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From the date of the very first electrical network until now, power system 

engineers have always been concerned with supplying electricity to the loads reliably. A 

reliable power system may be realized as an art of determining a balance between the 

customer satisfaction and the associated expenses. As power systems are being upgraded 

with today’s communication and control technologies and additional uncertainties are 

introduced through integration of intermittent generation units, it is critical to develop 

new models, methods, and indices to evaluate and improve the future power system 

reliability. 

This dissertation has a twofold objective. First, the reliability of distributed and 

renewable energy resources as an expanding and critical contributor to the future power 

system is analyzed. The power generated from renewable generation units, such as wind 

turbines, is stochastic and difficult to predict. Therefore, a number of analytical, 

simulation, and hybrid methods are proposed for modeling and reliability assessment of 

renewable generation in different operation conditions, considering aging of the 

equipment, maintenance, etc. The second objective of this dissertation considers a bigger 



    

 

 

 

scope of future power distribution systems and oversees the urge for improving the 

reliability and availability of electricity supplied to the customers.  

Thus, three simulation models of a smart power distribution system have been 

developed using Multiagent systems, Monte Carlo simulation, and power system 

software. These models include the impact of several components, such as renewable 

generation, energy storage, customer power interactions, demand side management, etc., 

and are used to evaluate and improve power system reliability. The reliability of the 

power system is evaluated using typical system-perspective indices as well as a number 

of newly defined indices from the customers’ perspective. In addition, these models are 

used to determine the optimum capacities of renewable generation and storage system in 

order to supply electricity reliably. The work in this dissertation can be expanded to 

incorporate communication and control system reliability as well as cyber security for 

future power system studies. 
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1.1 Transitioning Toward an Advanced Power System  

As a critical infrastructure, the power grid system needs continuous adoption of 

technological advancements for higher efficiency in terms of operation, reliability, and 

cost. However, due to the sheer size of the power system, the transition towards adopting 

new innovations and state of the art technologies has been slow. The operation of power 

systems with the conventional infrastructure would result in higher complexity, less 

efficiency, and difficulty to sustain the future system demand. A North American Electric 

Reliability Corporation (NERC) study showed that forecasted demand for electricity 

might exceed projected available capacity in the U.S. without a major action [1]. As the 

electricity demand keeps growing and the system is more pushed toward its boundary 

operation, system reliability has also become a critical concern.  

In fact, a conventional power system is centralized in terms of control and 

transmission of electricity, in a sense that, the energy produced by the generators in 

power plants flows over the grid from transmission and distribution system down to the 

consumers.  

 Figure 1.1 Power flow among sectors of a conventional power system  

Therefore, a failure or an incident in any of these segments, as well as operation, 

and control of a conventional power system, could impact a large number of end users 

and assets, and cost a large amount of money. In fact, interruptions in the electricity 
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supply directly or indirectly cost American consumers an estimated $150 billion a year 

[2]. There have been five massive blackouts over the past 40 years, three of which have 

occurred in the past decade. More blackouts and brownouts are occurring due to the slow 

response times of mechanical switches, lack of automated analytics, and lack of 

situational awareness [2], [3]. On the other hand, distributed generation, management, 

and control may contribute to mitigate these effects by allowing higher redundancy and 

faster control over the energy generated and consumed in the network. 

The concept of the smart grid, as an advanced power system, is generally 

accepted to indicate the integration of communication, computing, control, and 

information technologies to enhance the reliability, flexibility, efficiency, and 

sustainability of the electricity grid [4]. Restrictions of energy resources, aging 

infrastructure, environmental concerns, and increasing expectations of customers are 

some of the drivers of the transition toward a smarter electrical grid [5]. The advent of the 

smart grid will influence planning, operation, and maintenance of the power system, 

which is expected to become more adaptive, predictive, and distributed. Achieving this 

will require new infrastructure enabling the participation of active customers, 

accommodation of distributed generation and storage options, and incorporation of new 

products and intelligent control strategies [6]. The concept of intelligence in today’s 

power systems is centered on the idea of pushing sensory and analytic capabilities further 

down the system hierarchy. In a smart grid, more can be done locally at the substation or 

even device level, allowing operators and computing resources in the control center to be 

more effectively utilized.  
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Figure 1.2 Power flow among sectors of a smart grid 

In contrast to a conventional power system, electrical power may flow in different 

directions among assorted sectors of a smart grid. Renewable power generation, from a 

small rooftop photovoltaic system supplying a single residential property up to megawatt 

wind farms connected to the medium voltage system, can be integrated into this power 

grid. Incorporation of bidirectional communication and power flow in a smart grid 

provides an opportunity for both the electricity providers and customers to efficiently use 

their assets and cut down on their costs through demand side management [7], real-time 

pricing [8], power sell-back opportunities [9], etc. Indeed, electricity customers of the 

smart power distribution systems may no longer be perceived as passive loads. 

Installation of distributed energy resource-based generation, storage devices, and smart 

appliances will enable customers to function as integrated entities who provide support to 

the grid by contributing to peak-load shaving, ancillary services, reliability improvement, 

and investment postponement [10]. 
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Meanwhile, regardless of all the changes and restructuring required for the 

transition toward a smarter grid, the main concern and key goal of power systems remain 

untouched, which is to provide electricity to the customers reliably and economically. 

1.2 Reliability of Renewable Generation 

The advent of intelligent electrical networks to allow efficient use of energy 

resources, reduce carbon emissions and increase sustainability is a key feature of the 

smart grid and promise of a greener future [11]. Due to the limited resources of the fossil 

fuels, the renewable resources, such as wind and solar energy, have been the subject of 

research and experiment from a long time ago [12]. Although the current grid still relies 

heavily on traditional fossil fuels for power generation, the environmental concerns and 

their associated cost penalties [13], as well as technological advances and device cost 

reduction in the past decade, have enabled a great potential for the substantial growth in 

utilizing renewable energy resources [14].  One of the main issues regarding integration 

of large capacity of renewable generations, such as wind generation and photovoltaic 

system, is their impact on reliability and availability of the power system [15], [16].  

In general, Reliability is defined as the probability that a component or system 

will perform a required function, for a given period of time, when used under stated 

operating conditions. In power industry, there are various indices used to measure the 

reliability of systems. As an important index of reliability, Availability is the probability 

that a system or component is performing its required function at a given point in time 

when operated and maintained in a prescribed manner [17].  
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As the percentage of renewable generation capacity is rising, new reliability 

challenges are introduced in the smart grid. In evaluating the reliability of wind 

generation, for example, the first concern is about wind turbines themselves which 

consist of many moving and rotating subassemblies installed at a high elevation. These 

equipment include blades, rotor, gears and generator which bear more tension and wear 

during operation compared with conventional generation [15]. In addition, wind turbines 

may be exposed to the changes in weather as well as extreme weather conditions. 

Variability of wind speed and direction not only increases the chance of failure due to 

additional imposing stress on wind turbines’ parts but also affects the availability of their 

output power generation [18]. These effects necessitate probabilistic modeling of wind 

turbines’ operation to include both the turbines and wind speed states. Major factors 

contributing to the total failure of the turbines have been studied through individual wind 

turbine reliability modeling [19]. 

As another example, the reliability of a PV system is also affected by a variety of 

factors, such as failure of the components, system configuration, the ambient conditions, 

etc. [20]. Some of these factors may not be the cause for a total failure, but still have a 

derating impact on the output of a PV system [21]. In fact, any parameter that impacts the 

output power of a PV system causes a de-rating in its nominal generation, and can 

potentially degrade its capability to supply the load, and that leads to a reliability issue. 

The main parts of a PV system subject to failure are PV modules, inverter, and 

energy storage system; where, the inverters are the most vulnerable equipment [22]. 

Moreover, the ambient parameters as the de-rating factors of PV generation impact its 
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reliability. In fact, the solar irradiance that reaches the horizontal Earth surface is 

intermittent, and therefore, the output power of a PV is unpredictable [23]. Other ambient 

factors with derating effect on PV systems are temperature, dust and snow accumulation, 

shading and cloud cover, etc. [24], [25], [26]. The first part of this dissertation discusses 

the reliability of renewable generation systems, and specifically wind generation as the 

example. In addition, different analytical and simulation approaches are used to develop 

the models necessary for renewable generation reliability evaluation.  

1.3 Reliability of the Future Power System 

As previously mentioned, the future power system promises the integration of 

communication and control technologies as well as additional sensitive electronic devices 

in the network. Moreover, it accommodates new types of loads/generations, such as 

electric vehicles/distributed generation, etc. [5].  

The reliability of an electric grid may be improved as a result of smart grid 

technologies, such as situational awareness, automated and fast control, and bidirectional 

communication. On the other hand, an efficient use of assets may push a power system to 

operating close to the edge, where it will be exposed to higher volatility and its reliability 

may adversely be affected [27]. Electricity outages are caused by failures in generation, 

transmission, or distribution systems. However, outages in the electrical distribution 

system are responsible for most of the hours that electricity is unavailable to customers 

[28]. So, it is critical to model and study the reliability of distribution systems including 

future electricity customers. 
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In fact, the future electricity customers have higher expectations from the power 

system than before. They demand for higher electric supply reliability, and may choose to 

actively participate in demand side management (DSM) programs and respond to the 

electricity rate signals, or even use their distributed energy resources (DER) in order to 

save on their electricity bills. In a future smart grid, incorporating automated control and 

communication Infrastructure, an effective customer-initiated DSM can alleviate the peak 

load and shift part of the demand to off-peak hours, and improve reliability of load supply 

[7]. 

The potential impacts of smart grid technologies on the reliability of the power 

system, for example by improving the outage management process and its control 

complexities, have been reported in [29]. Also, a reliability perspective of the smart grid 

has been explored in [27] where the implications of some key factors, such as renewable 

resources, load management strategies, and storage devices, have been discussed. 

Reliability studies including the stochastic nature of renewable resources, such as wind or 

solar energy, or uncertainties related to weather conditions have been reported in the 

literature [30], [31]. However, these studies do not model a smart grid framework 

incorporating DER and active customers with a variety of operational options. As such, 

the “smartness” of such a system is limited due to the lack of options in customer 

decision making.  

The authors in [32] have modeled a distribution system that includes DSM 

schemes and has shown that a proper management can improve the reliability of the 

distribution system. However, the DSM schemes defined are for a specific case study, 
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where the dynamicity and intermittency of the smart grid due to customers’ decisions, 

renewable generation, and storage systems has not been considered. Reliability of a 

power distribution system, from the system’s perspective, has been evaluated in [33]. 

This model includes a renewable generation and communication system but does not take 

into account the impacts of DSM and the contribution of customers in reliability 

evaluation. Other researchers have presented a reliability evaluation approach for power 

systems using a multiagent system (MAS) [34]. However, in their approach, the agents 

do not completely model the smart grid entities.  

The reliability is also critical in other aspects of a smart grid, such as 

communication reliability and cyber security. Cyber security is the approach taken 

towards securing the information that travels through the computer networks and Internet 

based communications networks. The use of these networks not only makes power 

systems components interoperable which is central for a smart grid transformation, but 

also opens the door for malware, viruses, and generally Internet based attacks. That is 

why Federal Energy Regulatory Commission (FERC) accepted the initial set of Critical 

Infrastructure Protection (CIP) Reliability Standards developed by the North American 

Electric Reliability Corporation (NERC) in 2008 [35]. 

A power system reliable communication and cyber infrastructure should be able 

to transfer the correct information to the right individuals within a certain allowable time. 

For example, Advanced Metering Infrastructure (AMI) is an indispensable part of the 

smart grid and includes smart meters, communication among appliances, meters and the 

utility, data management, etc. Basically, some of the security challenges for an AMI are 
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meter authentication in the network, maintaining confidentiality for privacy protection, 

and providing integrity for future system upgrades [36]. 

 The reliability of the smart grid enabler components such as smart meters, their 

communication and control have been discussed in the literature [37], [38]. The reliability 

and risk assessment of the communication and cyber systems are out of the scope of this 

dissertation; but due to their potential impact on the smart grid reliability, they are 

essentially considered to be included in the future work. 

It is important to note that the advent of smart grid impacts both the utility and 

customer side of a power distribution system. As the utilities adopt new technologies to 

establish automated and more efficient operation, the customers also start to take 

advantage of this new infrastructure, and that will sooner or later change the notion about 

the customer being electricity consumer only.  

Therefore, an effective reliability assessment first requires an inclusive model of 

the emerging smart grid, accommodating the active customers and their interaction, DER, 

DSM, etc.; and then, it needs a modified reliability study approach to be used by electric 

utilities and customers for efficient planning and operation purposes. The uncertainties 

due to renewable resources, customers’ decision making, and their interactions make the 

modeling and reliability evaluation of the future power distribution systems critical and 

challenging. None of the aforementioned research studies have developed an inclusive 

model for reliability analysis that takes the impact of future active customers into account. 

Modeling and reliability evaluation of renewable generation systems (e.g. wind 

turbines) and future power distribution systems including a variety of customers are the 
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main focus of this dissertation. Here, based on the characteristics of the problem, 

distributed modeling approaches and simulation methods are essentially used for 

reliability assessment of the future power systems. 

1.4 Publications 

The following publications have been worked on in the course of the Ph.D. 

studies. This dissertation is mainly based on the work in publications 1 to 9 of this list. 

1. S. Kahrobaee, R. Rajabzadeh, L.-K. Soh, and S. Asgarpoor, “Relibility 

assessment of future power distribution systems,” submitted to International 

Journal of Electrical Power and Energy Systems, under review. 

2. S. Kahrobaee, R. Rajabzadeh, L.-K. Soh, and S. Asgarpoor, “Multiagent study of 

smart grid customers with neighborhood electricity trading,” Journal of Electric 

Power System Research, vol. 111, pp. 123-132, Jun. 2014. 

3. S. Kahrobaee, S.Asgarpoor, W. Qiao, “Optimum sizing of distributed generation 

and storage capacity in smart households,” IEEE Transactions on Smart Grids, 

vol.4, no.4, pp. 1791-1801, Dec. 2013. 

4. S. Kahrobaee, S.Asgarpoor, "A hybrid analytical-simulation approach for 

maintenance optimization of deteriorating equipment: Case study of wind 

turbines,“ Journal of Electric Power System Research, vol. 104, pp. 80-86, Nov. 

2013. 

5. S. Kahrobaee, S.Asgarpoor, “The effect of demand side management on 

reliability of automated distribution systems,” IEEE Conference on Technologies 

for Sustainability, Sustech, Aug. 2013. 
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allocation for power distribution systems,” IEEE Conference on Technologies for 

Sustainability, Sustech, Aug. 2013. 

7. S. Kahrobaee, R. Rajabzadeh, L.-K. Soh, and S. Asgarpoor, “A Multigent 

Modeling and Investigation of Smart Homes with Power Generation, Storage, and 

Trading Features,” IEEE Transactions on Smart Grids, vol. 4, no.2, pp. 659- 668, 

Jun. 2013. 

8. S. Kahrobaee, S.Asgarpoor, “Risk-Based Failure Mode and Effect Analysis for 

Wind Turbines (RB-FMEA)”, Proceedings of North American Power Symposium 

(NAPS), Boston, Massachusetts, 2011. 

9. S. Kahrobaee, S.Asgarpoor, “Short and long-term reliability assessment of wind 

farms,” Proceedings of North American Power Symposium (NAPS), Arlington, 

TX, 2010. 

10. S. Kahrobaee, S.Asgarpoor, “Optimum Renewable Generation Capacities in a 

Microgrid Using Generation Adequacy Study” T&D Conference, 2014. 

11. S. Kahrobaee, S.Asgarpoor, “Optimum Planning and Operation of Compressed 

Air Energy Storage with Wind Energy Integration,” Proceedings of North 

American Power Symposium (NAPS), 2013. 

12. S. Kahrobaee, M. Can Vuran, “Vibration Energy Harvesting for Wireless 

Underground Sensor Networks,” IEEE International Conference on 
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13. Salman Kahrobaee, Marcelo C. Algrain, Sohrab Asgarpoor, “Investigation and 

Mitigation of Transformer Inrush Current during Black Start of an Independent 

Power Producer Plant,” vol.5, no.1, pp.1-7, Journal of  Energy and Power 

Engineering, Jan. 2013. 

 

1.5 Overview of the Dissertation 

The rest of this dissertation is organized as follows: 

 Chapter 2 provides a background on reliability concept in power systems from 

both customer and utility perspectives. This chapter presents some common 

power system reliability evaluation metrics and a number of analytical and 

simulation methods used for reliability assessment. 

 Chapter 3 discusses the models and methods used for reliability evaluation of 

distributed energy resources (DER) through an example of wind turbines. This 

chapter provides an introduction to DERs, and then, describes the models 

developed based on each analysis technique for wind generation reliability 

assessment. 

 Chapter 4 provides the models and approaches toward reliability evaluation of 

smart power distribution systems (SDS). This chapter begins with an overview of 

an SDS and describes three simulation models developed for reliability analysis. 

Next, the required studies and sensitivity analysis are explained considering 

different aspects of a smart grid, such as demand management, renewable 

generation and storage, customer interactions, etc. 
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 Chapter 5 provides the case studies, results and discussions based on the models 

explained in the previous chapters. In the first part, the results of reliability 

evaluation for a single wind turbine or a wind farm are presented. The second part 

of this chapter presents the results of SDS reliability assessment based on 

customer and utility side indices along with the discussions on sensitivity analysis.  

 Finally, Chapter 6 concludes this dissertation and provides further suggestions 

and recommendation for the future studies. 
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                      CHAPTER 2 

RELIABILITY OVERVIEW 

 

2.1 Reliability Concept in Power System 

2.2 Reliability Evaluation Methods  
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2.1  Reliability Concept in Power System 

The Reliability of a component or a system is defined as the probability that they 

perform their assigned task for a given period of time under the operating conditions 

encountered [17]. In statistics, reliability is often denoted by the survival function 

calculated using the cumulative distribution function of the failure probabilities, 𝐹(𝑡).  

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝑓(𝑠) 𝑑𝑠
𝑡

0

                                      (2.1) 

In Eq. 2.1, 𝐹(𝑡) represents the probability that a failure happens before time t; 

𝑅(𝑡) is the reliability function, and 𝑓(𝑡) represents the probability density function of 

failure occurrence. 

Power equipment and power systems are vulnerable to failures occurred due to 

internal or external sources. The failure of a component, is the inability of a component to 

perform its intended function at a particular time under specified operating conditions 

[39]. A failure is specified by its failure rate and repair rate. Failure rate (λ) is reciprocal 

of the mean time to failure, and it is defined as the number of failures of a component in a 

given period of time divided by the total period of time that component was operating. 

Repair rate (µ), on the other hand, is the reciprocal of the mean time to repair, and it is 

defined as the number of repairs of a component in a given period of time divided by the 

total period of time that component was being repaired.  

Failure rates of deteriorating equipment are typically explained by the “bathtub 

curve”. The bathtub curve describes product’s lifecycle and consists of three intervals. It 

starts with an infant mortality period that has a decreasing failure rate followed by a 
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normal life period, with a low and relatively constant failure rate, and it ends with a wear-

out period that represents an increasing failure rate. Based on Eq.2.1, with a constant 

failure rate and in case the failure of equipment can be shown by exponential distribution, 

the equipment reliability until time 𝑡 will be derived from Eq. 2.2. 

𝑅(𝑡) = 1 − ∫ 𝜆. 𝑒−𝜆𝑠  𝑑𝑠
𝑡

0

= 𝑒−𝜆𝑡                                          (2.2) 

The reliability analysis is an essential study for the design, operation, maintenance, 

and planning of the power system [28]. For example, with a specific reliability 

requirement, an optimum maintenance strategy can be determined to minimize the 

operation cost. In fact, the maintenance influences the deterioration process, failure rate, 

and reliability of the components and the system, accordingly [40].  

The concept of reliability in the power system may be interpreted using three 

different categories: 1) adequacy, as the capability of the system to meet its demand at all 

times considering scheduled and expected unscheduled outage of the elements; 2) 

security, as the ability of the system to withstand disturbances such as a short circuit; and 

3) quality, regarding voltage condition, and harmonic characteristics, etc. [41]. 

It should be noted that the definition of reliability may vary from different 

perspectives. The two main perspectives for reliability consideration of a power system 

are customer perspective and utility perspective [42]. The customers care about quality of 

service and being able to use their appliances any time needed during a day. Therefore 

any interruption in service is undesirable from the customer’s perspective. The utility’s 

perspective of reliability considers both the service reliability at the load points and 
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reliability of the supply side which may include the reliability of generation, transmission 

and distribution assets, as well [28]. 

Fig. 2.1 shows provides a summary of the reliability concern from different 

perspectives [42]. 

 

Figure 2.1 Reliability concept from different perspectives. 

In order to study the reliability of a power system, three hierarchical levels have 

been defined [43]. The reliability of the power generation is studied through hierarchical 

level one (HL1). The reliability of a composite generation and transmission system is 

studied using HL2. Finally, the reliability of the whole system including generation, 

transmission, and distribution system is evaluated using HL3.  
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Figure 2.2 Hierarchical levels for power system reliability assessment 

There are a number of indices for evaluation of the reliability throughout the 

power system. IEEE has developed a number of standards to include reliability related 

definitions and evaluation indices; IEEE Standard 762 is for generation reliability indices 

[44]; IEEE Standard 859 includes transmission facility reliability indices [45]; and IEEE 

Standard 1366 is for distribution reliability indices [46].  

Typically, in reliability evaluation of a power distribution system dealing with the 

interruptions, three key factors should be considered: 1) frequency of the interruptions; 2) 

duration of the interruptions; and 3) severity or extent of the interruption. The first two 

factors are important from both customer and utility perspectives, and the third factor 

could represent the number of the customers affected or the priority of their loads [47]. In 

a smart grid structure, accommodating distributed generation and active customers, a 

combination of different indices should be employed to address the reliability of the 

system from both the customer and grid perspectives. Some of the commonly used 

system reliability indices according to the standards mentioned are: 
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 Expected Energy Not Supplied (EENS): The cumulative amount of energy that is 

not provided to the customers, and it is usually stated for duration of a year. 

𝐸𝐸𝑁𝑆 =∑𝐿𝑖 ×

𝑖

𝑟𝑖                                                         (2.3) 

where 𝐿𝑖 and 𝑟𝑖 are the average load of customers and duration of interruption due to the 

outage 𝑖, respectively. 

 System Average Interruption Frequency Index (SAIFI): total customers 

interrupted divided by total customer served, and it is usually stated for duration 

of a year.  

𝑆𝐴𝐼𝐹𝐼 =
∑ 𝑁𝑖𝑖

𝑁𝑇
                                                              (2.4) 

where 𝑁𝑖 and 𝑁𝑇 are the number of customers interrupted due to outage 𝑖 and total 

number of customers, respectively. 

 System Average Interruption Duration Index (SAIDI): total customer interruption 

durations divided by total customers served, and it is usually stated for duration of 

a year. 

𝑆𝐴𝐼𝐷𝐼 =
∑ 𝑟𝑖. 𝑁𝑖𝑖

𝑁𝑇
                                                         (2.5) 

 Customer Average Interruption Duration Index (CAIDI): average interruption 

duration experienced by an interrupted customer. 

𝐶𝐴𝐼𝐷𝐼 =
𝑆𝐴𝐼𝐷𝐼

𝑆𝐴𝐼𝐹𝐼
                                                         (2.6) 

 Average Service Availability Index (ASAI): average availability of service per 

customer served by the utility. 
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𝐴𝑆𝐴𝐼 =
𝑁𝑇 . 𝑇 − ∑ 𝑟𝑖. 𝑁𝑖𝑖

𝑁𝑇 . 𝑇
                                               (2.7) 

where 𝑇 is duration for reporting the index which is usually one year (8760 hours). 

 Loss Of Load Expectation (LOLE): expected number of hours the load exceeds 

the generation due to generation deficiency, for the duration of interest. 

 Loss of Energy Expectation (LOEE): expected energy lost due to generation 

deficiency, for the duration of interest. 

 Expected Surplus Wind Energy (ESWE): average available wind energy that 

exceeds the load, and can therefore be stored or exported to the grid [48]. 

 Expected Interruption Cost (EIC): total cost of interruptions at all the load points, 

and it is reported in $/year. 

Similarly, Load Point Interruption Frequency (LPIF), Load Point Interruption 

Duration (LPID), Load Point Interruption Cost (LPIC), and Load Point Energy Not 

Supplied (LPENS) are defined to evaluate the reliability at specific load points of a power 

distribution system.  

2.2  Reliability Evaluation Methods 

Reliability evaluation methods can be divided into two categories: 1) analytical 

methods and 2) simulation methods. In addition, the reliability evaluation may be a 

qualitative study, in which the main factors that impact system reliability can be 

determined and prioritized, or a quantitative study, where the reliability is assessed 

through different parameters and indices defined and calculated for the system or 

equipment. A number of analytical and simulation methods are reviewed in this section. 
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2.2.1 Fault Tree Analysis (FTA) 

Fault Tree Analysis is one of the most commonly used techniques for risk and 

reliability studies. Fault tree analysis is used as a tool to model the failure paths within a 

system which is important in reliable system design and development. As an analytical 

technique, fault tree analysis identifies events that can cause an undesired system failure. 

Therefore, by obtaining the probabilities of the causing events, one can end up 

calculating the overall probability of the main failure event [49]. 

Fault trees are built using gates and events. Most commonly, fault trees are 

composed of “AND” and “OR” gates, connecting the events toward the root failure. If 

either of a group of events causes the top failure to occur, then those events are connected 

using an “OR” gate. On the other hand, if all events need to occur to cause the top failure, 

they are connected by an “AND” gate. Each of the failure causes may also be further 

explored to determine the failure modes associated with them. However, the expansion of 

the tree is dependent on how much detailed data are available from operation history of 

the equipment [50].  

2.2.2 Failure Mode, Effect, and Criticality Analysis (FMECA) 

Failure Mode and Effect Analysis (FMEA) is considered as a process of ranking 

the most critical parts of a system; and it can be used for efficient resource allocation and 

maintenance scheduling based on higher priorities. FMEA is a proactive process to 

determine several key potential failures in the system through the comparison of some 

predefined factors, and as a result, it helps increase the reliability and availability of that 
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system. This process has been used on almost any equipment from cars to space shuttles 

[51].  

In FMEA study, after determination of the failure modes, the main calculation 

procedure comprises of three steps:   

1) The probabilities of the failure modes occurrences need to be determined. 

These may be obtained from the previous data for the failed parts. These probabilities are 

then categorized and assigned a scaling number; with the lowest number for the least 

probable category. 

2) The rate of severity of each failure mode is assigned and scaled due to the 

consequences of the failure and the amount of damage to the equipment. 

3) Another scale number is assigned to the fault detection possibility; with the 

lowest number to the most likely detection of the failure.  

The outcome of this study is the Risk Priority Number (RPN) which is calculated 

by multiplying all these three scale numbers. The RPNs are then ranked in order of 

importance [52]. 

Although FMEA has proven to be essential in various industries, there are some 

shortcomings with this method. Inherently, FMEA is a qualitative approach and the value 

of RPN is not conclusive unless it is used in comparison with other RPNs from other 

parts of a system, for prioritization purposes. This method also requires scaling of 

different affecting parameters and so far, there is no one-fits-all method for a proper 

scaling. 
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2.2.3 Markov Processes 

A Markov process is a stochastic process in which given the present state of the 

system, the future behavior only depends on the present and not on the past. This is 

usually referred to as the Markov Property. A Markov Process is typically defined by a 

set of discrete states. At each state, there are a number of possible events which define the 

transitions between the current and the next state of the process. In a continuous time 

Markov process, it is assumed that the duration of time spent at each state is 

exponentially distributed and the transitions between the states are defined using a 

transition rate matrix [53]. 

Markov processes can be used for reliability assessment of power systems. In a 

component level, a simple state space representation includes two states: Up (working) 

and Down (not working). This basic model is called binary-state model, and may be 

extended to include certain state dependencies, for example among failures of different 

components or between a component state and the change in operation condition, by 

adding associated states to the model. Comprehensive models of the power system are 

capable to consider deterioration stages, inspection, and different types of maintenance 

and repairs for a more accurate representation of the components in an actual system [54]. 

Markov processes can be used in a format of Markov Decision processes (MDP) 

to determine optimum decisions at different states. An MDP is used to model an 

uncertain dynamic system in which a sequence of decisions needs to be made over time 

with uncertain outcomes. There is a reward associated with each state and action made at 

that state. Each action taken can either return a reward or incur a cost. Thus, in an MDP, 
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the goal is to find an optimal sequence of actions, called optimal policy, such that the 

expected reward over a given time interval becomes maximum [53]. For example, in a 

state space defined for the power system components, an optimum maintenance policy 

may be determined which minimizes the costs and meets a certain level of expected 

availability requirement. 

2.2.4 Other Analytical Methods 

There are a number of other analytical methods used for reliability evaluation of 

power systems, such as Minimum Cut-set method, and Network Reduction method [55]. 

These techniques involve reducing the number of components, by grouping series or 

parallel components together. The basic analytical equations include reduction of two 

components in series or reduction of two components in parallel into single equivalent 

components as shown by Fig. 2.3 [28]. In this figure, 𝜆 and 𝜇 represent failure rate and 

repair time, respectively. 

 

Figure 2.3 The equivalent network for series and parallel components 
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The drawback of an analytical method for reliability evaluation is that the indices 

are average values, and the failure and repair times are limited to be exponentially 

distributed.  

2.2.5 Monte Carlo Simulation (MCS) 

As an alternative to the analytic approaches, Monte-Carlo simulation may be used 

to model and evaluate the reliability of the power systems. The data required for this 

method include statistical component failure and repair information as well as system 

configuration. Randomly generated samples of failures and restoration times based on the 

probability distribution of the statistical data provided are used to calculate one set of 

numeric results for reliability indices. By repeating the process with new random values 

sampled from input probability distributions, new possible values for reliability indices 

are calculated. After large number of iterations, the expected reliability of the system is 

calculated, where the values calculated for each reliability index can be represented by a 

probability distribution for that index [47]. 

There are two different categories of MCS methods: 1) sequential; and 2) non-

sequential. In a non-sequential MCS, the samples are taken without considering the time 

dependency of the states or sequence of the events in the system. Therefore, by using this 

method, a non-chronological state of the system is determined. On the other hand, a 

sequential MCS can address the sequential operating conditions of the system, and may 

be used to include time correlated events and states such as renewable generation, 

demand profile, customer decisions, etc., which is advantageous for power system 
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reliability assessment [56]. The sequential MCS has been used for modeling in different 

sections of this dissertation. 

The MCS methods have also been divided based on the approach used for the 

sampling. Three common sampling approaches in MCS are: 1) state sampling approach; 

2) system state transition sampling approach; and 3) state duration sampling approach. In 

the state sampling approach, which is non-sequential, the condition of each component is 

determined based on a uniformly distributed random variable between 0 and 1. If the 

random variable is larger than the failure probability, the component is in the Up state, 

and otherwise, it is in Down. The overall system state at each point in time is the 

combination of all component states. The disadvantage of state sampling method is that it 

does not consider the repair duration of the system components. In the state transition 

sampling approach, the transition probability from one state to another state is considered 

for sampling. Finally, the state duration sampling is based on the component Up and 

Down state duration distribution functions. This method is suitable to determine the 

duration of components states in a chronological manner and may be used for power 

system reliability assessment [57]. 
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3.1  Introduction to Distributed Energy Resources (DER) 

Distributed energy resources (DER) will play a critical role in the reliability and 

efficiency of the emerging smart grid. In general, DER may consist of the following 

components: 1) distributed generation (DG), such as diesel engine, microturbine, 

photovoltaic (PV) system, wind power generation, etc. [58]; 2) energy storage such as 

batteries and capacitors; and 3) Demand Response (DR) by making informed load 

changes in response to electricity price over time [59].  

Distributed generation may generally be categorized into conventional and 

renewable generation systems. Recently, increasing concerns about climate change, 

improved manufacturing technology, and cost reduction have been the major drivers 

toward integration of wind and PV power generation systems as distributed energy 

resources. Renewable DERs used in a distribution system are usually a combination of 

distributed intermittent generation, and a storage system [60]. In fact, distributed 

electricity generation and storage systems can contribute to peak load alleviation, 

investment deferral, voltage regulation, power loss reduction, etc. [61]. The infrastructure 

of the smart grid, incorporating real-time communication and control commodities, can 

well accommodate the efficient operation of these energy resources [62].  

Different types of DER have a variety of impacts on the smart grid. Industrial, 

commercial, and residential customers can use DG to supply part of their demands and 

sell the excess electricity back to the grid. Small-scale generators usually generate DC 

output, and therefore, an inverter would be necessary to convert DC to AC before the grid 

connection. The capacities of these generators are usually less than 10kW. Capacities of 
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DG can be in a range of 10kW to 200kW for commercial and small industrial systems; 

and big industrial customers may use higher DG capacities, in megawatt range, with AC 

output [63].  

Distributed storage systems can store electricity when there is excess electricity 

available at lower price and supply electricity at the time of deficit. Therefore, they act 

like both generation and load at different situations. Electricity storage systems are also 

used to smooth out the volatilities of renewable generation, and may be employed to shift 

the peak load or arbitrage electricity in a dynamic pricing scheme [64]. 

Demand response may also be considered as a DER. A DR scheme adopted by an 

electricity customer can simply be part of a demand side management (DSM) program 

that cuts out an air conditioner during peak load hours or it may involve customers who 

respond to dynamic electricity rates according to their load priority and resource 

availability [61]. DSM strategies have been used in the industry for many years [65]. The 

goal of the DSM is to provide efficient usage of the power system assets and reduce the 

electricity costs for the customers. In fact, a DSM alters the load curve of the customers 

through a variety of programs such as peak clipping, load shifting, valley filling, energy 

conservation, etc. [66]. Therefore, electric utilities are being advised to incorporate DSM 

in their resource planning by performing cost/benefit analysis [67].  

The smart power distribution system will improve DER integration and DR by 

providing more efficient controllability and incentives based on dynamic electricity rates, 

in the near future [7]. Integration of the DER into the smart grid affects the performance 

metrics of the system, such as reliability. 
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3.2  DER Reliability Assessment (e.g. wind turbines) 

A power distribution system includes a variety of components such as renewable 

generation and storage system, power lines, transformers, etc. In order to effectively 

evaluate the reliability of the overall distribution system, it is important to first study the 

reliability of each component of the system. Distribution energy resources are important 

components of the future distribution systems, and therefore, their reliability should be 

analyzed. For example, as the number of wind turbines is rising, new reliability 

challenges are introduced to the smart grid [68]. Wind turbine reliability studies are 

essentially critical in the design stage of the wind power generation systems, and they 

have been addressed in quite a few research studies [69] [48] [70]. 

 On the other hand, the outcome of the reliability study for individual wind 

turbines is valuable in the operation stage, as well. It should be noted that the wind power 

generation depends on the wind speed which is a stochastic variable. In addition, 

exposure to outdoor weather condition and numerous rotating parts operating at high 

elevation make wind turbines more vulnerable and critical from the reliability perspective. 

The uncertainties related to wind generation can cause complications for the owners of 

the wind farms in order to estimate the day-ahead energy generation inquired by the 

market, where, off estimation, imposes penalties to them. Therefore, reliability evaluation 

and proper maintenance scheduling are indispensable to predict the expected energy not 

served, and to minimize the loss of the wind turbines failures and unavailability [71].  

Based on the reliability study, the wind turbine owner may choose to adjust the 

manufacturer’s primary maintenance recommendations in order to improve the turbine’s 
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performance, provide more power to the market, and increase profits. These adjustments 

depend on the wind farm’s specific operation conditions such as the location, site weather, 

power purchase agreement, and available facilities. In fact, major factors contributing to 

the total failure of the turbine have been studied through individual wind turbine 

reliability modeling [19].  

Basically, wind energy systems can be categorized based on generator, gearbox, 

and converter types as shown in Table 3.1. The conventional type of wind turbine is 

called Single Cage Induction Generator (SCIG). This type of wind turbine is fixed speed 

and requires a gearbox to be connected to the grid. Using an induction generator, this 

wind turbine consumes reactive power to generate active power. Therefore, induction 

generators are equipped with an external capacitor bank. There is also another structure 

of SCIG which uses a full-scale power converter. This new configuration has advantages 

of more controllability, variable speed operation, and better performance of voltage 

control. However, the cost associated with power electronic devices is a drawback. The 

decreasing cost of power electronics will make this type be more desirable. Another 

popular type of wind turbine is Doubly Fed Induction Generator (DFIG). The 

configuration of this wind turbine corresponds to a wound rotor induction generator with 

a power converter. The power converter’s rating is about 30% of the generators capacity, 

and so, it is economically favorable. Due to this fact, many manufacturers have used the 

doubly-fed concept in their products, and many researches have been conducted to find 

optimum control strategy for the converter. The main issue with this type of wind turbine 

is to protect the converter from damage during grid faults. Specially, this issue becomes 
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more important with high capacity generation which needs to have fault ride-through 

capability. Wound Rotor Induction Generator (WRIG) with limited variable speed 

capability is also known as Optislip wind generator. This type of generator uses an 

external resistor which is connected in series with the rotor windings. This amount of 

resistance in circuit is controlled by power electronics, and for higher speed control, 

higher ratings of resistor is required. For that reason, the range of speed control is limited 

to about 10% of the synchronous speed. There are some other types of wind turbines 

which use synchronous generators. In order to have higher reliability and less complexity, 

the excitation for the field is avoided by using Permanent Magnet Synchronous 

Generators (PMSG). Generally, PMSG structure may or may not have a gearbox, and 

they are connected to the grid through a full-scale converter. Using a gearbox would 

increase the speed of the generator shaft, and as a result, reduce the size of generator. The 

gearbox, on the other hand, raises many issues during its operation [72].      

Table 3.1 Different types of wind generation systems 

Type of 

generation system 
Turbine concept Gearbox Converter 

Single Cage Induction Generator (SCIG) 
Fixed speed Multiple stage _ 

Variable speed Multiple  stage Full scale 

Permanent Magnet Synchronous Generator 

(PMSG) 

Variable speed _ Full scale 

Variable speed 
Single or Multiple  

stage 
Full scale 

Doubly Fed Induction Generator (DFIG) Variable speed Multiple stage Partial scale 

Electrically Excited Synchronous Generator 

(EESG) 
Variable speed _ Partial & Full scale 

Wound Rotor Induction Generator (WRIG) 
Limited variable 

speed 
Multiple stage Partial scale 

Brushless Doubly Fed Induction Generator 

(BDFIG) 
Variable speed Multiple stage Partial scale 
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From the reliability point of view, the gearbox is usually the main cause of 

failures in SCIG and all other wind turbines which need speed conversion in their drive 

train. Gearboxes are exposed to mechanical stresses caused by the wind fluctuations, and 

therefore, their performance worsens quickly. Oil leakage and broken teeth on the ring 

gear are among the most likely gearbox failure modes. In other types of wind turbines, 

electrical system, converters, and generator may also be the major causes of failure. 

Figure 3.1 provides annual failure rate and average downtime for different parts of wind 

turbine [73]. 

 

Figure 3.1 Failure rate and downtime for different parts of wind turbine  

It is noticeable that the downtime for some parts of the wind turbine like the 

gearbox, generator, drive train, and blades, which are installed in high elevation, is higher 

than the downtime for the other parts because of accessing problems. The delay in 

accessing the crane, or purchasing equipment, for example, may also contribute to this 

time significantly. 

As wind energy contributes more into the total electricity production in power 

system, the output power of wind farms should be able to better follow load demand 
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profile similar to a conventional generation system. Long/short term changes in load 

introduce another stochastic variable which should be considered in order to study the 

reliability of a stand-alone wind farm. Many studies have been conducted for reliability 

and availability assessment of wind turbines [69]. These studies have mainly discussed 

steady state estimation of system availability and reliability indices, and there has not 

been many research documents to describe wind farm’s reliability in different time 

domains. 

In this research, both analytical and simulation methods are used to model and 

analyze the reliability of individual wind turbines as well as a group of wind turbines as a 

wind farm. 

3.2.1 Fault Tree Analysis 

Reliability of a single wind turbine can be determined given the historical failure 

data of its parts using Fault Tree analysis. Figure 3.2 shows the proposed fault tree for the 

wind turbine including major failure causes. These failures are significant enough such 

that the failure of each component can stop operation of the entire wind turbine; and 

therefore, they are connected by “OR” gates in the diagram. 

Each of the failure causes may also be further explored to find the failure modes 

associated with them. However, the expansion of the tree is dependent on how much 

detailed data are available from operation history of the wind turbines.  
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Figure 3.2 Fault Tree for a typical wind turbine 

The essential input to the reliability model are the failure data coming from the 

operation of the wind turbines. These data may be categorized by the type of wind 

turbines which they belong to. Hence, the reliability of each turbine configuration can be 

studied separately, and compared to one another. Another approach is to divide the 

statistics based on the time of the year (e.g. seasonal) in order to incorporate the effect of 

weather changes in wind turbine reliability assessment. 

Equation 3.1 calculates the reliability of the wind turbine, 𝑅𝑇𝑢𝑟𝑏𝑖𝑛𝑒, as a function 

of time, 𝑡, and failure rates of each part of the wind turbine, 𝜆𝑖 assuming that the 

distribution of the time to failure follows exponential distribution. 

      RTurbine = e
−∑ λit

n
i=1                                                       (3.1)                         

where, 𝑛 is the number of parts of the wind turbine. 

The availability of a single wind turbine is calculated from Eq. 3.2. 
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𝐴𝑇𝑢𝑟𝑏𝑖𝑛𝑒 =
𝜇

𝜇 + 𝜆
                                                        (3.2) 

where, the total failure rate, λ, and repair rate, 𝜇, of the wind turbine are obtained from Eq. 

3.3, based on the failure and repair rates of the individual parts [50]. 

λ =∑λi       ,          

n

i=1

μ =
1

∑ (
1
μi
)n

i=1

                                            (3.3) 

3.2.2 Failure Mode, Effect, and Criticality Analysis (FMECA) 

The conventional FMECA study process of DER such as a wind turbine is shown 

in Figure 3.3 based on [52]. However, there are some shortcomings with using FMECA 

for wind turbines. First, researchers have to either define their own rating scales or adopt 

other developed tools which are not specifically designed for wind turbines, and, so, the 

result may not necessarily represent the true priorities of the wind generation system [74]. 

In addition, there are a variety of wind turbine types with different structures and it is not 

possible to assign the same set of scale numbers for all of them. For example, the damage 

to a synchronous generator in a direct drive wind turbine is generally more severe and 

more costly than an induction generator in a fixed speed wind turbine. Another issue with 

the current calculation method is that, the evaluated RPN doesn’t inherently discriminate 

between a highly severe but low probable failure mode and a less severe with higher 

occurrence probability. 
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Figure 3.3 FMECA process for a typical wind turbine 

In order to resolve these problems, we propose a modified process for FMECA 

analysis where the prioritization of the failure modes is based on numbers representing 

the cost consequences. In fact, the proposed method incorporates the cost associated with 

each failure mode, called Risk-Based FMEA (RB-FMEA). Limited use of this concept 

has been reported in the literature [75] [76]. We believe it is more realistic to consider 

cost which is the common language among different sectors of turbine design, operation 

and maintenance. In addition, RB-FMEA is a quantitative approach whose outcome is 

proportional to the equipment performance, and so can easily be compared with costs of 

different maintenance strategies or design improvements in order to make an optimum 
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decision. One of the advantages of this proposed strategy is its simplicity, where it is 

implemented using Microsoft Excel worksheets and can be easily edited or adapted for 

use by manufacturers of different types of equipment. 

3.2.2.1 Proposed RB-FMEA Process [77] 

Given the failure modes, the proposed RB-FMEA procedure is described by the 

following steps, where the calculations are presented subsequently. 

 Given that the equipment has failed, determine the probability of 

occurrence of each failure mode, 𝑃𝐹, based on the historical data. 

 Determine the probability of not detecting the failure, 𝑃𝑁𝐷. 

 Calculate the cost consequence of the failure, 𝐶𝐹. 

 Calculate the risk of each failure mode, called Cost Priority Number 

(CPN), by multiplying the probabilities and the cost calculated in the 

previous steps.  

 𝐶𝑃𝑁(𝑖) =  𝑃𝐹(𝑖) × 𝑃𝑁𝐷(𝑖) × 𝐶𝐹(𝑖)                                      (3.4)                             

where,  “𝑖” is the index of ith failure mode. The calculated CPN is expressed in dollars 

and can easily be compared for different failure modes.  

𝑃𝑁𝐷 is calculated by dividing the number of actual failures, 𝑁𝐹, to the total 

Number of Failure Vulnerabilities, 𝑁𝐹𝑉,  

𝑃𝑁𝐷(𝑖) =
𝑁𝐹(𝑖)

𝑁𝐹𝑉(𝑖)
                                                        (3.5) 

Number of Failure Vulnerabilities is defined as the sum of number of actual 

failures and the number of detected possible failures prior to their occurrences, for any 
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given period of time. These risks of failure may be detected during online monitoring, 

inspection, or maintenance.                                 

The cost of failure incurred, 𝐶𝐹, depends on the severity of failure consequences. 

The consequence of a failure may impact the equipment itself or have other consequences, 

such as endangering the safety of the site crew, etc., which is specific to a given operation 

condition and may be included in 𝐶𝐹, as well.  

While CPN represents a cost based risk factor, it can easily be incorporated in 

calculation of the total failure cost of the system for any specific duration of interest 

(𝐷𝐼𝑛𝑡). The total failure cost can be derived as: 

𝑇𝐹𝐶 =∑𝑁𝐹𝑉(𝑖, 𝐷𝐼𝑛𝑡) × 𝐶𝑃𝑁(𝑖)

𝑚

𝑖=1

                                        (3.6) 

where, m represents the total number of the failure modes, and 𝑁𝐹𝑉(𝑖, 𝐷𝐼𝑛𝑡) denotes the 

number of failure vulnerabilities of failure mode 𝑖 for the duration of interest.  

3.2.2.2 RB-FMEA for Wind Turbines 

The proposed RB-FMEA method can be applied to a wind turbine. Figure 3.4 

demonstrates the flowchart for the study.  



41 

 

 

 

 

Figure 3.4 Study steps of RB-FMEA for a wind turbine 

In case of the wind turbines, the cost consequence of a failure is comprised of four 

major segments: 

        𝐶𝐹(𝑖) = 𝐶𝑃(𝑖) + 𝐶𝑆(𝑖) + 𝐶𝑂(𝑖) + 𝐶𝐿(𝑖)                                   (3.7) 

where. 𝐶𝑃, is the cost of parts which need to be replaced due to the failure; 𝐶𝑆, is the cost 

of service, and it includes all the costs associated with the required facilities and devices 

due to the failure, such as renting a crane, or transportation, etc. 

𝐶𝑂, represents the opportunity cost, which is the sum of revenues the wind farm owner 

would have received from selling power generation, in case the failure didn’t occur. It 

can be expressed as: 

               𝐶𝑂(𝑖) =  𝐷𝐹(𝑖) ×𝑊𝑃̅̅ ̅̅ �̅�𝑢𝑡 × 𝐸𝑃𝑅̅̅ ̅̅ ̅̅                                         (3.8)                      

where, 𝐷𝐹 corresponds to the duration of failure, and 𝑊𝑃̅̅ ̅̅ �̅�𝑢𝑡 and 𝐸𝑃𝑅̅̅ ̅̅ ̅̅  are the average 

output wind power of turbine, and average energy purchase rate, within this duration, 

respectively. 
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Finally, 𝐶𝐿 in equation (3.7) represents the total cost of extra labor required for the 

repair, and can be calculated as: 

                    𝐶𝐿(𝑖) = 𝐷𝐹(𝑖) × 𝑁𝐶 ×𝑀𝐻𝑅                                            (3.9)                       

In the above equation, 𝑁𝐶 and 𝑀𝐻𝑅 are number of repair crew, and man-hour rate 

of the repair crew in dollars per hour, respectively.  There has been a variety of wind 

power generators developed in recent decades. For the RB-FMEA study, various wind 

turbine structures and their sub-assemblies need to be identified. The failure of the wind 

generation system is defined through three levels as shown in Figure 3.5. The wind 

turbine stands in the highest level (level I); where, wind turbine sub-assemblies and parts 

are divisions of middle (level II) and low (level III) levels respectively. 

 

Figure 3.5 Wind turbine hierarchy for RB-FMECA 

Wind energy systems can basically be categorized by their types of generator, 

gearbox, and converter. After recognizing the wind turbine types in level I, a general set 

of wind turbine sub-assemblies and parts are defined for levels II and III of Figure 3.5, as 

presented in Table 3.2.    
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Table 3.2 General set of Wind turbine sub-assemblies and main parts 

Sub-assemblies Main Parts 

Structure Nacelle, Tower, Foundation 

Rotor Blades, Hub, Air brake 

Mechanical Brake Brake disk, Spring, Motor 

Main shaft Shaft, Bearings, Couplings 

Gearbox Toothed gear wheels, Pump, 

Oil heater/cooler, Hoses 

Generator Shaft, Bearings, Rotor, Stator, Coil 

Yaw system Yaw drive, Yaw motor 

Converter Power electronic switch, cable, DC bus 

Hydraulics Pistons, Cylinders, Hoses 

Electrical System Soft starter, Capacitor bank, Transformer, Cable, Switchgear 

Pitch System Pitch motor, Gears 

Control system Sensors, Anemometer, communication parts, processor, Relays 

 

There are other wind turbine parts that could be included subject to the details 

required. However, for this study, the focus is on the major parts with higher failure 

probabilities and critical consequences. 

The failure occurs when a device no longer operates the way intended. There are 

numerous failure modes that can be defined for a complicated assembly such as wind 

turbines. These failure modes can cause partial or complete loss of power generation. 

Mainly, the key failure modes, which cause complete loss of power generation, are 

malfunction and major damage of the main parts of the turbine stated in Table 3.2. Other 

failure modes such as surface damage and cracks, oil leakage, loose connection, etc. may 

be considered as less significant. However, if they are not taken care of, minor failure 

modes can initiate major failures as well. 
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In fact, each one of the failure modes has a root cause, and the probability of that 

failure mode is directly related to the probability of its root cause. Table 3.3 provides 

different categories for these causes. Human error in this table, refers to the errors 

occurred during operation or maintenance. 

Table 3.3 Root causes of the wind turbine failure modes 

Weather Mechanical Electrical Wear 

High wind 

Icing 

Lightening 

Manufacturing and material defect 

Human error 

External damage 

Grid fault 

Overload 

Human error 

Software failure 

Aging 

Corrosion 

 

Failure probability of each failure mode is calculated from the contribution of that 

failure mode in the interruption of the wind turbine operation. The limiting factor in RB-

FMEA study of wind turbines is that the detailed failure data are not available for all of 

the failure modes. Today, the number of reports providing statistics on failure 

probabilities is increasing. Some of these statistics have been categorized based on the 

capacity of the wind turbines, while some others have been divided according to the type 

of the wind generation system [78] [79].  

There are different approaches to detect the probable failure modes as categorized 

in Table 3.4. The common approaches are through inspection or while the turbine is 

being maintained. However, the fastest and the most reliable method is condition 

monitoring which can increase the availability of wind turbine considerably by using 

online systems. By having a condition monitoring system, the probability of not detecting 

the failure decreases to the failure probability of the human error or the monitoring 
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system itself. The cost representing failure criticality should include repair or new part 

expenses, duration of the repair, etc., which are specific for each wind turbine type and 

provided by the wind farm owner for the study. 

Table 3.4 Major detection methods of the wind turbine failure modes 

Inspection Condition Monitoring Maintenance 

Visual 

Auditive 

 

Vibration analysis 

Oil analysis 

Infrared thermography 

Ultrasonic 

Time-Based 

Condition-Based 

3.2.3 Markov Processes 

For a complete reliability study of DER, one should consider the impact of the 

DER on the grid as well as modeling the loads. In a case of wind turbine reliability, 

Markov Processes allow for modeling the time domain operation of a group of wind 

turbines (as a wind farm) considering failure and repair of wind turbines, wind speed 

changes, and the load profile. Calculation of time-based reliability of a wind farm is 

beneficial for site selection and long-term electricity production estimation as well as 

short-term operations, especially in deregulated energy market where the owner of a wind 

farm needs to evaluate cost-benefit of alternative decisions at different times while 

providing an acceptable level of reliability. 

Typically, in order to evaluate the reliability of wind farms, a two-state Markov 

model of “working” or “failure”, is used to present equipment such as wind turbine. 

Using this model, the number of states for a wind farm with N number of wind turbines 

will be 2𝑁. Since there are tens and sometimes hundreds of wind turbines installed in 

today’s wind farms, this modeling approach increases the number of states dramatically. 
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Here, a Markovian model has been used to study wind farm availability and 

reliability due to wind variability and load changes for short-term and long-term periods. 

The model is developed based on the fact that wind turbines in a wind farm are usually 

from the same model and manufacturer. The wind farm is modeled using Markov 

Processes with (N+1) number of states where each state represents the number of 

working wind turbines at a time. Kendall-Lee notation of this birth and death process is 

M/M/S/GD/N/N where the two “M”s stand for Markovian assumptions for failure and 

repair times; “S” denotes the number of parallel repair crew; failed turbines waiting times 

are based on general queue discipline “GD”; the first “N” shows the system capacity 

assuming that repair process has enough capacity for all wind turbines if they fail, and the 

second “N” is the number of similar wind turbines installed in the wind farm. Figure 3.6 

shows the diagram of this modeling, where λ and µ are failure and repair rates 

respectively. To explain the repair transition rates, assume that there was r number of 

failed wind turbines being repaired simultaneously. In that case, the repair rate would be 

r×µ according to Markovian property. Because in our model the number of repair crew is 

limited to S, at each time the coefficient of µ will be the minimum of S and number of 

failed wind turbines [70]. 

 

Figure 3.6 Rate diagram for the wind farm Markov model 
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This model assumes wind turbines of the same make and model are identical. In a 

case that a wind farm consists of turbines from more than one manufacturer, each group 

of similar turbines must be modelled separately. Although some studies show a 

correlation between wind turbine failures and weather condition (humidity, temperature, 

and wind speed) at the installation site, it is difficult to determine its effect explicitly 

specially in a short term because failures may often occur sometime after their causing 

event [18]. Here, wind turbine failures and wind speed changes are assumed to be 

independent for simplicity so that we can model them separately. However, the effect of 

weather can still be taken into account by defining non-stationary failure rates for 

different periods, say each season. 

Wind speed variability, on the other hand, can also be represented by various 

wind states at different points in time. To do so, wind speed changes may be binned 

based on the corresponding output power changes of the installed wind turbine. For 

example, a typical power curve of a 1.5MW wind turbine is shown in Figure 3.7, where 

the cut-in and cut-out wind speeds are 4m/s and 25m/s respectively. Beyond those points, 

the output power of the wind turbine will be zero. There is also a rated wind speed (12m/s 

in Fig.3.7) for which the turbine produces its rated output power, and this rated power 

remains approximately constant within this rated and cut-out wind speed due to turbine’s 

power control system. Wind changes between cut-in and rated wind speeds lead to 

different wind power generation and can be binned with a specific interval.  
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Figure 3.7 Power curve of a 1500kW wind turbine 

The probabilistic changes of wind speed may be translated into relevant output 

power of the specific turbine installed at that location, and represented by output power 

states. Each output power state, 𝑞𝑖, corresponds to a fraction of turbine’s rated output 

power; in other words, the output power of wind turbine is 𝑞𝑖 times its rated power due to 

the wind speed. 𝐾 is the total number of states; therefore: 

𝑞1 = 0 ,  𝑞𝐾 = 1  𝑎𝑛𝑑 0 < 𝑞𝑖 < 1                                       (3.10)        

Here, rather than looking for transition rates between the states, the frequency of 

occurrence of different wind speeds (or equivalently histogram of corresponding power 

production) is considered for reliability studies since this is the format in which the data 

are available from measurements or weather forecast models.  

A simple power system structure used for reliability study is depicted in Fig.3.8.  

 

Figure 3.8 Power system model for reliability study of the wind farm 
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The system consists of a regional load supplied by the power grid, as a slack bus, 

and an installed wind farm. The arrows show the possible directions of power flow. 

Depending on the amount of power production and load demand, the wind farm may 

send its excess production to the grid or receive some power from the grid, when there is 

not enough wind, to supply the local loads. In this structure, the equivalent total load 

changes with time.  

In order to determine the reliability of wind farms in supplying the load, its time-

based behavior must be considered. For the short-term reliability studies, time series 

model of the load (e.g. hourly load changes) may be used derived from the load 

forecasting methods [80] [81]. For the reliability assessment in long-term, the probability 

distribution of the peak load can be considered to model the load [82].    

The reliability indices are used to determine how reliably the wind turbines can 

contribute to supply a time-varying demand, for a certain period of time. The duration of 

interest may vary from hourly to yearly basis where turbines’ failure and repair rates may 

change, accordingly. Fig.3.9 shows the steps toward the calculation of reliability and 

availability indices. 
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Figure 3.9 Procedure of wind farm reliability calculation using Markov Processes 

According to the formulation of continuous-time Markov processes, state 

probabilities of wind farm model in Fig.3.6 can be expressed by an (𝑁 + 1) element row 

vector, P, which should satisfy the following differential equation [83]: 

                         
𝑑𝑷

𝑑𝑡
 =  𝑷 × 𝑨                                                    (3.11) 

where, 𝑨 is the matrix of transition intensities. The elements of this square matrix are 

probability per time unit that the system makes a transition from one state to another. The 

values of each row sum up to zero in order to conserve the rule that the probability mass 

flow out of each state should go to other states. Elements of matrix 𝑨 can be set up based 
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on failure rate and repair rate of the single wind turbine. In the case of the wind farm 

model, matrix 𝑨 is arranged as shown below. 

 

Solving the Eq.3.11 mathematically determines the probabilities for simultaneous 

operation of any number of wind turbines with time. The solution as a function of time is 

given by: 

                     𝑷(𝑡) =  𝑷(0) × exp (𝑨𝑡)                                             (3.12)                         

where 𝑷(0) is the initial condition of working wind turbines.  

3.2.3.1 Short-term study 

In short term reliability studies, the initial condition of the wind turbines impact 

the results. The wind turbine state probabilities can be calculated at each time step (e.g. 

one hour) for the short-term duration of interest. If the elements of 𝑷(𝑡) are denoted by 

P(j, t), Eq. 3.13 can be used to calculate the total availability of the wind farm.          
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𝐴(𝑡) =
∑ (P(j, t)  ×  𝑗)
𝑗=𝑁 
𝑗=0

𝑁
                                                    (3.13) 

where, 𝐴(𝑡) is the availability of wind farm at time 𝑡, P(j, t) is the probability of j 

turbines working simultaneously at time t.  

At each time instant, total output power of the wind farm results from the output 

power due to wind speed at that time multiplied by the availability of the wind farm. 

During the short-term study, it is possible that for some hours, the production of the wind 

farm exceeds the load demand, and so, the excessive power can be transferred to the grid; 

other times, grid needs to compensate for the lack of wind farm power production. The 

Loss of Load at each hour 𝑡𝑛 can be defined as: 

𝐿𝑂𝐿(𝑡𝑛) =  {
1     (𝐴(𝑡𝑛) × 𝑃𝑊𝑅𝑊𝑇(𝑡𝑛) × 𝑁) <  𝑃𝑊𝑅𝑙𝑜𝑎𝑑(𝑡𝑛)
0                                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

                 (3.14)   

where, 𝑃𝑊𝑅𝑊𝑇(𝑡𝑛) and 𝑃𝑊𝑅𝑙𝑜𝑎𝑑(𝑡𝑛) are power production of a wind turbine and power 

demanded by the load at hour 𝑡𝑛, respectively. n is an integer denoting the time step. 

Consequently, Loss of Load Expectation from the wind farm’s point of view for a period 

of T hours can be derived using Eq. 3.15. 

𝐿𝑂𝐿𝐸(𝑇) = ∑𝐿𝑂𝐿(𝑡𝑛)

𝑇

𝑛=1

                                            (3.15) 

3.2.3.2 Long-term study 

If the intended study time, T, becomes long enough, the effect of wind farm’s 

initial condition will be negligible and the results will converge to the steady state 

probabilities. By definition, traffic intensity is the ratio of failure rate to the repair rate: 
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𝜌 =
𝜆

μ
                                                                 (3.16) 

        

Steady state probability of having j out of N number of turbines working together, 

𝜋𝑗, is calculated using Eq. 3.17. [84] 

𝜋𝑗 =

{
 
 

 
 (

𝑁

𝑁 − 𝑗
) 𝜌(𝑁−𝑗)𝜋𝑁                         𝑗 = 𝑁 − 𝑆,𝑁 − (𝑆 − 1),… ,𝑁 − 1, 𝑁

( 𝑁
𝑁−𝑗

) 𝜌(𝑁−𝑗)𝑗! 𝜋𝑁

𝑆! 𝑆(𝑁−𝑗−𝑆)
                               𝑗 =  0,1, … ,𝑁 − (𝑆 + 1)                 

         (3.17) 

where 𝜋𝑁 is calculated using the fact that: 

∑𝜋𝑗 = 1

𝑁

𝑗=0

                                                              (3.18) 

Equation 3.19 calculates the average availability of the wind farm in the long-

term. 

𝐴 =
∑ (𝜋𝑗  ×  𝑗)
𝑗=𝑁 
𝑗=0

𝑁
                                                     (3.19) 

Considering wind farm’s availability and turbines output power due to wind speed 

distribution, power production of the wind farm for each state 𝑞𝑖 is: 

𝑃𝑊𝑅𝑊𝐹,𝑞𝑖 = 𝑞𝑖 × 𝑃𝑊𝑅𝑟 × 𝐴 × 𝑁                                       (3.20) 

where 𝑃𝑊𝑅𝑟 is the rated power of a wind turbine. Estimated energy production of wind 

farm for duration of 𝑇 can be derived using Eq. 3.21. 

𝐸𝑊𝐹 =∑(𝑃𝑞𝑖 

𝐾

𝑖=1

× 𝑃𝑊𝑅𝑊𝐹,𝑞𝑖) × 𝑇                                     (3.21) 
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where 𝑃𝑞𝑖  is the probability of having output power state 𝑞𝑖; and 𝐾 is the total number of 

output power states. Using the total probability theorem, Loss of Load Expectation of the 

wind farm for long-term operation duration of T is calculated. 

𝐿𝑂𝐿𝐸 =∑𝑃(

𝐾

𝑖=1

𝑃𝑊𝑅𝑙𝑜𝑎𝑑 > 𝑃𝑊𝑅𝑊𝐹,𝑞𝑖) × 𝑃𝑞𝑖 × 𝑇                           (3.22) 

3.2.4 Monte Carlo simulation 

In addition to the analytical techniques, the simulation methods may also be used 

to estimate the output power and evaluate the reliability of a renewable generation system. 

The modeling for Monte Carlo simulation (MCS) is done using the Arena software [85]. 

This software is modular and features a flowchart-style modeling methodology enabling 

MCS studies and performance evaluation. Figure 3.10 shows the schematic of a single 

wind turbine model used for output power estimation based on the wind speed probability 

distribution.  
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Figure 3.10 Wind turbine model for output power estimation in Arena software  

The advantage of this approach is that any wind speed profile and type of wind 

turbine with its power curve can be modelled in the software using block diagrams. In 

fact, at any point in time, a wind speed is generated based on its distribution and moved 

to the decision block. The decision block performs as a look-up table built according to 

the specific power curve of the wind turbine in order to determine how much power will 

be generated based on the input wind speed. The simulation is run for thousands of 

iterations and the average expected power generated by the wind turbine is calculated 

along with its confidence interval. The expected average wind energy is calculated by 

multiplying the average expected generated power by the number of turbines and the 

duration of interest.  
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In addition, the model shown by Figure 3.11 is used to simulate the failure and 

repair process of a wind turbine. The time between failures is based on exponential 

distribution, and the mean time to repair may be assumed to follow the Log-normal 

distribution [86]. The result of this simulation is the outage duration of each major 

subassembly of the wind turbine from which the availability of the wind turbine can be 

calculated. By adding all the individual outage durations, the total unavailability duration 

of a single wind turbine is determined. Then, the average availability is the total available 

hours over the total study hours. 

Similarly, the availability of a fleet of wind turbines in a wind farm is determined 

using MCS. The main difference between this model and the one for a single wind 

turbine is that in a wind farm, the number of wind turbines, and consequently, the number 

of vulnerable parts are higher. Therefore, occasionally, there may be some parts which 

need to wait in a queue to be repaired in case of simultaneous incidents. This will 

definitely add to the total outage time of that part and decrease the overall availability of 

the wind farm.  
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Figure 3.11 Failure and repair model of main subassemblies of a wind turbine in Arena  

3.2.5 Hybrid analytical-simulation approach 

Another important factor to be considered for reliability assessment of equipment, 

such as a wind turbine, is maintenance. Usually, during a maintenance, the equipment 

should be taken out of service for technical and safety reasons. Therefore, maintenance 

impacts the availability and reliability of the equipment, and it is critical to be modeled 

and optimized such that a certain required level of system reliability can be met. 

Maintenance is a critical issue particularly for systems such as wind turbines 

which are typically installed in remote areas and are not easily accessible or may require 
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special maintenance equipment, such as a crane. In addition, maintenance may be 

influenced by crew constraints. For example, in the case of simultaneous failures or 

multiple warnings from condition monitoring systems on a wind farm, a limited number 

of maintenance crew may cause additional maintenance delays. The hybrid analytical-

simulation approach proposed intends to provide a model for the operation and 

maintenance (O&M) of a deteriorating system, such as a wind turbine, determine the 

optimum maintenance, and address the effect of maintenance constraints on the 

availability and total gain (average revenue per unit time) of the system. 

There have been numerous research studies in maintenance and its optimization. 

Due to the probabilistic nature of deterioration and failure of equipment, stochastic 

models have proven to be more suitable for maintenance studies.  

Among the analytical techniques, Markov models have been widely adopted in 

the literature [87]-[68]. Markov Decision Processes (MDP), and semi-Markov Decision 

Processes (SMDP) have been used for maintenance optimization in various sections of a 

power system, such as traditional power plants [87], [88], substation equipment [89], and 

renewable energy sources [90], [91]. Time-based Markov models [92] are limited in the 

sense that they only consider time as a deterioration factor. To solve this problem, 

“inspection” has been added to the model to incorporate CBM as well [93]. However, 

current Markov models are still limited in modeling complex situations with deterioration, 

inspection, and maintenance [94], [95]. The model becomes even more complex by 

including the realistic aforementioned restricting factors affecting maintenance and repair.  
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Simulation models based on Monte Carlo simulation (MCS) have also been 

employed for maintenance studies. MCS may be performed to study a power system [96], 

[97] or its individual pieces of equipment [98], [99]. The main goal of these studies is 

generally to determine the optimum maintenance policy considering cost and overall 

reliability. MCS is favorable because it can also be applied to system states with non-

exponential distribution times without an extra computational burden [100]. However, 

due to the need for a large sample size, utilizing MCS for maintenance optimization 

could be computationally intensive.    

None of the previous research has incorporated both maintenance optimization 

and the consequences of restricting conditions, such as extended duration of 

maintenance/repair, lead time, and opportunity costs, on the availability and profit of the 

system. Here, we develop a hybrid of analytical and simulation methods incorporating 

SMDP and a replicated sequential-based MCS model for wind turbines in order to 

determine the optimum maintenance strategy and, at the same time, the effect of 

maintenance constraints on the availability and gain of the system. By choosing a hybrid 

method, we benefit from the combined aforementioned advantages of both types of 

modeling. 

In the first stage, it is computationally more efficient to use an analytical method, 

similar to the SMDP introduced in [93], to obtain the optimum maintenance of equipment, 

such as a wind turbine, under different decision policies. Then, the MCS-based model is 

developed emulating the SMDP and validated through comparison of the results. In the 

second stage, the MCS-based model developed is employed to analyze the effect of 
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maintenance and repair resource constraints on the availability and cost of the wind 

turbines.  

The process for the proposed analytical and simulation-based modeling can be 

summarized as follows:  

A. Build a SMDP model for operation and maintenance of a wind turbine, 

considering equipment deterioration, failure, inspection, and maintenance 

rates.  

B. Define the types of maintenance and decision options at different deterioration 

stages. Different combinations of possible maintenance decisions determine a 

set of applicable maintenance scenarios. 

C. Determine the optimum maintenance policy based on SMDP under various 

decision frequencies. Decision frequency is the rate at which the maintenance 

is feasible considering the actual operational constraints. Therefore, in this 

step, an optimum maintenance policy is determined for each decision 

frequency. 

D. Develop an MCS-based model according to the state diagram of Step A and 

determine the optimum maintenance policy. In this step, MCSs are run 

iteratively for each possible maintenance policy; and the expected gain for 

each scenario is determined. The optimum policy is the one with the highest 

expected gain.    

E. Validate the MCS-based model by comparing the results from Steps C and D. 
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F. Study the effect of maintenance constraints, such as maintenance lead time 

and repair crew readiness, on availability and cost of a single wind turbine and 

a group of wind turbines on a wind farm with the MCS model. 

3.2.5.1 Analytical approach 

The state transition diagram of the analytical semi-Markov processes model is 

shown in Fig. 3.12 [93]. The model is comprised of three operating states, 𝐷𝑖 ;  𝑖 =

{1, 2, 3} representing three deterioration stages where 𝐷1 implies “like new” condition 

and the condition of equipment deteriorates by moving toward 𝐷3 .Eventually, the 

deterioration leads to a failure state, 𝐹1 , where it would require substantial repair in order 

to bring the equipment back to its initial working state. There is also another type of 

failure due to random events denoted by 𝐹0  . In this model, λ and μ represent transition 

rates between adjacent states, where 𝜆𝑖 is a random failure rate originating from 𝐷𝑖 ; and 

𝜇𝑗 (𝑗 = {0, 1}) is the repair rate after failure 𝐹𝑗 . 𝑀𝑖 and 𝑚𝑖 denote major and minor 

maintenance at the deterioration stage, 𝑖, respectively. Following a maintenance activity, 

equipment should be in a better condition; however, there is a possibility that its 

condition worsens due to defects in replacement parts or human error. Therefore, the next 

state after visiting an 𝑀𝑖 or 𝑚𝑖 state can be either one of the 𝐷𝑖  states or an 𝐹1 state; and 

their transition rates are denoted by 𝜆𝑀𝑖 −𝐷𝑖
, 𝜆𝑚𝑖−𝐷𝑖 

, 𝜆𝑀𝑖− 𝐹1
, and 𝜆𝑚𝑖− 𝐹1

. The rates of 

leaving the major and minor maintenance states,  𝜇M and 𝜇m, are the same at each 

deterioration stage and can be defined using Eq. 3.23 and Eq. 3.24, respectively. These 

rates are inversely related to the duration of the maintenance. 
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 𝜇M = (∑𝜆𝑀𝑖−𝐷𝑘
) + 𝜆𝑀𝑖−𝐹1

3

𝑘=1

  ,   𝑖 = {1, 2, 3}                               (3.23) 

 𝜇m = (∑𝜆𝑚𝑖−𝐷𝑘
) + 𝜆𝑚𝑖−𝐹1

3

𝑘=1

  ,   𝑖 = {1, 2, 3}                               (3.24) 

In formulating SMDP, for each level of deterioration, a decision can be made 

from the three possible options: 𝑑1 (do nothing), 𝑑2 (do major maintenance), or 𝑑3 (do 

minor maintenance). The “Inspection” state in an SMDP model is where the decisions are 

made; and, therefore, they are represented by “Decision” states in our model. The 

availability of the wind turbine in this model is defined as the fraction of the total time in 

which the turbine is in either of the operating states, 𝐷𝑖 . 

 

Figure 3.12 State transition diagram for SMDP study of deteriorating equipment 

Generally, there are three methods to solve this problem: Linear Programming, 

Value Iteration, and Policy Iteration. Linear Programming usually requires higher number 

of iteration to reach an optimal policy; and Value Iteration method is suitable for discrete-

time Markov decision processes [54], whereas in this dissertation, the Markov process is 
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Fig. 1.  State transition diagram for SMDP study of deteriorating equipment. 
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continuous. Therefore, the policy iteration approach is used to solve this SMDP scheme 

[101]. In this method the preliminary step is to select of an initial policy; then, there is an 

iterative process with two main steps to evaluate and improve the policies until an 

optimum policy is determined.  

In the evaluation step, a policy is assessed by solving a set of Eq. 3.25 which 

calculates the gain, 𝑔, and the relative values of this policy. 

𝑣𝑖 + 𝑔 = 𝑞𝑖𝑡𝑖 +∑Γ𝑖𝑗𝑣𝑗

𝑁

𝑗=1

                      𝑖 = 1,2, …𝑁                               (3.25) 

where 𝑣𝑖, 𝑞𝑖, and 𝑡𝑖 are the relative value, the earning rate, and the sojourn time of state 𝑖, 

respectively. Γ𝑖𝑗 represents the transition probability from state 𝑖 to 𝑗, and 𝑁 is the total 

number of states. 

In the policy improvement step, the relative values derived by solving Eq. 3.25 

are utilized. For each state 𝑖, a search is performed for an alternative, 𝑎, that maximizes 

the test quantity, 𝐺𝑖
𝑎, expressed by Eq. 3.26. 

𝐺𝑖
𝑎 = 𝑞𝑖

𝑎 + (
1

𝑡𝑖
𝑎) [∑Γ𝑖𝑗

𝑎𝑣𝑗

𝑁

𝑗=1

− 𝑣𝑖]                                               (3.26) 

This alternative is set as the new decision in state 𝑖, and the process is repeated for 

all states to determine the new policy. 

It should be noted that the process explained above solves SMDP for a specific 

decision frequency, 𝜆𝑑. However, the optimum maintenance policy may vary based on 

the feasibility of the intended maintenance frequency. To address this aspect, SMDP 

should be solved for different decision frequencies.  
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3.2.5.2 Simulation approach 

A MCS model is developed based on the same set of states described for SMDP 

using Rockwell Arena software. The model developed is illustrated in Fig. 3.13 where the 

wind turbine enters the simulation environment and travels within the state space for a 

designated lifetime. Then the simulation is repeated with the required number of 

replications to determine confidence intervals.  

The majority of the states in the SMDP configuration are modeled by three 

components representing sojourn time, expected reward, and transition probabilities, in 

the Arena model. First, the block representing the sojourn time imposes a delay with a 

desired probability distribution. Next, the expected reward associated with that state is 

allocated. Finally, a decision block is used to assign transition probabilities between the 

states. The failure states, 𝐹0 and 𝐹1, do not require the third component mentioned above 

because the next state after a failure is always 𝐷1. In each iteration of the MCS, the 

equipment starts at D1 and travels through the states based on the probabilities defined. 

At the end of the simulation, Arena calculates the expected output parameters, such as the 

average gain and the availability of the system. 
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Figure 3.13 State transition diagram for MCS-based modeling of deteriorating equipment 

In addition, using this model, a cost analysis is performed and the opportunity 

cost of the wind turbine in different conditions can be compared. Here, the opportunity 

cost is defined as the amount of expected profit that would have been realized had the 

wind turbine not operated below a reference availability.   

The opportunity cost of wind turbine 𝑘 for duration of T can be calculated from 

Eq. 3.27.  

O𝐶𝑘 = Δ𝐴𝑘. 𝑇. 𝑃𝑜𝑢𝑡𝑘 . 𝐶𝐹𝑘. 𝑃𝑅
̅̅ ̅̅                                                   (3.27) 

where O𝐶𝑘 and Δ𝐴𝑘 are the opportunity cost and relative availability compared to the 

reference case, respectively; 𝑃𝑜𝑢𝑡𝑘is the rated output power of the turbine; 𝐶𝐹𝑘 represents 

the capacity factor of the wind turbine determined based on the wind resource of the area; 

and 𝑃𝑅̅̅ ̅̅  is the expected rate of profit from selling the electricity generated.  
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4.1  Introduction to Smart Power Distribution Systems 

A power system, as a critical energy-providing structure, must continuously adopt 

new technologies in order to improve its efficiency in terms of reliable operation and cost. 

Smart grid is a general term recently used to label the emerging power grid resulting from 

current technological adoptions in power systems [6]. This new type of grid incorporates 

recent improvements in different areas of engineering and science and, for the most part, 

in communication and networking in order to operate more efficiently [5]. As more real-

time data become available through the sensory devices, the power system becomes more 

alert and responsive to the potential contingencies and the reliability of the system may 

be improved. 

A smart grid in a power distribution system may be called a “smart power 

distribution system” which accommodates new types of loads/generations, such as 

electric vehicles/distributed renewable generation (wind, PV), etc. In a conventional 

power distribution system, most of the demand side management programs consider the 

load control problem from the grid’s perspective. In a smart distribution system, however, 

the bidirectional data flow and interoperability between the end-user equipment and the 

grid have created an opportunity to optimize an individual customer’s power 

consumption, and, at the same time, enhance the overall system-wide operation of the 

grid through peak load alleviation. In other words, the customers’ objective to minimize 

their electricity bills is in agreement with the grid’s intention to flatten the total demand 

curve.  
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Implementation of distributed generation and battery storage systems enable 

electricity customers and small businesses to make profit by selling excess generated 

power back to the grid. In the paradigm of the smart distribution system, individual 

customers can be active power grid participants by continuously making rational 

decisions to buy, sell, or store electricity based on their present and expected future 

amount of load, generation, and storage, considering their benefits from each decision.  

Electrical engineers are required to model and study the future power distribution 

system including its new types of customer loads as well as the behavior of the customers, 

in order to operate and plan for the system reliably and efficiently. In a smart power 

distribution system, due to the large number of potentially active consumers diversely 

distributed in the system, it is difficult to grasp the overall aggregated behavior of the 

consumers. Therefore, in recent years, more research efforts have focused on distributed 

approaches for demand-side modeling and control [102], [103]. 

4.2  Modeling of Smart Distribution Systems (SDS) 

With the advent of the smart grid and smart power distribution systems, many 

recent studies have focused on simulating these systems and interactions between the 

customers and the grid with different perspectives, such as cost reduction [104], efficient 

load management, etc. [105], [106]. It is challenging to include unpredictability and 

dynamism introduced to the future power system as a result of supplying a large number 

of prosumers with varying demands and renewable generation volatilities, each with their 

own aims and priorities, operating within an uncertain environment affected by the power 

system contingencies and the outcomes of actions taken by individual customers [107]. 
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Due to these complexities, there may be many details and approaches to model a 

smart grid. In this dissertation, we propose three models of smart distribution system that 

can be used for power system studies, such as reliability assessment. These models are 

developed using different simulation programs and with different perspectives. Hereafter, 

we call these models SDS (smart distribution system) model-I, model-II, and model-III. 

The software used for these three models are Repast symphony, MATLAB, and 

DIgSILENT Power Factory, respectively. 

4.2.1 SDS model-I 

SDS model-I is based on distributed modeling of power system customers within 

the power system. As far as distributed grid modeling, techniques based on multiagent 

systems (MAS) have been adopted due to their versatility, scalability, and ability to 

model stochastic and dynamic interactions among customers (as agents) and between a 

customer and the grid. Indeed, there have been several MAS-based applications in the 

power system literature, such as electricity market [108], [109], voltage control [110], 

load restoration [111], load shedding [112], and the smart grid area [113], [114]. 

None of the power system models have fully utilized the smart distribution system 

features described in Section 4.1. The research is either descriptive without any 

experiments [115], or the capabilities of the smart customers are simplified and restricted 

to such an extent that the problem may even become solvable without an MAS design 

[113]. The inability of the customers to generate power is an example of those restrictions 

[116]. An efficient load management system, with green energy and conventional power 

suppliers, is proposed in [114], aiming to reduce electricity cost and carbon emissions. 
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Nevertheless, the ability of customers to generate electricity, adjust their load based on 

the price signal, and sell electricity back to the grid has not been included in this paper. 

Here, we propose and discuss customers that not only consume electricity but are 

also capable of generating and storing it using their own power generation and electricity 

storage system. Taking it one step further, we consider these customers to be flexible and 

make autonomous decisions to manage their load, generation, and electricity storage. 

Moreover, they can interact with the grid to trade electricity in a way that benefits them 

the most. 

This system has been implemented using Repast Simphony software [117], based 

on the Java programming language. Repast Simphony is the latest version of Repast 

(REcursive Porous Agent Simulation Toolkit), a powerful tool designed to provide a 

visual platform for an agent model and spatial structure design, agent behavior 

specification, model execution, and results examination [118]. 

Our approach is to model the customers as agents in a smart grid environment. 

Each individual agent tries to minimize its cost of electricity by making decisions from 

the following options:  buy electricity from the grid, charge or discharge batteries, sell 

electricity to the grid, and, sometimes, ignore low priority loads. Decisions made by the 

customers affect the electricity market and vice versa. Therefore, sound decisions are 

critical to lead the entire system toward efficient and reliable operation. Fig. 4.1 shows 

different entities of the model as well as possible directions of electricity flow, illustrated 

by the arrows. 
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Figure 4.1 Different entities of SDS model-I 

4.2.1.1 Electrical grid and electricity rate 

The electric grid in SDS model-I is modeled as a simple agent that is responsible 

to balance the generation and the load at each time step, i.e., it buys the surplus 

generation of the customers or sells to them the amount of electricity demanded. The 

amount of sold-back power by each customer, however, may be limited according to a 

contract, due to the grid operation load flow constraints and/or stability considerations. 

The power sell-back limit is considered in this dissertation but the stability analysis is out 

of the scope of this study. 

The rate at which the electricity can be purchased from the grid is electricity 

purchase rate (EPR) calculated as a function of the customers’ electricity demand from 

the grid. There are two rates associated with each hour:  the rate announced before the 

submission of the household’s electricity demand (e.g. day-ahead), 𝐸𝑃𝑅(𝑡−), and the 

real-time rate after the demand requests have been received by the utility, 𝐸𝑃𝑅(𝑡). 

Due to the correlation between the prices of electricity per hour in nearby 

consecutive days [103], the early announced electricity rate is modeled based on the 

weighted sum of past days’ electricity rates at the same hour, as expressed by Eq. 4.1. 
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𝐸𝑃𝑅(𝑡−) = ∑𝑘𝑑 ⋅ 𝐸𝑃𝑅(𝑡 − 24. 𝑑)

𝑚

𝑑=1

 ;∑ 𝑘𝑑

𝑚

𝑑=1

= 1                      (4.1) 

where 𝑘𝑑 is the weighting factor to model the correlation between the price on the current 

day and that on 𝑑 days ago; and 𝑚 is the number of days to be included from the past.  

𝐸𝑃𝑅(𝑡) represents the modeled electricity market by fitting a typical set of points 

(electricity price, load demand) [119] into a monotonically increasing function and 

normalizing it for each household, as expressed by Eq. 4.2. 

𝐸𝑃𝑅(𝑡) = 𝛼1 ⋅ 𝑒
𝛼2⋅𝑙(̅𝑡) + 𝛼3 ⋅ 𝑒

𝛼4⋅𝑙(̅𝑡)                                      (4.2) 

where 𝛼1 to 𝛼4 are coefficients of the fitted function and 𝑙(̅𝑡) represents the actual load 

demand of the average customer for hour 𝑡 in kWh.  

Customers with generation-battery systems may sell their excess electricity to the 

grid at EPR or at a different rate named electricity selling rate (ESR), which could be 

lower than the EPR. 

4.2.1.2 Customers 

Customers are the agents of the MAS model. Each customer agent may have the 

properties, such as the demand (installed load; actual hourly load), load priority, 

renewable generation (capacity; actual hourly generation), and electricity storage 

(capacity; available storage). The model allows inter-customer communication and power 

transaction, and it includes various load sectors (e.g., residential, commercial, industrial) 

and renewable generation technologies (e.g., wind, PV).  

Each customer sector has its own average load profile for a 24-hour period. In our 

model, the average demand of a load category at each hour of the day is used to calculate 
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the expected load of the corresponding customers during that hour based on a normal 

distribution. The demand of the customers may be met by their own resources or by the 

power purchased. 

The features of a customer in a SDS model-I are shown in Fig. 4.2. An active 

customer may utilize these resources to reliably meet its electric demand. 

 

Figure 4.2 The features of an active customer agent in SDS model-I. 

The neighborhood of a customer includes all the geographically close customers 

with whom direct electric connection and data communication are permissible. Within a 

neighborhood, the customers are able to establish peer-to-peer communication and trade 

electricity. Each customer may belong to several neighborhood communication networks 

at the same time. The communication infrastructure allows the customer agents to 

demand electricity from their neighbors upon an interruption in the electric network and 

determine when their load exceeds the summation of their local generation and stored 

power. The details of the neighborhood configuration in our model have been provided in 

[120]. 
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4.2.1.3 Renewable generation and storage system 

The hourly output power of two renewable generation systems (wind and PV) are 

modeled using probability distributions. Hourly wind speed can be adequately 

represented by the Weibull distribution [121]. A simple power curve formula is then used 

to calculate the hourly wind power generation (in MW) as described by Eq. 4.3 [122].  

𝑔𝑊(𝑡𝑗) =

{
 
 

 
 𝐶𝑎𝑝W (

𝑉𝑊(tj) − 𝑉𝑐𝑖

𝑉𝑟 − 𝑉𝑐𝑖
)   𝑉𝑐𝑖 ≤ 𝑉𝑊(tj) ≤  𝑉𝑟 

𝐶𝑎𝑝W                                   𝑉𝑟 ≤ 𝑉𝑊(tj) ≤  𝑉𝑐𝑜 

    0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

                           (4.3) 

The output power of a PV system depends on a variety of parameters, including 

environmental factors (e.g., temperature, cloud cover, dust, etc. [23]) and solar panel 

related (e.g., technology, type of installation, etc. [123]). We use the daily mean hourly 

solar irradiance data and assume the irradiance for different hours follow normal 

distributions. Next, the PV generation in MW is calculated using Eq. 4.4 [124]. 

𝑔𝑃𝑉(𝑡𝑗) =

{
  
 

  
 𝐶𝑎𝑝PV (

𝐼𝑅(tj)
2

𝐼𝑅𝑠𝑡𝑑 × 𝐼𝑅𝐶
)                   𝐼𝑅(tj) ≤  𝐼𝑅𝐶     

𝐶𝑎𝑝PV (
𝐼𝑅(tj)

𝐼𝑅𝑠𝑡𝑑
)                 𝐼𝑅𝐶 ≤ 𝐼𝑅(tj) ≤  𝐼𝑅𝑠𝑡𝑑 

𝐶𝑎𝑝PV                                               𝐼𝑅(tj) ≥  𝐼𝑅𝑠𝑡𝑑  

                         (4.4) 

In Eq. 4.3 and 4.4, 𝐶𝑎𝑝W and 𝐶𝑎𝑝PV are wind turbine and PV rated capacities. 

𝑉𝑊(tj) and 𝐼𝑅(tj) represent wind speed and solar radiation at time tj in m/s and W/m2 

respectively. 𝑉𝑐𝑖, 𝑉𝑐𝑜, and 𝑉𝑟denote cut-in, cut-out, and rated wind speed, respectively; 

finally, 𝐼𝑅𝐶and 𝐼𝑅𝑠𝑡𝑑 are irradiance at specific point of power change and standard 

environment set, typically 150 W/m2  and 1000 W/m2 respectively [124]. 
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 The electricity storage system is modeled by its capacity, possible charging rate 

and depth of discharge. 

4.2.1.4 Demand side management (DSM) 

Peak demands in the existing power systems are caused by large load variations 

for industrial, commercial, and residential customers during different hours of a day. 

Residential customers, for example, are usually at work during the day; and as they return 

home and start using appliances and lights in the evening, the electricity demand 

escalates. Likewise, the peak load hours of industrial and commercial customers depend 

on the particular business and workload. A power system infrastructure should be 

designed to be capable of handling this peak load which lasts only a few hours. This 

results in a lot of overinvestment and inefficient asset utilization. Furthermore, power 

generation at high demand hours is more costly than at base load hours. Therefore, from 

the grid’s perspective, it is desirable that the overall load profile come as close to a flat 

line as possible. By the same token, since electricity rates at peak demand hours are 

higher for consumers in a dynamic pricing scheme, customer agents prefer to better 

distribute or flatten their electricity usage throughout the day, as well. In the smart 

distribution systems, customers owning a generation/storage system have an opportunity 

to reduce their peak demand by compensating for part of their load with generated power. 

Considering that the availability of renewable generation does not necessarily coincide 

with the peak load, customers need to store the electricity generated or shift their loads in 

time. 
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There are two demand side management programs proposed for SDS Model-I; 

Utility-based method, and Average Deficit method.  

In the Utility-based method, customer agents autonomously make decisions by 

comparing the utilities of their available options. There are three utilities used by the 

agents to assign priorities to decision options of a customer. In each time step, agents use 

their load data and determine the priority of that load by assigning a Load Utility. The 

agents also receive the current wind speed and the electricity price for that time duration 

(e.g. one hour). Customers have their predicted future load, generation, and the electricity 

price. Using these parameters, the agent computes its utility of storing the electricity, 

Store Utility, or selling the available generation to the grid, Selling Utility. Based on a 

comparison of these utilities, which are normalized between 0 and 1, the agents make 

their decision for the current hour. 

In a case where a restriction occurs, the DSM prevents the execution of the 

decision with the winning utility, and the next highest priority decision will be selected to 

avoid any constraint violations in the system. Examples of these restrictions can be the 

maximum power purchased by the grid and the maximum available charging capacity of 

the battery.  

Generally, with the Utility-based method, the customer agents try to avoid buying 

electricity when the prices are high in order to save on their electricity bills. Each hour, 

the agent will encounter one of the following situations: a generation surplus or a 

generation deficit. A generation surplus occurs whenever the amount of electricity 

generated is higher than the amount of the load demand, and a generation deficit occurs 
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when the load demand is greater than the amount of electricity generated. When a 

customer agent is in generation surplus mode, it looks for the most profitable decision 

between three possible options:  supplying the load, charging a battery, and selling to the 

grid. It chooses the option with the highest utility. On the other hand, if the customer 

agent is in the generation deficit mode, it aims to manage the situation at the lowest 

possible cost, which means the agent searches for the decision with the lowest associated 

utility to take care of the electricity deficit. If it turns out that the lowest utility belongs to 

its own load, i.e., load utility is the minimum, the agent will reduce the load for that hour 

because the utility implies that the load is not having a high enough priority. Load 

reduction may be managed by adjusting the thermostats, and/or turning off the lights and 

low priority appliances. According to the design of the Utility-based method the demands 

are not shifted in time. The details of the three utilities are provided as follows: 

 Load Utility (LoU) 

Load Utility is a random number between 0 and 1, and models the priority of the 

load to be satisfied at a specific hour relative to other decision utilities. If the demand has 

a higher priority for a customer at a specific hour, the Load Utility for that customer will 

be set closer to 1 at that hour. In fact, load priority evaluates customer agent’s behavior 

and preferences. The actual value of this utility depends on many other factors which are 

not in the context of this study.  

 Selling Utility (SeU) 

Selling Utility represents a customer agent’s incentive to sell its excess electricity 

to the grid. SeU is defined such that as it decreases, there will be more motivation to buy 
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from the grid instead of selling to it. Eq. 4.5 is empirically derived for each customer 𝑖 

based on the fact that customer benefits more from selling back to the grid whenever it 

has additional generation and the electricity rate is higher. 

𝑆𝑒𝑈𝑖(𝑡) =

{
 
 
 
 

 
 
 
 
√

𝐸𝑆𝑅(𝑡−)

max 
t≤t′<𝑡+𝜏

(𝐸𝑆𝑅𝑃(𝑡′))
.

(𝑔𝑖(𝑡) − 𝑙𝑖(𝑡−)). 𝐸𝑆𝑅(𝑡−)

max
t≤t′<𝑡+𝜏

((𝑔𝑖
𝑃(𝑡′) − 𝑙𝑖

𝑃(𝑡′))𝐸𝑆𝑅𝑃(𝑡′))

𝑖𝑓 𝑔𝑖(𝑡) > 𝑙𝑖(𝑡
−) 

𝐸𝑃𝑅(𝑡−)

max 
t≤t′<𝑡+𝜏

(𝐸𝑃𝑅𝑃(𝑡′))

𝑖𝑓 𝑔𝑖(𝑡) < 𝑙𝑖(𝑡
−)

      (4.5) 

where 𝑔𝑖(𝑡) and 𝑙𝑖(𝑡
−) are the amount of wind generation and the initial load of 

household i. Index 𝑃 identifies the predicted variable, and τ is the desired foreseen 

duration for utility calculation. EPR and ESR have been previously defined in this 

chapter. If the generation of a customer for the current hour is higher than the load 

(𝑔𝑖(𝑡) > 𝑙𝑖(𝑡
−)), there will be a high incentive to sell that power to the grid because 

either that customer has a large generation or the current ESR is higher than its future’s 

predictions. A geometric mean is used to include both parameters and keep the utility 

within the defined limits. On the other hand, if the generation is less than the load 

(𝑔𝑖(𝑡) < 𝑙𝑖(𝑡
−)), the customer agent should buy from the grid when the cost of supplying 

the remaining demand is low enough compared with the future predicted costs. 

To compute SeU, customer agents obtain the current hour selling price, 𝐸𝑆𝑅(𝑡−), 

from the grid and use a normal distribution to predict the required variables for the 

duration of τ. Higher values of SeU(t) imply that, by selling to the grid at the current hour 

t, customers get more benefit than if they wait to sell at future hours.   



79 

 

 

 

  Store Utility (StU)  

Store Utility represents a customer agent’s incentive to store electricity. With a 

similar approach to what was described for the Selling Utility, StU is defined by Eq. 4.6 

which can be perceived as an analogous to Eq. 4.5 except that all of the parameters used 

here are estimated future values. 

𝑆𝑡𝑈𝑖(𝑡) =  

{
 
 
 
 
 

 
 
 
 
 

Average 
t<t′<𝑡+𝜏

(𝐸𝑆𝑅𝑃(𝑡′))

max 
t<t′<𝑡+𝜏

(𝐸𝑆𝑅𝑃(𝑡′))

                        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔𝑖
𝑃(𝑡′) > 𝑙𝑖

𝑃(𝑡′) , t < t′ < 𝑡 + 𝜏                         
                                                                                     

√
Average 
t<t′<𝑡+𝜏

(𝐸𝑃𝑅𝑃(𝑡′))

max 
t<t′<𝑡+𝜏

(𝐸𝑃𝑅𝑃(𝑡′))
.

Average
t<t′<𝑡+𝜏

((𝑙𝑖
𝑃(𝑡′) − 𝑔𝑖

𝑃(𝑡′)) . 𝐸𝑃𝑅𝑃(𝑡′))

max
t<t′<𝑡+𝜏

((𝑙𝑖
𝑃(𝑡′) − 𝑔𝑖

𝑃(𝑡′)) . 𝐸𝑃𝑅𝑃(𝑡′))

𝑓𝑜𝑟 𝑎𝑙𝑙 𝑔𝑖
𝑃(𝑡′) < 𝑙𝑖

𝑃(𝑡′) , t < t′ < 𝑡 + 𝜏

       (4.6) 

where averaging is utilized to capture the overall trend of the predicted decision variables 

in the future. Generally, customer agents may want to store electricity in order to sell it to 

the grid if they expect to generate enough electricity in the future (𝑔𝑖
𝑃(𝑡′) > 𝑙𝑖

𝑃(𝑡′)) at a 

high price. If the expected generation is less than the expected load (𝑔𝑖
𝑃(𝑡′) < 𝑙𝑖

𝑃(𝑡′)), 

agents will be willing to store electricity if they predict having a large power deficit or 

high electricity rate in the future.  

Fig. 4.3 shows the decision making diagram of the Utility-based method. 
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Figure 4.3 Illustration of the Utility based method for DSM 

Study results have shown that using Utility-based method for DSM modifies the 

electricity prices to be modified, and customer agents can successfully reduce their 

electricity costs by managing their load, generation, and storage [125]. In addition, the 

emergent behavior of the system is moving toward a flatter load curve and alleviation of 

peak demand which is desirable from the grid’s perspective. Considering the cost of 

electricity generation and storage, we can also determine the inflection point where 
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conventional customers would benefit from purchasing their own local wind generation-

storage system [125]. 

The Average Deficit method is based on customers shifting their load and using 

DER to alleviate their peak demand. In fact, the electricity rate exponentially increases 

with higher demand values. Therefore, a flatter electricity demand leads to less electricity 

cost for customers. The electricity deficit at hour j is defined by load minus generation for 

that hour for each customer.  

𝑑𝑒𝑓(𝑡𝑗) = 𝑙(𝑡𝑗) − 𝑔(𝑡𝑗)                                                    (4.7) 

Thus, a negative deficit becomes feasible when there is excess generation 

available. Eq. 4.8 calculates the mean deficit over the duration of past t0 hours.  

 𝑑𝑒𝑓(tj)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑
𝑑𝑒𝑓(t)

t0

tj

𝑡=tj−t0

                                                (4.8) 

 To demonstrate the proposed method, assume that 𝑑𝑒𝑓(t) of a customer is as 

shown in Fig. 4.4. There are two conditions based on whether the amount of deficit at the 

current hour is below or over the average deficit line.  

 

Figure 4.4 Illustration of the Average Deficit method for DSM 



82 

 

 

 

At the beginning of a below average region, the customer agent starts to increase 

the demand by charging the battery with a percentage of the future expected above-

average deficit. As the agent enters the above average region, it can gradually discharge 

the battery to reduce the demand toward the average deficit. In order to smoothly 

distribute the tasks of charge/discharge of the battery and/or the supply of the shifted 

demand over the above mean and below mean regions, two corresponding ratios 

𝑂𝑀𝑅(tj) and 𝑈𝑀𝑅(tj) are defined, respectively.  

𝑂𝑀𝑅(𝑡𝑗) =
 𝑑𝑒𝑓(𝑡𝑗) − 𝑑𝑒𝑓(𝑡𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅

∑ (𝑑𝑒𝑓(𝑡) − 𝑑𝑒𝑓(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑡𝑒
𝑡=𝑡𝑗

; 𝑑𝑒𝑓(𝑡𝑗) > 𝑑𝑒𝑓(𝑡𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅                        (4.9) 

   

𝑈𝑀𝑅(𝑡𝑗) =
def(𝑡𝑗)
̅̅ ̅̅ ̅̅ ̅̅ ̅ − def(𝑡𝑗)

∑ (def(𝑡)̅̅ ̅̅ ̅̅ ̅̅ − 𝑑𝑒𝑓(𝑡))
𝑡𝑒
𝑡=𝑡𝑗

; 𝑑𝑒𝑓(𝑡𝑗) < def(𝑡𝑗)
̅̅ ̅̅ ̅̅ ̅̅ ̅                        (4.10) 

where, 

𝑡𝑒 = 𝐸 (𝑚𝑖𝑛(𝑡)):    [𝑡 > 𝑡𝑗   & 𝑑𝑒𝑓(𝑡𝑗) = def(𝑡𝑗)
̅̅ ̅̅ ̅̅ ̅̅ ̅]                         (4.11) 

In the next step, if any unsupplied load is still remaining, the agent tries to 

postpone the shiftable part of that load (𝑙𝑆ℎ(tj) < 𝑙𝑆ℎ,max(tj) to the future. Finally, for the 

residual demand, the agent has to buy the power from the neighbors or the grid. The 

customers always redirect any requests to their neighbors before asking from the grid. Fig. 

4.5 provides the flowchart of this method in more details.  
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Figure 4.5 Flowchart of the proposed Average Deficit method for DSM 

4.2.2 SDS model-II 

The SDS model-II is aimed to be used for design and planning applications. 

Therefore, different components of this model is developed based on long-term stochastic 

behaviour of energy resources, load profile, and electricity rates. This model is developed 

using MATLAB software. 
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As mentioned before, the structure of a customer in a smart distribution system is 

comprised of loads, renewable generation and storage system, all of which are controlled 

by a DSM. A schematic similar to Fig. 4.1 may be used to show the power flow between 

different entities of SDS model-II. The power flow is bidirectional, which means 

electricity may be bought from or sold to the grid at any time. The models for different 

entities of the SDS model-II are explained in the following sub-sections. 

4.2.2.1 Electrical grid and electricity rate 

The power grid represents a utility that provides electricity to the customers and 

charges them based on a real-time pricing scheme. The electricity market prices, which 

are different at each hour of the day, are provided to the end customers [7] and denoted 

by EPR in this study. It has been indicated that real-time pricing signals will provide 

more operational information, enabling power system load flattening and peak demand 

reduction compared to other dynamic pricing methods [126]. The customers may have a 

power contract or net metering agreement with the utility (grid) that defines the rules and 

rates of buying and selling power [127]. These rules and grid connection requirements 

vary among different utilities and can address power quality and safety concerns as well 

[128]. It is assumed that the utility buys the excess electricity generated by its customers 

at ESR and provides them with electricity at EPR whenever they need it. However, the 

amount of sell-back electricity to the grid is limited. ESR is lower than EPR, and it is 

assumed to follow EPR by a constant difference of ∆R. The power flow constraint 

requires for any time, tj, that:  

            𝛿(tj) = 𝐸𝐵𝑢𝑦(tj) − 𝐸𝑆𝑒𝑙𝑙(tj) − 𝐸𝐵(tj)                                    (4.12) 
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𝐸𝑆𝑒𝑙𝑙(tj) < 𝐸𝑆𝑒𝑙𝑙,𝑚𝑎𝑥 

In this equation, 𝛿(tj) is the electricity demand of the customer defined as the 

total load minus generation at tj. EB is the energy charged in the battery. Therefore, 

negative values of EB represent battery discharge. 

The EPR data may be derived from the time series of the historical data from the 

utility. Then, the EPR for each hour, tj, is separately analyzed and fitted to a probability 

distribution. As an example, analyzing the electricity rates from Ameren utility [129] 

indicates that these hourly electricity rates can best fit into either a normal or lognormal 

probability distribution described by Eq. 4.13, with the mean values shown in Fig. 4.6. 

{
𝐸𝑃𝑅(tj)~ 𝑵 (𝜇𝑟𝑗 , 𝜎𝑟𝑗)  ∀𝑗 ∈  {1, 2, . . . ,6} ∪ {22, 23, 24}

𝐸𝑃𝑅(tj)~ 𝒍𝒏𝑵 (𝜇′𝑟𝑗 , 𝜎′𝑟𝑗)    ∀𝑗 ∈  {7, 8, . . . ,21}                 
               (4.13) 

𝜇𝑟𝑗 ∈ [0.8, 1.77] ,   𝜎𝑟𝑗 ∈ [0.05, 0.15] and 𝜇′𝑟𝑗 ∈ [0.8, 1.77] ,   𝜎′𝑟𝑗 ∈ [0.05, 0.15] 

where, 𝜇𝑟𝑗  and 𝜎𝑟𝑗 are the mean and standard deviation of the normal distribution; 𝜇′𝑟𝑗 

and 𝜎′𝑟𝑗 are the location and scale parameters of the fitted lognormal distribution, for 

electricity rate, respectively.  

 

Figure 4.6 Mean EPR and 90% confidence interval for the fitted probability distributions  
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4.2.2.2 Customers 

Customers in SDS model-II are represented by their loads which are classified 

into three categories: 𝐿1, 𝐿2, and 𝐿3. The first two categories basically define the 

customer’s regular electricity consumption. The base load, 𝐿1, for a residential customer, 

consists of end-use devices whose power usage is predetermined and nonreschedulable, 

such as refrigerators and most lighting. The loads in the second category, 𝐿2, are shiftable 

in time and prone to delay. Washers, dryers, and dishwashers are often among the 

residential loads which can be delayed; but the task should be accomplished by a certain 

deadline. Air conditioners and water heaters may be assigned to either one of the first two 

categories according to customer preferences and level of comfort desired. The third 

category, 𝐿3, consists of unscheduled loads which may be plugged in without any 

predetermined plan. Hair dryers and electric drills may be included in the last category if 

it is impossible for the end users to schedule their use. 

For example, using the average residential electricity consumption of a typical 

U.S. home [130], the base load may be modelled. In fact, the loads and the category they 

belong to are highly dependent on the electricity consumption behaviour of the 

households. The main appliances in the L1 group consist of refrigerators, freezers, air 

conditioners, water heaters, lighting, microwave ovens, etc. [131]. For the long-term 

study, this load is assumed to follow the normal distribution for each hour. The mean 

base load this residential customer and the 90% confidence interval for the mean of 

hourly fitted distributions are shown in Fig. 4.7. The mean and standard deviation of the 

distribution are described by Eq. 4.14. 
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𝐿1(tj)~ N (𝜇𝑙𝑗 , 𝜎𝑙𝑗)               ∀𝑗 ∈  {1, 2, . . . ,24}                      (4.14)   

𝜇𝑙𝑗 ∈ [0.8, 1.77] ,   𝜎𝑙𝑗 ∈ [0.05, 0.15] 

where, 𝜇𝑙𝑗 and 𝜎𝑙𝑗  are the mean and standard deviation of the normal distribution for the 

load, respectively. 

 

Figure 4.7 Mean base load and 90% confidence interval for the fitted normal distributions 

4.2.2.3 Renewable generation and storage system 

A wind turbine, as a renewable generation system, is used to explain the modeling. 

The power curve of the wind turbine can be modeled similar to what was explained in 

SDS model-I. The wind speed data for long-term studies are derived from the time series 

of the historical data from weather stations, and be fitted into the proper probability 

distributions. As an example, the long-term data from Kimball, Nebraska have been 

binned with the wind speed intervals of 0.5 m/s, and, for each hour, wind speeds can be 

best fitted into a Weibull distribution as denoted by Eq. 4.15. Therefore, 24 pairs of shape 

(𝜆𝑊), and scale parameters (𝐾𝑊) can be generated for these fitted Weibull distributions. 

The mean wind speeds of the data for this example are shown in Fig. 4.8. 

𝑉𝑤(tj)~ 𝑾𝑬𝑰𝑩(𝜆𝑊𝑗
, 𝐾𝑊𝑗

)            ∀𝑗 ∈  {1, 2, . . . ,24}                  (4.15) 
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𝜆𝑊𝑗
∈ [4.22, 7.61] ,   𝐾𝑊𝑗

∈ [1.65, 2.35] 

 

Figure 4.8 Mean wind speed and 90% confidence interval for the fitted Weibull 

distributions 

The cost of generation, 𝐶𝐺, may be considered as an average cost known as the 

levelized cost of generation. This cost is calculated by dividing the costs of generation, 

including those for installation, operation, and maintenance, over the lifetime of the 

renewable generation system and is expressed as cents per kWh of power generation. 

Next, an electricity storage system is critical for electricity management of the 

customers. There are two types of tasks defined for the storage system in SDS model-II.  

Task 1:  The primary task of this system is to store the surplus energy produced by 

renewable generation, which can be used to supply future demand.  

Task 2: The secondary task assigned to the storage is to provide an opportunity to make a 

profit from electricity trade with the grid. The rationality of this task is that the customer 

buys and stores electricity at a low electricity rate and sells it back to the grid at a desired 

high electricity rate. 

A variety of batteries with different cell technologies and prices are available on 

the market for use in electricity storage systems [132]. Two major factors affecting the 

cost of a battery are its technology and capacity. Meanwhile, there are a number of 
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parameters that affect the operation or lifetime of a battery. 𝑅𝑐, and 𝐷𝑂𝐷 of the battery, 

are among the parameters considered in the model. 𝑅𝑐 and 𝐷𝑂𝐷 represent the allowable 

amount of battery charge /discharge per unit of time and the percentage of energy from 

the total capacity which can be withdrawn without damaging the battery, respectively. 

During the operation, the DSM system should comply with the operational limits 

of the battery, defined by Eq.4.16. 

                             {

𝐸𝐵(tj) < 𝑅𝑐 × ∆t            

−𝐸𝐵(tj) < 𝐷𝑂𝐷 × 𝐶𝑎𝑝B

𝐵(tj) < 𝐶𝑎𝑝𝐵                 

                                           (4.16) 

where, ∆t, 𝐶𝑎𝑝𝐵, and 𝐵(tj) are simulation time step, battery capacity, and available 

battery charge at the end of time step 𝑗.  

The total expected cost of a battery may also be considered as a levelized cost 

over its lifetime and is expressed as cents per kWh of storage capacity per hour. 

4.2.2.4 Demand side management (DSM) 

The DSM in SDS model-II is a rule-based program that manages the loads, the 

generation, and the storage system based on the day-ahead price signals announced to the 

customer. Fig. 4.9 shows the flowchart of the rule-based DSM for a T=24-hour period. A 

24 -hour period was selected because first, it is the shortest duration that the tasks of the 

electricity management scheme, such as load shifting (all the delayed loads should be 

satisfied on the same day they are shifted), can be included independently; and second, 

the values of each stochastic variable at the same hour of different days have a good 
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correlation such that a specific probability distribution can be defined for that variable 

and that hour in the long term [133]. 

There are two sets of decision rules in this proposed DSM for obtaining the 

maximum benefit from the available facilities of the customers. The first set of rules 

manages the overall electricity generation, consumption, and Task 1 of the storage system. 

This program starts with obtaining the statistics associated with loads, generation, and 

electricity rate. Then, the rules are applied to minimize the customer’s electricity cost. In 

this scheme, if the generation is not sufficient to supply the total load (𝛿(tj) > 0), the 

decision is to discharge the battery and/or buy electricity from the grid to supply the 

remaining load. Otherwise, the surplus generation will eventually be stored or sold back 

to the grid. The remaining charge of the battery at the end of each period is carried over 

to the next one. 
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Figure 4.9 Flowchart of the rule-based DSM 

The second set of rules mutually affects the battery storage system, along with the 

first set of rules, to perform Task 2 of the storage system mentioned earlier. In this study, 

battery charge/discharge decisions, used for electricity trade-off with the grid, are made at 

extrema points of some predefined dynamic intervals. These Task 2 decision intervals (DI) 

are defined as being between two consecutive intersections of levelized wind generation 
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cost (𝐶𝐺) and EPR curves and may be from one to several hours long, as shown in Fig. 

4.10. During each Task 2 DI, the household is only allowed to buy/sell electricity from/to 

the grid once by charging/discharging its battery. While electricity trade using a battery is 

a profitable strategy for a customer, the definition of DI in this scheme aims to limit the 

number of charge/discharge cycles to extend the battery lifetime.  

Fig.4.10 shows typical electricity rates, wind generation, battery decisions of Task 

2, and a typical one-day load schedule. 

 

Figure 4.10 Typical variables determined and used by the DSM within a day  

 

 

 

 

 



93 

 

 

 

The bottom curves show both the mean 𝐿1 load, based on which the load 

probability distribution is defined for each hour, and the resulting total load for a typical 

day. Due to stochastic behavior of the load, the actual load may be higher or lower than 

the mean base load at any hour. According to these determined variables, DSM analyzes 

the amount of power surplus/deficit of the customer which should be traded with the grid 

at each hour; and the cost of electricity is calculated accordingly. 

4.2.3 SDS model-III 

In the previous two models described for a smart distribution system, the main 

focus was on the customer model and customer initiated DSM, and little emphasis was 

put on modeling of the grid. However, in SDS model-III the focus is more on modeling 

the grid side and the customers’ behavior and DSM are modeled using load curves. 

4.2.3.1 Electrical grid 

In SDS model-III we model a power distribution system in detail using the 

DIgSILENT Power Factory software. This software allows for including power flow 

required data such as bus rated voltage, power line impedance, load active and reactive 

power, etc. in our analysis. In addition, we can consider the power flow constraints of 

such system such as loading limits of power system branch components and operating 

voltage limit of the system buses. 

 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: {

𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝐿𝑖𝑛𝑒         < 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝐿𝑖𝑛𝑒(𝑀𝑎𝑥%)          

 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑇𝑟𝑎𝑛𝑠𝑓𝑚𝑟 < 𝐿𝑜𝑎𝑑𝑖𝑛𝑔𝑇𝑟𝑎𝑛𝑠𝑓𝑚𝑟(𝑀𝑎𝑥%)  

𝑉𝑀𝑖𝑛 (𝑝. 𝑢) < 𝑉𝑏𝑢𝑠 < 𝑉𝑀𝑎𝑥 (𝑝. 𝑢)                               

                   (4.17) 
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An example of a power distribution system model is provided in Fig.4.11. This 

system typically includes power lines and cables, transformers, buses, switches, loads, 

and external connections modeled using external grids.  

 

Figure 4.11 One-line diagram of a power distribution system model in DIgSILENT 

4.2.3.2 Customers 

The customers are modelled using their load curves. In SDS model-III, instead of 

modelling the renewable generation and storage system for each customer, the aggregated 

impact of the customers’ demand and local generation may be considered using load 

curves. The load curves represent the hourly power or the percentage of peak load 

requested by the customers during a 24-hour period, such as the one shown in Fig.4.12. 

Therefore, the active and reactive power of the distribution system buses change on an 

hourly basis.  
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Figure 4.12 A typical load curve in SDS model-III 

4.2.3.3 Demand side management (DSM) 

As mentioned before, a DSM may adjust the load curves of customers through a 

variety of programs, such as peak clipping, load shifting, valley filling, energy 

conservation, etc. [66]. There are two demand side management programs proposed for 

SDS Model-III; Energy Conservation, and Load shifting methods. 

The Energy Conservation method models the incorporation of various energy 

efficient strategies and equipment at the customer level as well as the system level such 

that the overall loading of the distribution system decreases. 

The load curves for the Energy Conservation method are shown in Fig.4.13. 

Different percentages of load impacts due to the DSM are considered, where the decrease 

in the system load is uniformly modeled throughout a day using different load scaling 

factors. 

 

Figure 4.13 Load profiles with different levels of energy conservation.  

Load Scaling Factor 



96 

 

 

 

In the Load shifting method, the loads are shifted from high-load to low-load 

hours. So, the peak load is shaved; and the load curve valley is filled. This scheme is 

modeled using different percentages of load shifting applied to the load curves in the 

distribution system, as shown in Fig.4.14. Here, the total demand of the customers is 

constant.   

 

Figure 4.14 Load profiles with different levels of load shifting. 

4.3  SDS Reliability with Demand Side Management 

The SDS Model-III is used to determine the impact of the DSM on reliability of a 

smart distribution system. A number of recent research studies have considered the 

impact of incorporating Distributed Energy Resources, such as electric vehicles [134] and 

distributed generation-storage systems [135], on DSM and system reliability. The effects 

of DSM on the adequacy of power generation have been previously studied in the 

literature [136]. It has been indicated that the highest reliability benefit of DSM in terms 

of outage cost reduction is associated with the large user sectors rather than small 

residential and agricultural loads [137]. In [138], the authors have discussed the effect of 

demand response on distribution system reliability, but their work is a conceptual 

representation of a framework and does not include case study analysis and results. 

         Load Shifting 
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Another study evaluates the effectiveness of two DSM schemes on reliability 

improvement of a distribution system [32]. However, this research is limited by some 

specific scenarios and does not include load flow analysis for reliability evaluation. 

Here, we determine the impact of DSM strategies, such as Load Shifting and 

Energy Conservation, on the reliability of the smart distribution systems. Following a 

contingency in the system, the faulted area of the system is quickly isolated but part of 

the loads in that area may still be restored automatically. In a normal operation of a 

distribution system a number of normally open switches are used to separate different 

feeders and create a radially operated network. These switches may be used to restore the 

power to the areas disconnected when a failure occurs in the system [139].  

There are at least two main reasons why an effective DSM is expected to improve 

the reliability of the distribution system. First, an effective DSM reduces the loading 

stress on the system components and, therefore, reduces the probability of failure. Second, 

applying DSM programs leads to peak load shaving; and, therefore, given a failure and 

outage of a component in the system, the probability that the grid is still capable of 

supplying the loads without being overloaded will be increased. In other words, since 

there is more line capacity available in the system for power restoration when utilizing 

DSM, fewer loads will be shed. In this research, this aforementioned impact of DSM on 

the reliability of a distribution system is analyzed using AC load flow, considering the 

voltage limits of the buses and loading constraints of the branches in the network. We 

also consider the sequential operational steps after a fault in an automated distribution 

system.  
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The reliability evaluation of the distribution system is based on load flow study 

and state enumeration for failures in an automated distribution system. The reliability 

data, including failure rate and repair duration of the components, are assumed to be the 

same when using DSM schemes in different case studies. The active and reactive power 

of the bus loads change on hourly basis and are modeled using daily load curves.   

Each contingency initiates a scenario handled by simulating the system’s 

automated sequential reactions. The post-fault operational steps include [139]: 

 Fault clearance using the protection components of the system. 

 Fault isolation by opening separating switches. 

 Power restoration by closing normally open switches of the system.  

 Load flow study of the restored distribution system. 

 Load shedding for overload elimination.  

 Load shedding in case of voltage constraint violations. 

 Taking the system back to the prefault configuration after the completion of the 

repair. 

Throughout performing these steps a number of loads may be interrupted for 

certain durations. After performing contingency analysis and calculating pre- and post-

contingency AC power flow, the reliability metrics may be calculated and compared for 

different case studies. The common reliability indices for distribution systems used in this 

study are SAIFI, SAIDI, CAIDI, ENS, and ASAI whose definition and calculation 
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formulas have been provided in Chapter 2 of this dissertation. Therefore, the reliability 

assessment will be more accurate and applicable to future power distribution systems by 

considering DSM, automated switching, load shedding, and protection system. 

4.4  SDS Reliability with Energy Storage System 

Considered as one of the essential distributed energy resources for the future 

power networks, electricity storage systems are generally used to smooth out the 

volatilities of renewable generation. In addition, they may be employed to shift the peak 

load, trade electricity in a dynamic pricing scheme, provide ancillary services, etc. [140]. 

However, the electricity stored can also be used as an online backup resource in case of a 

failure to avoid the interruption of the critical loads of the system. In fact, uninterruptable 

power supplies (UPS) have been used for a long time in sensitive and high priority 

facilities, such as data centers [141]. Here, using SDS Model-III, we increase the primary 

storage capacity of a distributed generation-storage system determined in the planning 

phase and allocate the excess capacity for standby electricity storage. It is assumed that 

the standby electricity storage can take over the load in a case of a contingency. The goal 

is to determine the optimum allocation of the standby electricity storage from a reliability 

perspective considering load interruption costs. 

Optimal placement of DER in distribution power systems has been extensively 

studied in the literature [142], [143].  In addition, many researchers have studied the 

optimum sizing of energy storage for distributed generation, such as wind power [144] 

and photovoltaic systems [145]. Therefore, rather than focusing on the optimal placement 
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of distribution resources, we concentrate on determining the additional electricity storage 

capacity of a DER system, whose optimum location and primary capacity have been 

determined in a smart grid, in order to determine the impact of energy storage and 

improve network reliability. When a contingency occurs, standby stored electricity 

prevents the interruption of a larger number of customers at the installation load point. In 

addition, the stored electricity can reduce system loading even with a contingency on its 

neighboring feeders; and relieving the power line loading could improve power 

restoration. Using cost/benefit analysis, the condition upon which the standby storage 

becomes beneficial is specified; and subsequently, the optimum capacity of such energy 

storage is determined using particle swarm optimization (PSO) method.  

A method for determining the optimum size of backup storage from a reliability 

perspective has been reported in [146]. However, this study does not include the network 

topology and the costs incurred due to interruptions in the system. Xu et al. [147] have 

evaluated the impact on reliability and the economics of energy storage with different 

control strategies using the Monte Carlo simulation approach. They, however, neither 

considers the power flow constraints of a distribution system nor the load point reliability 

indices.  

In the approach presented here, the reliability evaluation of distribution systems 

with standby electricity storage is based on power flow study and state enumeration. The 

failure probabilities of the distribution system components are used to generate 

simulation contingencies. Each contingency is handled through the scenario including 

fault clearance, fault isolation, power restoration, system overload detection, load 



101 

 

 

 

shedding, etc. Notably, load profiles and customer interruption costs are considered in the 

analysis. Then, the optimum standby storage capacities are calculated at the DER 

integration points of the distribution system using the PSO method [148]. 

In case of a failure affecting the feeder with an integrated DER, the standby 

resource quickly switches in and saves part of the load from being interrupted. The 

standby stored electricity may also be used when a contingency has occurred at the 

neighboring feeders in order to alleviate the loading on the lines and prevent load 

shedding. Each load modeled has a load profile and an interruption incremental cost 

curve known as the Sector Customer Damage Function (SCDF). When a load is 

interrupted due to a contingency or a load is shed because of an overload/voltage 

violation during power restoration, the expected interruption cost is calculated based on 

the interrupted power, duration of the interruption, and the SCDF, as denoted by Eq. 4.18. 

                 𝐿𝑃𝐼𝐶 =∑𝑚𝑖 ∙ 𝑆𝐶𝐷𝐹(𝑑𝑖)

𝐼

𝑖=1

                                         (4.18) 

where 𝑚𝑖  and 𝑑𝑖 are the interrupted power and the duration of the interruption 𝑖, 

respectively; 𝐼 is the total number of interruptions at the load point, and 𝐿𝑃𝐼𝐶 is the Load 

Point Interruption Cost in dollars per year. Some of the other reliability indices calculated 

in this study are LPIF, LPID, and LPENS for the DER-connected load points, and, EIC, 

SAIDI, and SAIFI, as the system reliability indices. The definition and calculation 

formulas for these indices have been provided in Chapter 2 of this dissertation. 
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For reliability and failure cost evaluation, all failures associated with power lines, 

transformers, and load connections should be considered. The summation of the system 

EIC and the levelized cost of standby energy storage represent the system incurred Total 

Cost, which may be compared over different scenarios. Figure 4.15 shows the flowchart 

of this study [148].  

 

Figure 4.15 Flowchart of the study to determine the optimum storage capacity 

The optimum capacities of the standby storage systems are determined by using 

sensitivity analysis and the PSO method. In fact, in each iteration and for each particle of 
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the PSO, reliability of the distribution system is evaluated in order to find the set of 

standby storage capacities which minimizes the Total Cost as the objective function.   

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝐸𝐼𝐶 +∑𝐶𝑠𝑡𝑜𝑟𝑒(𝐶𝑎𝑝𝐿𝑘)

𝑁

𝑘=1

                      (4.19) 

where 𝐶𝑠𝑡𝑜𝑟𝑒 represents the cost of the standby electricity storage as a function of its 

capacity 𝐶𝑎𝑝𝐿𝑘at the load point 𝐿𝑘, and 𝑁 is the total number of DER-connected load 

points. 

4.5  Optimum DER Capacity for Reliable SDS 

While it is critical to supply the electric loads of the smart power distribution 

system reliably, it is also important to minimize the costs of the resources and operation 

of the equipment. The challenge in minimizing the electricity costs of a customer of a 

SDS is determining the optimum capacities of the renewable generation-battery system 

best suited to that customer’s electricity management system. The optimum capacities 

depend on various factors, such as electricity rates, stochastic behavior of renewable 

resources, load profile, and grid connection policies. 

Here, we aim to obtain the optimum capacity of DER such as a renewable 

generation and storage system for the residential customers of the future power system. It 

should be noted that determining the optimum capacity for the renewable generator and 

the battery is a planning problem which should include the behavior of the customers in 

the optimization process. Hence, we use the SDS model-II explained in Section 4.2.2 of 

this dissertation.  
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An optimization approach has been proposed to solve the planning problem of 

determining the optimum capacities of the battery storage and renewable generation of 

the smart household incorporating the DSM while considering the probabilistic behavior 

of loads, renewable energy resources, and electricity rates.  

The study method is based on a Monte Carlo simulation process and particle 

swarm optimization, which is denoted by MCS-PSO method. The iterations in the MCS 

are used to capture the long-term stochastic behavior of a smart household given the 

expected probability distributions of load, wind generation, and electricity rates; and, at 

the same time, those iterations are employed by the PSO particles [149] to efficiently 

solve the optimization model. 

Operation of a smart household in the long run is simulated by providing load, 

generation, and electricity rates, at each hour of the day, as inputs to the DSM program. 

The electricity cost of the household at the end of the jth time interval of the day, tj, can 

be calculated by Eq. 4.20. The duration of each interval is one hour in this study. 

                   𝐶𝐻(tj) = 𝐶G. 𝐸𝐺(tj) + 𝐶𝐵. 𝐶𝑎𝑝B. ∆t + 

       𝐸𝐵𝑢𝑦(tj) × 𝐸𝑃𝑅(tj) − 𝐸𝑆𝑒𝑙𝑙(tj) × 𝐸𝑆𝑅(tj)                                   (4.20)   

𝐸𝐵𝑢𝑦(tj) and 𝐸𝑆𝑒𝑙𝑙(tj) represent the amount of electricity bought/sold from/to the 

grid during ∆tj, which are calculated within operation of the DSM and are functions of 

the renewable generation and battery capacities of the household. 𝐶G and 𝐶B are the 

levelized costs of the renewable generation and battery for the residential customer. 
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There are cost-benefit trade-offs involved in optimum capacity calculations. 

Higher-capacity generators are costlier but contribute more to supplying load and 

reducing dependency on grid power. The surplus generation can also be sold back to the 

grid. In the same way, paying more for a higher-capacity battery could be compensated 

for by additional energy storage and energy trade capability.  

Therefore, the objective function to be minimized is the total electricity cost of the 

household, as expressed by Eq. 4.21. 

                                     𝐹 =∑𝐶𝐻(tj)

𝑁

𝑗=1

                                                       (4.21) 

subject to the system load flow, generation and battery operation constraints mentioned in 

the modeling section by Eq.4.12 and Eq.4.16. 

Since the electricity cost of the household depends on DSM and the inputs to the 

DSM are stochastic variables obtained from their probability distributions, this cost can 

be generally represented by an implicit function of the following variables and 

parameters. 

  𝐶𝐻 = 𝑓(𝐿1, 𝐿2, 𝐿3, 𝑉𝑊, 𝐵𝑖𝑛𝑖𝑡, 𝐸𝑆𝑅, 𝐸𝑃𝑅, 𝐶G, 𝐶B, 𝐶𝑎𝑝G, 𝐶𝑎𝑝B)             (4.22) 

The expected electricity cost of the household in the long run, with certain 

generation and battery capacities, can be calculated through a sequential Monte Carlo 

simulation (MCS). In the Monte Carlo scheme, samples from individual probability 

distributions of load, generation, and electricity rates are taken at each hour of the day. 

Using the process described in Section 4.2.2.4 for the DSM, CH(tj) is calculated and 
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accumulated to find the total electricity cost of the day. By repeating the whole process, 

the expected electricity cost of the household is calculated.  

Subsequently, particle swarm optimization (PSO) is used to calculate the 

optimum CapG and CapB by minimizing the objective function given in Eq. 4.21. The 

goal of the objective function (fitness function) is to minimize the total expected 

electricity cost of the household calculated by MCS over the duration of the study. In the 

PSO method, initial capacities for the generation and battery are selected; and then, a 

population of M particles is generated to evolve toward the optimum capacities of battery 

and renewable generation for the household. This method has been demonstrated to be 

more robust and faster in finding the global solution compared with other heuristic 

optimization methods, such as genetic algorithms [150].  

To improve the efficiency of the optimization process, an iterative procedure 

combining MCS and PSO methods is proposed. Using the hybrid MCS-PSO method, the 

input to each iteration of the PSO is stochastic and originates from the variables’ 

probability distribution functions. Therefore, in the long run, it inherently incorporates 

the MCS method while it is searching for the optimum solution. Fig.4.16 shows the 

optimization process using the rule-based DSM introduced for SDS model-II.  
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Figure 4.16 The optimization process incorporating the rule-based DSM of SDS model-II 

The procedure can be expressed by the following steps [121]. 

A. Determine N individual probability distribution functions for different variables, such 

as wind speed, load, and electricity rate, according to historical data. Each function 
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represents the probability distribution of a variable for a time step of tj in the MCS-

PSO where j ∈  {1, 2, . . . , N}.  

B. Obtain CG, CB, and the parameters of the MCS-PSO method, such as stop criterion 

based on maximum number of iterations or minimum error, and the number of 

particles, M, in the PSO.   

C. Initialize each particle by assigning two dimensional position and velocity vectors 

according to Eq.4.23, and also initialize 𝒙𝑝𝑏𝑒𝑠𝑡
𝑖 , 𝒙𝑔𝑏𝑒𝑠𝑡, and the battery charge 

𝐵𝑖𝑛𝑖𝑡
𝑖 (𝑘) for the iteration 𝑘 = 1. 

{
𝒙𝑖(𝑘) = [𝐶𝑎𝑝𝐺

𝑖 (𝑘)      𝐶𝑎𝑝𝐵
𝑖 (𝑘)]

𝒗𝑖(𝑘) = [𝑣𝐶𝑎𝑝𝐺
𝑖 (𝑘)     𝑣𝐶𝑎𝑝𝐵

𝑖 (𝑘)]
                                   (4.23)        

where, 𝑖 ∈  {1, 2, . . . , 𝑀}  ;𝒙𝑝𝑏𝑒𝑠𝑡
𝑖 , and 𝒙𝑔𝑏𝑒𝑠𝑡 are best position vector of individual 

particle 𝑖, and best position vector of all particles in MCS-PSO study, respectively; 𝒙 

and 𝒗 are position and velocity vectors of particles in MCS-PSO analysis, 

respectively. 

D. For iteration 𝑘 and every particle 𝑖 of the population, given the current 𝐶𝑎𝑝𝐺
𝑖 (𝑘), and 

 𝐶𝑎𝑝𝐵
𝑖 (𝑘), do the following: 

a. Calculate the values of the loads, 𝐿1
𝑖 (𝑘, tj), 𝐿2

𝑖 (𝑘, tj), and 𝐿3
𝑖 (𝑘, tj), wind 

speed, 𝑉𝑊
𝑖 (𝑘, tj), and electricity rates, 𝐸𝑃𝑅𝑖(𝑘, tj) and 𝐸𝑆𝑅𝑖(𝑘, tj), based on 

their 𝑁 distinct probability distribution functions.  
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b. Run the HEMS process for a duration of 𝑇 = 𝑁 ∙ ∆𝑡, and compute the value of 

the fitness function. 

𝐹 (𝒙𝑖(𝑘)) =∑𝐶𝐻
𝑖 (𝑘, ∆tj)

𝑁

𝑗=1

                                        (4.24) 

E. If 𝐹 (𝒙𝑖(𝑘)) < 𝐹(𝒙𝑝𝑏𝑒𝑠𝑡
𝑖 ), then update the values for the local optimum capacities: 

𝒙𝑝𝑏𝑒𝑠𝑡
𝑖 = 𝒙𝑖(𝑘); and if 𝐹 (𝒙𝑖(𝑘)) < 𝐹(𝒙𝑔𝑏𝑒𝑠𝑡), then update the global best capacities: 

𝒙𝑔𝑏𝑒𝑠𝑡 = 𝒙𝑖(𝑘). 

The minimum of the cost function 𝐹(𝒙𝑔𝑏𝑒𝑠𝑡) in each iteration 𝑘 has been denoted by 

𝐹(𝑘) in Fig. 4.16. 

F. If the stop criterion is not satisfied, update the position and velocity vectors according 

to Eq.4.25, increase iteration 𝑘 by one, and go to Step D. 

{
 
 

 
 
𝒙𝑖(𝑘 + 1) = 𝒙𝑖(𝑘) + 𝒗𝑖(𝑘 + 1)                                  

𝒗𝑖(𝑘 + 1) = 𝑤(𝑘). 𝒗𝑖(𝑘) + 𝑐1𝜙1 (𝒙𝑝𝑏𝑒𝑠𝑡
𝑖 − 𝒙𝑖(𝑘))

+𝑐2𝜙2 (𝒙𝑔𝑏𝑒𝑠𝑡 − 𝒙
𝑖(𝑘))

𝐵𝑖𝑛𝑖𝑡
𝑖 (𝑘 + 1) = 𝐵𝑖(𝑘, ∆tN)                                              

                 (4.25)         

where, 𝜙1 and 𝜙2 are cognitive and social random numbers of the algorithm between 0 

and 1; and, 𝑐1and 𝑐2 are cognitive and social parameters of PSO algorithm, respectively. 

In this equation, 𝐵 represents the available battery charge.       

G. Determine the optimum capacities associated with the minimum objective function. 

{
[𝐶𝑎𝑝𝐺

∗   𝐶𝑎𝑝𝐵
∗ ] = 𝒙𝑔𝑏𝑒𝑠𝑡                                

𝑀𝑖𝑛 {𝐶𝐻(𝑇)} = 𝐹(𝒙𝑔𝑏𝑒𝑠𝑡)                        
                     (4.26) 
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4.6  SDS Reliability with Active Customer Interactions 

As previously highlighted, it is essential to evaluate the reliability of future power 

distribution systems considering its new features and corresponding equipment. The 

reliability study objectives may include:   

1) Investigation of the impact of a variety of factors, such as customer diversity 

(residential, commercial, and industrial) and type of distributed generation (wind, PV), on 

the reliability of an SDS and its active customers;  

2) Study the effect of a DSM program, through active customer decisions and 

trading power within the neighboring customers, on providing reliable electricity; and  

3) Assessment of the impact of the size of wind and PV renewable generation and 

storage systems on SDS reliability. 

In order to evaluate the reliability of a smart distribution system, the SDS model-I 

is used. This model includes a variety of customers with wind and PV renewable 

generation and storage systems. The infrastructure allows for communication and power 

flow between neighboring customers which would affect system reliability. Using the 

reliability evaluation module developed, it is possible to constitute probabilistic failures 

in an SDS with a diverse range of impacted customers. 

 Fig.4.17 shows a schematic of the model used for reliability evaluation, including 

electric utility, different types of customers, neighborhood zones, and instances of the 

areas impacted by different contingencies.  
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Figure 4.17 Main entities of an SDS model used for reliability evaluation impacted by 

instances of contingencies A, B, and C. 

Since the SDS model-I utilizes multiagent system modeling and a graph theoretic 

representation of a power distribution system, instead of simulating individual 

contingencies, the consequences of these contingencies are modeled as impacted areas.  

An impacted area is modeled by suspending power transactions among the grid and all of 

the customers within a neighborhood around the center of the contingency.   

4.6.1 Outage Response 

In the case of an outage and when Customer Agent 𝑥 needs power for a specific 

hour, 𝑥 sequentially sends a Request-To-Buy (RTB) message to its neighbors, who may 

be able to deliver part of the required power until either 𝑥 manages to fulfill its demand, 

or there are no other neighbors left to ask. On the other hand, Customer Agent 𝑖 receives 

a request and responds if it has excess power generated that hour or it has extra electricity 

stored. Fig.4.18 illustrates a customer’s interaction with 𝑀𝑥 number of neighboring 

agents and shows an outage area caused by a contingency. Customer Agent 𝑥 affected by 
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an outage starts to respond by recalling the following sequential outage response 

algorithm for each time step 𝑡𝑗 (e.g., one hour) of the reliability assessment MCS process. 

 

Figure 4.18 Potential sequential requests of a customer agent from its neighbors during an 

outage. 

   Algorithm Sequential Outage Response 

I. If there is a non-zero demand for customer 𝑥 at time step 𝑡𝑗  , 𝑑𝑥(𝑡𝑗) > 0, then try 

to supply the load first from the generation (𝑔𝑥(𝑡𝑗)) and next from the battery 

storage up to (min {𝑏𝑥(𝑡𝑗), 𝐷𝑅𝑥}), where 𝐷𝑅𝑥 is the maximum allowable battery 

discharge rate for customer 𝑥 in % of battery capacity per 𝑡𝑗. 

II. If the residual demand is nil (𝑑𝑥
′ (𝑡𝑗) = 0), then a) there is no loss of load 

(𝐿𝑂𝐿𝑥(𝑡𝑗) = 0), and b) exit algorithm. 

III. Start to communicate with a neighbor (𝑖 = 1). 

IV. Send an RTB to the neighbor (𝑖) asking for power in the amount of 𝑑𝑥
′ (𝑡𝑗).  

V. Use the power received form the neighbor (𝑃𝑖(𝑡𝑗)), if any, to supply 𝑑𝑥
′ (𝑡𝑗) and 

update the residual demand: 𝑑𝑥
′ (𝑡𝑗) = 𝑑𝑥

′ (𝑡𝑗) − 𝑃𝑖(𝑡𝑗). 



113 

 

 

 

VI. Run the condition described in Step II of this algorithm.   

VII. If 𝑑𝑥
′ (𝑡𝑗) > 0 and the customer is the last neighbor asked (𝑀𝑥), then a) 

𝐿𝑂𝐿𝑥(𝑡𝑗) = 𝑑𝑥
′ (𝑡𝑗) and b) exit the algorithm. 

VIII. 𝑖 = 𝑖 + 1; go to Step IV.   

End Algorithm 

In the above algorithm, we define 𝐿𝑂𝐿𝑥(𝑡𝑗) to represent the amount of customer 

𝑥’s loss of load power at time step 𝑡𝑗. We further define the index of interruption, 

𝐼𝑂𝐼𝑥(𝑡𝑗), as: 

𝐼𝑂𝐼𝑥(𝑡𝑗) = {
  1                     𝐿𝑂𝐿𝑥(𝑡𝑗) > 0           

0                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
                            (4.27) 

Subsequently, we also define the index of interruption frequency, 𝐼𝑂𝐼𝐹𝑥,𝑘, by 

taking the union of 𝐼𝑂𝐼 for each customer 𝑥 affected by the outage 𝑘, as expressed by 

Eq.4.28, where 𝑇𝑘 is a set of all time steps during outage 𝑘. 

𝐼𝑂𝐼𝐹𝑥,𝑘 = ⋃ 𝐼𝑂𝐼𝑥(𝑡𝑗)

𝑡𝑗∈𝑇𝑘

                                                       (4.28) 

Eq. 4.28 indicates that if a customer cannot meet the load for one or more time 

steps during an outage, then the customer is counted as interrupted due to that outage 

(i.e., 𝐼𝑂𝐼𝐹𝑥,𝑘 = 1). 

Similarly, since each time step is assumed to be one hour, the duration of 

interruption can directly be calculated by adding up the multiples of the hours (i.e. 𝐼𝑂𝐼). 
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The index of interruption duration, 𝐼𝑂𝐼𝐷𝑥,𝑘, is defined by Eq.4.29 which represents the 

duration of interruption per outage 𝑘, for each customer 𝑥.  

𝐼𝑂𝐼𝐷𝑥,𝑘 = ∑ 𝐼𝑂𝐼𝑥(𝑡𝑗)

𝑡𝑗∈𝑇𝑘

                                               (4.29) 

4.6.2 Reliability Assessment Method 

The reliability for each customer of a specific load sector and for the total system 

is assessed using a sequential MCS approach. In this method, the time to the next failure 

and the duration of that failure in the system are determined by sampling the associated 

failure and repair probability distributions, respectively. During a failure, each agent 

attempts to avoid its load interruption using the available resources at each time step.  

Process Sequential MCS 

I. Determine the load and renewable generation profiles for each customer and the 

outage occurrence schedule, duration, and impacted areas based on the associated 

probability distributions. 

II. Start the simulation at the first time step (𝑡1). 

III. For the customers in a normal operation mode (not disconnected), run the DSM to 

supply the loads. 

IV. For the customers in an outage operation mode (disconnected due to a 

contingency), recall the Sequential Outage Response Algorithm, described earlier 

in this Section. 

V. Go to the next time step (𝑗 = 𝑗 + 1). 
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VI. Run Steps III and IV of this simulation for the total number of simulation steps 

(𝐽). 

VII. Collect the data on frequency and duration of interruptions as well as the 

unsupplied energy per customer sector, based on Eq. 4.27- 4.29.  

VIII. Evaluate the reliability indices defined for customer sectors and the whole system, 

as described in Section 4.6.3. 

End Process 

4.6.3 Reliability Evaluation Indices 

Reliability of an SDS is evaluated using commonly used system indices, such as 

System Average Interruption Frequency Index (SAIFI) and System Average Interruption 

Duration Index (SAIDI). Reliability is also assessed from the customer point of view 

using a number of proposed indices, such as Value of Lost Load (VOLLs), Energy Not 

Supplied (ENSs), and Customer Interruption Cost (CICs), for a customer in each sector. 

The customer-side reliability indices are defined to account for the smart grid features 

and aim to capture the influence of active customers’ behavior on the reliability of future 

power systems. 

In fact, the perception of reliability may vary among various types of customer 

sectors as their load profiles and interruption damage functions are different. From the 

system’s perspective, 𝑆𝐴𝐼𝐹𝐼 and 𝑆𝐴𝐼𝐷𝐼 are defined as: 

𝑆𝐴𝐼𝐹𝐼 =
∑ ∑ 𝐼𝑂𝐼𝐹𝑥,𝑘

𝑁𝑐𝑜𝑛
𝑘=1

𝑁
𝑥=1

𝑁 × 𝐽/8760
                                              (4.30) 
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𝑆𝐴𝐼𝐷𝐼 =
∑ ∑ 𝐼𝑂𝐼𝐷𝑥,𝑘

𝑁𝑐𝑜𝑛
𝑘=1

𝑁
𝑥=1

𝑁 × 𝐽/8760
                                              (4.31) 

where 𝑁 and 𝑁𝑐𝑜𝑛 are the number of customers and the number of outages during 𝐽 

simulation hours, respectively.  

The units for the customer-side reliability indices,𝐸𝑁𝑆𝑠, 𝑉𝑂𝐿𝐿𝑠, and 𝐶𝐼𝐶𝑠, may 

be expressed in 
𝒌𝑾𝒉

𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓,𝒚𝒆𝒂𝒓
, 

$

𝒌𝑾𝒉
, and 

$

𝒚𝒆𝒂𝒓
 for each customer sector 𝑠, respectively; e.g., 

for the residential customers: 

𝐸𝑁𝑆𝑅 =
∑ ∑ 𝐿𝑂𝐿𝑥𝑟(𝑡𝑗)

𝐽
𝑗=1

𝑁𝑅
𝑥𝑟=1

𝑁𝑅 × 𝐽/8760
                                           (4.32) 

𝑉𝑂𝐿𝐿𝑅 =

∑ ∑
𝐶𝐷𝐹𝑅(𝐼𝑂𝐼𝐷𝑥,𝑘)

𝐼𝑂𝐼𝐷𝑥,𝑘
𝑁𝑐𝑜𝑛
𝑘=1

𝑁𝑅
𝑥𝑟=1

𝑁𝑅 × 𝑁𝑐𝑜𝑛
                                    (4.33) 

𝐶𝐼𝐶𝑅 = 𝐸𝑁𝑆𝑅 × 𝑉𝑂𝐿𝐿𝑅                                                     (4.34) 

where 𝑁𝑅 represents the number of residential customers and 𝐶𝐷F is the customer sector 

damage function in $/kW which is a function of interruption duration. Eq. 4.32- 4.34 may 

be revised for commercial and industrial customer sectors by replacing “𝑥𝑟” with “𝑥𝑐” 

and “𝑥𝑖”, and “R” with “C” and “I” subscripts, respectively. 

4.7  Summary of the models and proposed studies 

The next table provides a list of the models developed for smart power 

distribution systems and the analysis planned based on each model, as discussed in this 

section. Section 5 provides case studies and results of these analyses. 



117 

 

 

 

Table 4.1 Models developed and their features for different types of SDS studies 
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SDS 

MODEL-I 

Utility-based 

Method 
√ √ √ √ Section 4.6 

Average Deficit 

Method 

SDS 

MODEL-II 
Rule-based Method 

√ √ √  Section 4.5 

SDS 

MODEL-III 

Load Shifting 

Method 
√ √   

Section 4.4 

Section 4.3 
Energy 

Conservation 
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                      CHAPTER 5 

SYSTEM STUDIES 

 

5.1 Reliability of Distributed Energy Resources                          

(Case study: wind turbines) 

5.1.1. Fault Tree Analysis 

5.1.2. Failure Mode, Effect, and Criticality Analysis  

5.1.3. Markov processes 

5.1.4. Monte Carlo Simulation 

5.1.5. Hybrid Analytical-Simulation Approach 

5.2 Reliability of Smart Power Distribution System  

5.2.1. SDS Reliability with Demand Side Management 

5.2.2. SDS Reliability with Energy Storage System 

5.2.3. Optimum DER Capacity for Reliable SDS  

5.2.4. SDS Reliability with Active Customer Interactions 
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This section includes different case studies, results of the reliability assessment 

and a number of sensitivity analysis based on the models provided in the previous 

chapters. The first part of this chapter presents the result of reliability evaluation for wind 

turbines as examples of distributed energy resources. In the second part of this chapter, 

we describe different smart distribution system reliability studies and discuss the results. 

5.1  Reliability of Distributed Energy Resources (Case study: wind 

turbines) 

The methods described in Chapter 3 are used to evaluate the reliability of 

individual wind turbines as well as wind farms in this section. 

5.1.1 Fault Tree Analysis 

In order to calculate the reliability and availability of a wind turbine, typical 

failure rate of the components, whose failure stops the wind turbine operation, were 

obtained [15], [78]. The failure rates of the main parts of the wind turbine, used for the 

study, are shown in the next table.   

Table 5.1 Failure rates for main subassemblies of a wind turbine 

Main subassemblies of the wind turbine Failure rate per year 

Rotor 0.15 

Drive Train 0.08 

Gearbox and Lube 0.12 

Generator and Cooling system 0.17 

Brakes and Hydraulics 0.2 

Yaw system 0.13 

Control system 0.32 

Electrical system and Grid connection 0.45 

Miscellaneous 0.08 
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This will result in an overall failure rate of 𝜆 = 1.94 × 10−4 per hour, per turbine. 

The average repair rate is also chosen to be 𝜇 = 2.94 × 10−3 per hour, per turbine. Based 

on these values and Eq. 3.1 and 3.2, the average availability and the reliability of the 

wind turbine is calculated. 

{
𝐴𝑇𝑢𝑟𝑏𝑖𝑛𝑒 =

𝜇

𝜇 + 𝜆
=

2.94 × 10−3

2.94 × 10−3 + 1.94 × 10−4
= 0.938

RTurbine(t) = e−∑ λit
n
i=1 = e−1.94×10

−4𝑡                                   

                 (5.1)  

Fig.5.1 estimates the reliability of the wind turbine within a week assuming that it 

is initially 100% reliable. 

 

Figure 5.1 Change in reliability of the wind turbine within a week 

5.1.2 Failure Mode, Effect, and Criticality Analysis (FMECA) 

The proposed RB-FMEA method is applied to a 3MW direct drive wind turbine. 

Based on the model described, the study required failure probabilities, vulnerabilities, 

costs, and durations which are estimated based on different resources reported in [77]. A 

spreadsheet was set up using Microsoft Excel, and the result parameters were derived for 

the wind turbine parts as shown in Fig. 5.2. 

 

0 20 40 60 80 100 120 140 160
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

time (hour)

R
e

lia
b

ili
ty



121 

 

 

 

 

Figure 5.2 Snapshot of the spreadsheet for RB-FMEA Analysis 

For the base condition, it is assumed that for the duration of the failures, the 

Capacity Factor (CF) of the wind turbine and the EPR have been 0.4 and 5¢/kWh 

respectively. The resulted CPN (cost priority number) column shows that, the generator is 

ranked the most critical part of the studied direct drive wind turbine followed by 

electrical system, blades and converter. This analysis can be conducted for any other 

types of wind turbine and for any operation condition. In addition, by summing up the 

CPN of all the parts of a turbine, one can estimate the overall CPN of that wind turbine. 

This number can then be compared with the overall CPNs of other types of wind turbine 

in order to rank them from criticality perspective. For our study, the overall CPN adds up 

to $25.5k.  

The calculation of RPN was also included in Fig. 5.2 for evaluation, and the 

required parameters were determined using rating scheme of [151]. Fig 5.3 compares the 

results of RPN and CPN for our study case. 
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Figure 5.3 RPN and CPN for major parts of the study wind turbine 

While two methods are in agreement about the generator being the most critical 

part of the direct drive wind turbine, the building blocks of RPN are discrete and 

qualitative, and therefore, cannot represent the strength of criticality, effectively. 

Nevertheless, CPN is calculated based on the actual costs, and, so, is more rational to be 

looked up to for making adjustments on design, operation and maintenance of wind 

turbines. The Annual Failure Cost of this direct drive wind turbine, is shown in Fig. 5.4. 

 

Figure 5.4 AFC and CPN for major parts of the wind turbine 

In fact, each part’s CPN has been multiplied by its Failure Vulnerability as a 

weighting factor. Failure Vulnerability specifies how many times per year each of the 

wind turbine parts has been detected with a risk of failure or has actually failed. Based on 
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the results, the total AFC of the wind turbine is $55.5k, which implies an overall failure 

vulnerability of 2.17 per year for our study wind turbine. 

5.1.2.1 Sensitivity Analysis 

One of the key parameters affecting the total cost of failure is the duration of 

failure. Generally, the repair of a wind turbine may be delayed due to lack of parts in the 

inventory, unavailability of the required facility, adverse weather condition, or human 

error. As a sensitivity analysis, the annual failure cost has been determined by increasing 

the imposed delay of repair as shown in Fig. 5.5. 

 

Figure 5.5 Sensitivity of the turbine AFC to the additional imposed delay 

The results of this study may suggest the reasonable amount of money to be spent 

in order to avoid these types of delays. For example, one week of delay in repairs 

escalates the initial annual failure cost of $55.5k to more than $70k. Hence, any solution 

for delay prevention, such as recruiting more labor or providing extra tools, will be 

beneficial as long as its cost is less than $14.5k per year.  

The above results are derived based on the previously selected base values for 

EPR and CF. In fact, CF and EPR are two major parameters which vary due to the wind 

speed and the location of the site, and therefore, alter the cost of opportunity during the 
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downtime of the turbine. Fig. 5.6 displays the effect of these two parameters on the 

annual failure cost of the wind turbine in our case study.  

 

      Figure 5.6 Sensitivity of the turbine AFC to the EPR and CF 

According to these results, annual cost of failure may vary more than 25%, due to 

the change in the energy price and the wind speed. One effective approach to reduce the 

failure cost is by improving the failure detection system (e.g. through condition 

monitoring). Fig. 5.7 illustrates the total savings in turbine’s AFC, by 10 percent 

improvement in the generator fault detection system. The total savings are approximately 

$3000 per year with the capacity factor of 0.4 and EPR of 5cents/kWh. 

 

Figure 5.7 Failure cost with 10% improvement in the turbine’s fault detection 
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5.1.3 Markov Processes 

The procedure given in Fig.3.9 has been applied to a wind farm in western 

Nebraska located at Kimball and is owned by Municipal Energy Agency of Nebraska 

(MEAN). This 10.5 megawatt wind farm consists of 7 turbines whose power curve 

provided by the manufacturer for each turbine was shown in Fig. 3.7. 

5.1.3.1 Short-term study 

Suppose that availability and reliability of this wind farm for duration of one 

week is of interest. The data used for this site are the average failure and repair rates of 

turbines as: 𝜆 = 1.94 × 10−4, 𝜇 = 2.94 × 10−3 per hour and turbine [15]. Table 5.2 

provides results obtained from calculation of the wind farm availability, based on initial 

number of working wind turbines at different times. Obviously, the initial working 

condition of the turbines impact the wind farm availability in short-term 

Table 5.2 Wind farm availability with respect to initial conditions and time  

 

Wind speed data of Kimball within one week were used to incorporate output 

power variations to this model. The effect of initial conditions on short-term generation 

of wind farm can be observed where Fig.5.8 illustrate the difference in capability to meet 

the demand between having 7 and 3 initial available turbines.   



126 

 

 

 

 

                           (a)                                                                      (b) 

Figure 5.8 Hourly wind farm power production vs. load demand with 7 (a) and 3 (b) 

initially available wind turbines  

Apparently, this wind farm without any connection to an external grid or energy 

storage system cannot be operated stand alone to supply the load. Using the Eq. 3.14 and 

3.15, Table 5.3 provides wind farm’s LOLE, LOEE and ESWE for a week starting at 

different number of working wind turbines. 

Table 5.3 LOLP, LOEE and ESWE within a week 

 

5.1.3.2 Long-term study 

For the long-term study, Eq. 3.17 and 3.18 have been used to derive the steady 

state probabilities as follows: 

Table 5.4 Steady state probabilities of the wind farm model 
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According to Eq. 3.19, the expected availability of the wind farm in long-term is 

calculated. 

𝐴𝐹𝑎𝑟𝑚 =
∑ (𝜋𝑗  ×  𝑗)
𝑗=7 
𝑗=0

7
= 0.9096                                    (5.2) 

Alternatively, the same availability can be reached through time domain study. 

Fig.5.9 shows that if enough time elapses, wind farm availability will converge to a 

single value regardless of the initial available number of wind turbines. 

 

Figure 5.9 Long-run availability of the wind farm  

Figure 11 captures the probability distribution of output power states (𝑃𝑞𝑖 ), based 

on the statistical data of hourly wind speed for one year.  

 

Figure 5.10 Probability distribution of the wind turbine output power states 
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The wind farm energy production within that year is calculated to be 29.26GWh, based 

on Eq. 3.21. The estimated generation has roughly 3% error compared to the actual 

energy production of the wind farm [152]. 

Additional repair crew could improve the availability due to increase in the 

number of parallel repair crew (S) and/or decrease in average repair time (1/𝜇) in the 

Markov model of Fig. 3.6. In our case, doubling the repair crew if they work in parallel, 

would increase the wind farm’s availability by 0.025; 

Using probability distributions for wind farm power production of Fig.5.10 and 

the annual load demand, reliability indices of the wind farm are calculated. 

Table 5.5 LOLP, LOEE and ESWE for one year 

 

According to table 5.5 and from planning point of view, an external power grid 

needs to supply an estimated annual energy of 20.5GWh to compensate the lack of wind 

and turbines’ availability. On the other hand, this wind farm can export an estimated 

annual energy of 9.9GWh to the grid when its power production exceeds load demand. 

5.1.4 Monte Carlo simulation 

Similar to the previous section, the wind speed data of Kimball was has been used 

which are best fitted to an Erlang distribution with shape parameter of 2.57, and rate 

parameter of 3. At any point in time, a wind speed is generated based on its distribution, 

and the decision block of our model in Fig.3.10 determines how much power will be 
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generated due to the power curve of the wind turbine. The simulation was run for 1000 

iterations and the average expected power generated by the wind turbine is calculated to 

be 572.25kW with a 90% confidence interval of [543.25, 600.9]. 

Next, in order to consider the failures on different subassemblies of wind turbine, 

the model of Fig. 3.11 has been used where the time between failures is based on 

exponential distribution, and the mean time to repair is assumed to follow the Log-normal 

distribution [86]. Table 5.6 presents the expected outage durations based on the 

simulation. Adding all the outage durations, the total unavailable duration of a single 

wind turbine will be 494.95 hours per year.  

Table 5.6 Average outage duration of a wind turbine’s subassemblies  

Turbine 
subassemblies 

Rotor Drive 
Train 

Gearbox 
and 
Lube 

Generator 
and 

Cooling 
system 

Brakes and 
Hydraulics 

Yaw 
system 

Control 
system 

Electrical 
system and 

Grid 
connection 

Miscell. 

 Average 
outage 

duration 
(hours/year) 

48.49 24.27 31.5 46.11 62.62 42.95 82.42 128.28 28.28 

The availability of this wind turbine can be calculated as the total available hours 

divided by the total simulation hours. 

𝐴𝑇𝑢𝑟𝑏𝑖𝑛𝑒 =
𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 ℎ𝑜𝑢𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑢𝑟𝑠
=
8760 − 494.95

8760
= 0.943                            (5.3) 

On the other hand, there are more wind turbines and vulnerable parts in a wind 

farm. Therefore, there may be some components which need to wait in a queue to be 

repaired in case of simultaneous incidents. This will definitely add to the total outage 

time of that part and decrease the overall availability of the wind farm.  
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The results for our case study wind farm with 7 turbines are provided in Table 5.7 

which represent the average expected outage duration of wind turbines’ subassemblies. 

Table 5.7 Average outage duration of 7turbines’ subassemblies  

Average outage 
duration 

(hours/year) 

Turbine 
1 

Turbine 
2 

Turbine 
3 

Turbine 
4 

Turbine 
5 

Turbine 
6 

Turbine 
7 

Rotor 63.5246 59.9877 59.5584 59.908 62.985 63.1532 61.7618 

Drive Train 31.3439 34.5249 40.2679 32.572 39.5224 40.4409 30.6156 

Gearbox and 
Lube 

51.0125 46.1707 44.4766 38.9964 59.6583 49.5643 42.9627 

Generator and 
Cooling system 

74.1599 61.5122 61.2925 69.9683 64.3959 63.3315 59.1052 

Brakes and 
Hydraulics 

91.5364 75.2734 85.3813 80.397 88.6469 83.1478 83.5085 

Yaw system 56.6079 56.9755 49.8854 51.2551 45.908 55.157 52.9629 

Control system 116.02 121.76 126.29 126.33 137.88 133.45 115.32 

Electrical system 
and Grid 

connection 

156.86 181.36 160.31 156.2 157.62 156.99 170.35 

Miscellaneous 39.3361 23.5451 33.4664 36.3336 25.295 33.4188 35.3504 

Sum 680.401 661.109 660.928 651.960 681.911 678.653 651.937 

As expected, the comparison between Table 5.6 and 5.7 suggests more outage 

duration per components of a turbine with higher number of wind turbines. The average 

availability of the wind farm in this case is 0.923.  

5.1.5 Hybrid analytical-simulation approach 

The models described in Section 3.2.5 are employed to study wind turbine 

reliability. The following tables present the parameters used in the model based on the 

data for a typical 3 MW direct drive wind turbine [77], and they are considered as the 

base case for the rest of this section. 
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Table 5.8 provides the expected reward/penalty of being in each state where 

negative values correspond to the costs of repair and maintenance. In this table, it is 

assumed that as the turbine deteriorates, its capacity factor decreases; and as a result, the 

reward from being in Di is reduced as i increases. With the same reasoning, the cost of 

maintenance slightly decreases over time because of lower opportunity costs for an aged 

turbine. Table 5.9 contains the transition probabilities from the maintenance states back 

to the working states. It is assumed that major maintenance is more effective than minor 

maintenance; and a small probability of 1% is included to account for human error. 

Table 5.8 Expected reward/penalty of being in each state 

State 

Expected 

Reward/Penalty State 

Expected 

Reward/Penalty 

1D  210,500 1m  -9,000 

2D  184,000 2m  -9,000 

3D  131,500 3m  -8,500 

1M  -23,000 0F  -37,000 

2M  -21,500 1F  -1,400,000 

3M  -20,500  

Table 5.9 Transition probabilities after maintenance 

From To Probability From To Probability 

1M  
1D  0.99 1m  

1D  0.99 

1M  
2D  0.01 1m  

2D  0.01 

2M  
1D  0.89 2m  

1D  0.4 

2M  
2D  0.1 2m  

2D  0.59 

2M  
3D  0.01 2m  

3D  0.01 

3M  
2D  0.9 3m  

2D  0.35 

3M  
3D  0.1 3m  

3D  0.65 

 

The transition rates used to calculate the remaining transition probabilities are 

presented in Table 5.10. To consider the vulnerability of aged equipment, it is assumed 
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that the rate of random failure increases with deterioration. For the base case study, the 

durations for major and minor maintenance are 6 and 3 days, respectively, and the 

duration of repairs after deterioration and random failures are 14 and 3.5 days, 

respectively. 

Table 5.10 Transition rates among the states 

Parameter 

Rate 

(day-1) Parameter 

Rate 

(day-1) 

𝜆12 1/730 𝜆3 1/122 

𝜆23 1/365 𝜇0 1/3.5 

𝜆3𝑓 1/365 𝜇1 1/14 

𝜆1 1/243 𝜇𝑀 1/6 

𝜆2 1/183 𝜇𝑚 1/3 

The results for availability assessment of wind turbines are derived using SMDP 

and MCS as analytical and simulation methods, respectively. 

5.1.5.1 Analytical approach 

The analytical approach is based on SMDP model using MATLAB software. The 

goal is to determine the optimum maintenance policy where the availability of the wind 

turbine is within an acceptable limit. The optimum policy depends on decision frequency 

(𝜆𝑑); and as the time between these decisions becomes longer (less frequent maintenance), 

a more extensive type of maintenance will be required. Fig. 5.11.a, b, and c show the 

optimum maintenance strategies obtained for each operating state of the wind turbine 

with different maintenance frequencies.  
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The most efficient decision in 𝐷1 is always to do nothing since the wind turbine is 

in its best operating condition; however, in 𝐷2 and 𝐷3, the optimum decision may vary. 

Performing too many maintenance functions is not efficient; and that is reflected in the 

optimization results with a do nothing decision if the maintenance frequency goes beyond 

1.6 and 3.65 times per year for 𝐷2 and 𝐷3, respectively. On the other hand, if the 

maintenance is performed less frequently, the optimum decision will shift toward 

performing a major maintenance.  

 

Figure 5.11 Optimum maintenance decisions at different operating states:  a) 𝑫𝟏, b) 𝑫𝟐 and 

c)  𝑫𝟑  using SMDP.  d) Wind turbine availability and total system gain with various 

maintenance frequencies 
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Based on the optimum maintenance decisions at each working state, the 

availability of the wind turbine can be determined as shown in Fig. 5.11.d. The 

discontinuity in the availability curve occurs due to a change in the optimum maintenance 

strategy which modifies the transition probability matrix of the model. According to this 

figure, availability of the wind turbine is decreasing as the maintenance frequency 

increases. However, changes in optimum maintenance policy create sudden desirable 

availability rises at the corresponding points in maintenance frequency. In addition, Fig. 

5.11.d. shows the gain of the system based on the SMDP model for different maintenance 

frequencies. Among these decisions, a maintenance rate of nearly once per year results in 

the highest calculated gain for which the optimum maintenance decisions are do nothing, 

do minor maintenance, and do major maintenance in 𝐷1, 𝐷2, and 𝐷3, respectively. 

5.1.5.2 Simulation approach 

The MCS-based model developed is employed to analyze the effect of 

maintenance and repair resource constraints on the availability and cost of the wind 

turbines, through different case studies. 

First, the optimum maintenance policy is analyzed using MCS, and the results are 

compared with those from the SMDP method. Therefore, with the previously determined 

optimum maintenance frequency of once per year, we have run the MCS model (Fig. 

3.13) for all 27 combinations of possible maintenance policies (𝑑1, 𝑑2 , 𝑑3) in 𝐷1, 𝐷2, 𝐷3, 

and determine the policy which results in the highest gain (optimum policy). The 

simulation duration in this study is 20 years, and 5,000 is selected as the number of 
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iterations in order to have less than one percent error in the expected results with 

significance level of 0.05. 

Fig. 5.12 shows the expected gains and the confidence intervals for all of the 

cases studied. do nothing, do minor maintenance, and do major maintenance are denoted 

by “1,” “2,” and “3” in this figure, respectively. The maintenance policy corresponding to 

the highest gain is “123” which is in agreement with the result of the SMDP method.   

 

Figure 5.12 Expected gain of the wind turbine with different maintenance policies. 

Fig. 5.13 displays the availability of the wind turbine with different policies. The 

availability corresponding to the optimum maintenance policy (about 0.972) is not the 

highest in this figure. This availability value is the same as the one derived from SMDP 

(Fig. 5.11) with a maintenance frequency of once per year.  

 

Figure 5.13 Expected availability of the wind turbine with different maintenance policies. 
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Next, if the duration of the maintenance or repair is increased, due to 

unavailability of the parts to be replaced or the ambient condition, the reliability of the 

wind turbine will decline and that impacts the increases the opportunity cost (OC) of the 

turbine (Eq. 3.27), as well. Fig. 5.14 shows the expected availability of the wind turbine 

with different duration of the maintenance compared to the base case. Three different 

profit rate (PR) of 2, 3, and 4 cents/kWh have been considered in these figures; and 

capacity factor is assumed to be 0.35 for all of the cases. 

 

Figure 5.14 Expected availability of the wind turbine with different durations of 

maintenance. 

The reliability of a group of wind turbines in a wind farm is affected by 

unavailability of the repair crew. Maintenance of a fleet of equipment can usually be 

planned ahead to minimize delay and lead time. However, equipment failures are random; 

in a wind farm, for example, simultaneous failures may occur on different wind turbines. 

Then, a turbine repair may be delayed due to already-scheduled repairs to other turbines. 

This condition is modeled by simultaneous simulation of 20 wind turbines 

representing a wind farm using the MCS model. Assuming that the wind turbines are 

repaired one at a time, Fig. 5.15 depicts the expected wait time before repair, on average, 
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in both 𝐹0 and 𝐹1 failure states. As expected, the situation is aggravated in a wind farm 

with more wind turbines. 

 

Figure 5.15 Expected wait time before repair with different numbers of turbines on a wind 

farm. 

Fig. 5.16 shows the average availability of the wind turbines on this wind farm. 

Although the availability does not change considerably with a small number of wind 

turbines, this effect becomes increasingly significant to the long-term operation of large 

wind farms.  

 

Figure 5.16 Expected availability of the wind turbine based on the number of turbines on 

the wind farm. 

Fig. 5.16 also presents the opportunity costs the wind farm incurred because of 

the delay in repair of the wind turbines, with different expected rates of profit. A 

comparison of this cost with the cost of hiring an additional repair technician may be 

used to determine a cost-effective option. For our case study, it is assumed that a second 
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technician can be hired at a rate of $50,000 per year [153]. Therefore, according to Fig. 

5.16, the second repair technician becomes profitable with more than 12, 14, and 16 wind 

turbines on a wind farm with a 𝑃𝑅̅̅ ̅̅  of 4, 3, and 2 cents/kWh, respectively. 

5.2  Reliability of Smart Power Distribution System 

In order to assess the reliability of a smart power distribution system, three 

different models, SDS model-I, SDS model-II, and SDS model-III, have been developed 

and described in Section 4.2. In addition, a number of studies have been proposed to 

evaluate the reliability of an SDS considering a variety of features of such system in the 

future. This section provides the results and discussion for these case studies and different 

sensitivity analyses. 

5.2.1 SDS reliability with demand side management 

The distribution system used for the case studies is an 86-bus system with a mesh 

topology based on SDS model-III. The one-line diagram of the system is shown in Fig. 

4.10. A number of normally open switches are used to separate different feeders and 

create a radial-operated network during normal conditions. These switches are used to 

restore the power to the areas disconnected due to a failure. The main bus of this 

distribution system is a 33kV swing bus, and the loads are distributed on the 11kV buses.   

The overall system data is given in Table 5.11. The input data used for the failure 

rates and repair durations of the system lines, transformers, and buses are given in Table 

5.12. 
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Table 5.11 Distribution System Components 

No. of busbars 86 

No. of lines 92 

No. of transformers 13 

No. of loads 56 

Avg. No. of customers per load 

point 186 

Total peak load 52.08 MW 

Total grid power losses 130 kW 

Table 5.12 Input failure and repair data for the reliability analysis 

Component Failure rate 

Mean            

Repair duration 

Underground 

Cables 
0.01/(km, year) 72 hrs 

Overhead Lines 0.015/(km, year) 50 hrs 

Power 

Transformers 
0.008/year 96 hrs 

11kV Busbar 
0.008/year for terminal; 

0.015/year per connection 
7 hrs 

33kV Busbar 
0.005/year for terminal; 

0.015/year per connection 
10 hrs 

 

The load values are diversified at different buses of the distribution system, and 

they represent different number of customers. However, loads are assumed to be from the 

same sector; and, therefore, the hourly change of all the loads follow the same pattern. 

This section is comprised of different case studies. First, the base case without a 

DSM is studied; and the reliability indices are calculated. The effectiveness of a DSM 

strategy depends on both the scheme chosen and characteristics of the distribution system. 

Next, the impact of two DSM schemes presented in Section 4.2.3, Energy Conservation 

and Load Shifting, on the distribution system reliability is obtained. Finally, a sensitivity 

analysis is performed where the impact of different percentage of load shifting and 

system branch capacities on system reliability is determined. 
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5.2.1.1 Base case reliability 

In this case, no DSM strategy is employed; and the load curve of Fig. 4.11 is 

applied to the loads. The results of the reliability indices are provided in Table 5.13. The 

total Energy Not Supplied of the distribution system is almost 76MWh per year; and each 

customer, on average, experiences 0.25 failures and an interruption duration of 1.9 hours 

per year. 

Table 5.13 Reliability indices for the base case study 

SAIFI 

   1/(Customer, Year) 

SAIDI 

Hr./(Customer, Year) 

CAIDI 

(Hr.) 

ENS 

(MWh/Year) ASAI 

0.245187 1.904 7.767 76.369 0.9997826 

5.2.1.2 Reliability with energy conservation 

As described in section 4.2.3 the energy conservation is modeled using scaling factors. 

The reliability indices have been calculated for different load scaling factors and are 

shown in Table 5.14. The load scaling of “1” means there is no DSM in this scheme (base 

case). It is observed that as the system bus loads decrease, the reliability of the system 

improves. In this case, as a result of a 10% load reduction, SAIFI and SAIDI decrease by 

almost 20%. 

Table 5.14 Reliability indices with different load scaling factors 

Scaling Factor 

SAIFI  

 1/(Customer, Year) 

SAIDI 

Hr./(Customer, Year) 

CAIDI 

(Hr.) 

ENS 

(MWh/Year) ASAI 

1 0.245 1.904 7.767 76.369 0.99978 

0.95 0.242 1.813 7.485 69.982 0.99979 

0.9 0.240 1.47 6.118 51.986 0.99983 

0.85 0.231 0.997 4.321 30.045 0.99989 
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5.2.1.3 Reliability with load shifting 

The results for the reliability indices with different percentages of load shifting 

are given in Table 5.15. 

Table 5.15 Reliability indices with different percentages of load shifting 

Load Shifting 

SAIFI  

  1/(Customer, Year) 

SAIDI 

Hr./(Customer, Year) 

CAIDI 

(Hr.) 

ENS 

(MWh/Year) ASAI 

0% 0.245 1.904 7.767 76.369 0.99978 

5% 0.258 2.349 9.113 98.161 0.99973 

10% 0.267 2.541 9.506 105.433 0.99971 

15% 0.273 2.631 9.64 105.263 0.9997 

20% 0.246 2.056 8.343 82.025 0.99976 

Unlike what was expected, the results show that the customers, on average, 

experience higher failure frequency and duration as the loads are shifted by 5, 10, and 

15%. Then, these indices decline with a 20% load shifting. In other words, the reliability 

of the distribution system may get worse with the load shifting DSM. 

In fact, the reason is that one of the main factors affecting the reliability of a 

distribution network, in this case, is the loading of system components. If the system is 

highly loaded and lines and transformers are operating close to their maximum limit, 

there is a higher chance that peak load shaving does little in preventing load 

interruptions compared to valley filling at off-peak hours, in case of a failure. The next 

case study aims to justify the results and discussion provided with a sensitivity analysis. 

5.2.1.4 Sensitivity analysis 

This section evaluates the reliability of distribution systems with different levels 

of loadings and the load shifting DSM. In order to perform sensitivity analysis, the 
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capacities of the lines and the transformers of the system are increased to generate the 

network cases with lower levels of component loadings compared to the base case. Fig. 

5.17 shows the loadings of the lines and transformers with different capacities at peak 

load, and as the capacities increase, the loading values decrease in the system. 

 

Figure 5.17 Loadings of power lines and transformers with different capacities at the peak 

load.  

Figures 5.18 and 5.19 show the results for SAIFI and SAIDI, respectively. There 

are a number of important points to discuss in these case studies. First, the reliability of 

distribution system with higher capacities of branch components (while other system 

parameters are kept unchanged) is generally higher. Second, in a highly loaded 

distribution system, SAIFI and SAIDI usually rise with higher load shifting. However, 

there is a turning point where these indices start to decline. As indicated in the figures, 

this turning point approaches faster and in lower percentages of the load shifting if the 

distribution system components have higher capacities (i.e., lower system loadings). 

Third, the degree to which DSM impacts the reliability of a distribution system depends 

on the system capacity. For example, in the base case, the reliability of the system does 

not improve even with a 20% load shifting compared with the case where no DSM is 

applied. 
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Figure 5.18 SAIFI with different percentage of load shifting and system capacity increments.  

 

 

Figure 5.19 SAIDI with different percentage of load shifting and system capacity 

increments.  

 

On the other hand, in certain loading levels of the system, the reliability may be 

improved with DSM. For example, in a case in which the capacity of a distribution 

system is 20% or 30% higher than our base case capacity, SAIFI and SAIDI may be 

improved if enough load shifting is applied. This impact is more dominant in interruption 

duration than in frequency. 

In addition, the results indicate that if the capacity of the system is high enough 

(40% higher capacities than the base case), the load shifting has almost no impact on the 

reliability of the system. This implies that the loading level of the distribution system, in 
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this case, is much lower than a threshold where the shape of the load curve could 

influence the reliability. 

5.2.2 SDS reliability with energy storage system 

This study is performed based on SDS model-III. The single line diagram of the 

distribution system is shown in Fig. 5.20 where four DER systems are connected at the 

load points, LP1, LP2, LP3, and LP4, to generate the base case study. The statistics of 

the distribution system components are provided by Table 5.16. 

 

Figure 5.20 Single line diagram of the case study with four integrated DERs  
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Table 5.16 Distribution system statistics  

No. of busbars 86 

No. of lines 92 

No. of transformers 13 

No. of loads 56 

No. of customers at LP1 440 

No. of customers at LP2 460 

No. of customers at LP3 320 

No. of customers at LP4 60 

 

The load curves at different load points are binned and represented by load state 

probabilities for the reliability study. As an example, Fig. 5.21 shows the load 

distribution for LP1 which includes the impact of DER in peak shaving, as well. This 

base case is used for reliability study and also for analyzing the effect of additional 

standby electric storage capacities on system reliability. 

 

Figure 5.21 Cumulative percentage of LP1 active and reactive power binned to define load 

states, with DER in the system (base case). 

Table 5.17 provides the load flow information on the load points and the total 

system with and without DER integration. In addition, the input data for reliability 

analysis include the components’ failure rates and repair duration as well as the load 

interruption cost function. These data are provided by Table 5.18 and Fig. 5.22, 

respectively. 

Load States at LP1 (with DER) 
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Table 5.17 Load flow results of the distribution system  

Parameters 

Without 

DER 

With DER 

(Base Case) 

Peak Load at LP1 4.32 MW 2.75 MW 

Peak Load at LP2 3.98 MW 2.53 MW 

Peak Load at LP3 2.77 MW 1.76 MW 

Peak Load at LP4 0.52 MW 0.33 MW 

Total System Peak Load  53.4 MW 48.4 MW 

Total System Power Loss  1.4 MW 1.15 MW 

 

Table 5.18 Input data for the reliability analysis 

Component Failure Rate Mean Repair Duration 

Underground Cables 0.01/(km, year) 128 hrs 

Overhead Lines 0.015/(km, year) 54 hrs 

Power Transformers 0.006/year 116 hrs 

11kV Busbar 
0.009/year for terminal; 

0.015/year per connection 
7 hrs 

33kV Busbar 
0.006/year for terminal; 

0.015/year per connection 
12 hrs 

 

 

Figure 5.22 Load interruption cost function for the customers. 

Since the cost of interruption may vary for different types of customers, the 

curve provided in Fig. 5.22 is used as the base load interruption cost function in the 

study; and each load adopts this cost curve with an specific scaling factor. Furthermore, 

each feeder of the distribution system is equipped with a protection device which is used 

to clear the fault defined by the contingencies during the reliability evaluation. 
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5.2.2.1 Base case reliability 

As previously described, four DER are connected at the specified load points, 

LP1 to LP4, but no standby storage capacity for reliability improvement is available in 

this case. The results of the system reliability indices are provided in Table 5.19. The 

total Energy Not Supplied of the distribution system is 145.5 MWh per year, and each 

customer, on average, experiences 0.46 failures and interruption duration of 4.02 hours 

per year.  

Table 5.19 System reliability results for the base case study 

System Reliability Indices (Base Case) 

SAIFI    

  1/(customer, year) 

SAIDI 

hrs/(customer, year) 

ASAI EENS 

(MWh/year) 

EIC 

(k$/year) 

0.46 4.02 0.99954 145.5 184 

 

Table 5.20 provides the reliability results at the DER-integrated load points. The 

interruption costs are different at these load points due to variation of their loads, 

damage costs, and location in the distribution system. The LPENS and LPIC are highest 

at LP1 and lowest at LP4. 

Table 5.20 Load point reliability results for the base case  

Location 

Load Point Reliability Indices 

(Base Case) 

LPIF 

(1/year) 

LPIT 

(hrs/year) 

LPIC 

(k$/year) 

LPENS 

(MWh /year) 

LP1 0.47  3.39 30 8.9 

LP2 0.34 3.11 16.2 7.5 

LP3 0.36 2.63 7.78 4.3 

LP4 0.58 5.24 0.5 1.8 
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5.2.2.2 Sensitivity Analysis 

Different sizes of standby electricity storage is added to the LP1 to LP4 nodes in 

the distribution system to improve reliability, and Total Cost of the system is analyzed 

for each case based on Eq. 4.19. Fig. 5.23 shows the system Total Cost comprised of 

expected interruption cost (EIC), as a representative of reliability cost, and levelized 

costs of different standby storage capacities at LP1. The levelized cost of standby 

storage is assumed to be 0.3 cents per kWh of capacity, per hour [132]. According to the 

results, a standby storage of 500 kWh is optimal at LP1. With this standby capacity 

added to the primary energy storage, the system Total Cost decreases by 2.7%; and the 

LPIC at LP1 is reduced by almost 30%, compared with the base case. 

 

Figure 5.23 Cost analysis with different capacities of standby storage at LP1.  

Figure 5.24 shows the results for all four DER-integrated load points. The total 

costs for each load point is derived by changing the storage capacity at that node while 

there is no standby storage capacity available at the other load points. This way, the 

results for each individual load point are compared independent of the changes in the 

other load points. For each load point, the increment steps of the storage capacity are 

defined by the percentages of that load point’s peak load.      
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Figure 5.24 Cost analysis with different capacities of standby storage at all the DER-

integrated load points.  

According to this figure, standby storage is cost effective only at LP1 and LP3 

where the Total Cost can be lower than the base case scenario.  

5.2.2.3 Reliability-based sizing of energy storage system  

In the previous section, the impact of the standby storage capacities on the 

system reliability was included independently using EIC at each load point. However, in 

order to size the energy storage system, their mutual effect on a distribution system 

should also be taken into consideration.  

Due to the nonlinearity of the system, the study requires a sequential iterative 

process (Fig. 4.14) for reliability evaluation and determining the optimum standby 

storage capacities at all four DER-integrated load points. 

Fig. 5.25 shows the results of the optimum standby capacities. The PSO study 

indicates that no standby storage is beneficial at LP2; but it is optimum to have standby 

electricity available at LP1, LP3, and LP4. The EIC of the system with these optimum 
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capacities is $134,000 per year, and the Total Cost adds up to $159,000 per year, which 

is less than the Total Costs in the previous section presented in Fig. 5.24. 

 

Figure 5.25 Optimum standby storage capacities at all of the DER-integrated load points. 

The load point reliability indices provided by Table 5.21 indicate reliability 

improvement compared with the base case results in Table 5.20. In addition, SAIFI and 

SAIDI indices are slightly improved by 1% and 3% in this case, respectively. 

Table 5.21 Load point reliability results with integration of the optimum standby energy 

storage systems  

Location 

Load Point Reliability Indices 

(With Optimum Standby Storage Capacities) 

LPIF 

(1/year) 

LPIT 

(hrs/year) 

LPIC 

(k$/year) 

LPENS 

(MWh /year) 

LP1 0.47 3.1 20 5.8 

LP2 0.34 3.05 16.1 7.35 

LP3 0.36 2.62 5.4 3.1 

LP4 0.53 4 0.2 0.6 

The reliability improvement is more considerable at LP1 which has the highest 

optimum standby storage capacity.  
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5.2.3 Optimum DER capacity for reliable SDS 

This study aims to achieve a reliable and cost-effective demand supply for 

residential customers of smart power distribution system by determining the optimum 

sizes of distributed generation and storage system that best fit into the DSM used by the 

customers.  

The study is based on the described SDS model-II according to which three types 

of loads have been introduced. L1has previously been defined using Eq.4.14. The 

demand considered for the schedulable L2 group of loads is shown in Table 5.22.  These 

loads are randomly distributed throughout the week in a way that complies with their 

usage frequency. Electric vehicle, for example, is one of the schedulable loads in this 

case study and consumes 4 kWh with an average commute of 15 miles/day [154]. It is 

also assumed that all L2 loads are scheduled to be accomplished during 24 hours. In 

addition, during each hour, there are some expected L3 loads, including TV, personal 

computer, some lighting, etc., which randomly change based on the uniform distribution, 

not exceeding 5% of the L1.  

Table 5.22   𝐋𝟐 Loads considered for the case study 

Device Total Energy 

(kWh) 

Usage 

Frequency 

Duration 

(Hours) 

Washing 

machine 
0.5 Twice a week 1 

Clothes dryer 1.1 Twice a week 1 

Dishwasher 1.2 Every day 2 

Electric oven 2 Once a week 1 

Electric vehicle 4 Every day 4 

Iron 1 Once a week 1 
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The study parameters chosen for the base case are provided in Table 5.23 based 

on typical data from [132], [155]. The results of the base case indicate that a wind 

turbine of 3 kW and a battery of 4.5 kWh are the optimum choices for this residential 

customer to reliably supply all its electrical demand where the electricity cost of the 

household will be 65.4 cents per day. In addition, the results for this case show that the 

optimum plan would save an average of 25 percent compared to a conventional home 

with the same average load without battery and generation. 

Table 5.23    Input parameters of the base case study 

Parameter 𝑪𝑮 𝑪𝑩 𝑹𝒄 𝑫𝑶𝑫 ∆𝐑 𝑬𝑺𝒆𝒍𝒍(𝐦𝐚𝐱) 

Value 3.5 0.3 2 85 1.5 15 

Unit 

𝑐𝑒𝑛𝑡𝑠

𝑘𝑊ℎ
 

𝑐𝑒𝑛𝑡𝑠/𝑘𝑊ℎ 𝑜𝑓 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝐻𝑜𝑢𝑟
 

𝑘𝑊ℎ

𝐻𝑜𝑢𝑟
 

% 

𝑐𝑒𝑛𝑡𝑠

𝑘𝑊ℎ
 

𝑘𝑊ℎ

𝑑𝑎𝑦
 

 

5.2.3.1 Sensitivity to the cost of DER 

The impact of renewable generation and battery cost (CG and CB) on the optimum 

capacities is studied and the results are shown in Fig. 5.26. As CB decreases, the 

optimum point is shifted toward higher battery capacities (from 0 to about 7 kWh). In 

addition, as the cost of wind generation increases, larger batteries become relatively 

more efficient than wind generators. It is observed that the optimization process prefers 

to choose the highest battery capacity when the battery cost is at its minimum and the 

wind generation cost is at its maximum value. Contrary to Fig. 5.26(a), the cost of 

battery in Fig. 5.26(b) does not show a considerable impact on the generator capacity. 
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On the other hand, as the cost of generation decreases, higher-capacity wind turbines 

become more beneficial. In this graph, the generation cost of about 3.5 cents/kWh acts 

like a turning point at which there is a high slope toward higher wind generation 

capacities. This is possibly because the average EPR of this case study is 3.2 cents/kWh; 

and, therefore, generation costs less than this rate become exceedingly appealing.  

 
                                         (a)                                                                                 (b) 

Figure 5.26 Optimum size of battery (a) and wind generation (b), with different levelized 

costs of wind generation and battery. 

As a result of this study, the minimum household electricity costs are computed 

and plotted in Fig. 5.27. As expected, the electricity cost of the home is highest when 

both CG and CB are at their maximum values. 

 

Figure 5.27 Minimum electricity cost of the houshold with different levelized costs of wind 

generation and battery. 



154 

 

 

 

An interesting result is achieved by comparing the electricity cost in this figure 

with one of a conventional home without a generation-storage system. In the case of a 

conventional household, the electricity cost is 92 cents/day, which is close to the CH(T) 

value of the household with a CG of 5 cents/kWh and a CB of 0.6 cents/kWh per hour. 

Therefore, it is expected that beyond this operating point, no additional savings can be 

achieved by investing in a wind generator and battery, indicating the corresponding 

optimum capacity of the wind generator and battery should be almost zero, as justified 

by the results shown in Fig. 5.26. 

5.2.3.2 Sensitivity to electricity purchase rate 

In this case, the sensitivity of the capacities and electricity cost of the household 

for the base case with different electricity rates (EPR) have been studied; according to 

the results shown in Fig. 5.28, as EPR rises, an increasing trend toward higher 

generation-battery capacities is observable.  

 

 

Figure 5.28 Sensitivity of wind generation-battery capacities (top) and the electricity cost of 

the home (bottom) to the change of average EPR. 
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It is notable that as the electricity cost of a conventional household rises with a 

higher EPR, the electricity cost of the smart home decreases. The difference between 

these two costs is more noticeable at electricity rates higher than the levelized cost of 

wind generation where the electricity cost of the smart household has a higher rate of 

decrease. Residential customers are even able to make a profit from selling their power 

to the grid at an average EPR of 5 cents/kWh; This could be because beyond this point, 

the cost of wind generation becomes less than the average ESR (with a ∆R of 1.5 

cents/kWh).  

5.2.4 SDS reliability with active customer interactions 

A number of case studies are provided for reliability assessment of a smart power 

distribution system comprised of different types of active customers who may own 

renewable generation and storage systems. The SDS model-I has been used for the 

studies. Table 5.24 provides base case information about residential, commercial, and 

industrial customers denoted by subscripts R, C, and I, respectively. 𝑅𝑜𝑢𝑡 represents the 

radius of the impacted area, and it is used to model the extent of a contingency in the 

system. This radius is randomly selected between 0 (i.e., no impact) and up to 10×𝑑𝑁 

(i.e., nearly total system outage) where 𝑑𝑁 represents the average distance between 

neighboring customers. 𝐶𝑎𝑝𝐵̅̅ ̅̅ ̅̅ ̅ and 𝐶𝑎𝑝𝐺̅̅ ̅̅ ̅̅ ̅ denote average battery and renewable 

generation capacities, respectively; The parameter 𝑑 is an indicator of the customer 

demand, and 𝜆 and 𝜇 are the average rates of outage and system restoration, 

respectively. 
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Table 5.24    Parameters used for the case studies. 

Parameter 𝑁𝑅 𝑁𝐶  𝑁𝐼 𝐶𝑎𝑝𝐵,𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐶𝑎𝑝𝐵,𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐶𝑎𝑝𝐵,𝐼̅̅ ̅̅ ̅̅ ̅̅  𝐶𝑎𝑝𝐺,𝑅̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝐶𝑎𝑝𝐺,𝐶̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Value 400 200 20 1.25 2.5 15 0.5 1 

Unit - - - kWh kWh kWh kW kW 

Parameter 𝐶𝑎𝑝𝐺,𝐼̅̅ ̅̅ ̅̅ ̅̅  𝑑𝑅,𝑚𝑎𝑥 𝑑𝐶,𝑚𝑎𝑥 𝑑𝐼,𝑚𝑎𝑥 𝑅𝑜𝑢𝑡 𝜆 𝜇 𝐷𝑅𝑥 

Value 25 1.1 1.6 20 U(0-10) 2 2×10-4 20 

Unit kW kW kW kW 𝑑𝑁  
1

𝑌𝑒𝑎𝑟
 

1

𝑌𝑒𝑎𝑟
 %/hour 

The impact of different types and capacities of renewable generation as well as 

customers’ interactions on the reliability is studied through various scenarios. The 

hourly data used for the wind speed, solar radiation, and customer loads are from [156], 

[157], and [158], respectively, where the average data for three load sectors, wind, and 

PV generation are depicted in Figs. 5.29 and 5.30, respectively. The customer damage 

functions used for the loss-of-load cost analysis per customer sector are based on typical 

data from [159] and [160]. 

 

Figure 5.29 Average load profiles for residential, commercial, and industrial loads. 

 



157 

 

 

 

 

Figure 5.30 Typical average PV and wind generation profiles. 

5.2.4.1 Reliability analysis with residential customers 

In this study, the agents are all residential customers; and their distributed 

generation is solely wind power. The objective is to investigate the impact of renewable 

generation and storage systems, as well as neighborhood electricity trading among the 

agents, on SDS reliability from the system and customer points of view. 

Fig. 5.31 shows the SAIFI and SAIDI parameters of the smart grid, with 

different percentages of residential customers using battery-wind generation systems, 

and the neighborhood power trading option (SAIFI and SAIDI are represented in a 

single diagram to save space). As the percentage of customers with DER increases, both 

the average duration and frequency of the interruption in the system decrease with 

different percentages. In fact, by having additional electricity resources in the system, 

the customers are more likely to be able to satisfy their loads, subject to a contingency in 

the system. Therefore, a cost analysis may be exercised by the customers to determine 

whether the cost of the DER is justifiable considering the customers’ loss of load costs. 

Note also that the reliability of the SDS cannot be improved by having customers 

of the same sector trade electricity within their neighborhood. As shown in Fig. 5.31, 
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with no DER available, the reliability indices are similar with or without electricity 

trading because there is not any extra resource to be shared by the customers. However, 

in a system where all of the customers have distributed generation and battery systems, 

reliability degrades with neighborhood trading. Neighborhood trading is not 

advantageous in this case because all of the residential customers have relatively similar 

demand profiles, causing the agents to have concurrent deficit/surplus electricity 

throughout a typical day. In other words, when a residential customer needs power due 

to a failure in the system, there is a high chance that all other neighbors need power as 

well.  

 

Figure 5.31  SDS-perspective reliability indices with different percentages of residential 

customers owning generation-battery systems and neighborhood electricity trading option. 

Table 5.25 provides the reliability indices from the customer’s perspective, for 

the same study. As a result of using DER, customers’ energy not supplied and the 

interruption costs decrease. In this case, by having 50% and 100% of customers own 

distributed generation and battery systems, the customer interruption cost drops by 45% 

and 79%, respectively.    
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Table 5.25 Customer perspective reliability with different percentages of them owning 

generation-battery systems, and neighborhood electricity trading option. 

Customer 

Sector 

Percentage 

with 

Batt/Gen 

Neighborhood 

Trading Option 

𝑽𝑶𝑳𝑳𝑹 

($/𝒌𝑾𝒉) 

𝑬𝑵𝑺𝑹 

(
𝒌𝑾𝒉

𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓, 𝒚𝒆𝒂𝒓
) 

R
es

id
en

ti
a

l 

0% 
Possible 6.67 2.91 

Off 6.67 2.91 

50% 
Possible 6.67 1.6 

Off 6.65 1.6 

100% 
Possible 6.6 0.63 

Off 6.5 0.62 

5.2.4.2 Reliability analysis with residential, commercial, and industrial customers 

In this case, the customers are diversified from residential, commercial, and 

industrial sectors, with parameters provided in Table 5.24.  These customers have 

different load profiles during an average day, as shown in Fig. 5.29. Similar to the 

previous diagram, Fig. 5.32 shows how the reliability of the smart grid improves by 

having higher percentages of the customers own DER. However, unlike the previous 

case, the smart distribution system benefits from customers cooperation within their 

neighborhood area.  

 

Figure 5.32 SDS-perspective reliability indices with different percentages of 

residential/commercial/industrial customers owning generation-battery systems and 

neighborhood electricity trading option. 
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When a failure occurs in a certain region, it is likely that the agents, randomly 

distributed in the environment, are from different load categories; and part of the 

electricity demand of one agent can be supplied by the excess power of its neighbor. By 

comparing the reliability indices with and without neighborhood electricity trading in 

Fig. 5.32, it is noted that system reliability improves more as the percentage of 

customers owning DER increases. For example, in a system where all the customers use 

renewable generation and storage systems, if neighborhood power trading is allowed, 

SAIFI and SAIDI can be improved by 24% and 31%, respectively. Table 5.26 provides 

the values for customer-side reliability indices.  

Table 5.26 Reliability of the residential/commercial/industrial customers with varying 

percentages of owning generation-battery systems, and neighborhood trading options. 

Customer 

Sector 

Percentage 

with 

Batt/Gen 

Neighborhood 

Trading Option 

𝑽𝑶𝑳𝑳𝒔 

($/𝒌𝑾𝒉) 

𝑬𝑵𝑺𝒔 

(
𝒌𝑾𝒉

𝒄𝒖𝒔𝒕𝒐𝒎𝒆𝒓, 𝒚𝒆𝒂𝒓
) 

R
es

id
en

ti
a

l 

0% 
Possible 6.62 2.19 

Off 6.62 2.19 

50% 
Possible 6.6 1.2 

Off 6.67 1.28 

100% 
Possible 5 0.44 

Off 6.36 0.61 

C
o

m
m

er
ci

a
l 

0% 
Possible 33.3 4.38 

Off 33.3 4.38 

50% 
Possible 33 2.4 

Off 33 2.56 

100% 
Possible 30 0.88 

Off 31.8 1.22 

In
d

u
st

ri
a

l 

0% 
Possible 25 43.8 

Off 25 43.8 

50% 
Possible 24 24 

Off 24 25.6 

100% 
Possible 21 8.8 

Off 22.7 12.2 
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The diversity of customer sectors makes the power trading option valuable. In a 

case study where all of the customers own renewable generation and storage systems, 

the option of electricity trading among the neighbors reduces the interruption cost for 

residential, commercial, and industrial customers by 43%, 32%, and 33%, respectively. 

Compared with the previous case, residential customers here experienced less duration 

of outage and value of lost load, accordingly. 

5.2.4.3 Sensitivity analysis with wind and PV generation 

The goal of this section is to determine the impact of renewable generation-

battery capacities (by scaling the base capacity values provided by Table 5.24), as well 

as the type of renewable generation (wind, PV), on the reliability of an EDS. In our case 

study, the capacity factors of wind and PV generation are roughly 30% and 25%, 

respectively. Therefore, in order to study the impact of these two generation 

technologies on system reliability, regardless of their total generated electricity, the 

capacity of the PV system is considered to be 20% higher than that of wind generation. 

In all of the case studies in this section, the customers own DER and are allowed to trade 

electricity with their neighbors. Figs. 5.33 and 5.34 provide SAIDI and SAIFI results for 

three cases, respectively:  1) all of the customers have wind generation systems, 2) half 

of the customers use wind generation and the other half use PV, and 3) all of the 

customers have PV systems. 

Fig. 5.33 indicates that by increasing the capacities of the generation and storage, 

the customers’ average duration of interruption decreases. In fact, by allocating higher 
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generation capacity, the customers are able to generate more power during a 

contingency; and with higher capacities of electricity storage, they are able to survive 

longer using the stored electricity. Reliability improvement is faster with lower DER 

capacities, and there is a threshold near the scaling factor of 2, where a DER is capable 

of providing almost the total demand of its customer independent from the utility. Thus, 

the reliability improvement is not significant for the capacities larger than this threshold.  

 

Figure 5.33 SAIDI of the SDS affected by different capacities of renewable generation- 

storage and generation technologies. 

In addition, the trend curve for SAIDI with wind generation lies below that for 

PV generation; and this generally indicates a lower duration of customer interruption 

with wind generation. The reason should be related to generation profiles of these two 

types of renewable generation. The average wind generation varies less than the PV 

output, which is zero during the night (Fig. 5.30). Therefore, in case of an interruption 

due to a lack of generation/storage at a certain time of a day, the customers with wind 

generation are expected to generate power sooner than those with solar panels; and, this 

causes their duration of interruption to be shorter.      
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Fig. 5.34 shows the average frequency of the failure per customer for the same 

case. According to this figure, SAIFI with a PV system drops at lower capacities 

(scaling factor of ~1.5) than with the wind generation.  

 

Figure 5.34 SAIFI of the SDS affected by different capacities of renewable generation-

storage and generation technologies. 

The output power of a solar panel is basically available during the daytime and 

more correlated with the load (Figs. 5.29 and 5.30) compared with the wind generation 

which is more diversified throughout a day. Therefore, the PV system would be capable 

of fully supplying its own loads at lower capacity than wind generation; and it leads to a 

faster drop of failure frequency of an average customer. Comparison of the results 

between these two generation technologies indicates that the energy not supplied is 

almost the same in both cases. On the other hand, Fig. 5.35 compares the value of lost 

load for all three customer sectors having wind or PV distributed generation systems. 

 The results indicate that with wind generation, VOLL is 23%, 10%, and 8% 

lower than with PV system for residential, commercial, and industrial customers, 

respectively. 
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Figure 5.35 Comparison of wind and PV impact on VOLL in load sectors. 

Since VOLL is a function of interruption duration (Eq. 4.33), lower VOLL 

implies less duration of interruption with wind generation, which is a similar result to 

what is observed in Fig. 5.33. 
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                     CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 

6.2 Recommendation for the Future Work 
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6.1  Conclusion 

There are two main goals planned for this dissertation. First, due to the 

increasing number of distributed and renewable energy resources in the power system 

and the uncertainties involved regarding their reliable operation and availability of their 

output generation, the first goal was to model the operation and evaluate the reliability of 

wind turbines as renewable-based generators. Next, considering the future power system 

infrastructure accommodating the renewable generation, energy storage, advanced 

customer initiated demand side management, and the urge for improving the reliability 

and availability of electricity to the customers, the second goal was to provide 

corresponding models and methods to evaluate and improve the reliability of future 

power distribution systems. 

A summary of the contribution of this dissertation is provided as follows: 

 An improved FMEA method was proposed for reliability evaluation of 

renewable generation, such as wind turbines. The improvement was required 

in order to overcome the previous shortcomings including difficulty to 

determine the failure modes severity with diverse types of wind turbines, and 

limited and qualitative results. The proposed RB-FMEA method is a cost 

initiated quantitative approach whose outcome is proportional to the 

equipment performance. The case study and sensitivity analysis showed the 

simplicity of the method and its application to determine the failure costs 

under different restrictions, electricity rates, and fault detection strategies. 
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 A Markovian model was proposed to evaluate the reliability of wind farms 

where each state of the model represented the number of similar wind turbines 

working at a time in order to reduce the computational burden compared with 

a two-state Markov model. The model was used for both short-term time 

dependent reliability evaluation, which can be employed for operational 

planning and maintenance, and long-term reliability assessment, which is 

suitable for determining the expected loss of load and wind power generation 

in the long run. 

 A hybrid analytical-simulation approach was proposed for reliability 

assessment and maintenance optimization of renewable generation systems 

such as wind turbines. The proposed method was based on the Markov 

decision processes and Monte Carlo simulation methods in order to overcome 

the limits of each individual method, namely model complexity and large 

number of iterations, respectively. Using this approach, wind farm 

maintenance planners and asset managers are able to (1) determine the 

optimum type and frequency of maintenance for the wind turbines; (2) study 

the effect of maintenance and repair resource restrictions on the availability 

and costs of the wind farm; and (3) run cost/benefit studies to allocate the 

proper number of technicians for maintenance and repair, taking into 

consideration the costs of wind farm unavailability and additional crew 

employment. 
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 Three different models of a smart distribution system, SDS model-I, SDS 

model-II, SDS model-III, and several demand side management strategies 

were developed which are applicable for operation, planning and reliability 

studies of future power systems. The software used for these three models 

were Repast symphony, MATLAB, and DIgSILENT Power Factory, 

respectively. 

 The SDS model-I, as a multiagent system based model, included 

electricity customers with distributed power generation and storage 

system. The stochastic behavior of renewable generation, loads, and 

dynamic electricity rate were also taken into account. In addition, 

customers had the chance to interact with the grid and their neighbors 

to trade electricity when required. Two demand side management 

strategies, Utility-based method, and Average Deficit method, were 

proposed to direct the customers to buy, store, sell, or consume 

electricity in order to reliably supply their demands cost-effectively. 

The study results showed that customers could successfully reduce 

their electricity costs, and at the same time, help to alleviate the total 

peak demand from the utility. 

 The SDS model-II was developed for planning purposes. In the first 

stage, the customer used a rule-based electricity management system 

which could effectively manage various types of its load, renewable 

generation, and electricity storage, and trade power with the grid. The 
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time-variant inputs to this system were wind speed, three categories of 

load, and electricity rates. In the second stage, an optimization 

problem was formulated where for planning purposes, the stochastic 

variables were represented by their individual probability distributions 

for each hour of a day. Using the proposed hybrid MCS-PSO approach 

in the third stage, the optimum sizes of the generation and battery 

system were obtained such that the overall electricity cost of the 

customer was minimized. Therefore, this model may be used by the 

customers of future power distribution system to invest in the right 

capacity of renewable generation and battery considering reliable load 

supply, renewable resource availability, and electricity rates. 

 The SDS model-III provided a more detailed model of the utility side 

of a distribution system considering power flow constraints, such as 

loading limits of power system branch components and operating 

voltage limit of the system buses. This model was used to study the 

impact of demand side management and energy storage on the 

reliability of the power distribution system. The results showed that 

depending on the loading of the system components, peak load 

alleviation might improve reliability in a distribution system. In 

addition, according to the optimization study, the allocation of 

additional storage capacity, as a standby electricity resource, at 
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specific system buses improved load point and system level reliability, 

and minimized the total reliability costs. 

 A number of simulation approaches for reliability evaluation were proposed 

which could address different aspects of future power distribution systems. 

Reliability was assessed from both the system and customer point of view by 

applying a number of commonly used and newly defined indices. Several case 

studies were analyzed to determine and improve the reliability of future power 

systems impacted by various features, such as:   

 Diversity of active customers from different sectors; 

 Different demand side management programs; 

 Communication and power transactions among neighboring customers;  

 Type and capacity of integrated renewable generation and storage 

systems. 

6.2  Recommendation for the Future Work 

 A comprehensive reliability model: This dissertation provided modeling and 

reliability analysis of future distribution power systems considering a variety 

of key factors. However, as previously mentioned, the interdependency of 

electrical, communication, and control systems in the future smart grid 

necessitates a comprehensive reliability model which considers the mutual 

impacts of these systems on one another. The comprehensive reliability model 

should be modular and flexible in order to include various potential design 
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configurations and their effect on the overall system reliability. The work in 

this dissertation could be used as the base for such comprehensive model.  

 MAS-based electricity market model integration: It is accepted by many 

power system engineers that retail electricity market is an efficient way of 

managing the demand and providing reasonable electricity rates to the end 

customers. The MAS model of the active customers (SDS model I), developed 

in this dissertation, may be expanded to include a MAS-based retail electricity 

market which provides dynamic electricity rates based on the system demand, 

and power flow restrictions.  

 Reliability of smart grids impacted by future protection schemes: The future 

power system relies on the latest advances in sensing, computation, and 

communication technology. For instance, Synchronized Measurement 

Technology (SMT), including Phasor Measurement Units (PMUs) play a key 

role in making distributed real-time data available throughout the power 

system, where all the measurements are synchronized to a reference clock 

signal from the Global Positioning Systems (GPS). This enables real-time 

monitoring and control, and more generally wide area monitoring protection 

and control (WAMPAC), for a fast decision making in case of congestions or 

disturbances in the system. It is critical to model and study the impact of 

WAMPAC on reliability of the future power system, including the distribution 

system, since high reliance on these systems increases the consequence of 

their malfunction, as well. The smart grid model in this dissertation is a 
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suitable base for incorporating the distributed protection schemes and 

analyzing their impact on reliability of the future power systems. 
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