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ABSTRACT 

This study develops theorems which generalize or improve the existing predictive 

dynamics method and implements them to simulate several motion tasks of a human 

model. Specifically, the problem of determination of contact forces (non-adhesive) 

between the environment and the digital human model is addressed. Determination of 

accurate contact forces is used in the calculation of joint torques and is important to 

account for human strength limitations in simulation of various tasks. It is shown that 

calculation of the contact forces based on the distance of the contact areas from the Zero 

Moment Point (ZMP) leads to unrealistic values for some of the forces. This is the 

approach that has been used in the past. In this work, necessary and sufficient constraints 

for modeling the non-adhesiveness of a contact area are presented through the definition 

of NCM (Normal Contact Moment) concepts. NCM point, constraints and stability 

margins are the new theoretical concepts introduced. When there is only one contact area 

between the body and the environment, the ZMP and the NCM point coincide. In this 

case, the contact forces and moments are deterministic. When there are more than one 

contact areas, the contact forces and moments are indeterminate. In this case, an 

optimization problem is defined based on the NCM constraints where contact forces and 

moments are treated as the unknown design variables. Here, kinematics of the motion is 

assumed to be known. It is shown that this approach leads to more realistic values for the 

contact forces and moments for a human motion task as opposed to the ZMP based 

approach. The proposed approach appears to be quite promising and needs to be fully 

integrated into the predictive dynamics approach of human motion simulation.  

Some other insights are obtained for the predictive dynamics approach of human 

motion simulation. For example, it is mathematically proved and also validated that there 

is a need for an individual constraint to ensure that the normal component of the resultant 
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global forces remains compressive for non-adhesive contacts between the body and the 

environment. Also, the ZMP constraints and stability margins are applicable for the 

problems where all the contacts between the environment and the body are in one plane; 

however, the NCM constraints and stability margins are applicable for all types of 

arbitrary contacts between the body and the environment.  

The ZMP and NCM methods are used to model the motion of a human (soldier) 

performing several military tasks: Aiming, Kneeling, Going Prone and Aiming in Prone 

Position. New collision avoidance theorems are also presented and used in these 

simulations. 
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ABSTRACT 

This study develops theorems which generalize or improve the existing predictive 

dynamics method and implements them to simulate several motion tasks of a human 

model. Specifically, the problem of determination of contact forces (non-adhesive) 

between the environment and the digital human model is addressed. Determination of 

accurate contact forces is used in the calculation of joint torques and is important to 

account for human strength limitations in simulation of various tasks. It is shown that 

calculation of the contact forces based on the distance of the contact areas from the Zero 

Moment Point (ZMP) leads to unrealistic values for some of the forces. This is the 

approach that has been used in the past. In this work, necessary and sufficient constraints 

for modeling the non-adhesiveness of a contact area are presented through the definition 

of NCM (Normal Contact Moment) concepts. NCM point, constraints and stability 

margins are the new theoretical concepts introduced. When there is only one contact area 

between the body and the environment, the ZMP and the NCM point coincide. In this 

case, the contact forces and moments are deterministic. When there are more than one 

contact areas, the contact forces and moments are indeterminate. In this case, an 

optimization problem is defined based on the NCM constraints where contact forces and 

moments are treated as the unknown design variables. Here, kinematics of the motion is 

assumed to be known. It is shown that this approach leads to more realistic values for the 

contact forces and moments for a human motion task as opposed to the ZMP based 

approach. The proposed approach appears to be quite promising and needs to be fully 

integrated into the predictive dynamics approach of human motion simulation.  

Some other insights are obtained for the predictive dynamics approach of human 

motion simulation. For example, it is mathematically proved and also validated that there 

is a need for an individual constraint to ensure that the normal component of the resultant 
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global forces remains compressive for non-adhesive contacts between the body and the 

environment. Also, the ZMP constraints and stability margins are applicable for the 

problems where all the contacts between the environment and the body are in one plane; 

however, the NCM constraints and stability margins are applicable for all types of 

arbitrary contacts between the body and the environment.  

The ZMP and NCM methods are used to model the motion of a human (soldier) 

performing several military tasks: Aiming, Kneeling, Going Prone and Aiming in Prone 

Position. New collision avoidance theorems are also presented and used in these 

simulations. 
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CHAPTER 1 

INTRODUCTION 

There is an increasing demand in industry to evaluate the human aspect of designs 

within the digital environment. Therefore, digital human modeling and simulation has 

attracted considerable attention in recent years. One of its main applications is to make an 

ergonomic evaluation of the human interface of a product in a digital environment at a 

very early stage of design (prototyping stage). The cost of developing prototypes is 

considerably reduced when digital prototyping is implemented. 

Predictive dynamics, developed recently (Xiang, 2007), is a novel approach for 

simulating human motion in the digital human modeling field. In this research, certain 

aspects of the predictive dynamics approach are studied with the objective of gaining 

further insights into the formulation and improve the simulation capability of the method. 

 

1.1 Definition of Some Common Terms 

In this section, some common terms that are used in this research are briefly 

defined. More complete definition of some of these terms will be given in appropriate 

chapters. 

 

Definition 1.1: Environmental Contact 

In this research, the environment refers to a set of physical objects that may have 

contact with the dynamic system. The contact of a dynamic system (such as a 

robot or a digital human) with the environment is referred to as the 

“environmental contact” of that dynamic system. 
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Definition 1.2: Environmental (or External) Contact Areas (of a System) 

The contact of a dynamic system (such as a robot or a digital human) with the 

environment occurs through one or more contact areas. Each of them is referred to 

as an environmental (or external) contact area of the system. Throughout this 

thesis, it is assumed that the effect of the deformation of these contact areas on the 

location of contact forces is negligible. In other words, these contact areas are 

assumed to be rigid for the purpose of dynamic calculations. 

 

Definition 1.3: Non-adhesive Contact Area 

Non-adhesiveness is a property of a contact area of the system with the 

environment. It means that the specified contact area can only exert compressive 

distributed forces on the dynamic system and also coulomb friction constraints 

limit the amount of frictional forces that can be exerted on the dynamic system 

from that contact area. 

 

Definition 1.4: Unilaterality of a Distributed Set of Forces 

In general "unilaterality" is a property relating to, or affecting one side of an 

object (from Merriam-Webster Dictionary). A unilateral vector is generally 

defined with respect to a surface. So, if the vector always points to one side of this 

surface, the vector is said to be unilateral with respect to that surface. In this thesis 

we are only dealing with flat contact surfaces (planes). For any flat contact 

surface, if the contact area is non-adhesive, then "unilaterality" will be an inherent 

property of distributed forces on them. It means that on a flat and non-adhesive 

contact area, all the distributed contact forces have components in the same 

direction along the axis perpendicular to that contact area. 
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Definition 1.5: Reaction Force System (on a Ground/Surface Contact Area) 

In this research, we replace the effect of distributed forces exerted on the dynamic 

system (such as a robot or a digital human) from a ground/surface contact area by 

equivalent concentrated force and moment vectors acting on the system from that 

contact area. We refer to that concentrated force and moment as the reaction force 

system on the segment that is in contact with the environment. 

 

Definition 1.6: Possible/Impossible System Property (in Nature) 

In this research, the terms possible/impossible are sometimes used in conjunction 

with a property of a dynamic system (such as its motion or some of its reaction 

forces). The meaning is that the given value for that specified property can/cannot 

exist in the nature. In other words, it is possible/impossible for that dynamic 

system to have that value for such a property in the real world. 

 

Definition 1.7: Feasible/Infeasible System Property in an Optimization Problem 

In this case, the meaning of “infeasible” is that the given value for that system 

property violates the constraints defined in the optimization problem. Therefore, 

any solution for the dynamic system that has that value for that system property 

will not satisfy the optimization constraints. 

 

Definition 1.8: Coplanar/Non-Coplanar Environmental Contact Areas 

If two environmental contact areas of a system are on the same plane, they are 

said to be coplanar, otherwise they are non-coplanar.  
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Definition 1.9: Zero Moment Point (ZMP) 

ZMP exists only for a system in which all its environmental contact areas are only 

on the ground (or coplanar in Definition 1.8) and are all non-adhesive. For such a 

system, ZMP is defined as that point on the ground (plane) at which the net 

moment of the inertial, gravity and external (IGE) forces acting on a dynamic 

system (such as a robot or a digital human) has no component along the two 

horizontal (planar) axes (Vukobratović, 2004; Sardain, 2004).  

 

Definition 1.10: ZMP Constraint 

The ZMP constraint states that during any motion of the system (either stable or 

unstable), the ZMP should be inside or on the boundary of the convex hull of all 

the ground contact areas. If a calculated motion for the system does not obey the 

ZMP constraint, then that motion is impossible. 

 

Definition 1.11: ZMP Method (in Predictive Dynamics) 

By ZMP Method in predictive dynamics, we refer to a method which uses the 

ZMP constraint to ensure the possibility of motion and calculates the contact 

forces based on their distances to the ZMP. 

 

Definition 1.12: Contact Instability of System (during motion) 

In general, the contact instability of the system during motion is defined as the 

condition when the contact area of the dynamic system with the environment 

reduces to a line or a point. In more technical words, it is defined as a condition, 

where at least one out of the six components of the IGE (inertial, gravity, 

external) forces or moments acting on the system cannot either increase beyond or 



5 
 

 

decrease below its current value. In other words the contact instability occurs if 

distributed contact forces are not able to cancel the IGE forces and moments if 

one component of the IGE forces and moments increases beyond or decreases 

below its current value. However, this inability never occurs (because dynamic 

equilibrium equations can never be violated). Instead the system may acquire a 

sudden acceleration to change the values for the inertial components of IGE 

forces and moments and limit them in their possible ranges. 

 

Definition 1.13: Contact Stability Margin of System (during motion) 

The contact stability margin of the system during a motion is defined as the 

maximum amount of perturbation in the external forces acting on the system 

during the motion before it becomes unstable. In other words, it is defined as the 

maximum possible amount of perturbation in the six components of the IGE 

(inertial, gravity, external) forces or moments acting on the system. A motion 

with stability margins which are all non-zero is referred to as a stable motion. 

 

1.2 Objectives of Research 

This thesis aims to advance the predictive dynamics method and propose 

improvements in several different aspects in order to model dynamic tasks more 

precisely. The most notable aspect involves a new methodology for incorporating and 

considering the contact of digital human with the environment. This methodology can 

also evaluate the dynamic stability of the predicted motion. It also contributes to the 

generalization of the Zero-Moment-Point (ZMP) concepts to be applicable to dynamic 

systems with non-coplanar environmental contact areas. Conventionally, the ZMP 



6 
 

 

concept has been developed and used in generating the walking motion of humanoid 

robots. Therefore, the major problems to be addressed in this research are stated as 

follows: 

1- Environmental contact of the digital human model – where the problem of 

predicting generalized contact forces will be studied. 

2- Stability of the predicted motion – where stability aspects of the motion will 

be studied. 

 

1.2.1 Environmental Contact  

The digital human model can come into contact with the environment at several 

locations. These contacts may be in the same plane or in different planes. The major 

challenges with environmental contacts are: 

 Determine whether the requested motion can be produced (for example: can 

the digital human bend forward and have zero acceleration, while only his 

toes are touching the ground? or, can a digital human run on ice at a given 

speed (acceleration)?) 

 For the requested motion, how to calculate the generalized contact forces for 

each of the contact areas? 

 

1.2.2 Motion Stability  

Stability of motion can also be referred to as the dynamic stability of the digital 

human. The intent is to determine whether a predicted motion is stable against tipping 

over or slipping in different directions.  

In this research, methods are developed to evaluate the margins of dynamic 

stability at any instant of time against tipping over or slipping in different directions 
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based on environmental contact areas, which may be coplanar or non-coplanar at that 

instant of time. 

 

1.3 Motivation 

The study of the background and detailed literature review of each of the 

subtopics will be presented in later chapters. However, in this section, we present a brief 

literature overview of each of the subtopics that motivate the proposed study. 

 

1.3.1 Environmental Contact  

Traditionally, a method referred to as the “ZMP method” has been used in 

predictive dynamics to model the contact of the digital human with the environment. 

Examples can be seen in Xiang et al. (2007, 2009), Kim et al. (2008), and Bhatt et al. 

(2008). In the ZMP method for predictive dynamics, a force vector and a moment vector 

are considered to act on the digital human from each contact area. In the simulation 

process, all the forces which are the inertial, gravitational and external (IGE) forces are 

known except for the contact forces. The possibility of generation of any requested 

motion by using the given contact areas is ensured by using the ZMP constraint. ZMP 

constraint requires the ZMP to be inside the convex hull of all contact points. When ZMP 

constraint is satisfied, it is possible to find unilateral distributed contact forces on the 

contact areas to equilibrate the IGE forces and moments, if enough friction exists 

between the contacting bodies. Then, the contact reaction force and moment vectors at 

each contact area are calculated. This calculation assumes that the global equivalent 

contact forces and moments (which should cancel IGE forces and moments to ensure 

dynamic equilibrium) are partitioned on contact areas based on the distances of the 
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contact areas from the ZMP. The problems encountered in using the ZMP method are 

listed as follows: 

 Using the ZMP method, it is only possible to model motions in which all the 

contact areas of the digital human with the environment are only in one plane 

and also all the contact areas have unilateral (non-grasping) contact with the 

environment. Only motions which satisfy these contact requirements can be 

modeled by the ZMP method. In this research, we propose to develop methods 

in which more general cases of environmental contact can be addressed. The 

reason is to be able to model tasks with contact areas which are not co-planar 

or if we have some contact areas with non-unilateral contact conditions (such 

as grasping) and some with unilateral contact conditions. Examples are 

numerous, such as walking on uneven terrain, climbing an object (such as stair 

climbing, ladder climbing, climbing a wall, climbing an obstacle, climbing 

into a vehicle), leaning against a wall, touching the environment with hand 

while the foot is on the ground, …. 

 Even for motions which satisfy the above conditions, the ground reaction 

force and moment vector on each contact area are calculated based on an 

assumption. The assumption is that the components of the global equivalent 

contact forces and moments (which should cancel IGE forces and moments to 

ensure dynamic equilibrium) are partitioned uniformly on contact areas based 

on the distances of the contact areas from the ZMP. This assumption has not 

been proved to be mathematically exact. This assumption is based on several 

measurement data, which suggest that the vertical component of the ground 

reaction force (1 component out of the 6 components of the ground reaction 

forces and moments) can be approximately partitioned linearly on the ground 
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contact areas based on the distances of those contact areas from the ZMP 

location (see Ren, 2005, 2007; Winter, 1990, 2009). Based on those 

measurement data, this approximation is not exact and only holds for 1 

component of the GRF (out of the 3 force and 3 moments in the 3 spatial 

directions). The other 5 components of GRF are also partitioned linearly on 

the ground contact areas based on the distances of those contact areas from the 

ZMP location which is done without any experimental or theoretical 

justification. Therefore, this issue has been an open problem and is 

investigated in this research. The mathematical and theoretical validity of this 

assumption as well as its merit as an approximation are investigated. This is 

an important issue because the ground reaction forces are used to calculate all 

the torques and forces in the digital human.  

 The ZMP method also assumes that infinite amount of friction could be 

exerted from the contact areas on the digital human. In this research, we 

incorporate the effect of friction in motion prediction models. 

   

1.3.2 Motion Stability in Predictive Dynamics 

ZMP stability margins are used in predictive dynamics to evaluate the stability of 

the motion. The distance of the ZMP in each horizontal direction to the edges of the 

convex hull can be considered as a stability margin against tipping over in that direction. 

The stability margin is expressed by a number or several numbers for each instant of 

motion. These numbers define how stable the digital human is at that instant of motion 

against a perturbation, which can make it tip over (ZMP approach cannot evaluate the 

margins of stability against slipping). These numbers are normally referred to as the 

margins of dynamic stability. This fact was mentioned in the original work on ZMP 
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(Vukobratović, 1972), and has been used implicitly by many researchers. Explicit 

definition of this ZMP stability margin can be seen, for example, in Huang (2001). The 

ZMP stability criterion states that a motion of the system is dynamically stable if and 

only if the ZMP is strictly inside (not on the boundary) the convex hull of all the contact 

points (Goswami, 2004). In brief, stability criterion is satisfied if the margins of stability 

are positive numbers. Instability occurs if one of these numbers is zero. These numbers 

can never be negative. 

However, the ZMP stability margins do not offer a perfect criterion for evaluating 

the stability of motion, because of the following reasons: 

 ZMP stability margins are only defined when all the contact areas of the digital 

human with the environment are only in one plane. In this research, we develop 

methods that can evaluate the motion stability in more general cases of 

environmental contact. The reason is that we want to be able to evaluate stability 

in tasks with contact areas which are not co-planar. Examples are numerous, such 

as walking on non-even terrain, climbing an object (such as stair climbing, ladder 

climbing, climbing a wall, climbing an obstacle, climbing into a military tank), 

leaning against a wall, touching the environment with hand while the foot is on 

the ground, etc. 

 ZMP stability margins only define the margins of dynamic stability against 

tipping over. They cannot be used to evaluate the margins of dynamic stability 

against slipping. In this research, we develop methods that can evaluate the 

motion stability against slipping. The reason is that we want to be able to evaluate 

“Slipping” stability margins too. A motion which is on the verge of instability 

against “Slipping” may be very stable against “Tipping Over”. The extra 
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information given by the “Slipping” stability margins are essential in evaluating 

the stability of a motion. 

 ZMP stability margins cannot define the amount of perturbations in terms of 

external forces or moments that the system can tolerate without becoming 

unstable. 

 

We develop different stability margins to overcome these drawbacks. 

 

1.3.3 The ZMP Concepts  

Advances in the area of ZMP-based biped robots have been witnessed in the 

recent decades. Examples can be seen in Gienger (2001), and Park (2006). However, the 

conventional ZMP concept is only applicable in the cases where all contact areas are on 

the same plane. Other efforts have addressed the ZMP method for both parallel and non-

parallel contact areas on different planes. Harada (2003) proposed an approximate 

method to generalize ZMP to several cases of arm/leg coordination tasks for humanoid 

robots. Saida (2003) suggests a new criterion instead of ZMP called FSW (Feasible 

Solution of Wrench) that shows the feasible condition of forces applied to the robot on 

rough terrain. However, an exact, general method is still lacking to check the possibility 

of a motion or find the margins of dynamic stability of a motion in the general cases of 

contact surfaces. In this research, we generalize the ZMP concepts to apply to the most 

general cases of contact areas (coplanar or non-coplanar contact areas which are 

horizontal or inclined or parallel or non-parallel). 

 



12 
 

 

1.4 Scope of Research 

Part I of this work consisting of Chapters 1, 2 and 3 includes the introduction and 

background material for this research. In Chapter 2, we introduce the basics of the 

predictive dynamics method. Chapter 3 is a review of the ZMP concepts existing in the 

literature.  

Part II of this study is a study of the ZMP method for modeling environmental 

contact. Chapter 4 presents a theoretical study of the ZMP method. In that chapter, the 

ZMP concepts in predictive dynamics are used to design general algorithms which model 

the exact changes of the transient ground contact areas during the motion and calculate 

ground reaction forces. In Chapter 5 and 6, the modules based on the ZMP method 

introduced in Sections 4.3 and 4.4 are used to model the motion of a human (soldier) 

performing several military tasks: aiming, kneeling, going prone and aiming in prone 

position. 

Part III of this study is a study of NCM method for modeling environmental 

contact. Chapter 7 and 8 are theoretical chapters in which we introduce the new concept 

of Normal Contact Moment (NCM) constraints and compare them to the ZMP constraint. 

In those chapters, we show that unlike ZMP, the NCM constraints are valid in the most 

general cases of contact conditions. We also show that it is able to improve the values 

calculated for ground reaction forces. In Chapter 9, previous military tasks modeled in 

Chapters 5 and 6 by using the ZMP method are remodeled using the NCM method and 

the results are compared. 

In Chapter 10, we introduce the NCM stability margins. In this chapter, we show 

that unlike ZMP, the NCM stability margins are valid in the most general cases of contact 

conditions. The ZMP concepts (ZMP constraints, ZMP stability criterion and the ZMP 

stability margins) only apply to the cases in which the body’s contact areas with the 
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environment are in one plane (the ground).  In Chapter 11, the NCM constraints are used 

to generalize the ZMP constraint. 

In this study, general formulas are presented to generalize all the ZMP concepts to 

apply to the most general cases of contact areas (coplanar or non-coplanar contact areas 

which are horizontal or inclined or parallel or non-parallel). We also introduce general 

“Slipping” stability margins similar to their “Tipping” (ZMP) counterparts. 

Also, in Appendix A, we present new theorems on optimization-based collision 

avoidance that use other finite primitives besides the conventional spheres to model 

objects or limbs. This capability was needed to model self and environment collision 

avoidance and has been used in the dynamic simulations presented in this research.  
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CHAPTER 2 

DIGITAL HUMAN MODEL: KINEMATICS AND DYNAMICS 

2.1 Introduction 

In this chapter, we first present the basic robotics conventions for the kinematic 

analysis of a robot. Then, we present the kinematic model of our digital human. In the 

next step, we introduce the predictive dynamics method to perform the kinematic and 

dynamic analysis of the robot. These kinematic and dynamic calculations are based on 

the exact and well established forward kinematics and backward dynamics methods. 

Therefore, by the end of this chapter, we will conclude that in predictive dynamics, for 

any given motion of a digital human, the kinematic and dynamic calculations can be 

performed with complete mathematical certainty, if and only if the ratios for the 

partitioning of environment contact forces are given (if all the external forces are known 

in the general sense). However, this is not true for a digital human, if it has more than one 

contact area with the environment. In that case, the equivalent ground reaction force and 

moment exerted on each contact area of the digital human with the environment is 

indeterminate. The resolution of this indeterminacy is the most important objective of this 

thesis which will be discussed in Part II and Part III of this research. 

2.2 Affine Transformations and Homogeneous Coordinates 
in Robotics  

In linear algebra, linear transformations can be represented by matrices. If T  is a 

linear transformation mapping nR to mR  and x is a column vector with n entries, then: 
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 T x Ax
 
for some m n  matrix A , called the transformation matrix of T . An affine 

transformation T' consists of a linear transformation followed by a translation: 

   : 2.2.1orT' x Ax + b T' x = Ax + b  

An affine transformation preserves: 

1. The colinearity relation between points; i.e., all the points which lie on a line 

still lie on a line after the transformation 

2.  Ratios of distances along a line; e.g., the midpoint of a line segment remains 

the midpoint after transformation  

In general, an affine transformation is composed of linear transformations 

(rotation, scaling or shear) and a translation. Several linear transformations can be 

combined into a single one, so that the general formula given above is still applicable. In 

the one-dimensional case, A and b are called, respectively, slope and intercept. 

Ordinary vector algebra uses matrix multiplication to represent linear 

transformations, and vector addition to represent translations. To represent both 

transformations by using matrix multiplications, we must use homogeneous coordinates. 

This means representing a 3-vector  , ,x y z  as a 4-vector  , , ,1x y z , and similarly for n-

vectors in n-dimensional problems. The technique requires that all vectors be augmented 

with a "1" at the end, and all matrices are augmented with an extra row of zeros at the 

bottom, an extra column—the translation vector—to the right, and a "1" in the lower right 

corner. If A is a matrix, then equation 
1 0 0 1 1

     
     

     

y A b x


 is equal to y = Ax + b . 
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Homogeneous coordinates are found everywhere in computer graphics. Since they 

allow common operations such as translation, rotation, scaling and perspective projection 

to be implemented as matrix operations. Homogeneous coordinates are also used in the 

related areas of CAD/CAM (Zeid, 1991), robotics (McKerrow, 1991), surface modeling 

(Farin, 1990), and computational projective geometry (Kanatani, 1991).  

2.3 Denavit-Hartenberg Method and Forward Kinematics 

Denavit and Hartenberg (1955) suggested a systematic method to formulate the 

kinematics of a general 3 dimensional open loop robot, now known as the D-H method. 

Each of the joints in the open loop robot (open loop chain) should possess only one 

degree of freedom (either purely revolute or purely prismatic) to be modellable by the D-

H method.  

We use the D-H method in predictive dynamics to address the forward kinematics 

calculations of our digital human model. The Denavit-Hartenberg (D-H) method was 

created in the 1950’s to systematically represent the relation between two coordinate 

systems but was only extensively used in the early 1980’s with the appearance of 

computational methods and hardware that enable the necessary calculations. The method 

is currently used to a great extent in the analysis and control of robotic manipulators. The 

D-H method is based upon characterizing the configuration of link i with respect to link 

(i-1) by a (4×4) homogeneous transformation matrix representing each link’s coordinate 

system. This method represents each link coordinate system in terms of the previous link 
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coordinate system. The position of any point in any of the local coordinate frames can be 

expressed in global reference frame by the D-H method. 

Assume that the global coordinate frame in the D-H method is numbered as 

coordinate frame 0. Consider a branched open-loop robot such as a digital human. 

Assume that point A is attached to a coordinate frame denoted respectively in the D-H 

table as coordinate frame number m in branch b of that open loop robot. Let the local 

position vector of point A in that local coordinate frame be given by  1
T

A A Ax y zAL

. Let the global position vector of the point A be given by  1
T

A A AX Y ZAG . Then, 

AL can be related to AG by the following formula: 

 

 2.3.1

1 1

A A

A A

A A

X x

Y y

Z z
  

   
   
            
   
   

0 0
A m,b m,b AG T T L  

 

In the above formula,   
0

m,bT  is the 4×4 homogeneous transformation matrix 

from coordinate frame number m in branch b to the global coordinate frame.   
0

m,bT
 
can 

be calculated from the formula: 

 

 2.3.2                      
0 0 1 2 s-1 m-1

m,b 1,b 2,b 3,b s,b m,bT = T T T L T L T  

 



18 
 

 

Each transformation matrix   
s-1

s,bT  is given by: 

 

 

   
   

, , , , , , ,

, , , , , , ,

, , ,

, , , ,

, , , ,

2.3.3
0

0 0 0 1

,
:

,

s b s b s b s b s b s b s b

s b s b s b s b s b s b s b

s b s b s b

s b s b s b s b

s b s b s b s b

C S C S S a C

S C C C S a S

S C d

S sin C cos
where

S sin C cos

 
 

 

 

   

 
       
 
 

  


 

s-1
s,bT

 

 

The four values for the D-H parameters , , , ,, , ,s b s b s b s bd a  are typically entered into 

a table known as the D-H Table. These transformation matrices will be used in Appendix 

A (Section A.3) for the derivation of collision avoidance formula. However, for the 

simplicity of notation in the rest of this section, let us assume only one branch and denote 

coordinate frame m in branch b by coordinate frame i. Therefore, the four parameters 

,i s b  ,  ,i s bd d , ,i s b   and ,i s ba a  (depicted in Figure 2.1) are defined as: 

1) i is the joint angle, measured from the 1ix  to the ix axis about the 1iz  . 

2) id is the distance from the origin of the coordinate frame (i-1) to the intersection of 

the 1iz  axis with the ix axis along 1iz  axis. 

3) ia is the offset distance from the intersection of the 1iz  axis with the ix axis to the 

origin of the frame i along ix axis. 

4) i is the offset angle from 1iz  axis to iz axis about the ix axis. 
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Besides the global position, the global velocity and acceleration of each point 

attached to each local coordinate frame can be obtained by differentiating Equation 

(2.3.1) with respect to time. This is a basic concept in robotics known as “Forward 

Dynamics”. 

2.4 Kinematic Modeling of the Digital Human 

In this study, each limb of the digital human is assumed to represent a bone in the 

skeleton. Therefore, the motion of the skeleton completely defines the motion of all the 

limbs of the digital human. 

Figure 2.1. Depiction of the D-H parameters 
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The skeleton can be modeled precisely enough as a branched open loop system 

with 7 branches (numbered 0 to 6) as shown in Figure 2.2. In this branched open loop 

system (or a tree structured manipulator), branch 0 starts from the global coordinate 

frame and ends in the pelvis (hip) point of the digital human. Branch 0 includes 3 

translational (prismatic) joints and 3 rotational (revolute) joints. So, it totally contains 6 

degrees of freedom which specify the global position and orientation of the coordinate 

frame attached to the pelvis.  

49 degrees of freedom in branches 1 to 6, represent the revolute joints which 

model the human joints and determine the kinematics of all the limbs of the digital 

human.(For some joints such as the shoulder and the clavicle there volute joint modeling 

is less precise). 

Branches 1, 5, 6 start from the “hip point” frame and respectively define the 

spine, right leg and left leg of the digital human. The spine branch ends in a local frame 

called the “spine end” frame. Branches 2, 3, 4 start from the “spine end” point and 

respectively define the right arm, left arm and the neck of the digital human. 
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The coordinate frames in the D-H table which are each attached to separate limbs 

of the digital human are depicted in Figure 2.3. 

Figure 2.2. Branch and joint definitions for the digital human 
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Figure 2.3. Coordinate frames for the digital human 
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2.5 Predictive Dynamics 

As described in Section 2.4, our digital human is modeled as an open-loop robot. 

The conventional methods for the dynamic analysis of robots are normally classified into 

two different categories: 

1- Forward Dynamics Methods: In forward dynamics methods, it is assumed that the 

input forces (e.g. the actuation torques at robot joints) are known and the forward 

dynamics method finds the response (e.g. the force exerted by the robot hand) by 

integrating differential equations of motion. 

2- Inverse Dynamics Methods: In inverse dynamics methods, it is assumed that the 

response is known and the inverse dynamics method finds the input forces by 

directly evaluating the equations of motion. 

However, in the study of human motion, both input forces and the response are 

normally unknown. In reality, humans can perform a same task in a variety of ways. 

Therefore, there is no unique solution for a human motion in performing a specific task. 

A very little amount of information is normally available in the form of equalities (i.e. 

exact information). They usually include: known (non-contact) external forces, boundary 

conditions for a motion task and some expected system response. Joint angle values, 

torque profiles as well as ground reaction forces (or contact forces acting on the digital 

human from the environment) are all unknowns. Most of the known information for 

modeling a human motion task such as walking, running, aiming, kneeling, going prone, 

etc. usually appear as inequality constraints. These constraints represent the limitations of 

the environment (e.g. non-adhesive contact areas), the limitations of the digital human 
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model (e.g. joint angle or torque limits) and the limitations of the motion task (e.g. those 

requirements that differentiate crawling from walking). In such cases, the concept of 

predictive dynamics is used to solve this type of a problem. The basic idea is to use 

optimization methods to reveal force and response histories based on the available 

information of the dynamic system. 

Predictive Dynamics is a term coined to characterize the prediction of human 

motion in a physics-based world. The method capitalizes on a novel optimization-based 

approach to motion prediction.  The non-contact external forces are all assumed to be 

known during the motion. An arbitrary motion (a set of joint angle profiles for all joint 

angles) of the avatar (humanoid robot) is used as an initial guess. Based on this motion, 

the required external contact forces and moments that should act on each separate contact 

area are calculated such that dynamic equilibrium equations hold. Using these contact 

forces and moments, the required torques at all joints are calculated. Physical constraints 

such as constraints on joint angles and torques are imposed. This renders a feasible 

(realistic and possible) motion.  Best motions are selected (motion is optimized) based on 

human performance measures, such as speed, energy and comfort which act as objective 

functions in the optimization formulation. Predicting motion in this way allows one to use 

avatars to study how and why humans move the way they do, given a specific scenario. 

2.6 Backward Recursive Dynamics (Recursive Lagrangian) 

There are several methods in robotics for the calculation of torques in an open 

loop robot (open loop chain). For these calculations, it is always assumed that all the 
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external forces and the mass of the links are known. In this work, calculation of torques at 

joints is accomplished by the Recursive Lagrangian method. It is accomplished by 

defining 4×4 homogeneous transformation matrix iD  and 4×1 homogeneous vectors iE , 

iF , and iG as follows. 

Given the mass and inertia properties of each link, and the external force 

0k k k
x y zf f f   

T
kf  and the moment 0k k k

x y zh h h   
T

kh  for the link k  

defined in the global coordinate system, then the joint actuation torques i  are computed 

for i = n to 1 as (Xiang et al., 2008) 

 

 1 2.6.1i
i i i

tr
q q q

 

   
       

T T Ti i i
i i k i i i 0

A A A
D g E f F G A z  

Where: 

 

 2.6.2i

ik

ik

m




  


 


 
  

T
i i i i-1 i+1

i
i i i+1 i+1

k
i f i+1 i+1

i k i+1

D I C T D

E r T E

F r T E

G h G

 

 

With n+1D = 0  and n+1 n+1 n+1E = F = G = 0  ; iI  is the inertia matrix for link i; im  

is the mass of link i; g is the gravity vector; i
ir   is the location of center of mass of link i 

in the local frame i; k
fr  is position of the external force in the local frame k; 
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 0 0 1 0
T0z  for a revolute joint and  0 0 0 0

T0z  for a prismatic joint. ik

is Kronecker delta. 

The first term in torque expression is the inertia and Coriolis torque, the second 

term denotes the torque of force due to gravity, the third term is the torque due to external 

force, and the fourth term represents the torque due to external moment. 

 

2.7 Kinematic and Dynamic Calculations for the Digital 
Human 

The D-H method based forward dynamics as explained in Section 2.3 and the 

recursive Lagrangian method explained in Section 2.6 are used in this work to carry out 

the kinematic and dynamic analyses for the 3D human model. 

The forward kinematics calculates the motion from the origin towards the end of 

each branch along the branch as shown in Figure 2.4. This process only involves joint 

angle values and geometrical parameters. However, backward dynamics propagates 

forces from end-effecter to the origin, and the mass and inertia property of the links need 

to be considered for dynamic analysis. 

In Figure 2.4, joint (k) and joint (k+1) are connected by link (j+1) for which mass 

and inertia properties are defined in the local coordinate system i+3z . The links between 

coordinates i+3z and i+2z , and i+2z and i+1z have zero link length, and zero mass and inertia 

properties, so that the force is correctly transferred back through i+3z  , i+2z , and i+1z  for 

the joint (k). 
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However, there is an unsolved problem in the dynamics calculations for a digital 

human. The problem is that in the recursive Lagrangian method explained in Section 2.6, 

we assumed that all the external forces and the mass of the links are known. This is not 

true for a digital human, if it has more than one contact area with the environment. In that 

case, the equivalent ground reaction force and moment exerted on each contact area of 

the digital human with the environment is indeterminate. The resolution of this 

indeterminacy is the most important objective of this thesis. Two methods are given in 

Chapter 4 (ZMP Method) and Chapter 7 (NCM Method) of this thesis to address this 

indeterminacy. As soon as this indeterminacy is resolved, the well established Recursive 

Lagrangian method in Section 2.6 can be used to calculate the torques at all joint of the 

digital human. 

Figure 2.4. Depiction of the forward kinematics and backward dynamics for the digital human 
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CHAPTER 3 

REVIEW OF ZERO MOMENT POINT (ZMP) CONCEPTS 

3.1 Introduction to Zero Moment Point (ZMP) 

The conventional Zero Moment Point (ZMP) concepts are defined for a system 

(such as a robot or a digital human) having several non-adhesive contact areas with a 

plane. We call them the ZMP contact areas. It is assumed that all the ZMP contact areas 

are coplanar (i.e., all the ZMP contact areas are on the same plane which is conventionally 

the ground).  

The ZMP is defined as that point on the plane at which the net moment of the 

inertial, gravitational and external (IGE) forces acting on the system (such as a robot or a 

digital human) has no component along the two planar axes. From the above definition it 

is concluded that for a static system which has several non-adhesive contact areas with 

only one plane, and is under no external force, the projection of the center of mass on that 

plane is same as the ZMP for that system.  

It should be noted that we are making a distinction between contact, gravity and 

external forces. It means that the contact or gravity forces should not be considered as a 

part of external forces (in calculating the IGE forces).  

An illustrative example is used in this chapter to explain the ZMP concepts. In 

each section, when a new ZMP concept is introduced, we refer to this example to illustrate 

the concept. 

 

 



29 
 

 

Example 3.1 Introduction and Definition of the ZMP 

Consider a box located on the ground at rest as shown in Figure 3.1. We define F 

as the magnitude of a horizontal external force that is applied to the box at the top of the 

box as shown in the figure (acting in the positive x direction). We consider all the forces 

and motions of the system (the box) to occur in the xy plane of the global coordinate 

system shown in the figure (In other words, the problem is idealized as a 2D system). 

Assume that the coefficient of friction between the box and the ground is very large and 

the height of the box is considerably larger than its length. In such a case, when F is 

increased beyond some value the box eventually tips and pivots about point A. 

 

 

 

Figure 3.1. Illustration of definitions for Example 3.1: A two dimensional problem in which a box is 
located on the ground. The magnitude of the external force F  is slowly increased and the ZMP 

concepts are analyzed for each value of F . 
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Point A is defined on the right bottom corner of the box as shown in Figure 3.1. 

Point A is a significant point because the box will pivot about it due to external force F as 

will be shown later. Also and Am I  respectively denote the mass of the box and its mass 

moment of inertia about point A. The center of mass of the box is assumed to be located at 

its geometrical center that is denoted by point O. The x and y components of the locations 

of points O, A, ZMP, … in the global coordinate system are respectively given as 

, , , , , , ...O O A A ZMP ZMPx y x y x y . The length and height of the box are denoted by L  and H , 

respectively. 

We slowly increase the value of F from zero, calculate the ZMP location and see 

what requirements the ZMP constraint imposes on the system (for the possibility of 

motion) and study the ZMP stability margins and stability criterion at any instant of 

motion. Since the ZMP location and ZMP concepts depend on the acceleration of the 

system and its contact points with the ground, we study the motion under three different 

configurations:  

 

1. First configuration is the initial configuration of the system when the bottom of 

the box is in contact with the ground. The system is not pivoting about point A. 

Therefore, the translational and angular accelerations of the system are zero 

due to the large coefficient of friction that prevents the box from sliding on the 

ground. 
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2. Second configuration is when the bottom of the box is still in contact with the 

ground. However, the system starts to pivot about point A and the acceleration 

of the system is non-zero. 

 

3. Third configuration is when the box only has contact with the ground at point 

A. It is pivoting about point A and the acceleration of the system can be 

calculated based on the magnitude of F and can be either zero or non-zero. 

 

3.2 The ZMP Constraint - Simplified Definition 

Before the exact definition, we give a simplified definition for the ZMP constraint. 

ZMP constraint states that for any given motion of a system, ZMP should be inside the 

convex hull of all the ground contact areas. Otherwise, the motion is impossible in the real 

world. We call this definition a simplified definition because it does not indicate what the 

satisfaction of the ZMP constraint ensures. As a very simple explanation, consider a 

system with a known mass having several contact areas with the ground. Assume that the 

system is at rest and no external load is applied on it. Therefore, the only forces acting on 

the system are the gravitational and ground contact forces. ZMP constraint states that the 

projection of the center of mass (which is equal to ZMP location for this static case under 

no external force) should be in the convex hull of all the ground contact areas. Otherwise, 

this configuration is impossible in the real world (i.e., the system cannot stay at rest). 
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In order to see whether the ZMP constraint is really valid in the real world during 

all types of motion, we will apply it for the system described in Example 3.1. We study 

the ZMP constraint for each of the three configurations defined in the previous section. 

 

Example 3.2 Validity of ZMP Constraint in all Types of Motion 

 For the First Configuration in Example 3.1: 

 

 

 

We calculate the vectors igeF  and igeM (moment is calculated about the Origin of 

the inertial reference frame) and  zmp
igeF  and zmp

igeM  (moment is calculated about the ZMP) 

for this configuration of the system (system has zero acceleration): 

Figure 3.2. Illustration of the first configuration of system in Example 3.1: the bottom of the box is in 
contact with the ground. Acceleration of the system is assumed to be zero for this configuration. ZMP 

location varies between the projection of center of mass on the ground and point A.   
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 
    

,
3.2.1

,

ige ige O

zmp zmp
ige ige ige ZMP O

F mg FH mgx

F mg FH mg x x

      
 

        

F i j M k

F F i j M k
 

ZMP is defined as that point on the ground at which the moments of IGE forces 

are zero about the two horizontal axes. Therefore, we should have: 

 
   

3.2.1

0 3.2.2zmp
ige ZMP O ZMP O

FH
FH mg x x x x

mg
         M j 0  

The ZMP constraint requires the ZMP to be inside or on the boundary of the 

system’s contact points with the ground at any instant of motion. Otherwise, that motion 

(or configuration) will be an impossible motion (or configuration). Therefore: 

 
 

 
3.2.2 2

3.2.3

3.2.4
2 2

A O

A ZMP A

L
x x

A O A

ZMP Constraint x L x x

FH mgL mgL
x L x x F

mg H H

 

   

       
 

We slowly increase F from zero for the First Configuration (defined in Section 3.1) 

and study the ZMP location and ZMP constraint. The following cases will occur during 

this increase in F: 

 Case I, First Configuration: 0F   

In this case, the ZMP location is the same as the location of the projection of the 

system's center of mass on the ground. This can be observed from the following 

calculations: 
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 
 

3.2.2 0
0 3.2.5ZMP O OF x x x

mg
      

 Case II, First Configuration: 0
2

mgL
F

H
   

In this case, the ZMP will be located between the projection of the system's center 

of mass on the ground and point A. This can be observed from the calculations that 

follow: 

 

 

3.2.2 0 20
2

3.2.6

O ZMP O

O ZMP A

mgL
HmgL HF x x x

H mg mg

x x x

      

  
 

 Case III, First Configuration: 
2

mgL
F

H
  

In this case, the ZMP will coincide with point A. This can be observed from the 

following calculations: 

 
 

3.2.2
2 3.2.7

2 ZMP O ZMP A

mgL
HmgL HF x x x x

H mg
       

 Case IV, First Configuration: 
2

mgL
F

H
  

This case is impossible according to (3.2.4). However, in this case, the ZMP 

location will be beyond the point A and outside of the boundary of the system’s contact 

points with the ground. This can be observed from the following calculations: 
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 
 

3.2.2
2 3.2.8

2 ZMP O ZMP A

mgL
HmgL HF x x x x

H mg
       

Therefore, the ZMP constraint (3.2.3) is violated and this motion (or configuration) 

is impossible. In other words, this value of F cannot occur in the first configuration (First 

Configuration is when the bottom of the box is in contact with the ground and the 

acceleration of the system is zero).  

Therefore at least one of the assumptions of the first configuration needs to change 

to allow F to increase beyond / 2mgL H . It is obvious that an instantaneous change 

(requiring zero time) cannot happen in the system's contact areas. So, the only possibility 

is that the system acquires a non-zero acceleration. It means that the ZMP constraint 

requires the system to have a non-zero acceleration if we increase F beyond / 2mgL H . 

This exactly falls under the assumptions of the Second Configuration (defined in Section 

3.1). So, we will study this case under the Second Configuration. 

 

 Thus, the effect of ZMP constraint in the first configuration is to show the 

limitations on the magnitude of F for this configuration to exist. These limitations shown 

by inequality (3.2.4) seem logical according to the explanation given in Case IV in the 

first configuration. However, where the ZMP constraint exactly comes from will be 

explained in Section 3.3. 
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 For the Second Configuration in Example 3.1: 

 

 

The ZMP constraint requires the ZMP to be inside or on the boundary of the 

system’s contact points with the ground at any instant of motion. Otherwise, that motion 

(or configuration) will be impossible. Therefore: 

 3.2.9ZMP AZMP Constraint x x   

 

The ZMP constraint in its general form is an inequality constraint. However, as 

seen in equation (3.2.9), for this case it has turned into an equality constraint (or, the 

Figure 3.3. Illustration of the second configuration of system in Example 3.1: the bottom of the box is in 
contact with the ground. The box is about to pivot about point A and the acceleration of the system is 

assumed to be non-zero. ZMP location coincides with point A.   
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inequality constraint has become active) since the system’s contact area with the ground 

has reduced to a point. We calculate the vector zmp
igeM  for this configuration of the system: 

 3.2.10
2

zmp
ige A

L
FH I mg     

 
M k  

 

ZMP is defined as that point on the ground at which the moment of the IGE forces 

is zero about the two horizontal axes. Therefore, ZMP constraint actually imposes the 

following constraint on the system: 

 

 

3.2.10

0
2

3.2.11
2

zmp
ige A

A

L
FH I mg

L
FH mg I





      

  

M j 0 


 

 

 Thus in the second configuration, the ZMP constraint (3.2.11) (which is an 

equality here) gives the equation of dynamic equilibrium. However, where ZMP constraint 

exactly comes from will be explained in Section 3.3. 
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 For the Third Configuration in Example 3.1: 

 

 

 

The ZMP constraint requires the ZMP to be inside or on the boundary of the 

system’s contact points with the ground at any instant of motion. Otherwise, that motion 

(or configuration) is impossible. Therefore: 

 3.2.12ZMP AZMP Constraint x x   

 

We calculate the vector zmp
igeM  for this configuration of the system: 

Figure 3.4. Illustration of the third configuration of system in Example 3.1: only one point A of the box 
(system) is in contact with the ground. The box is pivoting about point A and the acceleration of the 

system can be either zero or non-zero. ZMP location coincides with point A. 
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   3.2.13
2

zmp
ige A

Lcos Hsin
F Hcos Lsin I mg

          
 

M k  

ZMP is defined as that point on the ground at which the moment of IGE forces are 

zero about the two horizontal axes. Therefore, ZMP constraint actually imposes the 

following constraint on the system: 

 
 

   

3.2.13

0
2

3.2.14
2

zmp
ige A

A

Lcos Hsin
F Hcos Lsin I mg

Lcos Hsin
F Hcos Lsin mg I

   

   


       


   

M j 0 


  

 Thus in the third configuration, the ZMP constraint (3.2.14) (which is an equality 

here) gives the equation of dynamic equilibrium.  

A less important issue to note is that for a same angular acceleration, the force 

required to cause the system to proceed to fall is actually less than the force that was 

required in the second configuration to initiate the pivoting of the system about point A. 

This can be seen in the following calculations: 

 

   
   

   

 

     

2
3.2.14 3.2.15

2

2
3.2.11 3.2.16

2

0 : 3.2.17
2
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A
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A
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Third Configuration Se

mg Lcos Hsin I
F

Hcos Lsin

mgL I
F

H
Lcos Hsin L

For
Hcos Lsin H

F F

  
 



 
 

 
 




 

 
    

 





 3.2.18cond Configuration  

 



40 
 

 

Goswami (1999) correctly points out that there has been a confusion in the 

interpretation of the meaning of the ZMP constraint. He states that contrary to what was 

incorrectly implied in several papers: “the ZMP location may never leave the support 

polygon (convex hull of the ZMP contact areas)” even during unstable or falling motions. 

In fact, ZMP constraint can be used very well to simulate unstable and falling motions. In 

falling motions, it will enforce the system to have the exact correct acceleration. Goswami 

(1999) also states that: “ZMP constraint has no inherent relationship with a dynamically 

stable gait as had been incorrectly stated in several papers”. As was shown in Example 

3.2, ZMP constraint ensures “possible motion”, not necessarily “stable motion”. Later, we 

will define the ZMP stability margin which is a different part of the ZMP concepts and 

claim that if it is non-zero (ZMP location not on the boundary of the convex hull) then we 

have “stable motion”. 

 

3.3 The ZMP Constraint - Exact Definition 

The simplified definition of ZMP constraint given in Section 3.2 only indicates 

that its violation is impossible for systems in the real world such as online control 

problems (but in simulations or offline control problems it may be violated; therefore the 

ZMP constraint should be imposed in such problems to match the reality). What does the 

ZMP constraint exactly ensure if it is satisfied and where does it come from? In order to 

find out what the ZMP constraint exactly ensures, we will study the equations that ZMP 

constraint imposes on the system in Example 3.1: 
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Example 3.3: Dynamic Equilibrium Equations vs. the ZMP Constraint 

 For the first configuration in Example 3.2: 

As stated before, the effect of ZMP constraint in the first configuration is to show 

the limitations on the magnitude of F in this configuration. These limitations are shown by 

inequality (3.2.4). 

It turns out that we can study such limitations by writing the equations of 

equilibrium for the system in the first configuration (Figure 3.2). To do that, we replace 

the distributed ground reaction forces on the system in the first configuration by one 

upward force acting on the bottom of the box at the location GRFx . Then, it is obvious that: 

 3.3.1A GRF Ax L x x    

 

The equation of static equilibrium of the moments for the system at point A about 

z direction can be expressed as: 

 

 

0

0
2

3.3.2
2

z

A GRF

A GRF

M

L
FH mg mg x x

L
FH mg x x



     

      
 



 
 

 

We evaluate GRFx  from the equilibrium equations (3.3.2) and substitute it into 

inequality (3.3.1): 
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     

 

3.3.1 , 3.3.2
2 2

3.3.3
2 2

A A A A

L L
mg x x L FH mg x x

L L
mg F mg

H H

               
   

   
 

 

Equation (3.3.3) can be viewed as conversion of the equation of equilibrium of 

moments about z into an inequality by removing the contact forces acting on the 

system (here, by using Equation (3.3.1)). As it is seen, it is exactly same as Equation 

(3.2.4) which is the ZMP constraint. 

 

 For the second and third configurations in Example 3.2: 

As stated before, the ZMP inequality constraint turns into equality constraints 

(3.2.11) and (3.2.14) in the second and third configurations which look similar to 

equations of dynamic equilibrium. 

For the second configuration, the equations of dynamic equilibrium of the 

moments for the system at point A about z direction can be expressed as (see Figure 3.3): 

 

0

0 3.3.4
2 2

z A

A A

M I

L L
FH mg I FH mg I



 

 

       

 

 
 

 

For the third configuration, the equations of dynamic equilibrium of the moments 

for the system at point A about z direction can be expressed as (see Figure 3.4): 
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 

   
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

   

   

 


     


   

 





 

 

As it is seen, Equations (3.3.4) and (3.3.5) which are the general equations of dynamic 

equilibrium of moment about z direction for the second and third configurations are 

exactly same as Equations (3.2.11) and (3.2.14) which are the ZMP constraints for those 

configurations. Actually, for any dynamic system, whenever the contact forces are absent 

(have no role in) from these two equilibrium equations, they will be same as the ZMP 

constraints. 

 

ZMP constraint in its general form is an inequality constraint. Based on the 

observations made in Example 3.3, we can claim that: The ZMP constraint can be 

considered as a conversion of the two equations of the general dynamic equilibrium (out 

of the 6 force and moment equilibrium equations for the whole system) into inequalities by 

removing the contact forces acting on the system from the equations. These two equations 

are the dynamic equilibrium of all moments exerted on the whole system about the 

horizontal axes. 

The above claim holds for all the three configurations in Example 3.1. For 

example, this claim holds precisely for the first configuration if we consider that the 

system is static and has no acceleration, therefore dynamic equilibrium equations are the 

same as the static equilibrium equations. For the second and third configurations, because 
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the contact area of the system with the ground has reduced to a point, the ZMP constraint 

becomes an equality and exactly matches the dynamic equilibrium equations for moments 

about the horizontal axes.  

In general, the ZMP constraint specifies the range of values for the tipping 

(horizontal) components of the net moment of the IGE forces (about any fixed point such 

as the origin) that are possible in the real world for a dynamic system. In other words, in a 

dynamic system, the ZMP constraint implies that the moment of IGE forces at the origin 

about the horizontal axes are within certain bounds. For example, Equations (3.2.4) and 

(3.2.1) result in:  

   
 

   

3.2.4

3.2.1

3.3.6

A O A

ige O

A ige A

mg x L FH mgx mgx

FH mgx

mgx mg x L

     


     
      

M k

M k

 

 

Even if a huge external force is applied on the dynamic system (a huge 

perturbation in a component of IGE forces), the moment of IGE forces will not exceed 

that range and the ZMP will not exit the convex hull in the real world. That is because the 

ZMP constraint will require the system to fall with a huge acceleration. For example, the 

ZMP constraint shown in Equations (3.2.11) and (3.2.14) requires large acceleration of 

falling () for a large external force ( F ) applied on the system. In other words, to satisfy 

the ZMP constraint in the simulation, when a large external force is applied to the system, 

the falling acceleration has to be large so that the inertial terms of IGE forces cancel the 

external terms. And the net moments of the IGE forces stay in the ranges specified by the 
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ZMP constraint and the ZMP location stays inside or on the boundary of the convex hull. 

This is how ZMP constraint can ensure the possibility of motion and even ensure correct 

accelerations during falling and unstable motions of virtual systems.  

 

3.4 The ZMP Stability Margins and the ZMP Stability 
Criterion 

Now, we introduce two other definitions in the ZMP concepts, which are the 

“ZMP stability margin” and the “ZMP stability criterion”. It can be shown that the 

distance of the ZMP location in each horizontal direction to the edges of the convex hull 

of the ZMP contact areas can be considered as a stability margin against tipping in that 

direction (an example is shown later in this section). For example if the ZMP location is 

near an edge in one direction, the robot has a small stability margin against tipping in that 

direction. If it is on an edge, it has zero stability margin against tipping in the direction 

perpendicular to that edge and towards the outside of the convex hull. It probably has a 

much larger stability margin against tipping in exactly the opposite direction, because it 

probably has a large distance to the opposite side of the convex hull.  

The ZMP stability criterion states that a motion of the system is dynamically stable 

if and only if the ZMP location is strictly inside (not on the boundary) of the convex hull 

of all the contact points. In this case, “the system is stable against a perturbation in the 

tipping moment of IGE forces in any direction as long as the perturbation is small 

enough”. 
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Let us study the ZMP stability margins and stability criterion for all the 

configurations and cases in Example 3.2: 

 

Example 3.4 ZMP Stability Margin and ZMP Stability Criterion 

 For the first configuration (Figure 3.2): 

 Case I, First Configuration: 0F   

In this case, the ZMP location is the same as the location of the projection of the 

system's center of mass on the ground. So, the ZMP stability margin against tipping about 

either positive or negative z axis is equal to / 2L . Therefore, the ZMP stability criterion 

declares the system to be stable.  

 Case II, First Configuration: 0
2

mgL
F

H
   

In this case, the ZMP is located between the projection of the system's center of 

mass on the ground and point A. So, the ZMP stability margins against tipping about the z 

axis are: ( )ZMP Ax x L   and A ZMPx x . Therefore, the ZMP stability criterion declares the 

system to be stable.  

 Case III, First Configuration: 
2

mgL
F

H
  

In this case, the ZMP coincides with point A. So, the ZMP stability margins 

against tipping about the z axis are L  and zero. Therefore, the ZMP stability criterion 

declares the system to be unstable. 
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 Case IV, First Configuration: 
2

mgL
F

H
  

As discussed in Section 3.2, this case is impossible according to the ZMP 

constraint. Since this motion (or configuration) is impossible, the ZMP stability criterion 

or ZMP stability margin for this case are meaningless. 

 

 For the second configuration (Figure 3.3): 

In this case, the ZMP coincides with point A. So, the ZMP stability margin against 

tipping about the z axis are L  and zero. Therefore, the ZMP stability criterion declares the 

system to be unstable. 

 

 For the third configuration (Figure 3.4): 

In this case, the ZMP coincides with point A. So, the ZMP stability margins 

against tipping about the z axis is zero. Therefore, the ZMP stability criterion declares the 

system to be unstable. 

 

 

In short, according to the ZMP constraint, the ZMP location can never exit the 

convex hull. The ZMP location is on an edge of the convex hull if and only if the robot is 

either falling or is on the verge of instability. If ZMP location is strictly inside the convex 

hull, then the system is stable against “a small perturbation in the tipping moment of IGE 

forces”. 
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3.5 A Literature Review of ZMP Concepts 

The zero-moment point (ZMP) might be one of the most famous terms born in 

robotics community. The ZMP concepts have been used for improving the stability of 

numerous legged robots such as ASIMO, developed by Honda Motor Co. in 2000 (Hirose, 

et al 2001). There exist numerous biped robots controlled by the ZMP concepts such as 

seen in Takanishi, et al (1985), Hirose, et al (2001), Kaneko, et al (2002), Sugahara, et al 

(2004). However, normally a ZMP based motion is initially designed offline and then an 

online ZMP based motion control is used to modify it. In other words, an additional online 

feedback control is performed in order to overcome errors resulting from external 

perturbations. The broadest application of ZMP is in the field of offline motion planning. 

For offline problems such as in the motion planning of biped robots, ZMP is a very 

important concept to ensure that the offline calculated motions for the robot are possible 

and to analyze the dynamic stability of those calculated motions. For example, it has been 

used in Bachar (2004) as the basis for an offline gait correction algorithm. Other examples 

for offline motion planning can be seen in Huang, et al (2001), Arakawa and Fukuda 

(1997). Dasgupta and Nakamura (1999) propose a method of generating feasible walking 

of humanoid robots by converting human motion capture data to a modified version which 

satisfies a desired ZMP location. Similar to its application in offline problems, ZMP has 

also been used in the virtual reality fields and in dynamic simulation problems such as in 

the field of digital human modeling (Xiang, et al 2007, 2009; Kim, et al 2008; Bhatt, et al 

2008) to simulate motions of the mechanical systems or analyze their stability.  



49 
 

 

Impressive advances in the field of ZMP-based biped robots have been witnessed 

in the recent decades. Examples can be seen in Gienger, Löffler and Pfeiffer (2001) and 

Park, et al (2006). The popularity of ZMP concepts has caused a requirement for their 

generalization and numerous articles have been published in this field (Garcia, Estremera  

and Gonzalez de Santos, 2002; Goswami, 1999; Hurmuzlu, G´enot and Brogliato, 2001; 

Vukobratovi´c, et al 1997). ZMP concepts have been the subject of many diverse 

analyses, but a general unifying idea that offers a solid theoretical background seems to 

have been lacking so far. In most of the related publications, ZMP location is defined as 

that point on the horizontal ground at which the net moment of the inertial, gravitational 

and external (IGE) forces acting on the system (such as a robot or a digital human) has no 

component along the two horizontal axes (Vukobratović, Borovac, 2004; Sardain, 

Bessonet, 2004). Since the net of contact forces equilibrates the IGE forces for dynamic 

equilibrium, the moment of the net of contact forces is also zero at the ZMP point along 

the two horizontal axes. Due to that reason, ZMP has also been denoted by the name CoP 

(Center of Pressure) borrowed from the field of fluid mechanics in several publications 

such as Sardain, Bessonet (2004). The ZMP constraint states that during any motion of the 

system (either stable or unstable), the ZMP location should be inside or on the boundary 

of the convex hull of all the contact points.  

The ZMP concepts can be used in multilegged robots similar to the biped robots. 

For a biped or multilegged dynamic walking robot, the distance of the ZMP location in 

each horizontal direction to the edges of the convex hull can be considered as a stability 

margin against tipping in that direction. This fact was already mentioned in the original 
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work on ZMP (Vukobratović, Stepanenko, 1972), and has been used implicitly by many 

researchers (Kalakrishnan, et al 2011; Moosavian, Dabiri, 2010; Jindrich, Full, 2002; 

Kaneko, et al 2002). Explicit definition of this ZMP stability margin can be seen, for 

example, in Huang, et al (2001). The ZMP stability criterion states that a motion of the 

system is dynamically stable if and only if the ZMP location is strictly inside (not on the 

boundary of) the convex hull of all the contact points (Goswami, Kallem, 2004). 

Multilegged robots generally move slowly. Therefore, the net inertial effects can 

be ignored sometimes and the projection of the CoM (center of mass) on the ground may 

be considered to be a good approximation of the ZMP. Thus, it can be assumed that the 

robot maintains balance if the projection of the CoM falls inside the support polygon. The 

stability margin may be defined as the minimum distance of the vertical projection of 

CoM to the boundaries of the support pattern on the ground.  

ZMP concepts may also be used in fields other than robotics to model the 

equivalent forces and moments exerted from non-adhesive contacts areas. For example, 

the contact stability problem has been studied in the community of mechanical assembly 

to design the optimal fixture, and the methods to determine stability have been proposed in 

which Coulomb friction is considered (Balkcom, Trinkle, 2002; Pang, Trinkle, 2000; 

Trinkle, et al 1997). 

It is essential for robots to move around the conventional human-centered 

environments that include stairs as a major terrain. But, the conventional ZMP concept is 

only applicable in the cases where all contact areas are on the same plane. Only a few 

robots are known to be able to perform stair ascent or descent. Even the successful ones 
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perform such tasks too slowly (Bae, 2001) or fast enough but in an undisclosed technical 

manner (Hirai, et al 1998). Lim (2007) proposes a dynamic gait pattern suitable for stair 

walks. Kim, Park, Oh (2009) try to overcome the instabilities of the KHR-2 robot during 

the stair climbing task. They describe a stair climbing pattern generation and stair 

climbing stages, and then propose a real-time balance control algorithm which is 

composed of several online controllers. 

There has been an on-going research to generalize the ZMP method for both 

parallel or non-parallel contact areas on different planes. Harada, et al (2003) proposed an 

approximate method to generalize ZMP to several cases of arm/leg coordination tasks for 

humanoid robots. Saida, Yokokoji and Yoshikawa (2003) suggest a new criterion instead 

of ZMP called FSW (Feasible solution of wrench) that shows the feasible condition of 

forces applied to the robot on rough terrain. Hirukawa, et al (2006) also claim that it is not 

suitable to generalize ZMP for cases other than coplanar contact areas. It proposes a new 

criterion to determine the “strong stability” and “weak stability” of the foot contact when 

the robot walks on an arbitrary terrain or when the hands of the robot are in contact with 

the terrain under the assumption that sufficient friction should exist at the contact. 

However, to the best of our knowledge, an exact, general method is still lacking to check 

the possibility or find the margin of stability of a dynamic motion in the general cases of 

contact surfaces. 
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3.6  Summary and Conclusion 

In this chapter, the ZMP concepts were defined and illustrated using a simple 

example. It was shown that in the real world, the ZMP constraint is never violated during 

any motion of a dynamic system including unstable or falling motions. It was also shown 

that ZMP stability margins and stability criterion are very different from the ZMP 

constraint and their role is to evaluate the stability of a given motion. Some observations 

made regarding the relationship of the ZMP constraints with the dynamic equilibrium 

equations and the moment of IGE forces are summarized as follows: 

1- The ZMP constraint transforms two equations of the general dynamic 

equilibrium (out of the 6 force and moment equilibrium equations for the 

whole system) into inequalities by removing from the equations the contact 

forces acting on the system. These equations represent the dynamic equilibrium 

of all the moments exerted on the whole system about the horizontal axes. 

 

2- The ZMP constraint specifies the range of values for the tipping (horizontal) 

components of the net moment of the IGE forces (about any fixed point such as 

the origin) that are possible in the real world for a dynamic system. 

 

They are important observations which will be used in later chapters. 

 



53 
 

 

CHAPTER 4 

A THEORETICAL STUDY OF THE ZMP CONCEPTS IN PREDICTIVE DYNAMICS 

4.1 Introduction 

As noted in Chapter 3, the broadest application of ZMP is in the field of offline 

motion planning. For offline problems such as in the motion planning of biped robots, 

ZMP is a very important concept to ensure that the offline calculated motions for the 

robot are possible and to analyze the dynamic stability of the calculated motions. Similar 

to its application in offline problems, ZMP has also been used in the virtual reality fields 

and in dynamic simulation problems such as in the field of digital human modeling 

(Xiang, et al 2007, 2009; Kim, et al 2008; Bhatt, et al 2008) to simulate possible motions 

of the mechanical systems or analyze their stability. These works are based on the use of 

the ZMP concepts in the predictive dynamics method. 

Also, as previously mentioned in Sections 3.3 and 3.6, the ZMP constraint is an 

inequality constraint which can be considered as a conversion of the two equations of the 

general dynamic equilibrium (out of the 6 force and moment equilibrium equations for 

the whole system) into inequalities by removing the contact forces acting on the system 

from the equations. These two are the equations of dynamic equilibrium of the moments 

of all the forces exerted on the whole system about the two horizontal axes. The ZMP 

constraint states that during any type of motion for any system, the ZMP should be inside 

or on the boundary of the convex hull of the ground contact areas. If the ZMP constraint 

is violated for a system at an instant of time during an arbitrary motion, then the tipping 

(horizontal) components of the net moment of the IGE (inertial, gravity, external) forces 
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(about any fixed point such as the origin) calculated for that motion are impossible values 

in the real world at that instant of time (in order for these two components to have values 

that are possible in the real world, the ZMP constraint should be satisfied.). Therefore, 

that arbitrary motion is impossible in the real world. 

In predictive dynamics, for any given motion, the IGE forces acting on the system 

are known. These IGE forces are cancelled by the system’s contact forces to ensure 

dynamic equilibrium of all the forces acting on the system at any instant of motion. The 

contact forces are initially unknown. In the ZMP method in predictive dynamics, it is first 

checked whether it is possible to generate such a motion by the system’s contact areas by 

imposing the ZMP constraint. In the second step, the contact forces are calculated.  

In other words, before calculating the contact forces, the ZMP constraint checks 

whether it is possible at all to find any set of unilateral contact forces acting from the 

environment on the system’s contact areas to balance the given IGE forces. However, 

ZMP constraint alone cannot ensure that in general. In the theorems that appear in 

Section 4.2, we enhance the ZMP constraint by adding a complementary constraint to it 

which requires the vertical component of the IGE forces to be downwards. We will prove 

that the ZMP constraint used along with this additional constraint ensure that the given 

motion is possible for a system with the given contact areas (if all the system’s contact 

areas are on a same plane and the environment can only exert unilateral distributed 

contact forces on them). In more exact words, the ZMP constraint used along with this 

additional constraint ensure that it will be theoretically possible in the second step to find 

unilateral contact forces acting from the environment on the system’s contact areas to 
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balance the IGE forces. In this way, we give the ZMP constraint a more distinctive role in 

predictive dynamics calculations. 

Sections 4.4, 4.5 and 4.6 present the general algorithms that have been initially 

developed to model the contact of the digital human with the ground in predictive 

dynamics using the ZMP concepts. The validity and accuracy of the ZMP-based 

approach is initially addressed in this chapter and will be further studied in Chapter 7.  

 

4.2 Theorems on the ZMP Constraint  

As explained in Chapter 3, the ZMP constraint is defined for a system (such as a 

robot or a digital human) having several non-adhesive contact areas with the horizontal 

ground. Non-adhesiveness of the contact areas means that the distributed forces on them 

cannot have any arbitrary value. These distributed forces have to be unilateral 

(compressive) and also have to obey the coulomb friction laws. It is also assumed that all 

the contact areas of this system with the environment considered in the ZMP approach 

are on one horizontal plane or the ground (it can be generalized so that it is applicable to 

cases of inclined contact areas which are all co-planar.).  ZMP is defined as that point on 

the ground at which the net moment of the IGE acting on the system has no component 

along two horizontal axes (Vukobratović, Stepanenko, 1972). 
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Figure 4.1 shows a sample frame of motion in the motion of a digital human. Let 

us define the global coordinate frame zxy attached to the ground with the unit vector 

along the y axis perpendicular to the ground ( j = k × i ). The symbols used in the figure 

are defined as follows: 

1- The ZMP location is denoted by the vector z .  

2- zmp
igeF  and zmp

igeM denote the net equivalent force and moment of IGE forces 

acting at the ZMP.  

3-  Total  denotes the set of all the contact points of the dynamic system (digital 

human) with the ground. 

4- Total denotes the convex hull of Total  . 

ZMP  

zmp
igeM

j

Convex 
hull of all 
contact 
points 

Origin z 

x 

y 

Figure 4.1. Schematic of the contact areas, the convex hull of all the contact points and the ZMP in a 
motion frame in the "Aiming While Kneeling" task 

zmp
igeF

Total
z
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4.2.1. ZMP Constraint and the Unilaterality of Ground Reaction Forces 

Previously, we discussed (in Sections 3.3, 3.6 and 4.1) the relation of the ZMP 

constraint with the dynamic equilibrium equations and the moment of IGE forces using 

an example. The purpose was to show the significance of the ZMP concepts regarding a 

given motion of a system while paying little attention to the location of environmental 

contact forces. Those observations will mostly be used in Chapters 9 and 10 for the 

generalization of ZMP concepts.  

The ZMP constraint alone does not ensure the unilaterality of the vertical 

component of the ground reaction forces. In this section, we present a theorem which 

shows that an additional constraint is required besides the ZMP constraint to ensure the 

unilaterality of ground reaction forces. This theorem shows the role that the ZMP 

constraint plays in ensuring the unilaterality of ground reaction forces. 

 

 

Theorem 4.1: ZMP Constraint and the Unilaterality of Ground Reaction Forces 

Consider a system having external contact areas only with the same horizontal plane (the 

ground). For example, consider the problem depicted in Figure 4.1 with some of its 

features shown again in Figure 4.2. Let cf  denote the distributed contact forces at r  inside 

Total  (all contact areas) applied from the ground on the system (the z-x plane). For any 

arbitrary zmp
igeF  and zmp

igeM  acting on this system at the ZMP (at location z), the following 

two statements are equivalent (they are necessary and sufficient conditions for each other, 

or one can conclude statement 1 from 2 and vice versa.) : 



58 
 

 

 

 

1- The ZMP is inside the convex hull of all the contact points ( Total ) and 0zmp
ige  F j  . 

2- It is possible to find unilaterally distributed contact forces cf  with 0 cf j  inside the set 

of all the contact points Total  that can equilibrate zmp
igeF  and zmp

igeM . 

 

Proof: 

 

Part A)  Assume statement 1 holds, we prove statement 2:  

The proof method we use in this part is a constructive proof, i.e. we provide a method for 

creating the distributed forces cf  that can cancel the force system zmp
igeF  and zmp

igeM  acting 

zmp
igeF

cf

z

x

ZMP  

z

zmp
igeM

r

Figure 4.2. Distributed contact forces and the net force and moment of inertial, gravitational and external 
forces at the ZMP  

y

Total
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at the ZMP (location z ). We construct 3 different subsets of cf  called a b cw , w , w . One 

subset ( aw ) is for canceling zmp
igeF  without producing any equivalent moment about the 

ZMP and the 2 other subsets ( b cw , w ) are for canceling zmp
igeM  without producing any 

equivalent force. These three subsets satisfy the following conditions: 

 

           
       

 4.2.1





     

  
a a c cb b

a c cb

w w w w w w

w w w f
 

 

Constructing aw  : 

The first subset of cf  called aw  can be constructed as follows: 

 

Case 1: When ZMP is a contact point (it is inside Total  ; i.e., inside one contact area): 

Assume all distributed forces aw  to be concentrated at the ZMP and all have exactly 

opposite directions to zmp
igeF  . Although there is a constraint ( 0 0    c af j w j ), it is 

always possible to do so because 0zmp
ige  F j .  

 It is also obvious that it is possible to select the magnitudes of aw  such that: 

 4.2.2
Total

zmp
ige dA



  aF w 0
 

Also because aw  is located at the ZMP, aw will produce no moment about the ZMP. 
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Case 2:  When ZMP is not a contact point (it is inside Total , but not inside Total  ): 

The convex hull of all contact areas Total  which was previously shown in Figure 4.2 is 

repeated in Figure 4.3 and identified in yellow. The set of contact areas Total  (which are 

a subset of Total ) are shown by another color (green), overlaid on the yellow colored 

areas. Therefore, the green areas in this figure denote points that belong to both Total  

and Total  , while the yellow areas only belong to Total  but not Total  . It is possible to 

find a line that passes through the ZMP and contains two arbitrary contact points G and H 

Le

H

G

ZMP 

Contact areas are 
shown by green 

Figure 4.3. Proving statement 2 when ZMP is inside the convex hull, but not a contact point 

g

h

Total

Total
zmp

igeF

zmp
igeM



61 
 

 

in Total  . Let us denote the unit vector along that line by Le  . In this case, ZMP would be 

located between G and H. Let us denote the distance from the ZMP to G and H by g  and 

h  . We assume aw  to be composed of two subsets 
Gaw  and 

Haw  such that: 

  

           , 4.2.3   
G H G Ha a a a aw w w w w   

  

Assume all distributed forces 
Gaw  to be concentrated at the point G and all have exactly 

opposite directions to zmp
igeF   . It is obvious that it is possible to select the magnitudes of 

Gaw  such that: 

 4.2.4
Total

zmp
ige

h
dA

g h 


  GaF w = 0

 

 

Assume all distributed forces 
Haw  to be concentrated at the point H and all have exactly 

opposite directions to 
zmp

igeF  . It is obvious that it is possible to select the magnitudes of 

Haw  such that: 

 4.2.5
Total

zmp
ige

g
dA

g h 


  HaF w = 0

 

 



62 
 

 

So, the set aw  exactly cancels zmp
igeF  but will produce no equivalent moment about the 

ZMP, as shown below: 

 

 

 

4.2.6

4.2.7

Total Total Total

Total Total

zmp zmp
ige ige

zmp zmp zmp
ige ige ige

zmp zmp
ige ige

dA dA dA

h g

g h g h

g dA h dA

h g
g h

g h g h

  

 

   

   
 

   

    
 

  

 

G H

a G H

a a a

w ,ZMP L a L a

L L

F w F w w

F F F 0

M e w e w

e F e F 0

 

 

Constructing b cw , w  : 

The second and third subsets of cf  respectively called b cw , w  can be considered to be 

concentrated at two locations b cr , r  inside Total  and acting along    b c b cj× r - r , -j× r - r

(in the z-x plane, normal to b cr , r  ). So, they are all planar (frictional) distributed forces ( 

 b cw j = 0 , w j = 0  ). It is possible to select the magnitudes of b cw , w  such that: 

 4.2.8
Total Total

zmp
ige

cdA dA
 


 b

b c

M
w = w =

r - r
 

 

Therefore, the distributed forces andb cw w  are equivalent to a couple (same magnitude 

and opposite directions) that exactly cancels zmp
igeM  without producing any equivalent 

force, as shown below: 
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     

 

     

, 4.2.9

4.2.10

4.2.11

Total Total

Total Total

dA dA

dA dA

 

 

   
       

   

  

   
          

   

 

 

b c

b c

b c b c
b b c c

b c b c

w w b b c c

b c b c
w w b b c c

b c b c

j× r - r j× r - r
w w w w

r - r r - r

M + M = r w r w

j× r - r j× r - r
M + M r w r w

r - r r - r

 

   

   

 

Total Total

zmp
ige

zmp
ige

zmp
ige

dA dA
 

      
                   

  
   

 

 


 


 b c

b c

b c

b c

b c
w w b b c c

b c

b c
w w b c

b c b c

b c b c
w w

b c b c

b c b
w w

b c

j× r - r
M + M = w r w r

r - r

M j× r - r
M + M = r - r

r - r r - r

M r - r j× r - r
M + M =

r - r r - r

M r - r r -
M + M =

r - r

      

 

2
0

4.2.12

zmp
ige zmp

ige

zmp zmp zmp
ige ige ige

zmp
ige

Definitionof ZMP is along

 


  

   

 

b c

b c

b c

r -r

c b c b c

b c

w w b c
b c

w w

r j r - r j r - r

r - r

M
M + M = r - r j = M j

r - r

M j M j M

M + M = M

 

 

   

,

Total Total

Total Total

Also

dA dA

dA dA

 

 




  

 

 

b c

b c

w w b c

b c b c
w w b c

b c b c

F + F = w w

j× r - r j× r - r
F + F w w

r - r r - r
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 

 

 4.2.13

Total Total

zmp zmp
ige ige

dA dA
 

  
       

  
         



 b c

b c

b c

b c
w w b c

b c

b c
w w

b c b c b c

w w

j× r - r
F + F = w w

r - r

M M j× r - r
F + F =

r - r r - r r - r

F + F = 0

 

Therefore, the set of distributed forces cf  that we constructed by the subsets a b cw , w , w  

cancels zmp
igeF  and zmp

igeM . 

 

Part B)  Assume statement 2 holds, we prove statement 1: 

Part B-1) Proving that ZMP is "not" outside the convex hull (proof by contradiction): 

As shown in Figure 4.4, if ZMP is outside the convex hull of the contact areas 

Total , consider the nearest edge of the convex hull to the ZMP. Due to the definition of 

the convex hull, if you draw a line parallel to that edge, the line will not intersect the 

convex hull and the convex hull will lie on one side of the line. Now, define a unit vector 

u  perpendicular to this line and pointing from the ZMP to the convex hull. Then it is 

obvious that for any point Q in the convex hull, located at r:  

    0 and 0 4.2.14   r - z u u j   
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   ,
Total Total

zmp zmp
ige igedA dA



 

        
j

c cM r - z f = 0 M j 0 r - z f j 0  

 
     

  

      

4.2.14

0
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So, using proof by contradiction, we proved that ZMP is "not" outside the convex hull. 

 

ZMP 

u
Q r - z

cf

Total
z

x
y

z

r

Figure 4.4. Part (B-1) of the proof: proving that it is impossible for ZMP to be outside the convex hull 
if contact forces are non-adhesive 
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Part B-2) Proof of 0zmp
ige  F j  : 

, 0 0
Total

zmp zmp
ige igedA



      c cF f = 0 f j F j
 

The results of Part B-1 and Part B-2 prove that statement 1 holds. 

 

 

Therefore, based on Theorem 4.1, ZMP constraint indicates that during any type 

of motion for any system, if the ZMP is located outside the convex hull of all the ZMP 

contact areas Total , then that motion is impossible in the real world. That is because we 

will not be able to find non-adhesive contact forces for equilibrating zmp
igeF  and zmp

igeM . If it 

is inside the convex hull and the component of zmp
igeF  in the y direction is not upwards, 

then one can find unilateral distributed contact forces (or their equivalent concentrated 

forces and moments) that can equilibrate the IGE forces associated with the given motion 

and therefore, it is possible to generate that motion by using the given contact areas. 

 

 

4.2.2. ZMP Location and the Location of Ground Reaction Forces 

In this subsection, we present a less important theorem which shows that  ZMP is 

on an edge of the convex hull, if and only if all distributed ground reaction force are on 

that edge.  
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Theorem 4.2: ZMP Location and the Location of Ground Reaction Forces 

Consider a dynamic system having external contact areas in the same horizontal plane 

(the ground). For example, consider the problem depicted in Figures 4.1 and 4.2 with 

some of its features shown again in Figure 4.5. For any arbitrary zmp
igeF  and zmp

igeM  acting at 

location z  on this system, the following two statements are equivalent: 

 

 

1- The ZMP is on the edge 'Total  of the convex hull of all the contact points and 

0zmp
ige  F j  .  

2- The unilateral distributed contact forces cf  which equilibrate zmp
igeF  and zmp

igeM
 

(according to Theorem 4.1), are only on the edge 'Total  of the convex hull (no cf  can 

zmp
igeM

r

cf

z

x

Total

ZMP  

z

'Total

zmp
igeF

Figure 4.5. Distributed contact forces and the net force and moment of inertial, gravitational and external 
forces at the ZMP on an edge of the convex hull of all contact points 

y
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exist outside 'Total  ), for all 0c  f j . (the trivial condition 0c  f j  is equivalent to 

0c f  , due to coulomb friction law, and can be ignored). 

  

Proof:  

Part A) 

 Assume statement 1 holds, we prove statement 2: 

Part A-1) Proving that: cf  "can be found on" 'Total  to equilibrate zmp
igeF  and zmp

igeM : 

The proof is exactly the same as Part A of Theorem 4.1, if we consider edge 'Total  

instead of area Total  in that part. 

Part A-2) Proving that: cf  are "only" on the edge 'Total  :  
 

In this part, we need to prove that no non-adhesive cf  can exist outside edge 'Total  .  

 

 

ZMP 

u
Q r - z

cf

Totalz

r

'Total

z

x
y

Figure 4.6. Part (A-2) of the proof: proving that if ZMP is on an edge of the convex hull of 
contact points, then no contact force can exist outside that edge  
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The ZMP is located at z  on edge 'Total . As shown in Figure 4.6, let us define a unit 

vector u  pointing from the ZMP towards the inside of the convex hull, perpendicular to 

edge 'Total . Due to the definition of the convex hull, for any point Q inside the convex 

hull located at r: 
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The results of Part A-1 and Part A-2 prove that statement 2 holds. 
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Part B)  Assume statement 2 holds, we prove statement 1: 

Part B-1) Proving that ZMP is on the edge of the convex hull (proof by contradiction): 

As shown in Figure 4.7, if ZMP is not on edge 'Total , define a unit vector u  

pointing from the ZMP towards the edge 'Total  , perpendicular to edge 'Total   and on 

the ground. Then it is obvious that for any point Q on edge 'Total , located at r: 

   0 0 4.2.17And   r - z u u j
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Q r - z
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r
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Figure 4.7. Part (B-1) of the proof: proving that if all contact forces are on an edge then ZMP is on that edge  
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z
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Thus, ZMP is on the edge of the convex hull. 

 

 

Part B-2) Proof of 0zmp
ige  F j  : 

'

, 0 0
Total

zmp zmp
ige igedA



      c cF f = 0 f j F j

 

 

The results of Part B-1 and Part B-2 prove that statement 1 holds. 
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4.3 Application and the Significance of the ZMP Constraint 
in Predictive Dynamics 

In predictive dynamics, the constraints in the optimization problem represent 

three type of limitations. These three are the limitations of the environment, the digital 

human model and the task being modeled. Design variables are the joint angle profiles. 

Based on the value of design variables, the kinematic analysis of the model is carried out 

using the Denavit-Hartenberg method. Let us assume that a set of design variables 

produces an arbitrary motion of the digital human denoted by  . 

In the ZMP method, it is assumed that the digital human has several non-adhesive 

contact areas with the horizontal ground. All the forces except the ground reaction forces 

are known, which are the IGE forces. The possibility of generation of the arbitrary 

motion   by using the given ground contact areas is ensured by using the ZMP 

constraint. According to Theorem 4.1, when ZMP constraint is satisfied, we are sure that 

it is possible to find unilateral distributed contact forces on those contact areas to cancel 

(equilibrate) zmp
igeF  and zmp

igeM  . In other words, neglecting the limitations of the digital 

human and the motion task, when ZMP constraint is satisfied, we are sure that it is 

possible to generate the arbitrary motion using the given contact areas if enough 

friction exists on them. 

A force vector and a moment vector equivalent to the distributed contact forces 

are considered to act on the digital human from each contact area. After the ZMP 

constraint ensures that it is possible to find unilateral distributed contact forces to 

generate the arbitrary motion  , the equivalent contact reaction force and moment 
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vectors at each contact area can be calculated. In general, if we have more than one 

contact area, these equivalent contact reaction force and moment vectors will be 

indeterminate and may be considered as unknown values (design variables). They just 

need to satisfy the six global force and moment equilibrium equations. But in the ZMP 

method, the normal practice has been to assume that the global equivalent contact forces 

and moments (which should equilibrate IGE forces and moments to ensure dynamic 

equilibrium) are partitioned on contact areas based on the distances of the contact areas 

from the ZMP. This method and the justification for such assumptions are explained in 

details in Section 4.6. Using these equivalent ground reaction forces and moments, the 

required torques at all joints are calculated by the recursive Lagrangian formulation. 

 

4.4 Ground Contact Modeling in the ZMP Method 

For any dynamic system such as the digital human, the possibility of motion and 

the dynamic stability of motion depend on the contact areas of the system with the 

environment. Also, the values of the ground reaction forces and moments exerted on the 

digital human by each individual contact area will be used in the calculation of actuation 

torques at the joints of the digital human. Based on the ZMP concepts used in predictive 

dynamics, generalized programming structures and modules have been developed by the 

author for the definition and calculation of reaction forces and moments exerted from 

individual ground contact areas on the digital human. The ZMP constraint and the ZMP 

stability margin are also defined and implemented in the predictive dynamics code. The 
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ground reaction forces and moments are not considered as design variables in this 

formulation. The components of ground reaction forces and moments are assumed to be 

partitioned uniformly between the contact areas based on the distance of those contact 

areas to the ZMP location as will be shown in Section 4.6. 

 

4.5 General Algorithms for Ground Contact Modeling in 
ZMP Method 

Based on the ZMP method explained in Section 4.3, general algorithms are 

developed to check the ZMP constraint and stability margins and calculate the ground 

reaction forces and moments on each separate contact area. 

The contact areas of the avatar with the ground in predictive dynamics are 

assumed to be flat, rigid and non-adhesive. These ground contact areas affect the 

dynamics of the system in two different ways: 

1- For the digital human, the possibility of motion (ZMP constraint) and the 

dynamic stability of motion (ZMP stability margin) depend on these contact 

areas. The ZMP constraint and the ZMP stability margins depend on the 

convex hull of the ground contact areas. The shape and size of this convex 

hull is variable during the motion and depends on the contact areas of the 

digital human with the ground at each moment during the motion.  

 

2- The values of the ground reaction forces and moments exerted on the digital 

human by each individual contact area will be used in the calculation of 
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actuation torques at the joints of the digital human. The distributed ground 

reaction forces acting on each individual contact area are replaced by an 

equivalent concentrated force and moment acting at a point on that contact 

area. We call them the GRF (Ground Reaction Force) points. They are the 

points on the digital human which can take the equivalent concentrated 

ground reaction forces and moments during the motion whenever those 

contact areas come in contact with the ground.  

 

These algorithms allow the definition of transient GRF points, transient contact 

points and transient ZMP areas that vary during the motion. Therefore, the changes of 

GRF points, contact points and ZMP areas can be modeled very precisely during the 

motion. Data arrays are used in these algorithms to define the changes of GRF points, 

contact points, and ZMP areas during the motion. These data arrays can be filled 

differently based on different motion tasks that need to be modeled in the predictive 

dynamics environment. 

For example, Tables 4.1-4.3 and Figures 4.8-4.10 show the changes of GRF 

points, ZMP areas for the "Kneeling", "Going Prone" and "Aiming While Prone" tasks. In 

these tables, "LeftMiddle" and "RightMiddle" refer to the middle points of the feet. 

"Outer" postfix refers to the points on the right side of right foot and on the left side of 

left foot: 
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Table. 4.1.  Changes of ground contact conditions for the "Kneeling" task 

Figure 4.8.  Frames of motion for the "Kneeling" task (considering the removal of feet from the ground) 
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Figure 4.9.  Frames of motion for the "Going Prone" task 

Table. 4.2.  Changes of ground contact conditions for the "Going Prone" task 
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In this algorithm for implementation of the ZMP method, the above data are 

stored in arrays. A generalized algorithm for calculations of the "Equations of Motion" is 

also developed based on these data arrays. This "Equations of Motion" algorithm which 

calculates the ground reaction forces and torques, operates differently for each motion 

task based on the these data arrays. 

Table. 4.3.  Changes of ground contact conditions for the "Aim While Prone" task 

Figure 

Part

(a),(b) RightHip RightElbow RightHip RightElbow

LeftHip LeftKnee LeftHip LeftKnee

RightKnee RightKnee

(d),(e) RightHip LeftElbow RightHip LeftElbow

LeftHip LeftKnee LeftHip LeftKnee

RightKnee RightKnee

(c ),(f),(g) RightHip RightElbow RightHip RightElbow

LeftElbow LeftHip LeftElbow LeftHip

LeftKnee RightKnee LeftKnee RightKnee

GRF Points (Points that can take 

ground reaction forces)

Points defining the ZMP convex hull

Figure 4.10.  Frames of motion for the "Aim While Prone" task 
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4.6 Calculation of Ground Reaction Forces and Moments 

Consider a digital human having n rigid and non-adhesive external contact areas 

 1 n α   with the environment which are all located on the ground (or same plane) 

as shown in Figure 4.11. Also, let αF  and αM  acting at αp  denote the concentrated 

contact forces and moments equivalent to the distributed contact forces on contact area 

α  acting from the ground on the digital human. Let zmp
igeF  and zmp

igeM be the net force and 

moment of inertial, gravitational and external forces at the ZMP located at z .  

 

 

 

As it was explained in Section 4.3, for any motion  , all the forces (IGE) except 

the ground reaction forces are known. The possibility of the generation of the arbitrary 

Figure 4.11. Calculation of ground reaction forces and moments based on the ZMP location in a sample 
motion frame in an "Aiming While Kneeling" task 

ZMP  

zmp
igeM

j

Convex 
hull of all 
contact 
points 

Origin z 

x 

y 
αF

α

αM
αp - z

zmp
igeF
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motion   by using the given ground contact areas is ensured by using the well known 

ZMP constraint.  

According to Theorem 4.1, when ZMP constraint is satisfied, we are sure that it is 

possible to find unilateral distributed contact forces on those contact areas to equilibrate 

zmp
igeF  and zmp

igeM  . 

 

 Let ZMP α αF F ,  ZMP   α α α αM M p - z F  denote the force and moment system 

equal to αF  and αM  acting at the ZMP. The dynamic equilibrium equations for the digital 

human require that: 

 

 

   

4.6.1

4.6.2
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 
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 
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 
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F 0 F F 0

F -F

M 0 M M 0

M p - z F M

 

 

In general, if we have more than one contact area, these equivalent contact 

reaction force and moment vectors αF  and αM  are indeterminate because there are more 

than 6 unknowns for the 6 equilibrium equations. This is an underdetermined system that 

has infinite number of solutions. 

There has been some work to resolve this indeterminacy in the ZMP method in 

predictive dynamics. For example, one design variable per contact area to represent the 

ratio of the six components of the equivalent forces and moment vector on that contact 
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area to the IGE forces and moments has been considered. It is also possible to consider 

each of these six ratios separately as design variables (six design variables per contact 

area). But, in the ZMP method, the normal practice (which has shown to be more 

successful) has been to assume that the global equivalent contact forces and moments 

(which should cancel IGE forces and moments to ensure dynamic equilibrium) are 

partitioned to the contact areas based on the distances of the contact areas from the ZMP. 

This assumption is based on several experimental data which suggest that the ratio of the 

vertical component of the ground reaction force (one component out of the six 

components of the ground reaction forces and moments) tolerated by each foot in 

walking motion seems to be inversely proportional to the distance of that foot from the 

ZMP location (see Ren, Jones, Howard, 2005, 2007; Winter, 1990, 2009). 

For example, we consider the data measured in the walking experiment published 

in Winter (2009) in Figure 4.12. In this figure, we plot the ratio of ZMP distances from 

the left and right feet versus the inverse of the ratio of the vertical forces on them during 

the double support phase. Of course, these data are measured in two dimensions and the 

lateral dimension is ignored in these measurements. In the figure, Rz  and Lz  respectively 

denote the distances of the ZMP to the right and left foot in the forward-backward 

direction. Also, yRF  and yLF  respectively denote the vertical ground reaction force on the 

right and left foot. 
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The measurement data shown in Figure 4.12 approve this approximation only for 

the vertical component of the ground reaction force. However, in the ZMP method, for 

simplicity, we assume that all the other five components of the ground reaction forces 

and moments are also partitioned on the contact areas by the same ratios. In other words: 

1- We assume that for each of the contact areas β  , the ratio of all the six 

components of equivalent concentrated contact forces and moments to the 

IGE force and moment at the ZMP are the same which we denote by rβ  . We 

call this “the uniform partitioning of the components of the concentrated 

contact forces and moments by the ratios rβ  between the contact areas β  “. 

This means that we approximate each βF  and βM  by the below equations: 

Figure 4.12.  Walking measurement data from Winter (2009), approximately matching the proportionality 
of the vertical ground reaction forces (Fy) on the feet to the inverse of the ZMP distances from them 

(subscripts L and R refer to left foot and right foot) 

R

R L

z

z z

yL

yR yL
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 
   

4.6.3

4.6.4

ZMP ZMP ZMP
ige ige

ZMP ZMP ZMP
ige ige

r r
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      
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F F F F
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2- We assume that the ratio rβ  for each contact area is inversely linearly 

proportional to the distance of that contact area from the ZMP location. 

Therefore, contact areas near the ZMP are supposed to have larger values of 

rβ . Let’s denote the distance of the point of action of equivalent forces and 

moments βF  and βM  (denoted by “GRF points” in Section 4.5) from the ZMP 

by  d  βp - z . Therefore, we need to have: 

 4.6.5
dr

r d


 

  

3- To satisfy the dynamic equilibrium equations (4.6.1) and (4.6.2), the sum of 

the ratios rβ  has to be equal to 1. Therefore: 

 1 4.6.6r  α  

 

Predictive dynamics is based on optimization. Therefore, we need to provide the 

gradient (sensitivity) of the ground reaction forces and moments for the optimization 

algorithm. They are calculated as shown below: 
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It is good to note that several plots similar to Figure 4.12 can be seen in Ren, 

Jones, Howard (2005, 2007) where they use the experimental data in Winter (1990) as 

their references. They also assume a linear approximation for the distribution of the 

ground reaction forces in predicting a walking motion. They use such plots as their 

justification for linear partitioning of ground contact forces. 

 

4.7  Summary and Conclusion 

This chapter presented an important theorem (Theorem 4.1) which showed the 

relation between the ZMP constraint and the unilaterality of ground reaction forces. It 

was shown that an additional constraint (net of the vertical component of the IGE forces 

being downwards) is required besides the ZMP constraint to ensure the unilaterality of 
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ground reaction forces in the ZMP method. The ZMP method was defined as a method in 

predictive dynamics which uses the ZMP constraint along with this additional constraint 

to ensure the possibility of arbitrary motions. Theorem 4.1 shows that the ZMP method 

used in predictive dynamics (Sections 4.3 to 4.5) is a legitimate method for producing 

motions that are possible in the real world. However, as shown in Section 4.6, an 

assumption is used for the calculation (partitioning) of ground reaction forces in the ZMP 

method which is not mathematically proved to be correct and is based on observations 

from the experimental data. The assumption is that the ratio of the net contact forces and 

moments to the equivalent ground reaction forces and moments acting on each contact 

area, evaluated at the ZMP, are the same for all the six components of forces and 

moments (uniform partitioning). By the way it is assumed that this ratio is equal to the 

ratio of distances of those contact areas to the ZMP. This assumption was partially 

evaluated in Section 4.6 to show its backgrounds and will be further evaluated in Section 

8.4 to show its defficiencies. 
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CHAPTER 5 

DYNAMIC SIMULATION OF A SOLDIERS' MOTION USING THE ZMP METHOD: 

KNEELING AND AIMING TASKS 

5.1 Introduction 

The objective of this chapter is to formulate and solve problems of the "aiming 

while kneeling" and "aiming while standing" motion tasks for a soldier (human) using the 

SantosTM digital human model. The ZMP method introduced in Chapters 3 and 4 is used 

to ensure the possibility of the motion in nature and calculate ground reaction forces. As 

explained in Sections 4.2 – 4.5, the ZMP method along with an assumption for the 

partitioning of net global (IGE) forces and moments can be used to ensure that a given 

motion can be generated by using the given environment (ground) contact areas and 

calculate the environment (ground) contact forces on those contact areas. In Chapter 8, 

the NCM method along with the assumption of forces as design variables will be used to 

ensure the possibility of the motion in the real world and calculate ground reaction forces.  

Using the ZMP method in predictive dynamics as explained in Section 4.2, we 

can predict realistic motions for the "aiming while standing" and "aiming while kneeling" 

tasks. The optimization is able to very well predict the "Natural Point of Aim" which is a 

well known concept for soldiers. In other words, the optimization is able to predict the 

most comfortable final orientation of the feet on the ground for engaging a specific target. 

We also simulate cases where the orientation of the soldier’s feet are enforced (for 

example engaging several targets without moving the feet on the ground) and not 

choosable by optimization. 
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The effect of changing the target location in the 3D space, changing the 

anthropometry of the soldier, adding armor to different joints, changing the rifle stock 

length, adding backpack and using different weapons have also been studied using this 

approach. 

In this chapter, we first try to address the general problems encountered in 

modeling the four military tasks introduced in this chapter and the next chapter. These 

general problems are discussed in Sections 5.3 - 5.11. Considering the timeline of 

developing these four tasks, "aiming while kneeling" was studied first. Therefore, it is 

used more often as reference when these general problems and their solutions are 

discussed. 

5.2 A Literature Review of Modeling Military Tasks 

The need for representing simulated soldiers has been primarily driven by military 

requirements. These requirements appeared very early in the beginning stages of the 

digital human modeling field. Some examples are Wysocki and Fowlkes(1994) and Pratt 

et al (1994). 

Despite this need, there have been very few samples of aiming or kneeling tasks 

simulated by simplified or whole body digital human models. This has been due to the 

complexity of these tasks. This complexity arises from the complex combination of joint 

angle variables that are required to achieve these motions or postures. As a result, most of 

these efforts have been actually focused on the playback of a recorded motion on a digital 

human model rather than the simulation of these motions. Such efforts have appeared in 
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the literature as early as 1995. Granieri, Crabtree and Badler (1995) from the University 

of Pennsylvania use postures and motions of a human and maps them on a digital human 

called "Jack" with a lower number of degrees of freedom. These motions include: 

standing, kneeling, firing, crawling, going prone, running, walking. They store them for 

later playback in digital environments.  

Even at the time being, the most relevant works use motion captured data for 

modeling aiming and kneeling motions of digital humans. Alexander, and Conradi (2011) 

have recently tested the existing digital human models for performing more complex 

motions. This complex motion is a stand to kneeling motion (without aiming part). In that 

work, several digital human models are used. The report indicates that: "Modeling of 

complex motions with the digital human models was complex and intensive. None of 

them allowed a realistic simulation of specific movements. Although modeling was 

possible, it was very complex to model the movement and it required manual actions". 

There is also other less relevant work, using over-simplified models to calculate 

some specific parameters in question. For example, Macko, Balaz, and Racek (2009) try 

to determine the significant points on a shooter's body to compare the computed and 

measured shooter movements in standing, kneeling and prone firing positions. 

 

5.3 Marksmanship 

Marksmanship refers to the art or skill of using a firearm, such as a rifle or a 

pistol. In this research we use the "Rifle Marksmanship" instructions from the latest 
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available versions of "U.S. Army Field Manual" (U.S. Army, 2011) and "U.S. Marine 

Corps Reference Publication (MCRP)" (U.S. Marine Corps., 2001) as the major reference 

for definition of terms and procedures. 

 

5.3.1.  Principles of Aiming  

There are several principles that are common and remain the same for all aiming 

positions  (U.S. Army, 2011 and U.S. Marine Corps., 2001), such as: 

1- Left hand under the barrel 

2- Rifle stock in shoulder pocket 

3- Grip of the right hand 

4- Cheek to stock welding 

5- Sight alignment 

6- Sight picture  

In this research, all of these principles have been taken into consideration for the 

modeling of aiming and kneeling tasks. 

 

5.3.2.  Natural point of Aim (NPOA)  

The most suitable body position/orientation for any aiming task is when NPOA is 

achieved. To define the NPOA concept, two important elements need to be defined first 

(U.S. Army, 2011 and U.S. Marine Corps., 2001): 
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 Bone Support 

Muscular support is insufficient to provide a stable platform for shooting, 

especially more than one shot. Instead, the shooter must rely on non-muscular 

(bone) support to provide the shooting platform. This eliminates changes in 

aiming due to muscle fatigue and also minimizes the shaking associated with 

muscle tension. 

 

 Muscular Relaxation 

Muscular relaxation helps to hold the rifle steady and increase the accuracy of 

the aim. During the shooting process, the muscles of the body must be relaxed 

as much as possible. Muscles that are tense will cause excessive movement of 

the rifle, disturbing the aim. 

 

In U.S. Marine Corps. (2001), the term "Natural Point of Aim" is defined as "the 

location at which the rifle's sights settle if bone support and muscular relaxation are 

achieved". 

 

5.4 Kneeling Task 

To perform this task, the soldier should (U.S. Army, 2011 and U.S. Marine 

Corps., 2001): 

1- Position the body at a 45-degree angle to the target. 
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2- Keep the left foot in place. 

3- Step back with the right foot. 

4- Drop to the right knee. 

5- Place upper arm triceps on left knee for support. 

6- Rest the ball of the right foot firmly on the ground 

7- Rest the buttock on the heel. 

8- Aim. 

 

The first item in the above list mentions a 45 degree angle. This angle is an initial 

guess for achieving NPOA and may actually be variable for different soldiers or rifles or 

target locations. Therefore, instead of enforcing this angle in simulations, we predict the 

best value for it to maximize comfort (achieve NPOA). As will be seen in next sections, 

the digital human avatar (SantosTM) is exact enough to predict this angle well. 

 

5.5 Environment Contact Modeling for Kneeling 

As indicated previously in Section 4.4, the new modules and code structures for 

modeling environmental contact make it possible to define the changes of GRF points, 

contact points, ZMP areas more exactly and easily during each motion segment for any 

dynamic task. Figure 5.1 and Table 5.1 show the changes of GRF points, ZMP areas for 

the "kneeling" task.  
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In Table 5.1, "LeftMiddle" and "RightMiddle" refer to the middle points of the 

feet. "Outer" postfix refers to the points on the right side of right foot and on the left side 

of left foot. 

Table. 5.1.  Changes of ground contact conditions for the "Kneeling" task 

Figure 5.1.  Frames of motion for the "Kneeling" task (considering the removal of feet from the ground) 
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5.6 Initial Efforts: Lower Body Motion Prediction for 
Kneeling 

In this section, we review the initial efforts in modeling "aiming while kneeling" 

in order to show a problem that we encountered in modeling it. That problem and its 

solution are discussed in Section 5.7.  

 

Design Variables:       Joint Angle Profiles q t  

Objective Function:        2

10

T ndof

i
it

Minimize f q dt


   

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits      , 0L Uq q t q t T        

 Torque Limits        , 0L Ut t T       

 Left Foot Position Fixed on the Ground 

      , :i ix t z t Fixed i corresponds to several points on left foot   

 Look Forward 

Initial Motion Frame Constraints: 

 Right Foot Initial Position 

 Initial Static Condition 

Final Motion Frame Constraints: 

 Right Knee Touches Ground 

 Final Static Condition 

Table 5.2. Problem formulation for lower body motion prediction of "Kneeling" 
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In order to get initial results, we initially assign a fixed posture for SantosTM  

upper body and only predicted the lower body motion under this constraint. After 

obtaining results and improving the formulation and constraints for lower body motion, 

we will let the optimization predict the whole body motion of SantosTM in following 

sections. The problem formulation for this motion prediction is shown in Table 5.2. 

 

5.7 Passive Joint Angle Limits (Expanded Ranges of 
Motion) 

It was observed that although SantosTM upper body motion in Section 5.6 was 

assigned (not predicted), optimization is unable to find a suitable motion for just lower 

body. The reason was that the default joint angle limits used for previous tasks were also 

initially used for kneeling but they were too restrictive at some joints for the kneeling 

motion. Examples are the right knee bending degree of freedom and the right midfoot 

(toe) bending degree of freedom which exceed their default joint angle limits in the final 

kneeling position. The reason is that in the final kneeling position, they are under 

"pressure" i.e., for right knee bending, a large lateral force (about half of the body weight) 

is acting on the right upper leg and right lower leg which squeeze the knee bending 

degree of freedom beyond its normal range of motion. So, new upper or lower joint limits 

called "passive joint limits" were defined for these degrees of freedom such that the 

kneeling motion becomes predictable under the new, less restricted degrees of freedom. 

Some of the Passive Joint Angle Limits (Expanded Ranges of Motion) are listed in Table 

5.3: 
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Right Knee, Bending:          Q39 (39th Joint, 45th DOF) 

Value Required During Kneeling Motion:    155⁰ 
 

Joint Limits Modification  Lower Limit (Degrees)  Upper Limit (Degrees) 

Default Joint Angle Limits  7.0  138.0 

Modified Joint Angle Limits  7.0  160.0 

 

 

Right Midfoot (toe) Bending:        Q42 (42nd Joint, 48th DOF) 

Value Required During Kneeling Motion:    ‐85⁰ 
 

Joint Limits Modification  Lower Limit (Degrees)  Upper Limit (Degrees) 

Default Joint Angle Limits  ‐71.0  ‐9.0 

Modified Joint Angle Limits  ‐90.0  ‐9.0 

 

 

Left Hip Fore‐and‐Back:         Q37 (37th Joint, 43rd DOF) 

Value Required During Kneeling Motion:    ‐130⁰  
 

Joint Limits Modification  Lower Limit (Degrees)  Upper Limit (Degrees) 

Default Joint Angle Limits  ‐102.0  41.0 

Modified Joint Angle Limits  ‐150.0  41.0 

 

 

 

 

Table 5.3. Passive joint angle limits (expanded ranges of motion) 
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It may be good to note that unlike simpler tasks where only some of the joint 

angles (design variables) are changing during the motion such as "Walking" or 

"Running", in order to model the "aiming while kneeling" task precisely enough, all of 

the 55 DOF of the digital human need to be used as will be seen in Section 5.12. It means 

that no degree of freedom can be frozen by limiting its range of motion in order to 

simplify the problem. For example, in "aiming while kneeling", all upper body joints 

such as neck as well as all lower body joints need to be predicted to exactly model the 

motion. 

Using the formulation given in Section 5.6 and the passive joint angle limits given 

in this section, an initial result was obtained. The final motion frame for kneeling looked 

as shown in Figure 5.2. 

Figure 5.2. Lower body motion prediction for "Kneeling" (frozen upper body) 
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5.8 The Natural Point of Aim (NPOA) in Details 

There are different definitions given for the NPOA (Anderson, 2002) in aiming 

trainings which all refer to the same concept. We collect some of these definitions here: 

 NPOA is the body posture that allows the gun to remain on target with minimal 

muscle input. Once you are in your natural point of aim you can hold the rifle for 

a long time without getting tired because you are holding the rifle in place with 

your skeleton and not your muscles.  

 NPOA is a shooting skill where the shooter minimizes the effects of body 

movement on the firearm's impact point. Along with proper stance, sight picture 

and trigger control, it forms the basis of rifle marksmanship. 

 NPOA is the one factor which separates the Riflemen from the ‘wannabees’.  A 

Rifleman takes his shooting position so that his rifle, with his body relaxed, is 

pointing at the target. He does not have to fight muscle strain and he makes his 

job of firing the shot a lot easier. Best of all, his shots will be on target, accurately 

and consistently, because he is not fighting his body’s natural position. 

 

An NPOA (natural point of aim) can and should be achieved in any aiming task. 

To achieve NPOA in aiming tasks, the shooter must: 

 Get in to the firing position. 

 Aim at the target. 
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 Keeping the weapon pointed at the target, close his eyes, relax - should not 

hold any tension on weapon, take 3-4 breathes. Open eyes. Wherever the 

sight rests is his natural point of aim. 

 Move his feet on the ground to rotate about the rifle’s back sight and 

repeat until the sight is on target (aiming with feet instead of hands). 

 Note: After opening eyes the shooter should not attempt to adjust the 

weapon. 

 

Natural point of aim is not achieved if the shooter must apply pressure to the 

firearm so the sight picture is on target. One of the main advantages of natural point of 

aim is that it minimizes fatigue when shooting a long course of fire. Over time, the 

shooter learns to assume the correct position quickly, allowing for accurate fire 

immediately. 

The main purpose of identifying and potentially correcting natural point of aim is 

to make shots with both accuracy and precision, where accuracy is the ability to place 

rounds on the desired target, and precision is the ability to put multiple rounds in the 

same location. Good shooters are always precise, and this skill is more fundamental than 

accuracy, which can be adjusted. Typically, precision is based on natural point of aim. If 

for example, the shooter fires 10 rounds down range and they all land in a similar area on 

the target, then he can assume that this is the natural point of aim. If the strike zone is not 

in the middle of the target, adjustments are made to the shooter's positioning and/or the 

firearm's sights so that the shots accurately strike the center of the target. 
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Natural point of aim marksmanship is based on the idea that muscular control is 

insufficient to provide a stable platform for shooting, especially more than one shot. 

Instead, the shooter relies on non-muscular (skeleton/ligaments/tissue) support to provide 

the shooting platform. This eliminates changes in aim due to muscle fatigue and also 

minimizes the shaking associated with muscle tension. In predictive dynamics method, 

all calculations are performed based on the skeleton of the digital human and muscle 

deformation is ignored. Therefore, predictive dynamics provides a suitable environment 

to predict NPOA correctly. 

Natural point of aim is a concept that can be used in relation to any type of 

shooting position but is most often discussed in relation to prone, sitting, or kneeling 

positions, and less frequently with offhand/standing positions. 

The most comfortable global orientation of the body as the most important aspect 

of NPOA, is different for each individual, each target elevation and each aiming task. But 

there are some average values common in shooting trainings for specific aiming tasks. 

For example, in "aiming while kneeling", to achieve NPOA, the common training given 

to shooters is as follows: The most comfortable orientation of the left foot to engage a 

specific target is to align the left foot on the ground at an angle of about 45 degrees to the 

right of the target line based on the army instructions in Section 5.4. As we will see in 

next sections, the digital human avatar (SantosTM) is exact enough to predict this angle 

for a real soldier. 
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5.9 The Target Engagement Constraint in Aiming Tasks 

In this section, we first review the input parameters given to the target 

engagement constraint in aiming tasks (such as "aiming while kneeling"). Then based on 

those input parameters, we show how the target engagement constraint manages to 

engage the desired target point in aiming tasks. 

 

5.9.1.  Input Parameters for the Target Engagement Constraint  

The input parameters in aiming tasks are designed to address the NPOA concept. 

The input parameters for the target engagement constraint are: 

 

 

 

Left Foot 
Direction 

Global Z 
Direction 

Global Y 
Direction 

Figure 5.3. Definition of input parameters for an arbitrary posture 
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1) Target Position (X, Y, Z): 

The line connecting the back sight and the foresight of the rifle need to pass 

through this position and the soldier’s eyeball. 

 

2) Body/Left Foot Azimuth Angle Flag  (Azimuth Flag): 

Determines whether the user assigns the value of "Body/Left Foot Azimuth 

Angle" or the optimization decides the best value for it. It can have two values:  

 False (0) :  Indicates that the optimization decides the best body rotation to 

engage a target 

 True (1) :  Indicates that the "Body/Left Foot Azimuth Angle" is assigned 

by the user 

 

3) Body/Left Foot Azimuth Angle: 

It is defined as the angle of the rotation about "positive global Y" from the "global 

positive Z direction" to the direction of left foot on the ground (for "aiming" and 

"kneeling" tasks) or to the direction of body line on the ground (for "aiming while 

prone" task) in the final aiming posture. If "Azimuth Flag" is set to zero, this input 

value is ignored and it is predicted by optimization in order to engage the target. If 

"Azimuth Flag" is set to 1, this input value will be implemented and will be 

observed in the results. 
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To understand these inputs better, several figures are presented in this section. 

Figure 5.3 shows the familiar neutral posture to illustrate the global y and z axes. Figure 

5.4 illustrates all the input parameters for two sample "kneeling" tasks. Figure 5.5 

illustrates all the input parameters for a sample "aiming while prone" task.  

  

 

 

 Figure 5.5. Example of an "Aiming While Prone" task with predicted "Body Azimuth Angle" values 

Global Z 
Direction 

Body Line 
 Direction 

Body Azimuth 
Angle 

Global Z 
Direction 

Body Line
 Direction

Body 
Azimuth 

Angle 

Figure 5.4. Examples of two "Kneeling" tasks with predicted "Left Foot Azimuth Angle" values 
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I. Azimuth Flag=0 

In this case, optimization determines the most suitable "Body/Left Foot Azimuth 

Angle". The predictive dynamics code constrains the rifle to aim at the most 

comfortable point (D) on a circle "c" in Figure 5.6. Circle "c" is the circle drawn 

about axis A-A and passing through point B. Axis A-A is the axis passing through 

the final location of rifle’s back sights (Point O) and perpendicular to the ground. 

After the optimization solves the problem, avatar will be aiming at point D. Angle 

θ should be determined and a secondary optimization procedure rotates the avatar 

as a rigid body by – θ to aim at point B. This is very similar to the procedure that 

soldiers perform in order to find their NPOA (see Section 5.8). 

 

II. Azimuth Flag=1 

In this case, "Body/Left Foot Azimuth Angle" angle is assigned by the user (input 

value as explained in Section 5.9.1. The code fixes the "Body/Left Foot" of the 

avatar along Z axis in an assigned position. Then it rotates the target from point B 

on circle "c" by an angle equal to "-(Body/Left Foot Azimuth Angle)" and calls 

this point: "D". Then the main optimization procedure tries to enforce SantosTM to 

aim at exactly point "D". After the main optimization solves the problem, 

SantosTM will be aiming at point D. Now, a secondary optimization rotates the 

avatar by "+ (Body/Left Foot Azimuth Angle)" to aim at point B. 
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5.10 NPOA and the Target Engagement Constraints 

One may think that the procedure given in Section 5.9 for target engagement is 

unnecessarily complicated and for example, to engage a specific target in kneeling, the 

most comfortable way is to set the left foot direction parallel to the target line and 

perform "aiming while kneeling". This is not true. The shooting trainings do not advice 

such a method (see Section 5.8). However, the user is able to enforce the left foot of the 

avatar to be parallel to the target line by manipulating the input parameters. For such a 

purpose, the user should set "Azimuth Flag" equal to 1 and selecting a suitable value for 

"Left Foot Azimuth Angle". The result of such an effort is shown below: 

 

In the picture on the left in Figure 5.7, you can see that the left foot is almost 

parallel to the target line. The resulting kneeling position of the avatar looks very 

uncomfortable with extreme bending in the spine. 

Figure 5.7.  Unsuitable kneeling position caused by enforcing unsuitable "Left Foot Azimuth Angle". 
Target located at (0, 0.2, 3), "Azimuth Flag =1" and "Left Foot Azimuth Angle =20" 

Global Z 
DirectionGlobal Z 

Direction 

Left Foot 
Direction

Azimuth 
Angle (+20) 
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The most comfortable orientation of the left foot to engage a specific target is to 

align the left foot on the ground at an angle of about 45 degrees to the right of the target 

line based on the army instructions in Section 5.4. Our avatar (SantosTM) is exact enough 

to predict this angle for a real soldier. To find this angle in any "aiming while kneeling" 

task, the "Azimuth Flag" can be set to zero. In that case, the optimization decides the best 

angle for left foot on the ground and outputs this angle to the user. This angle changes a 

little bit depending on the target elevation, and is about 42 degrees to the right of the 

target line which agrees very well with shooting trainings (Also see Section 5.16). 

For example, for the same "Target Position" that was used in Figure 5.7, if you let 

optimization decide the left foot orientation (set "Azimuth Flag" equal to 0), the result 

shown in Figure 5.8 is achieved: 

 

 

Figure 5.8.  Suitable kneeling position when optimization predicts the "Left Foot Azimuth Angle".
Target located at (0,.2,3) and "Azimuth Flag =0" 
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In the picture on the left in Figure 5.8, you can see that the left foot is located at 

an angle of about 42 degrees to the right of the target line. The resulting kneeling position 

of the avatar looks much more comfortable than Figure 5.7. 

To show the variety of motions made possible by varying "Left Foot Azimuth 

Angle", we show an extremely uncomfortable case in Figure 5.9 where the soldier is 

required to engage a specific target having a specific "Left Foot Azimuth Angle". 

 

 

5.11 Joint Discomfort Objective Function 

When a soldier is performing a military task such as "aiming while kneeling", 

many of his joints reach their limits. When a joint reaches its limits, normally the two 

adjacent limbs which are connected by that joint are pressed against each other. The 

reaction force of this pressing on the internal forces and torques is not present in any of 

the calculations. To consider these resultant internal forces and torques caused by joints 

Figure 5.9.  An extreme case: Target located at (-1,1,-3), "Azimuth Flag =1" and "Azimuth Angle =110"

Global Z 
Direction

Left Foot Direction 

Azimuth Angle 
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reaching their limits, a "Joint Discomfort Objective Function" is introduced in this 

section. The formula for calculating this objective function is proposed as below: 

 

       

 

2

10

4 2 / * 5.11.1

1, 2,3,....

: 5.11.2

   

T ndof k

i i i i i
it

i

i

i

f q ul ll ul ll dt scale

k

q Thevalueof Joint Angle i

Where ul Upper Limit of Joint Anglei

ll Lower Limit of Joint Angle i

f Joint Discomfort Objective Function



   








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
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For example, assume that the lower and the upper limits for joint number "i" are 

respectively equal to:  45ill   and 230iul  . Let 1scale   and 5,10k  . In Figure 5.10, 

we show the plots of      10
4 2 /i i i i i if q ul ll ul ll     and 

     20
4 2 /i i i i i if q ul ll ul ll     , if we change iq  from  45ill   to 230iul  . 

We use this objective function along with the dynamic effort ( 2

10

T ndof

i
it

dt

  ) 

objective function to form a multi-objective optimization problem in predictive 

dynamics. This "Joint Discomfort Objective Function" prevents the joint angles from 

getting very near to their limits, if it is not necessary for performing the task. It does so by 

increasing the cost function of the optimization (objective function) by large amounts 

when joint angles get very near to their limits. The value of k can be modified to change 

the behavior of the function as shown in the above graphs. 
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Without this penalty function, the avatar acts just like a robot in the sense that the 

avatar "feels that he can use the range of motion of any of its joints fully without 

worrying whether one of the joints is at its limit while the next joint is in the middle of its 

range of motion". The effect of this "Joint Discomfort Objective Function" on the final 

frame of the "aiming while kneeling" task is shown in Figures 5.11, 5.12. 

 

 

Figure 5.11.  Final kneeling position with "Dynamic Effort" as the only objective function 
(without the "Joint Discomfort Objective Function") 

Figure 5.10.  Plots of the joint discomfort objective function for k=5 (left) and k=10 (right) 
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Comparing Figures 5.11 and 5.12, it seems that the results look more natural 

using the "Joint Discomfort Objective Function" along with the "Dynamic Effort 

Objective Function". This additional objective function prevents the joint angles to get 

near their limits as much as possible. 

5.12 Problem Formulation for Kneeling 

To predict the whole body motion for kneeling, we release the fixed posture 

assigned for SantosTM  upper body in Section 5.6 and use the conclusions of Sections 5.7 

to 5.11 and let optimization predict the motion for the whole body. The formulation for 

kneeling is shown in Table 5.4.  

Figure 5.12.  Final kneeling position using the "Joint Discomfort Objective Function" along with the 
"Dynamic Effort Objective Function" 
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Design Variables:       Joint Angle Profiles q t  

Objective Function:          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Left Foot Position Fixed on the Ground 

 Left Hand Face Almost Upward and be Perpendicular to Rifle 

 Look Forward 

 Collision Avoidance 

Initial Motion Frame Constraints: 

 Right Foot Initial Position 

 Initial Static Condition 

Final Motion Frame Constraints: 

 Right Knee Touches Ground 

 Left Elbow Touches Left Knee 

 Final Static Condition 

Additional Final Constraints For Aiming: 

 Right Shoulder Touches Rifle Butt 

 Eye Line Parallel to Rifle Line 

 Right Eye Behind the Sight of the Rifle 

 The Target Engagement Constraints 

 

Table 5.4. Problem formulation for prediction of "Kneeling" 
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5.12.1.  Kneeling Then Aiming Task  

This task consists of two separate stages. They are:  

1. Kneeling from Standing Position (Stage 1) 

For this motion, the "Additional Final Constraints For Aiming" in the Table 

5.4 are ignored. The optimization finds the most comfortable type of kneeling 

without taking into consideration the aiming requirement that may follow this 

motion. Figure 5.13 shows different views of the final motion frame of the 

kneeling task. 

 

 

 

2. Aiming from Kneeling Position (Stage 2) 

This motion is assumed to follow the kneeling motion. Therefore, continuity 

constraints (position, velocity and acceleration) are imposed between this 

motion and the previous motion. For the final frame of this motion, the 

"Additional Final Constraints For Aiming" in Table 5.4 are also enforced. 

Figure 5.13.  "Kneeling Then Aiming" task (Stage 1: Kneeling from Standing) 
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Figure 5.14 shows different views of the final motion frame of the "aiming 

from kneeling" task. 

 

 

 

5.12.2.  Aiming While Kneeling Task 

The two subtasks included in the "kneeling then aiming" task in Section 5.12.1 

(two separate optimizations) can be replaced by one single task (one single optimization) 

in which the avatar starts from standing posture and ends in the final posture where he is 

both kneeling and aiming. In military, this final position is normally referred to as the 

"kneeling unsupported firing position" where the soldier is not using any obstacle or 

object as a supporting base for increasing the stability of firing. It means that the 

intermediate stage where SantosTM gets into the kneeling position without aiming is 

removed and instead of two separate optimization procedures we have one single 

optimization procedure. This is a preferred method compared to two separate 

optimizations, because both aiming and kneeling constraints affect the whole motion, 

Figure 5.14.  "Kneeling Then Aiming" task (Stage 2: Aiming from Kneeling) 
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while the aiming constraints do not affect the motion in stage 1 for the other method. The 

downside of this method is that we do not see a kneeling position without aiming. 

 

5.13 Motion Prediction Results for Kneeling 

Many results of the kneeling motion prediction were shown in previous parts 

where the formulation was being described. For example, Figures 5.1, 5.4, 5.7, 5.8, 5.9, 

5.11, 5.12, 5.13, 5.14 all show the results of the kneeling motion. In this part we show 

some additional results with different input parameters. 

 

5.13.1.  Results for Engaging Targets at Different Positions 

In this section, we show the different results obtained by changing the target 

location. A fixed motorcycle is shown in Figures 5.15 and 5.16 to assist in recognizing 

the target movement. 

 

 Figure 5.15. Results of kneeling for "Azimuth Flag = 0" and target located at A(0,-.1,3) and B(-1,1.5,1) 
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5.13.2.  Cause and Effect Study for Adding Armor 

In this section, we study the effect of adding armor plates to different limbs of the 

avatar on the kneeling task. The major effect of adding armor to two limbs is to reduce 

the range of motion of the joint connecting them. In other words we are modifying the 

lower and upper bounds for the "joint angle limits constraint" as mentioned in Table 5.4 

and observing the results. 

Here, we show the result of adding armor to the back of "Right Upper Leg" and 

"Right Lower Leg" in two experiments: 

 

 Experiment 1 : 

We add two armor chiclets one near right hip and one near right ankle. It reduces 

the upper limit of the range of motion of the "Right Knee" from 160 degrees (it is 

a passive joint limit as was shown in Table 5.3) to 126 degrees and run the 

kneeling prediction code. The results achieved are shown in Figure 5.17. In order 

Figure 5.16. Results of kneeling for "Azimuth Flag = 0" and target located at A(-1,1,-1) and B(-.1,.7,2) 
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to visually confirm the accuracy of the results, it should be noted that the chiclets 

are not allowed to interfere with each other in the 3D space. If they do, the results 

can be visually rejected. 

 

 

 

 Experiment 2: 

We move the two armor chiclets closer to each other near the Right Knee. It 

further reduces the upper limit of the range of motion of Right Knee down to 75 

degrees. The results achieved are shown in Figure 5.18. 

 

Figure 5.17. Kneeling prediction with two armor chiclets reducing right knee's range of motion 
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 5.13.3.  Effect of Changing Avatars 

Every avatar has a specific set of "Link Lengths". Therefore, different solutions 

for design variables (joint angle profiles) are required for different avatars if all other 

inputs remain the same. We predict the kneeling motion for a same target location for 

different avatars. Target is located at (1,1,1) and "Azimuth Flag" is set to zero so that the 

optimization predicts the optimal position for engaging the target for different avatars. 

The results are shown in Figures 5.19 , 5.20. The avatars used in these figures are: 

 

 SantosTM : Male, Average 

 Santos A: Male, Tall, Heavy, H-Shaped Torso 

 Santos C: Male, Short, Lean, V-Shaped Torso 

 Sophia: Female, Tall, Lean 

 

Figure 5.18. Kneeling prediction with armor chiclets reducing right knee's range of motion considerably 
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It should be noted that if you predict a motion task using a specific avatar, then 

that result is only valid for that specific avatar. If the solution of a motion task for one 

avatar is shown on another avatar, very abnormal and visually unacceptable results may 

be observed. This shows that each avatar requires a different solution. 

Figure 5.20. Results of "Aiming While 
Kneeling" motion prediction for 

different avatars:   
(a) "Santos C" avatar   
(b) " Santos A" avatar 

z 

(a) 

(b) 

Figure 5.19. Slides of the results of "Kneeling then Aiming" 
motion prediction for different avatars 

(a) "Sophia" avatar      (b) "Santos A" avatar 
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Aiming tasks are delicate tasks and are very sensitive to an avatar's link lengths, 

for example, the solution of one avatar will look very bad if it is played on another avatar. 

In order to demonstrate this issue, some of those results are shown in Figure 5.21. 

 

 

 

5.14 Problem Formulation for Aiming While Standing 

As indicated in Section 5.1, considering the timeline of developing dynamic tasks, 

"kneeling" was the first dynamic task to be studied by the author. The development of 

kneeling task was slowed down and this task (aiming while standing) was started by the 

same developer to provide more insight of the "aiming" that was required to be done as 

the last part of the "kneeling" motion. So, they share most of the concepts which were 

discussed in previous sections.  

 

Figure 5.21. Solution of an avatar played on a different avatar intentionally to show the sensitivity of 
"Kneeling" task to input parameters  

(a) Solution of "Sophia" incorrectly played on "Santos A" 
(b) Solution of "Santos A" incorrectly played on "Sophia" 

(a) (b) 
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  Design Variables:       Joint Angle Profiles q t  

Objective Function: 

          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Feet Position Fixed on the Ground 

 Left Hand Perpendicular  to Rifle 

 Left Hand Face Almost Upward 

 Look Forward 

 Collision Avoidance 

Initial Motion Frame Constraints: 

 Initial Static Condition 

Final Motion Frame Constraints: 

 Final Static Condition 

 Right Shoulder Touches Rifle Butt 

 Eye Line Parallel to Rifle Line 

 Right Eye Behind the Sight of the Rifle 

 The Target Engagement Constraints 

 

 

Table 5.5. Problem formulation for prediction of "Aiming" 
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Same as kneeling, this task uses the "Joint Discomfort Objective Function" 

discussed in Section 5.11. It also uses the same "Target Engagement Constraints" 

discussed in Section 5.9. Similar to kneeling, the NPOA concept that is implicitly 

embedded in Section 5.11 is essential in obtaining comfortable aiming postures. Also, it 

follows the insight from Section 5.7 to consider expanded ranges of motion for a few 

joints under pressure. Also, the input and output parameters of this task almost exactly 

match those of kneeling. The formulation for aiming task is shown in Table 5.5. 

 

5.15 Motion Prediction Results for Aiming While Standing 

5.15.1.  Results for Engaging Targets at Different Positions  

In this section, we show the different results obtained by changing the target 

location. A fixed motorcycle is shown in Figures 5.22 and 5.23 to assist in recognizing 

the target movement. 

 

 

 Figure 5.22. Results of aiming for "Azimuth Flag = 0" and target located at A(0,1.5,1.5) and B(-3,0,0) 
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5.15.2.  Effect of Changing Avatars  

Every avatar has a specific set of "Link Lengths". Therefore, different solutions 

for design variables (joint angle profiles) are required for different avatars if all other 

inputs remain the same. We predict the kneeling motion for a same target location for 

different avatars. Target is located at (1,1,1) and "Azimuth Flag" is set to zero so that 

optimization predicts the optimal position for engaging the target for different avatars. 

The results are shown in Figure 5.24. The avatars shown in these figures are: 

 

 SantosTM : Male, Average 

 Santos A: Male, Tall, Heavy, H-Shaped Torso 

 Santos D: Male, Short, Heavy, V-Shaped Torso 

 Sophia: Female, Tall, Lean 

 

Figure 5.23. Aiming with "Azimuth Flag = 0" and target located at A(0,2,1.5), B(0,.5,1), C(0,3,1.5) 
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It should be noted that if you predict a motion task using a specific avatar, then 

that result is only valid for that specific avatar. If the solution of a motion task for one 

avatar is shown on another avatar, very abnormal and visually unacceptable results may 

be observed. This shows that each avatar requires a different solution. 

 

 

 

Figure 5.25. Solution of an avatar played on a different avatar intentionally to show the sensitivity of 
"Aiming" task to input parameters (a) Solution of "Sophia" incorrectly played on "Santos D" 

(b) Solution of "Santos D" incorrectly played on "Sophia" 

(a) (b) 

Figure 5.24. Results of "Aiming" for different avatars. Left to right: "Santos D", "Santos A", "Sophia"
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Aiming tasks are delicate tasks and are very sensitive to an avatar's link lengths, 

for example, the solution of one avatar will look very bad if it is played on another avatar. 

In order to demonstrate this issue, some of those results are shown in Figure 5.25. 

 

5.16 Validation of the Predicted NPOA in Kneeling and 
Aiming Tasks 

The Natural Point of Aim (NPOA) was predicted for aiming and kneeling tasks in 

this research. As explained previously, this is accomplished by optimizing the value for 

the angle between the left foot of the avatar and the target line on the ground. A sample 

of such predicted values for this angle are shown in Figure 5.26 for aiming and kneeling.  

 

 

Figure 5.26. Predicted angle between the left foot of avatar and the target line in predictive dynamics for 
motion tasks:    (a) Aiming   and    (b) Aiming While Kneeling 

 

30° 

 

42° 

(a) (b) 
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The NPOA predicted by the predictive dynamics method for aiming and kneeling 

are validated at the VSR Lab at the University of Iowa. The angle between the left foot of 

the avatar and the target line on the ground was measured for several subjects performing 

aiming and kneeling tasks. The results are as follows: 

 

 Comparison in Aiming While Kneeling 

Four experiments were performed and the below values were observed for the angle: 

49 50 53 54 

They all seem higher but not very far from the value of 42 degrees that was predicted. 

 

 Comparison in Aiming While Standing 

Four experiments were performed and the below values were observed for the angle: 

34 43 43 51 

They all seem higher but not very far from the value of 30 that was predicted. 
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CHAPTER 6 

DYNAMIC SIMULATION OF A SOLDIERS' MOTION USING THE ZMP METHOD: 

STAND-PRONE-AIM TASK 

6.1 Introduction 

The objective of this chapter is to simulate the "stand-to-prone-to-aim" task for a 

soldier using the SantosTM digital human model. In this chapter, the ZMP method 

introduced in Chapters 3 and 4 is used to ensure the motion possibility and calculate 

ground reaction forces. As explained in Sections 4.2-4.5, the ZMP method along with an 

assumption for the partitioning of ground reaction forces can be used to ensure the 

possibility of the generation of any arbitrary motion using the given environmental 

contact areas and calculate the environment contact forces on those contact areas. In 

Chapter 9, the NCM method along with the assumption of forces as design variables will 

be used to ensure the motion feasibility and calculate ground reaction forces.  

During the Stand-to-Prone-to-Aim motion task, different parts of the body come 

in contact and lose contact with the ground which is very finely modeled and considered 

using the general approach introduced in Section 4.4. Using the ZMP method in 

predictive dynamics as explained in Section 4.2, we can predict a realistic motion for the 

"Stand-to-Prone-to-Aim" task which consists of two motion subtasks: "going prone" and 

"aim while prone". The optimization is able to very well predict the "Natural Point of 

Aim" for the "aim while prone" subtask. In other words, the optimization is able to 

predict the most comfortable final orientation of the body line for engaging a specific 
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target. We also simulate cases where the orientation of the soldier’s body line is enforced 

(by the environment or due to the requirements of the task) and not predicted. 

Instead of the pistol grip, the rifle stock is held in the right hand and the end of the 

rifle stock touches the ground as an extra support point in the "Going Prone" subtask. 

Therefore, the rifle is held by two completely different styles in the "Going Prone" and 

"aim while prone" subtasks and there will be inevitable transfers of weapon as an external 

object between the two hands. Collision avoidance of the rifle with the hands and body 

during these rifle transfers is a very challenging constraint that has been implemented 

using the collision avoidance of compound primitives such as finite cylinders and finite 

planes whose edges are smoothed out in order to have continuous gradients for the 

collision avoidance constraint. 

The effect of changing the target location in the 3D space, changing the 

anthropometry of the soldier, adding backpack, adding armor plates on the shoulder  and 

changing the rifle stock length have also been studied using this approach. 

6.2 The Stand-to-Prone-to-Aim Task 

In this research, we use the “Rifle Marksmanship” instructions from the “U.S. 

Army Field Manual” and "U.S. Marine Corps Reference Publication (MCRP)" as the 

major references for definition of terms and procedures. The "Stand-to-Prone-to-Aim" 

task can be performed in several ways with or without using the rifle butt as support. In 

this research we model the classic method presented in U.S. Army (1974) (using the rifle 

butt). According to U.S. Army (1974) , the stages for this task are:  
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1- The firer stands facing his target, turn 30 degrees to his right.  

2- Spreads his feet a comfortable distance apart, and drops to his knees. 

3- With his right hand at the heel of the stock, he places the rifle butt well out to his 

front on a line connecting the target and his right knee. 

4- Using the rifle butt as a pivot, the firer rolls down on his left side, placing his left 

elbow as nearly under the rifle as possible. 

5- Grasp the pistol grip with the firing hand. 

6- Place both elbows on the ground to support the upper body. 

7- Rest the rifle in the "V" formed by the non-firing hand. 

8- Engage the target (Aim). 

 

The first item in the above list mentions a 30 degree angle. This angle is an initial 

guess for achieving NPOA and may actually be variable for different soldiers or rifles or 

target locations. Therefore, instead of enforcing this angle in simulations, we predict the 

best value for it to maximize comfort (achieve NPOA). However, increasing this angle 

will increase the exposure of the body of the shooter to the enemy. So, comfort is 

sometimes sacrificed and the 30 degree value for this angle is less than the value that 

maximizes comfort. As will be seen in Section 6.11, the digital human avatar (SantosTM) 

predicts the angle for maximizing comfort which is larger than 30 digress, but matches 

very well with experimental data that also maximize comfort.  

 



  

 

129

6.3 The Going Prone Subtask 

Stage 1: 
Standing Position. 

 The narrow part of the rifle 

stock is held in right hand. 

 

Stage 2: 

Both Knees touch the ground. 

Ball  of  right  and  left  feet  are 

fixed on  the  ground  between 

stages 1,2.  

 

Stage 3: 
Additional  to  all  constraints  in 

Stage 2, rifle stock also touches 

the ground. 

 

Stage 4: 

Constraint for left hand to grip the barrel is removed. 

 

Stage 5: 

Left hand fully touches the ground.  

 

Stage 6:

Right elbow touches the ground. Left hand keeps touching the ground. Hip is lowered. 

Table 6.1. The stages defined for modeling the going prone subtask 
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As indicated in Section 6.1, the "Stand-to-Prone-to-Aim" task consists of two 

motion subtasks: "going prone" and "aim while prone". These two subtasks are connected 

together by continuity constraints on the position, velocity and acceleration of the design 

variables (joint angle profiles). We first study the "Going Prone" subtask. This subtask 

requires several stages. Based on the instructions given to soldiers for performing this 

subtask, the stages and constraints listed in Table 6.1 have been considered for 

developing the "going prone" subtask. 

 

6.4 Problem Formulation for Going Prone 

This subtask uses the “Joint Discomfort Objective Function” discussed in Section 

6.9. Also, it follows the insight from Section 5.7 to consider expanded ranges of motion 

for some joints under pressure. The formulation for the going prone subtask consists of 

two optimization problems connected by continuity constraints on the position, velocity 

and acceleration of the design variables (joint angle profiles). 

 Optimization Problem #1 

The first optimization problem consists of stages 1, 2, 3 in Table 6.1. The 

formulation for this optimization problem is shown in Table 6.2.  

 

 Optimization Problem #2 

The second optimization problem consists of stages 4, 5, 6 in Table 6.1. The 

formulation for this optimization problem is shown in Table 6.3.  
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Design Variables:       Joint Angle Profiles q t  

Objective Function:          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Ground Penetration 

 Left and Right Foot Balls Fixed 

 Local z Axis of Right Hand Opposite Direction to the Local z Axis of Left Hand 

 Look Forward 

 Left Hand under the Barrel 

 Collision Avoidance 

Initial Motion Frame Constraints: 

 Initial Static Condition 

Constraints Imposed at Stage 2: 

 Right Knee touches ground. 

 Left knee touches ground. 

 Right hip touches right heel. 

 Left hip touches left heel. 

Final Motion Frame Constraints: 

 Final Static Condition 

 Rifle stock touches ground. 

 

Table 6.2. Formulation for the first optimization problem of going prone  
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Design Variables:       Joint Angle Profiles q t  

Objective Function:          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Ground Penetration 

 Left and Right Knees Fixed 

 Look Forward 

 Collision Avoidance 

Initial Motion Frame Constraints: 

 Continuity conditions to the last motion frame of optimization problem #1. 

Constraints Imposed at Stage 5: 

 Left hand palm touches the ground. 

Constraints Imposed at Stage 6: 

 Left Hand Palm Static on Ground 

 Right elbow touches ground. 

Final Motion Frame Constraints: 

 Final Static Condition 

 Left Hand Palm Static on Ground 

 Right Elbow Static on Ground 

Table 6.3. Formulation for the second optimization problem of going prone  
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6.5 Motion Prediction Results for Going Prone 

 

 

 Figure 6.1.  Motion prediction results for the "Going Prone” subtask 
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The motion prediction frames for the "going prone” subtask are shown in Figure 

6.1 with the ground contact modeling for each stage. In this figure, "LeftMiddle" and 

"RightMiddle" refer to the middle points of the feet. "Outer" postfix refers to the points 

on the right side of right foot and on the left side of left foot. As it will be discussed, the 

kinematic results are validated and match well with the experimental data. However, 

abnormal and unacceptable values were encountered for some components of ground 

reaction forces and moments. 

The ground contact modeling specifies the GRF points and the ZMP boundary 

points for each motion stage (a,b,c,…,h) as shown in Figure 6.1. The values for ground 

reaction forces and moments in each direction which are Fx, Fy, Fz, Mx, My, Mz, are 

calculated at each of the GRF points specified for that motion stage.  

   

Going Prone Task  Motion Stage  Time Grid Points 

Subtask 1  a  1 

b  2, 3, 4 

c  5, 6 

d  7 

Subtask 2  d  1 

e  2, 3, 4 

f  5 

g  6 

h  7 

Table 6.4. List of time grid points corresponding to each motion stage of going prone task 
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Based on the time discretization strategy for the task, each motion stage consists 

of one or several time grid points. Predictive dynamic calculations including the GRF 

calculations are performed at each time grid point. In the two subtasks of “going prone”, 

the time grid points corresponding to each motion stage are as shown in Table 6.4. 

The list of GRF points at each motion stage for the going prone task was shown in 

Figure 6.1. The ground reaction forces and moments at each of those GRF point are 

calculated at each time grid point (shown in Table 6.4) for the two subtasks. The values 

of GRF at some of the GRF points are shown in Tables 6.5 and 6.6, for the two subtasks 

(GRF at Left Knee, Right Knee, Rifle Stock). 

 

 

Point of Effect of the 
Ground Reaction 
Force System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

 
 
 
 

Left Knee 
 

Fx  < NA >  < NA >  < NA >  < NA >  ‐2.046  ‐1.682  6.274 

Fy  < NA >  < NA >  < NA >  < NA >  140.086  183.641  36.488 

Fz  < NA >  < NA >  < NA >  < NA >  12.211  27.339  ‐0.266 

Mx  < NA >  < NA >  < NA >  < NA >  38.812  35.496  0.057 

My  < NA >  < NA >  < NA >  < NA >  1.468  3.344  0.398 

Mz  < NA >  < NA >  < NA >  < NA >  ‐11.361  ‐16.528  ‐6.672 

 
 
 
 

Right Knee 
 

Fx  < NA >  < NA >  < NA >  < NA >  ‐2.030  ‐1.771  67.737 

Fy  < NA >  < NA >  < NA >  < NA >  138.964  193.443  393.953 

Fz  < NA >  < NA >  < NA >  < NA >  12.113  28.798  ‐2.871 

Mx  < NA >  < NA >  < NA >  < NA >  38.668  34.685  ‐5.374 

My  < NA >  < NA >  < NA >  < NA >  ‐0.553  ‐1.805  5.863 

Mz  < NA >  < NA >  < NA >  < NA >  11.806  18.208  1.565 

 

Table 6.5. The value of ground reaction forces and moments for the first subtask of going prone  
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Point of Effect of the 
Ground Reaction 
Force System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Left Knee  Fx  ‐43.966  32.046  ‐44.821  ‐38.814  0.081  6.517  17.952 

Fy  436.724  306.507  640.312  515.490  320.994  141.418  54.399 

Fz  ‐39.337  34.896  105.391  167.142  ‐19.711  ‐50.271  ‐61.958 

Mx  ‐32.505  3.036  ‐0.500  ‐0.190  ‐87.489  ‐71.605  ‐40.594 

My  ‐44.636  2.151  ‐12.428  35.330  2.320  ‐8.280  0.882 

Mz  ‐14.141  ‐34.781  ‐19.651  ‐27.305  ‐29.518  ‐14.877  ‐9.693 

Right Knee  Fx  ‐21.839  64.443  ‐10.303  ‐14.961  0.075  6.405  18.443 

Fy  216.937  616.365  147.188  198.694  296.358  138.994  55.886 

Fz  ‐19.540  70.173  24.226  64.424  ‐18.198  ‐49.409  ‐63.653 

Mx  ‐16.473  ‐3.223  ‐2.413  ‐3.891  ‐86.709  ‐72.657  ‐41.736 

My  ‐18.705  ‐6.646  ‐7.429  1.048  5.766  0.956  12.314 

Mz  31.833  34.987  22.287  27.356  31.737  10.667  0.048 

Rifle Stock  Fx  ‐8.246  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  81.908  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐7.378  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  33.901  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐2.876  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  13.653  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

 

The kinematic results for the "Going Prone" subtask are validated and match well 

with the experimental data which is motion captured in the VSR Lab at the University of 

Iowa. However, abnormal and unacceptable values were encountered for some 

components of ground reaction forces and moments. 

As it is highlighted in Tables 6.5 and 6.6, large and unacceptable values of ground 

reaction moments are predicted to be exerted from the ground to the avatar at Left Knee, 

Right Knee, Rifle Stock. These three contact areas have very small contact areas with the 

ground and therefore they should actually only be able to exert force but no moment 

Table 6.6. The value of ground reaction forces and moments for the second subtask of going prone  
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(about the GRF points) to the avatar. Therefore, the highlighted values in Tables 6.5 and 

6.6 are completely unacceptable. In Chapter 9 we will discuss this issue in more details 

and present methods to correct these values. 

6.6 The Aim While Prone Subtask 

 
Stage 1: 

 
Left Hand is touching the 

ground. 

Stage 2: 
 

Left Hand Leaves the 

ground and holds the 

barrel 

 
Stage 3: 

 
Right hand Leaves the 

stock and holds the handle 

 

Stage 4: 
 

Aiming While in Prone 

position. 

Table 6.7. The stages defined for modeling the “Aim While Prone” subtask 
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As indicated in Section 6.1, the "Stand-to-Prone-to-Aim" task consists of two 

motion subtasks: "going prone" and "aim while prone". These two subtasks are connected 

together by continuity constraints on the position, velocity and acceleration of the design 

variables (joint angle profiles). In this section, we study the “aim while prone” (aiming 

while in prone position) subtask. This subtask requires several stages. Based on the 

instructions given in Section 6.2, the following stages and constraints listed in Table 6.7 

have been considered for developing the "aim while prone" subtask. 

 

6.7 Attachment of Rifle to the Avatar 

In general, the rifle may be assumed to be attached rigidly to one of the body 

segments of the avatar. Therefore, it is possible to define many different types of rifle 

attachment to the avatar. In the dynamic tasks studied so far (in Chapter 5 and 6), we 

have encountered 3 different types of rifle attachment which are explained in Table 6.8. 

In the Aim-While-Prone task, the type of rifle attachment changes during the 

motion contrary to previous tasks (aiming, kneeling, going prone) where the type of rifle 

attachment was constant during the motion. Calculations in each of the motion stages are 

performed considering the correct type of rifle attachment. 
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Type 1: 

The right hand holds the handle of the 

rifle firmly. This type is used in aiming, 

kneeling, aim while prone tasks. 

 

 

Type 2: 

The right hand holds the narrow part of  

the rifle stock firmly. This type is used in 

going prone, aim while prone tasks. 

 

         

Type 3: 

The left hand holds the barrel of the rifle firmly. This 

type is only used in aim while prone task. 

 

                      

Table 6.8. Different types of rifle attachment in aiming, kneeling, going prone, aim while prone tasks 

Left  
Hand 

Right  
Hand 

Right  
Hand 



  

 

140

6.8 Problem Formulation for Aim While Prone 

As indicated in Section 6.1, the "Stand-to-Prone-to-Aim" task consists of two 

motion subtasks: "going prone" and "aim while prone". Aim while prone subtask follows 

the going prone subtask. So, it is connected to the going prone subtask by continuity 

constraints on the position, velocity and acceleration of the design variables (joint angle 

profiles). The aim while prone subtask uses the “Joint Discomfort Objective Function” 

discussed in Section 5.11. Also, it follows the insight from Section 5.7 to consider 

expanded ranges of motion for some joints under pressure. The formulation for the aim 

while prone subtask consists of one optimization problem divided into 3 parts.  

 Part 1: 

The first part of the problem consists of the motion between stages 1 and 2 in 

Table 6.7. All Calculations in this part should be performed considering “Rifle 

Attachment  Type 2” in Table 6.8. The formulation for this part is shown in Table 6.9: 

 Part 2: 

The second part of the problem consists of the motion between stages 2,3 in Table 

6.7. All Calculations in this part should be performed considering “Rifle Attachment  

Type 3” in Table 6.8. The formulation for this part is shown in Table 6.10. 

 Part 3: 

The third part of the problem consists of the motion between stages 3 and 4 in 

Table 6.7. All Calculations in this part should be performed considering “Rifle 

Attachment  Type 1” in Table 6.8. The formulation for this part is shown in Table 6.11.  
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Design Variables:       Joint Angle Profiles q t  

Objective Function:          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Ground Penetration 

 Look Forward 

 Collision Avoidance 

 Right Elbow Static   

Initial Motion Frame Constraints: 

 Initial Static Condition 

 Continuity Constraints (From Going Prone) 

Final Motion Frame Constraints: 

 Left Hand Under the Barrel 

 Left elbow touches ground. 

 Continuity of Rifle Motion (Without this constraint, the rifle would jump from one 

location to another location, when type of rifle attachment changes.) 

 
  

Table 6.9. Formulation for the first part of "Aim While Prone" 
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Design Variables:       Joint Angle Profiles q t  

Objective Function:          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Ground Penetration 

 Look Forward 

 Collision Avoidance 

 Left Elbow Static   

Final Motion Frame Constraints: 

 Right hand gets hold of the handle. 

 Right elbow touches ground. 

 Continuity of Rifle Motion (Without this constraint, the rifle would jump from one 

location to another location, when type of rifle attachment changes.) 

 

 

 

 

 

 

Table 6.10. Formulation for the second part of "Aim While Prone"  
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Design Variables:       Joint Angle Profiles q t  

Objective Function:          22

10

4 2 / *
T ndof k

i i i i i i
it

f q ul ll ul ll scale dt


    q  

Environment Contact Modeling:   ZMP Method + Linear Partitioning of Contact Forces 

Torque Calculation Method:    Recursive Lagrangian Formulation 

Constraints Imposed Throughout the motion: 

 Joint Angle Limits 

 Torque Limits 

 Ground Penetration 

 Look Forward 

 Collision Avoidance 

 Right and Left Elbows Static 

Final Motion Frame Constraints: 

 Right Shoulder Touches Rifle Butt 

 Eye Line Parallel to Rifle Line 

 Right Eye Behind the Sight of the Rifle 

 Target Engagement Constraints 

 Left Palm under the Barrel 

 Final Static Condition 

 

 

 

 

 

Table 6.11. Formulation for the third part of "Aim While Prone"  
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6.9 Rifle Motion in the Aim While Prone Task 

As described previously in Section 6.7, the rifle is assumed to be attached rigidly 

to either the left hand or right hand at a specific orientation and rotation denoted in Table 

6.8 by Type 1, Type 2 or Type 3 rifle attachment. 

"Continuity of Rifle Motion" constraint which is seen twice in Section 6.8 (in 

Tables 6.9 and 6.10) ensures that the orientation and the global position of the rifle 

remains the same when the rifle is transferred in Stage 2 in Table 6.7 (type of rifle 

attachment changes from Type 2 to Type 3) and Stage 3 (type of rifle attachment changes 

from Type 3 to Type 1). In the real world the transfer of the rifle from a primary 

attachment to a secondary attachment is usually accomplished by loosening (making less 

rigid) the primary attachment and making the secondary attachment more rigid such that 

at the instant of the transfer (see position 2 and position 3 pictures), both the primary and 

the secondary attachments are loose (non-rigid). But in predictive dynamics, we only 

calculate and visualize a rigid attachment of the rifle. Therefore in Stage 2 and Stage 3 in 

our code, the rifle is rigidly attached to the left and right hand, which is not the same as 

the experiment pictures in Table 6.7 where rifle attachment is loose in both hands.  

For more clarification, we compare Stage 2 in the real world with Stage 2 in our 

simulations. In Table 6.12, this comparison is performed for 2 different cases of rifle 

continuity constraints in the predictive dynamics code. In one case, the constraint is 

“loosely” (increased tolerance for the constraint function) and in the other case, the 

constraint is imposed “strictly” (decreased tolerance for the constraint function). 
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Stage 2 in the Experiment:   Left Hand Leaves the ground and holds the barrel  

 
Stage  2  in  the  predictive  dynamics  code  with 

continuity constraint  imposed  loosely  (Rifle motion 

is not  continuous  and  it  jumps during  the  transfer 

from Type 2 to Type 3 attachments):  

Stage  2  in  the  predictive  dynamics 

code  with  continuity  constraint 

imposed  strictly  (Rifle  motion  is 

continuous  and  it  transfers  from  a 

rigid  attachment  Type  2  to  another 

rigid  attachment  Type 3 without  any 

jump): 

 

 
We also compare Stage 3 in the real world with Stage 3 in our simulations. 

Similar to Table 6.12, in Table 6.13, this comparison is performed for 2 different cases of 

“loose” and “strict” rifle continuity constraints. 

Table 6.12. Comparison of the stage 2 of "Aim While Prone" in the real world with our simulations 



  

 

146

 
Stage 3 in the Experiment:   Right hand Leaves the stock and holds the handle.  

 
Stage  3  in  the  predictive  dynamics  code with 

continuity  constraint  imposed  loosely  (Rifle 

motion  is not  continuous  and  it  jumps during 

the  transfer  from  Type  3  to  Type  1 

attachment): 

Stage  3  in  the  predictive  dynamics  code 

with continuity constraint  imposed strictly 

(Rifle motion is continuous and it transfers 

from a rigid attachment Type 2 to another 

rigid  attachment  Type  3  without  any 

jump): 

 

 

Rigid attachments of the rifle to hands in our simulation in the pictures in Tables 

6.9 and 6.10 are highlighted by white circles. The jumps in the rifle motion mentioned in 

Tables 6.9 and 6.10 at stages 2 and3 (if continuity constraints are loose) do not model the 

loose attachment of weapon well enough because collisions may occur between these 

Table 6.13. Comparison of the stage 3 of "Aim While Prone" in the real world with our simulations 
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jumps which cannot be calculated or avoided. We have assumed that these jumps are 

unacceptable although this assumption reduces the feasible solution space size in 

optimization. 

 

6.10 Collision Avoidance Implementation in Aim While 
Prone 

When the rifle motion continuity constraint was imposed strictly as mentioned in 

Section 6.9, it was observed that the rifle penetrates the head of the avatar very obviously 

and the result is by no means acceptable and is far from the reality. The snapshots of the 

motion when the rifle penetrates the avatar's head are shown in Figure 6.2. 

 

 
 

Therefore, it is necessary to use the collision avoidance modules explained in 

Appendix A to avoid the collision between the rifle and the head of the avatar. All the 

spheres that fill (model) different segments of the avatar are previously defined in an 

Figure 6.2.  Penetration of rifle into the avatar without collision avoidance constraints 
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input file ("segment_structure.txt") for all predictive dynamics tasks. To implement 

collision avoidance for any object in the environment, we need to fill it by using spheres, 

infinite cylinders, infinite planes, finite cylinders or finite planes as explained in 

Appendix A. In order to model the rifle in collision avoidance, we can use a model as 

shown below which consists of 4 finite cylinders and 2 finite planes. For simplicity, 

initially we only consider one finite cylinder for modeling the rifle. The considered finite 

cylinder is highlighted in Figure 6.3. 

 

 

 
Change in the results after the implementation of collision avoidance is shown in 

Figure 6.4. The only change in the code is the addition of the collision avoidance of head 

(one moving sphere which is defined in the input file "segment_structure.txt") with rifle 

(one finite cylinder moving as a function of design variables in space). 

Figure 6.3.  Modeling of rifle for collision avoidance with one finite cylinder 
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We compare the snapshots between Figures 6.2 and 6.4 in Figure 6.5. Comparing 

the two snapshots in Figure 6.5, one can see that the avatar has moved its head back, 

Figure 6.5.  Comparison of the results with and without collision avoidance: Collision avoidance 
constraints change the avatar’s motion to prevent the penetration of the rifle with the avatar. 

Figure 6.4.  Preventing the interference of rifle with the avatar using collision avoidance constraints 
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changed the orientation of the rifle by bending its wrist and has moved its right elbow 

closer to the body to elevate the upper body (all decided by optimization) to avoid the 

collision of the rifle with its head. 

However, the modeling of the rifle shown in Figure 6.3 was not enough to 

completely avoid any collision of the whole rifle with all body segments of the avatar. 

Still, the left and right hands of the avatar occasionally penetrated other parts of the rifle 

that were not modeled in Figure 6.3. For a more detailed modeling of the rifle in collision 

avoidance, we use 5 finite cylinders and 2 finite planes. The considered finite cylinders 

and finite planes are highlighted in Figure 6.6. 

 

 

 
 

Figure 6.6.  Modeling of rifle for collision avoidance with 5 finite cylinders and 2 finite planes 
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The modeling shown in Figure 6.6 improves the collision avoidance to more 

completely avoid the collision of the whole rifle with the avatar. However, no matter how 

much detail is considered in modeling the rifle in collision avoidance, still minor 

collisions may occur. Because the constraints in predictive dynamics are imposed at a 

finite number of stages during the motion and minor collision still may occur and remain 

undetected in the intervals between constraint checks. The solution would be to increase 

the number of constraint checks. However, doubling the number of constraint checks is 

always equal to doubling the number of constraints in the optimization algorithm and 

slows down the speed of computation. To overcome this drawback, unlike other tasks, in 

aim while prone task, we check the constraints with different frequency during the 

motion. In the intervals where collisions are more likely to occur, the frequency of 

constraint checks during the motion is set to be much higher than the intervals where 

collisions are less likely to occur. With this strategy, suitable results are achieved for the 

aim while prone task. 

  

6.11 Motion Prediction Result for Aim While Prone 

The motion prediction frames for the "aim while prone” subtask are shown in 

Figure 6.7 along with the ground contact modeling for each stage.  
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6.11.1.  Results for Changing Target Engagement Inputs  

In this section, first we compare the results for the case when the “Body Azimuth 

Angle” explained in Section 6.6.1 is enforced (Azimuth Flag=1) versus the case where it 

is predicted (Azimuth Flag =0). Figure 6.8 shows the last motion frame for the case 

where body azimuth angle is predicted. Figure 6.9 shows the last motion frame for the 

case where body azimuth angle is enforced to have a value of "-10" degrees. The target is 

located at (0,1,100) in both cases. Visually, the predicted case looks more comfortable. 

Figure 6.7.  Motion prediction results for the "Aim While Prone” subtask 

Figure 

Part

(a),(b) RightHip RightElbow RightHip RightElbow

LeftHip LeftKnee LeftHip LeftKnee

RightKnee RightKnee

(d),(e) RightHip LeftElbow RightHip LeftElbow

LeftHip LeftKnee LeftHip LeftKnee

RightKnee RightKnee

(c ),(f),(g) RightHip RightElbow RightHip RightElbow

LeftElbow LeftHip LeftElbow LeftHip

LeftKnee RightKnee LeftKnee RightKnee

GRF Points (Points that can take 

ground reaction forces)

Points defining the ZMP convex hull
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 Figure 6.9. Uncomfortable "Aim While Prone" motion with enforced "Body Azimuth Angle=-10°"  

Body 
Azimuth 

Angle= -10°

Global Z 
Direction 

Body Line
 Direction

Global Z 
Direction 

Global Z 
Direction 

Figure 6.8. Comfortable "Aim While Prone" motion with predicted "Body Azimuth Angle"  

Global Z 
Direction 

Body Line 
 Direction 

Body Azimuth 
Angle 

Global Z 
Direction 

Body Line
 Direction

Body 
Azimuth 

Angle 
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As another example for changing target engagement inputs, we change the target 

location and observe the change in results. Figure 6.10 shows the results for two target 

locations at (0,1,100) and (0,20,100). “Body Azimuth Angle Flag” as described in 

Section 6.6 is set to zero for both cases. Therefore, the optimization predicts the best 

body orientation to engage these targets. 

 

 

 

6.11.2.  Results for Changing the Rifle Stock Length  

Due to its importance, the effect of "changing the rifle stock length" or "adding 

armor plate to the shoulder" needs to be studied closely in all aiming tasks. Therefore, 

this value is directly given to all the aiming tasks by an input number. This input number 

specifies the difference between the modified "Rifle Stock Length" (or the thickness of 

armor) and its default value. This input number can be either positive or negative. For 

example a value of zero indicates the default rifle stock length (or no Armor plate on 

shoulder). The effect of changing this number is shown in Table 6.14 for the aim while 

prone task. 

Figure 6.10. Results of "Aim While Prone" for target located at Left: (0,20,100), Right: (0,1,100) 
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Table 6.14. Results of "Aim While Prone" for variable rifle stock length (shoulder armor plate thickness) 
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6.12 Validation of the Predicted NPOA and the Motion 

To validate the predicted NPOA in the "Aim While Prone" subtask, the angle 

between the body line and the target line on the ground was measured for several 

subjects. The average angle observed was 52.47 degrees. The predicted angle shown in 

Figure 6.11 is normally about 54 degrees which matches very closely with the 

experiment. 

 

 

 

The results for the "Going Prone" subtask are also independently validated and 

match well with the experimental data which is motion captured in the VSR Lab at the 

University of Iowa. 

 

Figure 6.11. Predicted angle between the body line and target line to minimize joint discomfort 
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CHAPTER 7 

NORMAL CONTACT MOMENT (NCM) CONCEPTS 

7.1 Introduction 

The goal of this chapter is to present a general set of constraints on the equivalent 

contact force systems of individual non-adhesive contact areas which model the non-

adhesiveness of the contact areas. These constraints can be used to model dynamic 

systems with several non-adhesive contact areas with the environment. These contact 

areas can be oriented arbitrarily with respect to each other and do not have to be coplanar 

(unlike what was required for the ZMP concepts). In order to do so, a new concept of 

Normal Contact Moment (NCM) point is introduced and used to model the non-

adhesiveness property. 

Based on the general constraints, we will also define margins of tipping and 

slipping stabilities in Chapter 10 which are also applicable for the most general cases of 

contact areas. 

 

7.2 Motivation for NCM Constraints 

As was described in Chapter 4 and implemented in Chapters 5 and 6, the effect of 

distributed forces acting on a system from a contact area are modeled by equivalent 

contact force systems (forces and moments) in the predictive dynamics method. It was 

observed in the simulation results of the “going prone” task in Chapter 6, that some of the 

components of these contact force systems calculated by the ZMP method seemed to be 
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unacceptable, considering the ground contact areas to be non-adhesive. Therefore, it is 

investigated to determine if there are any realistic bounds on the contact forces and 

moments. 

Non-adhesiveness of an environmental contact area of a dynamic system imposes 

two distinct types of limitations on the distributed contact forces that can be applied from 

that contact area on the system. They need to be unilaterally compressive and also obey 

coulomb friction laws.  

In this chapter we model the effect of distributed contact forces on a contact area 

by an equivalent concentrated reaction force systems (a force vector and a moment 

vector). The limitations imposed on the distributed contact forces result in some 

constraints on the equivalent force systems. The effect of the unilaterality of distributed 

contact forces on equivalent contact force systems is addressed by defining a point called 

Normal Contact Moment (NCM) point and the corresponding NCM constraints. The 

coulomb friction constraints presented in this chapter also use the definition of the NCM 

point. 

7.3 Definitions for Environment Contact Modeling 

Consider a digital human model  having rigid, flat, non-adhesive contact areas 

with other bodies in the environment (such as the ground), as shown in Figure 7.1. 

Consider one of its contact areas with another solid body  . Although not necessary for 

the derivations in this research, let us assume that   is fixed and non-movable. Consider 

this contact area   (the contact area of the hand of the avatar with the environment) and 
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rigid, it is always possible to replace the distributed contact forces cf  by a resultant force 

F  and a resultant concentrated moment M  at any desired point acting from body   to  

body  . The effect of the resultant is the same as distributed forces in our calculations, 

because we do not consider the deformation of  . Let us define F  and M  to act at a 

point  P located at p  on plane    (inside or outside the contact area) as shown in Figure 

7.1. Therefore we have: 

 

   , 7.4.1dA dA
 

    c cF f M r p f
 

Also, let us define the components of vectors F  , M , cf   and p  in the coordinate 

frame , ,1 2 3e e e  such that: 

 1 2 3 1 2 3

1 2 3 3 1 2 3

,
7.4.2

,

M M M F F F

p p p f f f

      
       

1 2 3 1 2 3

1 2 c 1 2 3

M e e e F e e e

p e e e f e e e
 

 

7.5 Replacing Concentrated Contact Forces by Distributed 
Equivalents 

This section explains that a non-adhesive contact surface is not able to exert every 

arbitrary F  and M  on body  . It is obvious that the contact area   can exert any 

arbitrary F  and M  on body   if and only if it is possible to find non-adhesive 

distributed contact forces on   to replace F  and M . Therefore, we consider the inverse 

problem of replacing a concentrated force and a moment at any point  P located at p  on 
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plane   by distributed contact forces cf  acting from body   on body   through the 

contact area   as shown in Figure 7.1. Unlike the problem discussed in Section 7.4, this 

inverse problem may not always have a solution, because the contact area   is assumed 

to be non-adhesive. Non-adhesiveness of contact area   limits its ability to produce all 

desired arbitrary resultant contact forces and moments F  and M . In other words it is not 

always possible to replace any desired  F  and M  by distributed contact forces cf  acting 

on contact area  . Non-adhesiveness limits the choices for F  and M  in the following 

ways: 

 

 Limitation 7.1: 

cf  can only have positive components along 3e  axis 

 Limitation 7.2: 

Coulomb friction law limits the possible values for planar (frictional) components 

of the distributed forces and therefore the concentrated force and moment (

1 2 3, ,F F M  ). 

 

7.6 Definitions of NCM Point and NCM Force System 

To study the possibility of replacing a desired F and M  acting at p  under 

Limitation 7.1, we define a point and a force system called NCM (Normal Contact 

Moment) point and NCM force system corresponding to F, M  and p  which only 

depend on the components of these three vectors. 
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Definition 7.1:   NCM Point and NCM Force System 

NCM point is defined as that point on plane   at which the moment of the force 

system equivalent to F and M  will be only about the normal axis to the plane  . We 

call that equivalent force system the NCM force system (the contact force system in 

which the contact moment is normal to the contact area) and denote it by F and 'M  as 

shown in Figure 7.2. 

 

 

The convex hull   of the contact area from Figure 7.1 along with the NCM point 

and the NCM force system corresponding to F  and M  are shown in Figure 7.2. 

Therefore 'M  should have no component along 1e  and 2e . The location of the NCM 

point, denoted by v  can be calculated as shown below: 

 

F

p

1e

2e



v

'M

F

M
NCM  
Point

Figure 7.2. The NCM force system equivalent to F, M 
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   

       

      

   

1 2

0

1 2 3

2 1
3 1 2 3 1 2

3 3

3 1 2

' '

7.6.1

0 : , , , , 0
7.6.2

0 : 0

M M

M M F

M M
F v v v p p

F F

F M M

      

 
    
 
 

    

  
        

   

3×e

3 3 3

0

2 1 3 3

2 1

M M p - v F M × e M × e p - v F × e

0 - e + e + e p - v F - e F p - v

0 - e + e + - p - v





  

 

As seen in Equation (7.6.2), if 3 0F   then the location of NCM point is unique. If 

we have 3 0F   and 1 2 0M M  , then any point will be an NCM point because 

Equation (7.6.1) will hold true for any value of p  and v . If we have 3 0F   but 1 0M   

or 2 0M   , then no point will be an NCM point because Equation (7.6.1) will hold true 

for no value of p  and v . Therefore, if we have 3 0F  , it is obvious that the constraints 

on the equivalent forces and moments to model the non-adhesiveness of a contact area 

are: F = M = 0 (other components of F  and M  will also be zero due to coulomb friction 

law as will be shown later). So, in order to avoid further confusion, we only define NCM 

point for the cases when 3 0F  .  

 



  

 

164

7.7 Unilaterality Constraints via NCM Concepts 

To simplify the problem presented in Section 7.5, we initially ignore Limitation 

7.2 and only consider the constraints on F  and M  imposed by Limitation 7.1. Later in 

Section 7.8, we will consider the additional constraints on F  and M  imposed by 

Limitation 7.2. 

 

7.7.1 NCM Constraint and the Unilaterality of Distributed Contact Forces 

To study the possibility of replacing a desired F  and M  acting at p  under 

Limitation 7.1, we use the NCM point and NCM force system concepts introduced in 

Section 7.6. This possibility will be studied using Theorem 7.1 given later in this 

subsection. Using results from Theorem 7.1, we will establish constraints on F  and M  

that ensure this possibility and denote them as “NCM Constraints” later in this section. 

 

 

Theorem 7.1:  NCM Constraint and the Unilaterality of Distributed Contact Forces 

Consider an arbitrary dynamic system having several contact area with the 

environment such as   shown in Figure 7.1. Consider its convex hull    repeated again 

in Figure 7.3 for convenience. For any arbitrary contact force system  F and M  acting 

on the contact area  at location p , the following two statements are equivalent (they are 

necessary and sufficient conditions for each other, or one can conclude statement 1 from 

2 and vice versa.) : 
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1- The NCM point corresponding to the force system F and M  , located at v  is inside 

the convex hull of   , denoted by   and 0 3F e  

2- It is possible to find unilateral distributed contact forces  cf  inside the contact area   

with 0 c 3f e  that are equivalent to F and M . 

 

                                                 

 

Proof: 

Part A) Assume statement 1 holds, we prove statement 2:  

The proof method we use in this part is a constructive proof, i.e. we provide a method for 

creating the distributed forces cf  that can replace F  and M  . Consider the NCM force 

F
cf

1e

2e


NCM  
Point 

v

'M

r

Figure 7.4. Distributed forces on a 
contact area and their equivalent NCM 

force system 

M

F

pr

cf

1e

2e



NCM  
Point 

v

Figure 7.3. Distributed forces on a contact 
area and their equivalent concentrated 

force and moment and NCM point  
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system F  and 'M  acting at the NCM point inside the convex hull. We construct 3 

different subsets of cf  called a b cw , w , w , one ( aw ) for replacing F  without any 

contribution to 'M  and the 2 others ( b cw , w ) for replacing 'M  without any contribution 

to F . These three subsets satisfy the following conditions: 

           
       

 7.7.1





     

  
a a c cb b

a c cb

w w w w w w

w w w f
 

 

Constructing aw  : 

The first subset of cf  called aw  can be constructed as follows: 

Case 1: 

When NCM point is a contact point (it is inside  ): 

Assume all distributed forces aw  to be concentrated at the NCM point and all have same 

directions as F  . Although there is a constraint ( 0 0    c 3 a 3f e w e ), it is always 

possible to do so because 0 3F e . 

It is also obvious that it is possible to select the magnitudes of aw  such that: 

 7.7.2dA


  aF w
 

Also because aw  is located at the NCM point, aw will have no contribution to 'M .  

Case 2: 

When NCM is not a contact point (it is inside , but not inside   ): 
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The convex hull of the contact area   which was previously shown in Figure 7.4 

is repeated in Figure 7.5 and identified in yellow. The contact area   (which is a subset 

of  ) is shown by another color (green), overlaid on the yellow colored areas. Therefore, 

the green areas in this figure denote points that belong to both   and   , while the 

yellow areas only belong to   but not   . It is possible to find a line that passes through 

the NCM point and contains two arbitrary contact points G and H in   . Let us denote 

the unit vector along that line by Le  . In this case, NCM point would be located between 

F

Le



NCM  
Point 

'M

H

G
The contact area is 
shown by green 

Figure 7.5. Proving statement 2 when NCM point is inside the convex hull, but not a contact point 

g

h

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G and H. Let us denote the distance from the NCM point to G and H by g  and h  . We 

assume 
aw  to be composed of two subsets 

Gaw  and 
Haw  such that: 

           , 7.7.3   
G H G Ha a a a aw w w w w   

Assume all distributed forces 
Gaw  to be concentrated at the point G and all have same 

directions as F . It is obvious that it is possible to select the magnitudes of 
Gaw  such that: 

 7.7.4
g

dA
g h 


  GaF w

 

Assume all distributed forces 
Haw  to be concentrated at the point H and all have same 

directions as F . It is obvious that it is possible to select the magnitudes of 
Haw  such that: 

 7.7.5
g

dA
g h 


  HaF w

 

So, the total contribution of aw  to forces and moments about NCM point is: 

 

 

7.7.6

7.7.7

h g
dA dA dA

g h g h

h g
g dA h dA g h

g h g h

  

 

     
 

          
 

  

 

a G H

a G H

w ,VCM a a a

w ,VCM L a L a L L

F w w w F F F

M e w e w e F e F 0
 

Constructing b cw , w  : 

The second and third subsets of cf  respectively called b cw , w  can be considered to be 

concentrated at two locations b cr , r  inside   and acting along    3 b c 3 b ce × r - r , -e × r - r

(in the 1 2e e  plane, normal to 
b cr , r  ).  So, they are all planar (frictional) distributed forces 

(  b 3 c 3w e = 0 , w e = 0  ). It is possible to select the magnitudes of b cw , w  such that: 
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 7.7.8cdA dA
 
 b

b c

M'
w = w =

r -r
 

Therefore, the distributed forces b cw , w  are equivalent to a couple (same magnitude and 

opposite directions) that has no contribution to F  and produces a same moment about 

any point equal to 'M  as shown below: 

     

 

     

, 7.7.9

7.7.10

7.7.11

dA dA

dA dA

 

 

   
       

   

  

   
          

   

 

 

b c

b c

3 b c 3 b c
b b c c

b c b c

w w b b c c

3 b c 3 b c
w w b b c c

b c b c

e × r - r e × r - r
w w w w

r - r r - r

M + M = r w r w

e × r - r e × r - r
M + M r w r w

r - r r - r

 

   

   

       
2

0

dA dA
 

      
                 

 
   

 




  


 b c

b c

b c

b c

b c

3 b c
w w b b c c

b c

3 b c
w w b c

b c b c

b c 3 b c
w w

b c b c

r -r

b c b c 3 b c 3
w w

b c

e × r - r
M + M = w r w r

r - r

M' e × r - r
M + M = r - r

r - r r - r

M' r - r e × r - r
M + M =

r - r r - r

r - r r - r e r - r eM'
M + M =

r - r


 

 7.7.12

Definition of NCM Point is along




 


   

 

b c

b c

b c

b c

b c

w w b c 3 3
b c

w w b c 3 3
b c

3 3

w w

r - r

r - r

M'
M + M = r - r e = M' e

r - r

M'
M + M = r - r e = M' e

r - r

M' e M' e M'

M + M M'


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   

 

 

 

,

7.7.13

Also

dA dA

dA dA

dA dA

 

 

 




  

  
       

  
     

  


 

 

 

b c

b c

b c

b c

b c

w w b c

3 b c 3 b c
w w b c

b c b c

3 b c
w w b c

b c

3 b c
w w

b c b c b c

w w

F + F = w w

e × r - r e × r - r
F + F w w

r - r r - r

e × r - r
F + F = w w

r - r

M' M' e × r - r
F + F =

r - r r - r r - r

F + F = 0

 

Therefore, the set of distributed forces cf  that we constructed by the subsets a b cw , w , w  

are equivalent to F  and 'M  and therefore are equivalent to F  and M  . 

 

Part B)  Assume statement 2 holds, we prove statement 1:  

Part B-1) Proving that NCM point is “not” outside the convex hull (Proof by 

contradiction): 

As shown in Figure 7.6, if NCM point is outside the convex hull of the contact 

area  , consider the nearest edge of the convex hull to the NCM point. Due to the 

definition of the convex hull, if you draw a line parallel to that edge, the line will not 

intersect the convex hull and the convex hull will lie on one side of the line. Now, define 

a unit vector u  perpendicular to this line and pointing from the NCM point to the convex 

hull. Then it is obvious that for any point Q in the convex hull, located at r: 

   0 and 0 7.7.14   3r - v u u e  
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   

        

      

0

' , '

0 7.7.15

c c c

c

dA dA

dA dA

dA



 

 





         

 
           
 
 

    

 

 



3e

c 3 c 3

3 3 3

u

3

M r v f M e 0 r v f e 0

e r v f e f r v 0 f e r v 0

f e r v u


 

     
  

:

2 0

7.7.14 0

0 : !

c

For any point on we have

Statement

If NCM point is outside theconvex hull

dA Impossible




  
    

   

3f e

r v u

 

So, we have proved that NCM point is inside the convex hull. 

Part B-2) Proof of 0 3F e  : 

 
, 0 0dA



      c c 3 3F f f e F e
 

The results of Part B-1 and Part B-2 prove that statement 1 holds. 

NCM Point

u
Q r - v

cf



3e

1e

2e
3e

v

r

Figure 7.6. Part (B-1) of the proof: proving that it is impossible for NCM point to be outside the 
convex hull if the contact area is non-adhesive 
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It is obvious that if we can find non-adhesive distributed contact forces in the 

contact area ,  to replace F and M  , we are sure that exerting F  and M  on body  is 

possible for that contact area in the real world. Based on the results from Theorem 7.1, 

“NCM Constraints”  are defined as follows: 

 

Definition 7.2:   NCM Constraints 

The NCM constraints for a force system F and M  acting on a non-adhesive 

contact area   indicate that the NCM point corresponding to F and M  should be inside 

the convex hull  of the contact area and 0 3F e  in order for F and M  to be exertable 

from contact area   onto the body  . 

 

  



M

F

pr

1e

2e



NCM  
Point 

v

iE

1iE 

iL  iv E

Figure 7.7. Method for checking the NCM constraints 

P
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For computational purposes, if the convex hull  of the contact area is a polygon 

with corners  1iE i m  , as shown in Figure 7.7, we can use a general formula to 

check whether the NCM point is inside the convex hull. To do that, let us assume that iE  

move counter-clockwise around the convex hull about 3e  as we increase i . Denote the 

position of each corner iE  by the vector iE . Also define  i i+1 iL E E  as the vector 

connecting the two adjacent corners iE  and 1iE   and define   id   i i 3L v E e  where 

v  is the location of the NCM point. Then, in order for the NCM point to be inside the 

convex hull   , we should have: 

 

  

   

1

2

2
1

3

1
22 1

31 2 3 1 2
3 3

1 : 0

0
7.4.1 , , , ,0

0

i

i

i i

M
p E

Fi m d
M

d p EM M Fv v v p p
F F

     
         
   

           
       

    
  
  

i i 3

i 3

L v E e

L e


 

   

       

2 1

3

1 2

1 2
2 11 2

3 3

0

3 2 3 1 3 1 3 2 31 2

0

0

i i i i i

F

i i i i i

M M
d L p E L p E

F F

d F L p F M E F L p F M E F


   
          

   

       

 

Therefore the NCM constraints in the case where the convex hull  of the contact 

area is a polygon with corners  1iE i m   will be: 

 

         
1 2

3

3 2 3 1 3 1 3 2 31 2

0

1 : 0 7.7.16i i i i i

F

i m d F L p F M E F L p F M E F

  
        

3F e


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As it is seen in Equation (7.7.16), besides a constraint on the NCM point location, 

the NCM constraints also include a constraint on the equivalent force system to be 

compressive. Also it is noted that NCM constraints are composed of constraints on some 

components of the equivalent contact forces and moments ( 1 2 3, ,M M F  ). As it will be 

seen later, the other three components of the equivalent forces and moments ( 1 2 3, ,F F M  ) 

will be constrained by the coulomb friction constraints. 

 

7.7.2 NCM Point Location and the Location of Distributed Contact Forces 

In this subsection, we present another theorem which shows that the NCM point is 

on an edge of the convex hull, if and only if all distributed contact forces are on that edge. 

 

Theorem 7.2: NCM Point Location and the Location of Contact Forces 

Consider an arbitrary dynamic system having several contact area with the environment. 

For example, consider the problem depicted in Figures 7.1 and 7.3 with some of its 

features shown again in Figure 7.8. For any arbitrary contact force system F and M  

acting on the contact area  at location p , then:  

1- if the corresponding NCM point is on the edge '  of the convex hull   of the 

contact area and 0 3F e , then 

2- the distributed contact forces  cf  to replace F and M , are only on the edge '  of the 

convex hull of the non-adhesive contact area (no cf  can exist outside '  ), and vice 

versa. 
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Proof: 

First, it should be noted that unilaterality requires 0c  3f e  and due to coulomb friction 

law we also have: 0c  3f e  (because 0c  3f e  will result in 0c f  due to friction 

constraints). Therefore, for a non-adhesive contact area we will always have: 0c  3f e .  

 

Part A) Assume statement 1 holds, we prove statement 2: 

 

Part A-1) Proving that: cf  "can be found on" '  to replace F  and M : 

The proof is exactly the same as Part A of Theorem 7.1, if we consider edge '  instead 

of area   in that part. 

M

F

p
r

cf

1e

2e



NCM  
Point 

v

'

Figure 7.8. Distributed forces and the NCM point being on an edge of a contact area 
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Part A-2) Proving that: cf  are "only" on the edge '  :  
 

In this part, we need to prove that no non-adhesive cf  can exist outside edge '  .  

 

 

The NCM point is located at v  on edge ' . As shown in Figure 7.9, let's define a unit 

vector u  pointing from the NCM point towards the inside of the convex hull, 

perpendicular to edge ' . Due to the definition of the convex hull, for any point Q inside 

the convex hull located at r: 

 

 

       
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e

c 3 3 3
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r v f e 0 e r v f e f r v 0
  

     7.7.17c dA
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    3f e r v 0  

NCM Point 

u
Q r - v
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

3e

1e

2e
3e

v

r

'

Figure 7.9. Part (A-2) of the proof: proving that contact forces are only on an edge of the contact 
area if NCM point is on that edge 
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    
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
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r v u

f

 

The results of Part A-1 and Part A-2 prove that statement 2 holds. 

 

Part B)  Assume statement 2 holds, we prove statement 1: 

Part B-1) Proving that NCM point is on '  (proof by contradiction): 

As shown in Figure 7.10, if NCM point is not on edge ' , define a unit vector u  

pointing from the NCM point towards the edge '  , perpendicular to edge '  and on 

the plane   (defined in Figure 7.1). Then it is obvious that for any point Q on edge ' , 

located at r:    0 0 7.7.18And   3r - v u u e
 

 

 

NCM Point 

u
Q r - v
cf



3e

1e

2e
3e

v

r

'

Figure 7.10. Part (B-1) of the proof: proving that that if all contact forces are on an edge then NCM point
is on that edge 
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7.7.18 0 If NCM Point is not on the edge

0 : Impossible!

c

For any point on we have
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



  
    
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3f e

r v u

 

 

So, using proof by contradiction, we have proved that NCM point is on the edge 

of the convex hull. 

 

Part B-2) Proof of 0 3F e  : 

'

, 0 0dA


      c c 3 3F f f e F e
 

The results of Part B-1 and Part B-2 prove that statement 1 holds. 
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7.8 Coulomb Friction Constraints via NCM Concepts 

As expressed in Section 7.6, non-adhesiveness of contact area  limits its ability 

to produce all desired arbitrary resultant contact forces and moments F and M . Non-

adhesiveness imposes 2 different types of limitations on the choices for F and M  as 

discussed in Section 7.6. In the theorems expressed in previous sections, we have only 

considered Limitation 7.1 and neglected Limitation 7.2 (NCM constraints allow the  

existence of unlimited frictional forces and apply no constraint on them). 

In this section, we consider the additional constraints on F and 'M  (equivalent 

force and moment at the NCM point) caused by Limitation 7.2 in Section 7.6. Coulomb 

friction law limits the possible values for planar (frictional) components of the distributed 

forces and therefore the concentrated force and moment at the NCM point ( 1 2 3, , 'F F M  ).  

A simplified formula usually used to account for sliding friction is: 

 
3 1 2 3 3

2 2 2 2 2 2
1 2 1 2 1 2 3 7.8.1

F F F F F

F F F F F F F
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f 1 2 f

F F e e e F e

F e e F

 

Friction law also imposes a constraint on the value of 3'M : 
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Considering that 0 c 3f e , the maximum and minimum possible values for 

3'M are achieved when r v  are maximum. Therefore, a loose constraint for 3'M  is : 

 3' 7.8.4
Max Max

dA M dA
 

        c 3 c 3r v f e r v f e

 Coulomb friction law, considered for distributed forces, can be written as: 

1 2 3 3

3

2 2
1 2 1 2 3

2 2
1 2 1 2
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f dA M f dA

F M F

 

 
 

     
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r v r v

 

To find an approximation for 
Max

r v , consider a circle with its center at the 

NCM point as shown in Figure 7.11. We find the maximum radius R  for this circle such 

that there exist at least two points inside the convex hull   and on the circumference of 

the circle on exactly opposite sides of the NCM point (or find the largest line segment 

inside the convex hull with NCM point as its midpoint). To maximize 3'M  , we assume 

that the distributed contact forces are only concentrated at these two points with each 

point tolerating a concentrated force equal to 
2

F
. The ranges for the frictional moment 

3'M  at the NCM point that can be produced by these two concentrated forces will be: 

 3 3 3' 7.8.6RF M RF      
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As an approximation we assume without a mathematical proof that it is 

impossible to consider a case in which 3'M  can exceed the limits in constraint (7.8.6). 

The explanation for assuming two opposite points taking exactly 
2

F
 is that the distributed 

forces should not produce any net moment about planar axes about NCM point according 

to the definition of the NCM point. Plots of the values of R  versus the location of NCM 

point are calculated for different contact areas and shown in Figures 7.12-7.16.  

It is observed from these figures that when NCM point is at any of the corners of 

  , we will have 0R   and the contact area can take no frictional moment according to 

constraint (7.8.6) and 3' 0M  . If the NCM point is located on one of the sides of   , 

the maximum allowable range for frictional moment (maximum R ) occurs when NCM 

is the midpoint of that side. It is also observed from these figures that the maximum 

F cf

1e

2e


NCM  
Point 

v

'M

r

R

Figure 7.11. Finding the largest line segment in the convex hull with NCM point as its midpoint 
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possible range for frictional moment (maximum R ) occurs when the NCM point is 

somewhere near the geometrical center of  . These figures seem to match the reality 

very well and can be an evidence for the validity of constraint (7.8.6).     

 

 

 

 

 

2v

1v

R

Figure 7.13. The value of R for a regular hexagon - Left: Perspective view, Right: Top View 
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R
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Figure 7.12. The value of R for an irregular pentagon - Left: Perspective view, Right: Top View 
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1v

Figure 7.16. The value of R for a triangle - Left: Perspective view, Right: Top View 
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Figure 7.15. The value of R for a disk - Left: Perspective view, Right: Top View 
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Figure 7.14. The value of R for a rectangle - Left: Perspective view, Right: Top View 
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Anyway, constraint (7.8.6) may still not be a perfect constraint and will be a topic 

of future research. Due to this imperfectness, the satisfaction/violation of this constraint 

does not completely and mathematically ensure that the given solution is 

possible/impossible in the real world. So, one may want to consider larger values for R  

to have a more loose constraint and to be sure of including all solutions which are 

possible in the real world and this constraint might omit. On the other hand, one  may 

want to consider smaller values to ensure that the solution obtained is completely 

possible in the real world.  

Nevertheless, the role of 3'M  on the total net moment in the global coordinate 

frame is normally small compared to the moments produced by the components of F. 

This is because the distance of the global origin from F is normally larger than the value 

of R . Therefore, the possible inexactness of constraint (7.8.6) will not cause a major 

problem in the final results. Constraints (7.8.1) and (7.8.6) along with the NCM 

constraints are our proposed constraints on the resultant contact forces and moments αF  

and αM  acting on each contact area   . 

In Chapter 10, we shall see that in order to find the margins of stability, we have 

to solve an optimization problem. There, we shall see that inequality (7.8.6) is the only 

constraint that makes that optimization problem nonlinear. Therefore, we also propose 

here a linear constraint that can be used instead of the nonlinear constraint (7.8.6). We 

can derive the following inequality in a way similar to (7.8.5): 

 3 3 3 7.8.7
Max Max

F M F     r p r p  
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Because the distributed forces are in a convex hull, the maximum imaginable 

value for 
Max

r p   can be achieved at one of the corners of the convex hull as shown in 

Figure 7.17. Assume that it is achieved at corner iE  of the convex hull   of the contact 

area located at iE . Then, we can consider the following linear constraint instead of 

constraint (7.8.6):  

 3 3 3 7.8.8i iF M F     E p E p
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Figure 7.17. A loose constraint on the frictional moment which is linear 
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7.9 Summary and Conclusion 

This chapter presented a general set of constraints on the equivalent reaction force 

systems (forces and moments) of non-adhesive contact areas by defining a point called 

NCM point. The NCM (Normal Contact Moment) point is defined as that point on the 

contact area at which the moment of the equivalent reaction force system is normal to the 

contact area. The general set of constraints is composed of NCM constraints and some 

suggested constraints on frictional forces and moments which use the NCM point 

definition. Major conclusions from the present study are: 

1- A given contact force system F  and M  for a contact area is the resultant 

(equivalent) of unilaterally compressive distributed forces on that contact area, 

if and only if the NCM point corresponding to that force system is inside the 

convex hull of that contact area and F  is compressive, i.e., 0 3F e  

(Theorem 7.1). 

2- The NCM point corresponding to a contact force system  F  and M  is on an 

edge of the convex hull of the contact area, if and only if all the distributed 

contact forces on that contact area are acting on that edge (Theorem 7.2). 

 

According to the item 1 above, the NCM constraints (7.7.16) are necessary and 

sufficient for modeling the unilaterality of distributed contact forces. Therefore, the 

unilaterality of distributed contact forces can be modeled completely by the NCM 

constraints. Based on the NCM point location, we presented new constraints on the 

frictional contact moment of a contact area. NCM constraints along with these proposed 
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coulomb friction constraints ((7.8.1) and (7.8.6)) should be used in any problem where 

we want to model the equivalent concentrated forces and moments exerted on a body by 

an external contact area which is rigid, flat and non-adhesive. As no assumption was 

made in this chapter for the orientation of the contact areas, the presented NCM and 

friction constraints are applicable for systems with any number of contact areas with the 

environment, oriented arbitrarily with respect to each other. 
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CHAPTER 8 

ZMP VERSUS NCM CONSTRAINTS 

8.1 Introduction 

It is noted that if there is only one contact area between the dynamic system and 

the environment, then the ZMP and the NCM point coincide. When there are multiple 

contact areas, then each contact area has its own NCM point and the ZMP is somewhere 

inside the convex hull of all the contact points. In this chapter, we study the relationship 

between the ZMP and NCM point locations and compare the ZMP and NCM constraints. 

It is shown that ZMP constraint can be derived from the NCM constraints. It is also 

shown that ZMP constraint is a weaker constraint that can lead to unacceptable solutions 

for GRF. In a separate effort, we present a theorem which proves that the ZMP method in 

Chapter 4 produces incorrect solutions for GRF due to an assumption used in the ZMP 

method. The ZMP constraint also does not prevent this undesirable GRF to be produced 

due to its forementioned weakness. The pitfall in the logical reasoning that supported the 

ZMP method is also pointed out. The experimental data that supported the ZMP method 

are also analyzed to complete this study. Applicability of the ZMP constraint and its 

drawbacks are also compared with the NCM constraints. 

 

8.2. NCM as the Physical Reason for the ZMP Constraint 

In this chapter, it is mathematically proved that the NCM constraints are the real 

physical reason for the ZMP constraint (due to the dynamic equilibrium equations that 
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relates the GRF to IGE forces). As previously mentioned in Sections 3.3 and 3.6, the 

ZMP constraint is an inequality constraint which can be considered as a conversion of the 

two equations of the general dynamic equilibrium (out of the 6 force and moment 

equilibrium equations for the whole system) into inequalities by removing the contact 

forces acting on the system from the equations. These two are the equations of dynamic 

equilibrium of the moments of all the forces exerted on the whole system about the two 

horizontal axes. In fact, it is because of the constraints enforced by nature on the contact 

forces exerted by the ZMP contact areas that the ZMP constraint should hold true. Nature 

enforces these constraints due to the non-adhesiveness of the ZMP contact areas. For 

example consider a case where one of the contact areas (one foot) of a walking robot is 

strongly glued to the ground and the robot is bending forward extensively in a static 

posture. Then the ZMP constraint does not hold and is invalid because the contact forces 

are no longer unilateral. The ZMP can move out of the convex hull of the contact points 

and the robot will not fall. 

In Chapter 7, we replaced the effect of distributed contact forces exerted on the 

system from a particular contact area by the equivalent concentrated force and moment 

vectors. Due to non-adhesiveness, it was shown that each contact area can naturally exert 

only a specific range of possible contact forces and moments on the system based on the 

shape and the size of that contact area. In other words, each contact area is naturally 

unable to provide any arbitrary value for the six components of the equivalent forces and 

moments due to the non-adhesiveness of the contact area (which was modeled by the 

NCM and friction constraints). Dynamic equilibrium equations require that the sum of 



  

 

190

contact forces and moments for all the contact areas cancel the net force and moment of 

all other (IGE) forces. Therefore, it is in fact because of the natural constraints on the 

equivalent contact forces and moments of non-adhesive contact areas (NCM and friction 

constraints) that ZMP constraint should hold true. In the next section, we identify the 

exact relationship between ZMP and NCM (or friction) constraints. 

 

8.3. Mathematical Relationship Between ZMP and NCM 
Constraints  

Figure 8.1 shows a sample frame of motion of the digital human. Assume that the 

digital human having n rigid and non-adhesive external contact areas  1 n α   with 

the environment which are all located on the ground (or same plane). As shown in this 

figure, let us define the global coordinate frame zxy attached to the ground with the unit 

vector along the y axis perpendicular to the ground ( j = k × i ). Let us denote the ZMP 

location by the vector z . Let zmp
igeF  and zmp

igeM be the net equivalent force and moment of 

inertial, gravitational and external forces acting at the ZMP. 

Also, let αF  and αM acting at αp  denote the concentrated contact force and 

moment equivalent to the distributed contact forces on contact area  α  acting from the 

ground on the digital human. Denote the convex hull of  α  by α . The dynamic 

equilibrium equation about ZMP is : 
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Figure 8.1. Relation of NCM points to the ZMP in a sample motion frame in the "Aiming While Kneeling" 
task 
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Thus, the location of the ZMP z  , is the weighted average of the locations of αv . 

αv  is the NCM point for the contact force system αF  and αM  acting on contact area α .  

 

 

Lemma 8.1:  

The convex hull of n points is precisely the set of all the points which are the 

weighted averages of those n points. 

This lemma appears with a rigorous proof as Theorem IV.8 in Buss (2003). 
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Lemma 8.2:  

Any weighted average of n points falls within the convex hull of the n points. 

This is an obvious result from Lemma 8.1. It also appears in several works such 

as such as in Foley (1996). 

 

 

Theorem 8.1:   

ZMP Constraint is Necessary but not Sufficient for NCM Constraints 

Consider a system having external rigid and non-adhesive contact areas α  which are all 

located on the ground (or same plane), such as shown in Figure 8.1. Let αF  and αM  acting 

at αp  denote the concentrated contact forces and moments equivalent to the distributed 

contact forces on contact area α  acting from the ground on the system. Then statement 

2, shown below is a necessary but not sufficient condition for statement 1: 

  

1- Each NCM point corresponding to a αF  and αM  located at αv  is inside the convex 

hull of α  denoted by  α  (for any value of 1 n   ). 

2- ZMP located at z  is inside the convex hull of all the contact points Total  . 

 

Proof: 

Part A) In this part, we show that statement 2 is a necessary condition for statement 1.  



  

 

194

To do so, we assume that if statement 1 is true, then statement 2 has to be true, too: 

Each α  is a subset of Total  . If 1 is true, then it is obvious that all αv  are inside 

Total . So, their weighted average which is equal to the location of the ZMP, z  (Equation 

(8.3.7)) is also inside Total  according to Lemma 8.2. Therefore, statement 2 is true. 

 

Part B) 

 In this part, we show that statement 2 is not a sufficient condition for statement 1. 

To do so, we show examples where statement 2 is true, but statement 1 is false: 

 

Example 1:  If some or all of αv  are located outside α  but inside Total  , then 

statement 1 is false for those values of  . Statement 2 is true because any weighted 

average of the locations of αv  (such as ZMP location according to Equation (8.3.7)) is 

inside their convex hull, Total  according to Lemma 8.2. This example presented some 

cases where Statement 1 is definitely false and Statement 2 is definitely true. 

 

Example 2:  If some or all of the αv  are located outside Total , then statement 1 

is false for those values of  . But some specific weighted average of them (ZMP 

location for some specific values of 
y

F  in Equation (8.3.7)) may still be inside Total  . 

So, statement 2 can be true in such cases, too. This example presented some cases where 

Statement 1 is definitely false but Statement 2 may be true. 
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In other words, Theorem 8.1 states that: 

1- For a system having external contact areas which are all on the ground (or on a same 

plane) , if each αv  is inside α  (first part of NCM constraints in Definition 7.2),  

then the ZMP constraint is satisfied. 

2- The ZMP constraint cannot ensure that the reaction forces can be produced by the 

contact areas (whether each αv  is inside α ). Proof of Theorem 8.1 shows that if 

some or all of the NCM points are located outside α  but all are inside Total  , then 

the ZMP is inside Total . Even if some or all of the NCM points are located outside 

α  and outside of Total , we may still have ZMP inside Total . 

 

8.4. Inaccuracies of the ZMP Method in Chapter 4  

It was observed in the modeling of the “going prone” task in Chapter 6 that some 

of the components of the ground contact reaction forces and moments calculated by the 

ZMP method seem to be unacceptable and impossible in the real world. For problems 

where contact reaction forces are calculated, such as in "Optimization-Based Motion 

Prediction", constraining contact reaction forces and moments by NCM constraints will 

ensure that they are possible in the real world and also ensures that the ZMP constraint is 

automatically satisfied according to Theorem 8.1. Therefore, NCM constraints should be 

used in such problems and there is no need for the ZMP constraint. According to 

Theorem 8.1, NCM constraints will not be necessarily satisfied if ZMP constraint is 

satisfied. Therefore, in such problems, ZMP constraint cannot be used instead of the 
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NCM constraints, because it is very weak and cannot ensure that the calculated ground 

reaction forces and moments are possible in the real world, such as what we observed in 

the modeling of the “going prone” task in Chapter 6. 

 

8.4.1 Logical Pitfall in the ZMP method in Chapter 4  

As a first step, we identify the pitfall in the procedure for the ZMP method 

presented in Chapter 4. So, let us take a look at the reasons we previously used in 

Sections 4.3 and 4.6 to defend the ZMP method: 

Considering the method presented in Sections 4.3 and 4.6, we normally have 

more than one ground contact area and therefore, the ground reaction forces and moments 

are indeterminate.  It means that there exist infinite sets of solutions for ground reaction 

forces and moments that can satisfy the dynamic equilibrium equations (can cancel zmp
igeF  

and zmp
igeM  ). In the ZMP method, we first ensured that it was possible to find a set of 

unilateral distributed forces on these contact areas to cancel zmp
igeF  and zmp

igeM  and produce 

an acceptable motion  . Then, we used an assumption to partition zmp
igeF  and zmp

igeM  on 

these contact areas to calculate the ground reaction forces. This is not an exactly logical 

procedure. The logical procedure is to first calculate a set of ground reaction forces on all 

contact areas to cancel zmp
igeF  and zmp

igeM
 
and then use the NCM constraints to check 

whether each separate contact area is able to produce that equivalent ground reaction 

force and moment. 
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8.4.2 Mathematical Impossibility of Uniform Partitioning 

In this subsection, we first study the effect of uniform partitioning of GRF on 

location of the NCM point for each contact area. This is done in Theorem 8.2 which 

proves that any uniform partitioning of GRF will enforce all NCM points to coincide. 

Then, in Corollary 8.1, we discuss how this assumption produces GRF which are 

mathematically impossible in the real world. 

 

 

Theorem 8.2:  

Uniform Partitioning of GRF Enforces all the NCM Points to Coincide 

Consider an arbitrary dynamic system shown in Figure 8.2, having external rigid 

and non-adhesive contact areas α  which are all located on the ground (or a same plane). 

Also, let αF  and αM  acting at αp  denote the concentrated contact forces and moments 

equivalent to the distributed contact forces on contact area α  acting from the ground on 

the system. Assume all forces acting on the system except the ground reaction forces are 

determined. Consider an arbitrary point H located at h  (such as at ZMP or origin or any 

other arbitrary location). Let H
igeF  and H

igeM
 
be the net force and moment of inertial 

forces, gravity forces and external loads at H. The dynamic equilibrium equations for the 

system evaluated at H require that: 

 
 

H
H

H
H
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At the point H, we assume a uniform partitioning of the components of the 

concentrated contact forces and moments by ratios rβ  between the contact areas β  , i.e., 

we approximate each βF  and βM  similar to Section 4.6, for H instead of ZMP: 

      
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Then the uniform partitioning of GRF components enforces the NCM point 

corresponding to any βF  and βM  to coincide with the ZMP.  
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Figure 8.2. Effect of uniform partitioning of GRF at an arbitrary point H on the NCM point locations 
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(i.e., regardless of where the arbitrary point H is located, such as at ZMP, origin, arbitrary 

joint of the avatar, etc., βv z  for any value of 1 n    , where n is the number of 

contact areas).  

 

 Proof: 
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Definition 8.1:  

 Linearly Separable Subsets and Linearly Separable Contact Areas 

According to Elizondo (2006), two subsets X and Y of d  are said to be linearly 

separable (LS) if there exists a hyper plane P of d  such that the elements of X and those 

of Y lie on opposite sides of it. In this chapter we define the term "Separable Contact 

Areas" for contact areas on a same plane (considering plane as the 2 set). Two contact 

areas a  and b  on this plane (as the two subsets X and Y of 2 ) are said to be linearly 

separable (LS) if there exists a line on this plane such that the two contact areas a  and 

b  lie on opposite sides of it. In other words, two contact areas are linearly separable if 

their convex hulls do not overlap (have no point in common). 

 

 

Corollary 8.1:  

Contradiction of any Uniform Partitioning of GRF with the NCM Constraints 

Consider the problem presented in Theorem 8.2. Assume that all of the contact 

areas of the dynamic system are linearly separable (see definition 8.1). In other words, no 

two contact areas have convex hulls that overlap with each other. Then, for any two 

contact areas a  and b   and their convex hulls a  and b , at least one of the following 

conditions holds true: 
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1- The NCM point av corresponding to aF  and aM  is outside a  . 

(NCM constraint is violated and  aF  and aM are impossible in the real world).  

 

2- The NCM point bv corresponding to bF  and bM  is outside b  . 

(NCM constraint is violated and  bF  and bM  are impossible in the real world).  

 

This is because av  and bv should both coincide with the ZMP which cannot exist 

inside both of the two non-overlapping convex hulls a  and b . Therefore, in a dynamic 

simulation problem with contact areas that have non-overlapping convex hulls, the 

assumption of a uniform partitioning of the components of GRF between the contact 

areas will ensure that all calculated ground reaction forces and moments αF  and αM  on 

all contact areas α  are in fact impossible in the real world except maybe for one of the 

contact areas. This is because even if ZMP constraint is satisfied, ZMP can belong to 

either zero or one (but not more than one) convex hull at the same time. Also, all the 

NCM points should coincide at the ZMP according to Theorem 8.2. Therefore, all NCM 

points will be at a same location which cannot be inside more than one of the non-

overlapping convex hulls α  (For the possibility of any αF  and αM  in the real world, the 

NCM point corresponding to them should be inside α  .).   
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Corollary 8.2:  

Uniform Partitioning versus GRF as Design Variables in ZMP Method 

We could have used other methods for the partitioning of GRF in the ZMP method 

in Chapter 4. For example, we could: 

1- Consider the ratio of all the 6 components of GRF to the IGE forces and 

moments as one design variable along with using the ZMP constraint. 

2- Consider the ratio of any of the 6 components of GRF to the IGE forces and 

moments as a separate design variable along with using the ZMP constraint.  

In the Case 1 above, the GRF components are also uniformly partitioned on the 

contact areas, only their ratio to the IGE forces is not set equal to the ratio of ZMP 

distance from the contact areas. Therefore, they inherit all the problems of “uniform 

partitioning” assumption. 

However, Case 2 above can be compared with the “uniform partitioning” 

assumption used in Chapter 4. It should be noted that using the “uniform partitioning” 

helps the reaction forces and moments to be not too far away from the range that is 

possible in the real world. Because the “uniform partitioning”  will keep the NCM points 

inside convex hull of all the contact points Total , which contains points not too far away 

from individual contact areas (if they are not much smaller than the convex hull of all the 

contact points Total  ). Considering each component of the reaction forces and moments 

as design variables along with using the ZMP constraint (instead of NCM constraints) 

may produce a worse result, because although it will not enforce the reaction forces and 

moments to have values which are impossible in the real world, as “uniform partitioning” 
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does, it will allow the reaction forces and moments to be too far away from the range that 

is possible in the real world according to Theorem 8.1.  

On the other hand, NCM constraints contradict and cannot be used along with the 

assumption of a uniform partitioning of concentrated contact forces and moments that 

was used in Chapter 4 or the uniform partitioning along with using GRF as design 

variables as shown in Case 1 of this corollary. Because, if two contact areas with non-

overlapping convex hulls exist, then the NCM constraints cannot hold true and contradict 

with the “uniform partitioning” assumption and the optimization problem will render no 

feasible solution. Therefore, each component of the reaction forces and moments should 

be considered as a separate design variable when NCM constraints are used. 

 

 

Due to the lack of NCM constraints, the ZMP method in Chapter 4 has been used 

in the literature (along with the assumption that the components of the concentrated 

ground reaction forces are partitioned uniformly between the contact areas as explained 

in Section 4.6). Some examples are: Xiang et al (2007, 2009), Kim et al (2008), Bhatt et 

al (2008) in which the environmental contact areas of the system are the contact areas of 

the two feet with the ground which have non-overlapping convex hulls. The dynamic 

tasks shown in Chapters 5 and 6 were also modeled following the same method. As it 

was proved by Theorem 8.2 and Corollary 8.1, the values of ground reaction forces and 

moments calculated in the forementioned works on all of the contact areas are impossible 

in the real world (according to NCM constraints) except maybe for one of the contact 
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areas. This inaccuracy is enforced on them by the assumption of uniform partitioning of 

the components of contact forces and moments (which contradicts with the NCM 

constraints). This inaccuracy is not prevented by the ZMP constraint (ZMP constraint is 

too weak for that formulation). However, if the contact areas are not too far apart, then 

the points on the contact areas will not be too far away from the convex hull of all contact 

points. In such cases, according to Corollary 8.1, the ground reaction forces and moments 

(which are later used for calculating torques at joints) will not be too far away from the 

range that is possible in the real world and therefore, the results for the joint torques will 

look reasonable. 

By the way, the additional constraint 0zmp
ige  F j , suggested in Chapter 4 has not 

been mentioned in the literature to complete the ZMP constraint. But this additional 

constraint was used in the modeling of the dynamic tasks shown in Chapters 5 and 6 to 

ensure the possibility of motion. Therefore, although the calculated ground reaction 

forces and moments are impossible in the real world, the motion is ensured to be possible 

according to Theorem 4.1. 

 

8.4.3 A Re-Examination of the Basis for the Uniform Partitioning Assumption 

As discussed in Section 4.6, the ZMP-based partitioning of the GRF is based on 

several measurement data from experiments which suggest that the ratio of the vertical 

component of the ground reaction force (1 component out of the 6 components) tolerated 

by each foot in walking motion seems to be inversely proportional to the distance of that 

foot from the ZMP location (see Ren, 2005, 2007; Winter, 1990, 2009).  
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The pitfall in this partitioning is that this approximation and these measurement 

data are only for the vertical component of the ground reaction force. In the ZMP 

method, for simplicity, we assume that all the other 5 components of the ground reaction 

forces and moments are also partitioned on the contact areas by the same ratios. This is 

impossible according to Theorem 8.2 and Corollary 8.1, as discussed before. 

Therefore, to complete this study, let us go back to the original reference (Winter, 

1990, 2009) for calculating GRF in the ZMP method. And this time, let us study the 

measurement data for all of the GRF components, not just the vertical GRF component. 

Similar to Section 4.6, we replot the data measured in the walking experiment published 

in Winter (2009) in Figures 8.3, 8.4, 8.5. In these figures, we plot the ratio of ZMP 

distances from the left and right feet versus the inverse of the ratio of the vertical forces 

on them. Of course, these data are measured in 2 dimensions and the lateral dimension is 

ignored in these measurements. In Figures 8.3, 8.4, 8.5, Rz  and Lz respectively denote the 

distances of the ZMP to the right and left foot in the forward-backward direction. Also, 

, , , , ,yR yL zR zL xR xLF F F F M M  respectively denote the vertical and frictional ground reaction 

forces and tipping ground reaction moments on the right and left foot. 

Of course, instead of the 6 components of the GRF for 3D case, these 

measurement data are for 2D case (saggital plane for walking) and only consider 3 

components of the GRF (vertical and horizontal force and the moment perpendicular to 

plane).It is seen that the measurement data only approximately approve the linear 

assumption for the vertical force of the GRF. They violate the linear assumption for the 

frictional force and tipping moments of the GRF. 
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Figure 8.4.  Walking measurement data from Winter (2009), showing disparity of the proportionality of 

the frictional ground reaction forces (Fx) on the feet to the inverse of the ZMP distances from them 
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Figure 8.3.  Walking measurement data from Winter (2009), approximately matching the proportionality 
of the vertical ground reaction forces (Fy) on the feet to the inverse of the ZMP distances from them 

(subscripts L and R refer to left foot and right foot) 
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8.4.4 Partitioning of the Vertical Component of GRF in NCM versus ZMP Method  

As a final study in this section, one may become curious that the linear 

assumption for the data plotted in Figure 8.3 seems to be approximately true for the 

vertical component of the ground reaction force. The interesting point is that this is not a 

coincidence. It is in fact a theoretical inequality which is implicitly embedded in the 

NCM constraints and will be enforced automatically when NCM constraints are used. 

This relation between the “vertical component of GRF for each contact area” (denoted in 

our 3D formulations by 
y

F ) and the ZMP location (denoted in our formulations by z ) is 

enforced  by Equation (8.3.7) that we derived in the previous section. Equation (8.3.7) 

Figure 8.5.  Walking measurement data from Winter (2009), showing disparity of the value of contact 
moment of right foot at ZMP (normalized by dividing it by the vertical force) vs. the ratio of the distances 

of ZMP from the feet

R

R L

z

z z

xR

yR

M

F



  

 

209

indicated that the location of  ZMP z  , is the weighted average of the locations of αv  

weighted by the values of 
y

F . αv  is the NCM point location for contact area  α  and it 

is constrained by the NCM constraints (NCM constraints cause the approximate linear 

relation). Based on the definition of NCM constraints (Definition 7.2), the value for any 

v  is constrained to remain in the convex hull of its contact area. To plot the relation 

enforced by NCM constraints between z  and 
y

F  ratios, we start from Equation (8.3.7):  

 

 

8.3.7

:

8.4.5

y

y

y

y

F

F

NCM constraints enforce should beinside

F
Let us define r r
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




 



 



 






α

α

α

v
z

v

z v
 

Now, we try to find all the geometrical possible locations of z  for given values of 

r  (not for all possible values of  r ). According to Lemma 8.2, Equation (8.4.5) shows 

that for a given value of r   and all possible locations of v  , the locations of z  is some 

subset of the convex hull of all the contact areas  α  . To plot the geometrical location of 

z  for specific set of values for r  , let us consider the simple case of having only two 

contact areas. For example, consider a dynamic system having two coplanar contact areas 

with the environment with convex hulls 1  and 2  . In this case, we shall have: 

 
   

1 2 1 2
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1 1 2 2 2 1 2 2
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2 2

1 1
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z v v v v

v
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For example, consider convex hull 1  to be a pentagon and convex hull 2  to be 

a triangle located at positions shown in Figure 8.6. The convex hull Total  of all the 

contact points is shown as 4 5 1 1 2 3C C C D D D  .We are trying to find the locus (geometrical 

possible locations) of ZMP point ( z ) for a given value of 2r  ( 2r  is the ratio of the vertical 

components of GRF tolerated by each of the two contact areas) in Total   . Let us denote 

the mentioned locus by Area 
2r

  for a specific value of 2r . We will show that the Areas 

2r
  will look similar to what is shown in Figure 8.6. In order to do that, let us denote one 

fixed arbitrary corner of convex hull 1  by 1C . Let us also denote all corners of convex 

hull 2  by iD . 

 

 

Figure 8.6. Sample problem of finding the locus of the ZMP for different values of 2r  is depicted for 

two convex hulls 1  and 2  of two contact areas. The locus denoted by Areas 
2r

  is shown for 

several values of 2r  (0, 0.25, 0.5, 0.75, 1). 
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The locus of z  for any specific value of 2r (Area 
2r

  )  can be found by the 

following procedure. New symbols that appear in this procedure are shown in Figure 8.7 

and the procedure is depicted in that figure for 2 0.75r  (Area 0.75  ). Also, let A and B 

denote two arbitrary points inside the convex hulls 1  and 2  (they will be used later): 

1- Consider the NCM point ( 1v ) to be fixed to corner 1C . Vary 2v  on all corners iD  

and plot the locations of z  denoted by iE . 

2- Draw copies of 1  scaled by  21 r  with corner 1C  located at all points iE

denoted by i  . This gives the locus of point z  that are obtained by all values of 

1v  and specific values of 2v  (evaluated at the corners of the convex hull 2 ). 

Therefore, the location of points inside i  are (O is the origin point of the 

reference coordinate frame): 

 

 
 

1 1 2 1 2 i

:
8.4.7

: 1 (OD )

iLocusof

for all inside r r




    v z v


 

 

3- Draw the convex hull of all the areas i  (denoted by Area 
2r

  ).   

 

According to the below explanation, Area 
2r

  is the exact locus of z : 
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The locus of the points inside the convex hull of all the i  in step 2 (denoted by 

Area 
2r

  ) is equal to all weighted averages of the points in i  (according to Lemma 

8.1). As indicated in step 2, the location of the points inside i  are found from Equation 

(8.4.7). Therefore, the locus for all the possible weighted averages of these values (the 

locus of the points inside 
2r

  ) are: 

  
 

 
 

2

1 1

2 1 2 i i

2 1 2
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k r r k
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 
 

v

v
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 

 

Figure 8.7. The procedure for constructing Areas 
2r

  for the value of is depicted in detail for

2 0.75r    and in brief for other values of 2r . Boundaries of 
2r

  are shown by continuous lines. 

Boundaries of i are shown by dotted lines. For each 2r  , points iE  are connected by dashed lines. 

1

2

C

1E

2E3E

0.5
0.25

0.75

 12 1

Allowable ZMP

Locations for

r 

0

1D

2D3D

1

23Origin 
(O) 

z 

x 

y 

B

A



  

 

213

On the other hand, the location of the points inside the convex hull 2  (the values 

of 2v  ) is equal to all possible weighted average of the locations of the corners of that 

convex hull (according to Lemma 8.1). Therefore: 

   

   
 

 
2

2

i

2

1 1 2 2

2 1 2 2
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k
for all k
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r r
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



 





  
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

v
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z v v



 

Therefore, Area 
2r

  is the exact locus of z . This means that a limitation on the 

location of ZMP is automatically enforced by the NCM constraints for any fixed value of 

2r . Now, we try to compare this limitation with the limitation imposed by uniform 

partitioning assumption. The ZMP constraint only limits the location of ZMP to remain in 

the convex hull of the two contact areas ( 1  and 2 ). However, the assumption of 

uniform partitioning used along with the ZMP constraint does limit the location of ZMP 

for each fixed value of 2r  because the uniform partitioning assigns the value of 2r  based 

on the ZMP location. Therefore, for any fixed value of 2r  , ZMP location is implicitly 

constrained by the uniform partitioning assumption. We use the relations from Section 

4.6 to derive this implicit constraint on the ZMP for each fixed value of 2r  :  

 

  1 2 2 14.6.5 / /r r d d    
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In (4.6.5), 1 1d  p - z  denotes the distance of the point of action of equivalent 

forces and moments 1F  and 1M  (acting at 1p ) from the ZMP and 2 2d  p - z  denotes 

the distance of the point of action of equivalent forces and moments 2F  and 2M  (acting 

at 2p ) from the ZMP.   

Let us consider the contact areas with the convex hulls 1  and 2  in Figure 8.7. 

And let the locations of 1p  and 2p  be some point near the geometric centers of 1  and 

2  denoted of by A and B in that figure (for simplicity of drawing the next figures). 

Therefore, (4.6.5) turns into  1 2 2 1 2 2/ / 1 /r r d d r r   . It means that for any fixed value 

of 2r , only points on the ground (or plane) whose distances from points A and B have a 

ratio equal to  2 21 /r r  can be the location of the ZMP. This corresponds to the classical 

geometrical definition of Apollonian Circle , which we redefine here: 

 

 

Definition 8.2:  Apollonian Circle 

Consider points A and B, and some constant k. The locus of point P satisfying the 

condition AP BPk
 

 is called an Apollonian Circle as shown in Figure 8.8. For any 

two points, there is an infinite number of Apollonian circles, one for each distinct value 

of k. When k = 1, The circle becomes a line, the perpendicular bisector of segment AB. 
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Therefore, for any fixed value of 2r , the allowable ZMP locations based on the 

assumption of linear partitioning are the apollonian circles with 2

2

1 r
k

r


 . These 

locations (Apollonian Circles) are superimposed on Figure 8.7 for the example depicted 

in that figure to obtain Figure 8.9. Apollonian Circles in Figure 8.9 are shown by red 

curves. ZMP constraint furthermore constrains the ZMP to be inside the convex hulls 1  

and 2 . Therefore, based on the ZMP method introduced in Chapter 4, for the convex 

hulls 1  and 2  , the allowable ZMP locations for any fixed value of 2r  are the parts of 

Apollonian Circles with 2

2

1 r
k

r


  that are inside the convex hulls 1  and 2  in Figure 

8.9. For example, the red straight line drawn in the middle of this figure is the Apollonian 

Circle corresponding to k=1. The part of the line that is inside the convex hull specifies 

the regions at which ZMP can be located in order to have 1 2 0.5r r  in the ZMP 

Figure 8.8. Apollonian Circles for different ratio of distances from points A,B. The picture is borrowed 
from Kunkel (2011). 
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method. On the other hand, the Area 0.5  in Figures 8.7 and 8.9 specifies the region at 

which ZMP can be located in order to have 1 2 0.5r r  in the NCM method.  

 

  

 

 

Figure 8.9. An example for the locus of the ZMP for different 2r  based on the ZMP method with linear GRF 

partitioning (locus are the points on the red curves - Apollonian Circles) and NCM method with GRF as design 
variables (locus are the points inside the 

2r
 shapes). 
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8.5. Uniform Partitioning of GRF versus Uniform Pressure 
on Contact Areas 

In Section 8.4.2, it was proved that uniform partitioning of GRF components is 

mathematically impossible in the real world. The nomenclature "uniform partitioning of 

GRF components" may be mistaken with the assumption of "uniform pressure" on 

contact areas. The assumption of "uniform pressure" on a system's contact areas is a very 

common assumption that can be used when the net of IGE forces and moments have 

specific values (cannot be used for general cases of IGE forces and moments). To further 

clarify the difference between these two assumptions, we present an example in this 

section which shows a system with a specific value of IGE forces and moments whose 

GRF can also be calculated using the "uniform pressure" assumption. We compare the 

results of "uniform pressure" with the results of "uniform partitioning of GRF 

components" in this example: 

 

Example 8.1: Uniform Pressure versus Uniform Partitioning (Special Case) 

Consider a dynamic system in Figure 8.10 which has two similar disc-shaped 

contact areas with the ground at an instant of its motion. Assume that 2zmp
ige F F j  and 

the distributed forces exerted from the ground on these contact areas is in form of a 

pressure uniformly distributed on these contact areas (which can equilibrate this special 

case of net IGE forces and moments).  
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This is a very common assumption for the distribution of GRF (for cases with the 

net of IGE forces similar to this example) and is a possible case in the real world. Is this a 

counter-example for Theorem 8.2 and Corollary 8.1 ? 

(One of the results of Theorem 8.2 and Corollary 8.1 is that: The assumption of 

the uniform partitioning of the GRF components ensures that the calculated GRF are 

impossible values in the real world for all ground contact areas, except may be for one of 

the contact areas.) 

 

 

 

Answer: 

ZMP  

j

Origin z 

x 

y 

1F

1

1M1p - z

zmp
igeM

zmp
igeF

2F

2

2M 2p - z

Figure 8.10. An example to show the difference between "Uniform Pressure" and "Uniform Partitioning" 
assumptions for GRF partitioning 
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No. Because, "uniform pressure" is not a case of "uniform partitioning of GRF 

components" as defined in Section 4.6. This is shown below: 

 

 Uniform pressure on 1   and 2  results in:  

 
 
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 Uniform partitioning of GRF components on 1   and 2  according to Equations 

(4.6.3) – (4.6.6), results in: 
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This condition is shown in Figure 8.11: 
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Also, according to the definition given in Section 4.6,  ZMP α αF F , 

 ZMP   α α α αM M p - z F  denote the force and moment system equal to αF  and αM  acting 

at the ZMP. Therefore, αF  and αM will be equal to: 

 
 

 
   
   

1 21 1 2 2

1 1 1 1 1 1 1
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       

F F jF F F F

M M p - z F M z p F

M z p FM M p - z F
 

As a more special case of this problem, let 1 2, ,d d   z 0 p i p i (center of 

the two discs on the x axis and the origin of the  coordinate frame located at ZMP). Then: 

Figure 8.11. Results of GRF by using the "Uniform Partitioning" assumptions  
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 
 
 
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It is seen that Equation (8.5.10) is the same as Equation (8.5.1), but Equation 

(8.5.11) and (8.5.12) are not the same as Equation (8.5.2). So, the assumption of "uniform 

pressure" gives similar results for the partitioning of forces as the assumption of "uniform 

partitioning of GRF components", but does not give similar results for the partitioning of 

moments. 

 

 

 

Example 8.2: Uniform Pressure versus Uniform Partitioning (General Case) 

Is there a case where the assumption of "uniform partitioning of GRF 

components" in a dynamic system with several arbitrary contact areas with the ground 

render GRF that are equal to the results rendered by the assumption of "uniform 

pressure"? 

No. The assumption of "uniform partitioning of GRF components" can never 

render the results of a "uniform pressure" assumption for any system with more than one 

contact area with the environment. 

Because the assumption of "uniform pressure" will enforce NCM points for each 

contact area to be at the geometrical center of that contact area. But, the assumption of 
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"uniform partitioning of GRF components" will enforce all the NCM points for all 

contact areas to coincide at a same point which is the ZMP point (according to Theorem 

8.2). ZMP point cannot be at the same time the geometrical center of all the contact areas. 

Because the contact areas do not overlap. So, partitioning the GRF components uniformly 

will render GRF that are never equal to uniform pressure on the contact areas.  

 

8.6. A Discussion of the Applicability and Drawbacks of 
NCM versus ZMP Constraints 

 

8.6.1. Applicability of NCM versus ZMP Constraints 

ZMP constraint is suitable in problems such as dynamic simulation or virtual 

reality problems (for example an offline simulation of a robot motion), in which ground 

reaction forces and moments on individual contact areas are not calculated. In such 

problems, the role of the ZMP constraint (if used along with the proposed additional 

constraint in Theorem 4.1 that constrains the IGE forces to be downwards) is to ensure 

that those simulated motions of the dynamic system can be produced by its given 

environmental contact areas. 

 But, if ground reaction forces and moments on individual contact areas are also 

calculated in such problems, NCM constraints are more suitable than the ZMP constraint 

as discussed in Section 8.4. In such cases, ZMP constraint is too weak to check whether 

those calculated ground reaction forces are possible in the real world according to Section 

8.3 and undesirable results may be achieved as discussed in Section 8.4. Instead of ZMP 
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constraint, NCM constraints should be used which are stronger than the ZMP constraint 

and their satisfaction will ensure the satisfaction of ZMP constraint, too. 

 

8.6.2. Drawbacks of the ZMP versus NCM Constraints 

A major drawback of the ZMP constraint that it applies only to the cases in which 

the system’s contact with the environment is in one plane only. It cannot be used when 

different parts of the system come into contact with the environment and the contact areas 

are in different planes. Unlike the ZMP constraint, NCM constraints are applicable for 

the most general cases of contact areas (coplanar or non-coplanar contact areas which are 

horizontal or inclined or parallel or non-parallel). 

Also the effect of the natural limitations on the frictional forces exerted from 

external contact areas (such as between the ground and the foot) on the possibility or 

stability of the motion is not taken into account in the ZMP or NCM constraints. In 

Chapter 7, using the NCM point location, the effect of friction was also considered in the 

proposed constraints. 

 

8.7. Summary and Conclusion 

Using the NCM concepts introduced in Chapter 7, this chapter presented a 

relationship between the location of the ZMP and NCM points for multiple contact areas 

for cases where the contact areas are coplanar. This relationship let us evaluate the ZMP 
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concepts and compare them with the NCM concepts. From the presented study, the 

conclusions are: 

1- ZMP constraint is just a results of NCM constraints and is weaker than NCM 

constraint. In problems where GRF are calculated, ZMP constraint cannot 

ensure that the calculated GRF are possible in the real world. The NCM 

constraints can ensure that and also ensure that ZMP constraint is satisfied, 

too. So, the ZMP method introduced in Chapter 4 allows unacceptable 

solutions which are impossible in the real world. 

2- The linear, uniform partitioning assumption used in the ZMP method in fact 

causes all the calculated GRF to have values that are mathematically 

impossible in the real world.  

3- The pitfall in the reasoning that supported the ZMP method is that the ZMP 

constraint ensures the unilaterality of the contact forces before partitioning 

them. This should logically be done after partitioning the GRF using the NCM 

constraints. 

4- The experimental data that supported the ZMP method are only for the ratio of 

the vertical component of the GRF but not for the remaining 5 components of 

GRF. It is also shown that this experimental data that really supported the 

linear, uniform partitioning of vertical component of GRF is just a logical 

physical phenomenon that would have resulted automatically if the NCM 

constraints had been used (it is embedded in NCM constraints). 
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5- Unlike ZMP constraint, NCM constraints are applicable for the most general 

cases of contact areas (coplanar or non-coplanar contact areas which are 

horizontal or inclined or parallel or non-parallel). 
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CHAPTER 9 

PREDICTIVE DYNAMICS SIMULATIONS USING THE NCM METHOD  

9.1 Introduction 

The theoretical aspects of the ZMP method for modeling dynamic tasks were 

explained in Chapters 3 and 4. ZMP method was used to model four dynamic tasks in 

Chapters 5 and 6. Chapter 8 discussed some limitations of the ZMP method, summarized 

as follows:  

1- ZMP constraint is too weak to ensure that the ground reaction forces are 

possible in the real world (when there are more than one contact areas). This 

is a direct conclusion from Theorem 8.1 which states that the satisfaction of 

NCM constraints ensures that the ZMP constraint is satisfied. But the opposite 

is not true (i.e., the satisfaction of ZMP constraint does not ensure that the 

NCM constraints are satisfied).  

2- The assumption of the uniform partitioning of the IGE forces and moments to 

GRF components (based on the distance of contact areas to the ZMP such as 

in the ZMP method or any other type of uniform partitioning of GRF 

components) gives GRF that are impossible in the real world (at least one 

component of the GRF is impossible for all ground contact areas, except may 

be for one contact area). 

 

However, according to Theorem 4.1, satisfaction of ZMP constraint ensures that it 

is possible to find unilateral contact forces on the given contact areas to cancel the given 
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IGE forces for the dynamic system. Therefore, if ZMP constraint is satisfied, it will be 

possible to generate the given motion (equilibrate the given IGE forces) by some other 

GRF values (other than the ones calculated in the ZMP method) which are possible in the 

real world (satisfy NCM constraints). 

In this chapter, we introduce algorithms that correct the GRF values obtained by 

the ZMP method such that the values are possible in the real world (satisfy the NCM 

constraints). 

As an example, in this chapter, we implement these algorithms on the "Going 

Prone" task introduced in Chapter 6 and on a sample "Walking" task. 

  

9.2 Initial Values of GRF in the ZMP Method 

In this section, we analyze the initial ground reaction forces and moments 

obtained by the ZMP method for the "Going Prone" motion task introduced in Chapter 6. 

As explained in Section 6.3, the formulation for the going prone task consists of two 

optimization problems (two subtasks) connected by the continuity constraints. The first 

subtask consists of motion stages a, b, c, d in Figure 9.1. The second subtask consists of 

stages d, e, f, g, h in Figure 9.1.  

The ground contact modeling specifies the GRF points and the ZMP boundary 

points for each motion stage (a, b, c,…, h) as shown in Figure 9.1. The values for ground 

reaction forces and moments in each direction which are Fx, Fy, Fz, Mx, My, Mz, are 

calculated at each of the GRF points specified for that motion stage.  
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Figure 9.1.  Motion slides for the "Going Prone" subtask 
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Based on the time discretization strategy for each motion task, each motion stage 

consists of one or several time grid points. Predictive dynamics calculations including the 

GRF calculations are performed at each time grid point. In the two subtasks of the going 

prone motion task, the time grid points corresponding to each motion stage are as shown 

in Table 9.1: 

 

Going Prone Task  Motion Stage  Time Grid Points 

Subtask 1  a  1 

b  2, 3, 4 

c  5, 6 

d  7 

Subtask 2  d  1 

e  2, 3, 4 

f  5 

g  6 

h  7 

 

The net of IGE forces and moments calculated at each time grid point for the two 

subtasks are shown in Tables 9.2 and 9.3, respectively. All values presented in this thesis 

are in SI units: Meters, Kilograms, Newtons, Newton Meters, etc. 

Table 9.1. List of time grid points corresponding to each motion stage of "Going Prone" task 
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Description of the 
Force System 

Force, 
Moment 

Components

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Net of IGE Forces at 
the Hip Point 

Fx  3.918  ‐7.173  ‐1.628  12.409  13.000  6.898  ‐83.169 

Fy  ‐336.024  ‐591.951  ‐798.174  ‐996.223  ‐889.904  ‐753.297  ‐483.703 

Fz  ‐9.873  7.960  ‐9.563  ‐21.545  ‐77.572  ‐112.144  3.525 

Mx  ‐5.206  4.485  1.139  6.725  16.907  41.415  27.364 

My  ‐3.483  ‐2.167  ‐0.922  0.105  1.178  ‐1.979  ‐10.668 

Mz  7.638  2.195  0.438  ‐4.793  ‐4.186  0.463  11.918 

Net of IGE Forces at 
the ZMP  

Fx  3.918  ‐7.173  ‐1.628  12.409  13.000  6.898  ‐83.169 

Fy  ‐336.024  ‐591.951  ‐798.174  ‐996.223  ‐889.904  ‐753.297  ‐483.703 

Fz  ‐9.873  7.960  ‐9.563  ‐21.545  ‐77.572  ‐112.144  3.525 

Mx  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

My  ‐3.198  ‐2.143  ‐0.914  ‐0.083  0.566  ‐2.289  ‐6.050 

Mz  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 

Description of the 
Force System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Net of IGE Forces 
at the Hip Point 

Fx  93.248  ‐96.489  55.124  53.775  ‐0.194  ‐30.506  ‐172.874 

Fy  ‐926.257  ‐922.872  ‐787.500  ‐714.184  ‐770.510  ‐662.013  ‐523.858 

Fz  83.430  ‐105.069  ‐129.617  ‐231.566  47.314  235.332  596.659 

Mx  165.234  170.188  152.954  125.268  103.143  88.434  138.795 

My  99.923  ‐10.449  33.356  ‐29.041  ‐9.799  22.111  ‐18.982 

Mz  ‐19.304  ‐25.064  ‐20.840  5.463  1.527  ‐9.186  11.087 

Net of IGE Forces 
at the ZMP  

Fx  93.248  ‐96.489  55.124  53.775  ‐0.194  ‐30.506  ‐172.874 

Fy  ‐926.257  ‐922.872  ‐787.500  ‐714.184  ‐770.510  ‐662.013  ‐523.858 

Fz  83.430  ‐105.069  ‐129.617  ‐231.566  47.314  235.332  596.659 

Mx  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

My  85.027  4.491  19.219  ‐36.702  ‐9.866  29.451  14.193 

Mz  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 

The interesting points to note in Tables 9.2 and 9.3 are: 

1- The vertical component of IGE forces (Fy) in Tables 9.2 and 9.3 are 

negative at all the times. It means that the IGE force is acting 

downwards (in the negative y direction). This satisfies one of the 

Table 9.3. The net value of IGE forces and moments for the second subtask of "Going Prone"  

Table 9.2. The net value of IGE forces and moments for the first subtask of "Going Prone"  
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conditions in statement 1 of Theorem 4.1. The ZMP constraint is also 

ensured to be satisfied at all times. Therefore, both of the conditions in 

statement 1 of Theorem 4.1 hold true, implying that statement 1 holds 

true. Therefore according to Theorem 4.1, statement 2 should hold true 

as well. It means that it is possible in the next calculation stages to find 

unilaterally upwards distributed contact forces inside the convex hull of 

all the contact points to generate these calculated motions. 

2- ZMP is defined as that point at which the values for the net moment of 

IGE forces are zero about the two horizontal axes. In Tables 9.2 and 

9.3, it is seen that the values for Mx and Mz are zero at the ZMP. This 

shows that the location of ZMP is calculated correctly in these subtasks. 

In the next stage in predictive dynamics calculations, as discussed in Section 4.4, 

the ground reaction forces and moments are calculated at the defined GRF points for each 

motion stage by partitioning the IGE forces and moments. As explained in Chapter 4, the 

net force and moment vectors of ground reaction forces is set equal to the negative value 

of the net force and moment vectors of IGE forces. Then, the components of the net force 

and moment vectors of ground reaction forces are partitioned uniformly between the GRF 

points based on the distance of those GRF points to the ZMP (based on the formulas in 

Section 4.6). The list of GRF points at each motion stage for the going prone task was 

previously shown in Figure 9.1. The ground reaction forces and moments at each of those 

GRF point are calculated at each time grid point for the two subtasks.  The values are 

shown in Tables 9.4 and 9.5, respectively. 
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Point of Effect of 
the Ground 

Reaction Force 
System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Left Foot Middle 
 

Fx  ‐1.617  3.270  0.800  ‐6.403  ‐4.665  ‐1.779  < NA > 

Fy  138.648  269.890  392.194  514.020  319.334  194.225  < NA > 

Fz  4.074  ‐3.629  4.699  11.117  27.836  28.914  < NA > 

Mx  1.188  ‐17.784  ‐30.818  ‐45.455  ‐32.027  ‐35.977  < NA > 

My  1.744  0.800  0.952  0.421  1.518  2.572  < NA > 

Mz  ‐13.961  ‐29.191  ‐36.729  ‐43.691  ‐25.112  ‐15.523  < NA > 

Right Foot Middle 
 

Fx  ‐2.302  3.903  0.828  ‐6.006  ‐4.258  ‐1.667  < NA > 

Fy  197.377  322.061  405.980  482.203  291.519  181.989  < NA > 

Fz  5.800  ‐4.331  4.864  10.429  25.412  27.093  < NA > 

Mx  0.060  ‐23.647  ‐31.834  ‐40.384  ‐29.234  ‐36.204  < NA > 

My  1.469  1.784  0.100  ‐1.510  ‐3.071  ‐2.001  < NA > 

Mz  13.976  24.691  35.881  48.406  28.210  14.925  < NA > 

 
 
 
 
 
 

Left Knee 
 

Fx  < NA >  < NA >  < NA >  < NA >  ‐2.046  ‐1.682  6.274 

Fy  < NA >  < NA >  < NA >  < NA >  140.086  183.641  36.488 

Fz  < NA >  < NA >  < NA >  < NA >  12.211  27.339  ‐0.266 

Mx  < NA >  < NA >  < NA >  < NA >  38.812  35.496  0.057 

My  < NA >  < NA >  < NA >  < NA >  1.468  3.344  0.398 

Mz  < NA >  < NA >  < NA >  < NA >  ‐11.361  ‐16.528  ‐6.672 

Right Knee 
 

Fx  < NA >  < NA >  < NA >  < NA >  ‐2.030  ‐1.771  67.737 

Fy  < NA >  < NA >  < NA >  < NA >  138.964  193.443  393.953 

Fz  < NA >  < NA >  < NA >  < NA >  12.113  28.798  ‐2.871 

Mx  < NA >  < NA >  < NA >  < NA >  38.668  34.685  ‐5.374 

My  < NA >  < NA >  < NA >  < NA >  ‐0.553  ‐1.805  5.863 

Mz  < NA >  < NA >  < NA >  < NA >  11.806  18.208  1.565 

Left Toe 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  3.362 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  19.555 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐0.143 

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐5.675 

My  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  1.194 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐3.676 

 
 
 

Table 9.4. The value of ground reaction forces and moments for the first subtask of "Going Prone"  
(The highlighted values violate the NCM constraints) 

Support Area  

0.11 x 0.25 

Rectangle 

Support Area  

0.11 x 0.25 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 
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Right Toe 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  3.795 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  22.068 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐0.161 

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐6.743 

My  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  1.436 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  0.039 

Rifle Stock 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  2.001 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  11.639 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐0.085 

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  6.632 

My  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐0.986 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  1.249 

 

 
  

Table 9.4. Continued 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.05 x 0.05 

Rectangle 
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Point of Effect of 
the Ground 

Reaction Force 
System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Left Toe 
 

Fx  ‐9.943  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  98.763  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐8.896  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  ‐36.286  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐13.114  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  ‐4.381  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Right Toe  Fx  ‐9.254  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  91.925  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐8.280  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  ‐33.941  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐10.633  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  13.567  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Left Knee  Fx  ‐43.966  32.046  ‐44.821  ‐38.814  0.081  6.517  17.952 

Fy  436.724  306.507  640.312  515.490  320.994  141.418  54.399 

Fz  ‐39.337  34.896  105.391  167.142  ‐19.711  ‐50.271  ‐61.958 

Mx  ‐32.505  3.036  ‐0.500  ‐0.190  ‐87.489  ‐71.605  ‐40.594 

My  ‐44.636  2.151  ‐12.428  35.330  2.320  ‐8.280  0.882 

Mz  ‐14.141  ‐34.781  ‐19.651  ‐27.305  ‐29.518  ‐14.877  ‐9.693 

Right Knee  Fx  ‐21.839  64.443  ‐10.303  ‐14.961  0.075  6.405  18.443 

Fy  216.937  616.365  147.188  198.694  296.358  138.994  55.886 

Fz  ‐19.540  70.173  24.226  64.424  ‐18.198  ‐49.409  ‐63.653 

Mx  ‐16.473  ‐3.223  ‐2.413  ‐3.891  ‐86.709  ‐72.657  ‐41.736 

My  ‐18.705  ‐6.646  ‐7.429  1.048  5.766  0.956  12.314 

Mz  31.833  34.987  22.287  27.356  31.737  10.667  0.048 

Rifle Stock  Fx  ‐8.246  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  81.908  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐7.378  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  33.901  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐2.876  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  13.653  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

 
 
 

Table 9.5. The value of ground reaction forces and moments for the second subtask of going prone  
(The highlighted values violate the NCM constraints) 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.05 x 0.05 

Rectangle 



  

 

235

Left Hand  Fx  < NA >  < NA >  < NA >  < NA >  0.039  8.027  39.339 

Fy  < NA >  < NA >  < NA >  < NA >  153.158  174.205  119.207 

Fz  < NA >  < NA >  < NA >  < NA >  ‐9.405  ‐61.926  ‐135.774

Mx  < NA >  < NA >  < NA >  < NA >  86.838  58.862  18.784 

My  < NA >  < NA >  < NA >  < NA >  ‐0.009  ‐26.995  ‐52.364 

Mz  < NA >  < NA >  < NA >  < NA >  ‐31.722  ‐46.508  ‐37.697 

Right Elbow  Fx  < NA >  < NA >  < NA >  < NA >  < NA >  9.557  97.141 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  207.396  294.366 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  ‐73.725  ‐335.274

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  73.564  41.262 

My  < NA >  < NA >  < NA >  < NA >  < NA >  ‐7.588  ‐17.863 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  14.144  3.274 

  

Table 9.5. Continued 
 

Support Area  

0.15 x 0.2 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 
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As explained earlier, this section analyzes the results of the implementation of the 

ZMP method for the environment contact modeling. ZMP method does not consider the 

size and shape of each individual contact area for any of the calculations (including the 

calculation of ground reaction forces and moments). The ZMP method only cares about 

the convex hull of all the contact areas rather than each contact area individually. On the 

other hand, the NCM method does consider the size and shape of each individual contact 

area. These sizes and shapes can be used in the NCM method to check the possibility of 

the generation of a force system by that non-adhesive contact area (see Theorem 7.1 and 

Definition 7.2). 

Approximate sizes and shapes for individual contact areas are shown in Tables 

9.4 and 9.5 (units are meters). In these tables, the considered shapes are rectangles having 

specified lengths and widths with their centers located at the location of GRF points. 

These values are not defined or used at all in the ZMP method. They are just used after 

the results are obtained to check the validity of the calculated ground reaction forces and 

moments. 

In Tables 9.4 and 9.5, the components of ground reaction forces and moments 

which violate the NCM constraints (are impossible in the real world) are highlighted in 

orange color. As explained in Section 8.4, in the ZMP method, at least one component of 

the calculated GRF is for sure impossible in the real world for all ground contact areas, 

except maybe for one contact area. The evidence for this claim can be seen in all columns 

of Tables 9.4 and 9.5 where some cells are highlighted. As seen there, at each time grid 

point, at least  one component of ground reaction forces and moments is highlighted for 
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all contact areas (except the right knee contact area at time grid point 7 in Table 9.4 and 

left knee contact area at the time grid point 3 in Table 9.5) in these tables, indicating 

violation of reality. 

To clarify the meaning of the phrase "Impossible in the real world, we study one 

of the items highlighted in Table 9.4 in Example 9.1. 

 

 

Example 9.1: Analysis of a Sample GRF 

 In this example, we analyze the ground reaction forces and moments at the "Left 

Foot Middle" point in Table 9.4 at time grid #1. The values are repeated in Table 9.6 for 

convenience: 

 

Point of Effect of the Ground Reaction Force System  Force, Moment Components  Value at Time Grid #1 

Left Foot Middle 
 

Fx  ‐1.617 

Fy  138.648 

Fz  4.074 

Mx  1.188 

My  1.744 

Mz  ‐13.961 

 

 

According to Table 9.1, time grid #1 corresponds to motion stage (a) in Figure 

9.1.a. For convenience, we also repeat that picture in Figure 9.2. 

 

Table 9.6. A sample ground reaction force system for the first subtask of going prone  

Support Area  

0.11 x 0.25 

Rectangle 
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It is obvious that the range of Mz that can be exerted on the digital human from 

this contact area is equal to: 
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Figure 9.2.  A simplified ground contact area to check NCM constraints for a sample motion frame 
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Therefore, the value of "Mz = -13.961 N.m" violates the constraint in Equation 

(9.2.2). So, it is impossible that a ground reaction moment of "Mz = -13.961 N.m", as 

indicated in Table 9.6, is exerted on the digital human from this contact area. 

 

9.3 GRF Re-Partitioning Based on the NCM method 

According to Theorem 4.1, satisfaction of ZMP constraint ensures that it is 

possible to find unilateral contact forces on the given contact areas to cancel the given 

IGE forces for the dynamic system. Therefore, if ZMP constraint is satisfied, it will be 

possible to generate the given motion (equilibrate the given IGE forces) by some other 

GRF values (other than the ones calculated in the ZMP method) which are possible in the 

real world (satisfy NCM constraints). 

Therefore, although the motion generated by the ZMP method and the calculated 

net IGE forces (and therefore the calculated net ground contact forces) are possible in the 

real world, the distribution of contact forces calculated by the ZMP method is impossible 

in the real world. 
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To overcome this problem, we introduce an algorithm that corrects the simulation 

results obtained by the ZMP method by finding different GRF for the same motion that 

was obtained by the ZMP method. This method is theoretically correct because, 

according to Theorem 4.1, satisfaction of the ZMP constraint in the original simulation 

has already ensured that it is possible to find unilateral contact forces on the given contact 

areas to generate the given motion. The additional algorithm in this section finds those 

possible contact forces on the given contact areas. 

We normally have more than one ground contact area and therefore, the ground 

reaction forces and moments are dynamically indeterminate.  It means that there exist 

infinite sets of solutions for ground reaction forces and moments that can satisfy the 

dynamic equilibrium equations (can cancel zmp
igeF  and zmp

igeM  ). In the ZMP method for 

Figure 9.3. Calculation of ground reaction forces and moments based on the ZMP method and its 
correction by the NCM method 

ZMP  

zmp
igeM

j

Convex 
hull of all 
contact 
points 

( 
Total

  ) 

Origin z 

x 

y 
αF

α

αM
αp - z

zmp
igeF
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predictive dynamics explained in Sections 4.3 and 4.6, we have first ensured by the ZMP 

constraint that it is possible to find a set of unilateral distributed forces on these contact 

areas to cancel zmp
igeF  and zmp

igeM  and produce the arbitrary motion  . Then, we have used 

an assumption to partition zmp
igeF  and zmp

igeM  on these contact areas to calculate the 

ground reaction forces. This is not an exactly logical procedure. The logical procedure 

(done in the NCM method) is to first calculate a set of ground reaction forces on all 

contact areas to cancel zmp
igeF  and zmp

igeM
 
and then use the NCM constraints to check 

whether each separate contact area is able to produce the equivalent ground reaction force 

and moment calculated for it. 

 

Therefore the algorithm for the correction of ground reaction forces and moments 

based on the NCM method is as follows: 

 

1- For each contact area, six additional design variables are considered to 

account for the indeterminacy of ground reaction forces and moments. These 

design variables are the ratios of the components of ground reaction forces 

and moments at each contact area to the components of the net IGE forces and 

moments (at any point, for example at the hip point of the avatar denoted by 

Hip
igeF  and Hip

igeM ): 
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2- The sum of these ratios are constrained such that they satisfy the global 

dynamic equilibrium equations: 

 

 9.3.2

:
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3- The reaction forces and moments on each contact area are constrained by 

NCM constraints as explained in Definition 7.2. For convenience, we rewrite 

Equation (7.7.16) for the simplified case, where the contact area is on the 

ground (local reference coordinate frame  1 2 3e ,e ,e  for all contact areas 

simplifies to the global coordinate frame  z, x, y ). According to (7.7.16) the 

NCM constraints in the case where the convex hull of contact area   is a 

polygon with corners  1iE i m   will be: 
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4- It may be impossible to partition the global forces and moments such that 

sliding and rotational friction constraints on individual contact areas hold for a 

given coefficient of friction. This is due to Theorem 4.1, that satisfaction of 

ZMP constraint only ensures the possibility of finding unilateral contact forces 

on the given contact areas to cancel the given IGE forces for the dynamic 

system. Unilaterality of GRF does not necessarily mean that the GRF also 

satisfy the Coulomb friction laws (See Sections 7.6, 7.8). Therefore, for the 

current algorithm, the coulomb friction constraints are ignored (similar to the 

ZMP method). However, because ground reaction forces are considered as 

design variables in the NCM method, they may acquire excessively large 

values that were not observed in the ZMP method due to the fact that in the 

ZMP method, they were not design variables. So, we apply a weak form of 

coulomb friction constraints in this algorithm to keep the friction forces in the 

limits similar to the ZMP constraint. However, as noted before, it may be 

impossible to partition the global forces and moments from the ZMP method 

such that sliding and rotational friction constraints on individual contact areas 

hold for a given coefficient of friction. The required values for the coefficient 

of friction such that they can hold are: 
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The justification for using the above coefficients of friction can be easily 

understood by considering the following question: 

 

Question 9.1:   

What is the (minimum) required coefficient of friction such that a given motion can 

satisfy sliding friction constraints after GRF re-partitioning? 

Answer: 

We want to find the solutions which need the minimum coefficient of friction to 

perform the motion. In other words, we want to find the case of GRF re-partitioning in 

which minimum coefficient of friction is needed to prevent sliding for a given motion. 

This should be same as the case where the vector sum of the frictional forces on all 

contact areas is maximum for a given coefficient of friction. In this case, frictional forces 

on all contact areas should act at a same direction to have a maximum sum. Therefore: 
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Using a similar procedure as in Question 9.1, we can show that the (minimum) 

required coefficient of friction such that a given motion can satisfy frictional moment 

constraints after GRF re-partitioning can be approximated by Equation (9.3.5). 

 

9.4 Values of GRF after Re-Partitioning 

Similar to what was done in Section 4.5 for the ZMP method, general algorithms 

are developed to check the NCM constraints and calculate the ground reaction forces and 

moments on each separate contact area. In these algorithms, individual contact areas can 

either be defined by their boundary points or by fixed shapes (rectangles, circles) on the 

ground (these algorithms can be later generalized to define them on non-horizontal and 

non-coplanar contact planes). Some of the individual contact areas for the going prone 

task are defined in this algorithm by fixed size rectangles with specified lengths and 

widths with their centers located at the GRF points (similar sizes to what was shown in 

Tables 9.4 and 9.5).  

Some of the other individual contact areas for the going prone task are defined 

independently by their boundary points (such as the contact areas of the two feet with the 

ground at motion stages a, b, c in Figure 9.1). Although some of the contact areas are 

defined by boundary points in the algorithm, after obtaining the final results, we check 

the accuracy of the results by approximating all contact areas with rectangles. After re-

partitioning, the net of IGE forces and moments calculated at each time grid point for the 

two subtasks are shown in Tables 9.7 and 9.8.  
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As expected, the IGE values have stayed the same after GRF re-partitioning. 

However, the ground reaction forces and moments at each contact area are different. The 

new values for GRF are shown in Tables 9.9 and 9.10. 

  

Description of the 
Force System 

Force, 
Moment 

Components

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Net of IGE Forces at 
the Hip Point 

Fx  3.918  ‐7.173  ‐1.628  12.409  13.000  6.898  ‐83.169 

Fy  ‐336.024  ‐591.951  ‐798.174  ‐996.223  ‐889.904  ‐753.297  ‐483.703 

Fz  ‐9.873  7.960  ‐9.563  ‐21.545  ‐77.572  ‐112.144  3.525 

Mx  ‐5.206  4.485  1.139  6.725  16.907  41.415  27.364 

My  ‐3.483  ‐2.167  ‐0.922  0.105  1.178  ‐1.979  ‐10.668 

Mz  7.638  2.195  0.438  ‐4.793  ‐4.186  0.463  11.918 

Net of IGE Forces at 
the ZMP  

Fx  3.918  ‐7.173  ‐1.628  12.409  13.000  6.898  ‐83.169 

Fy  ‐336.024  ‐591.951  ‐798.174  ‐996.223  ‐889.904  ‐753.297  ‐483.703 

Fz  ‐9.873  7.960  ‐9.563  ‐21.545  ‐77.572  ‐112.144  3.525 

Mx  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

My  ‐3.198  ‐2.143  ‐0.914  ‐0.083  0.566  ‐2.289  ‐6.050 

Mz  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 

Description of the 
Force System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Net of IGE Forces 
at the Hip Point 

Fx  93.248  ‐96.489  55.124  53.775  ‐0.194  ‐30.506  ‐172.874 

Fy  ‐926.257  ‐922.872  ‐787.500  ‐714.184  ‐770.510  ‐662.013  ‐523.858 

Fz  83.430  ‐105.069  ‐129.617  ‐231.566  47.314  235.332  596.659 

Mx  165.234  170.188  152.954  125.268  103.143  88.434  138.795 

My  99.923  ‐10.449  33.356  ‐29.041  ‐9.799  22.111  ‐18.982 

Mz  ‐19.304  ‐25.064  ‐20.840  5.463  1.527  ‐9.186  11.087 

Net of IGE Forces 
at the ZMP  

Fx  93.248  ‐96.489  55.124  53.775  ‐0.194  ‐30.506  ‐172.874 

Fy  ‐926.257  ‐922.872  ‐787.500  ‐714.184  ‐770.510  ‐662.013  ‐523.858 

Fz  83.430  ‐105.069  ‐129.617  ‐231.566  47.314  235.332  596.659 

Mx  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

My  85.027  4.491  19.219  ‐36.702  ‐9.866  29.451  14.193 

Mz  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

  

Table 9.8. IGE forces and moments for the second subtask of "Going Prone" after GRF Re-Partitioning

Table 9.7. IGE Forces and Moments for the first Subtask of Going Prone after GRF Re-Partitioning 
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Point of Effect of 
the Ground 

Reaction Force 
System 

Force, 
Moment 

Components 

Value at 
Time 
Grid #1 

Value 
at Time 
Grid #2 

Value at 
Time 
Grid #3 

Value 
at Time 
Grid #4 

Value at 
Time 
Grid #5 

Value at 
Time 
Grid #6 

Value at 
Time 
Grid #7 

Left Foot Middle 
 

Fx  ‐7.061  2.151  ‐16.232  40.550  ‐15.938  ‐30.079  < NA > 

Fy  157.932  289.999  406.297  505.212  303.618  163.531  < NA > 

Fz  6.002  ‐1.997  17.258  15.121  ‐71.544  ‐69.694  < NA > 

Mx  0.967  ‐19.373  ‐29.599  ‐42.635  2.416  ‐0.362  < NA > 

My  1.696  0.711  0.195  4.580  10.776  6.915  < NA > 

Mz  ‐2.438  ‐5.047  ‐6.443  ‐17.952  14.690  8.493  < NA > 

Right Foot 
Middle 

 

Fx  3.143  5.022  17.861  ‐52.959  ‐10.092  61.479  < NA > 

Fy  178.092  301.952  391.877  491.011  307.006  149.804  < NA > 

Fz  3.871  ‐5.964  ‐7.695  6.424  ‐5.296  31.528  < NA > 

Mx  0.441  ‐21.906  ‐33.035  ‐43.150  ‐0.067  0.725  < NA > 

My  1.893  2.183  3.140  ‐4.703  2.126  2.869  < NA > 

Mz  ‐0.854  ‐3.170  3.056  24.149  6.698  ‐7.442  < NA > 

Left Knee 
 

Fx  < NA >  < NA >  < NA >  < NA >  ‐16.479  ‐8.593  29.040 

Fy  < NA >  < NA >  < NA >  < NA >  123.244  133.736  82.874 

Fz  < NA >  < NA >  < NA >  < NA >  128.266  160.483  7.077 

Mx  < NA >  < NA >  < NA >  < NA >  6.162  6.687  ‐4.144 

My  < NA >  < NA >  < NA >  < NA >  ‐10.633  ‐15.630  1.833 

Mz  < NA >  < NA >  < NA >  < NA >  ‐4.490  0.678  ‐4.144 

Right Knee 
 

Fx  < NA >  < NA >  < NA >  < NA >  29.510  ‐29.705  53.105 

Fy  < NA >  < NA >  < NA >  < NA >  156.035  306.226  284.019 

Fz  < NA >  < NA >  < NA >  < NA >  26.147  ‐10.174  15.203 

Mx  < NA >  < NA >  < NA >  < NA >  7.802  15.311  9.037 

My  < NA >  < NA >  < NA >  < NA >  ‐6.024  28.940  1.684 

Mz  < NA >  < NA >  < NA >  < NA >  ‐7.802  14.959  ‐9.144 

Left Toe 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐5.248 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  29.985 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  2.701 

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  1.499 

My  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  0.806 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  0.376 

 
 
 
 

Table 9.9. GRF for the first subtask of "Going Prone" after GRF Re-Partitioning 

Support Area  

0.11 x 0.25 

Rectangle 

Support Area  

0.11 x 0.25 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 
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Right Toe 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐3.904 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  33.650 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  10.154 

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  1.682 

My  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐0.479 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  0.746 

Rifle Stock 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  10.177 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  53.175 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐38.659 

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐0.236 

My  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  0.200 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  < NA >  ‐1.329 

 

 
  

Table 9.9. Continued 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.05 x 0.05 

Rectangle 
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Point of Effect of the 
Ground Reaction 
Force System 

Force, 
Moment 

Components 

Value at 
Time Grid 

#1 

Value at 
Time Grid 

#2 

Value at 
Time Grid 

#3 

Value at 
Time Grid 

#4 

Value at 
Time Grid 

#5 

Value at 
Time Grid 

#6 

Value at 
Time Grid 

#7 

Left Toe 
 

Fx  71.718  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  96.136  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐28.283  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  4.807  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐6.201  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  1.790  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Right Toe  Fx  34.887  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  29.073  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐15.989  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  1.454  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐6.167  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  0.054  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Left Knee  Fx  ‐141.412 64.288  177.574  235.366  0.616  36.947  40.861 

Fy  494.376  209.853  438.572  473.233  256.560  127.095  43.144 

Fz  20.914  186.185  86.360  3.164  12.326  ‐17.639  ‐51.773 

Mx  24.719  10.493  11.384  ‐17.518  ‐12.828  ‐6.355  ‐2.157 

My  8.713  11.822  1.719  18.230  ‐2.041  4.880  4.409 

Mz  22.506  10.493  21.929  7.883  ‐9.506  ‐6.355  ‐2.157 

Right Knee  Fx  ‐40.523  32.201  ‐232.699 ‐289.141  0.952  41.507  27.153 

Fy  33.769  713.019  348.928  240.951  283.586  169.243  67.422 

Fz  40.523  ‐81.116  43.257  228.402  36.470  36.396  ‐80.906 

Mx  1.688  ‐12.999  ‐17.446  12.048  ‐14.179  ‐8.462  ‐3.371 

My  ‐7.164  9.014  ‐28.514  ‐18.089  ‐1.121  14.160  14.302 

Mz  0.914  6.391  17.446  ‐0.816  ‐14.179  ‐7.009  ‐3.371 

Rifle Stock  Fx  ‐17.917  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fy  272.903  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Fz  ‐100.595 < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mx  ‐6.823  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

My  ‐28.946  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

Mz  6.823  < NA >  < NA >  < NA >  < NA >  < NA >  < NA > 

 
 
 
 

Table 9.10. GRF for the second subtask of "Going Prone" after GRF Re-Partitioning 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 

Support Area  

0.05 x 0.05 

Rectangle 
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Left Hand  Fx  < NA >  < NA >  < NA >  < NA >  ‐1.374  ‐42.837  46.727 

Fy  < NA >  < NA >  < NA >  < NA >  230.364  77.598  78.499 

Fz  < NA >  < NA >  < NA >  < NA >  ‐96.110  ‐74.394  ‐84.230 

Mx  < NA >  < NA >  < NA >  < NA >  6.184  4.531  ‐1.109 

My  < NA >  < NA >  < NA >  < NA >  ‐8.427  0.178  ‐8.300 

Mz  < NA >  < NA >  < NA >  < NA >  ‐17.277  1.174  ‐5.887 

Right Elbow 
 
 

Fx  < NA >  < NA >  < NA >  < NA >  < NA >  ‐5.110  58.134 

Fy  < NA >  < NA >  < NA >  < NA >  < NA >  288.077  334.793 

Fz  < NA >  < NA >  < NA >  < NA >  < NA >  ‐179.695 ‐379.749

Mx  < NA >  < NA >  < NA >  < NA >  < NA >  ‐14.404  ‐16.740 

My  < NA >  < NA >  < NA >  < NA >  < NA >  ‐4.228  ‐20.216 

Mz  < NA >  < NA >  < NA >  < NA >  < NA >  10.716  ‐16.740 

 
 

 

 

  

Table 9.10. Continued 

Support Area  

0.15 x 0.2 

Rectangle 

Support Area  

0.1 x 0.1 

Rectangle 
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As seen in Tables 9.9 and 9.10, approximate sizes and shapes for individual 

contact areas are noted. Some of these sizes were used directly for ensuring NCM 

constraints in the algorithm. But, some of the contact areas were modeled differently in 

the NCM method by specifying their boundary points. However, all the approximate 

rectangles shown in Tables 9.9 and 9.10 are used after the results are obtained to check 

the validity of the calculated ground reaction forces and moments in the NCM method. 

In Tables 9.9 and 9.10, the components of ground reaction forces and moments 

are checked to see if they violate the NCM constraints (are impossible in the real world) 

or not and are highlighted, if they do. However, as seen, no component of ground 

reaction forces and moments is highlighted in these tables or violates NCM constraints. 

  

9.5 Comparison of GRF and Joint Torques Before and 
After Re-Partitioning 

As a simpler reference, values for some of the components of the ground reaction 

forces and moments are plotted in this section before and after re-partitioning. 

The term "Possible Range" for x

y

M

F
 or z

y

M

F
 in Figures 9.4, 9.5 and 9.6 specifies 

the limitation imposed by the NCM constraints on  x

y

M

F
 or z

y

M

F
 . For a fixed size 

rectangular contact area on the ground, NCM constraint is simplified to two independent 

inequality constraints on the values of   x

y

M

F
 or z

y

M

F
 with fixed upper and lower limits. 
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This fact can be observed from Equation (9.2.1), for example. Also, as seen in 

Figures 9.4, 9.5 and 9.6, the possible ranges for x

y

M

F
 or z

y

M

F
 are inequalities with fixed 

values of upper and lower limits during the motion. The horizontal axis in these graphs 

indicates the change of time and refers to the number of grid points after the contact area 

comes into contact with the ground. 

 

 

 

 

 

Figure 9.5.  The values obtained for Mx/Fy and Mz/Fy at the Right Foot by ZMP versus NCM Methods 

Figure 9.4.  The values obtained for Mx/Fy and Mz/Fy at the Left Foot by ZMP versus NCM Methods 
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The term "Possible Range" for xM  or zM  in Figures 9.7 - 9.12 specifies the 

limitation imposed by the NCM constraints on  xM  or zM  based on the value of yF at 

any instant of motion. This possible range changes during the motion, because the value 

of yF  changes during the motion.  

As previously seen in Tables 9.4 and 9.5, xM  or zM  values with the ZMP 

method exceed the possible ranges at several instants of time during the motion. This fact 

can also be observed in Figures 9.7 - 9.12.  

Figure 9.6.  The values obtained for Mx/Fy and Mz/Fy at the Left Knee by ZMP versus NCM Methods 
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 Figure 9.9.  The values obtained for Mx at the Right Foot by ZMP versus NCM Methods 

Figure 9.8.  The values obtained for Mz at the Left Foot by ZMP versus NCM Methods 

Figure 9.7.  The values obtained for Mx at the Left Foot by ZMP versus NCM Methods 
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 Figure 9.12.  The values obtained for Mz at the Left Knee by ZMP versus NCM Methods 

Figure 9.11.  The values obtained for Mx at the Left Knee by ZMP versus NCM Methods 

Figure 9.10.  The values obtained for Mz at the Right Foot by ZMP versus NCM Methods 
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As described in previous chapters, GRF values are used to calculate torques at 

joints using the Recursive Lagrangian Formulation. Therefore, re-partitioning of GRF 

also affects the values of joint torques during the motion. The re-partitioning does not 

necessarily have to reduce the torques at joints. But, it seems to slightly reduce the joint 

torques at most of the joints. The values of joint torques before and after re-partitioning 

are compared in Appendix B. It was calculated that the sum of the squared torque values 

for this sample going prone task was reduced by a factor of 1.8 after the GRF re-

partitioning. 

An interesting point to note is that at any instant of the motion, if the end of a 

kinematic branch of the digital human is not connected to the ground, the values of 

torques remain unchanged before and after re-partitioning. The reason is that the motion 

and the IGE forces and moments are not affected by the re-partitioning of GRF. This fact 

can be seen for example in the joint torques at the neck throughout the motion and the 

joint torques at the spine, left arm, right arm at the start of the motion. 

 

9.6 Effect of Re-Partitioning on the Optimality of the 
Kinematics of the Motion Prediction Results  

As it was noted in Section 9.5, GRF values are used to calculate torques at joints 

using the Recursive Lagrangian Formulation. Therefore, re-partitioning of GRF also 

affects the values of joint torques during the motion. This change in torque may result in 

a previously considered optimal motion not to be kinematically optimal anymore 

(although the re-partitioning procedure also optimizes the GRF partitioning based on the 
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value of torques, it cannot affect or optimize the kinematics of the original motion that is 

borrowed from the ZMP method). 

In order to check whether the kinematics of the "Going Prone" task is still optimal 

after the change in the partitioning ratios of GRF, we feed the optimal ratios of GRF 

partitioning from the NCM method back to the ZMP method (the original motion task 

simulation environment) and consider them as fixed ratios. Based on these fixed ratios for 

each of the 6 components of GRF at each contact area, the motion is optimized again. 

However, it is observed that the kinematics of the "Going Prone" task is almost 

unaffected and the kinematics results that are played back seem completely identical to 

the eye. The original joint angles of the going prone task in the ZMP method are 

compared in Appendix C with their values after feeding ratios. As it is seen, the changes 

in the kinematics are negligible. Therefore both the dynamics and the kinematics results 

of the re-partitioning (by NCM method) can be considered optimal as well as feasible. 

 

9.7 Improvement of GRF for a Walking Simulation in 
Predictive Dynamics Using  NCM Method 

As it was noted in Section 8.4.2, the assumption of the uniform partitioning of the 

GRF components causes the calculated GRF for all contact areas (except maybe for one 

contact area) to have values which are impossible in the real world. This impossibility is 

a mathematical fact and affects any dynamic task that is modeled using this assumption. 

As noted in Section 8.4.2, besides the tasks modeled in Chapters 5 and 6 or the sample 

publications noted there (Xiang, et al (2007, 2009), Kim, et al (2008), Bhatt, et al (2008)), 
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any other type of uniform partitioning (partitioning about any arbitrary point other than 

the ZMP or consider the uniform ratios of GRF as design variables) will cause the same 

problem.  

In this section, we try to improve the results of GRF for a sample walking 

simulation similar to what was noted in Xiang, et al (2007) by using the NCM method. 

This improvement only consists of finding values for GRF which are possible in the real 

world. The NCM method does not ensure that the calculated GRF are optimal or match 

the experimental data. These issues also depend on the original simulation and the 

constraints used in the original simulation to predict a walking task. However, because 

the experimental data for the GRF of walking are available in the literature, one may also 

be curious to know how much the NCM method improves the GRF results of a sample 

walking simulation. Therefore, we also perform a comparison of the GRF calculated by 

ZMP versus NCM methods with the experimental data at the end. 

 

9.7.1 Original Values of GRF for the Walking Simulation (Using ZMP Method) 

In this section, we analyze the initial ground reaction forces and moments 

obtained by the ZMP method for a "walking" motion task. The formulation for this task 

consists of motion stages a, b, c in Figure 9.13.  

The ground contact modeling specifies the GRF points and the ZMP boundary 

points for each motion stage (a,b,c) as shown in Figure 9.13. The values for ground 

reaction forces and moments in each direction which are Fx, Fy, Fz, Mx, My, Mz, are 

calculated at each of the GRF points specified for that motion stage.  
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Based on the time discretization strategy for the walking task, each motion stage 

consists of one or several time grid points. Predictive dynamic calculations including the 

GRF calculations are performed at each time grid point. In the walking task, the time grid 

points corresponding to each motion stage are as shown in Table 9.11.  

Motion Stage  Time Grid Points 

a (Double Support)  1‐7 

b (Single Support)  7‐13 

c (Single Support)  13‐19 

Table 9.11. List of time grid points corresponding to each motion stage of the "Walking" task 

Figure 9.13.  Motion stages (motion segments) for the "Walking" task 

  Figure 

Part

(a) RightMiddle LeftMiddle RightToeOuter LeftMiddleInner

LeftMiddleOuter LeftHeelOuter

RightMiddleInner RightMiddleOuter

(b), (c ) LeftMiddle LeftHeelOuter LeftHeelInner

LeftMiddleInner LeftToeInner

GRF Points (Points that can 

take ground reaction forces)

Points defining the ZMP convex hull

z 

x y 

(a) (b) (c) 
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The NCM method can only improve the results of GRF partitioning. It will not 

affect the original simulation at all if the dynamic system has only one contact area with 

the ground (single support such as in stages b, c in Table 9.11). Therefore, in the rest of 

this section, we only consider the GRF results for motion stage (a) (double support). 

Therefore, we will only have to deal with time grid points corresponding to double 

support (time grid points 1-7 in Table 9.11). The net of IGE forces and moments 

calculated at each of these time grid points are shown in Table 9.12. 

 
Description 

of the 
Force 
System 

Force, 
Moment 

Components 

Value at 
Time 
Grid #1 

Value at 
Time 
Grid #2 

Value at 
Time 
Grid #3 

Value at 
Time 
Grid #4 

Value at 
Time 
Grid #5 

Value at 
Time 
Grid #6 

Value at 
Time 
Grid #7 

Net of IGE 
Forces at 
the Hip 
Point 

Fx  57.170  7.519  4.166  3.974  8.718  19.501  36.689 

Fy  ‐945.564  ‐316.211  ‐433.768  ‐549.115  ‐661.301  ‐769.863  ‐874.757 

Fz  ‐263.335  ‐68.094  ‐23.271  21.564  66.572  111.818  157.252 

Mx  ‐19.015  46.082  71.701  94.146  113.224  128.971  141.621 

My  6.508  2.358  ‐0.601  ‐2.842  ‐4.127  ‐4.403  ‐3.788 

Mz  ‐17.163  ‐9.104  ‐25.137  ‐37.575  ‐45.898  ‐50.001  ‐50.192 

Net of IGE 
Forces at 
the ZMP 
Point 

Fx  57.170  7.519  4.166  3.974  8.718  19.501  36.689 

Fy  ‐945.564  ‐316.211  ‐433.768  ‐549.115  ‐661.301  ‐769.863  ‐874.757 

Fz  ‐263.335  ‐68.094  ‐23.271  21.564  66.572  111.818  157.252 

Mx  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

My  2.878  ‐0.698  ‐2.638  ‐2.048  ‐0.999  ‐0.407  ‐0.705 

Mz  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 
In the next stage in the ZMP method, as discussed in Section 4.4, the ground 

reaction forces and moments are partitioned at the defined GRF points for that motion 

stage. As explained in Chapter 4, the net force and moment vectors of ground reaction 

forces is set equal to the negative value of the net force and moment vectors of IGE 

forces. Then, the components of the net force and moment vectors of ground reaction 

Table 9.12. The net value of IGE forces and moments for the "Walking" task in ZMP method 
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forces are partitioned uniformly between the GRF points based on the distance of those 

GRF points to the ZMP (based on the formulas in Section 4.6). 

The list of GRF points at each motion stage for the going prone task was 

previously shown in Figure 9.13. The ground reaction forces and moments at each of 

those GRF point are calculated at each time grid point at the GRF points indicated in 

Figure 9.13. The values are shown in Table 9.13. 

 
Point of 

Effect of the 
Ground 
Reaction 

Force System 

Force, 
Moment 

Components 

Value at 
Time 
Grid #1 

Value at 
Time 
Grid #2 

Value at 
Time 
Grid #3 

Value at 
Time 
Grid #4 

Value at 
Time 
Grid #5 

Value at 
Time 
Grid #6 

Value at 
Time 
Grid #7 

Right Foot 
Middle 

Fx  ‐51.134  ‐4.414  ‐1.541  ‐0.971  ‐1.421  ‐2.106  ‐2.763 

Fy  845.719  185.623  160.443  134.161  107.752  83.130  65.870 

Fz  235.528  39.973  8.608  ‐5.269  ‐10.847  ‐12.074  ‐11.841 

Mx  ‐60.838  ‐53.237  ‐70.909  ‐71.125  ‐63.179  ‐51.891  ‐42.820 

My  ‐4.272  ‐5.657  ‐0.909  0.775  1.026  0.681  0.231 

Mz  ‐7.111  22.296  22.445  20.104  16.846  13.439  10.981 

Left Foot 
Middle 

Fx  ‐6.037  ‐3.105  ‐2.625  ‐3.003  ‐7.298  ‐17.395  ‐33.927 

Fy  99.846  130.588  273.324  414.954  553.549  686.733  808.886 

Fz  27.806  28.121  14.663  ‐16.296  ‐55.725  ‐99.744  ‐145.410 

Mx  62.347  53.694  71.155  71.291  62.007  46.495  26.479 

My  ‐0.516  2.513  2.543  2.014  1.884  2.582  4.223 

Mz  14.296  ‐4.400  ‐3.673  ‐1.255  2.280  7.170  13.687 

 
As explained earlier, this section analyzes the results of the original walking 

simulation (using the ZMP method). ZMP method does not consider the size and shape of 

each individual contact area for any of the calculations (including the calculation of 

ground reaction forces and moments). The ZMP method only cares about the convex hull 

of all the contact areas rather than each contact area individually. 

Table 9.13. Ground reaction forces and moments for the "Walking" task in ZMP method 

Support Area  

0.12 x 0.25 

Rectangle 

Support Area  

0.12 x 0.25 

Rectangle 
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Approximate sizes and shapes for individual contact areas are noted in Table 9.13. 

In this table, the considered shapes are rectangles having specified lengths and widths 

with their centers located at the location of GRF points. These values are not defined or 

used at all in the ZMP method. Their sizes are chosen to be larger than or equal to the 

actual contact areas. They are just used after the results are obtained to check the validity 

of the calculated ground reaction forces and moments by using NCM constraints (a 

sample of checking the NCM constraints for a rectangular contact area was shown in 

Example 9.1). Therefore, if the NCM constraints are violated for these larger contact 

areas, we can be sure that the NCM constraints are violated for the actual contact areas in 

the simulation, too. 

In Table 9.13, the components of ground reaction forces and moments which 

violate the NCM constraints (are impossible in the real world) are highlighted in orange 

color. As explained in Section 8.4, in the ZMP method, at least one component of the 

calculated GRF is for sure impossible in the real world for all ground contact areas, 

except maybe for one contact area. The evidence for this claim can be seen in all columns 

of Table 9.13 where some cells are highlighted. As seen there, at each time grid point, at 

least  one component of ground reaction forces and moments is highlighted for at least 

one of the two contact areas, indicating violation of reality. 

 

9.7.2 Values of GRF after Re-Partitioning for Walking  

As it was previously discussed in Section 9.4, general algorithms are developed to 

check the NCM constraints and calculate the ground reaction forces and moments on 
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each separate contact area. In these algorithms, individual contact areas can either be 

defined by their boundary points or by fixed shapes (rectangles, circles) on the ground 

(these algorithms can be later generalized to define them on non-horizontal and non-

coplanar contact planes). The two individual contact areas (the two feet) for the walking 

task are defined independently in this algorithm by their boundary points (similar to the 

contact areas of the two feet with the ground in Figure 9.13). 

Although the contact areas are defined by boundary points in the algorithm, after 

obtaining the final results, we check the accuracy of the results by approximating all 

contact areas with rectangles. After re-partitioning, the net of IGE forces and moments 

calculated at each time grid point for the two subtasks are shown in Table 9.14. 

 
Description 

of the 
Force 
System 

Force, 
Moment 

Components 

Value at 
Time 
Grid #1 

Value at 
Time 
Grid #2 

Value at 
Time 
Grid #3 

Value at 
Time 
Grid #4 

Value at 
Time 
Grid #5 

Value at 
Time 
Grid #6 

Value at 
Time 
Grid #7 

Net of IGE 
Forces at 
the Hip 
Point 

Fx  57.170  7.519  4.166  3.974  8.718  19.501  36.689 

Fy  ‐945.564  ‐316.211  ‐433.768  ‐549.115  ‐661.301  ‐769.863  ‐874.757 

Fz  ‐263.335  ‐68.094  ‐23.271  21.564  66.572  111.818  157.252 

Mx  ‐19.015  46.082  71.701  94.146  113.224  128.971  141.621 

My  6.508  2.358  ‐0.601  ‐2.842  ‐4.127  ‐4.403  ‐3.788 

Mz  ‐17.163  ‐9.104  ‐25.137  ‐37.575  ‐45.898  ‐50.001  ‐50.192 

Net of IGE 
Forces at 
the ZMP 
Point 

Fx  57.170  7.519  4.166  3.974  8.718  19.501  36.689 

Fy  ‐945.564  ‐316.211  ‐433.768  ‐549.115  ‐661.301  ‐769.863  ‐874.757 

Fz  ‐263.335  ‐68.094  ‐23.271  21.564  66.572  111.818  157.252 

Mx  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

My  2.878  ‐0.698  ‐2.638  ‐2.048  ‐0.999  ‐0.407  ‐0.705 

Mz  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

 

Table 9.14. The net value of IGE forces and moments for the "Walking" task in NCM method 
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As expected, the IGE values have stayed the same after GRF re-partitioning. 

However, the ground reaction forces and moments at each contact area will be different. 

The new values are shown in Table 9.15. 

 

Point of Effect 
of the Ground 

Reaction 
Force System 

Force, 
Moment 

Components 

Value at 
Time 
Grid #1 

Value at 
Time 
Grid #2 

Value at 
Time 
Grid #3 

Value at 
Time 
Grid #4 

Value at 
Time 
Grid #5 

Value at 
Time 
Grid #6 

Value at 
Time 
Grid #7 

Right Foot 
Middle 

Fx  ‐48.148  30.083  ‐39.065  3.309  12.099  17.145  13.130 

Fy  834.730  167.981  122.917  80.247  65.779  76.128  43.668 

Fz  362.561  98.070  107.724  101.531  98.669  114.192  65.502 

Mx  0.403  ‐0.492  ‐0.472  ‐0.300  ‐5.592  ‐6.381  ‐3.526 

My  1.915  0.111  ‐20.467  ‐5.577  ‐3.810  2.015  7.826 

Mz  5.257  6.186  6.128  4.001  1.500  3.358  1.939 

Left Foot 
Middle 

Fx  ‐9.023  ‐37.602  34.899  ‐7.283  ‐20.818  ‐36.645  ‐49.819 

Fy  110.834  148.229  310.851  468.869  595.522  693.734  831.089 

Fz  ‐99.226  ‐29.976  ‐84.453  ‐123.095  ‐165.240  ‐226.010  ‐222.754 

Mx  11.416  14.447  27.800  37.757  31.828  1.972  ‐0.811 

My  14.807  12.055  ‐19.458  ‐4.960  ‐0.512  ‐4.537  ‐4.123 

Mz  3.547  8.345  7.163  6.626  11.471  16.779  20.048 

 
As seen in Tables 9.15, approximate sizes and shapes for individual contact areas 

are noted. These contact areas were modeled differently in the NCM method (by 

specifying their boundary points). However, the approximate rectangles shown in Table 

9.15 are used after the results are obtained to check the validity of the calculated ground 

reaction forces and moments in the NCM method. 

In Table 9.15, the components of ground reaction forces and moments are 

checked to see if they violate the NCM constraints (are impossible in the real world) or 

not and are highlighted, if they do. The checking is done based on the indicated 

Table 9.15. Ground reaction forces and moments for the "Walking" task in NCM Method 

Support Area  

0.12 x 0.25 

Rectangle 

Support Area  

0.12 x 0.25 

Rectangle 
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approximate sizes and shapes (in the repartitioning procedure, the NCM constraints were 

based on boundary point locations, not these fixed shapes). However, as seen, no 

component of ground reaction forces and moments is highlighted in these tables or 

violates the NCM constraints. 

 

9.7.3 Comparison of GRF Before and After Re-Partitioning  

As a simpler reference, similar to what was done in Section 9.5, values for some 

of the components of the ground reaction forces and moments are plotted in this section 

before and after re-partitioning. 

The term "Possible Range" for x

y

M

F
 or z

y

M

F
 in Figures 9.14 and 9.15 specifies 

the limitation imposed by the NCM constraints (such as 9.2.1) on  x

y

M

F
 or z

y

M

F
 . For a 

fixed size rectangular contact area on the ground, NCM constraint is simplified to two 

independent inequality constraints on the values of   x

y

M

F
 or z

y

M

F
 with fixed upper and 

lower limits. This fact can be observed from Equation (9.2.1), for example. Also, as seen 

in Figures 9.14 and 9.15, the possible ranges for x

y

M

F
 or z

y

M

F
 are inequalities with fixed 

values of upper and lower limits during the motion. The horizontal axis in these graphs 

indicates the change of time and refers to the number of grid points after the contact area 

comes into contact with the ground. 
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The term "Possible Range" for xM  or zM  in Figures 9.16 - 9.19 specifies the 

limitation imposed by the NCM constraints on  xM  or zM  based on the value of yF at 

any instant of motion. This possible range changes during the motion, because the value 

of yF  changes during the motion.  

Figure 9.15.  The values obtained for Mx/Fy and Mz/Fy at the Right Foot by ZMP versus NCM Methods

Figure 9.14.  The values obtained for Mx/Fy and Mz/Fy at the Left Foot by ZMP versus NCM Methods 
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As previously seen in Table 9.15, xM  or zM  values with the ZMP method 

exceed the possible ranges at several instants of time during the motion. This fact can 

also be observed in Figures 9.16 - 9.19. 

 

 

 

 

 

Figure 9.17.  The values obtained for Mz at the Left Foot by ZMP versus NCM Methods 

Figure 9.16.  The values obtained for Mx at the Left Foot by ZMP versus NCM Methods 
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9.7.4 GRF Before and After Re-Partitioning versus Experimental Data 

In this research, we try to improve the results of GRF for a sample walking 

simulation by using the NCM method. This improvement only consists of finding values 

for GRF which are possible in the real world. The NCM method does not ensure that the 

calculated GRF are optimal or match the experimental data. These issues also depend on 

the original simulation and the constraints used in the original simulation to predict a 

Figure 9.19.  The values obtained for Mz at the Right Foot by ZMP versus NCM Methods 

Figure 9.18.  The values obtained for Mx at the Right Foot by ZMP versus NCM Methods 
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walking task. However, because the experimental data for the GRF of walking are 

available in the literature, one may also be curious to know how much the NCM method 

improves the GRF results of a sample walking simulation. Therefore, we also perform a 

comparison of the GRF calculated by ZMP versus NCM methods with the experimental 

data in this section. 

However, surprisingly, the result of the comparisons indicates that the Re-

Partitioning results match pretty well with the experimental data. The graphs which were 

used to support (in Section 4.6) or criticize the support (in Section 8.4.3) for the uniform 

partitioning assumption are again repeated in this section. The results of NCM method 

surprisingly match better with these experimental data (data that were originally used as 

the only support for the uniform partitioning assumption in the ZMP method).   

Similar to Section 8.4.3, we replot the data measured in the walking experiment 

published in Winter (2009) in Figures 9.20, 9.21, 9.22. In these figures, we plot the ratio 

of ZMP distances from the left and right feet versus the ratio of the several components 

of the forces and moments on them. In these figures, Rz  and Lz respectively denote the 

distances of the ZMP to the right and left foot in the forward-backward direction. Also, 

, , , , ,yR yL zR zL xR xLF F F F M M  respectively denote the vertical and frictional ground reaction 

forces and tipping ground reaction moments on the right and the left foot. The details and 

the numbers used in plotting these graphs are explained in Appendix D. 
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Figure 9.21.  Ratio of the frictional forces acting on Left and Right feet versus the ratio of their distances 
from ZMP for walking task. Measurement data is compared to the results of the NCM and ZMP methods.

R

R L

z

z z

zL

zR zL

F

F F

Figure 9.20.  Ratio of the vertical forces acting on Left and Right feet versus the ratio of their distances 
from ZMP for walking task. Measurement data is compared to the results of the NCM and ZMP methods.
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9.8. Summary and Conclusion 

Several dynamic tasks had been modeled in Chapters 5 and 6 using the ZMP 

method. However, some impossible values for GRF had been encountered in those 

simulations. Chapter 8 theoretically proved that those impossible values for GRF will 

always happen due to an imperfect assumption in the ZMP method. But it was also 

indicated that the satisfaction of ZMP constraint ensures that one can find values of GRF 

that are possible in the real world and also equilibrate the given IGE forces for those 

predicted motions (the motion calculated using the ZMP method is always possible, 

while the calculated GRF values are always impossible.). Therefore, in this chapter, we 

Figure 9.22.  Contact moment of right foot at ZMP (normalized by dividing it by the vertical force) versus 
the ratio of the distances of ZMP from the feet for walking task. Measurement data is compared to the 

results of the NCM and ZMP methods. 
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introduced algorithms that correct the GRF values obtained by the ZMP method such that 

the values are possible in the real world (satisfy the NCM constraints). As an example, in 

this chapter, we implemented this algorithm on the "Going Prone" task introduced in 

Chapter 6. We also implemented it on a previously simulated "Walking" task. 

Conclusions from this study are as follows: 

1- Corollary 8.1 is validated in this chapter by observing the results for the 

"Going Prone" and "Walking" task. In other words, at least one component of 

the calculated GRF is impossible in the real world for all ground contact areas, 

except may be for one contact area in the ZMP method. 

2- Theorem 4.1 is validated in this chapter. In other words, satisfaction of ZMP 

constraint ensures that it is possible to find unilateral contact forces on the 

given contact areas to cancel the given IGE forces for the dynamic system. 

This is because we could find GRF that are possible in the real world by re-

partitioning them. 

3- The torques obtained after re-partitioning seem to be lower than the original 

torques. However, the optimality of the initial motion from the ZMP method 

seem to stay almost unaffected after re-partitioning. Therefore, although the 

motion obtained in the ZMP method is possible and almost optimal, the GRF 

need to be re-partitioned in order to obtain realistic values. 

4- The re-partitioning (NCM method) does not ensure that the calculated GRF 

are optimal or match the experimental data. These issues also depend on the 

original simulation and the constraints used to predict a motion task. 
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However, it seems that the results of the re-partitioning for the walking task 

considerably improved similarity of the GRF ratios with the experimental 

data.  
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CHAPTER 10 

NCM MARGINS OF DYNAMIC STABILITY 

10.1 Introduction 

In this theoretical chapter, we first define the terms “Contact Stability” and 

“Margins of Contact Stability” for an arbitrary dynamic system during its motion. The 

general NCM and friction constraints introduced in Chapter 7 are used to derive these 

definitions. The margins of tipping and slipping stabilities presented in this chapter are 

applicable for the most general cases of contact areas and are usable for both real systems 

such as in robot control or simulated systems or offline calculations. We show that the 

problem of finding the margins of tipping or slipping stability for the most general cases 

of contact areas turns into solving a linear optimization problem. 

 

10.2 Motivation for NCM Stability Concepts 

A major drawback of the ZMP stability concepts is that they apply only to the 

cases in which the system’s contact with the environment is in one plane only. They 

cannot be used when different parts of the system come into contact with the environment 

and the contact areas are in different planes. Unlike the ZMP, NCM stability concepts 

that we will define are applicable for the most general cases of contact areas (coplanar or 

non-coplanar contact areas which are horizontal, inclined, parallel, or non-parallel). 



  

 

275

10.3 Possibility versus the Stability of Motion 

Chapters 4, 7 and 8 dealt with the possibility of a motion problem. It is impossible 

that NCM constraints or the ZMP constraint is violated for a system in the real world. 

Even during the falling motion of a dynamic system, both the NCM constraints and the 

ZMP constraint will need to be satisfied (they will require the system to have enough 

acceleration under the effect of gravity during falling motion so that these constraints are 

not violated). But, ZMP can also be used to analyze the stability of a motion. If we define 

instability as a situation when the contact area of the robot with the ground reduces to a 

line (all contact forces are concentrated on one edge of the convex hull), then Theorem 

7.2 indicates that instability occurs when the ZMP is on one edge of the convex hull. 

Also, the location of ZMP helps us determine the margins of dynamic stability for the 

motion. Conventionally, the distance of the ZMP from the edges of the convex hull in 

any of the horizontal axes determines the stability of motion about those axes. For the 

cases of contact areas on non-coplanar surfaces, ZMP is not defined and we define the 

margins of stability in the general case of non-coplanar contact areas (either horizontal or 

inclined or parallel or non-parallel) using the NCM point definition. 

 

10.4. Contact Stability of a Dynamic System 

In this section, we offer the general criteria for the contact stability of a system 

having several coplanar or non-coplanar contact areas with the environment. Examples of 
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such systems are depicted in Figures 10.1 and 10.2. In Figure 10.1 the elephant avatar 

shown is considered as a system with multiple coplanar contact areas with the ground.  

 

 

 

The purpose of contact stability criteria is to check whether the system will slip or 

tip over due to an additional infinitesimal external force. The contact stability of a system 

does not depend on the stiffness of the internal joints (DOF) of the system and it only 

depends on the net properties of the system (net acceleration, angular acceleration, 

velocity, mass, center of mass, moment of inertia, ….). To analyze the contact stability of 

this system at a given frame of motion, we apply a perturbation in the external 

forces/moments acting on the system and evaluate the response of the system. Therefore, 

to simplify the explanation of the response of the system to the perturbation and avoid the 

discussion of system’s internal motions, consider the system as one rigid body 

(freeze/stiffen all DOF of the system except its 6 global translational/rotational DOF).  

Figure 10.1. Stability criteria for a dynamic system with coplanar contact areas 

Origin 
z 

x 

y 

igeM

igeF

externalM

externalF
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Now let us present our general definition for contact stability of a motion: Apply a 

small perturbation in the external forces/moments that are applied on the rigid body 

(system). If the rigid body acquires a perturbation in its acceleration at that frame of 

motion due to that perturbation, we say that the contact of the system is unstable at that 

frame of motion (or just call it unstable), otherwise, we call it stable.  

This is because a rigid body which has flat contact areas with the environment can 

only slip or tip in order to move. If the rigid body acquires a perturbation in its 

acceleration at that frame of motion due to a perturbation in external forces, it will 

definitely fall or slip (assumming that the perturbation will be present at all the times 

after its initial application). That is because for a rigid body, the perturbation required for 

the initiation of slipping is always larger than or equal to the perturbation required for 

continuation of slipping (static versus dynamic coefficients of friction) and the 

perturbation required for the initiation of tipping is also always larger than or equal to the 

perturbation required for the continuation of tipping (an example can be seen in Equation 

(3.2.18) and its explanation in Example 3.2). By the term “continuation” of falling or 

slipping we are referring to the “continuation” of falling or slipping until there is a 

change in the environmental contact areas of the system due to the slipping or falling 

motions. 

Another example is shown in Figure 10.2 where the human avatar has several 

non-coplanar contact areas with the environment. All the definitions and explanations 

given in this section apply to system having several coplanar or non-coplanar contact 

areas with the environment such as this case. 
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The system is originally affected by an arbitrary set of contact, inertial, 

gravitational and external forces whose sum is equal to zero due to dynamic equilibrium 

equations. Let us write the dynamic equilibrium equations for a sample dynamic system 

depicted in Figure 10.2 about the origin : 

 

0

0

ige

ige

Dynamic Equilibrium


  

   
   


 

F F

M M p F

  
0

10.4.1
0

inertial gravitational external

inertial gravitational external



  

     
     


 
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αM αp

Figure 10.2. Stability criteria for a general dynamic system with non-coplanar contact areas 
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A small perturbation in the external moments/forces is applied on it which is 

denoted by externalM  and externalF .  

 
 

 
0

10.4.2
0

inertial gravitational external

inertial gravitational external



  

   

   

     
     


 

F F F F

M M M M p F
 

The system is called stable if it is able to preserve its original acceleration (keep 

inertialM and inertial F  equal to zero) under any type of such perturbations. It is noted that 

for a stable system (considered as a rigid body with a known mass and gravity), a 

perturbation is also impossible in gravitational forces ( gravitational gravitational  F M 0 ), 

too. Therefore: 

 

 
 

0

10.4.3
0

inertial gravitational external

inertial gravitational external



  

   

   

    
 

     




 
0

0

F F F F

M M M M p F
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0
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  

  

  
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 
0
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
 

So, for a stable system, we need to have solutions for F  and M  in the 

following equations for any set of infinitesimal vectors externalM  and externalF : 

 
 

 
0

10.4.5
0

external

external
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 

 

   
   


 

F F
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On the other hand, ige  F F  and ige      M p F M  are vector 

functions of F  and M whose values are limited in the 3D space only by the NCM and 

friction constraints. Consider a sample perturbation of external forces in direction ie  , 

which results in:  ,external external external   iF F e M 0 . For such a perturbation, 

Equation (10.4.5) turns into:   0external ige   iF F e

 

. ige  iF e  is a scalar value. A 

change in this scalar value means the increasing or decreasing of ige  iF e . It is obvious 

that a solution can always be found for  ige  iF e  for all values of  externalF  as long as 

ige  iF e  (a function of  F  and M ) is not at its local minimum or maximum value (at the 

time when perturbation happens). Therefore, a solution can always be found for Equation 

(10.4.5) as long as none of the six components of  igeF  and  igeM  is at its local minimum 

or maximum value.

 
Therefore, a system is stable at a given frame of motion, if and only if none of the 

six components of its net IGE (inertial, gravity, external) forces or moments is at its local 

minimum or maximum value. 

 

10.5. Margins of Contact Stability of a Dynamic System 

Using the insight from Section 10.4, we offer a general method to evaluate the 

margins of contact stability for a system having several non-coplanar contact areas with 

the environment. However, each contact area is assumed to be rigid, flat and non-

adhesive. Similar to Section 10.4, to evaluate the margins of contact stability of the 
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system at a given frame of motion, consider the system as a rigid body (freeze all DOF of 

the system except its 6 global translation/rotation DOF).  

 

 

Now let us present our general definition for contact stability margins of a 

motion: Apply a finite amount of perturbation in the external forces/moments. Increase 

the amount of perturbation until the rigid body acquires a perturbation in its acceleration 

(a rigid body can only slip or tip in order to move). The maximum amount of perturbation 

in the external forces/moments in a specific direction before a change happens in the 

acceleration of the rigid body is referred to as the margin of contact stability of the 

system in that direction.  
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αM αp

Figure 10.3. Margins of contact stability for a general dynamic system with non-coplanar contact areas 
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The system is originally affected by an arbitrary set of contact, inertial, 

gravitational and external forces whose sum is equal to zero due to dynamic equilibrium 

equations. Let us write the dynamic equilibrium equations for a sample dynamic system 

depicted in Figure 10.3 about the origin: 
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A perturbation in the external moments/forces is applied on it which is denoted by 

externalM  and externalF .  
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The system will be stable as long as it is able to preserve its original acceleration 

(keep inertialM and inertialF  equal to zero) for given values of externalM  and externalF . It 

is noted that as long as the system remains stable, a perturbation is impossible in 

gravitational forces ( gravitational gravitational   F M 0 ), too. Therefore: 
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In order to evaluate the margins of slipping/tipping stability in a specific 

direction, let us denote the magnitude of perturbation by a scalar s   and the direction of 

perturbation in the external force/moment by a unit vectors Fu  or Mu  respectively, such 

that  external s  MM u  or external s  FF u . Therefore, to evaluate the margin of 

slipping/tipping stability s  in that direction, we need to find the maximum allowable 

value for s  such that a solution exists for the following equations:  
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On the other hand, ige  F F  and ige      M p F M  are vector 

functions of F  and M whose values are limited in the 3D space only by the NCM and 

friction constraints. Therefore, the margins of dynamic contact stability against 

slipping/tipping in a specific direction  Fu  or Mu  can also be found by evaluating the 

maximum and minimum allowable amounts of perturbations in igeF  and  igeM   (as 



  

 

284

functions of  F  and M ) in that direction subject to NCM and friction constraints as 

will be explained in the next section. 

 

10.6. Formulation for the Margins of Dynamic Stability 

Consider the dynamic systems that were depicted in Figures 10.1, 10.2 and 10.3. 

At any time frame of motion, there is dynamic equilibrium between the inertial, 

gravitational and external (IGE) forces and contact forces. Let igeF  and igeM  be the force 

and moment of IGE forces at the global origin.  

 

Definition 10.1:  Margins of Tipping (Falling) Stability 

We define the margins of tipping (falling) stability about the positive/negative 

directions of horizontal axes as the maximum allowable increase/decrease in  
zigeM  and 

 
xigeM , such that the reaction contact forces and moments remain possible in the real 

world, assuming that other components of igeF  and igeM  remain constant.  

We denote the margins of tipping (falling) stability about the positive and 

negative directions of the horizontal axes by:    ,
z z

  ige igeM M  and 

   ,
x x

  ige igeM M  . 

 



  

 

285

Definition 10.2:  Margins of Slipping Stability 

We define the margins of slipping stability along the positive/negative horizontal 

axes or about the positive/negative vertical axis as the maximum allowable 

increase/decrease in  
zigeF  ,  

xigeF   and  
yigeM  , such that the reaction contact forces 

and moments remain possible in the real world, assuming that other components of igeF  

and igeM  remain constant. 

We denote the margins of slipping stability along the positive/negative horizontal 

axes by     ,
z z

  ige igeF F  and    ,
x x

  ige igeF F  . We also denote the margins of 

slipping stability about the positive/negative vertical axis by   
y

 igeM  ,
y

 igeM  . 

 

10.6.1.  Individual Contact Forces and Moments as Design Variables 

At any time frame of motion with igeF  and igeM  , a set of contact forces is 

required in order to maintain dynamic equilibrium, which means that any contact area is 

tolerating a specific net force and moment. The sum of these forces and moments should 

balance igeF  and igeM .  

When we are imposing perturbations on components of igeF  and igeM  to find the 

margins of stability, we must consider that any of the 6 components of contact forces and 

moments on any of the contact areas are allowed to change to find a solution for the 
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problem that is possible in the real world. However, in this process, the other components 

of igeF  and igeM  should be kept fixed. We offer a simple example to clarify this fact: 

Consider a 2D problem in which an avatar is in a standing position with the 

contact surfaces of its feet and the ground having areas equal to zero (its feet cannot take 

moments) as shown in Figure 10.4.a. In this 2D problem the direction of all forces are 

assumed to be up/down and direction of all moments are perpendicular to the 2D plane. 

All forces and moment symbols represent the magnitude of them and are shown as scalar 

symbols. Without any perturbation, a possible case is shown in Figure 10.4.a. With an 

increase in the global moment igeM aF  , if we do not allow any change in contact 

forces and moments, the problem will have no solution as shown in Figure 10.4.b. But, if 

we allow changes in contact forces and moments, the problem will have a solution which 

is shown in Figure 10.4.c  : 
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Figure 10.4. Effect of allowing changes in contact forces in determination of stability margins: 
(a) A 2D avatar in the original (unperturbed) condition 

(b) Perturbed case, preventing any change in contact forces – No Solution 
(c) Perturbed case, allowing changes in contact forces - Solvable 

(a) (b) (c) 
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10.6.2. The margins of dynamic stability as linear optimization problems 

In the general case (several non-co-planar and non-horizontal contact surfaces), 

the problem of finding the margins of stability turns into solving a linear optimization 

problem as shown below: 

 Margins of Tipping Stability 

Margins of tipping (falling) stability     ,
z z
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x
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can be found by maximizing    or minimizing    of  
zigeM  and  

xigeM  and 

subtracting them from their actual values, considering all F  and M  (contact forces 

and moments on contact areas) as design variables and the following linear constraints: 
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In the above formulation, it is good to note that the NCM constraints are also 

linear constraints in the components of F  and M . Therefore, one can use the simplex 

method to solve a general case of this problem.  

If we assume that the robot has only 1 contact area and that contact area is 

horizontal (on the ground), the above method will yield a criterion for the margin of 

tipping stability similar to the ZMP method. Here, for example we maximize  . 

Without loss of generality we can locate the global origin at the point of application of 1F  

and 1M   (p = 0 ): 
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The above problem turns into: 
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which is the same as finding the distance of the ZMP to the edges of the convex hull in 

the z direction (ZMP stability margins). 
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 Margins of Slipping Stability 

Margins of slipping stability     ,
z z

  ige igeF F ,    ,
x x
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 igeM  can be found by maximizing or minimizing   
zigeF  ,  

xigeF   and  
yigeM  and 

subtracting them from their actual values, considering all  F  and M  (contact forces 

and moments on contact areas) as design variables and the below constraints: 

 

    

  

2 2 2 2
1 2 3

1)

2)

3) (7.7.16)

4)

z x

y

Remove or equation if you are maximizing or minimizing any of them

Remove equation if you are maximizing or minimizing it

NCM Constraints on and

F F F

Inst



  

 

  

 

   

 



 

ige

ige ige

ige

ige

F F

F F

M M p F

M

F M

3 1 3 3 2 3

3 3 3

,

:

5) '

,

ead these approximateconstraints canbeused

which arelinear functions of and

F F F and F F F

R F M R F

Instead these approximateconstraints canbeused

which are linear functio

 

     

    

   

 

 
 
 
       

  

F M

3 3 3

:

(7.8.8) : i i

ns of and

constraint F M F
 

       

 
 
 
      

F M

E p E p

 

 



  

 

290

In the above formulation, it is good to note that the NCM constraints are also 

linear constraints in the components of F  and M . Therefore, one can use the simplex 

method to solve a general case of this problem.  

10.7 Summary and Conclusion 

The general NCM and friction constraints introduced in Chapter 7 play a critical 

role in the definition of stability concepts in this chapter. Based on these, we defined 

margins of tipping and slipping stabilities which are applicable for the most general cases 

of contact areas and are usable for both real problems such as in robot control or in 

simulations. We showed that the problem of finding the margins of tipping or slipping 

stability for the most general cases of contact areas turns into solving a linear 

optimization problem. 

As was noted before, the ZMP stability criteria and margins are not applicable for 

problems in which the system’s contact areas with the environment are non-coplanar. As 

it was shown in this chapter, the NCM stability concepts are applicable for systems with 

any number of contact areas with the environment, oriented arbitrarily with respect to 

each other (contact areas which are coplanar, non-coplanar, horizontal, inclined, parallel 

or non-parallel).  
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CHAPTER 11 

GENERALIZATION OF ZMP CONSTRAINT USING NCM CONCEPTS 

11.1 Introduction 

In Chapter 7, we presented a general set of constraints on the equivalent reaction 

forces and moments (the NCM and the coulomb friction constraints). The NCM 

constraints are the real reasons behind the conventional ZMP constraint as proved in 

Theorem 8.1. The conventional ZMP constraint is only applicable when the contact areas 

of the dynamic system with the environment are coplanar. In this chapter, we generalize 

the conventional ZMP constraint so that it can apply to the most general cases when we 

have non-coplanar contact areas which are horizontal or inclined and parallel or non-

parallel. However, in the general case of contact areas, it will be observed that besides the 

NCM constraints, the coulomb friction constraints also affect the ZMP constraint. The 

results obtained in this chapter will be specially useful for the simulation of motion tasks 

such as stairs climbing or uneven terrain locomotion or when the robot or the digital 

human leans against a wall. 

 

11.2. Motivation for the Generalization of ZMP Constraint 

It is essential for robots to move around the conventional human-centered 

environments that include stairs as a major terrain. But, the conventional ZMP concepts 

are only applicable in the cases where all contact areas are on the same plane. There has 

been constant research to generalize the ZMP concepts for both parallel or non-parallel 
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contact areas on different planes. However, as previously seen in Chapter 3, an exact, 

general method is still lacking to check the possibility or find the margins of stability of a 

dynamic motion in the general cases of contact surfaces. 

NCM constraints defined in Definition 7.2 are the real theoretical reasons behind 

the ZMP constraint (they require the ZMP constraint to hold as a partial result). ZMP 

constraint expresses the natural limits on the net moment of all forces, except contact 

forces (which are the inertial, gravitational and external (IGE) forces). Dynamic 

equilibrium equations indicate that the net moment of contact forces should cancel the net 

moment of all other (IGE) forces. Therefore, natural limitations on the contact forces and 

moments (NCM constraints) will impose constraints on all other forces and moments 

(ZMP constraints). So, it is in fact because of the physical limitations on contact forces 

and moments that the ZMP constraint holds true. For example, consider a case where one 

of the contact areas of a walking robot can exert unlimited range of contact forces and 

moments on the robot (for example one of its feet is strongly glued to the ground at its 

moment of contact with the ground), then there will be no need for the ZMP constraint 

because in such a case, the possible net moment of IGE forces can have any arbitrary 

value and is unlimited. Therefore, this chapter offers a more in-depth look into the 

theoretical backgrounds for the ZMP constraints. Also, in this chapter, we use the NCM 

and the coulomb friction constraints to generalize the conventional ZMP constraint so 

that it can apply to cases when we have contact areas on different (either parallel or non-

parallel) planes. In problems where the ground reaction forces and moments on 

individual contact areas are not calculated, it may still be preferred to use ZMP constraint 
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instead of NCM constraints. This generalization of ZMP constraint will benefit such 

problems where a robot should walk up the stairs or when a robot uses its hand to lean on 

the wall with its feet on the ground. 

 

11.3. Overview of  the Chapter 

Section 11.4 presents the general formula to obtain constraints on the net of IGE 

(inertial, gravitational, external) forces and moments by using the NCM constraints. In 

the special case when all contact areas are on a same plane, the formula turns into the 

conventional ZMP constraint. In a system with the most general case of contact areas, the 

equations given in that section need to be solved to see if a given motion (the IGE forces 

and moments) are possible or not in the real world.  

Section 11.5 simplifies the general formula in Section 11.4 and obtain closed form 

ZMP constraints by defining the ZMP constraint in two different ways for the general 

case of contact areas (Form I versus Form II ZMP-Like constraints). 

Conventional ZMP constraint checks the possibility of IGE moments about the 

two horizontal axes and does not care about the moment about the vertical axis. For the 

general case of contact areas, all the axes become significant. Therefore, it is possible to 

define ZMP constraints in either 2D or 3D, for them. 

Section 11.6 offers formulas for the 2D ZMP-like constraints for systems with 

non-coplanar but parallel contact areas. 
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11.4. Possibility of IGE Forces and Moments in the Real World in 
the Most General Case of Contact Areas 

Based on the discussion in Section 8.6.1, in some problems (where GRF on 

individual contact areas are not calculated), it may still be preferred to use ZMP 

constraint. In those problems, the role of ZMP constraint is to limit the two horizontal 

components of igeM  (ZMP being inside the convex hull Total  ) such that in the next step 

it will be possible to find unilateral reaction forces and moments on contact areas α  to 

cancel them.  

As indicated before, NCM constraints are applicable for non-coplanar contact 

areas (either horizontal or inclined or parallel or non-parallel) while ZMP constraint is 

applicable only if all contact areas are on a same plane. But, the real reasons behind the 

limits on igeM  (ZMP constraint) arise from the NCM constraints (non-adhesiveness of 

contact areas). The theoretical basis of ZMP constraint can be derived from NCM 

constraints as shown in Theorem 8.1. Therefore it is possible to develop constraints on 

igeF  and igeM  (similar to ZMP) for cases where NCM constraints apply but the ZMP 

constraint does not apply (non-coplanar contact areas). This will be helpful in problems 

in which GRF on individual contact areas are not calculated as indicated in the previous 

paragraph. 

In the most general case of contact areas (either horizontal or inclined or parallel 

or non-parallel or co-planar or non-coplanar), the following system of equations needs to 

be solved to check whether a specific igeF  and igeM  (the net force and moment of IGE 

forces at the global origin point) for a dynamic system are possible in the real world: 
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In the above system of equations, the unknowns are  F  and M for each contact 

area. This system of equations needs to be solved. If a solution exists for  F  and M , 

then the  and  in question are possible for the dynamic system in the real world. 

The above problem is actually directly borrowed from Section 10.4. In that section, we 

found the margins of stability by maximizing or minimizing some components of  

and  . Here, we just check the possibility of a given  and  in the real world. 

As an approximation, we replace items (4) and (5) in Equations (11.4.1) by simpler 

constraints which are linear functions of F  and M  : 
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In the above formulation, it is good to note that the NCM constraints (7.7.16) are 

also linear in the components of F  and M . So, one can check the possibility of a set 

igeF igeM

igeF

igeM igeF igeM
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of  and  for a dynamic system in the real world by checking whether there exists 

a solution for this linear system of equations. This should take a very short time and 

therefore, this check can be done at each iteration in a larger nonlinear optimization 

problem.  

In this section, we have presented the most general method for checking the 

satisfaction or violation of the ZMP constraint. That is, in the most general cases of 

contact areas, for each case, the system of equations given in (11.4.1) or the approximate 

linear forms in (11.4.2) needs to be solved to see if the  and  in question are 

possible in the real world or not. Finding closed form solutions for these problems is a 

mathematical problem of finding the boundaries of vector functions subject to equality 

and inequality constraints. In the literature, the most related field of research that 

investigates such a problem is the field of “Finding the boundaries of workspace for 

robots”. Examples of papers in this field can be seen in Haug (1996), Abdel-Malek 

(1999), Hariri (2005).  

In the rest of this chapter, we will find closed form solutions (find ZMP 

constraints) for special cases of these problems. These special cases include cases where 

contact areas are not coplanar, but are parallel, such as in stairs climbing or almost 

parallel, such as in locomotion over uneven terrains. 

 

igeF igeM

igeF igeM
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11.5. Using NCM Constraints to Generalize the ZMP Constraint 

In this section, we try to simplify the general problem proposed in Section 11.4. 

In subsequent sections, we will use this simplified problem in order to find allowable 

ranges of igeF  and igeM  for which solutions for F  and M exist. In other words, we try 

to use NCM constraints and friction constraints for all the contact areas and develop 

ZMP-Like constraints for general cases. By ZMP-Like constraints, we mean constraints 

that specify the possible ranges for igeF  and igeM  in contrast to NCM constraints which 

specify possible ranges for individual contact forces and moments.  

Consider the general problem of several inclined and non-coplanar contact areas 

in Figure 11.1. This figure is a more detailed version of Figure 7.1 in Chapter 7. 

However, in Figure 11.1 and in the rest of this chapter, we choose the location of F  and 

M  for each contact area to coincide with the NCM point location for that contact area. 

This will not decrease the generality of the solutions obtained for IGE forces and 

moments and so for the ZMP-Like constraints; but it will simplify the equations for igeF  

and igeM  . Therefore, in the rest of this chapter, and wherever the locations of F  and 

M  are chosen at the NCM point, F  and M  are in fact the NCM force systems for 

those contact area and we shall have: ' M M . In Figure 11.1 consider the local frame 

α1 α2 α3e , e ,e  corresponding to contact area  α  (similar to Figure 7.1). Denote the global 

location of the origin of that local frame by αo . Denote the local position of the NCM 

point in that local frame by αv  and its global location by αw . The global dynamic 

equilibrium equation about origin is: 



  

 

298

  

 

 

   

11.5.1

11.5.2

ige ige

ige

ige

      

     

    

  

  
 

α α

α α α

α α α α

F 0 F F 0 F F

M 0 M M w F 0

M M o + v F

  

Let us consider the following definitions: 

 

1 1 2 2 3 3

1 1 2 2 3 30 0

11.5.3

z x y

z x y

F F F

F F F

M M M

M M M

  

  

  

  

  

  

    

  

α α α α α α

α α α

α α α α α α

α α α

F e F e F e

F k F i F j

M e M e M e

M k M i M j

  
  

  
  

 



α

α

α1eα2e
α3e

z 

x 
y 

αv

igeM

αF

αM

igeF
αo

αw

Figure 11.1. A schematic of the general problem 
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The constraints on forces and moments due to the non-adhesiveness of each 

convex hull  α  are: 
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Considering (11.5.1), (11.5.4), (11.5.5), (11.5.6) and (11.5.7), we define two 

different forms for the ZMP-Like constraint problem as shown below: 
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The design variables for both Form I and Form II are  F  and M  according to 

the original form of the problem in Equations (11.4.1) or variables that depend on  F  and 

M  as will be seen in next sections. Also, the allowable ranges for igeM  in both forms 

should be found subject to the following constraints: 
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Finding a solution to Form I is equal to finding a solution to Form II by ignoring 

constraint (11.5.10a). Therefore, it is always easier to find a solution for Form I compared 

to Form II. Also, note that in the conventional ZMP constraint, we actually find ranges 

for ige M k  and ige M i   (considering  k, i, j  as  1 2 3e ,e ,e ). In that problem the 

solutions to Form I and Form II will be the same and equal to the solution of the 

conventional ZMP problem. Because in such a case, the constraint will be independent of 

the values for 1  and 2  . That is because all contact areas are on a same plane in a 

conventional ZMP problem and the frictional forces produce no moment about z or x 

axes. Unfortunately, this is only true for the conventional ZMP problem. But in any case, 

it is obvious that the solution to Form I will be the union of all possible solutions to Form 

II for all possible values of .igeF  We will discuss the importance of solving both Form I 

and Form II in each of the next sections separately.  

 

11.6. The 2D ZMP-Like Constraint for the Case of Non-Coplanar 
but Parallel Contact Areas 

In the case of several non-coplanar, but parallel contact areas, the problem is 

easier to solve. So, we consider this case first. In this case, because all the planes are 

parallel, without any loss of generality, we can assume that all the 3 axes of all the local 

coordinate frames are parallel. We also define an additional reference frame 1 2 3e ,e ,e  with 

its origin coinciding with the origin of the global coordinate frame. Its unit vecrors are 

parallel to those of all the local coordinate frames. Therefore, we have  
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1 α1 2 α2 3 α3e = e ,e = e ,e = e  for all values of α . We also define a plane   that passes 

through the global origin with the unit vector 3e  perpendicular to it. We define the ZMP 

as a point on plane   where the moments about planar axes 1 2,e e  are zero. We first find 

the “Form I, ZMP-Like Constraint” for this case. In this form, the allowable locations of 

the ZMP denoted by z  will be restricted by the following equation: (for simplicity of 

explanations in this problem, without loss of generality, assume local origins are located 

in positions such that 3 3 1 2 0o o o     αo e ) 
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As indicated before, to find a solution for the “Form I, ZMP-Like Constraint” (all 

possible values of igeF ), we just need to ignore constraint (11.5.10a). Considering 

(11.5.10c), (11.5.10d) and (11.5.10e), the locus of αv  is equal to  α  (according to the 

NCM constraints). The locus of  3o f  αfe   is achieved by sweeping f  and αfe  in 
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their allowable ranges which is a disc of radius 3o   . Therefore, the locus of 

 3o f α αfv e  in the global coordinate frame is the projection on plane   of the 

swept area of a disc of radius 3o   on  α  while the center of the disc covers all the 

points inside the convex hull  α  . Therefore, the locus of  3o f α αfv e  is the convex 

hull of  α  with discs of radii 3o   located at all of its corners. z  according to Equation 

(11.6.1) is the locus of all possible weighted averages of  3o f α αfv e  . Therefore, 

according to Lemma 8.1, the locus of z  is exactly the collection of all the points inside 

the convex hull of all the projections of contact areas  α  on plane   with each contact 

area including a disk on each of its corners of radius 3o  . We call such a convex hull by 

the name Area  .  

An approximate shape of Area   is shown in Figure 11.2 for a stairs climbing 

case with two rectangular contact areas (two feet) and horizontal stairs. A value 0 .5   

and other relative sizes in the figure are used for deciding the radius of the disks that are 

drawn in the Figure 11.2. The coefficient of friction of shoe with the ground has been 

reported to range from 0.3 to 2 with 0.6 for a cinder track and 1.5 for grass (Jenkins, 

2005). Therefore, the sizes of such disks are normally relatively large compared to the 

original sizes of contact areas. The exact calculated sizes for Area   will be shown later 

in Figures 11.6, 11.7, 11.8, 11.10 for their corresponding problems. Figure 11.3 shows a 

shape of Area   for the case of a robot having 3 arbitrary contact areas, one on plane   

and the other two at arbitrary heights (having non-zero values of 3o ). 
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Definition 11.1: Form I, 2D, ZMP-Like Constraint for Parallel Contact Areas 

For a dynamic system that has parallel contact areas with the environment, the 

Form I, 2D ZMP-Like constraint states that the following two statements are equivalent: 

1- There exist possible values of  1 2,   for which the values for 1ige M e  and 

2ige M e  are possible in the real world.  

2- The ZMP is inside Area    

We will compare the significance of the Form I and Form II ZMP-Like 

constraints at the end of this section. 

 

Area

1
2

Plane

1

2

Figure 11.2. Area   for a stair climbing case 

Figure 11.3. Area   for 3 arbitrary contact 

Area

Plane
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Now, we try to find the “Form II, ZMP-Like constraint”. Starting from Equation 

(11.6.1), we need to consider the constraint set (11.5.10) in order to find the allowable 

locations of the ZMP z  . In this work, we only find the “Form II, ZMP-Like constraint” 

for the case of 2 contact areas and leave more general cases for future research. In such a 

case, Equation (11.6.1) along with constraints (11.5.10) are: 

    
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Therefore: 
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Therefore, the problem is simplified into: 
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For two contact areas, without loss of generality, we can locate the global origin 

on the plane of convex hull 1 ( 13 0o   ). Therefore, we have: 
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In this problem, we find the area swept by z  for fixed values of  1  and 2  while 

1r  changes between 0 and 1. Initially, let us find the area swept by z  for a fixed value of 

1r . In the next step, we shall sweep 1r  between 0 and 1 to find the total area swept by z  . 

Therefore, the variable parameters will be    1 2 11 12 21 22, , , , ,f f v v v v . From the above 

equations, it is observed that vz  only depends on    11 12 21 22, , ,v v v v  and fz  only depends 

on 1 2,f f . Therefore, to find the total area swept by z , we can find the areas swept by vz  

(denoted by Area v  ) and fz  (denoted by Area f  ) separately and then add them by 

adding the location of each point of Area v  to each point of Area f  . This can be done 

by sweeping Area f  over each point of Area v  which shall be shown and discussed 

later. We first find the area swept by vz  (denoted by Area v  ): 
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In fact, if we sweep 1r  from 0 to 1, the area swept by vz will be the convex hull of 

1  and 2 . In a conventional ZMP problem, fz  is equal to zero and this will be the area 

swept by z  (similarly, the conventional ZMP constraint states that the convex hull of the 

two contact areas is the allowable locations of the ZMP). But, in this more generalized 

problem, we need the area swept by vz  for a fixed value of 1r . 

However, the problem indicated for finding Area v  corresponding to a specific 

value of 1r  indicated by Equations (11.6.12) and (11.6.13) is exactly the same as the 

problem of finding Area 
2r

   for a specific value of 2 11r r   . In Section 8.4, it was 

proved that the Area 
2r

   for a specific value of 2 11r r   can be found using the 

following procedure: 

  

For two general polygons 1  and 2 , 
2r

  can be found by the following procedure: 

1- Consider  11 12,v v  to be fixed on a corner E  of polygon 1 . Vary  21 22,v v  on all 

corners of polygon 2  and plot the locations of vz  denoted by iD . 

2- Draw copies of area 1  scaled by 1r  with corner E  located at all points iD . 

3- The area swept by vz  (denoted by Area v  ) will be equal to the convex hull of 

all the areas drawn in step 2. 
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Example 11.1: Constructing Areas v  for Two Contact Areas: a Pentagon and a Triangle 

Consider area 1  to be a pentagon and area 2  to be a triangle located at positions shown 

in Figure 11.4. The corresponding Areas v  for different values of 1r  are shown: 

        

 

 

Now, we find the area swept by fz  : 
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Figure 11.4. Constructing Areas v  for different values of 1r  for two contact areas 
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Therefore: 
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Inequality (11.6.16) constrains fz  to be inside a disk of radius  23 11o r   

centered at the origin. Inequality (11.6.17) constrains fz  to be inside a disk of radius 

23 1o r  centered at  23 1 23 2,o o   . Therefore, the area swept by fz  (allowable values for 

fz ) is the intersection of these two disks which we denote by Area f . 

The area swept by fz  depends on the values of 1 2 1 23, , , ,r o    which are all 

fixed values except for 1r  which is temporarily fixed, but will be swept later between 0 

and 1 to find the total area swept by z . The shapes for Areas f  for some fixed values 

of 1 2 1 23, , , ,r o    are shown in Figure 11.5.  
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Now remember that  v fz z z . As indicated before, to find the total area swept 

by z  which we denote by Area  , we should add the location of each point of Area v  

to each point of Area f  . This can be done by sweeping Area f  over each point of 

Area v . Assuming Area v  to be a polygon with n corners (see Figure 11.4), Area   

can be constructed by choosing a desired step value 1 1r   and using the following 

procedure: 

 

 

 

-0.01 0 0.01 0.02 0.03 0.04 0.05
-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

Figure 11.5. Shapes for Areas f  for 23 0.2, 0.5o    , 1 0, 0.1,...,1r   as labeled in figures with 

(a) 1 20.2, 0.1        and  (b)  1 20.2, 0.4      

-0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

  
1f

z
1f

z

2f
z2f

z

 0.1  0.2  0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9 

 0.1 

 0.2 

 0.3 

 0.4 

 0.5 

 0.6 

 0.7 

 0.8 

 0.9  0.95

 0.05

(a) (b) 



  

 

312

Algorithm 11.1: 

1- Let 1 0r   

2- Draw v  as described before (see Figure 11.4) 

3- Select the suitable shape of Area f  from (a figure similar to) sample Figure 

11.5. 

4- At each corner of Area v  , locate a copy of Area f  such that the origin of the 

coordinate system in Figure 11.5 coincides with the corner. 

5- Let 1 1 1r r r   . If 1 1r   then go to step 2. 

6- The area swept by z  which we denote by Area   will be the convex hull of all 

the copies of Areas
 f  drawn in the previous steps. 

 

 

Definition 11.2: Form II, 2D, ZMP-Like Constraint for Parallel Contact Areas 

For a dynamic system that has parallel contact areas with the environment, at each 

instant of motion the values for 1  and 2  are known. The Form II, 2D ZMP-Like 

constraint states that the two below statements are equivalent: 

1- The values for 1ige M e  and 2ige M e  are possible in the real world.  

2- The ZMP is inside the Area   that corresponds to those values of 1 2,  .  
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A program in Visual Basic has been written by the authors, which: 

1-  Plots Area   by sweeping all the variable parameters in their allowable ranges 

using several nested For-Next loops and If-Then statements (for checking 

inequality constraints) and assignments (for imposing equality constraints) to find 

the location of z  for each combination of possible values of variables and 

plotting a single point at that location. 

2- Draws Areas
 f  using the procedure described in Algorithm 11.1. It is observed 

in the results that Areas
 f  drawn in this step exactly define the boundaries of the 

area swept by z  (Area   )  in Step 1. This can be considered as a validation for 

the accuracy of the procedure described in Algorithm 11.1. 

 

This program currently assumes that contact areas 1  and 2  are both parallel 

rectangles of same sizes. For a stair climbing case shown previously in Figure 11.2, 

assume that contact areas 1  and 2   have same lengths of 0.2 meters and widths 0.05 

meters with the distance between their centers in the forward and sideways directions 

equal to 0.3 and 0.15 respectively. Areas   are plotted by this program for the same 

values of parameters as in Figures 11.5.a and 11.5.b and are shown in Figures 11.6 and 

11.7 respectively. As it is seen from these figures, Areas
 f  that are borrowed from 

Figures 11.5.a and 11.5.b and drawn according to Algorithm 11.1 in Figures 11.6 and 

11.7, exactly define the boundaries of the area swept by z  (Area   ) which confirms the 

validity of Algorithm 11.1. 
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Figure 11.7. Shapes for Area   (dark yellow) and Area 
 
(green) for 

23 1 20.2, 0.5, 0.2, 0.4o         . Areas f  are the same as calculated in Figure 11.5.b. 

Area

Area

Figure 11.6. Shapes for Area   (dark yellow) and Area   (green) for 

23 1 20.2, 0.5, 0.2, 0.1o         . Areas f  are the same as calculated in Figure 11.5.a. 

Area

Area



  

 

315

 

Figure 11.8. The conventional ZMP area (red) is shown in (a). Shapes for Area   (dark yellow) and Area 
 (green) for different values of 23 1 2, , ,o     are shown in figures (b) to (h). In (b) to (e), we have 

23 0.2, 0.5o    and (b) 1 20.32, 0.32      , (c) 1 20, 0.4     , (d) 

1 20.4, 0     , (e) 1 20, 0      .  In (f) to (h), we have 23 0.2, 1o    and (f) 

1 20, 0     , (g) 1 20.4, 0.5      , (h) 1 20.7, 0.5        . 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Conventional ZMP Area
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For a more clear explanation of how the non-coplanarity of the contact areas can 

transform the conventional ZMP area and turn it into Area   and Area   , consider the 

avatar shown in Figure 11.9. It has 4 separate contact areas with the environment. Its two 

feet soles are on the ground. Its two hand palms have contact with a rigid and unmovable 

table. The origin is assumed to be located on the ground and therefore the plane   will 

be the ground. The value for 3o  for the 2 contact areas on the hand palms will be equal 

to the elevation of the table. Consider respectively 1   and 2  as the contact areas of the 

feet with the ground and the hands with the table. Assume that 1   and 2  are rectangles 

having same lengths of 0.15 and widths 0.4 with the distance between their centers in the 

forward and sideways directions equal to 0.05 and 0 respectively. Let 23 1.2o   (height of 

the table) and 0.5   (coefficient of friction). The shapes of Area   and Area   for 

different values of 1  and 2  are shown in Figure 11.10. 

Origin 

Figure 11.9. Avatar having non-coplanar contact areas

1e

2e
3e
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The radius of the disks on the corners of the contact areas 1   and 2  in Area 

will be equal to 3o   which is 3 0.6o    at its hands ( 2  ) and zero at its feet ( 1  ). 

Now, let us show Area   and Area   in their real positions in the world. Consider the 

avatar in a static posture without external loads. In that case, we shall have 1 20, 0     

and the corresponding Area   and Area   were shown in Figure 11.10.b. Also, in such 

a case, the location of the ZMP will be the projection of the avatar’s center of gravity on 

Figure 11.10. The conventional ZMP area (red) is shown in (a). Shapes for Area   (dark yellow) and 
Area   (green) for 23 1.2, 0.5o    and different values of 1 2,   are shown in Figures (b) to (f). 

Values of 1 2,   in each figure are: (b) 1 20, 0     , (c) 1 20.25, 0.2     , (d) 

1 20.25, 0.35     , (e) 1 20.45, 0.1       , (f) 1 20.1, 0.45       . 

(a) (b) (c)

(d) (e) (f)

Conventional ZMP Area

2Corners of 
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the ground (plane  ). For this case, Area   and Area    are borrowed from Figure 

11.10.b and are shown in their real positions in the world in Figure 11.11. 

If it was not for the elevation of the table ( 3o ) or for the friction forces at the 

palms (   ) Area   and Area   would have been equal to the conventional ZMP area as 

shown in Figure 11.10.a. The ZMP would have been out of both Area   and Area   and 

the posture shown was impossible (zero acceleration was impossible), and the avatar 

would have to have an acceleration (have to be falling) in such a situation. But due to the 

elevation of the table and the existence of friction, Area   and Area   are different 

from the conventional ZMP area and the avatar is able to lean back without falling.  

Finally, we summarize the benefits of Form I (Area  ) vs. Form II (Area   ) 

ZMP-Like constraints (see Definitions 11.1, 11.2 and Figures 11.8, 11.10) : 

ZMP 

Center of Gravity

Figure 11.11. Avatar being able to lean back without falling due to non-coplanar contact areas 

Origin 
1e

2e
3e AreaArea
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The significance and the benefits of the Form I ZMP-Like constraints are: 

1- Similar to the conventional ZMP constraint, the shape of Area   only depends on 

the shape and location of contact areas and does not depend on the value of igeF  . 

2- It is much easier to construct Area    compared to Area    

3- If the ZMP is outside Area    , we can conclude that the motion is impossible in 

the real world for all 1  and 2  ( igeF  ) according to Definition 11.1. 

4- It is the union of all Areas   for all possible values of igeF  in the real world. 

The weak aspects of Form I ZMP-Like constraints are: 

1- If the ZMP is inside Area   , we cannot be sure whether the values for 1ige M e  

and 2ige M e  are possible or not for the current igeF . We can just be sure that there 

exist values of igeF  ( 1  and 2  ) for which they are possible in the real world. 

The significance and the benefits of Form II ZMP-Like constraints are: 

1- We can be sure whether the values for 1ige M e  and 2ige M e  are possible or not for 

the current igeF  based on the ZMP being inside or outside Area    

The weak points of Form II ZMP-Like constraints are: 

1- Unlike the conventional ZMP constraint, the shape of Area   does not only 

depend on the shape and location of contact areas. It also depends on the value of 

igeF  ( 1 2,   ). It means that unlike the conventional ZMP constraint, the shape of 

Area   changes for different accelerations or different external forces. 

2- It is much harder to construct Area    compared to Area   
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If we assume all the contact areas to be coplanar, the Form I and Form II ZMP-

Like constraints will both become same as the conventional ZMP constraint and also 

independent of 1 2,  . Area   and Area    will both be equal to the convex hull of all 

contact points. That is because we shall have 3 0o   for all contact areas and the value 

of z  (location of ZMP) in Equation (11.6.1) will be independent of the frictional forces. 

In other words that is because in a conventional ZMP problem, the frictional forces 

produce no moment about planar axes ( 1 2,e e ). 

The ZMP-Like constraints given in this section can be used to check the 

possibility or find the margins of stability of robot motion in robot control problems in all 

cases where we have one or more contact areas on several inclined or horizontal planes as 

long as all planes are parallel such as when a robot wants to climb stairs (either horizontal 

stairs as in Figure 11.12.a or inclined but parallel stairs as in Figure 11.12.c) or for 

example, when the hand of a robot has contact with the surface of a table parallel to the 

inclined ground as shown in Figure 11.12.b.  

 
Figure 11.12. Samples of the applicability of the proposed ZMP-Like constraints in the analysis of motions: 

(a) Horizontal stairs (b) Parallel external contact areas (c) Inclined stairs

(a) (b) (c) 

Origin 1e

2e3e
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11.7. ZMP-like Constraints in the General Case of Non-Coplanar, 
Inclined Contact Areas 

In general, deriving the range for igeM   for the Form I or Form II ZMP-Like 

constraints defined by (11.5.8) and (11.5.9) is the mathematical problem of finding the 

boundaries of vector functions subject to equality and inequality constraints. In the 

literature, the most related field of research that investigates such a problem is the field of 

“Finding the boundaries of workspace for robots”. Examples of papers in this field can be 

seen in Haug (1996), Abdel-Malek (1999), Hariri (2005). We leave the usage of these 

general approaches for Finding ZMP-Like constraints as the future topic of research. 

However, we have already presented the most general method for checking the violation 

or satisfaction of the ZMP constraint or finding the ZMP stability margins. That is, in the 

most general cases of contact areas, for each case, the system of equations given in 

(11.4.1) or the approximate form that is linear in unknowns (11.4.2) needs to be solved to 

see if for the  and  in question are possible or not (They are possible if and only 

if there is a solution for the system of equations). Also, to find tipping or slipping stability 

margins in the most general cases, the method in Section 10.6 can be used. 

 

 

11.8. Summary and Conclusion 

In this chapter, we presented a general formulation to check the possibility of a 

given motion (with a given  and ) which can replace ZMP constraint for systems 

igeF igeM

igeF igeM
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with any general case of environmental contact areas. The general formulations for 

finding closed form solutions that resemble the form of the conventional ZMP constraint 

were also presented. For systems with non-coplanar contact areas (unlike coplanar), the 

suggested ZMP constraints are dependent on frictional elements. The actual closed form 

solutions were calculated and depicted which are equivalent to the ZMP constraint for the 

cases of parallel contact areas. These are new results because the conventional ZMP 

constraints are only applicable to cases of coplanar contact areas. A new software was 

also developed which finds these new constraints numerically and compares them with 

analytical results in order to validate the suggested method.  
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CHAPTER 12 

SUMMARY, CONCLUSIONS AND FUTURE RESEARCH  

12.1 Summary and Conclusions 

 Part I – Background of Research: 

Part I of this work consisting of Chapters 1, 2 and 3 included the introduction and 

background material for this research: 

In Chapter 2, we introduced the basics of the predictive dynamics method. It was 

shown that the kinematic and dynamic calculations can be performed with complete 

mathematical certainty, if and only if the ratios for the partitioning of environment 

contact forces are given (if all the external forces are known in the general sense). 

However, this is not true for a digital human, if it has more than one contact area with the 

environment. In that case, the equivalent ground reaction force and moment exerted on 

each contact area of the digital human with the environment are indeterminate.  

Chapter 3 was a review of the ZMP concepts existing in the literature by using a 

simple example. It was shown that in the real world, the ZMP constraint is never violated 

during any motion of a dynamic system including unstable or falling motions. It was also 

shown that ZMP stability margins and stability criterion are very different from the ZMP 

constraint and their role is to evaluate the stability of a given motion. Some conclusions 

were as follows: 

1- The ZMP constraint transforms two equations of the general dynamic 

equilibrium (out of the 6 force and moment equilibrium equations for the 

whole system) into inequalities by removing from the equations the contact 
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forces acting on the system. These equations represent the dynamic 

equilibrium of all the moments exerted on the whole system about the 

horizontal axes. 

 

2- The ZMP constraint specifies the range of values for the tipping (horizontal) 

components of the net moment of the IGE forces (about any fixed point such 

as the origin) that are possible in the real world for a dynamic system. 

 

 Part II- ZMP Method: 

Part II of this work consisting of Chapters 4, 5 and 6 was a study of the ZMP 

method for modeling environmental contact: 

Chapter 4 presented a theoretical study of the ZMP method. It presented an 

important theorem (Theorem 4.1) which showed the relation between the ZMP constraint 

and the unilaterality of ground reaction forces. It was shown that an additional constraint 

requiring the vertical component of the IGE forces to be downwards needs to be imposed 

besides the ZMP constraint to ensure the unilaterality of ground reaction forces.  

Theorem 4.1 shows that the ZMP method used in predictive dynamics is a legitimate 

method for producing motions that are possible in the real world. However, an 

assumption was used for the calculation (partitioning) of ground reaction forces in the 

ZMP method which was not mathematically proved and was based on observations from 

limited experimental data. This assumption was partially evaluated in Section 4.6 to show 

its backgrounds and was further evaluated in Section 7.10 to show its defficiencies. In 
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that chapter, the ZMP concepts in predictive dynamics were also used to design general 

algorithms which modeled the exact changes of the transient ground contact areas during 

the motion and calculate ground reaction forces for modeling tasks in the predictive 

dynamics environment. 

In Chapter 5 and 6, the modules based on the ZMP method introduced in Sections 

4.3 and 4.4 are used to model the motion of a human (soldier) performing several military 

tasks: aiming, kneeling, going prone and aiming in prone position. To model the dynamic 

tasks, new methods in collision avoidance were used which appear in Appendix A. In 

Appendix A, we presented new theorems on optimization-based collision avoidance that 

use other finite primitives besides the conventional spheres to model objects or limbs. 

This new capability was needed to model self and environment collision avoidance in this 

research.  

 

 Part III- NCM Method: 

Part III of this work consisting of Chapters 7 to 11 was a study of the NCM 

method for modeling environmental contact: 

Chapter 7 was a theoretical chapters in which we introduced the new concept of 

Normal Contact Moment (NCM) point and constraints for each of the contact areas with 

the environment. This chapter presented a general set of constraints on the equivalent 

reaction force systems (forces and moments) of non-adhesive contact areas by defining a 

point called NCM point. That general set of constraints was composed of NCM 

constraints and some suggested constraints on the frictional forces and moments which 
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use the NCM point definition. The NCM constraints are necessary and sufficient for 

modeling the unilaterality of distributed contact forces. Therefore, the unilaterality of 

distributed contact forces can be modeled completely by the NCM constraints. Based on 

the NCM point location, we presented new constraints on the frictional contact moment 

of a contact area. NCM constraints along with those proposed coulomb friction 

constraints can completely model the non-adhesiveness of a contact area. 

Chapter 8 was another theoretical chapter in which (NCM) constraints were 

compared to the ZMP constraint. This chapter presented a relationship between the 

location of the ZMP and NCM points for the case of coplanar contact areas. Based on 

that, the following conclusions were made: 

1- ZMP constraint is just a result of NCM constraints and is weaker than them. 

So, the ZMP constraint cannot ensure that calculated GRF in the ZMP method 

are possible in the real world. NCM constraints need to be used to ensure that. 

2- The linear, uniform partitioning assumption used in the ZMP method in fact 

causes all the calculated GRF except maybe one to have values that are 

mathematically impossible in the real world.  

3- The experimental data support the ZMP method only for the ratio of the 

vertical component of GRF (not for the remaining 5 components). This is just 

a logical physical phenomenon that would have resulted automatically, if the 

NCM constraints had been used (it is embedded in the NCM constraints). 

4- ZMP constraint applies only to the cases in which the system’s contact with 

the environment is in one plane only. Unlike ZMP constraint, NCM 
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constraints are applicable for the most general cases of contact areas (coplanar 

or non-coplanar contact areas which are horizontal or inclined or parallel or 

non-parallel). 

 

In Chapter 9, the previous military tasks modeled in Chapters 5 and 6 by using the 

ZMP method are remodeled using the NCM method and the results are compared. In that 

chapter, we introduced algorithms that re-partition the GRF values obtained by the ZMP 

method such that the values are possible in the real world (satisfy the NCM constraints). 

As an example, the algorithm was implemented for the “Going Prone” task and a 

previously simulated “Walking” task. The conclusions were: 

1- It was proved mathematically in Chapter 8 and validated in Chapter 9 that:  

At least one component of the calculated GRF is impossible in the real world 

for all ground contact areas, except may be for one contact area in the ZMP 

method. 

2- It was proved mathematically in Chapter 4 and validated in Chapter 9 that: 

Satisfaction of ZMP constraint ensures that it is possible to find unilateral 

contact forces on the given contact areas to cancel the given IGE forces for the 

dynamic system. That is because we could find GRF that are possible in the 

real world by re-partitioning them. 

3- The torques obtained after re-partitioning seem to be lower than the original 

torques. However, the optimality of the initial motion from the ZMP method 

seem to stay almost unaffected after re-partitioning. Therefore, although the 
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motion obtained in the ZMP method is possible and almost optimal, the GRF 

need to be re-partitioned in order to obtain realistic values. 

4- The re-partitioning (NCM method) does not ensure that the re-partitioned 

GRF are optimal or match the experimental data. These issues also depend on 

the original simulation and the constraints used there to predict a motion task. 

However, it seems that the results of the re-partitioning for the walking task 

considerably improved similarity of the GRF ratios with the experimental 

data.  

 

In Chapter 10, we introduce the NCM stability margins. we defined margins of 

tipping and slipping stabilities which are applicable for the most general cases of contact 

areas and are usable for both real problems such as in robot control or in simulations. We 

showed that the problem of finding the margins of tipping or slipping stability for the 

most general cases of contact areas turns into solving a linear optimization problem. The 

ZMP stability criteria and margins are not applicable for problems in which the system’s 

contact areas with the environment are non-coplanar. As it was shown in this chapter, the 

NCM stability concepts are applicable for systems with any number of contact areas with 

the environment, oriented arbitrarily with respect to each other (contact areas which are 

coplanar, non-coplanar, horizontal, inclined, parallel or non-parallel).  

In Chapter 11, the NCM constraints are used to generalize the ZMP constraint. In 

this chapter, we presented a general formulation to check the possibility of a given 

motion which can replace ZMP constraint for systems with any general case of 
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environmental contact areas. The general formulations for finding closed form solutions 

that resemble the form of the conventional ZMP constraint were also presented. The 

actual closed form solutions were calculated and depicted for the cases of parallel contact 

areas. A new software was also developed which finds these new constraints numerically 

and compares them with analytical results in order to validate the suggested method. 

 

12.2 Future Research 

Currently, two separate optimization problems are solved to achieve the 

predictive dynamics results. In the first optimization problem (ZMP method), the design 

variables are only the joint angle profiles. In the second optimization problem (NCM 

method), the joint angle profiles are prescribed values borrowed from the ZMP method 

and the indeterminate equivalent ground reaction forces and moments are the only design 

variables. As a result this procedure only applies to tasks where environmental contact 

areas are coplanar. 

As future research, the NCM method can eventually enable the modeling of tasks 

in the predictive dynamics environment in which the contact areas are non-coplanar. In 

that case, the ZMP method and constraints should be completely abandoned. The 

alternative method will be to solve a single, more complicated optimization problem in 

which the design variables are the joint angle profiles and the indeterminate equivalent 

ground reaction forces and moments at the same time. Environmental contact definitions 

should be more general and include the position and orientation of environmental contact 
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planes. Generalizations in the calculations of gradients with respect to new additional 

design variables will also be necessary. NCM constraints should be used to solve the 

problem (which ensure ZMP constraint to hold for the coplanar case of contacts). 

The benefit of the alternative method is that: 

A- It will be applicable to systems with any arbitrary case of contact areas with 

the environment (coplanar or non-coplanar contact areas which are horizontal 

or inclined or parallel or non-parallel). 

B- Friction constraints can be imposed with any desired coefficient of friction. In 

the current method, in the second optimization, they are set equal to values 

that were required to generate the motion using the ZMP method (in the first 

optimization). 

C- In the current method, the motion is prescribed in the second optimization and 

is unaffected by the NCM method. In the alternative method, the motion will 

also be affected by the NCM method. 

 

The major drawbacks of the alternative method are: 

A- We will have a lot more number of design variables than the current method 

(6*(number of contact areas-1) new design variables at each time grid point). 

B- The partitioning of GRF is performed subject to all the unnecessary 

constraints which only depend on the kinematics and are independent of the 

GRF partitioning. 
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The above issues may seriously slow down the convergence rate and affect the 

efficiency of the optimization procedure. 

 

Future research can also include enhancement of the proposed theorems and 

implementations (task simulations). Several examples are stated below: 

1- It is still possible to generalize the ZMP constraints and validate the results 

further than the current stage. Finding the closed form solutions for ZMP 

constraint problem is the mathematical problem of finding the boundaries of 

vector functions subject to equality and inequality constraints. In the literature, 

the most related field of research that investigates such a problem is the field 

of “Finding the boundaries of workspace for robots”. Examples of papers in 

this field can be seen in Haug (1996), Abdel-Malek (1999), Hariri (2005). 

2- Refinement of motion tasks, which include, but are not limited to: 

A- Testing the “Minimum Movement (Displacement)” performance measure, 

developed by the author of the thesis. 

B- Decreasing the number of design variables in the motion tasks. (General 

modules for decreasing the design variables are developed and initial 

implementation has been done for “Aiming While Standing”.) 

C- A more complete validation of the simulated dynamic tasks. (Validation 

for “Going Prone” is completed but for the other dynamic tasks, only their 

predicted NPOA (natural point of aim) is validated.) 



332 
 

 

3- Derviving closed form solutions for the proposed NCM contact stability 

criteria and stability margins for systems with non-coplanar contact areas with 

the environment. 
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APPENDIX A 

OPTIMIZATION-BASED COLLISION AVOIDANCE USING SPHERES, FINITE 

CYLINDERS AND FINITE PLANES  

A.1 Introduction 

A digital human must avoid the collision of the body segments with other non-

adjacent body segments as well as with the objects in the environment while performing a 

task. In this appendix, we develop mathematical models for constraints that can avoid 

these collisions. The digital human body segments and the obstacles in the environment 

are modeled using surrogate geometries. The body segments are represented by using one 

or more spheres rigidly attached to a local reference frame so that these spheres move as 

the body segments move. The objects in the environment are modeled using one or more 

of the five primitive geometries: spheres, infinite cylinders, infinite planes, finite 

cylinders, and finite planes. A generic collision avoidance strategy is developed to avoid 

spheres with all the five primitive geometries used for representing obstacles.  

We use gradient based optimization strategy for predicting the motion of the 

digital human avatar while performing a task. One of the requirements of a gradient 

based optimization is use of constraint functions and objective functions with continuous 

gradients of at least first order. This is equivalent to a requirement for the elements to 

have smooth surfaces (no edges). But finite cylinders and finite planes do not have 

smooth edges. Hence, we present a method to smooth out the edges of finite cylinders 

and planes and consider these modified elements instead, so that the constraint gradients 

are continuous. 
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A.2. Literature Review 

The computation of distance between two mathematical objects finds many 

applications in robotics. Most of the effort in robotics in the field of collision avoidance 

involves the path planning optimization for mobile robots where the path of the robot is 

normally modified by optimization in order to avoid collision. Using spheres to model 

obstacles has also been popular in the field of path planning in flying spacecrafts (Singh, 

2001, 2002). There have also been several studies which use spheres for modeling 

objects. For a human avatar, modeled as a robot with multiple branches, the design 

variables which affect self collision are the joint angles. For obstacle collision avoidance, 

the global translation/rotation of the avatar is also added to those variables. For example 

Johnson (2010) uses spheres to model a digital human. This model is used in the 

prediction of static postures to prevent the digital human from collision with obstacles 

(obstacle avoidance) as well as with itself (self avoidance). 

Colbaugh et al. (1989) used simple geometric primitives to represent the robot 

arms and its environment for a planar manipulator. The obstacles were represented by 

circles surrounded by a surface of influence, and the links were modeled by straight lines. 

A redundancy resolution scheme was proposed to achieve obstacle avoidance. This 

approach was extended to the 3-D workspace of redundant manipulators in Shadpey et al. 

(1994, 1995) and Glass et al. (1995). 

Using spheres to model links and obstacles for collision avoidance has an 

important advantage. The advantage is that the optimization constraint that needs to be 

satisfied to avoid collision between 2 spheres is simply:  22
1 2d r r  , where d is the 
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distance between the spheres’ centers and 1r  and 2r are the radii of the spheres. This 

constraint is simple to calculate and if the motions of the 2 spheres are functions of iq , 

then this constraint is also a C function of iq  (the class of functions with continuous pth-

order derivatives is denoted by pC .).  

By using available optimization softwares, collision avoidance can be integrated 

as a constraint among others. Indeed, one may consider writing these constraints using 

any available proximity distance algorithm which returns signed proximity distances 

separating two bodies; see the recent exhaustive books by van den Bergen (2004) and 

Ericson (2005). 

However, while using the gradient-based optimization software, the gradients of 

the objective function and the constraints need to be continuous with respect to the design 

variables (generally robot joint angles and joint angle trajectories’ parameters). Some of 

the works in the field of collision avoidance, model the surface of objects by many flat 

surfaces such as polyhedrons. The proximity distance between polyhedrons does not have 

continuous gradients with respect to the parameters. Continuity properties of the distance 

have been merely discussed or even assumed in previous works. For example, in Lee 

(2001) and Choset (1997), where the obstacle avoidance problem has been addressed in a 

2D case, it has been claimed that the distance between convex objects is smooth and thus 

the gradient is continuous. The latter assertion is not always valid unless one object is 

strictly convex, and the former depends on the continuity properties of both objects’ 

surfaces. It is only in Rusaw (2001) that the non-differentiability (and non-convexity) of 
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the distance between convex bodies is well addressed and used with non-smooth analysis 

in the context of sensory-based planning. 

A recent paper (Escande, 2007) claims to be the first to treat the problem of 

ensuring continuous distance’s gradients. It suggests a solution to get rid of the non-

differentiability. They build offline strictly convex bounding volume that can be 

considered as a smooth ‘rounding’ of the polyhedron convex hull. However, even in this 

work, the edges between any 2 polyhedrons are not smoothed out. They don’t actually 

need to perform such an operation, as they consider the collision of polyhedrons one by 

one with each other during the motion. 

 

A.3. Formulations  

In this appendix, we introduce a new method for obstacle avoidance by 

combining parts of the surfaces of differentiable primitives (sphere, infinite cylinder, 

infinite plane) and creating new compound primitives (finite cylinder, finite plane, finite 

one-sided plane, box). We should make sure that these surface parts are joined together at 

boundaries with equal slopes, which means that these joints should cause no edge on the 

surface of the compound primitive. The distance between the two primitives or 

compound primitives is always calculated by a single scalar constraint function. Theorem 

A.3 at the end of this appendix states that if two objects have convex surfaces without 

any edges ( 1C surfaces), then the derivative of minimum distance between them with 
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respect to iq  is a continuous function of iq . Hence, the proposed method is suitable for 

use as a constraint in the gradient based optimization solver.  

In Sections A.3.1 and A.3.2, we present the formula for collision avoidance 

constraints. In each case, f  is the value of the constraint that should be kept positive to 

avoid collision. Also, the position vectors defined in the following section are considered 

to be the functions of the design variables, iq . If the primitive is associated with a fixed 

obstacle in space, the position vectors of all points on such primitives are constant vectors 

and hence, the gradients of the position vectors of all such points with respect to design 

variables are zero. 

 

A.3.1.  Constraints for Collision Avoidance Between Two Primitives  

All calculations in this section for each vector is independent of the location and 

orientation of its reference frame. So, they hold true for any orientation or position of the 

global frame with respect to them (They can correspond to any location/orientation of 

their reference frame). Therefore, reference frames are not shown in the figures. 

 

A.3.1.1.  Sphere-to-Sphere Collision Avoidance Constraint 

As shown in Figure A.1, A and B are the centers of the spheres with radii 
1r  and 

2r  

respectively. Let d  denote the distance between A and B. Let the global position vector 

of the points A and B be given by  T

A A A
X Y ZAG  and  T

B B B
X Y ZBG . Assume that 

spheres A and B are attached to two coordinate frames denoted respectively in the D-H 

table as coordinate frame number m in branch i and coordinate frame number n in branch 
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j. Assume that the global coordinate frame in the D-H table is numbered as coordinate 

frame 0. Let the local position vector of the points A and B be given by  T

A A A
x y zAL  

and  T

B B B
x y zBL . The constraint function that should be kept positive to avoid 

collision and its gradients with respect to the design variables can be calculated as: 

 

 

 

         

   
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Calculation of f :
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Figure A.1. Sphere-to-Sphere collision 
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Calculation of 
k

f

q




 is more complex. It is a function of 
kq




AG
 and 

kq




BG
. In a 

branched D-H structure, each joint kq  may belong at the same time to several different 

branches. Therefore, for example in the branch i, let kq  be denoted by ,s iq  and in branch 

j, let it be denoted by ,t jq . Therefore, the calculation of 
k

f

q




 is done using the following 

procedure: 

   
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Now, remember that in branch i, kq  was denoted by ,s iq  and in branch j, it was 

denoted by ,t jq . To calculate the vector 
k

f

q




 efficiently, we separate it into the following 

two terms which contain the gradients of the locations of the first and the second spheres: 
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computation, the formulas obtained for gradients in Sections A.3.1.2 and A.3.1.3 also 

need to be separable into two terms which contain the gradients of the locations of the 

first object and the second object, same as is done in this section. 

 

A.3.1.2.  Sphere-to-Infinite Cylinder Collision Avoidance Constraint 

As shown in Figure A.2, d  is the minimum distance between the center of the 

sphere and the axis of the cylinder. A is the center of the sphere with radius 
1r . B is any 

point on the cylinder's axis with radius 
2r . Let the global position vector of the points A 

and B be given by  T

A A A
X Y ZAG  and  T

B B B
X Y ZBG . Assume that sphere A and 

cylinder B are attached to two coordinate frames denoted respectively in the D-H table as 

coordinate frame number m in branch i and coordinate frame number n in branch j. 

Assume that the global coordinate frame in the D-H table is numbered as coordinate 

frame 0. Let the local position vector of the points A and B be given by  T

A A A
x y zAL  

and  T

B B B
x y zBL . u is the expression of the unit vector along the cylinder's axis in the 

global reference frame. uL  is its expression in the cylinder’s local coordinate frame n. 

Therefore, W , the vector connecting point A to point B, can be written as: 

 

B AW = G - G  

Now, define a vector h such that:   .3.8Ah W × u  

Since u  is a unit vector:    2 2 22sin .3.9A  h h.h W d   
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Hence, the constraint function and the gradients can thus be calculated as: 
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Similar to what was done in Section A.3.1.1, we also need to separate 
k

f

q




 into 

two terms which contain the gradients of the locations of the first object (sphere) and the 

second object (cylinder): 

 

W
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dθ 

Figure A.2. Collision avoidance of a sphere with an infinite cylinder 
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A.3.1.3.  Sphere-to-Infinite Plane Collision Avoidance Constraint 

As shown in Figure A.3, d  is the minimum distance from the center of the sphere 

to the plane. A is the sphere's center with radius 
1r . B is any point on the mid-plane of the 

plane with thickness 
22t . Let the global position vectors of the points A and B be given as 

 T

A A A
X Y ZAG  and  T

B B B
X Y ZBG . Assume that sphere A and plane B are attached 

to two coordinate frames denoted respectively in the D-H table as coordinate frame 

number m in branch i and coordinate frame number n in branch j. Assume that the global 

coordinate frame in the D-H table is numbered as coordinate frame 0. Let the local 
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position vector of the points A and B be given by  T

A A A
x y zAL  and  T

B B B
x y zBL . 

u is the expression of the unit vector perpendicular to the plane in the global frame. uL  is 

its expression in the plane’s local coordinate frame n. W is the vector connecting A to B. 

The constraint function f  that should be kept positive to avoid collision and its gradients 

with respect to the design variables can be calculated as: 

 

       

   

2 2 22
1 2 1 2 0 .3.17

2 .3.18
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W u u W
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Figure A.3. Collision avoidance of a sphere with an infinite plane 
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Calculation of f : 
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Similar to what was done in Section A.3.1.1, we also need to separate 
k

f

q




 into 

two terms which contain the gradients of the locations of the first object (sphere) and the 

second object (plane): 
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A.3.1.4.  Infinite Cylinder-to-Infinite Cylinder Collision Avoidance Constraint 

 

 

A 

B 

v 
C 

D

u 

M

R 
N

P 

 

 

As shown in Figure A.4, d  is the minimum distance between the axes of the 

cylinders. A and B are any two points on the first cylinder's axis with radius 
1r . C and D 

are any two points on the second cylinder's axis with radius 
2r . Let the global position 

vector of the points A, B, C and D be given by , ,A B CG G G  and 
DG . Assume that cylinder 

AB and cylinder CD are attached to two coordinate frames denoted respectively in the  

D-H table as coordinate frame number m in branch i and coordinate frame number n in 

branch j. Assume that the global coordinate frame in the D-H table is numbered as 

coordinate frame 0. Let the local position vector of the points A, B, C and D be given by 

, ,A B CL L L  and 
DL . u  and v  are respectively the expression of the unit vectors along the 

axis of cylinders AB and CD in the global frame. uL  and 
vL  are respectively their 

Figure A.4. The collision avoidance of two infinite cylinders 

d
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expressions in the cylinders’ local coordinate frames m and n.  Let w = u × v . Therefore, 

we shall have: 
MN

MN
w


  

Create a plane containing line AB and with a perpendicular unit vector w  and 

call it the plane P . Select point R on plane P  such that RC P


.Then, we shall have: 
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A.3.2.  Constraints for Collision Avoidance Between Two Compound Primitives  

The primitives presented in Section A.3.1 can also be combined to produce 

compound primitives like finite cylinders (smoothed) and finite planes (smoothed) with 

constraints that have 1C  continuity.  The constraints used for such compound primitives 

are discussed in this section. 

 

A.3.2.1.  Sphere-to-Finite Cylinder Collision Avoidance Constraint 

First, the region of the location of the sphere with respect to the finite cylinder as 

shown in Figure A.5 is determined by evaluating the scalar products of vectors a,b  with 

vector c  using Table A.1. Based on the region, the value and all the gradients of the 

collision avoidance constraint are set equal to one of the following constraints: 

At Region 1:   Sphere-to-Infinite Cylinder 

At Regions 2,3 :  Sphere-to-Sphere 

 
 

 
Figure A.5. Smoothed finite cylinder, regions defined around it and its collision avoidance with a sphere 

Region 2 Region 1 Region 3

A B

C 

ab

c
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A.3.2.2.  Sphere-to-Finite Plane Collision Avoidance Constraint 

First, the region of the location of the sphere with respect to the finite plane as 

shown in Figures A.6 and A.7 is determined by evaluating the scalar product of vectors 

a,b,c,d with vectors u, v using Table A.2. Based on the region, value and gradients of the 

collision avoidance constraint are set equal to one of the following constraints: 

At Region 1: Sphere-to-Infinite Plane 

At Regions 6, 7, 8, 9:  Sphere-to-Sphere 

At Regions 2, 3, 4, 5:  Sphere-to-Infinite Cylinder 

 

 

Region 
Number 

a.c b.c

1  +  + 

2  +  ‐ 

3  ‐  + 

Region 1 Region 2 Region 3 

Region 4 Region 6 Region 7 

Region 5 Region 9 Region 8 

A B

C D

Figure A.6. Smoothed finite plane with the regions defined around it 

Table. A.1. Determining region of the location of the sphere with respect to the finite cylinder
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Region #  a.u   b.u   c.u d.u a.v b.v c.v   d.v
1  +  ‐  +  ‐  ‐  ‐  +  + 

2  ‐  ‐  ‐  ‐  ‐  ‐  +  + 

3  +  +  +  +  ‐  ‐  +  + 

4  +  ‐  +  ‐  +  +  +  + 

5  +  ‐  +  ‐  ‐  ‐  ‐  ‐ 

6  ‐  ‐  ‐  ‐  +  +  +  + 

7  +  +  +  +  +  +  +  + 

8  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

9  +  +  +  +  ‐  ‐  ‐  ‐ 

Table. A.2. Determining region of the location of the sphere with respect to the finite plane 

 

A B

C D

 

 

 

  

Figure A.7. Finite plane (smoothed) to sphere collision avoidance 

a b

c
d

u

v
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A.3.2.3.  Finite Cylinder-to-Finite Cylinder Collision Avoidance Constraint 

In brief, this problem turns into: 

1- Find th minimum distance between the two line segments AB, CD. 

2- Calculate the gradient of that minimum distance. 

 

 

 

A 

B

v 
C 

D

u 

M

N

a

b

 

 

 

Figure A.8. The collision avoidance of two finite cylinders 
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CASE 1) 

Minimum distance of the two infinite lines passing through A, B and C, D occurs 

on points between A, B on AB and points C, D on CD. Below, we calculate the 

requirements for this case to occur: 

 
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For the minimum distance of the two infinite cylinders to occur on points between 

A, B on AB and points C, D on CD, we should have: 
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CASE 2) 

This case should be studied, if the requirements for Case 1 do not exist. In this 

case, we should perform the four operations listed below without calculating the 

gradients. Whichever case has the minimum distance, we should set the constraint value 

equal to that distance and calculate the gradients from the formula for that case: 

1. Collision Detection of Sphere A to Finite Cylinder CD 

2. Collision Detection of Sphere B to Finite Cylinder CD 

3. Collision Detection of Sphere C to Finite Cylinder AB 

4. Collision Detection of Sphere D to Finite Cylinder AB 

 

 

A.3.2.4.  Finite Cylinder-to-Finite Plane Collision Avoidance Constraint 

In brief, these cases need to be considered: 

 

CASE 1)  

The only possibility for the minimum distance to occur between the cylindrical 

part of the
 
finite cylinder Q  and the planar part of finite plane

 
P

 
is that the axis of the 

finite cylinder Q  intersects the mid-plane of the finite plane P . This case is depicted in 

Figure A.9 and can be checked via the following formulation: 
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In order for the line to intersect the mid-plane of the finite plane, we should have: 
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Figure A.9. The collision avoidance of a finite cylinders with a finite plane 
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In this case, the minimum distance between the finite cylinder
 
Q

 
and the finite 

plane
 

P
 
is equal to 

2

t
r   
 

 where r is the radius of the finite cylinder and t is the 

thickness of the finite plane. Also, the distance gradient is zero with respect to all design 

variables.
 

 

CASE 2) 

1. Decompose the finite plane B into sets W= {4 spheres}, V= {4 cylindrical parts of 

finite cylinder}. For whichever element of V that the minimum distance occurs on 

the lines (same as Section A.3.2.3, Case 1), calculate that distance and ignore the 

spheres at the end of the cylindrical part for all the rest of calculations. For other 

elements of V, ignore the cylindrical part and calculate distances as (Section 

A.3.2.3, CASE 2).  

2. Decompose the finite cylinder A into 2 spheres and ignore the cylindrical part. If 

any sphere is located in Region1 of finite plane B, calculate the distance. 

 

At the end, the case with the minimum distance determines the value and 

gradients of the constraint. 
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A.3.2.5.  Finite Plane-to-Finite Plane Collision Avoidance Constraint 

There is no condition that the minimum distance occurs between the plane parts 

of both finite planes. In brief, the method given below is proposed to handle such a case: 

1. Ignore the planar part of finite plane, A (only consider the additional finite planes 

and spheres used for smoothing its edges), decompose it into 4 finite cylinders 

and perform 4 instances of (finite cylinder and finite plane B) collision avoidance 

without calculating the gradients. 

2. Ignore the planar part of finite plane B (only consider the additional finite planes 

and spheres used for smoothing its edges), decompose it into sets W= {4 

spheres}, V= {4 cylindrical parts of finite cylinder}.  If any sphere of W is located 

in Region 1 of finite plane A, calculate the distance. If the axis of any member of 

V intersects the mid-plane of finite plane A, stop and calculate according to 

(Section A.3.2.3, CASE 1). 

 

At the end, the case with the minimum distance determines the value and 

gradients of the constraint. 
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A.4. Test Results  

We test the proposed obstacle avoidance constraints within the framework of 

predictive dynamics and observe the results: 

Simulation 1: The results of using the self avoidance modules in the predictive 

dynamics code is shown in Figure A.10. The segments of the human avatar are filled with 

spheres. The task shown below is a complicated task that requires the avatar to kneel 

down and touch the right knee with left hand and touch the left midfoot with its right 

hand. This task cannot be simulated correctly unless self-avoidance constraint is properly 

modeled and implemented in the predictive dynamics code. 

 

 

 

Simulation 2: This task requires the avatar to move its hand from sphere A 

located at the top of a table to sphere B at the bottom of the table.  Figure A.11 shows the 

result of the simulation without using any collision avoidance constraints. 

 

Figure A.10. The test task with sphere to sphere self collision avoidance 
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Simulation 3: This task also requires the avatar to move its hand from sphere A 

located at the top of the table to sphere B located at the bottom of the table. The table is 

modeled as a finite plane. The right arm is filled with 7 spheres and so, 7 sphere-to-finite 

plane collision avoidance constraints are imposed during the motion. The cost function 

minimized for this motion is a combination of dynamics effort and total displacement. 

Figure A.12 shows the result of using the mentioned collision avoidance constraints. 

 

 Figure A.12. Result of simulation after imposing obstacle avoidance constraints 

Figure A.11. Result of simulation without imposing obstacle avoidance constraints 
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A.5. Conclusion  

In this appendix, it was proved that any shape may be used for object definition in 

optimization-based collision avoidance as long as the shape’s surface is convex and has 

no edges ( 1C  surface) so that the gradients of the obstacle avoidance constraint 

(minimum distance between the surfaces) are continuous. Finite cylinders and finite 

planes have edges which violates the continuity requirements. These edges of the finite 

cylinder and finite plane can be smoothed out by combining their surfaces with parts of 

the surfaces of spheres and cylinders as was shown in Sections A.3.2.1 and A.3.2.2. We 

call these objects compound primitives. Implementation of other compound objects as 

shown in Figure A.13 can be considered as topics of future research. 

 

 Figure A.13. An edged box (unsuitable), a finite plane, a 1-sided finite plane, a box (smoothed) 
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A.5. Theorems on Optimization-Based Collision 
Avoidance 

Definition Set A.1: Witness Points of Minimum Distance 

P and Q are rigid bodies whose motions are functions of  1iq i n  . Witness 

points of minimum distance between these two rigid bodies called A, B are defined as the 

points respectively on P, Q between which the minimum distance of P, Q occurs at any 

iq . We denote the global position of points A, B at any iq  by  iqA and  iqB . 

0
'

iqA and 
0

'
iqB are defined as the footprint points of A, B on P, Q for 

0i iq q . 
0

'
iqA

and 
0

'
iqB are points attached to the surfaces of P, Q which move with P, Q. We denote the 

global position of 
0

'
iqA and 

0
'

iqB by  iq
i0

qA'  and  iq
i0

qB' . Since 
0

'
iqA and 

0
'

iqB are the 

footprints of A, B at 
0i iq q , the following conditions hold: 

          
0 0 0 0

, .6.1i i i iq q q q A 
i i0 0

q qA' A B' B  

 

 

Theorem A.1:  Continuity of the Minimum Distance 

Using Definition Set A.1, the minimum distance between any 2 rigid bodies P, Q is a 

continuous function of iq . 

 

Proof:  
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The footprints of A, B at 
0i iq q shown by  iq

i0
qA'  and  iq

i0
qB'  are 

continuous functions of  iq  due to the rules of rigid body motion. The minimum distance 

between P, Q at 
0i iq q is called 

0i
qd , and therefore: 

       
     

0 0 0 00

0 00 00 0

:

lim lim .6.2

i

i i i
i i

i q i i i i

q q i i i i qq q

q d AB q q q q

d q q q q d A   

     

      

i i i i i i0 0 0 0

i i i i0 0

q q q +Δq q +Δq

q +Δq q +Δq

B' A' B' A'

B' B'



 

The minimum distance between P, Q at 
0i i iq q q  is equal to 

0i iq qd   and so: 

     

       
     

0 00

0 0 0 00

0 00 00 0

.6.3

lim lim .6.4

i i

i i

i i i
i i

q q i i i i

q q i i i i i i i i

q q i i qq q

d AB q q q q A

d q q q q q q q q

d q q d A





   

      

           

  

i i i i0 0

i i i i i i0 0 0 0

i i0 0

q +Δq q +Δq

q +Δq q +Δq q q

q q

B' A'

B' A' B' A'

B' A'



 

And therefore: 

     
0 00

.6.2 .6.4 lim .6.5
i i i

i
q q qq

A and A d d A 
   

 

 

Theorem A.2:  Continuity of the Witness Point Locations 

Using Definition Set A.1, if P has a convex surface and Q has a strictly convex surface, 

then the locations of A, B are continuous function of iq . 

 

Proof: 
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For any iq : 

           

         

.3 .6.6

.6.7

i

i i

q i i i i

q q i i i i i i i i

A d q q q q A

and

d q q q q q q q q A

    

           

i i i i i i

i i i i i i

q q q +Δq q +Δq

q +Δq q +Δq q q

B' A' B' A'

B' A' B' A'

 

Since    i iq q
i iq qB' A'  and    i iq q

i i i iq +Δq q +ΔqB' A'  are continuous functions of 

iq according to Theorem A.1, then there exists some 0 1   such that: 

       
   

     
0 0 0

0 0

lim lim lim

lim lim .6.8

i i

i i i
i i i

i i
i i

i i i i i i i i q q

q q q i i i i
q q q

q q i i i i
q q

q q q q q q q q d

d d q q q q

d q q q q A





   

 

 

 

      

   

           

      

      

i i i i i i

i i

i i i i

q q q +Δq q +Δq

q q

q +Δq q +Δq

B' A' B' A'

B' A'

B' A'

 

Because P is convex, one can pass a planar surface through  i iq q 
iqA'  and

 i iq q 
i iq +ΔqA'  such that all points on that surface belong to P.  Also, since Q is 

strictly convex, one can pass a spherical cap through  i iq q 
iqB'  and 

 i iq q 
i iq +ΔqB'  with the convex side of the cap towards the plane that we have 

passed through P such that all points on that cap belong to Q. 

But as shown in Figure A.14, and if 1iq   the minimum distance between P, 

Q (
0

lim
i i

i
q q

q
d   

) is equal to the value calculated in Equation (A.6.8), if and only if: 

   

   
 0 0

0 0

lim lim
.6.9

lim lim
i i

i i

i i i i
q q

i i i i
q q

q q q q
A

q q q q

 

 
   

   

    



    

i i i

i i i

q q +Δq

q q +Δq

A' A'

B' B'
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On the other hand,  iq
i0

qA'  and  iq
i0

qB'  are continuous functions of  iq  due to the 

rules of rigid body motion as stated in Theorem A.1 and therefore: 

     

     
 0

0 0 0

lim
.6.10

lim lim lim
i

i i i

i i i i
q

i i i i i iq q q

q q q q
A

q q q q q q




 

     

   



       

i i

i i i i

q q

q +Δq q +Δq

A' A' A

A' A' A
 

     

     
 0

0 0 0

lim
.6.11

lim lim lim
i

i i i

i i i iq

i i i i i iq q q

q q q q
A

q q q q q q




 

     

   



       

i i

i i i i

q q

q +Δq q +Δq

B' B' B

B' B' B
 

Therefore: 

       

       
   0

0

.6.9 .6.10 lim
,

.6.9 .6.11 lim
i

i

i i i
q

i i

i i iq

A and A q q q
q q are continuous

A and A q q q

 

 

    


    

A A
A B

B B
 

 

For an alternative proof for Theorem A.2, you can see Escande (2007). 

 

 i iq q 
iqB'

 i iq q 
iqA'

 i iq q 
i iq +ΔqB'

Figure A.14. Continuity of witness points positions as a result of surface convexity 

 i iq q 
i iq +ΔqA'
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Theorem A.3:  Differentiability of the Minimum distance 

If P has a 1C convex surface and Q has a 1C strictly convex surface, then the minimum 

distance between P, Q is a 1C  function of iq  

Proof:  

According to Theorem A.2, the witness points A, B move on continuous paths on P, Q 

during the motion. These paths are 1C , because they are located on P, Q. Therefore 

 iqA and  iqB  and therefore the minimum distance between P, Q are also 1C

functions of iq .  
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APPENDIX B 

COMPARISON OF JOINT TORQUES BEFORE AND AFTER RE-PARTITIONING 

IN THE SAMPLE TASK IN CHAPTER 9 
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APPENDIX C 

KINEMATIC EFFECTS OF FEEDING THE GRF RATIOS OF NCM METHOD BACK 

INTO THE ZMP METHOD IN THE GOING PRONE TASK (CHAPTER 9) 
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APPENDIX D 

GRF RATIOS FOR WALKING IN NCM VERSUS EXPERIMENTAL DATA 

 

Definition of the Set or 
Array Component 

Time 
Grid 
#1 

Time 
Grid 
#2 

Time 
Grid 
#3 

Time 
Grid 
#4 

Time 
Grid 
#5 

Time 
Grid 
#6 

Time 
Grid 
#7 

Time 
Grid 
#8 

Time 
Grid 
#9 

Right Foot 
Contact Force 
System at Force 
Plate Support 

Fy  602.30  576.10  530.30  463.00  377.30  282.10  190.10  110.80  44.40 

Fz  101.50  110.40  115.60  114.50  105.20  88.20  65.70  41.40  18.40 

Mx  53.20  51.70  49.00  45.10  39.30  31.40  21.50  11.00  1.10 

Left Foot 
Contact Force 
System at Force 
Plate Support 

Fy  87.10  192.60  304.10  404.20  476.60  521.70  552.90  579.80  599.60 

Fz  37.30  ‐4.20  ‐43.70  ‐74.00  ‐91.90  ‐102.7  ‐110.5  ‐114.2  ‐110.5 

Mx  22.30  13.10  7.60  13.50  12.00  17.70  20.20  24.30  28.20 

Position of ZMP Along z  0.29  0.36  0.42  0.49  0.54  0.59  0.65  0.71  0.76 

ZMP to Right Foot Along z  0.16  0.23  0.29  0.36  0.41  0.46  0.52  0.58  0.63 

ZMP to Left Foot Along z  0.55  0.48  0.42  0.35  0.30  0.24  0.19  0.13  0.08 

Right Foot Mx at ZMP  96.06  131.18  156.54  170.23  160.01  137.59  103.34  65.06  25.20 

Left Foot Mx at ZMP  ‐29.45  ‐88.46  ‐133.0  ‐146.2  ‐152.6  ‐133.0  ‐109.6  ‐78.54  ‐45.21 

Ratio of dz for Left Foot  0.22  0.32  0.41  0.51  0.58  0.66  0.73  0.81  0.89 

Ratio of Fy for Left Foot  0.13  0.25  0.36  0.47  0.56  0.65  0.74  0.84  0.93 

Ratio of Fz for Left Foot  0.27  ‐0.04  ‐0.61  ‐1.83  ‐6.91  7.08  2.47  1.57  1.20 

Mx/Fy for Left Foot at ZMP  0.16  0.23  0.30  0.37  0.42  0.49  0.54  0.59  0.57 

 

 

 Note:  

The presented values in walking tables (NCM Method, Experimental Data, ZMP 

Method) are only for double support phase of walking.For plotting ratios, additional 

values of 0 and 1 were also considered to exist for Fy and Fz ratios when the ratio of dz is 

equal to 0 and 1, for plotting. Because 0 and 1 ratios correspond to single support phase, 

where all the IGE force/moment is supported (canceled) by one foot. 

Table D.1. Experimental Data (Winter, 2009)
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Definition of the 
Set or Array 

 
Component 

Value at 
Time 
Grid #1 

Value at 
Time 
Grid #2 

Value at 
Time 
Grid #3 

Value at 
Time 
Grid #4 

Value at 
Time 
Grid #5 

Value at 
Time 
Grid #6 

Value at 
Time 
Grid #7 

Right Foot 
Contact Force 
System at the 

Midpoint of Right 
Foot (From Table  

9.14) 

Fx  ‐48.148  30.083  ‐39.065  3.309  12.099  17.145  13.130 

Fy  834.730  167.981  122.917  80.247  65.779  76.128  43.668 

Fz  362.561  98.070  107.724  101.531  98.669  114.192  65.502 

Mx  0.403  ‐0.492  ‐0.472  ‐0.300  ‐5.592  ‐6.381  ‐3.526 

My  1.915  0.111  ‐20.467  ‐5.577  ‐3.810  2.015  7.826 

Mz  5.257  6.186  6.128  4.001  1.500  3.358  1.939 

Left Foot Contact 
Force System at 
the Midpoint of 
Left Foot (From 
Table  9.14) 

Fx  ‐9.023  ‐37.602  34.899  ‐7.283  ‐20.818  ‐36.645  ‐49.819 

Fy  110.834  148.229  310.851  468.869  595.522  693.734  831.089 

Fz  ‐99.226  ‐29.976  ‐84.453  ‐123.095  ‐165.240  ‐226.010  ‐222.754 

Mx  11.416  14.447  27.800  37.757  31.828  1.972  ‐0.811 

My  14.807  12.055  ‐19.458  ‐4.960  ‐0.512  ‐4.537  ‐4.123 

Mz  3.547  8.345  7.163  6.626  11.471  16.779  20.048 

ZMP Location 

x  0.070  0.046  0.065  0.075  0.082  0.089  0.096 

y  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

z  0.051  0.335  0.498  0.591  0.653  0.697  0.731 

Location of 
Midpoint of Right 

Foot 

x  ‐0.075  ‐0.075  ‐0.075  ‐0.075  ‐0.075  ‐0.075  ‐0.074 

y  0.054  0.054  0.060  0.067  0.074  0.082  0.090 

z  ‐0.006  0.060  0.059  0.059  0.059  0.061  0.065 

Location  of 
Midpoint of Left 

Foot 

x  0.078  0.078  0.078  0.078  0.078  0.077  0.077 

y  0.074  0.073  0.067  0.062  0.056  0.052  0.047 

z  0.696  0.762  0.762  0.761  0.759  0.757  0.755 

Distance of 
Midpoint of Right 
Foot From ZMP 

dx  ‐0.145  ‐0.121  ‐0.140  ‐0.150  ‐0.157  ‐0.164  ‐0.170 

dy  0.054  0.054  0.060  0.067  0.074  0.082  0.090 

dz  ‐0.057  ‐0.275  ‐0.439  ‐0.533  ‐0.594  ‐0.636  ‐0.666 

Distance of 
Midpoint of Left 
Foot From ZMP 

dx  0.008  0.032  0.013  0.003  ‐0.005  ‐0.012  ‐0.019 

dy  0.074  0.073  0.067  0.062  0.056  0.052  0.047 

dz  0.645  0.427  0.264  0.169  0.106  0.060  0.024 

Mx for Right Foot at ZMP  47.886  45.729  53.455  42.454  33.470  42.051  25.571 

Mx for Left Foot at ZMP  ‐60.092  ‐48.839  ‐54.248  ‐41.662  ‐31.501  ‐39.801  ‐20.934 

Ratio of dz for Left Foot  0.081  0.392  0.624  0.759  0.848  0.914  0.965 

Ratio of Fy for Left Foot  0.117  0.469  0.717  0.854  0.901  0.901  0.950 

Ratio of Fz for Left Foot  ‐0.377  ‐0.440  ‐3.629  5.708  2.482  2.021  1.417 

Mx/Fy for Left Foot at ZMP  0.057  0.272  0.435  0.529  0.509  0.552  0.586 

 

Table D.2. Results of Repartitioning of GRF Using NCM Method (Continuation of Table 9.14) 
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