
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2009

CFD prediction of ship capsize: parametric rolling,
broaching, surf-riding, and periodic motions
Seyed Hamid Sadat Hosseini
University of Iowa

Copyright 2009 Seyed Hamid Sadat Hosseini

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/427

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Mechanical Engineering Commons

Recommended Citation
Sadat Hosseini, Seyed Hamid. "CFD prediction of ship capsize: parametric rolling, broaching, surf-riding, and periodic motions." PhD
(Doctor of Philosophy) thesis, University of Iowa, 2009.
http://ir.uiowa.edu/etd/427.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=ir.uiowa.edu%2Fetd%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages


 
 
 
 
 

CFD PREDICTION OF SHIP CAPSIZE: PARAMETRIC ROLLING, 
BROACHING, SURF-RIDING, AND PERIODIC MOTIONS 

 
 
 
 
 
 

by 
 

Seyed Hamid Sadat Hosseini 
 
 
 
 
 
 

An Abstract 
 

Of a thesis submitted in partial fulfillment of the 
 requirements for the Doctor of Philosophy degree 

in Mechanical Engineering in 
 the Graduate College of 
The University of Iowa 

 
 
 
 
 

December 2009 
 
 
 
 

Thesis Supervisors: Professor Frederick Stern 
                                                  Associate Professor Pablo M. Carrica 

  
 



1 
 

ABSTRACT 

Stability against capsizing is one of the most fundamental requirements to design a 

ship. In this research, for the first time, CFD is performed to predict main modes of 

capsizing. CFD first is conducted to predict parametric rolling for a naval ship. Then 

CFD study of parametric rolling is extended for prediction of broaching both by using 

CFD as input to NDA model of broaching in replacement of EFD inputs or by using CFD 

for complete simulation of broaching. The CFD resistance, static heel and drift in calm 

water and static heel in following wave simulations are conducted to estimate inputs for 

NDA and 6DOF simulation in following waves are conducted for complete modeling of 

broaching. 

CFD parametric rolling simulations show remarkably close agreement with EFD. The 

CFD stabilized roll angle is very close to those of EFD but CFD predicts larger instability 

zones. The CFD and EFD results are analyzed with consideration ship theory and 

compared with NDA. NDA predictions are in qualitative agreement with CFD and EFD. 

CFD and EFD full Fr curve resistance, static heel and drift in calm water, and static 

heel in following waves results show fairly close agreement. CFD shows reasonable 

agreement for static heel and drift linear maneuvering derivatives, whereas large errors 

are indicated for nonlinear derivatives. The CFD and EFD results are analyzed with 

consideration ship theory and compared with NDA models. The surge force in following 

wave is also estimated from Potential Theory and compared with CFD and EFD. It is 

shown that CFD reproduces the decrease of the surge force near the Fr of 0.2 whereas 

Potential Theory fails. 

The CFD broaching simulations are performed for series of heading and Fr and results 

are compared with the predictions of NDA based on CFD, EFD, and Potential Theory 

inputs. CFD free model simulations show promising results predicting the instability 

boundary accurately. CFD calculation of wave and rudders yaw moment explains the 
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processes of surf-riding, broaching, and periodic motion. The NDA simulation using 

CFD and Potential Flow inputs suggests that CFD/ Potential Flow can be considered as 

replacement for EFD inputs. 
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CHAPTER 1. INTRODUCTION 

Stability against capsizing in heavy waves is one of the most fundamental 

requirements considered by naval architects when designing a ship. The purpose of 

studying capsizing is to establish an understanding of ship behavior in extreme waves and 

to relate this to the geometric and operational characteristics of the ship. Research based 

on Experimental Fluid Dynamics (EFD), in which scale models are used in realistic wave 

conditions, has led to improved understanding and insight on the nature of the capsize 

process. The experience gained from EFD enabled researchers to develop representative 

mathematical models using Nonlinear Dynamics Approaches (NDA) to describe different 

modes of capsizing in extreme waves. On the other hands, the use of Computational Fluid 

Dynamics (CFD) in Naval Architecture has been common for some decades now. CFD 

simulations use RANS and URANS coupled with 6 DOF rigid body equations of motion 

to obtain a highly detailed prediction of flow and body motions. Herein, detailed 

definitions of various modes of capsizing, literature reviews covering EFD, NDA, and 

CFD, and lastly the objective and approach of the presented study are provided.  

1.1 Modes of Capsizing 

In the ITTC classification of capsizing, the pioneering work reported by Oakley et al. 

(1974) is used to make a fundamental understanding of intact ship capsizing and a basis 

for subsequent research in this area. As a consequence, research efforts have focused 

mainly on three modes of capsize which are static loss of stability, dynamic loss of 

stability, and broaching described in this section in some detail (De Kat and Thomas, 

1998a,b). Also, water on deck, deck edge submergence, winds, and ship loading 

distribution can cause capsize in conjunction with three main modes of capsize. 
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1.1.1 Static Loss of Stability 

Loss of static stability refers to the quasi-static loss of transverse stability (associated 

with an excessive righting arm reduction) in the wave crest. The wave length is usually 

the same as ship length and ship surges with high Fr number. 

1.1.2 Dynamic Loss of Stability 

A ship can lose stability dynamically in conjunction with extreme rolling motions and 

lack of righting energy under a variety of conditions. This major capsize mode may be 

associated with dynamic rolling, resonant excitation, impact excitation, bifurcation, and 

parametric rolling. 

1.1.2.1 Dynamic Rolling 

This mode of motion occurs at forward speed in stern quartering seas, which can be of 

regular or irregular nature. Here all six degrees of freedom are coupled, where in addition 

to roll, surge, sway and yaw can exhibit large amplitude fluctuations. Due to surging 

behavior, the ship spends more time in the wave crest than in the trough, resulting in a 

periodic but asymmetric reduction and restoring of the righting arm. This changing in 

righting arm builds asymmetric roll motion. Large roll motion typically builds up over a 

number of wave encounters to a critical level, and the ship will usually capsize to 

leeward.  

1.1.2.2 Resonant Excitation 

In principle large amplitude roll motions can result when a ship is excited at or close 

to its natural roll frequency. Roll resonance conditions are determined by the combination 

of GZ curve characteristics, weight distribution, roll damping, heading angle (e.g., beam 

seas), ship speed, wavelength and height. 
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1.1.2.3 Impact Excitation 

Steep breaking waves can cause severe roll motions and may overwhelm a vessel. The 

impact due to a breaking wave that hits a vessel from the side will affect the ship 

dynamics and may cause extreme rolling and capsizing. This capsize mode is relevant 

especially to smaller vessels in steep seas.  

1.1.2.4 Bifurcation 

In laboratory conditions, the roll response may jump from one steady state to another 

(larger amplitude) steady-state condition at the same frequency following a sudden 

disturbance known as bifurcation.  

1.1.2.5 Parametric Rolling 

Parametric rolling results from the time-varying roll restoring characteristics of a ship 

typically found in longitudinal waves. The periodic changes in static righting arm during 

the repeated passage of a wave crest followed by the trough can cause large amplitude 

roll motions. Roll motions occurring at approximately the natural roll period and 

simultaneously at twice the encounter period (encounter frequency equals half of natural 

roll frequency) characterize this mode of motion. The roll motion is of a symmetric 

nature and the maximum roll angles to port and starboard occur when a crest passes the 

midship area. The wavelength must be of the order of the ship length. In such 

circumstances, parametric rolling - also referred to as low cycle resonance - can result in 

capsizing.  

1.1.3 Broaching 

Broaching is related to course keeping in waves. Although there is no uniformly 

accepted mathematical definition of a broach, it represents the wave-induced undesired, 

large amplitude change in heading angle. A variety of broaching modes exist in regular 



4 
 

 

and irregular waves. Broaching due to successive overtaking waves may occur at low 

speeds if the waves are very steep. Broaching due to low frequency and large amplitude 

yaw motions is a gradual oscillatory-type build-up of yaw as successive waves impinge 

on the ship from behind. In moderate sea states a ship is more likely to broach-to if it runs 

with a high speed and is slowly overtaken by the waves. Lastly, broaching caused by a 

single wave (surf-riding). Broaching is manifested as a sudden divergent yaw, which 

peaks within a single wave length. Control is lost when the middle of the ship lies 

somewhere on the down-slope and nearer to the trough. 

1.1.4 Other Factors 

Water on deck can occur in conjunction with (and hence influence) the capsize modes 

discussed above. Large amplitude relative motions and breaking waves can result in the 

temporary flooding of the deck (bow-diving), which from a stability viewpoint is relevant 

especially to vessels with bulwarks, such as fishing vessels. Free surface effects and 

sloshing can influence the ship motions. Furthermore, deck edge submergence results in 

loss of water-plane area and righting arm. If a bulwark is present, its submergence will 

influence the forces acting on the vessel. Wind does not necessarily influence wave 

induced capsizing in astern seas. In beam waves, however, it may be important.  

1.2 Literature Review on EFD, NDA and CFD 

The proceeding of the 22nd, 23rd, 24th, and 25th ITTC seakeeping committee is be the 

base of this section, since they review the current state and the most important recent 

contributions to EFD, CFD, and NDA in the field of ship hydrodynamics. 

1.2.1 Literature Review on EFD 

Experiments have been done for many modes of capsize. Static loss of stability in 

regular waves has been studied experimentally by De Kat and Thomas (1998a) and 
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Umeda et al. (1999). They showed that static loss of stability occurs at high speed (Fr ≈ 

0.4) and short waves (λ/L ≈ 1), such that the ship speed matches the phase speed of the 

wave, and the static stability of the ship is reduced to the point that the ship capsizes. 

Dynamic rolling is studied by Lilienthal et al. (2007). They conducted free model 

experiments and showed that this mode of capsize is characterized by asymmetric rolling. 

The ship rolls heavily to the leeward side in phase with the wave crest (approximately) 

amidships and rolls back to the windward side in the wave trough, albeit with a shorter 

half period and smaller amplitude. Olivieri et al. (2006a) conducted 2DOF heave and roll 

experiment in beam waves for several wave heights to study resonant excitation. It is 

concluded that resonance excitation makes large roll angle causing existence of higher 

harmonics in forces and moments. Ishida and Takaishi (1990) and Ishida (1993) carried 

out experiment to show evidence of impact excitation and concluded that wave impacts 

on ships can cause extreme roll motion and capsize. For parametric rolling, Skomedal 

(1982) conducted the experiment with towed model in head waves and showed that the 

variation of the roll restoring moment in waves plays an important role in addition to the 

coupling between roll and vertical motions. Consequently, if a towed model is used, 

special attention should be paid to the towing arrangements to ensure that there is no 

interference with the vertical motions. Burcher (1990), Neves et al. (2002), Francescutto 

(2001), and Olivieri et al. (2006b, 2008) described the towing arrangement for parametric 

rolling. Neves et al. (2002) used two auxiliary lines respectively fixed to the bow and 

stern of the model at calm water level and tied to the towing wire. The resulting elasticity 

of the set was found in all cases to be appropriate in order to secure free evolution of the 

different symmetric and anti-symmetric modes of motion at a controlled speed. Neves et 

al. (2002) conducted a series of experiments on parametric rolling undertaken for two 

fishing vessels with different stern shape in head waves. One was a typical round stern 

vessel while the other one was a transom stern fishing vessel. Several parameters such as 

wave steepness, metacentric heights, and Fr number effects were studied. It was 
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concluded that effect of speed on parametric resonance is strongly dependent on stern 

shape. A transom stern, incorporating longitudinal asymmetry in flare, may exert a 

significant influence in establishing the tendency of a fishing vessel hull to display strong 

parametric amplification in head seas, particularly in a condition of low metacentric 

height. Francescutto (2001) conducted experiment for a destroyer model using a tethering 

system based on pairs of elastic mooring lines symmetric about the centre line of the 

model, to attach the model to the towing carriage while the model is free to roll, pitch and 

heave. This system ensures the model remains on a straight course, while it is sufficiently 

loose to avoid significant interference with the roll and vertical motions. The results 

clearly indicated that there is a speed window where the roll motion can be sustained in 

head waves. The width of the window and the amplitude of steady rolling depend on 

wave steepness. In particular, the roll amplitude increases with the wave steepness, and in 

some cases leads to ship capsize. Olivieri et al. (2006b, 2008) conducted the experiment 

where the model was connected to the carriage by means of a joint specifically designed 

for 3 DOF heave-roll-pitch parametric rolling. Model motions were measured using both 

an optical motion tracker and gyroscopic platform. Hashimoto et al. (2006) and France et 

al. (2003) performed free model tests to improve parametric rolling test results in 

irregular waves. It is noted that comparative studies between free running and towed 

model experiments have shown acceptable agreement (IMO, 2006). Broaching 

experiments were carried out by De Kat and Thomas (1998b), Hamamoto et al. (1996), 

Umeda (1998), Umeda et al. (1995, 1999, and 2008), and Lilienthal et al. (2007). De Kat 

and Thomas (1998b) and  Hamamoto et al. (1996) observed broaching caused by large 

amplitude yaw motion due to wave impinge on the ship from behind and broaching 

caused by singe wave. Umeda (1998) and Umeda et al. (1995, 1999) proposed systematic 

method to assess ship stability in quartering/following waves executing free running test.  

First, the model metacentric height and gyro radius were aligned. Then propeller rate 

(RPS) for specified Fr number was obtained using open water tests. Propeller was also 
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estimated by running the ship appended with propeller in still water and changing RPS to 

reach the ship velocity to specified Fr number. Later, free running experiments were 

conducted at the Marine Dynamic Basin at NRIFE (National Research Institute of 

Fisheries Engineering). Umeda et al. (2008) performed free running experiment for a 

surface combatant (ONR Tumblehome) and observed ONR tumblehome vessel can suffer 

extreme roll angle up to 71 degrees when her nominal Froude number is larger than the 

surf-riding threshold. Typical broaching was recorded but did not result in capsizing 

because the angle of vanishing stability was 180 degrees. It was concluded that for more 

accurate modelling, effect of the emergence of rudder and three-dimensional wave 

pattern should be investigated for this kind of unconventional vessel. Lilienthal et al. 

(2007) executed free running model tests in regular following waves at discrete KGs. 

Tests were carried out at NRIFE and different modes of broaching were observed. It was 

demonstrated that there was minimal influence of wavelength ratio on capsize behaviour. 

It was also found that a reduction in vessel speed results in a small decrease in the 

likelihood to capsize. Matsuda et al. (2006) conducted free running model experiments at 

NRIFE for a purse-seiner vessel at several Froude numbers to study other factors on 

capsizing such as bow-diving. It was shown that the model capsized due to bow-diving in 

the severe following seas at intermediate speeds. The model also experienced stable surf-

riding at higher speeds and broaching at lower speeds.  

In conclusion, experiments have been used as first and most reliable procedure to 

study many different modes of capsize. However, they are not able to catch details to 

insight on the nature of the capsize process. Consequently, NDA and CFD simulations 

are carried out to investigate the details of capsize procedure.  

1.2.2 Literature Review on NDA 

NDA has been used to study many aspects of different modes of capsizing. Resonant 

excitation simulation is carried out by Surendran and Reddy (2002, 2003) using 1DOF 
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roll equation in frequency domain. They studied the roll responses and resonance 

excitation of a ship in beam seas and investigated the effect of wave height on it. Das and 

Das (2004) studied the harmonic response of a floating body by developing a 

mathematical model for coupled sway, roll and yaw motions. They simplified their 

method for coupled roll and yaw motions to study roll resonance excitation in beam 

waves (Das and Das, 2005). Bifurcation is studied by Eissa and EI-Bassiouny (2003) 

applying method of multiple time scales to study rolling response of a ship in regular 

beam seas. Kamel (2007) and Zhou and Chena (2008) studied response of a coupled roll 

and pitch system under a modulated amplitude sinusoidal excitation and obtained the 

bifurcation response equation near the combination resonance case in the presence of 

internal resonance of this system.  Paulling and Rosenberg (1959) and Shin et al. (2004) 

modeled parametric roll neglecting nonlinear damping and restoring moment in 1DOF 

roll equation and considered wave effects and pitch-heave coupling only through a time 

varying restoring coefficient, which can be transformed into the Mathieu equation. 

Francescutto et al. (2004) and Umeda et al. (2004) used more advanced theory for 

parametric rolling in which damping consists of contributions from cubic terms of roll 

velocity estimated from roll decay towing tank test. Umeda et al. (2004) and Bulian 

(2004, 2005) applied the restoring term described by higher order functions of roll angle. 

The time dependent restoring term due to waves was expressed by higher order 

polynomial function of roll angle with time dependent coefficients expressed as Fourier 

series (Bulian and Francescutto, 2008; Hashimoto and Umeda, 2004; Umeda and 

Hashimoto, 2006). In order to consider coupling effects for parametric rolling prediction, 

Bulian et al. (2003) used a 1.5 DOF to implement roll-pitch-heave coupling in his model. 

Neves et al. (2009) introduced a 3DOF roll-pitch-heave including linear added mass and 

wave damping terms, linear and quadratic roll damping, and nonlinear coupling terms up 

to 3rd order. Another alternative approach to improve coupling terms is to use a fully 

coupled nonlinear time domain potential code such as LAMP developed by Lin and Yue 
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(1991) or FREDYN developed by De Kat and Thomas (1989a).  NDA has been also used 

for broaching simulation. Well known theoretical studies on broaching were carried out 

in Japan by Umeda (1998, 1999) and Umeda et al. (2000). It was mentioned that heave 

and pitch natural frequencies are very large due to their large restoring moment. 

Therefore, when the ship runs with relatively high speed in following and quartering seas, 

the encounter frequency is much smaller than those natural frequencies and heave and 

pitch can be reasonably approximated by simply tracing their static equilibrium. This 

outcome indicated that a surge-sway-yaw-roll mathematical model is suitable for 

investigating broaching. Moreover, they concluded that required maneuvering parameters 

in their model can be estimated from appropriate captive tests. Later, they implemented 

more terms in their mathematical model to improve broaching prediction. Nonlinear 

maneuvering forces in calm water (Hashimoto and Umeda, 2002), wave effect on linear 

maneuvering forces and wave effect on roll restoring moment (Umeda et al., 2003), 

nonlinear wave induced forces including mean values (Hashimoto et al., 2004a), 

nonlinear sway-yaw coupling in calm water (Hashimoto et al., 2004a), wave effect on 

propeller thrust (Hashimoto et al., 2004a), hydrodynamic forces due to large heel angle in 

calm water (Hashimoto et al., 2004a), and wave effect on hydrodynamic forces due to 

large heel angle were studied and essential terms were added to their NDA model 

(Hashimoto et al., 2004b). Lastly, Umeda et al. (2006) extend the previous model to a 

model for twin propeller and twin rudders high speed slender ship. 

 In conclusion, NDA uses many empirical factors as input such as hydrodynamic 

coefficients, damping coefficients, restoring coefficients, coupling term coefficients and 

maneuvering coefficients.  This makes the main limitation for NDA and results in 

opening position for CFD which models with no requirement of such inputs. 
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1.2.3 Literature Review on CFD 

URANS CFD codes for ship hydrodynamics offers possibility of providing a complete 

rational-mechanics based prediction capability of capsizing for improved safety criteria 

and increased physical understanding. To apply CFD for capsizing, fluid equation has to 

be coupled with motions equations. Most previous CFD simulations are done for 

predicting of pitch and heave motions for ships in regular head waves demonstrated for 

the Wigley hull and Series 60 cargo ships using density function free surface modeling 

(Sato et al., 1999); a container ship using overlapping structured grids and density 

function free surface modeling (Orihara and Myata, 2003); a container ship using level-

set free surface modeling (Houchbaum and Vogt, 2002); the Wigley hull using 

overlapping grids and level-set for free surface (Weymouth et al., 2005); and a surface 

combatant ship using overlapping structured grids and level-set free surface modeling 

(Wilson et al., 2005; Carrica et al., 2007a,b). Recently, CFD is developed to be capable of 

simulating maneuvering and seakeeping problems. Mulvihill and Yang (2007) presented 

numerical simulations of steady pure yaw maneuvers of a submarine, showing the 

capabilities of the steady overlapping grid approach. Also Benson and Fureby (2007) 

presented some numerical simulations of a submarine in steady yaw maneuver. They 

employed an LES approach with a wall model and showed that the model was able to 

predict some peculiarities of the flow field such as unsteadiness, cross flow separation 

and presence of horseshoe vortices. Good agreement with experiments, in terms of skin 

friction coefficient along cross sections in steady yaw maneuver, was observed. Xing et 

al. (2007) performed numerical simulations of the DTMB 5415 and KVLCC2 in steady 

drift motion. Numerical tests were performed at 0, 12, 30 and 60 degrees of incidence. 

These tests were considered to analyze different turbulent models: an isotropic blended 

κ−ε/κ−ω model (BKW), a Reynolds Stress model (RSM). Steady and unsteady analyses 

of the flow were performed, the latter within a Detached Eddy Simulation (DES). With 
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both turbulence models, BKW and RSM, the RANS simulations yielded a better 

prediction of resistance, axial velocity and turbulent kinetic energy distribution at the 

propeller plane than the DES. At higher drift angles, the DES approach allowed for 

capturing the unsteadiness of the flow field. Similar work has also been performed by 

Bhushan et al. (2007) including simulations at model and full scale Reynolds number for 

the Athena R/V. Hyman et al. (2006) performed simulations for steady straight ahead and 

steady turn maneuvers of a fully appended model of the R/V Athena taking into account 

the transport of bubbles due to air entrainment at the free surface. Simulations were 

carried out with CFDSHIP-IOWA using a two phase level set algorithm coupled with a 

gas phase solver called CFDShipM. Propeller effects were taken into account by a non-

interactive body force model. Results from unsteady RANS simulation and Detached 

Eddy Simulation (DES) showed that the method was able to predict the bubbly flow 

around the vessel. However, some input parameters such as a bubble size distribution and 

bubble source intensity at the entrainment location had to be specified. Queutey and 

Visonneau (2007) presented and applied an interface capturing method for simulating the 

flow around the Series 60 model in steady straight ahead and pure drift motion. The 

results showed good agreement with experimental data. The use of an unstructured solver 

for the computation of forces on a surface piercing hull with enforced PMM motion can 

be seen in Wilson et al. (2007) where simulations of dynamic maneuvers of a surface 

combatant are presented. Pure sway and pure yaw tests are analyzed; results showed good 

agreement with experimental data in terms of both global quantities (forces and 

moments) and local quantities (velocity components on different cross sections with PIV 

measurements). In Carrica et al. (2006) the capability of the CFDShip-IOWA version 4 in 

dealing with various problems of the marine hydrodynamics, including the prediction of 

motion in waves are presented. Dynamic overlapping grids as described in Carrica et al. 

(2007b) were used. Examples are presented for the steady drift motion of the DTMB 

5512 model and the KVLCC2 model in deep and shallow water. The KVLCC2 at high 
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drift angle was also simulated with the EASM/DES turbulence model. Steady turn 

computations were performed for the DTMB 5512 model. Dynamical PMM 

computations (i.e. pure yaw and pure sway) were performed for the HSSL trimaran and 

for the DTMB 5512 model. For the pure sway motion of the DTMB 5512 model, the 

agreement in terms of predicted forces and moments with measurements was very 

satisfactory while some discrepancies were observed when comparing velocity fields. In 

Sadat-Hosseini et al. (2007) 3DOF heave-roll-pitch parametric rolling was simulated for 

the first time in the world and analyzed using Mathieu equation showing that the damping 

caused by bilge keels is larger than the threshold value and prevents parametric rolling.   

In Carrica et al. (2008a,b,c) and Huang et al. (2008) full 6DOF simulations were used for 

actual full time domain simulation with a steered rudder with body force propeller and 

actual rotating propeller. The computations were intended to demonstrate the simulation 

capability, and no validation or verification was presented at that paper. 

In conclusion, a great improvement has been achieved in CFD simulations taking into 

account the body force/rotating propeller and steering rudder(s) within the computational 

grid for many maneuvering and seakeeping problems. However, CFD studies of ship 

stability in waves are still few steps behind the mature state and developments are being 

made at very fast pace.  

1.3 Objective and Approach 

For the first time, CFD is performed to predict main modes of capsizing using 

CFDShip-Iowa v.4 with implementation capsize prediction in it. CFD first is conducted 

to predict parametric rolling in head waves for an unconventional naval ship, i.e., ONR 

tumblehome (OT). Then CFD study of parametric rolling is extended for prediction of 

broaching both by using CFD as input to NDA model of broaching in replacement of 

input achieved from EFD or by using CFD for complete simulation of broaching. The 

CFD calm water captive resistance test, static heel, and static drift simulations are 
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conducted to estimate inputs for NDA model of broaching and 6DOF simulation in 

following/quartering waves are conducted for complete simulation of broaching. 

The research is a collaborative project between IIHR, Osaka University in Japan (OU), 

and INSEAN in Italy whereby OU conducts captive and broaching experiments and NDA 

studies, INSEAN performs parametric rolling experiments, and IIHR conducts CFD 

studies for predicting parametric rolling and broaching for the OT. The overall results 

enable an assessment of both NDA and CFD for capsize prediction and requirements for 

future EFD benchmark data (Sadat-Hosseini et al., 2009a,b). 

The thesis is organized as follows. The NDA for ship stability and capsize is 

introduced in Chapter 2 with focus on the mathematical models and their inputs for 

parametric rolling and broaching.  Chapter 3 describes CFDSHIP-IOWA (Carrica et al., 

2007a,b; Xing et al., 2008; Stern et al., 2008) with focus on its use for both parametric 

rolling and broaching predictions.  Chapter 4 provides a summary of the INSEAN captive 

experimental methods and conditions used as the EFD benchmark validation data for 

parametric rolling (Olivieri et al., 2008). Chapter 5 provides a summary of the OU 

captive and free model experimental methods and conditions used as the EFD benchmark 

validation data for broaching (Umeda et al., 2008).  Chapter 6 covers the CFD 

verification and validation studies for the parametric rolling including comparisons with 

NDA predictions.  Chapter 7 covers the CFD verification and validation studies for 

captive tests to assess inputs for NDA model of broaching. Chapter 8 provides CFD 

verification and validation studies for broaching including comparisons with NDA 

predictions. Lastly, Chapter 9 provides conclusions and recommendations for future 

work.  
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CHAPTER 2. NDA FOR SHIP STABILITY AND CAPSIZE 

The Nonlinear Dynamics Approach (NDA) is one the approaches to predict ship 

stability and capsize by solving a mathematical model developed based on the theory of 

ship motions. In this chapter, the theory of ship motion is introduced and all applied 

forces and moments are discussed in detail. The mathematical models are developed 

based on the presented ship theory and discussed for many applications including roll 

decay, parametric rolling, and broaching. The necessary inputs - manoeuvring 

coefficients- to solve mathematical models are listed and the calculation procedures of 

inputs for roll decay, parametric rolling, and broaching are explained. Later, the solving 

methodology for roll decay, parametric rolling, and broaching models are described. 

2.1 Equations of Motion 

The 6DOF rigid body equations of motion can be expressed as 6 nonlinear coupled 

equations to represent the translational and rotational motions of a ship. In order to take 

advantage of ship geometry properties, it is desirable to drive the equations of motion in 

body fixed coordinates frame. It is also convenient to put the body axes parallel with the 

principal axes of the vessel. Then the equations of motion with respect to body axes with 

arbitrary origin can be expressed as: 
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(2.1)

Where, TZYXf ],,[=   are forces, TNMKg ],,[= are moments, T
TTT wvuV ],,[=  are linear 

velocity, T
TTT rqp ],,[=ω are angular velocity, m is mass, T

ggg zyxR ],,[= are coordinates of 
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center of gravity, and  T
zyx IIII ],,[=  and T

yzxzxy IIIJ ],,[=  are moment of inertia and product 

of inertia in body coordinates system and can be expressed as: 
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Where  Tcg
z

cg
y

cg
x IIII ],,[=  and Tcg

yz
cg

xz
cg

xy IIIJ ],,[= are moments and product of inertia in 

body coordinates located on the center of gravity. 

The equations of motion shown in Eq. (2.1) are the most general form of the equations 

of motion relative to body-fixed coordinate system, if the mass and mass distribution 

does not change in time. Solving Eq. (2.1) defines linear and angular velocity of ship. 

Then the ship motions can be calculated from: 
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(2.3)

In application, Eq. (2) can be simplified due to port/starboard symmetry condition of 

ships which results in zero value for yg, Ixy, and Iyz.  Additionally Ixz can be neglected as 

small for ships with approximate fore and aft symmetry. Then the equations of motion in 
body coordinate system located on the center of gravity i.e. 0=== ggg zyx

 
would be as 

follow:  
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(2.4)

The LHS terms include linear, angular, Coriolis, and centripetal accelerations and the 

RHS are applied forces and moments.  
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Ship motions and manoeuvring mathematical models are based on perturbed Eq. (2.4) 

about an equilibrium position (i.e. steady axial velocity U0 at the dynamic sinkage σ and 

trim τ):  
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2.2 Forces and Moments 

The right hand side of Eq. (2.5) contains total forces and moments. The total forces 

and moments ( )NMKZYX ,,,,, are functions of accelerations, velocities, and 

displacements ( )rqpwvurqpwvuzyxT &&&&&& ,,,,,,,,,,,,,,,,, ψθφπ and assumed to be linear 

superposition of hydrostatic (gravity and buoyancy) restoring πGB, hydrodynamic πh, and 

wave induced πw along with control surfaces πC, propulsion system πP, and aerodynamic 

πA (not considered herein).  The hydrostatic restoring terms are functions of 

displacements including heave, roll, and pitch motion ( )θφπ ,,zGB ;  the hydrodynamic 

forces and moments are functions of accelerations, velocities, and angular 

displacements ( )rqpwvurqpwvuh &&&&&& ,,,,,,,,,,,,,, ψθφπ  but ( )uv /sin 1 −= −ψ and  

( )uw /sin 1 −= −θ such that ( )rqpwvurqpwvuh &&&&&& ,,,,,,,,,,,,φπ . 

2.2.1 Gravity-Buoyancy Forces and Moments 

The gravity and buoyancy forces can be represented by: 
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(2.6) 

Where WPA  is water plane area, xCF is flotation center, m is mass, LGM  is longitudinal 

metacentric height, and  GZ   is roll moment arm.  
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2.2.2 Hull Induced Hydrodynamic Forces 

Hydrodynamic forces ( )rqpwvurqpwvuh &&&&&& ,,,,,,,,,,,,φπ   can be approximated by 3rd 

order Taylor series expansion under the following assumptions: 

1) No acceleration/velocity coupling 

2) Only first order acceleration terms (added mass terms) 

3) No third order coupling 

4) For port/starboard symmetry: 

i.  Xh, Zh, Mh are even function of ( )rpvrpv &&& ,,,,,,φ  and general function 

of ( )qwuqwu &&& ,,,,, . 

ii. Yh, Kh, Nh are odd function of ( )rpvrpv &&& ,,,,,,φ  and even function of 

( )qwuqwu &&& ,,,,, . 

5) For slender ships, 1st order X derivatives with respect to ( )qwqw && ,,, are negligible. 
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As it is explained, only first order added mass terms are considered in Eqs. (2.7) - 

(2.12). For some applications, it might be necessary to include higher order added mass 

terms. Equation (2.13) show the linear and higher order added mass terms for 

port/starboard symmetric slender ship (Fossen, 1999): 
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For small perturbations, several terms are negligible and only underlined terms have to 

be considered.  The terms underlined by (–) are linear added mass terms and those 

underlined by (=) show nonlinear terms reducing to linear form for small perturbation.  

For instance, ruM Tu&  reduces to rUMu )cos( 0 τ& . 

2.2.3 Wave Forces 

In order to evaluate wave forces and moments, it is usual to consider the system to be 

linear. Under these assumptions the system of ship and waves is presented as a linear 

system: 

1) Waves are small i.e. waves amplitude is much smaller than wave length: kA<<1 
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2) The ship is stable so that small disturbances will yield proportionally small 

responses 

3) Nonlinear effects due to viscosity is negligible 

Since it is assumed that effect of viscosity is negligible, potential function can be used 

to express the system of a ship in presence of waves. It is expected the resulting potential 

of fluid velocities to be contributed from flow caused by wave and body motion: 
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(2.14)

Where Bjϕ  is the potential of fluid velocities induced by the different mode of ship 

motions and it does not include any wave influence ( Bjϕ  is also known as radiation part) 

and Wϕ is the potential of flow caused by the wave including incident Iϕ and diffracted 

waves Dϕ . Note that the possibility to break potential of fluid velocities as expressed in 

Eq. (2.14) is result of linear system. 

The assumed linearity of the system makes it possible to say that a sinusoidal input to 

the linear system produces a sinusoidal output at the same frequency. If the wave is 

assumed to have a form of cosine function: 
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Where A  is wave amplitude and ω is wave frequency.  

Then: 
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Here jϕ is fluid velocity potential amplitude caused by the j-th component of body 

motion and Isϕ and Dsϕ are fluid velocity potential amplitude expressing influence of 

incident and diffracted waves, respectively. 

Re-writing Eq. (2.14) using Eqs. (2.15) – (2.17) yields: 
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Bernoulli’s equation allows expressing pressure through fluid velocity potential: 
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Here ζ represents the free surface elevation. 

Substituting Eq. (2.18) in Eq. (2.19) yields to the pressure formula: 
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Integration of these pressures over the surface of the ship hull produces wave forces 

and moments: 
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Here T
WaveWaveWaveWave ZYXF ],,[= are wave forces, T

WaveWaveWaveWave NMKM ],,[= are wave 

moments, and SB is the hull surface. 

The forces and moments shown in Eqs. (2.21) and (2.22) classify the contribution of 

each potential as hydrostatics, radiation or wave exciting forces and moments. Wave-

exciting forces are due to the wave system only, with the body assumed to be fixed. There 

are two components present in wave-exciting force. One is the result of pressure related 

with incident wave and another one with diffracted wave. The first component could be 

considered as wave force acting on a ship in waves, but calculated with assumption that 
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the ship does not affect fluid velocities by her presence. This assumption is known as 

Froude-Krylov hypothesis and this kind of force is called Froude-Krylov force. The 

second component represents the disturbance that a ship makes to the fluid velocities in 

an incident wave by her presence. This force is called diffraction force. Radiation forces 

are the forces generated by the motion of the body in calm water. Hydrostatic forces of 

waves are the hydrostatic forces and moments in the water with elevated free surface.  

In order to calculate radiation and wave exciting forces and moments, having fluid 

velocity potentials are essential. These fluid velocity potentials have to be found such that 

they satisfy continuity, the free surface, ship hull and far-field conditions (Newman, 

1977). For incident wave: 

ContinuityIs −=∇ 02ϕ

 
surfaceFree

z
g Is
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∂
+ 02 ϕϕω

Bottom
z
Is −=

∂
∂ 0ϕ  

(2.23) 

As shown in Eq. (2.23), the incident potential is considered without knowledge of the 

presence of the ship. This makes it possible to have analytical solution for Isϕ . For 

instance, for a two-dimensional wave: 
  [ ]( ) ikx
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)sinh(
coshωϕ  

(2.24) 

Here H is the depth of the water. 

For diffraction part, the conditions are: 
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Here, the solution for Dsϕ is dependent on the ship geometry. Since the ship geometry 

is usually complicated, there is no analytical solution for diffraction part unless it is 

assumed that the ship is a slender body. 
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For radiation part, the conditions are: 
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Since the geometry of a ship is complicated, there is no analytical solution for 

radiation part unless the ship is assumed to be a slender body. 

Unlike the wave exciting forces and radiation forces, the calculation of hydrostatic 

force in presence of wave is not function of those fluid velocity potentials and can be 

calculated directly by integration of hydrostatic pressure. As shown in Eqs. (2.25) and 

(2.26), hydrostatic forces and moments have two components. One component is the 

hydrostatic forces in calm water and the second component is added hydrostatic forces 

and moments due to the waves. The first component is already taken into account in Eq. 

(2.6) and it would be redundant considering it here. The second component is fairly 

negligible except for roll moment K: 
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Substituting Eq. (2.27) in Eqs. (2.21) and (2.22) yields to: 
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Where subscript “wave” indicates waves forces including Froude-Krylov, diffraction, 

and radiation components. 

2.2.4 Propulsion Forces and Moments of Propellers 

The hydrodynamic forces and moments due to twin propellers included in LHS of Eq. 

(2.5) can be written as Eq. (2.29) under the assumption that both propellers have the same 

property and the distribution of torque around the propellers due to oblique flow i.e. when 

the ship is at an attack angle is negligible: 
( )

( )
0

)(12

0

0

0

)(12

42

42

=

−=

=

=

=

−=

p

pTppp

p

p

p

Tppp

N

zJKDntM

K

Z

Y

JKDntX

ρ

ρ

 

(2.29) 

Here, tp is thrust deduction factor, n is propeller revolution, Dp is propeller diameter, 

KT is thrust coefficient measured by POT, zp is the vertical coordinates of the propellers, 

and J is advance ratio defined as:  

p
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J
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(2.30) 

Where wp is known as effective propeller wake fraction, and UA is the advanced 

velocity. 

2.2.5 Control Surface Forces and Moments of Rudders 

The hydrodynamic forces and moments for control surface such as rudders are 

expressed as: 
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In which: 

( )

( )

( ) 2
2

2
22

2
2

2
22

2
2

2
22

811
2
1)(

811
2
1)1(

811
2
1)1(

u
J
KwfAxaxN

u
J
KwfAzaK

u
J
KwfAaY

T
PPRRHHR

T
PPRRHRH

T
PPRRH

⎟
⎠
⎞

⎜
⎝
⎛ +−×+−=

⎟
⎠
⎞

⎜
⎝
⎛ +−×+−=

⎟
⎠
⎞

⎜
⎝
⎛ +−×+−=

π
κερ

π
κερ

π
κερ

αδ

αδ

αδ

 
(2.32) 

Here, Ha is interaction factor between hull and rudder, Hx is the longitudinal position 

of interaction factor between hull and rudder, HRz is the vertical position of center of 

effective rudder force, Rx is the longitudinal position of the rudder force, Pκ is interaction 

factor between propeller and rudder, Rε is wake ratio between propeller and hull, pw is 

effective propeller wake, RA is the rudder area, and: 

Λ+
Λ

=
25.2
13.6

αf  
(2.33) 

where Λ  is rudder aspect ratio. 

2.3 Perturbed Equations of Motion for Ship 

The general form of body-fixed perturbed equations of motion for a port-starboard 

symmetric ship can be reached by substituting hydrostatic forces, hull induced 

hydrodynamic forces, wave forces, propeller forces, and lastly rudder forces in Eq. (2.5): 
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For U0=0 and zero perturbation velocities and non zero perturbation motions Eqs. 

(2.34)-(2.39) reduce to Eq. (2.6). For U0≠0 and zero perturbation velocities and non zero 

perturbation motions, which is resistance test in calm water, Eqs. (2.34)-(2.39) reduce to 

XMeasured=X*, ( ) *00 ZxzgA CFWP =− θρ , and  *00 MzxgAmgGM CFWPL =− ρθ   where X* is resistance 

in calm water, z0 and  0θ are dynamic sinkage σ and trim τ. 

For small steady state sinkage and trim and small perturbation motions, the linear 

equations are uncoupled vertical x, z, θ and horizontal y, φ, ψ plane motions.  The slender 

ship assumption additionally uncouples x from z and θ since the equations are written 

with respect to the centre of gravity.  Standard seakeeping prediction methods solve 

linear z and θ equations and 2nd order x equation using potential-flow slender-body 

theory to predict heave and pitch motions and added resistance for regular and irregular 

head waves. Standard 4DOF maneuvering prediction methods solve 3rd order x, y, φ, ψ 

equations neglecting z and θ using captive model test data to predict horizontal plane 

trajectories such as turning circles and zig-zag maneuvers. 

2.4 Mathematical Models 

The mathematical models for different application can be developed based on the 

theory shown in Eqs. (2.34)-(2.39) and then can be considered in simulation analysis. 
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2.4.1 1 DOF Roll Decay in Calm Water 

For 1DOF roll decay test in calm water without rudders and propellers, Eqs. (2.34)-

(2.39) are simplified as: 
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Herein, ( )φGZ  usually is considered as a higher order polynomial function of φ : 
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Where li are roll restoring moment arm coefficients. 

The equation for roll motion, shown in Eq. (2.41), can be rewritten as following form: 
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(2.42) 

Here, αand γ are damping coefficients, ωφ is natural roll frequency, GM is metacentric 

height in calm water, l’n is restoring moment coefficients in calm water.  

For 1 DOF roll decay in calm water, heave and pitch motions are negligible and roll 

response is under damped harmonic oscillations at fφd.  X indicates 2nd order/harmonic 

amplitudes due to roll motion, whereas Y and N indicate 1st and 3rd order/harmonic 

amplitudes due to roll motion.  Z and M indicate 2nd order/harmonic amplitudes due to 

roll motion. 

2.4.2 3 DOF Roll Decay in Calm Water 

For 3DOF roll decay test free to roll, sink, and trim, Eqs. (2.34)-(2.39) reduce to the 

following form: 
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Since heave and pitch velocities (or motions) are very small in roll decay test, higher 

order heave and pitch terms can be neglected. Therefore: 
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Since heave and pitch motions are negligible and roll response is under damped 

harmonic oscillations at fφd, X indicates 2nd order/harmonic amplitudes only due to roll 

motion whereas Y and N indicate 1st and 3rd order/harmonic amplitudes due to roll 

motion.   

2.4.3 1 DOF Roll in Head Waves 

For 1DOF roll in head waves, Eqs. (2.34)-(2.39) reduce to the following form: 
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Herein, ( )φGZ  usually is considered as a higher order polynomial function of φ : 
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3
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Where li are roll restoring moment arm coefficients in calm water. 

Also, WaveGZΔ  usually is considered as a higher order polynomial function of φ  and 

Fourier function of time:  
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Where eω =ω+(ω2/g)U0cos μ is encounter frequency, and μ is wave heading which is 

zero for head waves. 

The equation for roll motion, shown in Eq. (2.47), can be rewritten as following form: 
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Equation (2.48) can be rewritten as: 
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Here, αand γ are damping coefficients, ωφ is natural roll frequency, GM is metacentric 

height in calm water, l’n is restoring moment coefficients in calm water, Q0p and {Q1p, 

Q2p,..} indicate restoring moment mean value and amplitude in waves. 

Equation (2.45) shows that, for 1 DOF roll decay in regular head waves, roll response 

is either under damped harmonic oscillations at fφd (roll decay) or 1st harmonic dominant 

oscillations at fφ=fe/2 for parametric rolling in first instability zone.  X indicates 1st 

harmonic amplitude due to waves at fe and 1st, 2nd and 3rd harmonic amplitudes due to roll 

motion at fe. Y and N indicate ½ and 3/2 harmonic amplitudes due to roll motion. 
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2.4.4 3 DOF Heave-Pitch-Roll in Head Waves 

For 3DOF model test free to roll, pitch, and heave, Eqs. (2.34)-(2.39) are simplified to 

the following form: 
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(2.50) 

As shown in Eq. (2.50), heave and pitch response is 1st harmonic dominant oscillations 

at fe and roll response is either under damped harmonic oscillations at fφd (roll decay) or 

1st harmonic dominant oscillations at fφ=fe/2 for parametric rolling in first instability 

zone.  X indicates 1st harmonic amplitude due to waves at fe, 2nd and 3rd order/harmonic 

amplitudes due to heave and pitch motions at fe, and 1st, 2nd and 3rd harmonic amplitudes 

due to roll motion at fe. Y and N indicate 2nd order/harmonic amplitudes due to heave and 

pitch motions and ½ and 3/2 harmonic amplitudes due to roll motion. 

2.4.5 2 DOF Static Heel in Calm Water 

For 2DOF model test free to sink and trim and heeled at angle φ, Eqs. (2.34)-(2.39) 

reduce to the following form: 
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(2.51) 

Since sinkage and trim motions are negligibly small, Eq. (2.51) is simplified to: 
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(2.52) 

Equation (2.52) shows that X,z,θ have quadratic trend for different heel angle whereas 

Y,K, and N show cubic trend. This suggests that the heel angle has 1st order effect on Y, 

K, N and 2nd order effect on X,z,θ.  

2.4.6 2 DOF Static Drift in Calm Water 

For 2DOF static drift test free to sink and trim, Eqs. (2.34)-(2.39) reduce to the 

following form: 
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(2.53) 

Since sinkage and trim motions are negligibly small, Eq. (2.53) is simplified to: 
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(2.54) 

Equation (2.54) shows that X,z,θ have quadratic trend for different drift angle (v 

velocity) whereas Y,K, and N show cubic trend. This suggests that the drift angle has 1st 

order effect on Y, K, N and 2nd order effect on X,z,θ. 

2.4.7 2 DOF Static Heel in Following Waves 

For 2DOF model test in following waves free to pitch and heave and heeled at φ, Eqs. 

(2.34)-(2.39) are simplified to the following form: 
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(2.55) 

Heave and pitch response is 1st harmonic dominant oscillations at fe and roll is fixed at 

angle φ.  X indicates 1st harmonic amplitude due to waves at fe, 2nd and 3rd order/harmonic 

amplitudes due to heave and pitch motions at fe. Y and N indicate 2nd order/harmonic 

amplitudes due to heave and pitch motions. Equation (2.52) shows that X,z,θ have 

quadratic trend for different heel angle whereas Y,K, and N show cubic trend. This 

suggests that the heel angle has 1st order effect on Y, K, N and 2nd order effect on X,z,θ. 

2.4.8 4DOF Broaching in Quartering/Following Waves 

In a particular case such as surf-riding and broaching, heave and pitch motions, which 

have high natural frequency compare to the other modes of motion, can be neglected due 

to the fact that ship heading speed is close to wave celerity which produces small 



32 
 

 

encounter frequency and stimulates the modes of motions with small natural frequency. 

Thus, broaching model is 4DOF requiring dealing with low frequency surge-sway-yaw-

roll motions. The Eqs. (2.34)-(2.39) can reduce to 4DOF model neglecting heave and 

pitch motions: 
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Hashimoto and Umeda (2002) and Hashimoto et al. (2004a,b) introduce following 

simplifications to Eqn. (2.56)-(2.59) to provide an efficient 4DOF model for broaching: 

1) The roll velocity effect is significant in roll motion and is negligible for other 
modes of motion. Thus: 0;0 ≠≠ pppp KK  and 0===== pppppppppp NNYYX  

2) There is no cross-coupling between φ/p and other velocities. For instance: 
0=== pvvrrvv NKY φφ  

3) All the acceleration components are negligibly small except uX & , vY& , pK & , and rN & .  

4) Change of GZ due to waves is negligible since encounter frequency is very small. 

5) The nonlinear added mass term for roll motion  ruM Tu&− shown in Eq. (2.13) is 

added to Eq. (2.58) to improve the model. Note that  uM & can be expressed as uH Xz & where 

zH is z coordinate of acting point of uX & .  
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Consequently the 4DOF Umeda and Hashimoto model of broaching is: 
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  (2.63) 

Surge, sway and yaw motion have no restoring forces or moments and their response 

are not harmonic such that measured forces and moments should include only harmonics 

due to roll ωφ or/and due to wave at ωe. Surge motion introduces first order amplitude in 

X and second order amplitude in Y and Κ. Sway and yaw motions introduce second order 

amplitude in X and 1st and 3rd order amplitudes in Y, K, and N. Roll motion causes 

second order/harmonic amplitude at 2ωφ in X, 1st and 3rd order/harmonic amplitude at ωφ 

and 3ωφ in Y, K, and N. Rudder motion causes first order amplitude in Y, K, and N. 

Lastly, wave forces and moments introduces 1st harmonics in X, Y, K, and N at ωe.  

Since rudders are free to turn for steered ship, the rudder angle is not fixed in Eqs. 

(2.60)-(2.63) and the equation of autopilot has to be added to find Rδ at each time. The 

simplest equation of autopilot can be described by the following linear equation: 

( )CRR K ψψδ −−=   (2.64) 

Here Cψ− is desired course. Eq. (2.64) shows very simple action to control the course; 

rudder deflection is just proportional to deviation from desired course. KR is a 

proportional coefficient called “rudder gain constant”. This controller is too simple to be 

applied practically because such an autopilot is only sensitive to course deviation and 

would always be late. To make it react in advance, reaction on yaw rate can be added too: 
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( ) rTKK DRCRR −−−= ψψδ   (2.65) 

Here TD is a correction for rudder gain, to keep proportionality to yaw rate. Such 

controller is called “differential controller” and TD is called “time constant for differential 

controller”. 

The last step to get an appropriate equation of autopilot is to take into account the 

rudder deflection velocity: 

( ) rTKKT DRCRRRE −−−=+ ψψδδ&   (2.66) 

Here TE is called “time constant for steering gear”. All coefficients KR, TD, and TE 

are subjects of autopilot tuning.  

2.5 Calculation of Hydrodynamic Derivatives 

To solve developed mathematical models, the coefficients existed in the models are 

necessary to evaluated. These coefficients are called “maneuvering coefficients” or 

“hydrodynamic derivatives”. Herein, the methodology of calculation hydrodynamic 

derivatives for 1 DOF roll decay model, 1 DOF parametric rolling model, and 4 DOF 

broaching model are discussed.  

2.5.1 1DOF Roll Decay and Parametric Rolling Models 

For 1 DOF roll decay and parametric rolling models shown in Eqs. (2.42) and (2.49), 

linear and cubic roll damping coefficients (α and γ), roll natural frequency (ωφ), restoring 

moment coefficients l’n, and lastly restoring moment variation parameters in waves (Qp0 

,Qp1..,) are necessary to be estimated to solve the 1 DOF mathematical model.  

Linear and cubic roll damping coefficients and roll natural frequency are estimated 

from towing tank forward speed roll decay test. The restoring moment coefficients in 

calm water are estimated from fitting a polynomial curve of order N to Fr=0.0 

hydrostatically computed restoring moment as a function of heel angle. (Q0p ,Q1p..,) are 

estimated from fitting a polynomial curve of order P with time dependent coefficients to 
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measured (or hydrostatically computed) restoring moment of a ship with different heel 

angles in waves.  

2.5.2 4 DOF Broaching Model 

The hydrodynamic coefficients in Eqs. (2.60)-(2.63) can be found using empirical 

formula or determined experimentally using the captive model tests such as Static Drift 

tests, Static Heel tests, Rotating Arm tests (Circular Motion Test), and Planar Motion 

Mechanism (PMM) tests in calm water. 

In Static Drift tests, the model is towed obliquely in towing tank and the sway velocity 

related hydrodynamic coefficients such as vvX , vY , vvvY , vK , vvvK , vN , and vvvN are 

determined. Also, Hz can be determined from Static Drift tests.  

In Static Heel tests, the model is towed with heel angle and the roll related 
hydrodynamic coefficients such as φφX , φY , φφφY , φK , φφφK , φN , and φφφN are determined. 

In Rotating Arm tests, an angular velocity is imposed on the model by fixing it to the 

end of a radial arm and rotating the arm about a vertical axis fixed in the tank. The model 

is oriented with its x-axis and z-axis normal to the radial arm and it is attached to the arm 

preferably at the model’s mid-length. As a result of the particular orientation, as the 

model revolves about the tank axis, rotates at the rate r while its transverse velocity 

component v is zero and its axial velocity component is identical to its linear speed. The 

model is rotated at a constant linear speed at various radii R, and the measured X,Y,K, 

and N acting on the model result in estimating yaw rate related coefficients such as 

rrX , rY , rrrY , rK , rrrK rN , rrrN .  

Herein, the acceleration terms such as vY& , vN & , rY& , rN & are estimated through empirical 

formula even though they can be estimated from PMM tests.  

Cross-coupling terms in Eqs. (2.60)-(2.63)  can be measured through a coupled 

experiment setup. For instance, since yaw rate terms are measured from Rotating Arm 

tests and sway velocity terms are measured from Static Drift tests, yaw rate and sway 
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velocity coupling terms such as rvvY , rrvY can be determined by Rotating Arm tests in which 

the model has drift angle. 

A summary of the captive model tests and available hydrodynamic coefficients from 

each test are presented in Table 2.1.    

2.5.2.1 Static Drift 

For the static drift results, the forces and moments coefficients are only the function of 

v thus the RHS of Eqs. (2.60)-(2.63) are simplified as: 
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(2.67) 

where .,,,,,,,* vvvvvvvvvvvvvv NHvNGKFKEYDYCXBXA ========  

The hydrodynamic derivatives shown in Eq. (2.67) are obtained as polynomial 

coefficients by least-square curve fitting method. The 2nd order polynomial is used to 

obtain A and B, although A is usually referenced from steady resistance tests. The 3rd 

polynomial is used to obtain C, D, E, F, G, and H. Also, E and F can be estimated from Y 

coefficients using zH in which: 

YzK H=   (2.68) 

Here zH is estimated from 1st order polynomial curve fitting to K – Y plot. 

Consequently: 

DzF
CzE

H

H

=
=  

(2.69) 

2.5.2.2 Static Heel 

 For the static heel results, the forces and moments coefficients are only the function 

of φ thus the RHS Eqs. (2.60)-(2.63) are simplified as: 
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(2.70) 

Herein, 
φφφφφφφφφφφφφφ φ NHNGlKFlKEYDYCXBXA ==−=−===== ,,,,,,, 31*  and 1l , 3l are 

restoring moment coefficients. The hydrodynamic derivatives shown in Eq. (2.70) are 

obtained as polynomial coefficients by least-square curve fitting method. The 2nd order 

polynomial is used to obtain A and B, although A is usually referenced from steady 

resistance tests. The 3rd polynomial is used to obtain C, D, E, F, G, and H. Also, 1l , 3l are 

measured from 3rd order polynomial curve fitting to roll restoring moment, although 1l  is 

GM and it is known.   

2.5.2.3 Rotating Arm + Drift 

For the rotating arm test with drift angle, the rotating arm speed is U = rR and side 

velocity and yaw rate of the vessel are v=-Usinβ and r. As the result the RHS of Eqs. 

(2.60)-(2.63) can be simplified as:  
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(2.71) 

where X,Y,K, and N are the measured forces and moments in which centrifugal force 

((m − Yv˙)r2R effects are extracted.  

The hydrodynamic coefficients of X, Y, and N shown in Eq. (2.71) are obtained as 3rd 

order polynomial coefficients (A1-F1), (A2-F2), and (A4-F4) respectively, by least-square 

surface fitting method. The hydrodynamic coefficients of K can be estimated from 

polynomial coefficients of Y as follow: 
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(2.72) 

Herein Hz  is already known from the Static Drift test.  

2.6 Solution of Mathematical Model 

2.6.1 1DOF Roll Decay and Parametric Rolling Models 

To solve 1DOF nonlinear roll decay model, Runge-Kutta method is used to integrate 

Eq. (2.42). The initial roll angle and roll rate, which is usually zero, are applied as initial 

conditions.  

For 1DOF parametric rolling model, Poincaré mapping was applied to identify steady 

states of parametric rolling as a function of Fr by integrating Eq. (2.49) using Runge-

Kutta method. Once a steady state for certain Fr is found, the next numerical integration 

of Eq. (2.49) starts from the obtained steady state but with a slightly larger or smaller Fr 

which depends on using increasing or decreasing Poincaré method. Both tracing 

directions of increasing and decreasing Fr are explored to demonstrate dependency of 

initial condition.  

The Poincaré map is useful to identify bifurcation structures of roll motion, but it 

requires an initial steady state for continuously tracing steady states. Thus there is still the 

possibility that another stable state exists with the same condition. In addition, numerical 

simulations for all possible condition parameters, wave height, wave length, ship speed, 

GM, etc. consume tremendous simulation time. Therefore, an averaging method was 

used, which is one of the analytical approaches in nonlinear dynamics for solving Eq. 

(2.49) in an approximate way. For parametric rolling in first instability zone, all steady 
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states of principal parametric rolling, where roll frequency is a half of the encounter 

frequency, can be theoretically determined because steady states are solutions of 
algebraic equations. Assuming the solution of )ˆcos( εωφ φ −= tA yields:  

0=φA  
2 2

2 2 2 2 4 2 2
3 5

3 1 3 5{ } { (1 / )} ( / )
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(2.73) 

Aφ=0 indicates a trivial solution at 0 degrees of roll. Steady states of the parametric 

rolling orbit can be obtained by solving the eighth-degree algebraic equation. If locally 

these equations are linearized at their steady states, stability of solutions can be examined 

with their eigenvalues, and their attractor domain can be determined with their 

eigenvectors.  

2.6.2 4DOF Broaching Model 

To solve the system of equations shown in Eqs. (2.60)-(2.63) and steering equation 

shown in Eq. (2.66), the definition of p and r, and the ship position equation have to be 

added. Then, Eqs. (2.60)-(2.63) and Eq. (2.66) can be presented as a system of 

differential equations of the first order to solve it numerically:  
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(2.74) 

It would be more convenient to present system Eq. (2.74) in vector form: 
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rrr

& =   (2.75) 

where xr is called the state vector: 

{ }T
RG prvux δφψξ ,,,,,,,=

r   (2.76) 

The vector b
r  is control vector which consists here just two parameters: 

{ }nb C ,ψ=
r   (2.77) 

Here, n is number of propeller revolutions and it has to be included in all terms 

connected with thrust and rudder action. 

Ship motions response in waves can be calculated by solving Eq. (2.75) for certain 

initial conditions (for motions and controller) and for certain control parameters (number 

of propeller revolution and desired course). The solution can define the status of ship 

which can be capsizing, broaching, periodic motion, and surf-riding. 

2.6.2.1 Capsizing and Broaching 

Capsizing can be defined if: 

Cφφ <   (2.78) 

Here Cφ  should be sufficiently larger than the angle of vanishing stability which is 

usually around 90deg. 

Based on the definition of broaching, the condition for broaching can be formulated as 

follows: 

⎩
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>>−=
<<=

00
00

max

max

rr
rr
&

&

δδ
δδ

  (2.79) 

Equation (2.79) basically means that for broaching case the magnitude of yaw angle is 

increasing even though rudder has its maximum deflection to keep the course. 

2.6.2.2 Periodic Orbits 

The steady state solution of Eq. (2.75) is even more important than time history itself 

in nonlinear dynamics theory. A nonlinear system of equations such as Eq. (2.75) can 
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have different type of steady solutions described by:  equilibrium points (fixed points i.e. 

surf-riding), limit cycle (periodic orbits or quasiperodic orbits), and chaos. Static periodic 

motion can be identified if a value of Τ exists which satisfies the following equation: 

 

8,...3,2)()(
))(2cos())(2cos( 11

=+=
+=

iTtxtx
Ttxtx

ii

ππ
  (2.80) 

2.6.2.3 Equilibrium of Steered Ship Equations; Surf-riding 

Equilibrium points of system (2.75) correspond to surf-riding which is a prerequisite 

for broaching. If the ship is in the equilibrium position, then derivative of ship motions 

are zero. 

0),( =bxF
rr   (2.81) 

As all derivatives are disappeared, expression (2.81) degrades to a system of nonlinear 

algebraic equations that can be solved numerically with a simple method such as Newton 

method. The system (2.81) consists of 8 equations, so the equilibrium is a point in a space 

of eight dimensions and changing control parameters move this point. Usually, for each 

equation there are only two equilibrium points. One equilibrium point corresponds to the 

state that ship is in the wave crest and another one corresponds to wave trough. This is 

can be checked by studying stability of equilibrium.  

2.6.2.4 Stability of Equilibrium (Attractor vs. Repeller) 

Stability of equilibrium points (fixed points) can be studied by eigenvalues of 

Jacobean matrix of  F: 



42 
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

8

8

8

2

8

1

2

8

2

2

2

1

1

8

1

2

1

1

),(
...),(),(

............

),(
...

),(),(

),(
...),(),(

)(

x
bxF

x
bxF

x
bxF

x
bxF

x
bxF

x
bxF

x
bxF

x
bxF

x
bxF

FJ

rrrrrr

rrrrrr

rrrrrr

r  
(2.82) 

Eigen-values of J(F) can be expressed: 

0))(det( =− IFJ λ
r   (2.83) 

Here I is the identity matrix. 

The number of eigenvalues corresponds to the dimension of the matrix, which is the 

number of equations. Each eigenvalues can be associated with a variable from the model 

shown in Eq. (2.76). A positive eigenvalue for a certain variable means that the system 

will escape in the particular direction into an unstable equilibrium points. 
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Table 2-1: Summary of captive model tests and relevant hydrodynamic 
derivatives 

Test Conditions Motion 
Parameters Coefficients 

Static Drift  v  

*X , vvX  

vY , vvvY  

vK , vvvK , Hz  

vN , vvvN  

Static Heel  φ  

*X , φφX  

φY , φφφY  

φK , φφφK  

φN , φφφN  

Rotating Arm With Drift v , r  

*X , vvX , rrX , rvX  

vY , vvvY , rY , rrrY , vrrY , vvrY  

vK , vvvK , rK , rrrK , vrrK ,

vvrK  

vN , vvvN , rN , rrrN , vrrN ,

vvrN  
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CHAPTER 3. IMPLEMENTAION CAPSIZE PREDICTION IN 

CFDSHIP-IOWA V.4 

The general-purpose solver CFDShip-Iowa-V.4 solves the unsteady Reynolds 

averaged Navier-Stokes (RANS) or detached eddy simulation (DES) equations in the 

liquid phase of a free surface flow. The code utilizes absolute/relative inertial earth-fixed 

coordinate system and non-inertial ship-fixed coordinate system to describe 

prescribed/predicted ship motions. The free surface is captured using a single-phase level 

set method and the turbulence is modeled by isotropic or anisotropic turbulence models. 

Numerical methods include advanced iterative solvers, second and higher order finite 

difference schemes with conservative formulations, parallelization based on a domain 

decomposition approach using the message-passing interface (MPI), and dynamic overset 

grids for local grid refinement and large-amplitude motions. A succinct review of the 

code is presented here, paying special attention to its application on capsize prediction. 

3.1 Governing Equations 

3.1.1 Inertial Earth-Fixed Coordinates (X,Y,Z) 

The governing differential equations (GDEs) of motion are derived and solved in 

absolute inertial earth-fixed coordinates (X,Y,Z) for an arbitrary moving but non-

deforming control volume and solution domain, respectively. The governing differential 

equation for continuity is expressed as follow: 

0. =∇U   (3.1) 

where kUjUiUU ˆˆˆ
321 ++=  is the absolute velocity in (X,Y,Z).  

Conservation of momentum using the divergence operator expansion, the continuity 

equation and expressing the body and surface forces per unit volume, give the momentum 

equation: 
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( ) UzpUUU
t

U
G

2).( ∇++−∇=⎥⎦
⎤

⎢⎣
⎡ ∇−+

∂
∂ μγρ   (3.2) 

Where GU  is the local grid velocity. Note that Eq. (3.2) can be non-dimensionalized 

using a reference velocity URef (generally is the speed of the ship U0), the ship length L, 

the water density ρ and viscosity μ which introduces LgUFr /0= and μρ /Re 0LU=  

numbers. 

3.1.2 Relative Inertial Coordinates (X´,Y´,Z´) 

Eq. (3.2) can be transformed into the relative inertial coordinates (X´,Y´,Z´) translating 

at a constant velocity UC relative to (X,Y,Z) by replacing U by CUUU +′=  and GU  by 

CGG UUU +′= , where U ′  and GU ′  are the fluid and grid velocities in (X´,Y´,Z´), 

respectively. The time derivatives in the two inertial coordinates are the same. Since the 

gradient, divergence, and Laplacian operators in Eq. (3.2) are frame invariant, the 

governing equations in terms of U ′  in (X´,Y´,Z´) are obtained: 

( ) UzpUUU
t

U
G ′∇++−∇=⎥⎦

⎤
⎢⎣
⎡ ′∇′−′+

∂
′∂ 2).( μγρ   (3.3) 

3.1.3 Non-Inertial Ship-Fixed Coordinates (x,y,z) 

Eq. (3.2) can also be transformed into the non-inertial ship-fixed coordinates (x,y,z) 

located at center of rotation of ship by replacing U in (X,Y,Z) by Gr UUU +=  and UG 

by rRUG ×Ω+= & ; where Ur is fluid velocity in ship coordinate, r is instantaneous position 

vector of any point in (x,y,z), kUjUiUR ZYX
ˆˆˆ ++=&  and kji ZYX

ˆˆˆ Ω+Ω+Ω=Ω   are the 

linear and angular velocity  of (x,y,z) in (X,Y,Z). 

( ) rrrr
r UzpaUU

t
U 2. ∇++∇−−=⎥⎦

⎤
⎢⎣
⎡ ∇+

∂
∂ μγρρ   (3.4) 

( ) rrURa rr ×Ω+×Ω×Ω+×Ω+= &&& 2  (3.5) 
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3.2 Turbulence Modeling 

CFDShip-Iowa uses a linear closure model, in which Reynolds stresses are 

proportional to the main rate of strain being νt, the isotropic eddy viscosity, the 

proportional factor. In Cartesian coordinates, the expression is: 

k
X
U

X
Uvuu ij

i

j

j

i
tji δ

3
2

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
+

∂
∂

=−   (3.6) 

where ijδ  is the Kronecker delta and k is the turbulent kinetic energy.  

The equations can be closed by calculating the eddy viscosity.  

3.2.1 Blended k−ω/k−ε (BKW) 

This blending takes benefits from the strength of both k−ω and k−ε models to 

calculate vt. The k−ω model has proven to be robust, applicable to complex geometries 

and fairly accurate. In addition, it does not require near-wall dumping functions and uses 

simple Dirichlet boundary conditions. On the other hand, k−ε model does not exhibit 

sensitively to the level of free-stream turbulence as k−ω does. The governing equation for 

turbulent kinetic energy k and the turbulent ω are as follows (Menter, 1994). 

( ) 21 0k t k
k

k k k s
t P

σ ν∂
+ − ∇ ⋅∇ − ∇ + =

∂
v  

(3.7) 

( ) 21 0t s
t Pω ω

ω

ω σ ν ω ω∂
+ − ∇ ⋅∇ − ∇ + =

∂
v  

(3.8) 

Where the source terms, turbulent viscosity and the effective Reynolds numbers are: 

( )kGRS kk ωβ *+−=   (3.9) 
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⎠
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jj XX
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1)1(2 21
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ω
kvt = (3.11) 

tk
k v

R
ω

ω σ /
/ Re/1

1
+

= (3.12) 

j

i
ij X

UG
∂
∂

= τ (3.13) 
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Here, β , *β , kσ , and ωσ are constants and F1 is a blending function, designed to take 

advantage of the strength of either k-w or k−ε model in different position. To accomplish 

this, F1 is 1 in the sub-layer and logarithmic regions of boundary layers and gradually 

switches to zero in the wake region. The model constants, say α, are calculated from the 

standard k-ω (α1), and k-ε (α2) values using a blending function: 

( )1 1 1 21F Fα α α= + − (3.14) 

3.3 Free Surface Modeling 

CFDShip-Iowa-v4 uses single-phase level set method. The 3D level set function, φ, is 

defined in the whole domain and its value is related to the signed distance to the 

interface. Therefore, the iso-surface φ=0 represents the free surface. Since the free surface 

is considered a material interface, the level set function must satisfy: 

( ) 0=
∂
∂

−+
∂
∂

j
Gjj X

UU
t

φφ
(3.15) 

Also, given that φ is a distance function, the gradient of the level set function points 

normal to the interface into the water and the water-to-air normal can then be computed 

as: 

i

i
i X

Xn
∂∂
∂∂

−=
/
/

φ
φ

(3.16) 

In the field of ship hydrodynamics, the big difference in density and viscosity between 

air and water allows to simplify the problem by solving only the equations for the water 

phase.  

Since the equations are only solve for one of the phases, the jump conditions at free 

surface must be enforced explicitly. The jump condition in any direction tangential to the 

free surface given by the tangent vector ti is: 

0=
∂
∂

+
∂
∂

ji
j

i
ji

j

i tn
X
Unt

X
U μμ (3.17) 
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After neglecting shear stress in air, it leads to: 

 0
int

=
∂
∂

j
j

i n
X
U

(3.18) 

In the normal direction, the jump condition is expressed as: 

02 =
∂
∂

− ji
j

i
abs nn

X
Up μ (3.19) 

Assuming the pressure is constant on the air and neglecting the contribution of the 

turbulent kinetic energy to the free surface, the non-dimensional piezometric pressure at 

the interface is: 

2
int

int Fr
zp = (3.20) 

A velocity in air near the free surface is needed to calculate the transport of the level 

set function and also velocities and turbulent quantities. This extension velocity is 

calculated using Eq. (3.18), which provides a good approximation satisfying the jump 

condition at the same time.   

In single level set is critical to keep φ as a distance function, since this is assumed in 

the calculation of the normal in Eq.(3.16). To do this, the level set function is reinitialized 

periodically everywhere but at the interface by solving: 

)( 0φφ signn
X j

j

=
∂
∂

(3.21) 

Where φ0 is the level set function prior to reinitializing. The normal vector nj points 

into the fluid to be reinitialized, and is given by Eq. (3.16) in air and by the negative of 

the same equation in water. Thus Eq. (3.21) is an Eikonal equation propagating 

information outwards the interface. 

Also, Eq. (3.21) is nonlinear because nj is a function of φ and it is solved with 

nonlinear iterations. 
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3.4 Motions Modeling 

  3.4.1 6 DOF Rigid Body Equations of Motion 

The 6DOF rigid body equations of motion presented in Eq. (2.1) is solved to calculate 

ship linear and angular motions. In order to solve Eq. (2.1), the total force TZYXf ],,[=   

and moment TNMKg ],,[=  in the absolute inertial earth-fixed coordinates for the ship are 

computed by integrating pressure and friction and buoyancy forces on the ship hull and 

then projected into the non-inertial ship-fixed coordinates (x,y,z) using: 

( )inertialfJf 1= (3.22) 

( )inertialgJg 1=  (3.23) 

The matrix 1J  transforms any vector in (X,Y,Z) to a vector in (x,y,z): 
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⎥
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cossinsinsinsincoscoscossinsincossin

sincossincoscos

1J
 

(3.24) 

Where φ, θ, and ψ are the Euler angles for roll, pitch, and yaw, respectively.  

Any number of degrees of freedom can be imposed and the rest is predicted by solving 

Eq.(2.1), which results in captive, free, or semi-captive motions. Additional governing 

equations for the constraints (or imposed motions) need to be solved which results in 

reduced degrees of freedom. As an approximation, CFDShip-Iowa-V.4 only solves rigid 

body equations for the predicted degrees of freedom using a predictor/corrector implicit 

approach. The prescribed motions for position, translation velocity, and Euler angles are 

specified as functions of time in the absolute inertial coordinates and read into CFDShip-

Iowa-V.4 as a data file. 
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3.4.2 Appendages 

The ship might have several appendages which move with the ship. The appendages 

can have relative motion motions respect to the ship such as rudders and propellers. The 

CFDShip-Iowa-v.4 models appendages using child and parent concept. The child object 

is connected to the ship but it can have relative motion respect to the ship. The forces and 

moments are integrated on the child object and 6DOF rigid body equations of motions 

can be solved for unrestrained modes of motion.  

3.4.2.1 Propellers 

For self-propulsion simulation, the ship model has propeller on it which produces 

necessary thrust for ship motion. The CFDShip-Iowa-v.4 models propeller using body 

force or real rotating propeller. For body force model, a simplified model is used to 

prescribe axisymmetric body force with axial and tangential components (Stern et al., 

1998). The radial distribution of forces is based on the Hough and Ordway circulation 

distribution, which has zero loading at the root and tip. A vertex-based search algorithm 

is used to determine which grid-point control volumes are within the actuator cylinder. 

The propeller model requires the input of thrust, torque and advance coefficient and 

outputs the torque and thrust force to the shaft and the body forces for the fluid inside the 

propeller disk.  For the real rotating propeller, the simulation of propeller requires no 

input and outputs the torque and thrust force to the shaft and propeller blades. The force 

and torque of each propeller are projected into the non-inertial ship-fixed coordinates and 

used to compute an effective force and torque about the center of rotation, which is 

usually coincident to the center of gravity. The location of the propeller is defined in the 

static condition of the ship. When motions are involved, the propeller will move 

accordingly with the ship’s motions and possibly will intersect the background grid if it is 

finer than grids from other blocks and becomes “active”.  
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3.4.2.2 Rudders 

Rudders are modeled as child objects only enable to turn around their axis. The 

turning angle, velocity, and acceleration of rudders can be prescribed as functions of time 

in the absolute inertial coordinates and read into CFDShip-Iowa-V.4 as a data file. Also, 

the turning angle can be predicted using a controller to turn the ship toward the target 

heading. 

  3.5 Controllers Modeling 

 Controllers are recently added to CFDShip-Iowa code which expand the code 

applications for capsize prediction. The controller attempts to correct the error between a 

measured process variable and a desired setpoint by calculating and then outputting a 

corrective action that can adjust the process accordingly. For instance, rudder controllers 

are responsible to turn rudders to keep the ship in desired direction or propeller 

controllers are responsible to rotate propellers to keep the ship at desired speed. 

3.5.1 PID Controller 

A proportional–integral–derivative controller (PID controller) is a generic control loop 

feedback mechanism widely used in control systems.  

The PID controller calculation involves three separate parameters; the Proportional, 

the Integral and Derivative values. The Proportional value determines the reaction to the 

current error, the Integral determines the reaction based on the sum of recent errors and 

the Derivative determines the reaction to the rate at which the error has been changing. 

The weighted sum of these three actions is used to adjust the process via a controller. 

By "tuning" the three constants in the PID controller algorithm, the controller can 

provide control action designed for specific process requirements. Some applications may 

require using only one or two modes to provide the appropriate system control. This is 
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achieved by setting the gain of undesired control outputs to zero. A PID controller will be 

called a PI, PD, P or I controller in the absence of the respective control actions.  

3.5.1.1 Proportional Controller 

The proportional term makes a change to the output that is proportional to the current 

error value. The proportional response can be adjusted by multiplying the error by a 

constant P, called the proportional gain. 

The proportional term is given by: 

)()( tPet =δ (3.25) 

Where )(tδ is output and )(te is the error which is: 

)()( tAAte d −= (3.26) 

Here, dA  is the desired value and  )(tA  is the current value.  

For rudder controllers, )(tδ  is rudder deflection, Ad is target heading, and A(t) is 

current heading. For propeller controller, )(tδ  is the propeller RPS, Ad is target speed, 

and A(t) is current speed. A high proportional gain results in a large change in the output 

for a given change in the error. If the proportional gain is too high, the system can 

become unstable. In contrast, a small gain results in a small output response to a large 

input error, and a less responsive (or sensitive) controller. If the proportional gain is too 

low, the control action may be too small when responding to system disturbances. 

3.5.1.2 Integral Controller  

The contribution from the integral term is proportional to both the magnitude of the 

error and the duration of the error. Summing the instantaneous error over time 

(integrating the error) gives the accumulated offset that should have been corrected 

previously. The accumulated error is then multiplied by the integral gain and added to the 

controller output. The magnitude of the contribution of the integral term to the overall 

control action is determined by the integral gain, I. 
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The integral term is given by: 

∫=
τ

ττδ
0

)()( deIt (3.27) 

The integral term (when added to the proportional term) accelerates the movement of 

the process towards setpoint and eliminates the residual steady-state error that occurs 

with a proportional only controller. However, since the integral term is responding to 

accumulated errors from the past, it can cause the present value to overshoot the setpoint 

value (cross over the setpoint and then create a deviation in the other direction). 

3.5.1.3 Derivative Controller  

The rate of change of the process error is calculated by determining the slope of the 

error over time (i.e. its first derivative with respect to time) and multiplying this rate of 

change by the derivative gain D. The magnitude of the contribution of the derivative term 

to the overall control action is termed the derivative gain, D. 

The derivative term is given by: 

dt
tedDt ))(()( =δ (3.28) 

The derivative term slows the rate of change of the controller output and this effect is 

most noticeable close to the controller setpoint. Hence, derivative control is used to 

reduce the magnitude of the overshoot produced by the integral component and improve 

the combined controller-process stability. However, differentiation of a signal amplifies 

noise and thus this term in the controller is highly sensitive to noise in the error term, and 

can cause a process to become unstable if the noise and the derivative gain are 

sufficiently large. 

Summation of Eq.(3.26), (3.27), and (3.28) leads to general form of PID controller 

equation: 

dt
tedDdeItPet ))(()()()(

0

++= ∫
τ

ττδ (3.29) 
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CFDShip-Iowa solves Eq. (2.29) for rudders or propellers controller and predicts 

rudder deflection or propellers RPS. 

  3.6 Numerical Details 

3.6.1 Coordinate Transformation 

The governing differential equations for continuity and momentum in (X,Y,Z) and 

(X´,Y´,Z´) are transformed from the physical domain in Cartesian coordinates (X,Y,Z,t) to 
the computational domain in non-orthogonal curvilinear coordinates ( ), , ,ξ η ζ τ  using 

the chain rule without involving grid velocity for the time derivative transformation. The 

transformation is partial, since only the independent variables are transformed, leaving 

the velocity component Ui in the base coordinates: 

( )1 0j
i ij b U

J ξ
∂

=
∂ (3.30) 

( )1 1 1
Re

kj k l
j jk ki i i i i t i

j j Gj i ik k j k k l
eff

b UU U b b U bpb U U b S
J J J J J J

ν
τ ξ ξ ξ ξ ξ ξ

⎛ ⎞ ∂∂ ∂ ∂ ∂∂ ∂
+ − = − + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠   (3.31) 

3.6.2 Discretization Scheme 

The time derivatives in the turbulence and momentum equations are discretized using 

2nd order finite Euler backward difference. For the general variable φ: 

( )21 5.025.11 −− +−
Δ

=
∂
∂ nnn

tt
φφφφ

(3.32) 

Convection terms in the turbulence and momentum equations are discretized with 

higher order upwind formula: 
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The value of weighting coefficients depends on the scheme used. In present work, 2nd 

order was used which means wmm=0.5,wm=-2, wn=1.5, and wp=wpp=0. 

The viscous term in Eq. (3.31) and turbulent equations are computed with similar 

considerations using a second order difference scheme.  

The mass conservation is enforced using the pressure Poisson equation: 

,

j k j
i i i

nb i nb ij k j
nbijk ijk

b b bp a U S
Ja aξ ξ ξ

⎛ ⎞∂ ∂ ∂ ⎛ ⎞
= −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎝ ⎠⎝ ⎠

∑ (3.35) 

3.6.3 Solution Algorithm 

The grids are read and split according to user directives for domain decomposition 

parallelization. A MPI-based domain decomposition approach is used, where each 

decomposed block is mapped to one processor. Then, variables are initialized and initial 

conditions are set or read. Once all the variables are initialized, SUGGAR (Noack, 2005) 

is called for the first time to obtain the initial overset interpolation information. A non-

linear loop is used to converge the flow field and motions within each time step. At the 

beginning of each nonlinear iteration, the overset information is read from a binary file 

produced by SUGGAR, the grids are moved according to the motions resulting from the 

6DOF predictor/corrector steps, and the transformation metrics and grid velocity are 

computed. Then, the turbulence equations are solved first. Then the level set transport 

equation, which upon convergence is reinitialized in two steps. The close points are 

reinitialized geometrically first and then all other points are reinitialized. Since the 

equation is nonlinear, a few iterations are needed here to converge. Then the PISO 

algorithm is solved using the PETSc toolkit (Balay et al., 2002). This step is repeated a 

few times to enforce the continuity condition which comprises the solution of the 

pressure matrix and the explicit update of the velocity field. Once the velocity field is 

obtained, the forces and moments are weighted with coefficients provided as a pre-

processing step by USURP (Boger and Dreyer, 2006) used to properly compute area and 
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forces on overlap regions for a ship hull with appendages.  Lastly, the motions are 

predicted for the next time step and SUGGAR is called to compute the interpolation 

given the new location of the moving grids. 
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CHAPTER 4. INSEAN CAPTIVE TESTS 

INSEAN captive tests are performed to study resonant excitation and roll 

decay/parametric rolling of ONR Tumblehome (OT) with and without bilge keels. 

Resonant excitation tests are conducted with bilge keels in beam waves as building block 

for parametric rolling studies. Parametric rolling tests are performed initially with bilge 

keels and then without bilge keels. Herein, the details of ship model, test design, and 

operational and environmental conditions of tests are presented. 

4.1 Ship Model 

The tested model is the ONR Tumblehome (INSEAN model 2498), which is a 

preliminary design a new concept surface combatant (Fig. 4-1). The model is tested in the 

INSEAN basin n. 2 (220 m long, 9 m wide and 3.5 m deep), which is equipped with a 

flap wave maker at the basin end. The adopted scale is λ = 46.6 and the model is 

equipped with bilge keels for all tests in beam waves and some tests in head waves. The 

lines of the tested model are shown in Fig. 4-2 and the main model parameters are given 

in Table 4-1. Different bilge keels are adopted for the beam and head wave tests. The 

bilge keels profiles and locations for the beam wave cases are shown in Fig. 4-3, while 

the ones adopted for the head wave cases are shown in Fig. 4-4. The model length 

between perpendiculars (LPP) is 3.305 m. 

4.2 Test design 

4.2.1 Cases with Bilge Keels 

Preliminary tests are executed for OT with bilge keels in beam waves (resonant 

excitation) and head waves (parametric rolling) for one loading condition KG=0.165 m in 

model scale. The model is floated at the static waterline. The vertical position of center of 

gravity (VCG) is set to KG=0.165 m using ballast weights. The roll radius of gyration 
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(gyradius) is set to the target value which is kxx=0.38B=0.153 m. As a result, the 

metacentric height is GM=0.043 m for the preliminary tests. 

4.2.1.1 Resonant Excitation in Beam Waves 

Beam wave tests are performed at Fr=0.0 in waves with resonant frequency 

(fw =fφ= 0.650 Hz), which is determined by exciting the model with small amplitude 

waves. The corresponding wave length is λ=1.12L since )/2(2 λπω ggk ==  for deep 

water. Three different wave slopes are adopted, corresponding to small amplitude 

(Ak = 0.034), medium amplitude (Ak  = 0.073)  and large amplitude waves 

(Ak  = 0.156), in order to evaluate the rising and development of the nonlinearities in the 

allowed motions and in the measured forces and moments. During the tests the model is 

placed at the center of the basin in length and width. The model is 2DOF free to roll and 

heave. For the restrained motions, the forces and moments at the constraint are measured. 

The wave height is measured by a servo-mechanic probe (Kenek SH) mounted one model 

length upstream the tested model. The heave and roll motions are measured both by 

means of optical motion tracker (Krypton) and gyroscopic platform (MOTAN), while the 

sway and surge forces are measured by load cells lodged inside a joint (Fig. 4-5) fixed to 

the model in correspondence of the center of gravity (CG). The pitch moment is measured 

by a load cell mounted 100 mm upstream the CG, while the yaw moment is measured by 

a torque cell. The torque cell connects the joint to a vertical bar, which is free to slide into 

a cylindrical guide fixed to the carriage. The yaw motion is inhibited by an additional 

guide that moves parallel to the vertical bar and rigidly fixed to it. The additional guide is 

mounted with 200 mm arm with respect to a vertical line passing through the CG. For the 

cases Ak= 0.073 and Ak = 0.156 the tests have been repeated five times in order to 

determine the precision index. 
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4.2.1.2 Parametric Rolling in Head Waves 

The head wave tests are performed in the wave with Ak=0.115 and fw=0.69 Hz, 

corresponding to λ=L, to have maximum respond for the model. The ship speed is chosen 

Fr=0.35 based on the fact that the encounter frequency has to be about twice the natural 

roll frequency fφ=0.65 Hz for parametric rolling. 

( ) 35.02cos/22 =⇒=+= FrfgLFrfff wwe φμπ   (4.1)

Here, fe is wave encounter frequency and μ is wave heading which is zero for head 

waves.  

The tests have been performed starting with the model in heave and pitch free 

condition, but fixed at a given initial roll angle. A servo-mechanic wave probe was used 

in order to measure the incoming waves and to trigger the magnet that fixed the model at 

the initial roll angle. When the model encounters the incoming waves, the magnet is 

disconnected by the trigger and the model started to roll. The adopted initial roll angle is 

30°.  

4.2.2 Cases without Bilge Keels 

The cases without bilge keels are performed since the preliminary tests showed no 

evidence of parametric rolling for OT with bilge keels. The cases without bilge keels 

include roll decay test in calm water and parametric rolling test in head waves for a range 

of Fr and three loading condition KG=0.175, 0.170, and 0.165 m corresponding to 

GM=0.033, 0.038, and 0.043 m, as shown in Table 4-1.  The model is floated at the static 

waterline and then the vertical position of center of gravity (VCG) is set to proper KG for 

each test using ballast weights. Initially, the roll radius of gyration was reported 0.146 m 

for all loading condition. More EFD investigations showed that actual kxx are 0.127, 

0.125, and 0.123 m for GM=0.033, 0.038, and 0.043m, respectively. 
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4.2.2.1 Roll Decay in Calm Water 

Roll decay tests are conducted in calm water for Fr=0.05, 0.2, and 0.35. The tests are 

performed starting with the model free to sink and trim, but fixed at φ0=30 deg initial roll 

angle for GM=0.033, 0.038 m and at φ0=25 deg for GM=0.043 m. A servo-mechanic 

wave probe was used in order to trigger the magnet that fixed the model at the initial roll 

angle. When the model reaches to the desired Fr, the magnet is disconnected by the 

trigger. The adopted initial roll angle is 30°. 

Time histories of roll, sinkage, and trim motions, X, Y, and N are recorded. A standard 

average roll decay coefficient n is computed as: 

∑
= +

=
N

k k
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n

1 1
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π
  (4.2)

where N is the number of roll cycles used in the analysis, φk is the roll displacement at 

the kth roll cycle crest or trough, and φk+1 is the roll displacement at the kth+1 roll cycle 

crest or trough. n is usually expressed as a function of mean roll angle φmk 
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The logarithmic decrement is computed as: 
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=
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The averaged logarithmic decrement δ is δk computed over N roll cycles i.e. nπδ 2= . 

The damping ratio ζ is evaluated from Eq. (4.2) by: 

21 n
n
+

=ζ   (4.5)

The damped natural frequency fφd (ωφd / 2π) is computed from roll decay time history 

as: 
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fφd is determined by locating successive zero crossings of the φ time history through N 

roll cycles.  This yields the roll periods which are inverted and averaged over N cycles to 

compute fφd.  The natural roll frequency fφn (ωφn / 2π) is: 

21 ζ
φ

φ
−

= d
n

f
f  

(4.7)

The linear damping coefficient α, shown in Eq. (2.42), is computed by Eq. (4.2) and 

(4.7): 

dn nfn φφ ωπα == )2(   (4.8)

Also, Himeno method (Himeno, 1981) is used to evaluate linear and nonlinear 

damping coefficient by plotting roll decrement ( kkk φφφ −=Δ +1 ) versus mean roll angle 

( mkφ ) in degree and fitting the following extinction curve to it.  

3
mm ca φφφ +=Δ   (4.9)

Consequently, linear and nonlinear dampings are calculated from extinction 

coefficients a and c: 

πωα φ /a=   (4.10)
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The equivalent linear damping is computed from: 
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4.2.2.2 Parametric Rolling in Head Waves 

The head wave tests are performed in the wave with Ak=0.105, 0.115 and fw=0.69 Hz, 

corresponding to λ=L, to have maximum respond for the model. The ship speed is 

changed for the range of 0.02<Fr<0.44 to observe the parametric rolling instability zone. 

The tests are conducted starting with the model free to heave and pitch, but fixed at 30 
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deg initial roll angle. The roll motion constraint is removed after the model reaches to the 

desired Fr. A servo-mechanical (finger) probe Kenek-SH, positioned at the port side and 

at the same longitudinal position of the fore perpendicular, is used for the incoming wave 

measurements. The wave signal is also used to control the instant of model release during 

the head wave tests that was thus completely repeatable. During all the tests, the model is 

connected to the carriage by means of a joint specifically designed, as explained earlier. 

Uncertainty analysis is conducted for Ak=0.115, GM=.038 m and Fr=0.2, and GM=0.033 

m and Fr=0.1 following standard procedures including five repeat tests. By re-mounting 

the model at beginning of each run, all the possible causes of bias related to the model 

mounting are accounted into the precision limit. For the model motions, in order to take 

into account the errors related to the measurement system, the mean value of the 

difference between the two measurement system outputs is taken as residual bias limit. 
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Table 4-1: Principal dimensions of the INSEAN ONR  
Tumblehome model 

ONR Tumblehome
 W/O BKs W/ BKs 

LPP 3.305 m 3.305 m 
Draft (T) 0.1201 m 0.118 m 

Beam (BWL) 0.403 m 0.403 m 
Displ. 84.7 kg 84.7 kg 
LCG 1.708 m Aft of FP 1.708 m Aft of FP 
KG 0.175 0.170 0.165 m 0.165 m 
GM 0.033 0.038 0.043 m 0.043 m 

kXX 0.146
0.127

0.146
0.125

0.146 m
0.123 m 0.153 m=38% BWL 

kYY = kZZ 0.826 m =25% LPP 
0.737 m =22% LPP 0.826 m =25% LPP 

Bilge Keels 
Beam Waves

c = 32.2 mm 
L = 1098 mm  

 

Head Waves c = 26.82 mm 
L = 1098 mm 

 

  

 

Figure 4-1: ONR Tumblehome (INSEAN model 2498) 
 

 

 

Figure 4-2: ONR Tumblehome lines, bow and stern profiles 
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Figure 4-3: ONR Tumblehome bilge keels for the beam wave tests 
 

 

 

  

 

Figure 4-4: ONR Tumblehome bilge keels for the head wave tests 

  
 

 

Figure 4-5: Illustration of the joint used for INSEAN towing tank tests; the torque 
cell is mounted on the top 
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CHAPTER 5. OU CAPTIVE AND FREE RUNNING TESTS 

OU (Osaka University) tests are conducted for captive and free running models. In 

captive tests the model is restrained in some degrees of freedom while the model is self-

propelled in free running tests and free to all vertical and horizontal motions. Captive 

experiments are designed such that they can collect required data for NDA model of 

parametric rolling and broaching described in Chapter 2. Free running experiments are 

designed to study different modes of ship response in following/quartering regular waves 

such as broaching, surf-riding, and periodic motion. 

5.1 Ship Model 

The ONR Tumblehome is used for OU captive and free model tests. The captive 

model is appended with skeg and bilge keels while free running model is appended with 

superstructure, shaft, strut, twin rudders to steer the model, and propellers. Also, the free 

model has the superstructure on it. Figure 5-1 and Table 5-1 provide ship model 

geometry and principles. The scale ratio of the model is 48.9 (Lpp=3.147 m) i.e. it is 

smaller than the model of INSEAN discussed in Chapter 4. The captive tests are 

conducted for one loading condition GM=2.068 m (GM=0.042 m in model scale) while 

free model tests are performed for GM=1.78, 2.068 m (GM=0.036, 0.042 in model scale). 

5.2 Test design 

5.2.1 Captive Test 

The captive tests are conducted in the Osaka University towing tank. The tank is 100 

m long, 7.8 m wide and 4.35 m deep. It is equipped with drive carriage (7.4m in length, 

7.8m in width, and 6.4 m height) running from 0.01 to 3.5 m/s.  It is also equipped with 

plunger-type wave maker generating regular and irregular waves up to 500 mm height 



66 
 

 

and wave length of 0.5 to 15m.  The wave absorber is a small fixed gridiron beach at the 

basin's end, with movable beaches along its sides. 

A right-handed Cartesian coordinate system fixed to the model is used for the tests.  

The origin is at the longitudinal and vertical center of gravity (LCG, VCG) of the model.  

The x, y, z axes are directed upstream, transversely to starboard, and downward, 

respectively. 

Model ballasting satisfies three conditions.  The first requires model floatation at the 

static waterline.  The second and third conditions impose specific values for VCG and roll 

radius of gyration (gyradius), respectively. The model is ballasted to its design waterline 

first.  Then, the added ballast method is used to set the proper VCG which is the distance 

measured from the keel to a point about which the model rolls.  The model and its ballast 

are suspended in a level orientation from the carriage on a roll axle a distance z above the 

VCG about which the model can roll.  Finally, the roll, pitch and yaw radius of gyration 

are set so that the model’s dynamic properties conform to design specifications. 

Captive model tests include resistance test, static heel in calm water, static drift in 

calm water, and static heel in following waves to collect required seakeeping and 

maneuvering parameters for NDA model of broaching and include static heel in head 

waves to collect required parameters for NDA model of parametric rolling. 

5.2.1.1 Resistance Test 

Resistance tests are conducted to measure X* for NDA model of broaching shown in 

Eqs. (2.60)-(2.63). The model is free to sink and trim in calm water for a range of speed 

corresponding to Fr=0.05 up to Fr=0.6. The same experiment is performed at INSEAN 

for the model without bilge keels for Fr=0.05 up to Fr=0.4. 
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5.2.1.2 Static Heel in Calm water 

 Static Heel cases are performed for the model free to sink and trim to measure 

sinkage and trim, surge and side force, and roll and yaw moment and calculate heel 

induced hydrodynamic forces and moments terms in NDA model of broaching such 
as φφX , φY , φφφY , φK , φφφK , φN , and φφφN . The model is fixed at two heel angles 10 and 20 

degree and towed in calm water with a range of forward speed corresponding to Fr=0.05 

up to Fr=0.6. 

5.2.1.3 Static Drift in Calm water 

Static Drift cases are conducted for the model free to sink and trim to measure sinkage 

and trim, surge and side force, and roll and yaw moment and calculate the sway velocity 

related hydrodynamic coefficients in NDA model of broaching such 

as vvX , vY , vvvY , vK , vvvK , vN , vvvN  and K and Y coupling term zH. The model is fixed at 

drift angle= {2, 5, 10, 15 , 20} degree and towed in calm water at Fr={0.1,0.2,0.3,0.4}. 

5.2.1.4 Static Heel in Following Waves 

Static Heel in following waves are performed to measure exciting wave forces and 

moments Xw,Yw,Kw,Nw in NDA model of broaching while the model is free to heave and 

pitch. The experiments are performed for Fr=0.3, H/λ=0.03 and λ/L=1 with φ= 10 and 20 

degrees and  λ/L=1.25, H/λ=0.025 and Fr=0.15,0.25,0.35, and H/λ=0.05 and Fr=0.35 

with φ= 0. 

5.2.1.5 Static Heel in Head Waves 

Static Heel in head waves are conducted to measure restoring moment variation terms 

in NDA model of parametric rolling shown in Eq. (2.49) while the ship is free to heave 

and pitch. The model is fixed at 10 deg heel and towed with Fr={0.1,0.2,0.3} in head 

waves with H/λ=0.0366 and λ/L=1. Note that the other terms in NDA model of 
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parametric rolling such as α and γ are calculated from INSEAN roll decay test described 

in Chapter 4. 

5.2.2 Free Running Test 

Free-running model experiments are executed with the scaled model in a seakeeping 

and manoeuvring basin at National Research Institute of Fisheries Engineering (NRIFE). 

The basin is 60 m long, 25 m wide and 3.2 m deep, as shown in Fig. 5-2. The basin is 

equipped with an 80-segment wave maker to generate regular, long-crested irregular and 

short-crested irregular waves up to the limit of wave breaking. It is also equipped with an 

X-Y (longitudinally-transversely moving) towing carriage. Two loading conditions are 

tested: one is critical to the Sarchin and Goldberg (1962) criteria which means GM=1.78 

m in full scale and the other is below that (GM=2.068 m). The angles of vanishing 

stability under these loading conditions are 180 degrees so that capsizing cannot appear. 

This is because the superstructure of the ONR tumblehome vessel is large enough. The 

model is propelled with two propellers. Their power is supplied from solid batteries 

inside the model. A feedback control system is provided to keep the propeller rate 

constant. The model is equipped with a fibre gyroscope, a computer and steering gears, 

and a proportional auto pilot for course keeping simulated within the onboard computer 

by using the yaw angle obtained from the gyroscope. The roll angle, pitch angle, yaw 

angle, rudder angle and propeller rate are recorded by the onboard computer. Water 

surface elevation is also measured by a servo needle wave probe attached to the towing 

carriage of the basin near the wave maker.  

The experimental procedure for following and quartering waves is as follows. First, 

the model is kept near the wave maker without propeller revolution. Next, the wave 

maker starts to generate regular waves. After a generated water wave train propagates 

enough, a radio operator suddenly requests the onboard system to increase the propeller 

revolution up to the specified one and makes the automatic directional control active. 
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Then the model automatically runs in following and quartering waves to attempt to keep 

the specified propeller rate and auto pilot course. When the model approaches the side 

wall or the wave-absorbing beach, the automatic control is interrupted by the radio 

operator and the propeller is reversed to avoid collision. This is based on the ITTC 

(International Towing Tank Conference) recommended procedures on model test of 

intact stability registered as 7.5-02-07-04.1. It should be noted that the specified propeller 

rate is indicated by running the model in calm water to reach the nominal Froude number.  

Two set of free-running test are performed. First set is performed for λ/L=1.25, 

H/λ=0.05, GM=1.78 and 2.068m in full scale, Fr=0.25, 0.3, 0.35, 0.4, 0.45, and autopilot 

course ψc= 5, 15, 30 deg, as shown in Fig. 5-3. The roll, pitch, yaw, and rudder angle and 

propeller rate are recorded by the onboard computer. The second set is carried out to 

record more data such as trajectory, initial wave phase respect to the model, and initial 

surge velocity to collect required parameters for CFD simulation. Second set is 

performed for λ/L=1.25, H/λ=0.05, GM= 2.068m in full scale, Fr=0.25, 0.30, 0.35, 0.40 

and 0.45, the auto pilot courses ψc= -5, -15, -22.5, -30, -37.5 degrees from the wave 

direction, as shown in Fig. 5-4. 
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Table 5-1: Principal particulars of the OU  
ONR Tumblehome model 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1: ONR Tumblehome (OU model) and body plan 

  

 

 

Items Ship Model 
Length : L 154.0 m 3.147 m 
Breadth : B 18.78 m 0.384 m 

Depth : D 14.5 m 0.296 m 

Draught : T 5.494 m 0.112 m 

Displacement : W 8507 ton 72.6 kg 

Block coefficient : Cb 0.535 0.535 
Longitudinal position of centre of 

buoyancy from midship 2.587 m aft 0.053 aft 

Metacentric height: GM i) 1.781 m 
ii) 2.068 m

i) 0.0364 m 
ii) 0.0423 m 

Radius of gyration in pitch/yaw: 
Κyy/L  or  Κzz/L   

i) 0.25 
ii) 0.25 

i) 0.254 
ii) 0.246  

Radius of gyration in roll: Κxx/L i) 0.056 
ii) 0.052 

i) 0.056 
ii) 0.052  

Rudder Area: AR 28.639 m2 0.012 m2 
Maximum rudder angle 35o 35o 
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Figure 5-2: Seakeeping and maneuvering basin at NRIFE  

 

 

 

                                              (a)                                                                               (b) 

Figure 5-3: EFD free model test program 1: (a) H/λ=1/20, λ/L=1.25 and GM=1.78m; 
(b) H/λ=1/20, λ/L=1.25 and GM=2.068 m 
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Figure 5-4: EFD free model test program 2 for H/λ=1/20, λ/L=1.25 and GM=2.068m 
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CHAPTER 6. VALIDATION OF INSEAN CAPTIVE MODEL 

SIMULATIONS 

The INSEAN captive model simulations are performed with the same operational and 

environmental conditions described in Chapter 4 which include Roll Decay in calm 

water, resonant excitation in beam waves, and Roll Decay/Parametric Rolling in head 

waves. The simulations are carried out to validate CFD and compare the results with the 

outcome of NDA models described in Chapter 2. Herein, the details of CFD simulation 

including computational domain and boundary conditions, grid, preliminary studies for 

OT with bilge keels, results for OT without bilge keels including roll decay in calm water 

and parametric rolling in head waves are presented. Lastly, NDA model of roll decay and 

parametric rolling described in Chapter 2 (Eq. 2.42 and Eq. 2.49) are solved and 

compared with EFD and CFD. The CFD and NDA results were blind in that the actual 

EFD radius of gyration kxx was not known a priori. 

6.1 Computational Domain, Boundary Conditions 

The computational domains extend from 25.0 <<− x , 11 <<− y , 25.01 <<− z  for roll decay 

and the head wave cases and 21 <<− x , 25.21 <<− y , 25.01 <<− z  for beam wave cases, in 

dimensionless coordinates based on ship length. The ship axis is aligned with the x-axis 

with the bow at x = 0 and the stern at x = 1. The free surface at rest lies at z = 0. The ship 

model is appended with skeg and bilge keels for beam wave and preliminary head wave 

cases, and appended with only skeg for roll decay and final head wave simulations.    

Boundary conditions are shown in Table 6-1. Inlet boundary conditions for cases in 

calm water waves are different. For calm water, x component velocity at inlet boundary 

condition is set to be U0 which is the same as ship velocity in relative coordinate system 

and zero in earth fixed coordinate system. Other velocity components are imposed to be 

zero. Normal pressure gradient and level set function are imposed zero and –z(x) for calm 
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water, respectively. In regular waves, inlet pressure gradient and level set function are 

imposed such that they follow linear wave theory equations: 
kzkz e
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Here, Uo would be zero in earth coordinate system. Other boundary conditions are the 

same for cases in calm water and in waves.  

6.2 Grid 

As shown in Fig. 6-1, computational grids for the hull and bilge keels are designed to 

accurately resolve geometric features of the model and the unsteady turbulent boundary 

layer, wake, and wave fields. The hull boundary layer and bilge keels grids were 

generated using GRIDGEN. The hull boundary layer and bilge keels grid were fixed to 

and move with the ship. The hull boundary layer has a double-O topology and extends to 

cover the deck of the ship and wraps around it, allowing for computations with extreme 

motions. Grid topology was selected so that two other blocks were responsible to capture 

the flow near the hull (refinement block) and far from the hull (background block). Since 

there might be a wave on the free surface, the background block was designed to have 

enough grid points near free surface. The computational domain for all blocks covers 

both the port and starboard sides of the ship, since the flow and wave fields are 

asymmetric during the roll motion. 
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6.3 Preliminary Study (Cases with Bilge Keels) 

Preliminary studies were conducted with bilge keels to investigate large amplitude roll 

(beam waves) and parametric roll (head waves). The beam wave studies were useful as 

building block for CFD prior to parametric roll studies.  Parametric roll studies indicated 

bilge keel condition roll damping is excessive, i.e., greater than the threshold value such 

that parametric roll is not exhibited as discussed later, which motivated the removal of 

the bilge keels. 

2DOF zero-speed heave-roll in beam waves was investigated for 12.1/ =Lλ , i.e. 

wave frequency equal natural frequency roll, and wave steepness Ak=0.156. 3DOF 

forward-speed heave-roll-pitch in head waves was investigated for 1/ =Lλ , Fr=0.35, 

Ak=(0.115,0.156), and φ0=30 deg. This condition corresponds to the linear theory 

instability estimate for small excitation and zero damping where the encounter frequency 

is twice the natural roll frequency. 

 6.3.1 Resonant Excitation in Beam Waves 

Table 6-2 summarizes the 2DOF beam wave response for Ak=0.156.  EFD indicates 

dominant first harmonic a1 at fφ� for heave, roll, side force, and yaw moment, whereas 

surge force and pitch moment indicate dominant second harmonic a2 with significant 3rd 

and 4th harmonic amplitudes. The maximum heave and roll amplitudes are large: 

zmax/T=.83 and φmax=25 deg.  Heave responds at fw= fφ since fzh=1.67 Hz >> fφ. For X and 

M, large 2nd and 4th harmonic are observed due to roll and heave coupling, whereas small 

1st and 3rd harmonic are observed due to heave coupling, as discussed in Chapter 2.  For 

Y and N, large 1st harmonic is due to roll coupling.  Hydrostatic restoring force and static 

drift test results provide estimates for M and Y/N induced maximum pitch and drift 

angle: θmax=0.5 deg and βmax=0.063 deg. Results for smaller and larger Ak show that 

heave and roll amplitudes increase linearly with A and Ak, respectively. CFD 
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qualitatively predicts these trends, but with relatively large comparison errors E=(D-

S)%D.  CFD analysis shows that dominant second harmonic for pitch moment results 

from equal contributions from hydrostatic and pressure components, which are larger 

than friction component and 180 deg out of phase. 

  6.3.2 Parametric Rolling in Head Waves 

Table 6-3 summarizes the 3DOF head wave response for Ak=0.115 and 0.156 (CFD 

only) and φ0=30 deg.  EFD indicates dominant first harmonic response at fe=2fφ for 

heave, pitch, and surge force X, whereas roll, side force Y, and yaw moment N are under 

damped harmonic oscillations, i.e., response is roll decay in waves and parametric roll is 

not exhibited. Surge force 2nd, 3rd, 4th, and 5th harmonic amplitudes are also significant. 

Roll decay first peak, linear and nonlinear damping, and large/small mean roll angle 

frequency are 0.4φ0, 0.55 and 0.0052, and 0.91fφh/fe, respectively.  The linear damping 

corresponds to a logarithmic decrement ( )1/ln += ii φφδ of .82 and energy ratio e2δ of 5.2.  

Initially, i.e., for large mean roll angles (t<6Te=3Tφ), roll, side force, and yaw moment 

respond at roll damped natural frequency and surge, heave, and pitch exhibit effects roll, 

whereas for small mean roll angles, φ, Y, and N respond at fe with small amplitudes and 

surge, heave, and pitch that are unaffected by roll motion.  Y and N FFT show large 

peaks at fe/2, 3fe/2, 7fe/2 and 11fe/2.  For X, large 1st-5th harmonics are due to both 

heave/pitch and roll coupling.  For Y and N, large ½, 3/2, etc. harmonics are due to roll 

coupling. CFD qualitatively predicts these trends with relatively small E for heave, pitch, 

and φ, Y decay and large E for surge and N decay.  Roll decay first peak fφ 1, linear α and 

nonlinear damping γ, and large/small mean roll angle frequency (fφdl/fφds) are .5φ0, .4 and 

.0061, and .89fφh/fe, respectively, which are close to EFD. CFD analysis shows that 

significant 2nd harmonic surge force is due to 180 deg phase difference between weight 

and hydrostatic forces.  CFD shows that increased Ak to 0.156 reduces z/A, θ/Ak first 

harmonics by 10%, 7%, but increases surge force amplitude by 15%. Roll decay first 
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peak, linear and nonlinear damping, and large/small mean roll angle frequency are .33φ0, 

.68 and .0089, and .74fφh/fe, respectively.   

6.3.2.1 Instability Analysis 

The roll motion neglecting nonlinear damping and restoring moment and considering 

wave effects and pitch-heave coupling only through a time varying restoring coefficient 

is modeled as a 1D mass-damper-spring linear system with small damping and periodic 

restoring coefficient, as described in Chapter 2 (Eq. (2.49)). This 1D model can be 

transformed into the Mathieu equation (Paulling and Rosenberg, 1959).  

Bounded/unbounded solutions to the Mathieu equation are delineated in the Ince-Strutt 
diagram as 22 / eaq ωω=  vs. ( ) 222 / ep ωαωφ −= curves where xxm kgGM /=φω is the roll 

natural frequency in waves, xxaa kgGM /=ω  is the amplitude of parametric excitation in 

waves expressed in terms of frequency, α is the linear roll damping, and GMa and GMm 

are the amplitude and mean value of GM variation in waves.  For q=0.0, instability 

occurs at p=n2/4 n={1, 2, 3,…}. The first parametric resonance region occurs for n=1 

meaning p=0.25 or, equivalently, for zero damping. In other words, for small excitation 

and damping the roll period equals twice the wave encounter/pitch motion period for first 

parametric resonance region.  For q>0.0 instability occurs for increasing ranges of p for 

increasing q, which can be equivalently expressed as a Froude number (Fr) range.  

Unbounded solutions to the Mathieu equation may not lead to unbounded roll unless the 

damping α is less than a threshold value αT=αT(p,q) (Shin et al., 2004). CFD analysis of 

roll moment and GM variation for Ak=.115, provides the mean 

GMm=(GMmax+GMmin)/2=0.033 (note that GM=0.043 m) and excitation GMa=(GMmax-

GMmin)/2=0.021 from which roll frequencies with neglected added mass 

xxm kgGM /=φω =3.71 (note that hφω =4.24 rad/s) and xxaa kgGM /=ω =2.89 rad/s 

such that (p,q)= (0.2, 0.12) with instability range 0.17<Fr<0.38 and αT=0.32.  
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Consequently, the performed simulation at Fr=0.35 is inside the instability range but 

α=0.4>αT which is explanation for with bilge keels study not achieving parametric roll.   

6.4 Cases without Bilge Keels 

Since the actual EFD Kxx was not known a priori, first CFD was conducted for 3DoF 

forward speed heave-roll-pitch roll decay/parametric roll in head waves 

for 0.1/ =Lλ , 44.00.0 ≤≤ Fr , and different GM with kxx=0.153 m (the same as kxx for 

cases with bilge keels) and Ak=0.115.  For GM=0.043 sensitivity studies were conducted 

for larger Ak=0.156 for Fr=0.13, 0.15, and 0.2 and for drift angle β=2 and 4 deg for 

Fr=0.13 with Ak=0.115. Second EFD was conducted for 3DoF forward speed heave-roll-

pitch roll decay in calm water for 35.005.0 ≤≤ Fr and φ0=30 deg (GM=0.033 m), 

35.005.0 ≤≤ Fr  and φ0=30 deg (GM=0.038 m), and 45.005.0 ≤≤ Fr  and φ0=25 deg 

(GM=0.043 m); and 3DoF forward speed heave-roll-pitch roll decay/parametric roll in 

head waves for 0.1/ =Lλ , 44.002.0 ≤≤ Fr , φ0=30 deg, and different GM and Ak, as 

described in Chapter 4.  Third CFD was conducted for 1DoF forward speed roll decay in 

calm water for Fr=0.2 and φ0=30 deg (GM=0.033 m), Fr=0.05, 0.2, and 0.35 and φ0=30 

deg (GM=0.038 m), and Fr=0.2 and φ0=25 deg (GM=0.043 m) and different kxx to find 

actual kxx, and 3DoF forward speed heave-roll-pitch roll decay/parametric roll in head 

waves for 0.1/ =Lλ , 44.002.0 ≤≤ Fr , φ0=30 deg and different GM and Ak with 

adjusted kxx. Lastly, additional EFD radii of gyration tests were conducted. 

6.4.1 Forward Speed Roll Decay in Calm Water 

6.4.1.1 Forces, Moments, and Motions 

CFD roll decay simulations are performed for several kxx to find the actual EFD kxx by 

comparing CFD with EFD. For GM=0.038 m and Fr=0.2, as shown in Table 6-4, CFD 

roll with kxx=0.146 m show large differences EFD roll with average absolute value error 
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0/))()(()/1( φφφ ), i.e. CFD under/over predicts 

large roll angle damping/period.  CFD with reduced kxx=0.1246 m indicates much closer 

agreement EFD, at least for large roll angles, although damping is still under predicted 

such that ERSS=3.7%φ0.  The under prediction is larger for Fr=0.05 and 0.35 with ERSS 

=7.1 and 9.33%φo.  Similarly for GM=0.033 and 0.043 m and Fr=0.2 reduced values of 

kxx=0.1388 and 0.1298 m indicate closer agreement EFD, although damping is under and 

over predicted such that ERSS=11.28 and 5.92%φ0.   

Figure 6-2 compares CFD and EFD roll decay time history for GM=0.043 m. EFD is 

for 3DOF condition with large initial roll and zero initial heave and pitch.  Roll is under 

damped harmonic oscillations at fφd.  Heave and pitch asymptote to their dynamic calm 

water values for each Fr with small amplitude oscillations mostly at fφd, but also at their 

natural frequencies fzh and fθh.  X shows no discernable harmonic amplitudes, whereas Y 

and N show large fφd and 3fφd harmonic amplitudes.  CFD is 1DOF condition, i.e., same 

as EFD for roll, but fixed heave and pitch.  X shows no discernable harmonic amplitudes, 

whereas Z and M show fφd/2, 2fφd and 4 fφd and Y and N show large fφd and 3fφd harmonic 

amplitudes.  Consequently, these harmonics follow the theory explained in Chapter 2. 

Similar harmonics are observed for GM=0.038 m and GM=0.033 m, as shown in Fig. 6-

3,6-4,6-5, and 6-6. 

6.4.1.2 Roll Decay Parameters 

Figure 6-7 compares CFD and EFD damped natural roll frequency ( hd ff
k φφ / ) vs. mean 

roll angle (
kmφ ). For GM=0.043 m, 

kdfφ  is close to fφh=0.84 Hz at small 
kmφ and decreases 

for increasing 
kmφ by about 5/10/15% hfφ  for Fr=0.35/0.2/0.05. 

kdfφ has larger value for 

larger Fr for some 
kmφ . For GM=0.038 and 0.033m, 

kdfφ  are close to fφh=0.78 and 0.71 

Hz, respectively, at small 
kmφ and decreases for increasing 

kmφ by about the same values 

for GM=0.043 m. It is observed that GM effect on 
kdfφ  is small for low Fr but noticeable 
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for high Fr.  For Fr=0.35, 
kdfφ at large 

kmφ decreases for decreasing GM by about 10% hfφ . 

CFD simulations show similar results.  
CFD and EFD mean roll angle averaged damped natural frequency dfφ and mean roll 

angle mφ  vs. Fr are shown in Fig. 6-8a, b, respectively. dfφ increases with Fr about 

10% hfφ in the observed range of speed, whereas the mean roll angle decreases by about 

half from low to high Fr. Decreasing GM to 0.033m does not change dfφ significantly but 

decreases mφ by about half. CFD results show good agreement with EFD for GM=0.043 

and GM=0.038 m but show fairly large error for GM=0.033 m. CFD predicts the same 
effects of Fr on dfφ and mφ  and strong effect of GM on dfφ . 

Figure 6-9 shows CFD and EFD logarithmic decrement vs. mean roll angle for 
GM=0.043, 0.038, and 0.033 m. kδ increases slightly with increasing 

kmφ and increases by 

factor of 2 from low to high Fr and from high to low GM. The largest 7.0<kδ  such that 

1.0
2

<≈
π

δζ k
k for all conditions confirming that the roll motion is under damped. CFD 

prediction of kδ indicates that CFD predicts kδ  very well for GM=0.043 m and under 

predicts kδ for lower GM by about 50%D.  

CFD and EFD mean roll angle averaged δ and ER are shown in Fig.6-10a,b, 

respectively.   As discussed with reference to Fig. 6-9, logarithmic decrement δ increases 

with increasing Fr and is larger for low GM condition.  The rate of increase of δ respect 

to Fr is larger for 2.005.0 ≤≤ Fr . ER increases about 40% from Fr=0.05 to Fr=0.35 for all 

GM. CFD shows the same trend for δ and ER with increasing Fr even though both are 

under predicated by 50%D for GM=0.033 and 0.038 m. 

Figure 6-11 compares CFD and EFD linear and nonlinear damping coefficients based 

on Himeno method (α,γ). The linear damping increases with increasing Fr and is larger 

for low GM condition. The rate of increase of α respect to Fr is larger for 2.005.0 ≤≤ Fr . 

Table 6-5 compares linear damping coefficient α with equivalent damping coefficient αe 

estimated based on Himeno method and linear damping coefficient based on nωφd where 
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n=δ/2π and damped roll period ωφd are averaged over all mean roll angles.  The EFD 

trends for nωφd and αe are similar as for the linear damping coefficient α i.e. nωφd and αe 

increase by factor of 2 from low to high Fr.  For GM=0.043 m, the differences between 

logarithmic decrement and Himeno methods are very small over all Fr. For lower GM, 

α is smaller than nωφd and αe. Notice that linear damping for Fr=0.35 and GM=0.043 m 

is 0.28 which is about 70% of the damping for the ship with bilge keels at the same Fr 

and GM discussed in Section 6.3.2. This means that the damping is less than the 

threshold value for parametric rolling (α<αT=0.4) and there is a chance of parametric 

rolling for the ship without bilge keels. CFD shows similar values linear damping for 

GM=0.043 m, but under predicts for lower GM.   For both EFD and CFD nonlinear 

damping increases with Fr and increases significantly from high to low GM.  CFD shows 

good agreement with EFD for GM=0.043 and under predicts for lower GM, especially 

GM=0.038 m and Fr=0.35. 

6.4.1.3 NDA Model of 1DOF Roll Decay 

In order to assess the accuracy of damping coefficients estimation, Eq. (2.42) was 

solved based on Rung Kutta method of order four with linear and nonlinear damping 

coefficients (Fig.6-11 and Table 6-5) along with nonlinear restoring coefficients 

estimated from CFD/EFD, shown in Fig. 6-12, to reconstruct roll decay.  As shown in 

Table 6-6, the best results are for nonlinear damping and restoring with ERSS=7.3, 6.8, 

4.7%φo for GM=0.043, 0.038, and 0.033 m, respectively, averaged over Fr. Use of linear 

restoring increased ERSS=18.4, 16.9, and 13.2%φo.  Use of only linear damping and 

nonlinear restoring coefficients increased ERSS by only about 1%φo. 

6.4.1.4 OT vs. 5415 

EFD data of OT are compared with EFD data for DTMB 5415 (Irvine et al., 2004) for 
design GM, i.e., previous generation surface combatant. The 

kdφω and kδ  vs. 
kmφ  are 
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estimated for 5415 and compared with OT, as shown in Fig. 6-13a,b. 
kdφω of 5415 are 

fairly independent of 
kmφ whereas 

kdφω of OT decreases for increasing
kmφ . kδ of 5415 is 

fairly independent of 
kmφ whereas kδ  of OT increases slightly for increasing 

kmφ . Also, kδ  

of 5415 increases by factor 3 from low to high Fr but OT shows increases by factor of 2. 
Comparing OT and 5415 gives that dφω vs. Fr have similar trend for 5415 and OT but 

mφ against Fr shows decreasing with increasing Fr by about half for OT vs. by 60% for 

5415, as shown in Fig. 6-14a. δ for 5415 is smaller for low Fr and the same for both OT 

and 5415 for 35.02.0 ≤≤ Fr as shown in Fig. 6-14b. The similar trend is indicated for ER. 

The linear and nonlinear damping coefficients are estimated for 5415 and compared with 

OT, as shown in Fig. 6-15. It is concluded that α, αe, and nωφd damping coefficients are 

very close to each other and are smaller than those for OT for low Fr. Nonlinear damping 

coefficient is not observed for 5415. For 5415, best reconstruction is for equivalent linear 

damping without requiring nonlinear restoring coefficients and ERSS about 8%φ0 whereas 

best reconstruction for OT requires nonlinear damping and restoring coefficients and ERSS 

=7.3%φ0.  

6.4.1.5 Summary of Roll Decay 

In conclusion, CFD with adjusted kxx indicates reasonable agreement with EFD, 
especially for GM=0.043 m and GM=0.038 m. 

kdfφ and kδ  decreasing and increasing 

with increasing
kmφ . dfφ , linear and nonlinear damping coefficients increase with 

increasing Fr whereas mφ decreases from low to high Fr. Increasing GM decreases mφ  and 

increases linear and nonlinear damping coefficients. OT roll reconstruction requires 

nonlinear restoring coefficients with linear or nonlinear damping coefficient. Comparing 

NDA roll decay reconstruction with CFD indicates that E values are similar to those for 

CFD. Comparing 5415 and OT shows that effects of mean roll angle on roll decay 

characteristics are stronger for OT vs. 5415.  The linear damping of 5415 is smaller than 

that of OT and the nonlinear damping is not observed for 5415 whereas it is significant 
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for OT. Lastly, best reconstruction for 5415 is for equivalent linear damping without 

requiring nonlinear restoring coefficients whereas best reconstruction for OT requires 

nonlinear damping and restoring coefficients. 

6.4.2 Forward Speed Roll Decay/Parametric Roll in Head Waves 

6.4.2.1 Parametric Rolling Zone 

First CFD simulations for GM=0.043, 0.038, and 0.048 m and kxx=0.153 m (i.e. same 

value as for with bilge keels conditions), including for GM=0.043 m effects of Ak and 

β are performed.  Figure 6-16a shows the GM=0.043 m results. Parametric roll is 

predicted for 0.11 0.35Fr≤ ≤ with maximum stabilized roll angle 
max 40φ ≈ deg for Fr=0.13.  

For smaller GM=0.038 m capsize is predicted as shown in Fig. 6-16b, whereas for larger 

GM=0.048 parametric roll is predicted for 0.11 0.35Fr≤ ≤ with maximum stabilized roll 

angle 
max 60φ ≈ deg for Fr=0.18, as shown in Fig. 6-16c. Wave steepness and drift angle 

effects are studied for GM=0.043 m and concluded that increased wave steepness 

increases pitch amplitude, but inhibits parametric roll since over some steepness the ship 

and the incoming wave are away of resonance tune. Drift angle β=2 deg 

increases
max 43φ ≈ , whereas β=4 deg inhibits parametric roll.   

Second EFD for GM=0.043, 0.038, and 0.033 m with Ak=0.115, including Ak effects 

for GM=0.038 and uncertainty analysis for GM=0.038 m and Fr=0.2, and GM=0.033 m 

and Fr=0.1 are carried out. For GM=0.38 m, uncertainly analysis for heave and surge 

force are 6.1% and 10.9 %, respectively while for other parameters are less than 4%, as 

shown in Table 6-7. Uncertainty for GM=0.033 m shows fairly the same situation even 

though heave has higher uncertainty for this case, as shown in Table 6-8. Figure 6-16 

shows EFD heave, pitch, and roll amplitude for GM=0.043, 0.038, and 0.033 m. For all 

GM, heave amplitude increases with Fr number and then decreases at high Fr number. 

Also, it diminishes with decreasing GM. Pitch amplitude increases from low to high Fr to 
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reach to its maximum around Fr=0.2 and then decreases. Also, pitch amplitude for 

GM=0.043 and 0.038 have the same order whereas it is smaller for GM=0.033. Roll 

amplitude indicates no parametric roll for GM=0.043 m (Fig. 6-16a) whereas for 

GM=0.038 parametric roll is shown for 0.18 0.35Fr≤ ≤ with maximum stabilized roll angle 

max 35φ ≈ deg for Fr=0.18, as shown in Fig. 6-16b. For GM=0.033 parametric roll is 

indicated for 28.007.0 ≤≤ Fr with maximum stabilized roll angle 
max 40φ ≈ deg for Fr=0.07, 

as shown in Fig. 6-16d.  For GM=038 and smaller Ak=0.105 parametric roll indicated for 

0.19 0.28Fr≤ ≤ with maximum stabilized roll angle 
max 33.5φ ≈ deg for Fr=0.2, as shown in 

Fig. 6-16b.  

Third CFD simulations are performed for GM=0.043, 0.038, and 0.033 m and 

kxx=0.1298, 0.1246, and 0.1388 m, respectively, as estimated from the roll decay tests 

with Ak=0.115. Figure 6-16 shows CFD heave, roll, and pitch amplitude for GM=0.043, 

0.038, and 0.033 m. For all GM, CFD heave amplitude is over predicted but it has the 

same trend as EFD, showing increasing trend with Fr and then decreasing trend at high Fr 

number. Roll amplitude shows that parametric roll is not indicated for GM=0.043, 

whereas for GM=0.038 m parametric roll is shown for 44.017.0 ≤≤ Fr with maximum 

stabilized roll angle 
max 45φ ≈ deg for Fr=0.17, as shown in Fig. 6-16b, and for GM=0.033 

m parametric roll indicated for 3.00.0 ≤≤ Fr with maximum stabilized roll angle 

max 50φ ≈ deg for Fr=0.02, as shown in Fig. 6-16d. For GM=0.033 m and Fr=0 capsize is 

predicted.  The agreement between CFD and EFD for GM=0.038 and 0.033 m is 

remarkable, although CFD predicts larger instability zones at high and low Fr, 

respectively. For pitch amplitude, CFD under predicts at low Fr number and over predicts 

at high Fr number but it shows the same trend as EFD.  

Lastly, additional EFD conducted for revised estimates kxx=0.123, 0.125, and 0.127 m, 

respectively, for GM=0.043, 0.038, and 0.033 m and kyy=0.737 m.  The average kxx 

difference between EFD and CFD is 5%. The EFD uncertainty in kxx and GM are 

estimated at 2.5% and 2%, respectively. 
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6.4.2.2 Forces, Moments, and Motions Time History and FFT 

Figure 6-17, 6-18, 6-19 compare EFD and CFD parametric roll for max roll angle 

condition for GM=0.043 m, 0.038, and 0.033, respectively, including motion, time 

histories and FFT analysis of X, Y, N. Since for GM=0.043 m parametric roll is not 

shown, Fig. 6-17a compares EFD and CFD roll decay parameters such as roll angle vs. 

Fr, damping coefficients vs. Fr, and period vs. mean roll angle in waves. EFD is only 

available for Fr=0.35. CFD under predicts linear damping coefficients and over predicts 

cubic term. Current results show that non dimensional damping coefficients are the same 

as those in calm water at high Fr and larger by factor of 2 at low Fr. The period vs. mean 

roll angle shows that roll period is close to twice the encounter period only at Fr>0.25. 

This suggest that parametric roll has not chance to occur at low Fr for GM=0.043m.  Fig. 

6-17b shows EFD and CFD time history for Fr=0.35. Heave and pitch responses at fe and 

are fairly linear and independent of roll angle suggesting roll effects on heave and pitch 

are second order or higher. Roll response is the same as preliminary studies roll decay in 

waves but with roll damping frequency for bare hull condition. X,Y, and N show 

nonlinearity for both large and small roll angle. CFD simulation indicates fairly good 

agreement with EFD in overall. Heave is over predicted and pitch is under predicted at 

their minimums and both are predicted to response at fe. Roll decay is predicted similar to 

EFD but roll angle is over predicted i.e. damping is under predicted in waves. X and Y 

are under predicted and N is over predicted by CFD.  Fig. 6-17c illustrates CFD and EFD 

comparison of FFT of restrained forces and moments. As it is explained in Chapter 2, X 

indicates 1st, 2nd and 3rd harmonic amplitudes due to wave, and heave-pitch-roll coupling.  

Y indicates 2nd harmonic amplitudes due to heave and pitch motions and ½, 3/2, 5/2 

harmonic amplitudes due to roll motion. N responses at ½ and 3/2 harmonics due to roll 

motion. CFD simulation shows similar harmonics for X, Y, and N but X and Y are under 

predicted and N is over predicted. Harmonics of cases with GM=0.043m and other Fr are 
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obtained, as shown in Fig. 6-20a, and concluded that for all Fr, X indicates 1st, 2nd, and 

3rd harmonics whereas Y, and N show ½, 3/2, and 5/2 harmonics as expected. 

As shown in Fig. 6-18a, for GM=0.038m and Fr=0.2, roll responses at 1/2fe and 

parametric roll is observed. Heave and pitch response fairly linear at fe with the amplitude 

of order of 0.5A and 0.5Ak, respectively. X,Y, and N show harmonic oscillations with 

some nonlinearity. CFD simulation predicts parametric rolling as observed in EFD. 

Heave and pitch are predicted to response at fe and both over predicted whereas roll 

amplitude prediction agrees with EFD. N is over predicted and X and Y are under 

predicted. FFT analysis shown in Fig. 11b indicates 1st and 2nd harmonics for X, ½, 3/2, 

5/2 harmonic for Y and N, as it is expected.  CFD predicts similar harmonics for X, Y, 

and N even though 1st harmonic of X and 1/2 harmonic of Y are under predicted. 

Harmonics of cases with GM=0.038m and other Fr are obtained, as shown in Fig. 6-20b, 

and concluded that X indicates 1st, 2nd, and 3rd harmonics for all Fr whereas Y, and N 

show ½, 3/2, and 5/2 harmonics as expected. 

CFD and EFD comparison for GM=0.033m and Fr=0.1 is shown in Fig. 6-19. EFD 

observes parametric roll in which roll responses at 1/2fe. Heave and pitch response at fe 

with the amplitude of order of 0.3A and 0.5Ak, respectively. The parametric rolling zone 

is moved to lower Fr range compare with the one for GM=0.038 which was expected 

according to Mathieu equation. The harmonic behaviour of motions results in harmonic 

oscillations in restrained forces and moments. CFD simulation indicates similar response 

for roll i.e. parametric rolling. The CFD prediction of roll amplitude is excellent but 

heave and pitch are over predicted. X and N are predicted very well whereas Y is under 

predicted by 100% as shown in Fig. 6-19a. FFT analysis shows similar harmonics existed 

for GM=0.038m. CFD is not able to capture 1/2 harmonic of Y whereas it predicts 1st and 

2nd harmonics of X, and 1/2 and 3/2 harmonic of N shown in Fig. 6-19b. This study is 

performed for all other Fr and similar harmonics are observed as shown in Fig. 6-20d. A 

snapshot of CFD solution for GM=0.033 m in one period is shown in Fig. 6-21. 
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6.4.2.3 NDA Model of Parametric Rolling 

 NDA model of 1DOF parametric rolling described in Eq. (2.49) is solved by OU and 

UNITS. Linear and cubic roll damping coefficients are estimated from INSEAN towing 

tank forward speed roll decay test at Fr=0.05, 0.2,and 0.35 using Himeno method, as a 

function of Fr. However, UNITS uses roll reconstruction to improve damping 

coefficients estimations for Fr=0.05 due to scattered EFD data at low Fr number. Fig. 6-

22a and 6-23b show OU and UNITS damping coefficients. Fairly the same linear 

damping coefficients are used for OU and UNITS whereas UNITS cubic damping term at 

high Fr number is much smaller than that used in OU. Also, UNITS and OU cubic 

damping term versus Fr show opposite trend. The reason for OU and UNITS damping 

coefficient difference is that OU uses shifted EFD roll decay data to have zero roll angle 

at t= ∞while UNITS estimates coefficients directly from EFD data. The restoring moment 

coefficients in calm water l’n are estimated from fitting a polynomial curve of order N to 

Fr=0.0 hydrostatically computed restoring moment as a function of heel angle. OU fits 5th 

order curve and UNITS fits 9th order curve to hydrostatically computed restoring moment 

for 500 ≤≤ φ  deg. Fig. 6-22c shows restoring moment in calm water used for OU and 

UNITS. Even though UNITS uses higher order polynomial to represent restoring 

moment, it is close to OU model. Restoring arm in waves estimated from 2DOF heave-

pitch for CFD and EFD at Fr=0.1,0.2,0.3, hydrostatic computation for OU at 

Fr=0.1,0.2,0.3 and 1DOF pitch hydrostatic computation for UNITS for 10 deg heeled 

ship at Fr=0.0 corrected for Fr=0.2 are shown in Fig. 6-23 as function of time. In order to 

compare OU and UNITS, the function ( )φω )cos( tGMGM eam + is fitted to restoring arm 

shown in Fig. 6-23. As shown in Fig. 6-24, GMm used by UNITS is smaller than that for 

OU since UNITS GMm is for Fr=0.0 and does not have speed effect. In fact, that is why it 

is constant versus Fr and it is close to GMm value of EFD/OU at Fr=0.0. For GMa, 

UNITS corrects GMa for Fr=0.0 by using a constant value 1.386 to match it to OU data 
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for Fr=0.2 to consider speed effect on GMa. However, it doesn’t match GMa to OU data 

for other Fr numbers, as shown in Fig. 6-24. CFD prediction of GMm and GMa are also 

shown in Fig. 6-24. CFD under predicts GMm for Fr=0.1 and Fr=0.2 and under predicts 

GMa for Fr=0.1. Lastly, OU uses speed independent ωφ=4.39 rad/sec estimated from best 

fit to towing tank roll decay test data for Fr=0.05 and GM=0.038 m whereas UNITS 

applies ωφ=4.062, 4.157, 4.348 rad/sec for Fr=0.05, 0.2, 0.35, respectively, estimated 

from towing tank roll decay test data for GM=0.038 m. Therefore OU model covers 

speed effect on total restoring moment through restoring arm in waves but UNITS model 

covers speed effect on total restoring moment through GM or ωφ. 

Nonlinear dynamics solutions of Eq. (2.49) for parametric rolling for OU and UNITS 

are shown on Fig. 6-25a,b,c.  For GM=0.038 m, as shown in Fig. 6-25b, Poincaré 

mapping parametric roll appears at Fr=0.22 and disappears at Fr=0.37 in increasing 

direction (i), but it appears at 0.13 and disappear at 0.37 in decreasing direction (d). There 

is significant difference of roll angle from 0.13 to 0.22 in Fr, and this difference can be 

explained as a sub-critical bifurcation. This result indicates that initial value dependency 

of parametric roll of OT is significant and its steady state in sub-critical bifurcation 

region depends on initial condition significantly. The maximum stabilized roll angle is 

max 30φ ≈ deg for Fr=0.2.  Calculated region of parametric roll does not agree with EFD 

result perfectly, but this is expectable due to the approximated nature of the model in Eq. 

(2.49). Nevertheless the general agreement between instability regions predicted from Eq. 

(2.49) and results from EFD can be considered satisfactory. It is also to be taken into 

account that the effect of water on deck has to be accurately implemented in the model 

particularly in high Fr for quantitative prediction. OU averaging method agreement of 

roll amplitude in comparison with EFD result is not bad but stability of solutions is not so 

from 0.18 to 0.34 in Fr. Disagreement in stability of parametric roll between OU 

averaging and Poincaré mapping based on OU model could suggest that existence of 

other stable state outside the applicable range of the roll angle in the model. Note that 
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averaging method unstable solution means that such solution cannot be seen in a real 

experiment. The maximum stabilized roll angle 27max ≈φ  deg for Fr=0.34. UNITS 

averaging approach shows a region of instability for the upright position extending 

approximately from Fr=0.18 to Fr=0.3, with a maximum roll inside this region close 

to 30max ≈φ . In addition, the presence of a stable rolling motion is predicted also outside the 

linear instability region for the upright position, and a stable vertical equilibrium coexists 

with a stable rolling motion between Fr=0.05 and Fr=0.18, with a predicted maximum of 

about 45max ≈φ  at Fr=0.05. In this region where two stable solutions coexist the final steady 

state depends on the initial conditions. The comparison with EFD shows that the shape of 

the response curve (bending towards low Fr) is well predicted by the UNITS model 

(capturing the softening behaviour of the restoring), but the region of instability of the 

upright position is slightly shifted to lower Fr. This difference could be associated with 

the fact that in the UNITS model the restoring moment is speed independent, and the 

introduction of a speed dependence especially in GMm following the indications in Fig. 

6-24a, could have shifted the response curve to higher Fr. The sudden jump at reduced Fr 

seen in the EFD response curve can be interpreted as the occurrence of the Hopf 

bifurcation predicted by the UNITS model. It could be guessed that additional 

experiments with different initial conditions performed in the range of small Fr could 

have shown the coexistence of a stable roll motion of large amplitude together with the 

stable upright position. For GM=0.033 m (Fig. 6-25c), Poincaré mapping parametric roll 

are indicated for 35.012.0 ≤≤ Fr and 35.010.0 ≤≤ Fr for increasing and decreasing directions, 

respectively, with maximum stabilized roll angle 22max ≈φ deg for Fr=0.2. OU averaging 

method parametric roll is indicated for 35.026.0 ≤≤ Fr  with maximum stabilized roll angle 

25max ≈φ  deg for Fr=0.26, as shown in Fig. 6-25c. The results from the UNITS model 

shows a response curve having a stable solution for 3.012.0 ≤≤ Fr with 30max ≈φ  and two 

stable solutions (trivial and nontrivial) along with one unstable solution between Fr=0.0 

and Fr=0.12 with 45max ≈φ . The agreement between EFD and analytical predictions for the 
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UNITS model are, in this case, very satisfactory. The jump at Fr=0.07 seen in EFD seems 

to be due to the coexistence of two solutions, a trivial stable upright position and a 

nontrivial resonant roll as predicted by the analytical UNITS model. For GM=0.043 m, as 

shown in Fig. 6-25a, parametric roll is not indicated by EFD and OU but UNITS 

averaging method predicts the inception of parametric roll with two stable solutions 

coexisting with an unstable upright position in the range 23.014.0 ≤≤ Fr  with 35max ≈φ  for 

Fr=0.14, and a stable solution for 3.023.0 ≤≤ Fr . The discrepancy between the analytical 

predictions from the UNITS model and the experiments are again to be sought in the fact 

that the UNITS model incorporates speed effects only partially with a tuning at Fr=0.2 

for the amplitude of the GM variation and without any correction on the mean GM, as 

shown in Fig. 6-24. Tables 6-9 and 6-10 summarize and compare Mathieu equation and 

CFD and EFD estimates for mean and excitation GM and the instability ranges and 

stabilized roll angles from EFD, CFD, and NDA. 

6.5 Summary of INSEAN Captive Model Simulations 

Complementary CFD, towing tank EFD, and nonlinear dynamics approach study of 

roll decay/parametric roll for the OT surface combatant both with and without bilge keels 

is presented.  The investigations without bilge keels include 2DOF forward speed roll 

decay in calm water for varying GM; and 3DOF forward speed roll decay/parametric roll 

in head waves for varying wave steepness Ak, GM, and drift angle. CFD shows fairly 

close agreement with EFD for forward speed roll decay in calm water, although damping 

is over/under predicted for largest/smaller GM. Most importantly CFD shows remarkably 

close agreement with EFD for forward speed roll decay/parametric roll in head waves for 

GM=0.038 and 0.033 m, although CFD predicts larger instability zones at high and low 

Fr, respectively. The CFD and EFD results are analyzed with consideration ship motion 

theory and compared with Mathieu equation and nonlinear dynamics approaches. 

Nonlinear dynamics approaches are in qualitative agreement with CFD and EFD. The 
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CFD and nonlinear dynamics approach results were blind in that the actual EFD radius of 

gyration kxx was not known a priori. 
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Table 6-1: Boundary conditions for all the variables 
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Table 6-2: Summary of 2DOF zero-speed heave-roll in beam waves results for 
Ak=0.156 and λ/L=1.12 

 EFD CFD E % D 

 a1 a2/a1 a3/a1 a4/a1 a1 a2/a1 a3/a1 a4/a1 a1 a2 a3 a4 

Phase 
Error 
for 

domnant 
harmonic

deg 
z/A 1.07 0.07 - - 1.22 0.05 - - -14.02 24.05 - - 3.08

θ/Ak 2.90 0.08 - - 1.66 0.07 - - 42.76 43.44 - - 6.11 
X 1.7E-3 2.25 0.48 1.52 5.6E-4 0.70 0.38 0.20 67.48 89.82 73.80 95.63 24.13
Y 0.067 0.05 - - 0.053 0.10 - - 20.89 -52.82 - - 5.12
M 2.4E-4 1.69 0.17 0.10 1.1E-4 1.58 0.24 - 53.39 56.50 34.20 100 -24.61
N 5.9E-4 0.13 - - 7.3E-4 0.19 - - -23.77 -81.58 - - 17.42
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Table 6-3: Summary of 3DOF forward-speed heave-roll-pitch in head  
waves results for λ/L=1.0 and Fr=0.35 

 EFD 
Ak=0.115 

CFD
Ak=0.115 
Ak=0.156 

 a1 a2/a1 a3/a1 a4/a1 a1 a2/a1 a3/a1 a4/a1 

z/A 0.8601 0.06 0.005 0.005 0.8762
0.78 

0.04
0.05 

0.022 
0.019 

0.014 
0.011 

θ/Ak 0.4463 0.06 0.02 0.01 0.4012
0.374 

0.07
0.08 

0.02 
0.03 

0.008 
0.012 

X 0.0087 0.49 0.53 0.24 0.0042
0.0048 

1.01
1.21 

0.93 
0.97 

0.02 
0.21 

 a1/2 a3/2/a1/2 a5/2/a1/2 a7/2/a1/2 a1/2 a3/2/a1/2 a5/2/a1/2 a7/2/a1/2

Y 0.0004 4.5 0.98 3.25 0.0004
0.0005 

0.51
0.53 

1.5 
1.7 

0.25 
1.23 

N 0.0003 1.01 0.01 0.01 0.0026
0.0032 

0.89
1.03 

0.27 
0.48 

0.23 
1.41 

 φ1 fφdl& fφds α&γ δ&ER φ1 fφdl& fφds α&γ δ&ER 

φ .4φ0 .91fφh/fe 0.55/0.005 0.82/5.2 .5φ0 
.33φ0 

.89fφh/fe 

.74fφh/fe 
0.4/0.006 
0.7/0.009 

0.6/3.3 
0.9/6.0 

 
 
 

Table 6-4: CFD roll decay RSS error for all kxx 

GM=0.043 Fr 
No. of 
cycles 

analysis 

Ave 
φ/φ0 for 

adjusted kxx 
 

ERSS 

kxx= 
0.1124 

kxx= 
0.1246 

kxx= 
0.1269 

kxx= 
0.1298 

kxx= 
0.1322 

Case No. 1 0.2 6 0.16599 15.76% 8.49% 7.21% 5.92% 11.83% 

GM=0.038    kxx= 
0.1246 

kxx= 
0.1322 

kxx= 
0.146   

1 0.05 6 0.25781 7.1%   

2 0.2 6 0.17108 3.7% 11.42% 127%   

3 0.35 6 0.13014 9.33%   

GM=0.033    kxx= 
0.1289 

kxx= 
0.1315 

kxx= 
0.1388   

1 0.2 4 0.20216 12.76% 12.51% 11.28%   

 
 
 
 

Table 6-5: Summary of roll decay damping coefficients 

  EFD CFD 
GM Fr α nωd αe γ α nωd αe γ

 0.05 0.23 0.24 0.24 0.14   
GM=0.033 0.2 0.34 0.37 0.36 0.24 0.12 0.20 0.20 0.08

 0.35 0.35 0.59 0.67 1.29   

GM=0.038 
0.05 0.19 0.19 0.19 0.04 0.09 0.10 0.10 0.026
0.2 0.31 0.31 0.32 0.08 0.18 0.19 0.18 0.08

0.35 0.34 0.40 0.40 0.18 0.25 0.27 0.28 0.11

GM=0.043 
0.05 0.14 0.14 0.14 0.03  
0.2 0.23 0.24 0.23 0.05 0.23 0.24 0.24 0.08

0.35 0.28 0.28 0.28 0.02  
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Table 6-6: Roll reconstruction error for different methods 

GM=0.043 Fr 

Number 
of 

cycles 
analysis 

Ave 
φ/φ0 

 

ERSS 

α &γ αe nωφd 
α &γ  

With linear 
restoring 

 
Case No. 1 0.05 6 0.14623 10.66% 11.15% 11.59% 30.02% 

2 0.2 6 0.09326 6.81% 7.39% 7.59% 15.05% 

3 0.35 6 0.07692 4.36% 5.17% 5.41% 10.13% 

Ave. of 1,2,3 0.2 6 0.105 7.3% 7.9% 8.2% 18.4% 

GM=0.038   

1 0.05 6 0.2787 7.28% 7.23% 7.42% 25.18% 

2 0.2 6 0.2131 4.77% 4.78% 4.80% 13.49% 

3 0.35 6 0.15026 8.35% 8.26% 8.38% 12.03% 

Ave. of 1,2,3 0.2 6 0.21402 6.80% 6.75% 6.82% 16.9% 

GM=0.033   

1 0.05 4 0.22626 4.90% 6.06% 6.14% 16.88% 

2 0.2 4 0.18197 4.13% 4.84% 4.91% 12.24% 

3 0.35 4 0.12662 5.07% 5.32% 5.34% 10.49% 

Ave. of 1,2,3 0.2 4 0.1783 4.7% 5.41% 5.47% 13.2% 

 
 
 
 

Table 6-7: Uncertainty analysis for GM = 0.038 m, Fr = 0.20,  
and Ak=0.115 

 Average Amplitude U U % 
Z (mm) -1.3 34.5 2.1 6.1% 

θ0 -0.91 4.25 0.15 3.5% 
φ0 -0.16 35.9 0.97 2.7% 

X (N) 21.15 51.8 5.6 10.9% 
Y (N) -1.53 212.4 4.53 2.1% 

N (N.m) 0.01 55.0 1.48 3.0% 
 
 
 
 

Table 6-8: Uncertainty analysis for GM = 0.033 m, Fr = 0.10,  
and Ak=0.115 

 Average Amplitude U U % 
Z (mm) 0.6 22.2 2.31 10.4% 

θ0 -0.6 3.77 0.14 3.7% 
φ0 0.23 35.9 1.24 3.4% 

X (N) 7.28 37.0 2.95 11.5% 
Y (N) 0.06 143.8 2.90 2.0% 

N (N.m) 0.66 55.6 1.47 2.6% 
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Table 6-9: CFD, EFD, and hydrostatic estimates for GMm and GMa at 
Fr=0.2 

 GM=0.033 GM=0.038 GM=0.043 m 

Method kxx GMm GMa kxx GMm GMa kxx GMm GMa 

CFD 0.1388 -0.0051 0.014 0.153 
0.1246

-0.0058
-0.0058

0.014
0.014

0.153 
0.1298 

-0.0066 
-0.0066 

0.014 
0.014 

EFD (OU) 0.1330 -0.0039 0.012 0.1330 -0.0045 0.012 0.1330 -0.0051 0.012 
Hydrostatic 

(UNITS) 0.1401 -0.0097 0.0086 0.1468 -0.0111 0.0086 0.1498 -0.0126 0.0086

Hydrostatic 
(UNITS)-corrected 0.1401 -0.0097 0.012 0.1468 -0.0111 0.012 0.1498 -0.0126 0.012 

 
 
 
 

Table 6-10: Parametric rolling zone and max roll angle predicted by CFD, EFD, 
NDA, and Mathieu Equation 

 GM=0.033 m GM=0.038 m GM=0.043 m 

Method kxx Fr range 
Min           Max

Max 
roll 

(deg)
kxx Fr range 

Min           Max 

Max 
roll 

(deg) 
kxx Fr range 

Min           Max 

Max 
roll 

(deg)

CFD 0.1388 0.0 0.3 50 0.153 
0.1246

0.17 capsize
45 

0.153 
0.1298 

0.1 0.35 37 
- 0.18 0.44 No PR 

EFD 0.127 0.07 0.28 40 0.125 0.18 0.35 35 0.123 No PR - 
NDA_OU: Poincare’ 

Increasing (i) 
Increasing (d) 

0.1330 
(i) 0.12 0.35 

22 0.1330
(i)  0.22 0.37 

30 0.1330 No PR - 
(d) 0.10 0.35 (d)  0.13 0.37 

NDA_OU: Ave. 0.1330 0.26 0.35 25 0.1330 0.34 0.37 27 0.1330 No PR - 

NDA_UNITS: Ave. 0.1401 0.0 0.3 45 0.1468 0.05 0.30 45 0.1498 0.14 0.3 35 

Mathieu Eq. 0.1388 0.0 0.26 ∞  0.1246 0.07 0.41 ∞  0.1298 0.07 0.41 ∞  

 
 
 
 
 
 

  
Figure 6-1: Grid for ONR Tumblehome with bilge keels 
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                                          (a)                                                                     (b)                                       

Figure 6-2: CFD (Fr=0.2) and EFD (Fr=0.05, 0.2, 0.35) roll decay comparison for 
GM=0.043 m: (a) time history; (b) FFT 



97 
 

 

 
                                          (a)                                                                     (b)                                       
Figure 6-3: CFD and EFD roll decay comparison for GM=0.038 m and Fr=0.05: (a) 

time history; (b) FFT 
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                                          (a)                                                                     (b)                                       
Figure 6-4: CFD and EFD roll decay comparison for GM=0.038 m and Fr=0.2: (a) 

time history; (b) FFT 
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                                                (a)                                                                    (b)                                       
Figure 6-5: CFD and EFD roll decay comparison for GM=0.038 m and Fr=0.35: (a) 

time history; (b) FFT 
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                                                  (a)                                                                 (b)                                       

Figure 6-6: CFD (Fr=0.2) and EFD (Fr=0.05, 0.2, 0.35) roll decay comparison for 
GM=0.033 m: (a) time history; (b) FFT 
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(a)                                                            (b) 

 
     (c) 

Figure 6-7: CFD and EFD damped natural frequency vs. mean roll angle: (a) 
GM=0.043 m; (b) GM=0.038 m; (c) GM=0.033 m 

 
 
 
 
 

 
(a)                                                                    (b) 

Figure 6-8: CFD and EFD averaged damped natural frequency and mean roll angle 
vs. Fr: (a) ωφd; (b) φm 
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(a)                                                            (b)                                                         

 
     (c) 

Figure 6-9: CFD and EFD logarithmic decrement vs. mean roll angle: (a) 
GM=0.043 m; (b) GM=0.038 m; (c) GM=0.033 m 

 
 
 
 
 
 

 
(a)                                                                    (b) 

Figure 6-10: CFD and EFD mean roll averaged logarithmic decrement and ER vs. 
Fr: (a) δ; (b) ER 
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             (a)                                                                                (b) 

Figure 6-11: CFD and EFD damping coefficients: (a) linear term, (b) cubic term 
 
 
 
 
 

    
Figure 6-12: CFD and EFD roll restoring moment for GM=0.043 m 

 
 
 
 
 
 

 
          (a)                                                                      (b) 

Figure 6-13: OT and 5415 damped natural frequency and logarithmic decrement vs. 
mean roll angle: (a) ωφdk; (b) δk 
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           (a)                                                                   (b) 

Figure 6-14: OT and 5415 roll decay parameters vs. Fr: (a) φm and ωφdk ; (b) δ and 
ER 

 
 
 
 
 

 
               (a)                                                                         (b) 

Figure 6-15: OT and 5415 roll decay coefficients vs. Fr: (a) linear damping; (b) 
cubic damping 
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                                                                                            (a) 

 
                                                                                            (b) 

 
                                                                                            (c) 

   
                                                                                            (d) 

Figure 6-16: CFD and EFD parametric rolling motions for all GM: (a) GM=0.043 
m; (b) GM=0.038 m; (c) GM=0.048m; (d) GM=0.033 m 
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                                                                                            (a) 

 
                                                                                            (b) 

 
                                                                                            (c) 

Figure 6-17: EFD and CFD (kxx=0.1298) parametric rolling results for GM=0.043 
m: (a) CFD roll decay parameters; (b) time history comparison for Fr=0.35; (c) FFT 

comparison for Fr=0.35 
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                                                                                            (a) 

 
                                                                                            (b) 

Figure 6-18: EFD and CFD (kxx=0.1246) parametric rolling results for GM=0.038 
m: (a) time history comparison for Fr=0.2; (b) FFT comparison for Fr=0.2 
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(a) 

 
(b) 

Figure 6-19: EFD and CFD (kxx=0.1388) parametric rolling results for GM=0.033 
m: (a) time history comparison for Fr=0.1; (b) FFT comparison for Fr=0.1 
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                                                                                          (a)  

   
                                                                                          (b)  

   
                                                                                          (c)  

     
                                                                                          (d)  

Figure 6-20: FFT analysis for CFD and EFD cases with parametric rolling: (a) 
GM=0.043 m; (b) GM=0.038 m; (c) GM=0.048 m; (d) GM=0.033 m 
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Figure 6-21:  A snapshot of CFD solution for GM=0.033 m and Fr=0.1 in one roll 
period 

 
 
 
 

 
      (a)                                                                 (b)  

 
                                                                                    (c) 
Figure 6-22: OU and UNITS model parameters: (a) linear damping coefficient as a 

function of Fr; (b) cubic damping coefficient as a function of Fr; (c) calm water 
restoring moment 



111 
 

 

 
                                                      (a)                                                             (b) 

 
(c) 

Figure 6-23: GZ variation in head waves for GM=0.043 m and 10 deg heel angle for 
OU and UNITS model and CFD: (a) Fr=0.1; (b) Fr=0.2; (c) Fr=0.3 

 
 
 
 
 
 

 
         (a)                                                                     (b) 

Figure 6-24: GZ parameters in head waves for GM=0.043 m for OU and UNITS 
model and CFD (10 deg heel angle): (a) nondimensional GMm versus Fr; (b) 

nondimensional GMa versus Fr 
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(a)                                                                 (b) 

 
(c) 

Figure 6-25: OU and UNITS model results for parametric rolling: (a) GM=0.043 m; 
(b) GM=0.038 m; (c) GM=0.033m 
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CHAPTER 7. VALIDATION OF OU CAPTIVE MODEL 

SIMULATIONS 

The OU (Osaka University) captive model simulations are performed with the same 

operational and environmental conditions described in Chapter 5 which include resistance 

test, static heel in calm water, static drift in calm water, and static heel in following 

waves. The simulations are carried out to validate CFD and to obtain manoeuvring 

coefficients as inputs for NDA model of broaching described in Chapter 2. Herein, the 

details of CFD simulation including computational domain and boundary conditions, 

grid, and simulation design are presented and lastly the results are discussed and 

compared with EFD and Potential Theory calculation. 

7.1 Computational Domain, Boundary Conditions 

The computational domains extend from 25.0 <<− x , 11 <<− y , 25.01 <<− z , in 

dimensionless coordinates based on ship length, as shown in Fig. 7-1. The ship axis is 

aligned with the x-axis with the bow at x = 0 and the stern at x = 1. The free surface at 

rest lies at z = 0. The ship model is appended with skeg and bilge keels.  

Boundary conditions are shown in Table 7-1. Inlet boundary condition in calm water 

and waves are different. For calm water, x component velocity at inlet boundary 

condition is set to be U0 which is the same as ship velocity in relative coordinate system 

and zero in earth fixed coordinate system. Other velocity components are imposed to be 

zero. Normal pressure gradient and level set function are imposed zero and –z(x) for calm 

water, respectively. In regular waves, inlet pressure gradient and level set function are 

imposed such that they follow linear wave theory equations: 
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Here, Uo would be zero in earth coordinate system. Other boundary conditions are the 

same for cases in calm water and in waves.  

7.2 Grid 

Two different grids are generated for captive tests as shown in Table 7-2 and 7-3. For 

both grids, computational grids for the hull, skeg and bilge keels are designed to 

accurately resolve geometric features of the model and the unsteady turbulent boundary 

layer, wake, and wave fields. The hull boundary layer and bilge keels grids were 

generated using GRIDGEN. The hull boundary layer and bilge keels grid were fixed to 

and move with the ship. The hull boundary layer has a double-O topology and was 

created with a hyperbolic grid generator, with a grid spacing at the hull designed to yield 

y+ <1 for the highest Reynolds number case Fr = 0.6. In this way the same boundary layer 

grid could be used for all cases. The hull boundary layer grid extends to cover the deck of 

the ship and wraps around it, allowing for computations with extreme motions. For Grid 

No.1, grid topology was selected so that two other blocks were responsible to capture the 

flow near the hull (refinement block) and far from the hull (background block) whereas 

grid No.2 has only background. Since there is a wave on the free surface for some cases, 

the background block was designed to have enough grid points near free surface.  The 

computational domain for all blocks covers both the port and starboard sides of the ship, 

since the flow and wave fields might be asymmetric due to static drift angle or the roll 
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motion. Table 7-3 summarize the grids matrix used for different captive tests and Figure 

7-1 shows grid No.1 for the ship. 

For the grid convergence study, a fine grid 10M and a coarse grid 1.2M were 

generated by refining and coarsening the medium size of grid No.1 using a factor of 

2 in each direction with a tri-linear interpolation algorithm, so that the grid distribution 

and shape would be as close as possible to the original grid. This grid study was 

performed for the ship with 10 deg heel angle towed in calm water, free to sink and trim, 

and for all Fr numbers in the range of 0-0.6. Figure 5-2 provides Ug for X, Y, K, M, σ, 

and τ. Y for Fr<0.4 and N/σ for 0.5<Fr<0.55 show relatively poor convergence, i.e., Fr 

regions with oscillatory convergence or divergence.  Table 7-4 provides the grid 

verification results. Consideration is given to Fr averages Ug in %S2 (medium grid 

solution) ∑
=

=
N

i
iigg FrSFrU

N
U

1
2 )(/)(1 and in %DR (Dynamic Range) 

∑
=

=
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i
Sigg DRFrU
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2

/)(1  and RSS ( )∑
=

=
N

i
iigRSSg FrSFrU

N
U

1

2
2 )(/)(1  in %S2. The 

average RSS Ug seems most representative. The RSS average of Ug over Fr is 0.1, 6.8, 1, 

1.5, 2.3, 2.4 %S2 for X, Y, K, N, σ, and τ, respectively, i.e. the average value is 3%S2. 

This suggests that the results are fairly insensitive to grid changes for present range of 

grid sizes.   

7.3 Simulation Design 

Captive simulations are carried out for single Fr number and a range of Fr number 

(Full Fr curve). Single Fr number simulations are performed in relative inertial coordinate 

system in which velocity is not imposed on the ship but it is given to the flow. 

Simulations are executed at “unsteady mode” and stopped after flow travels at least seven 

times of ship length. 
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7.3.1 Full Fr Curve Simulation Design 

Full Fr curve simulations are executed in inertial earth fixed coordinate system. The 

basic assumption of this approach is that at every instant the flow field is in a quasi 

steady-state, by virtue of imposing a very small acceleration to cover the desired velocity 

range during the computation. From the mathematical point of view, this means that the 

time derivatives of the momentum, level set transport, and turbulence model equations 

are negligible in a time-average sense. Full Fr curve simulation is able to capture 

unsteady phenomena such as vortex shedding, oscillation of forces and moments, and 

free surface fluctuation as long as the characteristic times of these phenomena (shedding 

period, motion period, and free surface fluctuations) are much smaller than the 

characteristic ship acceleration time. This condition is easy to meet for vortex shedding 

and the free surface fluctuations, being high-frequency phenomena, but may be difficult 

for ship motions that have a long period such as ship motion in waves. Therefore, Full Fr 

curve is applicable for cases in calm water. 

The procedure for full Fr curve simulation starts with an appropriate choice of a 

reference velocity to non-dimensionalize the equations of motion. For convenience ship 

speed corresponding to the maximum Fr to be achieved in the computation is used, thus: 

maxmax

* )()()(
Fr

tFr
V

tVtV ==  
( 7.5) 

Here V(t) and Fr(t) are instant velocity and Fr, respectively.  

Different kind of continues functions such as linear or quadratic function can be used 

for V*(t) to change it smoothly and very slowly to have quasi steady-state at each time 

step. In this study, V*(t) is changed by linear function.  

atV =*   ( 7.6) 

Where, a is a constant acceleration.  

The traveled distance by ship at each time step can be estimated from: 
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The traveled distance reaches to its maximum at the last time step of simulation 

corresponded to t0=tmax, when Fr=Frmax. To achieve quasi steady state condition, 

maximum of traveled distance should be small enough compare with the ship length. This 

makes a limit for choosing acceleration and time step. Table 7-5 shows parameters 

applied for full Fr curve simulations in this study.  

7.4 Resistance 

7.4.1 Forces, Moments, and Motions 

CFD resistance tests are performed for full Fr curve Fr=0.0-0.6 and single Fr=0.5 for 

the model free to sinkage and trim in calm water. Figure 7-3 compares EFD and CFD for 

CT, σ, and τ, including with and without bilge keels. Consideration is given to Fr 

averages based on absolute error in %D ∑
=

=
N

i
ii DE

N
E

1
/1 and in %DR ∑
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=
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i
i DRE

N
E

1
/1  

and RSS error ( )∑
=

=
N

i
iiRSS DE

N
E

1

2/1  in %D, and maximum errors Emax in %D and 

%DR. The average RSS error seems most representative.  In general the results indicate 

expected trends and excellent agreement between CFD and EFD (average RSS error ECT, 

σ, τ =1.32, 4.32, 2.04 %D), except for CT for 45.035.0 ≤≤ Fr , σ for 55.045.0 ≤≤ Fr and τ for 

Fr>0.55 for which CFD under predicts EFD by maximum ECT, σ, τ =4.11, 17.7, 6.43 %D, 

as shown in Table 7-6. Single Fr=0.5 CFD shows same values as full curve CFD at same 

Fr.  The CFD grid study, explained earlier, indicates relatively small dependency on 

grids, which suggests large Fr errors are due to free surface, turbulence modeling, and/or 

requirement of much larger grids than 11M. 
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7.4.2 Free Surface Elevation and Vortex Structures 

Figure 7-4 indicates general view of free surface for several Fr numbers. In overall, 

increasing Fr washes away waves generated by the ship to the downstream. More details 

of the free surface have been shown in Fig. 7-5. Free surface fluctuation at y/L=0 

indicates bow and stern waves, as shown in Fig. 7-5.  The stern wave is pushed away 

from the aft at high Fr number such that the ship transom comes out of water. This 

introduces important role of turbulence modelling for low Fr number to model properly 

wet transom vortices and their effects on the ship resistance and free surface fluctuation. 

Also, free surface profile at y/L=0 illustrates that pitch angle has to be positive (bow is 

up) at high Fr and nearly zero at low Fr which can be confirmed by Fig. 7-3. Axial 

velocity contours indicate several vortex structures around the hull, as shown in Fig. 7-6. 

The sonar dome, bilge keels, and skeg produce vorticities even though vorticities created 

by the sonar dome are dominant.  

7.5 Static Heel in Calm Water 

7.5.1 Forces, Moment, and Motions 

CFD static heel tests are performed for full Fr curve Fr=0.0-0.6 with φ=10 and 20 

degree, and single Fr=0.6 with φ=10 degree for the model free to sinkage and trim in 

calm water. Figures 7-7 and 5-8 show dimensional and non-dimensionalized results 

comparing CFD and EFD for axial and side force, roll and yaw moment, and heave and 

pitch motions for φ=10 degree. In general, full curve simulation results show fairly large 

error for Fr<0.2. It is because of the fact that running time was not enough for Fr<0.2 and 

boundary layer was not developed yet. In order to have enough time to simulate Fr<0.2, 

very small time step could have been chosen which is very expensive and time 

consuming. For Fr>0.2, CFD shows acceptable results for motions, forces, and moments. 

CFD under predicts sinkage and trim by average RSS error 3.62%D and 14.1%D, 
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respectively, as shown in Table 7-7. Average RSS error for X, Y, K, and N are 2.6, 11, 

1.3, and 11%D, respectively. In overall, E=7.3%D. Even though errors are quite large for 

side force and yaw moment, CFD indicates similar trend as EFD. Comparing roll 

moment and yaw moment explain that heel to the starboard causes yaw moment pushing 

the bow to the port. Also, roll moment versus Fr indicates that the roll moment is close to 

hydrostatic value (roll moment at Fr=0.0) and Fr would not change that significantly 

unless Fr>0.5. Lastly, single Fr=0.6 CFD shows fairly same values as full curve at same 

Fr. Figures 7-9, 7-10 represent motions, forces, and moments for φ=20 degree. CFD 

results show fairly small error for all variables for Fr>0.2, except side force which shows 

reasonable result for Fr>0.4 in which side and axial force have the same order. CFD 

average RSS errors for sinkage and trim are 2.5 and 10%D, respectively. CFD average 

RSS error for X, Y, K, and N are 2.5, 14.2, 1.3, 6.7%D, respectively. In overall, 

E=6.2%D.  

7.5.2 Coupling Effects 

Figure 7-11 summarizes CFD and EFD X, Y, K, and N for both heel angles and 

resistance test as a zero heel angle case. It is shown that axial force would not be changed 

significantly by giving a heel angle to the ship. However, impact of heel angle is huge on 

Y, K and N. This matches with the theory described in Chapter 2. In fact, roll angle has 

second order effect on X while it has first order effect on Y, K, and N. More than that, 

comparing Fig. 7-8 and 7-10 indicates that roll angle would not change trim and sinkage 

supporting the theory that roll has second order effect on heave and pitch modes. 

7.5.3 Maneuvering Coefficients 

As shown in Fig. 7-11, a+bφ2 is fitted to X for each Fr and aφ+bφ3 is fitted to Y, K, 

and N in order to estimate coefficients a and b which are linear and nonlinear 

maneuvering coefficients as explained in Chapter 2. CFD and EFD reconstructions based 
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on the fitted curves show exactly similar values to the original CFD and EFD data due to 

limit number of CFD and EFD data explaining that the CFD and EFD reconstruction 

errors are zero. The values of CFD and EFD maneuvering coefficients are shown in 

Table 7-8. The average RSS error of CFD prediction is 7.4%D for linear maneuvering 

coefficients and 106%D for nonlinear maneuvering coefficients. 

7.5.4 Free Surface Elevation and Vortex Structures 

Figures 7-12,7-13 illustrate CFD free surface elevation around the ship heeled toward 

starboard for several Fr number. As expected, the flow stagnates as it collides with the 

bow of the ship and the free surface becomes higher, forming a bow wave. When both the 

flows coming from portside and starboard collide at the aft region, the velocity decreases 

and subsequently the pressure increases. An elevation is then produced, as shown in Fig. 

7-14. The boomerang shape of this elevation is consequent with the velocities in the area, 

higher away from the hull, so from the sides, the small wave is carried away faster. The 

flow stagnates at bow forming high elevation and then increases its speed as it turns the 

fore perpendicular. Subsequently, the pressure drops and the free surface dives. After that 

the flow decreases its speed at the aft and forms high elevation on the free surface again. 

Even though the ship is heeled to the starboard, the free surface level for the portside and 

starboard is nearly the same due to same pressure drop for both sides. At high Fr number, 

the peaks of the free surface at centreline become higher due to high pressure at 

stagnation. Figures 7-15 and 7-16 show details of free surface near the bow and the aft 

for the worst case, Fr=0.6 and φ=20 deg. Figure 7-15 indicates possibility of wave 

breaking and overturning at high Fr number near the bow. Figure 7-16 shows the free 

surface at the transom. It shows clearly that the transom is out of water at high Fr number 

and there is a wake region after the aft with complex free surface shape. The shape of the 

hull at the bottom of the bow can be assimilated to a flat plate with no thickness. As the 

flow turns around the bow hull, a complicated vertical structure is generated. One vortex, 
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as shown in Fig. 7-17, is generated in the tip of the bow and runs almost parallel to the 

hull. Another vortex comes from the tip of the bilge keels and again moves parallel to the 

hull. A final vortex is generated close to the aft region as flow passes the skeg.   

7.6 Static Drift in Calm Water 

7.6.1 Forces, Moments, and Motions 

CFD static drift tests are performed for full Fr curve Fr=0.0-0.6 with β=5, 10, and 15 

degrees for the model free to sinkage and trim in calm water. Figures 7-18 and 7-19 show 

dimensional and non-dimensionalized results comparing CFD and EFD for axial and side 

force, roll and yaw moment, and heave and pitch motions for β =5 degrees. Similar to 

static heel cases, full curve simulation results show fairly large error for Fr<0.2 due to 

insufficient running time to develop boundary layer. For Fr>0.2, CFD predicts absolute 

value of sinkage and trim by average RSS error 8.9%D and 16.3%D, respectively, as 

shown in Table 7-9. Average RSS error for X,Y, K, and N are 8.5, 16.8, 43.2, and 

6.0%D, respectively. Even though errors are quite large, CFD indicates similar trend as 

EFD for Fr>0.2. Comparing roll moment and yaw moment explains that turning the bow 

to the right causes heel to the portside suggesting that yaw angle would produce enough 

heel moment in free model simulation and cause capsize. Figures 7-20 and 7-21 represent 

dimensional and non-dimensionalized motions, forces, and moments for β=10 degrees. 

The trend for all variables versus Fr number for β=5 and β=10 degrees are the same 

except for trim. For β=10 degrees, trim is always negative but for β=5 degrees trim jumps 

to positive value for Fr>0.35. CFD predictions for β=10 degrees indicate average RSS 

error 7.8 and 16.7%D for sinkage and trim, respectively. CFD average error for X, Y, K, 

and N are 11.5, 11.4, 54.7, 6.5%D, respectively. Figures 7-22 and 7-23 show dimensional 

and non-dimensionalized results for β=15 degrees. The overall trend versus Fr number is 

the same as before. Dimensional results clearly show that increasing Fr number would 
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increase all motions, forces, and moments’ magnitude. CFD prediction average RSS 

errors are 10.8, 7.9, 49, 5.7, 6.4, and 11.5%D for X, Y, K, N, sinkage, and trim, 

respectively.  Comparing CFD prediction errors for all drift angle cases demonstrates that 

CFD prediction for side force and trim are improved significantly for larger drift cases. 

However, error for other variables has increased for larger drift cases and amongst them 

error of roll moment is much bigger than the others. In overall, CFD predicts forces, 

moments, and motions for a drift angle case by the average error of 10%D excluding K 

and 19%D including K. Herein, the accuracy of EFD roll moment data is under question 

and that would be a possibility of large CFD errors for K. Comparing current results of 

OT with similar type of obliquely towed hull (5415) simulated at non-zero speed with the 

same level of grid size (Sakamoto, 2009) show that the error of current simulation is 

acceptable. 

7.6.2 Coupling Effects 

Figure 7-24 shows the impact of side velocity or drift angle (v=-usinβ) on forces and 

moment. It is observed that drift angle has significant effect on Y, K, and N whereas X 

would not be changed that much. According to the theory explained in Chapter 2, drift 

angle has second order effect on X and first order effect on Y, K, and N. Therefore, the 

results follow the theory. Comparing Fig. 7-19, 7-21, and 7-23 illustrate the effect of drift 

angle on sinkage and trim. It is observed that drift angle effect is negligible on sinkage 

whereas its effect is huge on trim especially at high Fr. This suggests that drift angle 

effect on sinkage is second order as it is expected from the theory. However, drift angle 

effect on trim is not second order, at least at high Fr. 

7.6.3 Maneuvering Coefficients 

Figure 7-24 shows the forces and moment used to calculate the v-velocity related 

hydrodynamic derivatives obtained from EFD and CFD. These figures also include the 
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reconstructions. a+bv2 is fitted to X for each Fr and av+bv3 is fitted to Y, K, and N in 

order to estimate coefficients a and b which are linear and nonlinear maneuvering 

coefficients as explained in Chapter 2. Also, zH is estimated from 1st order polynomial 

curve fitting to K–Y plot. The values of CFD and EFD maneuvering coefficients are 

shown in Table 7-10. The average RSS error of CFD prediction including/excluding K 

moment and zH are 28/8.4%D for linear maneuvering coefficients and 30/20.4%D for 

nonlinear maneuvering coefficients. 

7.6.4 Free Surface Elevation and Vortex Structures 

Figure 7-25 shows the elevation of the free surface. Stagnation on the windward side 

of the hull creates a bow wave. As expected, the height of wave is bigger for higher drift 

angle case. The flow accelerates as it turns the fore perpendicular and the subsequent 

pressure drop is manifested by the loss of height of the free surface on the leeward side, 

as Fig. 7-26 shows. The flow stagnates in the windward side of the hull, as shown in Fig. 

7-27. As the velocity decreases, the pressure increases, so the wave elevation is higher in 

this region. For β=15 deg, the free surface elevation indicates bow diving due to large 

wave height formed around the bow. Figure 7-28 shows a representation of flow at 

windward side. The stagnation area, easily identified by pressure contour, is near the bow 

at high pressure area and moves toward the aft a little bit at β=15 deg.  

As the flow turns around the bow hull, a complicated vertical structure is generated. 

Two vortices are generated at keel. One of them starts right at the bottom of the bow and 

can be considered a tip vortex, as shown in Fig. 7-29.This vortex runs almost parallel to 

the flow direction. Another keel vortex comes from the sharp shape of the keel at bottom. 

This vortex extends backward and losses its strength gradually as the curvature of the 

keel increases.  Another vortex structure comes from bilge keels once flow passes the tip 

of bilge keels and it moves toward the flow direction. A final vortex is generated close to 

the aft region as flow passes the skeg. 
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7.7 Static Heel in Following Waves 

7.7.1 Forces, Moments, and Motions 

CFD static heel tests in following waves are performed for Fr=0.3, H/λ=0.03 and 

λ/L=1 with φ= 10 and 20 degrees and  λ/L=1.25, H/λ=0.025 and Fr=0.15,0.25,0.35, and 

H/λ=0.05 and Fr=0.35 with φ= 0 for the model free to heave and pitch. Figures 7-30 and 

7-31 show EFD and CFD X,Y,K,N,z,θ vs. time and ξg/λ constructed based on averages 

over 2-5 wave periods and evaluated for Fr=0.3, H/λ=0.03 and λ/L=1 with 10 deg heel 

angle. CFD results are shown for both grids, as mentioned in Table 7-3. In general, grid 2 

achieves better agreement with EFD. Average RSS errors are evaluated as provided in 

Table 7-11. CFD predicts heave and pitch by average error of 8 and 4.9%D. The average 

RSS errors of X, Y, K, and N are 35, 45, 4, and 6.7%D, respectively. In overall, trends 

are predicted by CFD. Figure 7-32 and 7-33 show results for 20 deg heel angle. The 

average RSS errors of X, Y, K, and N are 27, 23, 3.4, and 3.3%D, respectively. The 

results indicate better agreement with EFD such that the overall error is 12%D whereas it 

is 17%D for 10 degree heel angle, as shown in Table 7-11. 

Figures 7-34 and 7-35 show comparing CFD and EFD results versus time for zero heel 

angle, λ/L=1.25, H/λ=0.025 and Fr=0.15,0.25,0.35, and H/λ=0.05 and Fr=0.35. The 

results versus ξg/λ are constructed based on average over 2-5 wave periods and evaluated 

as shown in Fig. 7-36 and 7-37. CFD simulations are performed for grid 2, as mentioned 

in Table 7-3. The average RSS errors, shown in Table 7-11, indicates the average error is 

15%D with the largest errors for X and θ. The average error increases by factor of 2 for 

same increase in wave amplitude. 

7.7.2 Coupling Effects 

FFT analysis is performed to help to understand different harmonics and coupling 

effects available in CFD or EFD of ship responses in waves. According to the theory 
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explained in Chapter 2, for static heel in regular following waves, heave response should 

indicate 1st harmonic at wave encounter frequency fe, and 1st, 2nd, and 3rd order/harmonics 

due to pitch motion. The similar harmonics are expected for pitch response due to wave 

and heave motion. Forces and moments should also show harmonics due to waves and 

pitch and heave motion. X indicates 1st harmonic amplitude due to waves at fe, 2nd and 3rd 

order/harmonic amplitudes due to heave and pitch motions at fe. Y and N indicate 1st 

order/harmonic amplitudes due to waves and 2nd and 4th order/harmonic amplitudes due 

to heave and pitch motions.  

Figures 7-38 and 7-39 exhibit FFT analysis of CFD and EFD for Fr=0.3, H/λ=0.03 

and λ/L=1 with φ= 10 and 20 degrees. Heave response shows 1st and 2nd harmonics and 

pitch show 1st harmonic. X indicates 1st and 2nd harmonics and Y and N show 1st, 2nd, and 

4th harmonics, as expected. In overall, CFD simulations using grid 1 and grid 2 could 

predict all harmonics, as shown in Fig. 7-38 and 7-39. However, grid 2 shows much 

better agreement with EFD, as shown in Table 7-12. For 10 degrees heel angle, CFD 

predicts 1st and 2nd harmonics of heave by error of 2.97/58%D and 1st harmonic of pitch 

by error of 8%D using grid 2. The errors of 1st and 2nd harmonics of axial force prediction 

are 76%D and 35%D. CFD sway force FFT analysis shows good agreement with EFD 

for first harmonic using grid 2 (E=9.3E%D). Yaw moment errors of 1st and 2nd harmonics 

for grid 2 are about 12.6%D and 9.53%D.  For 20 degrees heel angle, CFD errors of 1st / 

2nd harmonics of heave are 2.75/48%D using grid 2. CFD predicts 1st harmonic of pitch 

by error of 5.08%D. The errors of 1st/2nd harmonics of axial force prediction are 

99.3/32.4%D. CFD sway force 1st harmonic prediction error is 27%D and yaw moment 

first/second harmonics predictions provide error about 0.49/31%D using grid 2.  

Figures 7-40 and 7-41 illustrate FFT analysis of results for wave induced heave and 

pitch motions and axial force for Fr=0.05, 0.2, 0.35, H/λ=0.025 and 0.05, and λ/L=1.25 

with zero heel angle. For Fr=0.35 and H/λ=0.025, FFT analyses of heave and pitch show 

only first harmonic in their behaviour. CFD prediction of heave shows error of 1.79%D 
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for first harmonic while the error of pitch first harmonic prediction is 59%D. FFT 

analysis of induced axial force indicates only first harmonic which is under predicted by 

error of 11.6%D. For Fr=0.35 and H/λ=0.05, FFT analysis indicates dominant first 

harmonic for heave, pitch and induced axial force. The prediction of heave, pitch, and 

axial force first harmonic has the error of 15.5%D, 64.5%D, and 22.3%D, respectively. 

7.7.3 CFD Results vs. Potential Theory Calculation 

Since wave-induced surge force is responsible for surf-riding and it is necessary to 

accurately evaluate for realising a quantitative prediction of ship behaviours in 

following/quartering waves, the Potential Theory, as an uncomplicated method, is 

performed to estimate surge force for  λ/L=1.25, H/λ=0.025 and several Fr with φ= 0. 

The surge force can be calculated as the linear Froude-Krylov force as the first-order 

approximation, which well explains the wave-induced surge force for a small trawler up 

to the wave steepness of Ak=1/10 (H/λ=0.03). The Froude-Krylov calculation is 

compared with EFD results as shown in Fig. 7-42. The comparison indicates that the 

linear Froude-Krylov calculation significantly overestimates the experiment when the Fr 

is smaller than 0.2. The Fr of 0.2 coincides with the Hanaoka parameter gU e /ωτ =  of 0.25. 

Here, in an unsteady potential flow theory with linear free-surface condition, the velocity 

potential relating to symmetric motions diverges. When the Hanaoka parameter increases 

by increasing the forward velocity, the Froude-Krylov prediction provides better 

agreement. Comparing CFD and Froude-Krylov calculation shows that the CFD 

successfully reproduces the decrease of the wave-induced surge force near the Fr of 0.2 

probably because the CFD can capture the 3D wave pattern. In fact, the discrepancy 

between EFD/CFD and the linear Froude-Krylov calculation in higher speed region could 

consist of diffraction radiation and higher order Froude-Krylov components. 
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7.8 Summary of OU Captive Model Simulations 

The grid study calm water static heel indicates the average RSS grid uncertainty is 

3%D. CFD resistance test full Fr curve simulation in calm water shows close agreement 

with EFD with average RSS error of 3%D for X, σ, τ. Single Fr=0.5 CFD shows same 

values as full curve CFD at same Fr. CFD and EFD full Fr curve static heel results show 

fairly close agreement for σ, τ, X, K for the full Fr range, whereas Y and N were 

significantly under predicted for large Fr>.4. In overall, CFD prediction average RSS 

error is 7.3 and 6.2%D for 10 and 20 degrees heel angle.  Single Fr=0.6 CFD shows fairly 

same values as full curve at same Fr. Forces and moment analyses show that heel angle 

has second order effect on X while it has first order effect on Y, K, and N such that 

increasing heel angle would change Y, K, and N except X. CFD shows fairly close 

agreement for static heel linear maneuvering derivatives, whereas large errors are 

indicated for nonlinear maneuvering derivatives. The average RSS error of CFD 

prediction of linear and nonlinear maneuvering coefficients is 7.4%D and 106%D, 

respectively. CFD and EFD static drift show good results of σ, τ, X, Y, N for the full Fr 

range, whereas K is over predicted for Fr>0.2. In overall, CFD predicts force, moment, 

and motions for a drift angle case by the average error of 10%D excluding K and 19%D 

including K. It shows that drift angle has second order effect on X and first order effect 

on Y, K, and N supporting the theory explained in Chapter 2.  CFD predicts linear and 

nonlinear maneuvering coefficients excluding K by the error of 8.4%D and 20.4%D. 

CFD non-zero static heel in following waves average errors are 12 and 15%D for 20 and 

10 degrees heel angle with the largest errors for surge and sway forces. CFD zero static 

heel in following waves average errors is 15%D with the largest errors for X and θ. The 

average error increases by factor of 2 for same increase in wave amplitude. Heave 

response shows 1st and 2nd harmonics and pitch show 1st harmonic. X indicates 1st and 2nd 

harmonics and Y and N show 1st, 2nd, and 4th harmonics. In overall, CFD static heel in 
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following waves simulations using grid 1 and grid 2 could predict all harmonics. 

However, grid 2 shows much better agreement with EFD. The surge force in following 

wave is estimated from Potential Theory calculation (Froude-Krylov calculation) and 

compared with CFD and EFD. It is shown that CFD successfully reproduces the decrease 

of the wave-induced surge force near the Fr of 0.2 whereas Potential Theory fails 

probably because it cannot capture the 3D wave pattern. 
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Table 7-1: Summary of boundary conditions 
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Table 7-2: Grid size for CFD tests 

 Grid 1 (refinement ratio=√2) Grid 2 

 Coarse Medium Fine Medium 

Boundary Layer 0.47 M 1.33 M 3.76 M 1.29 M 

Bilge keels   0.22 M 0.63 M 1.78 M 0.24 M 

Refinement  0.35 M 1.00 M 2.83 M - 

Background 0.18 M 0.52 M 1.47 M 1.76 M 

Total 1.22 M 3.48 M 9.84 M 3.29 M 

 

 

 



130 
 

 

Table 7-3: Grid matrix for CFD tests 
  Grid1 

(Medium) Grid2  

Cases in calm 
water 

Resistance X  

Static Heel   X  

Static Drift  X  

Cases in waves 

Head Waves X*  

Following waves 
(10 and 20 deg 

heel) 
X X 

Following waves 
(zero heel) 

 X 

*: Grid 1 without BKs is used for head waves. 
 
 

 

Table 7-4: Verification study for static heel=10 deg  

Refinement 
ratio=!2 X Y K N σ τ gU  

DR 51.83524 
(N) 

5.443227 
(N)

4.184471 
(N.m)

10.19919 
(N.m)

12.95431 
(mm) 

1.648851 
(deg)  

Ugave (%S2) 1.320523 25.92286 1.352147 20.957 3.232973 5.801962 9.76
Ugave (%DR) 0.424326 6.567709 1.312601 5.481052 1.552964 1.181102 2.75

Ugave-RSS(%S2) 0.1008 6.750302 1.024958 5.112561 2.290736 2.365466 2.94

 

 

 

Table 7-5: Non-dimensional input variables for CFD tests  

  Resistance and Static 
Heel in calm water

Static Drift in calm 
water

Single run tests in calm 
water and waves

Time step 0.02 0.02 0.02 
Velocity variation at 

each time step 2e-4 2e-4 - 

Fr variation at each time 
step 2e-4 2e-4 - 

Number of iterations 3000 2000 2000 
Maximum running time 60 40 40 
Maximum Fr variation 2e-4 2e-4 - 

Maximum traveled 
distance variation 0.012002 0.008002 - 
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Table 7-6: Resistance tests validation 

 Eave%D Eave%DR Eave-RSS%D Max E%D 

With BK (Fr>0.2) 
X 1.5 1.23 1.32 4.11(Fr=0.4) 
σ 5.02 4.15 4.32 17.7(Fr=0.5) 

τ 2.13 2.11 2.04 6.43(Fr=0.6) 

w/o BK (Fr>0.2) 
X 1.83 1.72 1.68 3.76(Fr=0.4) 
σ NA NA NA NA 

τ NA NA NA NA 

Single run (Fr=0.5)

X 0.97 - 0.97 - 

σ 16.4 - 16.4 - 

τ 3.96 - 3.96 - 
 

 

 

 

Table 7-7: Static heel validation  

Heel  X Y K N σ τ E

10 deg 
(Fr>0.2) 

Eave 
%D 

6.25 28.54 2.78 29.8 9.63 26.9 17.32

Eave 
%DR 

5.98 18.45 1.88 21.06 7.91 4.20 9.91 

Eave-RSS 
%D 

2.60 11.05 1.33 11.08 3.62 14.15 7.31 

Max 
E%D 

10.55 
(Fr=0.25)

48.78 
(Fr=0.6)

8.28 
(Fr=0.6)

51.95 
(Fr=0.25)

14.52 
(Fr=0.55) 

101.70 
(Fr=0.35) 

 

Max 
E%DR 

10.91 
(Fr=0.4)

48.78 
(Fr=0.6)

3.42 
(Fr=0.6)

26.48 
(Fr=0.45)

13.92 
(Fr=0.55) 

8.72 
(Fr=0.5) 

 

20 deg 
(Fr>0.2) 

Eave 
%D 

6.3 600 2.23 17.43 5.64 19.9 108.6

Eave 
%DR 

6.19 17.84 1.29 11.74 4.98 5.15 7.86 

Eave-RSS 
%D 

2.50 14.23 1.31 6.69 2.47 10.03 6.21 

Max 
E%D 

10.62 
(Fr=0.35)

4327 
(Fr=0.3)

9.12 
(Fr=0.6)

35.00 
(Fr=0.25)

13.46 
(Fr=0.55) 

69.78 
(Fr=0.35) 

 

Max 
E%DR 

10.35 
(Fr=0.35)

31.04 
(Fr=0.25)

3.88 
(Fr=0.6)

15.57 
(Fr=0.25)

13.46 
(Fr=0.55) 

10.37 
(Fr=0.5) 

 

Single run (10 
deg, Fr=0.6) 

Eave-RSS 
%D 

1.86 46.69 6.94 30.20 1.18 5.92 15.46
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Table 7-8: Hydrodynamic derivatives error estimated from static heel 

  EFD CFD Eave %D Eave-RSS %D

Fr  0.6000 0.4000 0.2000 0.0500 0.6000 0.4000 0.2000 0.0500   

x*'  0.0061 0.0063 0.0051 0.0060 0.0062 0.0056 0.0048 0.0113 13.58 2.66 

X'φφ  -0.0015 0.0036 0.0012 0.0095 0.0043 0.0085 0.0047 -0.0118 545.41 246.23 

Y'φ  -0.0328 -0.0200 0.0009 -0.0067 -0.0152 -0.0128 -0.0057 -0.0031 99.15 12.61 

Y'φφφ  0.0897 0.1182 -0.0137 -0.2015 -0.0054 0.0262 0.0229 0.0284 95.10 30.56 

K'φ  -0.0063 0.0059 -0.0041 -0.0032 -0.0064 0.0062 -0.0041 -0.0053 16.60 1.99 

K'φφφ  0.0294 -0.0276 0.0190 0.0150 0.0312 -0.0631 0.4576 0.0150 1204.54 24.76 

N'φ  0.0119 0.0090 0.0055 0.0058 0.0091 0.0058 0.0018 -0.0291 95.91 12.43 

N'φφφ  -0.0091 -0.0139 -0.0092 -0.0112 0.0032 0.0014 0.0058 0.0267 328.74 124.48 

         E  299.88 56.97 

         
linearE  56.31 7.42 

         
NonlinearE 543.45 106.5 

 

 

 

Table 7-9: Static drift validation 

Drift  X Y K N σ τ E  KE−

5 deg 
(Fr>0.2) 

Eave 
%D 

13.25 27.75 77.60 8.16 13.78 88.03 38.10 30.19 

Eave 
%DR 

12.09 27.46 68.18 7.55 7.14 17.67 23.35 14.38 

Eave-RSS 
%D 

8.54 16.80 43.24 5.99 8.88 16.28 25.95 11.30 

Max 
E%D 

14.76(Fr=0.3) 31.44(Fr=0.3) 83.53(Fr=0.2) 12.60(Fr=0.3) 15.94(Fr=0.2) 216.34(Fr=0.2)   

10 deg 
(Fr>0.2) 

Eave 
%D 

14.18 12.97 106.34 11.18 8.076 31.14 30.65 15.51 

Eave 
%DR 

12.018 11.58 85.80 6.99 4.85 17.74 23.16 10.64 

Eave-RSS 
%D 

11.51 11.42 54.75 6.53 7.80 16.71 18.12 10.79 

Max 
E%D 

16.83(Fr=0.4) 19.19(Fr=0.4) 120.36(Fr=0.3) 24.39(Fr=0.2) 9.087(Fr=0.4) 37.24(Fr=0.4)   

15 deg 
(Fr>0.2) 

Eave 
%D 

10.74 8.84 133.7 15.04 13.07 28.44 34.97 15.23 

Eave 
%DR 

10.14 7.99 145.5 10.71 4.46 12.71 31.92 9.20 

Eave-RSS 
%D 

10.85 7.89 49.06 5.67 6.36 11.49 15.22 8.45 

Max 
E%D 

13.30(Fr=0.3) 9.43(Fr=0.2) 147.8(Fr=0.3) 27.91(Fr=0.2) 24.10(Fr=0.2) 38.92(Fr=0.2)   
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Table 7-10: Hydrodynamic derivatives error estimated from static drift  

  EFD CFD Eave 
%D 

Eave-RSS 
%D 

Fr  0.4000 0.3000 0.2000 0.1000 0.4000 0.3000 0.2000 0.1000  
X*'  0.0063 0.0056 0.0054 0.0055 0.0055 0.0049 0.0049 0.0064 12.36 6.27
X'vv  0.2930 0.1803 0.1196 0.1020 0.1595 0.0833 0.0650 0.0862 40.13 21.35
Y'v  0.3740 0.3649 0.3405 0.3006 0.2932 0.2651 0.2691 0.3496 21.57 10.96
Y'vvv  3.7256 2.1744 0.9668 1.3854 2.2757 1.9354 1.7121 1.9435 41.82 23.98
K'v  0.2206 0.1796 0.1717 0.1578 0.3990 0.3327 0.3474 0.3993 105.40 54.61
K'vvv  1.5611 0.7531 1.5467 1.8460 1.5813 2.4280 2.7410 2.4192 83.00 59.37
N'v  -0.1237 -0.1083 -0.0960 -0.0821 -0.1276

-
0.1106 -0.1034 -0.1071 10.88 7.93

N'vvv  -2.1223 -1.1992 -0.5132 -0.4078 -1.2217
-

0.7914 -0.5909 -0.2859 30.37 15.97

Z'H  0.5543 0.4566 0.6473 0.6852 1.1633 1.2550 1.3705 1.1657 116.64 61.26

    E /
HZKE &−

 51.35/ 
26.19 

29.08/ 
14.41

    linearE /
HZKlinearE &−

 53.37/ 
14.94 

28.21/ 
8.39

    nonlinearE /
HZKnonlinearE &−

48.83/ 
37.44 

30.17/ 
20.43

 
 
 

Table 7-11: Simulation ERSS of static heel in following waves estimated from results 
vs. ship position in waves 

Heel&Fr Wave X Y K N z θ E  
Heel10-Fr=0.3 H/λ=0.03;λ/L=1 35.29011 45.02286 3.93254 6.67891 8.35731 4.87985 16.85
Heel20-Fr=0.3 H/λ=0.03;λ/L=1 27.05689 23.62012 3.38126 3.28103 8.80345 6.56903 12.11
Heel0-Fr=0.35 H/λ=0.025;λ/L=1.25 9.98453 4.69035 30.7823 15.15
Heel0-Fr=0.35 H/λ=0.05;λ/L=1.25 18.54791 9.49351 58.0826 28.70

 
 
 

Table 7-12: FFT of static heel in following waves 
   E (%D) First/Second hamonic
   Grid 1 Grid 2 

Heel Wave Fr X Y K N σ τ X Y K N σ τ 
10 
deg 

H/λ=0.03 
λ/L=1 

0.3 5.73/56 56.1 58.2 30.9/71.9 58.4/62 32.4 76/35 9.3 21 12.6/9.33 2.97/58 8.08

20 
deg 

H/λ=0.03 
λ/L=1 

0.3 18.8/53.1 52.8 54.4 30.5/74.2 60.1/51 35.6 99.3/32.4 27 7.25 0.49/31 2.75/48 5.08

0 
deg 

H/λ=0.025 
λ/L=1.25 

0.15       NA - - - NA NA 

0 
deg 

H/λ=0.025 
λ/L=1.25 

0.25       NA - - - NA NA 

0 
deg 

H/λ=0.025 
λ/L=1.25 

0.35       11.6 - - - 1.76 59 

0 
deg 

H/λ=0.05 
λ/L=1.25 

0.35       22.3 - - - 15.5 64.5
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Figure 7-1: Grids and solution domain of captive test simulations 
 
 
 

 

 

 
Figure 7-2: Grid uncertainty for 10 deg static heel  
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                            (a)                                                         (b)                                                          (c)  

Figure 7-3: Resistance test results: (a) resistance; (b) sinkage; (c) trim versus Fr 
number 

 
 
 

 
                         (a)                                                         (b)                                                          (c)  

 
                                                                 (d)                                                       (e)  

Figure 7-4: Free surface elevation for resistance test: (a) Fr=0.2; (b) Fr=0.3; (c) 
Fr=0.4; (d) Fr=0.5; (e) Fr=0.6 
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(a)                                                                                  (b) 

 
(c)                                                                                 (d) 

Figure 7-5: Free surface elevation for resistance test at: (a) y/L=0.0; (b) y/L=0.1; (c) 
y/L=0.2; (d) y/L=0.3 

 

 

 

 

Figure 7-6: Vortex structures for resistance test at Fr=0.6 
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                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-7: Non-dimensionalized results for static heel at φ=10: (a) sinkage; (b) 
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment  

 
 

 
                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-8: Dimensional results for static heel at φ=10: (a) sinkage; (b) trim; (c) 
axial force; (d) side force; (e) roll moment; (f) yaw moment  
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                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-9: Non-dimensionalized results for static heel at φ=20: (a) sinkage; (b) 
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment  

 
 
  

 
                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-10: Dimensional results for static heel at φ=20: (a) sinkage; (b) trim; (c) 
axial force; (d) side force; (e) roll moment; (f) yaw moment  
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                              (a)                                                   (b)                                                     (c) 

 
                              (d)                                                   (e)                                                     (f) 

 
                              (g)                                                   (h)                                                     (i) 

Figure 7-11: CFD and EFD data and their reconstructions using regression method: 
(a) Fr=0.6; (b) Fr=0.55; (c) Fr=0.5; (d) Fr=0.45; (e) Fr=0.4; (f) Fr=0.35; (g) Fr=0.3; 

(h) Fr=0.25; (i) Fr=0.2  
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                           (a)                                                    (b)                                                    (c)  

 
                                                          (d)                                                  (e)  
Figure 7-12: Free surface elevation for 10 deg static heel simulation: (a) Fr=0.2; (b) 

Fr=0.3; (c) Fr=0.4; (d) Fr=0.5; (e) Fr=0.6 
 
 
 

 
                           (a)                                                    (b)                                                    (c)  

 
                                                          (d)                                                  (e)  
Figure 7-13: Free surface elevation for 20 deg static heel simulation: (a) Fr=0.2; (b) 

Fr=0.3; (c) Fr=0.4; (d) Fr=0.5; (e) Fr=0.6 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 7-14: Free surface elevation for static heel test at y/L=0.0: (a) Fr=0.2; (b) 
Fr=0.3; (c) Fr=0.4; (d) Fr=0.5; (e) Fr=0.6 
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Figure 7-15: Free surface elevation at the bow for static heel test at Fr=0.6 and φ=20 
deg  

 

 

 

 

Figure 7-16: Free surface elevation at the aft for static heel test at Fr=0.6 and φ=20 
deg  



143 
 

 

 

Figure 7-17: Contours of x-vorticity at several sections for static heel test at Fr=0.6 
and φ=20 deg  
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                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-18: Non-dimensionalized results for static drift at β=5: (a) sinkage; (b) 
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment 

 
 
 

 
                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-19: Dimensional results for static drift at β=5: (a) sinkage; (b) trim; (c) 
axial force; (d) side force; (e) roll moment; (f) yaw moment 
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                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-20: Non-dimensionalized results for static drift at β=10: (a) sinkage; (b) 
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment 

 
 

 
                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-21: Dimensional results for static drift at β=10: (a) sinkage; (b) trim; (c) 
axial force; (d) side force; (e) roll moment; (f) yaw moment 
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                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-22: Non-dimensionalized results for static drift at β=15: (a) sinkage; (b) 
trim; (c) axial force; (d) side force; (e) roll moment; (f) yaw moment 

 
 

 
                              (a)                                                 (b)                                                   (c) 

 
                              (d)                                                 (e)                                                   (f) 

Figure 7-23: Dimensional results for static drift at β=15: (a) sinkage; (b) trim; (c) 
axial force; (d) side force; (e) roll moment; (f) yaw moment 



147 
 

 

 

  (a)                                               (b) 

  

  (c)                                               (d) 

 
(e) 

Figure 7-24: CFD and EFD and their reconstructions using regression method: (a) 
forces and moments vs. side velocity for Fr=0.4; (b) forces and moments vs. side 

velocity for Fr=0.3; (c) forces and moments vs. side velocity for Fr=0.2; (d) forces 
and moments vs. side velocity for Fr=0.1; (e) K-Y plot for all Fr 
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(a) 

 

 

(b) 

 

(c) 

Figure 7-25: Comparing free surface elevation for static drift angle cases: (a) 
Fr=0.2; (b) Fr=0.3; (c) Fr=0.4 

 

β=5 deg  β=10 deg  β=15 deg 

β=5 deg  β=10 deg  β=15 deg 

β=5 deg  β=10 deg  β=15 deg 
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Figure 7-26: Free surface elevation at leeward side for static drift angle cases at 
Fr=0.4 

 
 
 

 

Figure 7-27: Free surface elevation at windward side for static drift angle cases at 
Fr=0.4 

 
 
 

 

Figure 7-28: Pressure counters on the hull for static drift angle cases at Fr=0.4 

 

β=5 deg  β=10 deg  β=15 deg 

β=5 deg  β=10 deg  β=15 deg 

β=5 deg  β=10 deg  β=15 deg 
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(a) 

  
(b) 

Figure 7-29: Vortices  around the hull for static drift angle cases at Fr=0.4: (a) Iso-
surface of q=30 contoured by velocity and free surface contoured by z ; (b) X-

vorticity contours at several sections and free surface contoured by z 
 

β=5 deg  β=10 deg  β=15 deg 

β=5 deg  β=10 deg  β=15 deg 
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  (a)                                                                  (b)    

 
  (c)                                                                  (d)    

 
  (e)                                                                  (f)    

Figure 7-30: CFD and EFD comparison for 10 deg static heel at Fr=0.3 in following 
waves with H/λ=0.03 and λ/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force; 

(e) roll moment; (f) yaw moment  
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  (a)                                                                  (b)    

 
  (c)                                                                  (d)    

 
  (e)                                                                  (f)    

Figure 7-31: CFD and EFD results vs. ship position for 10 deg static heel at Fr=0.3 
in following waves with H/λ=0.03 and λ/L=1: (a) heave; (b) pitch; (c) axial force; (d) 

side force; (e) roll moment; (f) yaw moment  
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  (a)                                                                  (b)    

  
  (c)                                                                  (d)    

  
  (e)                                                                  (f)    

Figure 7-32: CFD and EFD comparison for 20 deg static heel at Fr=0.3 in following 
waves with H/λ=0.03 and λ/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force; 

(e) roll moment; (f) yaw moment  
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  (a)                                                                  (b)    

  
  (c)                                                                  (d)    

  
  (e)                                                                  (f)    

Figure 7-33: CFD and EFD results vs. ship position for 20 deg static heel at Fr=0.3 
in following waves with H/λ=0.03 and λ/L=1: (a) heave; (b) pitch; (c) axial force; (d) 

side force; (e) roll moment; (f) yaw moment  
 



155 
 

 

 
                                                                            (a) 

 
                                                                            (b) 

 
                                                                            (c) 

Figure 7-34: CFD and EFD comparison of wave induced heave, pitch, and axial 
force for zero deg static heel in following waves with H/λ=0.025 and λ/L=1.25: (a) 

Fr=0.15; (b) Fr=0.25; (c) Fr=0.35 
 

 
Figure 7-35: CFD and EFD comparison of wave induced heave, pitch, and axial 
force for zero deg static heel at Fr=0.35 in following waves with H/λ=0.025 and 

λ/L=1.25 
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                                                                            (a) 

 
                                                                            (b) 

 
                                                                            (c) 

Figure 7-36: CFD and EFD of wave induced heave, pitch, and axial force vs. ξG/λ 
for zero deg static heel in following waves with H/λ=0.025 and λ/L=1.25: (a) 

Fr=0.15; (b) Fr=0.25; (c) Fr=0.35 
 

 

 
Figure 7-37: CFD and EFD of wave induced heave, pitch, and axial force vs. ξG/λ 

for zero deg static heel at Fr=0.35 in following waves with H/λ=0.025 and λ/L=1.25 
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                                            (a)                                                                                (b) 

   
                                            (c)                                                                                (d) 

  
                                            (e)                                                                                (f) 

Figure 7-38: FFT results for 10 deg static heel at Fr=0.3 in following waves with 
H/λ=0.03 and λ/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force; (e) roll 

moment; (f) yaw moment  
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                                            (a)                                                                                (b) 

 
                                            (c)                                                                                (d) 

  
                                            (e)                                                                                (f) 

Figure 7-39: FFT results for 20 deg static heel at Fr=0.3 in following waves with 
H/λ=0.03 and λ/L=1: (a) heave; (b) pitch; (c) axial force; (d) side force; (e) roll 

moment; (f) yaw moment 
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  (a) 

 
  (b) 

  
  (c) 

Figure 7-40: FFT of wave induced heave, pitch, and axial force (XW=Xtotal-R) for 
zero deg static heel in following waves with H/λ=0.025 and λ/L=1.25: (a) Fr=0.15; 

(b) Fr=0.25; (c) Fr=0.35 

 
 
 
 

  
Figure 7-41: FFT of wave induced heave, pitch, and axial force for zero deg static 

heel at Fr=0.35 in following waves with H/λ=0.025 and λ/L=1.25 
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Figure 7-42: Comparison of EFD, CFD, and Potential Theory (Froude Krylov cal.) 
of wave-induced X force  
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CHAPTER 8. VALIDATION OF FREE MODEL SIMULATIONS 

CFD free model simulations are performed with the same operational and 

environmental conditions used in the free model tests program 1 and 2 described in 

Chapter 6. The simulations are performed for series of control parameters (heading and 

Fr) to study and analyze the process of surf-riding, broaching, and periodic motion. The 

CFD results are compared with the results of NDA model which is based on the 

mathematical model described in Chapter 2. The inputs for the mathematical model are 

estimated from potential flow, EFD, and CFD, as shown in Chapter 7. Herein, the details 

of CFD simulation including computational domain and boundary conditions, grid, 

simulation design, 2DOF self-propulsion simulation in calm water, and free model 

simulation in following/quartering waves are presented and lastly the CFD and NDA 

results are compared with EFD. 

8.1 Computational Domain, Boundary Conditions 

The computational domains extend from 8.16.0 <<− x , 6.06.0 <<− y , 8.08.0 <<− z , in 

dimensionless coordinates based on ship length, as shown in Fig. 8-1. The ship axis is 

aligned with the x-axis with the bow at x = 0 and the stern at x = 1. The free surface at 

rest lies at z = 0. The ship model is appended with skeg, bilge keels, and super structure. 

Twin rudders are included to steer the ship. The original rudders on OT model have a 

small trunk attached to the hull and a large spade. In this study the rudders are 

approximated as full spade rudders with no trunk, leaving a small gap between the hull 

and the rudder spade. This is done to simplify grid generation and overset design for the 

moving rudders. 

Boundary conditions are shown in Table 8-1. Inlet, exit, and sides boundary conditions 

are imposed such that they follow linear wave theory equations: 
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Here, Uo is zero since all free model simulations are performed in earth coordinate 

system. 

8.2 Grid 

Computational grids are designed using overset technique in which independent grids 

are created for each appendage and then they are assembled to generate the total grid.  

The grid for each appendage essentially has to have enough overlap with other grids to 

communicate correctly with other blocks. Two double-O boundary-layer grids are 

generated with a hyperbolic grid generator of GRIDGEN to model the starboard and port 

sides of the hull such that starboard and portside grids are patched together at symmetric 

plate. Grid spacing at the hull is designed to yield y+ <1 for wide range of Fr numbers. 

The superstructure grid oversets the boundary layer grids and is constructed with an H-

type topology using hyperbolic grid generator. The superstructure grid allows 

computations with extreme motions such as capsizing. The skeg and bilge keels use H 

topology and overset the boundary layer grids. Double-O grids are used for each rudder 

such that inner side and outer side are patched at symmetric plate. Grid topology was 

selected so that a Cartesian grid (background block) is responsible to capture the flow far 

from the hull. Since there is a wave on the free surface, the background block was 

designed to have enough grid points near free surface.  Table 8-2 summarize the grids 

and Figure 8-1 shows grid for the ship. 
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8.3 Simulation design 

Free model simulations are carried out in earth-fixed inertial coordinate system in 

which velocity is not given to the flow but it is imposed on the ship. First, the model is 

simulated in calm water with self-propulsion condition using a speed controller to predict 

the propeller RPS to reach the target Fr number. The predicted RPS is then prescribed for 

the free model simulations at the same nominal Fr number to mimic EFD test design. 

In free model simulations, propellers and rudders move and rotate with ship motions 

such as other appendages. However, they are capable of having relative motion respect to 

the hull. Propeller rotates around its shaft axis and is responsible to make enough thrust. 

Rudder rotates around z-axis making turning moment. This capability in the CFDShip-

Iowa code is achieved by the concept of parent and child object in which propellers and 

rudders are considered as child object while the hull with other appendages are parent 

object, as discussed in Chapter 3. 

8.3.1 Propellers 

Propellers are modeled using actual rotating propeller or using a radial varying body 

force filed, which follows the variation of a theoretically derived circulation distribution. 

This body force field is prescribed by means of the ship speed based advance coefficient 

(J=U/nDp) and open water curves i.e. thrust coefficient KT(J) and torque coefficient KQ(J) 

curves. The open-water curves are expressed as second-order polynomials, and the 

location and thickness of the actuator disk is prescribed with a vector going from point p1 

to p2, with radius rp and hub radius rh. Details of the propellers used are provided in 

Table 8-3. 

The propeller rotation speed (RPS) for each free model simulations can be prescribed 

or predicted. In this study, the propeller RPS is predicted in calm water for each Fr 
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number and then it is prescribed in free model simulations for the same Fr number to 

produce enough thrust. This is the same as EFD procedure for free model tests.  

8.3.2 Rudders 

Rudders are modeled as child object in which they can have relative motions respect 

to the ship. Rudder deflection can be controlled trough a PID controller as explained in 

Chapter 3.  A PID controller with P=1 and I=D=0, the same as EFD, is used for rudders 

to change rudder deflection and turn the ship toward the target direction. This kind of 

controller would turn rudders exactly the same as course deviation since P=1 and other 

terms are zero.  For each free running case, maximum rudder deflection and deflection 

rate are also specified as given by EFD to have the same behaviour for CFD and EFD 

rudder controller. 

8.4 Self-Propulsion Simulations in Calm Water 

As explained earlier, 2DOF self-propulsion simulations free to sink and trim in calm 

water are performed to indicate propeller RPS needed to push the ship to surge at target 

Fr number. This simulation is carried out for Fr=0.25, 0.3, 0.35, 0.4, and 0.45. 

Figure 8-2 demonstrates CFD propeller RPS, thrust force, and ship motions calculated 

for all target Fr. As it is shown, the propeller RPS is changed by controller to reach the 

ship speed to the target Fr. After this point, the propeller RPS, thrust force, and ship 

motions are fairly constant. As shown in Fig.8-3, propeller RPS and sinkage increase 

linearly from low to high Fr whereas the thrust force and trim increase nonlinearly. The 

CFD and EFD comparison of propeller RPS demonstrates that CFD over predicts 

propeller RPS by E=5.8%D due to the fact that propeller model has some significant 

limitations. The most important issue is that the thrust and torque do not depend on the 

local flow field near the propellers, but on the total velocity of the ship. In addition, the 

body force is axisymmetric and side forces are neglected. In order to evaluate accuracy of 
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body force propeller model, CFD simulation is also carried out for actual dynamic 

propeller, as shown in Fig. 8-3, and indicated that RPS error drops to 1.7%D using actual 

propeller. This suggests the simplicity and efficiency of body force propeller model 

would cost about 4%D more error which is reasonable. 

8.5 CFD Free Model Test Program 1 

CFD studies are performed for λ/L=1.25, H/λ=0.05, GM=2.068 m and ψc = 5, 15, 30 

deg, and GM=1.78 m and ψc = 15 deg. The simulation is carried out at Fr=0.4. The initial 

wave phase and surge velocity are not provided by experimental data and are estimated 

from EFD pitch history or/and trial and error method. Initial roll, pitch, yaw angle and 

rudder deflection are estimated from their experimental time histories. The propeller RPS 

is fixed during the simulation and a proportional heading controller with gain P=1 is used 

based on the deviation from the target heading. The propeller RPS at each nominal speed 

is obtained by running the self propulsion model in calm water, as explained earlier.  

8.5.1 Fr=0.4 & GM=1.78 m 

8.5.1.1 ψc = 15 deg 

Figure 8-4 shows time histories of motions, forces, and moments on the hull, rudder, 

and propeller for the case of broaching where GM=1.78 m and ψc = 15 deg. Initial wave 

phase=264 deg and surge velocity=0.15, estimated from trial and error method, are used 

as shown in Table 8-4. The roll and pitch angles show that the model moves slightly 

slower than experiment, probably due to inaccurate initial conditions and/or variable EFD 

propeller RPS. The yaw shows that the initial heading is around 30 deg and controlled by 

rudder to reach desired course (ψc = 15). However, after about 5 seconds the ship starts 

turning broadside to the waves eventually broaching, with the rudder turned hard to port 

but unable to steer the ship. Figures 8-4b and 8-4c show active forces and moments. 
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Active forces and moments are those that voluntary or involuntarily modify the heading 

of the ship (hydrostatic forces/moments caused by the waves, and forces/moments caused 

by rudder action and by the propeller). Reactive moments are those that oppose the yaw 

motion, including dynamic pressure and friction moments. The yaw moments indicate 

that hydrostatic/wave yaw moment is about Nh=-100 N.m after t=5 sec while rudder 

reaction moment is about NR=20 N.m which is not enough to resist to wave yaw moment. 

The ship stays in this condition for a while which causes reaching to 60 deg heading off 

from target and broaching. The propeller yaw moment is ten times smaller than rudder 

moment and it is negligible. In fact, propeller yaw moment and roll moment should be 

zero unless one of two propellers is temporally emerged out of water due to large roll 

angle as shown in Fig. 8-4c.  

8.5.2 Fr=0.4 & GM=2.068 m 

8.5.2.1 ψc = 5 deg 

Figure 8-5 shows the case of stable surf-riding with GM=2.068 m and ψc = 5 deg. 

Initial wave phase=230 and surge velocity=0.2 are used based on trial and error method 

shown in Table 8-5. After an initial transition in which one wave overcomes the ship, the 

model reaches to enough forward speed to travel locked in waves. During the transition 

part, the rudder turns the model to the desired course very rapidly so that the ship travels 

with tight heading and is quickly captured by the wave down slope causing negative pitch 

angle at t=3 sec. After that, ship velocity reaches to wave velocity and ship is in surf-

riding condition. Since relative ship position respect to waves is fixed during surf-riding, 

the motions, forces, and moments reach to the steady-state condition in which active and 

reactive forces/moments are balanced. 
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8.5.2.2 ψc = 15 deg 

Figure 8-6 illustrates the broaching case where GM=2.068, ψc = 15 deg, and Fr=0.4. 

Initial conditions for wave phase and ship speed are 50 deg and 0.4, based on CFD 

simulations shown in Table 8-6. In overall, CFD model moves slower than experiment 

because EFD propeller RPS is 10% higher than CFD. This is due to the fact that EFD 

controller for propeller is not accurate enough to keep the propeller RPS constant. Pitch 

motion indicates the ship is captured by wave down slope ending up with surf-riding 

starting after t=2 sec and continuing for about 6 seconds. The surf-riding region can be 

seen from wave axial force and wave pitch moment time histories too. During surf-riding, 

the negative yaw angular velocity not only results in turning broadside to the wave but 

also induces a centrifugal force together with large forward velocity. This centrifugal 

force causes the roll angle of +50 deg. Also, the yaw moment originated by the wave 

becomes strong enough after t= 5 sec than any other active moment trying to counteract 

it, essentially the rudder moment, and results in broaching at t=9 sec.  

8.5.2.3 ψc = 30 deg 

Figure 8-7 shows the case of periodic motion with GM=2.068 m and ψc = 30 deg. 

Initial wave phase=20 deg and surge velocity=0.33 are applied, based on Table 8-7. The 

yaw angle shows that the model is released at 40 deg heading. At t=2 sec, wave induced 

yaw moment (Nh=-120 N.m) is stronger than rudder reaction moment (NR= 20 N.m) so 

that the vessel turns hard causing 70 deg heading at t= 4 sec. At this time, ship is almost 

in beam waves inducing positive yaw moment and pushing the ship to turn toward the 

target heading. The ship reaches to target at t=8 sec where huge wave induced yaw 

moment turns the ship away from target heading and forms a periodic motion. 
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8.6 CFD Free Model Test Program 2 

CFD studies are performed for λ/L=1.25, H/λ=0.05, Fr=0.3,0.35, 0.4, 0.45, GM=2.068 

m and ψc = 5, 15, 22.5, 30 deg. The initial wave phase and surge velocity are not 

provided by experimental data and estimated from EFD pitch history or/and trial and 

error method. 

8.6.1 Fr=0.4 

8.6.1.1 ψc = 5 deg 

Figure 8-8 shows the surf-riding case where ψc = 5. The pitch motion shows that the 

model is released at +4 deg and overtaken by waves very fast such that pitch reduces to -

2 deg at t=1 sec. At this point, the bow is down and ship is locked in wave downslope so 

that pitch angle never returns to positive value and surf-riding happens. The roll motion 

indicates that the ship is almost at stable upright position during surf-riding. The rudder 

and yaw motion show that rudders turns to 20 deg right after releasing the model to turn 

the ship from 30 deg heading to the target heading (ψc = 5). However, it seems that the 

model stays at 10 deg heading and cannot reach to the target. This might be due to the 

type of PID controller (P=1, I=D=0) used for rudders. In fact, the controller would not 

react fast for small heading deviation so that rudders turn very slowly after t=8 sec. CFD 

is performed for several initial wave phase and ship speed, as shown in Table 8-8, and 

obtained initial wave phase and ship speed about 50 deg and 0.2, respectively. In overall, 

CFD predicts the trend of motions. However, CFD results show that CFD model moves 

slower than EFD and that is due to the difference between CFD and EFD propeller RPS 

as shown in Fig. 8-8a. CFD trajectory shows the surf-riding occurrence clearly. Figures 

8-8b and 8-8c illustrate forces and moments due to waves, rudders, and propellers. 

Propeller forces and moments are very small compare with other forces and moments. 

Propeller thrust (XP) shows that it is maximum at releasing condition (Fr=0.2) and 
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reduces by factor of ¼ after couple of seconds. This introduces that ship speed is 

increased by factor of about 2 during the simulation such that Fr reaches to 0.4 which is 

close to wave velocity. In other words, it is confirmed that the model is locked in waves 

and moves with it which results in surf-riding.  Since the model is appended with twin 

counter rotating propellers, the total propellers roll and yaw moment are zero unless part 

of one propeller emerges out of water.  Figure 8-8 indicates that propellers are partially 

out of water at the first couple of seconds due to large roll angle. The CFD prediction of 

forces and moments on hull and rudders could explain the process of surf-riding. Yaw 

moment indicates the NH is very large up to t= 3 sec so that rudders cannot counteract it. 

After t=3 sec, the wave moment drops significantly since the ship speed is close to wave 

speed and the model is locked in waves. Consequently, rudders can work against waves 

moment such that NR=+20 N.m and NH=-20 N.m and turn the model toward the target 

while the model is seized in waves. 

8.6.1.2 ψc = 15 deg 

Figure 8-9 shows the surf-riding case where ψc = 15. Pitch motion shows that the ship 

is released while bow was down. However, the waves overtake the model and induce 

positive pitch at t=3 sec and negative pitch at t=4 sec. Then the model stays with negative 

pitch showing that it is locked in wave i.e. the model surf-rides. The yaw angle show 

clearly the surf-riding occurrence after t=7 sec. The turning speed of the model (rate of 

yaw angle) is very large between t=4 (right after overtaking by wave) and t=7 sec (before 

surf-riding). This produces very large centrifugal force causing fairly large roll angle 

during this time as shown in roll motion in Fig. 8-9a.The yaw motion is also indicates 

that initial heading is 10 deg whereas it reaches to 25 deg during surf-riding. Note that the 

target heading is 15 deg and the model passes the target heading around t= 5 sec. CFD is 

performed for the different initial conditions, as shown in Table 8-9, and 235 deg and 0.1 

are used as the initial wave phase and ship speed, respectively. In overall, CFD predicts 
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the same phenomenon even though it shows small phase lag compare with EFD trend of 

motions. The yaw motion shows that the CFD model is at 25 deg heading during surf-

riding similar to EFD but it oscillates more. The CFD drift angel indicates that during the 

time that ship turning speed is large, the model moves with 20 deg roll and about 3 deg 

drift angle. The prediction of propeller thrust shows that the model reaches to minimum 

speed/maximum thrust when the ship is going to be overtaken by waves and reaches to 

maximum speed/minimum thrust during surf-riding. Yaw moment indicates that rudders 

and waves moment are negative up to t=3 sec i.e. the model is even pushed by waves to 

move toward the target. After t=3 sec, the wave moment is still negative and much bigger 

than rudder counteracting moment such that the model reaches to 25 deg heading at t=6 

sec. Later, the rudder yaw moment reaches roughly to wave moment amount such that 

ship stays relatively at 25 deg heading.  

8.6.1.3 ψc = 22.5 deg 

Figure 8-10 shows the case of broaching. The model is released at zero roll and pitch 

angle and 5 deg heading. The pitch angle indicates that the model is on the wave 

downslope for about 6 seconds in which pitch angle is negative. Basically, surf-riding is 

observed during this period. Then the model is surpassed by several waves causing 

oscillatory pitch motion. Yaw angle indicates that the model is released at 5 deg heading 

and reaches to 60 deg heading during surf-riding. After that, the rudders reach to their 

maximum deflection (35 deg) and are not able to control the model. The model continues 

turning up to 80 deg heading and broaches. The roll angle shows that the rate of yaw 

angle (turning rate) during surf-riding produces strong centrifugal force such that the 

model rolls up to 60 deg. However, the model is not involved in capsize process due to 

large roll restoring moment produced by its superstructure. Since initial conditions of 

wave phase and ship speed are unknown, they are estimated 200 deg and 0.55, based on 

Table 8-10. The CFD simulation predicts broaching and all other modes of motions. The 
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CFD model trajectory demonstrates broaching occurrence after surf-riding. It is observed 

that the model has about 15 deg drift angle during broaching. The propeller, rudder, and 

hull forces and moments provide more details of broaching process. The propellers thrust 

explain that the thrust is positive and the propellers produce resistant instead of thrust. 

According to Table 8-3, KT would be negative for very large J or speed (J=U/nD). 

Herein, initial ship speed (Fr=0.55) is large such that KT is negative and propellers 

produce resistant instead of thrust. After t=2 sec, the model speed reduces to wave speed 

and ship is locked in waves and surf-rides. During surf-riding, the wave yaw moment 

increases to NH=-100 N.m and rudder moments reach to their maximum NR=+40 N.m 

such that the rudders cannot counteract wave yaw moment and the model broaches.  

8.6.1.4 ψc = 30 deg 

Figure 8-11 shows the case of periodic motion. The model is released at +2 deg pitch 

and zero deg roll angle. The initial heading is 10 deg. The pitch motion shows that the 

model is overtaken by waves such that the bow moves up and down. The yaw angle 

shows that the model reaches to 60 heading at t=5 sec. However, the model is located on 

wave upslope at t=5 sec such that wave yaw moment would be positive and return the 

model to the target. More than that, rudders take the control of the model with 35 deg 

deflection. Then, the model moves toward the target such that the heading reduces to 45 

deg (target heading is 30 deg) at t=7 sec. At this point, the bow is down and the model is 

located on the wave downslope such that wave yaw moment would be negative and turn 

the model to 60 deg heading at t=9 sec, similar to heading at t=5 sec.  This introduces 

periodic motion with period of 4 sec which is basically encounter period at 60 deg 

heading respect to waves. During periodic motion, the large yaw rate produces large roll 

angle. The CFD simulation is performed for 144 deg initial wave phase and 0.2 ship 

speed, as shown in Table 8-11. CFD shows very good agreement with EFD in terms of 

the amplitude of motions and phase. CFD results indicate that the model reaches to about 
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10 deg drift angle after t=5 sec where periodic motion is started. The CFD forces and 

moments show periodic behaviour. The periodic change of ship speed causes periodic 

propeller thrust force. Kp and Np clearly show that one propeller comes out of water 

during periodic motion. The wave yaw moment indicates that it is positive (NH=80 N.m) 

at t=5 sec since it hits the model from portside as shown in YP and the model is turned 

toward the target. However, the yaw moment reaches to negative value NH=-150 N.m at 

t=7 sec where the model is on the wave downslope and hit from starboard. This produces 

periodic motion. 

8.6.2 Fr=0.45 

8.6.2.1 ψc = 5 deg 

Figure 8-12 shows the case of surf-riding. The yaw motion indicates that the model is 

released at 50 deg heading. The rudders turn hard to guide the model to the target heading 

which results in large yaw rate and consequently large roll angle due to centrifugal force. 

At t=6 sec, the rudders deflections are almost zero and the model is located at the target. 

However, surf-riding starts at t=9 sec after the model is overtaken by waves and locked in 

wave downslope. The EFD propeller RPS had to be fixed but it is well controlled by 

propeller controller. The reduction in RPS at t=9 sec explains that the ship speed is 

increased right before surf-riding and then decrease to wave speed during surf-riding. The 

CFD simulation is performed but with arbitrary initial conditions for roll, pitch, heading, 

rudder deflection, wave phase, and ship speed.  The pitch motion shows that the CFD 

model is released at negative pitch angle and it keeps cruising at that situation. In other 

words, the model is locked in wave downslope right after it is released. Yaw motion and 

trajectory show that CFD model starts surf-riding at target heading from the beginning. 

The CFD yaw moment explains that the wave and rudders yaw moment are balanced 
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right after the releasing time such that rudders can take the control of the model and keep 

it in the target heading.   

8.6.2.2 ψc = 15 deg 

Figure 8-13 provides the results for surf-riding case where ψc = 15 deg. The pitch 

motion indicates that the model is at +4 deg pitch at t=0 sec and the pitch reduces to -2 

deg at t=2 sec meaning that the model is overtaken by one wave. The pitch increases to 

about zero at t=6 sec and then drops to -2 deg at t=8 sec introducing the second wave 

overtakes the model too. Later, the model is seized in next wave downslope such that the 

bow is down for the rest of the test and surf-riding happens. The yaw and rudder motions 

illustrate the trend of surf-riding. The heading increases from 10 deg (initial heading) to 

22 deg at t=8 sec exceeding the target heading.  During this period, the rudders turn to 10 

deg to guide the model toward the target. The model stays at 22 deg after t=8 sec and 

surf-riding starts. The CFD simulation is performed with different initial condition 

compare with EFD, as shown in Fig. 8-13. The initial pitch of CFD model is negative and 

the model stays at this situation for the rest of simulation. Yaw motion shows that CFD 

model turns to 25 deg heading with the same trend as EFD but with a phase lag due to 

initial condition issues. The trajectory shows surf-riding occurrence after the model 

travels 15 m which is about 5 times of ship length. The predicted propeller thrust shows 

that the thrust is minimum (ship speed is maximum) around t= 5 sec right before the 

model is involved in surf-riding process. The increased ship speed causes that the relative 

ship speed respect wave speed decreases and consequently wave yaw moment decreases 

after t=5 sec as shown in NH. Consequently, rudders can counteract the wave yaw 

moment and take control of the model and put it at 25 deg heading. 
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8.6.2.3 ψc = 22.5 deg 

Figure 8-14 shows the case of broaching in which ψc = 22.5 deg. The time history of 

pitch provides the details of ship position respect to waves. The ship is on wave crest at 

initial point and then located on wave trough around t=2 sec. Afterward, the ship is seized 

in wave downslope for about 4 sec. During this time, the model is involved in surf-riding 

situation and heading increases to 60 deg. At this point, rudders are at their maximum 

deflection such that the model continues turning to 80 deg heading without rudder 

counteracting moment and consequently the model broaches. EFD propeller RPS varies 

during the test which is due to the weakness of the propeller controller. CFD simulation is 

performed with different initial condition. In overall, CFD simulation shows similar trend 

for heading with a phase lag due to initial conditions. The CFD model starts surf-riding 

right after releasing and it lasts until the model is overtaken by waves at t=4 sec. The 

heading increases very fast to 70 deg during surf-riding and rudders reach to the 

deflection limit. On the other hand, the centrifugal force is very large due to large yaw 

rate and produces 50 deg roll angle. Consequently, the CFD model broaches at large roll 

angle. Kp and NP show that one of the propellers emerges out of water during simulation. 

The CFD trajectory indicates broaching at x=13 m where the ship moves toward west. 

The model turns back to the target after broaching but another broaching could happen as 

shown in trajectory. 

8.6.2.4 ψc = 30 deg 

Figure 8-15 shows the case of broaching for ψc = 30 deg. The yaw motion shows that 

the model is released at zero heading and it turns to 80 deg heading after 6 sec. In fact, 

the heading exceeds the target since the yaw rate is very large. At t=6 sec, the rudders are 

at their maximum deflection and the model loses its control and broaches. After 

broaching, the model is roughly in beam waves such that wave yaw moment drops 



175 
 

 

significantly and rudders can counteract it and turn the model toward the target. The CFD 

simulation, performed for different initial condition, predicts broaching at t=13 sec. As 

shown in Fig. 8-15, the CFD model is released at 22 deg heading and oscillates around 

the target until the heading reaches to 80 deg at t =13 sec where rudders are at maximum 

angle and broaching happens. The pitch shows that CFD model is overtaken by second 

wave at t= 7 sec and then the model is involved in surf-riding for a while right before the 

broaching happens.  The propeller moments show that one of the propellers emerges out 

of water during simulation. The rudder and wave yaw moment are positive during 

broaching which provide enough yaw moment to return the model to the target heading. 

The propeller thrust shows that the speed increases right before maximum headings at t=3 

and 11 sec. At t=3 sec, rudders control the heading and prevent broaching. At t=11 sec, 

the rudders are at their maximum deflection and could not prevent broaching.  The 

trajectory shows clearly the first and second maximum heading condition. The first one 

happens nearly at x=10 m and second occurs at x=25 m. The curvature of the trajectory 

shows the turning rate which is very large before broaching such that the model cannot 

stop turning and broaching happens.  

8.6.3 Fr=0.35 

8.6.3.1 ψc = 5 deg 

Figure 8-16 shows the case of surf-riding where ψc = 5 deg. The model is released at 

relatively large roll, pitch, and heading. The model is overtaken by two waves in 7 

seconds as shown in pitch motion. Afterward, the model is locked in wave downslope 

and surf-riding happens. The yaw motion indicates that the model turns fairly fast toward 

the heading before surf-riding and then the model stays at 5 deg heading (target heading) 

at t>7 sec. The rate of yaw angle induces large centrifugal force for t< 7 sec which causes 

30 deg roll angle. The CFD simulation is carried out with different initial condition. The 
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CFD model is released at -2 deg pitch angle and stays roughly at this angle for the whole 

simulation. This introduces surf-riding occurrence right after releasing the model.  The 

model rolls 5 deg during surf-riding and stays at 12 deg heading. The CFD trajectory 

approves that the model is involved in surf-riding since it is released. The propeller thrust 

shows that the ship speed increases (i.e. thrust reduces) during surf-riding. The wave and 

rudder yaw moment are at the same order during the surf-riding such that rudders can 

counteract wave yaw moment and take the control of the ship.    

8.6.3.2 ψc = 15 deg 

Figure 8-17 shows the case of broaching where ψc = 15 deg. The model is released on 

the wave crest so that the pitch angle is positive. Then, the model is overtaken by waves 

and pitch drops to -2 deg where the model is on the wave downslope. Later, the model is 

involved in surf-riding situation for about 5 sec. The heading shows that the model is at 

10 deg heading at the beginning of the test. Then the model moves toward the target and 

oscillates around the target for 4 sec and lastly the model starts moving away from the 

target at t=7 sec. The turning rate is very large for t>7 sec such that the model reaches to 

60 deg heading in less than 5 sec. For t>11 sec, the rudders are at their maximum 

deflection and cannot stop the ship turning such that the model reaches to 70 deg heading 

and broaching happens. During the broaching, the ship rolls 50 deg due to the created 

centrifugal force. The CFD simulation is performed for different initial condition. The 

model is released at bow down position and locked in wave downslope for 4 sec and surf-

rides. During surf-riding, the heading exceeds the target heading and increases to 50 deg 

at t=5 sec where the rudders at their maximum deflection and broaching happens. The 

CFD simulation shows that the model is at large drift angle during broaching process. 

The trajectory shows that the model broaches nearly at x=12 m. The wave and rudder 

yaw moment provide the details of the broaching process. NH is negative and it increases 

for t<4 sec. Consequently, heading increases even though rudder defecation increases to 
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turn the model toward the target and broaching happens. Note that during broaching, 

thrust is very low i.e. the model speed is very large. 

8.6.3.3 ψc = 22.5 deg 

Figure 8-18 provides the CFD and EFD results for ψc = 22.5 deg. The model is 

overtaken by several waves as shown in pitch motion. At t=10 sec, the model is locked in 

waves and surf-rides for a while. During this period, the heading increases to 60 deg 

where the rudders are at their maximum deflection. The large turning rate produces 50 

deg roll angle.  The CFD simulation is carried out for different initial condition. The 

model is released at 20 deg heading and moves toward the target. At t=2 sec, the model 

exceeds the heading and reaches to 60 deg heading (t=4 sec) where rudders are nearly at 

their maximum deflection and ship broaches. The trajectory shows broaching at x=8 m. 

Note that CFD and EFD show periodic trend before broaching. This suggests that this 

case is close to the boundary of broaching and periodic motion.  In other words, 

increasing the target heading would change the broaching to period motion. The 

prediction of yaw moment show that wave yaw moment is about NH=-100 N.m before 

broaching such that rudders cannot counteract it. After t> 4sec, the wave yaw moment 

increases to NH=+80 N.m supporting rudders to turn the model toward the target. The 

propeller moment is 10 times smaller than rudder yaw moment and is negligible. In fact, 

propeller yaw moment should be zero due to symmetric behaviour of disk approach for 

twin counter-rotating propellers. However, one of two propellers can be emerged out of 

water temporally and making non-zero roll and yaw moments. For this case, a fraction of 

one of propellers comes out of water whenever roll angle is larger than 30 deg.    

8.6.3.4 ψc = 30 deg 

Figure 8-19 demonstrates the results for ψc = 30 deg. The pitch shows that the model 

is overtaken by waves and exhibits periodic trend. The heading shows that the model 
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reaches from 5 deg heading to the desired heading at t=4 sec. Afterward, the model 

oscillates a nit around the target and then turns to 50 deg heading. Lastly, the model 

oscillates around this heading and establishes periodic motion. The period of yaw is about 

the same as pitch and roll period i.e. encounter period. Also, the rudders show periodic 

trend due to periodic yaw motion. The CFD simulation shows similar condition. 

However, there is phase lag between CFD and EFD due to initial condition, as shown in 

pitch motion. The CFD simulation shows that the model has period drift suggesting that 

the bow oscillates when ship moves forward. The CFD yaw motion and trajectory show 

that the model oscillates at 40 deg heading and the period of oscillation is about the 

encounter period at that heading. The CFD forces and moments show periodic trend. The 

yaw moment shows that the wave yaw moment is NH=-100 N.m for t<3 sec and it is 

larger than any other counteracting moment resulting in 55 deg heading. Then, the wave 

yaw moment increases to NH=100 N.m and supports rudders at t=3 sec. Consequently, 

the model turns toward the desired heading. However, the yaw moment decreases again 

to NH=-100 N.m at t=4 sec such that the model moves away from the target. This 

procedure provides periodic motion.  

8.6.4 Fr=0.3 

8.6.4.1 ψc = 5 deg 

Figure 8-20 provides results for periodic motion case with ψc = 5 deg. The pitch 

motion shows that the model is at -2 deg pitch angle at the beginning of test. The model 

is overtaken by waves providing oscillatory pitch motion. The heading shows that the 

model is at 60 deg heading and then turns to the desired heading in 8 sec due to hard 

deflection of rudders. Afterward, the model oscillates around the target producing 

periodic motion. The period of oscillation is about 4 sec which is the wave encounter 

period at 5 deg heading. The roll angle shows that the model attains 60 deg roll during 
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turning to the target. The roll angle drops to less than 5 deg right after the model is at the 

target heading. The CFD simulation is performed for different initial condition. The 

model is released at very small heading and roll angle such that the model is located at 

the target heading in 2 sec and then oscillates around it producing periodic motion. The 

CFD simulation shows that the model has oscillatory drift angle. Also, The CFD 

indicates small oscillations on the trajectory due to periodic motion. More than that, all 

forces and moments show periodic trend. Since the model is overtaken by waves, the 

wave yaw moment oscillates between NH=+5 and NH=-10 N.m. If the heading is less than 

ψc, the wave and rudders yaw moment are negative (wave yaw moment supports rudders) 

and they attempt to increase heading to target value. If the heading is larger than ψc, the 

wave and rudders yaw moment are positive (wave yaw moment supports rudders) and 

they attempt to decrease heading. The contribution of rudders and wave causes the 

periodic motion trend.         

8.6.4.2 ψc = 15 deg 

Figure 8-21 shows the case of periodic motion for ψc = 15 deg. The model starts 

turning from 13 deg heading to the target right after releasing point. However, the 

heading exceeds the target such that 17 deg heading is observed at t=3 sec. Then the 

model turns back to the target and again passes the target and reaches to 10 deg heading 

at t=5 sec. This procedure repeats and exhibits periodic motion. The roll, pitch and 

rudders follow a periodic trend. The CFD simulation shows the same phenomenon for 

this case but with a phase lag due to dissimilarity of initial conditions.  The period of 

CFD and EFD motions are 4.5 sec and they are the same as encounter period. The 

collaboration of rudders and wave yaw moment introduce a situation in which yaw 

moment supports the rudders yaw moment such that there is a strong yaw moment to turn 

the model toward the target all the time. For instance, the wave and yaw moment are 

NH=20 and NR=10 N.m at t=5 sec turning the model toward the heading. However, the 
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yaw moment is too strong such that the model passes the target at t=6 sec. At this time, 

both wave and rudders yaw moment drop to negative values NH=-30 and NR=-10 N.m 

producing enough yaw moment to turn back the model toward the target. 

8.6.4.3 ψc = 22.5 deg 

Figure 8-22 shows the case of periodic motion for ψc = 22.5 deg. The model is 

released at 15 deg heading and starts turning to the target at t=1 sec. The model passes the 

target at t=3 sec and reaches to 24 deg heading at t=3.5 sec. The model returns back to 

the desired heading at t=4 sec but again passes the target such that heading is 18 deg at 

t=5 sec. This procedure repeats and causes periodic motion. The roll and pitch angle 

increase up to 20 and 4 deg, respectively. The CFD simulation, performed for different 

initial condition, predicts periodic motion but with a phase lag respect to EFD results. 

The CFD trajectory, drift angle, and forces/moments show periodic trend in which the 

period of oscillation is about 4.5 sec and is the same as encounter period. The propeller 

forces and moments show that part of one propeller emerges out of water temporary 

during periodic motion where roll angle is large. The propeller thrust XP shows 

oscillatory trend i.e. ship speed decreases and increases during periodic motion. In fact, 

the ship speed decreases/increases when the center of gravity is located on wave 

trough/crest. The wave and rudders yaw moment explain that their collaboration produces 

strong yaw moment such that the ship forces to move toward the target.  

8.6.4.4 ψc = 30 deg 

Figure 8-23 illustrates the results for periodic motion case where ψc = 30 deg. The 

model is released at 10 deg heading and moves toward the target quickly. At t=3 sec, the 

model passes the target and returns to target at t=5.5 sec. The model exceeds the target 

and reaches to 25 deg heading. At this point, the model turns back again to the target and 

produces periodic motion. The pitch and roll angle are about 25 deg and 4 deg during 
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periodic motion. The propeller RPS indicates that the propeller controller was unable to 

keep RPS constant such that RPS varies between 12.5 and 13.5 rps. The CFD simulation 

is performed for fixed RPS found in self-propulsion clam water at Fr=0.3. The CFD and 

EFD RPS difference is due to approximated propeller model used in CFD. The CFD 

trajectory and yaw motion show that CFD predicts periodic motion with a phase lag 

respect to EFD due to initial condition issues. The yaw moment shows that the 

collaboration of rudders and wave yaw moment produces periodic motion. In fact, wave 

yaw moment supports the rudders yaw moment all the time during the simulation such 

that there is a strong yaw moment to turn the model toward the target. For instance, the 

wave and yaw moment are NH=50 and NR=20 N.m at t=5 sec turning the model toward 

the heading. At t=6 sec, both wave and rudders yaw moment drop to negative values 

NH=-50 and NR=-10 N.m producing enough yaw moment to turn the model away from 

the target. 

8.6.5 Summary of CFD Free Model Test Program 2 

The summary of CFD simulations are shown in Fig. 8-24. It is indicated that CFD can 

predict the boundary between surf-riding, broaching, and periodic motion. The CFD 

simulations follow exactly EFD trend with increasing Fr and heading. Figure 8-24 shows 

that there is a boundary between periodic motion and surf-riding/broaching at Fr=0.3 for 

heading<30 deg. For Fr<0.3, which is blow the boundary, CFD and EFD show periodic 

motion whereas surf-riding/broaching is observed for above the boundary. Therefore that 

CFD predicts the same boundary even though initial conditions for many cases are 

different from EFD. However, the maximum achieved roll angle is strongly function of 

initial condition such that CFD shows different diagram for roll angle. In overall, CFD 

shows outstanding prediction of instability boundary. 
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8.7 NDA Free Model Simulation 

To compare with the free-running model experiments and CFD, the coupled surge-

sway-yaw-roll maneuvering mathematical model described in Chapter 2 (Eq. (2.74)) is 

applied to the ship with the same operational and environmental conditions used in the 

free model tests program 2. The higher order terms are neglected but the mathematical 

model is still nonlinear since the wave forces are functions of the relative ship position to 

waves. The maneuvering and propulsion coefficients in calm water are estimated with the 

conventional captive model tests as described in Chapter 2. Wave induced forces are 

estimated from CFD, potential theory and EFD captive model in following waves. 

8.7.1 NDA Based on Inputs from EFD 

The result is shown with the experimental data in Fig. 8-25 (Umeda et al., 2008). 

When the auto pilot course is smaller, there is a boundary between the stable surf-riding 

and periodic motions near the nominal Froude number of 0.3. Below this boundary, 

periodic motions are simulated as they are identified in the experiments. Above this 

boundary, a stable surf-riding region exists, and includes the stable surf-riding identified 

in the experiment. However, this region also includes the case of broaching in the 

experiment. When the auto pilot course is larger, the simulated roll exceeds 90 degrees 

above the nominal Froude number of 0.3. On the other hand, in the experiment the 

maximum roll angle is 71 degrees. This means that the mathematical model 

overestimates the roll angle and underestimates the yaw deviation. It can be presumed 

that this is induced by the emergence of propeller and rudder out of water, which could 

reduce the yaw checking ability under the extreme roll angle. In the region categorized as 

“not identified”, sub-harmonic motions often are obtained.  
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8.7.2 NDA Based on Inputs from CFD & Potential Theory 

 Since there are notable difference among the EFD and CFD, and the Froude-Krylov 

prediction, as explained in Chapter 7, it is important to examine their effects on system-

based prediction of ship motions including surf-riding, broaching and periodic motion. 

For this purpose, system-based simulation using the mathematical model mentioned 

before was executed for the cases of free model tests of the ONR tumblehome vessel with 

inputs from CFD and potential theory.    

Figure 8-26 shows comparison between the free model test and the system-based 

numerical simulation using the wave-induced surge force estimated by the Froude-Krylov 

prediction. Although notable discrepancy in the wave-induced surge force exists as 

shown in Chapter 7, the difference in the system-based simulation results between the 

two is not significant. One surf-riding- related broaching case in the free model test, 

where the auto-pilot course of 22.5 degrees and the nominal Froude number of 0.35, is 

categorized as a harmonic periodic motion in the system-based simulation with the wave-

induced surge force measured from captive test, while it is done as stable surf-riding in 

the simulation shown in Fig. 8-26. This is because the wave-induced surge force is 

smaller in this system-based simulation. In case of the system-based simulation using the 

wave-induced surge force estimated by the CFD as shown in Fig. 8-27, the stable surf-

riding zone further but slightly shrinks because of smaller wave-induced surge force at 

relevant speed. Other notable change is not found. As a whole, for this subject ship, the 

Froude-Krylov calculation for estimating the wave-induced surge force is satisfactory.  

8.8 Summary of Free Model Simulations 

CFD 2DOF self-propulsion simulation is carried out with propeller model and actual 

propeller to predict necessary RPS for several Fr. The prediction error of propeller RPS is 

about 5.8%D for propeller model while it drops to 1.7 %D for actual propeller.  This 
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suggests the simplicity and efficiency of body force propeller model would cost about 

4%D more error which is reasonable. CFD free model simulations show promising 

results for surf-riding, broaching and periodic motion. CFD predicts the instability 

boundary perfectly. For small heading (ψc < 30 deg), there is a boundary between surf-

riding/broaching and periodic motion at Fr=0.3. CFD predicts surf-riding/broaching 

above the boundary and periodic motion below the boundary. CFD calculation of wave 

and rudders yaw moment explains the processes of surf-riding, broaching, and periodic 

motion. It is concluded that wave yaw moments is the major cause of broaching/periodic 

motion, with rudder and propeller moments much smaller in magnitude. The ship speed 

increases significantly before surf-riding/broaching which might produce large turning 

rate and consequently large centrifugal force and roll moment. The emergence of 

propeller out of water and water on deck occurrence are observed for many cases. It is 

shown that OT would not capsize due to large restoring moment of its superstructure. The 

comparison of CFD and EFD time history of motions show a phase difference between 

CFD and EFD, possibly due to inaccurate initial conditions and/or propeller modeling. 

The NDA simulation using EFD inputs predicts the boundary but the simulated roll 

exceeds 90 degrees for Fr>0.3 while EFD maximum roll angle is 71 degrees. This might 

be improved by considering emergence of propeller and rudder out of water in the 

mathematical model. The NDA simulation using CFD and potential flow (Froude-Krylov 

calculation) inputs predicts reasonably the boundary of instability and suggests that CFD/ 

potential flow can be considered as replacement for EFD inputs. 
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Table 8-1: Summary of boundary conditions 
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Table 8-2: Grids and decomposition information 

Grid Points Processors Object Child to 

Boundary Layer starboard 351,616 3 Ship None 

Boundary Layer portside  351,616 3 Ship None 

superstructure  466,032 4 Ship None 

Skeg 118,188 1 Ship None 

Bilge keel Starboard 119,556 1 Ship None 

Bilge keel portside 119,556 1 Ship None 

Rudder starboard Outboard 120,048 1 Ship Ship 

Rudder Starboard Inboard 120,048 1 Ship Ship 

Rudder Portside Outboard 120,048 1 Ship Ship 

Rudder Portside Inboard 120,048 1 Ship Ship 

Background 1,759,755 15 None None 

Total 3,766,511 32   
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Table 8-3: Principal dimensions of the propeller 

 OT 

 Starboard/Port 

KT  
KT= 0.62702-0.26467J-0.09665J2/ 

0.64111-0.27016J-0.09319J2 

KQ  
KQ=0.15200-0.05676J-0.02075J2/ 

0.15546+0.05956J +0.01991J2 

rp/L 0.016937 

rh/rp 0.2 

p1/L 
(0.920929,0.026605,-0.035147)/ 
(0.920929,-0.026605,-0.035147) 

p2/L 
(0.932429,0.026605,-0.036153)/ 
(0.932429,-0.026605,-0.036153) 

 

 

 

 

Table 8-4: Initial condition study for GM=1.78 m, Fr=0.4, and ψc=-15 deg (Test 
program 1)   

 Wave  
Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -30 -15 -80  broaching 75 

CFD 

0 0.0 0.4 -30 -15 -60 broaching 50 
180 0.0 0.4 -30 -15 -70 broaching 55 
180 0.3 0.4 -30 -15 -67 broaching 60 
180 0.4 0.4 -30 -15 7 broaching 40 
200 0.3 0.4 -30 -15 -70 broaching 55 
220 0.3 0.4 -30 -15 -70 broaching 58 
240 0.3 0.4 -30 -15 -70 broaching 58 
260 0.3 0.4 -30 -15 -70 broaching 55 
264 0.15 0.4 -30 -15 -70 broaching 60 
264 0.2 0.4 -30 -15 -75 broaching 60 
264 0.25 0.4 -30 -15 -75 broaching 62 
280 0.3 0.4 -30 -15 -65 broaching 60 

 



187 
 

 

Table 8-5: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-5 deg (Test 
program 1) 

 Wave  
Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -33 -5 -5  surf-riding 40 

CFD 

0 0.0 0.4 -33 -5 -5 surf-riding 15 
137 0.3 0.4 -33 -5 -5 surf-riding 37 
180 0.3 0.4 -33 -5 -5 surf-riding 47 
180 0.4 0.4 -33 -5 -5 surf-riding 42 
200 0.3 0.4 -33 -5 -5 surf-riding 44 
230 0.1 0.4 -33 -5 -5 surf-riding 23 
230 0.2 0.4 -33 -5 -5 surf-riding 35 
230 0.3 0.4 -33 -5 -5 surf-riding 32 
280 0.3 0.4 -33 -5 -5 surf-riding 30 

 

 

 

Table 8-6: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-15 deg (Test 
program 1) 

 Wave  
Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -13 -15 -60  broaching 60 

CFD 

30 0.1 0.4 -13 -15 oscillating periodic 15 
30 0.15 0.4 -13 -15 oscillating periodic 20 
30 0.3 0.4 -13 -15 -60 broaching 40 
30 0.4 0.4 -13 -15 -60 broaching 37 
50 0.4 0.4 -13 -15 -60 broaching 45 
50 0.45 0.4 -13 -15 -60 broaching 45 
80 0.1 0.4 -13 -15 oscillating periodic 13 
80 0.15 0.4 -13 -15 oscillating periodic 25 
80 0.16 0.4 -13 -15 oscillating periodic 28 
80 0.17 0.4 -13 -15 oscillating periodic 30 
80 0.18 0.4 -13 -15 oscillating periodic 29 
80 0.19 0.4 -13 -15 oscillating periodic 25 
80 0.2 0.4 -13 -15 oscillating periodic 30 
80 0.3 0.4 -13 -15 -60 broaching 40 
80 0.4 0.4 -13 -15 -60 broaching 38 
120 0.2 0.4 -13 -15 -50 broaching 25 
130 0.1 0.4 -13 -15 oscillating periodic 15 
130 0.3 0.4 -13 -15 -60 broaching 38 
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Table 8-7: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-30 deg (Test 
program 1) 

 Wave  
Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -40 -30 oscillating  periodic  55 

CFD 
0 0.0 0.4 -40 -30 oscillating periodic 35 

20 0.25 0.4 -40 -30 oscillating periodic 50 
20 0.33 0.4 -40 -30 oscillating periodic 50 

 

 

 

 

Table 8-8: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-5 deg 
 Wave  

Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -30 -5 -5  surf-riding 20 

CFD 

0 0.4 0.4 -30 -5 -5 surf-riding 10 
50 0.1 0.4 -30 -5 -5 surf-riding 30 
50 0.2 0.4 -30 -5 -5 surf-riding 20 
50 0.3 0.4 -30 -5 -5 surf-riding 10 
50 0.4 0.4 -30 -5 -5 surf-riding 10 
50 0.5 0.4 -30 -5 -5 surf-riding 20 

 
 

 

 

Table 8-9: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-15 deg 
 Wave  

Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -8.6 -15 -25  broaching 14 

CFD 

235 0.1 0.4 -8.6 -15 -28 broaching 17 
235 0.2 0.4 -8.6 -15 -70 broaching 45 
235 0.275 0.4 -8.6 -15 -42 broaching 27 
235 0.4 0.4 -8.6 -15 -71 broaching 47 
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Table 8-10: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-22.5 deg 
 Wave  

Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -7 -22.5 -80  broaching 65 

CFD 

0 0.45 0.4 -7 -22.5 -65 broaching 40 
50 0.45 0.4 -7 -22.5 -65 broaching 40 
95 0.45 0.4 -7 -22.5 -60 broaching 45 
144 0.45 0.4 -7 -22.5 -60 broaching 40 
200 0.45 0.4 -7 -22.5 -65 broaching 50 
200 0.50 0.4 -7 -22.5 -65 broaching 48 
200 0.55 0.4 -7 -22.5 -65 broaching 46 
280 0.45 0.4 -7 -22.5 -65 broaching 47 
330 0.37 0.4 -7 -22.5 -65 broaching 45 
330 0.4 0.4 -7 -22.5 -65 broaching 43 
330 0.45 0.4 -7 -22.5 -65 broaching 45 

 

 

 

Table 8-11: Initial condition study for GM=2.068 m, Fr=0.4, and ψc=-30 deg 
 Wave  

Phase 
(deg) 

Initial 
Fr 

Target 
Fr 

Initial 
heading 

(deg) 

Target 
heading 

(deg) 

Predicted 
heading  

(deg) 

Predicted 
Phenomenon 

Max Roll 
angle (deg) 

EFD ? ? 0.4 -12 -30 oscillating  periodic  40 
CFD 144 0.2 0.4 -12 -30 oscillating periodic 50 

 

 
 

 

Figure 8-1: Grid and solution domain of free model simulations 
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(a)                                                    (b) 

 
(c)                                                    (d) 

Figure 8-2: Self-propelled simulation in calm water: (a) RPS; (b) thrust; (c) σ; (d) τ  
 
 
 

 
     (a)                                                            (b) 

 
     (c)                                                            (d) 

Figure 8-3: Comparison of self-propelled simulations in calm water using actual 
propeller and body force propeller: (a) RPS; (b) thrust; (c) σ; (d) τ  
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(a) 

 
(b) 

 
(c) 

Figure 8-4: CFD (ε0=264o, u0/◊ (Lg)=0.15)  and EFD comparison for GM=1.78 m, 
Fr=0.4, and ψc=-15 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-5: CFD (ε0=230o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-5 deg: (a) motions; (b) forces; (c) moments  
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(a) 

 
(b) 

 
(c) 

Figure 8-6: CFD (ε0=50o, u0/◊ (Lg)=0.4) and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-15 deg: (a) motions; (b) forces; (c) moments  
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(a) 

 
(b) 

 
(c) 

Figure 8-7: CFD (ε0=20o, u0/◊ (Lg)=0.33) and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-30 deg: (a) motions; (b) forces; (c) moments  
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(a) 

 
(b) 

 
(c) 

Figure 8-8: CFD (ε0=50o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-5 deg: (a) motions; (b) forces; (c) moments  
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(a) 

 
(b) 

 
(c) 

Figure 8-9: CFD (ε0=235o, u0/◊ (Lg)=0.1) and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-15 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-10: CFD (ε0=200o, u0/◊ (Lg)=0.55)  and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-22.5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-11: CFD (ε0=144o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.4, and ψc=-30 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-12: CFD (ε0=235o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.45, and ψc=-5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-13: CFD (ε0=235o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.45, and ψc=-15 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-14: CFD (ε0=235o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.45, and ψc=-22.5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-15: CFD (ε0=235o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.45, and ψc=-30 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-16: CFD (ε0=235o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.35, and ψc=-5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-17: CFD (ε0=0o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.35, and ψc=-15 deg: (a) motions; (b) forces; (c) moments 



205 
 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8-18: CFD (ε0=0o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.35, and ψc=-22.5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-19: CFD (ε0=0o, u0/◊ (Lg)=0.275) and EFD comparison for GM=2.068 m, 
Fr=0.35, and ψc=-30 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-20: CFD (ε0=235o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.3, and ψc=-5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-21: CFD (ε0=235o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.3, and ψc=-15 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-22: CFD (ε0=235o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.3, and ψc=-22.5 deg: (a) motions; (b) forces; (c) moments 
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(a) 

 
(b) 

 
(c) 

Figure 8-23: CFD (ε0=235o, u0/◊ (Lg)=0.2) and EFD comparison for GM=2.068 m, 
Fr=0.3, and ψc=-30 deg: (a) motions; (b) forces; (c) moments 
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Figure 8-24: Summary of CFD simulations for Test Program 2  
 

 

 

Figure 8-25: Comparison between the free model test and the system-based 
numerical simulation using the wave-induced surge force estimated by the captive 

model experiment 
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Figure 8-26: Comparison between the free model test and the system-based 
numerical simulation using the wave-induced surge force estimated by potential 

theory 
 
 
 

 

Figure 8-27: Comparison between the free model test and the system-based 
numerical simulation using the wave-induced surge force estimated by CFD 
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CHAPTER 9. CONCLUSIONS AND FUTURE WORK 

For the first time, the CFD simulations and NDA predictions of ship instability are 

performed with focus on parametric rolling and broaching and compared with EFD. 

The CFD and NDA parametric rolling studies for OT surface combatant include roll 

decay in calm water and roll decay/parametric rolling in head waves. CFD roll decay in 

calm water indicates good agreement with EFD, especially for GM=0.043 m and 

GM=0.038 m. CFD reasonably predicts the influence of mean roll angle and Fr on 

damped roll frequency. CFD predicts the speed effect on linear damping and shows 

similar values to EFD for GM=0.043 m, but under predicts for lower GM. CFD nonlinear 

damping shows good agreement with EFD for GM=0.043 m and under predicts for lower 

GM, especially GM=0.038 m and Fr=0.35. The NDA model of OT roll decay indicates 

that OT roll reconstruction requires nonlinear restoring coefficients with linear or 

nonlinear damping coefficient. Comparing NDA roll decay reconstruction with CFD 

indicates that E values are similar to those for CFD. OT is compared with 5415 surface 

combatant. Comparing 5415 and OT shows that effects of mean roll angle on roll decay 

characteristics are stronger for OT vs. 5415.  The linear damping of 5415 is smaller than 

that of OT and the nonlinear damping is not observed for 5415 whereas it is significant 

for OT. Bert reconstruction for 5415 is for equivalent linear damping without requiring 

nonlinear restoring coefficients whereas best reconstruction for OT requires nonlinear 

damping and restoring coefficients. CFD parametric rolling simulations show remarkably 

close agreement with EFD. CFD predicts parametric roll in head waves for GM=0.038 

and 0.033 m and roll decay for GM=0.043 m. The CFD stabilized roll angle is very close 

to those of EFD but CFD predicts larger instability zones. The CFD and EFD results are 

analyzed with consideration ship motion theory and compared with Mathieu equation and 

NDA. NDA predictions are in qualitative agreement with CFD and EFD. The CFD and 
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NDA results were blind in that the actual EFD radius of gyration kxx was not known a 

priori. 

The CFD studies of parametric rolling are extended for prediction of broaching both 

by using CFD as input to NDA in replacement of EFD or potential flow methods and by 

using CFD for broaching simulation. The CFD calm water captive resistance test, static 

heel, and static drift simulations are conducted to estimate inputs for NDA model of 

broaching and 6DOF simulation in following/quartering waves are conducted for 

complete simulation of broaching. For captive tests, the grid study is performed for calm 

water static heel which indicates the average RSS grid uncertainty is 3%D. CFD 

resistance test full Fr curve simulation in calm water shows close agreement with EFD 

with average RSS error of 3%D for X, σ, τ. CFD and EFD full Fr curve static heel results 

show fairly close agreement for σ, τ, X, K for the full Fr range, whereas Y and N were 

significantly under predicted for large Fr>.4. Forces and moment analyses support the 

mathematical model of static heel showing that heel angle has second order effect on X 

while it has first order effect on Y, K, and N such that increasing heel angle would 

change Y, K, and N except X. CFD shows fairly close agreement for static heel linear 

maneuvering derivatives, whereas large errors are indicated for nonlinear maneuvering 

derivatives. CFD and EFD static drift show good results of σ, τ, X, Y, N for the full Fr 

range, whereas K is over predicted for Fr>0.2. It is shown that drift angle has second 

order effect on X and first order effect on Y, K, and N. CFD shows reasonable agreement 

for static drift linear maneuvering derivatives, whereas large errors are indicated for 

nonlinear maneuvering derivatives. CFD non-zero static heel in following waves shows 

fairly close agreement for σ, τ, K, N, whereas X and Y show large errors.  CFD zero 

static heel in following waves shows large errors for X and θ. The average error increases 

by factor of 2 for same increase in wave amplitude. Heave response shows 1st and 2nd 

harmonics and pitch show 1st harmonic. X indicates 1st and 2nd harmonics and Y and N 

show 1st, 2nd, and 4th harmonics. The surge force in following wave is estimated from 
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Potential Theory calculation (Froude-Krylov calculation) and compared with CFD and 

EFD. It is shown that CFD successfully reproduces the decrease of the wave-induced 

surge force near the Fr of 0.2 whereas Potential Theory fails probably because it cannot 

capture the 3D wave pattern. 

The CFD broaching simulations are performed for series of control parameters 

(heading and Fr) to study and analyze the process of surf-riding, broaching, and periodic 

motion. The CFD results are compared with the results of NDA model based on CFD, 

EFD, and Potential Calculation inputs. CFD 2DOF self-propulsion simulation is carried 

out with propeller model and actual propeller to predict necessary RPS for several Fr. 

The prediction error of propeller RPS is about 5.8%D for propeller model while it drops 

to 1.7 %D for actual propeller.  This suggests the simplicity and efficiency of body force 

propeller model would cost about 4%D more error which is reasonable. CFD free model 

simulations show promising results for surf-riding, broaching and periodic motion. CFD 

predicts the instability boundary perfectly. For small heading (ψc < 30 deg), there is a 

boundary between surf-riding/broaching and periodic motion at Fr=0.3. CFD predicts 

surf-riding/broaching above the boundary and periodic motion below the boundary. CFD 

calculation of wave and rudders yaw moment explains the processes of surf-riding, 

broaching, and periodic motion. It is concluded that wave yaw moments is the major 

cause of broaching/periodic motion, with rudder and propeller moments much smaller in 

magnitude. The ship speed increases significantly before surf-riding/broaching which 

might produce large turning rate and consequently large centrifugal force and roll 

moment. The emergence of propeller out of water and water on deck occurrence are 

observed for many cases. It is shown that OT would not capsize due to large restoring 

moment of its superstructure. The comparison of CFD and EFD time history of motions 

show a phase difference between CFD and EFD, possibly due to inaccurate initial 

conditions and/or propeller modeling. The NDA simulation using EFD inputs predicts the 

boundary but the simulated roll exceeds 90 degrees for Fr>0.3 while EFD maximum roll 
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angle is 71 degrees. This might be improved by considering emergence of propeller and 

rudder out of water in the mathematical model. The NDA simulation using CFD and 

Potential Flow (Froude-Krylov calculation) inputs predicts reasonably the boundary of 

instability and suggests that CFD/ Potential Flow can be considered as replacement for 

EFD inputs.  

It is recommended that future work extends presented broaching simulations by 

replacing body force propeller model with actual propeller similar to reality. It is 

expected that the CFD and EFD agreement will be improved even though the role of the 

uncertainty on initial conditions would be still an issue.  Also current 4DOF surge-sway-

roll-yaw NDA model of broaching should be extended to 6DOF model including heave 

and pitch motion to improve NDA predictions and build a model to analyze 6DOF 

simulations. 
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