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Photonic crystals (PhCs) have wavelength scale periodically alternating refractive 

indexes. Photon in such structures is subject to strong scattering, experiencing 

distinctive redistribution of energy, yielding interesting properties such as 

photonic band gaps, field enhancement, strong nonlinear optic effects and photon 

confinement. The modified fields also alter the propagation of light beams. By 

proper setup, super collimation could be realized in PhCs where beams can travel 

long distance without spreading, while no waveguide structure is used. 

Redirection of light can extend the refraction to negative range, without violating 

physics rules. This distinguished phenomenon has been envisioned as the core 

mechanism for super lens to enable sub-wavelength focusing and imaging.  

 

The objective of this work is to theoretically model and analyze both two 

dimensional and three dimensional photonic crystals, esp. with anisotropic optical 

materials. Attention has been focused on developing of mathematical treatment 

for calculating the dispersive relationship and density of states. The plane wave 

expansion method is employed as an analysis tool.  

 



In two dimensional photonic band gap structures, the tunable character is realized 

by infiltration of liquid crystal. A uniaxial crystal model is employed in the 

calculation. The first part deals with the design of a refraction tuning functionality. 

Choosing of lattice and structure parameters is discussed. The scheme is 

simulated with frequency difference time domain (FDTD) method. The second 

part lays more emphasis on the role of anisotropy introduced in the dispersive 

relationship and local density of states, by in-plane directional tuning. 

 

The complicacy of three dimensional photonic crystals poses large barrier for 

straightforward appreciation. An analytical method is demonstrated for 

identification of refraction. The tool is implemented in the following investigation 

of three dimensional tunable structures. The effective refractive index is thereby 

obtained. The tuning of dispersion relationship is visualized. 

 

 

 

 

 

 

 

 

 

 



i 
 

Acknowledgements 

Foremost, I would like to express my deep and sincere gratitude to my advisor, Professor 

Yongfeng Lu, whose academic experience and hard working attitude have been of great 

value to me. His patience and kindness reached me through his understanding and 

encouraging guidance.  

I wish to express my warm and sincere thanks to my committee members, Professor 

Dennis R. Alexander and Professor Ming Han, for their detailed and constructive 

comments, and important support throughout this work. 

I owe my most sincere gratitude to Dr. Hao Wang, who gave me the opportunity to work 

with her and gave me untiring help during my whole research here. I would like to 

acknowledge her contribution on the experimental support of this project, with her 

excellent engineering skills and rich material experience.  

I would like particularly to acknowledge the contribution of Dr. Zhenyu Yang and Dr. 

Changbao Ma. They have provided convenient access and expertise on simulation work.   

I want to specially thank Dr. Hao Wang, Dr. Yunshen Zhou and Dr. Yaoxuan Han for 

lending untiring help and support during my difficult moments. My sincere thanks also 

go to all my colleagues in the Laser-Assisted Nano-Engineering Lab. Thank you for your 

all time companion and support. 

And to my family, whom I love best, to them I can say least. Thank you. 

 



ii 
 

 
 

TABLE OF CONTENT 

CHAPTER 1 INTRODUCTION .................................................................... 1 

1.1 BACKGROUND AND MOTIVATION ................................................................... 2 
1.2 THESIS OUTLINE ............................................................................................. 4 
REFERENCES ......................................................................................................... 6 

CHAPTER 2 BACKGROUND ...................................................................... 7 

2.1 DEFINITION OF PHOTONIC CRYSTALS ............................................................. 8 
2.2 ASPECT OF FABRICATION .............................................................................. 12 
2.3 THEORETICAL ANALYSES ............................................................................. 16 

2.3.1 Plane Wave Expansion Method............................................................. 17 
2.3.2 Analysis in hexagonal lattice................................................................. 20 
2.3.3 Density of states .................................................................................... 22 

REFERENCES ....................................................................................................... 25 

CHAPTER 3 TUNABILITY IN TWO-DIMENSIONAL PHCS .................. 32 

3.1 INTRODUCTION ............................................................................................. 34 
3.1.1 Refraction in PhCs ................................................................................ 34 
3.1.2 Achieving tunability............................................................................... 38 

3.2 TWO-DIMENSIONAL TUNABLE PHC WITH NEMATIC LC INFILL ...................... 40 
3.3 IN-PLANE TUNING OF ANISOTROPIC REFRACTIVE INDEX ................................ 46 
REFERENCES ....................................................................................................... 58 

CHAPTER 4 ANALYSES IN THREE-DIMENSIONAL PHCS .................. 62 

4.1. REFRACTION ANALYSIS IN 3D PHC .............................................................. 64 
4.3 TUNABLE THREE-DIMENSIONAL PHCS .......................................................... 71 
REFERENCES .......................................................................................................... 82 

CHAPTER 5 CONCLUSIONS .................................................................... 83 

5.1 SUMMARY ..................................................................................................... 84 
5.2 FUTURE WORK .............................................................................................. 85 
REFERENCE......................................................................................................... 87 

APPENDICES.............................................................................................. 88 

A. CALCULATION OF PHOTONIC BAND DIAGRAM FOR 3D FCC STRUCTURES USING 

OPTIFDTD7 ....................................................................................................... 88 
B. GENERATION OF EFCS AND EFSS .................................................................. 92 
REFERENCE......................................................................................................... 94 



iii 
 

LIST OF FIGURES 

FIGURE 2.1 (a) A Bragg mirror composed of two alternatively arranged media, and its (b) 

dispersive relationship diagram. Band gaps are located on the boundaries of Brillouin 

zones. The red straight line indicates the dispersion relationship in otherwise homogenous 

medium. 

………..……………………………………………...…………………………………….9 

 

FIGURE 2.2 Natural photonic nanostructures: (a) scales on butterfly wings; (b) the fish 

fin gets metallic luster from multilayer of cytoplasm and crystals [19]; (c) double-layer 

calcite crystals shells on the alga Calyptrolithophora papillifera [20]; (d) an opal. 

…....……………………………………...………………………….................................13 

 

FIGURE 2.3 (a) a two dimensional hexagonal PhC with air holes in silicon backbone; 

Dotted lines outlines the first Brillouin zone in the inverse space, with high symmetry 

points Γ, K and M labeled. It is also a hexagon, rotated by 30°. (b) The first six bands are 

shown in the diagram for TM mode. A complete band gap of (∆ω/ωcenter) around 52.3% 

is identified. 

…....……………………………………...………………………….................................20 

 

FIGURE 2.4 EFCs of the first band of TM mode for the structure in fig. 2.3. 
…....……………………………………...………………………….................................22 

 

FIGURE 2.5 DOS in the structure demonstrated in fig. 2.3. The result is presented as a 

histogram. 

…....……………………………………...………………………….................................24 

 

FIGURE 3.1 The purple curves are EFCs of a silicon-backbone-air-hole PhC with square 

lattice. The filling ratio is r/a = 0.4. The 0.182 EFC in air is given in red dotted circle. 

The blue light cone is collimated in the PhC.  

…....……………………………………...………………………….................................35 

 

FIGURE 3.2 Beam incident from air enters the hexagonal PhC on the left, at an angle of 

45°. The 0.2765 EFC in air is given in red dotted circle. The refraction vg is deflected 

downwards, pointing to the opposite direction with regard to the horizontal normal line.  

…....……………………………………...………………………….................................37 

 

FIGURE 3.3 Anisotropy grows in the spheroid of LC dielectric permittivity as the E filed 

rises. A prolate spheroid is given for the positive axial (∆n > 0) model.  

…....……………………………………...……………………………………………….39 

 

FIGURE 3.4 Band gap maps for air holes in (a) square and (b) hexagonal (triangular) 

lattice, with backbone (green) index 3.38. The definition of TE and TM is contrary to 

those in this thesis) [32].  

…....……………………………………...………………………….................................41 

 



iv 
 

FIGURE 3.5 On the left is the top view of a two dimensional hexagonal PhC. Scheme for 

vertical tuning is shown on the right picture. Electric field is applied along z direction.  

…....……………………………………...………………………………….....................42 

 

FIGURE 3.6 The first two photonic bands of Ge based 2D PhCs with r/a equals (a) and 

(b) 0.40, (c) and (d) 0.44, (e) and (f) 0.48. Green, black and red represent the refractive 

index: 1.6, 1.8 and 2.2, respectively; TE mode on the left, TM right.  

…....……………………………………...………………………….................................43 

 

FIGURE 3.7 EFCs of (a) the first band of TM mode; positive refraction (b) the second 

band of TE mode; negative refraction. LC index is 1.8, with filling ratio 0.48. Red arrows 

indicate the refraction directions.  

…....……………………………………...………………………….................................45 

 

FIGURE 3.8 FDTD results of (a) positive refraction, (b) negative refraction, and (c) total 

reflection in hexagonal PhC slab with Ge background.  

…....……………………………………...………………………….................................46 

 

FIGURE 3.9 In-plane tuning of LC permittivity; The oblate index spheroid rotates in the 

plane.  

…....……………………………………...………………………………….....................47 

 

FIGURE 3.10 (a) The 6-fold rotational symmetry is broken in external E field. (b) TM 

diagrams diverge between the two k paths, while (c) TE ones remain the same.  

…....……………………………………...………………………………….....................48 

 

FIGURE 3.11 EFCs of TM modes in the first and second bands, (a) without external E 

field; (b), (c) with E field applied along Γ-K and Γ-M, respectively.  

…....……………………………………...………………………………….....................52 

 

FIGURE 3.12 (a) DOS and (b-e) LDOS calculated for two dimensional hexagonal PhC at 

(b) central area of the holes, (c) center of the triangle formed by 3 neighboring holes, (d, e) 

mid points of two different sides of the triangle.  

…....……………………………………...………………………………….....................56 

 

FIGURE 4.1 The air-cavity FCC lattice in silicon background with r/a = 0.353: (a) the 

structure in real space and (b) the first Brillouin Zone with a shape of a truncated 

octahedron.  

…....……………………………………...………………………….................................65 

 

FIGURE 4.2. The EFSs of (a) the first, (b) the third, and (c) the fifth bands covering the 

first Brillouin zone for isotropic inverse opal structure, with frequencies being 

differentiated by the pseudo color codes. In the first band, the outgoing direction 

generally coincides with rising frequency, while this trend reverses in the third band. (d) 

The band diagrams of the first 6 bands are shown, along k path X-U-L-Γ-X-W-K.  

…....……………………………………...………………………….................................66 



v 
 

FIGURE 4.3.  (a) The schematic diagram of light incidence on an FCC photonic crystal 

interface of (111). The arrow denotes the incident beam, lying in the incident plane 

(denoted by the yellow plane). (b) A cross section of the dissected 3D EFSs in the first 

band by the incident plane (denoted by the green plane).  

…....……………………………………...………………………….................................68 

 

FIGURE 4.4. 2D EFCs in plane (a) (111) and (b) (123) of the third band; assuming the 

horizontal direction lies in the interface, negative refractions exist with respect to the 

dashed normal vector; the normal lines are denoted by black dashed lines; the blue arrows 

show projection of refractions on the incident plane.  

…....……………………………………...………………………….................................69 

 

FIGURE 4.5 effective refractive index vs. (a) the frequency with fixed incident angle of 

45°, and (b) incident angle at frequency 0.5886, in the third band.  

…....……………………………………...………………………….................................70 

 

FIGURE 4.6 LC infill inverse opal structure; silicon background with r/a = 0.353. The 

uniaxial LC is rotated to sit normally in the computation coordinates.  

…....……………………………………...………………………….................................72 

 

FIGURE 4.7 (a) Band diagram of LC-infill-silicon-backbone FCC without external 

electric field. (b) The exhaustive sampling in half FBZ shows no band gap exists in the 

first six bands.  

…....……………………………………...………………………….................................73 

 

FIGURE 4.8 The EFSs of the first band of a series of refractive indices: (a) (1.9, 1.77), (b) 

(2.1, 1.7), (c) (2.4, 1.62), and (d) (2.7, 1.5); the electric field is applied along the 

orientation of (123). The compressing effect is clearly revealed.  

…....……………………………………...………………………….................................74 

 

FIGURE 4.9 The EFCs are on cross section (100), (111), and (123), from left to right. 

External electric field is applied along the orientation of (123) with saturation strength. 

(a-c) untuned EFCs in the first band; (d-f) tuned in the first band; (g-i) untuned in the 

third band; (j-l) tuned in the third band.  

…....……………………………………...………………………….................................80 

 

FIGURE 4.10 The EFS of frequency 0.24 in the first band with E field applied along 

different directions: (a) (100), (b) (110), (c) (111), and (d) (123).  

…....……………………………………...………………………….................................80 

 

FIGURE A.1 Crystal lattice properties dialog box. 

…....……………………………………...………………………….................................87 

 

FIGURE A.2 PWE simulation parameters dialog box. 

…....……………………………………...………………………….................................88 



vi 
 

FIGURE A.3 Illustration of the FBZ of FCC structure with high symmetry points. To edit 

the k path, select “Add” in the User defined list to edit the terminal points and step size. 

…....……………………………………...………………………….................................91 

 

FIGURE A.4 Hybrid band structure of FCC lattice (mesh 16×16×16). 

…....……………………………………...………………………….................................91 

 

FIGURE B.1 Comparison of sampling domains in calculation of band diagram, EFCs in a 

two-dimensional structure and EFSs in a three-dimensional structure. 

…....……………………………………...………………………….................................92 

 

FIGURE B.2 (a) The second band EFCs generated by function ListContourPlot for a 

Hexagonal 2D PhC. (b) the first band EFSs visualized by function ListContourPlot3D 

for a FCC 3D PhC.  Both processes were in implemented in Wolfram Mathematica 7. 

…....……………………………………...………………………….................................94 
  



vii 
 

NOMENCLATURE

a lattice constant 

B magnetic field 

c light speed in vacuum 

D electric displacement field 

E electric field 

G reciprocal lattice vector 

H magnetizing field 

h magnitude of magnetizing field 

i imaginary unit 

J free current 

k, k wave vector 

l index for the two polarizations 

n refractive index 

Q matrix for the rotation operator 

r radius of a sphere or a circle 

R real lattice vector 

t time 

T
 transpose operation superscript 

vg group velocity 

x location in real space 

x,y,z Cartesian coordinates 

ε dielectric permittivity 

   density of free charge 

θ incident angle 

ρ density of states 

σ unit field vector 

ω circular frequency 

(’) (apostrophe superscript) indicator 

of another set of a variable of one kind
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INTRODUCTION   
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1.1 Background and Motivation 

The wave behavior in periodic structures has been of particular interest since the 

advent of Bloch wave theory. In his book of „wave propagation in periodic 

structures‟, Léon Brillouin systematically analyzed their distinctive characters [1]. 

Much different from the transmission in homogenous media, the destructive and 

constructive superposition caused by periodic scattering leads the dispersion 

diagram to disconnected bands. The frequency disconnection locating around the 

boundaries of Brillouin zones are pictorially termed as band gaps, implying the 

wave within the frequency range cannot propagate in the structure. The theory 

was applied successfully in describing the phononic and electronic systems, 

unprecedentedly unraveled many puzzles. In electronic systems, it has largely 

unveiled the mechanism of conductors, insulators and semiconductors. The 

triumph is not only celebrated in electronic materials. The Bloch theory concepts 

found their counterparts in analyzing electromagnetic waves. The frequency 

windows in which no mode of light could be supported is accordingly termed as 

photonic band gaps (PBGs). Structures with complete, incomplete and no band 

gap are the analogy of insulators, semiconductors and conductors. The idea of 

manipulating photon as electron has been of great attraction. What makes it even 

fascinating is, in electronic systems, the many-body interaction is inevitable. 

Therefore the strict solution to a system is often subject to its complexity, and 

usually approximation has to be introduced. While for photon system, the 

interaction is usually negligible, hence strict mathematical treatment are relatively 

easier and more desirable, which in turn greatly lowers the barrier for designing 
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structures with novel functionality. As for the practical application, no interaction 

implies the photonic device could have robust performance.  

 

With this in mind, the photonic crystals (PhCs) have triggered intensive and 

extensive research interests, since Yablonovitch coined the term photonic crystal 

around two decades ago [2]. Great efforts have been spent on developing 

functional structures and devices for confining, guiding, and coupling light in sub-

wavelength scale, aiming at versatile applications. Innovations have been made in 

developing PhC lasers, PhC optic fibers, micro cavities, high effect light emission 

diodes, performance enhanced solar cells and many advanced components for 

optical communication, such as polarization splitters, switches, multiplexers, etc. 

With the help of PhCs, devices could advance to a new level in terms of 

compactness, performance and reliability. In the mean time, the rich physics 

underlying these functionalities has become a great part of the hot topics in 

modern physics, such as negative refraction, super collimation, high harmonica 

generation, defect modes, disorder structures, optical localization, optical soliton, 

ultrafast phenomena, near field effects, and quantum optics, etc. To some extent, 

the floodgate holding the next generation photon based science and technology 

has been opened.   

 

On the other hand, it is highly desirable to realize real-time and on-demand 

tunability of PhCs for applications in optical devices, such as switches, sensors, 

lasers and displays. Liquid crystals and dyes have been proposed to infiltrate in 



4 
 

 

the PhCs, where temperature and/or electro-optical tuning is applied [3,4]. 

Ferromagnetic materials have also been discussed, with the change of external 

magnetic field [5,6]. Schemes based on structure controlling are recently proposed, 

either by mechanical force, named mechanically tunable PhC (MTPC) [7], or by 

soft polymeric materials which are sensitive to pH value and/or temperature 

[8,9,10]. In this work, the nematic liquid crystal is proposed as infiltration in the 

photonic band gap structures. External electric field is applied to modulate the 

orientation and alignment of the liquid crystal molecules.  

 

It is essential to get an understanding of light propagation and field distribution in 

PhCs, to efficiently and systematically design and implement these structures. The 

main goal of this research is to develop efficient theoretical analysis procedures. 

A general method based on the plane wave expansion (PWE) theory is introduced 

to predict the light refraction and transmission. Comparing with the popular finite 

difference time domain simulation (FDTD), it excels in significantly reduced 

memory and computation cost. The tuning effects are analyzed, and a refraction 

controlling scheme is theoretically demonstrated. 

 

1.2 Thesis Outline 

The work is arranged as follows.  The background and motivation are briefly 

stated in Chapter One, along with the outline. In Chapter Two, several aspects 

about the PhCs are introduced, including the definition, fabrication method, and a 

general description of the PWE method. Modeling of anisotropy is discussed in 
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Chapter Three. This part focuses on the tuning effect in two dimensional 

structures. Design of refraction tuning is achieved and demonstrated. The 

anisotropy is considered in a full three dimensional model in Chapter Four, with 

emphasis on refraction analysis. Concluding remarks are made in Chapter Five.  

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

References 

[1]   L. Brillouin, Wave propagation in periodic structures, Dover Pubns, 2003. 

[2]   E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics 

and electronics," Physical review letters, vol. 58, 1987, p. 2059–2062. 

[3]   S. Leonard, J. Mondia, H. van Driel, O. Toader, S. John, K. Busch, A. 

Birner, U. Gösele, and V. Lehmann, "Tunable two-dimensional photonic 

crystals using liquid crystal infiltration," Physical Review B, vol. 61, 2000, 

pp. R2389-R2392. 

[4]   K. Busch and S. John, "Liquid-Crystal Photonic-Band-Gap Materials: The 

Tunable Electromagnetic Vacuum," Physical Review Letters, vol. 83, 1999, 

pp. 967-970. 

[5]   N. Yamamoto, S. Noda, and A. Sasaki, "New realization method for 

three-dimensional photonic crystal in the optical wavelength region: 

Experimental Consideration," Jpn. J. Appi. Phys. Vol, 1997. 

[6]   J. Wijnhoven and W. Vos, "Preparation of photonic crystals made of air 

spheres in titania," Science, 1998. 

[7]   W. Park and J. Lee, "Mechanically Tunable Photonic Crystals," Optics 

and Photonics News, vol. 20, 2009, p. 40. 

[8]   M. Honda, T. Seki, and Y. Takeoka, "Dual Tuning of the Photonic Band-

Gap Structure in Soft Photonic Crystals," Advanced Materials, vol. 21, 

2009, pp. 1801-1804. 

[9]   X. Xu, A.V. Goponenko, and S.A. Asher, "Polymerized PolyHEMA 

photonic crystals: pH and ethanol sensor materials," Journal of the 

American Chemical Society, vol. 130, 2008, pp. 3113-9. 

[10]   A.C. Arsenault, D.P. Puzzo, I. Manners, and G.A. Ozin, "Photonic-crystal 

full-colour displays," Nature Photonics, vol. 1, 2007, pp. 468-472.  

 

 

 



7 
 

 

 

 

 

CHAPTER 2 

BACKGROUND 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

2.1 Definition of Photonic Crystals 

PhCs are structures consisting of periodically varied materials, which thereby 

modulate the light wave by interaction with its electric and/or magnetic field. In 

most situations the media vary in dielectric permittivity because the permeability 

for general optical materials is usually small in difference, and the magnetic effect 

is often negligible comparing with the electric effect. Though, in some cases, the 

permeability is considered as dealing with magneto-optic materials [1-3]. The 

term, crystal, is an analogy to electronic materials, to show they have a 

resemblance in lattice structures. The lattice may repeat itself in one dimension, 

two dimensions or three dimensions, and PhCs are categorized accordingly.   

 

A stack of alternating layers of two or more different materials can be regarded as 

1D PhC, which is also termed as super lattice. A Bragg mirror is a case of such 

kind. In Fig. 2.1(a), alternatively in the horizontal direction, two different layers 

pictured in black and white repeat themselves, which are of dielectric constants ε1 

and ε2, with thickness of d1 and d2, respectively. A two-layer-pair forms a unit cell, 

with the lattice constant a = d1 + d2. The effect of such device can be simply 

explained by interference of incident and reflective waves on each interface. For 

particular range of wave length, the destructive superposition inside the device 

eliminates the wave field. The structure then blocks the transmission, in other 

words, it appears highly reflective to the incidence. Detailed analysis gives its 

dispersive relation as shown in Fig. 2.1(b).  
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Figure 2.1 (a) A Bragg mirror composed of two alternatively arranged media, 

and its (b) dispersive relationship diagram. Band gaps are located on the 

boundaries of Brillouin zones. The red straight line indicates the dispersion 

relationship in otherwise a homogenous medium. 

 

Comparing with the dispersion relation in a homogenous medium, the diagram is 

no longer a straight line. Frequency gaps open up when the wave vectors meet the 

condition k = nπ/a. Continuous segments between these locations form photonic 

bands. These particular k points are the boundaries of Brillouin zones. Within the 

frequency gaps, there is no optical mode supporting the propagation light. For this 

reason the PhCs are also called photonic band gap structures. The existence of 

band gaps makes the PhCs perfect reflectors for light with corresponding 

frequencies. On the other hand, by introducing defects into the elsewhere perfect 

lattice, defect modes can be created within the band gaps. For these modes, light 
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waves are tightly confined in the vicinity of the defects, i.e. the modes are 

localized, enabling straightforward applications including high Q cavities and 

waveguides [2-8]. Further, the confinement and concentration of optical field in a 

sub-wavelength scale prompts the enhancement of nonlinear effects, spontaneous 

emission [9-17]. 

 

It is well established that the characteristics of photonic structures and composite 

materials are readily reflected in the band diagram. Such characteristics include 

the types of lattice symmetry, dielectric permittivity contrasts of the composite 

materials, filling factor (volume ratio) of each primitive cell, and other topological 

factors of the building blocks of the structure‟s unit cell.  

 

One of the most important characters of the propagation of light in a dispersive 

medium is the speed of propagation, which is defined as group velocity, 

          (2.1) 

where vg is the group velocity, and ω is the frequency, a function of wave vector k.  

In the band diagram of one-dimensional PhCs, the definition could be 

geometrically regarded as the slope of the dispersive curves. For homogenous 

medium, it is invariant, standing for a constant propagation speed. While the case 

in band gap structures turns out much different. Particularly, the diagram flattens 

in the proximity of Brillouin zone boundaries, in the mean time, forming a ceiling 

or floor of a band, called the band edge. According to (2.1), the wave propagation 

slows down and tends to freeze. Slow and ultra slow light have been intensively 
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studied, and numerous practical applications have been proposed. The slowed 

propagation allows the realization of delay lines, optical memory, and buffers for 

light signals. Optical devices also benefit from the spatial concentration to be 

made in more compact size. The light-matter interactions can be enhanced owing 

to the accumulation of field intensity, such as nonlinearity, optical absorption, 

gain, and magnetic Faraday rotation, etc. [17,18].  

 

The resemblance of band diagram between photonic crystals and electron 

materials suggests they share similarity in concepts and mathematic methodology 

of treating the two categories. Though, the differences should be noticed that 

make PhCs distinctive. Firstly, the electron is not massless as photon does. The 

dispersion relationship for a free electron is parabolic rather than linear for light. 

Second, the quantum wave function of electron is scalar, while for light wave 

both electric and magnetic fields are vectorial. The extra spatial dimensions 

combined with the correlation between the two fields, multiplies the difficulty of 

the mathematical treating of PBG structures. Polarization becomes a key factor to 

describe such a system. Thirdly, the coupling and interaction among many 

electrons are so complicated that the exact solution for an electron system is 

hardly desirable. Approximation to both modeling and solving the problem is 

inevitable. On the contrary, here lies the beauty of photonic systems. In general 

cases, it is safe to deem photon as interaction free. Therefore, exact mathematic 

solution could be desirable, and the power of computer simulation can be 

employed confidently without the concern of interaction.  Another privilege the 



12 
 

 

PhCs analysis enjoys is that the master equation is scale invariant. For this reason, 

the band diagram remains the same shape despite the simultaneous varying of the 

covariant structure size and the wavelength of the light mode. Great convenience 

is thus endowed for designing and analyzing PhCs for on demand application with 

specified wavelength. In contrast, the mass of electron changes this fascinating 

property, as a result electron systems are usually studied case by case. 

 

2.2 Aspect of Fabrication 

Naturally occurring PBG structures have long been attracting people before the 

term of PhC was brought up. Such delicate structures underlie many beautiful 

insects appearance, such as the dazzling wings of butterflies and the shells of 

beetles. Several kinds of sea algae also have developed layers of such structure on 

their leaves to shield off the damaging ultraviolet rays. In the inorganic world, 

nacre and opal are of such kind possessing the periodic structures in wavelength 

scale. However, the search for an efficient way to fabricate on demand artificial 

PBG structures in two dimensions and three dimensions, in a large scale, remains 

a challenge.  
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Figure 2.2 Natural photonic nanostructures: (a) scales on butterfly wings; (b) the 

fish fin gets metallic luster from multilayer of cytoplasm and crystals [19]; (c) 

double-layer calcite crystals shells on the alga Calyptrolithophora papillifera 

[20]; (d) an opal. 

 

The period of the photonic crystals is usually engineered to be comparable with 

the wavelength of the incident light, which usually covers visible light, infrared 

and/or near infrared and microwave bands, whose wavelength typically ranging 

from hundreds of nanometers to several microns. By this design, the formed PBG 

could be located in these selected frequency ranges. While on the other side of the 

story, a long range of precisely ordered repetitive series have to be kept, making 

the structure periodic, thus, functional. The preparation on such a micro level 

hence is subject to fluctuations in the environment. Despite the difficulties, the 

persistent research and ingenious creativity have been rewarded with many 

promising techniques.  
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While dealing with a bulk material, a physical method is usually employed. For 

this reason, such kind of techniques is also called top-down approaches. Physical 

approaches have proven the efficiency for long wavelength, but not as ideal to be 

practiced in optical spectrum. Two major technique types are employed including 

electro-chemical etching and lithography techniques. The former method is 

mostly adopted in fabrication of two dimensional structures on porous materials. 

It is a relatively mature technique with the capability to fabricate nano-scale holes 

and pillars with high aspect ratios and highly ordered structures. However, this 

method suffers from several restrictions in processing three-dimensional 

structures, where it is usually not as simple and effective. The reports of such 

successful cases are scarce. Meanwhile, the candidates of porous materials with 

good quality are limited in silicon, Al2O3, and InP for quality consideration. The 

other large group of top-down techniques is the lithography. In terms of sources, 

the approaches use electron beam, ion beam, laser, x-ray, ultraviolet and so on. 

Based on different realization, there are generally three types: multi-photon/ink 

direct writing on photo-resist polymers, multi-beam interference, and holographic 

lithography. Of these methods, interference lithography receives more popularity 

for its ability to pattern large area at high speed. Though, it has the disadvantage 

of procedure complexity and lack of control over structure geometry [21]. Good 

news has been heard that the improvement in phase mask optics can avoid some 

parts of these challenges [22-25]. Generally speaking, the efficacy of top-down 

approaches has been proved in preparing long wavelength structures.  
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Chemistry bottom-up techniques offer an alternative perspective. Glancing angle 

deposition (GLAD) is such a technique in which nano-scale structures are 

deposited by particle beams. By controlling the angle of a beam, a variety of 

complex geometry can be obtained. Self-assembly of highly mono-disperse and 

spherical colloidal particles, on the other hand, shows a way of both ease of 

fabrication and low cost. In this process, colloidal particles automatically form a 

highly ordered structure, usually known as artificial opal. However, only the most 

stable structures can be developed into crystallization. One is the face-centered-

cubic (FCC), and random hexagonal close packing (RHCP) the other [26]. There 

has been intense research interest aroused in FCC for the fact that it has the most 

spherical Brillouin zones, which could be a factor vital for the distinct effects of 

super lens and all angle negative refraction [27]. The colloidal crystals can be 

inverted using chemical vapor deposition (CVD) process, and the core could be 

eroded off and stuffed with different materials. Especially, by infiltrating liquid 

crystals or other electro-optical materials, the optical characters are tunable by an 

external electric field, enabling diversified properties. Self–assembly of non-

spherical colloidal particles has also been proposed [28,29]. However the lack of 

long-range order suggests the difficulty to keep them strictly organized. 

Improvements have been heard that the fabrication process could be assisted with 

employing magnetic colonials along with an external magnetic field [26]. 
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2.3 Theoretical Analyses 

To comprehensively understand the property of such a diversified glossary of 

materials with finely arranged nano-scale geometry, the complexity is needless to 

mention. There have been a variety of analytical tools developed over the time, 

dedicated to the study of different aspects of the problem. The frequency 

difference time domain (FDTD) algorithm is a popular modeling technique to 

calculate the evolving and distribution of EM fields in a finite model. By 

obtaining the exact field distribution, spectra of transmission and scattering can 

also be acquired. The technique is intuitive in that it uses E and H fields directly, 

and records their changes in every time step. However, a mesh of decent 

resolution is required with step sizes generally smaller than both the characteristic 

wavelength and the size of the finest model feature. Therefore, for a large 

simulation domain, esp. three- dimensional systems, or with a high- frequency 

wavelength, the simulation is extremely consumptive in terms of computational 

resource and time. Distributed or parallel computation is usually required to 

facilitate the task. 

 

The transfer matrix method (TMM) and the multiple scattering theory (MST) are 

usually employed to calculate scattering spectra, as well for reflection and 

transmission. Both methods use a similar process of passing solutions between 

neighbor layers or cell units. Finite models are used, in which the layers and cell 

units are supposed to be identical. In other words, the structure has perfect 

periodicity. The calculation is in frequency domain. Additionally, MST can be 
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adopted in the calculation of band structure for infinite ideal lattice. Especially, 

when decaying field is taken into account, it has a better performance than plane 

wave expansion method, which is usually used for such purpose. 

 

Plane wave expansion (PWE) method is based on the concept of Bloch waves. 

The core idea is to calculate the dispersive relationship by solving an eigenvalue 

problem in a perfect and infinite large lattice. Therefore, band diagrams can be 

acquired by sampling the dispersive relationship within the first Brillion zone. 

Field components can be obtained in the same process. Thus field distribution for 

each mode could be plotted accordingly. The disadvantage lies in the requirement 

that the materials have positive and relatively constant dielectric permittivity. 

Metals and other highly dispersive materials cannot be efficiently solved for 

divergence problems. Analysis is mainly accomplished by PWE method in this 

thesis. 

 

2.3.1 Plane Wave Expansion Method 

The mathematical treating starts with the Maxwell equations.  

      (2.2) 

where E is the electric field; D is the electric displacement field; B is the magnetic 

field; H is the magnetizing field. x and t indicate the location and time. 

Assumptions have been made that the media are sourceless, free of dispersion and 
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isotropic, thus charge density   = 0 and current density J = 0. Considering the fact 

that the common materials used in PBG structures have very little magnetic effect, 

further restriction could be made as µr =1. So that the equations can be restated as  

  (2.3) 

      (2.4) 

For time harmonic field, the factored expressions are: 

    (2.5) 

By the substitution of  , the decoupled equations can be expressed in 

the following form, 

      (2.6)  

The assumption we made in the beginning simplifies the expression for 

permittivity to a real quantity. However, it could be modified to accommodate the 

simulation with anisotropic media. At this stage, two equations are both eligible 

for further treatment. Either of them can be used to solve the problem, but the 

accuracy and complexity could vary in different cases. For example, for PhCs 

with air spheres embedded in dielectric backbone, E expansion is reported to have 

better convergence. While using H could yield better results for dielectric in air 

[30,31]. Without loss of generality, H field equation in (2.6) is used here. The 

periodic structure requires the solution satisfy the Bloch-Flouquet theorem, 
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     (2.7) 

where k is a wave vector, l indicates two polarizations, h is the magnitude of 

magnetizing field, σ is the unit vector perpendicular to the wave vector, and G 

denotes the set of vectors of the reciprocal lattice. The Bloch modes can be 

considered as a series of plane waves modulated by the spatially repeated 

structure. Meanwhile, similar treatment should be applied to describe the lattice 

dielectric distribution. Expanding  in Fourier series of G gives,  

       (2.8) 

inserting (2.7) and (2.8) into (2.6) leads to an eigenvalue equation, 

   (2.9) 

where apostrophes are used to indicate another set of reciprocal vectors and 

polarizations, which are independent of G and l. The two different sets of vectors 

expand to an infinite matrix. The eigen-equation is then solved for specified k 

vectors. In practical calculation, the expression is truncated to a finite number of 

G and G’ vectors, while ensuring enough accuracy is retained. The main 

procedure to solve (2.9) is to numerically evaluate the Fourier coefficients of (2.8). 

There are two ways to get the results as for isotropic materials [32]. One is the 

direct method in which the inverse dielectric coefficients in real space are 

calculated. In the other way, the coefficients are obtained in real space first, and 

their inverses are taken flowing. Owing to the linearity of both Fourier 

transformation and inversion operations, the two methods should give ultimately 

the same results. However, for truncated (2.9) in practical calculation, the second 

way excels in dramatic improved rates of convergence [33].   
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2.3.2 Analysis in hexagonal lattice 

The following figure is an illustration of a two dimensional PhC, which is 

essentially a hexagonal lattice formed by circular air cells (nair = 1) with radius of 

0.4 µm embedded in silicon backbone (nSi = 3.6). The crystal constant is a = 1 µm.   

 

 

 

Figure 2.3 (a) A two-dimensional hexagonal PhC with air holes in silicon 

backbone; Dotted lines outlines the first Brillouin zone in the inverse space, with 

high symmetry points Γ, K and M labeled. It is also a hexagon, rotated by 30°. (b) 

The first six bands are shown in the diagram for TM mode. A complete band 

gap of (Δω/ωcenter) around 52.3% is identified. 
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The reciprocal lattice is also hexagonal. M and K stands for the high symmetry 

points on the boundary of the first Brillouin zone (FBZ), while Γ is origin. 

Implementation of the PWE method is carried out for transverse magnetic (TM) 

mode, i.e. the H field lies perpendicularly to the structure plane. For transverse 

electric (TE) mode, that would be the E field. The band diagram is calculated by 

sampling the k points in the inverse space along the path Γ-M-K-Γ, which is 

converted to the horizontal axis in Fig. 2.3(b). The diagram is able to show all the 

maxima and minima of the frequency in each band within FBZ, and as a result of 

the periodicity of the reciprocal lattice, the results account for the entire structure.   

 

Band diagram is a quick and direct way to identify the location and size of the 

band gaps. However, in some situations information drawn from a simple path is 

insufficient to characterize the distribution of the dispersion relation in the whole 

reciprocal space. In this case, a full sampling of the area to include the FBZ, or 

equivalently a primitive cell in the reciprocal lattice, is necessary. The method 

starts with meshing of the area with fine grids. The PWE calculation is carried out 

on each grid point. The higher resolution the mesh is deployed, the more detailed 

inform could be revealed. The k points with similar frequency can be 

subsequently linked to form contour lines, which are termed equifrequency 

contours (EFCs).  



22 
 

 

  

Figure 2.4 EFCs of the 1
st
 band of TM mode for the structure in Fig. 2.3. The frequency 

range is coded in colors, indicated by the color bar on the right side. 

 

The EFCs patterns bear the same symmetry elements with the lattice. Further, 

provided the expression of group velocity in (2.1), the direction of gradient is 

always perpendicular to the EFCs. The fact shows the special importance of EFCs 

in analyzing the light propagation.   

 

2.3.3 Density of states 

One of the most important characters of the PBG structures is its ability to 

rearrange the density of states (DOS), to which the different quantum features are 

closely related. The density of states describes the number of wave vectors, i.e. 

optical modes, which can be allowed to exist in a system per interval frequency at 
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each frequency level. Low DOS in photonic band gap leads to bound photon-atom 

states, suppressed photon emission, and strong localization [33-35]. Further, the 

inhibited spontaneous emission rate can reduce the lasing threshold of a laser or 

the decay rate of a dipole emitter [36]. Recent investigation for accurate modeling 

and deep micro-level processing puts a higher demand on acquiring the local 

density of state (LDOS). It should be mentioned that, by introducing defects into 

the elsewhere perfect lattice, defect modes can be created within the band gaps. It 

is of particular meaning to model and control the LDOS on the defect sites. 

 

The approaches to theoretically obtain the DOS and LDOS are diversified, 

including Green‟s tensor, MSC, TMM [37-40]. Based on the previous PWE 

analysis, DOS and LDOS can be readily drawn from the results. The definitions 

are expressed as, 

 , for DOS (2.10) 

  

   , for LDOS  (2.11) 

where n is used to denote the frequency levels. The density of states is represented 

as ρ of The integration is usually made in the FBZ or the primitive cell in the 

inverse space. In previous procedures, the FBZ has been mapped with a mesh, and 

the eigen-frequency for each grid in the FBZ has been obtained. By counting k 

points within frequency slots, the calculation of DOS and LDOS can be done in a 

histogram way (Fig. 2.5) [41,42]. The method is therefore straightforward. 
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Attention should be paid to the restriction on frequency resolution Δω relating the 

mesh fineness [42,43], 

        (2.12) 

The criterion predicts that over narrowed histogram bins can bring unphysical and 

fake spikes in DOS and LDOS charts. It is noteworthy that for zero DOS, LDOS 

would be zero everywhere. While on the other way, zero LDOS does not 

necessarily imply zero DOS, for there are nodes of field distribution for every 

mode. DOS of the hexagonal PhC described in Fig. 2.3 is obtained for TM modes 

only. The results are presented as a histogram in Fig. 2.5. A band gap can be 

found represented by a blank area between 0.25 and 0.39. 

 

 

Figure 2.5 DOS in the structure demonstrated in Fig. 2.3. The result is presented 

as a histogram. 
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CHAPTER 3 

Tunability in Two-Dimensional PhCs 
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Two-dimensional PBG structures have attracted special attention in that, 

comparing with the three-dimensional structures, the ease of fabrication 

significantly lowers the threshold for applications. There have been mature 

techniques available, both fast and cost effective, in association with fabrication 

and processing procedures nowadays. Delicate structure modification, e.g. line 

and point defects, could be precisely introduced and controlled. On the other hand, 

a large array of potential applications have been envisioned and realized, 

including PhCs lasers, fibers, waveguides, multipelxers, and demultiplexers. As 

well, the attached various physical phenomena have been intensively investigated, 

such as enhancement of stimulated emission, high harmonic generation, and 

enhancement of quadratic phase squeezing [1]. Underlying these topics, the 

ability to manipulate the light propagation and control the beam shape is of 

particular interest.  

 

Attracted by the versatility of PhCs, researchers move on to the pursuit of active 

modulation of the devices, to fulfill different application requirements and 

optimize specific functionalities. Various schemes have been proposed to realize 

the tuning of the characters. In this chapter, a tuning method is proposed in two- 

dimensional PBG structures. The effects on light propagation and density of states 

are discussed. The work is based on the collaboration with Dr. Hao Wang. She 

contributed great efforts in the creative design of the scheme.  
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3.1 Introduction 

3.1.1 Refraction in PhCs 

With the distinctive dispersion relation arising from anisotropy and periodicity, 

PhCs modify the propagation of light diversely with respect to the wave vector 

and frequency, leading to extraordinary refraction characters. The super 

collimation or self-collimation could be such a case. In this situation, a light beam 

will not spread over the propagation. Unlike spatial soliton, the phenomenon is a 

linear effect independent of light intensity. By proper design, PhCs can support 

collimation for incidence in certain directions. Application is expected in the area 

of integrated optical circuits, helping with optical routing and logic [2]. Related 

work has been explosive since the earliest demonstration by H. Kosaka and their 

colleagues at NEC in Japan in 1999 [3]. The efforts have been mostly focused on 

the target wavelength for telecommunications (1260 – 1675 nm). 

 

To theoretically identify the capability of super collimation in PhCs, the 

dispersion relation is analyzed. Given the introduction of EFCs in the previous 

chapter, the difference between homogeneous and inhomogeneous media could be 

pictorialized as that between circular (isotropic) EFCs and odd (anisotropic) ones. 

Since the group velocity is always perpendicular to the contour lines at the tips of 

k vectors, the shape of contour lines determines the passage of the light regarding 

its incident angle and frequency, therefore the shape of a not strictly straight light 

beam could be reshaped. For example, the wave vector of real light beam always 

consists of a small range. In the case of convex EFCs, with a small initial angle, 
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the spread will grow over distance. However, flat segments on EFCs can be found 

in PhCs, meaning the small group of different wave vectors will have a parallel 

output, in other words, the beam is collimated. The idea is shown in the Fig. 3.1. 

The central red dotted circle indicates the EFC of normalized frequency 0.182 in 

the air. Contours around the corners belong to a PhC with square lattice. The 

0.182 contour has flat segments, contributing to the collimation of the blue light 

beam. 

  

  

Figure 3.1 The purple curves are EFCs of a silicon-backbone-air-hole PhC with 

square lattice. The filling ratio is r/a = 0.4. The 0.182 EFC in air is given in red 

dotted circle. The blue light cone is collimated in the PhC. 

 

In 1960s, Veselago et al. analyzed a structure with negative refractive index. In 

such system, the directions of electric field E, magnetic field H and the wave 
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vector k form a “left handed” relation, for which Veselago coined the term left 

handed material (LHM). Metamaterials have been proposed in the past few years, 

shedding light on the realization of such strange materials. A metamaterial is 

usually composed of periodic sub-wavelength metal units. In particular spectrum 

regime, the metal structures couple with the incident EM waves, giving rise to 

both negative effective dielectric permittivity and magnetic permeability, hence 

the negative refractive index. The unit cells are usually made of one split ring 

resonator (SRR) combined with a conductive rod. Negative refraction has also 

been discovered in PhCs [4-7]. In contrast with LHM, the effect produced by this 

diffraction does not come from a left-handed relation. Use of highly conductive 

materials is not necessary. Therefore this scheme avoids the annoying issues of 

absorption loss and narrow band width due to the requirement of resonance [8-13]. 

With the aid of EFCs, negative refraction in PhCs could be easily illustrated in 

Fig. 3.2. An incident beam of normalized frequency 0.2765 enters the PhC from 

air on the left side, with its wave vector kair pointing up-rightly. The conservation 

laws on the interface demands the refracted beam have the same value for the 

wave vector‟s parallel component. The frequency of EFCs in particular bands, 

here the 2
nd

 band, rises inwardly, allowing the group velocity pointing to the 

opposite side of the normal line.  
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Figure 3.2 Beam incident from air enters the hexagonal PhC on the left, at an 

angle of 45°. The 0.2765 EFC of air is given in red dotted circle, combined with 

the 2
nd

 band EFCs of the PhC. The boundary condition requires the component 

of k which is parallel to the surface should conserve on both sides, which leads 

to two points (red dots) on the EFC. Given group velocity is perpendicularly to 

the 0.2765 EFC, and points both towards higher frequency and into the PhC side, 

the left dot is identified as a practical solution to support light propagation. As a 

result of the refraction vg is deflected downwards, pointing to the opposite 

direction with regard to the horizontal normal line. 

 

The concept of negative refraction pushed the frontier of optics greatly forward. 

Potential applications have been envisioned. Among them, the idea of perfect lens 

(super lens) mentioned by Pendry is extraordinary [10]. A properly configured 

PhC slab could reverse the otherwise dissipating evanescent waves back to the 
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image, contributing extra fine structure information missing from traditional 

optical imaging systems, and thereby breaking the restriction that details could not 

be obtained in imaging on a sub-wavelength level. The effect has been intensively 

investigated. Up to now, both theoretical and experimental results have shown the 

trace of this behavior [9,14]. 

3.1.2 Achieving tunability 

To take advantage of the versatility of the PBG functionalities, it is desirable to 

implement control and tuning on either structure or material property. In the 

former aspect, efforts have been focused on the changing of the geometric 

property. In some cases, PhCs are constructed in a highly anisotropic way, such as 

using oblate colloidal building blocks or by “post crystallization treatments” [11-

13]. There are also more flexible ways allowing actively modulating the PhCs, 

through mechanic pressure, thermal effects and electro-optic effects [14-21]. The 

liquid crystals (LCs) have been chosen as a popular infill candidate owing to the 

fact that their properties can be changed efficiently by applying thermal, optical 

and electrical approaches [18-25].  

 

Molecules of nematic LC lie randomly orientated when no external field is 

applied. The dielectric permittivity can be viewed as an average and thus isotropic 

index n0. The idea is usually pictured as a sphere in the refractive index space. As 

the external field rises, molecules gradually line up along this direction, hence the 

index sphere will be prolonged or compressed to be a spheroid. Saturation will be 

reached when all the particles are strictly aligned, with external field Esat. The 
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idea is shown in Fig. 3.3. A positive axial LC is demonstrated, in which the 

extraordinary refractive index ne grows larger than the ordinary index no, i.e. Δn = 

ne - no > 0. 

 

Figure 3.3 Anisotropy grows in the spheroid of LC dielectric permittivity as the 

E field rises. A prolate spheroid is given for the positive axial (Än > 0) model.  

 

Modification therefore is needed to take the anisotropic permittivity into the 

mathematical model. In the governing equation (2.6), the scalar function år(x) is 

substituted with tensorial form [34], 

  ,   (3.1) 

where εr(x) and εLC are third-order dielectric tensors. The function S(x) equals 1 

for those x falling inside the LC cells. R is the set of vectors in the real lattice. To 

avoid the mess of treating the off-diagonal terms, a rotation operation can be 

conveniently applied on the lattice, to allow the index spheroid of anisotropic LC 

sitting uprightly in the calculation coordinates. 
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  ,  (3.2)   

Q
T
 is the inverse and transposed matrix of Q. The dielectric function can then be 

expanded in Fourier series of the “rotated” reciprocal vectors Gnew = QG. The 

equations (2.6) can thereby separated into three independent equations.  

 

3.2 Two-dimensional tunable PhC with nematic LC infill 

In this part, a 2D hexagonal PhC slab composed of holes array is proposed. The 

objective is to actively tune the refraction character by an external electric field, 

realizing positive/negative refraction and total reflection at one frequency. To 

avoid high-order scattering related to multi-reciprocal vector processes, lower, 

hence smoother bands are preferred. Thus the primary option is to locate one 

particular frequency that transits among the first band, the second band and the 

band gap in between, with electric tuning applied. Nematic LC is filled in the 

orifices, with the refractive index being n0 = 1.8 for the untuned situation, and in 

saturation no = 2.2, ne = 1.6 [31].This is a material with negative dielectric 

anisotropy (∆å < 0). High-index germanium (nGe = 4.3) backbone is deployed. 

The lattice constant a is set at one micron. This structure is a modified version of 

the air-hole-dielectric-backbone PhC. Previous study [32] indicates that 

hexagonal lattice could give rise to larger band gaps. A complete band gap for 

both TE and TM modes is also desirable (Fig. 3.4). In regard of this, the 

hexagonal lattice is preferred over the square ones.  
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Figure 3.4 Band gap maps for air holes in (a) square and (b) hexagonal 

(triangular) lattices, with a backbone (green) index 3.38. The definition of TE 

and TM is contrary to those in this thesis) [32]. 

 

The setup is demonstrated as following (Fig. 3.5). The two-dimensional PBG slab 

is modulated by a vertical (z direction) external electric field, controlled by a 

voltage source. As the field intensity increases, the in-plane TE wave will 

experience a lower refractive index ne, while TM polarization has a rising no. 

Calculation for both polarizations is of no difference from that for wave travelling 
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in a PhC composed of isotropic media. What only matters is the value of the 

scalar refractive index. Thus the complexity of the problem is largely reduced.  

 

Figure 3.5 On the left is the top view of a two-dimensional hexagonal PhC. 

Scheme for vertical tuning is shown on the right side. The electric field is 

applied along z direction.  

 

Fig 3.4(b) also indicates the higher probability to locate a band gap in high filling 

ratio area. For easy fabrication, slabs with a r/a around 0.4 are desirable [33]. 

Given these thoughts, the TM band structures for three ratio sets of 0.4, 0.44, and 

0.48 are analyzed, matched with LC index pair (no, ne) being (1.8, 1.8), as not 

tuned, and (2.2, 1.6), as saturation reached. The results are shown in fig 3.6. The 

TE modes do not have a band gap, despite the altering of the filling ratio. The 

tuning of LC index has little effect on them, as well. As for TM modes, there lies 

a gap for 0.40 and 0.44 r/a, where no frequency could be allowed for transition 

among the three states. As the ratio goes up, the gap closes. On the other hand, the 

larger volume the LC holes take up, the larger range of tuning can be achieved, 

and thus the wider can the red/green band curves separate from the black ones in 

the band diagram. In the band diagrams for 0.48 r/a, intersection of the first band, 

the second band and the gap between them can be found around the normalized 

frequency 0.25. 
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Figure 3.6 The first two photonic bands of Ge-based 2D PhCs with r/a set at (a) 

and (b) 0.40, (c) and (d) 0.44, (e) and (f) 0.48, respectively. Green, black, and 

red represent the refractive indices: 1.6, 1.8 and 2.2, respectively; TE mode on 

the left, TM right. 

  

A close examination of the EFCs in Fig. 3.7 illustrates the positive refraction in 

the first band of TM mode with the LC index of 1.8, and negative refraction in the 
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second band of TE mode with the index of 1.8. The incident angle è is set at 14° 

with respect to the Γ-M (x axis) direction. A buffer layer of Ge is adopted to scale 

up the incident wave vector. By this setup, it can reach the optimized EFC 

segment featuring negative refraction. The parallel component of the wave vector 

is designed as, . 
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Figure 3.7 EFCs of (a) the first band of TM mode; positive refraction (b) the 

second band of TE mode; negative refraction. LC index is 1.8, with filling ratio 

0.48. Red arrow vg indicates the refraction directions. k0 is the original incident 

wave vector, along which the incident light enters from the air. krefr is the wave 

vector of the refraction. The incident angle between k0 and the normal line is set 

to be θ = 14°. The identification of refraction follows the same procedure 

described in Fig. 3.2. Firstly, by forcing the parallel component of the wave 

vector to conserve in both media, potential solutions (red dots) are located on the 

0.25 EFC. Considering the group velocity should (1) be perpendicular to the 

EFC and (2) point both towards higher frequency and (3) into the PhC side, the 

refraction is thereby determined. 

 

FDTD simulation is employed to verify the light propagation in the PhC predicted 

by the EFSs analysis. The model is set up as shown in Fig. 3.8. A twelve-layer 
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hexagonal PhC slab is positioned 14° to the incidence of normalized frequency 

0.25. The background is set to be Ge. The LC index is tuned as 1.8 for (a) and (b), 

and 2.2 for (c). A mesh with 50 nm unit size is created on the structure. Time step 

is set at 5×10
-17

 s.  

   

Figure 3.8 FDTD results of (a) positive refraction, (b) negative refraction, and (c) 

total reflection in hexagonal PhC slabs with Ge background. 

 

3.3 In-plane tuning of anisotropic refractive index   

In the configuration discussed above, the tuning is realized in the vertical 

direction. In this way, the propagation of in-plane light always experiences a 

homogeneous permittivity in LC in spite of the direction at which it is 

transmitting. The tuning can be described no more than raising or reducing the 

refractive index in the LC cells. The mathematical treating is relatively simple. In 

this part, with the introducing of otherwise in-plane E fields, anisotropy 

distinctively exerts its influence on the dispersive relationship. The high 

symmetry will be broken. The EFCs are expected to be deformed. 
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Figure 3.9 In-plane tuning of LC permittivity; The oblate index spheroid rotates 

in the plane. 

 

To begin with, the external field is applied along the y axis, assuming the field 

induces saturation in the LC, i.e. (no, ne) being (2.2, 1.6). Similar to the previous 

discussion, the TE modes, with E field only pointing perpendicular to the plane, 

will take no effect from the anisotropy. The LC index to this mode is independent 

of the direction of the wave vectors. For TM mode, the 6-fold rotational 

symmetry is broken. As a direct result, the high symmetry points K and M 

diverged to two subgroups M1, M2, K1, and K2. The k path Γ-M-K-Γ to depict a 

complete band structure is subject to adaption.  The new path is suggested to be 

Γ-M1-K1-Γ-M2-K2-Γ, which is shown in fig 3.10. The corresponding band diagram 

for TM mode shows a discrepancy between the two paths, while for TE they 

degenerated. No band gap exists in either mode, as a difference from the 

perpendicular tuning scheme aforementioned. Still, this is due to the fact that the 

optical axis of LC is aligned along Γ-K. In more general cases where the axis is 

arbitrarily oriented, the k path has to cover at least half of these points, for there 

only exists the inverse symmetry.  
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Figure 3.10 (a) The 6-fold rotational symmetry is broken in external E field. (b) 

TM diagrams diverge between the two k paths, while (c) TE ones remain the 

same.  
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EFCs could be a better way to investigate the anomaly opened by the anisotropy. 

In the direction of the LC optic axis, the wave propagation is subject to a raised ne, 

thus the gradient of the contours becomes lower in the first band. The situation 

reverses in the second band, because the frequency rises inwardly there. As a 

result, the magnitude of wave velocity can be modulated in this way. The 

distorted EFCs also alter the refraction drastically. For example, given an 

incidence roughly along the x direction in the first band, the untuned structure will 

support a large refraction angle, owing to the fact that the first band of hexagonal 

structure has relative circular shape. After tuning along the y direction, the curves 

on the right fringe are much flatter. Incidence within a large range of angle will be 

gathered and collimated. The negative refraction taking place in the second band 

is strongly tuned, as well, in terms of the refraction angle and the threshold 

incident angle. 

 

The beauty of in-plane tuning lies largely in the additional degree of freedom to 

change the tuning directions. The variety of the distorted EFCs increases 

significantly. For this hexagonal lattice, due to its high rotational symmetry, the 

directional tuning is restricted in 0° ~ 30°. However, the deformation of EFCs is 

remarkable, comparing with square lattice [34]. In Fig. 3.11(b), the negative 

refraction can be turned off in the second band by rotating the E field to Fig. 

3.11(c), creating a partial band gap. By this method, an electrically controlled 

optical switch is realized. Meanwhile, the refraction angles in both bands can be 

continuously changed across a wide range.  
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Figure 3.11 EFCs of TM modes in the first and second bands, (a) without an 

external E field; (b), (c) with the E field applied along Γ-K and Γ-M, 

respectively. 

 

The density of states (DOS) and local DOS (LDOS) mentioned in the previous 

chapter are particularly important to characterize the spontaneous emission in 

PhCs. Besides, DOS provides useful description of the mode distribution. Based 

on the theory discussed in chapter 2, the histogramming approach is introduced. 

The FBZ of hexagonal lattice is not very convenient to define in program. In 

regarding of this, calculation is carried out equivalent in the reciprocal primitive 

cell, which is discretized into a 51×51 mesh, i.e. 2601 points. The k points 

resolution Δk is hence determined as 0.02 with normalized frequency unit. The 

frequency resolution Δω is also need to be determined according to (2.12). 

However, the gradient of frequency varies in different bands and locations in the 

reciprocal space. Examination shows that EFCs in the first band have large slope, 

and the distribution is relatively homogenous. A rough estimation of the 

maximum is therefore made around 0.5. Combined with Δk, the histogram bins, 

i.e. Δω, are set at 0.01. Data is sampled in the first 6 bands (Fig. 3.12).  
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Figure 3.12 (a) DOS and (b-e) LDOS calculated for two dimensional hexagonal 

PhC at (b) central area of the holes, (c) center of the triangle formed by 3 

neighboring holes, (d, e) mid points of two different sides of the triangle. 

 

A complete band gap around frequency 0.28 is clearly shown in fig 3.12 (a) for 

the untuned situation. The saturation tuning applied on two directions both cancel 

the gap. However a dip can still be located. Correspondingly, dips around 0.28 in 

each LDOS chart for different locations can be found. Large DOS does not 

guarantee large LDOS since the later is the product of DOS and electric field 

intensity. Either part will lead to the difference. The LDOS projected on the 

center of LC holes (apex) and center of a triangular formed by three holes (center) 

are significantly larger than those on the mid points between two holes (side 1, 2). 
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In the low-frequency range, mostly in the first band, the field strength is weak, 

represented by low LDOS. A step-like profile could be observed in vicinity of the 

first band edge.  The LDOS at apex and center are significantly larger than those 

on the sides, indicating that high field intensity can be expected.  

 

The spikes and dips in LDOS diagram indicate potential enhancement and 

suppression of quantum optical effects. In tuned results, the DOS and LDOS 

profiles seem spikier. This could be an indication of the modified field 

distribution. Also, the distorted EFCs could lower the frequency resolution by 

changing the group velocity according to (2.12). Noise peaks and dips could be 

introduced.  

 

It is noteworthy that all the quantities in the calculation are dimensionless. The 

results can be scaled to fit in practical structure design. 
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CHAPTER 4 

Analyses in Three-Dimensional PhCs 
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In previous chapters, a range of novel phenomena and promising applications in 

PhCs have been mentioned. Many of these traits stem in the unique anisotropic 

nature of this material, which fundamentally reshapes the behaviors of the light 

propagation, such as beam shaping and super collimation. The active researches 

of negative refraction have also led to a great expectation of its realization in 

PhCs, due to its capacity to maneuver the electromagnetic waves. However, the 

delicacy of such structures has also set barriers. On one hand, difficulties have 

been met to apprehend the properties and functions. Fundamentally, it is vital to 

precisely describe the distribution and evolution of EM fields. Beside the effort of 

recognition, PhCs impose tight requirements on designing and fabrication 

referring to the delicate structural parameters. Thus effective analytical tools are 

highly desirable to efficiently design and optimize the PhCs structures. Great 

efforts have been made into the exploration. Until recently, researches have been 

mostly focused on two-dimensional (2D) structures, and the progresses have been 

acknowledged. However, there are intrinsic limitations in the 2D systems. Super 

collimation, perfect lens, and many other refraction based phenomena could only 

achieve their full functionality in three-dimensional (3D) structures [1,2]. 

Therefore, the investigation of light refraction in 3D PhCs is of special 

importance. The task still remains largely a challenge. Apart from the difficulties 

from the aspects of fabrication and experimentation, theoretical analysis is 

complicated and suffers from many restrictions, although in principle, the 

paradigm is similar to 2D situations.  
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Despite the difficulties, efforts have been pooled to illustrate the intriguing spatial 

structures. A case of 3D all-angle negative refraction (AANR) was discussed by C. 

Luo, et al. [3]. The light focusing and self-collimation were also discussed in 3D 

structures [2,4,5]. On the other hand, Xiaonan Chen, et al., have made 

contribution in the aspect of theoretical study [3]. In this part, the work deals with 

the theoretical analysis of 3D PhCs.  

 

4.1. Refraction analysis in 3D PhC 

Given the particular importance to investigate the light refraction in 3D PhCs, an 

analysis procedure is developed for a clearer and more simplified picture for light 

refraction and propagation in 3D PhCs, especially with the capability of 

identifying the negative refraction. The method can be readily applied to other 

lattice structures. 

 

The demonstration PhC is modeled in Fig. 4.1 as a face-center cubic (FCC) lattice, 

with the lattice constant a being 1 in the normalized unit. Air filled spherical 

cavities with a radius of 0.353 are fitted in the lattice, so that they are tightly 

packed, with the filling ratio of r/a = 0.353. The spheres are surrounded by silicon 

background. The structure is also called as an inverse opal. These two materials 

are assumed both homogenous and non-dispersive. To begin with, the calculation 

of the dispersion relation is carried out in the reciprocal space (the wave vector 

space), in which each k point stands for a wave vector. Calculation dimension is  

limited to the first Brillouin zone, which for FCC is an Octahedron. For simplicity, 
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a cubic space with sides of normalized length 1 is chosen. The cube is discretized 

into a k points array.  

 

 

Figure 4.1 The air-cavity FCC lattice in silicon background with r/a = 0.353: (a) 

the structure in real space and (b) the first Brillouin Zone with a shape of a 

truncated octahedron. 

 

PWE algorithm is implemented on each point to find out the eigenfrequencies. 

Following the same procedures in 2D situation, three-dimensional equifrequency 

surfaces (EFSs) can be plotted for each band, by interpolating and linking k points 

of similar frequency. The resolution of 3D PWE is set as 24 mesh steps in each 

dimension with an err tolerance of 5×10
-6

. EFSs for the first, the third. and the 

fifth bands are shown in Fig. 4.2 together with the band diagram. All the three 

bands are of TE mode. It is noteworthy that the diagram is a hybrid of the TE and 

TM modes. The definition is inherited from the two-dimensional PWE in the 

previous chapter, while different from the work of the MIT group [6]. The modes 

with magnetic fields lying in the x-y plane are named as TE, while electric field in 

the plane is called TM mode.  
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Figure 4.2. The EFSs of (a) the first, (b) the third, and (c) the fifth bands covering 

the first Brillouin zone for isotropic inverse opal structure, with frequencies being 

differentiated by the pseudo color codes. In the first band, the outgoing direction 

generally coincides with rising frequency, while this trend reverses in the third 

band. (d) The band diagrams of the first 6 bands are shown, along k path X-U-L-

Γ-X-W-K. 

 

In Fig. 4.2, all three bands turn on a sphere-like shape in the inner zone, in 

vicinity of the origin point. This can be clearly related to the central part in the 

band diagram (Fig. 4.2(d)), where the curves are monotonic. However, in outer 

part, as well as in the upper bands, the diagram curves are undulate, which is also 

reflected by more distorted EFSs. The group velocity for a specific wave vector k 

(a point in the reciprocal space) can be deduced geometrically from the gradient 



67 
 

 

vector of local EFS of frequency ω. Given the shapes of the EFSs, the refraction 

information could be thereby extracted theoretically. Note the dispersion curve at 

the third band in the vicinity of the center point in Fig. 4.2(d), a convex shape 

with a negative slope could be found, implying a possible place where negative 

refraction takes place. Its three-dimensional counterpart is explicitly shown as the 

convex EFSs in the central third band in Fig. 4.2(b). The spherical shape acts as a 

potential candidate for AANR and super lens. 

 

The 3D EFSs, though have provided thorough details throughout the Brillouin 

zone, are not as convenient to provide an intuitive view as in 2D situations. On 

the other hand, the resource and time cost are demanding to provide extra 

information for the additional dimension. To solve address this challenge, a direct 

2D analysis is proposed on a specified cross section of the EFSs, which usually 

represents the incident plane. In this demonstration, the set of 24×24×24 points in 

the 3D space is significantly reduced to 40×40 points on a 2D plane. An improved 

resolution is enabled by utilizing the spared cost for the third dimension. The 

scheme is illustrated in Fig. 4.3. An incident plane is decided first, and then 

followed by a direct 3D analysis. The contour details are quite restricted by the 

calculation resolution, as shown in Fig. 4.3(b). Instead, points could be sampled 

from the predefined plane in the first place. The two-dimensional EFCs are 

directly plotted without taking into account of the irrelevant part, saving time and 

resources. Next, the study will be performed in the detail-improved 2D EFCs. 
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Figure 4.3.  (a) The schematic diagram of light incidence on an FCC photonic 

crystal interface of (111). The arrow denotes the incident beam, lying in the 

incident plane (denoted by the yellow plane). (b) A cross section of the dissected 

3D EFSs in the first band by the incident plane (denoted by the green plane). 

 

Fig. 4.4 presents two sets of EFCs on planes (111) and (123), assuming the 

vertical directions of both figures are along the normal line of the interface. Black 

dashed lines denote the normal lines. The incidences come from the upper left, 

with their wave vectors pointing towards lower right. With the conservation of the 

parallel wave vector, the wave vector of refracted lights in PhC should have the 

same parallel component. This limitation is denoted by the white dashed lines. In 

Fig. 4.4, both wave vectors of refracted lights are determined, directing from the 

center point towards upper right. Subsequently, the projections of the refractions 

inside the incident plane (group velocities in blue arrows) are defined respectively 

by the patterns of the EFCs. It turns out both negative refractions at normalized 

frequency of 0.6205 are identified in these schemes of incidence. Moreover, the 

convex inner contours on these two different slices imply focusing behavior may 

happen in the three dimensional structure in this frequency range.  
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Figure 4.4. 2D EFCs in plane (a) (111) and (b) (123) of the third band; assuming 

the horizontal direction lies in the interface, negative refractions exist with 

respect to the dashed normal vector; the normal lines are denoted by black 

dashed lines; the blue arrows show projection of refractions on the incident 

plane. 
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From the EFSs displayed above, the effective refractive index neff can be obtained, 

which could be used in the Snell‟s law to numerically predict the refraction angle. 

Assuming the light is incident from air, Fig. 4.5 gives neff as a function of (1) 

frequency with incident angle fixed at 45°, and (2) incident angle with frequency 

0.5886, for which refraction on these two planes majorly appears negative. 

 

 

 

Figure 4.5 Effective refractive index vs. (a) the frequency with fixed incident 

angle of 45°, and (b) incident angle at frequency 0.5886, in the third band. 

 

The EFCs on cross section planes show similarity to those of 2D PhCs. Though, 
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there are significant differences brought by the extra dimension. 3D PhCs are 

highly anisotropic structures, thus mirror symmetry is usually restricted in a few 

special locations. As a result, it is not common the incident plane intersects with 

the EFSs perpendicularly. The group velocities thereby deviate from the incident 

plane. For example, plane (111) is of mirror symmetry, and the light propagation 

will stick in the incident plane. The analysis hence is no different from that in 2D 

PhCs. While this is not the case for plane (123), the out-of-plane component will 

emerge inevitably. Based on this method, the refraction can be still efficiently 

determined in any 3D PhCs. 

 

4.3 Tunable three-dimensional PhCs 

In this part, nematic-liquid-crystal-infilled three-dimensional PhCs with FCC 

structure is investigated. The birefringence model of LC has been introduced in 

the plane wave expansion method. With the help of this model, the tuning effect 

of external electric field can be visualized in the deformation of EFSs. The 

emerging anisotropy strongly alters the characters of the PhCs, leading to a 

variety of potential applications, such as optical switch and tunable cavities.  

 

Given the anisotropic permittivity in 3D system, a three-rank tensor should be 

taken into account. Calculation usually involves extreme complexity, because the 

orientation of the polarized LC is arbitrarily determined by the external field. 

Following the introduction in chapter two, a rotation transformation is introduced 

to circumvent this difficulty. The idea is shown in Fig. 4.6. 
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Figure 4.6 LC infill inverse opal structure; silicon background with r/a = 0.353. 

The uni-axial LC is rotated to sit normally in the computation coordinates. 

 

In Fig. 4.6, LC infill is injected into the air cavities of the previous FCC PhC. 

External filed can be applied in arbitrary directions. The LC is assumed to have 

isotropic refractive index n0 = 1.8, and anisotropic index in saturation (ne, no) = 

(2.7, 1.5), respectively. Thus this is a positive axial material. An example case 

with E field along (123) direction is analyzed without loss of generality. The 

rotation transformation can be expressed as, 

 , (4.1)   

The rotated base vectors are hence determined as, 

  

     (4.2) 

Degeneracy no longer exists for high symmetry points on the BZ boundaries. In 

other words, band diagram along the previous k path could not give the correct 

band structure. The inverse symmetry is the only symmetry element that helps 
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simplify the calculation. To find out the correct band gap, half of the FBZ has to 

be scanned. The idea is shown in Fig. 3.7(b), where the external field saturates the 

index pair at ne = 2.7, no = 1.5. 

 

 

 

Figure 4.7 (a) Band diagram of LC-infill-silicon-backbone fcc without external 

electric field. (b) The exhaustive sampling in half FBZ shows no band gap exists 

in the first six bands. 
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Figs. 4.8(a-d) present the deformation of the first band EFSs as the external field 

tuning up to Esat along direction (123). The spherical inner EFSs gradually turn 

into oval-like shapes. EFSs compressing happens along the external field where ne 

grows, while bulging in the perpendicular directions can also be observed.  

 

 

Figure 4.8 The EFSs of the first band of a series of refractive indices: (a) (1.9, 

1.77), (b) (2.1, 1.7), (c) (2.4, 1.62), and (d) (2.7, 1.5); the electric field is applied 

along the orientation of (123). The compressing effect is clearly revealed. 

 

A contrast of EFCs on different cross sections between the untuned and saturated 

LC models is shown in Fig. 4.9. Distortion of EFSs in the first band is slight, 

indicating less sensitiveness to anisotropy of the lower frequency modes. There 

are large sphere-like inner EFSs in this band. The PhC would act more like a 
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homogenous medium for light in this frequency range. The contours shape on the 

(123) cross section remains largely unchanged, which is perpendicular to the 

tuning field. The third band undergoes much severe deformation, because the 

shorter the wavelength, the more phase shift it would experience in a given 

distance. Since the negative refraction largely relies on this band, strong tuning 

effect could be achieved.   
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Figure 4.9 The EFCs are on cross section (100), (111), and (123), from left to 

right. External electric field is applied along the orientation of (123) with 

saturation strength. (a-c) untuned EFCs in the first band; (d-f) tuned in the first 

band; (g-i) untuned in the third band; (j-l) tuned in the third band. 

 

The field direction could be arbitrarily chosen for the three-dimensional system. 

To study the directional tuning, electric field with saturation strength is applied 

along four different directions, (100), (110), (111), and (123), respectively. The 

results are shown in Fig. 4.10, featuring the EFSs of a normalized frequency 

0.253 in the first band. 

 

 

Figure 4.10 The EFS of frequency 2.53 in the first band with E field applied along 

different directions: (a) (100), (b) (110), (c) (111), and (d) (123). 
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The EFSs are compressed along the external field. These oblate-like surfaces 

share a similar shape, while following different orientations, providing a potential 

access to directing and switching the light beam. 
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CHAPTER 5 

CONCLUSIONS 
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5.1 Summary 

This thesis summarizes works on the modeling and calculation of the PhCs 

featuring tunable anisotropic dielectric infill, trying to provide an insight into the 

photonic band structure and refraction properties, and to develop generalized 

analysis procedures.  

 

Firstly, a PWE method based analysis is discussed. By solving the eigenvalue 

problem, band diagrams and EFCs (EFSs) were obtained in two- and three- 

dimensional structures, respectively. The refraction situation was thereby 

determined. A histogram calculation for DOS and LDOS was also developed 

from the PWE algorithm. The frequency resolution was determined both by the 

mesh fineness of the FBZ and the steepness of the gradient of EFCs (EFSs). To 

model the anisotropic nematic LC, the tensorial dielectric permittivity was taken 

into consideration. Coordinates rotation was introduced to simplify the 

mathematical process. The rotation transformation matrix is developed 

accordingly.  

 

External field control of the LC-filled two-dimensional PhCs was studied in two 

categories, in-plane and off-plane tuning. A structure was designed based on the 

off-plane tuning to realize the switching among positive refraction, negative 

refraction and total reflection. The functionality was demonstrated in FDTD 

simulation. The in-plane tuning strongly alters the distribution of field density, 
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deforms the EFCs as well. The EFSs are presented. DOS and LDOS were 

calculated for comparison between tuned and untuned structures.  

 

A method was developed to systematically analyze the propagation of EM waves 

in 3D PhCs. The PWE algorithm was employed to calculate the EFSs. The 3D 

analysis of light propagation was simplified into 2D problems by determining the 

incident plane and obtaining the in-plane dispersion relation. The out-of-plane 

refraction was discussed, based on which the positive and negative refractions 

were identified. As an example, negative refractions can be efficiently determined 

in any crystal structures and incident schemes. The deviation of light from the 

incident plane can also be precisely predicted in 3D PhCs.  

 

5.2 Future work 

The procedures could be readily applied to design and analyze PhC based devices. 

The goal is to include further investigation into potential applications, such as 

sensors, switchers, waveguides, etc. Beam shaping and direction control can be 

precisely predicted and accomplished. Particularly, the analysis in three 

dimensional PhCs can be largely facilitated by this study. There are still obstacles 

to be conquered for this purpose. The calculation resolution of EFSs and LDOS in 

3D is astonishingly consuming. The PWE based procedure would take up around 

6 hours to compute a 24×24×24 mesh, just for generating the eigen-frequencies to 

create the rough EFSs diagram. To include the field components for LDOS, with 

a decent resolution, days of computation are expected [1]. Another difficulty has 
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been met in the simulation of field distribution and beam propagation in 3D 

systems, which again is deemed an all consuming task. Distributed computing has 

shed some light on this task. The Beam tracing method also has its strength.  
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Appendices 

A. Calculation of photonic band diagram for 3D FCC structures 

using OptiFDTD7 

PWE method has been successfully incorporated and can be accessed in many 

software packages. In this research, Optiwave OptiFDTD 7 is employed to 

provide a convenient tool for calculation of band diagrams, EFCs/EFSs and DOS 

for PBG structures. The general procedures are the same for the three tasks, either 

in 2D or 3D structures, except for the volume of the data and several steps in data 

processing. A calculation of band diagram in a FCC lattice will be described in 

this part. 

A1. Create silicon spheres in a 3D FCC lattice in air background 

Launch the “waveguide layout designer” module in the first place. Two constant 

materials are to be defined in the material management drop down menu. In this 

case, “air” (ε = 1) and “silicon” (ε = 13, i.e. n = 3.6) are specified.  

 

In the project initial properties dialog box, define the wafer dimension as 5 µm×5 

µm. Cladding and substrate layer are set to be 3 µm and 1 µm thick, respectively, 

with the materials both set as silicon.  

 

In the layout designer, click on the PBG Crystal Structure icon, and place a lattice 

on the design plane. Define the lattice structure as FCC in the Crystal Lattice 

Properties dialog box (Fig. A.1), with scale set at 1 and number of lattice vectors 
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translation set as (#A, #B, #C) = (3, 3, 3). In the Atom Waveguides in Unit Cell 

box, add a new True 3D Sphere Waveguide at position (0, 0, 0). In the Edit tab, 

choose “silicon” for the material, and 0.353 for the radius. 

 

 

Figure A.1 Crystal lattice properties dialog box. 

 

A2. Set PWE simulation parameters 

Open PWE Simulation Parameters dialog box and set 3D solver as show in Fig. 

A.2. Hybrid polarization mode will be automatically selected. However, in 2D 

modes, the user can select either TE or TM mode. The base vectors are set by 

default. However, a more efficient choice is made by setting them as a = (0.5, 0, 

0.5); b = (0, 0.5, 0) and c = (0.5, 0.5, 0). The default mesh size is set as 16×16×16. 

Usually the accuracy can meet requirements in most cases. It could be improved 

to set finer mesh.  
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Figure A.2 PWE simulation parameters dialog box. 

 

The k path in terms of reciprocal vectors is defined using the User defined in the 

K-vector path list. In this case, the FBZ is to be scanned. Definition of the high 

symmetry points is given in Fig. A.3.  
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Figure A.3 Illustration of the FBZ of FCC structure with high symmetry points. 

To edit the k path, select “Add” in the User defined list to edit the terminal 

points and step size.  

 

Add an input wave plane in the layout, and then perform the PWE band solver 

simulation. The resulting band structure does not contain any complete band gap 

(Fig. A.4). The output file is stored in ascii format, which could be readily 

retrieved by notepad or origin for post processing.  

 

 

Figure A.4 Hybrid band structure of FCC lattice (mesh 16×16×16). 
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B. Generation of EFCs and EFSs 

The generation of EFCs and EFSs are of the same procedure with that of band 

diagram in the calculation phase. The difference lies in the domain and number of 

data points sampled in the reciprocal space. 

 

Figure B.1 Comparison of sampling domains in calculation of band diagram, 

EFCs in a two-dimensional structure and EFSs in a three-dimensional structure.  

 

Considering the large array of points, their coordinates can be generated 

automatically using Mathworks Matlab 7 scripts. 

For 2D Hexagonal lattice: 

%%coordinates script for 2D 

%%Definition of Hex lattice 

T_Hex=[sqrt(3)/2 0.5;0 1 ]; 

delta=0.024;         %%Definition of mesh step size 

n=0; 

for j=1:51, 

for i=1:51,            %% a 51×51 mesh 

%%observer coordinates in reciprocal lattice 

userx=-0.60+(i-1)*delta; 

usery=-0.60+(j-1)*delta; 

%%Transfer the user coordinates to the calculator 

%%coordinates 

temp=T_Hex*[ usery; userx];  

n=n+1;  

crd(n,1)=temp(1); %%calculator coordinates 

crd(n,2)=0; 
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crd(n,3)=temp(2); 

crd(n,4)=1; 

crd(n,5)=n; 

end 

end 

 

For 3D FCC lattice: 

%%coordinates script for 3D 

%%Definition of FCC lattice 

T_FCC=[1/2 0 1/2;1/2 1/2 0;0 1/2 1/2]; 

delta=0.06;    %%Definition of mesh step size 

steps=25; 

n=0; 

for k= -steps:steps, 

for j=-steps:steps, 

for i=-steps:steps,  %% a 25×25×25 mesh 

%%observer coordinates in reciprocal lattice 

Userx=i*delta;  

Userx=j*delta; 

Userx=k*delta; 

%%Transfer the user coordinates to the calculator 

%%coordinates 

temp=T_FCC*[userx;usery;userz];  

n=n+1;  

%%the calculator coordinates 

crd(n,1)=temp(1); 

crd(n,2)=temp(2); 

crd(n,3)=temp(3); 

crd(n,4)=1; 

crd(n,5)=n; 

end 

end 

end 

 

The generated list of coordinates is then fed into the K-Vector Path box in Fig. 

A.4. After running the calculation, the obtained data can be loaded into data 

processing software for analysis. The advantage of such software packages lies in 

their powerful built-in functions. In Mathworks Matlab 7.1, function Contour() 

and Isosurface() are readily employed to generate EFCs and EFSs, respectively. 

In OriginLab Origin 8.1, EFCs can be plotted directly from the drop down menu 
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in the Plot section. In Wolfram Mathematica 7, function ListContourPlot[] and 

ListContourPlot3D[] are designed for plotting EFCs and EFSs, respectively. 

 

Figure B.2 (a) The second band EFCs generated by function ListContourPlot[] 

for a Hexagonal 2D PhC. (b) the first band EFSs visualized by function 

ListContourPlot3D[] for a FCC 3D PhC.  Both processes were in implemented in 

Wolfram Mathematica 7. 
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