxygen deficiency. Because the doping level for Ce used here 

is a little lower than the Gd doping level, and because the radius of Ce
3+

 is a little larger 

than that of Gd3+, the lattice constant of Eu0.98Ce0.02O1-x is larger than that of Gd doped 

EuO1-x. 
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 As a closing note, one might wonder why the Gd:EuO textured changes with a 

small inclusion of Gd. Moreover, why would the films grows along the (111) polar 

surface, which is known to be an energy expensive and very unstable surface. Cerium is 

expected to have similar valency as gadolinium, yet, the effects in the textured growth are 

completely different. Free carriers are known to screen the electrostatic field in these 

types of surfaces for metallic films, but in a semiconductor or insulator (such as EuO) this 

is very unlikely. Would it be that 4% of Gd doping drives the system to a nonmetal to 

metal transition?   
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Chapter 4 
 

Magnetoresistive Effects in Chromium doped 

Diamond-like Carbon Heterostructure 
 

“Anything that won't sell, I don't want to invent. Its sale     

  is proof of utility, and utility is success”  

 

-Thomas A. Edison - 

 

How far can one go in making devices from local moment semiconductors? While the 

emphasis of this thesis is on rare earth doped semiconductors (with huge local moments, 

7.3 uB in the case of gadolinium), as a starting point we have fabricated a 

“demonstration” device from diamond like materials, more specific, from chromium 

carbide alloys, which potential relies in the manipulation of its local magnetic moments 

while preserving its semiconducting properties. This material serves as a trailer for a 

device, which if engineered adequately, might lead to promising applications in 

spintronics research. Nonetheless, as noted in the introduction, fundamental 

understanding is a paramount issue.  

How to gain that fundamental understanding? The approach, as discussed in the 

later chapters is to look at systems with well-behaved band structures where nominal 

chemical valancing can be used to alter the doping of the semiconductor. Yet, an example 

of what may well be possible in devices that are reliable and in materials that are perhaps 

slightly more conventional is provided in this chapter. In the context of this work, Cr-

DLC should be perceived as an exemplary tale of a local magnetic moment system and a 

success in a device with magnetoresistive effects at room temperature. 
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4.1 Why Studying Chromium doped Diamond-like Carbon? 

The study of doped semiconductors has attracted considerable interest, but the 

doping of a wide band gap insulator (like diamond) offers an opportunity to increase the 

coupling of magnetic impurities. If the medium of exchange is mediated by the overlap 

of defect states, then a quasi-low K dielectric with large band gap will decrease the 

effective defect wave function radius in the context of the magnetic polaron model [1-4]. 

Thus for a smaller-K dielectric as the host semiconductor, more local moments can be 

introduced into the host semiconductor without over doping of the semiconductor. In the 

most simplistic view, the effective Bohr radius of the impurity defect scales 

proportionally with the dielectric constant, expected to be about 5.6 for diamond- like 

(chemical vapor deposition) films [5,6]. This means that diamond-like films are not a 

high-K dielectric material per se, but the propensity to form defects and accommodate 

large transition metal concentration means the spin polarization extinction length could 

be quite large, if mediated by the defects [2–4], without completely destroying the useful 

semiconductor properties. In addition, local wave functions for impurities could lead to a 

sort of weak clustering of impurities [3, 7–9], as is observed with Cobalt in 

semiconducting boron carbides [7-9]. The pairing of the cobalt atoms in the 

semiconducting boron carbides, but not in close proximity, suggests a role for strain or 

extended orbitals [5–8]. Other semiconductors could exhibit similar effects; for example, 

HgBa2 CuO4 seems to involve orbitals that extend beyond third-nearest-neighbor atoms 

[10]. 
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Chromium is a successful magnetic impurity in a number of semiconductors [11-

22]. If chromium is a successful dopant in diamond-like carbon films, two questions 

surface, beyond those related to the question of the majority carrier introduced by 

chromium doping or questions related to magnetic ordering: is the doping random, i.e. 

dilute [23-24]; are the impurities weakly clustered as in Co-doped semiconducting 

boron carbides [7–9] or do the dopants cluster more strongly as has been observed for 

cobalt dopants in some oxide dielectrics [25-29]?  

Doping of diamond-like carbon (DLC) films with metals could create a two 

dimensional array of nanoclusters within the DLC matrix or an atomic- scale composite 

(solid solution in the DLC matrix). Clustering of chromium impurities is expected with 

chromium doping in diamond-like films at with high concentrations (≥ 1.5 %) [30], 

although Fan et al. [31] performed z-contrast imaging and electron energy loss 

spectroscopy on Cr-doped DLC and reported uniform Cr distribution in C matrix at lower 

levels (6 %) and Cr-rich cluster formation at high doping levels (12 %). 

4.2 The Role of Chromium and Chromium Carbide 

At higher chromium concentrations the EXAFS and XANES provide strong 

indications that there are chromium carbide precipitates as discussed in Section 3.2.1. 

The decrease in Cr. . Cr coordination number and reduced amplitude of Fourier transform 

(FT) features with decrease in Cr content for films with ≥ 1.5 % Cr can be correlated to 

the reduction in size of metal nucleated chromium carbide nanoclusters leading to higher 

percentage of Cr atoms on the surface that has fewer nearest neighbors. The increase in C  
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nearest neighbors for the film with approximately 0.4 % Cr indicates that the 

environment around Cr atoms has changed significantly. It suggests that Cr may be 

present in very small groups of atoms dissolved in the amorphous hydrogenated carbon 

matrix. This is schematically illustrated in Figure. 4.2.1. 

 

 

Figure 4.2.1 Cr3C2 precipitates only at high doping levels, with the precipitates at higher 

concentration at the interfaces 

 

At the surface, the situation is somewhat different. Chromium carbide precipitates 

occur at the higher chromium concentrations and segregate to the surface (and possibly 

the buried interface) in far greater concentrations that the bulk solution would suggest. 

From the photoemission, we can clearly see a strong Cr 3d band intensity at the Fermi 

level, as shown in Figure 4.2.2. The sharp density of states at the Fermi level at the higher 

photon energies in photoemission looks like a more metallic chromium precipitate at the 

surface when compared to the undoped diamond-like films. 
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In fact, while chromium-rich precipitates likely segregate to the surface, these are 

very likely chromium carbides. We observe that the largely carbon weighted 

photoemission features at 6 eV are enhanced at photon energies of about 39 to 44 eV as 

shown in Figure 4.2.3. This is at the Cr 3p band (binding energy of 42 eV) and indicates 

that the chromium 3d bands are strongly hybridized to carbon 2p. The density of states 

around 2–3 eV away from the Fermi level increases in intensity at photon energies of 

about 48 eV to 50 eV and again at about 60 eV, indicating a filling of the Cr 3d bands 

through the carbide formation, thus chromium photoemission features are enhanced by 

the weaker Cr 3p to 4s as well as the Cr 3s to 4p resonances. These resonances can occur, 

but, from studies of nickel [32], are known to be much weaker. 

 

Figure 4.2.2 Photoemission from a 25% chromium doped DLC film (black) deposited on silicon, 

compared to undoped DLC film (red). The photon energy was 70 eV and the photoelectrons were 

collected along the surface normal. 
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Figure 4.2.3 The photoemission spectra of the 11.0 % Cr-doped DLC film on silicon as a 

function of photon energy (scale on the right). The photoelectrons were collected along the 

surface normal.  

 

In fact, these results are very consistent with the work that shows major changes in the 

surface energies of metal containing amorphous carbon films [33], which may be a result 

of surface segregation in the case of the nickel containing films, and oxide formation in 

the case of films doped with Fe or Al. 

The strong hybridization between Cr 3d and C 2p bands is likely reason for the 

low-temperature ferromagnetism of the dilute Cr-DLC. Below 12 Kelvin, the system 

exhibits ordinary hysteresis loops, with a coercivity of order 0.8 mT (8 Oe), but at 

somewhat elevated temperatures (above 20 Kelvins), the hysteresis loops are constricted  
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(wasplike). Figure 4.2.4 shows the magnetization curves of Cr-DLC films with about 3% 

chromium concentration.  

 

 

Figure 4.2.4 Hysteresis loops and virgin magnetization curves of Cr-DLC with 3 % Cr at (a) 20 

Kelvins and (b) 10 Kelvins. 
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Constricted loops frequently occur in inhomogeneous ferromagnets [26] and 

likely reflect a cluster-size distribution ranging from very few interatomic distances to 

about 10 nm. Exchange interactions leading to Curie temperatures above 20 Kelvins are 

common in magnetic oxides and not surprising in the present system, where the C 2p 

electrons strongly hybridize with the Cr 3d electrons. In fact, the strong overlap between 

2p electron orbitals in elements such as B, C, and O means that 2p moments created by 

transition-metal ions and other impurities couple relatively rigidly to neighboring 2p 

atoms. Relatively extended orbitals of this type occur in some oxides [16] and Co doped 

semiconducting boron carbides [7–9]. 

 

4.3 Heterojunctions with Silicon Substrates 

Generally, we consider chromium a p-type dopant of diamond- like materials, and this is 

supported by our ability to make good heterojunction diodes with n-type silicon, as seen 

in Figure 4.3.1. At low doping levels heterojunction diodes can be made, but the 

capacitance is quite large and dominates the devices properties, consistent with 

amorphous carbon films on n-type silicon [34-35]. With 5 % Cr doping of the DLC films, 

the heterojunction with n-type silicon shows clear rectification [Figure 4.3.1(a)], which 

appears to improve with 11 % and 15 % Cr doping, as seen in Figure 4.3.1(b) and Figure 

4.3.1(c), respectively. This improvement in the heterojunction diode rectification, at the 

higher doping levels, is more evident at lower temperatures for 15 % Cr doped 

heterojunctions, well below room temperature, as indicated in Figure 4.3.1. 
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Figure 4.3.1 The I-V curves from Cr-DLC films in a heterojunction with n-type silicon, as a 

function of temperature, for different chromium doping levels (a) 5.0 %, (b) 11.0 %, (c) 15 % and 

(d) 20 %. 

  

Increasing the Cr doping concentration with the DLC films to 20 % and beyond 

does not, however, lead to improved diode characteristics in the heterojunction with 

silicon. With a Cr doping concentration of  20 at.%, the heterojunction diodes with n-type 

silicon show very large leakage currents in reverse bias and increasingly resemble a ‘bad’ 

conventional resistor, as indicated in Figure 4.3.1. What is, perhaps, surprising, is the 

magnetoresistance of these heterojunction diodes, even at room temperature. In fact, the 

heterojunction diodes of n-type silicon and 11 % and 15 % Cr-doped DLC films as the p-

type semiconductor show a strong negative magnetoresistance, with the forward bias 

current increasing with increasing magnetic field, as indicated in Figure. 4.3.2. At 2.0 V 
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Figure 4.3.2 The I-V curves from the 11 % Cr (a) and 15 % Cr (b) Cr-DLC film to n-type silicon 

heterojunction devices with changing applied magnetic field. The change in forward current, as a 

function of the magnetic field, for Cr-DLC film to n-type silicon  heterojunction devices at 11.0 

% Cr (c), and 15.0 % Cr (d). Forward bias voltage was 2.0 V in panels (c) and (d). All data were 

acquired at room temperature. In the first trial (blue) negative magnetoresistance was observed, 

but in subsequent trials (red) little or no magnetoresistance was found without application of a 

large field. 

 

forward bias, the negative magnetoresistance is as much as 50 to 100% with as little as 

300 Oe applied field. This negative magnetoresistance saturates and shows little change 

at the higher applied magnetic fields, indicating that some magnetic ordering is the origin 

of this effect. For the 11% Cr doped DLC/silicon heterojunctions, the negative 

magnetoresistance is shown in greater detail in Figure 4.3.3. This behavior can be 

modeled as discussed below. The large increase in the negative magnetoresistance is 

observed in applied field of 50 to 200 Oe, which values are about the same as the  
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coercive field in the lightly Cr-doped DLC films. Thus the change in the forward bias 

current of these diodes may be related to a soft magnet or moment paramagnetic phase 

dominated by widely dispersed Cr atoms that dominate the DLC films at low Cr doping 

concentrations. Alignment of a soft magnet phase or the moments of a paramagnetic 

phase with the hard magnetic could lead to a decrease in resistance. Assuming a dielectric 

constant of 5.6, and still preserve wave function overlap, the distance between Cr atoms 

would be 6 Å. This is consistent with the doping levels for which large negative 

magnetoresistance is observed, but does little to explain the phenomena. In order to 

explain the decrease in resistance, we model our junction with an equivalent scheme as 

shown in Figure 4.3.4.  

 

Figure 4.3.3 The I-V curves from a 11 % Cr Cr-DLC film to n-type silicon heterojunction device 

after magnetization of the sample in a field of 1.0 T. The increase of the negative 

magnetoresistance is quite evident, and plotted in the inset for 2 V forward bias. 
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This simple model can be described with a modified Shockley equation for a p–n 

junction: 

 

                                                               ( 
 (         )

     )                                                 

 

where    is the saturation current and        is the resistance of the semiconductor 

region doped with the magnetic ions. If the external magnetic field suppresses the spin 

 

Figure 4.3.4 The resistance of the 11% Cr-doped DLC/silicon heterojunction diode is dependent 

on voltage in the reverse bias, as indicated in model calculations. The forward bias does not have 

the same dependence, because the function      is constant with    . The schematic is the 

ideal of the effective circuit for the model calculations. 
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fluctuation of the magnetic ions, it should lead to a decrease in the resistance. Using the 

saturation current   , we can determine the resistance from the data: 

 

                                                        
 

 
[  

   

 
   (

 

  
  )]                                         

 

Because resistance can depend on both the voltage and the applied magnetic field, we 

have plotted        versus   in Figure 4.3.4, using the data taken for 11% Cr doped 

DLC/silicon heterojunctions. If the resistance is not dependent on voltage, our function, 

           , should be constant for each value of the applied magnetic field H. We 

found that this is only true for the forward bias; for the reverse bias the resistance does 

depend on voltage (see Figure 4.3.4). Now that we have determined the behavior of 

resistance for changing voltage, we want to fix the voltage and determine if the resistance 

decreases as the applied magnetic field   increases. We have plotted the resistance      

versus   for the forward bias at         in Figure 4.3.5, using the data for the 11% Cr  

doped DLC/silicon heterojunctions. The resistance does indeed decrease with increasing 

magnetic field. Hence, we can conclude that the external magnetic field suppresses the 

spin fluctuations of the magnetic ions in the Cr-doped layer of the diode. Subsequent 

experiments repeated in large applied magnetic field show a more conventional small 

positive magnetoresistance, or little effect overall (little change in the forward current 

magnetoresistance), as indicated in Figure 4.3.2. 
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It seems clear that there is a hard magnetic phase that becomes increasingly 

frustrated and “pinned” in different magnetic orientations as the magnetic field is 

reversed, so that saturating the domains might require a very high magnetic field, 

possibly as high as many Tesla. The need for a very high magnetic field to realign the 

harder magnetic phases and domains in the 11 % and 15 % Cr-doped DLC films is 

supported by experiments taken after applying to the sample a large magnetic field of 

more than 1.0 Tesla. In such cases, as seen in Figure 4.3.3, a large negative 

magnetoresistance is observed again with small applied magnetic fields. 

 

Figure 4.3.5 In the forward bias, in a simple model calculations, the resistance of the 11% Cr-

doped DLC/silicon heterojunction diode decreases as the applied magnetic field increases. 
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The large decrease in magnetoresistance is not observed until about 70 to 90 Oe applied 

field (Figure 4.3.3), suggesting that this is, in fact, a moment super paramagnetic phase or 

a soft magnetic phase, not a simple paramagnetic phase, whose moment alignment leads 

to the observed negative magnetoresistance at low fields. This ‘rewriting’ the low-field 

magnetoresistance behavior is very reproducible. Overall, the magnetic training in the 

behavior of these heterojunction diodes leading to a decrease in the rectification 

properties of the diodes, and possibilities of ‘resetting’ the magnetoresistance behavior 

leading to a large negative magnetoresistance suggests a spintronic application for these 

devices that needs to be further explored. This does not seem to be classic memristor 

behavior as this is field controlled, and we see little voltage controlled. 
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Chapter 5  

 

Electronic Band Structure and Transport 

Characterization for Magnetic Dilute 

Semiconductors using High k Dielectric Materials 
 

 

“I have not failed. I've just found 

10,000 ways that won't work” 

 

-Thomas A. Edison- 

 

We have shown in chapter 3 that these rare earth based compounds can be grown with 

strong texture when using silicon as our substrate. This leads us to the next step of this 

saga which consists on exploring the effect by the introduction of rare earth dopants 

(specifically Gd and Ce) on the electronic band structure of these. A remarkable effect is 

seen on the EuO films as the inclusion of 4% Gd drive the system across the non-metal to 

metal transition. All rare earth doped and rare earth containing compounds were tested as 

to their ability to form heterostructure diodes. Although a rigorous characterization of the 

devices was not performed, our results provide complementary information regarding the 

device functionalities highlighting the attempts to reproduce the behavior observed in Cr-

DLC (i.e. an I-V curve dependent on the external magnetic field). 
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5.1 A Comparison of Gd2O3 and Gd:HfO2 

5.1.1 The Experimental and Theoretical Band Structure  

Photoemission measurements were performed as explained in Section 2.1. The valence 

band edge is placed well away from the Fermi level for both 3% Gd doped and undoped 

HfO2 films. As reported previously [1, 2], the Hf 4f binding energies and valence band 

edge are similar [3] or slightly larger than those reported elsewhere [4, 5, 6]. The 

shoulder on the broad photoemission peak at the binding energy of 9-10 eV, can be 

assigned strong Gd 4f weight [4, 5]. A small enhancement is evident in the photoemission 

density of state in the region of 4.0 eV with the increase of Gd concentration, as seen in 

the inset on Figure 5.1.1. The opposite of this behavior (DOS decrease) have been 

reported when doping with yttrium. The increase in binding energy of all the major 

photoemission features seen with Gd doping is not observed for (HfO2)1−x (Y2O3)x 

samples [6].  It seem Yttrium segregates away from the zirconia surface [7], and might 

show similar behavior with HfO2. As of gadolinium, is expected to segregate towards the 

surface because of its larger size, but for this samples no significant gadolinium surface 

segregation was observed. Even though these materials have similar surface terminations 

[8], the Fermi level pinning may be very different for the two dopants.  

The valence band density of states, as determined by photoemission for Gd2O3, 

are very similar to that observed for 3% Gd doped films, as indicated in Figure 5.1.2. The 

major difference is that for Gd2O3, we require 4 components at a minimum to fit the 

valence band spectra, as also indicated in Figure 5.1.2. This might be expected as from  
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the crystal structure as there are differences in the crystal field around oxygen and 

gadolinium: there are two very inequivalent oxygen species, and to a lesser extent true as 

 

 

 

Figure 5.1.1 Different bands intensities for pristine and Gd-doped films of HfO2. The photon 

energy used was 100 eV and the light incidence angle is 45°. All photoelectrons were collected 

along the surface normal at T = 320 °C. 
 

well of gadolinium, as indicated in Figure 3.2.6. In fact the gadolinium atoms occupy 
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three inequivalent sites as well, but this does not really lead to a further splitting in the 

valence band electronic structure sufficient to explain, as discussed below, the two widely 

separated Gd 4f components at a binding energy of about 8.7 to 9.5 eV below the Fermi 

level and the ‘shoulder’ at a binding energy of 11 to 12 eV. 

 

Figure 5.1.2 The photoemission spectrum of the valence band Gd2O3   ̅   . The various 

components contributing to the valence band structure are indicated and major contributions to 

the photoemission features indicated. The photon energy is 117 eV and the light incidence angle 

is 45°. All photoelectrons were collected along the surface normal at T = 240 °C. 

 

Confirmation that the Gd 4f states contribute to the shoulder at 9-10 eV on the 

broad photoemission feature from 5 to 10 eV binding energy was found in resonant 

photoemission (i.e. constant initial state spectroscopy) measurements of Gd doped HfO2. 
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The results are shown in Figure 5.1.3. 

 

Figure 5.1.3 Resonant photoemission spectra for photon energies through the 4d → 4f resonance 

for Gd doped films of HfO2. Light incidence angle is 45°. All photoelectrons were collected along 

the surface normal. 

 

The photoelectron intensities from Gd doped HfO2, determined from the feature at about 

9.5 eV binding energy (from the Fermi level) are strongly enhanced at about 149 eV 

photon energy. Similarly for Gd2O3, we see that the components of the valence band at 

about 8.7 eV to 9.5 eV and the ‘shoulder’ at 11 eV to 12 eV binding energies are 

enhanced at about 152 eV, as shown in Figure 5.1.4 and plotted in Figure 5.1.5. For 

comparison, we have plotted this resonant enhancement in the valence band 

photoemission spectra, for both Gd2O3 and Gd doped HfO2 films for various photon 
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energies in Figure 5.1.5 (a) and Figure 5.1.5 (b) respectively. 

 

Figure 5.1.4 The resonant photoemission spectra for photon energies through the 4d → 4f 

resonance for Gd2O3. Light incidence angle is 45◦. All photoelectrons were collected along the 

surface normal. 
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Figure 5.1.5 The resonant photoemission intensities through the 4d→ 4f resonance for Gd2O3 (a) 

and Gd doped films of HfO2 (b). ForGd2O3, there are seen to be two Gd 4f components at a 

binding energy of about 8.7–9.5 eV below the Fermi level and the ‘shoulder’ at a binding energy 

of 11–12 eV, which are assigned as bulk (black) and surface (red) components respectively. 

 

It is clear that the resonant enhancements in the photoemission intensity, from this 

9.5 eV binding energy final state for Gd doped HfO2 and 8.7 to 9.5 eV for Gd2O3, occur 

at photon energies corresponding to the core threshold binding energy of the Gd 4d3/2 

(147 eV) shallow core although at somewhat larger photon energy for Gd2O3. This shift 

of the photoemission resonance to higher photon energies is expected because of the 
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increase in binding energy of the 4d core and decrease in the conduction band edge 

binding energy (a placement of the conduction band edge well above the Fermi level [6]). 

These are in these nominally dielectric oxides, as compared to gadolinium metal. Thus 

the feature, in the region of 9.5 eV binding energy final state for Gd doped HfO2 and 8.7 

to 9.5 eV for Gd2O3, has strong Gd weight. The resonant photoemission process occurs 

because of an excitation from the 4d cores to a bound state, but with a final state identical 

to that resulting from direct photoemission from Gd 4f states [9-11]. The photoemission 

resonance, with changing photon energy, is due to constructive interference between the 

direct 4f photoionization and a                            super Coster-

Kronig transition, leading to a classic Fano resonance. The classic Fano resonance shape 

is very clearly seen for the Gd 4f weighted valence band feature intensities, as plotted in 

Figure 5.1.5(a).  

These results are generally in agreement with our expectations from the calculated 

band structure and density of states. The electronic structure of the B-type Gd2O3 

(monoclinic) having six formulas units per monoclinic cell has been calculated using the 

projected augmented wave method and the generalized gradient approximation (GGA-

PBE) with Hubbard   correction (GGA+U) [12] on the Gd 4f energy levels, as 

implemented in the VASP package [13]. In the GGA+U calculations, we use U=7.5 eV 

and          for the Gd 4f orbitals to take the correlation effects into account. The 

value of the Hubbard   used here is very close to the value used for the Gd 4f energy 

levels in the molecular endo-fullerene Gd@C60 [14]. A similar (although somewhat 

smaller) value of            was found to be appropriate in the examples of the Gd 

pnictides GdX (X = N, P, As, and Bi) compounds [15]. 
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The calculated value of the band gap for the B-type Gd2O3 (monoclinic) from the 

LDA + U with the GGA method is 3.8 eV. This is much less than observed (5.4 eV) but 

typifies such estimates obtain by Density Functional Theory (DFT). The monoclinic 

Gd2O3 density of states (DOS), broadened with a Gaussian width 0.2 eV, is shown in 

Figure 5.1.6. The total density of states has been projected onto each atomic species 

(gadolinium and oxygen) showing the strong Gd 4f character at the DOS peak around 

          and the major oxygen    character over the energy range of    to     . 

This calculation places the occupied Gd 4f levels are a binding energy slightly greater (by 

about 0.5 to 1 eV), relative to the valence band maximum, than is observed in 

experiment, even if only the major Gd 4f component is considered. 

 There are three different Gd sites Gd(1), Gd(2) and Gd(3) in monoclinic Gd2O3, 

with different coordination numbers and neighboring atoms. To analyze the Gd 4f DOS 

peak, we calculated the contributions of crystallographically different Gd atoms to the 

DOS, as indicated by Gd(1), Gd(2), and Gd(3) in the inset of Figure 5.1.6. While there 

are clearly differences between Gd(1) and Gd(3), there are some similarities. Each Gd 

atom site has seven oxygen neighbors, however, for Gd(3), the seventh oxygen neighbor 

is located farther away than for Gd(1) and Gd(2), so only 6 neighbor are included in the 

primary coordination shell. The coordination about Gd(3) is a distorted octahedron with 

the seventh oxygen atom along a three-fold axis.  For Gd(1) and Gd(2), this is not the 

case, and both have the same 2mm symmetry and 7 oxygen neighbors within the primary 

coordination shell (Figure 3.2.6). The six oxygen about Gd(1), or Gd(2), form a trigonal 

prism and the seventh lies along a normal to a prism face. In considering the Gd-Gd 
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Figure 5.1.6. The calculated density of states for monoclinic (type B) Gd2O3. The monoclinic 

Gd2O3 density of states (DOS) has been broadened with a Gaussian width 0.2 eV. The total 

density of states has been projected onto each atomic species (gadolinium and oxygen) showing 

the strong Gd 4f character at the DOS peak around E =-6.3 eV and the major oxygen 2p character 

hybridized with Gd 5d orbitals over the energy range of −5 to 0 eV. 

 

distances, Gd(1) and Gd(2) are again similar, having 10 Gd neighbors at distances 

ranging from 3.28 to 3.98 Å and two more Gd atoms placed further away.  On the other 

hand, Gd(3) has 12 gadolinium  neighbors ranging from 3.58 to 3.87 Å. As a result, the 

Gd 4f DOS peak originates from the three distinct types of Gd atoms whose 

corresponding 4f energy levels are split by as much as approximately 0.5 eV due to the 

spin-orbit coupling but are rigidly shifted due to their crystallographic identities. The full 

linewidth of the Gd 4f DOS peak is about 1.3 eV. 

 Since the two components we have identified in photoemission of Gd2O3 (-402) as 

heavily Gd 4f, in weight or oscillator strength (on the basis of their photon energy 
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dependence at the                          super Coster-Kronig transition, 

shown in Figure  5.1.5 (a), are separated by slightly more than 2 eV, we must conclude 

that the higher binding energy component is, in fact, a consequence of the surface to bulk 

shift. The Gd occupied 4f surface to bulk shift is only about 0.4 eV for Gd metal, but is 

expected to be much larger with oxidation [16], with the surface component at the greater 

binding energy. Both exhibit very similar resonance, it is the larger intensity component, 

at 8.7 to 9.5 eV binding energy, associated with the bulk Gd 4f weighted bands of Gd2O3, 

that are of interest in establishing the occupied Gd 4f band structure. 

Because of the high degree of order and the strong texture growth along (   ), we 

have been able to measure the bulk band structure along      .. Because the 

photoelectrons are collected along the surface normal in the sequence of photon energy 

dependent photoemission spectra (Figure 5.1.4), the binding energy shifts of many of the 

observed photoemission features is indicative of band dispersion along the electron wave 

vector normal to the surface, k. The value of k can be estimated from the photoelectron 

kinetic energy making some assumptions about the inner potential Uin: 

 

                                                      √
   

  
                                                             

 

 

Here Ekin is the photoelectron kinetic energy, Uin is the inner potential and  is the 

emission angle with respect to the surface normal. The dispersion of the component we 

attribute to the Gd 4f level at 9 to 9.5 eV binding energies is summarized in Figure 5.1.7. 
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The dependent on photon energy shows that the 4f band critical points repetition, whose 

spacing in wave vector suggests a periodicity of about 22 + 2 Å perpendicular to the film 

or along the surface normal, close to the value of 23.72 Å expected from the 

crystallography.  

 

 

Figure 5.1.7 The dispersion of the Gd 4f component, with changing photon energy. The critical 

points are indicated, assuming no inner potential and the predicted lattice spacing of 23.7 Å along 

     . 

 

For a dielectric insulator we would expect that the value of the inner potential to be 

effectively negligible, as seems to be the case here. We cannot establish that the inner 

potential to be zero, but from our measurements, that establishes the critical points for the 

19th through to the 23rd Brillouin zone, the inner potential is quite small and is no more 

than 1-2 eV, at most. Assuming a value of zero for the inner potential, and a lattice 

constant of 23.72 Å, the calculated critical points show very good agreement with the 
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experimental band structure, as indicated in Figure 5.1.7.  

What is clear is that we have strong Gd 4f hybridization with the oxygen in both 

Gd2O3 and Gd-doped HfO2 films, and we have a small amount of band dispersion in the 

band strongly weighted with a Gd 4f contribution for Gd2O3. The band dispersion is 

small (about 500 meV), but evident nonetheless, as in the case of Ce [17, 18] and Yb [19] 

compounds. The Gd 4f weighted bands exhibits band structure yet are placed well away 

from the Fermi level in the valence band of Gd2O3.  

The band width is about 0.5 eV, which is less than the full Gd 4f line width in 

Gd2O3, but nonetheless about what is expected from the calculated band width from 

projected augmented wave method and the generalized gradient approximation (GGA-

PBE). What is perhaps surprising is that that we are able to identify this band structure 

experimentally even though there are some 84 gadolinium bands. This implicates that 

photoemission selection rules play a role. Such selection rules are indeed likely. 

The unoccupied 4f levels of Gd2O3 also have some band width. From the width of 

the resonant intensities due to the                          super Coster-

Kronig transition occurring at about 150-152 eV, we can see that the width of this 

resonant enhancement occurs for a far larger range of photon energies for Gd2O3 than is 

the case for 3% Gd doped HfO2 (Figures 5.1.5 (a) and Figure 5.1.5 (b) respectively). 

Since Gd2O3 and HfO2 have very similar band gaps (5.4 and 5.7 eV respectively), the 

pronounced differences in the position of the maximum resonance and the width of the 

resonance suggest that the unoccupied Gd 4f bands of Gd2O3 have greater band width 

than is the case for the unoccupied states of Gd in HfO2. As was noted for ErAs [20, 21], 

we expect the unoccupied 4f levels to exhibit dispersion and contribute to the band width 
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of the unoccupied states. 

5.1.2 Heterojunctions using Silicon as a p-type or n-type Substrate 
 

To illustrate the overcompensation of the Gd acceptor states by oxygen vacancies, several 

diodes were constructed. For 3 % Gd doping levels [2], the Gd acceptor states are over 

compensated and doped hafnium oxide forms a rectifying diode on p-type silicon, this is 

not sustained at the higher Gd doping level of 10 % [1]. At this doping level Gd acceptor 

states are not compensated by oxygen vacancies, leading to a failure in obtaining an 

heterojunction diode when using p-type silicon as shown in Figure 5.1.8 (b). However, if 

the substrate is replaced by n-type silicon, a rectifying structure is recovered. One must 

keep in mind that this data do not conclusively show the dominant carrier. However, it 

suggest that oxygen vacancies can overcompensate the Gd acceptor states while retaining 

semiconducting properties as seen for 3% Gd doping levels. 
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Figure 5.1.8 A heterojunction diode constructed from Gd-doped HfO2 on silicon, for various Gd-

doping concentrations. With oxygen vacancies, the Gd doping generated acceptor states, in 3% 

Gd-doped HfO2, are over compensated and doped hafnium oxide forms a rectifying diode on p-

type silicon (a). The 10% Gd-doped HfO2 is not overcompensated by oxygen vacancies and does 

not form a rectifying diode on ptype silicon (b) but does do so on n-type silicon (c). Taken from 

[28].  
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5.2 The Effect of Rare Earth Doping (Gd and Ce) in the Electronic 

Band Structure of EuO Films 

 
Europium oxide is a well-known ferromagnetic semiconductor and a candidate for 

spin filter barrier materials. Stoichiometric EuO has a Curie temperature (TC) of 69 K, 

which is strongly enhanced by electron doping via rare-earth substitution or oxygen 

vacancies.  Furthermore, such doping can tune the conductivity of EuO to match that of 

silicon ,
  
Both oxygen deficiency and Gd doping are expected to introduce n-type donors 

in EuO, but their effects may be somewhat different.  

 

5.2.1 The Valence Band, Conduction Band and Filling of Electron 

Pockets 

  

The valence band photoemission (ARPES) spectra for both doped and undoped EuO 

films are shown in Figure 5.2.1. These spectra exhibit photoemission features attributable 

to the Eu 4f states near the Fermi level and the O 2p states at about 4-6 eV below the 

Fermi level. The binding energy of the O states is consistent with GW calculations [22], 

while LSDA or LSDA+U calculations place the binding energy of the O states 

significantly closer to the Fermi level [23-30]. The binding energies of Eu 4f and oxygen 

2p orbitals are also consistent with previous photoemission studies of undoped EuO films 

[31-33]. The splitting of the Eu 4f states in the photoemission spectra has been previously 

reported [39], and in those high resolution photoemission studies, the splitting was clearly 

resolved at the surface Brillouin zone center (



) for undoped EuO(100). 
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Figure 5.2.1. The simulated (solid line) and experimental (dashed line) photoemission spectra for 

undoped EuO, with corrections for the combined excited-state density of states. The DFT/GGA 

calculations of density of states (DOS) were performed with fixed occupancies for treating the 

excited states. 

 

 The features observed in photoemission spectra are usually wider than the 

corresponding peaks in the calculated density of states (DOS). The broadening of the 

photoemission features in the energy range corresponding to the valence band results 

from various solid state effects. Strong contributions have been generally attributed to 

final-state effects, such as (i) existence of several nearly degenerated excited states; (ii) 

presence of the OVV Auger peaks; (iii) shake-down satellites of the 5p line ("replicas") 

[34, 35]. In addition, for a 4f system, the relative heights of the f and d photoemission 

peaks strongly depend on the photon energy, so that for moderate photon energies 30-50  
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eV [36-38], when the cross-section for f electrons is relatively small, the height of the f-

derived peak is also small. Thus there are a number of complications in making a direct 

comparison of the photoemission spectra with the calculated ground state DOS. 

Nonetheless, in most cases the main features of the calculated occupied DOS represent 

appropriate initial states generating the corresponding peaks in the photoemission spectra. 

 The broad feature in the photoemission spectra of EuO at binding energies of 

more than 8 eV below EF cannot be explained as states originating from O 2p orbitals 

only. There are a number of possible explanations including photoexcitation of 5s or 5p 

electrons of Eu, which can be followed by the OVV Auger decay leading to the 

appearance of the 4f 
6
5d

1
6s

2
 electronic configuration. Specifically, in the presence of the 

p hole, the 4f - 5d excitation and then the 5d - 5p Coster-Kronig transition can affect the 

emission of another 4f electron, which leads to formation of a 2+ ion with the 4f 
5
5d

0
6s

2
 

electronic configuration, responsible for the multiplet structure of the photoemission 

spectra. Screening by itinerant electrons will result in the 4f 
6
5d

1
6s

2
 configuration, thus 

providing the accumulation of excited atoms, which can give rise to the -8 eV or greater 

binding energy features in photoemission spectra. 

 The excited state spin-polarized calculations were carried out with ABINIT code 

[45], using norm-conserving Troullier-Martins pseudopotentials [46], with the Perdew-

Burke-Ernzerhof (PBE) form of GGA exchange-correlation functional [47], in order to 

model the actual photoemission spectra. The f states, as well as semi-core or shallow core 

5p states of Eu were treated as bands. The approximate 1×10
-3

 Hartree (Ha) convergence 

was achieved with the energy cut-off 40 Ha and 4×4×4 Monkhorst-Pack [39] set of k  
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points. The DOS were calculated with the tetrahedron method. The estimated lattice 

period for fcc EuO (rocksalt structure) was a = 5.24 Ǻ, in reasonable (~2%) agreement 

with experimental value 5.131 Ǻ [40, 41]. The formation of the peaks in DOS, induced 

by excitations, was addressed by using the method of self-consistent band structure 

calculations with fixed occupation numbers [42, 43]. Specifically, the spin-up and spin-

down occupation numbers for each band at each k-point are given explicitly and remain 

unchanged. The fixed occupation numbers prevent interband transitions, which otherwise 

would unavoidably end with the electron distribution inherent for the ground state, and 

allows for estimates of excited states by means of routine self-consistent calculations. By 

adopting appropriate broadening of the DOS features (the widths of the spectral peaks are 

difficult to estimate rigorously because of unknown lifetimes of the excited states), it is 

possible to simulate the photoemission spectra, obtaining a reasonable agreement with 

experiment (Figure 5.2.1).  

 The normal configuration of the Eu atom is 4f 
7
6s

2
, and, according to Hund’s rule, 

all 4f electrons have a spin-up orientation, which leads to a ferromagnetic (FM) ground 

state also for EuO. Spin-flip transitions like the 4f ↑– 5d↓ transition in a Eu atom will 

result in the formation of the excited state. When the spin-flip transition ends with the 

occupation of the lowest spin-down band (vacant before the transition), the produced 

excited state will be metastable due to the spin-conservation rule.  

 In the excited state calculation, there are two features that originate from Eu 4f 

states: the one at 1 eV is mostly from the ground-state Eu 4f
7
 configuration, while the 

strong satellite feature is due to excited states as a result of two-hole bound states which  
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include spin-flip scattering. The feature at about 5.5 eV in Figure 5.2.1 results from the 

oxygen O 2p states, while the features at 7 eV to 11 eV stem from a variety of multi-

configurational excited states and satellite features. Thus, the peaks in the valence band 

photoemission spectra at binding energies of more than 8 eV away from the Fermi level 

can be explained by photoemission from excited states of EuO. An adroit choice of the 

pseudo-potential, in the excited state calculation, results in a placement of the O states 

with the binding energies in good agreement with experiment. 

 Although the Eu0.96Gd0.04O films have only a small fraction of Gd in the lattice, 

there should be a strong Gd 4f contribution at a binding energy of about -9 eV [33-35, 1, 

55]. This contribution becomes evident at photon energies corresponding to the 4d  4f 

super Coster-Kronig resonance, as in the case of 3% Gd doped HfO2 [33, 35, 55], but 

with far less resonant enhancement in the case of Eu0.96Gd0.04O. Indeed, the Gd 

contribution to the bottom of the valence band, at photon energies off resonance in the 

case of Eu0.96Gd0.04O, is more difficult to discern.  

 The unoccupied spectrum in Figure 5.2.2, dominated by Eu 5d states at the 

conduction band minimum, is consistent with the reported [44] oxygen K-edge 

absorption spectrum of EuO. Combined with the angle-resolved core-level XPS (not 

shown) this consistency confirms the stoichiometry of the EuO surface (IPES is 

extremely surface sensitive). The electronic band gap for the undoped EuO derived from 

the combined UPS/ARPES and IPES spectra is about 1.5 eV, slightly wider than the 

optical band gap of 1.1 eV to 1.2 eV [45]. Since EuO has an indirect band gap (see [37] 

and below), angle resolved photoemission and IPES, set up in a manner that  
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preferentially samples the center of the surface Brillouin zone, are expected to give a 

larger band gap corresponding to the band structure at 



. The placement of the Fermi 

level close to the conduction band minimum is consistent with an n-type surface, likely 

due to oxygen vacancies in the lattice. 

 

 
Figure 5.2.2 Combined ARPES and IPES spectra for (a) undoped EuO film, (b) Eu0.96Gd0.04O 

(111) film, and (c) same as (b) but after sputtering. A photon energy of 60 eV was used, with light 

incident at 45° and photoelectrons collected along the surface normal. For the IPES spectra the 

electrons are incident along the surface normal. 
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The main effect of Gd doping is the appearance of new occupied states in the 

spectrum near the Fermi energy, as seen in Figure 5.2.2. As long as the film is 

sufficiently crystalline, the ARPES measurements can be used to resolve the spectral 

intensity by the wave vector component normal to the surface k [20, 21, 33, 35, 46, 47, 

58, 59], as in equation 5.1.1 and discussed above. Band structure calculations for EuO 

based on the highly reliable GW method [37] have shown that the conduction band 

bottom is at the X point, while the minimum at  is significantly higher. Therefore, we 

expect that under 4% Gd doping the extra carriers will go into the electron pockets at the 

X points. This expectation was previously confirmed with 2% cerium doping [48], and 

the present results provide further evidence for Gd:EuO, as we now explain. 

 The position of occupied states near the Fermi edge for the Eu0.96Gd0.04O(111) 

deposited on Si(100) does show wave vector dependence. By varying the photon energy 

from 50 eV to 158 eV, significant dispersion with k (corresponding to the bulk [111] 

direction) was observed, as seen in Figure 5.2.3. The spectral intensity at the Fermi level, 

which is plotted in Figure 5.2.4, reaches a maximum at the photon energy corresponding 

to the bulk  point. 
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Figure 5.2.3 The photoemission spectra obtained for Eu0.96Gd0.04 O (111) films as a 

function of the photon energy. The angle of incidence was 45
◦
 and all photoelectrons 

were collected along the surface normal at T = 300 K. 

 

 
Figure 5.2.4 (a) The Fermi level intensity (blue) plotted as a function of k⊥, along the [111] 

direction. (b) The dispersion of the Eu 4f weighted band at the valence-band maximum, along the 

(111) direction or wave vector normal to the surface, k⊥. Both results were extracted from the 

photon energy dependent ARPES spectra. BZE indicates the Brillouin-zone edge. The intensity of 

the Eu 4f weighted band (+), at the valence-band maximum, along the k⊥ (111) direction, is also 

plotted in (a). 

 



116 

The measured values of k at the band structure critical points are consistent with the 

lattice constants corresponding to the (111) texture determined from XRD. This increase 

in the intensity at  near the Fermi level is consistent with the spectral "tail" extending 

from the states at the top of the valence band, which is at the  point. This is more 

evident in the analysis of the band dispersion parallel to the surface, discussed below. 

This band structure related effect occurs at photon energies corresponding to the  points 

at photon energies well below those that correspond to the 4d  4f super Coster-Kronig 

resonance [56]. 

 Even though our Si(100)/Eu0.96Gd0.04O(111) films are not single crystals, they are 

sufficiently ordered to manifest band dispersion also parallel to the surface along the 

  of the surface Brillouin zone. Indeed, high-resolution photoemission in the 

transmission mode (of the spectrometer) reveals a variation of the spectral intensity as a 

function of the parallel momentum component   , which is given by [20, 21, 58-59]:  

 

                                                                 √
   

  
                                                             

 

The k-resolved spectral intensity in the vicinity of the Fermi level is plotted in Figure 

5.2.5. The spectral intensity is seen to depend both on the photon energy and on the 

emission angle . This photon energy dependence at the surface Brillouin zone edge is 

consistent with the location of the electron pocket at the X point. At 40 eV photon energy 

the spectral intensity indicates a band crossing on both sides of the surface Brillioun zone 

edge. At slightly higher binding energies (~300 meV below the Fermi level) the intensity 
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maxima move closer to the X point, consistent with the parabolic dispersion of the 

electron pocket. The fact that the intensities sharply increase at the 



points, as we move 

down from the Fermi level indicates that this intensity represents the spectral tail from the 

valence band maximum at , rather than the conduction band states. At a photon energy 

of 25 eV, corresponding to a lateral shift from the X point along the face of the Brillouin 

zone, the cut through the bulk band structure has the electron pocket just touching the 

Fermi level. 

 

Figure 5.2.5 The Fermi-level intensity plotted as a function of the parallel momentum k|| along 

the ΓM direction, for photon energies of (a) 40 eV and (b) 25 eV. For k|| along the ΓM direction, 

the relative intensity has been also plotted 300–400 meV below the Fermi level (green) and at the 

Fermi level (red), to illustrate the roughly parabolic shape of the electron pocket about the surface 

Brillouin-zone edge at 40 eV. 

 

 

5.2.2 Band Bending at the Gd:EuO (111) Polar Surface 

 In the combined ARPES and IPES spectra shown in Figure 5.2.2 the 

Eu0.96Gd0.04O (111) surface appears to be p-type. At first sight this feature contradicts the 

observation of filled electron pockets at the X point and the n-type character expected of 
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a material dominated by substitutional Gd dopants and oxygen vacancies, both of which 

are electron donors. The apparent p-type character of this electron-doped sample can only 

be explained by band bending near the surface, which reveals the presence of a volume 

charge there. Specifically, the electrostatic potential near the surface is lowered relative to 

the bulk, which means that the surface itself is negatively charged. 

 The presence of uncompensated charge at the (111) surface of a rocksalt oxide is 

not surprising, because this surface orientation is polar. Normally this orientation is 

unfavorable, because it requires extensive surface reconstruction or charged defects to 

screen the electric field in the bulk. However, in the metallic electron-doped sample the 

free carriers are available to screen the surface charge. It is possible that this screening 

explains the stabilization of the (111) surface orientation in our Gd-doped EuO samples 

relative to the (001) orientation preferred by the insulating EuO.  

Negative charge of the (111) surface strongly suggests its over-oxidation. This is 

natural for EuO, which in the presence of sufficient oxygen readily oxidizes to Eu2O3. 

For undoped EuO this would result in a mixed 2
+
/3

+
 Eu valence at the surface 

accompanied by the appearance of unfilled 4f states. Since such unfilled states are absent 

in the IPES spectrum, we conclude that the band bending does not exceed the bulk band 

gap, and that the Eu 4f states are kept fully filled by the free carriers introduced by 

electron doping. To summarize, we argue that the moderately over-oxidized, negatively 

charged surface is accompanied by a positively charged subsurface depletion region. This 

conclusion is supported by the fact that sputtering of the surface results in a “normal” n-

type spectroscopic pattern, as seen in Figure 5.2.2 (c). This shift can be explained by the 

removal of some of the excess oxygen from the surface. 
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Since the atomic structure of the (111) surface has not been determined, it is not 

possible to perform an accurate theoretical investigation of its electronic properties. 

However, in order to gain a crude understanding of the effects of over-oxidation, we first 

considered an extreme case of a fully O-terminated Eu (111) surface. We chose a 15-

monolayer slab consisting of 7 Eu and 8 O monolayers, bisected by a Eu layer, and 

terminated by O layers on both surfaces. The equilibrium atomic configuration of this 

slab was found using the projected augmented wave (PAW) method [49, 50] 

implemented in the VASP package [51, 52]. For the exchange and correlation potential 

we used the generalized gradient approximation [50], adding the Hubbard U correction 

[53] for the Eu 4f orbitals (         and         ). During the otherwise 

unrestricted relaxation, the in-plane lattice constants were fixed to their bulk values. 

Figure 5.2.6 shows the obtained equilibrium configuration of the slab. The lateral 

positions of the atoms are fixed by symmetry; the interlayer distances indicated in Figure 

5.2.6 are listed in Table 5.2.1.  

 

Figure 5.2.6 Calculated structure of the O-terminated EuO(111) surface. Only half of the slab is 

shown, the other half being symmetric. For interlayer spacings see Table 5.2.1. In the figure, 

large spheres are Eu atoms; small spheres: O atoms. 
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There is a very large inward relaxation of the surface O layer (reducing the interlayer 

distance by nearly a half), along with a significant outward relaxation of the subsurface 

Eu layer. Changes in the interlayer spacing propagate a few layers into the bulk, but the 

interlayer spacing in the middle of the slab already deviates by less than 1% from its bulk 

value. Such oscillatory interlayer spacings are common for polar oxide surfaces [55] 

  

Layer Labels in Figure 5.2.6 Interlayer Spacing  (Å) 

surface; Eu-O d1 0.73 

surface-1; O-Eu d2 1.75 

surface-2; Eu-O d3 1.31 

surface-3; O-Eu d4 1.6 

surface-4; Eu-O d5 1.44 

surface-5; O-Eu d6 1.54 

surface-6; Eu-O d6 1.49 

 
Table 5.2.1 The interlayer spacing calculated for EuO(111) as indicated in Figure 5.2.6. The 

layer spacings are oscillatory in the region of the surface, as indicated. The layers spacing are 

giving in units of Å. 

 

To illustrate our interpretation of the band bending near the over-oxidized surface, we 

considered a somewhat arbitrary, but nonetheless suggestive model, using the tight-

binding linear muffin-tin orbital (TB-LMTO) method. A 27-monolayer slab was chosen 

for this purpose, inserting bulk-like EuO layers in the middle of the relaxed 15-monolayer 

slab shown in Figure 5.2.6. The parameters of the calculation, such as the atomic sphere 

radii, the auxiliary empty spheres, and the U and J parameters, were adjusted to 

reproduce the correct band structure of bulk EuO, including the band gap and the 

character of the conduction band states. We also added a fictitious external potential of 

1.36 eV to the oxygen sites in order to push the O 2p states to lower energies. The effect 

of Gd doping was included in the virtual crystal approximation (VCA), replacing Eu with 

fictitious atoms with nuclear charge 63.17e (corresponding to 17% Gd doping). Even at 
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this large doping level the negative charge on the O-terminated surface is unrealistically 

large and results in mixed-valent Eu at the surface. It is clear that the actual amount of 

surface over-oxidation in our experimental samples is much lower. In order to make our 

illustration more realistic without considering more complicated surface terminations, we 

reduced the amount of charge transfer to the surface O layer by replacing the oxygen 

atoms in this layer by fictitious atoms with nuclear charge 8.40e. 

The partial DOS for all Eu and O atoms of this slab are shown in Figure 5.2.7. 

The upward band bending near the surface is clearly seen, which results in a structure 

similar to a p-n junction with a depletion region. 

  

 

Figure 5.2.7 Site-projected DOS for all Eu and O atoms of the 27-monolayer slab of Gd-doped-

EuO with (111) surfaces. A model with empirical adjustments is used (see text). (a) Eu site-

projected DOS where the unoccupied DOS is multiplied by 5 (as indicated). (b) O site-projected 

DOS; unoccupied DOS is multiplied by 10 (as indicated). The numbering of the sites starts at the 

surface. 
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5.2.3 Magnetic Dependence in Heterojunction Structures 

There is another indication of the band bending of the kind illustrated by Figure 5.2.2. 

Evidence of the electron pockets at the Fermi level and absence of photovoltaic charging 

indicate that Gd-doped EuO is metallic. The energy band diagram with a narrow 

depletion region suggests that, with a suitable interface, the surface region may operate as 

a tunnel (Esaki) diode with the current flowing perpendicular to the surface (or to the 

interface with silicon, assuming similar band bending there). This independent signature 

of surface band bending in the Eu0.96Gd0.04O(111) sample was indeed observed, as seen in 

Figure 5.2.8. Although very far from ideal, the I-V curve shows a region of negative 

differential resistance close to a 3.0 V bias. Interestingly, the application of a magnetic 

field eliminates this region of negative differential resistance (see Figure 5.2.8 (b)). The 

origin of this effect is not clear, but it may be mediated by the induction of a small 

exchange splitting in the conduction band through partial ordering of Eu local moments 

induced by the magnetic field.  These effects are not seen with undoped EuO(100) thin 

films on p-type silicon, as indicated in Figure 5.2.8 (a) for comparison, and thus the (111) 

texture growth and Gd (or similar) doping may be required for tunnel (Esaki) diode 

behavior. It should be noted that Gd2O3 is typically n-type in thin film form and forms a 

heterojunction diode with p-type Si(100), but no negative differential resistance has been 

observed with such structures [33]. Heterostructures of Gd2O3 with Si(100) show diode 

characteristics [19] more similar to undoped EuO/Si(100) heterostructure (Figure 5.2.8a) 

than those observed with Eu0.96Gd0.04O(111)/ Si(100) heterostructure (Figure 5.2.8b).
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Figure 5.2.8 I-V curves for (a) undoped EuO(100) film as a function of temperature, (b) 

Eu0.96Gd0.04O (111) film at room temperature. The curve marked (i) is for zero field; the curve 

marked (ii) is for an external magnetic field of 1000 Oe. 
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Chapter 6 

 

The Local Metallicity of Gadolinium doped 

Compound Semiconductors 
 

 

“Not everything that can be counted counts, and not  

  everything that counts can be counted" 

 

-Albert Einstein- 

 

 

Evidence of the non-metal to metal transition was found on the electronic band structure 

mapping along both    and   . However, constant initial state spectroscopy (CIS) 

measurements seem to suggest a correlation between the effective screening in the films 

and the resonant photoemission process. This chapter provides an overview of 

experiments made to determine differences in the local metallicity of Hf0.97Gd0.03O2, 

Ga0.97Gd0.03N, Eu0.97Gd0.04O and EuO films by characterizing the resonant enhancements 

in the photoemission features corresponding to the 4d → 4f transitions in both Eu and 

Gd.  
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6.1 Resonant Photoemission as a Probe for Local Metallicity 

Photoemission spectroscopy (PES) can provide compelling evidence regarding 

metallicity using criteria’s based on density of states near or at the Fermi level. For 

instance, while angle resolved photoemission (ARPES) provide means of extending the 

electronic band structure mapping on reciprocal space, allowing for the detection of a 

Fermi level crossing (which is a characteristic feature of a metal), X-ray photoemission 

have been used indirectly as a probe for the metal to non-metal transition by means of the 

core level line shape and binding energy (but this is not always possible [1, 2]). The use 

of resonant photoemission has been proposed as a useful tool to probe metallicity in thin 

films [3], especially in films in which giant resonances are due to final state effects.  

In the simplest description, it can be assume that for a lattice compose of simple 

metals, the electrons will be subject to a screened potential of the form 

 

                                                            
  

 
                                                       (6.1.1) 

 

as suggested by Mott [4]. It is the screening parameter    what plays an important role in 

determining the metallicity of a system. If the density of state at the Fermi level is small, 

the effective screening is weak and electrons are likely to remain in a bounded state near 

the ion site (localized), resulting in an insulating behavior. As the density of state 

increases, screening effects can eventually dominate the Coulombic interaction, leading 

to electron itinerancies in the film followed by an increase in metallicity.  
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In processes such as photoemission, excitons are formed and are expected to be 

affected by the screening at some extent. Once the insulating system makes the transition 

to the metallic phase, free carriers are expected to reduce the Coulomb field between the 

electron and the hole and to shorten the lifetime of the exciton [5, 6]. A core exciton 

formed by the removal of an electron in the photoemission process can be described 

qualitatively in the same way [7, 8]. Under this assumption, resonant photoemission can 

be used to probe the metallicity of a surface at some extent through the relation 

 

                                                                    
 

  
 

 

  
 √

  

  
                                                             

 

This suggests that an increased in screening can lead to a diminishing in the 

photoemission peak intensity. Although experimental data find agreement with the 

relation in equation 6.1.2, it must be point out that this relation is strictly empirical. 

Experimental complications are expected when using resonant photoemission to probe 

metallicity, mainly because of the lack of theoretical support. A metal to non-metal 

transition is not necessarily identified by the changes in the photoemission intensity. It is 

highly recommended to seek validation from another technique before attempting a 

conclusion. In Section 5.2.1 it was recently proved that EuO undergo a non-metal to 

metal transition with the inclusion of 4% Gd as suggested by the band crossing the Fermi 

level. It is the intent of this work to provide evidence of the metallicity changes in EuO as 

compared to Eu0.96Gd0.04O using resonant photoemission.  
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A major attribute of resonant photoemission is that it allows one to distinguish 

which valence bands of the semiconductor host have strong rare earth 4f and/or simply 

rare earth weight [9-16]. The 4d – 4f photoemission resonances for various rare earth 

doped GaN thin films (RE = Gd, Er, Yb) have now been reported [17-21], and like 

studies of Gd doped HfO2 [16], permits a fairly definitive placement of the rare earth 4f 

states in the valence band. In fact this can be a local probe of charge localization [22]. 

Here we broaden the concept of screening and metallicity, as probed by resonant 

photoemission, by comparing the resonant photoemission enhancement of the valence 

band features of semiconducting Gd0.03Ga0.97N and Gd0.03Hf0.97O2 to the more metallic 

Eu00.96Gd0.4O. 

 

6.2 Resonant Photoemission in EuO Films 

Core to this study are the valence band intensities of Eu0.96Gd0.04O through the 4d 

to 4f super Coster-Kronig photoemission resonance. The valence band photoemission 

features for both EuO and Eu0.96Gd0.04O contain a number of shake up features [23], so 

that off resonance, at photon energies well away from a Eu or Gd 4d core level binding 

energy, the spectra for both the doped and undoped samples are similar, as seen in Figure 

6.2.1.  
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Figure 6.2.1 Valence band spectra obtained from the photoemission density of state for (a) EuO 

and (b) Eu0.96Gd0.04O films grown on p-type Si (100). The composition of the spectra was 

determine by the Gaussian distributions and the photoemission feature were classified as arising 

from largely the (A) Eu 4d5/2 and electron pockets of the conduction band minimum, (B) Eu 4d3/2 

(C) O 2s, (D) O 2s and (E) Gd 4f and Eu 4f final state (satellite) contributions. Photoelectrons 

were collected along the surface normal. Measurements for both films were taken using 

synchrotron light with photon energy of 60 eV and incidence angle of 45°. Binding energy is 

denoted in terms of E-EF. 
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Contributions corresponding to the Eu 4f final states in EuO are observed at a 

binding energy of -2.3 eV followed by a strong weighted O 2p features -4 to -6 eV, 

consistent with GW calculations [24]. The broad unresolved photoemission feature 

located at -7 eV to -11 eV stem from a variety of configurations of the final state excited 

state and Eu 4f satellite features [24, 25]. 

The inclusion of small amounts of gadolinium in the EuO lattice have little effect 

in the valence band structure, but changes near the Fermi level are also observed as 

suggested by the increase in the photoemission density of states. Increases in the 

photoemission density of states near the Fermi level in the doped films have been 

observed and are attributable to an increase in metallicity as demonstrated by mapping 

the electronic band structure near the Fermi level along both the crystallographic 

direction of the Eu0.96Gd0.04O films and along the   ̅̅̅̅  symmetry line in reciprocal space 

[24].  

The contributions to the valence band region from the Gd 4f orbital in the valence 

band spectra are more transparent when the photon energies used corresponding to the 4d 

to 4f super Coster-Kronig photoemission resonance, as indicated in Figure 6.2.1 (a). The 

strongest enhancements in valence band region of the photoemission spectra occur in the 

photon energy range of 130 eV – 160 eV, but we find that the different photoemission 

features resonate at different photon energies (Figure 6.2.1 (b)), reflecting differences in 

the origin of their spectral weight.  
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Figure 6.2.2 (a) The photoemission spectra for photon energies through the Gd and Eu 4d to 4f 

super koster Kronig photoemission resonance for Eu0.96Gd0.04O films. (b) The resonant 

photoemission intensities, as a function of photon energy i.e. constant initial state spectra, for the 

valence feature at (i) 0.5 eV, (ii) 2.3 eV, (iii) 6.1 eV and (iv) 9.2 eV below the Fermi level. Light 

was incident at 45°. Photoelectrons were collected along the surface normal. Binding energy is 

denoted in terms of E-EF. 

 

Because of the multi-configurational final states originating from EuO itself, a unique 

assignment of one feature to Gd alone is difficult, but we expect that the Gd 4f spectral  
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weight should be largely located in the region of -9 eV binding energy [10-16, 23], as 

discussed below.  

The traditional 4d5/2 and 4d3/2 enhancements originating from the Eu 4f
6
 final state 

configuration are observed in the features near the Fermi level (i, in Figure 6.2.2 (b)) and 

at about -6 eV photon energy (iii, in Figure 6.2.2 (b)), in Figure 6.2.2 (b).  Excitations 

involving a final state 4f
6
 are also evident as shown by (ii). In this case, the resonant 

process is described by resonant process that includes direct photoionization: 

  

                             (6.2.1) 

 

and a super Coster-Kronig transition of the form: 

 

                                  (6.2.2) 

 

which result in the same final state. The resonant enhancement, seen in Figure 6.2.2, of 

the feature at about -6 eV binding energy (iii) at photon energies of 130 and 140 eV 

suggest strong hybridization of the europium atoms with oxygen. At photon energies near 

130 eV, one expect contributions from the Eu 4d5/2 to dominate and no oxygen 

photoemission resonances occur near this photon energy. This enhancement provides a 

clear indication of the strong hybridization between the Eu 5d6s and oxygen 2p 

contributions. 

Resonant enhancements of the feature at a binding energy of about -9.2 eV (iv, in 

Figure 6.2.2) occur at a photon energies close to the core threshold binding energy of the 

Gd 4d3/2 shallow core (about 147 eV), also as a result of a 4f
6
 final state, as again 
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dominated by excitations (equation 6.2.1) and (equation 6.2.2). This too leads to the 

classic Fano resonances seen in Figure 6.2.2b (iv). This feature in the region of -9 eV 

binding energy is not purely Gd in weight though, as seen in Figure 6.2.1 and discussed 

above. Unlike the other semiconductors studied here contributions from Eu 4f
5
 final 

states are expected at similar binding energies (approximately -9 eV) via different 

excitation and decay channels [26]. In fact excitations of the form  

 

                                             (6.2.3a) 

 

                                                             (6.2.3b) 

 

                                                             (6.2.3c) 

 

are expected to contribute to the Fano-resonance seen (Figure 6.2.2) for the Eu0.96Gd0.04O 

photoemission feature at -9.2 eV (iv), i.e. the multiconfigurational final state. The 

contributions from the various multiconfigurational final states is what provides the large 

width, in photon energy, of the resonance lineshape (Figure 6.2.2 (b) (iv)).  
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6.3 Comparing the Gd 4d to 4f Photoemission Resonance for Gd in 

various Host Semiconductors 
 

In fact, in spite of the complications that arise from the Eu 4d→4f contributions to 

the Gd 4d→4f super Coster Kronig transition in the resonant photoemission processes for  

Eu0.96Gd0.04O, in fact the Gd 4d→4f transition resonance for Eu0.96Gd0.04O is similar to 

that seen in Gd0.03Ga0.97N and Gd0.03Hf0.97O2. Figure 6.3.1 show the valence band 

photoemission spectra for Eu0.96Gd0.04O, Gd0.03Ga0.97N, Gd0.03Hf0.97O2 at the Gd 4d→4f 

photoemission resonance (“on” with h= 147 eV) and away from the photoemission 

resonance (“off” with h= 140, 139.7 and 132 eV for Eu0.96Gd0.04O, Gd0.03Ga0.97N, 

Gd0.03Hf0.97O2 respectively). As expected [22-28], there is a big enhance of the 

photoemission in intensity at the Gd 4d→4f photoemission resonance (i.e. “on” 

resonance at h= 147 eV), in the region of the Gd 4f binding energy at 8-20 eV below the 

Fermi level in the valence band photoemission spectra for Eu0.96Gd0.04O, Gd0.03Ga0.97N, 

Gd0.03Hf0.97O2 (Figure 6.3.1). 
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Figure 6.3.1 Valence band photoemission spectra “on” (photon energy of 147 eV) and 

“off” (photon energy of “off” with h= 140, 139.7 and 132 eV for Eu0.96Gd0.04O, 

Gd0.03Ga0.97N, Gd0.03Hf0.97O2 respectively) the Gd 4d to 4f resonant photoemission 

feature obtained for (a) Eu0.96Gd0.04O, (b) Gd0.03Ga0.97N and (c) Gd0.03Hf0.97O2. All 

photoelectrons were collected along the normal to the film surface. Binding energy is 

denoted in terms of E-EF. 

 

  



140 

In the case of Gd0.04Eu0.96O, the Gd 4d→4f excitation results in the super Coster-

Kronig transition and resonant photoemission (equation 3 and 4), the “on” versus “off” is 

much less pronounces than seen for Gd0.03Ga0.97N and Gd0.03Hf0.97O2, as visually seen in 

Figure 6.3.2 and summarized in Table 6.3.1. 

  

Film Peak Position (eV) Width (eV) On-Off Ratio 

Gd0.04Eu0.96O 150.3  17.25 1.83 

Gd0.03Hf0.97O2 149.0 8.96 11.22 

Gd0.03Ga0.97N 147.9  7.11 9.82 

 

Table 6.3.1. Summary the photon energy for resonant photoemission intensity maximum, the 

width of the Gd 4d to 4f photoemission resonance, in photon energy and the intensity ration of 

“on” resonance at a photon energy of 147 eV to the “off” resonant intensity at a photon energy of 

eV. 

 

This decrease in the resonant photoemission enhancement is seen to occur even though 

both Eu (equation 6.2.3) and Gd (equation 6.2.2) both contribute Gd0.04Eu0.96O, 4d→4f 

excitation resonant photoemission signal in the region of -9 eV binding energy. Thus 

without a doubt, Gd0.04Eu0.96O, is more metallic and better screened (more itinerant 

electrons) than either Gd0.03Ga0.97N and Gd0.03Hf0.97O2, 
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Figure 6.3.2 Constant initial state valence intensity as a function of photon energy in the region 

of Gd 4f contributions to the valence band (-9 eV binding energy, E-EF.) in Gd doped (a) GaN 

(3%), (b) HfO2 (3%) and (c) EuO (4%) host systems.  

 

 

6.4 Across the nonmetal to metal transition in Gd0.04Eu0.96O 

Not only is the on-off ratio for the 4d→4f photoemission resonance much smaller 

for Gd0.04Eu0.96O, than for Gd0.03Ga0.97N and Gd0.03Hf0.97O2, as visually seen in Figure 

6.3.1, we can also compare EuO and Gd0.04Eu0.96O 4d→4f excitation resonant  
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photoemission signal in the region of -2 eV binding energy, as seen in Figure 6.4.1. This 

resonant enhancement, as noted above, is almost entirely attributable to just the Eu 4d to 

4f excitation and the valence band spectral weight is largely due to the Eu 4f [24, 25]. As  

with the comparison of the Gd 4d→4f photoemission resonance for Gd0.04Eu0.96O versus 

Gd0.03Ga0.97N and Gd0.03Hf0.97O2, where Gd0.04Eu0.96O differs significantly and has a far 

reduced photoemission resonance, Gd0.04Eu0.96O also has a much reduced Eu 4d→4f 

photoemission resonance compared to EuO. This effect is consistent with our view of the 

metal to non-metal transition with increasing Gd concentration. 

 

Figure 6.4.1 Resonant photoemission intensity as a function of photon energy for the Eu 4f 

weighted features in the valence band at about -2 eV binding energy (E-EF) in (a) EuO and (b) 

Eu0.96Gd0.04O  films. The decrease in intensity suggests a major change in metallicity with the 

inclusion of 4% percent Gd. 
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Chapter 7  

 

Gd doped HfO2 as a Neutron Detector 
 

 

 

What instrument you would use to detect an 

atomic bomb? "A screwdriver," he quipped.  

                                                          

                                                          (Oppenheimer response in a closed  

                                                              congressional hearing room in 1946)     

 

 

 

 

Although most of the focus throughout this work was on constructing devices with 

magnetic properties, the applicability of these devices can be extended to other type of 

devices such as neutron detectors. This chapter provides evidence of neutron capture 

detection using Gd:HfO2 / p-type silicon devices. One must keep in mind that these 

results are still in an early stage of development, although these results are promising, 

refinement of the devices are still needed to make it competitive with the current 

detection technology. 
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7.1 Why Building Neutron Detectors? 

 

There is now a large demand and an increase in usage of radiation detection 

technologies for applications in homeland security, nonproliferation, and national 

defense. Significant advances have been achieved in radiation-detectors technology over 

the last decade, but still, nuclear radiation detection remains one of the most troublesome 

homeland security challenges. Indeed, this has long been recognized as major challenge: 

when Robert Oppenheimer was asked in a senate hearing, what instrument he would use 

to detect an atomic bomb. "A screwdriver," he replied, meaning you have to open every 

suitcase coming in to the country. The need for neutron detectors with higher efficiency 

and sensitivity play a huge role at the national defense level as well as in medical 

applications, as the current radiation detection technology is limited by several issues 

(such as distances between the nuclear material and detectors, background gamma rays 

and neutrons produce by cosmic rays, etc). Gammas and neutrons from cosmic rays tend 

to compete (even dominate) with the signal emitted from the nuclear material causing 

difficulties in the detection process. As a result, there has been a great demand for the 

development of next generation radiation detection materials with much better signal 

discrimination. 

 

7.2 Neutron detection via Auger Electrons 

The measurement of the K-shell Auger electrons in large Z elements is a 

challenge. These Auger electron lines fall well above 10 keV and as a result such 

experimental measurements are very rare or non-existent [1, 2].  Recent advances in the 

development of wide band gap rare-earth oxide semiconductor heterojunctions formed 
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with silicon [3–6] provide a new route to measurement of the K-shell Auger electron 

spectra, particularly in the case of gadolinium. Natural Gd has a thermal neutron capture 

cross-section of 46 000 barns, including a 15.65% abundance of the 
157

Gd isotope with a 

thermal neutron capture cross-section of 255 000 barns [7–13]. The latter 
157

Gd isotope 

cross-section neutron capture is over 60 times larger than the 
10

B(n,α)
7
 Li reaction. The 

Gd cross-section remains significantly higher than the thermal neutron capture cross-

section of 10 B out to neutron energies of 200 meV. The absorption of the neutron leaves 

the 
158

Gd in an excited state that releases energy through emission of high-energy gamma 

rays, low-energy gamma rays, x-rays, internal (IC) and Auger Coster–Kronig (ACK) 

conversion electrons as 

 

                             
 157

 Gd (n,γ ) → 
158

 Gd + γ + x-rays + IC e− + ACK e
−                (7.2.1) 

 

with more  detailed decay  processes [12, 13],  summarized schematically in  Figure 

7.2.1. A similar result occurs with the neutron capture process 
155

Gd(n,γ ) 
156

Gd.    The 

156
Gd conversion electron contributions have weaker intensities owing to the ∼25% 

lower thermal neutron capture cross-section for 
155

Gd [14–16]. A gadolinium-based 

semiconductor heterojunction, nonetheless, can produce pulses characteristic of the K-

shell Auger electron resonances, following neutron capture [12, 13, 17], provided the full 

energy of the Auger electron generated pulse can be captured. The resulting Auger 
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Figure 7.2.1. A summary of the major decay routes for 
158

Gd in the excited state through 

emission of high energy gamma rays, low-energy gamma rays, x-rays, internal (IC) and Auger 

Coster–Kronig (ACK) conversion electrons as 
157 

Gd(n,γ ) → 158 Gd + γ + x-rays + IC e
−
 + ACK 

e
−
, adapted from [12, 13]. 

 

electron spectrum is a characteristic of the atomic electronic transitions that include a Gd 

1s (K-shell) hole, and is therefore not sensitive to the neutron energy, so long as there is 

neutron capture (as in Figure 7.2.1). 

By fabricating a thin layer of semiconducting gadolinium in a diode 

heterostructure with silicon, the pulse collection following Gd neutron capture should 

produce a pulse height spectrum with features that are attributable to the Gd K-shell 

Auger electron resonances.  To enhance the identification of such features in the neutron 

capture pulse height spectra in such a device, it is advantageous to choose a p-type layer 
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gadolinium semiconductor with a wide band gap, to suppress any plasmon excitations. 

The choice of a thin p-type layer, the large band gap of hafnium oxide, and the absence of 

plasmon excitations adds to the extensive electron mean free path of a 10–50 keV Auger 

electron. Hf0.85 Gd0.15O1.92 is just such a gadolinium rich semiconducting material and 

forms excellent heterojunctions with n-type silicon [3, 4]. This material adopts the cubic 

(fluorite) phase, not the monoclinic phase seen with much lower levels of Gd [3]. 

 

7.3 Single neutron capture detection 

The p-type Hf0.85Gd0.15O1.93 films deposited on n-type single crystal Si (100) 

substrates, using PLD [3, 4], routinely demonstrate rectification or diode-like 

characteristics, as shown in Figure 7.3.1. The actual diodes that were used in this work 

are constructed with slightly less than 100 nm Hf0.85Gd0.15O1.93 films on n-type Si (100). 

The Hf0.85Gd0.15O1.92 is not overcompensated by oxygen vacancies and does not form a 

rectifying diode on p-type silicon but does do so on n-type silicon demonstrate 

rectification or diode-like characteristics, as shown in Chapter 5. The measured neutron 

detection efficiency found using a PuBe neutron source for Hf0.85Gd0.15O1.92  on n-type Si 

(100) samples was 6 × 10
−3

 or about a factor 5 times smaller than expected for these 

devices.  This relative efficiency estimate does not include all the possible considerations 

for noise and dark current charge rejection and the values may in fact be slightly better 

than we estimate. Incomplete charge collection in this thin film geometry may also 

contribute to the decrease in measured efficiencies. Such thin film devices are likely to be 

gamma blind to normally incident fissile or actinide 
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Figure 7.3.1 A heterojunction diodes constructed from Hf0.85Gd0.15O1.92 on n-type silicon. The 

Hf0.85Gd0.15O1.92 is not overcompensated by oxygen vacancies and does not form a rectifying 

diode on p-type silicon but does do so on n-type silicon. 

 

material gamma radiation, because of the long attenuation length of gamma radiation (at 

energies of 1 MeV and above) compared to thermal and epithermal neutrons, but there is 

the distinct possibility that x-rays, caused by inelastic scatting processes in materials 

placed between the source and the detector, may cause K-shell Auger electron excitations 

in some devices as well [24]. Thus, we expect that the Hf0.85Gd0.15O1.92 on n-type Si(100) 

heterojunction diodes neutron detectors (and similar structures) might reliably 

discriminate neutrons from gamma radiation emanating from fissile materials. In spite of 

the large Gd gamma absorption cross-section, the neutron capture cross- section is 

considerably greater. Consequently, there is a wide range of thicknesses where the Gd-

doped film is opaque to neutrons and almost transparent to typical gamma rays, as is the 
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case of the heterojunction diodes studied here.  For the devices we have measured, the 

high energy gammas have a mean free path much greater than the active region and can 

be ignored, not only on the basis of cross-section but because the experimental pulse 

height spectra (Figures 7.3.2 and Figure 7.3.3) are the characteristic of the expected 

electron energy spectrum [12] with multiple Gd atom electron scattering. 

 

 

Figure 7.3.2 Pulse height spectra obtained using Hf1−xGdx O2−0.5x combined contributions of Gd–

O, and Gd–Hf single-scattering paths as well as several multiple-scattering (+MS) paths. 
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Figure 7.3.3. The pulse height spectra of Hf0.85Gd0.15O1.92 on n-type Si(100) samples with 

thermalized neutrons from a PuBe source with a flux of 600 neutrons s
−1

 incident on the diode, 

compared with an MCNP5.0 simulation, modified to account for suppression of the pulses of  

pulse height less than 200 mV in experiment.  
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The pulse train showed in Figure 7.4.1 shows features that are thus solely due to neutron 

capture events. While the pulse rise time is less than 10 µs, the pulse decay time is 30 µs 

or more (Figure 7.4.1). 

 

7.4 Fine Structure in the Neutron Capture Pulse Height Spectra 

Experiments were carried out in both high and low neutron regimes. High neutron 

flux pulse height spectra experiments were carried out at the Ohio State University 

Research Reactor (OSURR) by the group of Professor James Petrosky and Professor John 

McClory. The OSURR is a pool type reactor for which the neutron flux is well 

characterized and is licensed to operate at continuously variable thermal power up to a 

maximum of 500 kW, and at maximum steady-state power, the average thermal neutron 

flux in the core is approximately 5 × 10
12

 cm
−2

 s
−1

 . The reactor is immersed in a pool of 

light water that provides full moderation and cooling by natural convective flow [25]. 

These experiments were conducted in the reactor horizontal beam port, which allows for 

direct access to the reactor neutron flux, while providing cable ports for making 

continuous in situ measurements. The reactor flux was further moderated by inserting a 

plastic plug between the reactor and the devices. For these OSURR experiments, the flux 

was varied so that the total thermal flux for 450 kW, 250 kW and 125 kW reactor powers 

was 2.57×10
12

 cm
−2

 s
−1

, 1.48 ×10
12

 cm
−2

 s
−1

 and 7.14 × 10
11

 cm
−2

 s
−1

, respectively.  

Unlike in the PuBe experiments, described in the experimental section above, here the 

neutron detection instrumentation was standard analog pulse detection electronics. 

Because of the expected low pulse height from the 72 keV conversion electrons, low 

noise and good impedance matching were essential.   A thermoelectrically cooled charge 
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sensitive preamp (Amptek A250CF CoolFET, 670 eV FWHM (Si)/∼76 electrons RMS) 

was used for its low noise characteristics. 

Because of the high neutron flux, these measurements were taken using Hf1−xGdx 

O2−0.5x  films (     ) deposited on n-type single crystal Si(100) substrates, samples 

with a lower concentration of Gd. Figure 7.3.3 shows the results of neutron pulse 

counting detection for Hf1−xGdxO2−0.5x  films (     ) on the n-type single crystal 

Si(100) heterojunction diode. Between channel 50 and channel 100, there is clearly a fine 

structure in the pulse height spectra that is reproducibly observed. This fine structure is 

better resolved for pulse height spectra taken in the low flux regime.  To better resolve 

this fine structure and aid in our electron energy assignment, the experiments were 

repeated in the extreme low flux regime using a PuBe source, with a data acquisition 

system with long integration times, as described in the experimental section. 

The relatively low energy of the conversion electrons produced by 
157

Gd (30–40 

times less energetic than the daughter fragments of the 
10

B nucleus) is the main 

drawback of using Gd as a neutron detector. This does not necessarily reduce detection 

efficiency, as long as the current pulses generated by 79.5 keV (and other) conversion 

electrons can be efficiently measured and reliably identified. Gd has a high internal 

conversion coefficient of nearly 39% for emitting a conversion electron.   For 
158

Gd 

formed following neutron capture, the K-shell binding energy is 50.2 keV with core 

ionization resulting in a variety of Auger electron resonances of decreasing kinetic 

energy, ending in the 29.3 keV conversion electron centered pulse residual [12, 13]. The 

L-shell transitions (LI = 8.3, LII = 7.9, and LIII = 7.2 keV) result in an ∼7.2 keV Auger 

electron feature when averaged [12, 13, 16, 17]. The K-shell electron excitation is also 

accompanied by a 44 keV x-ray [12, 13, 16, 17], which in thicker films may result in 
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additional photoemission and Auger electron production. The M-shell binding energy is 

1.8 keV, resulting in only a small reduction in the 79.5 conversion electron energy to 

about 77 keV. Again the 
155

Gd(n,γ ) 
156

Gd transition is similar, with slightly higher 

resultant electron energies.  This results in the creation of 33–80 keV pulses largely for 

157
Gd (n,γ), but with a non-uniform distribution over this range [12, 13]. In the 

simulations of our devices, using the Monte Carlo N-Particle Transport Code 

(MCNP5.0), a planar source of 1011 neutrons was assumed and a model neutron 

spectrum calculated from 30 eV to 14 MeV, assuming natural abundance Gd in HfO2 . 

The results follow expectation and prior studies [12, 13, 16, 17].  

In fact, the expected non-uniform distribution of pulse heights is better observed 

in the experimental pulse height spectrum seen in Figure 7.3.3.  Following electronic 

suppression of pulses below 200 mV, which dominate the pulse height collection without 

electronic suppression (as indicated in Figure 7.3.2), the main contributions to the 

detection signal come from the conversion electron and the Gd K-shell Auger electron 

resonances.  To better compare experiment with the model simulations, we made 

corrections at the low-energy end of the model pulse height spectra to account for the 

large number of counts rejected by electronic noise and signal suppression below a 200 

mV pulse height in experiment. By incorporating these corrections to the model, there is 

considerable agreement between experimental and theoretical pulse height spectra. The 

deviations observed between simulation and experiment, at larger pulse heights, can be 

attributed to incomplete charge collection due to the fact that the Hf0.85 Gd0.15 O1.92 film 

deposited on Si(100) is rather thin, although this heterojunction geometry does improve 

the pulse height resolution overall in experiment, particularly in the Gd K-shell Auger 

electron resonance region. 
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Figure 7.4.1. A sampling of a time domain pulse height spectra using Hf0.85 Gd0.15 O1.92 on n-type 

Si(100) samples irradiated with thermalized neutron from a PuBe with a flux of 600 neutrons 

cm
−2

 s
−1

 . The offset of the baseline from 0 V is not meaningful, and a consequence of the display 

routine. 

 

With thicker Hf 1−x Gdx O2−0.5x films in the heterojunction structures, particularly 

with the lower Gd concentrations as in the Hf0.9 Gd0.1 O1.95 films, the resulting devices 

exhibit inelastic loss increases.  The result is that for the devices with these thicker Hf1−x 

GdxO2−0.5x films in the heterojunction structure, there is a loss of the fine structure (as 

seen in Figure 7.3.2 and Figure 7.3.3) in the pulse height spectra, leaving the expected 

‘double bump’ pulse height spectra characteristic of other rare-earth (particularly Gd) 

based neutron detectors [26, 27]. From these results, it is clear that pulse counting will 

work with a gadolinium-containing semiconductor device, even though the pulses are 

some 20 or more times smaller than they would be in the case with 
10

B capture.  If further 

refinement of the heterojunction can improve the electron and hole collection efficiency 

equivalent to similar B capture related solid state devices, then the collection of the 79 

keV electrons alone would result in a device that has an intrinsic efficiency similar to that 

of a boron-based semiconductor device or boron-based conversion layer device but with 

neutron capture and detection out to neutron kinetic energies 10–20 times that possible 

for boron semiconductor based devices. 
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The experimentally observed multiple Gd nuclear resonant decay channels and 

subsequent K-shell Auger electron resonances result in spectral features that align 

incredibly well with known energy spectra and support the premise that the Hf0.85 Gd0.15 

O1.92 film plays a key role not only in the neutron capture but also in the pulse height 

distribution.The optimization of both the materials and device structure is far from 

complete and the materials growth properties are not fully understood as yet, but 

successful solid state devices can be fabricated based on the concept. 
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Chapter 8  

 

Conclusions and Pending Future 
 

 
“Now this is not the end. It is not even the 

beginning of the end. But it is, perhaps, the 

end of the beginning” 

  

-Sir Winston Churchill -  

 

 

8.1 What have we leaned?  
 

Throughout this thesis I described the role of rare earth dopant in several high k-

dielectric compounds materials. Cr-DLC and chromium carbide hydrogenated DLC 

alloys was introduce first as part of exemplary device that exhibit strong magnetoresitive 

effects. At low Cr content, the Cr dissolves in an amorphous DLC matrix forming an 

atomic-scale composite. At higher Cr content, Cr is present as nano-composite and 

chromium carbides precipitate. In the films of higher chromium concentration, a large 

coefficient of negative magnetoresistance was observed in heterojunction devices with n-

type silicon as a substrate and the negative magnetoresistance of the I-V curve, which is 

ascribed to uncompensated spins at the surface of the antiferromagnetic chromium 

carbide clusters, indicated that the material might suitable for spin-electronics 

applications. 

 The current success, device-wise, incorporated gadolinium and/or cerium dopants 

in dielectric films such as EuO and HfO2 and made devices from heterojunctions with  
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silicon. Gd2O3 on silicon was also explored with the aim of obtaining similar effects. 

Interesting effects were introduced by the Gd doping in the HfO2 compound and go 

beyond the simply change in structure, such as the structure goes from cubic to 

monoclinic with higher concentration of Gd dopant in HfO2. With increased Gd doping 

HfO2 is seen to undergo an n-type to p-type crossover. The bulk conductivity nature was 

consistent with that of the surface as suggested by the device fabrication on both p-type 

and n-type silicon substrates. Although no magnetic properties were observed in these 

devices, the success in the construction of a heterojunction diode and the capability of 

gadolinium to detect neutrons led to the fabrication of several successful neutron 

detectors. Although the optimization of both the materials and device structure is far from 

complete and the materials growth properties are not fully understood as yet, solid state 

devices can be fabricated based on the concept.  

Remarkable effects were also found on EuO films by the inclusion of Gd. With 

Gd inclusion at the level of 4%, changes in the texture orientation from (100) to (111) 

were observed, likely due to the availability of free carriers. This is supported by the 

observation of electron pockets filled under Gd doping, which confirmed the indirect 

character of the EuO band gap with the conduction-band minima at the X points, in 

agreement with GW calculations and prior data for Ce-doped EuO. The polar character of 

the (111) surface resulted in a significant band bending at the surface, which appears to 

depend on the degree of the surface overoxidation. In terms of devices, EuO resulted in a 

rectifying heterostructure with small magnetic dependence at low temperatures.  

However, the I-V curve obtained for the 4% doped films resulted in reminiscent of an 

Esaki diode behavior. This suggests the existence of a depletion region in the subsurface 

region, which is associated with this band bending. 
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There is a whole new future of designed semiconductors. Dielectrics turned into 

semiconductors and built into devices are just one of the few. What is of great advantage 

in this work is that all the materials are silicon compatible, which is valuable as silicon is 

still one of the most widely used semiconductors for technological applications. On the 

other hand, there is still a downside to the story, not all the materials that command 

attention are robust and stable (such as EuO) critical for the success of the application. 

Nonetheless, those that are stable and reliable; they may well be the future to a whole 

class of new devices.  

 

8.2 What is next? 

 

Several rectifying structure were presented throughout this study, but is not 

enough to just make a device that proves principle. The refinement of these devices is 

critical and one must implement a rigorous characterization; switching speed, device 

lifetime, device reliability, optimum dopant concentration, electrical mobility and 

reproducibility to name a few. Of key issue is the reliability of these materials in 

structures with reduce dimension. This kind of reduction in practice is well beyond the 

scope of this work and is a challenge in itself, but the emersion of a potential device must 

be part of the development. 
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