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ABSTRACT

Stability against capsizing is one of the most fundamental requirements to design a
ship. In this research, for the first time, CFD is performed to predict main modes of
capsizing. CFD first is conducted to predict parametric rolling for a naval ship. Then
CFD study of parametric rolling is extended for prediction of broaching both by using
CFD as input to NDA model of broaching in replacement of EFD inputs or by using CFD
for complete simulation of broaching. The CFD resistance, static heel and drift in calm
water and static heel in following wave simulations are conducted to estimate inputs for
NDA and 6DOF simulation in following waves are conducted for complete modeling of
broaching.

CFD parametric rolling simulations show remarkably close agreement with EFD. The
CFD stabilized roll angle is very close to those of EFD but CFD predicts larger instability
zones. The CFD and EFD results are analyzed with consideration ship theory and
compared with NDA. NDA predictions are in qualitative agreement with CFD and EFD.

CFD and EFD full Fr curve resistance, static heel and drift in calm water, and static
heel in following waves results show fairly close agreement. CFD shows reasonable
agreement for static heel and drift linear maneuvering derivatives, whereas large errors
are indicated for nonlinear derivatives. The CFD and EFD results are analyzed with
consideration ship theory and compared with NDA models. The surge force in following
wave is also estimated from Potential Theory and compared with CFD and EFD. It is
shown that CFD reproduces the decrease of the surge force near the Fr of 0.2 whereas
Potential Theory fails.

The CFD broaching simulations are performed for series of heading and Fr and results
are compared with the predictions of NDA based on CFD, EFD, and Potential Theory
inputs. CFD free model simulations show promising results predicting the instability

boundary accurately. CFD calculation of wave and rudders yaw moment explains the



processes of surf-riding, broaching, and periodic motion. The NDA simulation using

CFD and Potential Flow inputs suggests that CFD/ Potential Flow can be considered as

replacement for EFD inputs.
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CHAPTER 1. INTRODUCTION

Stability against capsizing in heavy waves is one of the most fundamental
requirements considered by naval architects when designing a ship. The purpose of
studying capsizing is to establish an understanding of ship behavior in extreme waves and
to relate this to the geometric and operational characteristics of the ship. Research based
on Experimental Fluid Dynamics (EFD), in which scale models are used in realistic wave
conditions, has led to improved understanding and insight on the nature of the capsize
process. The experience gained from EFD enabled researchers to develop representative
mathematical models using Nonlinear Dynamics Approaches (NDA) to describe different
modes of capsizing in extreme waves. On the other hands, the use of Computational Fluid
Dynamics (CFD) in Naval Architecture has been common for some decades now. CFD
simulations use RANS and URANS coupled with 6 DOF rigid body equations of motion
to obtain a highly detailed prediction of flow and body motions. Herein, detailed
definitions of various modes of capsizing, literature reviews covering EFD, NDA, and

CFD, and lastly the objective and approach of the presented study are provided.

1.1 Modes of Capsizing

In the ITTC classification of capsizing, the pioneering work reported by Oakley et al.
(1974) is used to make a fundamental understanding of intact ship capsizing and a basis
for subsequent research in this area. As a consequence, research efforts have focused
mainly on three modes of capsize which are static loss of stability, dynamic loss of
stability, and broaching described in this section in some detail (De Kat and Thomas,
1998a,b). Also, water on deck, deck edge submergence, winds, and ship loading

distribution can cause capsize in conjunction with three main modes of capsize.



1.1.1 Static Loss of Stability

Loss of static stability refers to the quasi-static loss of transverse stability (associated
with an excessive righting arm reduction) in the wave crest. The wave length is usually

the same as ship length and ship surges with high Fr number.
1.1.2 Dynamic Loss of Stability

A ship can lose stability dynamically in conjunction with extreme rolling motions and
lack of righting energy under a variety of conditions. This major capsize mode may be
associated with dynamic rolling, resonant excitation, impact excitation, bifurcation, and

parametric rolling.

1.1.2.1 Dynamic Rolling

This mode of motion occurs at forward speed in stern quartering seas, which can be of
regular or irregular nature. Here all six degrees of freedom are coupled, where in addition
to roll, surge, sway and yaw can exhibit large amplitude fluctuations. Due to surging
behavior, the ship spends more time in the wave crest than in the trough, resulting in a
periodic but asymmetric reduction and restoring of the righting arm. This changing in
righting arm builds asymmetric roll motion. Large roll motion typically builds up over a
number of wave encounters to a critical level, and the ship will usually capsize to

leeward.

1.1.2.2 Resonant Excitation

In principle large amplitude roll motions can result when a ship is excited at or close
to its natural roll frequency. Roll resonance conditions are determined by the combination
of GZ curve characteristics, weight distribution, roll damping, heading angle (e.g., beam

seas), ship speed, wavelength and height.



1.1.2.3 Impact Excitation

Steep breaking waves can cause severe roll motions and may overwhelm a vessel. The
impact due to a breaking wave that hits a vessel from the side will affect the ship
dynamics and may cause extreme rolling and capsizing. This capsize mode is relevant

especially to smaller vessels in steep seas.

1.1.2.4 Bifurcation

In laboratory conditions, the roll response may jump from one steady state to another
(larger amplitude) steady-state condition at the same frequency following a sudden

disturbance known as bifurcation.

1.1.2.5 Parametric Rolling

Parametric rolling results from the time-varying roll restoring characteristics of a ship
typically found in longitudinal waves. The periodic changes in static righting arm during
the repeated passage of a wave crest followed by the trough can cause large amplitude
roll motions. Roll motions occurring at approximately the natural roll period and
simultaneously at twice the encounter period (encounter frequency equals half of natural
roll frequency) characterize this mode of motion. The roll motion is of a symmetric
nature and the maximum roll angles to port and starboard occur when a crest passes the
midship area. The wavelength must be of the order of the ship length. In such
circumstances, parametric rolling - also referred to as low cycle resonance - can result in

capsizing.
1.1.3 Broaching

Broaching is related to course keeping in waves. Although there is no uniformly
accepted mathematical definition of a broach, it represents the wave-induced undesired,

large amplitude change in heading angle. A variety of broaching modes exist in regular



and irregular waves. Broaching due to successive overtaking waves may occur at low
speeds if the waves are very steep. Broaching due to low frequency and large amplitude
yaw motions is a gradual oscillatory-type build-up of yaw as successive waves impinge
on the ship from behind. In moderate sea states a ship is more likely to broach-to if it runs
with a high speed and is slowly overtaken by the waves. Lastly, broaching caused by a
single wave (surf-riding). Broaching is manifested as a sudden divergent yaw, which
peaks within a single wave length. Control is lost when the middle of the ship lies

somewhere on the down-slope and nearer to the trough.
1.1.4 Other Factors

Water on deck can occur in conjunction with (and hence influence) the capsize modes
discussed above. Large amplitude relative motions and breaking waves can result in the
temporary flooding of the deck (bow-diving), which from a stability viewpoint is relevant
especially to vessels with bulwarks, such as fishing vessels. Free surface effects and
sloshing can influence the ship motions. Furthermore, deck edge submergence results in
loss of water-plane area and righting arm. If a bulwark is present, its submergence will
influence the forces acting on the vessel. Wind does not necessarily influence wave

induced capsizing in astern seas. In beam waves, however, it may be important.
1.2 Literature Review on EFD, NDA and CFD

The proceeding of the 22™ 23" 24™ and 25" ITTC seakeeping committee is be the
base of this section, since they review the current state and the most important recent

contributions to EFD, CFD, and NDA in the field of ship hydrodynamics.
1.2.1 Literature Review on EFD

Experiments have been done for many modes of capsize. Static loss of stability in

regular waves has been studied experimentally by De Kat and Thomas (1998a) and



Umeda et al. (1999). They showed that static loss of stability occurs at high speed (Fr =
0.4) and short waves (ML = 1), such that the ship speed matches the phase speed of the
wave, and the static stability of the ship is reduced to the point that the ship capsizes.
Dynamic rolling is studied by Lilienthal et al. (2007). They conducted free model
experiments and showed that this mode of capsize is characterized by asymmetric rolling.
The ship rolls heavily to the leeward side in phase with the wave crest (approximately)
amidships and rolls back to the windward side in the wave trough, albeit with a shorter
half period and smaller amplitude. Olivieri et al. (2006a) conducted 2DOF heave and roll
experiment in beam waves for several wave heights to study resonant excitation. It is
concluded that resonance excitation makes large roll angle causing existence of higher
harmonics in forces and moments. Ishida and Takaishi (1990) and Ishida (1993) carried
out experiment to show evidence of impact excitation and concluded that wave impacts
on ships can cause extreme roll motion and capsize. For parametric rolling, Skomedal
(1982) conducted the experiment with towed model in head waves and showed that the
variation of the roll restoring moment in waves plays an important role in addition to the
coupling between roll and vertical motions. Consequently, if a towed model is used,
special attention should be paid to the towing arrangements to ensure that there is no
interference with the vertical motions. Burcher (1990), Neves et al. (2002), Francescutto
(2001), and Olivieri et al. (2006b, 2008) described the towing arrangement for parametric
rolling. Neves et al. (2002) used two auxiliary lines respectively fixed to the bow and
stern of the model at calm water level and tied to the towing wire. The resulting elasticity
of the set was found in all cases to be appropriate in order to secure free evolution of the
different symmetric and anti-symmetric modes of motion at a controlled speed. Neves et
al. (2002) conducted a series of experiments on parametric rolling undertaken for two
fishing vessels with different stern shape in head waves. One was a typical round stern
vessel while the other one was a transom stern fishing vessel. Several parameters such as

wave steepness, metacentric heights, and Fr number effects were studied. It was



concluded that effect of speed on parametric resonance is strongly dependent on stern
shape. A transom stern, incorporating longitudinal asymmetry in flare, may exert a
significant influence in establishing the tendency of a fishing vessel hull to display strong
parametric amplification in head seas, particularly in a condition of low metacentric
height. Francescutto (2001) conducted experiment for a destroyer model using a tethering
system based on pairs of elastic mooring lines symmetric about the centre line of the
model, to attach the model to the towing carriage while the model is free to roll, pitch and
heave. This system ensures the model remains on a straight course, while it is sufficiently
loose to avoid significant interference with the roll and vertical motions. The results
clearly indicated that there is a speed window where the roll motion can be sustained in
head waves. The width of the window and the amplitude of steady rolling depend on
wave steepness. In particular, the roll amplitude increases with the wave steepness, and in
some cases leads to ship capsize. Olivieri et al. (2006b, 2008) conducted the experiment
where the model was connected to the carriage by means of a joint specifically designed
for 3 DOF heave-roll-pitch parametric rolling. Model motions were measured using both
an optical motion tracker and gyroscopic platform. Hashimoto et al. (2006) and France et
al. (2003) performed free model tests to improve parametric rolling test results in
irregular waves. It is noted that comparative studies between free running and towed
model experiments have shown acceptable agreement (IMO, 2006). Broaching
experiments were carried out by De Kat and Thomas (1998b), Hamamoto et al. (1996),
Umeda (1998), Umeda et al. (1995, 1999, and 2008), and Lilienthal et al. (2007). De Kat
and Thomas (1998b) and Hamamoto et al. (1996) observed broaching caused by large
amplitude yaw motion due to wave impinge on the ship from behind and broaching
caused by singe wave. Umeda (1998) and Umeda et al. (1995, 1999) proposed systematic
method to assess ship stability in quartering/following waves executing free running test.
First, the model metacentric height and gyro radius were aligned. Then propeller rate

(RPS) for specified Fr number was obtained using open water tests. Propeller was also



estimated by running the ship appended with propeller in still water and changing RPS to
reach the ship velocity to specified Fr number. Later, free running experiments were
conducted at the Marine Dynamic Basin at NRIFE (National Research Institute of
Fisheries Engineering). Umeda et al. (2008) performed free running experiment for a
surface combatant (ONR Tumblehome) and observed ONR tumblehome vessel can suffer
extreme roll angle up to 71 degrees when her nominal Froude number is larger than the
surf-riding threshold. Typical broaching was recorded but did not result in capsizing
because the angle of vanishing stability was 180 degrees. It was concluded that for more
accurate modelling, effect of the emergence of rudder and three-dimensional wave
pattern should be investigated for this kind of unconventional vessel. Lilienthal et al.
(2007) executed free running model tests in regular following waves at discrete KGs.
Tests were carried out at NRIFE and different modes of broaching were observed. It was
demonstrated that there was minimal influence of wavelength ratio on capsize behaviour.
It was also found that a reduction in vessel speed results in a small decrease in the
likelihood to capsize. Matsuda et al. (2006) conducted free running model experiments at
NRIFE for a purse-seiner vessel at several Froude numbers to study other factors on
capsizing such as bow-diving. It was shown that the model capsized due to bow-diving in
the severe following seas at intermediate speeds. The model also experienced stable surf-
riding at higher speeds and broaching at lower speeds.

In conclusion, experiments have been used as first and most reliable procedure to
study many different modes of capsize. However, they are not able to catch details to
insight on the nature of the capsize process. Consequently, NDA and CFD simulations

are carried out to investigate the details of capsize procedure.

1.2.2 Literature Review on NDA

NDA has been used to study many aspects of different modes of capsizing. Resonant

excitation simulation is carried out by Surendran and Reddy (2002, 2003) using 1DOF



roll equation in frequency domain. They studied the roll responses and resonance
excitation of a ship in beam seas and investigated the effect of wave height on it. Das and
Das (2004) studied the harmonic response of a floating body by developing a
mathematical model for coupled sway, roll and yaw motions. They simplified their
method for coupled roll and yaw motions to study roll resonance excitation in beam
waves (Das and Das, 2005). Bifurcation is studied by Eissa and EI-Bassiouny (2003)
applying method of multiple time scales to study rolling response of a ship in regular
beam seas. Kamel (2007) and Zhou and Chena (2008) studied response of a coupled roll
and pitch system under a modulated amplitude sinusoidal excitation and obtained the
bifurcation response equation near the combination resonance case in the presence of
internal resonance of this system. Paulling and Rosenberg (1959) and Shin et al. (2004)
modeled parametric roll neglecting nonlinear damping and restoring moment in 1DOF
roll equation and considered wave effects and pitch-heave coupling only through a time
varying restoring coefficient, which can be transformed into the Mathieu equation.
Francescutto et al. (2004) and Umeda et al. (2004) used more advanced theory for
parametric rolling in which damping consists of contributions from cubic terms of roll
velocity estimated from roll decay towing tank test. Umeda et al. (2004) and Bulian
(2004, 2005) applied the restoring term described by higher order functions of roll angle.
The time dependent restoring term due to waves was expressed by higher order
polynomial function of roll angle with time dependent coefficients expressed as Fourier
series (Bulian and Francescutto, 2008; Hashimoto and Umeda, 2004; Umeda and
Hashimoto, 2006). In order to consider coupling effects for parametric rolling prediction,
Bulian et al. (2003) used a 1.5 DOF to implement roll-pitch-heave coupling in his model.
Neves et al. (2009) introduced a 3DOF roll-pitch-heave including linear added mass and
wave damping terms, linear and quadratic roll damping, and nonlinear coupling terms up
to 3rd order. Another alternative approach to improve coupling terms is to use a fully

coupled nonlinear time domain potential code such as LAMP developed by Lin and Yue



(1991) or FREDYN developed by De Kat and Thomas (1989a). NDA has been also used
for broaching simulation. Well known theoretical studies on broaching were carried out
in Japan by Umeda (1998, 1999) and Umeda et al. (2000). It was mentioned that heave
and pitch natural frequencies are very large due to their large restoring moment.
Therefore, when the ship runs with relatively high speed in following and quartering seas,
the encounter frequency is much smaller than those natural frequencies and heave and
pitch can be reasonably approximated by simply tracing their static equilibrium. This
outcome indicated that a surge-sway-yaw-roll mathematical model is suitable for
investigating broaching. Moreover, they concluded that required maneuvering parameters
in their model can be estimated from appropriate captive tests. Later, they implemented
more terms in their mathematical model to improve broaching prediction. Nonlinear
maneuvering forces in calm water (Hashimoto and Umeda, 2002), wave effect on linear
maneuvering forces and wave effect on roll restoring moment (Umeda et al., 2003),
nonlinear wave induced forces including mean values (Hashimoto et al., 2004a),
nonlinear sway-yaw coupling in calm water (Hashimoto et al., 2004a), wave effect on
propeller thrust (Hashimoto et al., 2004a), hydrodynamic forces due to large heel angle in
calm water (Hashimoto et al., 2004a), and wave effect on hydrodynamic forces due to
large heel angle were studied and essential terms were added to their NDA model
(Hashimoto et al., 2004b). Lastly, Umeda et al. (2006) extend the previous model to a
model for twin propeller and twin rudders high speed slender ship.

In conclusion, NDA uses many empirical factors as input such as hydrodynamic
coefficients, damping coefficients, restoring coefficients, coupling term coefficients and
maneuvering coefficients. This makes the main limitation for NDA and results in

opening position for CFD which models with no requirement of such inputs.
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1.2.3 Literature Review on CFD

URANS CFD codes for ship hydrodynamics offers possibility of providing a complete
rational-mechanics based prediction capability of capsizing for improved safety criteria
and increased physical understanding. To apply CFD for capsizing, fluid equation has to
be coupled with motions equations. Most previous CFD simulations are done for
predicting of pitch and heave motions for ships in regular head waves demonstrated for
the Wigley hull and Series 60 cargo ships using density function free surface modeling
(Sato et al., 1999); a container ship using overlapping structured grids and density
function free surface modeling (Orihara and Myata, 2003); a container ship using level-
set free surface modeling (Houchbaum and Vogt, 2002); the Wigley hull using
overlapping grids and level-set for free surface (Weymouth et al., 2005); and a surface
combatant ship using overlapping structured grids and level-set free surface modeling
(Wilson et al., 2005; Carrica et al., 2007a,b). Recently, CFD is developed to be capable of
simulating maneuvering and seakeeping problems. Mulvihill and Yang (2007) presented
numerical simulations of steady pure yaw maneuvers of a submarine, showing the
capabilities of the steady overlapping grid approach. Also Benson and Fureby (2007)
presented some numerical simulations of a submarine in steady yaw maneuver. They
employed an LES approach with a wall model and showed that the model was able to
predict some peculiarities of the flow field such as unsteadiness, cross flow separation
and presence of horseshoe vortices. Good agreement with experiments, in terms of skin
friction coefficient along cross sections in steady yaw maneuver, was observed. Xing et
al. (2007) performed numerical simulations of the DTMB 5415 and KVLCC?2 in steady
drift motion. Numerical tests were performed at 0, 12, 30 and 60 degrees of incidence.
These tests were considered to analyze different turbulent models: an isotropic blended
k—¢/k—® model (BKW), a Reynolds Stress model (RSM). Steady and unsteady analyses

of the flow were performed, the latter within a Detached Eddy Simulation (DES). With
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both turbulence models, BKW and RSM, the RANS simulations yielded a better
prediction of resistance, axial velocity and turbulent kinetic energy distribution at the
propeller plane than the DES. At higher drift angles, the DES approach allowed for
capturing the unsteadiness of the flow field. Similar work has also been performed by
Bhushan et al. (2007) including simulations at model and full scale Reynolds number for
the Athena R/V. Hyman et al. (2006) performed simulations for steady straight ahead and
steady turn maneuvers of a fully appended model of the R/V Athena taking into account
the transport of bubbles due to air entrainment at the free surface. Simulations were
carried out with CFDSHIP-IOWA using a two phase level set algorithm coupled with a
gas phase solver called CFDShipM. Propeller effects were taken into account by a non-
interactive body force model. Results from unsteady RANS simulation and Detached
Eddy Simulation (DES) showed that the method was able to predict the bubbly flow
around the vessel. However, some input parameters such as a bubble size distribution and
bubble source intensity at the entrainment location had to be specified. Queutey and
Visonneau (2007) presented and applied an interface capturing method for simulating the
flow around the Series 60 model in steady straight ahead and pure drift motion. The
results showed good agreement with experimental data. The use of an unstructured solver
for the computation of forces on a surface piercing hull with enforced PMM motion can
be seen in Wilson et al. (2007) where simulations of dynamic maneuvers of a surface
combatant are presented. Pure sway and pure yaw tests are analyzed; results showed good
agreement with experimental data in terms of both global quantities (forces and
moments) and local quantities (velocity components on different cross sections with PIV
measurements). In Carrica et al. (2006) the capability of the CFDShip-IOWA version 4 in
dealing with various problems of the marine hydrodynamics, including the prediction of
motion in waves are presented. Dynamic overlapping grids as described in Carrica et al.
(2007b) were used. Examples are presented for the steady drift motion of the DTMB
5512 model and the KVLCC2 model in deep and shallow water. The KVLCC2 at high
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drift angle was also simulated with the EASM/DES turbulence model. Steady turn
computations were performed for the DTMB 5512 model. Dynamical PMM
computations (i.e. pure yaw and pure sway) were performed for the HSSL trimaran and
for the DTMB 5512 model. For the pure sway motion of the DTMB 5512 model, the
agreement in terms of predicted forces and moments with measurements was very
satisfactory while some discrepancies were observed when comparing velocity fields. In
Sadat-Hosseini et al. (2007) 3DOF heave-roll-pitch parametric rolling was simulated for
the first time in the world and analyzed using Mathieu equation showing that the damping
caused by bilge keels is larger than the threshold value and prevents parametric rolling.
In Carrica et al. (2008a,b,c) and Huang et al. (2008) full 6DOF simulations were used for
actual full time domain simulation with a steered rudder with body force propeller and
actual rotating propeller. The computations were intended to demonstrate the simulation
capability, and no validation or verification was presented at that paper.

In conclusion, a great improvement has been achieved in CFD simulations taking into
account the body force/rotating propeller and steering rudder(s) within the computational
grid for many maneuvering and seakeeping problems. However, CFD studies of ship
stability in waves are still few steps behind the mature state and developments are being

made at very fast pace.
1.3 Objective and Approach

For the first time, CFD is performed to predict main modes of capsizing using
CFDShip-lowa v.4 with implementation capsize prediction in it. CFD first is conducted
to predict parametric rolling in head waves for an unconventional naval ship, i.e., ONR
tumblehome (OT). Then CFD study of parametric rolling is extended for prediction of
broaching both by using CFD as input to NDA model of broaching in replacement of
input achieved from EFD or by using CFD for complete simulation of broaching. The

CFD calm water captive resistance test, static heel, and static drift simulations are
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conducted to estimate inputs for NDA model of broaching and 6DOF simulation in
following/quartering waves are conducted for complete simulation of broaching.

The research is a collaborative project between IIHR, Osaka University in Japan (OU),
and INSEAN in Italy whereby OU conducts captive and broaching experiments and NDA
studies, INSEAN performs parametric rolling experiments, and IIHR conducts CFD
studies for predicting parametric rolling and broaching for the OT. The overall results
enable an assessment of both NDA and CFD for capsize prediction and requirements for
future EFD benchmark data (Sadat-Hosseini et al., 2009a,b).

The thesis is organized as follows. The NDA for ship stability and capsize is
introduced in Chapter 2 with focus on the mathematical models and their inputs for
parametric rolling and broaching. Chapter 3 describes CFDSHIP-IOWA (Carrica et al.,
2007a,b; Xing et al., 2008; Stern et al., 2008) with focus on its use for both parametric
rolling and broaching predictions. Chapter 4 provides a summary of the INSEAN captive
experimental methods and conditions used as the EFD benchmark validation data for
parametric rolling (Olivieri et al., 2008). Chapter 5 provides a summary of the OU
captive and free model experimental methods and conditions used as the EFD benchmark
validation data for broaching (Umeda et al., 2008). Chapter 6 covers the CFD
verification and validation studies for the parametric rolling including comparisons with
NDA predictions. Chapter 7 covers the CFD verification and validation studies for
captive tests to assess inputs for NDA model of broaching. Chapter 8 provides CFD
verification and validation studies for broaching including comparisons with NDA
predictions. Lastly, Chapter 9 provides conclusions and recommendations for future

work.
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CHAPTER 2. NDA FOR SHIP STABILITY AND CAPSIZE

The Nonlinear Dynamics Approach (NDA) is one the approaches to predict ship
stability and capsize by solving a mathematical model developed based on the theory of
ship motions. In this chapter, the theory of ship motion is introduced and all applied
forces and moments are discussed in detail. The mathematical models are developed
based on the presented ship theory and discussed for many applications including roll
decay, parametric rolling, and broaching. The necessary inputs - manoeuvring
coefficients- to solve mathematical models are listed and the calculation procedures of
inputs for roll decay, parametric rolling, and broaching are explained. Later, the solving

methodology for roll decay, parametric rolling, and broaching models are described.
2.1 Equations of Motion

The 6DOF rigid body equations of motion can be expressed as 6 nonlinear coupled
equations to represent the translational and rotational motions of a ship. In order to take
advantage of ship geometry properties, it is desirable to drive the equations of motion in
body fixed coordinates frame. It is also convenient to put the body axes parallel with the
principal axes of the vessel. Then the equations of motion with respect to body axes with

arbitrary origin can be expressed as:
m l;lT —VTVT +W7-q7- —xg(q? +}"T2)+y (quT —I"T +Z Pr’”r +q7- ]=
}’ﬂ[\;’r _WTpT +u FT yg(VT +pT)+Z (qTrT pT +X quT +}"T ]
}’ﬂ[WT —uTqT +vaT z (pT +qr)+x (erT qT +yg rTqT +p7- ]
Ly + 1y Gy = prr )+ LGy + prag )+ 1 Aad =2 )+ (1 =1, Jgrry
+m[yg(v'vr —Upqy +vaT) (vT Wp Dy +u,rr)] K (2 1)
Ly + 1.y = qrp0)+ 1, (pr + 4o )+ 107 = p}) '
+(IX -1, )erT + m[zg(uT Vil +quT) g(wr Urqr +Vypr )]: M
Liy +L(pr —r:)+ L6y + 1 p )+ 1, (02— 42)
+([y_ —[X)prqr +m[xg(\'/r - WrDr +uTrT)—yg(12T -Vl + qur)]: N

Where, f=[x,v,z]" are forces, g=[K,M,N] are moments, V =[u,,v,,w,]" are linear

. ; . . :
velocity, w=[p,.q,.;]" are angular velocity, m is mass, g =[x,,y,,z,]" are coordinates of



center of gravity, and ;=7 7,71 and y=[;

xy 2" xz

of inertia in body coordinates system and can be expressed as:

I, :Ixcg +m(y§, +z§)
I,=1° +m(x§ +z§)
1.=1°% +m(x§ +y§)
I,=1,=1+mxy,
1_=1_=1_0* +mx,z,

-] =]
I, =1,=1"+my,z,
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1.,1,]" are moment of inertia and product

(2.2)

Where 7=[7%,1% 1% and J=[1 %1 _* 1 *] are moments and product of inertia in

sty otz xp otxz oty

body coordinates located on the center of gravity.

The equations of motion shown in Eq. (2.1) are the most general form of the equations

of motion relative to body-fixed coordinate system, if the mass and mass distribution

does not change in time. Solving Eq. (2.1) defines linear and angular velocity of ship.

Then the ship motions can be calculated from:
pr=9
qr = 6
=y
U, =X
Vp =

Wy =z

(2.3)

In application, Eq. (2) can be simplified due to port/starboard symmetry condition of

ships which results in zero value for y,, Ixy, and I,,. Additionally I, can be neglected as

small for ships with approximate fore and aft symmetry. Then the equations of motion in

body coordinate system located on the center of gravity i.e. x, =y, =z, =0 would be as

follow:
m[b't, — vy + quT]: X
m[\'/ - Wy Pr +uTrT]: Y
m[WT —u,q, +V7P7]:Z
19, +(15 =1 )gyr, =K
154, +(1F =15 p, =M
185, + (1% =12 )prq, = N

(2.4)

The LHS terms include linear, angular, Coriolis, and centripetal accelerations and the

RHS are applied forces and moments.
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Ship motions and manoeuvring mathematical models are based on perturbed Eq. (2.4)
about an equilibrium position (i.e. steady axial velocity Uy at the dynamic sinkage ¢ and

trim 7):
) m[u —vr+(-U,sint + w)q]: X
m[\)—(—U0 sint+w)p+(U, cosr+u)r]: Y
m[W—(UG COST +u)q +vp]= VA
1p+(1. -1, )r=K (2.5)
L+t 1. )p=m
Li+(l,~1,)pg=N

2.2 Forces and Moments

The right hand side of Eq. (2.5) contains total forces and moments. The total forces

and moments(X Y. Z,K,M,N )are functions of accelerations, velocities, and
displacements 7zT(x,y,z,¢,O,y/,u,v,w,p,q,r,a,v,w,p,q,f)and assumed to be linear

superposition of hydrostatic (gravity and buoyancy) restoring ngs, hydrodynamic m,, and
wave induced m,, along with control surfaces mc, propulsion system mp, and aerodynamic
na (not considered herein). The hydrostatic restoring terms are functions of
displacements including heave, roll, and pitch motion 7, (z, @, 9); the hydrodynamic
forces and moments are functions of accelerations, velocities, and angular
displacements 7, (¢, O, w,u,v,w, p,q,r,u,v,w, p,q, 7?) but W= sin_l(— v/u)and

6 =sin™' (- w/u)such that 7, (B, u,v, w, p,q, 7,1, v, W, p,§,7).

2.2.1 Gravity-Buoyancy Forces and Moments

The gravity and buoyancy forces can be represented by:
Xy =0
Yy =0
Zy = —pgAypz + pgAypX 0
Ky = —mgGZ(¢) (26)
M, =—mgGM 0+ pgA, X2
Ngy =0

Where 4, is water plane area, Xcr is flotation center, m is mass, GM, is longitudinal

metacentric height, and GZ is roll moment arm.
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2.2.2 Hull Induced Hydrodynamic Forces

Hydrodynamic forces 7, (¢,u,v, w, p,q,7, U, v,W, p,q, f) can be approximated by 31
order Taylor series expansion under the following assumptions:

1) No acceleration/velocity coupling

2) Only first order acceleration terms (added mass terms)

3) No third order coupling

4) For port/starboard symmetry:

. X, Zn, My are even function of (¢,v,p,r,\>, p,f) and general function
of(u,w,q,a,w,q').

1. Yn, Kn, N, are odd function of (¢,v, D,T,V, p,f) and even function of
(u,w,q,d,v'v,é).

5) For slender ships, 1* order X derivatives with respect to (w, q,w, q’) are negligible.

X, =X,u+X. +XWV2 +waw2 +prp2 +quq2 +X,4,r2 +X¢¢¢2 +X, p+ X, vr+ X, wq
+Xpypr+XV¢v¢+Xr¢r¢+X wg'+ X wv+ X wr’ +XW¢¢W¢2 +XWWWp2 (2_7)

2
wwgq w q + X wqq wwy wrr

+ ququ + Xq,rqr2 + Xq¢¢q¢2 + qupqu + X W+ quqq3

www

Y, =Yy+Y, p+Yi+Yv+Y,p+ YV ¢+Yr+Y, yw+Y qgr+Y, vg+Y, wr+Y,
+Y,dq+7,

vp

wp+Y, ,w+Y, pq

wr+Y Vvir+Y wir+Y vt +Y

2
WwW vr wwr vrr vqqr Vq

Vp+Y, VP+Y,

wp

rp2r+Yv¢¢v¢2 + YW¢2r+quqpq2 +Ympr2 +Y¢qq¢q2 +Y¢,.r¢r2 +Y, v

sz + wa¢W2¢ +7,

+Y,,q'r+Y,,vp’ +Y, (2.8)

vop P

3 3 3
+ Ypppp + er + Y¢¢¢¢

Z,=Zai+Z W+ Z, g+ Z.A+Z W+ Z, g+ Z V' +Z W +Z, p*+Z, ' +Z,.q° +Z,r’

+Z,vp+ Zv¢v¢ +Z,pr+ Z¢,¢r +Z vr+Z7Z, wq+ wavzw+ waqwzq + quvzq + quqqu (2_9)

wp2 +Z, ¢w¢2 + prquq + Z¢¢q¢2q +7Z

wq

wrr www

2 2 3 3
+Z,,wr+Z,.qr°+Z w+Z,..9

wpp

K,=Ky+K,p+K,i+Kv+K,p+K,p+K.r+K ww+K gr+K vg+K, wr+K, wp

2 2 2 2 2 2
+K, ,wp+K, pg+K, dg+K, v p+K, vo+K, wp+K, wo+K, ww +K, vr

(2.10)

2 2 2 2
+K,  wr+K v +K, vqg +K g r+K

vp2 + Kpprpzr + K‘,¢¢v¢2 + K¢¢y¢2r + quqpq2

vgqr

+K, pri+K, ¢4’ +K, ¢’ +K v +K

qqr vep

3 3 3
p+K _r +K¢¢¢¢

ppp rrrv
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M, =Mji+M Ww+M,G+M,+M w+M g+M, v +M w'+M, p*+M,$’+M q*+M, r’

ww

+Mvpvp+M‘,¢v¢+Mprpr+M¢,_¢r +var+quwq+Mwwv2w+Mwwqw2q+quv2q+quqqu (2 11)
2 2 2 2 2 2 3 3 ’
+M,, wr +qur +M‘Wwp +MW¢¢W¢ +Mppqp q+M¢¢q¢ q+M, W +quqq
N,=Ny+N,p+NF7+Ny+N,p+N,p+N.r+N, vyw+N_qgr+N, vg+N, wr+N, wp
+ N, ,wh+ N, pg+Nydg+N, v p+N vé+N, wp+N,  wo+N, vw'+N, v'r
(2.12)

+N,, wr+N, v’ +N

o vg® + qurqzr + vapvp2 + Npprpzr + NV¢¢V¢2 + N¢¢r¢2r + Npqqpq2

+ Nprrprz + qugﬁqz + N¢rr¢r2 + vavv3 + Npppp3 +N, 'r3 + N¢¢¢¢3

v

vqqr

As it is explained, only first order added mass terms are considered in Egs. (2.7) -
(2.12). For some applications, it might be necessary to include higher order added mass
terms. Equation (2.13) show the linear and higher order added mass terms for

port/starboard symmetric slender ship (Fossen, 1999):

Xy = Xu.d+Zu.uTq+waTq+qu2 —YV.vr—Yprp—Y,._r2

Yy =Yy+Y,p+Yi+ Xur —Zurp-Z,wpp—Z2,pq

Zy =Zu +Z‘.@‘W+Zéq—Xu.uTq+K,vp+1crp+ Ypp2

Koy =K+ K, p+ K= Motyr+ Zoaigv+ (N, + Z, g + (N, =M, Jgr = (Y, + M wpr +(Z, =Y, Jow,

q

2.13
~Y,wp+N,pq ( )

My = M+ Mo MG —(Z,, = X, Wity = Zu2 = Zung +(K, = N, Jp + K,r> =N, p* + Kvr = Nyvp

Ny = Nob+ N, pt N+ (M + Y, iy p = (X, =Y v+ Yapr = (K, =M, )pg + M w,. p— K vg - K qr

For small perturbations, several terms are negligible and only underlined terms have to
be considered. The terms underlined by (-) are linear added mass terms and those
underlined by (=) show nonlinear terms reducing to linear form for small perturbation.

For instance, M ,u,r reduces toM ,(U,cos7)r.

2.2.3 Wave Forces

In order to evaluate wave forces and moments, it is usual to consider the system to be
linear. Under these assumptions the system of ship and waves is presented as a linear
system:

1) Waves are small i.e. waves amplitude is much smaller than wave length: kA<<1
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2) The ship is stable so that small disturbances will yield proportionally small
responses

3) Nonlinear effects due to viscosity is negligible

Since it is assumed that effect of viscosity is negligible, potential function can be used
to express the system of a ship in presence of waves. It is expected the resulting potential
of fluid velocities to be contributed from flow caused by wave and body motion:

6
0=205% Py,

J=1 Pr+¢p

(2.14)

Where ¢, is the potential of fluid velocities induced by the different mode of ship
motions and it does not include any wave influence (@, is also known as radiation part)
and ¢, is the potential of flow caused by the wave including incident ¢, and diffracted
waves ¢,,. Note that the possibility to break potential of fluid velocities as expressed in
Eq. (2.14) is result of linear system.

The assumed linearity of the system makes it possible to say that a sinusoidal input to
the linear system produces a sinusoidal output at the same frequency. If the wave is

assumed to have a form of cosine function:
Sy :Acos(wt):Re{Ae'i”’t} (2.15)
Where A is wave amplitude and @is wave frequency.

Then:

¢y =Relpe ™} (2.16)

ow =0, + 0, =Rel(p, + 0, ) | (2.17)

Here ¢;is fluid velocity potential amplitude caused by the j-th component of body

motion and ¢, and ¢, are fluid velocity potential amplitude expressing influence of
incident and diffracted waves, respectively.

Re-writing Eq. (2.14) using Eqgs. (2.15) — (2.17) yields:
@ = Re{{z p;+ ((/’1.5- + @p, ):|em} (2.18)

J=1
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Bernoulli’s equation allows expressing pressure through fluid velocity potential:
_ 9%
p= p(at +,0g(z+c:)j (2.19)

Here ¢ represents the free surface elevation.

Substituting Eq. (2.18) in Eq. (2.19) yields to the pressure formula:
6
p= —p{Re{— iwe™™ [z @+ ((ﬂ1s + @ps )]:| + pg(z + g)} (220)

J=1
Integration of these pressures over the surface of the ship hull produces wave forces

and moments:

Fyoe =—P8 ” (z+¢)iidS — Hydrostatics
Sb'

H
Fiyave

6
_ p.E J’ Re{— e (; ?; Hﬁds — Radiation Forces

2.21)
Fifuve
- p” Re[— iwe™™ (¢)1S +@p, )]ﬁdS — Wave Exciiting Forces (FK & Diffraction)
Sg
e
M,,, =— pg”(z +¢ Nrxii)dS — Hydrostatics
Sy
M.
6

- p” Rel:— iwe™™ [Z ®, ﬂ(r x 71 )dS — Radiation Moments

5, (2.22)
- p” Re[— iwe ™ (qok +@p, )kr X7 )dS —Wave Exciiting Moments(FK & Diffraction)

Sp

FK&D
Miyave

Here F, =[ Xyoer Y,

Wave Wave >

Z,.. ) are wave forces, M,  =[K,,..M,,..N

vave> Ve ] @T€ - Wave
moments, and Sg is the hull surface.

The forces and moments shown in Egs. (2.21) and (2.22) classify the contribution of
each potential as hydrostatics, radiation or wave exciting forces and moments. Wave-
exciting forces are due to the wave system only, with the body assumed to be fixed. There
are two components present in wave-exciting force. One is the result of pressure related

with incident wave and another one with diffracted wave. The first component could be

considered as wave force acting on a ship in waves, but calculated with assumption that



21

the ship does not affect fluid velocities by her presence. This assumption is known as

Froude-Krylov hypothesis and this kind of force is called Froude-Krylov force. The

second component represents the disturbance that a ship makes to the fluid velocities in

an incident wave by her presence. This force is called diffraction force. Radiation forces

are the forces generated by the motion of the body in calm water. Hydrostatic forces of
waves are the hydrostatic forces and moments in the water with elevated free surface.

In order to calculate radiation and wave exciting forces and moments, having fluid
velocity potentials are essential. These fluid velocity potentials have to be found such that
they satisfy continuity, the free surface, ship hull and far-field conditions (Newman,
1977). For incident wave:

Ve, =0 - Continuity

2 o9,
+g—%2=0 -F
0P +g . ree surface (2.23)
091, =0 — Bottom
oz

As shown in Eq. (2.23), the incident potential is considered without knowledge of the

presence of the ship. This makes it possible to have analytical solution for¢, . For

instance, for a two-dimensional wave:
_io cosh(k[z +H ]) ol
P =% sinh(kH ) (2.24)

Here H is the depth of the water.

For diffraction part, the conditions are:

Ve, =0 — Continuity

0
@’ pp, + g—gZDS =0 - Freesurface

9P, =0 — Bottom (2.25)
oz
a¢)Ds — _% — Body
on on

Here, the solution for ¢, is dependent on the ship geometry. Since the ship geometry

is usually complicated, there is no analytical solution for diffraction part unless it is

assumed that the ship is a slender body.



For radiation part, the conditions are:

Vzgoj =0 — Continuity
09,
oz
99,
oz

o'p;+g =0 - Freesurface

=0 — Bottom

%,

=—iwVe.n —Bod
on ?, Yy
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(2.26)

Since the geometry of a ship is complicated, there is no analytical solution for

radiation part unless the ship is assumed to be a slender body.

Unlike the wave exciting forces and radiation forces, the calculation of hydrostatic

force in presence of wave is not function of those fluid velocity potentials and can be

calculated directly by integration of hydrostatic pressure. As shown in Egs. (2.25) and

(2.26), hydrostatic forces and moments have two components. One component is the

hydrostatic forces in calm water and the second component is added hydrostatic forces

and moments due to the waves. The first component is already taken into account in Eq.

(2.6) and it would be redundant considering it here. The second component is fairly

negligible except for roll moment K:

Xije =0

Ve =0

Zyge =0

Ky =-mgAGZ"™
M l'lVlavf =0

NZ =0

Wave

Substituting Eq. (2.27) in Egs. (2.21) and (2.22) yields to:

_ vR FK&D
Xiywe = Xiyave ¥ Xipare
X,
_yR FK&D
Yive = Yo + Vivare
Yy
_ R FK&D
Zivave = Zwvwve ¥ Liyae
Z,
_ R FK&D wave
Kyive = Ky + Kiyye . —mgAGZ
Ky
_ aqR FK&D
Mype = My + My,
My,
R FK&D
Nywe =Ny + N

Wave Wave Wave

Ny

(2.27)

(2.28)
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Where subscript “wave” indicates waves forces including Froude-Krylov, diffraction,

and radiation components.
2.2.4 Propulsion Forces and Moments of Propellers

The hydrodynamic forces and moments due to twin propellers included in LHS of Eq.
(2.5) can be written as Eq. (2.29) under the assumption that both propellers have the same
property and the distribution of torque around the propellers due to oblique flow i.e. when

the ship is at an attack angle is negligible:

X, =201-1,)on* DK, (J)

Y, =0

Z,=0

K, =0 (2.29)
M, =2(1-1,)on*D!K,(J)z,

N, =0

Here, t, is thrust deduction factor, n is propeller revolution, D, is propeller diameter,
Kr is thrust coefficient measured by POT, z, is the vertical coordinates of the propellers,

and J is advance ratio defined as:
_(d-w)U,
- nD, (2.30)

J

Where w, is known as effective propeller wake fraction, and U, is the advanced

velocity.
2.2.5 Control Surface Forces and Moments of Rudders

The hydrodynamic forces and moments for control surface such as rudders are

expressed as:

K. =K, (2.31)



24

In which:

1 2 2 8K, ’ 2
Y :_(1+aH)7pARfang(l_wP) l+x, 2 | U
2 )
2
1 8K
Ks==(+a,)z;y EPARfagz ><(I_WP)Z[I-FKP 7115) u? (2.32)
1 8K, Y
N =_(xR+aHxH)2pARfa512eX(I_WP)Z(I'H(PEjgj u’

Here, a, is interaction factor between hull and rudder, x,, is the longitudinal position
of interaction factor between hull and rudder, z,,is the vertical position of center of
effective rudder force, x,is the longitudinal position of the rudder force, x,is interaction

factor between propeller and rudder, ¢,1s wake ratio between propeller and hull, w,is

effective propeller wake, A, is the rudder area, and:
= 6.13A
“T225+A (2.33)

where A is rudder aspect ratio.
2.3 Perturbed Equations of Motion for Ship

The general form of body-fixed perturbed equations of motion for a port-starboard
symmetric ship can be reached by substituting hydrostatic forces, hull induced

hydrodynamic forces, wave forces, propeller forces, and lastly rudder forces in Eq. (2.5):

m[u—vr+(—U0 sinz'+w)q]= X+ X o+ X v+ X, W +prp2 +quq2 +X,r° +X¢¢¢2 +X,vp
2 2
W4 X 0 (2.34)

W+ X, q’ + X, +201-1, )’ DK, ()

ww

+ X, vr+ X, wg+ X, pr+ X, vé+ X, ré+ X wiq+ X, wg' + X, w+X

wwgq

+ X, wp? +quqv2 +er,qr2 +Xq¢,/,q¢2 +X{”,pqu +X

wpp

www

w

m[\'z—(—UO sint+w)p+(U, cosr+u)r]: Yv+Y,p+Yi+Yv+Y,p+Yp+Yr+Y yw+Y, qr+Y, vq

+Y,wr+Y wp+Y, wp+Y, pg+Y, dg+Y, vzp+Y,v¢v2¢+Y wp+Y, we+Y, vw +Y, vr

wp v wwp wig vww wr

wr wp
2.35

+Y,, wr+Y, v’ +Yvqu2 -d—qurqzr-d—Yva2 +YW“DZ}’+YV¢¢V¢2 + YW¢21’+quqpq2 +Y[w_pr2 +Y¢qq¢q2 ( )

+Y, 7 +Y, V +Y,, p Y, Y, B+ Y, + Y6,

m[v'v—(U0 CcoST +u)q +vp]= —pgAypz + pgA Xy O+ Z i+ Z W+ qu' +Z.+Z w+Z,q+ Zwv2 + ZWWWZ

+prp2 Jer,Mﬁ2 Jquqq2 +Z,r’ +Z‘,pvp+Zv¢v¢+Zprpr+Z¢,_¢r+Zwvr+quwq+wavzw+Zw“,qw2q (236)

wq’ +2Z,, wr’ +qur2 +ZWWWPZ +ZW¢¢W¢2 +Z,Wp2q+Z¢¢q¢zq + 7w Jerq3 +Zy,

wqq wrr

2
+Z,,vaq9+Z
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1% p+ (1 =1 )gr = -mgGZ(@)+ K,v+ K, p+ K,i + K v+ K, p+ K, p+ K, r + K, vw

+K,.qr+K vg+K wr+K wp+ K‘t,¢w¢+KMpq + Kmqﬁq +Kva2p +Kw¢v2¢+ wapwzp + wa(pwqu

wr+K, v’ +K

wp

(2.37)

2 2 2 2 2 2 2 2
+K, ww +K vr+K Y +KWq r+K,  vp +KW,p r+KWv¢ +KW¢ r

+Kmpq2 —O—KWpr2 +K¢M¢q2 +K¢,_,¢r2 +Km,v3 +K

vpp
p K, qu,qﬁ3 +K,, —mgAGZ"™ + K ;5,

ppp v

149G+ (1% =1y =-mgGM, 0+ pgdypxpz + M+ M o+ MG+ M. + M, w+M,qg+M,v> + M, w

+ Mppp2 +M¢¢,¢§2 + quqz +er2 +Mvpvp+Mv¢v¢+Mprpr+M¢y¢r+var+ M“‘qwq +Mwwv2w

+M w2q+quv2q+M (238)

wwgq

+ My q+ M

2 2 2 2 2 2
wq” +M,  wr*+ M, qr"+ M, wp”+ MWWW¢ +M,,,r°q

wqq wrr

W+ M,,q¢ + M, +2(0 -1, ) DK, (J)z,

www

1994+ (I1% =1 )pg =N+ N, p+ N, 4 N+ Npp+ Ny + Nr+ N, vw

+N,qr+ N, vg+N, wr+N wp+N wp+N,pg+Nydg+N, v p+N, v¢+N,  wp+N, W

(2.39)

+N vw2+va2r+N W2r+Ner2+N

2 2 2 2 2 2
ww wwr vrVd~ Tt qurq r+ NW:VP + Npprp r+ NV¢¢V¢ + N¢¢r¢ r

+N,.pqg’ + N, pr’ +N, dg° +N¢,W¢$r2 +N, V' +N,  p*+N,r’ +N¢¢¢¢3 +N,, + N5,

v

For Uy=0 and zero perturbation velocities and non zero perturbation motions Egs.
(2.34)-(2.39) reduce to Eq. (2.6). For Up#£0 and zero perturbation velocities and non zero
perturbation motions, which is resistance test in calm water, Egs. (2.34)-(2.39) reduce to
XiMeasured=X*, pgdyp(zo —x0p6,)=Z., and  mgGM, 0, — pgA,pxpz, = M. Where X* is resistance
in calm water, zo and ¢,are dynamic sinkage ¢ and trim 7.

For small steady state sinkage and trim and small perturbation motions, the linear
equations are uncoupled vertical x, z, 6 and horizontal y, ¢, ¢ plane motions. The slender
ship assumption additionally uncouples x from z and 0 since the equations are written
with respect to the centre of gravity. Standard seakeeping prediction methods solve
linear z and O equations and 2" order x equation using potential-flow slender-body
theory to predict heave and pitch motions and added resistance for regular and irregular
head waves. Standard 4DOF maneuvering prediction methods solve 3" order x, y, b, ¢
equations neglecting z and 0 using captive model test data to predict horizontal plane

trajectories such as turning circles and zig-zag maneuvers.
2.4 Mathematical Models

The mathematical models for different application can be developed based on the

theory shown in Eqgs. (2.34)-(2.39) and then can be considered in simulation analysis.
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2.4.1 1 DOF Roll Decay in Calm Water

For 1DOF roll decay test in calm water without rudders and propellers, Egs. (2.34)-

(2.39) are simplified as:
0=X,+ XWP2 + X¢¢¢2 =X dteasured
0=Y,p+Y,0+Y,,0° +Y,s8’ =Y \srea
0=Z.4+Z,,0" + Zy#* = Zsousurea
I¢p= —mgGZ(¢)+ KﬁP+KpP+K¢¢+K
0=M,+M,,p* +M,¢* M e

0=N,p+ N¢¢ + Npp[)p3 + N¢¢¢¢3 = Noeasured

PP+ K (2.40)

prp

Herein, GZ (¢) usually is considered as a higher order polynomial function of ¢:
mgGZ(p)=mgllp+1.4* +1.4° +...) (2.41)
Where |; are roll restoring moment arm coefficients.

The equation for roll motion, shown in Eq. (2.41), can be rewritten as following form:

_[<¢ . —K¢¢¢ 03 mgGM 1 B
8 o o G 7] A AR
¢ 4 } Sl

n=1,3,5,...N

(2.42)

Here, oiand y are damping coefficients, ®y is natural roll frequency, GM is metacentric
height in calm water, I’, is restoring moment coefficients in calm water.

For 1 DOF roll decay in calm water, heave and pitch motions are negligible and roll
response is under damped harmonic oscillations at fyg. X indicates 2" order/harmonic
amplitudes due to roll motion, whereas Y and N indicate 1* and 3" order/harmonic
amplitudes due to roll motion. Z and M indicate 2™ order/harmonic amplitudes due to

roll motion.
2.4.2 3 DOF Roll Decay in Calm Water

For 3DOF roll decay test free to roll, sink, and trim, Eqgs. (2.34)-(2.39) reduce to the

following form:
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wq+ X, wq’

wwgq waqq

ml(-U,sinz + wygl=X. + X, W + X, p* + X,.q" + X ;0" + X, , wg+ X
+ X W+ X WX, q-X

www

2 2 2
WP+ X ysqd” + X qp" + X Measured

m[(UO sinz — W)p]: Yop+Y,p+Y, wp+Y wp+Y, pg+Y,dq+ YM,szp + wajwzqﬁ + quqpq2 + Ym¢q2
+ Ypppp3 + Y¢¢¢¢3 - YMmsum’d

m[iv— (U, oSt +u)q|=—pgA,pz + pgAypx ey 0+ Z W+ Zo + Z W+ Z, g+ Z W + Z, p* + Z,yf’

+ quz + quwq + wawzq + quqqu + prpwp2 + wawqﬁz + prquq + Z¢m¢2q + Zw_ww3 + qu3
I#p=-mgGZ(@)+ K, p+K,p+K,p+ K wp+K wo+K, pg+K,dg+K, wp (2.43)

2 2 2 3 3
+K"'“'¢W¢+quqpq +K¢qq¢q +Kpppp +K¢¢¢¢

TG =-mgGM 0+ pgdy,Xcpz+ MG+ M., +MWW+quI+MWW2 +Mppp2 +M¢,¢¢2 +quq2 +M, wq

2 2 2 2 2 2 3 3
+M, waq+M,  wqg + M, wpT+ M, wp”+ M, pTg+ Mg+ M, W+ M, q

(1 ~1)pg=N,p+ Ng+N,,
+Npqqpq2 +N¢qq¢q2 +Npppp3 +N¢¢¢¢3 -N

wp+ N, ,wo+ N, pqg+N,dg+ N wp+ Nwwv,wzqﬁ

wwp

Measured
Since heave and pitch velocities (or motions) are very small in roll decay test, higher

order heave and pitch terms can be neglected. Therefore:

m[(—UO sinz + W)q]=X,, +pr192 +X¢¢,¢2 +XW¢¢W¢2 +X”WW[?2 +Xq¢¢q¢2 +qu])2 -X

m{(U,sint —=w)pl=Y,p+Y,p+ Y, wp+ Y, wh+ Y, pq+Y,dq+Y,, 0" + Y’ = V\ea
mlo— (U, coST +u)q)=—pgdypz + peAypxep 0+ Z o+ Zo + Zw+ Z, g+ Z,, p* + Z

Measured

+Z, wp’ —O—ZMV,(/j{z,vvqﬁ2 +prqp2q +Z¢M¢2q

wpp

I#p=-mgGZ($)+ K, p+ K,p+K,p+ K, wp+ K, ,wh+K, pg+K,dq+K,,p" +K,.f (2.44)
1%G=-mgGM 0+ pgdy,x oz + M g+ M.+ M w+M g+ M, p* + M 4’
+M, wp? +MW¢¢W¢2 +Mppqp2q+M¢¢q¢2q

wpp

(15 =15 )pg = Npp + N+ Noywp + N w4 N,y pg 4 Ny + N 07 4 Nogs® =Ny

Since heave and pitch motions are negligible and roll response is under damped
harmonic oscillations at fyq, X indicates 2" order/harmonic amplitudes only due to roll
motion whereas Y and N indicate 1% and 3™ order/harmonic amplitudes due to roll

motion.
2.4.3 1 DOF Roll in Head Waves

For 1DOF roll in head waves, Egs. (2.34)-(2.39) reduce to the following form:
0=X.+ X, p’ + X0+ X, - X

Measured

0= Yop+ Y¢¢ + Ypppp3 + Y¢¢¢¢3 - YMzasuVed

0=Z2. + prpz + Z¢¢¢2 +Zy = Z \easurea

1€ p=-mgGZ(p)+ K, p+K,p+K,p+K,,p° + K0 —mghGZ""* (2.45)
0=M,+ M[)ppz + M¢¢¢2 + My =M e

0=N,p+N,g+N,, p’+N,é" —N,

Measured
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Herein, GZ (¢) usually is considered as a higher order polynomial function of ¢:
mgGZ(g)=mg(l,p+1,4° +1,4° +... (2.46)

Where |; are roll restoring moment arm coefficients in calm water.

Also, AGZ"™* usually is considered as a higher order polynomial function of ¢ and

Fourier function of time:

Qo + Oy, cos(@,t + &, ) +...+ 0, cos(na,t + ,, )

+ (QO3 +0, cos(a)pt + 5,3)+ ot 0, cos(na)gt +€,, ))¢
+ (Q05 + 05 cos(mpt + &5 )+ et 0O cos(nm(,t + 6,5 ))¢5 (247)

+ ...

3

mgAG Wave — mg

Where @, =oHw?*/g)Ugcos p is encounter frequency, and p is wave heading which is

zero for head waves.

The equation for roll motion, shown in Eq. (2.47), can be rewritten as following form:
"B s, mgGM L[

" -K. . K
P+ ' h+ . V  — GZ(¢)+K¢+K ¢3]
2a

— —————
7 m; i Z,IM’V’
+ g G Wave (¢,t) ~0
%K, AGZT g ) 4
x
%\,—¢/ ) (Qo,,+Q1  COS(@, 1461 ,))+0, , OS2, 1 +65 )+“.)¢p
m; IGM  Pel3SeP

Equation (2.48) can be rewritten as:

b+2ap+yp + a),; Zl;gb”

n=1,3,5,...,N

+; | GM Z(Qop +0,, cos(w,t +&,)+0,, cos(2a)et+52p)+...)¢” =0

p=13.5,..P

(2.49)

Here, aand y are damping coefficients, my is natural roll frequency, GM is metacentric
height in calm water, I’; is restoring moment coefficients in calm water, Qg, and {Qiy,
Q2p,.} indicate restoring moment mean value and amplitude in waves.

Equation (2.45) shows that, for 1 DOF roll decay in regular head waves, roll response
is either under damped harmonic oscillations at fyq (roll decay) or 1** harmonic dominant
oscillations at fy=f./2 for parametric rolling in first instability zone. X indicates 1%
harmonic amplitude due to waves at f, and 1%, 2™ and 3™ harmonic amplitudes due to roll

motion at f.. Y and N indicate %2 and 3/2 harmonic amplitudes due to roll motion.
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2.4.4 3 DOF Heave-Pitch-Roll in Head Waves

For 3DOF model test free to roll, pitch, and heave, Egs. (2.34)-(2.39) are simplified to

the following form:
m[(—UO sinz'+W)q]=X* +X, W +prp2 +quq2 +X¢¢¢Z +X

ww

wg+ X, wq+X, wq

wq wwg wqq

+ X, wo+ X, wp' + X, q8" + X a0 + X, W+ X 0+ Xy - X

wpp Measured

ml(U,sint —w)p|=Y,p+Y,p+Y, wp+Y, ,whp+Y, pq+Y,dg+Y, wp+Y, we+Y, pg’+Y, ¢g’
+Y,,p 1y, ¢¢¢¢3 =Y easurea

ml — (U, cost +u)ql=—pgdypz + pgAypX ;0 + Z o+ Zo + Z w+ Z,q + Z, W + Z, p* + Z .’

+ quqz +Z,,wq+ waqwzq + quqqu + wapz + ZW,W¢2 + prquq + Z¢¢q¢2q +Z W+ quqq3 +Z,
[%p=-mgGZ()+K,p+K,p+K,p+K wp+K, wo+K, pg+K,dg+K,  wp (2.50)

+ K“w,wng+qupq2 +K¢W¢q2 +Kpppp3 + nglﬁ3 —mgAGZW“"e

wwp

15 =—mgGM 0+ pgdypxcpz+ M G+ M. +Mww—0—qu—o—MWw2 +M, p’ +M¢¢¢2 —O—quq2 +M, wq

)4

+M, wWqg+M, wqg +M, wp’ +Mw¢¢w¢2 +Mppqp2q+MW¢2q—O—MWWW3 +M, q° +M,

wwgq waqq wpp

(15 1 )pg=N,p+N,g+N,,
+ Npqqpqz + Nv’qqmz + NP[’FP3 + N¢¢¢¢3 = Noteasurea

999

wp+ N, ,wh+N, pqg+N,ydg+N, wp+N, we

wwp

As shown in Eq. (2.50), heave and pitch response is 1** harmonic dominant oscillations
at f; and roll response is either under damped harmonic oscillations at fyq (roll decay) or
1** harmonic dominant oscillations at fy=f./2 for parametric rolling in first instability
zone. X indicates 1° harmonic amplitude due to waves at f;, 2"® and 3" order/harmonic
amplitudes due to heave and pitch motions at f,, and 1%, 2"® and 3™ harmonic amplitudes
due to roll motion at f.. Y and N indicate 2™ order/harmonic amplitudes due to heave and

pitch motions and 2 and 3/2 harmonic amplitudes due to roll motion.
2.4.5 2 DOF Static Heel in Calm Water

For 2DOF model test free to sink and trim and heeled at angle ¢, Egs. (2.34)-(2.39)

reduce to the following form:
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wiq+ X, wq’

wwgq wqq

m[(—UO sinz + W)q]=X,, + X, W +quq2 +X¢¢¢2 +X,,wg+X
+XW¢¢W¢2 +Xq¢,¢q¢2 +X“Ww3 + quq(f -X

0=Y,p+Y ,wo+Y, dg+ KW¢W2¢ + YMMZ + Y¢¢¢¢3 = Yteasurea
m[w— (U, cost + u)q]= —pgAypz + PgAp X cr O+ Z WA Z, + Z W+ Z g+ Z, W+ Z(M,gﬁ2

Measured

+ quqz +Z,,wq+ waqwzq + quqqu + waw¢2 + Z¢m¢2q + ZWWW3 + quq(f (25 1)
0=-mgGZ(p)+ K, p+ K, ,wh+K, dg+K,  WI+K, d0° + K8~ K\pporea
132G =-mgGM 0+ pgAypxcpz+ MG+ M.+ M w+ M, g+M, w +M 0> + M, q° + M, wq
+ Mwwqwzq + quqqu + MW,W¢2 + M¢m¢2q + MWWW3 + quqq3
0=N,p+N, wh+N,dg+N,  wé+N, ¢q° +N,yb’ = Nysirea
Since sinkage and trim motions are negligibly small, Eq. (2.51) is simplified to:
0=X. + X 140" = X s
0=Y,0+Y308" ~Vososuirea
m[o— (U, oSt +u)q|=—pgAy,z + pgAypxep @+ Z o+ Zo + Zw+ Z, g+ +Z " + Z,,,wh* + Z,0 8°q
0=-mgGZ($)+ K 0+ K yu#’ = K st (2.52)

175G =-mgGM 0+ pgAypxcpz+ Mg+ M.+ M w+M g+ Mw,gﬁ2 +M, ¢w¢2 + M¢M¢2q
0= N¢¢ + N¢¢¢¢3 - NMezz.vur‘ed

Equation (2.52) shows that X,z,0 have quadratic trend for different heel angle whereas
Y,K, and N show cubic trend. This suggests that the heel angle has 1* order effect on Y,

K, N and 2™ order effect on X,z,0.
2.4.6 2 DOF Static Drift in Calm Water

For 2DOF static drift test free to sink and trim, Egs. (2.34)-(2.39) reduce to the

following form:
m[(—U0 sinz + w)q]= X.+ X,V +X

2 3 3
+X v+ X, WA X0 - X

www

2 2 2
ww oW 4+ X g wg” + X Wy

w? +quq2 + X, ,wg+X

Measured

0=Yyv+Y, w+¥, vg+Y, w +Y, vg* +Y, v -7,

ww vww vgq wy Measured

2
n%

ww

ml — (U, cost +u)ql=—pgdy,z + pgdypxp 0+ Zw+ Z,g+ Zo + Z w+ Z g+ Z, v + Z

2 2 2 2 2 3 3
+qu +quwq+ZWv w+ waw q+Zqu q+Zquwq +Z,W +qu

0=-mgGZ(g)+ K v+K,vw+ K, vqg+K w + K, vg' +K, v -K

yww vqqr

(2.53)

Measured

If,gq' =-mgGM |0 + pgA,pXx pz + M W+ M;g+M.+M w+M g+ vaz + MWW2
+M q"+M,,

0=N,v+N, w+N vg+N

2 2 2 2 3 3
wg+M, v w+M,  wqg+M, vig+M, wg+M W +M, q

2 2 3
weVW +Nvg™ + NV = N

Since sinkage and trim motions are negligibly small, Eq. (2.53) is simplified to:
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0=X.+X v -X
0=Yv+Y, v’ -Y,

wy Measured

Measured

Vw+Z, vq

vww wg

m[W - (U(l COST + ”)q]: 7pgAVVPZ + pgAWPx(‘Fg + Z,‘,W + qu +tZo+ ZWW + qu * ZWVz 2z
0= 7mgGZ(¢)+ Kv+K, v —-K
]igq = —mgGML6’+ PEAyp X pZ + M,¢W+qu +M.+M w+ qu +va2 +M
0=Nyv+ NWV3 =N steasured

(2.54)

Measured

2 2
viw+ M, vig

ww

Equation (2.54) shows that X,z,0 have quadratic trend for different drift angle (v
velocity) whereas Y,K, and N show cubic trend. This suggests that the drift angle has 1*

order effect on Y, K, N and 2" order effect on X,z,0.
2.4.7 2 DOF Static Heel in Following Waves

For 2DOF model test in following waves free to pitch and heave and heeled at ¢, Egs.

(2.34)-(2.39) are simplified to the following form:
m[(—UO sinz + w)q]=X* + XW.WZ + quz + quiz +X

+Xw,¢w¢2 + quqqﬁz + X, W+ quqq3 +X, -X
0= Y¢¢ + Ywaﬁw¢ + Ygx,¢q + Yw-‘¢=¢wz¢ + qumz + Y¢¢¢¢3 = Yiteasurea
m[v'v— (U, cost + u)q]= —pgAypz + pgAypX @+ Z Wt Zo + Z Wt Z g+ Z

wg+ X, wq+X, wg’

wq wwq wqq

Measured

ww

2 2
W+ Zyp

+ quqz +Z, wq+Z, wq+Z, wq’ +ZW¢¢W¢2 + Z¢¢q¢2q +Z, W+ quqq3 +Z,

wq wwgq wqq

0=-mgGZ($)+ K ,p+ K ,,wh+ K, dg+ K, ,Wd+K, dg° +K .0’ - mgAGZ""*
wh o+ M¢¢¢2 + quqz +M,,wq

(2.55)

I2q=-mgGM 0+ pgdypxcpz+ Mg+ M.+ M w+ M g+M
+M, wqg+M, wg'+M w¢2+M¢¢q¢2q+M

wivg waq wip

0=N,p+N, wo+N,dg+N,  wé+N, dg> +N, 0 - N

ww

3 3
w +qu +M,

www

Measured

Heave and pitch response is 1* harmonic dominant oscillations at f, and roll is fixed at
angle ¢. X indicates 1*" harmonic amplitude due to waves at f,, 2" and 3™ order/harmonic
amplitudes due to heave and pitch motions at f.. Y and N indicate 2" order/harmonic
amplitudes due to heave and pitch motions. Equation (2.52) shows that X,z,0 have
quadratic trend for different heel angle whereas Y,K, and N show cubic trend. This

suggests that the heel angle has 1% order effect on Y, K, N and 2" order effect on X,z,0.
2.4.8 4DOF Broaching in Quartering/Following Waves

In a particular case such as surf-riding and broaching, heave and pitch motions, which
have high natural frequency compare to the other modes of motion, can be neglected due

to the fact that ship heading speed is close to wave celerity which produces small
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encounter frequency and stimulates the modes of motions with small natural frequency.
Thus, broaching model is 4DOF requiring dealing with low frequency surge-sway-yaw-
roll motions. The Egs. (2.34)-(2.39) can reduce to 4DOF model neglecting heave and

pitch motions:
mli —vr]= X i+ X, + X, +prp2 +X,r° +X¢,¢¢2 +X, o+ X, vr+ X, pr

+ X, v+ X, rp+ X, +2(1-1, )on* DIK,(J) (2.56)

my+ U, +wrl= Yy +Y, p+Yi+ Yy +Y,p+ Y g+ Yr+Y, vV p+Y, V¢+Y, v'r

wp wr

DY v Y B4, prt Y, gAY, VY, P (2.57)

2 2
+Y, vt Y, vty

+Y, 0+ Y07 + Y, +Y,5,

15p=-mgGZ(#)+Ky+K,p+K,i+Kv+K,p+K,p+K r+K vp+K Ve+K vr

wp

2 2 2 2 2 2 2 3 3
+K,,vr +Kva +KW‘p r+K‘,¢¢v¢ +KW¢ r+K _pr +K¢,,¢r +K,.v +Kwp

3 3 Wave " (2 S 8)
+K,,, "+ Ko + K, —mgAGZ™™ + K 6,
I#F=Ny+N,p+N.i+Ny+N,p+N,p+N,r+N, vV p+N_vé+N, vr
+ N‘er2 + vapz + Npp,_pzr + NWV;&Z + ngézr + Nmpr2 + Nw_qﬁrz + N‘st (2 59)

+N,.p>+N, r’ +N¢«w¢3 + N, + N5,

rrrv

Hashimoto and Umeda (2002) and Hashimoto et al. (2004a,b) introduce following
simplifications to Eqn. (2.56)-(2.59) to provide an efficient 4DOF model for broaching:

1) The roll velocity effect is significant in roll motion and is negligible for other

modes of motion. Thus: K, #0;K, #0and X, =Y, =Y, =N, =N,k =0

ppep

2) There is no cross-coupling between ¢/p and other velocities. For instance:

YWV:Kﬁr:NpWZO

3) All the acceleration components are negligibly small except X, Y,,K ,, and N, .
4) Change of GZ due to waves is negligible since encounter frequency is very small.
5) The nonlinear added mass term for roll motion — M ,u,r shown in Eq. (2.13) is

added to Eq. (2.58) to improve the model. Note that M , can be expressed as z, X, where

zy 1s z coordinate of acting point of X, .
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Consequently the 4DOF Umeda and Hashimoto model of broaching is:

mli = vrl= X+ X, + X v+ X, + X 87+ X, vr+ X, +2(1-1, )on®DAK . (J) (2.60)

mly+ (U, +uyr =Yy + Yy + Y,¢+ Yr+Y, vVir+Y, v’ +Y, v’ +Y, 1’ + Y0’ +Y, +Y,5, (2.61)

vrr rry

1#p=-mgGZ(¢)+ K, p+Kv+K,p+ K, p+ K r+K, vr+K v’ +K v'+K,k p’
+ K, 7+ Kyt — 2, X, Uy +ulr + Ky + K 56, (2.62)

I£F=NF+Ny+N,gp+Nr+N vr+N v’ +N vV’ +N, 7’ +N4 +N, +N,;35, (2.63)

Surge, sway and yaw motion have no restoring forces or moments and their response
are not harmonic such that measured forces and moments should include only harmonics
due to roll wy or/and due to wave at .. Surge motion introduces first order amplitude in
X and second order amplitude in Y and K. Sway and yaw motions introduce second order
amplitude in X and 1% and 3" order amplitudes in Y, K, and N. Roll motion causes
second order/harmonic amplitude at 2wy in X, 1% and 3" order/harmonic amplitude at o,
and 3wy in Y, K, and N. Rudder motion causes first order amplitude in Y, K, and N.
Lastly, wave forces and moments introduces 1** harmonics in X, Y, K, and N at c..

Since rudders are free to turn for steered ship, the rudder angle is not fixed in Egs.
(2.60)-(2.63) and the equation of autopilot has to be added to find ¢, at each time. The
simplest equation of autopilot can be described by the following linear equation:

& ==K -vc) (2.64)

Here —y1s desired course. Eq. (2.64) shows very simple action to control the course;
rudder deflection is just proportional to deviation from desired course. Kr is a
proportional coefficient called “rudder gain constant”. This controller is too simple to be
applied practically because such an autopilot is only sensitive to course deviation and

would always be late. To make it react in advance, reaction on yaw rate can be added too:
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Sp =Koy —yc)-K,Tpr (2.65)

Here Tp is a correction for rudder gain, to keep proportionality to yaw rate. Such

controller is called “differential controller” and Tp is called “time constant for differential

controller”.

The last step to get an appropriate equation of autopilot is to take into account the
rudder deflection velocity:

Tp6p +6, =—Kuw —we) =K Tor (2.66)

Here Tg is called “time constant for steering gear”. All coefficients KR, TD, and TE

are subjects of autopilot tuning.
2.5 Calculation of Hydrodynamic Derivatives

To solve developed mathematical models, the coefficients existed in the models are
necessary to evaluated. These coefficients are called “maneuvering coefficients” or
“hydrodynamic derivatives”. Herein, the methodology of calculation hydrodynamic
derivatives for 1 DOF roll decay model, 1 DOF parametric rolling model, and 4 DOF

broaching model are discussed.

2.5.1 IDOF Roll Decay and Parametric Rolling Models

For 1 DOF roll decay and parametric rolling models shown in Eqgs. (2.42) and (2.49),
linear and cubic roll damping coefficients (o and v), roll natural frequency (), restoring
moment coefficients 1’,, and lastly restoring moment variation parameters in waves (Qpo

,Qp1..,) are necessary to be estimated to solve the 1 DOF mathematical model.

Linear and cubic roll damping coefficients and roll natural frequency are estimated
from towing tank forward speed roll decay test. The restoring moment coefficients in
calm water are estimated from fitting a polynomial curve of order N to Fr=0.0
hydrostatically computed restoring moment as a function of heel angle. (Qop ,Q1p..,) are

estimated from fitting a polynomial curve of order P with time dependent coefficients to
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measured (or hydrostatically computed) restoring moment of a ship with different heel

angles in waves.

2.5.2 4 DOF Broaching Model

The hydrodynamic coefficients in Egs. (2.60)-(2.63) can be found using empirical
formula or determined experimentally using the captive model tests such as Static Drift
tests, Static Heel tests, Rotating Arm tests (Circular Motion Test), and Planar Motion
Mechanism (PMM) tests in calm water.

In Static Drift tests, the model is towed obliquely in towing tank and the sway velocity

related hydrodynamic coefficients such asX ,Y .Y .K ,K ,N,, and N, are

w2y Typy vy 9

determined. Also, z,, can be determined from Static Drift tests.

In Static Heel tests, the model is towed with heel angle and the roll related

Y, Yo Ky K

hydrodynamic coefficients such as X ;;, Y, Y, bbg 2

bp N,, and N, are determined.

In Rotating Arm tests, an angular velocity is imposed on the model by fixing it to the
end of a radial arm and rotating the arm about a vertical axis fixed in the tank. The model
is oriented with its x-axis and z-axis normal to the radial arm and it is attached to the arm
preferably at the model’s mid-length. As a result of the particular orientation, as the
model revolves about the tank axis, rotates at the rate r while its transverse velocity
component v is zero and its axial velocity component is identical to its linear speed. The
model is rotated at a constant linear speed at various radii R, and the measured X,Y K,
and N acting on the model result in estimating yaw rate related coefficients such as

X Y Y Kr’Krrr Nr’Nrrr‘

rr27rd Trrr?

Herein, the acceleration terms such as Y,,N,,Y,, N, are estimated through empirical

formula even though they can be estimated from PMM tests.
Cross-coupling terms in Egs. (2.60)-(2.63) can be measured through a coupled
experiment setup. For instance, since yaw rate terms are measured from Rotating Arm

tests and sway velocity terms are measured from Static Drift tests, yaw rate and sway
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velocity coupling terms such asY_ ,Y  can be determined by Rotating Arm tests in which

the model has drift angle.
A summary of the captive model tests and available hydrodynamic coefficients from

each test are presented in Table 2.1.

2.5.2.1 Static Drift

For the static drift results, the forces and moments coefficients are only the function of

vthus the RHS of Egs. (2.60)-(2.63) are simplified as:
X=X.+X V' =4+BV
Y=Yv+Y, v =Cv+DV
K=Kv+K,v'=Ev+FV (2.67)
N=Ny+N, v’ =Gv+H’

where 4=x,,B=x, ,C=Y.,D=Y ,E=K,L F=K,,G=Nv,H=N, .

The hydrodynamic derivatives shown in Eq. (2.67) are obtained as polynomial
coefficients by least-square curve fitting method. The 2™ order polynomial is used to
obtain A and B, although A is usually referenced from steady resistance tests. The 3™
polynomial is used to obtain C, D, E, F, G, and H. Also, E and F can be estimated from Y

coefficients using zy in which:
K=z,Y (2.68)

Here 7y is estimated from 1* order polynomial curve fitting to K — Y plot.
Consequently:

E=z,C
F=z,D (2.69)

2.5.2.2 Static Heel

For the static heel results, the forces and moments coefficients are only the function

of ¢ thus the RHS Egs. (2.60)-(2.63) are simplified as:
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X=X.+X,4°=A+B¢’

Y =Y,p+Y,, 4 =Cd+D¢’

K =-mgGZ($)+ K+ Kyt = (K, ~1, W+ (K s~ 1. W = E¢+ F§’ (2.70)
N=N,p+N,,p =Go+H¢’

Herein, A=X.,B=X,,C=Y, D=Y,

i E =Ky~ F =Ky —1;,G=NypH =N, and/,,/;are

restoring moment coefficients. The hydrodynamic derivatives shown in Eq. (2.70) are
obtained as polynomial coefficients by least-square curve fitting method. The 2™ order
polynomial is used to obtain A and B, although A is usually referenced from steady
resistance tests. The 3™ polynomial is used to obtain C, D, E, F, G, and H. Also,/,,/; are
measured from 3™ order polynomial curve fitting to roll restoring moment, although [, 1s

GM and it is known.

2.5.2.3 Rotating Arm + Drift

For the rotating arm test with drift angle, the rotating arm speed is U = rR and side
velocity and yaw rate of the vessel are v=-Usinf} and r. As the result the RHS of Egs.

(2.60)-(2.63) can be simplified as:
X=X+ X V' +X, >+ X v+ X, v’ +X, vr=A4 +Bv +Cr’+Dvr+Ev’ +Fvr
Y=Yv+ wi'; +Yr+ Y,_,,,_r‘3 + Ymvr2 + Yw,vzr =A,v+ 321)3 +C,r+ Dzr3 + Ezw'2 + szzr
K=Kv+K, V' +Kr+K,r’ +K, v’ +K, vr=4v+Byv +Cyr+Dy’ +Ewvr’ +Fy'r (271)

rrrrr

N=Ny+N, Vv +N,r+N, r’+N, v’ +N, vr=A4v+By +C,r+D,;’ +Eyr’ +FV'r
where X,Y,K, and N are the measured forces and moments in which centrifugal force
((m — Y,)r’R effects are extracted.
The hydrodynamic coefficients of X, Y, and N shown in Eq. (2.71) are obtained as 3™
order polynomial coefficients (A;-F,), (A2-F»), and (A4-F4) respectively, by least-square
surface fitting method. The hydrodynamic coefficients of K can be estimated from

polynomial coefficients of Y as follow:
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4y =z, 4,
By =z,B,
G =z2,C,
D, =z,D, (2.72)
Ey=z,E,
Fy=z,F,

Herein z,, is already known from the Static Drift test.

2.6 Solution of Mathematical Model

2.6.1 1DOF Roll Decay and Parametric Rolling Models

To solve 1DOF nonlinear roll decay model, Runge-Kutta method is used to integrate
Eq. (2.42). The initial roll angle and roll rate, which is usually zero, are applied as initial

conditions.

For 1DOF parametric rolling model, Poincaré mapping was applied to identify steady
states of parametric rolling as a function of Fr by integrating Eq. (2.49) using Runge-
Kutta method. Once a steady state for certain Fr is found, the next numerical integration
of Eq. (2.49) starts from the obtained steady state but with a slightly larger or smaller Fr
which depends on using increasing or decreasing Poincaré method. Both tracing
directions of increasing and decreasing Fr are explored to demonstrate dependency of
initial condition.

The Poincaré map is useful to identify bifurcation structures of roll motion, but it
requires an initial steady state for continuously tracing steady states. Thus there is still the
possibility that another stable state exists with the same condition. In addition, numerical
simulations for all possible condition parameters, wave height, wave length, ship speed,
GM, etc. consume tremendous simulation time. Therefore, an averaging method was
used, which is one of the analytical approaches in nonlinear dynamics for solving Eq.

(2.49) in an approximate way. For parametric rolling in first instability zone, all steady
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states of principal parametric rolling, where roll frequency is a half of the encounter

frequency, can be theoretically determined because steady states are solutions of
algebraic equations. Assuming the solution of ¢ = 4, cos(@t —¢) yields:

4,=0

(2.73)

mean amp

{a+§ya32A2}2+{§—;a§(l+GM /GM+%I3A2+215A4)}2 =(GM w;;/GM)Z

A4=0 indicates a trivial solution at 0 degrees of roll. Steady states of the parametric
rolling orbit can be obtained by solving the eighth-degree algebraic equation. If locally
these equations are linearized at their steady states, stability of solutions can be examined
with their eigenvalues, and their attractor domain can be determined with their

eigenvectors.
2.6.2 4DOF Broaching Model

To solve the system of equations shown in Egs. (2.60)-(2.63) and steering equation
shown in Eq. (2.66), the definition of p and r, and the ship position equation have to be
added. Then, Egs. (2.60)-(2.63) and Eq. (2.66) can be presented as a system of

dlfferentlal equatlons of the first order to solve it numerically:
U +u cost// vsiny —c¢

X +X, VX r +X¢¢¢ + X, v+ X, v’
f(m-X,)
+ X, Vr+(m=Y,Wr+2(1-1, )i’ D!K, () + X,

m X)(U +u)r+Yv+Yv+Y V+Yr+Y, r /( Y)
m-Y,
+Y¢+Y¢¢¢¢ +Y, vt +Y, Vr+Y 0, +Y, ’

vrr wr

9=

-
Il

V4

Kyv+K, V' +Kr+K,r’ +K,p+K,,0" +K,p (e - ) (2.74)
+K, v’ + K, Vr+ K0, +z,m (U +u)r mgGZ(¢)+K,, K

=y

Ny+N, V' +Nr+N, r +N¢¢+NW¢ /(I"g—N.)
+N, v’ +N, Vvr+N;5,+N, ’ '

5 -K (V/_V/C)_KRTDF}/TE

It would be more convenient to present system Eq. (2.74) in vector form:
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= F(%,b) (2.75)
where X is called the state vector:
¥={¢s.uvy.r.d .Sy (2.76)
The vector ; is control vector which consists here just two parameters:
b={yc.n} (2.77)
Here, n is number of propeller revolutions and it has to be included in all terms
connected with thrust and rudder action.
Ship motions response in waves can be calculated by solving Eq. (2.75) for certain
initial conditions (for motions and controller) and for certain control parameters (number
of propeller revolution and desired course). The solution can define the status of ship

which can be capsizing, broaching, periodic motion, and surf-riding.

2.6.2.1 Capsizing and Broaching

Capsizing can be defined if:
4] < e (2.78)
Here ¢. should be sufficiently larger than the angle of vanishing stability which is
usually around 90deg.
Based on the definition of broaching, the condition for broaching can be formulated as

follows:
0=0,, r<0 r<0
8==6_r>0 >0 (2.79)

Equation (2.79) basically means that for broaching case the magnitude of yaw angle is

increasing even though rudder has its maximum deflection to keep the course.

2.6.2.2 Periodic Orbits

The steady state solution of Eq. (2.75) is even more important than time history itself

in nonlinear dynamics theory. A nonlinear system of equations such as Eq. (2.75) can
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have different type of steady solutions described by: equilibrium points (fixed points i.e.
surf-riding), limit cycle (periodic orbits or quasiperodic orbits), and chaos. Static periodic

motion can be identified if a value of T exists which satisfies the following equation:

cos(2mx,(t)) = cosLmx,(t+T))
x()=x,(t+T) i=23,.8 (2.80)

2.6.2.3 Equilibrium of Steered Ship Equations: Surf-riding

Equilibrium points of system (2.75) correspond to surf-riding which is a prerequisite
for broaching. If the ship is in the equilibrium position, then derivative of ship motions

arc z€ro.

F(x,0)=0 (2.81)

As all derivatives are disappeared, expression (2.81) degrades to a system of nonlinear
algebraic equations that can be solved numerically with a simple method such as Newton
method. The system (2.81) consists of 8 equations, so the equilibrium is a point in a space
of eight dimensions and changing control parameters move this point. Usually, for each
equation there are only two equilibrium points. One equilibrium point corresponds to the
state that ship is in the wave crest and another one corresponds to wave trough. This is

can be checked by studying stability of equilibrium.

2.6.2.4 Stability of Equilibrium (Attractor vs. Repeller)

Stability of equilibrium points (fixed points) can be studied by eigenvalues of

Jacobean matrix of F:
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[oF(3,5) OF,(ib)  OF(Eb)]

Ox, Ox, Ox,
| 0F,(R,b) 0F,(%,b) OF,(%,b)
JE)=|"" o, ox, T oy, (2.82)

OF,(%,b) OF,(%,b) OF(%,b)
Oxg Oxg Oxg

Eigen-values of J(F) can be expressed:
det(J(F)—Al)=0 (2.83)
Here I is the identity matrix.
The number of eigenvalues corresponds to the dimension of the matrix, which is the
number of equations. Each eigenvalues can be associated with a variable from the model
shown in Eq. (2.76). A positive eigenvalue for a certain variable means that the system

will escape in the particular direction into an unstable equilibrium points.



Table 2-1: Summary of captive model tests and relevant hydrodynamic
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derivatives
Test Conditions Motion Coefficients
Parameters
X* > va
Yv > vav
Static Drift %
Kv H vav > ZH
Nv > vav
X. > X o9
Y.Y
Static Heel @ 0w
K¢ 4 K¢¢¢
N ¢ N $o¢
X*’XW’XW ’er
Yv’vav’ r’Yrrr’Yvrr’)Ivvr
. . . Kv’vav’Kr’Krrr’err’
Rotating Arm With Drift v, r X
Nv’vav’Nr ’Nrrr’err’

N,

vvr
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CHAPTER 3. IMPLEMENTAION CAPSIZE PREDICTION IN
CFDSHIP-IOWA V 4

The general-purpose solver CFDShip-lowa-V.4 solves the unsteady Reynolds
averaged Navier-Stokes (RANS) or detached eddy simulation (DES) equations in the
liquid phase of a free surface flow. The code utilizes absolute/relative inertial earth-fixed
coordinate system and non-inertial ship-fixed coordinate system to describe
prescribed/predicted ship motions. The free surface is captured using a single-phase level
set method and the turbulence is modeled by isotropic or anisotropic turbulence models.
Numerical methods include advanced iterative solvers, second and higher order finite
difference schemes with conservative formulations, parallelization based on a domain
decomposition approach using the message-passing interface (MPI), and dynamic overset
grids for local grid refinement and large-amplitude motions. A succinct review of the

code is presented here, paying special attention to its application on capsize prediction.
3.1 Governing Equations
3.1.1 Inertial Earth-Fixed Coordinates (X,Y,Z)

The governing differential equations (GDEs) of motion are derived and solved in
absolute inertial earth-fixed coordinates (X,Y,Z) for an arbitrary moving but non-
deforming control volume and solution domain, respectively. The governing differential
equation for continuity is expressed as follow:

VU =0 (3.1)

where U =U,i +U, j +U,k is the absolute velocity in (X,Y,Z).

Conservation of momentum using the divergence operator expansion, the continuity
equation and expressing the body and surface forces per unit volume, give the momentum

equation:
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p{a—U +(U - UG).VU} =-V(p+z)+ VU

ot (3.2)

Where U, is the local grid velocity. Note that Eq. (3.2) can be non-dimensionalized

using a reference velocity Uger (generally is the speed of the ship Uy), the ship length L,
the water density p and viscosity p which introduces Fr=U,/,/Lgand Re= pU, L/ u

numbers.
3.1.2 Relative Inertial Coordinates (X',Y',Z’)

Eq. (3.2) can be transformed into the relative inertial coordinates (X,Y’,Z") translating

at a constant velocity Uc relative to (X,Y,Z) by replacing U by U =U"'+U, and U, by
U,=U;+U,., where U' and U; are the fluid and grid velocities in (X,Y",Z’),
respectively. The time derivatives in the two inertial coordinates are the same. Since the
gradient, divergence, and Laplacian operators in Eq. (3.2) are frame invariant, the

governing equations in terms of U’ in (X",Y",Z") are obtained:

(3.3)

p{ag +(U'—U'G).VU'} =—V(p+z)+uVU'

3.1.3 Non-Inertial Ship-Fixed Coordinates (x,y,z)

Eq. (3.2) can also be transformed into the non-inertial ship-fixed coordinates (x,y,z)

located at center of rotation of ship by replacing U in (X,Y,Z) by U=U, +U, and Ug
byU, = R+ Qxr; where U, is fluid velocity in ship coordinate, r is instantaneous position
vector of any point in (x,y,2), R=U,i+U,j+U,k and Q=Q,i+Q,j+Q,k are the
linear and angular velocity of (x,y,z) in (X,Y,Z).

oU, B )

ar=R'+2Q><Ur+Q><(Q><r)+Q><r (3.5)
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3.2 Turbulence Modeling

CFDShip-lowa uses a linear closure model, in which Reynolds stresses are
proportional to the main rate of strain being v;, the isotropic eddy viscosity, the

proportional factor. In Cartesian coordinates, the expression is:

—  (eu, U, 2
—uu =y | iy | sk
uluj vt(an ale 3 g (3.6)

where ¢, is the Kronecker delta and £ is the turbulent kinetic energy.

The equations can be closed by calculating the eddy viscosity.

3.2.1 Blended k—aw/k—¢& (BKW)

This blending takes benefits from the strength of both k—w and k—& models to
calculate v,. The k—® model has proven to be robust, applicable to complex geometries
and fairly accurate. In addition, it does not require near-wall dumping functions and uses
simple Dirichlet boundary conditions. On the other hand, k—& model does not exhibit
sensitively to the level of free-stream turbulence as k—w does. The governing equation for

turbulent kinetic energy k& and the turbulent ® are as follows (Menter, 1994).
ok 1
E-F(V—O'k Vv,)-Vk—FVZkvLsk =0

) (3.7)
a—w+(v—0' Vv )-Va)—ivzaﬁs =0
ot %) t Pw ) (38)
Where the source terms, turbulent viscosity and the effective Reynolds numbers are:
S, =R(- G+ k) (3.9)
w ) 1 0k Ow
S =R |-y2G+pa* +2(1-F)o,, ————
® a){ 7k p ( )0, © X, OX, (3.10)
_k
iz, (3.11)
R 1
Y 1/Re+ oV, (3.12)
oU,

Ot (3.13)
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Here, S, ﬂ*,ak, and o, are constants and F; is a blending function, designed to take

advantage of the strength of either k-w or k—€ model in different position. To accomplish
this, F; is 1 in the sub-layer and logarithmic regions of boundary layers and gradually
switches to zero in the wake region. The model constants, say o, are calculated from the

standard k-o (a1), and k-¢ (a2) values using a blending function:

a=Fa+(1-F)a, (3.14)

3.3 Free Surface Modeling

CFDShip-lowa-v4 uses single-phase level set method. The 3D level set function, ¢, is
defined in the whole domain and its value is related to the signed distance to the
interface. Therefore, the iso-surface ¢=0 represents the free surface. Since the free surface

is considered a material interface, the level set function must satisfy:

9% (v _u. )
U UGf')an 0 (3.15)

Also, given that ¢ is a distance function, the gradient of the level set function points
normal to the interface into the water and the water-to-air normal can then be computed

as:
L __0pl0X,
" |ogrox,| (3.16)

In the field of ship hydrodynamics, the big difference in density and viscosity between
air and water allows to simplify the problem by solving only the equations for the water
phase.

Since the equations are only solve for one of the phases, the jump conditions at free
surface must be enforced explicitly. The jump condition in any direction tangential to the

free surface given by the tangent vector t; is:

—antn + —annt =0
Hox T Hax

J

(3.17)
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After neglecting shear stress in air, it leads to:
v, |,
ax, | T (3.18)

nt

In the normal direction, the jump condition is expressed as:

oU,
—2u——=nn;, =0
pabs IuaX ity

; (3.19)
Assuming the pressure is constant on the air and neglecting the contribution of the
turbulent kinetic energy to the free surface, the non-dimensional piezometric pressure at
the interface is:
_ Zint
P =07 (3.20)

A velocity in air near the free surface is needed to calculate the transport of the level
set function and also velocities and turbulent quantities. This extension velocity is
calculated using Eq. (3.18), which provides a good approximation satisfying the jump
condition at the same time.

In single level set is critical to keep ¢ as a distance function, since this is assumed in
the calculation of the normal in Eq.(3.16). To do this, the level set function is reinitialized
periodically everywhere but at the interface by solving:

o

671_’% = sign(¢, ) (321)

Where ¢ is the level set function prior to reinitializing. The normal vector n; points
into the fluid to be reinitialized, and is given by Eq. (3.16) in air and by the negative of
the same equation in water. Thus Eq. (3.21) is an Eikonal equation propagating
information outwards the interface.

Also, Eq. (3.21) is nonlinear because n; is a function of ¢ and it is solved with

nonlinear iterations.
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3.4 Motions Modeling
3.4.1 6 DOF Rigid Body Equations of Motion

The 6DOF rigid body equations of motion presented in Eq. (2.1) is solved to calculate

ship linear and angular motions. In order to solve Eq. (2.1), the total force f=[x,v,z]"

and moment g =[K, M,N]" in the absolute inertial earth-fixed coordinates for the ship are

computed by integrating pressure and friction and buoyancy forces on the ship hull and
then projected into the non-inertial ship-fixed coordinates (x,y,z) using:
I =9\ Frneriar) (3.22)
& =J(&ineriar) (3.23)

The matrix J; transforms any vector in (X,Y,Z) to a vector in (x,y,2):

cosy cos@ siny cosd —sind
J, =| —siny cos@+singsinfcosy  cosy cosg+singsinfdsiny  singcosl (3.24)
sin@siny +cosgsinfcosy  —singcosy +cos@sindsiny  cosfcosy

Where ¢, 6, and y are the Euler angles for roll, pitch, and yaw, respectively.

Any number of degrees of freedom can be imposed and the rest is predicted by solving
Eq.(2.1), which results in captive, free, or semi-captive motions. Additional governing
equations for the constraints (or imposed motions) need to be solved which results in
reduced degrees of freedom. As an approximation, CFDShip-lowa-V.4 only solves rigid
body equations for the predicted degrees of freedom using a predictor/corrector implicit
approach. The prescribed motions for position, translation velocity, and Euler angles are
specified as functions of time in the absolute inertial coordinates and read into CFDShip-

Iowa-V.4 as a data file.
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3.4.2 Appendages

The ship might have several appendages which move with the ship. The appendages
can have relative motion motions respect to the ship such as rudders and propellers. The
CFDShip-lowa-v.4 models appendages using child and parent concept. The child object
is connected to the ship but it can have relative motion respect to the ship. The forces and
moments are integrated on the child object and 6DOF rigid body equations of motions

can be solved for unrestrained modes of motion.

3.4.2.1 Propellers

For self-propulsion simulation, the ship model has propeller on it which produces
necessary thrust for ship motion. The CFDShip-lowa-v.4 models propeller using body
force or real rotating propeller. For body force model, a simplified model is used to
prescribe axisymmetric body force with axial and tangential components (Stern et al.,
1998). The radial distribution of forces is based on the Hough and Ordway circulation
distribution, which has zero loading at the root and tip. A vertex-based search algorithm
is used to determine which grid-point control volumes are within the actuator cylinder.
The propeller model requires the input of thrust, torque and advance coefficient and
outputs the torque and thrust force to the shaft and the body forces for the fluid inside the
propeller disk. For the real rotating propeller, the simulation of propeller requires no
input and outputs the torque and thrust force to the shaft and propeller blades. The force
and torque of each propeller are projected into the non-inertial ship-fixed coordinates and
used to compute an effective force and torque about the center of rotation, which is
usually coincident to the center of gravity. The location of the propeller is defined in the
static condition of the ship. When motions are involved, the propeller will move
accordingly with the ship’s motions and possibly will intersect the background grid if it is

finer than grids from other blocks and becomes “active”.
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3.4.2.2 Rudders

Rudders are modeled as child objects only enable to turn around their axis. The
turning angle, velocity, and acceleration of rudders can be prescribed as functions of time
in the absolute inertial coordinates and read into CFDShip-lowa-V .4 as a data file. Also,
the turning angle can be predicted using a controller to turn the ship toward the target

heading.

3.5 Controllers Modeling

Controllers are recently added to CFDShip-lowa code which expand the code
applications for capsize prediction. The controller attempts to correct the error between a
measured process variable and a desired setpoint by calculating and then outputting a
corrective action that can adjust the process accordingly. For instance, rudder controllers
are responsible to turn rudders to keep the ship in desired direction or propeller

controllers are responsible to rotate propellers to keep the ship at desired speed.

3.5.1 PID Controller

A proportional—integral—derivative controller (PID controller) is a generic control loop
feedback mechanism widely used in control systems.

The PID controller calculation involves three separate parameters; the Proportional,
the Integral and Derivative values. The Proportional value determines the reaction to the
current error, the Integral determines the reaction based on the sum of recent errors and
the Derivative determines the reaction to the rate at which the error has been changing.
The weighted sum of these three actions is used to adjust the process via a controller.

By "tuning" the three constants in the PID controller algorithm, the controller can
provide control action designed for specific process requirements. Some applications may

require using only one or two modes to provide the appropriate system control. This is
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achieved by setting the gain of undesired control outputs to zero. A PID controller will be

called a PI, PD, P or I controller in the absence of the respective control actions.

3.5.1.1 Proportional Controller

The proportional term makes a change to the output that is proportional to the current
error value. The proportional response can be adjusted by multiplying the error by a
constant P, called the proportional gain.

The proportional term is given by:

6(t) = Pe(t) (3.25)
Where J(¢) is output and e(¢) is the error which is:
e(t) =4, — A{) (3.26)

Here, A, is the desired value and A(¢) is the current value.
For rudder controllers, o(¢) is rudder deflection, A4 is target heading, and A(t) is

current heading. For propeller controller, o(¢) is the propeller RPS, Ay is target speed,

and A(t) is current speed. A high proportional gain results in a large change in the output
for a given change in the error. If the proportional gain is too high, the system can
become unstable. In contrast, a small gain results in a small output response to a large
input error, and a less responsive (or sensitive) controller. If the proportional gain is too

low, the control action may be too small when responding to system disturbances.

3.5.1.2 Integral Controller

The contribution from the integral term is proportional to both the magnitude of the
error and the duration of the error. Summing the instantaneous error over time
(integrating the error) gives the accumulated offset that should have been corrected
previously. The accumulated error is then multiplied by the integral gain and added to the
controller output. The magnitude of the contribution of the integral term to the overall

control action is determined by the integral gain, /.
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The integral term is given by:

5(t) = 1! e(r)dr (3.27)

The integral term (when added to the proportional term) accelerates the movement of
the process towards setpoint and eliminates the residual steady-state error that occurs
with a proportional only controller. However, since the integral term is responding to
accumulated errors from the past, it can cause the present value to overshoot the setpoint

value (cross over the setpoint and then create a deviation in the other direction).

3.5.1.3 Derivative Controller

The rate of change of the process error is calculated by determining the slope of the
error over time (i.e. its first derivative with respect to time) and multiplying this rate of
change by the derivative gain D. The magnitude of the contribution of the derivative term
to the overall control action is termed the derivative gain, D.

The derivative term is given by:

_ | de)
o0=D=, (3.28)

The derivative term slows the rate of change of the controller output and this effect is
most noticeable close to the controller setpoint. Hence, derivative control is used to
reduce the magnitude of the overshoot produced by the integral component and improve
the combined controller-process stability. However, differentiation of a signal amplifies
noise and thus this term in the controller is highly sensitive to noise in the error term, and
can cause a process to become unstable if the noise and the derivative gain are
sufficiently large.

Summation of Eq.(3.26), (3.27), and (3.28) leads to general form of PID controller
equation:

f d(e(r))
O(t) = Pe(t)+ I_! e(t)dr + DT (3.29)
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CFDShip-lowa solves Eq. (2.29) for rudders or propellers controller and predicts
rudder deflection or propellers RPS.

3.6 Numerical Details
3.6.1 Coordinate Transformation

The governing differential equations for continuity and momentum in (X,Y,Z) and

(X,Y",Z") are transformed from the physical domain in Cartesian coordinates (X,Y,Z,) to

the computational domain in non-orthogonal curvilinear coordinates (f, n, ¢, T) using

the chain rule without involving grid velocity for the time derivative transformation. The
transformation is partial, since only the independent variables are transformed, leaving

the velocity component Uj in the base coordinates:
1 a (bljU )
Jogl
_ /bt by o,
ou, 1 (jU)aUl 1bkap 16[1;1; aUJ+ av, bl

b} , S
or 7 VoI o Jog | JRey, 0 | T 0t T g FERE (3.31)

(3.30)

3.6.2 Discretization Scheme

The time derivatives in the turbulence and momentum equations are discretized using

2" order finite Euler backward difference. For the general variable ¢:

29 _ 1 nel n-2
- (5¢ —24" 4054 (3.32)

Convection terms in the turbulence and momentum equations are discretized with

higher order upwind formula:

k % — l k k - l k _ k +
Ut 2(U Ut oz g+ 2(U vt bz ¢ o)
Where

5;;(¢ = Wmm¢i—2 + Wm¢i—l +w ¢ +w ¢i+1 + W ¢.+2

56:rk¢ = _pr i-2 Wp -w ¢ +w ¢z+l (334)

mm i+2
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The value of weighting coefficients depends on the scheme used. In present work, 2™
order was used which means wm,=0.5,wn=-2, wy=1.5, and wp,=wp,=0.

The viscous term in Eq. (3.31) and turbulent equations are computed with similar
considerations using a second order difference scheme.

The mass conservation is enforced using the pressure Poisson equation:
Jpk j
a i bi bi apk = a i b_l ZanbUi nb _Si
08| Jay 08" ) 0& ay \ 5" " (3.35)

3.6.3 Solution Algorithm

The grids are read and split according to user directives for domain decomposition
parallelization. A MPI-based domain decomposition approach is used, where each
decomposed block is mapped to one processor. Then, variables are initialized and initial
conditions are set or read. Once all the variables are initialized, SUGGAR (Noack, 2005)
is called for the first time to obtain the initial overset interpolation information. A non-
linear loop is used to converge the flow field and motions within each time step. At the
beginning of each nonlinear iteration, the overset information is read from a binary file
produced by SUGGAR, the grids are moved according to the motions resulting from the
6DOF predictor/corrector steps, and the transformation metrics and grid velocity are
computed. Then, the turbulence equations are solved first. Then the level set transport
equation, which upon convergence is reinitialized in two steps. The close points are
reinitialized geometrically first and then all other points are reinitialized. Since the
equation is nonlinear, a few iterations are needed here to converge. Then the PISO
algorithm is solved using the PETSc toolkit (Balay et al., 2002). This step is repeated a
few times to enforce the continuity condition which comprises the solution of the
pressure matrix and the explicit update of the velocity field. Once the velocity field is
obtained, the forces and moments are weighted with coefficients provided as a pre-

processing step by USURP (Boger and Dreyer, 2006) used to properly compute area and
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forces on overlap regions for a ship hull with appendages. Lastly, the motions are
predicted for the next time step and SUGGAR is called to compute the interpolation

given the new location of the moving grids.
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CHAPTER 4. INSEAN CAPTIVE TESTS

INSEAN captive tests are performed to study resonant excitation and roll
decay/parametric rolling of ONR Tumblehome (OT) with and without bilge keels.
Resonant excitation tests are conducted with bilge keels in beam waves as building block
for parametric rolling studies. Parametric rolling tests are performed initially with bilge
keels and then without bilge keels. Herein, the details of ship model, test design, and

operational and environmental conditions of tests are presented.
4.1 Ship Model

The tested model is the ONR Tumblehome (INSEAN model 2498), which is a
preliminary design a new concept surface combatant (Fig. 4-1). The model is tested in the
INSEAN basin n. 2 (220 m long, 9 m wide and 3.5 m deep), which is equipped with a
flap wave maker at the basin end. The adopted scale is A =46.6 and the model is
equipped with bilge keels for all tests in beam waves and some tests in head waves. The
lines of the tested model are shown in Fig. 4-2 and the main model parameters are given
in Table 4-1. Different bilge keels are adopted for the beam and head wave tests. The
bilge keels profiles and locations for the beam wave cases are shown in Fig. 4-3, while
the ones adopted for the head wave cases are shown in Fig. 4-4. The model length

between perpendiculars (Lpp) 1s 3.305 m.
4.2 Test design
4.2.1 Cases with Bilge Keels

Preliminary tests are executed for OT with bilge keels in beam waves (resonant
excitation) and head waves (parametric rolling) for one loading condition KG=0.165 m in
model scale. The model is floated at the static waterline. The vertical position of center of

gravity (VCQG) is set to KG=0.165 m using ballast weights. The roll radius of gyration



58

(gyradius) is set to the target value which is k=0.38B=0.153 m. As a result, the

metacentric height is GM=0.043 m for the preliminary tests.

4.2.1.1 Resonant Excitation in Beam Waves

Beam wave tests are performed at Fr=0.0 in waves with resonant frequency
(fw =f4= 0.650 Hz), which is determined by exciting the model with small amplitude
waves. The corresponding wave length is A=1.12L since »’ = gk = g(27/A) for deep
water. Three different wave slopes are adopted, corresponding to small amplitude
(Ak=0.034), medium amplitude (Ak =0.073) and large amplitude waves
(Ak =0.156), in order to evaluate the rising and development of the nonlinearities in the
allowed motions and in the measured forces and moments. During the tests the model is
placed at the center of the basin in length and width. The model is 2DOF free to roll and
heave. For the restrained motions, the forces and moments at the constraint are measured.
The wave height is measured by a servo-mechanic probe (Kenek SH) mounted one model
length upstream the tested model. The heave and roll motions are measured both by
means of optical motion tracker (Krypton) and gyroscopic platform (MOTAN), while the
sway and surge forces are measured by load cells lodged inside a joint (Fig. 4-5) fixed to
the model in correspondence of the center of gravity (Cg). The pitch moment is measured
by a load cell mounted 100 mm upstream the Cg, while the yaw moment is measured by
a torque cell. The torque cell connects the joint to a vertical bar, which is free to slide into
a cylindrical guide fixed to the carriage. The yaw motion is inhibited by an additional
guide that moves parallel to the vertical bar and rigidly fixed to it. The additional guide is
mounted with 200 mm arm with respect to a vertical line passing through the Cg. For the
cases Ak=0.073 and Ak =0.156 the tests have been repeated five times in order to

determine the precision index.
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4.2.1.2 Parametric Rolling in Head Waves

The head wave tests are performed in the wave with Ak=0.115 and f,=0.69 Hz,
corresponding to A=L, to have maximum respond for the model. The ship speed is chosen
Fr=0.35 based on the fact that the encounter frequency has to be about twice the natural
roll frequency f4=0.65 Hz for parametric rolling.

fo=fo+ £2afrJLig cos p =21, = Fr=035 @1

Here, f. is wave encounter frequency and p is wave heading which is zero for head
waves.

The tests have been performed starting with the model in heave and pitch free
condition, but fixed at a given initial roll angle. A servo-mechanic wave probe was used
in order to measure the incoming waves and to trigger the magnet that fixed the model at
the initial roll angle. When the model encounters the incoming waves, the magnet is
disconnected by the trigger and the model started to roll. The adopted initial roll angle is

30°.
4.2.2 Cases without Bilge Keels

The cases without bilge keels are performed since the preliminary tests showed no
evidence of parametric rolling for OT with bilge keels. The cases without bilge keels
include roll decay test in calm water and parametric rolling test in head waves for a range
of Fr and three loading condition KG=0.175, 0.170, and 0.165 m corresponding to
GM=0.033, 0.038, and 0.043 m, as shown in Table 4-1. The model is floated at the static
waterline and then the vertical position of center of gravity (VCG) is set to proper KG for
each test using ballast weights. Initially, the roll radius of gyration was reported 0.146 m
for all loading condition. More EFD investigations showed that actual k., are 0.127,

0.125, and 0.123 m for GM=0.033, 0.038, and 0.043m, respectively.
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4.2.2.1 Roll Decay in Calm Water

Roll decay tests are conducted in calm water for Fr=0.05, 0.2, and 0.35. The tests are
performed starting with the model free to sink and trim, but fixed at $¢=30 deg initial roll
angle for GM=0.033, 0.038 m and at ¢y=25 deg for GM=0.043 m. A servo-mechanic
wave probe was used in order to trigger the magnet that fixed the model at the initial roll
angle. When the model reaches to the desired Fr, the magnet is disconnected by the
trigger. The adopted initial roll angle is 30°.

Time histories of roll, sinkage, and trim motions, X, Y, and N are recorded. A standard

average roll decay coefficient n is computed as:

:_2271'

¢k+1 (42)

where N is the number of roll cycles used in the analysis, ¢ is the roll displacement at
the ™ roll cycle crest or trough, and ¢, is the roll displacement at the K™+1 roll cycle

crest or trough. n is usually expressed as a function of mean roll angle @,

— ¢k +¢k+1
D = BT 4.3)

The logarithmic decrement is computed as:

oo

k+1

0, =

(4.4)

The averaged logarithmic decrement Jis ¢ computed over N roll cycles i.e. d =2m.

The damping ratio ¢'is evaluated from Eq. (4.2) by:

n

V1+n? (4.5)

The damped natural frequency fyq (w¢a/ 27) is computed from roll decay time history

as:

1 N
fw _ﬁ;(tkﬂ t )¢ =0 (4'6)
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fyq 1s determined by locating successive zero crossings of the ¢ time history through N
roll cycles. This yields the roll periods which are inverted and averaged over N cycles to

compute foq. The natural roll frequency fy, (0¢n/ 27) is:

fW B 1_42 4.7)

The linear damping coefficient o, shown in Eq. (2.42), is computed by Eq. (4.2) and
4.7):

(94 :n(27y’¢n):nw¢d (4.8)

Also, Himeno method (Himeno, 1981) is used to evaluate linear and nonlinear

damping coefficient by plotting roll decrement (A¢, =¢,,, — ¢, ) versus mean roll angle

(¢,,) in degree and fitting the following extinction curve to it.
Ap=ag,+cg, (4.9)

Consequently, linear and nonlinear dampings are calculated from extinction

coefficients a and c:

a=waln (4.10)
__8 [(180),
" 320, 7 (4.11)
The equivalent linear damping is computed from:
_ 1309 2
ae - N;|:7(a+c¢mk):| (412)

4.2.2.2 Parametric Rolling in Head Waves

The head wave tests are performed in the wave with Ak=0.105, 0.115 and £,=0.69 Hz,
corresponding to A=L, to have maximum respond for the model. The ship speed is
changed for the range of 0.02<Fr<0.44 to observe the parametric rolling instability zone.

The tests are conducted starting with the model free to heave and pitch, but fixed at 30
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deg initial roll angle. The roll motion constraint is removed after the model reaches to the
desired Fr. A servo-mechanical (finger) probe Kenek-SH, positioned at the port side and
at the same longitudinal position of the fore perpendicular, is used for the incoming wave
measurements. The wave signal is also used to control the instant of model release during
the head wave tests that was thus completely repeatable. During all the tests, the model is
connected to the carriage by means of a joint specifically designed, as explained earlier.
Uncertainty analysis is conducted for Ak=0.115, GM=.038 m and Fr=0.2, and GM=0.033
m and Fr=0.1 following standard procedures including five repeat tests. By re-mounting
the model at beginning of each run, all the possible causes of bias related to the model
mounting are accounted into the precision limit. For the model motions, in order to take
into account the errors related to the measurement system, the mean value of the

difference between the two measurement system outputs is taken as residual bias limit.



Table 4-1: Principal dimensions of the INSEAN ONR

Tumblehome model

ONR Tumblehome
W/O BKs W/ BKs
Lyp 3.305 m 3.305m
Draft (T) 0.1201 m 0.118 m
Beam (BW1L) 0.403 m 0.403 m
Displ. 84.7 kg 84.7 kg
LCg 1.708 m Aft of FP 1.708 m Aft of FP
KG 0.175| 0.170 | 0.165 m 0.165m
GM 0.033 | 0.038 {0.043 m 0.043 m
koo |0127 | 0125 |0.123m 0153 m38% Buy
= o
kyy =k, 8:%? o :igof’ gi 0.826 m =25% Lpp
c=322mm
Beam Waves L =1098 mm
Bilge Keels

¢ =26.82 mm

Head Waves L = 1098 mm

Figure 4-1: ONR Tumblehome (INSEAN model 2498)

)
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Figure 4-2: ONR Tumblehome lines, bow and stern profiles

)
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Figure 4-3: ONR Tumblehome bilge keels for the beam wave tests

i m
W

7 J?” 13

Figure 4-4: ONR Tumblehome bilge keels for the head wave tests

Figure 4-5: Illustration of the joint used for INSEAN towing tank tests; the torque
cell is mounted on the top
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CHAPTER 5. OU CAPTIVE AND FREE RUNNING TESTS

OU (Osaka University) tests are conducted for captive and free running models. In
captive tests the model is restrained in some degrees of freedom while the model is self-
propelled in free running tests and free to all vertical and horizontal motions. Captive
experiments are designed such that they can collect required data for NDA model of
parametric rolling and broaching described in Chapter 2. Free running experiments are
designed to study different modes of ship response in following/quartering regular waves

such as broaching, surf-riding, and periodic motion.
5.1 Ship Model

The ONR Tumblehome is used for OU captive and free model tests. The captive
model is appended with skeg and bilge keels while free running model is appended with
superstructure, shaft, strut, twin rudders to steer the model, and propellers. Also, the free
model has the superstructure on it. Figure 5-1 and Table 5-1 provide ship model
geometry and principles. The scale ratio of the model is 48.9 (L,,=3.147 m) i.e. it is
smaller than the model of INSEAN discussed in Chapter 4. The captive tests are
conducted for one loading condition GM=2.068 m (GM=0.042 m in model scale) while
free model tests are performed for GM=1.78, 2.068 m (GM=0.036, 0.042 in model scale).

5.2 Test design
5.2.1 Captive Test

The captive tests are conducted in the Osaka University towing tank. The tank is 100
m long, 7.8 m wide and 4.35 m deep. It is equipped with drive carriage (7.4m in length,
7.8m in width, and 6.4 m height) running from 0.01 to 3.5 m/s. It is also equipped with

plunger-type wave maker generating regular and irregular waves up to 500 mm height
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and wave length of 0.5 to 15m. The wave absorber is a small fixed gridiron beach at the
basin's end, with movable beaches along its sides.

A right-handed Cartesian coordinate system fixed to the model is used for the tests.
The origin is at the longitudinal and vertical center of gravity (LCG, VCG) of the model.
The x, y, z axes are directed upstream, transversely to starboard, and downward,
respectively.

Model ballasting satisfies three conditions. The first requires model floatation at the
static waterline. The second and third conditions impose specific values for V'CG and roll
radius of gyration (gyradius), respectively. The model is ballasted to its design waterline
first. Then, the added ballast method is used to set the proper VCG which is the distance
measured from the keel to a point about which the model rolls. The model and its ballast
are suspended in a level orientation from the carriage on a roll axle a distance z above the
VCG about which the model can roll. Finally, the roll, pitch and yaw radius of gyration
are set so that the model’s dynamic properties conform to design specifications.

Captive model tests include resistance test, static heel in calm water, static drift in
calm water, and static heel in following waves to collect required seakeeping and
maneuvering parameters for NDA model of broaching and include static heel in head

waves to collect required parameters for NDA model of parametric rolling.

5.2.1.1 Resistance Test

Resistance tests are conducted to measure X+ for NDA model of broaching shown in
Egs. (2.60)-(2.63). The model is free to sink and trim in calm water for a range of speed
corresponding to Fr=0.05 up to Fr=0.6. The same experiment is performed at INSEAN

for the model without bilge keels for Fr=0.05 up to Fr=0.4.
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5.2.1.2 Static Heel in Calm water

Static Heel cases are performed for the model free to sink and trim to measure
sinkage and trim, surge and side force, and roll and yaw moment and calculate heel
induced hydrodynamic forces and moments terms in NDA model of broaching such

as X .Y, Y,,,,K,, K, N, and N,,. The model is fixed at two heel angles 10 and 20

d9¢ >
degree and towed in calm water with a range of forward speed corresponding to Fr=0.05

up to Fr=0.6.

5.2.1.3 Static Drift in Calm water

Static Drift cases are conducted for the model free to sink and trim to measure sinkage
and trim, surge and side force, and roll and yaw moment and calculate the sway velocity
related hydrodynamic coefficients in NDA model of broaching such

asX .Y .Y ,K K

w2y Ty d vy 2

N,, N, and K and Y coupling term zy. The model is fixed at

drift angle= {2, 5, 10, 15, 20} degree and towed in calm water at Fr={0.1,0.2,0.3,0.4}.

5.2.1.4 Static Heel in Following Waves

Static Heel in following waves are performed to measure exciting wave forces and
moments Xy, Yy,Ky,Ny, in NDA model of broaching while the model is free to heave and
pitch. The experiments are performed for Fr=0.3, H/A=0.03 and A/L=1 with ¢= 10 and 20
degrees and A/L=1.25, H/A=0.025 and Fr=0.15,0.25,0.35, and H/A=0.05 and Fr=0.35
with ¢= 0.

5.2.1.5 Static Heel in Head Waves

Static Heel in head waves are conducted to measure restoring moment variation terms
in NDA model of parametric rolling shown in Eq. (2.49) while the ship is free to heave
and pitch. The model is fixed at 10 deg heel and towed with Fr={0.1,0.2,0.3} in head
waves with H/A=0.0366 and A/L=1. Note that the other terms in NDA model of
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parametric rolling such as a and y are calculated from INSEAN roll decay test described

in Chapter 4.

5.2.2 Free Running Test

Free-running model experiments are executed with the scaled model in a seakeeping
and manoeuvring basin at National Research Institute of Fisheries Engineering (NRIFE).
The basin is 60 m long, 25 m wide and 3.2 m deep, as shown in Fig. 5-2. The basin is
equipped with an 80-segment wave maker to generate regular, long-crested irregular and
short-crested irregular waves up to the limit of wave breaking. It is also equipped with an
X-Y (longitudinally-transversely moving) towing carriage. Two loading conditions are
tested: one is critical to the Sarchin and Goldberg (1962) criteria which means GM=1.78
m in full scale and the other is below that (GM=2.068 m). The angles of vanishing
stability under these loading conditions are 180 degrees so that capsizing cannot appear.
This is because the superstructure of the ONR tumblehome vessel is large enough. The
model is propelled with two propellers. Their power is supplied from solid batteries
inside the model. A feedback control system is provided to keep the propeller rate
constant. The model is equipped with a fibre gyroscope, a computer and steering gears,
and a proportional auto pilot for course keeping simulated within the onboard computer
by using the yaw angle obtained from the gyroscope. The roll angle, pitch angle, yaw
angle, rudder angle and propeller rate are recorded by the onboard computer. Water
surface elevation is also measured by a servo needle wave probe attached to the towing
carriage of the basin near the wave maker.

The experimental procedure for following and quartering waves is as follows. First,
the model is kept near the wave maker without propeller revolution. Next, the wave
maker starts to generate regular waves. After a generated water wave train propagates
enough, a radio operator suddenly requests the onboard system to increase the propeller

revolution up to the specified one and makes the automatic directional control active.
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Then the model automatically runs in following and quartering waves to attempt to keep
the specified propeller rate and auto pilot course. When the model approaches the side
wall or the wave-absorbing beach, the automatic control is interrupted by the radio
operator and the propeller is reversed to avoid collision. This is based on the ITTC
(International Towing Tank Conference) recommended procedures on model test of
intact stability registered as 7.5-02-07-04.1. It should be noted that the specified propeller
rate is indicated by running the model in calm water to reach the nominal Froude number.

Two set of free-running test are performed. First set is performed for A/L=1.25,
H/2=0.05, GM=1.78 and 2.068m in full scale, Fr=0.25, 0.3, 0.35, 0.4, 0.45, and autopilot
course Y= 5, 15, 30 deg, as shown in Fig. 5-3. The roll, pitch, yaw, and rudder angle and
propeller rate are recorded by the onboard computer. The second set is carried out to
record more data such as trajectory, initial wave phase respect to the model, and initial
surge velocity to collect required parameters for CFD simulation. Second set is
performed for A/L=1.25, H/A=0.05, GM= 2.068m in full scale, Fr=0.25, 0.30, 0.35, 0.40
and 0.45, the auto pilot courses y.= -5, -15, -22.5, -30, -37.5 degrees from the wave

direction, as shown in Fig. 5-4.



Table 5-1: Principal particulars of the OU

ONR Tumblehome model

Items Ship Model
Length : L 154.0 m 3.147m
Breadth : B 18.78 m 0.384 m
Depth : D 145 m 0.296 m
Draught: T 5494 m 0.112 m
Displacement : W 8507 ton 72.6 kg
Block coefficient : C,, 0.535 0.535
bﬁg;‘f;gd}?:rlnp;ﬁis‘;?pOf centre of 1 5 se7 maft | 0.053 aft
Metacentric height: GM iii)) 123)8618 Irnn iii)) %%16;; lfln
Radius of gyration in pitch/yaw: i) 0.25 i) 0.254
K, /L or K./L i) 0.25 ii) 0.246
Radius of gyration in roll: K,./L iii)) %%5562 iii)) %%5562
Rudder Area: Ag 28.639m’> | 0.012m’
Maximum rudder angle 35° 35°

)

Figure 5-1: ONR Tumblehome (OU model) and body plan
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Figure 5-3: EFD free model test program 1: (a) H/A=1/20, A/L=1.25 and GM=1.78m;

(b) H/A=1/20, A/L=1.25 and GM=2.068 m
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Figure 5-4: EFD free model test program 2 for H/A=1/20, A/L=1.25 and GM=2.068m



73

CHAPTER 6. VALIDATION OF INSEAN CAPTIVE MODEL
SIMULATIONS

The INSEAN captive model simulations are performed with the same operational and
environmental conditions described in Chapter 4 which include Roll Decay in calm
water, resonant excitation in beam waves, and Roll Decay/Parametric Rolling in head
waves. The simulations are carried out to validate CFD and compare the results with the
outcome of NDA models described in Chapter 2. Herein, the details of CFD simulation
including computational domain and boundary conditions, grid, preliminary studies for
OT with bilge keels, results for OT without bilge keels including roll decay in calm water
and parametric rolling in head waves are presented. Lastly, NDA model of roll decay and
parametric rolling described in Chapter 2 (Eq. 2.42 and Eq. 2.49) are solved and
compared with EFD and CFD. The CFD and NDA results were blind in that the actual

EFD radius of gyration ky was not known a priori.

6.1 Computational Domain, Boundary Conditions

The computational domains extend from-0.5<x<2,-1< y <1,-1<z<0.25 for roll decay

and the head wave cases and -1<x<2, —1<y<2.25, -1<z<0.25 for beam wave cases, in

dimensionless coordinates based on ship length. The ship axis is aligned with the x-axis
with the bow at x = 0 and the stern at x = 1. The free surface at rest lies at z = 0. The ship
model is appended with skeg and bilge keels for beam wave and preliminary head wave
cases, and appended with only skeg for roll decay and final head wave simulations.
Boundary conditions are shown in Table 6-1. Inlet boundary conditions for cases in
calm water waves are different. For calm water, x component velocity at inlet boundary
condition is set to be Uy which is the same as ship velocity in relative coordinate system
and zero in earth fixed coordinate system. Other velocity components are imposed to be

zero. Normal pressure gradient and level set function are imposed zero and —z(x) for calm
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water, respectively. In regular waves, inlet pressure gradient and level set function are

imposed such that they follow linear wave theory equations:

p e coslhe - 2af) 2 (6.1)
¢ = Acos(kx — 2aft) — z(x) (6.2)
Ux,y,z,6)=U, + % Jke* cos(hon - 2ft)(x) (6.3)
W(x,y,z,0) = % Jke* sin(ke - 27ft) (6.4)

Here, U, would be zero in earth coordinate system. Other boundary conditions are the

same for cases in calm water and in waves.
6.2 Grid

As shown in Fig. 6-1, computational grids for the hull and bilge keels are designed to
accurately resolve geometric features of the model and the unsteady turbulent boundary
layer, wake, and wave fields. The hull boundary layer and bilge keels grids were
generated using GRIDGEN. The hull boundary layer and bilge keels grid were fixed to
and move with the ship. The hull boundary layer has a double-O topology and extends to
cover the deck of the ship and wraps around it, allowing for computations with extreme
motions. Grid topology was selected so that two other blocks were responsible to capture
the flow near the hull (refinement block) and far from the hull (background block). Since
there might be a wave on the free surface, the background block was designed to have
enough grid points near free surface. The computational domain for all blocks covers
both the port and starboard sides of the ship, since the flow and wave fields are

asymmetric during the roll motion.
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6.3 Preliminary Study (Cases with Bilge Keels)

Preliminary studies were conducted with bilge keels to investigate large amplitude roll
(beam waves) and parametric roll (head waves). The beam wave studies were useful as
building block for CFD prior to parametric roll studies. Parametric roll studies indicated
bilge keel condition roll damping is excessive, i.e., greater than the threshold value such
that parametric roll is not exhibited as discussed later, which motivated the removal of
the bilge keels.

2DOF zero-speed heave-roll in beam waves was investigated forA/L =1.12, i.e.
wave frequency equal natural frequency roll, and wave steepness Ak=0.156. 3DOF
forward-speed heave-roll-pitch in head waves was investigated forA/L =1, Fr=0.35,
Ak=(0.115,0.156), and ¢o=30 deg. This condition corresponds to the linear theory
instability estimate for small excitation and zero damping where the encounter frequency

is twice the natural roll frequency.
6.3.1 Resonant Excitation in Beam Waves

Table 6-2 summarizes the 2DOF beam wave response for Ak=0.156. EFD indicates
dominant first harmonic a; at fy for heave, roll, side force, and yaw moment, whereas
surge force and pitch moment indicate dominant second harmonic a, with significant 3™
and 4™ harmonic amplitudes. The maximum heave and roll amplitudes are large:
Zmax/ T=.83 and ¢ma=25 deg. Heave responds at f,= fj since f,,=1.67 Hz >> {;. For X and
M, large 2™ and 4™ harmonic are observed due to roll and heave coupling, whereas small
1* and 3" harmonic are observed due to heave coupling, as discussed in Chapter 2. For
Y and N, large 1** harmonic is due to roll coupling. Hydrostatic restoring force and static
drift test results provide estimates for M and Y/N induced maximum pitch and drift
angle: Omax=0.5 deg and Pma—=0.063 deg. Results for smaller and larger Ak show that

heave and roll amplitudes increase linearly with A and Ak, respectively. CFD
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qualitatively predicts these trends, but with relatively large comparison errors E=(D-
S)%D. CFD analysis shows that dominant second harmonic for pitch moment results
from equal contributions from hydrostatic and pressure components, which are larger

than friction component and 180 deg out of phase.
6.3.2 Parametric Rolling in Head Waves

Table 6-3 summarizes the 3DOF head wave response for Ak=0.115 and 0.156 (CFD
only) and ¢o=30 deg. EFD indicates dominant first harmonic response at f.=2f; for
heave, pitch, and surge force X, whereas roll, side force Y, and yaw moment N are under
damped harmonic oscillations, i.e., response is roll decay in waves and parametric roll is
not exhibited. Surge force 2nd, 3rd, 4th, and 5™ harmonic amplitudes are also significant.
Roll decay first peak, linear and nonlinear damping, and large/small mean roll angle
frequency are 0.4¢o, 0.55 and 0.0052, and 0.91fy/f., respectively. The linear damping
corresponds to a logarithmic decrement & =1In(¢, /4., )of .82 and energy ratio e® of 5.2.
Initially, i.e., for large mean roll angles (t<6T.=3T,), roll, side force, and yaw moment
respond at roll damped natural frequency and surge, heave, and pitch exhibit effects roll,
whereas for small mean roll angles, ¢, Y, and N respond at f. with small amplitudes and
surge, heave, and pitch that are unaffected by roll motion. Y and N FFT show large
peaks at f./2, 3f./2, 7f./2 and 11f/2. For X, large 155" harmonics are due to both
heave/pitch and roll coupling. For Y and N, large ', 3/2, etc. harmonics are due to roll
coupling. CFD qualitatively predicts these trends with relatively small E for heave, pitch,
and ¢, Y decay and large E for surge and N decay. Roll decay first peak f 1, linear o and
nonlinear damping 7y, and large/small mean roll angle frequency (fyai/fpas) are .S5¢o, .4 and
0061, and .89fy/f., respectively, which are close to EFD. CFD analysis shows that
significant 2" harmonic surge force is due to 180 deg phase difference between weight
and hydrostatic forces. CFD shows that increased Ak to 0.156 reduces z/A, 6/Ak first

harmonics by 10%, 7%, but increases surge force amplitude by 15%. Roll decay first
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peak, linear and nonlinear damping, and large/small mean roll angle frequency are .33,

.68 and .0089, and .74fy/f., respectively.

6.3.2.1 Instability Analysis

The roll motion neglecting nonlinear damping and restoring moment and considering
wave effects and pitch-heave coupling only through a time varying restoring coefficient
is modeled as a 1D mass-damper-spring linear system with small damping and periodic
restoring coefficient, as described in Chapter 2 (Eq. (2.49)). This 1D model can be
transformed into the Mathieu equation (Paulling and Rosenberg, 1959).

Bounded/unbounded solutions to the Mathieu equation are delineated in the Ince-Strutt

diagram as ¢=’ /@’ vs. pz(a); —az)/ w; curves where , =./gGM,, /k, is the roll

natural frequency in waves, @, =./gGM, / k. is the amplitude of parametric excitation in

waves expressed in terms of frequency, a is the linear roll damping, and GM, and GM,,
are the amplitude and mean value of GM variation in waves. For ¢=0.0, instability
occurs at p=n°/4 n={1, 2, 3,...}. The first parametric resonance region occurs for n=1
meaning p=0.25 or, equivalently, for zero damping. In other words, for small excitation
and damping the roll period equals twice the wave encounter/pitch motion period for first
parametric resonance region. For ¢>0.0 instability occurs for increasing ranges of p for
increasing g, which can be equivalently expressed as a Froude number (Fr) range.
Unbounded solutions to the Mathieu equation may not lead to unbounded roll unless the
damping a is less than a threshold value ar=ar(p,q) (Shin et al., 2004). CFD analysis of
roll  moment and GM  variation for Ak=.115, provides the mean
GM=(GMaxtGMpin)/2=0.033 (note that GM=0.043 m) and excitation GM,=(GMpax-
GMpin)/2=0.021 from which roll frequencies with neglected added mass
w,=,gGM, /k,=3.71 (note that w,=4.24 rad/s) and o, =./gGM, /k =2.89 rad/s

such that (p,q)= (0.2, 0.12) with instability range 0.17<Fr<0.38 and o7=0.32.
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Consequently, the performed simulation at Fr=0.35 is inside the instability range but

o=0.4>or which is explanation for with bilge keels study not achieving parametric roll.

6.4 Cases without Bilge Keels

Since the actual EFD Ky« was not known a priori, first CFD was conducted for 3DoF
forward speed heave-roll-pitch roll decay/parametric roll in head waves
forA/L=1.0,0.0<Fr<0.44, and different GM with ky—=0.153 m (the same as kyx for
cases with bilge keels) and Ak=0.115. For GM=0.043 sensitivity studies were conducted
for larger Ak=0.156 for Fr=0.13, 0.15, and 0.2 and for drift angle =2 and 4 deg for
Fr=0.13 with Ak=0.115. Second EFD was conducted for 3DoF forward speed heave-roll-
pitch roll decay in calm water for 0.05< Fr<0.35and ¢o=30 deg (GM=0.033 m),
0.05< Fr<0.35 and ¢¢=30 deg (GM=0.038 m), and 0.05< Fr <0.45 and ¢o=25 deg
(GM=0.043 m); and 3DoF forward speed heave-roll-pitch roll decay/parametric roll in
head waves forA/L=1.0,0.02 < Fr<0.44, ¢o=30 deg, and different GM and Ak, as
described in Chapter 4. Third CFD was conducted for 1DoF forward speed roll decay in
calm water for Fr=0.2 and ¢,=30 deg (GM=0.033 m), Fr=0.05, 0.2, and 0.35 and ¢y=30
deg (GM=0.038 m), and Fr=0.2 and ¢y=25 deg (GM=0.043 m) and different ki to find
actual kyy, and 3DoF forward speed heave-roll-pitch roll decay/parametric roll in head
waves for A/L=1.0, 0.02<Fr<0.44, ¢o=30 deg and different GM and Ak with

adjusted kyy. Lastly, additional EFD radii of gyration tests were conducted.

6.4.1 Forward Speed Roll Decay in Calm Water

6.4.1.1 Forces, Moments, and Motions

CFD roll decay simulations are performed for several ky to find the actual EFD kyy by
comparing CFD with EFD. For GM=0.038 m and Fr=0.2, as shown in Table 6-4, CFD

roll with ky=0.146 m show large differences EFD roll with average absolute value error
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Erss=127%¢0 (E g = (l/N)\/i (B ey — D) i) ! 4, ) ) 1.6. CFD under/over predicts
i

large roll angle damping/period. CFD with reduced ky=0.1246 m indicates much closer
agreement EFD, at least for large roll angles, although damping is still under predicted
such that Ergs=3.7%¢o. The under prediction is larger for Fr=0.05 and 0.35 with Egrgg
=7.1 and 9.33%¢,. Similarly for GM=0.033 and 0.043 m and Fr=0.2 reduced values of
k«x=0.1388 and 0.1298 m indicate closer agreement EFD, although damping is under and
over predicted such that Erss=11.28 and 5.92%¢y.

Figure 6-2 compares CFD and EFD roll decay time history for GM=0.043 m. EFD is
for 3DOF condition with large initial roll and zero initial heave and pitch. Roll is under
damped harmonic oscillations at foq. Heave and pitch asymptote to their dynamic calm
water values for each Fr with small amplitude oscillations mostly at fyq but also at their
natural frequencies f,; and fpn. X shows no discernable harmonic amplitudes, whereas Y
and N show large fyq and 3fyq harmonic amplitudes. CFD is 1DOF condition, i.e., same
as EFD for roll, but fixed heave and pitch. X shows no discernable harmonic amplitudes,
whereas Z and M show fy4/2, 2fyq and 4 foq and Y and N show large fyq and 3f4q harmonic
amplitudes. Consequently, these harmonics follow the theory explained in Chapter 2.

Similar harmonics are observed for GM=0.038 m and GM=0.033 m, as shown in Fig. 6-
3,6-4,6-5, and 6-6.

6.4.1.2 Roll Decay Parameters

Figure 6-7 compares CFD and EFD damped natural roll frequency ( £, / f,,) vs. mean
roll angle (¢, ). For GM=0.043 m, f, is close to {;4=0.84 Hz at small ¢, and decreases
for increasing ¢, by about 5/10/15% f,, for Fr=0.35/0.2/0.05. f has larger value for
larger Fr for some ¢, . For GM=0.038 and 0.033m, f, are close to f#=0.78 and 0.71
Hz, respectively, at small ¢, and decreases for increasing ¢, by about the same values

for GM=0.043 m. It is observed that GM effect on f, is small for low Fr but noticeable
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for high Fr. For Fr=0.35, f,, atlarge ¢, decreases for decreasing GM by about 10% f, .
CFD simulations show similar results.

CFD and EFD mean roll angle averaged damped natural frequency f, and mean roll
angle ¢, vs. Fr are shown in Fig. 6-8a, b, respectively. f,, increases with Fr about
10% f in the observed range of speed, whereas the mean roll angle decreases by about
half from low to high Fr. Decreasing GM to 0.033m does not change f,, significantly but
decreases ¢, by about half. CFD results show good agreement with EFD for GM=0.043

and GM=0.038 m but show fairly large error for GM=0.033 m. CFD predicts the same
effects of Fron f,,and ¢, and strong effect of GM on f,, .

Figure 6-9 shows CFD and EFD logarithmic decrement vs. mean roll angle for
GM=0.043, 0.038, and 0.033 m. &, increases slightly with increasing ¢, and increases by

factor of 2 from low to high Fr and from high to low GM. The largest 5, <0.7 such that

o~ j—k <0.1for all conditions confirming that the roll motion is under damped. CFD
7

prediction of 6, indicates that CFD predicts s, very well for GM=0.043 m and under
predicts &, for lower GM by about 50%D.

CFD and EFD mean roll angle averaged 6 and ER are shown in Fig.6-10a,b,
respectively. As discussed with reference to Fig. 6-9, logarithmic decrement o increases
with increasing Fr and is larger for low GM condition. The rate of increase of d respect
to Fr is larger for0.05 < Fr <0.2 . ER increases about 40% from Fr=0.05 to Fr=0.35 for all
GM. CFD shows the same trend for & and ER with increasing Fr even though both are
under predicated by 50%D for GM=0.033 and 0.038 m.

Figure 6-11 compares CFD and EFD linear and nonlinear damping coefficients based
on Himeno method (c.,y). The linear damping increases with increasing Fr and is larger
for low GM condition. The rate of increase of a respect to Fr is larger for0.05 < Fr <0.2.
Table 6-5 compares linear damping coefficient o with equivalent damping coefficient o

estimated based on Himeno method and linear damping coefficient based on nwy where
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n=0/2n and damped roll period myq are averaged over all mean roll angles. The EFD
trends for nmwyq and o are similar as for the linear damping coefficient o i.e. nwyq and o
increase by factor of 2 from low to high Fr. For GM=0.043 m, the differences between
logarithmic decrement and Himeno methods are very small over all Fr. For lower GM,
o is smaller than nwgq and a.. Notice that linear damping for Fr=0.35 and GM=0.043 m
is 0.28 which is about 70% of the damping for the ship with bilge keels at the same Fr
and GM discussed in Section 6.3.2. This means that the damping is less than the
threshold value for parametric rolling (a<orr=0.4) and there is a chance of parametric
rolling for the ship without bilge keels. CFD shows similar values linear damping for
GM=0.043 m, but under predicts for lower GM. For both EFD and CFD nonlinear
damping increases with Fr and increases significantly from high to low GM. CFD shows
good agreement with EFD for GM=0.043 and under predicts for lower GM, especially
GM=0.038 m and Fr=0.35.

6.4.1.3 NDA Model of 1DOF Roll Decay

In order to assess the accuracy of damping coefficients estimation, Eq. (2.42) was
solved based on Rung Kutta method of order four with linear and nonlinear damping
coefficients (Fig.6-11 and Table 6-5) along with nonlinear restoring coefficients
estimated from CFD/EFD, shown in Fig. 6-12, to reconstruct roll decay. As shown in
Table 6-6, the best results are for nonlinear damping and restoring with Erss=7.3, 6.8,
4.7%0, for GM=0.043, 0.038, and 0.033 m, respectively, averaged over Fr. Use of linear
restoring increased Erss=18.4, 16.9, and 13.2%¢,. Use of only linear damping and

nonlinear restoring coefficients increased Egrss by only about 1%d,.

6.4.1.4 OT vs. 5415

EFD data of OT are compared with EFD data for DTMB 5415 (Irvine et al., 2004) for

design GM, i.e., previous generation surface combatant. The @y and o, vs. ¢, are
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estimated for 5415 and compared with OT, as shown in Fig. 6-13a,b. @, of 5415 are
fairly independent of ¢, whereas @,, of OT decreases for increasingg, .o, of 5415 is
fairly independent of ¢, whereas o, of OT increases slightly for increasing ¢, . Also,d;
of 5415 increases by factor 3 from low to high Fr but OT shows increases by factor of 2.
Comparing OT and 5415 gives thatw,, vs. Fr have similar trend for 5415 and OT but

¢, against Fr shows decreasing with increasing Fr by about half for OT vs. by 60% for

5415, as shown in Fig. 6-14a. d for 5415 is smaller for low Fr and the same for both OT
and 5415 for0.2 < Fr <0.35 as shown in Fig. 6-14b. The similar trend is indicated for ER.
The linear and nonlinear damping coefficients are estimated for 5415 and compared with
OT, as shown in Fig. 6-15. It is concluded that o, a., and nowy damping coefficients are
very close to each other and are smaller than those for OT for low Fr. Nonlinear damping
coefficient is not observed for 5415. For 5415, best reconstruction is for equivalent linear
damping without requiring nonlinear restoring coefficients and Erss about 8%¢, whereas
best reconstruction for OT requires nonlinear damping and restoring coefficients and Erss

:7.3%(])0.

6.4.1.5 Summary of Roll Decay

In conclusion, CFD with adjusted ki indicates reasonable agreement with EFD,

especially for GM=0.043 m and GM=0.038 m. f, and &, decreasing and increasing
with increasing¢, . f,, linear and nonlinear damping coefficients increase with

increasing Fr whereas ¢, decreases from low to high Fr. Increasing GM decreases ¢, and

increases linear and nonlinear damping coefficients. OT roll reconstruction requires
nonlinear restoring coefficients with linear or nonlinear damping coefficient. Comparing
NDA roll decay reconstruction with CFD indicates that E values are similar to those for
CFD. Comparing 5415 and OT shows that effects of mean roll angle on roll decay
characteristics are stronger for OT vs. 5415. The linear damping of 5415 is smaller than

that of OT and the nonlinear damping is not observed for 5415 whereas it is significant
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for OT. Lastly, best reconstruction for 5415 is for equivalent linear damping without
requiring nonlinear restoring coefficients whereas best reconstruction for OT requires

nonlinear damping and restoring coefficients.

6.4.2 Forward Speed Roll Decay/Parametric Roll in Head Waves

6.4.2.1 Parametric Rolling Zone

First CFD simulations for GM=0.043, 0.038, and 0.048 m and ky=0.153 m (i.e. same
value as for with bilge keels conditions), including for GM=0.043 m effects of Ak and
B are performed. Figure 6-16a shows the GM=0.043 m results. Parametric roll is
predicted for 0.11< Fr<0.35with maximum stabilized roll angle 4 ~40deg for Fr=0.13.
For smaller GM=0.038 m capsize is predicted as shown in Fig. 6-16b, whereas for larger
GM=0.048 parametric roll is predicted for 0.11<Fr<0.35with maximum stabilized roll
angle 4 ~e0deg for Fr=0.18, as shown in Fig. 6-16c. Wave steepness and drift angle
effects are studied for GM=0.043 m and concluded that increased wave steepness
increases pitch amplitude, but inhibits parametric roll since over some steepness the ship

and the incoming wave are away of resonance tune. Drift angle p=2 deg

increases ¢~ 43, whereas 3=4 deg inhibits parametric roll.

Second EFD for GM=0.043, 0.038, and 0.033 m with Ak=0.115, including Ak effects
for GM=0.038 and uncertainty analysis for GM=0.038 m and Fr=0.2, and GM=0.033 m
and Fr=0.1 are carried out. For GM=0.38 m, uncertainly analysis for heave and surge
force are 6.1% and 10.9 %, respectively while for other parameters are less than 4%, as
shown in Table 6-7. Uncertainty for GM=0.033 m shows fairly the same situation even
though heave has higher uncertainty for this case, as shown in Table 6-8. Figure 6-16
shows EFD heave, pitch, and roll amplitude for GM=0.043, 0.038, and 0.033 m. For all
GM, heave amplitude increases with Fr number and then decreases at high Fr number.

Also, it diminishes with decreasing GM. Pitch amplitude increases from low to high Fr to
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reach to its maximum around Fr=0.2 and then decreases. Also, pitch amplitude for
GM=0.043 and 0.038 have the same order whereas it is smaller for GM=0.033. Roll
amplitude indicates no parametric roll for GM=0.043 m (Fig. 6-16a) whereas for

GM=0.038 parametric roll is shown for 0.18 < Fr <0.35 with maximum stabilized roll angle

¢ ~35deg for Fr=0.18, as shown in Fig. 6-16b. For GM=0.033 parametric roll is
indicated for 0.07 < Fr <0.28 with maximum stabilized roll angle 4 ~40deg for Fr=0.07,
as shown in Fig. 6-16d. For GM=038 and smaller Ak=0.105 parametric roll indicated for
0.19 < Fr<0.28 with maximum stabilized roll angle 4 ~335deg for Fr=0.2, as shown in
Fig. 6-16b.

Third CFD simulations are performed for GM=0.043, 0.038, and 0.033 m and
k«x=0.1298, 0.1246, and 0.1388 m, respectively, as estimated from the roll decay tests
with Ak=0.115. Figure 6-16 shows CFD heave, roll, and pitch amplitude for GM=0.043,
0.038, and 0.033 m. For all GM, CFD heave amplitude is over predicted but it has the
same trend as EFD, showing increasing trend with Fr and then decreasing trend at high Fr

number. Roll amplitude shows that parametric roll is not indicated for GM=0.043,

whereas for GM=0.038 m parametric roll is shown for 0.17 < Fr < 0.44 with maximum
stabilized roll angle 4 ~4s5deg for Fr=0.17, as shown in Fig. 6-16b, and for GM=0.033
m parametric roll indicated for 0.0<Fr<0.3 with maximum stabilized roll angle

¢ ~50deg for Fr=0.02, as shown in Fig. 6-16d. For GM=0.033 m and Fr=0 capsize is

predicted. The agreement between CFD and EFD for GM=0.038 and 0.033 m is
remarkable, although CFD predicts larger instability zones at high and low Fr,
respectively. For pitch amplitude, CFD under predicts at low Fr number and over predicts
at high Fr number but it shows the same trend as EFD.

Lastly, additional EFD conducted for revised estimates ky,=0.123, 0.125, and 0.127 m,
respectively, for GM=0.043, 0.038, and 0.033 m and k,,=0.737 m. The average ky
difference between EFD and CFD is 5%. The EFD uncertainty in ky and GM are

estimated at 2.5% and 2%, respectively.
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6.4.2.2 Forces, Moments, and Motions Time History and FFT

Figure 6-17, 6-18, 6-19 compare EFD and CFD parametric roll for max roll angle
condition for GM=0.043 m, 0.038, and 0.033, respectively, including motion, time
histories and FFT analysis of X, Y, N. Since for GM=0.043 m parametric roll is not
shown, Fig. 6-17a compares EFD and CFD roll decay parameters such as roll angle vs.
Fr, damping coefficients vs. Fr, and period vs. mean roll angle in waves. EFD is only
available for Fr=0.35. CFD under predicts linear damping coefficients and over predicts
cubic term. Current results show that non dimensional damping coefficients are the same
as those in calm water at high Fr and larger by factor of 2 at low Fr. The period vs. mean
roll angle shows that roll period is close to twice the encounter period only at Fr>0.25.
This suggest that parametric roll has not chance to occur at low Fr for GM=0.043m. Fig.
6-17b shows EFD and CFD time history for Fr=0.35. Heave and pitch responses at f. and
are fairly linear and independent of roll angle suggesting roll effects on heave and pitch
are second order or higher. Roll response is the same as preliminary studies roll decay in
waves but with roll damping frequency for bare hull condition. X,Y, and N show
nonlinearity for both large and small roll angle. CFD simulation indicates fairly good
agreement with EFD in overall. Heave is over predicted and pitch is under predicted at
their minimums and both are predicted to response at f.. Roll decay is predicted similar to
EFD but roll angle is over predicted i.e. damping is under predicted in waves. X and Y
are under predicted and N is over predicted by CFD. Fig. 6-17c illustrates CFD and EFD
comparison of FFT of restrained forces and moments. As it is explained in Chapter 2, X
indicates 1%, 2™ and 3" harmonic amplitudes due to wave, and heave-pitch-roll coupling.
Y indicates 2" harmonic amplitudes due to heave and pitch motions and ‘%, 3/2, 5/2
harmonic amplitudes due to roll motion. N responses at 2 and 3/2 harmonics due to roll
motion. CFD simulation shows similar harmonics for X, Y, and N but X and Y are under

predicted and N is over predicted. Harmonics of cases with GM=0.043m and other Fr are
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obtained, as shown in Fig. 6-20a, and concluded that for all Fr, X indicates 1, 2nd, and
3™ harmonics whereas Y, and N show %, 3/2, and 5/2 harmonics as expected.

As shown in Fig. 6-18a, for GM=0.038m and Fr=0.2, roll responses at 1/2f. and
parametric roll is observed. Heave and pitch response fairly linear at f. with the amplitude
of order of 0.5A and 0.5Ak, respectively. X,Y, and N show harmonic oscillations with
some nonlinearity. CFD simulation predicts parametric rolling as observed in EFD.
Heave and pitch are predicted to response at f. and both over predicted whereas roll
amplitude prediction agrees with EFD. N is over predicted and X and Y are under
predicted. FFT analysis shown in Fig. 11b indicates 1% and 2" harmonics for X, %, 3/2,
5/2 harmonic for Y and N, as it is expected. CFD predicts similar harmonics for X, Y,
and N even though 1* harmonic of X and 1/2 harmonic of Y are under predicted.
Harmonics of cases with GM=0.038m and other Fr are obtained, as shown in Fig. 6-20b,
and concluded that X indicates 1%, 2™ and 3™ harmonics for all Fr whereas Y, and N
show Y2, 3/2, and 5/2 harmonics as expected.

CFD and EFD comparison for GM=0.033m and Fr=0.1 is shown in Fig. 6-19. EFD
observes parametric roll in which roll responses at 1/2f.. Heave and pitch response at f.
with the amplitude of order of 0.3A and 0.5Ak, respectively. The parametric rolling zone
is moved to lower Fr range compare with the one for GM=0.038 which was expected
according to Mathieu equation. The harmonic behaviour of motions results in harmonic
oscillations in restrained forces and moments. CFD simulation indicates similar response
for roll i.e. parametric rolling. The CFD prediction of roll amplitude is excellent but
heave and pitch are over predicted. X and N are predicted very well whereas Y is under
predicted by 100% as shown in Fig. 6-19a. FFT analysis shows similar harmonics existed
for GM=0.038m. CFD is not able to capture 1/2 harmonic of Y whereas it predicts 1 and
2" harmonics of X, and 1/2 and 3/2 harmonic of N shown in Fig. 6-19b. This study is
performed for all other Fr and similar harmonics are observed as shown in Fig. 6-20d. A

snapshot of CFD solution for GM=0.033 m in one period is shown in Fig. 6-21.
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6.4.2.3 NDA Model of Parametric Rolling

NDA model of 1DOF parametric rolling described in Eq. (2.49) is solved by OU and
UNITS. Linear and cubic roll damping coefficients are estimated from INSEAN towing
tank forward speed roll decay test at Fr=0.05, 0.2,and 0.35 using Himeno method, as a
function of Fr. However, UNITS uses roll reconstruction to improve damping
coefficients estimations for Fr=0.05 due to scattered EFD data at low Fr number. Fig. 6-
22a and 6-23b show OU and UNITS damping coefficients. Fairly the same linear
damping coefficients are used for OU and UNITS whereas UNITS cubic damping term at
high Fr number is much smaller than that used in OU. Also, UNITS and OU cubic
damping term versus Fr show opposite trend. The reason for OU and UNITS damping
coefficient difference is that OU uses shifted EFD roll decay data to have zero roll angle
at t=cowhile UNITS estimates coefficients directly from EFD data. The restoring moment
coefficients in calm water 1’;, are estimated from fitting a polynomial curve of order N to
Fr=0.0 hydrostatically computed restoring moment as a function of heel angle. OU fits 5
order curve and UNITS fits 9™ order curve to hydrostatically computed restoring moment
for 0 <@ <50 deg. Fig. 6-22c shows restoring moment in calm water used for OU and
UNITS. Even though UNITS uses higher order polynomial to represent restoring
moment, it is close to OU model. Restoring arm in waves estimated from 2DOF heave-
pitch for CFD and EFD at Fr=0.1,0.2,0.3, hydrostatic computation for OU at
Fr=0.1,0.2,0.3 and 1DOF pitch hydrostatic computation for UNITS for 10 deg heeled
ship at Fr=0.0 corrected for Fr=0.2 are shown in Fig. 6-23 as function of time. In order to
compare OU and UNITS, the function (GM, +GM, cos(w,t))¢is fitted to restoring arm
shown in Fig. 6-23. As shown in Fig. 6-24, GM,,, used by UNITS is smaller than that for
OU since UNITS GM,, is for Fr=0.0 and does not have speed effect. In fact, that is why it
is constant versus Fr and it is close to GM,, value of EFD/OU at Fr=0.0. For GM,,

UNITS corrects GM, for Fr=0.0 by using a constant value 1.386 to match it to OU data
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for Fr=0.2 to consider speed effect on GM,. However, it doesn’t match GM, to OU data
for other Fr numbers, as shown in Fig. 6-24. CFD prediction of GM,, and GM, are also
shown in Fig. 6-24. CFD under predicts GM,, for Fr=0.1 and Fr=0.2 and under predicts
GM, for Fr=0.1. Lastly, OU uses speed independent w4=4.39 rad/sec estimated from best
fit to towing tank roll decay test data for Fr=0.05 and GM=0.038 m whereas UNITS
applies wy=4.062, 4.157, 4.348 rad/sec for Fr=0.05, 0.2, 0.35, respectively, estimated
from towing tank roll decay test data for GM=0.038 m. Therefore OU model covers
speed effect on total restoring moment through restoring arm in waves but UNITS model
covers speed effect on total restoring moment through GM or ;.

Nonlinear dynamics solutions of Eq. (2.49) for parametric rolling for OU and UNITS
are shown on Fig. 6-25a,b,c. For GM=0.038 m, as shown in Fig. 6-25b, Poincaré¢
mapping parametric roll appears at Fr=0.22 and disappears at Fr=0.37 in increasing
direction (1), but it appears at 0.13 and disappear at 0.37 in decreasing direction (d). There
is significant difference of roll angle from 0.13 to 0.22 in Fr, and this difference can be
explained as a sub-critical bifurcation. This result indicates that initial value dependency
of parametric roll of OT is significant and its steady state in sub-critical bifurcation
region depends on initial condition significantly. The maximum stabilized roll angle is
¢ ~30deg for Fr=0.2. Calculated region of parametric roll does not agree with EFD
result perfectly, but this is expectable due to the approximated nature of the model in Eq.
(2.49). Nevertheless the general agreement between instability regions predicted from Eq.
(2.49) and results from EFD can be considered satisfactory. It is also to be taken into
account that the effect of water on deck has to be accurately implemented in the model
particularly in high Fr for quantitative prediction. OU averaging method agreement of
roll amplitude in comparison with EFD result is not bad but stability of solutions is not so
from 0.18 to 0.34 in Fr. Disagreement in stability of parametric roll between OU
averaging and Poincaré mapping based on OU model could suggest that existence of

other stable state outside the applicable range of the roll angle in the model. Note that
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averaging method unstable solution means that such solution cannot be seen in a real
experiment. The maximum stabilized roll angle 4 ~27 deg for Fr=0.34. UNITS
averaging approach shows a region of instability for the upright position extending
approximately from Fr=0.18 to Fr=0.3, with a maximum roll inside this region close
tog ~30. In addition, the presence of a stable rolling motion is predicted also outside the
linear instability region for the upright position, and a stable vertical equilibrium coexists
with a stable rolling motion between Fr=0.05 and Fr=0.18, with a predicted maximum of
about 4 ~4s5 at Fr=0.05. In this region where two stable solutions coexist the final steady
state depends on the initial conditions. The comparison with EFD shows that the shape of
the response curve (bending towards low Fr) is well predicted by the UNITS model
(capturing the softening behaviour of the restoring), but the region of instability of the
upright position is slightly shifted to lower Fr. This difference could be associated with
the fact that in the UNITS model the restoring moment is speed independent, and the
introduction of a speed dependence especially in GM,, following the indications in Fig.
6-24a, could have shifted the response curve to higher Fr. The sudden jump at reduced Fr
seen in the EFD response curve can be interpreted as the occurrence of the Hopf
bifurcation predicted by the UNITS model. It could be guessed that additional
experiments with different initial conditions performed in the range of small Fr could
have shown the coexistence of a stable roll motion of large amplitude together with the
stable upright position. For GM=0.033 m (Fig. 6-25c¢), Poincaré mapping parametric roll
are indicated for 0.12<Fr<035and 0.10<Fr<0.35for increasing and decreasing directions,
respectively, with maximum stabilized roll angle 4 ~22deg for Fr=0.2. OU averaging
method parametric roll is indicated for 0.26 < Fr<0.35 with maximum stabilized roll angle
¢.. ~25 deg for Fr=0.26, as shown in Fig. 6-25¢c. The results from the UNITS model
shows a response curve having a stable solution for 0.12<Fr<03with 4 ~30 and two

stable solutions (trivial and nontrivial) along with one unstable solution between Fr=0.0

and Fr=0.12 with 4 ~45. The agreement between EFD and analytical predictions for the
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UNITS model are, in this case, very satisfactory. The jump at Fr=0.07 seen in EFD seems
to be due to the coexistence of two solutions, a trivial stable upright position and a
nontrivial resonant roll as predicted by the analytical UNITS model. For GM=0.043 m, as
shown in Fig. 6-25a, parametric roll is not indicated by EFD and OU but UNITS
averaging method predicts the inception of parametric roll with two stable solutions
coexisting with an unstable upright position in the range 0.14<rr<023 with 4 ~35 for
Fr=0.14, and a stable solution for 0.23<Fr<03. The discrepancy between the analytical
predictions from the UNITS model and the experiments are again to be sought in the fact
that the UNITS model incorporates speed effects only partially with a tuning at Fr=0.2
for the amplitude of the GM variation and without any correction on the mean GM, as
shown in Fig. 6-24. Tables 6-9 and 6-10 summarize and compare Mathieu equation and
CFD and EFD estimates for mean and excitation GM and the instability ranges and

stabilized roll angles from EFD, CFD, and NDA.
6.5 Summary of INSEAN Captive Model Simulations

Complementary CFD, towing tank EFD, and nonlinear dynamics approach study of
roll decay/parametric roll for the OT surface combatant both with and without bilge keels
is presented. The investigations without bilge keels include 2DOF forward speed roll
decay in calm water for varying GM; and 3DOF forward speed roll decay/parametric roll
in head waves for varying wave steepness Ak, GM, and drift angle. CFD shows fairly
close agreement with EFD for forward speed roll decay in calm water, although damping
is over/under predicted for largest/smaller GM. Most importantly CFD shows remarkably
close agreement with EFD for forward speed roll decay/parametric roll in head waves for
GM=0.038 and 0.033 m, although CFD predicts larger instability zones at high and low
Fr, respectively. The CFD and EFD results are analyzed with consideration ship motion
theory and compared with Mathieu equation and nonlinear dynamics approaches.

Nonlinear dynamics approaches are in qualitative agreement with CFD and EFD. The
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CFD and nonlinear dynamics approach results were blind in that the actual EFD radius of

gyration ki, was not known a priori.
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Table 6-1: Boundary conditions for all the variables

¢ p k w U V /4

U(x,y,z,t)=U, +

A kz y —
i " cos(kx 2 —107 — W(x,y,z,t)=
I?Olﬁt Acos(kx - 27ft) I oost o) kg =10 WDy = 9 iﬁe“ cos(hr— 211 A(x 310
waves —=) - Azz &~ Fr ’ V=0 Eﬁe" sin(kx — 27ft)
2Fr’k
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Table 6-2: Summary of 2DOF zero-speed heave-roll in beam waves results for
Ak=0.156 and A/L=1.12

EFD CFD E%D

Phase

Error
a az/al 33/31 34/8.1 a az/al a3/a1 a4/a1 a a) as a4 dOItlj(l)l’Il.aIlt
harmonic

deg

z/A | 1.07 0.07 - - 122 0.05 - - | -14.02 24.05 - - 3.08
0/Ak | 290 0.08 - - 1.6 0.07 - - 4276 43.44 - - 6.11
X |1.7E-3 225 048 1.52|5.6E-4 0.70 0.38 0.20| 67.48 89.82 73.80 95.63 24.13
Y | 0.067 0.05 - - 10.053 010 - - 208 -52.82 - - 5.12
M |24E-4 1.69 0.17 0.10|1.1E-4 1.58 024 - 53.39 56.50 34.20 100 -24.61
N |[59E4 013 - - |73E-4 019 - - | -23.77 -81.58 - - 17.42




Table 6-3: Summary of 3DOF forward-speed heave-roll-pitch in head
waves results for A/L=1.0 and Fr=0.35

CFD
A 1S Ak=0.115
: Ak=0.156
a; ay/a; az/a; as/a; a ay/a; as/a; as/a;
ZA | 08601  0.06 0.005 0005 | 08762 004 0-0a2 oo
04012  0.07 0.02 0.008
0/Ak | 0.4463  0.06 0.02 0.01 0374 008 0.03 0.012
0.0042  1.01 0.93 0.02
X | 00087  0.49 0.53 024 | vooas 121 0.97 0.21
a1 asp/agn asp/ayy azp/ag ayn asp/ayy asp/ayn azp/agy
0.0004 051 15 0.25
Y |00004 45 0.98 325 | 00005 033 17 193
0.0026  0.89 0.27 0.23
0.0003 1.0 0.01 001 160032 1.03 0.48 1.41
¢1 f¢d1& f¢ds (X&"{ O&ER ¢1 f¢d1& f¢d5 (X&’Y O&ER
500 .89fy/f. 0.4/0.006 0.6/3.3
B Ady  Olfy/fe 0550005 0.82/5.2 | 4‘;0 5 4@& 0.7/0.009 0.9/60
Table 6-4: CFD roll decay RSS error for all kyy
No. of /AV]? Erss
GM=0.043 Fr cycles a d?utiecci)& Ky Ky = K= K= K=
analysis 01124 01246 01269  0.1298  0.1322
Case No. 1 0.2 6 0.16599 15.76%  8.49%  721%  592%  11.83%
_ Kux= Kux= K=
GM=0.038 01246 01322  0.146
1 0.05 0.25781 7.1%
2 0.2 0.17108 3.7%  11.42%  127%
3 0.35 6 0.13014 9.33%
_ Kux= Kux= K=
GM=0.033 01289  0.1315 0.1388
1 0.2 4 0.20216 12.76%  12.51%  11.28%
Table 6-5: Summary of roll decay damping coefficients
EFD CFD
GM Fr o nwy Ole Y o nwy Ole Y
0.05| 0.23 0.24 0.24 0.14
GM=0.033| 0.2 | 0.34 0.37 0.36 0.24 0.12 0.20 0.20 0.08
0.35| 0.35 0.59 0.67 1.29
0.05] 0.19 0.19 0.19 0.04 0.09 0.10 0.10 0.026
GM=0.038| 0.2 | 0.31 0.31 0.32 0.08 0.18 0.19 0.18 0.08
0.35] 0.34 0.40 0.40 0.18 0.25 0.27 0.28 0.11
0.05] 0.14 0.14 0.14 0.03
GM=0.043| 0.2 | 0.23 0.24 0.23 0.05 0.23 0.24 0.24 0.08
0.35] 0.28 0.28 0.28 0.02
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Table 6-6: Roll reconstruction error for different methods

Nur;:ber Ave Erss e
T
Case No. 1 0.05 6 0.14623 10.66%  11.15%  11.59% 30.02%

2 0.2 6 0.09326 6.81% 7.39% 7.59% 15.05%

3 0.35 6 0.07692 4.36% 5.17% 5.41% 10.13%

Ave.of 1,23 0.2 6 0.105 7.3% 7.9% 8.2% 18.4%
GM=0.038

1 0.05 6 0.2787 7.28% 7.23% 7.42% 25.18%

2 0.2 6 0.2131 4.77% 4.78% 4.80% 13.49%

3 0.35 6 0.15026 8.35% 8.26% 8.38% 12.03%

Ave. of 1,2,3 0.2 6 0.21402 6.80% 6.75% 6.82% 16.9%
GM=0.033

1 0.05 4 0.22626 4.90% 6.06% 6.14% 16.88%

2 0.2 4 0.18197 4.13% 4.84% 4.91% 12.24%

3 0.35 4 0.12662 5.07% 5.32% 5.34% 10.49%

Ave.of 1,23 0.2 4 0.1783 4.7% 5.41% 5.47% 13.2%

Table 6-7: Uncertainty analysis for GM = 0.038 m, Fr = 0.20,

and Ak=0.115

Average Amplitude U U %

Z (mm) -1.3 34.5 2.1 6.1%
0" -0.91 425 0.15 3.5%

¢° -0.16 35.9 0.97 2.7%

X (N) 21.15 51.8 5.6 10.9%
Y (N) -1.53 212.4 4.53 2.1%
N (N.m) 0.01 55.0 1.48 3.0%

Table 6-8: Uncertainty analysis for GM = 0.033 m, Fr = 0.10,

and Ak=0.115

Average Amplitude U U %

Z (mm) 0.6 222 2.31 10.4%
0° -0.6 3.77 0.14 3.7%

¢° 0.23 35.9 1.24 3.4%

X (N) 7.28 37.0 2.95 11.5%
Y (N) 0.06 143.8 2.90 2.0%
N (N.m) 0.66 55.6 1.47 2.6%
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Table 6-9: CFD, EFD, and hydrostatic estimates for GM,, and GM, at

Fr=0.2
GM=0.033 GM=0.038 GM=0.043 m
Method k. GM, GM, k. GM, GM, k. GM, GM,
0.153 -0.0058 0.014 [0.153 -0.0066 0.014
CFD 0.1388 -0.0051 0.014 15" 1546 0:0058 0.014 [0.1298 -0.0066 0.014
EFD (OU)  |0.1330 -0.0039 0.012 |0.1330 -0.0045 0.012 [0.1330 -0.0051 0.012
Hydrostatic
CNiTS) | 0-1401 -0.0097 0.0086|0.1468 -0.0111 0.0086|0.1498 -0.0126 0.0086
Hydrostatic
(UNTYSeommeeted | 01401 -0.0097 0.012 |0.1468 -0.0111 0.0120.1498 -0.0126 0012

Table 6-10: Parametric rolling zone and max roll angle predicted by CFD, EFD,

NDA, and Mathieu Equation
GM=0.033 m GM=0.038 m GM=0.043 m
Frrange Max Frrange Max Fr range Max
Method kxx . roll  kxx . roll kxx . roll
Min Max (deg) Min Max (deg) Min Max (deg)
0.153 0.17 capsize 0.153 0.1 0.35 37
CFD 0.1388 00 0.3 30 0.1246  0.18 0.44 45 0.1298 No PR -
EFD 0.127 0.07 028 40 0.125 0.18 0.35 35 0.123 No PR
NDA_OU: Poincare’ ()0.12 035 () 022 037
Increasing (i) 0.1330 22 0.1330 30 0.1330 No PR
Increasing (d) (d)0.10 0.35 (d 0.13 0.37
NDA_OU: Ave. 0.1330 0.26 035 25 0.1330 0.34 0.37 27 0.1330 No PR -
NDA_UNITS: Ave. 0.1401 0.0 0.3 45 0.1468 0.05 0.30 45  0.1498 0.14 0.3 35
Mathieu Eq. 0.1388 0.0 026 oo 0.1246 0.07 0.41 o  0.1298  0.07 0.41 0

Figure 6-1: Grid for ONR Tumblehorhe with bilge keels
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Figure 6-2: CFD (Fr=0.2) and EFD (Fr=0.05, 0.2, 0.35) roll decay comparison for
GM=0.043 m: (a) time history; (b) FFT
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Figure 6-6: CFD (Fr=0.2) and EFD (Fr=0.05, 0.2, 0.35) roll decay comparison for
GM=0.033 m: (a) time history; (b) FFT
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Figure 6-13: OT and 5415 damped natural frequency and logarithmic decrement vs.
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Figure 6-21: A snapshot of CFD solution for GM=0.033 m and Fr=0.1 in one roll
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CHAPTER 7. VALIDATION OF OU CAPTIVE MODEL
SIMULATIONS

The OU (Osaka University) captive model simulations are performed with the same
operational and environmental conditions described in Chapter 5 which include resistance
test, static heel in calm water, static drift in calm water, and static heel in following
waves. The simulations are carried out to validate CFD and to obtain manoeuvring
coefficients as inputs for NDA model of broaching described in Chapter 2. Herein, the
details of CFD simulation including computational domain and boundary conditions,
grid, and simulation design are presented and lastly the results are discussed and

compared with EFD and Potential Theory calculation.

7.1 Computational Domain, Boundary Conditions

The computational domains extend from-05<x<2,-1<y<l,-1<z<025, In

dimensionless coordinates based on ship length, as shown in Fig. 7-1. The ship axis is
aligned with the x-axis with the bow at x = 0 and the stern at x = 1. The free surface at
rest lies at z = 0. The ship model is appended with skeg and bilge keels.

Boundary conditions are shown in Table 7-1. Inlet boundary condition in calm water
and waves are different. For calm water, x component velocity at inlet boundary
condition is set to be Uy which is the same as ship velocity in relative coordinate system
and zero in earth fixed coordinate system. Other velocity components are imposed to be
zero. Normal pressure gradient and level set function are imposed zero and —z(x) for calm
water, respectively. In regular waves, inlet pressure gradient and level set function are

imposed such that they follow linear wave theory equations:
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A kz A2 2kz
A T (7.1)
¢ = Acos(lc - 2f1) - =(x) (7.2)
Ulx,y,z,t)=U, + %\/%ekz cos(kx — 27ft)(x) (7.3)

W(x,y,z,t) = % ke sin(kx — 271t (7.4)

Here, U, would be zero in earth coordinate system. Other boundary conditions are the

same for cases in calm water and in waves.
7.2 Grid

Two different grids are generated for captive tests as shown in Table 7-2 and 7-3. For
both grids, computational grids for the hull, skeg and bilge keels are designed to
accurately resolve geometric features of the model and the unsteady turbulent boundary
layer, wake, and wave fields. The hull boundary layer and bilge keels grids were
generated using GRIDGEN. The hull boundary layer and bilge keels grid were fixed to
and move with the ship. The hull boundary layer has a double-O topology and was
created with a hyperbolic grid generator, with a grid spacing at the hull designed to yield
y" <1 for the highest Reynolds number case Fr = 0.6. In this way the same boundary layer
grid could be used for all cases. The hull boundary layer grid extends to cover the deck of
the ship and wraps around it, allowing for computations with extreme motions. For Grid
No.1, grid topology was selected so that two other blocks were responsible to capture the
flow near the hull (refinement block) and far from the hull (background block) whereas
grid No.2 has only background. Since there is a wave on the free surface for some cases,
the background block was designed to have enough grid points near free surface. The
computational domain for all blocks covers both the port and starboard sides of the ship,

since the flow and wave fields might be asymmetric due to static drift angle or the roll
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motion. Table 7-3 summarize the grids matrix used for different captive tests and Figure
7-1 shows grid No.1 for the ship.

For the grid convergence study, a fine grid 10M and a coarse grid 1.2M were
generated by refining and coarsening the medium size of grid No.l using a factor of
/2 in each direction with a tri-linear interpolation algorithm, so that the grid distribution
and shape would be as close as possible to the original grid. This grid study was
performed for the ship with 10 deg heel angle towed in calm water, free to sink and trim,
and for all Fr numbers in the range of 0-0.6. Figure 5-2 provides Ug for X, Y, K, M, o,
and t. Y for Fr<0.4 and N/c for 0.5<Fr<0.55 show relatively poor convergence, i.e., Fr
regions with oscillatory convergence or divergence. Table 7-4 provides the grid

verification results. Consideration is given to Fr averages U, in %S, (medium grid

o N
solution) U, = % Z ‘U (F1) /S, (Fr, )‘ and n %DR (Dynamic Range)
i=1

U, = i‘Ug(F;;)/DRSZ‘ and RSS U L\/i(Ug(Fig)/Sz(Fi;))z in %S,. The
i=l

1
N 2RSS N\<

average RSS U, seems most representative. The RSS average of Ug over Fris 0.1, 6.8, 1,
1.5, 2.3, 24 %S, for X, Y, K, N, o, and t, respectively, i.e. the average value is 3%S;.

This suggests that the results are fairly insensitive to grid changes for present range of

grid sizes.
7.3 Simulation Design

Captive simulations are carried out for single Fr number and a range of Fr number
(Full Fr curve). Single Fr number simulations are performed in relative inertial coordinate
system in which velocity is not imposed on the ship but it is given to the flow.
Simulations are executed at “unsteady mode” and stopped after flow travels at least seven

times of ship length.
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7.3.1 Full Fr Curve Simulation Design

Full Fr curve simulations are executed in inertial earth fixed coordinate system. The
basic assumption of this approach is that at every instant the flow field is in a quasi
steady-state, by virtue of imposing a very small acceleration to cover the desired velocity
range during the computation. From the mathematical point of view, this means that the
time derivatives of the momentum, level set transport, and turbulence model equations
are negligible in a time-average sense. Full Fr curve simulation is able to capture
unsteady phenomena such as vortex shedding, oscillation of forces and moments, and
free surface fluctuation as long as the characteristic times of these phenomena (shedding
period, motion period, and free surface fluctuations) are much smaller than the
characteristic ship acceleration time. This condition is easy to meet for vortex shedding
and the free surface fluctuations, being high-frequency phenomena, but may be difficult
for ship motions that have a long period such as ship motion in waves. Therefore, Full Fr
curve is applicable for cases in calm water.

The procedure for full Fr curve simulation starts with an appropriate choice of a
reference velocity to non-dimensionalize the equations of motion. For convenience ship
speed corresponding to the maximum Fr to be achieved in the computation is used, thus:

O (7.5)

max max

Here V(t) and Fr(t) are instant velocity and Fr, respectively.

Different kind of continues functions such as linear or quadratic function can be used
for V'(t) to change it smoothly and very slowly to have quasi steady-state at each time
step. In this study, V'(t) is changed by linear function.

V' =at (7.6)

Where, a is a constant acceleration.

The traveled distance by ship at each time step can be estimated from:
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ty _ 2
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2 (7.7)

to—At

The traveled distance reaches to its maximum at the last time step of simulation
corresponded to ty=tmax, When Fr=Frp,. To achieve quasi steady state condition,
maximum of traveled distance should be small enough compare with the ship length. This
makes a limit for choosing acceleration and time step. Table 7-5 shows parameters

applied for full Fr curve simulations in this study.
7.4 Resistance
7.4.1 Forces, Moments, and Motions

CFD resistance tests are performed for full Fr curve Fr=0.0-0.6 and single Fr=0.5 for
the model free to sinkage and trim in calm water. Figure 7-3 compares EFD and CFD for

Cr, o, and 1, including with and without bilge keels. Consideration is given to Fr

. N o N
averages based on absolute error in %D E = %Z|E, / Di| and in %DR E = %Z]El / DR|
i=1 i=1

(El. /D, )2 in %D, and maximum errors E.x in %D and

M=

-— 1
and RSS error E = V-

1

%DR. The average RSS error seems most representative. In general the results indicate
expected trends and excellent agreement between CFD and EFD (average RSS error Ecr,
o, 1 =1.32,4.32, 2.04 %D), except for Cr foro0.35< Fr<0.45, ¢ for 045< Fr<o0.55and 1 for
Fr>0.55 for which CFD under predicts EFD by maximum Ect, o 1t =4.11, 17.7, 6.43 %D,
as shown in Table 7-6. Single Fr=0.5 CFD shows same values as full curve CFD at same
Fr. The CFD grid study, explained earlier, indicates relatively small dependency on
grids, which suggests large Fr errors are due to free surface, turbulence modeling, and/or

requirement of much larger grids than 11M.
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7.4.2 Free Surface Elevation and Vortex Structures

Figure 7-4 indicates general view of free surface for several Fr numbers. In overall,
increasing Fr washes away waves generated by the ship to the downstream. More details
of the free surface have been shown in Fig. 7-5. Free surface fluctuation at y/L=0
indicates bow and stern waves, as shown in Fig. 7-5. The stern wave is pushed away
from the aft at high Fr number such that the ship transom comes out of water. This
introduces important role of turbulence modelling for low Fr number to model properly
wet transom vortices and their effects on the ship resistance and free surface fluctuation.
Also, free surface profile at y/L=0 illustrates that pitch angle has to be positive (bow is
up) at high Fr and nearly zero at low Fr which can be confirmed by Fig. 7-3. Axial
velocity contours indicate several vortex structures around the hull, as shown in Fig. 7-6.
The sonar dome, bilge keels, and skeg produce vorticities even though vorticities created

by the sonar dome are dominant.
7.5 Static Heel in Calm Water
7.5.1 Forces, Moment, and Motions

CFD static heel tests are performed for full Fr curve Fr=0.0-0.6 with ¢=10 and 20
degree, and single Fr=0.6 with ¢=10 degree for the model free to sinkage and trim in
calm water. Figures 7-7 and 5-8 show dimensional and non-dimensionalized results
comparing CFD and EFD for axial and side force, roll and yaw moment, and heave and
pitch motions for $=10 degree. In general, full curve simulation results show fairly large
error for Fr<0.2. It is because of the fact that running time was not enough for Fr<0.2 and
boundary layer was not developed yet. In order to have enough time to simulate Fr<0.2,
very small time step could have been chosen which is very expensive and time
consuming. For Fr>0.2, CFD shows acceptable results for motions, forces, and moments.

CFD under predicts sinkage and trim by average RSS error 3.62%D and 14.1%D,



119

respectively, as shown in Table 7-7. Average RSS error for X, Y, K, and N are 2.6, 11,
1.3, and 11%D, respectively. In overall, E=7.3%D. Even though errors are quite large for
side force and yaw moment, CFD indicates similar trend as EFD. Comparing roll
moment and yaw moment explain that heel to the starboard causes yaw moment pushing
the bow to the port. Also, roll moment versus Fr indicates that the roll moment is close to
hydrostatic value (roll moment at Fr=0.0) and Fr would not change that significantly
unless Fr>0.5. Lastly, single Fr=0.6 CFD shows fairly same values as full curve at same
Fr. Figures 7-9, 7-10 represent motions, forces, and moments for ¢=20 degree. CFD
results show fairly small error for all variables for Fr>0.2, except side force which shows
reasonable result for Fr>0.4 in which side and axial force have the same order. CFD
average RSS errors for sinkage and trim are 2.5 and 10%D, respectively. CFD average
RSS error for X, Y, K, and N are 2.5, 14.2, 1.3, 6.7%D, respectively. In overall,
E=6.2%D.

7.5.2 Coupling Effects

Figure 7-11 summarizes CFD and EFD X, Y, K, and N for both heel angles and
resistance test as a zero heel angle case. It is shown that axial force would not be changed
significantly by giving a heel angle to the ship. However, impact of heel angle is huge on
Y, K and N. This matches with the theory described in Chapter 2. In fact, roll angle has
second order effect on X while it has first order effect on Y, K, and N. More than that,
comparing Fig. 7-8 and 7-10 indicates that roll angle would not change trim and sinkage

supporting the theory that roll has second order effect on heave and pitch modes.
7.5.3 Maneuvering Coelfficients

As shown in Fig. 7-11, a+b¢? is fitted to X for each Fr and a¢+b¢’ is fitted to Y, K,
and N in order to estimate coefficients a and b which are linear and nonlinear

maneuvering coefficients as explained in Chapter 2. CFD and EFD reconstructions based
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on the fitted curves show exactly similar values to the original CFD and EFD data due to
limit number of CFD and EFD data explaining that the CFD and EFD reconstruction
errors are zero. The values of CFD and EFD maneuvering coefficients are shown in
Table 7-8. The average RSS error of CFD prediction is 7.4%D for linear maneuvering

coefficients and 106%D for nonlinear maneuvering coefficients.

7.5.4 Free Surface Elevation and Vortex Structures

Figures 7-12,7-13 illustrate CFD free surface elevation around the ship heeled toward
starboard for several Fr number. As expected, the flow stagnates as it collides with the
bow of the ship and the free surface becomes higher, forming a bow wave. When both the
flows coming from portside and starboard collide at the aft region, the velocity decreases
and subsequently the pressure increases. An elevation is then produced, as shown in Fig.
7-14. The boomerang shape of this elevation is consequent with the velocities in the area,
higher away from the hull, so from the sides, the small wave is carried away faster. The
flow stagnates at bow forming high elevation and then increases its speed as it turns the
fore perpendicular. Subsequently, the pressure drops and the free surface dives. After that
the flow decreases its speed at the aft and forms high elevation on the free surface again.
Even though the ship is heeled to the starboard, the free surface level for the portside and
starboard is nearly the same due to same pressure drop for both sides. At high Fr number,
the peaks of the free surface at centreline become higher due to high pressure at
stagnation. Figures 7-15 and 7-16 show details of free surface near the bow and the aft
for the worst case, Fr=0.6 and ¢=20 deg. Figure 7-15 indicates possibility of wave
breaking and overturning at high Fr number near the bow. Figure 7-16 shows the free
surface at the transom. It shows clearly that the transom is out of water at high Fr number
and there is a wake region after the aft with complex free surface shape. The shape of the
hull at the bottom of the bow can be assimilated to a flat plate with no thickness. As the

flow turns around the bow hull, a complicated vertical structure is generated. One vortex,
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as shown in Fig. 7-17, is generated in the tip of the bow and runs almost parallel to the
hull. Another vortex comes from the tip of the bilge keels and again moves parallel to the

hull. A final vortex is generated close to the aft region as flow passes the skeg.

7.6 Static Drift in Calm Water

7.6.1 Forces, Moments, and Motions

CFD static drift tests are performed for full Fr curve Fr=0.0-0.6 with =5, 10, and 15
degrees for the model free to sinkage and trim in calm water. Figures 7-18 and 7-19 show
dimensional and non-dimensionalized results comparing CFD and EFD for axial and side
force, roll and yaw moment, and heave and pitch motions for B =5 degrees. Similar to
static heel cases, full curve simulation results show fairly large error for Fr<0.2 due to
insufficient running time to develop boundary layer. For Fr>0.2, CFD predicts absolute
value of sinkage and trim by average RSS error 8.9%D and 16.3%D, respectively, as
shown in Table 7-9. Average RSS error for X,Y, K, and N are 8.5, 16.8, 43.2, and
6.0%D, respectively. Even though errors are quite large, CFD indicates similar trend as
EFD for Fr>0.2. Comparing roll moment and yaw moment explains that turning the bow
to the right causes heel to the portside suggesting that yaw angle would produce enough
heel moment in free model simulation and cause capsize. Figures 7-20 and 7-21 represent
dimensional and non-dimensionalized motions, forces, and moments for =10 degrees.
The trend for all variables versus Fr number for =5 and p=10 degrees are the same
except for trim. For =10 degrees, trim is always negative but for f=5 degrees trim jumps
to positive value for Fr>0.35. CFD predictions for f=10 degrees indicate average RSS
error 7.8 and 16.7%D for sinkage and trim, respectively. CFD average error for X, Y, K,
and N are 11.5, 11.4, 54.7, 6.5%D, respectively. Figures 7-22 and 7-23 show dimensional
and non-dimensionalized results for B=15 degrees. The overall trend versus Fr number is

the same as before. Dimensional results clearly show that increasing Fr number would
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increase all motions, forces, and moments’ magnitude. CFD prediction average RSS
errors are 10.8, 7.9, 49, 5.7, 6.4, and 11.5%D for X, Y, K, N, sinkage, and trim,
respectively. Comparing CFD prediction errors for all drift angle cases demonstrates that
CFD prediction for side force and trim are improved significantly for larger drift cases.
However, error for other variables has increased for larger drift cases and amongst them
error of roll moment is much bigger than the others. In overall, CFD predicts forces,
moments, and motions for a drift angle case by the average error of 10%D excluding K
and 19%D including K. Herein, the accuracy of EFD roll moment data is under question
and that would be a possibility of large CFD errors for K. Comparing current results of
OT with similar type of obliquely towed hull (5415) simulated at non-zero speed with the
same level of grid size (Sakamoto, 2009) show that the error of current simulation is

acceptable.

7.6.2 Coupling Effects

Figure 7-24 shows the impact of side velocity or drift angle (v=-usinf) on forces and
moment. It is observed that drift angle has significant effect on Y, K, and N whereas X
would not be changed that much. According to the theory explained in Chapter 2, drift
angle has second order effect on X and first order effect on Y, K, and N. Therefore, the
results follow the theory. Comparing Fig. 7-19, 7-21, and 7-23 illustrate the effect of drift
angle on sinkage and trim. It is observed that drift angle effect is negligible on sinkage
whereas its effect is huge on trim especially at high Fr. This suggests that drift angle
effect on sinkage is second order as it is expected from the theory. However, drift angle

effect on trim is not second order, at least at high Fr.

7.6.3 Maneuvering Coelfficients

Figure 7-24 shows the forces and moment used to calculate the v-velocity related

hydrodynamic derivatives obtained from EFD and CFD. These figures also include the
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reconstructions. a+bv? is fitted to X for each Fr and av+bv® is fitted to Y, K, and N in
order to estimate coefficients a and b which are linear and nonlinear maneuvering
coefficients as explained in Chapter 2. Also, zy is estimated from 1* order polynomial
curve fitting to K-Y plot. The values of CFD and EFD maneuvering coefficients are
shown in Table 7-10. The average RSS error of CFD prediction including/excluding K
moment and zy are 28/8.4%D for linear maneuvering coefficients and 30/20.4%D for

nonlinear maneuvering coefficients.
7.6.4 Free Surface Elevation and Vortex Structures

Figure 7-25 shows the elevation of the free surface. Stagnation on the windward side
of the hull creates a bow wave. As expected, the height of wave is bigger for higher drift
angle case. The flow accelerates as it turns the fore perpendicular and the subsequent
pressure drop is manifested by the loss of height of the free surface on the leeward side,
as Fig. 7-26 shows. The flow stagnates in the windward side of the hull, as shown in Fig.
7-27. As the velocity decreases, the pressure increases, so the wave elevation is higher in
this region. For B=15 deg, the free surface elevation indicates bow diving due to large
wave height formed around the bow. Figure 7-28 shows a representation of flow at
windward side. The stagnation area, easily identified by pressure contour, is near the bow
at high pressure area and moves toward the aft a little bit at B=15 deg.

As the flow turns around the bow hull, a complicated vertical structure is generated.
Two vortices are generated at keel. One of them starts right at the bottom of the bow and
can be considered a tip vortex, as shown in Fig. 7-29.This vortex runs almost parallel to
the flow direction. Another keel vortex comes from the sharp shape of the keel at bottom.
This vortex extends backward and losses its strength gradually as the curvature of the
keel increases. Another vortex structure comes from bilge keels once flow passes the tip
of bilge keels and it moves toward the flow direction. A final vortex is generated close to

the aft region as flow passes the skeg.
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7.7 Static Heel in Following Waves
7.7.1 Forces, Moments, and Motions

CFD static heel tests in following waves are performed for Fr=0.3, H/A=0.03 and
A/L=1 with ¢= 10 and 20 degrees and A/L=1.25, H/A=0.025 and Fr=0.15,0.25,0.35, and
H/A=0.05 and Fr=0.35 with ¢= 0 for the model free to heave and pitch. Figures 7-30 and
7-31 show EFD and CFD X,Y,K,N,z,0 vs. time and &y/A constructed based on averages
over 2-5 wave periods and evaluated for Fr=0.3, H/A=0.03 and A/L=1 with 10 deg heel
angle. CFD results are shown for both grids, as mentioned in Table 7-3. In general, grid 2
achieves better agreement with EFD. Average RSS errors are evaluated as provided in
Table 7-11. CFD predicts heave and pitch by average error of 8 and 4.9%D. The average
RSS errors of X, Y, K, and N are 35, 45, 4, and 6.7%D, respectively. In overall, trends
are predicted by CFD. Figure 7-32 and 7-33 show results for 20 deg heel angle. The
average RSS errors of X, Y, K, and N are 27, 23, 3.4, and 3.3%D, respectively. The
results indicate better agreement with EFD such that the overall error is 12%D whereas it
is 17%D for 10 degree heel angle, as shown in Table 7-11.

Figures 7-34 and 7-35 show comparing CFD and EFD results versus time for zero heel
angle, A/L=1.25, H/A=0.025 and Fr=0.15,0.25,0.35, and H/A=0.05 and Fr=0.35. The
results versus &,/A are constructed based on average over 2-5 wave periods and evaluated
as shown in Fig. 7-36 and 7-37. CFD simulations are performed for grid 2, as mentioned
in Table 7-3. The average RSS errors, shown in Table 7-11, indicates the average error is
15%D with the largest errors for X and 0. The average error increases by factor of 2 for

same increase in wave amplitude.
7.7.2 Coupling Effects

FFT analysis is performed to help to understand different harmonics and coupling

effects available in CFD or EFD of ship responses in waves. According to the theory
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explained in Chapter 2, for static heel in regular following waves, heave response should
indicate 1** harmonic at wave encounter frequency f., and 1%, 2", and 3™ order/harmonics
due to pitch motion. The similar harmonics are expected for pitch response due to wave
and heave motion. Forces and moments should also show harmonics due to waves and
pitch and heave motion. X indicates 1% harmonic amplitude due to waves at f., 2"¢ and 3™
order/harmonic amplitudes due to heave and pitch motions at f,. Y and N indicate 1*
order/harmonic amplitudes due to waves and 2™ and 4™ order/harmonic amplitudes due
to heave and pitch motions.

Figures 7-38 and 7-39 exhibit FFT analysis of CFD and EFD for Fr=0.3, H/A=0.03
and A/L=1 with ¢= 10 and 20 degrees. Heave response shows 1% and 2™ harmonics and
pitch show 1% harmonic. X indicates 1% and 2™ harmonics and Y and N show 1%, 2™, and
4™ harmonics, as expected. In overall, CFD simulations using grid 1 and grid 2 could
predict all harmonics, as shown in Fig. 7-38 and 7-39. However, grid 2 shows much
better agreement with EFD, as shown in Table 7-12. For 10 degrees heel angle, CFD
predicts 1% and 2™ harmonics of heave by error of 2.97/58%D and 1" harmonic of pitch
by error of 8%D using grid 2. The errors of 1*" and 2™ harmonics of axial force prediction
are 76%D and 35%D. CFD sway force FFT analysis shows good agreement with EFD
for first harmonic using grid 2 (E=9.3E%D). Yaw moment errors of 1% and 2" harmonics
for grid 2 are about 12.6%D and 9.53%D. For 20 degrees heel angle, CFD errors of 1%/
2" harmonics of heave are 2.75/48%D using grid 2. CFD predicts 1% harmonic of pitch
by error of 5.08%D. The errors of 1¥/2" harmonics of axial force prediction are
99.3/32.4%D. CFD sway force 1* harmonic prediction error is 27%D and yaw moment
first/second harmonics predictions provide error about 0.49/31%D using grid 2.

Figures 7-40 and 7-41 illustrate FFT analysis of results for wave induced heave and
pitch motions and axial force for Fr=0.05, 0.2, 0.35, H/A=0.025 and 0.05, and A/L=1.25
with zero heel angle. For Fr=0.35 and H/A=0.025, FFT analyses of heave and pitch show

only first harmonic in their behaviour. CFD prediction of heave shows error of 1.79%D
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for first harmonic while the error of pitch first harmonic prediction is 59%D. FFT
analysis of induced axial force indicates only first harmonic which is under predicted by
error of 11.6%D. For Fr=0.35 and H/A=0.05, FFT analysis indicates dominant first
harmonic for heave, pitch and induced axial force. The prediction of heave, pitch, and

axial force first harmonic has the error of 15.5%D, 64.5%D, and 22.3%D, respectively.

7.7.3 CFD Results vs. Potential Theory Calculation

Since wave-induced surge force is responsible for surf-riding and it is necessary to
accurately evaluate for realising a quantitative prediction of ship behaviours in
following/quartering waves, the Potential Theory, as an uncomplicated method, is
performed to estimate surge force for A/L=1.25, H/A=0.025 and several Fr with ¢= 0.
The surge force can be calculated as the linear Froude-Krylov force as the first-order
approximation, which well explains the wave-induced surge force for a small trawler up
to the wave steepness of Ak=1/10 (H/A=0.03). The Froude-Krylov calculation is
compared with EFD results as shown in Fig. 7-42. The comparison indicates that the
linear Froude-Krylov calculation significantly overestimates the experiment when the Fr
is smaller than 0.2. The Fr of 0.2 coincides with the Hanaoka parameter; =vq, /g of 0.25.
Here, in an unsteady potential flow theory with linear free-surface condition, the velocity
potential relating to symmetric motions diverges. When the Hanaoka parameter increases
by increasing the forward velocity, the Froude-Krylov prediction provides better
agreement. Comparing CFD and Froude-Krylov calculation shows that the CFD
successfully reproduces the decrease of the wave-induced surge force near the Fr of 0.2
probably because the CFD can capture the 3D wave pattern. In fact, the discrepancy
between EFD/CFD and the linear Froude-Krylov calculation in higher speed region could

consist of diffraction radiation and higher order Froude-Krylov components.
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7.8 Summary of OU Captive Model Simulations

The grid study calm water static heel indicates the average RSS grid uncertainty is
3%D. CFD resistance test full Fr curve simulation in calm water shows close agreement
with EFD with average RSS error of 3%D for X, o, t. Single Fr=0.5 CFD shows same
values as full curve CFD at same Fr. CFD and EFD full Fr curve static heel results show
fairly close agreement for o, t, X, K for the full Fr range, whereas Y and N were
significantly under predicted for large Fr>.4. In overall, CFD prediction average RSS
error is 7.3 and 6.2%D for 10 and 20 degrees heel angle. Single Fr=0.6 CFD shows fairly
same values as full curve at same Fr. Forces and moment analyses show that heel angle
has second order effect on X while it has first order effect on Y, K, and N such that
increasing heel angle would change Y, K, and N except X. CFD shows fairly close
agreement for static heel linear maneuvering derivatives, whereas large errors are
indicated for nonlinear maneuvering derivatives. The average RSS error of CFD
prediction of linear and nonlinear maneuvering coefficients is 7.4%D and 106%D,
respectively. CFD and EFD static drift show good results of o, 1, X, Y, N for the full Fr
range, whereas K is over predicted for Fr>0.2. In overall, CFD predicts force, moment,
and motions for a drift angle case by the average error of 10%D excluding K and 19%D
including K. It shows that drift angle has second order effect on X and first order effect
on Y, K, and N supporting the theory explained in Chapter 2. CFD predicts linear and
nonlinear maneuvering coefficients excluding K by the error of 8.4%D and 20.4%D.
CFD non-zero static heel in following waves average errors are 12 and 15%D for 20 and
10 degrees heel angle with the largest errors for surge and sway forces. CFD zero static
heel in following waves average errors is 15%D with the largest errors for X and 6. The
average error increases by factor of 2 for same increase in wave amplitude. Heave
response shows 1* and 2" harmonics and pitch show 1% harmonic. X indicates 1% and 2™

harmonics and Y and N show 1%, 2“d, and 4™ harmonics. In overall, CFD static heel in
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following waves simulations using grid 1 and grid 2 could predict all harmonics.
However, grid 2 shows much better agreement with EFD. The surge force in following
wave is estimated from Potential Theory calculation (Froude-Krylov calculation) and
compared with CFD and EFD. It is shown that CFD successfully reproduces the decrease
of the wave-induced surge force near the Fr of 0.2 whereas Potential Theory fails

probably because it cannot capture the 3D wave pattern.
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Table 7-1: Summary of boundary conditions
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Table 7-2: Grid size for CFD tests

Grid 1 (refinement ratio=v2) Grid 2
Coarse Medium Fine Medium
Boundary Layer 047M 133M 376 M 1.29M
Bilge keels 022M 0.63M 1.78M 0.24M
Refinement 035M 1.00M 283M -
Background 0.18M 052M 147M 1.76 M
Total 1.22M  348M 9.84M 329 M




Table 7-3:
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Grid matrix for CFD tests

Gridl :
(Medium) Grid2

Cases in calm
water

Resistance
Static Heel

Static Drift

X
X
X

Cases in waves

Head Waves

Following waves
(10 and 20 deg
heel)

Following waves
(zero heel)

X*

X

*: Grid 1 without BKs is used for head waves.

Table 7-4: Verification study for static heel=10 deg

Refpement x v . N , . |7,
DR 51.83524 5.443227 4.184471 10.19919 12.95431 1.648851
(N) (N) (N.m) (N.m) (mm) (deg)
Ugave (%8S5) 1.320523 25.92286 1.352147 20.957 3.232973 5.801962 9.76
Ugae (%DR) 0.424326 6.567709 1.312601 5.481052 1.552964 1.181102 2.75
Uge-rss(%S5) 0.1008 6.750302 1.024958 5.112561 2.290736 2.365466 2.94

Table 7-5: Non-dimensional input variables for CFD tests

Resistance and Static

Static Drift in calm

Single run tests in calm

Heel in calm water water water and waves
Time step 0.02 0.02 0.02
Velocity variation at
each time step 2e-4 2e-4 B
Fr variation at each time
step 2e-4 2e-4 -
Number of iterations 3000 2000 2000
Maximum running time 60 40 40
Maximum Fr variation 2e-4 2e-4 -
Maximum traveled 0.012002 0.008002 ;

distance variation




Table 7-6: Resistance tests validation

Ee %D | E,e%DR | Eaye-rss%D | Max E%D
X| 15 1.23 1.32 4.11(Fr=0.4)
With BK (Fr>0.2) | o | 5.02 4.15 432 17.7(Fr=0.5)
t| 213 2.11 2.04 6.43(Fr=0.6)
X| 1.83 1.72 1.68 3.76(Fr=0.4)
w/oBK (Fr>02) |o| NA NA NA NA
t| NA NA NA NA
X| 0.97 - 0.97 -
Single run (Fr=0.5) | o | 16.4 - 16.4 -
t| 3.96 - 3.96 -
Table 7-7: Static heel validation
Heel X Y K N c T E
Eave 6.25 28.54 2.78 29.8 9.63 269 | 17.32
%D
Eave 5.98 18.45 1.88 21.06 7.91 420 | 991
%DR
10 deg Eaverss | 2.60 11.05 1.33 11.08 3.62 14.15 | 7.31
(Fr>0.2) %D
Max 10.55 48.78 8.8 51.95 14.52 101.70
E%D | (Fr=025) (Fr=0.6) (Fr=0.6) (Fr=0.25) (Fr=0.55) (Fr=0.35)
Max 10.91 48.78 3.42 26.48 13.92 8.72
E%DR | (Fr=0.4) (Fr=0.6) (Fr=0.6) (Fr=0.45) (Fr=0.55) (Fr=0.5)
Eave 6.3 600 223 17.43 5.64 199 | 1086
%D
Eave 6.19 17.84 1.29 11.74 4.98 515 | 7.86
%DR
20 deg Eaverss | 2.50 14.23 1.31 6.69 2.47 10.03 | 6.21
(Fr>0.2) %D
Max 10.62 4327 9.12 35.00 13.46 69.78
E%D | (Fr=0.35) (Fr=0.3) (Fr=0.6) (Fr=0.25) (Fr=0.55) (Fr=0.35)
Max 10.35 31.04 3.88 15.57 13.46 10.37
E%DR | (Fr=0.35) (Fr=0.25) (Fr=0.6) (Fr=0.25) (Fr=0.55) (Fr=0.5)
Single run (10 | Eave-rss
dea, Fr0.6) | b 1.86 46.69 6.94 30.20 1.18 592 | 15.46

131



Table 7-8: Hydrodynamic derivatives error estimated from static heel

EFD CFD Eave %0D | Eave-rss %D
Fr | 0.6000 0.4000 0.2000 0.0500 | 0.6000 0.4000 0.2000  0.0500
x*' | 0.0061 0.0063 0.0051 0.0060 | 0.0062 0.0056 0.0048 0.0113 13.58 2.66
X' | -0.0015 0.0036 0.0012 0.0095 | 0.0043 0.0085 0.0047  -0.0118 545.41 246.23
Y, |-0.0328 -0.0200 0.0009 -0.0067 |-0.0152 -0.0128 -0.0057  -0.0031 99.15 12.61
Y'yss | 0.0897 0.1182 -0.0137 -0.2015|-0.0054 0.0262 0.0229 0.0284 95.10 30.56
K'y |-0.0063 0.0059 -0.0041 -0.0032|-0.0064 0.0062 -0.0041  -0.0053 16.60 1.99
K'ypo | 0.0294 -0.0276 0.0190 0.0150 | 0.0312 -0.0631 0.4576 0.0150 1204.54 24.76
N’y | 0.0119 0.0090 0.0055 0.0058 | 0.0091 0.0058 0.0018  -0.0291 95.91 12.43
N'gpo | -0.0091 -0.0139 -0.0092 -0.0112| 0.0032 0.0014 0.0058 0.0267 328.74 124.48
E 299.88 56.97
E. 56.31 7.42
linear
E vpriinear | 54345 106.5
Table 7-9: Static drift validation
Drift X Y K N c T E | E,
Eave 13.25 27.75 77.60 8.16 13.78 88.03 38.10 | 30.19
%D
Eave 12.09 27.46 68.18 7.55 7.14 17.67 23.35 | 14.38
S deg %DR
(Fr>0.2) Eave-rss 8.54 16.80 43.24 5.99 8.88 16.28 2595 | 11.30
%D
é\ﬂ/"’lé 14.76(Fr=0.3) 31.44(Fr=0.3) 83.53(Fr=0.2) 12.60(Fr=0.3) 15.94(Fr=0.2) 216.34(&:0.2)-
0
Eave 14.18 12.97 106.34 11.18 8.076 31.14 30.65 | 15.51
%D
Eave 12.018 11.58 85.80 6.99 4.85 17.74 23.16 | 10.64
10 deg %DR
(F0.2) | g s 11.51 11.42 54.75 6.53 7.80 16.71 18.12 | 10.79
%D
é\ﬂ/aé 16.83(Fr=0.4) 19.19(Fr=0.4) 120.36(Fr=0.3) 24.39(Fr=0.2) 9.087(Fr=0.4) 37.24(Fr=0.4) -
0
Eave 10.74 8.84 133.7 15.04 13.07 28.44 3497 | 15.23
%D
Eave 10.14 7.99 145.5 10.71 4.46 12.71 3192 | 9.20
15 deg %DR
(Fr=0.2) Eave-rss 10.85 7.89 49.06 5.67 6.36 11.49 1522 | 8.45
%D
Max | 13.30(Fr=0.3) 9.43(Fr=0.2) 147.8(Fr=0.3) 27.91(Fr=0.2) 24.10(Fr=0.2) 38.92(Fr=0.2) i
E%D
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Table 7-10: Hydrodynamic derivatives error estimated from static drift

Eave Eave-RSS

EFD CFD %D %D

Fr 0.4000 0.3000 0.2000 0.1000 | 0.4000 0.3000 0.2000 0.1000

X*! 0.0063  0.0056  0.0054 0.0055 | 0.0055 0.0049 0.0049 0.0064 12.36 6.27
X'w 02930 0.1803 0.1196 0.1020 | 0.1595 0.0833 0.0650  0.0862 40.13 21.35
Yy 0.3740  0.3649  0.3405 0.3006 | 0.2932 0.2651 0.2691  0.3496 21.57 10.96
Y | 37256 2.1744 09668 1.3854 | 2.2757 1.9354 1.7121 1.9435 41.82 23.98
Ky 0.2206  0.1796  0.1717 0.1578 | 0.3990 0.3327 0.3474  0.3993 105.40 54.61
K'vw | 15611  0.7531 1.5467 1.8460 | 1.5813 2.4280 2.7410 2.4192 83.00 59.37
Ny |.0.1237 -0.1083 -0.0960 -0.0821 |-0.1276 0.1106 -0.1034 -0.1071 10.88 7.93
N'vwy [ 21223 -1.1992 -0.5132 -0.4078 |-1.2217 0.7914 -0.5909 -0.2859 | 30.37 15.97
Z'n 0.5543  0.4566  0.6473 0.6852 | 1.1633 1.2550 1.3705 1.1657 | 116.64 61.26
/5 51.35/ | 29.08/

EE v, 2619 | 14.41

E 53.37/ | 28.21/

tincar ! Eiinear_x 8.7, 14.94 8.39

— /= 48.83/ | 30.17/

nontinear ! E pontinear k 8.7, 37.44 20.43

Table 7-11: Simulation Egss of static heel in following waves estimated from results
vs. ship position in waves

Heel&Fr Wave X Y K N z 0
Heel10-Fr=0.3 H/A=0.03;A/L=1 3529011  45.02286  3.93254  6.67891 835731 4.87985 | 10.85
Heel20-Fr=0.3 H/A=0.03;/L=1 27.05689  23.62012 338126 3.28103  8.80345  6.56903 | 12.11
Heel0-Fr=0.35 H/A=0.025;A/L=1.25 9.98453 4.69035  30.7823 | 15.15
Heel0-Fr=0.35 H/2A=0.05;1/L=1.25 18.54791 9.49351  58.0826 28.70

Table 7-12: FFT of static heel in following waves
E (%D) First/Second hamonic
Grid 1 Grid 2
Heel Wave Fr X Y K N o T X Y K N o T

dog H@;ﬂ-ﬁ 0.3 | 573/56 56.1 582 30.9/71.9 584/62 32.4| 76/35 93 21 126/933 2.97/58 8.08
(feog H/;/;g-lm 03 |18.8/53.1 52.8 544 30.5/742 60.1/51 35.6(99.3/32.4 27 725 049/31 2.75/48 5.08
& [H2=002514 45 NA - - NA NA

eg | WL=1.25

& [H2700251 9 55 NA - ; NA NA

eg | A/L=1.25

0 |H/A=0.025

0.35 116 - - 1.76 59
deg | 3/L=1.25

B [ HAZ0.05 ¢ 35 23 - - 155 645

eg | WL=1.25
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Figure 7-4: Free surface elevation for resistance test: (a) Fr=0.2; (b) Fr=0.3; (c)
Fr=0.4; (d) Fr=0.5; (e) Fr=0.6
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Figure 7-6: Vortex structures for resistance test at Fr=0.6
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Figure 7-7: Non-dimensionalized results for static heel at $=10: (a) sinkage; (b)
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-8: Dimensional results for static heel at $=10: (a) sinkage; (b) trim; (c)
axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-9: Non-dimensionalized results for static heel at $=20: (a) sinkage; (b)
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-10: Dimensional results for static heel at $=20: (a) sinkage; (b) trim; (c)
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Figure 7-12: Free surface elevation for 10 deg static heel simulation: (a) Fr=0.2; (b)
Fr=0.3; (c) Fr=0.4; (d) Fr=0.5; (e) Fr=0.6
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Figure 7-13: Free surface elevation for 20 deg static heel simulation: (a) Fr=0.2; (b)
Fr=0.3; (c) Fr=0.4; (d) Fr=0.5; (e) Fr=0.6
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Figure 7-14: Free surface elevation for static heel test at y/L.=0.0: (a) Fr=0.2; (b)
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Figure 7-15: Free surface elevation at the bow for static heel test at Fr=0.6 and $=20
deg

Figure 7-16: Free surface elevation at the aft for static heel test at Fr=0.6 and ¢=20
deg
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Figure 7-17: Contours of x-vorticity at several sections for static heel test at Fr=0.6
and ¢=20 deg
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Figure 7-18: Non-dimensionalized results for static drift at B=5: (a) sinkage; (b)
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment

0
. P ——
v] F— -0
{-50
[
I
3 ! 4-100
_
E / o
E ! --150ﬁ
©10 J
I 4-200
I
! CFD
15k ki . EFD wd-250
d ——@== E%D
' 1 1 1
0.1 52 0.3 0.4
Fr
@
aof q J20
s \ CFD
- \ = EFD
\ --a-- e%p, 1"
wr \
1
5k \ 10
s’ \ o
= \ ] O;e
> \‘ L] ow
15f
‘\
10F \h 4-20
-]
5F ~— -
—— {-30
' ? 1
0.1 0.2 03 0.4

(d)

01

,’\‘ cFD
i\ = EFD
! w-e-- E%D
I 1

I

I

I

I

1 L 1
K] 02 03 o4 100
Fr
K 200
4 \ CFD 5
\ = EFD |
\ ——8—— E%D /7
. \ -10
_ 3 150 .o
E' ‘\ 141:1n £
= 3 ==
=2 \\ . o =%
x \ 1200 =2
\ 25
A
4100
1 Il\ [ ] =30
———— 480
= “"--.._a 35
n 1 1
o 0.1 GF] 03 53 o0
Fr

{15
q\ CFD
1 -
\ ——&—— E%D =
{5
o
Jo =
w
45
{-10
{15
' 1 1
0.1 0.2 03 0.4
Fr
(c)
30
q\ CFD
\ = EFD
\ ——a-— E%D 120
\
A
\\
{100
\ L]
\ 2
\ w
A"
\ Jo
A"
\h.
S~ 27 -0
~er”
1 ' 1 1
0.1 0.2 03 0.4
Fr

()

Figure 7-19: Dimensional results for static drift at f=5: (a) sinkage; (b) trim; (c)
axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-20: Non-dimensionalized results for static drift at f=10: (a) sinkage; (b)
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-21: Dimensional results for static drift at B=10: (a) sinkage; (b) trim; (c)
axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-22: Non-dimensionalized results for static drift at =15: (a) sinkage; (b)
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-23: Dimensional results for static drift at B=15: (a) sinkage; (b) trim; (c)
axial force; (d) side force; (e) roll moment; (f) yaw moment
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Figure 7-24: CFD and EFD and their reconstructions using regression method: (a)
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Figure 7-25: Comparing free surface elevation for static drift angle cases: (a)
Fr=0.2; (b) Fr=0.3; (c) Fr=0.4
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Figure 7-26: Free surface elevation at leeward side for static drift angle cases at

Fr=0.4
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Figure 7-27: Free surface elevation at windward side for static drift angle cases at

Fr=0.4
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Figure 7-28: Pressure counters on the hull for static drift angle cases at Fr=0.4
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Figure 7-29: Vortices around the hull for static drift angle cases at Fr=0.4: (a) Iso-
surface of q=30 contoured by velocity and free surface contoured by z ; (b) X-
vorticity contours at several sections and free surface contoured by z
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Figure 7-31: CFD and EFD results vs. ship position for 10 deg static heel at Fr=0.3
in following waves with H/A=0.03 and A/L=1: (a) heave; (b) pitch; (c) axial force; (d)
side force; (e) roll moment; (f) yaw moment
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Figure 7-32: CFD and EFD comparison for 20 deg static heel at Fr=0.3 in following
waves with H/A=0.03 and A/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force;
(e) roll moment; (f) yaw moment
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Figure 7-35: CFD and EFD comparison of wave induced heave, pitch, and axial
force for zero deg static heel at Fr=0.35 in following waves with H/A=0.025 and
AIL=1.25



CFD cFD
20l
2k
E of >
E - gl
it oA
N &
ol &
2k
-40
) 4 ) A
0z 04_ 06 08 0z 04 1
Ealh Eolt
(a)
20f cFD .L CFD
_ _
E g
E ot Zor
Ng =
(==
2 =
20}

5 8 8

o
T

2y (mm)

) ) ) )
02 04_ 06 0.8
Eglh

04 0B 08 1
Eolt

(©

156

@ CFD
20
—_
=
1]
=
>
20
40
) ) )
02 04_ 06 0.8
Eglh
20 CFD
—_
£
= 0
>
-20
. \
0 02 04 06 08

=

L
02

L
04

) )
06 0.8
Eglh

Figure 7-36: CFD and EFD of wave induced heave, pitch, and axial force vs. Ec/A
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Figure 7-37: CFD and EFD of wave induced heave, pitch, and axial force vs. Ec/A
for zero deg static heel at Fr=0.35 in following waves with H/A=0.025 and A/L=1.25
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Figure 7-38: FFT results for 10 deg static heel at Fr=0.3 in following waves with
H/A=0.03 and A/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force; (e) roll

moment; (f) yaw moment



z(mm)

X (N)

K{N.m)

16.00

14.00 -
12.00 +
10.00 -
8.00 -
6.00 -

4.00

2.00 -
0.00 -

30.00

25.00

20.00

15.00

10.00

16.00
14.00
12.00
10.00
8.00
6.00
4.00
2.00
0.00

—CFD (Grid1)
—CFD (Grid2)
—EFD

(@)

—CFD (Grid1)
—CFD (Grid2)
—EFD

—CFD (Grid1)
—CFD (Grid2)
—EFD

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

5 6 7 8 9 10
f/fe
(e)

0 (deg)

Y (N)

N (N.m)

1.40
1.20
1.00
0.80
0.60
0.40
0.20

0.00

4.50

4,00 -
3.50 +
3.00 -
2.50 -
2.00 -
1.50 +

1.00
0.50
0.00

6.00

5.00 +

4,00 -

3.00 +

2.00 +

1.00 -

0.00 -

—CFD (Grid1)
—CFD (Grid2)
—EFD

—CFD (Grid1)
—CFD (Grid2)
—EFD

—CFD (Grid1)
—CFD (Grid2)
—EFD

®

158

Figure 7-39: FFT results for 20 deg static heel at Fr=0.3 in following waves with
H/A=0.03 and A/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force; (e) roll

moment; (f) yaw moment
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CHAPTER 8. VALIDATION OF FREE MODEL SIMULATIONS

CFD free model simulations are performed with the same operational and
environmental conditions used in the free model tests program 1 and 2 described in
Chapter 6. The simulations are performed for series of control parameters (heading and
Fr) to study and analyze the process of surf-riding, broaching, and periodic motion. The
CFD results are compared with the results of NDA model which is based on the
mathematical model described in Chapter 2. The inputs for the mathematical model are
estimated from potential flow, EFD, and CFD, as shown in Chapter 7. Herein, the details
of CFD simulation including computational domain and boundary conditions, grid,
simulation design, 2DOF self-propulsion simulation in calm water, and free model
simulation in following/quartering waves are presented and lastly the CFD and NDA

results are compared with EFD.

8.1 Computational Domain, Boundary Conditions

The computational domains extend from-0.6<x<1.8,-0.6<y<0.6,-08<z<0.8, In

dimensionless coordinates based on ship length, as shown in Fig. 8-1. The ship axis is
aligned with the x-axis with the bow at x = 0 and the stern at x = 1. The free surface at
rest lies at z = 0. The ship model is appended with skeg, bilge keels, and super structure.
Twin rudders are included to steer the ship. The original rudders on OT model have a
small trunk attached to the hull and a large spade. In this study the rudders are
approximated as full spade rudders with no trunk, leaving a small gap between the hull
and the rudder spade. This is done to simplify grid generation and overset design for the
moving rudders.

Boundary conditions are shown in Table 8-1. Inlet, exit, and sides boundary conditions

are imposed such that they follow linear wave theory equations:
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p:FfZ e cos(kx—27yft)—%ez’” (8.1)
¢ = Acos(x —2aft) - 2(x) (8.2)
U(x,y,2,0)=U, +%\/Ee/‘z cos(kx —27ft) (83)
W(x,v,z,t) = %\/Ee“ sin(kx — 27ft) (8.4)

Here, U, is zero since all free model simulations are performed in earth coordinate

system.
8.2 Grid

Computational grids are designed using overset technique in which independent grids
are created for each appendage and then they are assembled to generate the total grid.
The grid for each appendage essentially has to have enough overlap with other grids to
communicate correctly with other blocks. Two double-O boundary-layer grids are
generated with a hyperbolic grid generator of GRIDGEN to model the starboard and port
sides of the hull such that starboard and portside grids are patched together at symmetric
plate. Grid spacing at the hull is designed to yield y* <1 for wide range of Fr numbers.
The superstructure grid oversets the boundary layer grids and is constructed with an H-
type topology using hyperbolic grid generator. The superstructure grid allows
computations with extreme motions such as capsizing. The skeg and bilge keels use H
topology and overset the boundary layer grids. Double-O grids are used for each rudder
such that inner side and outer side are patched at symmetric plate. Grid topology was
selected so that a Cartesian grid (background block) is responsible to capture the flow far
from the hull. Since there is a wave on the free surface, the background block was
designed to have enough grid points near free surface. Table 8-2 summarize the grids

and Figure 8-1 shows grid for the ship.
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8.3 Simulation design

Free model simulations are carried out in earth-fixed inertial coordinate system in
which velocity is not given to the flow but it is imposed on the ship. First, the model is
simulated in calm water with self-propulsion condition using a speed controller to predict
the propeller RPS to reach the target Fr number. The predicted RPS is then prescribed for
the free model simulations at the same nominal Fr number to mimic EFD test design.

In free model simulations, propellers and rudders move and rotate with ship motions
such as other appendages. However, they are capable of having relative motion respect to
the hull. Propeller rotates around its shaft axis and is responsible to make enough thrust.
Rudder rotates around z-axis making turning moment. This capability in the CFDShip-
Iowa code is achieved by the concept of parent and child object in which propellers and
rudders are considered as child object while the hull with other appendages are parent

object, as discussed in Chapter 3.
8.3.1 Propellers

Propellers are modeled using actual rotating propeller or using a radial varying body
force filed, which follows the variation of a theoretically derived circulation distribution.
This body force field is prescribed by means of the ship speed based advance coefficient
(J=U/nD,) and open water curves i.e. thrust coefficient K(J) and torque coefficient Ko(J)
curves. The open-water curves are expressed as second-order polynomials, and the
location and thickness of the actuator disk is prescribed with a vector going from point p1
to p2, with radius r, and hub radius r,. Details of the propellers used are provided in
Table 8-3.

The propeller rotation speed (RPS) for each free model simulations can be prescribed

or predicted. In this study, the propeller RPS is predicted in calm water for each Fr
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number and then it is prescribed in free model simulations for the same Fr number to

produce enough thrust. This is the same as EFD procedure for free model tests.

8.3.2 Rudders

Rudders are modeled as child object in which they can have relative motions respect
to the ship. Rudder deflection can be controlled trough a PID controller as explained in
Chapter 3. A PID controller with P=1 and [=D=0, the same as EFD, is used for rudders
to change rudder deflection and turn the ship toward the target direction. This kind of
controller would turn rudders exactly the same as course deviation since P=1 and other
terms are zero. For each free running case, maximum rudder deflection and deflection
rate are also specified as given by EFD to have the same behaviour for CFD and EFD

rudder controller.

8.4 Self-Propulsion Simulations in Calm Water

As explained earlier, 2DOF self-propulsion simulations free to sink and trim in calm
water are performed to indicate propeller RPS needed to push the ship to surge at target
Fr number. This simulation is carried out for Fr=0.25, 0.3, 0.35, 0.4, and 0.45.

Figure 8-2 demonstrates CFD propeller RPS, thrust force, and ship motions calculated
for all target Fr. As it is shown, the propeller RPS is changed by controller to reach the
ship speed to the target Fr. After this point, the propeller RPS, thrust force, and ship
motions are fairly constant. As shown in Fig.8-3, propeller RPS and sinkage increase
linearly from low to high Fr whereas the thrust force and trim increase nonlinearly. The
CFD and EFD comparison of propeller RPS demonstrates that CFD over predicts
propeller RPS by E=5.8%D due to the fact that propeller model has some significant
limitations. The most important issue is that the thrust and torque do not depend on the
local flow field near the propellers, but on the total velocity of the ship. In addition, the

body force is axisymmetric and side forces are neglected. In order to evaluate accuracy of
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body force propeller model, CFD simulation is also carried out for actual dynamic
propeller, as shown in Fig. 8-3, and indicated that RPS error drops to 1.7%D using actual
propeller. This suggests the simplicity and efficiency of body force propeller model

would cost about 4%D more error which is reasonable.
8.5 CFD Free Model Test Program 1

CFD studies are performed for A/L=1.25, H/A=0.05, GM=2.068 m and y. = 5, 15, 30
deg, and GM=1.78 m and y. = 15 deg. The simulation is carried out at Fr=0.4. The initial
wave phase and surge velocity are not provided by experimental data and are estimated
from EFD pitch history or/and trial and error method. Initial roll, pitch, yaw angle and
rudder deflection are estimated from their experimental time histories. The propeller RPS
is fixed during the simulation and a proportional heading controller with gain P=1 is used
based on the deviation from the target heading. The propeller RPS at each nominal speed

is obtained by running the self propulsion model in calm water, as explained earlier.
8.5.1 Fr=0.4 & GM=1.78 m

8.5.1.1 y.=15deg

Figure 8-4 shows time histories of motions, forces, and moments on the hull, rudder,
and propeller for the case of broaching where GM=1.78 m and y. = 15 deg. Initial wave
phase=264 deg and surge velocity=0.15, estimated from trial and error method, are used
as shown in Table 8-4. The roll and pitch angles show that the model moves slightly
slower than experiment, probably due to inaccurate initial conditions and/or variable EFD
propeller RPS. The yaw shows that the initial heading is around 30 deg and controlled by
rudder to reach desired course (. = 15). However, after about 5 seconds the ship starts
turning broadside to the waves eventually broaching, with the rudder turned hard to port

but unable to steer the ship. Figures 8-4b and 8-4c show active forces and moments.
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Active forces and moments are those that voluntary or involuntarily modify the heading
of the ship (hydrostatic forces/moments caused by the waves, and forces/moments caused
by rudder action and by the propeller). Reactive moments are those that oppose the yaw
motion, including dynamic pressure and friction moments. The yaw moments indicate
that hydrostatic/wave yaw moment is about Ny=-100 N.m after t=5 sec while rudder
reaction moment is about Ng=20 N.m which is not enough to resist to wave yaw moment.
The ship stays in this condition for a while which causes reaching to 60 deg heading off
from target and broaching. The propeller yaw moment is ten times smaller than rudder
moment and it is negligible. In fact, propeller yaw moment and roll moment should be
zero unless one of two propellers is temporally emerged out of water due to large roll

angle as shown in Fig. 8-4c.

8.5.2 Fr=0.4 & GM=2.068 m

8.5.2.1 y.=5deg

Figure 8-5 shows the case of stable surf-riding with GM=2.068 m and y. = 5 deg.
Initial wave phase=230 and surge velocity=0.2 are used based on trial and error method
shown in Table 8-5. After an initial transition in which one wave overcomes the ship, the
model reaches to enough forward speed to travel locked in waves. During the transition
part, the rudder turns the model to the desired course very rapidly so that the ship travels
with tight heading and is quickly captured by the wave down slope causing negative pitch
angle at t=3 sec. After that, ship velocity reaches to wave velocity and ship is in surf-
riding condition. Since relative ship position respect to waves is fixed during surf-riding,
the motions, forces, and moments reach to the steady-state condition in which active and

reactive forces/moments are balanced.
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8.5.2.2 y. =15 deg

Figure 8-6 illustrates the broaching case where GM=2.068, y. = 15 deg, and Fr=0.4.
Initial conditions for wave phase and ship speed are 50 deg and 0.4, based on CFD
simulations shown in Table 8-6. In overall, CFD model moves slower than experiment
because EFD propeller RPS is 10% higher than CFD. This is due to the fact that EFD
controller for propeller is not accurate enough to keep the propeller RPS constant. Pitch
motion indicates the ship is captured by wave down slope ending up with surf-riding
starting after t=2 sec and continuing for about 6 seconds. The surf-riding region can be
seen from wave axial force and wave pitch moment time histories too. During surf-riding,
the negative yaw angular velocity not only results in turning broadside to the wave but
also induces a centrifugal force together with large forward velocity. This centrifugal
force causes the roll angle of +50 deg. Also, the yaw moment originated by the wave
becomes strong enough after t= 5 sec than any other active moment trying to counteract

it, essentially the rudder moment, and results in broaching at t=9 sec.

8.5.2.3 y.=30deg

Figure 8-7 shows the case of periodic motion with GM=2.068 m and . = 30 deg.
Initial wave phase=20 deg and surge velocity=0.33 are applied, based on Table 8-7. The
yaw angle shows that the model is released at 40 deg heading. At t=2 sec, wave induced
yaw moment (N,=-120 N.m) is stronger than rudder reaction moment (Ng= 20 N.m) so
that the vessel turns hard causing 70 deg heading at t= 4 sec. At this time, ship is almost
in beam waves inducing positive yaw moment and pushing the ship to turn toward the
target heading. The ship reaches to target at t=8 sec where huge wave induced yaw

moment turns the ship away from target heading and forms a periodic motion.
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8.6 CFD Free Model Test Program 2

CFD studies are performed for A/L=1.25, H/A=0.05, Fr=0.3,0.35, 0.4, 0.45, GM=2.068
m and y, = 5, 15, 22.5, 30 deg. The initial wave phase and surge velocity are not
provided by experimental data and estimated from EFD pitch history or/and trial and

error method.

8.6.1 Fr=0.4

8.6.1.1 y.=5deg

Figure 8-8 shows the surf-riding case where . = 5. The pitch motion shows that the
model is released at +4 deg and overtaken by waves very fast such that pitch reduces to -
2 deg at t=1 sec. At this point, the bow is down and ship is locked in wave downslope so
that pitch angle never returns to positive value and surf-riding happens. The roll motion
indicates that the ship is almost at stable upright position during surf-riding. The rudder
and yaw motion show that rudders turns to 20 deg right after releasing the model to turn
the ship from 30 deg heading to the target heading (y. = 5). However, it seems that the
model stays at 10 deg heading and cannot reach to the target. This might be due to the
type of PID controller (P=1, [=D=0) used for rudders. In fact, the controller would not
react fast for small heading deviation so that rudders turn very slowly after t=8 sec. CFD
is performed for several initial wave phase and ship speed, as shown in Table 8-8, and
obtained initial wave phase and ship speed about 50 deg and 0.2, respectively. In overall,
CFD predicts the trend of motions. However, CFD results show that CFD model moves
slower than EFD and that is due to the difference between CFD and EFD propeller RPS
as shown in Fig. 8-8a. CFD trajectory shows the surf-riding occurrence clearly. Figures
8-8b and 8-8c illustrate forces and moments due to waves, rudders, and propellers.
Propeller forces and moments are very small compare with other forces and moments.

Propeller thrust (Xp) shows that it is maximum at releasing condition (Fr=0.2) and
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reduces by factor of " after couple of seconds. This introduces that ship speed is
increased by factor of about 2 during the simulation such that Fr reaches to 0.4 which is
close to wave velocity. In other words, it is confirmed that the model is locked in waves
and moves with it which results in surf-riding. Since the model is appended with twin
counter rotating propellers, the total propellers roll and yaw moment are zero unless part
of one propeller emerges out of water. Figure 8-8 indicates that propellers are partially
out of water at the first couple of seconds due to large roll angle. The CFD prediction of
forces and moments on hull and rudders could explain the process of surf-riding. Yaw
moment indicates the Ny is very large up to t= 3 sec so that rudders cannot counteract it.
After t=3 sec, the wave moment drops significantly since the ship speed is close to wave
speed and the model is locked in waves. Consequently, rudders can work against waves
moment such that Ng=+20 N.m and Ny=-20 N.m and turn the model toward the target

while the model is seized in waves.

8.6.1.2 y. =15 deg

Figure 8-9 shows the surf-riding case where . = 15. Pitch motion shows that the ship
is released while bow was down. However, the waves overtake the model and induce
positive pitch at t=3 sec and negative pitch at t=4 sec. Then the model stays with negative
pitch showing that it is locked in wave i.e. the model surf-rides. The yaw angle show
clearly the surf-riding occurrence after t=7 sec. The turning speed of the model (rate of
yaw angle) is very large between t=4 (right after overtaking by wave) and t=7 sec (before
surf-riding). This produces very large centrifugal force causing fairly large roll angle
during this time as shown in roll motion in Fig. 8-9a.The yaw motion is also indicates
that initial heading is 10 deg whereas it reaches to 25 deg during surf-riding. Note that the
target heading is 15 deg and the model passes the target heading around t= 5 sec. CFD is
performed for the different initial conditions, as shown in Table 8-9, and 235 deg and 0.1

are used as the initial wave phase and ship speed, respectively. In overall, CFD predicts
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the same phenomenon even though it shows small phase lag compare with EFD trend of
motions. The yaw motion shows that the CFD model is at 25 deg heading during surf-
riding similar to EFD but it oscillates more. The CFD drift angel indicates that during the
time that ship turning speed is large, the model moves with 20 deg roll and about 3 deg
drift angle. The prediction of propeller thrust shows that the model reaches to minimum
speed/maximum thrust when the ship is going to be overtaken by waves and reaches to
maximum speed/minimum thrust during surf-riding. Yaw moment indicates that rudders
and waves moment are negative up to t=3 sec i.e. the model is even pushed by waves to
move toward the target. After t=3 sec, the wave moment is still negative and much bigger
than rudder counteracting moment such that the model reaches to 25 deg heading at t=6
sec. Later, the rudder yaw moment reaches roughly to wave moment amount such that

ship stays relatively at 25 deg heading.

8.6.1.3 y,=22.5deg

Figure 8-10 shows the case of broaching. The model is released at zero roll and pitch
angle and 5 deg heading. The pitch angle indicates that the model is on the wave
downslope for about 6 seconds in which pitch angle is negative. Basically, surf-riding is
observed during this period. Then the model is surpassed by several waves causing
oscillatory pitch motion. Yaw angle indicates that the model is released at 5 deg heading
and reaches to 60 deg heading during surf-riding. After that, the rudders reach to their
maximum deflection (35 deg) and are not able to control the model. The model continues
turning up to 80 deg heading and broaches. The roll angle shows that the rate of yaw
angle (turning rate) during surf-riding produces strong centrifugal force such that the
model rolls up to 60 deg. However, the model is not involved in capsize process due to
large roll restoring moment produced by its superstructure. Since initial conditions of
wave phase and ship speed are unknown, they are estimated 200 deg and 0.55, based on

Table 8-10. The CFD simulation predicts broaching and all other modes of motions. The
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CFD model trajectory demonstrates broaching occurrence after surf-riding. It is observed
that the model has about 15 deg drift angle during broaching. The propeller, rudder, and
hull forces and moments provide more details of broaching process. The propellers thrust
explain that the thrust is positive and the propellers produce resistant instead of thrust.
According to Table 8-3, Kr would be negative for very large J or speed (J=U/nD).
Herein, initial ship speed (Fr=0.55) is large such that Kr is negative and propellers
produce resistant instead of thrust. After t=2 sec, the model speed reduces to wave speed
and ship is locked in waves and surf-rides. During surf-riding, the wave yaw moment
increases to Ng=-100 N.m and rudder moments reach to their maximum Ng=+40 N.m

such that the rudders cannot counteract wave yaw moment and the model broaches.

8.6.1.4 y.=30deg

Figure 8-11 shows the case of periodic motion. The model is released at +2 deg pitch
and zero deg roll angle. The initial heading is 10 deg. The pitch motion shows that the
model is overtaken by waves such that the bow moves up and down. The yaw angle
shows that the model reaches to 60 heading at t=5 sec. However, the model is located on
wave upslope at t=5 sec such that wave yaw moment would be positive and return the
model to the target. More than that, rudders take the control of the model with 35 deg
deflection. Then, the model moves toward the target such that the heading reduces to 45
deg (target heading is 30 deg) at t=7 sec. At this point, the bow is down and the model is
located on the wave downslope such that wave yaw moment would be negative and turn
the model to 60 deg heading at t=9 sec, similar to heading at t=5 sec. This introduces
periodic motion with period of 4 sec which is basically encounter period at 60 deg
heading respect to waves. During periodic motion, the large yaw rate produces large roll
angle. The CFD simulation is performed for 144 deg initial wave phase and 0.2 ship
speed, as shown in Table 8-11. CFD shows very good agreement with EFD in terms of

the amplitude of motions and phase. CFD results indicate that the model reaches to about
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10 deg drift angle after t=5 sec where periodic motion is started. The CFD forces and
moments show periodic behaviour. The periodic change of ship speed causes periodic
propeller thrust force. K, and N, clearly show that one propeller comes out of water
during periodic motion. The wave yaw moment indicates that it is positive (Ng=80 N.m)
at t=5 sec since it hits the model from portside as shown in Yp and the model is turned
toward the target. However, the yaw moment reaches to negative value Ny=-150 N.m at
t=7 sec where the model is on the wave downslope and hit from starboard. This produces

periodic motion.

8.6.2 Fr=0.45

8.6.2.1 y. =5 deg

Figure 8-12 shows the case of surf-riding. The yaw motion indicates that the model is
released at 50 deg heading. The rudders turn hard to guide the model to the target heading
which results in large yaw rate and consequently large roll angle due to centrifugal force.
At t=6 sec, the rudders deflections are almost zero and the model is located at the target.
However, surf-riding starts at t=9 sec after the model is overtaken by waves and locked in
wave downslope. The EFD propeller RPS had to be fixed but it is well controlled by
propeller controller. The reduction in RPS at t=9 sec explains that the ship speed is
increased right before surf-riding and then decrease to wave speed during surf-riding. The
CFD simulation is performed but with arbitrary initial conditions for roll, pitch, heading,
rudder deflection, wave phase, and ship speed. The pitch motion shows that the CFD
model is released at negative pitch angle and it keeps cruising at that situation. In other
words, the model is locked in wave downslope right after it is released. Yaw motion and
trajectory show that CFD model starts surf-riding at target heading from the beginning.

The CFD yaw moment explains that the wave and rudders yaw moment are balanced
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right after the releasing time such that rudders can take the control of the model and keep

it in the target heading.

8.6.2.2 y. =15 deg

Figure 8-13 provides the results for surf-riding case where y, = 15 deg. The pitch
motion indicates that the model is at +4 deg pitch at t=0 sec and the pitch reduces to -2
deg at t=2 sec meaning that the model is overtaken by one wave. The pitch increases to
about zero at t=6 sec and then drops to -2 deg at t=8 sec introducing the second wave
overtakes the model too. Later, the model is seized in next wave downslope such that the
bow is down for the rest of the test and surf-riding happens. The yaw and rudder motions
illustrate the trend of surf-riding. The heading increases from 10 deg (initial heading) to
22 deg at t=8 sec exceeding the target heading. During this period, the rudders turn to 10
deg to guide the model toward the target. The model stays at 22 deg after t=8 sec and
surf-riding starts. The CFD simulation is performed with different initial condition
compare with EFD, as shown in Fig. 8-13. The initial pitch of CFD model is negative and
the model stays at this situation for the rest of simulation. Yaw motion shows that CFD
model turns to 25 deg heading with the same trend as EFD but with a phase lag due to
initial condition issues. The trajectory shows surf-riding occurrence after the model
travels 15 m which is about 5 times of ship length. The predicted propeller thrust shows
that the thrust is minimum (ship speed is maximum) around t= 5 sec right before the
model is involved in surf-riding process. The increased ship speed causes that the relative
ship speed respect wave speed decreases and consequently wave yaw moment decreases
after t=5 sec as shown in Ny. Consequently, rudders can counteract the wave yaw

moment and take control of the model and put it at 25 deg heading.



174

8.6.2.3 y.=22.5deg

Figure 8-14 shows the case of broaching in which . = 22.5 deg. The time history of
pitch provides the details of ship position respect to waves. The ship is on wave crest at
initial point and then located on wave trough around t=2 sec. Afterward, the ship is seized
in wave downslope for about 4 sec. During this time, the model is involved in surf-riding
situation and heading increases to 60 deg. At this point, rudders are at their maximum
deflection such that the model continues turning to 80 deg heading without rudder
counteracting moment and consequently the model broaches. EFD propeller RPS varies
during the test which is due to the weakness of the propeller controller. CFD simulation is
performed with different initial condition. In overall, CFD simulation shows similar trend
for heading with a phase lag due to initial conditions. The CFD model starts surf-riding
right after releasing and it lasts until the model is overtaken by waves at t=4 sec. The
heading increases very fast to 70 deg during surf-riding and rudders reach to the
deflection limit. On the other hand, the centrifugal force is very large due to large yaw
rate and produces 50 deg roll angle. Consequently, the CFD model broaches at large roll
angle. K, and Np show that one of the propellers emerges out of water during simulation.
The CFD trajectory indicates broaching at x=13 m where the ship moves toward west.
The model turns back to the target after broaching but another broaching could happen as

shown in trajectory.

8.6.2.4 y. =30 deg

Figure 8-15 shows the case of broaching for vy, = 30 deg. The yaw motion shows that
the model is released at zero heading and it turns to 80 deg heading after 6 sec. In fact,
the heading exceeds the target since the yaw rate is very large. At t=6 sec, the rudders are
at their maximum deflection and the model loses its control and broaches. After

broaching, the model is roughly in beam waves such that wave yaw moment drops
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significantly and rudders can counteract it and turn the model toward the target. The CFD
simulation, performed for different initial condition, predicts broaching at t=13 sec. As
shown in Fig. 8-15, the CFD model is released at 22 deg heading and oscillates around
the target until the heading reaches to 80 deg at t =13 sec where rudders are at maximum
angle and broaching happens. The pitch shows that CFD model is overtaken by second
wave at t= 7 sec and then the model is involved in surf-riding for a while right before the
broaching happens. The propeller moments show that one of the propellers emerges out
of water during simulation. The rudder and wave yaw moment are positive during
broaching which provide enough yaw moment to return the model to the target heading.
The propeller thrust shows that the speed increases right before maximum headings at t=3
and 11 sec. At t=3 sec, rudders control the heading and prevent broaching. At t=11 sec,
the rudders are at their maximum deflection and could not prevent broaching. The
trajectory shows clearly the first and second maximum heading condition. The first one
happens nearly at x=10 m and second occurs at x=25 m. The curvature of the trajectory
shows the turning rate which is very large before broaching such that the model cannot

stop turning and broaching happens.

8.6.3 Fr=0.35

8.6.3.1 y.=5deg

Figure 8-16 shows the case of surf-riding where vy, = 5 deg. The model is released at
relatively large roll, pitch, and heading. The model is overtaken by two waves in 7
seconds as shown in pitch motion. Afterward, the model is locked in wave downslope
and surf-riding happens. The yaw motion indicates that the model turns fairly fast toward
the heading before surf-riding and then the model stays at 5 deg heading (target heading)
at t>7 sec. The rate of yaw angle induces large centrifugal force for t< 7 sec which causes

30 deg roll angle. The CFD simulation is carried out with different initial condition. The
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CFD model is released at -2 deg pitch angle and stays roughly at this angle for the whole
simulation. This introduces surf-riding occurrence right after releasing the model. The
model rolls 5 deg during surf-riding and stays at 12 deg heading. The CFD trajectory
approves that the model is involved in surf-riding since it is released. The propeller thrust
shows that the ship speed increases (i.e. thrust reduces) during surf-riding. The wave and
rudder yaw moment are at the same order during the surf-riding such that rudders can

counteract wave yaw moment and take the control of the ship.

8.6.3.2 y. =15 deg

Figure 8-17 shows the case of broaching where y. = 15 deg. The model is released on
the wave crest so that the pitch angle is positive. Then, the model is overtaken by waves
and pitch drops to -2 deg where the model is on the wave downslope. Later, the model is
involved in surf-riding situation for about 5 sec. The heading shows that the model is at
10 deg heading at the beginning of the test. Then the model moves toward the target and
oscillates around the target for 4 sec and lastly the model starts moving away from the
target at t=7 sec. The turning rate is very large for t>7 sec such that the model reaches to
60 deg heading in less than 5 sec. For t>11 sec, the rudders are at their maximum
deflection and cannot stop the ship turning such that the model reaches to 70 deg heading
and broaching happens. During the broaching, the ship rolls 50 deg due to the created
centrifugal force. The CFD simulation is performed for different initial condition. The
model is released at bow down position and locked in wave downslope for 4 sec and surf-
rides. During surf-riding, the heading exceeds the target heading and increases to 50 deg
at t=5 sec where the rudders at their maximum deflection and broaching happens. The
CFD simulation shows that the model is at large drift angle during broaching process.
The trajectory shows that the model broaches nearly at x=12 m. The wave and rudder
yaw moment provide the details of the broaching process. Ny is negative and it increases

for t<4 sec. Consequently, heading increases even though rudder defecation increases to
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turn the model toward the target and broaching happens. Note that during broaching,

thrust is very low i.e. the model speed is very large.

8.6.3.3 y.=22.5deg

Figure 8-18 provides the CFD and EFD results for y. = 22.5 deg. The model is
overtaken by several waves as shown in pitch motion. At t=10 sec, the model is locked in
waves and surf-rides for a while. During this period, the heading increases to 60 deg
where the rudders are at their maximum deflection. The large turning rate produces 50
deg roll angle. The CFD simulation is carried out for different initial condition. The
model is released at 20 deg heading and moves toward the target. At t=2 sec, the model
exceeds the heading and reaches to 60 deg heading (t=4 sec) where rudders are nearly at
their maximum deflection and ship broaches. The trajectory shows broaching at x=8 m.
Note that CFD and EFD show periodic trend before broaching. This suggests that this
case is close to the boundary of broaching and periodic motion. In other words,
increasing the target heading would change the broaching to period motion. The
prediction of yaw moment show that wave yaw moment is about Ny=-100 N.m before
broaching such that rudders cannot counteract it. After t> 4sec, the wave yaw moment
increases to Ny=180 N.m supporting rudders to turn the model toward the target. The
propeller moment is 10 times smaller than rudder yaw moment and is negligible. In fact,
propeller yaw moment should be zero due to symmetric behaviour of disk approach for
twin counter-rotating propellers. However, one of two propellers can be emerged out of
water temporally and making non-zero roll and yaw moments. For this case, a fraction of

one of propellers comes out of water whenever roll angle is larger than 30 deg.

8.6.3.4 y.=30deg

Figure 8-19 demonstrates the results for y. = 30 deg. The pitch shows that the model

is overtaken by waves and exhibits periodic trend. The heading shows that the model
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reaches from 5 deg heading to the desired heading at t=4 sec. Afterward, the model
oscillates a nit around the target and then turns to 50 deg heading. Lastly, the model
oscillates around this heading and establishes periodic motion. The period of yaw is about
the same as pitch and roll period i.e. encounter period. Also, the rudders show periodic
trend due to periodic yaw motion. The CFD simulation shows similar condition.
However, there is phase lag between CFD and EFD due to initial condition, as shown in
pitch motion. The CFD simulation shows that the model has period drift suggesting that
the bow oscillates when ship moves forward. The CFD yaw motion and trajectory show
that the model oscillates at 40 deg heading and the period of oscillation is about the
encounter period at that heading. The CFD forces and moments show periodic trend. The
yaw moment shows that the wave yaw moment is Ny=-100 N.m for t<3 sec and it is
larger than any other counteracting moment resulting in 55 deg heading. Then, the wave
yaw moment increases to Ny=100 N.m and supports rudders at t=3 sec. Consequently,
the model turns toward the desired heading. However, the yaw moment decreases again
to Ng=-100 N.m at t=4 sec such that the model moves away from the target. This

procedure provides periodic motion.

8.6.4 Fr=0.3

8.6.4.1 y.=5deg

Figure 8-20 provides results for periodic motion case with y, = 5 deg. The pitch
motion shows that the model is at -2 deg pitch angle at the beginning of test. The model
is overtaken by waves providing oscillatory pitch motion. The heading shows that the
model is at 60 deg heading and then turns to the desired heading in 8 sec due to hard
deflection of rudders. Afterward, the model oscillates around the target producing
periodic motion. The period of oscillation is about 4 sec which is the wave encounter

period at 5 deg heading. The roll angle shows that the model attains 60 deg roll during
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turning to the target. The roll angle drops to less than 5 deg right after the model is at the
target heading. The CFD simulation is performed for different initial condition. The
model is released at very small heading and roll angle such that the model is located at
the target heading in 2 sec and then oscillates around it producing periodic motion. The
CFD simulation shows that the model has oscillatory drift angle. Also, The CFD
indicates small oscillations on the trajectory due to periodic motion. More than that, all
forces and moments show periodic trend. Since the model is overtaken by waves, the
wave yaw moment oscillates between Ng=+5 and Ny=-10 N.m. If the heading is less than
W, the wave and rudders yaw moment are negative (wave yaw moment supports rudders)
and they attempt to increase heading to target value. If the heading is larger than ., the
wave and rudders yaw moment are positive (wave yaw moment supports rudders) and
they attempt to decrease heading. The contribution of rudders and wave causes the

periodic motion trend.

8.6.4.2 w. =15 deg

Figure 8-21 shows the case of periodic motion for y. = 15 deg. The model starts
turning from 13 deg heading to the target right after releasing point. However, the
heading exceeds the target such that 17 deg heading is observed at t=3 sec. Then the
model turns back to the target and again passes the target and reaches to 10 deg heading
at t=5 sec. This procedure repeats and exhibits periodic motion. The roll, pitch and
rudders follow a periodic trend. The CFD simulation shows the same phenomenon for
this case but with a phase lag due to dissimilarity of initial conditions. The period of
CFD and EFD motions are 4.5 sec and they are the same as encounter period. The
collaboration of rudders and wave yaw moment introduce a situation in which yaw
moment supports the rudders yaw moment such that there is a strong yaw moment to turn
the model toward the target all the time. For instance, the wave and yaw moment are

Np=20 and Nx=10 N.m at t=5 sec turning the model toward the heading. However, the
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yaw moment is too strong such that the model passes the target at t=6 sec. At this time,
both wave and rudders yaw moment drop to negative values Ny=-30 and Ng=-10 N.m

producing enough yaw moment to turn back the model toward the target.

8.6.4.3 y.=22.5deg

Figure 8-22 shows the case of periodic motion for vy, = 22.5 deg. The model is
released at 15 deg heading and starts turning to the target at t=1 sec. The model passes the
target at t=3 sec and reaches to 24 deg heading at t=3.5 sec. The model returns back to
the desired heading at t=4 sec but again passes the target such that heading is 18 deg at
t=5 sec. This procedure repeats and causes periodic motion. The roll and pitch angle
increase up to 20 and 4 deg, respectively. The CFD simulation, performed for different
initial condition, predicts periodic motion but with a phase lag respect to EFD results.
The CFD trajectory, drift angle, and forces/moments show periodic trend in which the
period of oscillation is about 4.5 sec and is the same as encounter period. The propeller
forces and moments show that part of one propeller emerges out of water temporary
during periodic motion where roll angle is large. The propeller thrust Xp shows
oscillatory trend i.e. ship speed decreases and increases during periodic motion. In fact,
the ship speed decreases/increases when the center of gravity is located on wave
trough/crest. The wave and rudders yaw moment explain that their collaboration produces

strong yaw moment such that the ship forces to move toward the target.

8.6.4.4 yw. =30 deg

Figure 8-23 illustrates the results for periodic motion case where y, = 30 deg. The
model is released at 10 deg heading and moves toward the target quickly. At t=3 sec, the
model passes the target and returns to target at t=5.5 sec. The model exceeds the target
and reaches to 25 deg heading. At this point, the model turns back again to the target and

produces periodic motion. The pitch and roll angle are about 25 deg and 4 deg during
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periodic motion. The propeller RPS indicates that the propeller controller was unable to
keep RPS constant such that RPS varies between 12.5 and 13.5 rps. The CFD simulation
is performed for fixed RPS found in self-propulsion clam water at Fr=0.3. The CFD and
EFD RPS difference is due to approximated propeller model used in CFD. The CFD
trajectory and yaw motion show that CFD predicts periodic motion with a phase lag
respect to EFD due to initial condition issues. The yaw moment shows that the
collaboration of rudders and wave yaw moment produces periodic motion. In fact, wave
yaw moment supports the rudders yaw moment all the time during the simulation such
that there is a strong yaw moment to turn the model toward the target. For instance, the
wave and yaw moment are Ng=50 and Nx=20 N.m at t=5 sec turning the model toward
the heading. At t=6 sec, both wave and rudders yaw moment drop to negative values
Np=-50 and NR=-10 N.m producing enough yaw moment to turn the model away from

the target.
8.6.5 Summary of CFD Free Model Test Program 2

The summary of CFD simulations are shown in Fig. 8-24. It is indicated that CFD can
predict the boundary between surf-riding, broaching, and periodic motion. The CFD
simulations follow exactly EFD trend with increasing Fr and heading. Figure 8-24 shows
that there is a boundary between periodic motion and surf-riding/broaching at Fr=0.3 for
heading<30 deg. For Fr<0.3, which is blow the boundary, CFD and EFD show periodic
motion whereas surf-riding/broaching is observed for above the boundary. Therefore that
CFD predicts the same boundary even though initial conditions for many cases are
different from EFD. However, the maximum achieved roll angle is strongly function of
initial condition such that CFD shows different diagram for roll angle. In overall, CFD

shows outstanding prediction of instability boundary.
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8.7 NDA Free Model Simulation

To compare with the free-running model experiments and CFD, the coupled surge-
sway-yaw-roll maneuvering mathematical model described in Chapter 2 (Eq. (2.74)) is
applied to the ship with the same operational and environmental conditions used in the
free model tests program 2. The higher order terms are neglected but the mathematical
model is still nonlinear since the wave forces are functions of the relative ship position to
waves. The maneuvering and propulsion coefficients in calm water are estimated with the
conventional captive model tests as described in Chapter 2. Wave induced forces are

estimated from CFD, potential theory and EFD captive model in following waves.

8.7.1 NDA Based on Inputs from EFD

The result is shown with the experimental data in Fig. 8-25 (Umeda et al., 2008).
When the auto pilot course is smaller, there is a boundary between the stable surf-riding
and periodic motions near the nominal Froude number of 0.3. Below this boundary,
periodic motions are simulated as they are identified in the experiments. Above this
boundary, a stable surf-riding region exists, and includes the stable surf-riding identified
in the experiment. However, this region also includes the case of broaching in the
experiment. When the auto pilot course is larger, the simulated roll exceeds 90 degrees
above the nominal Froude number of 0.3. On the other hand, in the experiment the
maximum roll angle is 71 degrees. This means that the mathematical model
overestimates the roll angle and underestimates the yaw deviation. It can be presumed
that this is induced by the emergence of propeller and rudder out of water, which could
reduce the yaw checking ability under the extreme roll angle. In the region categorized as

“not identified”, sub-harmonic motions often are obtained.
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8.7.2 NDA Based on Inputs from CFD & Potential Theory

Since there are notable difference among the EFD and CFD, and the Froude-Krylov
prediction, as explained in Chapter 7, it is important to examine their effects on system-
based prediction of ship motions including surf-riding, broaching and periodic motion.
For this purpose, system-based simulation using the mathematical model mentioned
before was executed for the cases of free model tests of the ONR tumblehome vessel with
inputs from CFD and potential theory.

Figure 8-26 shows comparison between the free model test and the system-based
numerical simulation using the wave-induced surge force estimated by the Froude-Krylov
prediction. Although notable discrepancy in the wave-induced surge force exists as
shown in Chapter 7, the difference in the system-based simulation results between the
two is not significant. One surf-riding- related broaching case in the free model test,
where the auto-pilot course of 22.5 degrees and the nominal Froude number of 0.35, is
categorized as a harmonic periodic motion in the system-based simulation with the wave-
induced surge force measured from captive test, while it is done as stable surf-riding in
the simulation shown in Fig. 8-26. This is because the wave-induced surge force is
smaller in this system-based simulation. In case of the system-based simulation using the
wave-induced surge force estimated by the CFD as shown in Fig. 8-27, the stable surf-
riding zone further but slightly shrinks because of smaller wave-induced surge force at
relevant speed. Other notable change is not found. As a whole, for this subject ship, the

Froude-Krylov calculation for estimating the wave-induced surge force is satisfactory.

8.8 Summary of Free Model Simulations

CFD 2DOF self-propulsion simulation is carried out with propeller model and actual
propeller to predict necessary RPS for several Fr. The prediction error of propeller RPS is

about 5.8%D for propeller model while it drops to 1.7 %D for actual propeller. This
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suggests the simplicity and efficiency of body force propeller model would cost about
4%D more error which is reasonable. CFD free model simulations show promising
results for surf-riding, broaching and periodic motion. CFD predicts the instability
boundary perfectly. For small heading (y. < 30 deg), there is a boundary between surf-
riding/broaching and periodic motion at Fr=0.3. CFD predicts surf-riding/broaching
above the boundary and periodic motion below the boundary. CFD calculation of wave
and rudders yaw moment explains the processes of surf-riding, broaching, and periodic
motion. It is concluded that wave yaw moments is the major cause of broaching/periodic
motion, with rudder and propeller moments much smaller in magnitude. The ship speed
increases significantly before surf-riding/broaching which might produce large turning
rate and consequently large centrifugal force and roll moment. The emergence of
propeller out of water and water on deck occurrence are observed for many cases. It is
shown that OT would not capsize due to large restoring moment of its superstructure. The
comparison of CFD and EFD time history of motions show a phase difference between
CFD and EFD, possibly due to inaccurate initial conditions and/or propeller modeling.
The NDA simulation using EFD inputs predicts the boundary but the simulated roll
exceeds 90 degrees for Fr>0.3 while EFD maximum roll angle is 71 degrees. This might
be improved by considering emergence of propeller and rudder out of water in the
mathematical model. The NDA simulation using CFD and potential flow (Froude-Krylov
calculation) inputs predicts reasonably the boundary of instability and suggests that CFD/

potential flow can be considered as replacement for EFD inputs.
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Table 8-1: Summary of boundary conditions
@ p k w U V w
4 . U,z =Uy + -
Acos(kx —27ft)  Jze coste=27) k=107 B P _ W(x,y,z,1) =
Inlet ) 7A728M W= 9 E«/;e cos(kx — 27ft) V=0 Fi\/;ek: sin(ke—2771)
2Frk r
Exit Acos(ke—27ft)  preteost=2a k= 10° _9 e j”) o W(x.y.z.0 =
—z(x) & o O = Eﬁe " cos(ler ~2) V=0 Fi\/;ek: sin(kx —27ft)
2Fr’k r
Sides _ i,e"’ cos(kx — 2aft) ko =10~ Utsy,z=Uo+ W(x,y,z,t)=
Acos(kx —27ft) F 5 w, =9 A ke cos(her— 2f1) Vo A .
—z(x) oA k Fr F—\/;e sin(kx —27ft)
2Fr’k r
* _yo N
Bottom %’j:l %2 on %20 U=1 V=0 W =0
%o
. o Poisson _ 60
Ship hull on k=0 Reﬂy*z U=C¢ V=0 wW=0
Eq.
Table 8-2: Grids and decomposition information
Grid Points Processors Object Child to
Boundary Layer starboard 351,616 3 Ship None
Boundary Layer portside 351,616 3 Ship None
superstructure 466,032 4 Ship None
Skeg 118,188 1 Ship None
Bilge keel Starboard 119,556 1 Ship None
Bilge keel portside 119,556 1 Ship None
Rudder starboard Outboard 120,048 1 Ship Ship
Rudder Starboard Inboard 120,048 1 Ship Ship
Rudder Portside Outboard 120,048 1 Ship Ship
Rudder Portside Inboard 120,048 1 Ship Ship
Background 1,759,755 15 None None
Total 3,766,511 32




Table 8-3: Principal dimensions of the propeller

oT

Kr

r,/L

/T,

pl/L

p2/L

Starboard/Port

K= 0.62702-0.26467]-0.09665J/
0.64111-0.27016J-0.09319J)>

Ko=0.1 5200-0.05676J-0.02075J%/
0.15546+0.05956J +0.01991J°

0.016937
0.2

(0.920929,0.026605,-0.035147)/
(0.920929,-0.026605,-0.035147)

(0.932429,0.026605,-0.036153)/
(0.932429,-0.026605,-0.036153)
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Table 8-4: Initial condition study for GM=1.78 m, Fr=0.4, and y.=-15 deg (Test

program 1)
E\;}z‘;z Initial  Target hIeI;lg;llg hzz;%ﬁtg Phr;cli(ll(i::fgd Predicted Max Roll

(deg) Fr Fr (deg) (deg) (deg) Phenomenon  angle (deg)
EFD ? ? 0.4 -30 -15 -80 broaching 75
0 0.0 0.4 -30 -15 -60 broaching 50
180 0.0 0.4 -30 -15 -70 broaching 55
180 0.3 0.4 -30 -15 -67 broaching 60
180 0.4 0.4 -30 -15 7 broaching 40
200 0.3 0.4 -30 -15 -70 broaching 55
CFD 220 0.3 0.4 -30 -15 -70 broaching 58
240 0.3 0.4 -30 -15 =70 broaching 58
260 0.3 0.4 -30 -15 -70 broaching 55
264 0.15 0.4 -30 -15 =70 broaching 60
264 0.2 0.4 -30 -15 =75 broaching 60
264 0.25 0.4 -30 -15 -75 broaching 62
280 0.3 0.4 -30 -15 -65 broaching 60
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Table 8-5: Initial condition study for GM=2.068 m, Fr=0.4, and y.=-5 deg (Test

program 1)
;37\}/121\572 Initial ~ Target hIeI:(gliilg hzzrd%reltg P}f::(lj?;fgd Predicted Max Roll

(deg) Fr Fr (deg) (deg) (deg) Phenomenon  angle (deg)
EFD ? ? 0.4 -33 -5 -5 surf-riding 40
0 0.0 0.4 -33 -5 -5 surf-riding 15
137 0.3 0.4 -33 -5 -5 surf-riding 37
180 0.3 0.4 -33 -5 -5 surf-riding 47
180 0.4 0.4 -33 -5 -5 surf-riding 42
CFD 200 0.3 0.4 -33 -5 -5 surf-riding 44
230 0.1 0.4 -33 -5 -5 surf-riding 23
230 0.2 0.4 -33 -5 -5 surf-riding 35
230 0.3 0.4 -33 -5 -5 surf-riding 32
280 0.3 0.4 -33 -5 -5 surf-riding 30

Table 8-6: Initial condition study for GM=2.068 m, Fr=0.4, and y.=-15 deg (Test

program 1)
Wave Initial ~ Target Initi.al Target Predic;ted Predicted Max Roll
Phase Fr Fr heading  heading heading Phenomenon  angle (deg)
(deg) (deg) (deg) (deg)

EFD ? ? 0.4 -13 -15 -60 broaching 60
30 0.1 0.4 -13 -15 oscillating periodic 15
30 0.15 0.4 -13 -15 oscillating periodic 20
30 0.3 0.4 -13 -15 -60 broaching 40
30 0.4 0.4 -13 -15 -60 broaching 37
50 0.4 0.4 -13 -15 -60 broaching 45
50 0.45 0.4 -13 -15 -60 broaching 45
80 0.1 0.4 -13 -15 oscillating periodic 13
80 0.15 0.4 -13 -15 oscillating periodic 25

CFD 80 0.16 0.4 -13 -15 oscillating periodic 28
80 0.17 0.4 -13 -15 oscillating periodic 30
80 0.18 0.4 -13 -15 oscillating periodic 29
80 0.19 0.4 -13 -15 oscillating periodic 25
80 0.2 0.4 -13 -15 oscillating periodic 30
80 0.3 0.4 -13 -15 -60 broaching 40
80 0.4 0.4 -13 -15 -60 broaching 38
120 0.2 0.4 -13 -15 -50 broaching 25
130 0.1 0.4 -13 -15 oscillating periodic 15
130 0.3 0.4 -13 -15 -60 broaching 38
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Table 8-7: Initial condition study for GM=2.068 m, Fr=0.4, and y.=-30 deg (Test

program 1)
Wave Initial ~ Target Imtl.al Target Predlgted Predicted Max Roll
Phase Fr Fr heading  heading heading Phenomenon  angle (deg)
(deg) (deg) (deg) (deg)
EFD ? ? 0.4 -40 -30 oscillating periodic 55
0 0.0 0.4 -40 -30 oscillating periodic 35
CFD 20 0.25 0.4 -40 -30 oscillating periodic 50
20 0.33 0.4 -40 -30 oscillating periodic 50

Table 8-8: Initial condition study for GM=2.068 m, Fr=0.4, and y.=-5 deg

Wave Initial ~ Target Inltl.al Target Pred1(.:ted Predicted Max Roll
Phase Fr Fr heading  heading heading Phenomenon  angle (deg)
(deg) (deg) (deg) (deg)
EFD ? ? 0.4 -30 -5 -5 surf-riding 20
0 0.4 0.4 -30 -5 -5 surf-riding 10
50 0.1 0.4 -30 -5 -5 surf-riding 30
50 0.2 0.4 -30 -5 -5 surf-riding 20
CFD o
50 0.3 0.4 -30 -5 -5 surf-riding 10
50 0.4 0.4 -30 -5 -5 surf-riding 10
50 0.5 0.4 -30 -5 -5 surf-riding 20

Table 8-9: Initial condition study for GM=2.068 m, Fr=0.4, and y.=-15 deg

Wave Initial Target  Predicted

Initial ~ Target Predicted Max Roll

I()g:g Fr Fr h?gggg hz:gg;r)lg h?gggg Phenomenon  angle (deg)
EFD ? ? 0.4 -8.6 -15 -25 broaching 14

235 0.1 0.4 -8.6 -15 -28 broaching 17
CFD 235 0.2 0.4 -8.6 -15 -70 broaching 45

235 0.275 0.4 -8.6 -15 -42 broaching 27

235 0.4 0.4 -8.6 -15 -71 broaching 47
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Table 8-10: Initial condition study for GM=2.068 m, Fr=0.4, and y.=-22.5 deg

Wave Initial ~ Target Initi‘al Target Predigted Predicted Max Roll
Phase Fr Fr heading  heading heading Phenomenon  angle (deg)
(deg) (deg) (deg) (deg)
EFD ? ? 0.4 -7 -22.5 -80 broaching 65
0 0.45 0.4 -7 -22.5 -65 broaching 40
50 0.45 0.4 -7 =225 -65 broaching 40
95 0.45 0.4 -7 -22.5 -60 broaching 45
144 0.45 0.4 -7 =225 -60 broaching 40
200 0.45 0.4 -7 =225 -65 broaching 50
CFD 200 0.50 0.4 -7 -22.5 -65 broaching 48
200 0.55 0.4 -7 -22.5 -65 broaching 46
280 0.45 0.4 -7 -22.5 -65 broaching 47
330 0.37 0.4 -7 -22.5 -65 broaching 45
330 0.4 0.4 -7 -22.5 -65 broaching 43
330 0.45 0.4 -7 -22.5 -65 broaching 45

Table 8-11: Initial condition study for GM=2.068 m, Fr=0.4, and wy.=-30 deg

Wave Initial ~ Target Imtl.al Target Predlgted Predicted Max Roll
Phase Fr Fr heading  heading heading Phenomenon  angle (deg)
(deg) (deg) (deg) (deg)
EFD ? ? 0.4 -12 -30 oscillating periodic 40
CFD 144 0.2 0.4 -12 -30 oscillating periodic 50

Figure 8-1: Grid and solution domain of free model simulations
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK

For the first time, the CFD simulations and NDA predictions of ship instability are
performed with focus on parametric rolling and broaching and compared with EFD.

The CFD and NDA parametric rolling studies for OT surface combatant include roll
decay in calm water and roll decay/parametric rolling in head waves. CFD roll decay in
calm water indicates good agreement with EFD, especially for GM=0.043 m and
GM=0.038 m. CFD reasonably predicts the influence of mean roll angle and Fr on
damped roll frequency. CFD predicts the speed effect on linear damping and shows
similar values to EFD for GM=0.043 m, but under predicts for lower GM. CFD nonlinear
damping shows good agreement with EFD for GM=0.043 m and under predicts for lower
GM, especially GM=0.038 m and Fr=0.35. The NDA model of OT roll decay indicates
that OT roll reconstruction requires nonlinear restoring coefficients with linear or
nonlinear damping coefficient. Comparing NDA roll decay reconstruction with CFD
indicates that E values are similar to those for CFD. OT is compared with 5415 surface
combatant. Comparing 5415 and OT shows that effects of mean roll angle on roll decay
characteristics are stronger for OT vs. 5415. The linear damping of 5415 is smaller than
that of OT and the nonlinear damping is not observed for 5415 whereas it is significant
for OT. Bert reconstruction for 5415 is for equivalent linear damping without requiring
nonlinear restoring coefficients whereas best reconstruction for OT requires nonlinear
damping and restoring coefficients. CFD parametric rolling simulations show remarkably
close agreement with EFD. CFD predicts parametric roll in head waves for GM=0.038
and 0.033 m and roll decay for GM=0.043 m. The CFD stabilized roll angle is very close
to those of EFD but CFD predicts larger instability zones. The CFD and EFD results are
analyzed with consideration ship motion theory and compared with Mathieu equation and

NDA. NDA predictions are in qualitative agreement with CFD and EFD. The CFD and
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NDA results were blind in that the actual EFD radius of gyration ki was not known a
priori.

The CFD studies of parametric rolling are extended for prediction of broaching both
by using CFD as input to NDA in replacement of EFD or potential flow methods and by
using CFD for broaching simulation. The CFD calm water captive resistance test, static
heel, and static drift simulations are conducted to estimate inputs for NDA model of
broaching and 6DOF simulation in following/quartering waves are conducted for
complete simulation of broaching. For captive tests, the grid study is performed for calm
water static heel which indicates the average RSS grid uncertainty is 3%D. CFD
resistance test full Fr curve simulation in calm water shows close agreement with EFD
with average RSS error of 3%D for X, o, 1. CFD and EFD full Fr curve static heel results
show fairly close agreement for o, 1, X, K for the full Fr range, whereas Y and N were
significantly under predicted for large Fr>.4. Forces and moment analyses support the
mathematical model of static heel showing that heel angle has second order effect on X
while it has first order effect on Y, K, and N such that increasing heel angle would
change Y, K, and N except X. CFD shows fairly close agreement for static heel linear
maneuvering derivatives, whereas large errors are indicated for nonlinear maneuvering
derivatives. CFD and EFD static drift show good results of o, 7, X, Y, N for the full Fr
range, whereas K is over predicted for Fr>0.2. It is shown that drift angle has second
order effect on X and first order effect on Y, K, and N. CFD shows reasonable agreement
for static drift linear maneuvering derivatives, whereas large errors are indicated for
nonlinear maneuvering derivatives. CFD non-zero static heel in following waves shows
fairly close agreement for o, 1, K, N, whereas X and Y show large errors. CFD zero
static heel in following waves shows large errors for X and 6. The average error increases
by factor of 2 for same increase in wave amplitude. Heave response shows 1* and ond
harmonics and pitch show 1% harmonic. X indicates 1* and 2™ harmonics and Y and N

show 1%, 2" and 4™ harmonics. The surge force in following wave is estimated from
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Potential Theory calculation (Froude-Krylov calculation) and compared with CFD and
EFD. It is shown that CFD successfully reproduces the decrease of the wave-induced
surge force near the Fr of 0.2 whereas Potential Theory fails probably because it cannot
capture the 3D wave pattern.

The CFD broaching simulations are performed for series of control parameters
(heading and Fr) to study and analyze the process of surf-riding, broaching, and periodic
motion. The CFD results are compared with the results of NDA model based on CFD,
EFD, and Potential Calculation inputs. CFD 2DOF self-propulsion simulation is carried
out with propeller model and actual propeller to predict necessary RPS for several Fr.
The prediction error of propeller RPS is about 5.8%D for propeller model while it drops
to 1.7 %D for actual propeller. This suggests the simplicity and efficiency of body force
propeller model would cost about 4%D more error which is reasonable. CFD free model
simulations show promising results for surf-riding, broaching and periodic motion. CFD
predicts the instability boundary perfectly. For small heading (y. < 30 deg), there is a
boundary between surf-riding/broaching and periodic motion at Fr=0.3. CFD predicts
surf-riding/broaching above the boundary and periodic motion below the boundary. CFD
calculation of wave and rudders yaw moment explains the processes of surf-riding,
broaching, and periodic motion. It is concluded that wave yaw moments is the major
cause of broaching/periodic motion, with rudder and propeller moments much smaller in
magnitude. The ship speed increases significantly before surf-riding/broaching which
might produce large turning rate and consequently large centrifugal force and roll
moment. The emergence of propeller out of water and water on deck occurrence are
observed for many cases. It is shown that OT would not capsize due to large restoring
moment of its superstructure. The comparison of CFD and EFD time history of motions
show a phase difference between CFD and EFD, possibly due to inaccurate initial
conditions and/or propeller modeling. The NDA simulation using EFD inputs predicts the

boundary but the simulated roll exceeds 90 degrees for Fr>0.3 while EFD maximum roll
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angle is 71 degrees. This might be improved by considering emergence of propeller and
rudder out of water in the mathematical model. The NDA simulation using CFD and
Potential Flow (Froude-Krylov calculation) inputs predicts reasonably the boundary of
instability and suggests that CFD/ Potential Flow can be considered as replacement for
EFD inputs.

It is recommended that future work extends presented broaching simulations by
replacing body force propeller model with actual propeller similar to reality. It is
expected that the CFD and EFD agreement will be improved even though the role of the
uncertainty on initial conditions would be still an issue. Also current 4DOF surge-sway-
roll-yaw NDA model of broaching should be extended to 6DOF model including heave
and pitch motion to improve NDA predictions and build a model to analyze 6DOF

simulations.
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