
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

Fall 12-6-2013

CMOS Smart Camera with Focal Plane
Neighborhood-Parallel Image Processing
Joseph A. Schmitz
University of Nebraska – Lincoln, josephschmitz@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/elecengtheses

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Schmitz, Joseph A., "CMOS Smart Camera with Focal Plane Neighborhood-Parallel Image Processing" (2013). Theses, Dissertations,
and Student Research from Electrical & Computer Engineering. 49.
http://digitalcommons.unl.edu/elecengtheses/49

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/elecengtheses/49?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages

CMOS SMART CAMERA WITH FOCAL PLANE

NEIGHBORHOOD-PARALLEL IMAGE PROCESSING

by

Joseph Schmitz

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Electrical Engineering

Under the Supervision of Professors Sina Balkir and Michael Hoffman

Lincoln, Nebraska

December, 2013

CMOS SMART CAMERA WITH FOCAL PLANE

NEIGHBORHOOD-PARALLEL IMAGE PROCESSING

Joseph Schmitz, M.S.

University of Nebraska, 2013

Advisors: Sina Balkir and Michael Hoffman

A neighbhorhood-based smart camera architecture is designed and implemented in

a 0.13 µm CMOS technology. Each 8 × 8 region of pixels contains a small processor

with local memory, which are tiled to form a full-resolution camera. Each processor

operates in parallel, enabling high-speed image processing suitable for tracking and

recognition tasks. The architecture features the programming flexibility of designs us-

ing chip-level and row-level processors while preserving the scalability of pixel-parallel

processing elements. The neighborhood processors are implemented physically be-

tween the pixel photodiodes, creating multiple design challenges that are discussed

in detail.

iii

ACKNOWLEDGMENTS

I thank Professor Sina Balkir and Professor Michael Hoffman for mentoring me

during my time at the University. Their teaching, flexibility and enthusiasm made

my graduate experience both enjoyable and fruitful. I also learned a great deal from

the other graduate students in the department, specifically Mahir Gharzai and Dan

White, who not only assisted me with this research, but were also delightful company

in the lab. Nathan Schemm also provided invaluable help reviewing the chip layout

and sharing his design insights. Finally, I am grateful to my family who loves and

supports me unconditionally.

iv

Contents

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Overview of CMOS Imaging . 1

1.2 Parallel Processing in Smart Cameras 2

1.3 Motivation . 3

1.3.1 Scalability . 4

1.3.2 Programmability . 4

1.3.3 Power Consumption . 5

1.3.4 Design Trade-offs . 6

2 Smart Camera Architecture 7

2.1 Comparison to Original Architecture 7

2.1.1 Added Features . 8

2.1.2 Removed Features . 10

3 RTL Design 13

v

3.1 Overview . 13

3.2 NP . 13

3.3 GCU . 14

3.4 Test Structures . 15

3.5 Operating Modes . 15

4 Synthesis 17

4.1 Overview . 17

4.2 Timing Constraints . 17

4.3 Hierarchical Synthesis . 19

4.4 Synthesis Results . 20

5 Physical Layout 21

5.1 Overview . 21

5.2 Metal Layer Allocation . 22

5.3 Power Grid . 22

5.4 Input and Output Pads . 24

5.5 Analog Routing . 24

5.6 Standard Cell Placement . 27

5.7 Clock Tree Synthesis . 27

5.8 Digital Routing . 28

5.9 Signoff and Export . 29

6 Simulation and Testing 32

6.1 Assembly Language Programming . 32

6.2 FPGA Testing . 33

6.3 Post-Layout Simulation . 33

vi

7 Conclusion and Future Work 35

7.1 Future Work . 35

7.1.1 NP Area Reduction . 35

7.1.2 Improved Pixel Memory . 36

7.1.3 Power Consumption . 36

7.1.4 Switchable ADC Bias . 36

7.2 Conclusion . 37

A Instruction Set Reference 38

B Toolchain Commands 41

B.1 NP Assembler . 41

C Packaging and Pinout 42

Bibliography 45

vii

List of Figures

1.1 A hybrid smart camera architecture using three processing level 3

1.2 Scalability of neighborhood-level processing compared to other techniques 5

2.1 NP architecture block diagram . 7

2.2 Required instructions for data transfer in both NP architectures 11

2.3 Block diagram of a single NP . 12

3.1 Multiplexer area and routing requirements 14

3.2 Block diagram of the scan chain NP test structure 16

5.1 Layout of power stripes and analog bias voltages between pixels 23

5.2 Voltage drop in the power grid from 0 mV (green) to 3 mV (red) 24

5.3 Corner pins left unconnected due to bond wire angle requirements 25

5.4 Mirrored photodiodes for larger unobstructed regions 26

5.5 H tree network used to distribute ADC ramp voltage with low skew. . . . 26

5.6 Histogram output from EDI’s CTS debugging tool showing the phase delay

of the clock inside the NP . 28

5.7 Early (blue) and late (red) NP clock phase delay at each termination . . 28

5.8 Channels between NPs that provide room to route the top-level clock . . 29

viii

5.9 Histogram output from EDI’s CTS debugging tool showing the phase delay

of the clock for the top-level design . 29

5.10 Early (blue) and late (red) top-level clock phase delay at each termination 30

5.11 Distribution of signal slack in design . 30

5.12 NP layout . 31

5.13 Chip layout . 31

ix

List of Tables

4.1 NP area in units of 1000 µm2 . 20

4.2 NP instance counts . 20

5.1 Signals distributed to photodiodes through the power grid 23

A.1 Instruction Set . 39

A.2 Data Sources . 40

C.1 Package pinout and IO buffers. 42

1

Chapter 1

Introduction

1.1 Overview of CMOS Imaging

Standard digital camera systems utilize a CCD or CMOS image sensor chip coupled

to a processor to capture images. CMOS sensors originally had a relatively low SNR

compared to CCD technologies, but this was solved by adding individual transistor

amplifiers to each pixel called active pixel sensors described in [1]. Addition of a

small memory and ADC at each pixel enabled pixel-parallel image acquisition in the

10,000 FPS regime [2]. The versatility of CMOS technology makes this possible since

it allows for the construction of both analog and digital circuitry on the same chip.

The practice of inserting additional circuitry on CMOS imagers expanded to in-

clude more complex analog and digital circuits that perform image processing tasks

without the intervention of an external processor. Early work on these vision chips

focused on pixel-level processing that performed basic early vision tasks such as edge

detection, noise reduction and other convolution-based algorithms. These were im-

plemented using analog circuits, which were much smaller than the digital equivalents

at the time. This maximized the ratio of the photosensor to the pixel area, called the

2

fill factor, which is associated with improved imaging performance. Since the ana-

log circuits had limited reconfigurability, each vision chip was designed to perform a

specific processing task that was fixed at the time of manufacture.

Over time, advances in CMOS technology reduced transistor dimensions, making

it practical to use digital circuitry for vision chips. Pixel-parallel digital logic provided

similar functionality to their analog counterparts, but offered an increased degree of

configurability and programmability [3, 4]. This also allowed the implementation of

higher-complexity algorithms such as compression, tracking and object recognition

[4–7]. Many of these systems are partially or fully programmable, which allows the

same design to perform multiple image processing tasks as required by the application

[3, 4].

Smart cameras are a subcategory of vision chips which are designed to output

extracted information instead of raw pixel data, such as the trajectory of a projectile

or the classification of a recognized object in a scene. The high level of integration of

smart cameras has performance, power and price advantages compared to standard

cameras.

1.2 Parallel Processing in Smart Cameras

Low-level processing such as edge detection may be performed in a pixel-parallel

manner by implementing a processing element (PE) in each pixel. This method of

computation requires constant time regardless of the resolution. Area constraints

limit the types of processing these PEs may perform to low-level operations with

adjacent pixel data. However, this topology excels at early vision applications such

as edge detection and morphological operations [4]. The isolated nature of the PEs

makes it less ideal for algorithms that require access to distant pixel data.

3

Row-level and column-level processing is used to address this issue and are used to

perform mid-level algorithms. Unlike pixel-level PEs that only have access to nearby

pixel data, these PEs may quickly access data at any location in their row or column,

which spans across the entire imager. This is ideal for computing image statistics

such as histograms and centroids. It also is fast at performing image transformations

including mirroring and rotations [3]. Since one PE is required per row, it slows down

with increasing resolution unlike pixel-parallel PEs. They also consume significant

area that would otherwise be used to increase the camera resolution.

Chip-level processing handles complex global processing better than the lower-

level methods since it has direct access to all pixel data in the imager, such as in [5].

However, it doesn’t scale with resolution and becomes a processing bottleneck for

high resolutions or framerates. These processors may be combined with the other

levels of parallelization to mitigate these disadvantages [4, 6]. Figure 1.1 shows an

example of a smart camera with pixel-level, row-level and chip-level processing.

Photodiodes

Si Wafer

CP

R/CP

R/CP

R/CP

R/CP

R/CP

R/CP

PP

Figure 1.1: A hybrid smart camera architecture using three processing level

1.3 Motivation

In this work, a new category of neighborhood-parallel computation for smart cam-

eras is introduced, designed and implemented for CMOS. Existing smart camera

architectures are limited by a combination of programmability, scalability and power

4

consumption. To address these issues, a new architecture was developed that uti-

lizes neighborhood-based processing. A neighborhood processor (NP) contains pixel

ADCs, dedicated memory and an arithmetic logic unit (ALU) physically implemented

within each 8 × 8 region of pixels across the entire camera. These NPs are tiled in a

two-dimensional grid to form the desired resolution.

Image data may be processed locally as well as transmitted between adjacent

NPs. A standard 8-bit instruction set allows implementation of generic algorithms

that are executed in parallel across the camera. Once processing is complete, the re-

sulting outputs are transmitted outside of the NP grid and off-chip. This architecture

addresses several of the issues found in existing smart cameras.

1.3.1 Scalability

Similar to pixel-parallel architectures, each NP is responsible for a fixed number of

pixels. For parallel algorithms, this enables constant processing time regardless of

the camera resolution, shown in Figure 1.2. However, since they contain many pixels

and cover a larger area, NPs may be more complex than standard pixel-level PEs.

This allows for a level of computational power similar to row-level PEs without the

scalability concerns. Finally, since NPs are implemented between the photodiodes,

nearly all available chip area may be used to increase the camera resolution, unlike

row and chip-level processors which may consume more than half the die [6–8].

1.3.2 Programmability

Many vision chips use specialized digital circuits to perform application-specific tasks

such as convolutions [8, 9]. This architecture has minimal specialized hardware to

allow for increased algorithm flexibility. It implements a generic 8-bit processor with

5

0 16 32 48 64 80 96
0

32

64

96

128

Number of pixels per Row/Column

P
ix

el
s

p
er

P
ro

ce
ss

or
Pixels per Processor for Square Resolutions

Pixel Row/Column Chip Neighborhood

Figure 1.2: Scalability of neighborhood-level processing compared to other techniques

a simple assembly language and instruction set. A wide range of algorithms may be

implemented for the design, including compression, tracking and recognition tasks

similar to those found in [10–12].

1.3.3 Power Consumption

The architecture takes advantage of the spatial correlation of captured images, al-

lowing for efficient computation of block-level filters and transforms often used in

image processing applications [13, Chapter 15]. In typical scenes, objects of interest

tend to be localized in space, so most of the pixels are not utilized until the object

moves within the scene. Since NPs are inherently regional, only NPs corresponding

to the object’s current location need to kept active, and the rest may be turned off

for power savings. This removes the need for specialized block-readout techniques

like those found in [14].

6

1.3.4 Design Trade-offs

NPs strike a balance between computation speed and programmability. True application-

specific pixel-parallel cameras are much faster than NPs since each pixel has dedi-

cated hardware unlike the NP which shares memory and processing between 64 pix-

els. However, these architectures have fixed or restricted functionality that prevents

them from implementing generic algorithms in software, unlike NPs. Cameras with

chip-level processors offer the highest-degree of algorithm flexibility with feature-rich

instruction sets and access to the pixel data for the entire imager. NPs maintain a

high-degree of programmability while sacrificing access to distant pixel data, which

allows for significantly better scalability than these chip-level processors. For many

imaging algorithms, full-image availability is generally not necessary, and the NP’s

block-level approach is effective.

7

Chapter 2

Smart Camera Architecture

2.1 Comparison to Original Architecture

The NP architecture in this work is a based on a previous design from [15] with several

revisions. It features a similar structure with a single global control unit (GCU) that

decodes program instructions and controls a grid of NPs. Figure 2.1 shows a simplified

block diagram of the architecture.

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

NP

GCU

ADC FSM

Program
ROM

Column Data Bus Chip Boundary

Address

Instruction

Figure 2.1: NP architecture block diagram

The original design used scripts to generate flat netlists for different NP grid

sizes, but the new design is fully hierarchical and parameterized, so the resolution

8

may be easily altered. A rewrite of the HDL using generic RTL constructs gives

the synthesis tools maximum flexibility when optimizing the design for speed and

area. Specifically there are fewer modules in the new design since the synthesis tools

can perform only limited optimization across module boundaries. The multiplexers

used to access memory in the NP are now implemented with logic instead of tristate

buffers in order to improve speed and area. For large busses, each tristate must drive

a significant capacitive load since they cannot be buffered, requiring large, high-drive-

strength tristates to be used. Logic-based multiplexers do not suffer from this problem

since the capacitive load is distributed among the individual gates and digital buffers

may be used to further improve timing. The overall block diagram of the revised NP

is shown in Figure 2.3.

2.1.1 Added Features

In addition to changes in the RTL coding style and synthesis of the NP, it now has

several new features to support more complicated algorithms. These features improve

available memory, code density and speed.

In each NP, there are now 4 registers instead of 2 and any one of them may be

used for indirect memory addressing. The memory size has increased from 192 bytes

(3 per pixel) to 200 bytes. These extra bytes are used for storing temporary variables

for algorithms that require the rest of memory to store intermediate pixel data.

The assembly language is rewritten to expand the number program flow instruc-

tions, which leads to smaller code size and improved readability without a significant

increase in implementation area. The number of conditions has doubled from 4 to

8, which improves code density. Before it was necessary to read the status register

flags and mask them to perform conditional operations, but this is now done in a sin-

9

gle instruction. This is especially important for creating high-efficiency loops which

execute conditional branch instructions repeatedly.

Each column data bus is now implemented using digital muxes instead of tristate

muxes. This removes the risk that malformed code would cause multiple NPs to

drive the bus simultaneously, drawing large currents and possibly damaging the chip.

Dedicated row output enable signals in the new design greatly increase the readout

speed. The original architecture required a long series of instructions to allow a row

of NPs to output to the bus, which is now accomplished with a single instruction. For

example, Listing 2.1 shows code that outputs image data from a single row of NPs

using the original architecture. Listing 2.2 performs the same function, but on the

new architecture. Furthermore, in the manufactured imager, the entire code block in

Listing 2.1 would be replicated seven more times, whereas the new architecture would

only require seven more OUT instructions to be added to the code in Listing 2.2.

Listing 2.1: Code for the original NP in [15] that outputs a captured image

U LOADA A S 00

U ORA I 20

U MOVA A S 00

U LOADA A S 03

U ANDA I F0

U LOADA A S 00

U XORA I 28

U MOVA A S 00

Z LOADA A S 00

Z XORA I 40

Z MOVA A S 00

U LOADA A S 00

U ORA I 20

U MOVA A S 00

U LOADA A A 00

U SPL OUTA

U LOADB I 3F

U IRAM LOAD 0R

U SPL OUTA

U SUBB I 01

U LOADA A S 02

Z JUMP 1 12

10

Listing 2.2: Code for the revised NP identical in function to Listing 2.1

#DEFINE NUM_PIXELS 64

#DEFINE i R0

START:

LDR i, 0

OUTPUT_LOOP:

OUT [i], 0

ADD i, 1

CMP i, NUM_PIXELS

BNE OUTPUT_LOOP

It is now possible to perform function calls, enabling the use of recursive algorithms

and improving code reuse. To support this, the GCU contains a new 8 instruction

program stack used to store return addresses. In this version, the maximum program

size is 512 instructions, double the original. With minimal modifications and area

penalty, this can be expanded using relative addressing to almost any required size.

Sleep states are also improved in the new architecture. Similar to the original version,

NPs may be conditionally turned on and off to save power. In addition to this, NPs

now have multiple sleep depths that allow for nested conditional loops and other

important programming structures.

In preparation for physical implementation on CMOS, the architecture now has

a pixel ADC interface. A new finite state machine (FSM) in the GCU controls

the timing for the pixel ADCs during image acquisition. It features programmable

delays to accommodate different lighting environments. The ADCs use gray coding

to improve performance, so the NP ALU now has a new instruction that converts

gray code to its binary equivalent.

2.1.2 Removed Features

In order to save area, some features were removed from the architecture. Originally,

NPs exchanged data through a neighborhood register (NR), which acted as a tem-

11

porary storage location accessible to adjacent NPs. In order to move data from one

NP to another, two clock cycles were required. First data would be copied to the

NR by the source NP. Second the destination NP would read the data from the NR,

completing the transfer. In the new architecture, there are no NRs: NPs exchange

data directly between one another’s registers, which requires only one clock cycle to

complete. Figure 2.2 shows this change.

NP

NP

NR

NP

NP
2

1

(a) NP in [15]

NP

NPNP

NP

1

(b) NP in this work

Figure 2.2: Required instructions for data transfer in both NP architectures

The original design was able to perform 4-bit ALU and memory operations. This

allowed three 8-bit registers to be used as two 12-bit registers for higher-precision

computations. Since the implementation in this work uses 8-bit ADCs, this feature

was not required and was removed to improve design area and routability.

There are no longer conditional ALU instructions. These are replaced by condi-

tional sleep instructions, which perform the same function by preventing an NP from

executing instructions while it is asleep. While sometimes slower, using sleep instruc-

tions requires less flag manipulation compared to the original architecture, and they

are faster and easier to use in practice.

12

X
 R

A
M

6
4

 B
y

te
s

C
E

W
E

A
D

D
R

DA
D

C
_

R
E

G
_

E
N

A
D

C
_

C
O

U
N

T
E

R Q

C
L

K

D
Q

A
D

D
R

W
E

C
E

C
L

K

Y
 R

A
M

6
4

 B
y

te
s

D
Q

A
D

D
R

W
E

C
E

C
L

K

Z
 R

A
M

6
4

 B
y

te
s

D
Q

A
D

D
R

W
E

C
E

C
L

K

V
 R

A
M

8
 B

y
te

s

R
o

w
 C

o
lu

m
n

R
eg

is
te

r
S

ta
tu

s
R

eg
is

te
r

F
la

g
R

eg
is

te
r

R
2

R
1

R
0

R
3

01234567
S

F
S

le
ep

 F
la

g

A
F

Z
F

C
F

V
F

N
F

A
D

C
 F

la
g

O
v

er
fl

o
w

 F
la

g

N
eg

at
iv

e
F

la
g

C
ar

ry
 F

la
g

Z
er

o
 F

la
g

− −
U

n
u

se
d

U
n

u
se

d

S
ta

tu
s

R
eg

is
te

r
B

it
s

Q

A
D

C
_

R
E

G
_

E
N

A
D

C
_

C
O

U
N

T
E

R

D A
D

D
R

W
E

C
E

C
L

K
C

L
K

C
L

K
_

E
N

COND_MET_QUERY

WAKE

SLEEP

IMM

C
L

K

R
S

T

D
IN

D
O

U
T

S
le

ep
 S

ta
ck

P
O

P

P
U

S
H

C
L

K
_

E
N

C
L

K

R
S

T

P
O

W
E

R
O

F
F

S
F

E
v

al
u

at
io

n
C

o
n

d
it

io
n

<
 =

 >
+

&
>

>
G

ra
y

COL_WE

COND_MET_REPLY

COL_DATA

OE

ALU

DATA

COND

SR

RCR

NWSE

R
A

M

ADC_COUNTER

ADC_REG_EN

C
O

N
D

_
M

E
T

FR

FR

SF

ADC_ACTIVE

COL_DATA_OUT

COL_WE_OUT

MUX_BUS

WE_BUS

1
8

1
1

1
5

1
6

1
8

1
8

8
8

8
8

1

8
1

1

1
1

CLK

RST

4

REG_N

REG_S

REG_W

REG_E

8REG_OUT

(C
E

 o
f

al
l

D
F

F
s

ex
ce

p
t

th
e

sl
ee

p
 s

ta
ck

)

3
 B

it
s

R
E

G
B

R
E

G
A

F
ig

u
re

2.
3:

B
lo

ck
d
ia

gr
am

of
a

si
n
gl

e
N

P

13

Chapter 3

RTL Design

3.1 Overview

Chip design software from Cadence provides the necessary tools to implement a test

chip for the NP architecture described in Chapter 2. As inputs, it requires a netlist

that contains RTL descriptions of all digital logic along with abstractions that rep-

resent analog blocks, such as photodiodes. A commercial 0.13 µm, 8 metal design kit

provides digital standard cells and IO pads for the chip. Hierarchical VHDL describes

the logic and connectivity at each level of the design.

3.2 NP

The NP implementation closely follows the block diagram shown in Figure 2.3. One

exception is that the input signals from the GCU to the NP are buffered and propa-

gated through each NP. Also, the “condition met reply” signal from the NP back to

the GCU is logically ORed with the reply from the previous NP and then buffered

along to the next NP in the column. With these modifications, all local and global sig-

14

nals propagate through tiled NPs automatically, except for the clock, which requires

special consideration for acceptable performance.

The VHDL implementation is largely technology-independent to aid in testing on

FPGA before moving to an ASIC. However, several synthesis directives are added

to force specific RTL constructs to be implemented with specialized standard cells

instead of generic logic. This technique is used with multiplexers to reduce routing

congestion in the NP at the cost of increased area, as shown in Figure 3.1. Even with

these directives, the VHDL description is still directly portable to FPGA structures

as seen in Chapter 6.

A
B
C
D

S0S1

Y

A
B
C
D

Y

S0 S1

A
B

C
D

Y

S1S0

S0 S1

A
B
C
D

Y

Figure 3.1: Multiplexer area and routing requirements

3.3 GCU

The GCU is modified to incorporate the FSM for the pixel ADCs. It contains two 16-

bit registers that store the photodiode reset and integration times. These are output

to the ADC FSM module where they are compared against internal timer counters

to generate the output control signals required by the ADCs.

15

3.4 Test Structures

The RTL netlist includes additional structures that are not required for normal op-

eration, but simplify testing and debugging procedures.

A MSP430-compatible microcontroller, called an NS430, is included on-chip and is

inserted into the netlist to connect to IO pads and other tests structures. This micro-

controller is implemented separately from the rest of the chip and then inserted into

the layout at the end of the design flow. NPs are designed to operate independently of

the NS430 and no algorithms are performed with it, as this would limit scalability of

the architecture. However, it may be configured to interface with the NPs, providing

instructions to the GCU and reading the outputs from the column data buses. This

creates a single-chip solution that requires no external parallel program ROM and

provides a serial communication interface for debugging. Depending on the operating

mode, the IO pads are multiplexed between the NPs and the NS430.

For testing, it is desirable to have direct access to an NP, bypassing the GCU

and ADC FSM. To accomplish this, a lone NP exists outside of the NP grid, and

its inputs and outputs driven and captured by DFFs in a scan chain. Input data

is serially clocked into the scan chain and the resulting output data is captured by

the chain as well, after which it is serially clocked out. A block diagram is shown in

Figure 3.2.

3.5 Operating Modes

The chip features several operating modes which improve testability and multiplex

the IO pads between several internal modules. In the primary mode of operation, the

GCU and NPs operate independently with an external program ROM. Most of the

16

D Q

D Q

D Q

D Q D Q

D Q

D Q

D Q

D Q

SE

D Q

SE

D Q

SE

D Q

SE

SOSCLKSESI

NP

Figure 3.2: Block diagram of the scan chain NP test structure

IO pins are devoted to the address bus and data bus for the external ROM as well as

the output data from the NPs. In a secondary mode, the internal NS430 takes control

of the IO pins, which may be programmed to implement SPI, I2C and asynchronous

serial interfaces as well as simple IO tasks. This mode is used when controlling the

NPs internally with the NS430, but is also useful for testing the NS430 itself.

The ADC FSM may be bypassed and the control signals fed from outside the

chip. If there is a design issue with the module, this allows the NPs to still capture

images. It also provides a method for using longer reset and integration delays than

allowed by the internal 16 bit counters. Also, nonlinear binary counters may be used

to provide increased dynamic range.

17

Chapter 4

Synthesis

4.1 Overview

The RTL is synthesised to a gate-level netlist using Cadence RTL Compiler (RC).

The netlist is translated to a 0.13 µm CMOS technology with 8 metal layers using a

professional design kit that provides digital standard cells, pads and memories.

4.2 Timing Constraints

Timing constraints are applied at this stage in the design. They specify the target

operating frequency, chip-level input and output (IO) delays as well as exceptions for

nonstandard timing paths. RC uses timing constraints to select the drive strength of

standard cells and to insert additional digital buffers to decrease signal propagation

times as required to satisfy the constraints. Tighter constraints lead to larger buffers

and a larger design area. The target area for the NPs leaves little spare area, so it is

loosely constrained and the final timing significantly affects the maximum frequency

of the system.

18

The distribution of global signals from the GCU to the NPs also limits the oper-

ating frequency. These signals route directly to the first row of NPs in the grid and

then propagate down the columns, with each NP routing and buffering the signals

to the next NP. If the propagation delay through an NP becomes large, it may limit

the operating frequency. This delay is determined by the drive strength of the digital

cells used to buffer the signals across the grid. There are many global signals, so each

NP incorporates many of these buffers, so their drive strength is capped to maintain

area requirements. Since the GCU is limited to controlling a 16 × 16 grid, the total

propagation delay is bounded. Scaling beyond this would require multiple GCUs, so

the propagation delay would not increase.

Practically delays associated with the internal logic of the NP dominate this prop-

agation delay. In the final layout, approximately 250 ps is introduced for each addi-

tional row of NPs. This gives a total delay of 2 ns for the 8×10 grid of NPs compared

to around 10 ns for delays internal to the NP. The slowest paths involve branch in-

structions where the GCU requires each NP to signal whether or not it should execute

the jump. The reply is propagated back to the GCU across each column, where each

NP generates the outbound reply by logically combining the inbound reply from the

previous NP with its own reply. Due to this logic, more propagation time is required

than for the global signals–about 650 ps per row of NPs. The total round-trip delay is

the combination of propagation delay from the GCU through a column of NPs, mem-

ory access and comparison within the NP, and the delay from the reply propagating

back through the column to the GCU.

External interfacing also limits the maximum system frequency. IO pads add sev-

eral nanoseconds of delay. To minimize this delay, their drive strengths are increased

while balancing the additional noise introduced to the power nets.

Finally the external ROM access time is also large, on the order of 10 ns for

19

fast asynchronous memories. This limitation is due to the simple, non-pipelined

architecture and the lack of registered IO on the system boundaries.

Due to these delays, the final design operates at 20 MHz which accounts for ex-

ternal signal delays from the program ROM as well as internal propagation delays.

For this design, the primary goal is to demonstrate the architecture, making the op-

erating frequency is a secondary consideration. This may be increased by pipelining

instruction fetching and data readout with no modifications to the NPs themselves.

Also, since the design is implemented with standard cells, smaller technology nodes

would use less area, allowing larger buffers to be used to reduce propagation delays

through the NP.

4.3 Hierarchical Synthesis

By default, RC treats each NP in the grid as an independent design to allow it to

be fully optimized based on its location in the chip. This leads to increased runtime

when the size of the NP grid grows large and also causes routing problems later in the

design flow. This implementation uses 80 NPs, so special consideration is necessary

in order to complete the layout successfully and in reasonable time. Since each NP

has similar timing requirements, that module is partitioned from the rest of the

design and synthesized independently. The top-level netlist is then synthesized with

the NPs modeled using abstract representation. Once complete, the NP partition is

instantiated multiple times at the top-level to complete the hierarchy. This greatly

reduces RC runtime at the cost of timing optimization, which is not critical since NPs

are placed in a regular pattern.

20

4.4 Synthesis Results

The architectural changes described in Chapter 2 significantly reduce the required

area for the NP compared to the original design from [15]. Table 4.1 compares the

original area to an unoptimized version of the new RTL implementation as well as a

final version that uses clock gating and smaller memory elements to further reduce

area. Table 4.2 shows the original distribution of standard cell instances for each

version, which reflects the removal of the tristate memory bus and an overall reduction

in logic required to implement the new version.

Table 4.1: NP area in units of 1000 µm2

Original Unoptimized Optimized

Sequential 48.7 51.8 40.1
Inverter 2.7 0.1 0.2
Clock Gating 0.0 0.0 5.9
Tristate 6.2 0.0 0.0
Logic 26.9 16.1 15.4

Total 84.4 68.1 61.7

Table 4.2: NP instance counts

Original Unoptimized Optimized

Sequential 1606 1639 1639
Inverter 618 42 59
Clock Gating 0 0 206
Tristate 537 0 0
Logic 3012 1973 1843

Total 5773 3654 3747

21

Chapter 5

Physical Layout

5.1 Overview

Cadence Encounter Digital Implementation (EDI) generates a layout by placing and

routing the standard cells using the technology-specific netlist output from RC. Since

this smart camera architecture is primarily digital, EDI generates the majority of the

layout sent to the foundry for fabrication. Only the photodiodes and ADCs are hand-

drawn in Cadence Virtuoso and inserted into the layout at stream-out. EDI uses a

series of Tcl configuration scripts to control its behavior during layout generation.

EDI’s default scripts work well for standard digital layouts that have large, un-

obstructed areas available for standard cell placement and routing. This design has

very little area, so significant alterations are required. Routing is further complicated

since the photodiodes and ADCs are embedded within the digital logic. Since metal

must be kept clear of the light-sensitive photodiodes, regions in which signal wires

may be routed and restricted and severe congestion occurs throughout the NP.

Similar to RC, EDI struggles to route designs with medium to large numbers of

NPs in the imager. This is solved by partitioning the NP into its own subdesign and

22

routing it separately from the top-level. Once complete, the NP timing is character-

ized and stored in a model for use in top-level timing analysis. The rest of the chip

is placed and routed using the NP model and then the top-level design and NP are

streamed out as separate GDS2 files for fabrication. Each design undergoes a simi-

lar flow including floorplanning, standard cell placement, clock tree synthesis, signal

routing, and design rule checks.

5.2 Metal Layer Allocation

The 0.13 µm process has 8 metal layers available for signal and power routing. The

third-party standard cell library uses the lowest metal layer, metal 1, so it is largely

unavailable for routing throughout the design. Metals 2 and 3 route digital signals

between standard cells. These layers are the most congested in the NP design due

to the dense, obstructed layout between photodiodes. The next highest layer, metal

4, exclusively contains digital power and ground stripes to minimize their resistance.

Metal 5 acts as a low-impedance shield between the digital signals below and analog

signals above that layer. Analog power and bias voltages for the photodiode ADCs

use metal 6 stripes to route to each pixel. A voltage ramp required by the ADCs,

generated externally, enters the chip through a pin and branches out in an H tree

pattern across the array on metal 7. Additional analog power and ground stripes use

metal 8 to reduce the resistance of those nets.

5.3 Power Grid

There are four supplies in the chip that are used for digital IO, digital power for

core standard cells, analog power and a low-noise power supply used for shielding.

23

Additional bias voltages for the analog sections are also present. With the exception of

the IO supply which does not enter the core region of the chip, all of these supplies use

a series of rings and stripes to reach the analog blocks in each pixel. Area constraints

require these to be tightly layered summarized in Table 5.1. Figure 5.1 shows the

layout of the power stripes and shielding between photodiodes.

Table 5.1: Signals distributed to photodiodes through the power grid

Name Routing Layer

Digital Supply Metals 1 and 4
Shield Supply Metal 5
ADC Bias Voltages Metal 6
ADC Voltage Ramp Metal 7
Analog Supply Metals 6 and 7

Figure 5.1: Layout of power stripes and analog bias voltages between pixels

Vias used to connect digital power stripes on metal 4 to standard cell power rails

on metal 1 are large enough to block signal routing on the intermediate layers. To

help congestion, the layout uses fewer vias while preserving redundancy in order to

improve yield. The constraints on stripe width and length along with reduced via

counts increases the resistance of the power grid. The voltage drop of the grid was

analyzed using EDI and was insignificant with at most a 3 mV drop. Figure 5.2 shows

a visualization of the voltage drop across the chip.

24

Figure 5.2: Voltage drop in the power grid from 0 mV (green) to 3 mV (red)

5.4 Input and Output Pads

Using a Tcl script, EDI places a ring of IO pads, taken from the netlist output from

RC, around the boundary of the chip. These provide wire bonding sites to connect

circuits on the silicon die to package pins. After fabrication of the chip, bond wires

are added during packaging between these pads and the pins. The angle the bond

wire makes with the die must be greater than 45◦ according to the manufacturer.

Since the die is not square, 4 of the 100 package pins are left disconnected to satisfy

this requirement. Figure 5.3 demonstrates the issue for a package with 20 pins. The

pad outlined with a dotted line shows the best attainable position for a hypothetical

pad connected to pin 1. Since it is located outside of the pad ring, it is not possible

to include it in the chip.

5.5 Analog Routing

Each pixel contains a light-sensitive photodiode along with an ADC and is designed

separately from EDI in Cadence Virtuoso. EDI uses a simplified, abstract version

of this layout which contains pin locations for routing. The photodiodes are equally

spaced 39.6 µm apart to form a 64 × 80 resolution imager. The analog area is shared

25

1

2

5

6 8 9 10

11

12

13

14

15

1617181920

7

3

4

Figure 5.3: Corner pins left unconnected due to bond wire angle requirements

between two pixels by mirroring every other row, shown in Figure 5.4. This doesn’t

save significant area, but grouping analog blocks leaves large regions open for digital

routing, reducing congestion.

Analog signals enter the design from outside the chip and are globally routed to

the photodiode ADCs. DC bias voltages are distributed with rings and stripes similar

to the power and ground rails. A Tcl script programmatically routes the pins on each

photodiode to the corresponding stripe. The photodiodes also require an analog ramp

with minimal skew between each pixel. This net is routed with an H tree-like fractal

shown in Figure 5.5 to minimize skew. Since the NP grid is rectangular instead of

26

ADC OpenPhotodiode

Figure 5.4: Mirrored photodiodes for larger unobstructed regions

square, the pattern is modified with additional accordion routes to maintain equal

delays to the endpoints.

Figure 5.5: H tree network used to distribute ADC ramp voltage with low skew.

The analog nets use the upper metal layers for routing to physically separate them

from noisy digital nets on lower metal layers. An intermediate metal layer is used to

form a grounded shield between the digital and analog metal layers for improved noise

performance. This shield is isolated from the digital and analog ground nets and is

design to be connected to the ground network externally to reduce ground bounce.

27

5.6 Standard Cell Placement

Careful standard cell placement is critical to prevent routing congestion later in the

flow. In general, cells in the same design module should be located near one another

to minimize the length of the metal interconnects. EDI does this by default, but this

can lead to routing issues when the standard cells have relatively high numbers of

pins relative to their area. This occurs primarily with designs containing complex

combinational logic, specifically the NP ALU. During placement, empty space is

added between the standard cells in the ALU, which loosens the routing requirements

in this region. With no standard cells in these regions, metal 1 is available for routing,

which reduces congestion.

5.7 Clock Tree Synthesis

EDI accepts timing specifications to perform clock tree synthesis (CTS) in digital

designs. Low skew, low delay clock distribution across the NP grid is challenging

due to the chip’s large dimensions. As before, a hierarchical approach provides a

consistent and efficient solution to this problem. First a clock tree is synthesized for

a master NP design and then cloned repeatedly to form the NP grid. The timing

specification for the NP clock tree is relatively lax to prevent EDI from using large

area for additional clock buffers. Figure 5.6 shows a histogram of the clock delays to

each endpoint and Figure 5.7 shows the relative phase delays.

The skews and delays from this CTS are propagated to the top-level where they

are used during top-level CTS. At the top-level, routing channels between adjacent

NPs, shown in Figure 5.8, provide enough open area to route the clock tree to each

NP unobstructed by other signal routes. This establishes a clock tree with significant,

28

Figure 5.6: Histogram output from EDI’s CTS debugging tool showing the phase
delay of the clock inside the NP

Figure 5.7: Early (blue) and late (red) NP clock phase delay at each termination

but acceptable skew and insertion delay. The final clock skew and delay is shown in

the histogram in Figure 5.9. Figure 5.10 shows the phase delays between the NPs in

the grid and the GCU.

5.8 Digital Routing

EDI performs timing-driven signal routing which automatically resizes standard cells

and inserts additional buffering to ensure timing is met. It uses the same timing

constraints from RC for this purpose. To account for process, voltage and temperature

variations, EDI loads multiple timing libraries which characterize the standard cells

29

Figure 5.8: Channels between NPs that provide room to route the top-level clock

Figure 5.9: Histogram output from EDI’s CTS debugging tool showing the phase
delay of the clock for the top-level design

in each operating region. Setup and hold timing violations are checked using the

most pessimistic timing library available, which improves timing compliance after

fabrication. The distribution of signal setup slack across the chip is shown in Figure

5.11.

5.9 Signoff and Export

With routing complete, EDI performs design rule checks (DRC) to verify that the

chip meets fabrication requirements. These are determined by the foundry where the

chip is being manufactured. Finally the tool exports the layout as a GDS2 file, an

30

Figure 5.10: Early (blue) and late (red) top-level clock phase delay at each termination

Figure 5.11: Distribution of signal slack in design

industry-standard format for chip layouts. Cadence Virtuoso then imports this file

for integration with the analog design blocks.

The layout of each NP, shown in Figure 5.12, is 316.8 µm × 316.8 µm with a pixel

pitch of 39.6 µm. Figure 5.13 shows the chip-level layout which contains an estimated

2 million transistors. It measures 5.070 mm × 3.155 mm with a total area of 16 mm2.

31

Figure 5.12: NP layout

Figure 5.13: Chip layout

32

Chapter 6

Simulation and Testing

6.1 Assembly Language Programming

A major advantage of the NP architecture is its non-specialized instruction set that

accommodates a wide range of algorithms. Writing such algorithms requires a simple,

convenient programming language. For simplicity, NPs use a language with syntax in-

spired by Intel and ARM assembly. It provides access to all available instructions and

addressing modes implemented in the architecture. A custom command-line assem-

bler translates code into ROM binaries as well as other formats useful for testing the

design on computer and FPGA. A full list of output options is shown in Appendix B.1.

The assembler implements additional programming conveniences including assembly-

time expression evaluation for constants, address resolution of program labels and

macro expansion with variables.

33

6.2 FPGA Testing

An Xilinx Virtex 5 FPGA development board served as the platform for the initial

testing of the revised NP architecture. It housed all necessary system modules in-

cluding a small 3 × 4 grid of NPs, the GCU and ROM code stored by FPGA block

RAMs. A simple controller provided a serial interface that allowed read and write

access to the program ROM. It could update the ROM at any time, removing the

need to reconfigure the FPGA during software debugging. Without access to physi-

cal ADCs, NPs used preloaded image data during testing. After each algorithm, the

serial controller recorded and transmitted the result to a host computer for verifica-

tion. The FPGA test setup performed several simple image operations to verify the

fundamental functionality of the architecture. These include image translations and

edge detection similar to those performed in [15].

6.3 Post-Layout Simulation

After EDI generates a final layout netlist along with annotations of the timing de-

lays, Cadence Incisive Simulator (NCSIM) uses these files to perform an accurate

functional simulation of the final chip. The timing delays are applied to the netlist

during simulation, which models the propagation delays through gates and over long

interconnects, including clock delay and skew. In order to exercise the NP architec-

ture, the full 8× 10 grid of NPs execute a variant of the EZW compression algorithm

from [10] and [11] adapted to the architecture.

In initial testing, the NPs loaded image data stored as program constants from

the external ROM, similar to what would happen on a test PCB populated with the

packaged chip. The resulting output is captured from the column data bus, written

34

to a text file and then parsed by scripts into a verifiable format. A second simulation

tested the ADC image capture logic by simulating the analog interface. To accomplish

this, an input image as converted to corresponding time delays normally generated

by the analog electronics. During the simulation, the analog outputs were forcibly

toggled based on these calculated delays, similar to what occurs during an actual

image capture. The resulting output was verified against reference outputs. The

scan chain NP test structure was also exercised. To verify basic functionality, a short

program was shifted in one instruction at a time, executed and shifted out. The

resulting output verified it can be controlled externally.

35

Chapter 7

Conclusion and Future Work

7.1 Future Work

7.1.1 NP Area Reduction

In order to obtain better image quality and resolution, a reduction in area consumed

by the digital standard cells is required. This will lead to higher resolution imagers

with a better fill factor. The NPs final dimension is limited by the available area for

digital standard cells and the number of open tracks to route metal interconnects.

Outside of the analog photodiodes which consume approximately 25% of the pixel

area, NPs require no custom circuitry and consist of digital standard cells. This means

the architecture scales significantly and easily with shrinking CMOS technology nodes

which halve in size approximately every two years. To mitigate routing congestion,

these technologies also offer large numbers of routing layers which were not available

in this design.

36

7.1.2 Improved Pixel Memory

As seen in Table 4.1, the NP memory consumes about 75% of the digital area. This is

implemented using D flip-flops (DFF) since they allow for flexible placement around

the photodiodes in the design. However, they consume a large amount of area com-

pared to other standard cells. Alternative memory types offer higher densities while

still being small enough to fit between pixels. Some digital standard cell libraries of-

fer latch-based register file cells, although these require additional care during timing

analysis. Even smaller, 24-bit DRAMs could be used if they were custom designed,

as in [2, 14].

7.1.3 Power Consumption

The primary focus of this work is to implement and test the NP architecture, leaving

significant improvements in the power consumption performance of the design for

a future iteration. While individual NPs may be turned off to reduce switching

current, the clock tree still toggles and consumes significant switching power due to

its high fanout. Additional clock gating at the entry point of the clock into each NP

would remove this switching current. The neighborhoods are ideal for power supply

switching as well. Use of high-side switching cells would allow the power grid in entire

regions of a chip to be powered down, reducing leakage currents.

7.1.4 Switchable ADC Bias

Currently the analog blocks in each pixel are powered continuously even when not in

use. The ADC FSM, which already provides counters and control signals for the pixel

ADCs, could be expanded to dynamically power the ADCs shortly before capturing

an image and to turn them off during idle periods.

37

7.2 Conclusion

A new, neighborhood-based smart camera architecture is implemented using a 0.13 µm,

8 metal CMOS process using design tools from Cadence. It possesses the scalability

of pixel-level processing elements as well as the programming flexibility of chip-level

processors. The architecture is first realized in VHDL and tested on an FPGA, after

which significant scripting and configuration allows RC and EDI to generate a DRC-

clean layout suitable for fabrication. Post-layout simulation with back-annotated

timing with NCSIM verifies the functionality of the final layout.

38

Appendix A

Instruction Set Reference

39

Name Binary Description

ADC 0000 1DDS SSSS SSSS Add with carry
SUB 0001 0DDS SSSS SSSS Subtract
SBC 0001 1DDS SSSS SSSS Subtract with carry
AND 0010 0DDS SSSS SSSS Bitwise AND
ORR 0010 1DDS SSSS SSSS Bitwise OR
EOR 0011 0DDS SSSS SSSS Bitwise exclusive OR
CMP 0011 1DDS SSSS SSSS Compare
LDR 0100 0DDS SSSS SSSS Load register
STR 0100 1DDS SSSS SSSS Store register
ASR 1000 1DD1 000- ---- Arithmetic shift right into carry
LSL 1000 1DD0 100- ---- Logical shift left into carry
LSR 1000 1DD0 010- ---- Logical shift right into carry
GTB 1000 1DD0 001- ---- Convert gray code to binary code

BEQ 110A AAAA AAAA 0000 Branch if equal
BNE 110A AAAA AAAA 0001 Branch if not equal
BCS/BHS 110A AAAA AAAA 0010 Branch if carry set/higher or the same (uns)
BCC/BLO 110A AAAA AAAA 0011 Branch if carry clear/lower (uns)
BMI 110A AAAA AAAA 0100 Branch if negative
BPL 110A AAAA AAAA 0101 Branch if positive or zero
BVS 110A AAAA AAAA 0110 Branch if overflow set
BVC 110A AAAA AAAA 0111 Branch if overflow clear
BHI 110A AAAA AAAA 1000 Branch if higher (uns)
BLS 110A AAAA AAAA 1001 Branch if lower or same (uns)
BGE 110A AAAA AAAA 1010 Branch if greater than or equal (sgn)
BLT 110A AAAA AAAA 1011 Branch if less than (sgn)
BGT 110A AAAA AAAA 1100 Branch if greater than (sgn)
BLE 110A AAAA AAAA 1101 Branch if less than or equal (sgn)
BAL/B 110A AAAA AAAA 1111 Branch always
BL 111A AAAA AAAA ---- Branch and link PC+1 to GCU stack

ZEQ 1001 ---- ---- 0000 Sleep if equal
ZNE 1001 ---- ---- 0001 Sleep if not equal
ZCS/ZHS 1001 ---- ---- 0010 Sleep if carry set/higher or the same (uns)
ZCC/ZLO 1001 ---- ---- 0011 Sleep if carry clear/lower (uns)
ZMI 1001 ---- ---- 0100 Sleep if negative
ZPL 1001 ---- ---- 0101 Sleep if positive or zero
ZVS 1001 ---- ---- 0110 Sleep if overflow set
ZVC 1001 ---- ---- 0111 Sleep if overflow clear
ZHI 1001 ---- ---- 1000 Sleep if higher (uns)
ZLS 1001 ---- ---- 1001 Sleep if lower or same (uns)
ZGE 1001 ---- ---- 1010 Sleep if greater than or equal (sgn)
ZLT 1001 ---- ---- 1011 Sleep if less than (sgn)
ZGT 1001 ---- ---- 1100 Sleep if greater than (sgn)
ZLE 1001 ---- ---- 1101 Sleep if less than or equal (sgn)
ZAL/Z 1001 ---- ---- 1111 Sleep always

RST 1000 0011 0000 ---- Clear sleep history and flags
NOP 1000 0010 1000 ---- No operation
WAK 1000 0010 0100 ---- Wake all NPs up by one level.
IMG 1000 0010 0010 ---- Acquire a new sample for the ADC
BX 1000 0010 0001 ---- Branch and exchange
ROM 1000 0001 BB-- ---- Switch program ROMs (limited to 512 instructions each)
OUT 101W WWWS SSSS SSSS Output data source on column data bus
TINTL 1000 0100 LLLL LLLL Store the low byte of the ADC integration time register.
TINTH 1000 0101 HHHH HHHH Store the high byte of the ADC integration time register.
TRSTL 1000 0110 LLLL LLLL Store the high byte of the ADC reset time register.
TRSTH 1000 0111 HHHH HHHH Store the low byte of the ADC reset time register.

R:row D:destination register L:low byte I:immediate value W:output row
C:column S:data source H:high byte A:program address B:ROM bank

Table A.1: Instruction Set

40

Name Binary Description

X 0 00RR RCCC X Memory
Y 0 01RR RCCC Y Memory
Z 0 10RR RCCC Z Memory

V0 0 1100 0000 Variable 0
V1 0 1100 0001 Variable 1
V2 0 1100 0010 Variable 2
V3 0 1100 0011 Variable 3
V4 0 1100 0100 Variable 4
V5 0 1100 0101 Variable 5
V6 0 1100 0110 Variable 6
V7 0 1100 0111 Variable 7

R0 0 1101 0000 Register 0
R1 0 1101 0001 Register 1
R2 0 1101 0010 Register 2
R3 0 1101 0011 Register 3

N 0 1110 0001 Data from the NP to the north
S 0 1110 0010 Data from the NP to the south
W 0 1110 0100 Data from the NP to the west
E 0 1110 1000 Data from the NP to the east

R0 Indirect 0 1111 0000 Data from the XYZ memory addressed with R0
R1 Indirect 0 1111 0001 Data form the XYZ memory addressed with R1
R2 Indirect 0 1111 0010 Data form the XYZ memory addressed with R2
R3 Inidrect 0 1111 0011 Data form the XYZ memory addressed with R3

SR 0 1111 0100 Status register
RCR 0 1111 1000 Row/column register
IMM 1 IIII IIII Immediate value

R:row D:destination register L:low byte I:immediate value W:output row
C:column S:data source H:high byte A:program address B:ROM bank

Table A.2: Data Sources

41

Appendix B

Toolchain Commands

B.1 NP Assembler

usage: npasm [-h] [-a] [-b] [-l] [-n name] [-o outdir] [-p] [-r] [-v] infile

Generates binary , VHDL , and other useful output from an input neighborhood

processor assembly file.

positional arguments:

infile Path to the input assembly file.

optional arguments:

-h, --help show this help message and exit

-a, --ascii Save an ascii file of the binary program instructions.

-b, --bin Save a binary file containing the program

instructions.

-l, --list Save a listing file containing the original assembly ,

instruction , and memory location in one document.

-n name , --name name Specify a filename for the output files. Defaults to

the input filename.

-o outdir , --out outdir

Specify path to store the output files in. Defaults to

the working directory.

-p, --pre Save the output of the preprocessor after #define

statements are populated and numeric arguments are

converted.

-r, --rtl Save a VHDL file with a ROM containing the program

instructions.

-v, --verbose The amount of output to display in the terminal.

Defaults to no output , and increases with additional

-v, e.g. -vvvvv.

42

Appendix C

Packaging and Pinout

Table C.1: Package pinout and IO buffers.

Pin # Side Pad Name

1 West not connected
2 West pad col sel 0
3 West pad col sel 1
4 West pad col sel 2
5 West pad col sel 3
6 West pad adc ramp rst
7 West pad adc rst
8 West pad reg en
9 West pad active
10 West pad vdd w
11 West pad gnd w
12 West pad mode 0
13 West pad mode 1
14 West pad dgnd w
15 West pad dvdd w
16 West pad agnd
17 West pad qgnd
18 West pad adc vrst
19 West pad adc vramp
20 West pad adc vbias
21 West pad qvdd

continued on the following page

43

Pin # Side Pad Name

22 West pad avdd
23 West pad gpin 0
24 West pad gpout 0
25 West not connected
26 South pad adc bypass
27 South pad adc counter 0
28 South pad adc counter 1
29 South pad adc counter 2
30 South pad adc counter 3
31 South pad adc counter 4
32 South pad adc counter 5
33 South pad adc counter 6
34 South pad adc counter 7
35 South pad vdd s
36 South pad gnd s
37 South pad pir clk in
38 South pad pir clk out
39 South pad dgnd s
40 South pad dvdd s
41 South pad scnp sclk
42 South pad scnp se
43 South pad scnp si
44 South pad scnp so
45 South pad dff clk
46 South pad dff div4
47 South pad dff div8
48 South pad dff a
49 South pad dff b
50 South pad dff c
51 East not connected
52 East pad ir 00
53 East pad ir 01
54 East pad ir 02
55 East pad ir 03
56 East pad ir 04
57 East pad ir 05
58 East pad ir 06
59 East pad ir 07
60 East pad vdd e
61 East pad gnd e

continued on the following page

44

Pin # Side Pad Name

62 East pad msp lfclk
63 East pad msp lfclk
64 East pad dgnd e
65 East pad dvdd e
62 East pad msp lfclk
67 East pad ir 09
68 East pad ir 10
69 East pad ir 11
70 East pad ir 12
71 East pad ir 13
72 East pad ir 14
73 East pad ir 15
74 East pad msp rst
75 East not connected
76 North pad pc 0
77 North pad pc 1
78 North pad pc 2
79 North pad pc 3
80 North pad pc 4
81 North pad pc 5
82 North pad pc 6
83 North pad pc 7
84 North pad pc 8
85 North pad vdd n
86 North pad gnd n
87 North pad msp hfclk
88 North pad msp hfclk
89 North pad dgnd n
90 North pad dvdd n
91 North pad col data 0
92 North pad col data 1
93 North pad col data 2
94 North pad col data 3
95 North pad col data 4
96 North pad col data 5
97 North pad col data 6
98 North pad col data 7
99 North pad col we
100 North pad pir rst

45

Bibliography

[1] E.R. Fossum. CMOS image sensors: electronic camera-on-a-chip. Electron De-

vices, IEEE Transactions on, 44(10):1689–1698, 1997.

[2] S. Kleinfelder, S. Lim, X. Liu, and A. El Gamal. A 10,000 frames/s 0.18 µm

CMOS digital pixel sensor with pixel-level memory. In Solid-State Circuits Con-

ference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International,

pages 88–89, 2001.

[3] T. Komuro, S. Kagami, and M. Ishikawa. A dynamically reconfigurable SIMD

processor for a vision chip. Solid-State Circuits, IEEE Journal of, 39(1):265–268,

2004.

[4] Q. Lin, W. Miao, W. Zhang, Q. Fu, and N. Wu. A 1,000 Frames/s Programmable

Vision Chip with Variable Resolution and Row-Pixel-Mixed Parallel Image Pro-

cessors. Sensors (Basel), 9(8):5933–5951, 2009.

[5] H. Zhu and T. Shibata. A real-time image recognition system using a global

directional-edge-feature extraction VLSI processor. In ESSCIRC, 2009. ESS-

CIRC ’09. Proceedings of, pages 248–251, 2009.

46

[6] W. Zhang, Q. Fu, and N. Wu. A programmable vision chip based on multiple

levels of parallel processors. Solid-State Circuits, IEEE Journal of, 46(9):2132–

2147, 2011.

[7] A. Verdant, A. Dupret, P. Villard, L. Alacoque, H. Mathias, and F. Delgehier.

A 120 µw 240 × 110 @ 25fps vision chip with ROI detection SIMD processing

unit. In Circuits and Systems (ISCAS), 2013 IEEE International Symposium

on, pages 2412–2415, 2013.

[8] H. Zhu and T. Shibata. A real-time motion-feature-extraction image processor

employing digital-pixel-sensor-based parallel architecture. In Circuits and Sys-

tems (ISCAS), 2012 IEEE International Symposium on, pages 1612–1615, 2012.

[9] H. Yamasaki and T. Shibata. A real-time image-feature-extraction and vector-

generation VLSI employing arrayed-shift-register architecture. Solid-State Cir-

cuits, IEEE Journal of, 42(9):2046–2053, 2007.

[10] J.M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients.

Signal Processing, IEEE Transactions on, 41(12):3445–3462, 1993.

[11] A. Said and W.A. Pearlman. A new, fast, and efficient image codec based on

set partitioning in hierarchical trees. Circuits and Systems for Video Technology,

IEEE Transactions on, 6(3):243–250, 1996.

[12] M. Yagi, M. Adachi, and T. Shibata. A hardware-friendly soft-computing algo-

rithm for image recognition.

[13] K. Sayood. Introduction to Data Compression. Elselvier, 225 Wyman Street,

Waltham, MA, 4th edition, 2012.

47

[14] K. Ito, B. Tongprasit, and T. Shibata. A computational digital pixel sensor

featuring block-readout architecture for on-chip image processing. Circuits and

Systems I: Regular Papers, IEEE Transactions on, 56(1):114–123, 2009.

[15] A. Nelliparthi. A 2-D processor array for massively parallel image processing.

Master’s thesis, University of Nebraska-Lincoln, Lincoln, Nebraska, December

2011.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	Fall 12-6-2013

	CMOS Smart Camera with Focal Plane Neighborhood-Parallel Image Processing
	Joseph A. Schmitz

	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of CMOS Imaging
	Parallel Processing in Smart Cameras
	Motivation
	Scalability
	Programmability
	Power Consumption
	Design Trade-offs

	Smart Camera Architecture
	Comparison to Original Architecture
	Added Features
	Removed Features

	RTL Design
	Overview
	NP
	GCU
	Test Structures
	Operating Modes

	Synthesis
	Overview
	Timing Constraints
	Hierarchical Synthesis
	Synthesis Results

	Physical Layout
	Overview
	Metal Layer Allocation
	Power Grid
	Input and Output Pads
	Analog Routing
	Standard Cell Placement
	Clock Tree Synthesis
	Digital Routing
	Signoff and Export

	Simulation and Testing
	Assembly Language Programming
	FPGA Testing
	Post-Layout Simulation

	Conclusion and Future Work
	Future Work
	NP Area Reduction
	Improved Pixel Memory
	Power Consumption
	Switchable ADC Bias

	Conclusion

	Instruction Set Reference
	Toolchain Commands
	NP Assembler

	Packaging and Pinout
	Bibliography

