
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2016

Extreme Learning Machines: novel extensions and
application to Big Data
Anton Akusok
University of Iowa

Copyright 2016 Anton Akusok

This dissertation is available at Iowa Research Online: http://ir.uiowa.edu/etd/3036

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Industrial Engineering Commons

Recommended Citation
Akusok, Anton. "Extreme Learning Machines: novel extensions and application to Big Data." PhD (Doctor of Philosophy) thesis,
University of Iowa, 2016.
http://ir.uiowa.edu/etd/3036.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F3036&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3036&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3036&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.uiowa.edu%2Fetd%2F3036&utm_medium=PDF&utm_campaign=PDFCoverPages

EXTREME LEARNING MACHINES: NOVEL EXTENSIONS AND
APPLICATION TO BIG DATA

by

Anton Akusok

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Industrial Engineering
in the Graduate College of

The University of Iowa

May 2016

Thesis Supervisor: Associate Professor Amaury Lendasse

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Anton Akusok

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Industrial Engineering at the May 2016 graduation.

Thesis committee:

Amaury Lendasse, Thesis Supervisor

Stephen Baek

Andrew Kusiak

Gregory R. Carmichael

Ching-Long Lin

Yong Chen

ACKNOWLEDGEMENTS

I would like to acknowledge Associate Prof. Amaury Lendasse for his patience

and his invaluable support in all research, administrative and practical matters. I am

happy to have such a nice professor, good supervisor and a great person by my side.

With him, research is always fun and easy.

I also want to specifically acknowledge Dr. Yoan Miche with whom I wrote so

many papers, and who always supported me with a good advice from my first day in

the academia.

I am giving a special thanks for Dr. Francesco Corona for his Italian humour,

and teaching me how to brew a good coffee of course!

I want to express my gratitude to D.Sc. Kaj-Mikael Björk and Magnus West-

erlund for providing me with opportunities for inter-university collaboration. This is

a great experience.

I want to acknowledge my co-authors: Alberto Guillén, Alexander Grigorievskiy,

Alexandre Savio, Andrey Gritsenko, Bo He, Colin Swaney, David Veganzones, Du-

san Sovilj, Emil Eirola, Eric Séverin, Erik Cambria, Francesco Corona, Guang-Bin

Huang, Jozsef Hegedus, Juha Karhunen, Maarit Mantere, Maite Termenon, Manuel

Graña, Mark van Heeswijk, Olli Simula, Paula Lauren, Philippe du Jardin, Rui Nian,

Stephen Baek and Tatiana Chistiakova.

ii

ABSTRACT

Extreme Learning Machine (ELM) is a recently discovered way of training

Single Layer Feed-forward Neural Networks with an explicitly given solution, which

exists because the input weights and biases are generated randomly and never change.

The method in general achieves performance comparable to Error Back-Propagation,

but the training time is up to 5 orders of magnitude smaller. Despite a random

initialization, the regularization procedures explained in the thesis ensure consistently

good results.

While the general methodology of ELMs is well developed, the sheer speed

of the method enables its un-typical usage for state-of-the-art techniques based on

repetitive model re-training and re-evaluation. Three of such techniques are explained

in the third chapter: a way of visualizing high-dimensional data onto a provided

fixed set of visualization points, an approach for detecting samples in a dataset with

incorrect labels (mistakenly assigned, mistyped or a low confidence), and a way of

computing confidence intervals for ELM predictions. All three methods prove useful,

and allow even more applications in the future.

ELM method is a promising basis for dealing with Big Data, because it natu-

rally deals with the problem of large data size. An adaptation of ELM to Big Data

problems, and a corresponding toolbox (published and freely available) are described

in chapter 4. An adaptation includes an iterative solution of ELM which satisfies

a limited computer memory constraints and allows for a convenient parallelization.

iii

Other tools are GPU-accelerated computations and support for a convenient huge

data storage format. The chapter also provides two real-world examples of dealing

with Big Data using ELMs, which present other problems of Big Data such as veracity

and velocity, and solutions to them in the particular problem context.

iv

PUBLIC ABSTRACT

Real world tasks can often be written mathematically as maximizing a number

(like income) or minimizing another number (like expenses). Some of these tasks have

exact mathematical solution. Exact solution of other tasks is unknown, but there are

multiple correct examples. Machine Learning can learn approximate solution from

examples, and this thesis is about state-of-the-art methods in Machine Learning.

Consider speech recognition problem: everyone of us can hear a word in a

native language and easily scribe it with letters, but nobody can write down a math-

ematical algorithm of how he or she does that. Machine Learning has a method

called Artificial Neural Network, which mimic the way how a brain works, and can

learn from a set of prepared data (like sounds with the corresponding letters in the

previous example) how to solve a problem without an exact algorithm – not perfectly,

but good enough.

This thesis tells about Extreme Learning Machines, a kind of Artificial Neural

Network that runs very fast on a computer. It presents two directions of research.

First, the Extreme Learning Machine is trained not once (like Machine Learning

methods normally do) but millions of times, each time a bit differently. That way

helps learn new things about the data, like are there any mistakes in the labelling, or

what is the best way of showing a complex data on a piece of paper.

Another direction of research is how to make Extreme Learning Machines

even faster, or run with even more data, which is the same thing. The method is

v

improved by a better algorithm and a good program code. This allows running ELM

on computers with small amount of memory, use graphics card to do the computations

faster, read very large data piece-by-piece from a hard drive, and compute a large

ELM in parts on many different computers at the same time to get results faster.

An ELM method with all these improvements is published as a freely downloadable

computer program, so anyone can use a fast ELM even if he/she is not an expert in

Artificial Neural Networks. Also, this chapter presents two examples of solving large

real-world problems with ELMs, where the main difficulty is not the ELM itself but

the strange provided data and special requirements for a good solution.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF ALGORITHMS . xvii

LIST OF SYMBOLS . xviii

LIST OF ABBREVIATIONS . xix

CHAPTER

1 INTRODUCTION . 1

1.1 Aims and Scope . 1
1.2 Author’s Contributions . 2
1.3 List of Publications . 4

2 THEORY OF EXTREME LEARNING MACHINES 10

2.1 Basic Extreme Learning Machine 13
2.2 L1-regularized ELM . 23

2.2.1 Optimally-Pruned ELM (OP-ELM) 24
2.2.2 Multiresponse Sparse Regression: MRSR 26
2.2.3 Leave-One-Out (LOO) or PRESS Statistics in ELM . . . 27
2.2.4 Experiments . 29

2.3 L1 and L2-regularized ELM . 39
2.3.1 The L2 penalty: Tikhonov Regularization 39
2.3.2 Hybrid Penalties . 40
2.3.3 Tikhonov Regularized OP-ELM (TROP-ELM) 45
2.3.4 Experiments . 48

3 NOVEL EXTENSIONS OF EXTREME LEARNING MACHINES . . 55

3.1 Data Visualization with ELMs 56
3.1.1 State of the Art . 57
3.1.2 Methodology . 65
3.1.3 Experiments . 71

3.2 Fast Visualization Method ELMVIS+ 86
3.2.1 Methodology . 87

vii

3.2.2 Experiments . 94
3.3 Detection of Mislabeled Samples with ELMs 111

3.3.1 Methodology . 112
3.3.2 Experiments . 117
3.3.3 Results of Real World Financial Dataset 131

3.4 Confidence Intervals for ELM Predictions 133
3.4.1 Methodology . 134
3.4.2 Experiments . 140
3.4.3 Skin Color Dataset . 143

4 EXTREME LEARNING MACHINES FOR BIG DATA 151

4.1 ELMs for Processing Big Data 152
4.1.1 Iterative Solution of ELMs 152
4.1.2 Accelerated ELM . 156
4.1.3 Parameters of Generated Random Weights 156

4.2 HP-ELM Toolbox for Big Data Processing 161
4.2.1 ELMs in Practice . 162
4.2.2 Toolbox Overview . 164
4.2.3 Experiments . 177
4.2.4 Big Data Processing and Performance 187

4.3 Image Classification with ELM 191
4.3.1 Image-based Classification Methodology 201
4.3.2 Experiments . 214

4.4 Malware Detection with ELM . 222
4.4.1 A Specific Application . 224
4.4.2 Problem Description . 228
4.4.3 Methodology Using Two Stage Classifiers 238

4.5 Improvements to HP-ELM Toolbox 252

5 CONCLUSIONS . 254

REFERENCES . 259

viii

LIST OF TABLES

2.1 Information about the selected data sets. Number of variables and number
of samples for both training and testing, two-thirds of the whole set for
training and one third for test . 31

2.2 Computational times (in seconds) for all five methodologies on the regres-
sion data sets . 34

2.3 Computational times (in seconds) compared for all five methodologies for
classification data sets . 34

2.4 Mean Square Error results in boldface (and standard deviations in regular)
for all five methodologies for the regression data sets 36

2.5 MSE results for classification data sets 37

2.6 Details of numbers of selected neurons in OP-ELM for the Delta Ailerons
and Iris data sets . 37

2.7 Details of the data sets used, along with the number of variables 50

2.8 Mean Square Error results (boldface) and standard deviations (regular)
for all six methodologies for regression data sets 52

2.9 Computational times (in seconds) for all five methodologies on the regres-
sion data sets . 53

2.10 Average number of neurons selected for the final model for both OP-ELM
and TROP-ELM . 54

3.1 MSE of reconstruction on all datasets in comparison. The best error of
100 restarts is shown for all methods except PCA, due to a random ini-
tialization procedure . 73

3.2 Reconstruction MSE for all methods; the lowest error of 100 initializations
is shown . 96

3.3 Runtimes of different visualization methods for MNIST test set 99

4.1 ELM computation and memory requirements; computations along the di-
mension Ñ can be performed in parallel in L-size batches 155

ix

4.2 Mean Squared Error (bold) and runtime in seconds for the regression datasets180

4.3 Accuracy in % (bold) and runtime in seconds for the classification datasets 181

4.4 Training time of an ELM with 19,000 hidden neurons on 0,5 billion samples
with 147 features . 188

4.5 Test Confusion matrix for ELM with 19,000 neurons 189

4.6 Approaches to semantic image processing 200

4.7 Confusion Matrix for this binary classification problem 227

4.8 Confusion Matrix for the sole 1-NN on the test set. If only the first stage
of the methodology is used, results are unacceptable in terms of False
Positive rates . 241

4.9 Confusion matrices for (a) the training data (Leave-One-Out results) when
training the False Positive/Negative Optimized ELMs; on the whole test
set, (b) using only the 1-NN approach and (c) using the proposed 1-NN
and ELM two-stage methodology . 248

4.10 Confusion matrices for Pima Indians Diabetes dataset from UCI [Lic13] . 251

4.11 Confusion matrices for Wisconsin Breast Cancer dataset from UCI [Lic13] 251

x

LIST OF FIGURES

2.1 Computing the output of an SLFN (ELM) model 15

2.2 A matrix form of an ELM . 17

2.3 An example of training result using ELM on a sum of two sines 24

2.4 An example using the same sum of sine as in Figure 2.3 and an additional
noisy variable (not represented here) for training 25

2.5 The three steps of the OP-ELM algorithm 25

2.6 Comparison of LOO error with and without the MRSR ranking 29

2.7 The proposed regularized OP-ELM (TROP-ELM) as a modification of
Figure 2.5 . 48

2.8 Comparison of the MSE for the original OP-ELM and the proposed TROP-
ELM for Auto Price dataset for a varying amount of neurons 49

3.1 Four types of samples considered in calculating precision and recall, de-
fined for visualization . 60

3.2 Projecting a high-dimensional spiral manifold data to a lower-dimensional
visualization space . 66

3.3 A general diagram of the ELMVIS training algorithm 68

3.4 A schematic representation of ELM in ELMVIS 69

3.5 An example of ELMVIS fitted to spiral data 75

3.6 ELM reconstruction, learned from NeRV results. Only one point deviates
from the perfect approximation . 76

3.7 Convergence of the ELM visualization algorithm on the spiral dataset,
with 100000 training steps and 100 restarts 77

3.8 Some examples from the 698 sculpture face pictures from [TdL00] 78

3.9 Sculpture face images mapped to a grid using the same ELMVIS with 20
neurons . 80

xi

3.10 Sculpture face images mapped to a grid using the NeRV results 81

3.11 Random examples from the 1965 real faces proposed in [RS00] 82

3.12 Subset of 400 real faces mapped to a 20x20 regular grid by ELMVIS . . . 83

3.13 Whole set of real faces visualized by NeRV. Results are displayed on a
20x20 grid, if several images occupy a cell a random one is shown 84

3.14 The idea of ELMVIS+ . 88

3.15 An example of ELMVIS+ optimization process 90

3.16 Schematic representation of ELMVIS+ algorithm 95

3.17 ELMVIS+ runtime speed summary . 98

3.18 ELMVIS+ visualization of MNIST handwritten digits test set with 10,000
samples, using ELM with 20 neurons. Optimization finishes in one minute
and 37 seconds . 101

3.19 ELMVIS+ visualization of MNIST handwritten digits, further optimized
from the previous figure for a total runtime of four minutes 102

3.20 Original ELMVIS visualization of MNIST handwritten digits test set with
10,000 samples, using ELM with 20 neurons 103

3.21 SOM visualization of MNIST handwritten digits test set with 10,000 sam-
ples, using 1000 nodes . 104

3.22 NeRV visualization of MNIST handwritten digits test set with 10,000 sam-
ples . 105

3.23 PCA visualization of MNIST handwritten digits test set with 10,000 samples106

3.24 Visualization of MNIST handwritten digits training set with 60,000 sam-
ples after 500,000 updates, using ELM with 15 neurons 108

3.25 Visualization of MNIST handwritten digits training set with 60,000 sam-
ples after 100,000 updates . 109

3.26 Visualization of MNIST digits using an Iowa Hawkeyes football team em-
blem shape . 110

xii

3.27 Sample scores of 300 samples after a large number of flips, for a XOR toy
dataset . 114

3.28 Sample scores of 300 samples after a low number of flips, for a XOR toy
dataset . 116

3.29 Examples of two- (a) and three-class (b) toy datasets used for parameter
selection . 120

3.30 Effect of different amount of models and quantization thresholds on de-
tection accuracy and the amount of false positives 121

3.31 Experimental results for a XOR dataset with size of a flip k = 1, averaged
over 10 repetitions . 122

3.32 Experimental results for a XOR dataset with size of a flip k = 3, averaged
over 10 repetitions . 123

3.33 False Positives in detected originally mislabeled samples for a XOR dataset
with k = 3 and q = 128 . 124

3.34 Number of flips required to achieve the desired quantization threshold q
for XOR and PIE datasets . 125

3.35 Plot of XOR data with marked mislabeled samples and their detection
percentages . 127

3.36 Plot of PIE data with marked mislabeled samples and their detection
percentages . 128

3.37 Classification accuracy of ELM for Nursery dataset with original labels,
and with labels with fixed detected originally mislabeled 129

3.38 Classification accuracy of OP-ELM for Breast Cancer with original labels,
and with labels with fixed detected originally mislabeled 130

3.39 Sample scores for the bankruptcy prediction dataset 132

3.40 Idea of the confidence intervals method 135

3.41 First stage of confidence intervals: computing an average statistics 137

3.42 Second stage of confidence intervals: finding per-sample standard deviation 137

xiii

3.43 Toy dataset and its predictions with five different ELM models, trained
on the whole dataset . 141

3.44 Validation of ELM models in confidence intervals 141

3.45 Example of finding confidence intervals for three test samples 142

3.46 95% confidence intervals on an artificial dataset 144

3.47 95% confidence intervals on an artificial dataset with constant noise . . . 147

3.48 The original test image for skin pixels classification 148

3.49 Predicted skin with 66%, 95%, 99.5% confidence 148

3.50 Predicted non-skin with 66%, 95%, 99.5% confidence 149

3.51 Histogram of σ values, showing a separation in three regions 149

3.52 Images with transparency mask corresponding to different regions of σ . 150

3.53 Predicted skin with 66%, 95%, 99.5% confidence for single-precision ELM 150

4.1 Mean squared error difference (top) of predictions of SLFNs with 5 hidden
neurons, and test error of SLFNs (bottom) with 25 hidden neurons, for
different values of s in W = N (0, s) . 158

4.2 MSE difference (top) of predictions, and test error (bottom) of SLFNs
with 500 hidden neurons on MNIST dataset, for different values of s in
W = N (0, s) . 159

4.3 MSE difference (top) of predictions, and test error (bottom) of SLFNs
with 500 hidden neurons on MNIST dataset, for different values of s . . . 160

4.4 Test errors (top) and runtimes (center) on different hardware (bottom) for
large datasets, on logarithmic scale . 182

4.5 Training (a) and prediction (b) runtimes of a basic ELM for MNIST
dataset with 64 neurons . 184

4.6 Training (a) and prediction (b) runtimes of a basic ELM for MNIST
dataset with 4096 neurons . 186

xiv

4.7 Test classification accuracy for skin and non-skin pixels. Model does not
overfit with 19,000 neurons . 190

4.8 Details of the dataset of websites (black) and images (grey), provided by
F-Secure Corp . 193

4.9 Randomly selected images related to alcohol from the dataset (provided
by F-Secure Corp.) . 195

4.10 Local image features: non-informative (left) and informative (right) . . . 199

4.11 Diagram of image classification process. Five major steps are given in bold
rectangles, with corresponding sub-steps depicted below 202

4.12 Example of SIFT descriptor calculation; reduced dimensionality is used
for better visibility . 209

4.13 An example of a multi-label website classification using t-tests 213

4.14 Classification accuracy of each local image feature for a validation set,
using 1-NN on a set of centroids . 215

4.15 Website, image and benign website classification accuracy for the F-Secure
Corp. dataset . 218

4.16 Image and website classification results using different methods combined
with the k-NN local features classifier . 220

4.17 Feature extraction from a file (sample): The sandbox runs the sample in a
virtual environment and extracts dynamic (run-time specific) information;
meanwhile a set of static features are extracted and both sets are combined
in the whole feature set . 226

4.18 Influence of the number of hashes k ∈ {10, 100, 500, 1000, 2000, 10000} (top
left to bottom right) over the min-hash approximation of the resemblance r236

4.19 Average time per sample (over 3000 samples) versus the number k of
hashes used for the min-hash approximation 237

4.20 1-NN-ELM: Two stage methodology using first a 1-NN and then special-
ized ELM models to lower false positives and false negatives 238

4.21 K = 1 is the best for this specific data regarding classification accuracy . 240

xv

4.22 Illustration of different situations with identical 1-NN 242

4.23 ROC curve (True Positive Rate versus False Positive Rate) for varying
values of α . 246

4.24 Evolution of the False Positive Rate as a function of the α weight 247

xvi

LIST OF ALGORITHMS

2.1 Allen’s PRESS algorithm in matrix form 28

2.2 Tikhonov-Regularized PRESS . 47

3.1 Algorithm of ELMVIS . 72

3.2 Algorithm of MD-ELM . 117

3.3 Confidence intervals algorithm . 139

4.1 False Positive Optimized ELM . 245

xvii

LIST OF SYMBOLS

N Number of data samples

d Number of input features

c Number of output features or classes

L Number of hidden neurons

M Number of iterations (in MD-ELM)

L1 ||x||1 norm

L2 ||x||2 norm

X[N×d] Input data in matrix form

T[N×c] Target (true) outputs in matrix form

Y[N×c] Predicted outputs in matrix form

W[d×L] Input-to-hidden layer projection matrix in ELM

b[1×L] Bias vector in ELM

H[N×L] Hidden layer output of ELM in matrix form

β[L×c] Hidden-to-output layer projection matrix in ELM

e Vector of ones of a corresponding shape

φ() Activation function of a hidden neuron

xviii

LIST OF ABBREVIATIONS

BLAS Basic Linear Algebra Subprograms

BoVW Bag-or-Visual-Words

CV Cross-Validation

ELM Extreme Learning Machine

ELMVIS . . . Extreme Learning Machine-based Visualization

GP Gaussian Processes

GPU Graphics Processing Unit

HDF5 Fast and scalable file storage format

HP-ELM . . High Performance toolbox for Extreme Learning Machines

LARS Least Angle Regression

LOO Leave-One-Out

MD-ELM . . Mislabeled samples Detection with Extreme Learning Machines

MDS Multidimensional Scaling

MLP Multilayer Perceptron

MNIST . . . Popular benchmark dataset of handwritten digits

MRSR Multi-Response Sparse Regression

MSE Mean Squared Error

NeRV Neighbor Retrieval Visualizer

OP-ELM . . . Optimally Pruned Extreme Learning Machine

PCA Principal Component Analysis

PRESS Predicted Residual Sum of Squares

RBF Radial Basis Function

RMSE Root Mean Squared Error

SIFT Scale Invariant Feature Transform

SLFN Single Layer Feed-forward Neural network

SOM Self-Organizing Maps

SVM Support Vector Machine

SVR Support Vector Regression

TROP-ELM Tikhonov Regularized and Optimally Pruned ELM

UCI A popular online source of benchmark data

xix

1

CHAPTER 1
INTRODUCTION

1.1 Aims and Scope

The purpose of this thesis is to advance the state-of-the-art knowledge in Ex-

treme Learning Machines [Co13] (ELM), by improving the method itself and develop-

ing new technologies based on that method. The ELM is a recently discovered [HZS04]

way of training Single Layer Feed-forward Neural networks [Hay98] (SLFN). Its per-

formance in general is similar to that of a Multi-Layer Perceptron trained with Error

Back-Propagation, but the training time is up to 5 orders of magnitude smaller.

The second chapter of the thesis gives an overview of the theory behind ELMs.

It summarizes the standard methodology, including the essential tips and tricks which

counter the negative effects of random initialization, and for example, make ELMs

memory requirements invariant to the number of training samples.

The third chapter introduces extensions of ELMs to non-typical tasks in the

field of neural networks. The basis of these extensions is an extremely fast training

speed of the method. During the same time, say 5 minutes, it is possible to train a

single Multilayer Perceptron or a Support Vector Machine, but more than 100,000

ELMs. While the training time measured in milliseconds is not very important for

human beings who operate at much slower pace, it enables exciting new approaches

that are based on extensive re-training of a model, or require training millions of

different models. These approaches would be infeasible before with other nonlinear

2

models, or feasible with a linear model but provide less interesting results due to the

linearity.

The last chapter of the thesis shows an extension of ELM for Big Data, and

huge datasets in general. Its goal is to push the boundaries of neural networks as

far as possible with the current hardware and software technology, increasing size of

feasible models on a normal workstation hardware to tens of thousands of hidden

neurons and billions of training samples; relaxing computer memory constraints, al-

lowing an easy parallelization and utilization of accelerators for faster model training.

Other examples of this part show applications of ELMs for addressing real-world Big

Data tasks, which cannot be dealt with by only brute-force computation, but require

building a whole methodology around the problem in question for finding a solution

with the desired properties.

1.2 Author’s Contributions

Author made the following contributions to the five journal articles, two con-

ference papers, and the thesis itself:

Section 2.1 of the second chapter is based on the methodology from an author’s

paper [ABML15]. It summarizes the algorithm, solution and notations of an original

ELM model, which are used throughout the thesis. Other sections of the second

chapter are based on prior works, but cannot be omitted due to their importance in

the field of ELMs.

The third chapter of the thesis presents four original author’s works. The

3

first one applies ELM as a fast and robust nonlinear cost function data visualiza-

tion, published in a joint paper [Co13]. The second one is a mathematical and

algorithmic development of the first one, speeding the approach by four orders of

magnitude and applying it to large data [AMB+16c, AMB+16a]. The third one uses

ELM model as a sample quality indicator for finding originally mislabeled samples in

a dataset [ADY+14, AVM+15]. The fourth one presents a very important addition

to ELM predictions in a form of confidence intervals of such predictions [AGM+16,

AMB+16b], demanded in many application areas.

The fourth chapter of the thesis is based on three papers. The first one is

a high-performance ELM toolbox [ABML15], which presents the methodology, its

freely available implementation, and comparison results with other articles in one

paper. This work is one of the major contributions of an author to the field of

Extreme Learning Machines, because it aims at popularizing the method among other

researches and making advanced features of ELMs easily accessible by anyone for any

application. Also it is tested on a dataset with half a billion training samples and

19,000 hidden neurons, showing that even such a huge model can be trained in a

reasonable time on a single workstation. Second paper [AAAY13, AMK+15] presents

an application of ELM to a real Big Data problem — a classification of websites based

on their image content. The paper presents not only ELM but a whole methodology

for dealing with the problem under specific constraints, which is one of a major

differences between utilizing Big Data and normal large-scale datasets. The last

paper presents a methodology for detecting malware files from a provided large set

4

of hashes, which is another application of ELMs to Big Data problems. The first two

papers are fully author’s work, while the third one is done in collaboration with Yoan

Miche.

1.3 List of Publications

Included in the thesis (journal papers)

[ABML15] Anton Akusok, Kaj-Mikael Björk, Yoan Miche, and Amaury Lendasse,

High-Performance Extreme Learning Machines: A Complete Toolbox for

Big Data Applications, IEEE Access 3 (2015), 1011–1025.

[AGM+16] Anton Akusok, Andrey Gritsenko, Yoan Miche, Kaj-Mikael Björk, Rui

Nian, Paula Lauren, and Amaury Lendasse, Adding Reliability to ELM

Predictions by Confidence Intervals, Neurocomputing (submitted 2016).

[AMB+16] Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Paula Lauren,

and Amaury Lendasse, ELMVIS+: Fast Nonlinear Visualization Tech-

nique based on Cosine Distance and Extreme Learning Machines, Neuro-

computing (forthcoming 2016).

5

[AMH+14] Anton Akusok, Yoan Miche, Jozsef Hegedus, Rui Nian, and Amaury

Lendasse, A Two-Stage Methodology Using K-NN and False-Positive Min-

imizing ELM for Nominal Data Classification, Cognitive Computation 6

(2014), no. 3, 432–445.

[AMK+15] Anton Akusok, Yoan Miche, Juha Karhunen, Kaj-Mikael Björk, Rui

Nian, and Amaury Lendasse, Arbitrary Category Classification of Web-

sites Based on Image Content, IEEE Computational Intelligence Maga-

zine 10 (2015), no. 2, 30–41.

[AVM+15] Anton Akusok, David Veganzones, Yoan Miche, Kaj-Mikael Björk,

Philippe du Jardin, Eric Séverin, and Amaury Lendasse, MD-ELM: Orig-

inally Mislabeled Samples Detection using OP-ELM Model, Neurocomput-

ing 159 (2015), 242–250.

[Co13] Eric Cambria and others, Extreme Learning Machines [Trends & Contro-

versies], IEEE Intelligent Systems 28 (Nov.-Dec. 2013), no. 6, 30–59.

6

Included in the thesis (conference papers)

[AAAY13] Anton Akusok, Alexander Grigorievskiy, Amaury Lendasse, and Yoan

Miche, Image-based Classification of Websites, Machine Learning Re-

ports 02/2013 (Saarbrücken, Germany) (Thomas Villmann and Frank-

Michael Schleif, eds.), Machine Learning Reports, vol. ISSN: 18, Work-

shop of the GI-Fachgruppe Neuronale Netze and the German Neural

Networks Society in connection to GCPR 2013, September 2013, pp. 25–

34.

[ADY+14] Anton Akusok, David Veganzones, Yoan Miche, Eric Séverin, and

Amaury Lendasse, Finding Originally Mislabels with MD-ELM, Pro-

ceedings of ESANN2014: 22nd European Symposium on Artificial Neu-

ral Networks, Computational Intelligence and Machine Learning, i6doc,

Bruges, Belgium, 23-25 April 2014, pp. 689–694.

[AMB+16a] Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Paula Lauren,

and Amaury Lendasse, ELMVIS+: Improved Nonlinear Visualization

Technique Using Cosine Distance and Extreme Learning Machines, Pro-

ceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications

(II) (Jiuwen Cao, Kezhi Mao, Jonathan Wu, and Amaury Lendasse,

eds.), Springer International Publishing, Cham, 2016, pp. 357–369.

7

[AMB+16b] , Evaluating Confidence Intervals for ELM Predictions, Proceed-

ings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II)

(Jiuwen Cao, Kezhi Mao, Jonathan Wu, and Amaury Lendasse, eds.),

Springer International Publishing, Cham, 2016, pp. 413–422.

Not included in the thesis

[CAK+15] Colin Swaney, Anton Akusok, Kaj-Mikael Björk, Yoan Miche, and

Amaury Lendasse, Efficient Skin Segmentation via Neural Networks: HP-

ELM and BD-SOM, INNS Conference on Big Data 2015 Program San

Francisco, CA, USA 8-10 August 2015 53 (2015), 400–409.

[EGA+15] Emil Eirola, Andrey Gritsenko, Anton Akusok, Kaj-Mikael Björk, Yoan

Miche, Dusan Sovilj, Rui Nian, Bo He, and Amaury Lendasse, Extreme

Learning Machines for Multiclass Classification: Refining Predictions

with Gaussian Mixture Models, Advances in Computational Intelligence

(Ignacio Rojas, Gonzalo Joya, and Andreu Catala, eds.), Lecture Notes

in Computer Science, vol. 9095, Springer International Publishing, 2015,

pp. 153–164 (English).

8

[GMA+14] Alexander Grigorievskiy, Maarit Mantere, Anton Akusok, Eirola Eirola,

and Amaury Lendasse, Forecasting the Outbursts of the Photometry Light

Curve of Star V363 Lyr, Proceedings of International Work Conference

on Time Series Analysis (Ignacio Rojas Ruiz and Gonzalo Ruiz Garcia,

eds.), vol. 1, June 2014, pp. 520–531.

[LAS+13] Amaury Lendasse, Anton Akusok, Olli Simula, Francesco Corona, Mark

van Heeswijk, Emil Eirola, and Yoan Miche, Extreme Learning Machine:

A Robust Modeling Technique? Yes!, Advances in Computational Intelli-

gence (Ignacio Rojas, Gonzalo Joya, and Joan Gabestany, eds.), Lecture

Notes in Computer Science, vol. 7902, Springer Berlin Heidelberg, 2013,

pp. 17–35 (English).

[MAV+15] Yoan Miche, Anton Akusok, David Veganzones, Kaj-Mikael Björk, Eric

Séverin, Philippe du Jardin, Maite Termenon, and Amaury Lendasse,

SOM-ELM—Self-Organized Clustering using ELM, Neurocomputing 165

(2015), 238 – 254.

[MCA+12] Yoan Miche, Tatiana Chistiakova, Anton Akusok, Amaury Lendasse,

Rui Nian, and Alberto Guillén, Fast Variable Selection for Memetracker

Phrases Time Series Prediction, Proceedings of the 5th International

Conference on PErvasive Technologies Related to Assistive Environments

(New York, NY, USA), PETRA ’12, ACM, 2012, pp. 47:1–47:6.

9

[MOH+16] Yoan Miche, Ian Oliver, Silke Holtmanns, Anton Akusok, Amaury

Lendasse, and Kaj-Mikael Björk, On Mutual Information over Non-

Euclidean Spaces, Data Mining and Data Privacy Levels, Proceedings of

ELM-2015 Volume 2: Theory, Algorithms and Applications (II) (Jiuwen

Cao, Kezhi Mao, Jonathan Wu, and Amaury Lendasse, eds.), Springer

International Publishing, Cham, 2016, pp. 371–383.

[SEM+16] Dusan Sovilj, Emil Eirola, Yoan Miche, Kaj-Mikael Björk, Rui Nian, An-

ton Akusok, and Amaury Lendasse, Extreme learning machine for missing

data using multiple imputations, Neurocomputing 174, Part A (2016),

220 – 231.

10

CHAPTER 2
THEORY OF EXTREME LEARNING MACHINES

Extreme Learning Machines [HZS04, HZS06, HZDZ12, Co13] (ELM) as an

important emergent Machine Learning techniques, are proposed for both ”general-

ized” Single-Layer Feed-forward Networks (SLFNs) [HZS04, HZDZ12, HCS06, Hua15,

Hua14] and multi layered feedforward networks [Hua15]. Unlike traditional learn-

ing theories and learning algorithms, ELM theories show that hidden neurons need

not be tuned in learning and their parameters can be independent of the training

data, but nevertheless ELMs have universal approximation and classification proper-

ties [HCS06, Hua15, Hua14]. In most cases, the ELM hidden neurons can be randomly

generated, which means that all the parameters of the hidden neurons (e.g., the input

weights and biases of additive neurons, the centres and the impact factors of RBF

nodes, frequencies and the shift of Fourier series, etc) can be randomly generated

and therefore also independent of the training data. Some related efforts had been

attempted before [Whi89, Whi06, PPS94] with parts of SLFN generated randomly

or taken from a subset of data samples [WMR92], however, they either lack proof of

the universal approximation capability for fully randomized hidden neurons, or can

be considered as specific cases of ELM [IP95]. ELM, consisting of a wide type of

feed forward neural networks, is the first method [Hua15, Hua14] which can univer-

sally approximate any continuous function with almost any nonlinear and piecewise

continuous hidden neurons.

A distinct property of ELM is the non-iterative linear solution for the output

11

weights, which is possible because there is no dependence between the input and

output weights like in the Back-propagation [Hay98] training procedure. A non-

iterative solution of ELMs provides a speedup of 5 orders of magnitude compared to

Multilayer Perceptron [Ros58] (MLP) or 6 orders of magnitude compared to Support

Vector Machines [CV95] (SVM), as shown in section 2.3.4.

ELM originally belongs to the set of regression methods [HZS04, HMZ+06].

The universal approximation property implies that an ELM can solve any regression

problem with a desired accuracy, given that it has enough hidden neurons and train-

ing data to learn the parameters for all the hidden neurons. ELMs are also easily

adapted for classification problems [HZDZ12]. For multiclass classification, the index

of the output node with the highest output indicates the predicted label of input.

Then the predicted class is assigned by the maximum output of an ELM. Multi-label

classification [TK07] is handled similarly, but the predicted classes are assigned by

all outputs, which are greater than some threshold value.

Extreme Learning Machines are well suited for dealing with Big Data [ZOT14]

problems because their solution is so rapidly obtained and memory requirements do

not grow with data size. Indeed, they are used for analyzing Big Data [AMH+14,

AAAY13, AMK+15, HBKV15]. A GPU acceleration [vML+09, vMOL11] significantly

speeds up the computations.

Extreme Learning Machines also benefit greatly from model structure selec-

tion and regularization, which reduces possible negative effects of random initializa-

tion and over-fitting. The methods include L1 [MBJ+08, MSB+10] and L2 [MvB+11]

12

regularization, as well as other methods [YME+13] like handling imbalance classifi-

cation [ZHC13]. The problem is again the absence of ready to use toolboxes, which

are focused on particular existing methods [MSB+10].

13

2.1 Basic Extreme Learning Machine

An ELM is a fast training method for SLFN networks (Figure 2.1). A SLFN

has three layers of neurons, but the name Single comes from the only layer of nonlinear

neurons in the model: the hidden layer. Input layer provides data features and

performs no computations, while an output layer is linear without a transformation

function or bias.

In the ELM method, input layer weights W and biases b are set randomly

and never adjusted (random distribution of the weights is discussed in section 4.2.1).

Because the input weights are fixed, the output weights β are independent of them

(unlike in Back-propagation [Hay98] training method) and have a direct solution

without iteration. For a linear output layer, such solution is also linear and very fast

to compute.

Random input layer weights improve the generalization properties of the so-

lution of a linear output layer, because they produce almost orthogonal (weakly cor-

related) hidden layer features. The solution of a linear system is always in a span of

inputs. If the range of solution weights is limited, orthogonal inputs provide a larger

solution space volume with these constrained weights. Small norms of the weights

tend to make the system more stable and noise resistant as errors in input will not

be amplified in the output of the linear system with smaller coefficients. Thus ran-

dom hidden layer generates weakly correlated hidden layer features, which allow for

a solution with a small norm and a good generalization performance.

A formal description of an ELM is the following. Consider a set of N distinct

14

training samples (xi, ti), i ∈ J1, NK with xi ∈ Rd and ti ∈ Rc. Then a SLFN with L

hidden neurons has the following output equation:

L∑
j=1

βjφ(wjxi + bj), i ∈ J1, NK, (2.1)

with φ being the activation function (a sigmoid function is a common choice, but

other activation functions are possible including linear) [HZDZ12, Hua15, Hua14], wi

the input weights, bi the biases and βi the output weights.

The relation between inputs xi of the network, target outputs ti and estimated

outputs yi is:

yi =
L∑
j=1

βjφ(wjxi + bj) = ti + εi, i ∈ J1, NK, (2.2)

where ε is noise. Here the noise includes both random noise and dependency on

variables not presented in the inputs X.

Hidden Neurons

Hidden neurons transform the input data into a different representation. The

transformation is done in two steps. First, the data is projected into the hidden layer

using the input layer weights and biases. Second, the projected data is transformed.

A nonlinear transformation function greatly increases the learning capabilities of an

ELM, because it is the only place where a nonlinear part can be added in ELM

method. After transformation, the data in the hidden layer representation h (see

Figure 2.1) is used for finding output layer weights.

The hidden layer is not constrained to have only one type of transformation

15

Σ

Σ

b1

w2,1

w3,1

x1

x3

x2

bias

β1,1

β5,1

w1,1

t1

t2

h1

h2

h3

h4

h5

f

f

f

f

f

Figure 2.1: Computing the output of an SLFN (ELM) model.

function in neurons. Different functions can be used (sigmoid, hyperbolic tangent,

threshold, etc.) [HZDZ12, Hua15, Hua14]. Some neurons may have no transformation

function at all. They are linear neurons, and learn linear dependencies between data

features and targets directly, without approximating them by a nonlinear function.

Usually the number of linear neurons equals the number of data features, and each of

these neurons copy the corresponding feature (by using an identity W and zero b).

Another type of neurons commonly present in ELMs is the Radial Basis Func-

tion (RBF) neurons [CCG91]. They use distances to centroids as inputs to the hidden

layer, instead of a linear projections. The nonlinear projection function is applied as

usual. ELMs with RBF neurons compute predictions based on similar training data

16

samples, which helps solving tasks with a complex dependency between data features

and targets. Any function (norm) of distances between samples and centroids can be

used, for instance L2, L1 or L∞ norms.

Matrix Form of ELMs

Practically, ELMs are often solved in a matrix form with a closed form solution.

An implementation with matrices is easy to write and fast to run on computers. An

ELM is written in a matrix form by gathering outputs of all hidden neurons into a

matrix H as in equation 2.3. A graphical representation is shown in Figure 2.2. The

matrix form of ELMs is used hereafter.

H =

φ(w1x1 + b1) · · · φ(wLx1 + bL)
...

. . .
...

φ(w1xN + b1) · · · φ(wLxN + bL)

 , (2.3)

β =
(
βT1 · · ·βTL

)T
, T =

(
tT1 · · · tTN

)T
. (2.4)

Although the ELM procedure include a training aspect, like other neural net-

works, the network structure itself is not noticeable in practice. Mathematically, there

are only matrices describing the projection between the two linear spaces. Thus an

ELM is viewed as two projections: input XW and output Hβ, with a (nonlinear)

transformation between them H = φ(XW + eTb). The number of hidden neurons

regulates the size of matrices W, H and β; but the network neurons are never treated

separately.

With different types of hidden neurons, the first projection and transformation

17

x1

x3

x2

biasN×1

XN×d

f

f

f

f

f

Wd×L BL×c

HN×L

Σ

Σ
TN×c

t1

t2

Figure 2.2: A matrix form of an ELM.

are performed independently for each type of neurons. Then the resulted sub-matrices

H1 are concatenated along the second dimension. For two types of hidden neurons:

H = [H1 | H2] = [φ1(XW1 + eTb1) | φ2(XW2 + eTb2)]. (2.5)

Linear neurons are added into ELM by simply copying inputs into the hidden

layer outputs:

H = [H1 | H2 | X] = [φ1(XW1 + eTb1) | φ2(XW2 + eTb2) | X]. (2.6)

18

Theoretical Guarantees of Extreme Learning Machines

With the previous notations, the following theorem 2.1 is proposed in [HZS06],

which is the pillar of the ELM idea. The theorem states that with randomly initialized

input weights and biases for the SLFN, and under the condition that the activation

function is infinitely differentiable, then the hidden layer output matrix can be de-

termined and will provide an approximation of the target values with arbitrary small

noise ε.

Theorem 2.1. Given any ε > 0 and an activation function φ : R 7→ R infinitely

differentiable in any interval, there exists L < N such that for N distinct samples

(xi, ti),xi ∈ Rd, ti ∈ Rc, for any wj ∈ Rd and bj ∈ R, ||H[N×L]β[L×c] −T[N×c]|| < ε.

The way to calculate the output weights β from the knowledge of the hidden

layer output matrix H and target values T, is proposed with the use of a Moore-

Penrose generalized inverse of the matrix H, denoted as H† [RM72]. This proposed

solution has three main properties making it an appealing solution:

1. It is one of the least-squares solutions of the equation Hβ = T, hence the mini-

mum training error can be reached with this solution.

2. It is the solution with the smallest norm among the least-squares solutions.

3. The smallest norm solution among the least-squares solutions is unique and it is

β = H†T.

Theoretical proofs and a more thorough presentation of the ELM algorithm

are detailed in the original paper [HZS06]. In Huang et al.’s later work it has been

19

proved that the ELM is able to perform universal function approximation [HCS06].

ELM Solution with Pseudo-inverse

Most often, an ELM problem is over-determined (N > L), with the number

of training data samples larger than the number of hidden neurons. For determined

(N = L) and under-determined (N < L) instances, ELM should use regulariza-

tion [HZDZ12]. Otherwise it overfits and has a poor generalization performance.

A unique solution for an over-determined system is given by a minimum L2

norm of the training error. It may be found using the Moore-Penrose generalized

inverse [RM72] (pseudoinverse) of the matrix H, denoted as H†. As the matrix H

has a full column rank, the pseudoinverse is computed as in equation (2.9).

Hβ = T (2.7)

β = H†T (2.8)

H† = (HTH)−1HT , (2.9)

The pseudoinverse is prone to numerical instabilities if the matrix HTH is

close to singular. Practically (in Matlab R© and Python), the implementations of the

pseudoinverse include a small regularization term H† = (HTH+αI)HT where α = 50ε

and ε is the machine precision for a used type of floating point numbers. Adding a reg-

ularization term makes matrix HTH non-singular, and the same solution applicable

also for determined and under-determined systems.

20

Classification with ELMs

An ELM is a regression model, but it is easily adapted for classification. To

classify a dataset with ELM, data targets need to be set in a special encoding manner.

If the classes are categorical and independent, then one target feature is created

for each class. Targets for the correct classes are set to one, and targets for irrelevant

classes are set to zero. This encoding creates a unit length vector for each class,

which is orthogonal to vectors of all other classes. Distances between target vectors

of different classes are the same, so the class independence is kept. The predicted

class is assigned according to the target with the largest ELM output.

If the classes are ordinal and have a ranking, then they are translated into real

numbers. Only one target feature is used for all the classes, and a predicted class is

the one with the closest number to an ELM output.

In a multi-label problem, a sample can have multiple correct classes. The

targets are created similarly as in the independent classes problem formulation. The

predicted classes are assigned for all ELM outputs greater than a threshold value.

Using ELM for classification with independent classes changes the way how the

prediction error is calculated. The classification error does not penalize (or encourage)

small changes in the ELM output values, which do not lead to a different classification.

This makes a difference in the model structure selection (described in section 2.1),

where an optimization w.r.t. the MSE regression error finds an incorrect optimal

number of hidden neurons, and creates a model with a sub-optimal classification

prediction performance.

21

Model Structure Selection in ELMs

Model structure selection prevents ELM from learning noise from data and

over-fitting. It does so by artificially limiting the learning ability of an ELM. A

training dataset has multiple instances of inputs, and the corresponding targets, which

are generated by the projected data and an added noise. The noise term includes

both random noise and projection from features not present in the inputs. Learning

particular data samples together with the associated noise is called over-fitting. An

over-fitted ELM model has worse generalization performance (prediction performance

on new data), which can be measured using a validation set of data. A model structure

selection process finds an optimal generalization performance by changing the amount

of model parameters or applying regularization to the model.

A hyper-parameter of ELMs, which governs the amount of effective parame-

ters, is the number of hidden neurons L. The optimum number of neurons is found

with a validation set, a cross-validation procedure or a Leave-One-Out validation

procedure [SLWV03] (which has an efficient solution in ELMs). Hidden neurons can

be added and removed randomly, or they can be ranked by their relevance to the

problem. This ranking is called ”Optimal Pruning” [MSB+10] and it achieves better

performance with a trade-off of a longer runtime. Neuron pruning methods corre-

spond to L1-regularization.

Another model structure selection technique available in ELMs is the Tikhonov

regularization [Tik63]. It reduces an effective number of model parameters by re-

ducing the influence of neuron outputs without removing neurons by themselves.

22

Tikhonov regularization is efficient for achieving numerical stability in near-singular

ELMs (and linear problems in general). This regularization corresponds to L2-

regularization, and can be combined with L1 to achieve the best results [MvB+11].

Model structure selection is less important in Big Data tasks, because with a

large number of samples an ELM model learns to ignore noise. Large tasks are often

complex enough not to overfit even at the limits of the hardware. Also, most model

structure selection methods significantly increase runtime, which is a limiting factor

for training large ELM models.

23

2.2 L1-regularized ELM

An ELM algorithm can have some issues when encountering irrelevant or cor-

related data. For this reason, an L1 regularization is applied on the hidden layer

neurons, possibly pruning out some of them. The resulted L1-regularized ELM is

widely known as an Optimally-Pruned ELM [MBJ+08, MSL08] (OP-ELM). The OP-

ELM extends the original ELM algorithm and wraps this extended algorithm within

a methodology using a pruning of the neurons, leading to a more robust overall

algorithm. Pruning of neurons in a network built using ELM has been proposed

in [ROTZ08] for classification purposes, and using statistical tests as a measure of

relevance of the neurons regarding the output. The OP-ELM presented here applies

to both classification and regression problems and uses a Leave-One-Out criterion for

the selection of an appropriate number of neurons.

The Problem of ELM with Irrelevant Variables

An ELM models tend to have problems when irrelevant or correlated variables

are present in the training data set. As an illustration of this, a toy example with two

cases, without and with an irrelevant variable, are tested and compared. Figure 2.3

shows the ELM model obtained by training on the sum of sines example. In this case,

the ELM model fits very well to the training data, with no apparent perturbation or

distortion.

On Figure 2.4, an additional variable containing a pure Gaussian noise, totally

unrelated to the actual data, is also used as an input. The additional noise variable is

24

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−2

0

2

x

S
u
m

 o
f

T
w

o
 S

in
e
s

Figure 2.3: An example of training result using ELM on a sum of two sines. Blue

dots represent the ELM model fitting the data points (gray crosses).

not shown in the figure. The ELM model on top of the data is much more spread and

approximate than in the previous case. Overall, the global fitting of the ELM model

to the actual data is not as good as before. For this reason, it is proposed in the

OP-ELM methodology to perform a pruning of the irrelevant variables, via pruning

of the related neurons of the SLFN built by the ELM.

2.2.1 Optimally-Pruned ELM (OP-ELM)

The OP-ELM is made of three main steps summarized in Figure 2.5. The very

first step of the OP-ELM methodology is the actual construction of the SLFN using

the original ELM algorithm with a lot of neurons.

Second and third steps are presented in more details in the next two subsec-

tions and are meant for an effective pruning of the possibly useless neurons of the

SLFN: Multi-Response Sparse Regression [ST05] (MRSR) algorithm allows obtaining

a ranking of the neurons according to their usefulness, while the actual pruning is

25

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−2

0

2

x

S
u
m

 o
f

T
w

o
 S

in
e
s

Figure 2.4: An example using the same sum of sine as in Figure 2.3 and an additional

noisy variable (not represented here) for training. The obtained ELM model is much

more spread and approximate, due to the irrelevant variable included.

Figure 2.5: The three steps of the OP-ELM algorithm.

performed using the results of the Leave-One-Out validation.

The OP-ELM algorithm uses a combination of three different types of kernels,

for robustness and more generality, where the original ELM proposed to use only

sigmoid kernels. The used types are linear, sigmoid and Gaussian (RBF) kernels.

Having a linear kernel included in the network helps when the problem is linear or

nearly linear. The Gaussian kernels have their centers taken randomly from the data

points, similarly as in [PG90], and widths randomly drawn between percentile 20

percent and percentile 80 percent of the distance distribution of the input space, as

26

suggested in [CSFS02]. The sigmoid weights are drawn randomly from a uniform

distribution in the interval [−5, 5] in order to cover the whole zero mean and unit

variance data range.

The OP-ELM methodology can also handle multi-output and multi-class prob-

lems in both regression and classification using multiple inputs.

2.2.2 Multiresponse Sparse Regression: MRSR

In order to get rid of the useless neurons of the hidden layer, the Multi-

Response Sparse Regression, proposed by Timo Similä and Jarkko Tikka in [ST05],

is used.

The main idea of the algorithm is the following: Denote by H = [h1 . . .hL]

the N × L regressor matrix. MRSR adds each column of the regressor matrix one

by one to the model Yk = Hβk, where Yk = [yk1 . . .y
k
c] is the model approximation

of the targets. The Wk weight matrix has k nonzero rows at kth step of the MRSR.

With each new step a new nonzero row, and a new column of the regressor matrix is

added to the model. More specific details of the MRSR algorithm can be found from

the original paper [ST05].

It can be noted that the MRSR is mainly an extension of the Least Angle

Regression (LARS) algorithm [EHJT04] and hence, it is actually a variable ranking

technique, rather than a selection one. An important detail shared by the MRSR and

the LARS is that the ranking obtained is exact if the problem is linear. In fact, this

is the case with the OP-ELM, since the neural network built in the previous step is

27

linear between the hidden layer and the output. Therefore, the MRSR provides an

exact ranking of the neurons for our problem. Because of the exact ranking provided

by the MRSR, it is used in the output layer of an ELM to rank its hidden neurons.

2.2.3 Leave-One-Out (LOO) or PRESS Statistics in ELM

Since the MRSR only provides a ranking of the hidden neurons, the decision

over the actual best number of neurons for the model is taken using a Leave-One-Out

validation method.

One problem with the LOO error is that it can be very time consuming, if the

data set has a high number of samples. Fortunately, the PRESS (Predicted REsidual

Sum of Squares) statistics provide a direct and exact formula for the calculation of

the LOO error for linear models. See [Mye90] and [BBB98] for details of this formula

and its implementations:

εPRESS =
ti − hiβi

1− hiPhTi
, (2.10)

where P is defined as P = (HTH)−1 and H is the hidden layer output matrix.

The original PRESS formula from eq. (2.10) can be expressed in terms of ELM

output layer variables as

MSEPRESS =
1

N

N∑
i=1

(
ti − hi

(
HTH

)−1
hTi ti

1− hi (HTH)−1 hTi

)2

, (2.11)

which means that each observation is “predicted” using the other N − 1 observations

and the residuals are finally squared and summed up. Algorithm 2.1 proposes to

implement this formula in an efficient way, by matrix computations. Note that on

28

step 4, only diagonal elements of a matrix produce PHT need to be computed.

Algorithm 2.1 Allen’s PRESS algorithm, in a fast matrix form.

1: Compute the utility matrix C =
(
HTH

)−1
2: And P = HC;

3: Compute the pseudo-inverse β = CHT t;

4: Compute the denominator of the PRESS D = 1− diag
(
PHT

)
;

5: And finally the PRESS error ε = t−Hβ
D

;

6: Reduced to a MSE, MSEPRESS = 1
N

∑N
i=1 ε

2
i .

For a multi-output ELM with c output neurons the PRESS formula is ex-

pressed in a matrix notation as:

MSEPRESS =
1

Nc

N∑
n=1

c∑
k=1

(
T−H

(
HTH

)−1
HTT[

1N − diag
(
H (HTH)−1 HT

)]
1Tc

)2

ik

, (2.12)

A fast matrix computation is similar to Algorithm 2.1, with a two-dimensional PRESS

error ε[N×c] on step 5.

The final decision over the appropriate number of neurons for the model can

then be taken by evaluating the LOO error versus the number of neurons used. Here,

the neurons are already ranked by the MRSR.

In order to give an overview of the usefulness of the ranking step performed

by the MRSR algorithm, the final model structure selection for the OP-ELM model

using the Ailerons data set (see Section 2.2.4) is shown in Figure 2.6.

29

20 40 60 80 100 120 140

4

5

6

7

8

9
x 10

−8

Number of Neurons

L
O

O
 E

rr
o
r

Figure 2.6: Comparison of LOO error with and without the MRSR ranking. The

solid blue line represents the LOO error without and the dashed orange one with the

MRSR ranking.

It can be noted from Figure 2.6 that the OP-ELM benefits greatly from the

MRSR ranking step. The convergence is faster, because the LOO error gets to the

minimum faster when the MRSR is used than when it is not. Also, the number of

neurons is far less in the LOO error minimum point when using the MRSR ranking,

thus leading to a smaller network with the same performance.

In the end, a SLFN possibly using a mix of linear, sigmoid and Gaussian

kernels is obtained, with a highly reduced number of neurons, all within a small

computational time.

2.2.4 Experiments

In the following, five methodologies are compared using several regression and

classification tasks. The compared methods are Gaussian Processes [Ras04] (GP),

30

Support Vector Machines [CV95] (SVM), Multi-Layer Perceptron [Bis96] network

(MLP) trained with error back-propagation algorithm, the original Extreme Learning

Machine algorithm (ELM) and the proposed Optimally-Pruned ELM (OP-ELM).

Data Sets

Fifteen different data sets have been chosen for the experiments, eleven for

regression and four for classification problems. The data sets are collected from the

UCI Machine Learning Repository [Lic13] and they have been chosen by the overall

heterogeneity in terms of number of samples, variables and classes for classification

problems.

Table 2.1 summarizes the different attributes for the fifteen data sets. All data

sets have been pre-processed in the same way. 10 different random permutations of

the whole data set are taken without replacement, and two thirds are used to create

the training set and the remaining third is used for the test set. Then, the training

set is normalized, zero mean and unit variance, and the test set is also normalized

using the same mean and variance used for the training set. Because the test set is

normalized using the same normalization parameters than for the training, it is most

likely not exactly zero mean and unit variance.

It should also be noted that the proportions of the classes, for the classifications

cases, have been kept balanced: each class is represented in an equal proportion, in

both training and test sets. This is important in order to have relevant test results.

31

Table 2.1: Information about the selected data sets. Number of variables and number

of samples for both training and testing, two-thirds of the whole set for training and

one third for test. For classification problems, the variables column also includes the

number of classes in the data set.

Samples
Regression # of Variables Train Test
Abalone 8 2784 1393
Ailerons 5 4752 2377
Elevators 6 6344 3173
Computer 12 5461 2731
Auto price 15 106 53
CPU 6 139 70
Servo 4 111 56
Breast Cancer 32 129 65
Bank 8 2999 1500
Stocks 9 633 317
Boston 13 337 169

Classification
Iris 4/3 100 50
Wisconsin Breast Cancer 30/2 379 190
Pima Indians Diabetes 8/2 512 256
Wine 13/3 118 60

32

Experiments

Experiments have been conducted using the online versions of the method-

ologies, unaltered. All experiments have been run on the same x86 64 Linux ma-

chine with at least 4GB of memory (no swapping for any of the experiments) and

2+GHz processor. It should be noted that even though some methodologies are

using parallelization of the tasks, the computational times are reported considering

single-threaded execution on one single core, for the sake of comparisons. The hyper-

parameters for the SVM and the MLP are selected using a 10-fold Cross-Validation.

The SVM is performed using the SVM toolbox [CL11] with the default settings

for the hyper-parameters and the grid search: the grid is logarithmic between 2−2 and

210 for each hyper-parameter; nu-SVC has been used for classification and epsilon-

SVR for regression, with radial basis function kernel. The original grid search has

been replaced by a parallelization process, which distributes parts of the grid over

different machines.

The MLP [Bis96] is performed using a Neural Network toolbox, which is part

of the Matlab c© software from the Mathworks. The training of the MLP is performed

using the Levenberg-Marquardt backpropagation. In order to decrease the possibility

of local minima with the MLP, the training is repeated 10 times for each fold and the

best network according to the training error is selected for validation. For example, in

order to validate the MLP network using 12 hidden neurons, we have to train a total

of 100 MLP networks with 12 hidden neurons to evaluate the validation error. This

procedure is done for each number of hidden nodes from 1 to 20 and the appropriate

33

number according to the validation MSE is selected.

The Gaussian Processes is performed using a gpml toolbox for Matlab c© from

Rasmussen and Williams [RW06]. The GP is performed using the default settings

taken from the examples of usage of the toolbox.

Finally, the OP-ELM was used with all possible kernels, linear, sigmoid and

gaussian, using a maximum number of 100 neurons.

Computational Times

Computational times are first reviewed for all five methodologies. Tables 2.2

and 2.3 give the computational times for training and test steps (sum of both), for

each methodology. It can be noted that for all five methodologies, the computational

times for the test steps are negligible compared to the training times; this is especially

clear for large training times, like the SVM or MLP ones.

According to Tables 2.3 and 2.2, the ELM is the fastest algorithm by several

orders of magnitude compared for example to the SVM. This is in line with the

claims of the ELM authors. The proposed OP-ELM is between one and three orders

of magnitude slower than the original ELM, but still much faster than the rest of the

compared methods in all data sets.

However, the ranking of the SVM, MLP and GP regarding the computational

times is not exactly the same in all data sets, but in every case they are clearly slower

than the ELM and OP-ELM.

The main reason, why the OP-ELM has been designed in the first place, is

34

Table 2.2: Computational times (in seconds) for all five methodologies on the re-

gression data sets. Algorithms have been sorted by computational time. ”Auto P.”

stands for Auto Price data set and ”Breast C.” for Breast Cancer data set.

Abalone Ailerons Elevators Computer Auto P. CPU

SVM 6.6e+4 4.2e+2 5.8e+2 3.2e+5 2.6e+2 3.2e+2
MLP 2.1e+3 3.5e+3 3.5e+3 8.2e+3 7.3e+2 5.8e+2
GP 9.5e+2 2.9e+3 6.5e+3 6.3e+3 2.9 3.2
OPELM 5.7 16.8 29.8 26.2 2.7e-1 2.0e-1
ELM 4.0e-1 9.0e-1 1.6 1.2 3.8e-2 4.2e-2

Servo Breast C. Bank Stocks Boston

SVM 1.3e+2 3.2e+2 1.6e+3 2.3e+3 8.5e+2
MLP 5.2e+2 8.0e+2 2.7e+3 1.2e+3 8.2e+2
GP 2.2 8.8 1.7e+3 4.1e+1 8.5
OPELM 2.1e-1 4.2e-1 8.03 1.54 7.0e-1
ELM 3.9e-2 4.8e-2 4.7e-1 1.1e-1 7.4e-2

Table 2.3: Computational times (in seconds) compared for all five methodologies for

classification data sets. ”Wisc. B.C.” for Wisconsin Breast Cancer data set and

”Pima I.D.” for Pima Indians Diabetes data set.

Iris Wisc. B.C. Pima I.D. Wine

SVM 2.3e+2 2.9e+3 3.3e+3 3.8e+2
MLP 7.6e+2 1.7e+3 4.1e+2 1.2e+3
GP 7.6e-1 6.1 5.8 1.9
OPELM 7.4e-2 1.1 9.6e-1 4.4e-1
ELM 2.4e-2 4.3e-2 4.8e-2 2.7e-2

35

to add more robustness to the very simple and fast ELM algorithm. Experimental

results for this robustness are presented in the next subsection through test results.

Test Errors

Because the validation results, while providing a good measure of the model

fit to the data, do not measure the actual interpolation properties of the model, only

the test results for the five models are presented in Tables 2.4 and 2.5.

According to the test results, the SVM is very reliable on average. Meanwhile,

as mentioned earlier, the ELM can have good results with respect to its computational

speed. But also, it can have very high Mean Square Errors on some test sets, for

example in Auto price and CPU data sets.

In this regard, the OP-ELM manages to keep a good MSE, when comparing

to other algorithms, and even rather close to the performance of the SVM (and of

the GP) on many data sets used in the experiments. This comforts the earlier claims

that the OP-ELM keeps a part of the speed of the ELM and, therefore, is much faster

than most common algorithms, while remaining robust and accurate and providing

good interpolation models.

Finally, in order to give an overview of the pruning result for the OP-ELM,

Table 2.6 lists the selected neurons for two data sets, one for regression and one for

classification, namely Ailerons and Iris.

One can see that the total number of kept neurons is fairly stable, and so is

36

Table 2.4: Mean Square Error results in boldface (and standard deviations in regular)

for all five methodologies for the regression data sets. ”Auto P.” stands for Auto Price

data set and ”Breast C.” for Breast Cancer data set.

Abalone Ailerons Elevators Computer Auto P. CPU

SVM 4.5 1.3e-7 6.2e-6 1.2e+2 2.8e+7 6.5e+3
2.7e-1 2.6e-8 6.8e-7 8.1e+1 8.4e+7 5.1e+3

OPELM 4.9 2.8e-7 2.0e-6 3.1e+1 9.5e+7 5.3e+3
6.6e-1 1.5e-9 5.4e-8 7.4 4.0e+6 5.2e+3

ELM 8.3 3.3e-8 2.2e-6 4.9e+2 7.9e+9 4.7e+4
7.5e-1 2.5e-9 7.0e-8 6.2e+1 7.2e+9 2.5e+4

GP 4.5 2.7e-8 2.0e-6 7.7 2.0e+7 6.7e+3
2.4e-1 1.9e-9 5.0e-8 2.9e-1 1.0e+7 6.6e+3

MLP 4.6 2.7e-7 2.6e-6 9.8 2.2e+7 1.4e+4
5.8e-1 4.4e-9 9.0e-8 1.1 9.8e+6 1.8e+4

Servo Breast C. Bank Stocks Boston

SVM 6.9e-1 1.2e+3 2.7e-2 5.1e-1 3.4e+1
3.3e-1 7.2e-1 8.0e-4 9.0e-2 3.1e+1

OPELM 8.0e-1 1.4e+3 1.1e-3 9.8e-1 1.9e+1
3.3e-1 3.6e+2 1.0e-6 1.1e-1 2.9

ELM 7.1 7.7e+3 6.7e-3 3.4e+1 1.2e+2
5.5 2.0e+3 7e-4 9.35 2.1e+1

GP 4.8e-1 1.3e+3 8.7e-4 4.4e-1 1.1e+1
3.5e-1 1.9e+2 5.1e-5 5.0e-2 3.5

MLP 2.2e-1 1.5e+3 9.1e-4 8.8e-1 2.2e+1
8.1e-2 4.4e+2 4.2e-5 2.1e-1 8.8

37

Table 2.5: Correct classification rates in boldface (and standard deviations in regular)

for all five methodologies for classification data sets. ”Wisc. B.C.” for Wisconsin

Breast Cancer data set and ”Pima I.D.” for Pima Indians Diabetes data set.

Iris Wisconsin B.C. Pima I.D. Wine

SVM 95.4 91.6 72.7 95.83
1.9 1.7 1.5 2.9

OPELM 95.0 95.6 74.9 90.7
2.1 1.3 2.4 4.9

ELM 72.2 95.6 72.2 81.8
1.01 1.2 1.9 6.2

GP 95.6 97.3 76.3 96.1
2.3 0.9 1.8 2.1

MLP 94.8 95.6 75.2 96.0
3.8 1.9 1.9 2.4

Table 2.6: Details of numbers of selected neurons in OP-ELM for the Delta Ailerons

and Iris data sets. L stands for linear neurons, S for sigmoid ones and G for Gaussian.

Ailerons Iris
Run # L S G Total L S G Total

1 5 50 25 80 2 16 6 24
2 5 50 30 85 3 17 4 24
3 5 49 21 75 2 16 6 24
4 5 50 45 100 2 8 4 14
5 5 50 40 95 2 13 4 19
6 4 43 13 60 2 4 3 9
7 5 48 17 70 2 7 5 14
8 4 36 10 50 2 5 2 9
9 5 50 45 100 2 10 2 14
10 3 27 5 35 2 13 4 19

the number of linear neurons. It is interesting to note that the amount of neurons

for each type is more stable for classification data sets than for regression one. On

38

average, the situation depicted here is globally similar for other data sets.

39

2.3 L1 and L2-regularized ELM

This section deals with a problem encountered in the original OP-ELM. The

Leave-One-Out criterion originally used in the OP-ELM for the pruning is very fast,

but raises numerical problems which possibly “disturb” the pruning strategy.

The proposed solution to this situation is by the use of L2 regularization in the

OP-ELM. The concept of regularization for regression problems using L1, L2 or other

norms-based penalties on the regression weights has been studied extensively (see

for example [EHJT04, GHW79, HK70, Owe06, ST05, Thi76, Tib96, Tik63, ZRY09,

ZH05]) and some of the most widely used methods are presented in section 2.3.1:

Lasso [Tib96], Tikhonov regularization [Tik63, HK70], but also hybrid penalties such

as the Elastic Net [ZH05] and the Composite Absolute Penalties [ZRY09].

While these penalties are either of only one kind (traditionally L1 or L2) or

used simultaneously (see Owen’s hybrid [Owe06] for example), an iterative use of both

regularizations is applied to ELM. An L1 penalty is first used to rank the neurons,

followed sequentially by an L2 penalty to prune the network accordingly. Section

2.3.3 details the approach used, by a modification of Allen’s PRESS statistic [All74].

2.3.1 The L2 penalty: Tikhonov Regularization

One possible approach to find a solution which deems a lower MSE than the

Ordinary Least Squares one is to use regularization in the form of Tikhonov reg-

ularization proposed in [Tik63] (a.k.a. Ridge Regression [HK70]). This time, the

minimization problem involves a penalty using the square of the regression coeffi-

40

cients

min
λ,w

[
N∑
i=1

(
ti − xTi w

)2
+ λ

L∑
j=1

w2
j

]
. (2.13)

Thanks to a bias–variance tradeoff, the Tikhonov regularization achieves better

prediction performance than the traditional OLS solution, and it outperforms the

Lasso solution in cases were the variables are correlated. One famous advantage of

the Tikhonov regularization is that it tends to identify/isolate groups of variables,

enabling further interpretability (this grouping can be very desirable for some data

sets, as mentioned in [ZH05]).

The major drawback of this regularization method is similar to one mentioned

for the OLS: it does not give any parsimonious solution since all variables are retained

due to the L2 penalty. Therefore the Tikhonov regularization does not select variables

directly, contrary to the Lasso which actually performs variable selection “internally”

(given that λ is large enough to set some coefficients to zero).

2.3.2 Hybrid Penalties

In an attempt to overcome the drawbacks of each of the two approaches,

hybrid solutions have been developed which use both the L1 and the L2 penalties in

the same minimization problem. Below are proposed three approaches that tackle

this problem: the Elastic Net [ZH05], the Composite Absolute Penalties [ZRY09],

and finally an original approach by Owen [Owe06] using an “inverted” Huber loss

function.

41

The Elastic Net

Zhou and Hastie in [ZH05] propose to alleviate the problems encountered by

the Tikhonov regularization (lack of sparsity) while keeping its good performance

thanks to the L2 penalty. This is done using a composite of the Lasso and Tikhonov

regularization, by combining the two penalties L1 and L2 in the form of a weighted

penalty

λ1
∑
|wj|+ λ2

∑
w2
j , (2.14)

with λ1 and λ2 positive (controlling the sparsity of the model). This version of the

penalty term is denoted as the “näıve” elastic net by the authors, which admits an

easily computed solution, provided that λ1 and λ2 are defined and already optimal.

As the authors mention in [ZH05], this näıve version of the algorithm is fast to obtain

and rather efficient, but creates a greater shrinkage effect (on the regression coeffi-

cients) than the original Lasso, which adds bias to the solution, while not reducing

significantly the variance of it. In the end, the näıve version only seems to work well

when it is close enough to the Tikhonov or Lasso case (i.e. λ1 very small or λ2 very

small).

The “normal” version of the elastic net is then a scaled näıve one: defining

T∗ = (T; 0L×1)
T , X∗ = 1√

1+λ2

(
X;
√
λ2 IL×L

)T
and w∗ =

√
1 + λ2w, the minimiza-

tion problem for the elastic net is then

min
w∗

[
N+L∑
i=1

(
t∗i − x∗Ti w∗

)2
+

λ1√
1 + λ2

L∑
j=1

|wj|
]
. (2.15)

The scaling performed allows to reduce the problem of shrinkage present in the näıve

42

version of the elastic net, while retaining the advantages of the original näıve approach

(e.g. the automatic variable selection).

In practice, the algorithm is implemented as a modification of the LARS al-

gorithm (the LARS-EN) since once λ2 is fixed, the computations are similar to that

of a Lasso.

While the LARS-EN is a very efficient way of implementing the elastic net

approach, it remains that two parameters need optimizing: λ1 and λ2. Usually, this

is done by the use of classical Cross-Validation (CV) which is unfortunately costly

for it requires a two-dimensional search, which is hardly feasible if one wants to keep

the ELM speed property.

Composite Absolute Penalty (CAP)

In [ZRY09], Zhao et al. propose to use a more generalized version of the

penalty term, by using a vector of penalties on which is computed a norm. Denoting

by

‖a‖γ =

(
1

N

N∑
i=1

|ai|γ
)1/γ

, (2.16)

the γ-norm of a vector a = (a1, . . . , aN)T for γ ∈ N∗, the method of Composite

Absolute Penalties (CAP) generalizes the concept used in the Elastic Net penalty to

∥∥∥(‖wG1‖γ1 , ‖wG2‖γ2 , . . . , ‖wGk
‖γk
)∥∥∥

γ0
, (2.17)

where Gj is a subset of {1, . . . , L} and wGj
is obtained by extracting the components

denoted in Gj from w.

It can be seen that the penalty term is therefore a γ0-norm on a vector of

43

penalties ‖wGi
‖γi . This general formulation of the penalty for example comes down

to the Lasso when γj = 1, ∀j.

While the generalization capability of the CAP approach is clear, the deter-

mination of the groups Gj and of the γj is time-consuming and prone to heuristics/a

priori information on the variables. Again, cross-validation is typically used for the

determination of the γj, leading to important computational times, again not “com-

patible” with the ELM speed.

Owen’s Hybrid

A slightly different approach is proposed by Owen in [Owe06], by the use of

an original loss function for the penalty. The problem is formulated as

min

[
N∑
i=1

L
(
ti − xTi w

)
+

L∑
j=1

P (wj)

]
, (2.18)

where the L (·) function can be assumed to be a 2-norm ‖·‖22 in this case. The emphasis

is here put on the P function, which is chosen (or more “designed”) to behave like an

absolute value function for small wj for sparse solutions to arise, and like a quadratic

function on large wj to retain the properties of the Tikhonov regularization.

The author proposes an “inverted” Huber loss function for that purpose. While

the Huber function is such that

H (z) =

z2 for |z| ≤ 1

2 |z| − 1 for |z| ≥ 1

, (2.19)

44

the “inverted” version (also scaled to accommodate thresholding) is given by

BM (z) =

|z| for |z| ≤M

z2+M2

2
for |z| ≥M

. (2.20)

The M value permits to choose where the transition between the absolute value

function and the quadratic one takes place.

The minimization problem ends up as a convex one, with a large number of

constraints (see [Owe06] for more details), which is unfortunately computationally

very expensive for significant data sets.

In the end, it can be noted that all the variants of the minimization problem

presented here are convex problems and have hence an optimal solution that is reach-

able by standard convex optimization techniques. Unfortunately, the large number

of parameters or constraints on the minimization problem makes it more difficult to

solve, and cross-validation is often used for the determination of the parameters. This

in turn implies large computational times.

While the properties of both the Lasso and the Tikhonov regularization are

desirable, the penalties combining both lead to complex minimization problems which

take too long for the application to OP-ELM. The following section 2.3.3 proposes to

use the two approaches in turn, instead of together, along with fast matrix computa-

tions.

45

2.3.3 Tikhonov Regularized OP-ELM (TROP-ELM)

Recently, Deng et al. in [DZC09] proposed a Regularized Extreme Learning

Machine algorithm, which is essentially a L2 penalized ELM, with a possibility to

weight the sum of squares in order to address outliers interference. Using the notations

from the previous section, the minimization problem is here

min
λ,d,w

[
λ

N∑
i=1

(
di
(
ti − xTi w

))2
+

L∑
j=1

w2
j

]
, (2.21)

where the di are the weights meant to address the outliers.

This extension of the ELM clearly (from the results in [DZC09]) brings a very

good robustness to outliers to the original ELM. Unfortunately, it suffers from the

problems related to L2 penalties, that is the lack of sparsity for example.

As described before, the original OP-ELM already implements a L1 penalty

on the output weights, by performing a LARS between the hidden and output layer.

It is here proposed to modify the original PRESS LOO criterion for the selection of

the optimal number of neurons by adding a Tikhonov regularization factor in the

PRESS, therefore making the modified PRESS LOO a L2 penalty applied on the L1

penalized result from the LARS.

In the following are used matrix operations such as A
B

to refer to the matrix

C such that (ci,j) =
ai,j
bi,j

. Also the diag (·) operator is used to extract the diagonal of

a matrix, diag (A) = (a1,1, . . . , an,n)T .

46

Tikhonov-Regularized PRESS (TR-PRESS)

The main drawback of the original PRESS statistics (section 2.2.3) lies in the

use of a pseudo-inverse in the calculation, which can lead to numerical instabilities

if the ELM hidden layer representation H is not full rank. This is unfortunately

very often the case, with real-world data sets. The following approach proposes two

improvements on the computation of the original PRESS: regularization and its fast

matrix calculation.

In [GHW79], Golub et al. note that the Singular Value Decomposition (SVD)

approach to compute the PRESS statistic is preferable to the traditional pseudo-

inverse mentioned above, for numerical reasons. In this very same paper is proposed a

generalization of Allen’s PRESS, as the Generalized Cross-Validation (GCV) method,

which is technically superior to the original PRESS, for it can handle cases were the

data is extremely badly defined —for example if all H entries are 0 except the diagonal

ones.

In practice, from our experiments, while the GCV is supposedly superior, it

leads to identical solutions with an increased computational time, compared to the

original PRESS and the Tikhonov-regularized version of PRESS presented below.

Algorithm 2.2 gives the computational steps used, in matrix form, to determine

the MSETR-PRESS (λ) from

MSETR-PRESS (λ) =
N∑
i=1

(
ti − hi

(
HTH + λI

)−1
hTi ti

1− hi (HTH + λI)−1 hTi

)2

, (2.22)

which is the regularized version of Equation (2.11).

Globally, the algorithm uses the SVD of H to avoid computational issues, and

47

Algorithm 2.2 Tikhonov-Regularized PRESS. In practice, the REPEAT part of this

algorithm (convergence for λ) is solved by a Nelder-Mead approach [NM65], a.k.a.

downhill simplex.

1: Decompose H by SVD: H = USVT ;

2: Compute the products (used later): A = XV and B = UT t;

3: repeat

4: Using the SVD of H, compute the C matrix by:

C = A×

S11

S2
11+λ

· · · 0
...

...
...

0 · · · SNN

S2
NN+λ

;

5: Compute the P matrix by: P = CB;

6: Compute D by: D = 1− diag
(
CUT

)
;

7: Evaluate ε = t−P
D

and the actual MSE by MSETR-PRESS = 1
N

∑N
i=1 ε

2
i ;

8: until convergence on λ is achieved

9: Keep the best MSETR-PRESS and the λ value associated.

introduces the Tikhonov regularization parameter in the calculation of the pseudo-

inverse by the SVD. This specific implementation happens to run very quickly, thanks

to the pre-calculation of utility matrices (A, B and C) before the optimization of λ.

In practice, the optimization of λ in this algorithm is performed by a Nelder-

Mead [NM65] minimization approach, which happens to converge very quickly on this

problem (fminsearch function in Matlab c©).

Through the use of this modified version of PRESS, the OP-ELM has an L2

penalty on the regression weights (regression between the hidden and output layer),

48

for which the neurons have already been ranked using an L1 penalty. Figure 2.7 is a

modified version of Figure 2.5 illustrating the TROP-ELM approach.

SLFN Construction
using ELM

Data Model
Ranking of the best
neurons by LARS:
 -regularization

Selection of the optimal number
of neurons by TR-PRESS:

 -regularization

Figure 2.7: The proposed regularized OP-ELM (TROP-ELM) as a modification of

Figure 2.5.

Figure 2.8 illustrates the effect of the regularization factor introduced in the

TR-PRESS: the Mean Square Error is more stable regarding the increase of the

number of neurons following the ranking provided by LARS (L1 penalty). The intro-

duction of the L2 penalty has a very visible regularization effect here (the situation

is similar for the other datasets), avoiding numerical instabilities, for example.

The following section provides a comparison of the modified OP-ELM (denoted

TROP-ELM for Tikhonov-Regularized OP-ELM) with the original OP-ELM on 11

different regression data sets from the UCI Machine Learning Repository [Lic13],

along with other classical Machine Learning methods.

2.3.4 Experiments

In order to compare the proposed TROP-ELM with the original OP-ELM

and other typical Machine Learning algorithms, eleven data sets from UCI Machine

49

10 20 30 40 50 60

5
6
7
8
9

10
11
12
13
14
15 x 10

6

Number of Neurons

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 2.8: Comparison of the MSE for the original OP-ELM and the proposed

TROP-ELM for Auto Price dataset for a varying amount of neurons. OP-ELM is

shown as grey dashed line, TROP-ELM as solid black line, and the neurons are ranked

by the LARS. The regularization enables here to have a more stable MSE along the

increase of the number of neurons.

Learning Repository [Lic13] have been used. They are chosen similarly to those in

section 2.2.4 for comparison purposes. Table 2.7 summarizes the details of each data

set.

The data sets have all been processed in the same way: for each data set, ten

different random permutations are taken without replacement; for each permutation,

two thirds are taken for the training set, and the remaining third for the test set

(see Table 2.7). Training sets are then normalized (zero-mean and unit variance)

and test sets are also normalized using the very same normalization factors than

50

Table 2.7: Details of the data sets used, along with the number of variables.

Abalone Ailerons Elevators Computer Auto P. CPU

of Variables 8 5 6 12 15 6
Training 2784 4752 6344 5461 106 139

Test 1393 2377 3173 2731 53 70

Servo Breast C. Bank Stocks Boston

of Variables 4 32 8 9 13
Training 111 129 2999 633 337

Test 56 65 1500 317 169

for the corresponding training set. The results presented in the following are hence

the average of the ten repetitions for each data set. This also enables to obtain an

estimate of the standard deviation of the results presented (see Table 2.8).

Experiments are performed using the available versions of the methodologies,

unaltered. All experiments have been run on the same x86 64 Linux machine with

at least 4 GB of memory (no swapping for any of the experiments) and 2+ GHz

processor. Also, even though some methodologies implementations are taking advan-

tage of parallelization, computational times are reported considering single-threaded

execution on one single core, for the sake of comparisons.

The SVM is performed using the SVM toolbox [CL11]; MLP [Bis96] is using

a neural network toolbox, part of the Matlab c© software from the MathWorks, Inc;

the GPML toolbox for Matlab c© from Rasmussen and Williams [RW06] is used for

the GP; finally, the OP-ELM was used with all possible kernels, linear, sigmoid, and

Gaussian, using a maximum number of 100 neurons and similarly for the TROP-ELM.

51

For more details on the parameters used for each toolbox, please refer to [MSB+10].

First are reported the Mean Square Errors (and standard deviations) for the

six algorithms tested. It can be seen that the proposed TROP-ELM is always at least

as good as the original OP-ELM, with an improvement on the standard deviation of

the results, over the ten repetitions for each data set (only for the Boston Housing

case is the standard deviation larger for the TROP-ELM than the OP-ELM): over the

eleven data sets, the TROP-ELM performs on average 27% better than the original

OP-ELM and gives a standard deviation of the results 52% lower than that of the

OP-ELM (also on average over the eleven data sets).

Also, the TROP-ELM is clearly as good (or better) as the GP in six out of

the eleven data sets —Ailerons, Elevators, Auto Price, Breast Cancer, Bank and

Boston— in which cases it has a similar (or lower) standard deviation of the results.

This with a computational time usually two or three orders of magnitude lower than

the GP.

Table 2.9 gives the computational times for each algorithm and each data set

(average of the ten repetitions). It can be seen that the TROP-ELM keeps computa-

tional times of the same order as that of the OP-ELM (although higher on average),

and remains several orders of magnitudes faster than the GP, MLP or SVM. Of course,

as for the OP-ELM, the computational times remain one to two orders of magnitude

above the original ELM.

Finally, Table 2.10 reports the average number of neurons (average over the

ten repetitions for each data set) selected for the final model structure of the OP-

52

Table 2.8: Mean Square Error results (boldface) and standard deviations (regular) for

all six methodologies for regression data sets. “Auto P.” stands for Auto Price and

“Breast C.” for Breast Cancer data sets.

Abalone Ailerons Elevators Computer Auto P. CPU

SVM 4.5 1.3e-7 6.2e-6 1.2e+2 2.8e+7 6.5e+3
2.7e-1 2.6e-8 6.8e-7 8.1e+1 8.4e+7 5.1e+3

MLP 4.6 2.7e-7 2.6e-6 9.8 2.2e+7 1.4e+4
5.8e-1 4.4e-9 9.0e-8 1.1 9.8e+6 1.8e+4

GP 4.5 2.7e-8 2.0e-6 7.7 2.0e+7 6.7e+3
2.4e-1 1.9e-9 5.0e-8 2.9e-1 1.0e+7 6.6e+3

ELM 8.3 3.3e-8 2.2e-6 4.9e+2 7.9e+9 4.7e+4
7.5e-1 2.5e-9 7.0e-8 6.2e+1 7.2e+9 2.5e+4

OP-ELM 4.9 2.8e-7 2.0e-6 3.1e+1 9.5e+7 5.3e+3
6.6e-1 1.5e-9 5.4e-8 7.4 4.0e+6 5.2e+3

TROP-ELM 4.8 2.7e-8 2.0e-6 2.4e+1 7.0e+6 4.1e+3
4.2e-1 1.5e-9 5.2e-8 6.2 2.2e+6 2.9e+3

Servo Breast C. Bank Stocks Boston

SVM 6.9e-1 1.2e+3 2.7e-2 5.1e-1 3.4e+1
3.3e-1 7.2e-1 8.0e-4 9.0e-2 3.1e+1

MLP 2.2e-1 1.5e+3 9.1e-4 8.8e-1 2.2e+1
8.1e-2 4.4e+2 4.2e-5 2.1e-1 8.8

GP 4.8e-1 1.3e+3 8.7e-4 4.4e-1 1.1e+1
3.5e-1 1.9e+2 5.1e-5 5.0e-2 3.5

ELM 7.1 7.7e+3 6.7e-3 3.4e+1 1.2e+2
5.5 2.0e+3 7.0e-4 9.35 2.1e+1

OP-ELM 8.0e-1 1.4e+3 1.1e-3 9.8e-1 1.9e+1
3.3e-1 3.6e+2 1.0e-6 1.1e-1 2.9

TROP-ELM 6.1e-1 1.1e+3 1.1e-3 8.4e-1 1.9e+1
2.2e-1 1.7e+2 3.4e-5 5.8e-2 4.4

53

Table 2.9: Computational times (in seconds) for all five methodologies on the regres-

sion data sets. “Auto P.” stands for Auto Price and “Breast C.” for Breast Cancer

data sets.

Abalone Ailerons Elevators Computer Auto P. CPU

SVM 6.6e+4 4.2e+2 5.8e+2 3.2e+5 2.6e+2 3.2e+2
MLP 2.1e+3 3.5e+3 3.5e+3 8.2e+3 7.3e+2 5.8e+2
GP 9.5e+2 2.9e+3 6.5e+3 6.3e+3 2.9 3.2

ELM 4.0e-1 9.0e-1 1.6 1.2 3.8e-2 4.2e-2
OP-ELM 5.7 16.8 29.8 26.2 2.7e-1 2.0e-1

TROP-ELM 12.2 14.6 44.3 13.9 4.8e-1 1.2

Servo Breast C. Bank Stocks Boston

SVM 1.3e+2 3.2e+2 1.6e+3 2.3e+3 8.5e+2
MLP 5.2e+2 8.0e+2 2.7e+3 1.2e+3 8.2e+2
GP 2.2 8.8 1.7e+3 4.1e+1 8.5

ELM 3.9e-2 4.8e-2 4.7e-1 1.1e-1 7.4e-2
OP-ELM 2.1e-1 4.2e-1 8.03 1.54 7.0e-1

TROP-ELM 8.4e-1 7.8e-1 4.4 1.1 1.5

ELM and TROP-ELM. It can be seen that only in the cases of Computer Activity

and Stocks data sets are all the neurons selected for the final model (which suggests

that a larger number of neurons given initially to the model might lead to better

results). Otherwise, the selected amount varies largely over the data sets and slightly

between the OP-ELM and TROP-ELM.

The effect of the L1 penalty is here obvious, on the number of neurons retained

in the final model structure (compared to the ELM or Regularized ELM, for example,

which are less parsimonious), while the L2 penalty introduced enables to regularize

the weights chosen and improve the performances of the final model.

54

Table 2.10: Average number of neurons selected for the final model for both OP-ELM

and TROP-ELM. Average computed over 10 repetitions with 100 initial neurons.

Abalone Ailerons Elevators Computer Auto P. CPU

OP-ELM 36 75 74 100 14 33
TROP-ELM 42 80 53 100 15 28

Servo Breast C. Bank Stocks Boston

OP-ELM 36 12 98 100 66
TROP-ELM 42 14 93 100 59

55

CHAPTER 3
NOVEL EXTENSIONS OF EXTREME LEARNING MACHINES

Extreme Learning Machine is an extremely fast method. Once the hyper-

parameters are found with some way of regularization, training a model takes mil-

liseconds for small datasets. Even for large datasets, finding the output weights is a

linear problem — and it allows to apply all sorts of tricks from linear algebra.

In general, Machine Learning methods are designed to be trained O(1) times.

A notable exception is linear model, but it cannot capture nonlinear dependencies by

its own nature. An ELM has both nonlinear power and a training speed approaching

that of a linear model. In practice, in a reasonable time (minutes to hours on a single

computer workstation, depending on a data size) for N data samples an ELM may be

fully re-trained O(N) times, or partially re-trained using some approximation even

an O(N2) times.

The ability of obtaining multiple trained models (and multiple prediction er-

rors, for example) provides possibilities to implement various algorithms that are

considered infeasible with other Machine Learning techniques. This chapter presents

two examples of such approaches, and lists further directions of research in its con-

cluding section.

56

3.1 Data Visualization with ELMs

Data visualization is an old problem in Machine Learning [LV07]. High-

dimensional data is ubiquitous in the modern world, but it stays virtually impen-

etrable for human analysis, except for images or video. For the exploratory data

analysis of an arbitrary high dimensional data, a suitable visualization should be cre-

ated. It is commonly restricted to two or three dimensions, which are easier to show,

but for the visualization to be useful it must be representative of the original data. As

plotting two- or three-dimensional data in preferred way is an easy task with modern

programming packages, the dimensionality reduction is the object of investigation of

this chapter.

The proposed ELM visualisation method, denoted ELMVIS for convenience,

maps the data points to some fixed points - prototypes, in the visualization space.

Their exact position is weakly relevant to data, and may be chosen arbitrarily, for

example as a grid or normally distributed points. Then the prototypes are randomly

assigned to data points, and an ELM is used to estimate the reconstruction error. To

find the visualization, several points are chosen, then their assignment is permuted,

and the error is re-estimated. Any better solution found is kept, otherwise the per-

mutation is abandoned. While the exact solution requires a factorial number of trials

(all possible permutations of N points), experiments show acceptable convergence

rate with up to several hundred points due to a fast reconstruction error estimation

with ELM. Benefits of the method are its generality and only one parameter being

the number of neurons in ELM which does not require exact tuning.

57

3.1.1 State of the Art

Various methods can be utilized for a data visualization task. A common

assumption in dimensionality reduction, and especially in data visualization, is that

the original data points lie on a low-dimensional manifold. If the assumption holds,

then the points of a manifold may be mapped onto a low-dimensional visualization

space with small information loss.

The naive dimensionality reduction method is variable (feature) selection, but

a few selected variables could present only a part of the data structure, if any. Other

dimensionality reduction methods optimize a selected criterion, with different criteria

resulting in two different algorithms.

Linear dimensionality reduction methods such as Principal Components Anal-

ysis (PCA) [Pea01] and linear Multidimensional Scaling (MDS) [Kru64] yield the

same results, as proven in [LV07]. Their criterion is variance maximization which

works for datasets with linear dependencies, but the general performance may be

poor.

If the variables are relevant but correlated (which is often the case), the di-

mensionality of data is higher than necessary. Then the same data could be explained

by a smaller set of transformed variables, and is said to lie on a manifold [LV07]. As

an example, one can imagine a camera rotating around an object at a fixed distance,

then the pictures of that camera would lie on a 2-dimensional manifold (sphere), while

their actual dimensions would be much higher. Many nonlinear dimensionality reduc-

tion methods, including those listed in the next section, aim to find and unfold such a

58

manifold using various cost functions and training algorithms. Even PCA would find

a manifold in the data, if the data is linear. Manifolds are commonly found by preserv-

ing the neighborhood in original and reduced spaces. Topology-preserving methods

that use graph distances, like Curvilinear Distance Analysis (CDA) [LLDV00, LLV04],

normally provide excellent results for un-foldable manifolds.

Without evident manifold structure, or if the dimensionality of manifold is

still higher than the one of a reduced space, topology-preserving methods lose their

point. And in a very high dimensional space, neighbourhood rank is a weak met-

ric [BGRS99]. This is caused by an empty space phenomenon [ST83] and the curse of

dimensionality, studied thoroughly in [BGRS99]. The problem comes from the change

of the distribution of distances between points in space as the dimensionality goes

up. Distances between points in a dataset are typically normally distributed. With

the increase of a space dimensionality, the mean of that normal distribution increases

whereas the variance stays the same. It causes the distribution to concentrate around

some value, and reduces the distance differences between various ranked neighbors,

making the nearest neighbors unstable already at 10-20 dimensions [BGRS99]. These

cases require a nonlinear dimensionality reduction method with general cost function

without other assumptions. The proposed Extreme Learning Machine (ELM)-based

visualization method uses natural reconstruction error, while the nonlinearity of ELM

provides the desired nonlinear projection.

The visualization methods may be divided into two major groups, separated by

whether they try to keep distances of topology structure. Distance-preserving meth-

59

ods include Multidimensional Scaling (MDS) [Kru64], which gives the same solution as

PCA; Sammon’s mapping [Sam69]; Curvilinear Component Analysis (CCA) [DH97];

Isomap [Ten98, TdL00]; Curvilinear Distance Analysis (CDA) [LLV04], and Kernel

PCA [SSSM98]. Topology preserving methods are Self-Organizing Maps (SOM) [Koh82];

Generative Topographic mapping (GTM) [BSW98]; Locally Linear Embedding (LLE) [RS00];

Laplacian Eigenmaps [BN01, BN03], Isotop [LAV03] and Neighbor Retrieval Visual-

izer (NeRV) [VPN+10]. Out of these, the three benchmark methods selected are

PCA, SOM and NeRV.

Visualization Quality Measures

There are different ways to measure and compare the quality of a visualization.

The Mean Squared Error (MSE) of reconstruction came from the dimensionality

reduction, and is a universal measure of quality. However, it requires a reversed

projection from visualization to the original data space, which not all the methods

can provide. So other quality measures are often used.

One of the common measures is precision and recall of a projection. It comes

from the classification task, where the definitions are:

Precision =
True Positives

True Positives + False Positives
(3.1)

Recall =
True Positives

True Positives + False Negatives
(3.2)

The visualization task has no classes, but they are created manually by set-

ting all points within a certain neighborhood as +1 class, and the others as −1

60

class [KP11], as shown on Figure 3.1. As in visualization both precision and recall

depend on the size of a neighborhood used for their calculation, which is not the case

in classification, other similar measures are used: continuity is similar to precision,

and trustworthiness to recall [VK01].

Figure 3.1: Four types of samples considered in calculating precision and recall, de-

fined for visualization. Stars are samples in the neighbourhood, and circles are the

ones outside.

Another method, called Mean Relative Rank Error (MRRE), is a neighborhood

preservation ratio. Based on the ideas from, among others, [GS96, BP92, BHV99],

and refined by [LV07], this measure displays the average normalized error in ranking

within k nearest neighbors. The normalization puts the measure in range between 0

and 1, where 0 corresponds to the perfect match of the first k neighbors, and 1 to

61

the replacement of the first k neighbors by the most distant k points. Depending in

which space the closest k neighbors are chosen for calculation, two MRRE ′s exist:

MRREX→V(k) can be compared to continuity, and MRREV→X(k) to trustworthi-

ness.

And the last but not the least, a plot of visualized points may be used as a

measure of goodness [LV07]. This is especially true if data points can be observed

directly such as with images, then the user can estimate the quality of clustering by

simply browsing the visualized data.

Principal Components Analysis

Principal Components Analysis (PCA) is a linear method, which has an exact

and relatively fast solution. Given the dataset X with N samples as rows of X and

d features as columns of X, PCA decomposes the covariance matrix Cxx into eigen-

vectors U and eigenvalues Λ. Eigenvalues of Λ are ranked from largest to smallest,

and the corresponding eigenvectors in U are placed accordingly.

Cxx = XTX = UTΛU (3.3)

V = XU:,1:k (3.4)

where V are points in the visualization space, and U has only the first k columns.

PCA projects data points to the dimensions of the largest variance. Its ad-

vantages are simplicity, robustness and lack of parameters. The main drawback of

PCA is its linearity which captures a linear manifold, but nonlinear manifolds would

62

be squashed using PCA. This leads to poor data mapping, and large reconstruction

errors. Also the obtained mapping have orthogonal dimensions, which is not always

desired. Furthermore, PCA has perfect recall but precision may be poor.

Self Organizing Maps

Self-Organizing Maps (SOM) [Koh82] is a powerful method for visualization,

trained iteratively. It includes a mandatory vector quantization [MAV+15], which is

useful especially with large number of data samples, as it reduces noise and can reveal

the shape of a manifold. SOM has a very intuitive and easy to understand algorithm:

it starts with a low-dimensional grid, conforming to the data in the same way as

wrapping a ball with a sheet of paper. When one point of a SOM’s grid moves, its

neighbors in the lattice move too, in the same direction. This keeps the grid coherent

in the data space.

SOM is initialized by setting a lattice in the visualization space (usually two

dimensions with square of hexagon grid), and randomly initializing the lattice points,

or prototypes, in the data space. A training algorithm runs through the entire data

matrix X several times. For each data point xi, an index r of the closest prototype is

found, and data space coordinates c for all prototypes are updated using the following

equations:

r = arg min
s

d(xi, cs) (3.5)

cs ← cs + αvλ(r, s)(xi − cs) (3.6)

63

where d is a distance function (typically Euclidean), and α is a learning rate between 0

and 1. vλ is called the neighborhood function, and it returns zeros for non-neighbors,

and ones or other non-zero values for valid neighbors.

For visualization of results, prototypes of the original lattice are denoted ac-

cordingly to the points in data space which they represent. Common notation is

color, though words or even images may be used as well. SOM is good in approx-

imating well shaped manifolds [LV07]. One of the drawbacks is that points in the

lattice are typically equally spaced, and distances between them give no idea about

real distances between clusters in data space.

Neighbor Retrieval Visualizer

Neighbor Retrieval Visualizer (NeRV) [VPN+10] is created from the most gen-

eral point of view on data visualization, with a specifically tailored cost function.

NeRV defines visualization as an information retrieval task. Given any visualization

space (projection space) sample vi as a query, the low-dimensional visualization of

data is used to retrieve its neighbors. Lets take the probabilistic approach, and as-

sume that any point j may be retrieved as a neighbor, with probability qj|i. The form

of qj|i is unknown, but it follows several rules. First, it must be nonnegative and sum

to one over j; therefore a suitable probability function can be:

qj|i =
exp(−fi,j)∑
k 6=i exp(−fi,k)

, fi,j ∈ R (3.7)

Then fi,j from (3.7) should be an increasing function of distance between yi

and yj, and be independent of other points yk, or a choice of particular point j.

64

However it may depend on i, which helps fit a distance measure to the particular

areas of data space (sparsely and densely populated). Then the suitable form of fi,j

would be fi,j = ||vi − vj||2/σ2
i where the multiplier 1/σi allows the function to grow

at an individual rate for each point i; and gives the definition of the probabilistic

model of retrieval:

qj|i =
exp(− ||vi−vj ||2

σ2
i

)∑
k 6=i exp(−

||vi−vj ||2
σ2

i
)

(3.8)

The probabilistic model of retrieval works in the visualization space only. To

create a NeRV cost function, the counterpart model should be defined in the original

data space. Lets call it pj|i, a probabilistic model of relevance for the original data,

defined as follows:

pj|i =
exp(−d(xi,xj)

2

σ2
i

)∑
k 6=i exp(−

d(xi,xj)2

σ2
i

)
, (3.9)

where d(·, ·) is any suitable distance measure in the original data. That form of

relevance function allows usage of either data points themselves, or just a distance

matrix of the data, if available.

Obviously, for a good visualization the neighborhood models of the original

and the projected data should be as close as possible. Because they are defined as

a distribution, a natural dissimilarity measure between distributions is the Kullback-

Leibler divergence [KL51], defined as:

D(ai, bi) =
∑
i6=j

aj|ilog
aj|i
bj|i

, (3.10)

where a and b are probability distributions.

65

Using the previous notations, D(pi, qi) would become a smoothed recall, and

D(qi, pi) a smoothed precision. For a cost function of NeRV, the corresponding ex-

pectations are used instead of raw values, and a hyper-parameter λ to set a trade-off

between precision and recall. The final cost function is presented in equation 3.11.

Further details, as well as practical optimization matters, available in the original

paper [VPN+10].

ENeRV = λEi[D(pi, qi)] + (1− λ)Ei[D(qi, pi)] (3.11)

3.1.2 Methodology

The ELM in ELMVIS method is utilized as a nonlinear metric for reconstruc-

tion error, which stands for recall, or continuity [KP03] in data visualization field.

Visualization is trained by random shuffling of some indexes and evaluating the re-

construction error using ELM. By replacing permutations in input (visualization)

space with permutations in the order of the output data points, as described in sub-

section 3.1.2, the hidden layer of ELM is set constant. Thus it must be calculated

only once, and the further training of ELM remains a fast linear task of one matrix

multiplication. The following subsections describe each step in more details.

Data Visualization with ELM

The goal of ELMVIS method is to maximize the recall by the minimization

of an MSE of a nonlinear reconstruction provided by an ELM. Given the N data

points xi ∈ RD, compactly written as a matrix X = (xT1 . . .x
T
N)T , the goal is to

66

find such points vi ∈ Rd (schematically shown on Figure 3.2), denoted as V =

(vT1 . . .v
T
N)T , which minimize the recall using the reconstruction error of ELM as

a nonlinear metric. Typically d equals 2 or 3, while D could be large. Note that

an ELM in the methodology performs an inverse projection RD ← Rd from low-

dimensional visualization space to a high-dimensional original data space to estimate

a reconstruction error; whereas other dimensionality reduction methods mostly use

direct projection RD → Rd.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−10
−5

0
5

10

−10

−5

0

5

10
0

2

4

6

8

10

Input Data Space X Visualization Data Space V

 Normal Distribution

Spiral

Manifold

Pairs defined by order of data samples in matrix X

Evaluate Reconstruction Error using ELM

Figure 3.2: Projecting a high-dimensional spiral manifold data to a lower-dimensional

visualization space. Visualization points are fixed, and only the pairing of the original

and visualization data samples is changed.

67

ELM needs both input and output samples to be able to train. Data points X

are already known, so one must set the visualization points V. Because the manifold

structure of a high dimensional data X, if any, is unlikely to project well onto a 2- or

3-dimensional planes (except in artificially created datasets), the exact positioning of

points V is not of a great importance. This allows fixing the positions of V at the

beginning. Knowing V and X, the only thing left to find is which point vi corresponds

to which point xi. The correspondence may be expressed as an ordering matrix O. At

initialization O0 is an identity matrix of size N ×N . Then some of its ones exchange

indexes, like (1i,i 1j,j) → (1i,j, 1j,i), which swaps samples vi and vj after application:

Viter ← Viter−1Oiter (3.12)

A general overview of the methodology is presented on a Figure 3.3. The

ELMVIS starts by initializing N visualization space points V, taken either from a

Gaussian distribution or from a regular grid. Then an ELM is initialized, and the

ordering matrix O is set to an identity matrix. An initial reconstruction MSE is

calculated then. After that, an iteration starts by choosing a random number of

samples out of N , a permuting the corresponding rows of O. The ordering matrix O

is applied to visualization points by multiplication, which permutes the samples in V

the same way. Then the reconstruction error is re-calculated, but if it increases, the

permutation of rows of o is rolled back; and a new iteration begins by again choosing

a number of samples and permuting the corresponding rows in O. Iterations keep

repeating until the error decreases to the desired value, or reaching the iteration limit.

68

Figure 3.3: A general diagram of the ELMVIS training algorithm. An iteration in-

cludes permuting the order of several random points, and continues until convergence

to required value of error, or a given number of times.

69

Adapting ELM for Data Visualization

The direct data visualization algorithm requires recalculation of the whole

ELM. The most computationally costly part is a re-calculation of matrix H, and its

pseudo-inverse H†. However, lets check again the structure of an ELM on Figure 3.4.

It is easy to notice that for changes in V, the whole ELM needs recalculating; while for

changes in X the points V and a hidden layer representation H may remain constant,

and only the output weight matrix needs to be updated.

Figure 3.4: A schematic representation of ELM in ELMVIS. Changes in V require

recalculation of the hidden matrix H and its pseudo-inverse, while for changes in X

matrix H stays constant.

70

The reconstruction mean squared error MSErec

MSErec =
1

ND

N∑
i=1

D∑
j=1

(x̂ij − xij)2 (3.13)

depends on the x̂i, which is a prediction of an ELM, trained using data pairs

(vi,xi). But the solution of ELM is a linear system of equations, and the nonlinear

part of ELM is applied to each transformed input vector separately of others. So the

nonlinear mapping of an ELM is independent of the order of training pairs (vi,xi),

and so does the MSErec.

That fact allows to adapt the ELM in ELMVIS to cut the computational load.

Multiplying an ordering matrix O with either V or X yield exactly the same new pairs

(v′i,x
′
i), though the order of pairs will differ. But because the reconstruction error does

not depend on particular ordering of the pairs, these operations are interchangeable.

So the proposed adaptation of ELM consists of replacing changes in V by changes in

X, as in (3.14).

(Xiter ← Xiter−1Oiter) =⇒ (Viter ← Viter−1Oiter) (3.14)

In the ELM structure of Figure 3.4, replacing changes in V by changes in X

will keep the matrices H and H† constant. They need to be calculated only once on

initialization; during iterations the reconstruction of X is obtained using the following

rule:

X̂ = Hβ = H(H†X) = (HH†)X (3.15)

71

Denoting a new matrix H2 = HH† and calculating it at the initialization, the

training of ELM on each iteration is reduced to a single matrix multiplication. That

gives the necessary speed to run hundreds of thousands or even millions of iterations

within a few minutes.

ELMVIS Algorithm

A summary of the ELMVIS data visualization method is presented on the

algorithm 3.1. The output is the ordering O, which is used to map the data points

X on coordinates given by V. The next section presents the results of an application

of the method to several datasets, including a common spiral benchmark, as well as

two high-dimensional faces datasets.

3.1.3 Experiments

The ELMVIS visualization methodology was tested on three datasets. The se-

lected reference methods are PCA as the baseline, Self-Organizing Maps (SOM) [Koh82]

as another method which uses fixed visualization points, and NeRV [VPN+10] as a

state-of-the-art nonlinear visualization method.

The primary comparison uses reconstruction error, an MSE of a reconstruction

of the original data. A visualization method is assumed to have good performance,

if its visualization have a low MSErec. Reverse projection of visualized data to the

original space is required to obtain the error; for NeRV, which is the only method that

does not provide such projection, it was learned from the representation in the similar

way as in [LV07], using a separate ELM. The errors for all methods are gathered in

72

Algorithm 3.1 ELMVIS Algorithm

input data X ∈ RD with N samples

target value of MSEmin; or iteration limit Itermax

select N visualization space points V{Gaussian distributed, or on a grid}

select number of neurons nn of ELM to roughly match the complexity of dataset

calculate H using V {in training, V only needed for this step}

calculate H2 = HH†

MSEbest = 1, iter = 0

while MSEbest > MSEmin or iter < Itermax do

iter ← iter + 1

update Oiter ← Oiter−1 by randomly permuting k < N of its rows

apply the ordering X′ ← XOiter

obtain reverse projection X̂ = H2X
′

estimate reconstruction error MSErec = 1
ND

∑N
i=1

∑D
j=1(x̂i,j − x′i,j)

if MSErec < MSEbest then

MSEbest = MSErec {update the best error}

else

Oiter ← Oiter−1 {revert the permutation}

end if

end while

return ordering Oiter {best mapping of X to visualization points V}

73

table 3.1.

Table 3.1: MSE of reconstruction on all datasets in comparison. The best error of

100 restarts is shown for all methods except PCA, due to a random initialization

procedure. ELMVIS initialization method shown in parentheses.

Dataset PCA SOM NeRV ELMVIS (Gaussian) ELMVIS (PCA)
Spiral 0.482 0.054 0.011 0.049 0.060
Sculpture faces 0.980 0.916 0.769 0.718 0.724
Real faces 0.724 0.511 0.501 0.462 0.449

Spiral Dataset

The first dataset for testing is a spiral toy dataset, which is a common and

relatively hard benchmark. The spiral is drawn in a two-dimensional space, and the

goal is to project it into one dimension. It consists of N = 100 points, distributed

evenly along its line by including a squared root term into the input data X equation:

X =

(
2
√
α cos (πK

√
α)

2
√
α sin (πK

√
α)

)
, (3.16)

where α is distributed evenly between 0 and 1; K determines the amount of swings

the spiral makes and is set to 3 in the experiment. The visualization points V are

evenly distributed on a line; both X and V are normalized to have zero mean and

unit variance. In this experiment, the amount of neurons of ELM and SOM is set to

5. Results on a spiral dataset for all the methods are presented in table 3.1. ELMVIS

74

model and data mapping is shown on Figure 3.5, and a reconstruction learned from

NeRV results - on Figure 3.6.

The projection obtained by PCA is poor as expected, as PCA projecting from

2D into 1D would just squash the second dimension of a spiral along the direction

of the largest variance. NeRV succeeded in finding a manifold, which it meant to

do, thus expectedly showing great results even after estimating its mapping by a

separate ELM, so it remains state-of-the-art on a spiral dataset. SOM showed good

results as well. ELMVIS partially unfolds the spiral, but some parts remain torn

and misplaced. Also eventual outliers appera (green dot on Figure 3.5) because the

random permutation algorithm have not found the best solution in a given range of

iterations. Still the results of ELMVIS on a spiral dataset are acceptable, far better

than the naive PCA.

Convergence of ELMVIS

The experimental convergence speed of ELMVIS is tested, to get average values

in an experimental setup instead of the exact solution (which is equivalent to the worst

case scenario). Spiral test is the fastest of the three due to a smaller number of neurons

and lower original data dimensionality, while convergence speed is independent of

these values and only relies on the amount of test points. Note that the graphs here

represent averages over many runs; while other results of ELM runs show the best

outcome, corresponding to the best random initialization of a hidden layer of that

ELM.

75

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
100 points, 5 neurons

Figure 3.5: An example of ELMVIS fitting the spiral data. Thinner colour line is a

back projection of ELM, black lines and colour denote the ordering of points. Some

points are mapped wrongly because the solution is not exact.

76

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
ELM model approximating NeRV

Figure 3.6: ELM reconstruction, learned from NeRV results. Only one point deviates

from the perfect approximation. ELM model printed with crosses for visibility, as it

mostly coincides with the data.

77

As it is stated in methodology section, complexity of exact solution of ELMVIS

is factorial in the number of points, due to the random permutations training algo-

rithm. The real speed of convergence was estimated on different sized subsets of

the spiral data, ranging from 20 to 100 points. For each separate amount of points,

100000 training steps were performed, and the experiments and restarted 100 times

with different initial pairings. The obtained convergence plot with average values and

some standard deviations is presented on Figure 3.7.

0 20000 40000 60000 80000 100000
of iterations

0.05

0.10

0.15

0.20

0.25

0.30

M
S
E
 w

it
h
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n

ELMVIS convergence, 5 neurons

20 samples
30 samples
40 samples
50 samples
70 samples
100 samples

Figure 3.7: Convergence of the ELM visualization algorithm on the spiral dataset,

with 100000 training steps and 100 restarts. Plots are ordered from 20 samples the

lowest to the 100 the highest. Only some standard deviations are shown to avoid

clutter.

78

As can be seen from a graph, in all settings the ELMVIS tends to converge

roughly to the same reconstruction error. For 50 points the convergence already

reached at iteration 60000, which is far less than the factorial of 50. The results show

that the real convergence speed remains feasible for applications with low to medium

amount of data samples.

Artificial Faces Dataset

A set of 698 face images is proposed in [TdL00], and then widely used for

benchmark purposes, for instance in [LV07, VPN+10]. These images are artificially

generated faces rendered from a 3D sculpture head under different poses and lighting

directions. Examples of faces are shown on a figure 3.8.

Figure 3.8: Some examples from the 698 sculpture face pictures from [TdL00].

Each image consists of an array of 64 by 64 brightness values of pixels, which

gives the input data dimensionality of 4096. A preprocessing step is applied to re-

duce dimensionality with PCA; the first 240 principal components keep over 99%

79

of the global variance [LV07]. Such preprocessing step provides almost lossless data

compression, and thus is applied to the sculptural faces dataset.

The resulting 240-dimensional data with 698 samples is projected to a two

dimensional visualization space. ELMVIS uses 100 randomly selected samples at

a time, and is repeated 100 times to get a true estimate. ELM and SOM use 20

neurons for visualization. The results are presented in table 3.1. The PCA totally

fails to compress further the data, which is already compressed with another PCA.

Two first principal components keep only 2% of variance. SOM gives bad results also,

probably due to a lack of low-dimensional manifold in preprocessed data. So does

NeRV, although it may be explained by a bad estimation of a reverse projection MSE

obtained with ELM. ELMVIS gives the best results out of the three methods, but

still the error is too high for the results to be good in absolute numbers.

An example visualization is shown on Figures 3.9,3.10. In visualization, NeRV

mapping worked very well in grouping similar faces together, though the clusters are

unnecessarily torn apart. ELMVIS also put some similar faces close to each other,

but it seems not to care much about mirrored neighbours, and not all of the same

neighbours are grouped in one cluster.

Real Faces Dataset

The data set of 1965 real faces [RS00] is gathered from frames of a video. Im-

ages of the dataset are grey-scale and 28x20 pixels if size, which gives 560 dimensional

samples which are utilized as is. Figure 3.11 shows some random samples from the

80

Figure 3.9: Sculpture face images mapped to a grid using the same ELMVIS with 20

neurons. Small clusters of similar faces can be observed, for instance in the top left

corner.

81

Figure 3.10: Sculpture face images mapped to a grid using the NeRV results. If

several faces correspond to the same grid cell, a random one is displayed.

82

real faces image set.

Figure 3.11: Random examples from the 1965 real faces proposed in [RS00].

As images have 560 features, number of neurons in ELMVIS and SOM was

raised to 40. The ELM visualization method was run with visualization points taken

from a Gaussian distribution, or two first principal components of PCA. Reconstruc-

tion MSE for all the methods are given in table 3.1.

Here PCA gives the worst results, as expected. SOM performed similarly to

NeRV in terms of a reconstruction MSE. ELMVIS showed the best results with both

Gaussian and PCA initializations. A visualization of ELMVIS with 400 data samples

to a 20x20 regular grid is presented on Figure 3.12; mapping of the real faces data

obtained by NeRV and split into the same grid is shown on Figure 3.13.

Computational Time

Short experiments were run on a laptop with 2,2GHz Inter Core i7 CPU; longer

jobs presented above were performed using computer resources within the Aalto Uni-

versity School of Science ”Science-IT” project. Computational speed of ELMVIS

83

Figure 3.12: Subset of 400 real faces mapped to a 20x20 regular grid by ELMVIS.

Clustering of the data is easily seen, although clusters are not unique due to a high

nonlinearity of ELM.

84

Figure 3.13: Whole set of real faces visualized by NeRV. Results are displayed on a

20x20 grid, if several images occupy a cell a random one is shown. Clustering of data

is observed, though clusters are not solid.

85

depends heavily on the number of neurons and the output data dimensionality, and

ranges from 300,000 iterations per minute on a laptop for easy tasks to 10,000 it-

erations per minute on the Aalto University computational cluster for the largest

visualizations. Other methods were tested on a laptop, and took less that 10 minutes

in all setups.

86

3.2 Fast Visualization Method ELMVIS+

The ELMVIS+ method formulates data visualization as an assignment prob-

lem [BDM12] of the data samples to the same number of given visualization points,

which are fixed. An ELM model learns the de-projection of visualization points back

into the original data space, where a cost function is calculated. The ELM solution

is expressed as a helper matrix A that captures nonlinear dependencies between all

visualization space points. Multiplying the matrix of data samples by A provides the

optimal ELM approximation of these data samples, irrespective of their order. The

fixed visualization points cause the matrix A to be fixed, and computed only once.

An original assignment problem is a challenging NP-hard [BDM12] optimiza-

tion task, similar to an open loop travelling salesman problem [GP02]. The optimiza-

tion process uses the fact that matrix A presents the optimal ELM solution for any

order of data samples. It computes delta of the error for swapping two random data

samples, which has a closed form equation with the proposed cosine similarity-based

error and can be evaluated millions of times per second. Swaps that reduce the error

are applied to the data, resulting in a greedy optimization with complexity O(N2).

ELMVIS+ learns similar visualization to the original ELMVIS, but the ob-

served speed-up exceeds forty thousand times. The updated method provides a fast

and useful way of data visualization onto arbitrary fixed set of points in the visual-

ization space. It has only one hyper-parameter, that is the number of neurons in the

ELM model. The local optimum problem may be solved by batch update, or multiple

re-runs of the method. The new cost function works for very high-dimensional data.

87

3.2.1 Methodology

The ELMVIS+ is a visualization method based on Extreme Learning Machines

(ELM). It uses predefined (and fixed) visualization points, and assigns data samples

to them. ELM learns a reverse projection (de-projection) of visualization points onto

the original data samples, and an error is computed in the original data space. Thus,

ELM builds a nonlinear reconstruction of the data, and the method cost function

is a reconstruction error which stands for recall, or continuity [KP03] in the data

visualization field. The idea of ELMVIS+ is presented in Figure 3.14.

While the visualization points and their order is fixed, the order of data samples

is not defined. ELMVIS+ method computes an error (a cost function of visualization)

with the current order of data samples. The cost function is optimized by swapping

two random data samples to change that order, and computing the error; a swap

which lowers an error is kept and the ELM projection is updated accordingly. Swaps

which increase an error are reverted. Swap and update are the two main steps of

ELMVIS+, repeated until a good projection is found.

Optimization in ELMVIS+

An ELM in ELMVIS+ is trained on a dataset consisting of inputs V and

targets X. The data is arranged in pairs (vi,xi), i ∈ J1, NK. The indexes i in V and

X are given implicitly by the position of row i in the corresponding data matrix.

The optimization starts by selecting two random indexes a, b : a 6= b, a, b ∈

J1, NK. Then two samples xa,xb in X are swapped (exchanged) while V remains

88

Initial random projection Optimal final projection

Figure 3.14: The idea of ELMVIS+: ELMVIS+ searches for an optimal assignment of

data points xi (circles) in a high-dimensional space (here d = 2) to fixed visualization

points vj (squares) in a lower-dimensional space (here d = 1). An ELM learns a

projection V → X and estimates X̂ = f(V), used for error computation E(X,V) =

−∑|X|i=1 cos(x̂i,xi). An effect of swapping a pair of rows (xa,xb) in X for random

a, b is evaluated with a closed form equation for constant V. If a swap decreases the

error, the rows a, b are actually swapped in X, and X̂ is updated. This changes an

assignment of data points X to V. Any visualization points can be used, and the

initial assignment is random.

89

constant. This creates a new dataset, with a different mapping between V and the

new Xab. The same ELM is trained on this new dataset, and outputs a new estimate

X̂ab. If the new estimate X̂ab is closer to the original data in Xab than the previous

one X̂ is to its original X, then the swap is kept. Otherwise the swap is reverted by

exchanging xa and xb again.

In practice, the change in error for swapping samples xa and xb is computed

without modifying matrix X or explicitly re-training full ELM. Computing the change

of error is called a swap step. If an error decreases for a particular pair of (a, b), then

the rows in X are actually swapped and X̂ is updated to X̂ab. This is when an

update step takes place. When ELMVIS+ terminates, matrix X has an optimal

order of samples xi for the given visualization points vi.

The effect of updates on X̂ is presented on Figure 3.15. Initially, an order of

points xi is random and projected points X̂ are far from the true samples X. But

even a single update moves X̂ noticeably closer to X. After a few updates, points

X̂ and X are reasonably close — but no pair of indexes (a, b) can further decrease

an error, so the solution is locally optimal. It is possible to get a better solution

by swapping five points on the right with five points on the left, but the method is

limited to swapping only two points at a time. Swapping k points gives a space of

possible swaps of size
(
N
k

)
, which is prohibitively large for searching if k > 2. So swaps

with only two points are considered in ELMVIS+. Multiple different initializations

help find a solution closer to the global optimum.

90

Initial state 1 update

2 updates 3 updates

14 (max) updates A different initialization

Figure 3.15: An example of ELMVIS+ optimization process. Two-dimensional data

(dash line with circles) is visualized onto one-dimensional space. ELM de-projection

of the visualization points into the original data space is shows by a solid line.

91

Fast Error Estimation from ELM

The error of ELMVIS+ method is the negative cosine similarity between sam-

ples xi and x̂i. The cosine similarity can be used because the absolute value of an

error is irrelevant for the optimization, and the cosine similarity provides a convenient

formula with good speedup over MSE.

The negative cosine similarity gives a fast and convenient way of evaluating

error in the reverse-projecting ELM framework. A dot product between two vectors

is defined as:

a · b = ‖a‖‖b‖ cos θ (3.17)

Assume the input data is normalized to ‖x‖ = 1, then ‖x̂‖ ≈ 1 and

similarity = cos θ =
x · x̂
‖x‖‖x̂‖ = x · x̂ = xT x̂ (3.18)

For the whole data matrices X, X̂ the error E, which is a negative cosine

similarity, is:

E = −trace(XT X̂) (3.19)

Here X̂ is an ELM prediction. However because the visualization points V are

fixed, the output of an ELM hidden layer H never changes and has to be computed

only once. A formula based on H is derived from the ELM solution:

92

X̂ = Hβ (3.20)

β = H†X = (HTH)−1HTX (3.21)

X̂ = H(HTH)−1HTX (3.22)

XT X̂ = XTH(HTH)−1HTX (3.23)

define A := H(HTH)−1HT (3.24)

E = −trace(XTAX) (3.25)

The matrix A in equation (3.25) is constant; it depends only on H and is

computed once after an ELM model is built. It is re-used to find a change in error E

for every swap of samples in X. Minimizing equation (3.25) by changing the order of

samples in X is similar to a quadratic assignment problem [BDM12], except the cost

matrix A has size (N ×N) instead of (d× d).

In fact, there is a closed form equation for the change of error ∆E if a row xa

in matrix X is changed by an amount (vector) δ. The formula is given below. If only

∆E is required, two last update steps are omitted.

∆E =
d∑
j=1

(
Aa,aδ

2
j + 2x̂a,jδj

)
(3.26)

X̂ ← X̂−A:,a × δ (3.27)

X:,a ← X:,a + δ (3.28)

Swapping two samples in X is interpreted as changing two different rows in X.

But then the update of X̂ from equation (3.27) must take place between the changes,

93

and it is heavy on computation and memory operations. A modified ∆E expression

for swapping samples xa and xb without step (3.27) between them is:

δ = xb − xa (3.29)

ω = xa − xb (3.30)

∆E =
d∑
j=1

(
Aa,aδ

2
j + 2x̂a,jδj + Ab,bω

2
j + 2x̂b,jωj + 2Ab,aδjωj

)
(3.31)

X̂ ← X̂−
(
A:,a A:,b

)(δ
ω

)
(3.32)

X:,a ← X:,a + δ (3.33)

X:,b ← X:,b + ω (3.34)

Equation (3.31) provides a difference in error if samples xa and xb are swapped.

If this difference is negative, then the method proceeds to actual swap and update

steps, given by the next three assignments. Otherwise, different random indexes (a, b)

are chosen and ∆E is evaluated again.

ELMVIS+ Algorithm

The ELMVIS+ method starts by taking a random permutation of X and

training an ELM on (V,X) dataset. Then a fixed matrix A is computed from equa-

tion (3.25), and an initial data reconstruction X̂ = AX is obtained. This is done

only once when the ELMVIS+ method starts.

Then two random indexes a, b ∈ J1, NK are taken, and the change in error ∆E

is computed by formula (3.31). This is a swap step. If the change of error is negative

94

∆E < 0, then an update step is performed which exchanges rows xa,xb in X, and

updates X̂ to be the optimal reconstruction for the new X. If the change of error is

non-negative ∆E ≥ 0, then swaps continue.

Swap and update steps run until some stopping criterion is met, such as a

maximum number of swap steps without a single update, a maximum number of

updates, or a runtime limit. When ELMVIS+ terminates, data samples in matrix X

are in the optimal order for the given visualization points in V. A visual scheme of

ELMVIS+ method is shown on Figure 3.16.

The only parameter of the ELMVIS+ method is the number of hidden neurons

L in an ELM. The optimal L depends on a task, and controls variation across the

visualization space. Too few neurons fail a visualization, while too many neurons

create an overly variative visualization pattern. A good number is found by trial.

3.2.2 Experiments

The ELMVIS+ visualization method is compared to the original ELMVIS

method on the same three datasets. Reference methods are PCA as the baseline,

SOM as another method which uses fixed visualization points, and NeRV as the

state-of-the-art nonlinear visualization method. A fast ELM model is provided by a

toolbox from [ABML15].

The overview of performance of all methods is given by the MSE of a data

reconstruction from visualization. The reconstruction (a reverse projection) already

exists in ELMVIS+ and ELMVIS; for other methods it is learned by a separate model

95

Figure 3.16: Schematic representation of ELMVIS+ algorithm. It starts by randomly

permuting rows of X and training an ELM on (V,X) dataset. A fixed matrix A is

computed as in eq. (3.25), and initial data reconstruction X̂ = AX is created. A

swap step looks for a new order of samples in X which gives ∆E < 0, after that an

update step changes X and a new optimal X̂. Swap and update steps continue until

a stopping criterion is reached.

96

as in [LV07]. This separate model is another ELM; the lowest error over 100 retrains

is presented. The errors for all methods are gathered in Table 3.2.

Table 3.2: Reconstruction MSE for all methods; the lowest error of 100 initializations

is shown. ELMVIS+ on Sculpture faces dataset is run twice: with the compressed

(d = 240) and an original (d = 4096) image representations.

Dataset PCA SOM NeRV ELMVIS ELMVIS+

Spiral 0.482 0.054 0.011 0.049 0.017

Sculpture faces 0.980 0.916 0.769 0.718
0.712 (compressed)

0.292 (original)
Real faces 0.724 0.511 0.501 0.449 0.156

ELMVIS+ method always performs better and runs faster than the original

ELMVIS. It is much better than any other method in Sculpture faces because it is

able to process the huge original dimensionality of the data, and in Real faces because

it achieves a better optimization with millions of swaps evaluated in an hour with the

new cost function. On Spiral dataset it is second only to NeRV, but the errors are

similarly small.

Implementation and Computational Time

The ELMVIS+ method is implemented in different versions of Python-based

code, available online5. The versions of code are: pure Python (with Numpy library

5https://github.com/akusok/elmvis

97

for fast matrix operations) denoted as ”python”, Python code compiled with Cython

(which generates C code from Python script) denoted as ”C”, Python code compiled

with Cython and having a fine-tuned parallel swap function written in pure C denoted

as ”C optimized”, and a GPU-based version with data residing in GPU memory

denoted as ”GPU”. All computations are done in double precision, because tests

with single-precision code have shown inaccuracies in estimating ∆E significant for

the ELMVIS+ method and poor convergence. All tests and experiments hereafter

are performed on a desktop with 4-core 4.6GHz CPU and Nvidia Titan Black GPU,

which is similar to a common server accelerator Nvidia Tesla K20.

ELMVIS+ method has two types of steps: swaps and updates. Swap speed

is extremely fast, see Figure 3.17. It is increased greatly compared to the original

ELMVIS by introducing cosine similarity-based error and replacing full data matrix

operations by simple vector operations. The speedup reaches 43,000 times with a fine-

tuned parallel code in C (evaluated on 10,000 test samples of MNIST). Update speed

involves updating a large N × d matrix X̂ and is limited by memory bandwidth, that

benefits GPU implementation. A workaround is a batch update of several successful

swaps at once (Figure 3.17, C opt, batch), but a large batch size may cause the

method to diverge. A batch size of 5% of N caused divergence in experiments, while

the batch size of 1% of N worked fine.

In practical computation, initial optimization has swap:update ratio of 10:1

and is limited by the update speed. It is run most efficiently on GPU or with

batch updates. Later optimization and fine-tuning has swap:update ratio increased

98

0 200 400 600 800 1000
d

0
1 mln.

5 mln.

10 mln.

15 mln.

20 mln.

22 mln.

sw
a
p
s

p
e
r

se
co

n
d

1000 data points with d features

C optimized
C
Python
GPU

0 1000 2000 3000 4000 5000
N

0

1000

2000

3000

4000

5000

6000

7000

8000

u
p
d
a
te

s
p
e
r

se
co

n
d

N data points with 1000 features

C opt, batch
C optimized
C
Python
GPU

Figure 3.17: ELMVIS+ runtime speed summary. Swap speed is fast with parallel

implementation in C (top). Update speed in much slower (bottom) and is limited

by memory bandwidth, benefiting a GPU implementation. A workaround for the

bandwidth limitation is to perform a batch update (size 0.01 ∗N).

99

to 1,000. . . 1,000,000:1 and is limited by swap speed. Here an optimized C method

performs the best. As the optimization changes rows of data matrix X in-place,

different implementations of ELMVIS+ may be run repeatedly on the same data ma-

trix X, improving it every time. For example, a GPU implementation does initial

optimization and an optimized C implementation follows for fine-tuning.

Visualization of MNIST Test Set

The ELMVIS+ method is compared with other methods in performance and

speed on a test set of MNIST handwritten digits dataset with N = 10000. The

original representation of numbers as 28 × 28 grayscale images had doriginal = 784

features. Only d = 594 features with at least 10 non-zero values are selected, because

features with only zeros or little non-zero values cause deficit rank and numerical

problems with some of the methods, for instance with PCA.

The methods used in visualization include ELMVIS+, original ELMVIS, SOM,

NeRV and PCA. Their runtimes are given in Table 3.3, and visualizations in Fig-

ures 3.18-3.23. Methods do not have access to class information, this information is

only used for creating plots.

Table 3.3: Runtimes of different visualization methods for MNIST test set.

ELMVIS+ ELMVIS SOM NeRV PCA
Time 1m 37s > 43h 56m 1h 58m 0.25s

100

Visualization of ELMVIS+ (Figure 3.18) finishes in 1.6 minutes, and further

fine-tuning does not noticeably improve the result (Figure 3.19). Original ELMVIS

fails to converge with 10,000 samples even after 43 hours (Figure 3.20). It converged

in 15 minutes with 300 samples, but even 1000 samples is too much for the old

visualization method. SOM finishes in one hour with results similar to ELMVIS+

(Figure 3.21) but only 1000 neurons are used, because in SOM a number of neurons

is typically less than the number of points. This makes sense in the SOM framework

but the runtime may not be directly comparable. NeRV took two hours to produce

a visualization (Figure 3.22) with interesting results. NeRV gives more insight in the

original data distribution, for instance all digits one are very different to others, but

not all classes are separated in the visualization. PCA is extremely fast to run at

a quarter of a second, but the visualization (Figure 3.23) has different digits mostly

mixed together, as is expected from a linear model applied to nonlinear data. Overall,

ELMVIS+ performance is comparable to the best visualization methods, with faster

runtime.

101

5

1

7

7

4

1

9

3

5

7

7

9

0

6

5

2

2

6

5

2

9

3

4

8

8

2

7

2

8

3

74

5

7

4
5

3
1

9

8

6

8

4

0

8

4

7

2

5

09

8

5

9

1

5

9

7

5

5

1

3

1

0

7

7

0

2

2

4

7

2

0

6

5

3

9

2

1

1

5

6

11

2

7

5

2

7

3

7

5

5

7

1

6

0

1

4

0
6

3

3

0

1

7

4

2

4

7

1

5

1

1

1

9

2

1

7

9

3

4

9

0

7

4
4

0

8

8

5

6

0

1

9

8

8 9

2

2

6

9

3

8

1

3

2

4

4

2

2

4

7

0

3

8

7

9

5

6

1

7

1

3 4

8

2

3

3

4

9

2

8

7

8

4

2

9

2

9

5

9

6

9

1

3

3

5

1

6

1

1

8

7

5

2

0

8

7

2

1

5

2

4

5

9

6

9

7

3

2

2

3

8

2

5

5

8
7

4

2

3

3

3

7

13

9

9

5

2

1

2

6

58

9

5

1

0

7

1

4

8

7

5

1

25

8

9

7

5

3
3

0

7

0

6

0

1

6

0

2

5

8

6

7

0

7

8

1

2

1

1

8

5

6

2

8

2

4

1

3

7

6

4

0

5

3

4

4

6

8

9

1

1

9

1

7

4

9

4

2

1

3

5 0

2

1

6

4

5

4

2

2

3

7

9

1

5

7

9

9

7

8

8

4

9

5

0

1

5

2

8

5

3

6

3

0

0

1

1

3

9

0

6

4

3

5

0
5

7

0

2

3

5

2

4

6

3

5

2 4
4

1

2

6

3

4

7

6

7

3

8

2

1

1

3

2

8

8

2

6

3

4

4

4

9

6

0

1

6

7

2

1

5

6

6

2

6

3

3

9

7

8

7

3

1

0

4

4

8

3

7

1

2

8

4

5

1

9

9

7

1

6

1

8

8

8

3

0

1

5

4

7

9

8

3

4

5

7

2

3

1

1

7

0

1

3

0

0

3

0

1

6

6

0

4

2

9

6

4

6

8

5 1

1

7

0

7

4

2

9

6

7 8

9

1

7

8

9

8

1

6

0

1

1

7

9

1

7

5

0
0

6

7

4

3

6

288

2

9

7

3

7

4

9

3

4

2

6

5

6

2

9

5
5

3

1

2

1

1

8

0

0

3

4 7

8

5

1

7

2

9

1

2

8

0

2

9

7

8

8

3

6

3

3

9

5

0

0

7

5

9

2

3

8

2

4

4

5

6

3

9

1

4

1

0

0

9

4

4

1

3

2

4
7

6

7

2

9

1

8

6

4

2

5

3

0

5

3

6

7

4
3

0

2

7

3

5

4

3

1

1

5

3

2

9

6

1 9

6

3

0

7

3

0

5

2

5

9

7

2

3

3

6

9

2

8

4

8

1

2

9

7

0

4

4

4

6

7

9

9

5

0

8

6

2

4

9 2

7

5

7

0

9

7

0

0

5

5

6 6

2

2

5

0

2

2 9
7

6

86

4

6

6

4

0
5

0

7

9

3

9

3

6

5

3

8

6

9

7

3

2

4

6

4

4

4

3

3

0

9

2

0

9

6

6

1

2

1

3

6

9

1

2

2

0

6

6

0

7

3

7

1

1

2

8

9

0

5

1

2
8

1

6

7

2

8

6

1

3

8

8

1

00

8

1

8

8

6

3

5

0
9

4

6

9

3

9

5

9

5

2
7

4

0

6

7
3

4
4

9

2

0

9

8

4

0

6

9

4

9

4

4

5

0

8

2

0

8

3

0

5

8

4

4

5

0

7

6

2

8

9 9

3

5

0

1

8

6

1

4

1

2

1

3

1

8

5

6

6

1

8

9

8

9

7

2

7

8

1

4

7

1

5

0

0

6

3

1

5

4

3

9

0

9

1

0

3
1

5

3

1

7

1

2

4

5

5

3

9

5

0

1

6

0

4

3

6

9

6
2

4

2

9

0

7

7

9

0

4

6

6 7

6

5

6

6

1

9

9

8

6

8

4
0

6

4

9

9

1

2

2

4

0

9

7

9

9
2

2

6

6

8

9

1

0

8

1

9

6

7 0

8

9

8

7

1

4

9

0

6

8

6
6

8

8

1

0

3

7

5

3

5

6

0

7

9

2

5

9

0

3

1

7

1

6

0

3

3

5

5

6

9

4

7
6

8

3

3

7

7

3

3

2

0

8

6

7

9

6

9

4

5

5

54

7

0

7

5

1

4

3

3

7

7

2

5

1

9

5

9

6

5

1

9

0

4

8

2

1

7

7

8

7

6

1
6

6

3

6

2

9

8

8

9

1
4

2

9

7

0

1

3

0

0

2

3

1

2

5
5

6

11

2

9

0

8

3

2

6

9

3

1

0

6

1

0

6 2

0

9

5

6

8

3

0

3

1

9

2

4

8

8

8

4

3

7

5

8

0

5

5

0

6

4

9

6

9

7

6

9

2

8

9

6

3

5

6

2

4

4

1
0

1

0

9

2

1

1

4

2

6

0

0

0
3

3

7

7

0

0

6

8

0

6

3

8

9

9

2

8

9

6

6
2

0

4

7

3

3

5

6

4

5

1

8

4

0

8

8

3

2

0

2

4

2

6

3

7

6
7

1

8

7

2

3

0

8

3 5

2

2

0

2

7

4

9

4

3

8

6

2

6

2

9

5

8

3

7

7

6

1

3

2

9

0

1

8

7

5

4

9

3

4

8

4

1

7
4

6

09

0

7
4

1

3

51

3

3

3

9

3

9

4

3

4

6

4

5

1

3
7

0

8 7

9

5

2

2

4

0

2

0

0

4

2

4

0

5

0

1

1

1

1

2

9

1

2

41

5

2

1

0

0

3

4

2

4

9

0

8

8

9

6

9

5

2

7

6

0

3

5

5

5

0

3

1

9

7

2

1
0

2

3

8

7

5

4

8

0

5

7

4

5

3

5

1

3

8

4

9

3

0

5

8

6

2

6

0

9

3

3

2

7

5

0

9

4

3

4

7

3

0

5

5
9

7

4

6

7

5

0 5

6

2

4
7

1

2

1

1

5

1
4

3

8

6

8

5

2

7

4

0

9
7

4

7

7

9

8

1

0

7

5

1

5

3 3

5

1

5

4

8

7

3

8

0

8

0

5

5

9

1

8

1

9

7

7

1

6
9

3

1

7

2

5

3

5

3

0

0

2

8

3

0

5

4

1

4

4

6

5

8

3

5

2

1

7

9

5

4

8

3

3

0

7

2

9

7

7

7

6

7

1

4

2

7

3

0

7

8

33

0

4

4

0

8

8

7

4

2

4

3

4

1

1

8

3

9

1

0

4

3

3

1

5

2

4

3

3

3

6

3

7

8

3

4

6

5

7
0

0

0

0

1

5

1

8

7

5

7

7

0

7

7

9

8

8

8

8
1

6

4

1

5

7
1

8

3

6

5

4

9

8

7

8

4

9

2

1

3

3

0

5

6

1

1

8

2

9

5

3
5

7

2

1

5

0

4
4

3

2
5

8

0

5

1

5

4

4

4

2

5

9

7

6

9
9

6

8

1

3

4

0

3

4

3

7

9

9

3

0

4

4

2

3

2
6

3

6
0

7

1

5

7

9
2

9

3

4

9

4

3

7 0

1

0

1

6

0

7

1

3

3

8

3

6

9

5

3

1

7

2

4

1

8

1

5

6

6

1

4

1

4

8

2

3

8

6

7
0

4

5

9

4

8

2

4

3

0

8

8

2

9

2

9

0

9

7

9

2

9

2

1

9

0

7

2

3

3

4

5

1

5

2

3

1

0

4

5

8

5

6

7

7

9

1

6

0

8

4

3

1

3

3

9

8

9
8

5

0

2

7

4

4

0

9

7

1

1

9

1

9
4

7

3

2

9

8

5 0

4

7

6

6

0

2

8

2

4

9

6

1

8

1 4

0

7

8

0

6

7

4

8

3

1

6

3

1

6

1

3

4

1

7

4

4

5

2

0

8

8

9

3

4

8

2

8

3

5

0

6

2

2

8

2
9

8

4

8

6

6

6

1

9

5

2

5

4

8

1

4

0

9

0

7

3

3

8

1 7

1

0

6

6

5

3

8

8

4

7

3

1

4

2

0

5

1

2

8

4

9

1

8

9

2

1

6

7

4

2

0

8

8

1

2

8

0

3

7

4

6

0

2

3

6

0

5

2

3

0

5

4

1

9

1

5

9

5

2

6

4

0

8
1

1

7
2

3

8

6

0

1

4

5

5

1

8

3

8

5

4

1 9

6

8

9

4

7

4

1

1

2

3

2

4

7

5

1

4

6

4

2

5

9

1

1

1

90

8

2

9
3

6

4

4

6

3

0

4

7

7

7

7

6

4

4

3

9

1

0

9

4

6

8

7

8

2

3

0

4

4

0

1

4

1

3

8

3

9

9

7

9

1

8

0

6

1

7

2

0

7

6

4

8

6

0

2

9

4

8

0

3

2

1

0

6
0

1

1

7

5

2

9

93

9

5

3

7

58

7

0

8

5

8

9

4

4

6

2

9

6

1

6

6

0

9

3

7

4

0

0

1

5

7

8
4

5

1

4

0

2

5

81

66

4

5

3

9

6

0

0

71

5

1

5

2

9

1

6

1

7

1

0

7

7

0

6

3

7 7

4

8

2

2

3

9

1

8

4

2

7

1

5

5

7

9

4

1

3

0

6

0

2

1

9

4

7

8

8

7

5

3

2

3

7

4

6
7

4

9

9

9

6

7

1

1
4

3

5

9

9

4

8

3

8

9

6

3

5

9
7

4

7

2

6

4

3

4

2

8

2

4

9

6

0

5

8

9

9

7

7

9

6

1

4

6

5

1

6

9

2

7

8
8

9

0

0

2

3

1

2

9

4

9

9

2

7

0

4

0

6

77

3

1

7 3

3

8

9

6

2

5

6

4

2

3

2

5

9

0

0

1

2

8

5

8

3

4

0

6

9

1

9

8

8

4

0

7

6

3

6

0

4

7

7

7

5

6

8

3

9

0

1

6

1

1

6

6

3

0

2

4

1

7

1

59

2

9

1

9

2

2

2

2

7

2

5

0

6

9

3

5

6

4

6

7

1

3

7

3

5

5

4

9

2

2

21
1

2

0

6

2

3

1

3

9

7

9

6

6

2

3

8

5

7

4

5

1

9

8

7
5

0

4

7
3

7

7

8

7

7

0

1
1

5

2

0

5

8

7

5

2

4

2

1

3

5

6

6

8

2

3

4

2

8

1
1

2

6

2

1

4

5

8

7

6

7

8

2

3

2

7

3

5

9

8

5

2

40

7

9

9

1

8

9

6

0

5

5

1

5

0

4

1

1

5

6

8

1

7

0

3

8

5

4

0

8

4

7

1

7

2

9

4

6

5

7

7

3

6

3

6

0

1

4

4
7

3

7

9

7

9

7

2

4

5

8
2

0

8

9

2

6
2

8

8

9
3

1

5

6

9

8

2

1

3

5

3

8

6

4

2

8

8

6

4

2

7

8

6

4

4

5

3

2

7

1

5

7

6

1

7

4

0

4

9

5

1
9

8

8

2

7

0

7

4

8

1

3

7

8

1

6

2

9

0

8

0

4

2

5

6

4

9

3

0

8 7

5

1

5

3

5

9

2

8

9

4

8

9

2

4

0

6

5

0

6

8

5

8

2

8

2

8

5

1

0

6

1

8

4

7

7

0

0

1

4

6

7

4

2

9

9

1

3

5

8

2

7

8

3

8

4

9

1

1

8

0

6

7

7

87

2

9

8

4

1

1

4

7

5

1

0

1

6

2

9

95

4

1

1

1

6

1

6

9

6

4

6

9

8

3

6

9

2

2

6

7

8

5

5

6

3

1

6

9

2

6

9

1

7

1

1

3

1

0

1

5

2

1

0

1
8

6

8

9

0

2

8

2

7

6

8

8

5

1

7

6

8

5

6

1

8

4

4

7

6

4

3

1

1

3

7

7

0

0

6

4

3

7

6

2

5

3

5

1

8

3

3

6

8

0

4

8

1

0

7

2

4

7

7

5

3

0

2

8

8

9

5

3

2

9

5

2

6

9

3

6

9

0

0

4

7

8

8

7

0

2

8

0

8

8

7

2

5

0

1

0

3

3

0

1

6

3

6

2

1

6

1

6

7

7

2

1

3

1

9

3

26

4

8

5

6

3

6

70

6

0

8

8

0

4

6

7

6

7

4

5

2

5

9

9
9

3

3

5

2

8

7

0

4

0

0

4

2

4

0

6

2

6

7

5

5

5

6

9

7

1

0

7

3

3

0

2

6

2

4

3

4

0

3

6

1

1

3

7

6

2

9

2

6

2

0

5

9

1

5

1

5

3

2

1

2

5

1

1

4

7

6

5

8

3

0

8

5

8

3

6

6

3

7

1

1

6

9

2

7

1

6

8

1

4

3

2

6

5

7

3

3

0

3

3

6

4

6

2

9

9

1

3

9

9

8

0
4

2

4
5

7

9

1

3

3

3

8

7

0

7

3

4

4

8

8

0

2

0

8

1

1

1

8

0
7

3

7

4

81

1

4

5

8

1

0

7

0

8

0

1

3

1

4

9

7

7

9

3

8

1

55

5

9

5

7

4

7

8

3
4

4

9

3

3

2

0
4

4

4

3

9

6

0

1

1

2

1

2

4

1

7

0

9

2
2

8

6

7

7

2

32

5

0

5

6

8

5

5

4

8

6
2

6

3

4

0

7

6

0

3

4

3
3

7

1

8

4

4

5

7

2

1

2

6

8

7

1
4

7

6

2

1

0

1

6

0

8

5

8

6

2

2

5

5

4

1

6

4

9

3
7

6

2

5

0

2

8

2

1

8

3

7

0

4

9

9

9

4

9

9

0 9

1

5

2

9

0

8

1

1

3

1

3

2

4

3

7

9

7

0

1

1

4

4

5

7
1

7

3

7

8

5

5

2

2

2

7

9

6

3

1

8

2

8

7

3

8

1

4

5

9

1

6

9

9

3

6

1

2

2

7

7

7

6

5

2

0

4

7

1

4

7

7

7

9

3

2

3

8

8

9

1
1

4

7

2

4

8

6

2

8

4

9

9

2

5

6

1

1

7

6

5

8

9

3

8

9

5

0

4

2

6

8

7

3

5

8

7

4

4

5

2

8

6

5

3

5 3

2

0

9

4

4

0

5

9

0

9

8

8

6

8

9
5

9

0

3

6

3

1

9

6

9

6

6

8

1

6

9

6

7

5

7
2

7

1

7

7

5

8

1

1

4

1

2

4

2

9

7

4

5

2

6

7

0

0

6

8

3

3

8
3

3

7

9

2

4

3

2

1

4

9

1

3

2

9

6

1

3

3

6

9

4

2

5

6

0

1

3 9

2

4

2

2

3

8

0

4

7

8

9

7

7

9

7

4

7

6

7

0

1

9

6

2

1

9

4

8

0

5

1 5

1

4

1

4

4

9

6

2

2

1

6

0

9

5

3

6

1

8

7

8

8

0

7

8

7

5

6

9

3

4

7

5

3

2

3

0

6

5

2

0

8

2

2

2

7

7

0

9

2

2

0

0

0

9

4

2

1

3

5

2

3

7

4

0

6

4

1

0

9

9

3

5

7

6

0

7

2

1

6

3

7

8

6

1

4

6

8

6

9

8

2

7

5

5

5

2

4

7

0

2

6

0

0

4

4

1

9

8

2

6

3

4

2

0

0

1

0

6
6

2

7

0

4

7

6

2

7

1

4

7

6

7

0

8

8

7

0

1

5

1

9

2

8

5

1

7

2

2

0

8

1

6

3

7

2

9

7

8

7

5

1

9

0

3

3

0

1

9

8

7

7

92

2

9

0

91

7

5

1

6

3

4

4

8

9

6

5

0

5

5

9

4

9

7

23

4

8

5

7

6

4

9

1

6

6

9

9

7

2

3

9

8

7

3

3

06

8

0

4

5
2

2

1

8

1

6

0

5

9

3

8

0

8

6

2

9

9

0

2

6

3

7

4

2

7

2

7
7

7

2

0

0

2

2

7

1

0

5

0

9

3

1

60

7

9

9

7

3

9

1

0

9

8

7

3

9

4

7
2

4

1

4

2

3

0

8

4

2

5

3

35

1

4
1

3

0

1

5

3

3

0 0

9

5

2

8

0

0

7

9

2
5

6

5

1

7

0

3

0

7

2

4

7

4

7

3

6

7

0

1

2
6

0

4

6

0

8

0

3

0

1

7

4

1

6

7

1

6
6

2

3

5

9

1

1

8

7

7

3

7

9

4

0

2

3

9

8

3

0

1

3

8

8

6

7

7

5

1

8
7

7

1

0

3

8

8

9

0

5

9

5

3

2

5

0

1

7

9

3

0

2

8

2

3

2

3
4

1

0

2

3

4

4

6

7

7

7

5

2

8

1

7

8

7

7

3

3

0

5

6

6

4

8

4

2

9

6

8

2

4

8

9
0

5

9

8

5

4

6

0

0

5

8

5

8

7

2

2

8

51

8

9

5

6

4

9

1

3

3

4

1

1

7

1

4

8

6

4

8

1

2

1 4

7

8

9

9

5

7

7

4

6

1

7

2

3

1

1

0

1

6

6

3

9
8

7

0

1

9

1

6

3

2

8

3

9

1

4

6 0

0

9

0

7

9

1

5

5

7

8

5
9

8

0

8

1

0

5

0

2

7

8

1

2

9

1

4

8

1

2

0

2

4

9

6

5

4

2

0

4

2

1

6

4

4

0

9

5

5

4

0

2

1

1

4

6

9

3

8

8

4

1

8

3

5

0

9

0

0

5

2

1

8

8

0

8

8

7

8

7

56

5

0

7

0

4

9 9

0

9

2

6

2

7

0

1

6

2

6

1

0

1

3

8

9

1

6

8

1

7

2

0

8

8

5

5

9

9

1

8

4

3

6

9

4

7

0

1

1

9

4

1

4

5

6

4

0
0

1

2

9

8

3

3

6

9

0

9

2

0

3

1

6

0

0

8

1

1

6

3

7

2

5

9

6

1

4

9

4

9
2

1

1

4
7

9

3

7

4

9

4

4

7

2

8 9

1

6

6

4

4

5
9

4

0

0

6

4

0

2

0

7
4

0

8

8

0

7

1

4

0

5

7

9

6

1

51

2

1

2

1

6

9

4

8

4

9

0

1

2

9

3

7

0

2

2

7

6

7

7

1

1

5

4

9
2

8

8

3

5

5

3

0

3

4

4 8

6

8

3

2

0

4

6

7

7

2

2

6

0

9

7

6

2

9

0

3

5

1

6

8

8

0

2

7

3

2

3

8

4

7

3

9

6

06

3

2

9

2

0

8

1

6

8

4

9

6

0

5

9

0

8

0

1

3

8

5

1

3

8

0

1

93

2

9

8

1

7

4

1

8

4

6

4

6

8

6

1

8

1

5

3

9

4

7

5

6

9

2

6

0

6

7

5

1

8

6

1

1

7

5

2

8

8

8

1

33

8

7

2

2

0

5

7

2

2

3

3

1

8

6

6

1

2

4

4

7

0

6

0

1

2

25

9

9

1

2

0
2

2

2

9

7

0

1

6

8

2

0

4

4

8

1

7

2

2

58

4

4

0

4

0

0

3

4

0

8

1

1

9

2

1

0

8

3

7

8

0

2

5

1

3

8

3

7

1

1

0

0

8
0

6
8

7

8

0

8

3

3

9

4

2

4

4

5

0

1

8

1

3
7

7

0

7

4

7

2

8

0

8

8

8

4

5

9

5

5

5

7

7

8

0

3

0

7

4

9

8

1

9

1

9

4

3

5

5

9

6

0

7

0

9

0

6

5

4

2

7

6

9

7 2

6

0

8

8

7

2

5

3

4

0

9

1

0

3

7

1

4

3
4

4

6

5

2

5

2

5

0

2

5

2

1

2

8

4

2

3

6

3

0

3

9

7

5

8

4

5

6

4

7

0

3

0

8

2
6

7

6

3

0

0

7

2

6

0

1

9

2

8

4

5

3

9

0

2

07

6

6
7

9

3

5

3

1

1

6

6

0

5

5

4

3

4

2

6

0
0

9

7

7

9

5

4

9

2
2

6

3

9

0

7

8

6

9

3

2

0

4

6

5

2

1

3

1

8

0

5

5

4

1

0

2

7

3

2

9

8

0

3

7

0

1

1

0

2

7

6

6

4

6

6

44

9

7

3

0

1

3

1

6

9

3

5

5

5

1

9

3

0

1
9

2

8

8

7

9

6

3

6

4

9

5
2

3

3

6

2
7

8

0

5

1

5

3

8

6

5

1

3

1

9

0

5

9

6

2

1

3

2

3

1

3

9

6

0

9

4

3

9

5

8

1

6

9

5

9

5

6

2

1

8

9

9

3

5

2

7

0

4

5

9

3

0

1

2

0

4

6

0

2

2

6

1

7

1

4

5

3

9

6

6

0

4

6

2

4

7

4

7

6

1

8

4

0

0

1

8

0

1

1

6

1

3

1

3

0

4

2

6

2

5

9

7

7
0

8

9

2

1

2

2

1

4

3

6

7
3

8

0

7

7

3

4

1

9

2

0
1

5

6

9

5

3

0

2

1
3

7

4

2

9

3

2

7

6

1

2

9

3

4

0

4

3

7

0

4

4

6

2

5

5

9

7

4

5

1
0

8

1

2

1

6

3

3

4

7

7

9

8

5

1

0

8
7

9

8

2

5

3
4

6

1

8

9

6

6

6

6

9

9

6

1

8

9

0

3

3

5

3

7

9

8

5

9

8

9

7

1

2

0

6
6

6

7

1

4

0

9

1

9

6

5

0

0

0

2

5

8

9

7

7

9

0

6

6

5

7

0

2

4

1

4

7

7

8

0

9

0

1

8

6

6

211

0

5

7

5

7

6

1

1

5

1

3

8

0

4

4
5

4

6

4

4

5

2

3

0

9

3

1

6

6

3

4

0

4

5

2

5

7

5

5

7

3

0

9

0

0

5

8

5

5

2

9

9

2

3

1

4

2

4

3

4

6

5

9

1

9

5

1

5

9

7

0

8

2

6

9

3

9

6 7

3

0

4

6

3

4

3

4

4

4

1

5

1

8

3

0

2

5

2

2

5

7

3

4
2

9

2

1

8

9

0

0

1

8

7

0

6

2

8

7

6

7

3 0

7

8

2

9

6

5

7

6

2

8

5

9

0

1

2

1

1

4

1

6

8

9

0

7

2

9

62

3

5

0
1

4

1

6

6

7

6

93

3

5

8

2

6

3

6

0

6

7

2

2

0
9

4

2

2

1

4

2

3

1

0

9

7

0

9
8

8

9

4

7

8

9

7

2

9

3

3

9

1

9

1

3

7

1

1 3

2

7

2

9

3

0

1

8

8

7

8

3

7

2

3

6

6

3

9

3

1 1

4

8
3

7

7

5

8

1

3

9

5

9

4

3

1

9

1

5

5

8

5

9

0

7

1

0

6

2

6

2

8

4

1

1

5

8

0

1

0

2

6

9

6

5

3

5

6

8

1

4

8

2

4

7

1

8

8

9

0

6

6

0

7

0

1

5

6

3

0

4

2

4

8

2

1

0

1

5

2

6

6

1

2

2

5

0

9

3
4

0

7
7

1

6

2

8

8

2

6

0

3

2

5

8

1

9

1

9

3

6

3

3

9

4

8

1

0

5

6

2

8

9

3

6

1

0

8

5

2

4

3

1

4

3

5

6

4

1

8

0

3

4

7

3

1

9

7

8

5

6

7

5

7

3

4

3

9

5

4

4

8

93

2

6

4

4

5

1

4

2

5

9

5

4

1

0

1

2

2

2

1

6

3

0

2

3

0

4

1

7

1

9

6

6

6

9

6

8

6

4

2

9

2

5

0

9

9
2

7

8

2

5

7

3

0

7

9

2

5

4

4

7

0

3 4

2

4

9

8

3

4

8

4

7

2

4

7

4

5

98

8

0

2

7

5

6

9

0

3

6

0

9

3

8

8

2
7

2

5

7

2

5

6

3

2

6

0

6

5
8

5

7

4

3

3

0

2

8

7

9

4

0

9

8

3

1

5

4

4

6

8

2

3

9

9
7

0

9

6

8

3

2

9

1

6

7 5

6

8

9

6

6

3

7

9

6

1

9

9

5

4

1

5

4

2

5

9

4

0

8

2

7

3

8

7

8

0

1

2

5
8

8

0

4

8

1

7

2

6

1

7

1

0

2

8
5

6

2

3

4

6

0

4

6

1

5

3

9
6

1

6

6

2

9

2

1

7

3

86

1

5

5

9

8

2

94

0

4

2

2

6

6

1

8

3

3

1

5

6

1

8
2

4

2

1

7

9

1

5

4

2

3

6

6
5

0

4 6

4

4

6

9

6

1

9

4 2

0

1

9

6

4

2

7

1

5

1

9

9

9

1

8

6

8

8

9

4

2

5

9

6

9

3

6

0

5

3

2

1

6

2

9

7

5

1

2 9

5

3

0

3

6

5
1

7

6

8

2

0

9

9

0

7

6

3

9

1

3

9

3

8

7

5

4

7

2

7

1

2

1

3

4

1

7

4

7
3

0
8

5

3

8

2
6

4

7

1

4

8

0

1

7

1

1

9

6

1

5

6

2

3

0

3

0

3

2

9

7

9

4

9
2

4

1

2

3

2

7

9

7

6

9

0

5

9

2

2

7

7

7

7

8

3

8
0

0

8

5

1 8

1

0

8

1

6

2

1

8

0

5

1
8

6

2

4

4

8

9

0

8

7

6

7

9

4

7

1

5
7

8

2

1

2

1

3

1

7

1

8

3

5
8

6

5

5

1

1

7

3

7

0

3

0

5

0

2

3

9

9

7

8

1

7

7

2

6

7

8

3

6

0

2

2

5

9

7

5

7

5

8

2

3

2

8

8

6

7

1

3

6

2

3

5

1

4

9

8
2

4 4

5

6

9

0

6

7

3

8

5

6
3

5

8

9

9

3

3

3

4

8

3

0
3

5

4

2

3

2

8

4

1

6

9

2

2

8

8

3

8

7

5

1

1

7

3

3

2

7

7

7

1

5

8

8

0

6

1

3

1

7

3

5

1

8

9

1

4

6

2

4

6

0

3

0

9

9

2

2

5

8

6

4

0

1

3

0

9

1

9

7

7

4

2

0

4

7

2

0

9

7

0

1

4

4

4

3

5

7

6

6

9

8

8

1

5

0

2

4

0

0

0

3

4

1

9

4

8

6

6

4

0

2

8

2

6

0

5

9

2

1

4

1

5

9

3

0

1

7

3

2

9

2

6

7

8

6

0

9

1

6

0

2

4

7

1

1

6

4

76

5

7

2

3

6

6

5

6
4

1

0

2

1

9

0

7

9

4

8

9

1

8

7

1 4

1

7

1

7

9

6

7

2

4

8

90

3

2

1

8

7
0

9

6

8

6

0

8

3

1

0

8

5

9
1

7

4

1

7

3

3

2

9

1

4

3

9

8

2

6

6

6

9

1

2

2

1

2

5

6

4

5

7

1

9

1

1

8

5

6

8

1

0

6

1
3

8

3

7

3

2

4

8

0

6

4

8

6

0

3

5

1

8

8

8

2

5

3

3

4

5

1

5

8

1

9
3

6

8

5

8

6

5

7

0

0

9

0

4

5

0

3

2

7

4

3

83

6

3

1

3

7

9

2

776

9

7
5

7

5

6

1

5

7

0

9

5

5

0

5

7

5

2

9

1

2

7 0

4

1

7

9

2

9

8

9

8

6

8

8
3

7

3

6

7

6

8

9
6

6
7

7

7

9

9

3

7

2

9

6

4

1

0 0

0

0

7

1

4

3

7

0

2

5

9

7

1

2

5

3

1

9

0

6

1

8

6

3

6

8

4

2

6

4

4

3

4

7

8

01

2

0

9

5

6

1

3

3

5

3

7

8

9

6

9

5

1

9

4

1

6

2

5

8

0

3

8

7

6

3

2

5

5

0

4

2

0

2

7

5

3

3

9

4

8

5

5

2

0

0

2

2

8

0

1

8

5

4

2

6

9

2

7

1

3

3

8

7

9

6

9

2

4

9

5

6
0

2

7

0

9

2

5

6

9

8

1

6

7

6

9

8

3

7

7

9

2

0

4

2

9

5

5

7
9

0

4

0

2

7

0

4

6

7

5

6

7

4

6

9

5
5

8

4

4

2

2

2
0

1

4

0

8

4
6

5

6

3

0

3

7

7

4

6

9

0

3

0
1

7

77

9

4

4

3

4

1

5

5

7

39 9

7

2

8

7

5

1

5

5

2

4

6

20

8

8

7

6

1
4

9

7

8

3

7
7

1

7

2

2

5

8

8

5

4

7

7

2

4

1

1

8

5

1

1

3

8

5

0

5

8

8

3

4

2

6

0

7

7

5

3

4

4

0

2

6

4

2

3

9

8

8

5

2

7

9

7

8

2

6
0

9

0

1

7

7

4

6

1

8 0

7

1

1

0
5

8

4

0

8
3

3

1

7

5

7

1

2

0

2

9

0

7

5

3

9

0

0

6

3

1

3

3

8

2

9

7

9

9

0

9

9

5

5

0

1

5

8

2
4

9

9

3

9

1

4

1

8
8

8

4

9

1

2

8

6

0

4

7

0

3

3

6

7

2

2

9

4

6

8

9

5

8

1

0

9

9

8

5

9

0

0

8

3

7

9

5

7

3

0

0

6

7

3

4

1

9

2

3

2

8

3

8

0

7

2

1

0

9
5

2

0

4

3

9

7

8

8

6

6

8

6

7

3

2

0

0

1

9

5

6

9

7

6

8

1

9

4
8

0

1

0

0

0

9

0

4 7

4

0

6

7

0

8

6

4

8

3

0

1

4

4

6

2

5

9

4

1

4

3

4

7

8

6

9

0

5

0

5

9

2

1

0

9

2

4

7

5

1

4

4

1

3

7

3

2

6

6

0

7

9

5

6

7

1

9

1

9

3

2

1

0

9

4

6

9

5

9

9

9

9

4

4
5

5

1

4

6

5

4

0

9

8

0

3
2

1

1

9

5

4

9

9

3
3

3

5

2

2

0

9

6

4

3

3

66

7

2

5

4

8

3

0

6

8

4

5

3

5
1

0

1

2

5

3

8

8

7

4

4

9

4

2

6

1

6

6

8

1

0

4

8

6

2

4

5 6

0

7

0

6

4

8

7

8

8

9
6

7

5

3

6

5

5

9

1

8

4

2

1

0

2

4

3

4

6

1

8

9

6

9

1

0

9

4

7

2

5

8

1

4

9

3

8

2

4

6

7

0

8

5

60

2

4

1

7

0

7

7

1

8

2

9

5

4

0

7

8

5
7

1

2

3

2

9

6

4

2

9

1

0
3

5

3

9

3

3

2

7

7

6

1

4

3

1

7

3

0

8

9

6

3

9

3

7

0

4

3

7

1

9

0

0

1

1

2

9

6

8

2

9

4

6

4

5

3

7

1

6

2

2

4

7

3

9

9

3

4

8

8

2 5

0

9

8

8

2

1

6

3

1

5 7

9

6

6

1

4

1

7

9

2

1

9

2

6

7

2

2

0

9

3

2

1

1

8

3

0

8

8

0

2

7

7

2
9

8

26

1

3

1
7

6

2

9

2

8

2

3

7

7 5

3

1

3

7

4

3

2

1

1

7

2

9

0

55

2

0

7

2

2

1

1

7

6

5

1

8

8

8

1

2

4

5

6

3

9

3

0

6

3

0

6

6

6

0

5 5

58

7

4

8

2

8
0 8

1

2

8

6

3

6

8

9

1

0

7

7

9

9

8

3

3

8

9

7

1

8

4

2

9

5

3

6

0

8

7

0

4

2

6

7

4

1

4

4

6

8

4

6

7

0

0

7
1

9

71

9

1

7

4

9

6

1

9

0

1

7

9

1

3

1

3

5

1

4

5

4

3

8

8

2

8

2

3

5

2

7

1

2

2

0

8
5

5

1

2

0
2

7

1

2

6

1

0

0

5

5

1
1

4

1

5

7

1

4

6

5

8

1

7

8

7

3

2

7

4

7 0

2
8

7

3

5
7

2

3

9

0

0

0

1

1

5

4

4

3

7

7

2

3

4

2

1

0

3

9

9

3

9

9

7

3

6

3

2

2

2
3

6

3
7

4

5

7

7

9

3
4

5

9

1
9

5

3

0

4

5

7

5

8
9

4

9

8

0

1

9

5

2

8

8

3

1

7

1

1

3

5
4

3

1

3

3

8

1

2

6

7

2

3

0

8

0

4

0

5

4

0

9

5

9

6

0

6

1 0

6

7

4

3
1

0

2

4

5

9

6

97

1

8

8

9

1

6

3

1

6

5

8

0

2

7

7

0

4

0

0

1

5
5

4

5

6

3

7

7

0

2

6

8

6

9

6

7

9

0

6

7

0

3

2

6

9

2

4

6

2

2

0

2

9

1

5

6

3

7

3

1

3

9

0

6

7

6

7

5

0

8

5

6

7

8

6

6

4

3

4

7

6

3

8

8

8

2

8

6

0

1

1

4

9

0

9

4

7

1

8

2

7

8

1

7

5

9

1

2

6

1

0

4

2

5

0
0

7

9

4

0

4

9

27

9

4

5

5
4

5

8

9

0

0

1

0

8

2

0

4

1

9

4

3

6

4

5

9

5

5

9

0

0

2

6

1

8

9
3

6

2

4

9

6

4

2

1

6

3

2

1

0

8

8

8

2

2

1

4

2

7

9

1

0

1

6

8

2

7

9

4

0

6

8

0

9

3

39

9

2

4

2

4
4

2

2

9

9

9

2

3

1

6

7

7

6

1

1

7

1

2

0

0

6

6

3

2
8

3

6

7

7

7

8

9

6
1

0

8

3

1

5

2

9

7 0

4

8

2

5

3

1

3

7

7

3

5

9

4

8

6

7

5

6

7

2

6

2

8

8

9

7

2

3

7

8

0

7

9

8

3

0

2

9

4

3

0

0

8

7

9

1

00

4

1

7

5

1

8

7

2

9

0

4

0

1

0

3

4

2

3

2

1

2

5

3

2

2

8

3

1 0

3

5

2

6

8

2

8

5

5

6

1

0

5

6

9

3

9

3

0

9

1

8

0

9

7

8

4

4

1

1

7 5

0

8

1

5

9

3

4

3

8

3

8

4

9

9

6

7

2

9

6

6

8

0

3

4

9

0

4
2

2

6

1

8

4

1

8

7

9

7

4

4

2

5

5

1

3

6

1

7

2

9

4

5

1

2

5

1

3

5

1

0

8

3

9

5

9

1

0

2

0
7

4

3

3

8
7

7

8

4

6

7

0

4

3

0

7

7

8

7

2 5

7

0

7

8

2
2

8

7

0

5

2

5

3

0

4

4
8

1

2

5

1

8

9

8

3

2

8

3

6

5

1

2

2

3

3

7

7

7

8

2

8

1

2

1
3

6

8

7

8

1

8

1

0

4

8

3

6

0

5

4

0

9

2

9

9

6

0

2

7

2
2

2

0

3

5

9

6

5

6

5

7

0

1

1

5

2

5

5

8
3

9

2

0

3

6

6

5

9

2

3

8

2

6

5

7

6 2

0

3
9

8

1

4

1

5

9

9

1

8

5

5

6

6

0

4

4

2
3

4

1

3

8

6

7

7

2

6

6

7

9

4

1

1

9

8

4

5

1

6

6

7

8

8

5

9

1

6

7

6

4

1

9

3

9

9
4

5

8

1

3

7

1

3

9
1

7

0

8

4

8

9

4

8

0
7

1

6

9

7

6

3

3

4

7
7

3

3

9

4

9

2

3

83
8

6
7

9

2

8

8

6

3

6

0

4

4

8

7

0

1

3

9

1

9

1

9

6

1 4

9

3

0

9

7

5

4 6

2

3

6

4

4

1

1

3

6 8

3

7

1 5

4

2

4
6

8
5

0

2

7

9

9

3

2

3

4

1

0

4

4

5

6 2

5

7

8

6

2

7

2

4

9

6

7

3

3

3

7

3

7

8

8

3

8

4

8 5

0

2

1

7

9

7

8

4

0

5

0

9

9

9

4

6

3

7

5

2

4

1

4

7

9

6

1

3

6

1

7

2

8

8

0

1

4

7

2

1

1

0

7

9

9

0

3

0

7

3

6

2

1

4

2

4

0

4

8

9

8

0

6

3

7

8

1

2

5

0

0

3

1

6
5

1

4

4

1

8

2

0

3

9

0

4

4
9

8

6

6

3 4

0

8

7

3

0

1 5

7

4

5

5

9

1

2

5

4

3

4

7

1

9

9

4

8

3

5

9

8

7

7

6

2

7

8

4

9

2
64

5

5

2

2

0

1

1

7

6
5

1

8

9

8

6

5

2

2

4

5

8

0

7

9

3

4

1

4

1

4

1

9

2

6

3

9

5

2

8

9

1

8

1

3

6

6

8

5
0

4

3

7

4

4

5

3

6

0

9

1

2

9

7

9

8

4

9

7

5

0

4

4

0

6

5

4

6

1 7

9

2 7

3

8

5

9

5

4

1

9

2

3

3

9

6

3

1

5

4

8

3

5

3

8

7

8

6

8
9

2

9

5

5

7

9

3

1

6

0

3

2

1

8

5

1

7

0

8

7

5

1

4

9

5

6

9

8

4

0

3

1

5

1

1

1
9

0

0

2

5

0

1

1

8

7

5

4

6

9

8

8

8

2

8

6

7

9 1

4

1

7

3

5

1
1

2

2

7

54

0

0

5

3

7

5
2

7

9

9

2

2

6

0

8

9

0

6 2

0

3

4

4

7

5

9

1

3

9

7

0

6

43

1

7

7

4

5

7

5

6

5 2

4

0

71

5

3

7

1

3

7

7

7
6

1

8

2

3

7

8

1

7

4

3

9

2

1

0

9

6

7

1

4

3

8

4

6

5

8

2
6

1

4

6

4

7

9

5

2

2

9

1

0

5

5

6

6

6

4

3

8 8

8

7

6

4

4

1

0

3

5

8

7

05

0

6

5

6

8

7

2

5

4

6

3

6

4

0

1

8

7

4

1 5

1

8

6

1

7

1

9

9

0

7

5

9

3

3

7

4

5

3

8

6

3

4

2

7

7

8

7

2

1

6

5

4

4

6

6

1

2

1

4

9

4

6

3

7

2

3

9

7

1 0

2

1

9

2

6

3

1

6

3

2

3

4

6

6

1

3

6

7

4

1

0

5

6

3

2

3

6

8

3

0

1

8

00
1

8

8

4

9

3

0

4
4

4

8

4

5

7

6

4

3

7

8
5

5

6

49

5

9

4

3

5

0

5

93

5

1

6

1

5

2

0

0

6

8

9

7

7

4

2

0

7

4

0

3

1

4

1

2

1

0

4

8

7
7

6

4

2

6

2

5

6

0

8

2

1

6

2

8

8

4

9

8

2

6

1

4

8
3

6

4

6

0

3

3

9

8

4

7

4

8

0

1

2

6

7

2

9

6

6

7

8

7

6 9

0

4
3

9

0

3

6

0

5

1

7

9

3

2

3

6

6

5

4

3

7

8

2

4

6

5

5

0

0

8

0

3

3

6

1

7

6

4

5

1

9

7

6

4

9

9

2

8

5

8

4

8

2

3

9

9

3

6

5

1

5

2

0

3

3

9

6

3

9

3

0

9

9

2
6

0 2

3

0

7

0

3

0

1

2

0

7

9

5

6

6

7

8

6

7

9

9

8

3

5

9

6

6

9

8

2

6

0

5

7

3
2

0

5

1

7

9

7

2

8

7

5

9

2

8

5

8

8

7

1
1

7

7

3

0 8

2
9

5

6

7

2
4

4

2

7

9

2

5

1

6

8

5

0

4

1

7

1

4

0

91

4

7

3

3

0

9

8

9

6

0

0

3

3

1

2

4

3

8

2

4

4

2

5

5

5

2

2

0

3

5

1

5

2

3

7

0
4

7

0

6

3

1
4

8

5

6

1

0

7

9

4

7

1

1

5

2

8

9

3

6

9

6

1

8

4

7

5

0

2

7

8

0

8

3

9

9

3

2

0

0
0

3

2

6

5

7

1

3

8

5

1

2

5

4

2

8

0

6

2

6

1

5

0

3

7

3

0

8

3

3

2

0

4

4

8

0

3

5

7

3
9

7

0

1

7

2

1

7

1

6

8

6

0

0

9

7

8

7

5

4

1

7

5

5

0

9

6

8

2

7

7

4

4

5

7

8

7

1

8

5

2

3

1

2

2

3

0

1

1 6

1

99

3

8

1

8

8

2

8

4

7

18

0

8

0

9

9

3

7

4

3

2

5 5

1

1

0

6

8

8

7

3 8

1

9

0

0

1

1

3

1

0

0

4

8

5

8

3

6

5

2

4

6

2

5

3

2

6

0

2

0

3

9

7

0

0

7

3

5

4

8

8

2

1

0

5

1

3

0

3

0

2

9

1
9

9

1

1

5

0

3

5

7

7

9

9

5

7

7

0

4

9
0

9

7

8

5

9

0

5

1

5

7

2

6

9

3

7

8

2

5
2

2

4

3

6

0

2

2

7

3

6

2

3
1

1

3

1

5

1

3

2

6

8

6

1

3

5

7

5

2

1

3

7

4

1

4

3

3

6

9

3

3

3

2

3

4

2

4

6

9

5

8

9

2

8

6

5

6

8

1

9

9

2

6

0

1 1

1

5
8

4

2

4

2

3

2

9

0

5

9

3

9

8

8

1

4

3

3

4

3

6

1

8

4

6

1

7

4

8

4

6

4

0

6

4

0

5

8

3

0
1

0

2

20

8

1

1

6

3

2

2

4

5

8

3

2

3

3

3

8

4

1
2

5

8

8

6

9

7

1

7

7

6

7

8

2

6

3

7

3

1

1

3

0

1

0

5

1

2

2

9

2

3

5

8

3

1

9

1

2

3

4

5

8

4

6

3

4

3

6

4

0

6

1

2

2

76

5

1

6

7

0

7

0 5
0

0

9

9

9

6

5

0

8

1

1

2

3

7

6

7

8

0

2

0

1

2

2

1

2

1

2

6

9

2

3

9

3

1

3

0

2

7

1

5

5

6

9

5

6
6

7

2

1

9

8

8

6

7

4

9

6

1
5

9

8

7

0

0

9

4

8

6

3

4

3
4

9

1

9

2

1

0

5

7

3

7

5

9

54

9

1

9

7

0

8

4

6

2

6

5

8

4

7

3

3

6

7

0

5

11

5

5

2

0

8

0

9

6

1

6

83

1

6

4

8

1

1

3

6

5

4

2

4

5

7

5

9

2

5

5

9

1

9

3

6

9

3

2
9

4

8

0

0

1

0

8

0

1

2

3

5

6

0

4

0

4

4

1

6

8

3

0

2

5

6

4

4

3

7

9

2

6

9

7

0

4

3

7

7

6

5

6

5

6

8

3

8

6

1

3

8

3

4

1

7

3

7

3

7

1

5

1

8

8

6

0

4

4

1

7

7

20

2

5

4 2

1

3

1

3

6

3

9

1

3

1

4

7

3

3

7

5

3

2

4

9

1

9

2

3

5

2

7

7
2

4

4

9

5

2

5

6

8

9

4

0

7

5

1

3

4

3

5

7

6

3

2

8

6

4

0

1

4

3
3

9

2

5

3
4

2

2

8

0

4

3

1

0

1

1

9

6

1

8

8

1

7

4

3

6

2

5

4

5

2

9

4

9

2

3

9

9

5

1

1

8

4

7

7

4

4

1

6

5

9

8

9

2

2

4

0

1

6

0

6

7

8

2

0

0

9

3

8

9

2

3

1

1

4

6

1

5
1

9

2

0
6

2

3

7

4

1

2

3

3

4

3

8

1

4

7

6

5

1

2

6

1
7

1

2

3

6

8

9

4

5

3

6

6

1

9

9

0

8

5
4

7 8

1

2

8

4

5

5

3

3

1

9

0

5

2

2

1

6

3

3

5

1

9

6

2

3

3

2

4

9

2

1

7

4

7

9

9

2

1

9

8

9

9

8

3

4

9

4

7

4

3

2

4

7
2

5

8

3

5

5

2

8

9

6

6

4

1

3

8

5

6

5

1

4

2

7

4

9

3

5

7

1

8

8

0

7

7

5

9

2

4

9

4

8

9

2

1

9
1

4

4

4

8

0

7

8

6

7

9

3

1

4

9

6

8

1

4

4

4

2

8

9

4

8

6

2

4

4

9

1

6

9

8

8

5

5

6

1

3

8

4

2

1

1
3

3

3

4

9

2

0

3

2
3

2

7

8

6

3

1

0

0

3

6

1

2

2

5

4

9

8

1

9

8

2

1

5

1

1

8

8

1

8

1

0

1

5

8

9

2

3

2

7

8

1

9

57

6

7

1

8

2

1

9

9

2

0

3

8

4

0

7

5

5

4

7

7

8

1
0

7

4

7

6

9

3

4
1

7

1

9

4

1

0

3

6

6

3

9

1

0

1

8

9

1

4

5

5

9

5

4

8

7
0

0

8

5

4

2

4

9

3

7

5

0

3

8

9

5

0

1

0

4

1 1

4

2

4

9

7

9
9

6

1

6
2

7

0

1

4

0

5

2

1

3

04 2

9

0

6

8

2

3

0

9 8

9

9

3

2

3 9

2

0

8

3

8

1

5

8

0
8

7

2

1

Figure 3.18: ELMVIS+ visualization of MNIST handwritten digits test set with

10,000 samples, using ELM with 20 neurons. Optimization finishes in one minute

and 37 seconds.

102

5

1

7

9

4

1

9

3

5

4

8

9

0

3

5

8

3

6

5

2

9

2

9

0

8

2

7

2

6

3

45

5

7

6
8

3
1

9

8

6

8

4

6

8

4

7

2

5

09

8

5

9

1

8

9

7

8

5

1

3

1

0

6

7

0

2

2

5

7

2

0

6

8

3

4

2

1

1

5

8

14

2

7

5

0

1

3

7

3

3

7

1

6

0

1

4

0
6

3

3

0

1

7

4

4

9

7

1

8

1

1

1

9

2

1

7

4

3

9

9

0

7

4
4

0

8

8

5

6

0

1

7

8

8 7

2

2

6

9

5

5

1

3

2

4

3

2

2

4

7

2

3

5

7

9

5

6

1

9

1

3 4

8

2

3

3

4

9

2

8

7

8

4

6

9

3

9

5

7

6

7

1

3

3

3

1

6

1

1

8

8

5

2

8

9

7

2

1

5

2

4

3

9

6

4

7

9

2

2

3

3

2

5

8

8
7

4

8

3

3

3

7

13

9

9

3

2

1

2

6

51

9

5

1

0

7

1

8

8

7

5

1

23

8

9

7

2

3
3

9

9

0

6

6

1

3

0

2

5

5

6

7

0

7

5

1

2

1

1

8

5

6

2

3

2

8

1

3

5

6

8

0

5

3

9

4

4

2

9

8

1

9

1

7

4

9

4

2

1

3

1 4

2

1

6

4

5

4

8

1

3

7

9

1

1

7

9

9

7

5

5

4

9

5

0

1

5

9

8

5

3

6

3

8

0

1

1

5

4

5

6

4

3

5

0
5

7

0

2

8

5

2

4

6

3

5

2 9
4

1

2

0

3

4

9

6

7

3

8

2

1

1

3

2

8

8

6

6

3

4

4

4

7

6

0

1

6

9

3

1

3

6

6

6

4

3

3

7

9

8

7

3

1

0

9

4

5

2

7

1

2

3

1

0

1

4

9

7

1

6

1

5

0

8

1

0

1

8

4

7

9

8

3

4

5

7

2

3

1

1

7

0

1

3

0

0

3

0

1

6

6

0

4

2

2

6

4

6

8

6 1

1

7

0

7

4

2

3

0

7 8

7

1

7

8

9

8

1

6

0

5

1

7

4

1

4

5

0
0

6

7

4

3

6

282

2

9

7

3

7

4

9

3

4

5

6

8

6

3

9

5
5

3

1

2

1

1

8

0

0

3

6 2

8

8

1

7

2

7

1

1

8

0

4

9

7

2

8

3

0

2

3

9

3

0

6

7

8

9

2

3

8

6

5

5

5

7

3

9

1

4

1

0

0

9

4

4

1

3

2

4
7

6

7

2

9

1

5

2

4

2

5

3

0

5

3

5

7

9
8

0

2

9

7

5

4

3

1

1

5

2

2

9

6

1 9

6

3

0

7

3

0

5

2

5

9

7

4

0

3

2

9

2

3

4

6

1

2

9

7

0

4

4

4

6

7

9

9

7

6

8

6

0

0

9 0

4

5

7

0

9

7

0

0

5

5

6 6

2

6

5

0

8

2 9
7

6

86

4

6

6

4

0
3

0

7

9

8

9

3

6

5

3

7

5

4

7

3

2

6

4

7

4

9

3

3

0

9

2

0

9

6

6

1

2

1

5

6

9

1

2

5

0

6

5

0

7

3

7

1

1

2

6

9

0

8

1

2
8

1

6

7

2

8

6

1

3

8

8

3

00

8

1

2

7

6

3

2

0
9

7

6

9

3

9

5

4

5

2
0

4

0

6

7
2

4
4

9

2

0

9

4

4

6

6

9

4

4

4

4

3

0

3

2

0

8

3

0

5

8

4

9

5

0

7

6

2

8

9 7

3

5

0

1

5

6

1

9

8

5

1

3

1

8

8

6

6

1

8

9

8

9

7

2

8

8

1

4

9

1

5

0

0

6

3

8

8

4

3

9

4

9

1

0

3
1

5

8

1

7

1

3

4

5

5

5

4

5

0

1

6

0

4

3

2

9

6
2

4

2

9

0

7

7

7

0

9

6

8 4

4

2

6

2

8

9

9

2

6

8

9
0

6

4

9

7

1

2

2

4

0

3

7

9

9
2

6

6

6

8

4

1

0

7

1

3

5

7 7

0

9

3

7

1

4

4

0

6

8

6
0

8

8

1

6

1

7

5

5

5

6

0

7

9

2

2

7

0

8

4

7

1

0

0

3

3

5

5

6

9

4

7
6

8

3

3

7

7

3

8

2

0

8

2

7

9

6

9

4

5

5

54

7

0

7

2

1

7

3

3

9

7

2

3

1

9

3

1

6

9

1

4

0

4

8

2

1

9

7

8

7

6

1
3

0

3

0

2

9

8

8

9

1
9

2

9

7

0

1

3

0

0

2

3

1

2

8
5

6

11

2

4

0

8

3

3

6

9

8

1

0

6

1

0

6 2

0

9

5

6

8

2

0

4

1

7

6

4

8

8

0

4

3

7

3

5

0

8

5

0

6

4

9

6

9

7

6

9

2

8

9

6

3

5

6

2

8

5

1
8

1

0

9

2

1

1

4

3

6

0

2

0
3

3

8

5

0

0

6

8

0

6

3

3

9

9

2

5

9

6

6
2

3

4

7

3

8

5

6

9

8

2

8

4

0

5

8

8

8

0

2

4

2

2

2

9

6
7

1

8

9

2

5

0

8

3 0

7

3

0

2

7

9

9

4

8

3

6

2

6

2

9

5

8

7

7

4

6

1

3

2

9

0

1

8

9

5

4

7

3

4

8

5

1

7
9

6

09

0

7
4

1

3

51

3

5

8

7

3

9

4

8

9

6

4

5

1

5
7

6

0 7

5

7

5

3

4

0

0

0

0

4

2

4

0

9

0

9

1

1

1

2

9

1

5

41

5

2

1

0

0

7

4

2

4

9

0

8

3

9

6

9

5

2

7

6

0

3

3

5

9

0

3

1

9

7

3

1
0

2

3

3

3

5

2

7

0

5

7

4

3

5

5

1

6

8

4

9

2

8

5

8

8

2

6

0

9

3

3

2

9

5

0

9

4

3

4

7

3

9

5

5
9

7

5

2

9

5

0 5

6

6

9
7

1

2

1

1

7

1
4

3

8

3

8

5

0

7

4

0

7
9

4

2

7

3

8

1

0

7

5

1

5

3 3

5

1

5

4

5

7

3

3

0

8

6

5

5

9

1

5

1

9

7

7

1

6
9

8

1

7

2

5

3

5

3

0

0

2

8

3

0

5

4

1

4

7

6

2

8

3

5

2

1

7

9

8

4

8

5

3

0

7

8

9

7

7

7

6

7

1

4

2

7

9

0

5

8

32

0

4

4

0

8

5

7

9

2

9

3

4

1

1

8

8

7

1

0

4

3

3

1

5

2

4

3

3

7

6

3

7

8

3

4

6

3

7
0

0

0

0

1

8

1

8

7

5

7

7

0

9

8

9

5

8

8

5
1

6

4

1

8

7
1

8

3

4

5

4

9

8

7

8

4

9

2

1

3

3

0

5

6

1

1

8

4

9

5

3
8

7

2

1

5

2

4
4

5

2
8

2

8

9

1

3

4

4

4

2

5

9

7

6

9
9

6

5

1

8

4

2

3

4

5

7

9

9

3

0

1

4

2

3

2
6

3

6
0

7

1

5

7

9
2

9

3

4

9

4

3

4 0

1

0

1

0

0

7

1

3

3

8

3

3

9

5

3

1

7

2

4

1

8

1

5

4

6

1

9

1

4

8

6

3

8

6

7
0

9

5

9

4

8

2

5

3

0

8

8

2

9

2

9

0

9

7

9

2

9

2

1

9

0

7

2

3

3

4

5

8

8

2

3

1

0

4

8

8

8

6

7

9

9

1

6

0

3

4

3

1

5

3

3

8

9
8

5

0

2

9

2

4

0

8

7

1

1

9

1

4
4

7

3

2

9

4

5 0

4

7

6

6

8

2

8

2

4

7

0

1

7

1 4

0

7

6

0

6

7

4

8

3

1

2

2

1

5

1

3

4

1

7

4

9

9

6

0

8

8

9

3

4

1

8

8

3

8

0

2

3

2

5

2
9

8

9

8

6

6

6

1

9

2

4

5

4

3

1

4

5

9

0

7

3

1

3

1 7

1

0

6

6

7

3

2

9

4

7

3

1

9

2

0

5

1

2

5

4

9

1

8

9

6

1

6

2

4

2

0

5

8

1

8

8

0

3

7

7

0

0

2

3

2

0

8

2

3

0

5

4

1

9

1

5

9

3

2

6

4

0

4
1

1

9
2

3

5

0

0

1

4

5

5

1

3

3

8

8

4

1 9

6

3

9

4

9

4

1

1

2

3

2

4

7

5

1

4

1

4

2

5

9

1

1

1

90

8

2

9
2

6

4

9

6

3

0

4

7

7

2

7

6

4

4

3

4

1

8

4

4

6

8

9

2

3

3

0

4

7

9

1

4

1

3

8

3

4

4

7

7

4

3

0

6

1

7

2

0

7

6

4

8

6

0

2

9

5

8

0

3

2

1

0

6
0

1

1

7

4

5

9

72

9

5

3

7

88

7

4

8

5

5

9

9

4

0

4

5

6

3

6

6

0

4

3

7

6

0

0

1

0

7

8
9

5

6

8

0

2

5

71

66

4

8

3

9

6

0

0

81

5

1

5

2

9

1

0

1

7

1

0

9

7

0

6

3

7 7

4

8

2

2

5

4

1

5

4

2

7

1

8

5

7

9

2

1

2

0

6

5

2

1

9

4

4

8

3

7

8

3

0

3

7

4

6
7

9

7

9

9

6

7

1

1
4

3

5

9

9

4

8

3

8

9

6

3

5

9
7

4

7

1

6

4

3

5

0

5

2

4

9

6

0

5

8

9

9

2

9

7

6

1

4

6

5

1

6

9

2

7

8
3

9

0

0

2

2

1

2

9

4

9

9

2

7

0

9

0

6

73

3

5

7 3

3

8

7

2

2

5

6

4

2

3

2

3

4

5

0

1

2

8

9

7

3

4

0

6

9

1

9

8

5

4

0

9

6

8

6

0

4

7

7

7

2

6

2

3

9

0

1

6

1

1

6

6

5

0

2

7

1

7

1

59

3

9

1

9

3

2

3

2

5

2

8

0

6

9

3

5

6

9

0

7

9

5

8

3

5

5

4

9

2

2

91
1

2

8

6

2

3

1

8

9

9

9

6

6

4

5

5

5

9

8

5

1

7

8

2
5

8

0

7
5

7

7

8

7

7

0

1
1

3

2

0

5

3

7

5

4

4

2

1

2

5

4

6

6

2

5

1

8

8

1
1

4

6

2

1

9

5

8

7

6

9

8

2

2

2

7

3

2

9

8

2

6

48

7

9

4

1

8

9

6

2

5

5

1

5

0

4

1

1

3

6

8

1

8

0

4

8

3

4

8

5

4

7

1

7

3

9

4

6

5

9

7

3

6

3

6

0

1

4

9
7

3

7

7

7

9

7

2

8

2

8
2

0

8

9

2

6
2

8

9

9
8

1

7

6

4

5

6

1

3

5

8

8

6

4

2

8

3

5

7

2

7

3

6

2

4

3

3

2

7

1

3

7

2

7

9

6

8

4

4

5

1
9

8

8

2

7

5

7

4

8

1

3

7

8

1

6

2

9

0

2

0

9

2

5

6

4

7

3

5

8 7

5

1

5

3

5

9

2

8

7

4

8

9

2

4

0

6

5

0

6

0

1

8

2

8

3

6

5

1

5

6

1

8

4

7

9

0

0

1

4

6

7

4

2

7

9

1

3

5

8

2

7

8

3

8

4

9

1

1

8

0

6

7

7

57

2

9

8

9

1

1

4

7

5

1

0

1

6

2

9

99

4

7

1

1

6

1

6

9

9

4

8

9

8

3

6

9

8

9

6

8

8

5

8

6

3

7

0

4

2

6

9

1

1

1

1

3

1

0

1

5

2

1

0

1
8

6

8

9

0

2

5

8

8

6

3

8

3

1

7

5

8

3

6

1

5

4

8

7

2

6

3

1

1

0

7

9

0

0

6

4

3

7

5

2

3

3

8

1

8

3

3

6

8

0

9

8

1

0

7

2

4

7

1

1

3

0

8

5

8

9

3

3

6

4

5

2

6

9

5

5

9

0

6

4

7

8

8

7

0

2

8

0

8

8

7

2

3

0

1

0

3

3

0

1

6

2

2

2

1

6

1

6

7

7

2

1

3

1

9

3

26

8

8

5

6

3

6

90

6

8

8

8

0

5

6

7

6

7

6

5

2

5

3

9
7

3

3

8

2

8

0

0

4

0

0

4

2

4

0

6

2

0

9

5

5

5

6

9

7

1

0

7

3

3

0

4

8

2

9

3

9

0

8

6

1

5

3

7

0

2

9

6

6

2

0

5

9

1

3

1

5

3

3

1

2

5

1

1

4

7

8

7

8

3

0

3

5

8

5

6

6

6

7

1

4

6

9

2

7

1

6

3

1

6

2

2

6

3

9

3

4

0

3

3

6

4

6

2

9

7

1

8

9

9

8

0
4

2

4
5

7

9

4

8

3

8

1

7

6

7

8

4

4

8

8

0

4

8

6

1

1

1

4

0
7

3

7

4

41

1

4

6

8

1

0

7

0

8

0

1

3

1

4

9

1

7

9

3

8

1

35

5

2

5

7

4

7

5

3
4

0

9

8

3

2

0
4

4

4

8

9

6

0

1

1

2

1

2

4

1

8

0

9

6
2

5

6

7

8

2

82

3

0

5

6

8

5

8

9

3

6
2

6

3

4

0

7

2

0

3

4

3
3

7

1

8

4

9

5

9

2

1

2

6

8

3

1
4

9

0

2

1

0

1

6

0

8

5

8

6

2

8

5

3

4

1

6

4

9

2
7

6

2

8

0

2

8

2

1

8

3

7

6

4

9

9

9

4

9

9

0 9

1

0

2

9

0

8

1

1

8

1

3

2

4

3

4

7

2

0

1

1

4

4

5

4
1

7

5

7

8

5

5

2

2

2

7

9

6

3

1

5

2

8

7

3

7

1

6

5

9

1

0

9

9

3

6

1

3

6

2

7

9

0

5

6

0

4

7

1

4

7

7

7

9

3

0

3

5

5

4

1
1

4

7

2

4

8

6

2

8

8

9

9

3

5

6

1

1

9

6

5

8

4

8

7

9

3

0

4

5

5

7

7

6

5

1

9

4

9

5

6

8

6

5

3

5 3

2

2

9

4

4

0

3

9

0

7

8

8

6

8

9
8

9

0

3

6

0

1

7

6

4

6

0

8

1

6

9

6

7

5

2
2

7

1

7

7

6

8

1

1

4

1

2

4

8

9

7

4

5

2

6

7

0

2

6

8

5

2

8
3

3

9

9

2

4

3

2

1

4

9

1

8

7

9

0

8

3

5

6

9

4

2

6

6

0

1

3 9

2

4

2

3

3

8

0

4

7

2

9

7

3

9

7

4

9

6

8

0

8

4

6

7

1

9

4

4

0

5

1 5

1

8

1

9

4

9

6

2

2

1

6

0

9

9

8

6

1

8

7

5

3

0

7

0

7

5

2

9

3

4

7

2

3

2

3

0

6

5

2

0

8

2

2

2

9

7

0

4

2

2

0

0

0

7

9

2

1

3

8

3

2

7

4

5

6

7

1

0

9

5

8

5

9

6

0

7

2

1

6

3

7

1

8

1

4

6

3

6

7

8

2

7

0

5

5

8

4

7

0

2

6

0

0

4

4

1

8

8

8

6

5

4

2

0

0

1

0

6
6

8

7

6

8

7

6

2

7

1

4

5

6

7

8

8

8

7

0

1

5

1

9

2

6

8

1

3

2

2

0

8

1

6

3

7

2

9

7

8

7

8

1

9

0

3

3

0

4

9

8

7

7

92

6

9

0

91

7

5

1

0

3

2

4

1

3

6

2

0

5

0

9

4

9

7

23

4

8

5

7

6

9

7

1

6

6

0

9

7

3

3

9

8

9

2

3

06

8

0

4

0
2

6

1

4

1

6

0

8

9

3

3

2

8

6

2

9

9

0

2

6

3

7

4

2

7

2

5
9

9

2

0

0

2

2

7

1

0

6

0

4

3

1

62

7

9

9

8

2

9

1

0

9

8

7

3

4

4

7
2

4

1

6

2

3

0

4

4

2

5

3

36

1

4
1

3

0

1

5

3

0

0 0

9

5

2

8

0

0

7

9

7
8

6

8

1

7

0

3

0

7

2

7

7

4

2

8

4

7

0

1

2
6

0

4

6

0

8

6

3

0

1

2

9

1

6

7

1

6
6

2

3

9

9

1

1

5

7

7

2

7

9

4

0

2

3

9

8

8

0

1

5

8

0

6

7

7

5

1

2
7

5

1

5

8

0

8

9

0

9

4

5

3

2

5

0

1

7

9

8

0

2

8

2

3

2

3
9

1

0

2

3

9

4

6

7

7

9

8

2

0

1

7

5

7

7

3

3

0

6

6

6

4

8

4

8

9

6

5

3

5

5

8
4

8

7

8

5

4

6

0

0

5

8

5

5

7

3

2

8

81

3

7

5

6

4

4

1

3

3

4

1

1

7

1

4

9

6

4

8

1

2

1 4

7

8

9

4

7

7

8

9

6

1

7

2

8

1

1

0

1

6

0

3

9
5

7

0

1

4

1

6

7

0

5

2

9

1

4

6 0

2

9

0

7

9

1

5

5

2

8

5
4

5

2

8

1

0

3

0

2

4

8

1

2

4

1

4

8

1

2

6

2

4

9

6

5

4

2

2

4

2

1

6

4

4

0

4

3

5

4

0

2

1

1

4

0

9

3

5

8

4

1

8

3

3

0

9

0

8

5

2

1

8

0

0

0

8

6

5

5

30

5

0

7

0

6

7 9

0

9

2

6

2

7

0

1

7

2

6

1

6

1

2

9

9

1

6

8

1

7

2

0

2

5

5

6

9

9

1

8

4

8

6

4

4

7

0

1

1

9

4

1

4

5

6

4

0
0

1

6

7

3

5

3

6

4

0

9

2

0

2

1

6

0

0

8

1

1

6

3

7

2

5

7

6

1

9

9

4

4
2

1

7

4
9

9

3

5

4

9

4

4

7

2

8 9

1

6

6

4

4

5
4

9

0

0

6

4

0

2

0

4
4

6

9

5

0

4

1

2

2

5

7

9

6

1

51

2

1

2

1

6

9

5

8

4

9

0

1

7

4

7

7

8

2

2

7

3

7

7

1

1

5

7

3
2

8

8

3

5

5

7

6

3

4

9 8

6

9

3

2

0

4

6

7

9

4

2

6

0

9

7

6

5

4

0

3

5

1

2

8

8

0

2

7

3

0

3

6

4

7

3

7

6

06

3

2

9

2

0

8

1

6

5

9

9

2

0

5

9

0

7

0

1

3

0

5

1

8

8

0

1

93

2

4

8

1

9

4

1

8

4

6

4

0

8

6

1

5

1

3

5

4

7

7

6

6

4

3

6

0

6

7

4

1

5

6

1

8

8

5

2

3

8

8

1

33

8

9

2

2

0

8

7

2

0

2

3

1

0

4

6

1

2

7

7

7

0

6

0

1

2

32

9

4

1

2

0
2

2

2

9

7

3

1

6

5

2

6

7

8

8

1

9

5

5

58

4

9

0

4

0

0

3

4

3

4

1

1

9

2

1

0

8

5

7

8

4

2

0

1

3

8

3

8

1

1

0

0

7
1

6
7

7

7

0

8

3

8

7

7

2

1

9

5

0

1

8

1

3
7

7

0

3

4

7

2

8

0

5

8

8

4

5

5

5

5

8

4

9

8

0

3

6

7

4

9

8

1

9

1

9

4

3

5

5

9

6

0

7

0

9

0

6

5

9

7

7

6

9

7 2

6

0

5

5

3

2

4

3

4

0

9

1

0

8

7

1

4

3
5

6

6

5

3

3

2

5

0

8

5

8

1

2

8

4

2

3

6

7

0

3

9

7

5

5

4

4

6

4

7

5

3

0

8

2
6

7

6

3

0

0

7

2

5

0

1

9

2

8

4

0

3

9

0

2

07

8

6
7

7

3

8

3

1

2

6

6

0

5

5

9

3

4

3

6

0
0

7

7

7

9

5

9

9

2
2

6

9

0

0

7

8

6

9

2

5

0

4

6

5

2

1

5

1

8

0

5

5

4

1

0

2

7

3

2

9

8

0

3

7

0

1

1

0

2

7

6

6

2

6

6

42

9

7

3

0

1

8

1

9

9

8

4

5

0

1

4

5

0

1
9

2

8

8

7

8

6

8

6

8

7

5
3

3

3

2

2
5

8

0

3

1

5

3

5

6

3

1

8

1

9

0

5

9

6

2

1

3

2

3

1

3

7

6

0

9

4

3

9

5

8

1

6

9

5

9

5

6

1

1

8

5

9

3

5

2

7

0

4

3

9

1

0

1

2

0

4

6

0

2

2

6

1

7

1

4

5

3

9

6

6

0

4

6

2

4

7

4

4

6

1

0

4

0

0

1

3

0

1

1

6

1

3

1

2

5

4

2

4

2

5

9

7

5
5

8

9

0

1

3

2

1

4

3

6

2
5

8

0

7

7

3

9

1

9

4

0
1

8

6

9

5

3

0

2

1
3

7

4

7

9

5

2

7

6

1

2

9

3

4

0

4

3

7

6

4

4

6

2

5

5

9

7

4

8

1
0

5

1

8

1

6

3

3

4

9

7

9

8

5

1

0

8
3

7

6

3

5

3
4

6

1

8

7

6

6

6

6

7

4

6

1

0

9

0

5

5

2

2

7

7

8

6

7

3

9

7

1

3

0

4
6

6

7

1

4

0

9

1

9

6

5

0

0

0

2

5

8

4

7

8

9

0

6

6

5

7

5

2

4

1

4

7

7

8

7

9

0

1

8

6

6

211

0

4

3

5

7

6

1

1

9

1

3

8

0

2

4
5

4

0

4

4

5

2

3

5

9

3

1

5

6

2

4

0

4

5

2

0

7

5

5

7

3

2

7

0

0

3

5

6

5

2

9

9

4

3

1

9

3

4

3

7

6

0

4

1

9

5

1

5

9

9

0

8

2

6

9

3

3

6 7

3

0

9

6

3

4

3

4

4

4

1

8

7

8

3

0

2

1

2

6

3

7

3

9
2

1

8

1

8

7

0

0

1

8

7

8

6

3

8

7

6

7

3 0

7

8

2

9

2

5

7

6

2

8

5

9

0

1

2

1

1

4

1

6

8

9

0

9

2

9

62

8

5

0
1

4

8

6

6

7

6

43

3

3

8

2

6

3

6

0

6

7

2

2

0
9

4

2

2

1

7

2

3

1

0

4

7

0

9
8

8

9

4

7

2

8

9

2

9

3

5

1

1

9

1

5

5

1

1 5

2

7

4

5

3

0

1

8

8

7

8

3

4

8

3

6

6

3

9

8

1 1

4

8
4

3

7

5

2

1

5

9

5

9

7

3

1

9

1

8

8

8

5

5

0

7

1

0

6

2

6

3

5

9

1

1

9

8

0

1

5

2

6

4

6

8

3

0

6

4

1

4

8

2

4

7

4

9

8

4

6

6

6

0

7

0

1

5

6

2

0

4

2

5

8

2

1

0

1

5

2

2

6

1

2

2

5

6

4

3
4

0

9
4

1

6

2

3

3

3

6

0

3

2

5

8

1

7

4

7

3

6

3

3

7

9

5

1

0

5

4

2

9

9

3

6

1

0

8

5

2

3

3

1

1

3

5

6

4

1

8

0

2

4

7

3

1

9

7

8

7

6

7

5

4

3

7

3

4

5

4

4

8

78

2

6

4

4

5

1

4

2

7

9

5

1

1

0

1

3

2

2

1

6

8

0

3

3

0

4

1

7

1

9

6

6

8

9

6

3

6

4

2

9

2

5

0

4

2
2

7

8

2

5

7

3

0

8

9

2

5

4

4

7

0

3 2

6

4

8

2

3

4

7

4

7

2

4

7

1

3

48

7

0

2

7

5

6

7

0

5

6

0

9

3

5

5

2
7

2

6

6

6

8

6

3

2

8

0

6

8
8

5

7

4

3

5

0

6

3

7

7

4

0

9

4

3

1

5

4

4

6

8

2

2

4

9
7

2

9

6

0

3

2

7

1

6

7 5

6

8

9

6

6

3

9

9

6

1

9

9

3

4

1

5

4

2

9

9

4

0

8

0

7

9

8

7

8

9

1

2

5
8

7

0

4

5

1

7

2

6

1

4

1

0

3

8
5

6

6

3

7

0

0

2

6

1

5

3

9
4

1

6

4

2

4

5

1

7

3

86

1

8

5

9

8

2

47

6

9

2

2

6

6

1

5

5

3

1

8

6

1

4
2

4

3

1

8

9

1

5

4

2

3

6

6
8

0

6 6

4

4

6

9

6

1

9

4 3

0

1

4

6

4

2

7

1

7

1

9

4

9

1

9

6

8

8

9

4

2

5

4

6

9

3

6

0

5

5

9

1

6

2

9

7

5

1

2 9

8

3

0

2

6

5
1

7

6

8

2

0

9

9

0

7

6

3

9

1

3

9

5

7

7

5

2

7

3

7

1

2

1

3

9

1

7

4

7
8

6
8

5

6

8

6
6

4

7

1

2

5

0

1

7

1

1

4

6

1

3

6

8

3

0

3

0

3

2

9

7

9

4

9
2

4

1

8

3

2

5

9

4

6

9

0

8

4

2

3

7

7

9

7

4

3

8
0

0

8

5

1 8

1

0

8

1

6

2

1

8

0

5

1
0

6

2

9

6

8

9

0

5

7

6

7

9

9

7

1

5
7

2

2

1

2

9

3

1

7

1

8

3

5
7

6

5

2

1

1

7

3

7

0

8

0

5

0

9

3

4

9

7

8

1

7

7

2

6

9

1

4

6

0

2

2

9

9

5

5

7

8

1

2

3

2

4

8

6

7

1

3

6

2

3

5

1

4

9

5
6

4 4

5

6

9

0

6

9

5

8

8

6
3

8

8

3

9

3

3

3

4

3

8

0
2

5

9

9

5

3

8

4

1

6

8

2

2

8

9

3

8

7

5

1

7

7

8

3

2

7

7

7

1

8

3

5

0

6

1

8

1

9

3

4

1

3

9

1

4

2

2

9

6

0

7

0

9

9

2

1

4

5

6

4

0

1

8

0

9

1

9

7

7

6

2

0

9

4

2

0

9

7

0

1

4

4

4

3

5

7

6

6

9

8

4

1

5

0

6

4

8

0

0

7

4

1

9

4

8

6

6

4

2

2

9

2

6

0

5

9

2

1

4

1

5

5

3

0

1

7

2

2

7

8

6

7

0

6

0

6

1

6

4

2

4

7

1

1

6

4

76

0

7

2

7

6

6

5

6
4

1

0

6

1

2

0

7

5

4

8

9

1

2

7

8 2

1

9

1

7

9

6

7

2

4

8

95

3

2

1

8

7
0

0

6

8

6

0

8

3

1

0

3

5

4
1

7

3

1

9

3

5

2

9

1

4

3

9

8

2

2

6

6

4

1

2

6

1

2

5

6

9

5

7

1

9

1

1

8

9

1

8

1

0

6

1
3

8

3

7

3

2

7

8

0

6

4

8

6

0

3

3

1

8

4

2

2

5

3

6

4

8

1

8

8

1

9
3

6

8

5

4

6

5

7

2

0

9

0

9

9

0

3

2

3

4

5

83

2

8

1

7

7

4

2

776

7

7
5

7

6

2

1

0

7

4

9

8

5

0

5

9

5

2

9

5

3

7 0

4

1

7

9

2

9

8

9

0

6

8

7
3

2

8

6

7

6

8

76

8
7

7

3

9

9

3

7

4

9

6

4

1

0 0

0

0

9

1

4

4

9

0

2

5

8

7

1

3

5

3

1

4

0

4

1

8

6

3

6

3

9

2

6

9

4

3

4

9

8

01

2

0

4

5

6

1

3

3

8

6

7

3

7

6

9

5

1

7

4

1

0

2

5

8

0

3

8

7

6

3

3

5

5

0

4

6

0

2

7

5

8

8

9

4

0

5

5

2

0

0

4

2

5

0

1

8

5

9

2

6

7

2

7

1

8

3

8

7

9

6

9

2

4

7

8

4
0

2

7

0

9

2

7

6

4

9

1

0

7

2

9

8

3

7

7

4

2

0

4

2

9

7

5

7
9

0

4

5

5

7

0

4

2

7

8

6

7

4

6

4

5
5

8

4

4

4

2

9
0

1

9

0

8

4
6

8

6

3

0

3

7

7

4

6

9

4

3

0
5

2

77

9

4

4

8

4

1

5

5

7

69 9

7

8

9

4

5

1

0

8

2

9

2

20

8

8

7

5

1
7

3

7

5

3

7
7

1

7

2

8

5

8

8

5

4

7

7

2

4

1

1

8

5

1

1

3

8

2

0

5

8

8

3

4

2

6

0

5

9

5

3

4

4

0

8

6

4

3

3

4

8

8

5

7

9

9

7

8

2

6
2

7

0

1

4

1

1

6

1

8 5

7

1

1

0
5

8

4

0

7
3

3

1

7

5

9

1

2

8

6

3

0

7

5

3

4

0

0

6

3

1

5

0

3

2

8

7

9

7

0

9

7

5

0

0

1

5

8

3
4

9

4

5

9

1

4

1

8
8

8

9

9

1

2

3

2

3

2

3

3

5

3

6

9

2

2

4

4

6

8

9

9

4

1

6

9

9

2

5

7

0

0

8

3

7

9

5

9

2

0

0

6

7

3

4

1

4

2

3

2

8

3

4

0

7

2

1

0

9
8

2

0

4

2

9

7

8

8

9

6

8

6

2

3

2

0

0

5

5

5

2

9

7

6

8

1

9

9
8

0

1

0

6

8

9

0

8 7

4

0

6

9

0

3

6

4

8

3

0

1

3

4

6

2

5

4

4

1

5

3

4

7

8

6

3

0

8

0

8

9

2

1

0

9

2

7

4

5

1

4

4

4

3

7

8

2

6

6

0

7

4

3

6

7

1

9

1

9

3

2

1

0

4

9

6

5

5

9

9

9

4

4

4
5

1

1

4

6

5

4

0

0

8

8

3
2

1

1

9

5

4

9

9

3
2

3

3

2

2

0

9

6

4

3

2

66

7

2

8

4

3

1

0

6

8

7

5

3

3
1

0

1

9

5

3

8

8

7

4

6

9

9

2

4

1

2

6

3

1

0

4

8

6

3

4

0 4

0

7

0

6

4

8

7

8

2

9
6

7

5

0

6

4

5

9

1

8

4

2

1

0

2

4

8

4

2

1

5

9

2

9

1

0

7

4

7

2

5

8

1

4

7

3

0

9

4

4

7

0

8

5

60

3

4

1

9

5

7

7

1

5

2

8

5

4

0

7

2

5
7

1

2

2

2

9

6

8

2

9

1

0
3

5

3

9

8

3

1

9

8

6

1

4

3

1

7

3

0

8

9

6

3

9

2

7

0

4

3

9

1

9

0

0

1

1

3

9

0

3

0

9

4

6

8

5

3

7

1

6

7

2

9

7

3

9

9

3

4

8

8

6 5

6

1

8

5

2

1

6

3

1

5 7

9

6

4

1

5

1

8

9

2

1

9

2

6

7

6

2

0

9

3

2

1

1

5

3

0

8

8

0

2

7

7

2
0

8

46

1

3

1
7

2

2

9

3

3

2

3

7

7 5

3

1

3

7

9

3

7

1

4

2

2

9

0

58

7

0

7

0

2

1

1

7

6

5

1

2

8

2

1

2

4

5

6

3

9

6

0

0

8

0

6

6

6

0

5 5

83

7

9

8

2

8
0 3

1

2

6

0

3

6

6

9

1

0

5

7

9

9

8

3

3

8

7

9

1

5

4

2

9

5

3

6

6

3

9

0

4

2

6

9

4

1

4

9

6

5

4

6

7

0

0

3
1

9

71

9

1

9

4

7

2

2

9

0

1

7

9

1

3

1

3

3

1

4

5

4

3

8

1

2

2

2

3

8

2

7

1

2

2

0

8
6

5

1

2

0
2

7

1

2

6

1

0

0

5

8

1
1

4

1

5

7

1

8

6

5

8

1

7

8

7

3

2

7

4

7 8

2
8

7

7

5
7

2

3

9

0

6

0

1

1

8

9

2

3

7

7

7

3

8

2

1

0

3

9

9

8

9

9

7

3

6

3

6

2

2
3

0

3
7

4

5

7

7

4

3
4

5

9

1
7

5

8

2

4

5

9

3

8
9

4

9

8

0

1

9

5

2

8

8

2

1

2

1

1

3

5
9

2

1

3

3

5

1

2

6

7

2

3

0

8

0

4

0

2

9

5

4

5

9

6

0

9

1 0

1

9

9

3
1

0

2

4

6

0

6

97

1

3

5

4

1

6

3

1

6

5

3

0

2

7

7

0

4

0

0

1

5
5

9

4

6

3

2

7

0

2

6

8

6

9

6

7

9

0

6

7

0

5

2

6

9

2

4

6

1

2

0

2

9

1

5

6

2

9

5

1

3

9

0

6

7

6

7

8

0

8

5

6

7

5

4

6

4

2

4

7

6

0

8

3

8

2

3

2

0

1

1

6

9

0

9

4

7

1

8

2

7

3

1

7

5

9

1

6

6

1

0

4

2

8

0
0

7

9

4

0

4

9

27

4

4

5

5
9

5

8

9

0

0

1

0

4

3

0

4

1

4

0

3

6

4

5

3

3

5

9

0

0

2

6

1

8

9
3

6

2

4

4

6

4

2

1

6

8

2

1

0

8

8

5

2

0

1

4

2

7

7

1

0

1

6

8

6

9

9

4

0

6

8

0

9

3

39

9

2

4

2

9
4

2

8

7

9

9

2

3

1

6

7

7

6

1

1

9

4

2

0

6

2

6

3

2
8

3

6

7

7

7

3

7

6
1

0

5

8

1

5

2

9

7 0

4

8

2

2

3

1

3

7

7

3

5

4

4

0

6

7

5

6

7

2

0

2

8

8

9

7

3

8

3

8

0

7

9

7

3

5

2

9

7

3

0

0

5

3

7

1

00

4

1

7

8

1

8

7

2

3

0

5

0

1

0

3

4

2

3

2

1

3

5

8

2

2

8

3

1 0

3

8

0

6

4

2

8

6

5

6

1

0

5

6

9

5

9

2

0

9

1

8

0

9

8

8

4

4

1

1

7 5

0

8

1

8

5

3

4

8

8

3

8

4

4

9

6

7

2

9

4

6

3

0

3

4

7

0

4
2

2

6

1

3

5

1

8

7

4

3

4

4

2

9

5

1

3

6

1

7

2

4

4

0

1

7

5

1

2

5

1

6

7

3

7

5

9

1

0

2

0
7

9

3

3

3
9

7

8

4

6

7

0

9

3

0

7

7

8

7

2 5

3

0

4

4

2
2

8

7

0

5

2

5

3

0

4

4
5

1

2

8

1

8

4

5

3

2

8

3

6

3

1

1

2

3

8

7

7

9

8

2

8

5

2

1
3

6

0

9

8

5

8

1

0

9

3

3

6

0

5

4

0

9

2

9

4

6

0

6

5

2
2

2

0

3

5

4

6

5

8

5

7

0

1

1

0

2

8

8

1
3

9

2

0

3

6

0

5

9

3

3

8

0

6

7

7

6 8

0

3
9

5

1

4

1

3

9

9

3

7

5

5

6

6

0

4

5

2
3

4

1

2

8

5

7

7

2

2

6

5

9

4

1

1

9

8

4

5

1

6

2

7

8

8

5

9

1

2

7

6

4

1

1

3

9

9
4

5

7

1

3

9

1

3

4
4

7

0

8

6

9

9

4

2

0
9

1

6

9

7

6

8

7

4

7
7

3

3

4

4

4

2

3

53
8

6
7

4

2

8

4

6

3

6

8

4

4

8

3

0

1

3

7

1

9

1

9

6

1 4

9

3

0

8

6

5

4 6

7

5

6

4

6

1

1

3

6 8

3

7

1 8

9

2

4
2

8
5

0

2

7

9

9

3

2

3

4

1

0

7

8

8

6 6

5

7

8

0

2

7

2

9

9

6

7

3

3

3

7

5

7

3

8

3

7

4

8 5

0

6

1

8

4

7

3

4

0

5

0

3

5

9

4

6

3

7

5

2

9

1

4

7

9

6

1

3

6

1

7

3

8

0

0

1

7

7

2

1

1

0

7

4

4

0

3

0

9

3

6

2

1

4

2

4

0

4

9

7

8

0

6

2

8

0

1

2

8

0

0

3

1

6
5

1

9

4

1

8

2

0

8

9

0

4

9
9

8

0

6

3 4

6

3

7

5

0

1 5

7

8

7

5

9

1

2

5

4

3

4

7

1

4

4

4

0

7

5

9

3

9

7

6

8

7

3

4

9

2
64

5

0

2

2

0

1

1

8

6
5

1

8

9

8

6

5

2

2

2

5

8

0

7

9

3

4

1

4

1

2

1

9

2

6

3

9

5

2

8

9

1

8

1

7

6

6

5

8
6

4

3

7

9

4

5

3

6

0

9

1

2

9

7

9

8

6

9

7

5

0

8

4

0

6

5

4

6

8 7

9

6 7

3

0

5

9

3

4

1

7

2

3

3

9

6

3

1

5

4

8

5

5

2

0

7

8

6

8
9

6

9

5

5

7

9

3

2

6

0

3

2

1

8

5

1

9

0

3

7

5

1

5

4

5

6

9

8

4

2

3

1

5

1

1

1
9

0

0

2

2

5

9

1

3

9

4

4

4

9

0

0

6

5

8

2

7

9 1

4

1

1

3

3

1
1

5

2

7

59

0

0

5

3

7

5
2

9

9

9

6

2

6

0

4

9

8

6 2

0

2

9

4

7

5

4

1

3

9

7

0

6

43

1

4

8

4

5

9

8

6

8 2

4

0

71

6

3

7

1

3

7

7

9
6

1

8

2

3

7

7

1

7

4

3

9

2

1

6

4

6

7

1

4

3

8

4

6

5

8

2
6

1

4

6

4

7

9

5

4

2

9

1

0

3

5

6

2

6

4

3

8 8

2

7

6

9

4

7

0

3

5

8

7

05

0

6

5

6

8

7

2

7

4

6

0

6

4

0

1

8

7

4

1 5

1

8

6

1

7

1

9

7

0

7

8

9

3

5

7

4

0

2

7

7

3

4

2

7

7

8

7

2

1

6

5

9

6

6

6

1

3

1

5

9

6

6

3

7

2

0

9

1

1 5

2

1

9

8

6

7

1

5

3

2

3

4

6

6

1

3

6

7

4

1

0

5

6

3

2

2

6

3

3

0

1

8

60
1

8

2

0

9

3

0

9
6

4

3

4

5

8

6

9

3

7

8
5

5

6

49

8

3

9

3

5

0

3

73

5

1

6

1

5

2

0

0

6

8

9

7

7

4

2

0

7

9

0

3

1

4

1

2

1

0

4

2

7
7

6

2

2

8

2

3

6

0

8

2

1

6

2

6

8

4

9

7

7

6

1

4

5
3

2

7

6

0

9

3

9

3

4

7

4

4

0

1

2

2

7

2

9

8

5

7

3

7

6 3

6

4
3

9

0

8

6

0

9

1

7

9

2

2

3

6

6

5

4

8

7

5

2

4

6

4

5

0

0

8

0

5

3

6

8

7

4

4

3

1

9

7

6

4

7

9

2

5

5

8

4

8

2

2

9

9

8

6

5

1

5

4

0

3

3

9

6

5

9

5

0

7

1

2
6

6 0

8

0

7

0

9

0

1

2

0

7

9

5

6

6

7

8

6

7

9

9

8

3

4

4

6

6

9

2

2

6

0

5

7

3
8

0

5

1

7

9

7

2

8

7

5

9

3

8

8

8

5

7

1
1

7

7

8

0 8

2
9

5

6

9

2
9

7

2

7

9

2

5

1

6

7

5

0

4

1

7

1

9

0

91

4

7

3

3

8

9

8

6

6

0

0

3

3

1

6

4

7

8

9

4

3

3

8

5

5

0

2

0

3

0

1

5

2

3

3

3
4

2

0

6

7

1
4

8

5

0

1

0

7

7

4

7

1

1

5

2

5

0

8

6

9

6

1

8

4

2

3

0

7

7

2

8

0

3

9

9

3

2

9

0
0

8

3

6

5

7

1

2

8

5

1

2

5

4

2

8

0

6

2

3

9

5

0

3

7

3

0

8

3

3

2

0

7

4

8

0

3

3

7

3
4

9

0

1

7

2

1

7

1

6

3

2

0

0

4

7

5

7

8

4

8

7

3

5

0

7

8

8

2

7

7

4

4

5

1

7

9

1

8

5

6

3

1

6

2

5

0

1

7 6

1

99

3

8

1

0

8

2

5

4

7

13

0

8

0

9

9

5

7

2

5

2

5 5

1

1

6

6

8

8

9

3 5

1

9

0

0

1

1

8

1

5

0

4

3

5

4

3

6

4

2

4

6

2

5

5

2

6

0

2

0

3

7

7

0

0

7

3

5

4

8

5

2

1

0

5

1

8

2

8

6

3

9

1
7

7

1

1

5

0

2

5

7

7

9

9

8

7

7

5

4

9
0

7

7

8

5

4

0

0

6

5

9

2

6

9

3

7

4

3

5
2

2

8

3

2

0

2

2

7

7

6

2

5
1

1

3

1

3

1

3

3

6

7

6

1

5

8

7

5

2

1

8

8

4

1

4

3

3

2

7

3

8

3

2

9

4

2

4

6

4

5

8

9

9

8

6

5

6

8

1

4

9

2

4

0

1 1

1

5
8

4

2

4

2

3

5

9

0

5

9

3

9

9

8

1

4

3

3

4

3

6

1

8

4

6

1

9

9

8

6

6

7

0

6

4

0

5

8

3

0
1

6

2

20

8

1

1

8

3

3

2

4

5

8

3

2

3

3

3

5

4

1
2

5

8

3

6

9

9

1

7

7

6

7

8

2

6

2

1

8

1

1

3

5

1

0

5

1

2

2

9

2

3

5

5

3

1

9

1

6

3

4

9

3

4

7

3

4

3

8

4

0

6

1

2

2

76

8

1

6

7

0

7

3 0
0

0

9

9

9

6

6

9

1

1

1

2

3

7

6

7

3

0

9

0

2

2

2

1

2

1

2

6

9

2

8

4

3

1

0

0

2

7

1

4

5

2

9

5

6
6

7

2

1

7

8

2

6

7

4

9

6

1
5

7

8

7

8

7

9

4

8

6

3

9

3
4

9

1

9

2

1

0

5

7

8

4

5

9

81

9

1

9

7

0

5

4

6

8

2

0

6

1

7

5

3

6

7

0

5

11

5

5

2

6

5

0

4

6

1

6

53

1

6

4

8

1

8

2

6

8

4

2

4

5

7

8

9

2

5

5

9

1

7

3

6

9

3

2
9

4

5

0

0

1

0

8

0

1

8

3

5

6

0

4

0

4

6

1

6

8

3

0

2

5

6

4

9

3

7

9

8

6

9

7

0

9

3

7

9

2

5

6

8

6

8

3

3

2

1

2

8

3

4

1

9

8

9

2

7

1

5

1

8

3

6

0

7

4

1

7

7

22

9

3

2 2

1

5

1

3

6

5

7

1

3

1

4

7

3

3

7

5

3

2

4

9

1

9

2

2

5

2

7

7
2

0

9

9

5

2

4

6

6

7

4

0

7

5

1

3

4

3

5

4

6

8

2

8

4

4

0

1

4

3
3

9

2

3

3
4

2

2

8

0

9

3

1

0

1

1

4

6

1

8

3

4

7

6

3

6

2

5

4

5

6

9

4

8

2

2

9

4

5

1

1

8

4

7

7

6

2

1

6

5

9

8

9

2

3

4

0

2

6

3

6

9

5

2

6

0

9

3

8

9

2

3

1

1

4

6

1

5
1

7

2

0
6

2

3

7

8

1

3

2

5

4

8

8

5

8

7

0

3

1

2

6

1
7

1

2

3

6

4

9

4

5

6

6

6

1

9

7

0

8

5
5

7 7

1

2

6

9

5

5

3

2

1

9

0

5

2

0

1

6

9

3

5

1

9

8

3

3

3

2

4

9

2

1

7

4

7

8

3

2

1

2

7

7

9

8

8

4

4

4

7

4

3

2

0

7
2

5

8

3

8

5

2

8

9

6

6

0

1

3

5

5

2

5

3

4

2

7

1

7

8

8

8

1

5

8

0

7

4

5

7

2

4

9

4

8

9

2

1

8
1

4

4

4

8

0

7

8

6

7

9

2

1

4

9

6

8

1

4

4

2

2

5

9

4

8

0

3

5

7

5

1

6

7

8

9

3

8

6

1

3

2

4

2

1

1
3

3

3

4

9

5

2

9

1
3

2

7

8

6

3

1

0

0

5

6

1

2

2

8

4

4

5

1

7

3

2

1

5

5

1

8

5

1

8

1

0

1

5

2

9

2

3

2

7

8

1

7

91

6

9

1

8

2

1

4

9

2

0

3

3

4

0

7

7

4

4

9

7

8

1
0

7

2

7

6

9

3

4
1

7

1

9

4

1

2

3

6

6

5

9

1

0

1

8

9

1

4

5

5

7

5

4

8

7
0

2

8

5

4

2

4

7

8

7

6

8

3

8

9

5

0

1

0

4

1 1

6

3

4

4

9

4
9

6

1

4
2

9

0

3

8

0

5

2

1

3

21 2

9

0

6

8

3

3

0

4 8

9

7

3

2

3 9

2

0

4

3

8

1

5

9

6
3

7

0

1

Figure 3.19: ELMVIS+ visualization of MNIST handwritten digits, further optimized

from the previous figure for a total runtime of four minutes. Convergence almost

reached at this point, with cosine similarity only improved from 0.344 to 0.346 com-

pared to the previous figure in 180 million swaps, and the difference barely noticeable

to a human viewer.

103

7

8

2

9

5

1

1

3
6

5

0

0

6

9

5

2

8

7

3

6

8

4

1

7

5

6

1

4

4

8

8

1

1

1

0

6

7

5

0

9

1

1

3

5

7

3

0

2

5

9

2

8

9

3

5

8

2

9

5

6

5

9

7

2

8

2

6

8

0

6

5

3

0

1

5

0

4

3

1

2

2

5

8

8

3

0

1

0

4
4

9

9

2

4

1

7

7

5

6

9

0

7

85

1
5

0

9

7

9

4

3

6

4

0

3

3

7

2

7

7

3

9
8

8

7

9

9

64

3 6

7

5

4

2

4

6

0

7

1

6

4

1

5

9

1

7

1

7

7

8

8

9

8

8

4

6

7

6

3

8

5

4

7

9

9

9

0

3

1

4

4

9

7

3

3

2

7

9

6

8

3

6

8

6 6

3

7

4

9

0

9

1

3

2

9

8

6

3

7

7

4
5

2

7

0

0

6
9

9

6

1

4

1

6

9

4

2

8

3

1

3

8

5

4

6

2

4

4

4

0

4 6

7

2

2

9

4

0

3

0

6

4

4

7

9

8

5

5

9

5

6

8

1

6

7

4

7

0

3

9

7

1

7

7
8

0

9

4

4

3

2

6

0

8

6

5

9

5
5

0

1

9

8

7

6 3

0

8
8

3

7

2

2

1

3

5

5
8

2

8

3

9

0

7

3

6

7

0

5

2

0

5

7

2

3

2

6

2

0

9

15

0

8

0

2

8

7

0

4

0

6

1

9

6

4

4

3

6
1

0

2

2

2

1

0

3

0

2

9

3

4

1

7

6

8

5

1

7

5

4

6

8

6

0

0

0

9

7

2

3

2

6

6

7

6

9

6

1
9

7 6

4 5

4

8

5

3

9

7

9 5

0

9

1

0

4

7

4
9

0

5

0
3

3

7

0

5

9

8

1

1

5

0

8

0

5

1

4

7

5

4

9

2
6

9

2

1

6

1

8

5

0

0

2
6

0

9

0

8

30
6

4

8

7

1

0

7

4

0

6

1

0

6

8

7

6

7

0

3

5

5

1

1

8

5

1

96

1
7

9

6

9

6

4

0

6

9

5

4

5

0
8

8

2

0

0

2

0

3

1

4

9

7

5

7

9

1

3

3
1

3

6

9

9

2

7

5

3

7
7

5

0

7 5

6

0

8

5

2

6

1

2

2

5

1

5

9

3

0

0

6

1

9

1

7

0

9

6

4

6

0

2

2

9

5

3

8
5

1

6

6

5

3

6

9

6

8

1

1

9

03

0

5

3

3

2

5

7

1
1

5

8

9

9

2

3

1

8

2

8

9

4

3

2

1

0

7

5

7

5

7

1

9

4

8

9

2

7

6

3

0

4

0

0

4

5

3

6

2

7

2

5

7

8

7

8

2
5

4

7

4

0

4

4

1

8

4

0

7
0

9

0

7

2

2

2

2

0

0

8

1

1

2

0

5

8

0

6

6

6

6

9

9

1

2

0

8

2

3

9

4

1

9

9

9

1

1

1

2

0

6

4

4

4

0

3

9

7

6

7

5

8

6

6 9

5
1

5

5

4

6

9

0

1

0

2

4

6

4

0

1

3

7

8

8

4

0

5

3

0

8

5

4

2

4

9

7

8

1

7

1

4

7

8

0

3

4

9

4

4

5

8

8

0

8

6

3

0

2

3

7

3

7

9

1

1

8

7

3

4

9

7

7

6

9 0

9

0

9

8

5

9

6

8

6

4

0

7

4

0

8

1

9

1

1

3

1

0

0

4

7

5

9

8

4 5
1

4

2

1

2

2

9

4

1

9

0

4

7

6

1

7

2

8

4

9

0

1

2

4

8

0

4

8

9

2

4

8

0

8

6

7

3

7

3

8

1
2

4

5

7

9

1

4

5

6

3

7

1

6

2

4

1

9

8

7

7

6

1

3

3

5

7

9

4

4

6
4

1

2

1

2

3

8
4

7

3

7

2

5

9

9

0

3

0

8

1

91

4

6

4

8

6

3

3

8

0

1

6

9

2

8

0

4

1

4

2

2

6

2

6

3

9
7

5

8

4

8

4

2

4

7
9

6

6

2

94

4

5

3

2

8

0

3

6

1

9

9

3

5

7

5

8

4

8

4

8

8

9

0

1

8

4

8

2

3

4

0

5

1

3

4

8

8

1

2

8

4

7

4

0

5

9

5

3

2

7

1

7

9

1

3

9

1

9

5

5

2
2

0

3

3

9

8

2

8
1

1

4

2

8

5

6

9

3

7

2

2

2

7

3

8

5

7

9

9

6

7

1

2

6

9

1

7

7

8

3

1

8

2

1

3

6

8

0

4

8

8

7

6

3 3

3

9

8

9

5

5

6

5

8

2

8

5

3

8

9

6

2

9

0

0

5

5

7

2

3

5

2

9

2

2

0

0

8

5

6

1

1

6

3

1

0
8

1

8

7

9

7

73

4
6

9

0

9

9

2

0

2

4

1

5
3

7

9

7

3

6

5

6

8

0

5

1

2

4

5

9

9

2

0

7

0

4

8

4

9

2

3

9

3

8

2

9

9

8

3

6

9

7

0

1
0

4

1

3

4

1

8

6

4

5

1

7
8

2

7

8

7

5

7

7

6

4

4

6

9

5

6

3

5

9

4

4

4

6

8

1

1

18

3

6

45
7

3

2
8

7

1

8

2

4
6

6

0

0
1

3

7

5

5

7

8

4

0

9

3

1

0

7

3

2

5

7

6

7

7

5

2

4

6

6

1

5

4

4

6
4

0

9

4

7

5

4

6

4

7

6

1

0

0

0

8

9

4

3

5

0

0

8

3

8

2

8

1

0

1

8

5

0

4

2

8

1

0

0

1

5

2

9

8

0

3

7

3

6

7

9

7

1

3

6

8

8

8

3

3

6

3

9

5

2

9

9

1

1

3

1

7

2

0

3

6

0

2

8

5

2

2

6

1

9

8

5

2

2

6

9

9

1

1

4

6

5 8

3

8
8

5

8

3

8

6

6

6

1

7

3

1

1

6

4

9

5

5

9

4

1

0

1

3

4

6

5

1

9

4

4

1

8

9
9

8

3

8

7

6

2

9

8

0

4

9

6
5

4

3

2

2

4

3

7

9

2

0

5

2

6

9

8

2

7

8

0

4

9

2

3

99

1

5

3

7

8

1

2

8

5

7

5

8
8

3

0

5

6

1

5

4

9

8

1

6

1

8

0

1

3

4

2

9

2

3

5

2

2

3

5

4

3

7

0

7

92

5

2

0

9

1

9

9

2
1

1

5

6

4

8

6

0

4

9

3

5

2

0

2

8

60

8

5
9

9

4

8

8

6

5
3

1

7

2

9

0

8

2

1

69

8

4

6

9

9

9

8

2

2

0

9

7

0

1

8

4

3

2

5

5

0

9

7

3

3

8

7

1

7 8
5

3

8

4

1

7

8

1

8

5

3 5

6

4

3

9 2

3

5

1

9

6

9

8

9

9

2
0

8

2

9

7

5

1

3

8

0

7

3

7

1

2

3

8

7

1

1

2

9

1

4

2

5

4

3

6

7

6

4

6

53

2

8

5

3

4

1

7
1

6

3

3

9
9

0

2

6

7

8

5

6

8

4 3

1

07

6 6

4

9

1

3

0

1

9

6
3

3

6

3

4

3

1

2

9

9 4

0

7

4

1

4

3

5

2

8

8

2

5

2

7

3 0

2

9

0

8

5

0

4

1

1

5

1

5

1

1

5

4

3

8

4

7

6

9

6

5
8

9

3

2

3

7

0

4

3

3

8

3

3

1

1

4

2

2

3

7

3

3

6

04

5

9

6

6

6

5

0

4

3

7

8

5
1

4

8

3

3

3

1

7

0

3

3

4

5
9

6

2

2

5

0

0

3

5

6

6

7

4

1

8

6

2

5

9

9

2

1

6

7

1

1

8

0

3

2
6

5
1

4

9

4

8

2

9

2

6
3

3

0

1

1

0

3

2

6

6

6

4

3

4

0

1

1

1

3

0

9

1

9

1

3

6

9

2

5

7

0

4

4

0

0

6

4

4

5

2

2

3

1

6

5

4

9

9

2

5

5

9

8

4
4

5

0

0

1

4

6

1

6

8

0

2

4

1

0

2

2

5
1

9

6

2

3

9

8

1

8
3

9

4

1

3

5

1

6

0

9 0

6

6

9

1

6

4

6

8

5

9

6

2

4

1

6

1

6

1

5

3

2

2

3

3
5

8

7

1

4

8

2

4

6

1

7

0

2

5

2

3

4

5

5

3

5

9

9

0

9

6

1

4

1

2

6

1

6

4

6

5

8

2

2

6

1

1

9

2

6

5

1

1

7

7

1

2

3

3

5

5

3

2
8

3
9

3

9

2

3

0

1 8

3

2

5

6

5

1

0

4

0

2

1

4

9

0

9

6

4

3

5

9

5

2

7

4

1

5

0

0

2

7

0

8

7

4

2

4

2

1

7

7

8
0

2

0

6

1

6

0

9

1

6
4

0

3

0

8

2

7

2

4

4

0

5

0

2

4

9

8
1

6

7

6

7

9

8

8

2

0

9

8

0

3

6

9

9

3

4

8

7

9
5

7

8

4

0

5

0

3

2

7

2

6

4

3

3

5

8

6

1

3

0

2

8

1
0

20

2

3

1

5

3

2

0

9

1

9

1

0

9

6 9

2

7
1

6

8

3

6

1

1

9

8

5

6

7

8

2
4

0

4

6

5

6

4

8

9

0

5 8

1

8

3

2

0

6

0

7

9

1

1

4

2

1

7

7

3

5

5

2

4

5

2

6

2

9

5

5

6

8

7

0

1

4

7

9

2

2

5

0

3

2

8

1

0

0

2

5

9

7

1

9

4

7

4

4

3

0

6

1

5

6
4

5
8

0

1

6

9

6

0

6

5

7

3

96

0

5

2

1

4

8

0

7

9

3

0

3

3

6

7

0

3

2

7

3

2

7

8

6

7

3

5

9

5

0

5

6

2

1

8

9

9

4

0

0

7

6

4

2

7

7

9

5

6

2

0

4

1

7

2

8

83

2

4

4

8

7

5

7

2

3

2

1

3

4

4

0

48

7

9

3

0

8

4

1

2

0

4

0

8

4

7

1

92

3

9

5

3

8

8

1

7

7

8

8

5

2

2

9

7

3

3

9

3

0
4

5

06

8

2

9

3

8

4

0

1

3

6

3

6

6

0

2

8

8

7

0

7

3

6

0

1

7

1

4

6

8

3

1

6

2

1

8
9

9

9

3

1

8
7

8

0

1

84

9

0

7

2

2

9

4

0

1

7

8

2

6

7

3

6

2

4

7

2

7

8

2

6

1

1

7

9
4

1

8

1

8

2

3

6

7

8

1

3

1

0

8

7

0

2

8

9

1

1

7

2

2

3

8

3

6

3

3

2

8

1

6

6

2

3

5

9

0

6

2

2

7

8

7

4

6

7

1

8

7

8

6

7

6

1

6

38

9

3

5

5

1

2

1

7

56

3

5

8

6

08

7

7

9

1

2

2

0

8

6

9
6

3

5

9

0

7

7

6

5

0

5

5

4

2

3

4

3

0

4

2

9

3

2

4

4

7

3

1

3

0

2

6

8

8

0

7

1

7

1

4

3

5 4

1

1

4

0

1

2

8

5

8

9

4

7

7
9

4
9

2

6

1

4

1

0

0

6

3

6

2

6

0

9

1

4

8

38

2

2

2

8

1

5

1

5

6

5

1

3

4

1

7

8

4

0

6

2

7

0

2

6

2

9

7

6

0

3

2 6

5

2

7

9

3

1

3

5

9

0

5

1

3

9

3

9

7

3

4

2

2

1

6

9

9

6

1

4

9

6

1

6

0

4

7

8

1
4

9

7

1 5

0

8

9

3

1

3

7

5

9

1

6

2

3

4

9

1

6

1

2

9

1

1

6

2

9

9

1

3

0

0

9

1

6

9

2

5

3

4

9

6

1

4

6

3

1

3

2 7

4

6

9

6

7

7
2

6

2

7

3

6

7

3

6

1

3

2

4

8

2

0

2

2

5

0

7

8

3

1

5

6

3

7

8

0

8
4

6

2

1

2
3

9

6

4

2

4

0

4

6

3

3

4

3

6

6

75

1

6

5

8

0

9

9

8

5

0
0

0

4

1

3

7

1
3

6

9

8

6

2

0

9

6
0

5

3

8

7

9

2

6

6

8

6

5

3

0

8

3

4

1

8

2

8

3

6

2

1

7

9

9

9

5

8

3

9

3

0

5

8

9

9

8

5

5

5

1

3

2

9

59

5

9

0

2

8

4

2

5

3

5

8

7

0

2

1

5

6

9

6

2

1

4

3

6

1

7

6

6

1

4

5
1

3

3

5

2

6

2

7

0

5

2

8

6

9

3

8

8

4

7

3

7

6

8

0

2

5

1
3

5

5

1

7

8

3

3

2

7

9

3

2

9

6

1

4

9
7

3

8

1

6

6

20

5

1

9

8

4

4

8

1

7
7

1

0

1

9

0

52

9

4

0

5

2

4

7

4

5

4

5

7

1

7

7

2

8

4

4

4

7

2

9

3

2

5

5

3

1

6

0

8

6

3

7

8

2

9

4

7

3

1

2

3

6

3

2

9

3

8

5

1

3

2

1

4

6

7

6

2

6
7

0

5

2

1

3

4

8

2

9
6

4

7

3

8

5

8

4

0

1

6

7

1

2

5

5

8

2

1

0

5

9

2

1

3

4

7

5

5 7
4

1

0

2

7

1
9

9

8

6

8

7

5

7

3

0

3

3

9

8

6

5

8

3

0

1

1

0

1

4

6

7

7

7

1

1

7

8

7

9
7

2

2

1

6

8

5

8

3

87

5

5

9

5

1

5

2

3

9

1

0

9

9
3

6

7

6

1

7

8

4

7

8

0

3

8
7

0

9

2

0

6

8

7

8

5

2

4 5

6

5

2

0

0

93

7

2

3

1

5

3

9

0

4

4

1

8

1

1

7

2

5

7

5

8

1

2

7

6

0

3

3

2

9
7 2

3

4

3

9

0

2

3

5

5

1

0

3

3

2

3

7

7

1

0

0

9

2

7

5

6

7

9

9

1

7

4

6

9

6

7

6

5

1

7

9

8

5

9

0

6

7

1

1

0

9

8

3

8

6

7

8

6

3

5

0

7

8

1

5

8

0

0

2

8

6

0

5

9

2

2

5
8

2

6

7

3

1

0

5

8

4
5

5

2

5

1

3

1

0

4

3

9

9

4

9

7

1

9

3

5

4

4

8

3

4

9

7

6

9

5

7

7

8

0

2

9

5

1

8

1

1

4

7

1

9

7

4

4

2

0

3

8

1

5

7

6

6

6

6

5

0

5

1

2

7

6

5

4

9

0

3

0

7

1

3

1

7

7

4 9

45

9

0

67

9

9

4

8

4

9

6

3

9

6

1

7

6

9

3

4

7

0

2

0

4

6

2

9

4

4

9

9

3

5

1

5

9

2

8

7

6

2

0

0

6

2

9

9

8

2

7
1

3

85

8

4

0

4

6

5

3

3

2

8

7

2
5

3

6

8
0

9

8

3

5

2

3

4

7

8

4
1

2

7
4

7

3

1

1

9

6

9

5

8

9

1

9

2

1

7

8

4

5

8

4

2

1

6

6

4

6

3

3

8

9

4

3

3 2

1

3

7

6

5

0

0

1

6

8

0

6

1

9

5

0

7

7

9

3

6

9

5

3

4

1

0

3

9

1

7

9

0

8

5

9

1

7

6

2

8
2

8

1

7

6

5

6

5

7

7

2

1

8

9

3

2

9

2

5

9

6

6

7

5

3

8

1

2

3

2

8

7

3

5

5

6

3

2

3

5

3

1

1

2

9

2

2

3

4

0

4

6

5
1

4

0

1

4

1

6

3

0

9

4

3

5 9

7

4

0

5

6

7

8

8

1

6

8

6

7

3

7

4

2

8

7

0

6

4

5

4

0

1

0

0

0

3

9

2

2

9
8

8

1

0

0

5
8

8

2

7

7

0

9

7

9

2

37

0

2

0

7

5

4

1

9

2

8

5

5

8

4

7

2

3
9

6

1

8

7

6

0

8

5

9

9

7

3

4

8

9

8

0

1

0

4

9

2

8

7

0

4

7

0

2

8

4

9

0

0

4

6

4

0

4

0

6

6

1

6

2

2

0

6

0

9

3

2

7

5

1

9

2

5

9

2

5

0

5

7

3

0

7

6

7

6

0

1

1

4

7

8

6

9

8

8

5

2

8

5

5

4

1

9

5

1
8

2

9

2

7

7

4

9

6
4

1

6

0

8

6

2

1

5

4

5

5

2

1

1

3
7

8

0

9

2

2

1

0

4

3

1

5

1

5

6

2

4

8

0

7

4

1

0

1

5

0

7

0

2

7

5

6

8

9

5

3

9

1

1

0

7

9

4

0

3

3

5

7

0

2

1

8

2

7

6

3

5

9

0

6

8

4

2 4

9

9

3

5

2

4

3

6

8

5

3

0

1

9

2

1

4

4

6

6

6

3

4

1

0

0

4

0

2

3

6

3

7

7

1

1

2

2

6

9

1

9

6

6

3 0

0

9
7

1

1

7

5

9

4

2

2

9

8

7

0

2

4

7

6

3

9

2

6

9

3

5

0

4

0

3

8

6

8

8

3

2

1

6

4

4

3

0

2

3

7

4

2

1

9

9

3

6

3

7

0

1

4

0

1

4

9

7

2

0

2

9

0

5

1

3

2

7

0

9

9

4

2

3

5

1

5

3

3

4

7

8

7

9

7
5

9

6

0

0

7

8

7

4

1

2

7

4

8

7

1

4

1

0

9

2

4

0

4

9

0

1

1

4

7
2

8

6

6

1

2

8

4

1

0

9

7

8

2

8

0

0

9

8

1

5

0

8

6

0

9

4

6

4

3

1

2

6

3

2

2

3

8

4

0

4

1

7

4

1

8

3

5

2

4

7

9

7

0

7

4
5

1

0

7

8

6

6

4

4
7

7

4

0

0

7

3
9

8 3

5

2

7

9

3

7

0

2

7

2

8

9

2
5

4

4

1 4

5

4

2

6

5

2

2

5

1

8

5

5

9

4

5

0

4

8

8

9

2

3

0

6

2

3

6

1

0

6

7

6

7

7

7

2

8

3

8

0

2

3

1

2

6

6

68

3

0

0

7

4

6

6

6

7

0

4

3

3

8

5

3

3

9

7

3

4

6

7

2

2

7

1

7

5

1

4

1

3

7

6

0
9

8

2

3
8

2 9

3

4

7

2

0

7

9

3

9

4

7

2

0

7

8
7

3

1

1

7

8

6

0

0

2
4

3

4

5

7

2

1

5

1

3

4

06

6

6

7

2

6

6

7

9

6

0

7

9

6

2
3

7

1

0

6

4

2

0

2

0

3

5
2

6
9

7

0

4

0

1

6

9

1

5

9

3

7

8

6

1

2

3

3

1

7

4

8

7

92

6

7

9

5

3

1

1

8

4

9

3
1

1

4

9

6

0

0

5

4

0

0

5

4

1

3

0

6

1

2

1

0
1

1

2

1

2

4

4

6

2

0

0

1

2

2

8

1

8

9

8

9

2

4

6

3 4

9

0

1

3

9

1

4

3

8

3

7

8

9

0

5

6

1

0

7

1

19

7

8

5

5

3

5

5 3

6

5

9

5

1

9

5

3

5

0

2

4

2

3

3

6

7

9

4

3

3

1

3

7

8

5

9

0

5

0

0

2

2

2

1

0

3

6

1

2

1

4

8

5

1

3
5

9

1

7

3

5

6

2

9

2

3

4

6

1
6

3

0

4

6

7

2

1

5

4
7

7

7

9

1

1

7

4

8

2

7

5

0

0

2

0

2

4

6

5

1

1

1

9

9

1

2

1

1

1

7

5

7

7

0

4

66

3

7

7

2

9

0

9

3

2

5

3

3

9

4

1 6

3

3

6

3

9

5

1

1

2

5

6

0

7

9

2

4

2

8

1

1

7

9

7

1

30

1

0

5

2

7

4

6

2

2

8

2

4

91

7

8

2

6
3

6

4

0

8

2

6

9

4

0

4

5
9

1

2

9

7

3

3

4

5

9

7
6

9

2

7

41

1

6

0

9

1

1

0

0

6

2

9

2

6

3

6

7

5

8

5

9

2

3

3

3

0

3

0

7

1
7

2

1

5

3

9

6

8

0

6

3

2

5

4

9

8

6

9

6

74

0

4

8

0

6

8

2

4

7

0

7

4

3

7

7

4

7

1

2

2

1

9

9

2

4

7

7

3

1

0

0

9

1

9

7

2

3

3

4

1

2

4
5

6

6

4

1

7

9

5

8

0

3

3

0

7

3

8

3

6

2

4

2

7

1

2

6

9

9

7

1

5
2

0

7

8

4

1

5
7

6

8

6

0

4

7

2

38

6

1

3

0

6

7

0

6

7

3

9

3

1

2

7

4

0

0

3

2

9

0

9

0

8

8

3

7

6

2

8

4

2

1

0

6

6

1

1

1

9

9

8

8

2

3

4

8

3

0

4
8

5

6

7

0

4

4

3

8

3

8

1

3

0

9

4

7

2 6

6

9

6

3

4

1

2

2

2

7

5

9

4

7

3

4

1

7

8

4

7

6

2

9

1

3

0

7

0

1

3

7

5

6

4

4

6

9

9

0

7

7

3

5

1

8

0

2

0

8

0

1

7

8

4

1

1

1

4

2

1

3

0

2

9

0

5

3

5

8

2

5

8

9

3

7

1

8

0

3

2

5

4

0

7

7

2

8

9

0

3

5

3

1

1

2

4

5

7

3

8

7

0

5

5

4

9

8

8

7

6

0

9

4

4

5

1

3

8

5

7

2

9

9

6

2
9

9

4

9

1

0

7

1

6

6

1

9
8

0

4

2

8

0

2

4

1

1

8

9

0

2

1

4

6

7

5

8
7

2

3

8

3 1

0

1

3

4

9

0

4

7

2

7

1

1 3

6

2

3

0

9

3

4

5

4

1

1

8

8

9

1

7

2

8

8

7

3

8

3

2

2

2

7
9

9

6

3

2

9

3

4

2

4

5

2

4

2

8

0

4

2

8

9

1

0

1

2

02

8

0

2

6

2

6

8

7

0

4

7

0

3

4

1

7

7

3

0

9

9

1

2

1

5

3

8

3

9

9

7

1

2

9

6

4

2

1

9
1

0

1

8

0

5

3

0

6

2

9

1

1

1
9

8

0

6

1

6

2

7

3
0

3

2

1

9

8

0

4

3

9

1

01

6

4

0

5

3

6

8

6

3

2

4

7

7

9

2

9

6

9

9 6

3

3

6

7

0

0

5

4
2

0

2

7

1

0

7

9

8

1

7

4
4

3

8

5

6

2

3

5

5

4 8

4

5

7

6

9

8

2

7

0

1

3

2

8

2

1

3

4

0

9

5

3

1

5

2
6

8

8

8

1

1

0

7

8

5

1

9

5

4
8

9

8

2
4

6
2

1

1

8

8

6

0

2

6

9

6

5

29

6

4

6

1

8

0

8

9

6

3

1

0

2

2

9

1

7

5

3

7

4

1

6

0

6

4

4

9

8

8

9

6

8

6

5

7

7

2

1

6

0

6

2

7

3

1

6

7

7

2

7

7

4

9

6

7

9

5

8

3

1

1

6

5

8

8
1

3

6

3

7

1

0

0

2

9

9

3

0

3

4

7

4

4

3

6

8

2

1

0

8

9

1

8

4

3

9

3

8

7

6

7

2

4

1

4

6

4

4

3

0

8

3

3

5

2

2

6

4

3

9

2

4

4

3

2

1

3

1

5

6

7

4

4

3

5

6

3

9

3

5

4

6

3

00

1

9

1

5

4

7

5

2

8

6

1

2

3

9

1

5

6

3

7

5

2

2

4

6

3
5

9

1

6

9

1

3

9

2

1

4

0

0

7

4

7

6

6

9

6

1

8

2

8

7

2

5

0

9

2

4

4

2

6

7

6

5

8

9

7

7

2

7

3

2

2

1

8

3

2

6

5

3

7

9

7

7

5

8

5

2

9

3

3

1

9

4

8

8

1

2

3

8 0

5

0

7

6

8

3 9

1

2

0

3

2

1

8

1

7

2

3

9

8

3

0

8

6

5

5 1

6

0

1

2

7

6

4

5

1

6

3

2
0

4

8

1

6

7

3

2

2

1

8

4

0

7

8

6

8

7

2

4

8

5

9

3

8

7

0

5

8

6

5

8
9

9

2

9

5

8

2

0

9

3

4

0

8

1

9

3

2

3

9

1

2

8

0

48

1

6

5

7

6

5

6

3

5

0

2

3

2

4

8

8

3

9

8

1

2

2

0

8

3

9

5
7

7

6

4

9

1

7

6

1

5

2

9 9

3

1

7

0

7

4

4

3

8

2

0

9

7

6

3

4

3

1
2

0

0

1

5

1

9

8

4

8

2

0

8

9

9

0

4

5

1

8

8

8

6

8

9

5

8

3

9

6
8

8

5

8

8

5

5

0

1

6

9

4

4

0

0

7

3

9

0

1

4

1

1

74

9

7

8

2

2

1

0

4

3

7

7

5

3

1

6

0

3

5

7

6

1

6

3

1

7

5

7

9

2

6

5

9

2

8

5

0

9

6

8

0

2

7

4

2

9

6

4

9

9

9

8

3

0

1

6

7

0

7

4

5

7

4

4

2

6

7

9

3

9

6

8

0

1

4

4

4

1

1

5

4

1

7

0

4

0

6

3

9

0

6

9

1

9

0

6

0

8

1

5

1

0

7

8

7

7

2

5

2

2

0

4
6

8

2

9

5

5

4

9

5

3

0

1

3

5

9

1

2

8

8

0

8

8

7

2

8

4

1

9

8

9

0
8

2

0

3

8

2

7

7

6

9

2

2

3

5

2

8

6

6

3

7

5

2

7

5

4

3

1

7

7

1
6

2

7

2

6

8

2

0

3

9

6

0
8

8

5

0

56

1

2

9

0

1

5

1

6

5

3
0

1

4

8

2

7

9

9

1

8

8

4

8

1

5

6

7

1

2

6

4

2

9

6

0

5

4

0

5

8

3

1

7

1

9
2

2

9

7

3

4

7

6

7

2

7

6

8

2

7

9

3

6

9

9

7

4

8

3

7

4

4

0

2

8

4

0

5

7

1

1

7

3

6

9

2

1

5

0

6

8

2

3

7

1

6

4

5

3

20

4

2

7

7

5

1

4

6

7

3
0

7

7

7

0

87

4

9

8

0
3

1

4

6

0
0

2

7

9

6

7

1

6

8

1

7
7

9

1

9

5

9

4

6

9

1 6

7 9

1

5

4

1

2

1

3

0

4

3

2

9

6

6

8

6

2

9

0

5

3

7

5

9

4

7

4

8

6

3

0

9

7

8

9

6

3

4

6

6

9

3

7

0

0

7

6

3

5

7

1

7

4

3

1

6

8

7

4

8

1

8

7

9

1

0

6

5

9

0

1

2

9

6

1

6

6

2
0

1

0

1

6 7

5

3

6

1

2

1

9

5

6

2

0

9
8

6

3

1

8

7
1

6

4

0

7

7

7

1

9

3

1

0

5

2

6

3
8

5

8

0

3

1

8

0

7

6

4

5

7

7

0

9

2

1

5

0

5

1

0

7

0

1

9

9

7

3

8

4

8

0

2

1

9

1

9

8

1

6

2

4
8

3

7

8

6

0

1

4

4

1

0

4

7

3

1
1

0

3

2

6

5
3

9

2

92

2

8

5

0

2

6

3

4

8

3

2

0

4

3

6 0

5

9

8

1

3

1

0

8

0

9

3

3

1

6

7

1

9
7

0

1

0

1

1

0

5

5

4

2

0

1

6

7

2

6

5

41

8

9
6

8

1

1

7

3

0

7

3

6

2

1

4

2

8

1

1

3

5

9

4

0

6

6

7

0

5

3

7

9

5

5

3

4

3

5

0

6

0

9

3

9

7

5

8

4

7

2

3

3

5

2

7

9

5

2

6

7

1

2
8

6

8

5

3

7

9

4

6

4

3

1

0

1

0

9

6

5

0

2

4

8

5

39

5

3

3

1

4

1

0

7

1

6

0

5

8

1

9

1

3

7

3

1

9

6

1

9

6

0

3

1

8

30

9

1

7

2

3

2

2

1

2

5

4

2

9

7

3

3

6

4

2

4

6

2

3

1
9

5

9

0

6

9

7

5

0

0

9

9

8

0

5

5

7

3

1

9

6

5

3

1

5

3

8

2

3

1

1

7

7

3

4

3

9

1

2

4

4
6

3

9

7

8

6

0

2

6

2
0

5

54
9

8

6
3

3

6

2

8

7

4

2

8

2

1

4

4

1

9

5

0

1

9

7

9

1

3

0

0

1

1

6

3

3

0

0

9

9

9

0

7

1

4

4

4

8

3

8

1
0

7

3

5

8

55

8

2

3

4

1

6

4

5

4

5

3

7

3

3

7

8

5

1

2

6

8

6

0

7

8

6

0

7

1

1

8

6

5

2

1

0

3

1

5 7

7

1

4

4

0

4

9

3

1

9

2

3

9

3

4

8 05

0

9

39

7

8

3

7

1

7

3

4

6

4

5

1

1

8

2

9

8

1
2

1

0

2

7

8

5

4

9

6

0

0

4

3

0
5

0

7

7

3

9

2

3

0

9
2

2

5

3

5

4

8

2

7

0

2

8

6

1

3

3

2

6

9

3

9

7

9

1 8

7

6

7

9

7

1

0

0

8

0

8

1

4

9

6

7

1

0

7

4

1

0

0

7

5

2

7

6

0

5

9

1

6

1

1

7

3

0

6

6

8

0

4

7

0

4

3

7

9

2

6

1

2

2

3

9

5
6

91

7

4

9

8

7

0

8

6

6

0

7

8

9

5

5
2

1

5

8

2

1

9

6

4

2

9

9

8

7

3

8

8

8

8

7

8

4

5

0

4

2

1

8

9

3

9

1

7

4

3

3

33

8

3

5

7

1

8

3

4

7

6

2

8

7

8

6

0

5

9

0

1

9

6

0

56

4

7

7

7

2

6

9

0

8

5

7

4

1

4

6

2

5

8

3

9

3

9

4

1

2

9

6

8

1

1

4

3

7

7

8
9

8

2

4

4

5
6

7

4

9

7

4

4

8

0

1

1

8

4

7

9

1

9

5

2

1

7

3

1

7

4

4

1

1 0

4

5

8

9

8

0

6

9

3

8 7

0

6

4

2

6

1

7

0

1

9

5

3

6

8

9

3

1

6

7

2

8

0

3

0

6

0

2

7

1

4

5

4

4

2

7

6

9

9

6

8

6

1

4

0

3

2

7

9

8

2

1

8

5

8

1

2
5

0

8

2
0

1

8

1

2

8

5

6

9

8

0

0

8

2

7

4

2

5

6

9

9

4

7

3

7

1

1

7

3

5

0

2

1

5

5

7

2

9

1

0

5

7

4

5

0

9

3

1

9

2

9

2

7

9

6

8

7

8

2

1

1

9

1

4

7

0

6

4

2

2

1

7

5

2

0

4

4

7

1

1

1

9

4

3

2

1

2

0

0

1

0

7 5

6

5
9

7

5 5

8

6

1

4

4

7

9

0

8

5

6

9

4

5

5

1

5

8
1

7

9

9

4

9

2

9

4

1

1

2

3

1

4

0

5

8

4

3

1

5

3

8

1

2

1

5

1 60

6
2

2

7

1

6

0

1

6

0

0

7

3

9

0

8

6

5

8

1

0

3

8

0

7

4

4

8

8

2

5

5

3

8

5

4

5

3

5

7

1

7

7

8

0

5

3
7

2

4

4

9

2

2

6

5

0 0

7

4

0

2

5

1

4

6
7

3

0

9

2

0

2

6

2

6

1

2

5

8

1

1

4

5 5

5

1

4

8

0

3

8

8

9

0

1
8

9

7

2

5

2
5

0

4
9

5

1

7

1

1

0

1

7

4

8

1

2

4

3

6

9

0

5

2

3

4

6

0

1

2

5

6

8

9

1

7

8

8

9

9

6

7

4

3

4

2

1

0

0

1

7

4

8

6

5

8

3

4
4

0

5

8

9

5

1

3

8

7

9

2

9
2

2

8
1

3

2

9

2

1

4

0

8

1

7

7

7

4

1

9

6

9

0

5

8

1

0

7

3

3 1

9

8

6

5

0

3

0

5

5

4

6

2

2

7

7

4

35

3

9

5

6

1

4

3

4

2

4

1

5

7

0

8

3

5

8

7

5

8

4

0

6

8

7

6

8

8

1

3

0

2

7

9

6

2

9

27
0

7

7

3

8

6

9

4

9

62

1

2

2

9

6

0

0

3

6

5

3

7

4

2

5

0

1

9

7

45

7

6

8

5

5

9

0

9

9

6

5

7

3

4
8

5

4

4

9

2

4 5

6

5

5

9

7

8

3

6

2

3

1
8

8

4

8
4

9

8

7

7

0

6

9

0

6
3

4

3

3

1

2

1

5

7

0

6

7

7

1

5

5

1
9

9

8

8

9

2

8

01

3

3

4

2

9

5
9

3

7

2

51

3

6

0

3

2

1

0

9

6

3

8

8

2

6

6

5

9
2

0

8

2

9

2

6

8

9

9
0

2

9

6

5

0

9

2

6

4

8

6
6

3

5

5

3

2

9

8
9

1

6

6
1

2

6

01

7

2

6

4

2

8

8

3

5

0

6

0

3

3

2

0

9

7

1

4

1

3

7

4

3

7

6

6

8

0

4 3

3
7

9

7

1

7

7

9

8

9

1

9

3

1

7

3

2

3

5

2

7

2

8 2

8

5

49
8

7

2

6

3

2

4

9

8

3

3

4

7

1

0

7

1

3

5

8

9

3

1

4

5

2

4

7

2

7

9

5

7

7

2

2

6

8

9

9

3

0

0

5

6

8

7

1

6

4

4

6

0

9

4

5

3

3

4

1

8

0

5

3

6

9

8

7

26

5

7

7

7

3

1

5
5

6

5

6

9

3

0

5

4

7

1

3

3

8

0

4

9

7

4

7

6

7

9

6

5

0

9

1

1

9

4

6

6

0

8

8

3

0

1

8

6
4

3

2

1

9

1

0
1

7

0

2

5

9

9

6

3

3

9

1

7

0

7

0

3

4

2

4

2

5

0

6

2

7

4

3

8

0

8

4

4

2

2

5

7

5

8

7

7

8

4

4

5

2

8

7

4

4

5

6

2

4

0

7

6

6

9

4

1

5 8

8

0

4

9

8

6

9

0

3

9

2

2

5

7

0

4

8

9

8

9

9

2

7

6

4

9

4

4

1

4

7

2
8

3

8

9

6

7

8

5

9

0

2

7

1

2

5

5

0

5

1

2

1

5

8

1

9

7

7

2

7

8

4

3

18

7

5

1

4

1

0

8

0

9

3

7

6

4

9

5

1 7

7

1

3

4

4

7

1

8

7

7

35

2

4

8

3

9

8

7

5

1

7

8

6

2

2

1

8

7

8

2

1

8

8
8

0

3

4

0

1

8

8

1

1

5

1
2

5

3

8

8

5

6

3

6

5

1

8

7

3

3

4

9

4

6

7

7

3

5

6

9

9

5

0

5

8

4

9

4

3

2

0

8

5

4 6

9

4

7

3

0

3

0

9

0

2

0

8

1

0

2

4

6

4

9

4

3

2 9

2

5

3

8

7

7

0

0
2

3

8

0

3

0

4

6

6

8

7

5

8

2

5

8

3

4

0

9

0

4

8

3

4

9

3

6

9

7

7

9

9

4

0

3

8

4

2

2

2

5

7

4

4

3

4

1

8

8

1

3

7

9

5

9

4

3

7

4

1

6

8

2

4

2

8

5

6

8

1

0

1

6

1

4

5

2

6

8

6
1

1

6
0

9

2

7

3

5

8

7

9

2

2

3

2

3

6

6

2

0

7

2

4

5

0

9

4

0

0

6

2

9

3

5

8

4

4

7

5

5

1

1

9

5

2

6

6

7

3
9

3

0

1

2

6

6

1

9

1

3

3

8

5

1

6

6

7

2

6

5

8

8

1

5

4

6

0

5

2

8

3

8

4

7

2

3

2

9

7 3

4

4

5

1

1

1

2

1

3

8

0

1

3

2

0

8

3

6

1

2

9

3

6

6

9

2

0
1

2

3
2

1

8

8

8

6

5

9

9

0

2

5

0

1

8

3

1

9

1

5

3

6

5

4

3

6

5

1

3

4
0

4

3

6

8

7

1

7

4

2

3

9

5

9

4

7
8

3

3

3

8

5

0

0

1

9

4

2

1

3

0

7

3

8

1

8

6

5

0

2

7

3

6

8

2

7

7

2

2

4

2

1

1

6

0

1

1

0

8

0

9

5

8

6

8

26

5

7

4

9

4

0

4

4

6

3

8

6

5

5

4

8

9

5

9

8

4

1

0

4

9

3

6

9

0

3

05 2

4

1

7

9

1

0

7

6

4

7

6

6

2

3

7

8

1

4

7

4

1

0

7

3

8

8

6

9

5

9

5

1

0

9

5

8

7
1

2

9

9

2

2

5

3

7

8

8

7

4

0

4

0

5

9

3

1

0

8

1

1

4

2

9

8

4
9

7

9

1

1

3

2

5

2

7

7

4

3

2

4

1

3

3

9

8

4

3

0

2

4

0

2

1

4

9

7
8

8
4

5

3

5

8

4

4

3

4

9

2

8

5

6

5

8

6

6

3

9

1

7

9

2

2

0

8

7

0

9

8

9

2

1

7

28

9

6

3

5

4

4

8

9

5

2

9

4

8

3

6

4

0

8

6

3

1

3

4

2
7

7

2

7

7

8

2

6

9

0

5

1

1

6

6

3

3

3

1

4

6

3

3

8 8

1 6

4

6

0

9

7

2

2

1

8

1

4

2

8

9

9

2

0

9

5

8

4

4

3

7

0

1

5

7

7

9

7

2

3

7

7

7

5

0

1

1

8

7

4

6

8

3

7

8

7

1

2

4

7

8

24

9

9

3

4

7

4

4

4

4

2

9

0

7

5

1

0

0

2

4

1

1

5

3

0

7

2

1

4

7

2

9

9

7

0

0

9

1

5 46

9

1
8

4

5

0

6

1

9

9

3

6

1

9

1

2

2

1
2

5

4

3

1

3

1

1

0

1

2

9

0

3

7

6

8

2

2

5

7

6

9

1

9

8

0

3

3

4

6

0

3

3

3

0

1

2

4

8 3

1

6

0

0 2

7

2

3

5

7

1

2

7

8

4

6

1

3

8

4

7

3

4

4

2

0

7

3

2

3

7

3

1

0

1

0

1

0

3

7

5

5

5

9

8

5

9

0

9

5
9

2

7

6

2

4

7

0

7

9

5

1

2

9

4

6

1

0

7

7
5

6

9

6

7

5

3

3

1

7

5

0

0

6

4

3

1

2

2

9

5

4

5

0

5

2

1

1

6

8

2

3

2

6

4

0

2

55

5

1

1

2

8

4

6

2

9

6

3

1

2

4

4

3 0

3

5

2

8

3

9

4

6

2

8

2

4

8

7

6

2

8

6

8

6

0

1

5

0

2

3

6

7

6

8

9

2

4

8

6

3

6

8

1

8

9

9

3

7

2

4

2

87

2

2 6

2

2

4

0

2

5

8

1

1
5

1 2

8

2

4

6
3

6

1

2

2

7

0

6

0

5

6

3

5

4

4

0

2

6

0

9

0

2

6

5

0

3

1

9

4

8
8

5

4

6

6

3

8

3

4

21

7

3

1

8

0

24

9

7 7

5

5

8

9

8

1

4

3

9

1

7
8

7

4

9

4

25

8

4

2

2

7

8

8

0

3

4

9

4

1
8

2

0

4

4

2

3

1

2

2

5

7

2

9

7

3

5

5

9

4

4

5

9

2

2

7

6

7

2

0

4

8

1

1

5

4

1

1

8

7

8

0

9

9

9

8

6

9

7

3

9

1

7

4

6

3

0

2

0

3

0

4

8

4

4

0

9

01

4

3

0

1

1

6

7

9

3

7

5

4

7

7

19

0

2

1

2

5

8

5

0

8 3

4

3

0

7

9

1

4

8

2

4

7

4

7

5

5

0

0 5

1

0

9

0

0

4

6

5

9

8

7

3

9

7

8

9

6

7

7

8

7

6

0

3

1

6

5

8

4

7

3

5

7

9

3

8

3

1

8

0

5

7

5

0

9

9

3

8

9

6

1

3

0

3

1

8

0

7

2

4

8

6

6

6

2

3

4

9

4

1

3

1

0

1

3

8

6

8

5
1

4

7

6

5

4

8

8

3

9

6

4

4

3

6

6

1

9

3

2

9
4

3

7

3

7 0

1

5

6

4

7

8
5

9

7
4

1
5

1

1

4

2

5

0

5

6

9

2

1

8

1

7

1

8

6

2

4

2

2

4

2

7

0
1

3

4

1

9

0

4

1

1

1

6

1

9

4

1

1

0

6

5

1

5

2

1

0

6

4

7

7

6

2

3

3

0

8

8

2

7

0

4

7

3

1

7

9

8

3

0

0

0

7

0

8

7

9

2

8

8

9

7

5 1

0

0

7

6

2

7

4

8

7

0

3

9

5

3

8
9

4

7

3

5

4

7

1

7

3

0

6

7

4

2

9

8

8

1
2

9

6

6

1

8

8

7

9

9

2

2

5

1

1

1

1

2

3

4

3

6

3

1

8

5

8

0

2

5

9

3

1

8

9

3

2

7

2

2
5

4

4

0

3

3

4

2

1

7

5

5

4

8

0

0

9

4

4

9

1

6

9

7

4

3

5

1

3

5

0

5

1

6

4

7
6

3

7

5

6

6

6

7

5

6
7

9

8 3

1

1

4

0

2

3

0

8

7

0

0

8

2

1

1

3

8

9

2

50

6

8

7

0
4

1

2

6

1

6

1

2

1

7
2

2

5

4

3
4

9

3

3

5

4

1

0

0

7

3

6

5

5

8

4

8

7

6

3

0

5

1

1

6

4

9

8

8
1

9

9

4

1

9

4

8

3

9

1

2

9

6

9

2

6

8

1

1

6

3

7

2

7

2

5

0

9

0

5

1

5

4

2

2

8

0

7

0

6

5

7

4

0

4

6

8

1

2

0

3

1

4

7

9

0

7

65

2

5

6

8

7

4

8

0

7

5

4

8

8

3

4

2

7

9

8

3
6

6

0

0

2

2

2

3

3

4

4

5

6

8

6

1

3

7

0

8

1

5

0

4

1

5

5

5

0

7

4

6

6

1

2

8

6

4

6

9

3

4

5

8

8

1

0

7

3

5

9
0

3

9

9

1

1

4

6

2

7

6

0
1

1

2

2

3

6

0

3

5

3

1

4

1

3

2

3

1

3

4

5

7

1

5

5

6

0

4

8

7

9

8

4

1

4

5

9

7

5

7

0

9

6

0

8

7

7

9

8

2

1

2

6

9

0

5

6

8

4

7

1

0

0

3

1

8

1
1

3

7

1

4

8

4

6

0

5

1

0

6

9

8

6

5

6

7

3

0

1

1

0

9

4

5

9

7

8

4
4

5

9

2

8

9

7

2

1 1

6

2

9

5

7

1

1

4

6

2

6

9

5

4

3

6

4

6

2

5

6

5

0

0

6

5

2

1

9

6

2

9

5

7

5

0

8

3

5

7

9

3

9

4

5

8

8

8

8

4

1

3

0

4 2

1

8

3

3
6

0

7

3

1

5

6

8

5

5

2

9

5

5

2

2

6

88

2

4

9

1

3

3

6

5

8

5

5

2

4

9

7

13

7

1

3

4

7

6

8

1

1

9

4

4

2

3

8

2

5

5

2

2

3

3

2

6

9

4

5

0

3

7

1

6

3

8

3

5

1

2

7

4
7

6

4

2

6

5

0

1

7

6

0

2

6

9
9

4

7

1
1

7

9

9

0

4

6

1

7

7

7

2

6

1

2

6

8

9

2

1

2

7

7

2

3

2

9

6

7

4

0

5

4

5

2

0

3

1

4

0

1

4

8

6

1

8

7

3

7

9

3

5

9

2

2

4

3

7

8

5

6

5

1

6

3
7

9 5
5

3

4

6

5
43

3

2

1

1

6

0

0

6

7

0

6

4

2
2

3

1

9

5

0

2

3

0

2

9

9

5

9

1

8

8

6

0

1

0

2

6

7

5

1

8

3

1

9

3

8

1

5

7

0

1

0

1

6

6

4

2

9

2

9

1

4

2

8

7

2

7

2

0

0

7

9

9

7

8
0

0

4

8

2

7

0

0

3

7

4

0

3

5

9

7

6

8 9

1

7

6

2

7

9

4

7

4
8

3
6

9

4

5

4

1

8

7

5

6

6

1

4

0

8

6

5

5

1

4

7

3

5

4

0

0

8

4 9

0

2

8

3

5

3

5

9

4

1

7

2

8

9

4

0

6

4

7

0

5

1

6

0

3

3

3

0

1

6

6

6

7

2

0

5

4

8

8

2

8

5
4

9

9

2

9

3

5

4

97

1

6

2

5

9

1

5

8

0

3

3

3

3

1

4

0

6

3

1

4

8

1

5

1

8

3

7

6

4

4

3

9

Figure 3.20: Original ELMVIS visualization of MNIST handwritten digits test set

with 10,000 samples, using ELM with 20 neurons. Optimization runs for 43 hours

but is nowhere close to finish. The original ELMVIS is uncomparably slower than

ELMVIS+.

104

4
9
9
9
9
9
9
9
9
9
7
7
7
7
7
9
7
9
6
6
6
6
6
6
6
6
6
1
1
1
9
4
4

9
9
9
9
9
7
9
7
9
7
7
7
9
7
7
0
7
0
6
6
6
6
6
6
6
6
6
1
8
1
4
4
4

9
9
9
9
7
7
7
7
7
7
7
7
9
7
7
7
0
6
6
6
6
6
6
6
6
6
6
6
4
4
4
4
4

9
9
9
9
7
7
7
7
7
7
7
7
7
7
7
0
6
6
6
6
6
6
6
6
6
6
6
4
4
4
4
4
9

9
9
9
9
7
7
7
7
7
7
7
7
7
7
3
0
0
5
6
6
6
6
6
6
6
6
6
6
9
4
4
4
9

9
4
9
9
7
7
7
7
7
7
7
7
7
0
0
0
6
6
6
6
6
6
6
6
6
0
6
4
4
4
4
4
9

9
0
9
7
7
7
7
7
9
7
4
4
0
0
0
0
6
6
6
6
6
6
6
6
0
6
6
0
4
4
4
4
4

9
9
9
9
7
7
7
7
0
4
4
0
0
0
0
0
0
0
6
6
6
6
6
6
6
6
0
0
4
4
4
4
4

9
9
9
7
7
7
7
7
7
0
0
0
0
0
0
0
8
4
2
6
6
6
6
2
0
2
2
2
4
8
4
4
4

9
9
9
0
0
7
7
0
7
0
0
0
0
0
0
0
0
2
2
2
2
2
0
2
2
2
2
2
9
4
4
4
4

5
9
9
9
0
7
0
0
0
0
0
0
0
0
0
0
6
6
2
2
2
2
2
2
2
2
2
2
4
4
4
2
8

5
5
0
9
0
0
0
0
0
0
0
0
0
0
0
0
4
2
2
2
2
2
2
2
2
2
0
3
3
3
4
8
3

5
5
5
8
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3

8
5
5
5
0
0
0
0
0
0
0
0
0
0
0
0
3
4
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3

8
8
5
5
0
0
0
0
0
0
0
0
0
0
5
3
2
0
2
2
2
2
2
2
3
3
2
3
3
3
3
3
8

8
8
5
5
0
0
0
0
0
0
0
0
0
2
3
3
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
8

8
8
5
5
5
0
0
0
0
0
0
0
5
3
3
3
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3

5
5
5
5
5
0
0
0
0
0
0
0
6
5
3
0
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
5

5
5
8
8
5
5
6
6
5
5
5
3
6
0
3
3
3
3
2
2
2
2
2
2
2
3
3
3
3
3
3
3
5

5
8
8
8
8
8
5
5
5
5
5
5
5
0
3
3
3
2
2
2
2
2
2
2
2
3
3
3
3
3
3
5
5

8
8
8
8
8
8
5
5
5
5
5
5
5
5
5
3
3
7
1
1
1
8
2
2
2
2
3
3
3
3
3
3
5

8
8
8
8
8
8
8
5
5
5
5
5
5
5
5
5
3
3
1
1
1
1
1
8
8
8
3
3
3
3
3
3
3

8
8
8
8
8
8
8
8
8
5
5
5
5
5
5
5
8
7
0
1
1
1
1
7
2
3
3
3
3
3
3
3
8

8
8
8
8
8
8
8
8
8
8
8
5
5
5
5
8
8
8
5
8
1
1
1
1
7
2
3
3
3
3
3
3
8

8
8
8
8
8
8
8
8
8
4
4
5
5
5
5
5
8
5
8
8
0
1
1
1
1
1
1
3
3
3
3
3
8

8
8
8
8
8
8
8
8
4
4
4
4
5
5
5
5
5
5
5
0
0
1
1
1
1
1
1
1
4
3
5
3
3

7
8
8
8
8
9
9
9
4
4
4
4
5
5
5
5
5
0
0
0
1
1
1
1
1
1
1
1
1
1
9
8
7

7
7
7
8
4
4
4
4
4
4
4
4
5
5
7
7
7
7
7
7
1
1
1
1
1
1
1
1
1
1
7
2
7

7
7
4
4
4
4
4
4
4
4
4
4
4
7
7
7
7
7
7
0
4
6
1
1
1
1
1
1
1
1
1
7
7

7
7
4
4
4
4
4
4
4
4
4
4
9
9
7
7
7
7
7
0
6
6
6
6
1
1
1
1
1
1
1
7
7

9
4
4
4
4
4
9
4
4
4
4
9
9
9
7
7
7
7
0
6
0
6
6
6
6
1
1
1
1
1
1
1
9

9
9
9
9
4
9
9
9
9
4
9
9
9
7
7
7
7
7
0
6
6
6
6
6
6
8
1
1
1
1
1
4
4

9
9
9
9
9
9
9
9
9
9
9
7
7
7
7
7
7
9
5
6
6
6
6
6
6
6
1
1
1
1
1
4
4

Figure 3.21: SOM visualization of MNIST handwritten digits test set with 10,000

samples, using 1000 nodes. Majority class is shown on each node. Optimization

finishes in about one hour.

105

7

2

1

0

4

1

4

9

5

9

0

6

9

0
1

5

9
7

3

4

9
6

6

5

4

0

7

4

0
1

3

1

3

4
7

2

7

12

1 1

7
4

2

3
5

1

2

44

6

3

5

5

6

0

4

1

9

5

7

8

9

3

7

4

6

4

3
0

7

0

2

9

1

7

3

2

9

7

7

6

2

7

8

4

7

3

6

1

3

6

9

3
1

4

1

7

6

9

6

0

5

4

9

9

2

1

9

4

8
7

3

9

7
4

4

4

9
2

5

4

7

6

7

9
0

5

8

5

6
6

5

7

8

1

0

1

6
4

6

7

3

1

7

1

8

2

0

2

9

9

5

5

1

5

6

0

3

4
4

6
5

4

6

5

4

5

1

44

7

2

3

2

7

1

8

1

8

1

8 5

0
8

9

2

5

0

1

1

1

0

9

0
3

1

6

4

2

3

6

1

1

1

3

9

5

2

9

4

5

9

3

9

0

3

6

5

5

7

2

2

7

1
2

8

4

1

7

3
3

8

8

7

9

2

2

4

1

5

9

8

7

2

3

0

4

4

2

4

1

9

5

7
7

2

8

2

6

85

7

7

9

18

1

8
0

3

0

1

9

9

4

1

8

2

1

2

97

5

9

2

6

4

1

5

8

2

9

2

0

4

0

0

2

8 4

7

1

2

4

0

2

74

3

3

0

0

3

1

9

65

2

5

9

2

9

3

0

4

2

0

7

1
1

2
1

5

3 3

9
7

8

6

5

6

1

3
8

10

5

1

3

1

5
5

6

1

8
5

1

7

9

4

6

2

2

5

0

6

5

6
3

7

2

0

8
8

5

4

1
1

4

0

3

3

7

6

1

6

2

1

9

2

8

6

1

9

5

2

5

4
4

2

8

3

8

2

4

50 3
1

7

7

5

7

9 7

1

9

2

1

4

2

9

2

0

4

9

1

4
8

1

8

4

5

9

8

8

3

7

6

0

0

3 0

2

6

6

4

9

3

3
3

2

3

9

1

2

6

8

0

5

6

6

6

3

8

8

2

7
5

8

9
6

1

8

4

1

2

5
9

1

9

7

5

4

0

8

9
9

1

0
5

2

3

7

8

9

4

0
6

3

9

5

2

1

3

1

3

6

5

7

4

2

2

6

3

2

6

5

4

8

9

7

1

3

0
3

8

3

1

9

3

4

4

6

4

2

1

8

2

5

4

8

8

4

0

0

2

3

2

7

7

0

8

7

4

4

7

9

6

9

0
9

80

4

60

6

3

5

4

8

3

3

9

3

3

3

7

8

0

8

2

1

7

0

6

5 4

3

8
0

9

6

3
8

0

9

9

6

8

6

8

5

7

8

6

0

2

4

0

2

2 3

1

9

7

5

1

0

8

4

6 2

6 7
9

3

2

9

8

2 2

9

2

7

3

5

9

18

0
2

0
5

2

1

3

7

6

7

1

2

5

8

0

3

7

2

4

0

9

1

8

6

7

7

4

3

4

9

1

9

5

1

7

3

9
7

6

9

1

3

7

8

3

3

6

7

2

8

5

8

5

1

1

4

4

3

1

0

7

7

0

7
9

4

4

8

5

5

4

0

8

2

1

0

8

4

5

0

4

0

6

1

7

3

2

6

7

2

6

9

3 1

4

6

2

5

4

2

0

6

2

1

7

3

4

1

0

5

4

3

1

1

74
9

9
4

8

4

0

2

4

5

1

16

4

7

1

9

4

2

4

1

5
5

3

8

3

1

4

5
6

8

9

4

1

5

3

8

0

3

2

5 1

2

8
3

440

8

8

3

3

1

7

3
5

9

6

3

2

6

1

3

6

0

7

2

1

7

1

4

2

4

2
1

7

9

6

1
1

2

4

8

1

7

7

4

8

0

7

3

1

3

1
0

7

7

0
3

5

5

2

76

6

9

2

8

3

5

2

2

5

6

0

8

2

9

2

8

8

8

8

7

4

9

3
0

6
6

3

2

1

3

2

2

9

3

0

0

5

7

8

1

4

4

6

0

2

9

1

4

7

4
7

3

9

8

8

4
7

1

2

1

2

2

3

2

3

2 3

9

1

7

4

0

3

5

5

8

6

3

2 6

7

6

6

3

2

7
8

1

1

7

5

6

4

9

5

1

3

3

4
7

8

9

11

6

9

1

4

4

5

4

0

6

2

2

3

1

5

1

2

0

3

8
1

2

6

7

1

6

2

3

9

0

1

2

2

0

8 9

9

0

2

5

1

9

7

8

1

0

4

1

79
6

4

2

6

8

1

3

7
5

4

4

1

8

1

3

8

1

2

5

80

6

2

1
1

7

1

5

3

4

6
9

5

0

9

2

2

4
8

2

1

7

2

4
9

4

4

0

3

9

2

2

3
3

8

3

5
7

3

5

8

1

2

4

4

6

4

9

5

1

0 6

9

5

9

5

9

7

3
8

0

3

7

1

3

6

7

8

5

9

7

9
6

9

6

3

7

4

4

5

3
5

4

7

8

7

8

0

7

6

8

8
7

3

3

1

9

5

2

7

3

5

1
1

2

1

4 7

4

7

5

4

5

4

0

8

3 6

9

6

0

2

7

4

4

4

4

6

6

4

7
9

3

4

5

5

8

7

3

7

2

7

0

2

4

1 1

6

6

9

2

8

7

2

0 1

5

0 9

1

7

0

6

0

8
6

8

1

8

0

3

3

7

2

3

6

2

1

6

11

3

7

9

0

8

0

5
4

0

2

8

7

2

98

4

0

9

5

8

5

1

2

1

3

1

74

5

7

2

0

98

8

6

2

5

4

1

9

2

1

5

8

70
2

4

4

3

6

8

8

2

4

0

5

0

4

4

7

9

3

4

1

5

9

7

3

5

88

0

5

3

3

6

6

0

1

6

0

3

5

44

1

2

9

1

4

6

9

9

3

9

8

4

4

3

1

3

1

8

8

7

9
4

8

8

7

9

7

1

4

5

6

0

5

2

2

2

1

5

5

2

4

9

6

2

7

7

2

2

11

2

8

3

7

2

4

1

7

1

7

6

7

8

2

7

3

1

7

5

8

2
6

2 2

5

6

5

0

9

2

4

3
3

9

7

6
6

80

4

1

5

8

2

9

1

8

0

6

7

2

1

0

5

5

2

0

2

2

0

2

4

9

8

0

9

9
4

6

5

4

9

1

8

3

4 9

9

1

2

2

8

1

9

6

4

0

9

4
8

3 8

6

0

2

5

1

9

6

2

9

4

0

960 6

2

5

4

2

3

8

4

5

5

0

3

8

53

5

86

5

7

6

3
3

9

6

1

1

2

9

0

4

3

3

6

9

5

7

3

7

7

7

8

7

9

8

30

7

2

7

9

4

5

4
9

3

2

1

4

0

2

3

7

5

7

8

8

5

0

1
1

4

8

3

9

0 0

0

6

6

2

3

7

8

4
7

7

9

2

4

1

4

5

2

4

9

9

1

8

4

0

9

8

4

8

77

0

7

8

8

6

0

4

8

8

2

4
7

6
6

6

4
7

1

8
8

2

3
6

3
0

0

3

7

6

9 7
9

9

5

4

3

3

6

1

2

3

7

3

3

2

0

3

3

8

4

3

6

3

5
0

2

0

9

0

74

6

9

3

5

1

9

6
1

4

5

4

5

0

5

9

5

2

1

2

9

1

9

9
4

0

8

4

5

2

9

2

1

2
1

7

3

6

8

8

49

1

9

8
5

7

5

118

6

5

2

4

4

3

2
3

5

6

8

8 6

2

3

1

0

5
8

9

2

9

6
7

0

4

8

7

1

7

4

1

0
9

7

2

0

0

9

1

7

8

7

8

4

7

2

0

4

60

3

1

1

3

3

9

6

7

4

1

5

3
0

8

7

3

9

6

9

3

5
0

2

7

4

5

17

5

8
0

8

8

1

50

30

3

1

4

0

3

7

2

7

1
8

0 7

0

4

3

1

9

8 7

7

1

4

9

9

3

2

1

7

9

0

2

0

3

3

76

9

2

3

3

7

70

0

7

5

2

9

8

7

4

4

2

6

6

1

9

6

8

2

9

0

8
3

1

1

6

3

5

1

1

1

3

1

2

3

0

2

0

1

3

5

5
7

4

8

9

6

9
6

8

3

6

6

8

5
1

4

2

4

4

5

1

1

9

0

2

4

9

5

7

1

88 5

6
9

8
7

1

1
6

7

6

3

2

2

0

8

9

2

5

1

0

8

1

9

5

7

9

6

9

0

6

1

5

5

8
3

8
2

6

5

0

7

46

1

3

4

7

3

2

3

4
2

5

2

7

1

7

2

6

4

1

5

7

8

6

0
1

8

2

5

7

7

6
93

5

8

4

2

4

0

8

8

3

4 9

2

7

5

8

6

5

6

0

8

6

7

3

6

4
9

4

6

6

3

2

4

1

0

1

4

6

2

9

1

1

0
6

3

9

5
6

5

6 5

8
4

6

4

3

9

1

3

4

1

9

1

7

1

1

9

3

5
4

0

7

3

6

1

7
5

5

3

3

0

1

5

7

5

8

6

5

1

0
4

2

3

4

6

7

9

8

1
8

4

9

2

8

6

2

7

0

0

6

7

5

8

6

0

9
3

7

1

3

5

4

3 3
5

5

6
3

0

2

3

4

2

3

0

9

9

4

7

2

8

4

7

0

6

2

8

5

2

8

5

7

3

0

8

2

3

2

8

2

5

5

7

6

4

6

8

4

8

2

7

4

5

2

0

3

9

4

6

7

2

5

6

1

1

2

3

6

7

8 76

4

8

9

4

8

6

3

8

3

1

0

6

2
2 5

6

9

5

8

1

4

1

7

8

4

6

1

8

4

3

1
2

8

0

8

5

9

1

4

2

0

2

7

0

9

0

2

5

7 6

7

9

4

2

6

2

4

4

8

0

4

4

5

8

0

68

9

8

5

6

9

0

4

8

7

1

3

4

5

8

0

9

1

3

3

6
9

8

7

1

0

5

7

1

7

5

2

7

9

1

8

5

2

4

9

4

7

2

2

3

4 9

1

9

2
1

7

9

4
4

1

6

7

2

7

8

8

1

9

7

1

1

7

5
3

3 5

1

3

7

6

1

3 8

7

5

9

9

0

0

2

8

8

2

3

7

1

3

0

3

44

3

8

9

2

3

9

7

1
1

7

0

4

9

6

5

9

1

7

0

2

0
0

4

6

7

0

7

1

4

6

4

5

4

9
9

1

7

9

5

3

3
8

23

6

2 2

1

1

1

1

1

6

9

8

4

3

7

1

6

4

50

4

7

4

2

4

0

7

0

1

9

8

8

6

0

0

4

9

6

8

2

2

3

8

4

8

2

2

1

7

5

4
4

0

4

3

9

7

3

1

0

1

2

5
9

2

1

0
1

8

9

1

68

3

8

9

3

6
28

3
2 2

1

0

4

2

9

2

4

3

7

9

1

5

2

4

9

0
3

85

3

6

0

9

46

2

5

0

2

7

4

6

6

8

6

6

8 6

9

1

7

2

5

9

9

0

7

2

7

6

7

0

6

5

2

4

7

20

9

9

2

2

9

4
4

23

3

2

1

7

0

7
6

4

1

3

8

7

4

5

9

2

5

1

8

7

3

7

1

5

5

0

9

1

4

0
6

3
3

6

0

4

9

7

5

1

6

8

9

5

5

7

9

38
3

8

1

5

3

5

0

5

5

3

8

6

7

7

7

3

7

0

5

9

0

2

5

5
3

1

7

7

8

6

5

93

8

9

5

3

7
9

1

7

0

0

3

7

2

5

8

1

86

2

9

5

7

5

7

8

6

2

5 1

4

8

4

5 8

3
0

62

7

3

3

2

1

0

7

3

4

0

3

9

3

2

8

9

0

3

8

0

7

6

5

4 7

3
9

0

8

6

2

5

6

1

0

0

4

4
0

1
2

3

2

7

7

8

5

2

5

7
6

9

1

4

1

6

4

2

4

3

5

4

3

9

5

0

1

538

9

1

9

7

9

5

5 2

7

4

6

0

1

1

10

4

4

7

6

3

0

0

4

3
0

6

1

9
6

1

3

8

12

5

6

2

7

3

6

0

1

9

7
6

6

8

9

2

9

5

8

3

1

0

0

7

6

6

2

1

6

9

3

1

8

6

9

0
6

0
00

6

3

5

9

3

4

5

5

85

3

0

4

0

2

9

6
8

2

3

1

2

1
1

5

6

9

8
0

6

6

5

5

3

8

6

2

1

4

5

4

3

7

8

5

0

9

3

5

1

1

0

4
4

7

0 1

7

0
1

6

1

4

5

6

6

5

7

8

4

4

7

2

5

3

7

0

7

79

6

4

2

8

5

7

8
3

9

5

8

9

9

8
6

2

8

9

2

3

6

1

1

8

9

3

4

0

7

9

6

4

1

4

1

3

4

9

3

1

4

7

7

4

7

2

9

3

0

8

8

8

4

0

4

4

1

5

2

8

3

4

9

5

2

8 1

5 3

7

9

4

2

5

6

3

5

9

3

5

9

3

1

9

5

3

0

6

9 8

4

0

4

9

2

9

0

1

0

3

1

6

5

8

1

5

3

3

0

3

5

5

9

2

8

7

0

4

9

1

9 7

7

5

5

20

9

1
8

6

2

3

9

6

2

1

9

1

3
55

0
3

8

3

3

7

6

6

0

1

4

0 6

9

8

1

2

9

9

5

9

7

3

7

8

0

1

3

0 4

6

1

0

2

5

8

4

4

1

1

5

4

6

6

0

6

9

2

6

2

7

1

7

9

4

00

3

8

2

2

3
1

6

0

5

7
7

9

2

6

7

9

7

8

6

8

8

4

6

8

4

1

2

8

1

3

9

4

0

3

7

3

2

3

3

7

3

4

0

6

2

0 8

1

5

3

5

4

1

7

1

5

7

5

7

3

2

2

7

3

7
3

7

8

5

4

5
2

5
6

5

3

6

7

4

1

7

1

5

2

3

6

3

1

4

2

6

7

4

3

8
0 6

2

1

6

5

3

9

1

9
3

2

1

8

4

4

6

5

8

6

9
7

7

8

6

9

7

3

9

4

0

5

4

6

4

1

2

3

0

0

2

6

6

5

7

0

8

6

4

7

9

0

7

3

4

2

1

8

8

5

9

2

7

1

8
8

8

2

7

6
0

1

2

7

1

0

8

3

6

0

5

3

6

2

8

7

0

1

4

2

1
1

4
4

4
4

7

1
6

2

9

9
0

0

1

8

8

4

3

4

2

0

6

1

6

1

2

2

2

1

2

3

7

8

1

0 0

2

1

6

6

0

1

6

2

5

1 7

4

8

2

1

4

3

8

3

9

9
4

8

3

4

7

2

7

5
7

0

4

3

3

2

6

7

6

00

6

7

7

0

5

5
8

1

0

7

0

2

8

1

5

0

8

8

0 3

2

7

7
2

6

4

7

5

5

5

2

9

2
8

4

6

8

6

5

0

0

8

7

6

1

7

1

1

2

7

4

0

0

7
7

6

3

8

6

4

2

0

9

4

0
5

7

8

2

7

4 7

1

1

3

6

6

2

9

1

9

4

8

3

6

9

5

9

6

2

4

6

7

7

0

66

9

4

8

3
5

3

4
9

0

0

5

2

5

0

7

1

1

1

6
7

6

7

9

6

6

4

1

4

3

1 1
2

2

4

1

0

8

7

6

3

4

0
0

6

33

0

7

1

7
1
1

3

1

0

9

9

7

5

4

1

4

8

95

3

5

1

9

8

2
3

3

9

9

0

1

0

2

9

3

9

3
3

6

2

4

9

83

7

4

0

4

7

8

4
9

8
9

9

7

5

9

2

8

2

2
0

2

2

3

8

4

6

8

6

8

2

4

6

7

9

3
3

9
4

3

1

4

4

7

0

5

9

6

0

4

4

44

6

1

2

3
3

6

4

5

9

6
8

5

6

5 8

6

4

1

8

6

5

2

8

4

5

5

4

7
7

0

7

8

2

2

3

7

0

1

8

0
7

1

9

8

7

5

5

9

1

7

5

4

9
1

2

2

1

6

6
7

1
1

4

0

7

4

2

4

0

6

4

7

6

9

5

3

4

6

5

0

1

8

8

2

8

3

5

7

8
0

8
5

7

1

1

0

1

3

7

8

5

0

7

1

1

0

1

1

4

5

2

7

6

2
3

0

28

5

9

6

9 7

2

1
3

6

4

1

8

2

4

0

5

1

0

2

2

6

4
4

3

9

6

1

6
5

7

9

2
0

2
6

0
1

4

3

5

2

8

8

0

8

8 9

0

9
6

7

6

3

93

4

7

7

74

9
0 6

4

8

4

2

7

2

8

1

00

7

8

3

3

3

1

3

7

6

1

3

1

6

6

5

7

4

7

5

9

5

8

4
9

9

1

6

5
0

1

3

7

0 3

4

8

2

2

0

2

5 1

5

1

4

8

8

9

1
2

1

3

5

1

0

9

4
4

8

3

2

5

9

7

6

6

2

0

0

0

5

8

7

1

5

2

3

8

5

1

8

2

0

4

9

9

6

2

3

3

5

6

4

8

0

9

2

8

3

6

7

5

7

2

9

4

9

1

2

8

6

0

7

0

9

1

16

7

5

9

9

1

9

5

9

2

5

0

4

1

0

8

9

0
8

9

8

9

4

2

5

79

8

9

8

0

99

6

8

9

9

5

9

8

5

1

0

3

3

5

2

1

6

5

0

2

8

1

5

6

2

3

0
22

6

4

3

5

5

1
7

2
1

6

9

1

9

9

5

5

1
6

2

2

8

6

7

1

4
6

0

4

0
33

2

2

3

6

8

9

8

5
3

8

5

4

52

0

5

6

3

2

8

3

9

9

5

7

9

4

6

7

1

3

7
3

6

6

0

9

0

1

9

9

2

8

8

0
1

6

9

7

5

3

4

7

4

9

9

4

3

6

3

1

1

7
6

9

1

8

4

1

1

9

94

3

6

8

1

6

0

4

1

3

7
7

4

9

5

1

0
0

1 1
6

2

1

9

8

4

0

3

6

4

9

0

7

1

6

5

7

5

2

5

18

5

4

7

0
6

7

0

2

5

8

1

0

4

5

7

1

8

5

1

9

0

0

6

0

7

3

1

8 3

9

7

0

0

8

9

5

9

8

3

2

7

2

9

7

2

1

1

3

7

5
3

1

9

8

2

2

2

8
85

7

3

8

9

8

8

6

8

2

3

9

7

5

6

2

9

2

8
8

1

6

8

8

7

9

18
0

1

7

2

0

7

5

1

9

0

2

0

9

8

6

2

3

9

3

8

0

2

11

11

4

2

9

7

2

5

1

1

2

1

9

9

9

1

0

2

0

2

1

1

4

6

4

15

4

9

7

7
1

5

6

2

2

2

8

0

6

9

6

1

9 77

1

4

8

5

3

4

3

4

9
75

0

7

4

8

8

1

5 3

9

5

9

7

6

9

0

3

6

3

9

8

2
2

1

2

8

6

8

5

5

3

9

49

2

5

1

5

1

4

4

1

4

4

3

5
9

1

2

2
3

30

2

9

0

0

9

9

6

0 9

3

2

8

4

1

9

9

7

2 7

9

9

5

9

5

1

1
8

3

5

1

9

5

3
5

4

9
5

9

3

1

9

0

9

7

5

4
9

2

0

1

0

5

1

4

9

3

3

6

1

5 2

5
2

2

0

9

2

6

6
0

1

2

0

3

0

2

5

5

7

9 5

5

0
8

9

5

0 3

2

5

9

0 8

8

4
5

8

8

4

5

4

85

4

9

2

2
1

2

6

8

8

7

0

3

6

6

4

3

8

8

7

2
2

0

0

9

3

9

9

1

9

8

6
6

4

2

6

9

2

8

5

4

5

7

9

9

9

2

1

8

3

4

0

7

8

3

9

3

4

6

5
6

2

3

9

2

6

0
0

6

1

28

7

9

8

2

0

4

7
7

5
0

5

6

4

6
7

4

3
0

7

5

0 7

4

2

0

8

9

9

4

2

4

6

7

8

7

6

9

4

1

3

7

3

0

8

8

76

9

3

9

2

2

9

2
1

8

3

2

9

6

8

4

0

1

2

8

4

5

2

7

8

1

1

3

0

3

5

7
0

3

1

9

36

3 1

7

7

30

8

4

8

2

65

2

97

3

9
0

9

9

6

4

2

9

7

2

1
1

6
7

4

75

9

6

8

2

1

4
4

5

7

6

1

3

2

5

9

9

3

6

1

1

4

6

9

7

2

1

5

1

4

6

3

8

1

1

0

3

1

6
8

4

9

0

7

3

0

2

9

0 6

6

6

3

6

7

7

2

8

6

0
8

3

0

2

9

8

3

2

5

3

8

8

0

0
1

9

5

1

3

9

6

0

1

4

1

7

1

2

3

7

9

7
4

9

9

3

9

2

8

2

7

1

8

0

9

1

0

1

7

7

9

6

9

9

9

2

1

6

1

3

5

7

1

9

7

6

4

5

7

6

6

9

9

6

3

6

2

9

8

1

2
2

5

5

2

3

7

2 1

0

1

0

4

5

2

8

2

8
3

5

1

7

8

1
12

9

7

8

4

0 3

0

7

8

8

4

7

7

8

5

8 4

9

8

1

3

8

0

3

1

7

9

5

5

1

6

5

7

4

9

3

5

4
7

1

2

0

8

1

6

0

7

3

4
7

3

96

0

8

6

4

8

7

7

9

3

8

6

9
7

2

3

4

0

2

1

8

3

5

5

7

2

4

6

7

2

8
3

0

8
7

8

9

0

8

4

4

5

8

5

6

6

3

0

9

3

7

6

8

9

3

4

9

5

8

9

1

2

88

6

8

1

3

7

9

0

1 1

47

0

8

1

7
4

5
7

1

2

1

1

3

9

6

2

1

2

8

0

7

6

6

9

3

7

0

5

2

8

0

5

4

3

8

4

6 6
2

7

9

5

1

3

2

4

3

6

1

9

4

4 7

6

5

4

1

9

9

2

7

80 1

3

6

13

4
1

1

1

56

0

7

0

7

2

3

2

5

2

2
9

4

9

8

1

2

1

6
1

2

7

8

0

0

0

8

2

2

9

2

2

7

9

9

2

7

5

1

3

4
9

4

1

8

5

6

2

8

3

1

2

8 4

99

3

7

0

7 7

2

3

2

4
0

3

9 9

8

4

1

0 6
0

9

6

8

6

11

9

8

9

2

3

5

5

9

4

2

1

9

4

3

9

6

0

4

0
6

0

1

2

3

4
7

8

9

0

1

2

3

4

7

8

9

0

1

2

3

4

56

7

8

9

8

3

4

7

8

6
3

4

0

9

7

1

9

3 8

4
7

3

0

9

1

4

5

4

6

2

0

6

2

11
1

1

7

2

4

7

5

2

94

5

8

4

2

9 7

0

0

7

5

1
1

7

6
6

6

8

2
2

77

4

0

2

4

2

1

8

9

6

1
0

5

9

6

9

8

0

3

0

8

3

9

6

3

0

1

2

3

4
5

6

7

0

1

2

3

4

5

6

7

8

9

0

1

2
3

4

5

6 7

8 5

4

8

74

7

7

3

98

8

3

1

5

8

2

7

4

21

5

4

5

5
8

6

4

4
4

1

8

7

5

5

1

8

9

1

3

6

33

2

2

6

9

9

6

5

5
3

3

8

1

6

5

6

8

1

9 7

6

8

3

7

4

7

0

9

0

0

3

7

9

30

2

0

10 1
0

4

0
1

0

4

7
9

6

2

6

2
2

99

0
1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

80
5

6

6

0
80

2

3

7

9

4

7

1

9

1

7

1

4

0

0

4

1

7

5

7

1

3
3 3 1

6

9

7

4

3
0

2 52

6

0 8

9

4

3

5

4

8

1

5

9

0

6

4

3

6

3 3

8

1

4
7

5

7

2

2

0

0

1

7

7

9

5

9

8

9

6

8

8

2

3

6

1

2

9

8

9

5

2

6

2

4

8

4

6

5

0

1

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9 7

4

2

0

9

0

1

5

8
8

0

2

7

8

4

4

6

1

0

4

5

3

9

4

2

0

5

0

1

3

2

9

1

6

0

11

8

0

4
7

7

6

3

6

0

7

3

5

4

2

4

1

8

3

5

6

7

0

6

7

1

2

5

8

1

9

3

8

2

8

7

6

7

1

4
6

2

9

3

0
1

2

3

4

5

6

7

0
1

2

3

4

5

0 1

2

8

9

1

4

0

9

5

0

8

0

7

7

1

1

2

9

3

6

7

2

3

8

1

2

9

8 8

7

1

7

1
1

0

3

4

2

6

4 7

4

2

7

4

9

1

0

6 8

5

5

5

3

5

9

7

4

8

5

9

6

9

3

0

3

8

9

1

8

1

6

0
0 1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9
0

1

2

3

4

5

6

7

8

9

3

5

3

2

9

3

2

1

4

5

5

2

3

2

13

9 7

2

1

2

8

9

1

8

8

7

8

1
0

0

7
7

8

7

5

0

6

1

5

7

4
6

1

2

5

0

7

9

9

0

3

8

4

4

8

1

8

6

5

9

0

0

0

3

7

1

6

4

2

6
6

0 4

5

4

13

8

6

3

9
9

5

9

3

7

8

5

6

4 7

6

2

2

0

9

4

0

1

2

3

4

5

6

7

8

9

0

1

2

3
5

6

0

1

2

3

4

5

6

8 7

1

3

2

8

0

7

5

9

9

6

0

9

4

1

3

2

1

2

3

8

3

2

6

5

6

8

2

7

4

8

1

8

0

5

3

9

4

1

9

2

1

9
6

7

9

0

4

6

1

7

3

8

7

2

9

6

5

8

3

9

0

5

7

1

6

1

0

9

3

3

4

4

0

6

2

5

4

2

3

4

6

0

0

2

0

1

4

5

6

7

8

9

0

1

2

3

4

5

6 7

8

0

1

2

3

4

5
6

7

8

9

8

7

1

3

7

5

2

8

0

7

5

99

0

9

1 1

5

8
8

6

3

2

1

8

3
2

6

5

6

7

4

1

0

5

3
1

9

2

1

9

6

0

4

6
1

7

3
8

7

2

9

6 5

8

3

5

7

1

6

1

0

9

6
2

5

4

2

3

4

4

6

00

2

0

1

2
3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

8

6

5

0

6

8

9
4

1

9

5

3

0

4

8

9

1

4

0
55

2

1

5 4

0

7

6

0
1

7

0

6

8

9

5 1

79

8

6

0

8

1

7

7

1

3

2

3

1

4

2

0
0

7

8

4

64

9

3 8

4

7

2
5

6
3

6

9

6

32

2
4

6

9

0

25

5

1

3

3

9

7

8

7

2

2

5
79

8

2

1

3

13

0 1

2

3

4

5

6
7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

1

2

6

5

3

0

7

0

4

1

4

3

6

7

2

3

1

2

1

2

9

6

0

1

3
0

2

7

5

7

6

2

9

1
9

0

6

0

6

0

2

0

6 1

5

8

4

3

0

1

5

4
4

8

5

7

5

7

8

3

4
8

8

5

2

9

7

1
3

8

1

0

7

5

9

6

9

4

7 7

9

9

3

4

4

3

8

6

2

0

1

2

3

4

5

6 7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

8
3

9

5

5

2

6

8

4
9

1

7

1

2

3

5

9

6

9

1
1

1

2

9

5

6
8

1

2

0

7
7

5

8

2

9

8

9

0

4

6

7

1

3

4

5

6
0

3

6

8

7

0

4

2

74

7

5

4

3

4

2

8

1

5

1

2

0

2

5

6

4

3

0
0

0

3

3

5

7

0

6

4

88

6

3

4

6
9

9

8

2

7

7

1

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

2

1

7

2

5

0
8

0

2

7

8

8

3

6

0

2

7

6
6

1

2

8

8

7

7

4

7

7

3

7

4

5

4

3

3

8

4

1

1

9
7

4

3

7

3

3

0

2

5

5

6

6

3

5

2

5

9
9

8

4

1

0

6

0

9

6

88
5

6

1

1

9

8

9

2

3

5 5

9

4

2

1

9

3

9

2

0

6

0

4

0

0

1

2

3

4
7

8

9

0

1

2

3

7

8

9

0

1

2

3

4

7

8

9
7

3

0

3

1

8

7

6

4

0

2

6

8

3

2

8

1

2

0

7

1

0
4

4

5

8

0

6

2

3

1

5

1

8

5

94

0

7

5

8
8

3

8

9

2

6

2

5

3

1

7

3

9
1

9

9

6

0
3

9

2

8

1

4

3

5
2

9

2
5

8

9

5

0

1

2

4

5

6

0

1
2

3

4

5

6

7

1

2

3

4

5

1
0

4

5

6

6

3

4

4

2

8

1

0

6

4

9

7

2

3

3

9

2

0

9
33

9

1
5

2

3

7

7

8

4

0

2

4

0

2

4

7

8

0

7

0

6

9

3

2

8

6

0

5

7

5

1

0

8

1

6

7

2

9

7

9

5

8

6

2

6

2

8

1

7

5

0

1

1

3

8
4

9

1

8

6

8

9

0

1
2

3

4

5

6

7

8

9

0

1

2

3

4

7

8

9

0

1

7

8

9

9

8

9

8

4

1

7

7

3

37

6

6

6

1

9

0 1

7

6

3

2

1

7

1

3

9

1

7

6

8

4

1 4

3

6

9

6

1

4
4

7

2

4

4

0

1

2

3

4

5
6

7

8

9

0
1

2

3

4

5
6

9

0

1

2

3

4

7

8

1

3

5
1

7

7

2

1

4

8

3

4

4

3

9

7

4

1

2

3

5
9

1

6
0

1
0

0

2

8

7

1
1

4

0

4
7

3

6

8

0

3

7

4

0

69

2 6

5

8

6

9

0

4

0 6

1

9

2

0

9

5

1

3

7

6

9

3

0

2

2

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1
2

3

4

5

6

78 9

2

1

7

2

5

0 8

0

2

7

8

8

3

0

6

0

2

7

6

6

1

2

8

8

77

4

7

7

3

7

4

5

4

3
3

8

4

5

4

1

1

9 7

4

3

7

3

3

0

2

5

5

6

3
1

5

2

5

9 9

8

4

1

0

6

0

9

6

8 8
5

6

1
1

9

8

9

2

3

5

59

4

2

1

9

4

9

1

3

9

2

0

6

0

4

0

6

0

1

2

3

4

5

6

7

8

9

0
1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

3

8

0

7

1

0

7

5

5

6 9

0 1

0

0

8

3

4

3

1

5

0

0

9

5

3

4

9

3

7

6

9

2

4

5

7

2

6

4

9

4

9

4

122

5

8

1

3

2

9

4

3

8

22

1

2

8

6

5
1

6 7

2

1

3

9

3

8

7

5

7
0

7

4

88

5

0

6

6

3

7
6 9

9

4

8

4

1

0

6

6

0
1

2

3

4

5

6
7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

7

4

0

4

0

1

7

9

5

1

4

2

89

4

3

7

8

2

4
4

33

6

9 9

5
8

6

7

0

6

8

2

6

3

9

3

2

8
6

1

74

8

8
9

0

3

3

9

0

5

2

9

4

1

0

3

7

5

8

7

7

8

2

9 7

1

26

4

2

5

2

3

66

5

0
0

2

8

1

6

10

4

3

1

6
1

9

0

1

4

56

7

8

9

1

2

3

4

5

6

7

0

1

2 3

4

5

6

7

8

9

8 4

0

0

7

2

4

3

8

6

6

3

2

6

3

3

0

1

4

7

8

0

3

1

9

0

1

9

1

2

7

0
1

3

8

2

9

2

7

6

5

5

9

9

8

2

9

1

3

2

3

4

3

1

9

0

9

3

6

8

7

0

1

0

5

82

7

7

0

1

2

3

4

5
6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

1

7

4

8

1

5

6

5

7

2

86

3

3

8

6

5

4

0

9

1

7

2

9

1

5

1

3

22

3

0

6

4

3

7

6

9

0

4

8

1

4

0

6

12

6

9

22

3

5 5

1

0

7

7
9

6 2

9

4

7

0

2

3

4

00

88

8

5

1

3

7

4

9

8

8

9

0

9

8

9

0

26

5

6
7

4
7

5

4

1

3

5

3

1

2

3

4

5

6

1

2 3

4

6

0

1

2

4

5

6

7

8

1

7

2
4

1

4

1

49

6

8

4

5

3 784

33

5

6

7

06

1

6

8

7

0
1

5

0
8

5

0

1

5

8

4

2

3

9

7
6

9

1

9

0

6

7

1

2

3

9

2

4 5
5

3

7

5
3

1

8

2

2

3

0

2

9

4

9

7

0

2

7

4

9

9

2

5

9

8
3

8

6

7

0

0

1

2

3

4

5

6

7

8

9

0 1

2

3

4

5

6

7

8

9

0 1

2
3

4
5

6

7

8

9

0
0

7

2

6
5

5

3

7

86

6

6

6

4

3
883

0

1

9

0

5

4

1

9

1

2

7

0
1

3

8

2

9

2

7

4

26

55

9

9

1
1

5

7

6

8

2

9

4

3

1

9

0

9

3

6

8

7

0

1

0 5
8

2

7

7

0
1

2

3

4

5

6

7

8

9

0

1

2

3

4

5
8

9

0

1

2

3

4

5
6

7

8

9

2

1

2

1

3

9

9

8
5

3

7

0

7

7

5

7

9
9

4 7

0

3

4

1

5

8

1

4

8

4

1

8

6

6

4

6

0
5

5

3
3
5

7

2

5

9

6
9

2

6

2

1

2

0

83

8

30

8

7
4

9

5

0

9

7

00

4

6

0

9

1

6

2

7

6

8

3
5

2

1

8

3 8

6

1

0

2

1

4

0
1

2
3

4

5

6

7

8

9

0 1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6 7

8

9

7
6

4

7
6

2

3

4

8

7

8

6

9

8

3

2

2

8

4

8

56
5

0

2

0

1

1

2

9
6

8

2

1

0

6

5

2

9
7

5

3

9

3
7

18

3

8

1

9

5

5

0

1
1

9

8

2

6

0

4

5

0

3

1

8

6
7

5

9

9

3

0

3 1

4
4

0

4

9

0
1

2

3

5

6

7

8

0
1

2

3

5

6

7

8

9

0

1

2

3

5

6

7

8

9

9 7

0

9

0

1
5

8

8

0

9

3

2

7

8

4

6
10

4

9

4
2

0

5

0

1
6

9

3

2

9

1
6

0

1

1

8

7

7

6

3

6
0

7

2

4

1

7

0

6

7

1

2

5
8

1

8

2
8

7

6

8

7

1
6

2

9

3

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7
8 9

0

1

2

3

4

5

6
7

8

9

8

9

5

7

0

3

1

6

8

4

1

5

6

4

2

7

8

1

3

4

3

4

7

2

0

50
1

9

2

3

2

3

55

7

8

4

9
9

7

1

1

9

0

7

8

3

4

8

6

3

8

0

9

6

2

1
0

1

0

6

2

3

8

9

0

7

2

3

4

5

5

2

8

5

4
6
66

79

1

8

2

1

5
3

4
7

9

4

0

0
0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0 1

2

3

4

5

6

9

0 1

3
1

5

1

2

4

9

24

6

8

0
1

1

9

2
66

8 7

4

2

9
7

0

2
1

0

36

0

1

2

3

4 5

6

7

8

9

0

1

2

3

4

5

6
7

8

9

0 1

2

3

4
56

7

8

9

8

6

5

9

7

0

2

3

4

3

8

5

1

5
2

3

0

1

2

1

3

2

6

5

3

0

7

2

7
4

6

4

0

5

9

9

8

9

5

3

1

7

4

7

6

5

4

0

0

6

6

2

0

6
3

7

7

4
4

3

9

2

8

9
6

0

9

5

3

8

8
7

1

4

0

4

8

5

2

3

9

0
1

9

1
5

1

7

4

8

6

2

1
6

8

8

0

1

2

3

4

7

8

9

0

1

2

3

4

6

7

8

9

0

12

3

4

7

8

9

1

4

5

3

3

0

9

5

4

3

0

8

4

6

7

0

7

7

1
6

9

1

3

6 2

3

8

2

3

8 9

5

8

8

7

1

7

1

1

0

3

4

2

6

4

7

4

2

7

4

2

9

2 7

9

2

1

0

6

5

3

4

8
5

9

6
9

0 6

3

0

8

1

6

0 0
1

2

3

4

5

6
7

0

1

2

3

4

7

8

9

0 1

2

3

4

7

2

5

1
6

4

3

9
9

0

9

7

1

6

4

3

6

2

0

9

8

6

5 7

00
1

7
4

3

2

4

1

3

7

6

4

7 7
7

9

8

4

3

8

2

8

3

5

8

0

5

4

7

1

3

1

7

9

6

2

0

9

1

7

3

3

9

1
6

4

3

9

8

2

1

8

6

4

1

5

5

6

5

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

6

9

7

0

2

3

4

3

8

5

1

3

0

1

2

13

2

0

7

2

6

4

0
5

9
9

8

9

5

3

1

7
4

7

0

0

6
6

6

3

7

4

2

8

9

8

7

1

4

0

4

8

5

2

3

9

0

1

9

1

5

1

7

6

1

2

1

6

8

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8
0

1

2

3

5

6

7

8

1

0

4

5

6
6

3

4
4

2

8

1

0

6
4 9

7

2

9

2

0

9

3

3

9

1

5

2

3

1

6

7

3

7

8

4

0

2

4

0

2

4

7

80

7

0

6

9

3

2

4

8

6

0

5

7

5

1

0

8

1

6

7

2

9

7

9
5

6

5

2

6

2

8

1

7

5

5

7

3 50

1
1

3
8

4
94

5

1

8

6

89

0

1
2

3

4

5

6

7

8

9

0 1
2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

3
5

3

2

9

3

2

1

4

5

5

2

3

2

1
3

9

7

2

1

2

8

9

1

88

7

8

1

0
0

6

7

7

8

7

5

0

6

1

5

7
4

6
1

2

5

0

7
9

9

0 3

4

4

8

4

1

8

6

5

9

0

00

3

7

1

6

4

6

0

4

5

4

1

3

8

6

3

9

9

5

9

3

7

8

5

6

4 7

6

2

2

0

9
4

0

1

2

3

4

5

6

7

8

9

0 1

2

3

4

5

6

7

8

9

0 1

2

3

4

5

6

7

8

9

6

4

2

6

4

7

5

5

4
7

2

9

3

9

3

8
2

0

9

5

6

0

10
6

5

3

5

3

8

0

0

3

4

1

5

3

0
8

3

0

6

2

7

8

1

7

1

3
8

5

4

2

0

9
7

6

7

4

1

6

2

6

7

1

9

8

0
6

9

4
9

9

6

2

3

7

1

9

2

2
5

3

7

8

0

1

2

3

4

7

8

9

0

1

2

3

4

7

8

9

0

1

7

8

9

8

9

2

6
1

3

5

4

8

2

6

4

3

4

5

9

2

0

3

9

4
9

7

3

8

7

44

9

8
5

8

2

6

6

2

3

1

3

2

7

3

1

9

0

113
5

0

7

8

1

5

1

4

6

0

0

4

9

1
6

6

9

0

7

6

11
0

1
2

3

4 7

2

3

4

5

6

7

0

1

2

7

8

6

3

9

7
19

3

9

6

1

7

2

4

4

5

7
0

0

1

6
6

8

2

7

7

2

4

2

1

6

1

0

6

9

8

3

9

6

3

0

1

2

3

4

5

6

7
8 9

0
1

2

3

4

5
6

7

8

9

0
1

2

3

4

5

6

7
8

9

1

6
8

99

0

1

2

44

3

7

4

4

4

0

3

8

7

5

8

2

1

7

5

3

8

5

2

5

11

6

2

1

3

8

6

4

2

6

2

5

5

0

2

8

0

6

8

1

7

9

1

9

2

6

7

66

8

7

4
9

2

1

3

3

0

5

5

8

0

3

7

9

7

0

2

7

9

1

7

8

0

3

5

3

6

0 1

2

3

4
5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

7

8

9

6

4

2

6

4

7

8

9

2

9

3

9

3

0

0

1

0 4

2

6

3

5

3

0

3

4
1 5

3

0

8

3

0

6

1

7

8

0

9

2
6

7

1

9

6

9
49

9

6

7

1

2

5

3

7

8

0 1

2

4

5

6

7

8

9

0

13

4
5

6

7

8

0

1

3

4

7

8

9 7

5 5

1

9

9

7

1

0

0

5

9
7

1

7

2

2

3

6

8

3

2
0

0

6

1

7

5

8

6

2

9

4

8
8

7

1

0

8

7 7

5

8
5

3

4

6

1

1

5

5

0

7

2

3

6

4

1

2

4

1

5

4

2

0

4

8

6

1

9

0

2
5

6

9

3

6

3

6

0

1

2

3
4

5

6

7

8

9

0

1

2

3
4

5

6

7

8

9

0

1

2

3

5

6

7

8

1

0

9

5

7

5
1

8

6

9

0

4

1

9

3

8

4 4
7

0
1

9

2

8

7

8

2

5

9

6

0

6

5

5

3

3

3

9

8

11

0

6

1

0

0

6

2

11
3

2

77

8

8

7

8

4

60

2

0

7

0

3

6

8

7

1

5

9

9

3

7

2

4
9

4

3

6

2

2

5

3

2 5

5

9

4

1

7

2

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6 7

8 9

0

1

2

3

4

5

6

7

8

9

1

0

1
2

7

5

3

4
4

0

0

6

9
6

6

5

7

2

3

4

4
9

1

4

0

7
9

5

7

2

3

1

4
4

0

9

9

6

1

8

3

3

7

3

9

8

8

4

7

7

6

2

1

9

8

7

8
8

7

2

2

3

9

3

3

5

5

0

7

9

5

6

5

1

4

1

1

2

8

2

6

1

5
0

1

2

3

4

5

6

7

8

9

0 1

2
3

4

5

6

7

8

9

0

1

2

3

4

56

7

8

8
0

6

0

0

2

3

7

9

4

7

1

9

1

7

1

4

00

1

7

5

7

1

3
3

3

1

6

9

7

1

3
0

2

6

0

8

9

4

3

5

4

8

1

5

9

0

6

6

3

8

1

4

7

5

2

0

0
1

7

8

9

6

88

2

3

6

1

2

9

5

2

0

1

2

3

4

56

7

8

9

0 12

3

4
5

6

7

8

9

0 1
2

3

4

5

6

7

8

9

7

4

6

1

4

0

9

9

3

7

8

4

7

5
8

5

3

2

2

0

5 8

6

0

3

8

1

0

3

0

4
7

4

9

2

9

5

7

1

7

1
6

6
5

6

2

8

7

6

4

9
9

5

3

7

4
3

0

4

6

6
1

1

3

2

10
0

12

3

4
7

8

9
0

1

23

4

5

6

7

8

0

1

2

3

4

7

8

9

0

8

3

9

5

5
2

6

8

4 1

7

1

2

3

5

6

9

111

2

1

2

0

7

7

5

8

2

9

8

6

7

3

4

6

8

7

0

4

2

7

7

5

4

3

4

2

8

1

5

1

02

3
3

5

7

0

6

86

3

9

9

8
2

7
7

1

0

1

7

8

9

0
1

2

3

4
5

6

7

8

0

1

2

3

4

7

8

9

7

8

6

4

1

9

3

8

4

4

7

0

1

9

2

8

7

8

2

60

6

5

3

3

3

9

1

4

0

6
10

0

6

2 1

1

7

7

8

4

6

0

7

0

3

6

8

7

1

5

2

4
9

4

3

6

4

1

7

2

6

5

0

1

2

3

4

5

6

7

8

9

0
1

2

3

4

5

6

Figure 3.22: NeRV visualization of MNIST handwritten digits test set with 10,000

samples. Optimization finishes in about two hours.

106

7

2

1

0

4

1

4

9

5

9

0

6

9

0

1

5

9 7

3 4

9

6

6

5

4

0

7

4

0
1

3 1

34

7

2

7

1

2 1

1

7
4

2
35

1

2

4

4

6

3

5

5

6

0

4

1

9

5

7

8

9

3

7

46

4

3

0

7

0

2
9

1

7

3

2

9

7

7

6

2

7

8

4

7
3

6

1

3
6

9
3 1

4

1
7

6

9

6
0

5

4
9

9

2
1

9

4

8

73

9

7

4

4

4

9
25

4

7

6

7

9

0

5

8

56

6

5

7

8

1

0

1

6
4

6

7

3

1

7

1

8

2

0

2

9

9

55 1

5

6

0

3

4

4

6

5

4

6

5

4

5

1

44

7

2

3

2

7

1

8

18

1

8

50

8

9

2

5

0
1

1

1

0

9

0

3

1

6

4

2

3

6

1

1

1

3

9

5

2

94

5

9

3

9

0

3

6

5

5

7

2

2

7

1

2

8

4

1

7

3
3

8

8

7

9

2

2

4

1
5

9

8

7

2

3

0

4

4

2

4

1

9

5

7

7

2

8

2

6

8

5

7

7

9

18

1

8

0

3

0

1

9

9

4

1

8

2 1

2

9

7
5

9

2

6

4

1

5

8

2

9

2

0

4

0

0

2

8
4

7

1

2

4

0

2

7

4

3
3

0

0
3

1

9

6

5

2

5

92

9

3

0
4

2

0

7

1
1

2

1

5

3 3

9
7

8

6

5

6

1

3

8

1
05

1

3

1

5
5

6

1

8

5
1

7

9

4

6

2

2

5

0 6

5

6
3

7

2

0

8
8

5

4

11

4

0

3

3

7

6
1

6

2

1

9

2

8 6

1

9

5

2

5

4

4

2

83

8

2

4

5

0

3

1

7

7

5

7

9

7

1

9

2

1

4

2

9

2

0

4

9

1

4

8

1

8 4

5

9

88

3

7

6

0

0
3 0

2

6

6
4

9

3

3

3

2

3

9

1

2

6

80

5

6

6 6

3

8

8

2

7

5

8

9
6

1

8

4

1

2

5

9

1

9

7

5

4

0

8

9 9

1

0

5

2

3

7

8

9

4

0

6

3

9

5

2

1

3 1

3

6

5

7

4

2

2

6

3
2

6
5

4

8

9

7

1

3
0 3
8

3

1

9

3

4

4

6

4

2

18
2

5

4

8

8

4

0

0

2

3

2

7

7

0

8

7

4

4

7

9

6

9

0
9

8

0

4

6

0

6

3

5

4

8

3

3

9

3

3

3

7

8

0

8

2 1

7

0
6

5

4

3
8

0

9

6

3
8

0 9

9

6

8

6

8

5

7

8

6
0

2

4

0

2

2 3

1

9

7

5 1

0
8

4

6

2

6

7

9

3

2

9

8

2
2

9

2

7

3 5 9

1
8

0

2

0

5
2

1

3

7

6

7

1
2

5

8

0

3

7

2

4

0

9

1

8

6

7

7

4

3

4

9

1

9

5

1

7

3

9

76

9

1

3

7

8

3

3

6

7

2

8

5

8

5

1

1

4

4

3

1

0

7

7

0

7

9

4

4

8

5
5

4
0

82

1

0

8

4

5

0

4

0
6

1

7

3

2

6

7

2

6
9

3

1

4

6

2

5

4

2

0

6

2 1

7

3

4

1

0

5

4

3
1

1

74

9

9

4

8

4

0

2

4

5

1
1

6

4

7

1

9

4

2

4

1

5

5

3

8
3

1

4

5

6

8

9
4

1

5

3

8

0
3

2

5 1

2

83

4

4

0

8

8

3
3

1

7

35

9

63

2

6

1

3

6

0

7

2

1

7

1

4

2

4

2
1

79

6

1

1

2

4

8
1

7

7

4

8

0

7

3

1

3

10

7

7

0

3

5

5

2

7

6
6

9

2

8

3

5

2

2

5

6

0

8

2

9

2

8

8

8

8

7

4

9

3

0

6

6

3

2 1

3

2

2

9

3
0

0

5

7

8

1

4

4

6

0

2

9

1

4

7

4

7

3

9

8

8

4 7

12
1

2

2

3

2

3
2

3

9

1

7

4
0

3

5

5

8

6

3

2

6

7

6

6

3

2

78

11
7

5

6

4

9

5 13
3

4
7

8

9

1
1

6

9

1

4

4

5

4

0

6

2

2

3

1

5

1
2

0
3

8

1

2 6

7

16

2

3

9

0

1

2

2

0

8
9

9
0

2

5

1

9

7

8

1

0

4

1

79

6

4

2

6

8

1

3

7
5

4

4

1

8

1

3

8
1

2

5

8

0

6

2

1

1

7

1
5

3

4

6

9

5

0

9

2

2

4

8

2

1

7

2

4 9

4

4

0

3

9

2
2

3

3
8

3

5

7

3

5 8

1

2

4

4

6

4

9

5

1

0

6

9

5

9

5

9

7

3

8

0

3

7

13

6

78

5

9

7

9

69

63

7

4

4 5

3

5
4

7
8

7 80

7
6

8

8

7

3

3

1

9

5

2

7

3 5
1

1
2

1

4

7

4

7

5

4

5

4

0

8

3 6

9

6

0

2

7

4

4

4

4

6

6

4

7

9

3

4

5

5

8

7

3

7

2

7

0 2
4 11

6

6

9

2

8

7

2

0 1

5

0

9

1

7

0

6

0

8

6

8
1

8

0

3

37

2

3

6

2

16

1

1

3

7

9

0

8

0

5

40

2
8

7
2

9

8

4

0 9

5

8

5

1

2

1
3

1

7 4

5

7

2

0

9

8 8

6

2

5

4

1

9

2

1
5

8

7

0 2

4

4

3

6

8

8

2

4

0

5

0
4

4

7

9

3

4

1
5

9

7

3

5
8

80

5

3

3

6

6

0

1

6

0

3

5

4
4

1

2

9

1

4

6

9

9

3

9

8

4

4

3

1

3

1

8

8

7

94

8

8

7

9

7

1

4

5
6

0
5

22

2

1

5
5

2

4

9

6

2

7

7

2

2

1

1

2

8

3

7

2

4

1

7

1

7

6
7

8
2

7

3
1

7

5

8

26

2

2
5

6

5

0

9

2

4

3

3

9
7

6

6

8

0

4

1

5

8

2

9

1
8

0

6

7

2

1
0

5

5

2

0

2

2

0

2

4
9

8

0

9

9

4

6

5

4

9

1

8

3

4

9

9

1

2

2

8

1

9

6

4

0
94

8

3

8

6

0

2

5
1

9

6

2

9

4

0

9

6

0

6

2 5

4

2

3

8

4

5

5
0

3
8

5 3

5

8
6

5

7

6

33

9

6

1

1

2

9

0

4

3

3

6

9

57

3

7

7

7

8

7

9

8
3

0 7

2

7

9

4

5

4

9

3

2

1

4

0

2
3

7

5

7

8

8

5

0

1 1

4

8

3

9

0

0

0

6

6
2

3

7

8

47

7

9

2

4

14

5
2

4

9

9

1

8

4
0 9

8

4

8

7
7

0

7

8

8

6

0

4

8

8

2

4

7

6
6

6

4

7

1

8
8

2

3

6
3

0

0
3

7

6

9

79

9

5

4

3

3

6 1

2

3

7

3

3

2

0

3

3

8

4

3

6

3

5

0

2

0

9

0

74

6

9

3
5 1

9

6

1

4

5

4

5
0

5

9

5

2

12

9

1

99

4

0

8

4

5

2

9

2

1
2

1
7

3

6

8

8

4
9

1

9

8

5

7

5

1

1

8

6

5
2

4

4

3

2

3

5

6 8

8

6

23
1

0

5 8

9
2

9
6

7

0

4

8

7

1

7

4

1

0

9
7

2

0
0

9

1
7

8

7

8

4

7

2

0

4

6

0

3

1

1

3

3

96

7

4

1

5

3

0

8

7

3

9

6

9

3 5

0
2

7

4
5

17

5

8

0

8

8 1

5

0

3
0

3

1

4

0

3

7

2

7

18

0
7

0

4

3

1

9

8

7

7

1

4

9

9

3

2

1

7

9

0
2

0

3

3

7

6

9

2

3

3

7

7

0

0

75

2

9

8

7

4

4

2

6

6

1

9

6

8

2

9

0
8

3

1

1

6

3

5

1
1 1

3

1

2

3

0

2

0

1

3
5

5
7

4

8 9

6

9

6

8

36

6
8

5
1

4

2

4

4
5

1
1

9

0

2

4

9

5

7

1

8
8 5

6 9

8

7

1
16

7

63
2

2

0

8

9

2

5

1

0

8

1

9

5

7

9

6

9

0

6 1

5

5

8

3

8

2

6

5

0

7

46

1

3

4

7

3

2

3 4

2

52

7

1

7

2

6

4

1
5

7
8

6

0

1

8

2

5

7

7

6

93

5

8

4

2

4

0 8

8

3

4 9

2

7

5

8
6

5

6

0 8 6

7

3

6

4

9
4

6

6
3

2

4

1

0

1

4

6

2

9

1

1

0

6

3

9
5

6

5

6

5

8

4

6

4

3

9

1

3
4

1

9

1

7

11

9

3

5
4

0

7

3
6

1

75

5

3

3

0
1

5

7

5

8

6

5

1
0

4

2

3

4

6

7

9

8

1

8

49

2

8

6

2

70

0

6

7

5

8
6

0

9

3

7

1

3
5

4

3

35

5

6

3

0 23

4

2

3

0

9

9

4

7

2
8

4

7

0

6

2

8

5

2

8

5

7

3

0

8

2

3

2

8

2
5

5

7

6

4
6

8

4

8

2

7

4

5

20

3

9

4

6

7

2

5

6

1

1
2

3

6

7

8

7

6

4

8

9
4

8

6

3

8

3

1

0
6

2

2

5

6

9

5

8

1

4

1

7

8

4

6

1

8

4

3 12

8

0

8

5

9

1

4

2

0

2

7

0

9

0
25

76

7
9

4

2

62

4

4

8

0

4

4

5

8

0

6

8

9

8
56

9

0

4

8

7

1

3

4

5
8

0

9

1

3

3

6

9

8

7

1

0

5

7

1

7

5

2

7

9

1

8

5

2

4

9

4

7

2

2 3

4

9

1

9

2

1

7

9

4
4

1

6

7

2

7

8

8

1

9

7

1
1

7

5
3

3
5

1
3

7

6

13

8

7

5 99

0
0

2

8

8

2

3

7

1
3

0

3

4
4

3 8

9

2

3

9

7

11

7

0

4

9

6 5

9

1

7

0 2

0

0

4

6

7

0

7

1

4

6

4

5

4
9

9

1

7

9

5

3

3
8

2

3

6

2

2

1

1

1

1

1

6

9

8

4

3

7

1

6

4
5

0

4

7

4

2

4

0

7

0

1

9

8

8

6

0

0

4

9

6

8

2

2

3

8

4

8

2

2
1

7

5

4 4

0
4

3

9

7

3

1

0

1

2

5
9

2
1

0

18

9

1

6

8

3

8 9

3

6
2

8

3

2
2

1

0

4

2

9

2

4

3

7

9

1

5

2

4

9

0

3

8
5

3

6

0

9

4

6
2

5

0

2

7

4

6
6 8
66

8

6
9

1

7

2

5

9

9

0

7

2

7

6

7
0

6

5

2

4

7

2

0

9

9

2

2

9

4

4

2

3

3

2

1

7

0 7
6

4

1
3

8

7

4

5

9

2

5

1
8

7

3

7

15
5

0

9

1

40

6

3

3

6

0

4

9

7
5

1

6

8

9

5

5

79

3

8 3

8

1

5
3

5

0

5

5
3

8

6

7

7

7

3

7

0

5

9

0

2
5

5
3

1

7

7

8

6

5

9

3

8

9

5

3

7

9

1

7

0

0

3

7

2

5

8

1

8

6

2

9

5

7

5

7

8

6
2

5

1

4

8

4

5
8

3

0

6

2

7

3

3

2 1

0

7
3

4

0

3 9

3

2

8

9

0

3 8

0

7

6
5

4
7

3

9
0 8

6

2

5

6

1

0

0 44

0

1

2

3

2

7

7

8

5

2

5

76

9

1

4

1

6

4

2

4

3

5

4

3
9

5

0

1

5

3

8

9

1

9

7
9

5

5

2

7

4
6

0

1

1

1
0

44

7
6

3

0

0

4

3

0
6

1

9

6

1
3

8

1
2

5

6

2

7

3 6
0

1

9

7
6

6

8 9

2

9

5

8

3

1

0

0

7

6

6

2

1

6
9

3
1

8

6

9
0

6

0

0

0

6
3

5

9

3

4

5

5

8 5 3

0

4

0

2

9

6

8

2

3

1

2

1

1

5

6

9

8

0

6
6

5

5

3

8

6

2

1

4
5

4

3

7

8

5

0

9

3

5

1

1

0

4 47

0

1

70

1

6

1

4
5

6

6

5

7

8

4

4
7

2

5

3

7
0

7

7

9

6

4

2

8

5

7

8

3

9

5

8

9 9

86

2

8

9

2

3
6

1

1

8

9

3

4

0

7

9

6

4

1

4

1
3

4

9

3

1

4
7

7

4

7

2

9

3

0

8

8

8

4

0

4

41

5

2

8

3

4

9

5

2 8

1

5

3

7

9

4

2

5
6

3

5

9

3

5

93

1

9

5

3

0

6

9

8

4

0
4

9

2

9

0

1
0

3

1

6

5

8 15

3

3

0

3

5

5

92 8

7

0

4

9

1

9

7

7

5

5

2

0

9

18

6

2

3

96

2

1

9

1
3

5

5

0

3

8

3

3

7

6 6

0

1

4
0

6

9

8 1

2

9

9

5

9

7

3

7

8

0

1
3

0

4

6

1

0

2

5

8

4

4

1
1

5

4

6

6

0

6

9

2
6

2

7

1

7

9

4
0

0

3
8

22

3

1

6

0
5

7

7

9

2

6 7

9

7

86
8

8

4
6

8

4

1

2
8

1

3

9

4

0
3

7

3

2

3

3

7

3

40

6
2

0

8

1

5

3
5

4

1

7

1

5
7

5

7

3

2

2

7

3

7

3

7

8

5

4

5

2

56

5

3

6

7

4

1

7

1

5

2

3

6 3

1

4

2 6 7

4

3

8

0

6

2

1

6

5

3

9

1

9

3

2

1

8

4

4

6

5

8
6

9

7

7

8

6

9

7
3

94

0

5

4

6

4

1

2

3

0

0

2

6

6

5

7

0 8
6

4
7
9

0

7

3

4

2

1

8

8

5

9

2

7

1

8

8

8

2

7

6

0
1

2

7

1

0

83

6

05

3

6

2
8

7

0

1

4

2 11

4

4

4

4

7

1

6

2

9

9

0

0

1

8

8

4

3

4

2

0

6

16 12

2

2

1

2

3
7

8

1

0

0

2
1

6
6

0

1

6 2

5

1

7

4

8

2

1

4

3

8

3

9

9

4 8

3

4

7

2

7

5

7

0

43

3

2

6

7

6

0
0

6

7

7

0

55

8

1

0

7

0

2

8

1

5

0

8

80

3
2

7

7

2
6

4
7

5

5

5

2

9

2
8

4

6

8

6

5

0

0
8

7

6

1

7

1

1

2

7

4

0

0

7

7

6

3

8

6

4

2

0

9

4

0

5

7

8

2

7

4

7

1

1

3

6

6
2

9

1

9

4

8

3
6

9

5

9

6

2

4

6

7

7

0

66

9

4

8
3

5

3

4

9

0

0
5 2

50
7

1 1
1

6

7

6

7

9

6 6

4 1

4

3

1
12

2
4

1

0

8

7

6

3

4

0

0

6

3
3

0

7

1

7

11

3

1

0

9

9 7
5

4

1

4

8
9

5

3

5

1

9

8
2 3 3

9

9

0

1

0

2

9

3

9

3
3

6

2

4

9

8

3

7

4

0

4

7

8

4

9

8

9
9

7

5

9

2

8

2

2
0

2

2

3 8

4

6

8

6

8

2

4

6

7

9

3

3

9
4

3
1

4

4

7

0

5

9

6

0

4

4

4

4

6

1

2

3

3

6

4

5

9

6
8

5

6

5

8

6

4

1

8

6

5

2

8

4

5

5
4

7

7

0
7

8

2

2

3

7

0 1

80

7

1

9

8

7

5

5

9

1

7

5

4

9
1

2

2

1

6

6

7

1

1

4

0

7

4

2

4

0

6

4

7

6

9

5

3

4

6
5

0

1

8

8

2

8

3

5

7

8

0

8

5 7

1

1

0

1

3

7

8

5

0

7

1
1

0
1

1

4

5
2

7

6

2

3

0

2

8

5

9

6

9

7

2

1

3

6

4

1

8

2

40

5

1

0

2

2

6

4

4

3

9

6
1

6

5

7

9

2

0

2

6 0 1

4

3

5

2

8

8

0

8

8

9

0

9

6 7

6

3 9

3

4

7

7

7

4

9

0

6 4

8

4

2

7

2

8

1

0

0

7

8

3

3

3

1

3

7

6

1

3

1

6

6

5

7

4

7

5

9 5

8

4

9

9
1

6

5
0

1

3

7

0

3

4

8
2

2

0

2

5

1

5

14 8

8

9

1
2

1

3

5

1

0

9

4

48

3

2

5

9

7

6

6

2

0

0

0
5

8

7 1

5

2

3

8

5
1

82

0 49

9

6

2

3

3
5

6

4

8

0
9

2

83

6

7

5

7

2

9

4

9

1
2 8

6

0

7

0

9

1
1

6

7

5

9

9

1

9

5

9

2

5

0

4

1

0

8

9

0

8

9

8
9

4

2

5

7

9

8

9

8

0

9

9

6
8

9

9

5

9

8

5

1

0

3

3

5

2
1

6

5

0

2

81

5

6

2

3

0

2

2

6

4

3

5 5

1

7

2

1

6

9

1

9

9

5

5

1
6

2

2

8

6

7

1

4

60

4

0

3
3

2

2

3

6

8

9

8

5

3

8

5

4

5

2

0

5

6

3

2

8
3

9

9
5

7

9

4

6

7

1

3

7

3

6

6

0

9
0

1

9

9

2

8

8
0

1

6

9

7

5

3

4

7

4

9

9

4

3

6

3
1
1

7
6

9

1

8

4

1

1

9

9
4

3

6

8

1
6

0

4

1
3

7

7

4

9

5

1

0

0
11

6
2

1

9
8

4

0

3

6

4

9
0

7

1

6

5

7

5

2

5

18

5

4

7

0

6

7
0

2
5
8 1

0

4

5

7

1
8

5

1

9

0

0

6

0 7

3

1

8

3

9

7

0

0

8

9

5

9

8

3

2
7

2

9

7

2
1

1

3

7

5

3
1

9

8

2
2

2

8
8

5

7

3

8

9

8

86

8

2

3

9

7

5

6

2

9

2

88

1

6

8
8

7

9

18
0

1

7

2

0

7

5

1

9

0

2

0

9

8

6

2

3

9
3

80

2 1
1

1
1

4

2

9

7

2

5

1

1

2

1

9
9

9

1

0

2

0

2

1
1

4

6
4

15

4

9

7

7

1
5

6

2

2

2

8

0

6

9

6

1

9
7

7

1

4

8

5

3

4

3

4

97
5

0
7

4

8

8

1

5

3

9

5

9

7

6

9

0

3

6

3

98

2

2

1

2
8

6

8

5

5

3

9

4

9
2

5

1

5

1

4

4

1

4
4

3

5

9

1

2

2

3
3

0

2

9

0

0

9

9

6

0

9

3

2

8

4

1

9

9

7

2 7

9

9

5

9

5
1

1

8

3

5
1

9

53

5

4

9

5

9

3

1

9

0

9

7

5

4

9

2

0

1

0

5

1

4

9

3

3

6

1

5

2
5

2

2

0

9

2

6

6

0

1

2

0

3

0

2

5

5

7

95

5

0

8

9

50

3

2

5

9

0

8

84

5

8

8

4

5

4

85

4

9

22

1

2

6

8

8

7

0

3

6

6

4

3

8
8

7

2

2

0

0

93

9

9

1

9
8

6

6

4

2

6

9

2

8
5

4

5
7

9

9

9
2

1

8

3 4

0

7

8
3

9

3 4

6

5

6

2

3

9

2

6

0
0 6

1

28

7

98

2

0

4

7

7

5

0

5

6
4

6

7
4

3

0

7

5
0

7

4

2

0
8

9

9

4

2

4

6

7

8

7

6

9

4

1

3 7

30

8

8

76
9

3

9

22

9

2
1

8

3

2

9

6 8

4

0

1
2

8

4

5

2

7

8

1

1

3

0

3
5

7

0

3

1

9

3

6

3

1

7

7

30 8

4

8

2

6

5

2

9

7
3

9

0

9

9

6

4

2

9

7

2

1

1

6

7

4

75

9

6

8

2

1

4

4

5

7

6

1

3

25

9

9

3

6

1

1

4

6

9

7

2
1

5

1

4

6

3

8

1

1

0

3 16

8

4

9

0

7

3

0

2

90

6
6

6

3

6

7

7

2

8

6

0

8

3
0

2

9

8
3

2

5

3

8

8

0

0

1

9

5

1

3

9

6

0

1

4

1

7

1

2

3

7

9

74

9

9

3

9

2

8

2

7

1

8

0

9

1

0

1

7

7
9

6

9

99

2

1

6

1

3

5

7

1

9

7

6

4

5

7

6

6

9

9

63

6

2

9

8

1

2
2

5

5

2

3

7

2
1

0

1

0

4

5

2

8

2

8

3
5

1

7

8

11

2

9

7

8

4

0

3

0

7

8

8

4

7

7

8

5

8
4

9

8

1

3

8

0

3
1

7

9

5

5

1

6

5

7

4

9

3

5

4
7

1

2

0

8

1

6

0

7

3
4

7

3
9

6

0
8

6

4

8

7

7

9

3

8

6

9

7

2

3

4

0

2
1

8

3

5

5

7

2

4
6

7

2
8

3
0

8

7

8

9

0

8

4

4

5

8

5
6

6

3

0
9

3

7
6

8

9

3

4

9

5

8

9

1

2

8

8

6

8

1

3

7

9

0

11

4

7

0

8

1

7

4

5

7

1
2

1

1

39

6

2

1

2

8
0

7

6

6

9

3

7

0

5

2

8

0

5

4

3

8

4

6 6

2

7

9

5
1

3

2

4

3

6 1

9

4

4

7

6

5

4

1

9

9

2 78

0

1

3

6
1

3

4

1

1

1

5

6

0

7
0

7

2
3

2

5

2

2

9

4

9

8

12
16

1

2

7

8

0

0

0

8

2
2

9

2
2

7

9

9

2

7

5

1

3

4
9

4

1

8

5

6

2

8

3

1
2

8 4

9
9

3

7

0

7

7

2

3

2

4

0

3

9

9

8

4

1

0

60

9

6 8

6

1

1

9

8

9

2

3

55

9

4

2 1

9

4

3

9

6

0

4

0

6

0

1

2

3

4

7

8

9

0

1
2

3

4 7

8

9

0

1

2

3

4

56

7

8

9

8

3

4

7

8

6

3

40

9 7

1

9

3

8

4
7

3

0

9

1

4

5

4

6

2

0
6

2

1

1

1

1

7

2

4

7

5
2

9
4

5

8

4

2

9

7

0

0

7

5

1
1

7

66

6

8

2
2

7

7

4

0
2

4

2
1

8

9

6

1

0

5

9

6

9

8
0

3

0 8

3

9

6

3

0

1

2
3

4

5

6

7

0

1
2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

5

4

8

7

4

7

7

3

9

8

8

3

1

5 8

2

7

4

2

1
5

4

55 8

6

4

4 4

1
8
7

5 5

1

8

9

1
3

6
3

3

2

2

6

9

96

5

5

3
3

8

1

6

5

6

8

1

9

7
6

8

3

7

4

7

0

9

0

0

3
7

9

3

0

2

0

1

0

1

0

4

0 1

0

4

7 9

6

2

6

22

9

9
0

1

2

3

4

5
6

7

8

9

0

12

3

4

5

6

7

8

9

0

12

3

4

5

6

7

8

9

8
0

5

6

6

0

8

0

2 3

7

9

4

7

1

9

1

7

1

4

0

0 4

1

7

5

7

1

3

3 3 1
6

9 7

4

3

0

2

5

2

6
0

8

9

4

3

5 4

8 1

5

9

0

6

4

3

63
3

8

1

4

7

5

7

2
2

0

0

1

7

7

9

5

9

8

9

6

8

8

2

3
6

1

2

9

8

9

5

2

6

2

4

8

4

6

5

0

1
56

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

7

4

2

0

9
0

1
5 8

8

0

2

7

8

4

4
6

1

0

4

5
3

9

4

2

0

5

0

1

3

2

9

1

60

1

1

8

0

4

7

7

6

3

6

0

7

3

5

4

2

4

1

8

3

5

6

7

0

6

7

1
2

5

8
1

9

3

8

2

8

76

7

1

4

6

2

9

3

0

1

2
3

4

5 6

7

0

1

2

3

4

5 0

1

2

8

9

1

4

0

9

5

0
8

0

7

7

1

1

2

9

3

6

7

2

3

8

1

2

9

8

8

7

1

7

11

0

3

4

2

6

4

7

4

2

7

4

9

1

06
8

5

5

5

3
5

9

7

4

8

5

9

6

9

3
0

3

8

9

1

8

16

0

0

1

2

3

4

5

6
7

8

90

1

2

3

4

5

6

7

8

9

0

1

2
3

4

5

6

7

8

9

3

5

3
2

9

3

2

14

552

3

2

1

3

9

7

2

1

2

8
9

1

8 8

7

8

10
0

7
7

8

7

5

0 6

1

5

7

4
6

1

2

50

7

9

9

0

3
8

4

4
8

1

8
6

5

9

0 0

0

3

7

1

6

4

2

6

6
0

4

5

4

1

3

8

6
3

9

9

5

9

3

7

85

6 4

7

6

2

2

0

9

4
0

1

2

3

4

5

6

7

8

9

0

1

2

3

5

60

1

2

3

4

5
6

8

7

1

3

2 8

0

7

5

9

9

60

9
4

1

3

2

1

2

3

8

3

2

6

5
6

8

2

7

4

8

1

8

0

5

3

9

4

1

9

2

1

9

6

7

9

0

4

6

1

7

38

7

2

9

6 5

8

3

9

0

5

7

1

6

1

0

9

3

3

4

4

0

6

2

5

4

2

3

4

6

0

0

2

0

1

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

0
1

2

3

4

5

6

7

8

9

8

7

1

3

7

5
2

8

0

7

5

9
9

0

9

11

5

88

6

3

2

18

3

2

6

5
6

7

4

1

0

5
3

1

9

2

1

9

6
0

4

6
1

7

3
8

7

2

9

6

5

8

3
5

7

1

6

1
0

9

6 2

5

4

2

3

4

4

6

0

0

2

0

1
2

3

4

5

6

7

8

9

0

1

2
3

4

5
6

7

8

9

0

1
2

3
4

5
6

7

8

9

8

6
5

0

6

8

9

4

1

9

5

3

0

4

8

9

1

4

0
5

5

2

1

5

4

0

7

6

0

1

7

0

6

8

9

5

1

7

9

8
6

0

8

1

7

7

1

3

2

3

1

4

2

0

0

7

8

4

6

4

9

3

8

4

7

2
5

6

3

6

9

6

3
2

2

4

6

9

0

2

5

5
1

3

3

9

7

8

7

2
2

5
7

9

8
2

1

3

13
0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8
9

1

2

6

5
3

0

7

0

4

1

4

3

6

7

2

3

1

2

1

2

9

6
0

1

30

2

7

5

7

6

2

9

1

9

0

6

0 6

0

2

0

6

1

5

8

4

3

0

15

4

4

8

5

7

5

7

8

3

4

8

8

5

2

9

7

1

3

8

1

0

7

5

9

6

9

4

7

7

9
9

3

4

4

3

8

6

2
0

1
2

3

4

5

6

7

8

9

0

1

23

4

5

6

7

8

9

0

12

3

4

5

6

7

8

9

0

8

3

9

5
5

2

6

8

4 9

1

7

1

2 3

5

9

6

9

1 1
12

9

5

6

8

12

0

7
7

5

8

2

9

8

9

0

4

6

7

1

3

4

5

6

0

3

6

8

7

0
4

2

7
4

7

5

4

3

4

2 8

15
1

2

0

2
5

6

4

3

0

0

0
3

3

5

7

0

6

4

8
8

6

3

4

6

9

9

8
2

7

7

1

0

1

2

3

4

5

6

7

8

9

0

12
3

4

5

6

7

8

0

1

2

3

4

5

6

7

82 1

7

2

5

0

8

0

2

7

8

8

3

6

0

2

7

6

6

1

2

8
8

7

7

4

7

7

3

7

4

5

4

3

3

8

4

1

1

9

7

4

3

7

3

30

2

5

5

6

6

3

52 5
9

9
8

4

1

0

6

0

9

6

8

85

6

1

1

9

8

9

2

3

5

5

9

4

2

1

9

3

9

20

6

0

4

0
0

1
2

3

4

7

8

9

0

1
2

3

7

8

9

0

12 3

4

7

8

9

7

30
3

18

7

6

40

2

6

8

3

2

8

1

2
0

7

1
0

4

4

5

80

6

2

3
1

5 1
8

5

9

4

0

7

5

8

8

3

8

9

2
62

5

3
1

7

3

9

1

9

9

6
0

3

9

2 8

1

4

3

5

2

9

2
5

8

9

5

0

1

2

4

5

6

0

1

2

3

4

56

7

1

2

3

4

5

1

0

4

5

6

6

3

4
4

2

8

1

0

6

4

9

7

2 3

3

9

2

0

9

3
3

9

1

5

2 3 7
78

4
0

2

4

0

2

4

7

8
0

7

0

6 9

3

2
8

6

0

5

7

5
1

0

8

1

6

7

2

9

7

9

5
8

6

2

6

2

8

1

7

5

0

1
1

3

8

4
9

1

86

8

9

0

1
2

3 4

5
6

7

8

9

0

1

23

4
7

8

9

0
1

7

8

9

9

8

9

8

4

1

7
7

3

3

7

66

6
1

9

0

1

7

6

3

2

1

7

1
3

9

1

7

6

8

4

1

4

3

6

9

6
1

4

4

7

2

4

4
0

12
3

4

56

7

8

9

0

1

2 3

4

5

6

9

0

1

2

3

4

7

8

1

3

5 1

7

72

1

4

8

3

4

4

3

9

7

4

1

2

3

59

1

6

0

1
0

0
2

8

7

1
1

4

0

4

7

3
6

80

3

7

4

0

6

9

2
6

5

86

9

0

4

0

6

1

9 2

0

95

1
3

7

6

9

3

0

2

2

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

23

4

5

6

7

8
9

2
1

7

2

5

0

8

0

2

7

88

3

0 6

0

2

7

6

6

1

2

8

8

77

4

7

7

3

7

4

5

4

33

8

4

5

4

1

1

9

7

4

3

7

33

0

2

5

5

6

31
5

2

5

9 9

8

4

1

0
6

0

9

6 8

8

5

6

1
1

9

8
9

2

3

5

5

9

4

2

1

94

9

1
3

9

2

0 6
0

4

0

6

0

1

2
3

4

5

6

7

8

9

0
12

3

4

5

6

7

8

90

1

2

3

4

5

6

7

8

9

3

8

0

7

1
0

7

5
5

6

9

0
10

0

8

3

4

3

1
5

0

0
9

5

3

4

9

3

7

6

9

2

4

5

7

2

6

4

9

4

9

4

12

2

5

8

1

3
2

9

4

3
8

2

2 1
2

8
6

5

1

6

7

2

1

3

9

3

8

7

5

7

0

7

48

8

5

0

6

6

3

7

6

9

9
4

8

4

1
06
6

0

1

2

3
4

5

6

7

8

9

0 1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

7

4

0

4

0

1

7 9

5 1

4

2

8 9

4

3

7

8

2

4

4

3
36

9
9

5
8

6

7

0

6 82
6

3

9

3

2

86

1

7

4

8

8

9

0

3

3

9

0 5

2

9
4

1
0 3

7

5

8

7

7

8

2

9

7

12

6

4

2 5

2

36
6

5

0 0
2

8

1
6

1

0

4

3

1

6

1

9

0

1

4
5

6

7

8

9

1
2

3 45

6

7

0

1
2

3

4 5

6

7

8

9

8 4

0

0

7
2 4

3

8

6

63

2

63

3

0

1

4

7

8
0

3
1

9

0

1

9

1

2 7

0
1

3

8

2

9

2

7

6

55

9

9

8

2

9

13

2

3

43

1

9

0

9

3
6

8

7

0 10

5

8
2

7

7

0
1

2
3

4

5

6

7

8

9

0 1

2
3

4

56

7

8

9

0

1

2 3

4

5

6

7

8

9

1

7

4

8
1

5

6

5

7

2

8
6

3

3

8

6

5

4

0

9

1

7

2

9

1
5

1

3
2

2

3

0

6

4
3

7

6

9

0

4
8

1

4

0

6
1

2

6

9

2

2

3

5
5 1

0

7

7

9

6

2

9

4

7

0

2

3

4

00

8

8

8

5

1

3

74
9

8

8

9

0

9

8

9

0

2

6

5

6

7

4

7

5

4

1

3

5

3

1

2

3

4
56

1

2

3

46

0

1
2

4 5
6

7

8

1

7

2

4

1

4

1

4

9

6 8

4

5 3

78

4
3

3
5

6

7

0

6

1

6

8

7

0

15

0
8

5

0

1

5

8

4

2 3
9

7

6

9

1

9

0
6

7

1

2

3

9

2

45

5
3

7

5
3

18
2

2

3

0 2

9

4

9

7
0

2
7

4

9

9

2
5

9

8

3
8

6

7

0

0
1

2

3

4

5

6

7

8

9

0 1

2

3

4

5

6

7

8

9

0 1

2

3

4
5

6

7

8

9

0

0

7

2

6
5 5

3

7

8
6

6

6

6

4

3

8

8

3

0

1

9

0

5

4

1

9

1

2

7

0
1

3

8

2

9

2

7

4

2

6

5 5

9

9

1

1
5

7

6

8

2

9

4

3 1

9

0

9

3
6 8

7

0
1

0

5

8

2

7

7
0 1

2

3

4

5

6

7

8

9

0

1

2 3

4

5
8

9

0

12

3

4

5

6

7

8

9

2

1

2

1

3

9

9

8

5
3

7

0

7

7

5

7

9

94 7

0

3

4

1

5

8

1

4

8

4

1

8

6

6

4

6

0
5

5

3
3

5

7

2

5 9

6

9

2

6

2
1

2

0 838

3

0
8

7

4

9

5

0

9
7

0
0

46

0

9

1

6

2

7
6

8

3
5

2
1

8

3
8

6

1

0

2 1

4

0

1
2

3

4

5

6

7

8

9
0

1

2

3

4

5

6

7

8

90

1

2

3

4

5

6

7

8

9

7

6

4

7

6

2

3

4

8

7

8

6

9

83

2

2

8

4

8

5

6 5

0

2

0

1

1

2

9

6

8
2

1

0
6

52

9

7

5

3

9

3

7

1

8

3

8

1

9

5
5

0

1
1

9
8

2

6

0

4

5

0

3

1

8

6

7

5

9

9

3

0

3

1

4

4

0

4

9

0

1

2

3

5

6

7

8
0

1

2

3

5
6

7

8

9

0

1

2

3

5

6

7

8

9

9
7

0

9

0

1

5

8

8

0
9

3

2

7

8

4

6

1
0

4

9

4
2

0

5

0

1

6

9

3

2

9

1

6

0

1

1

8

7

7

6
3 6

0

7

2

4

1

7

0 6

7

1

2

5
8

1

8

2

8

7

6

8

7

1

6

2

9

3

0

12

3

4

5

6

7

8

9

0

1

2

3

4

5
6

7

8

9

0

1

2

3

4

5

6

7

8

9

8

9

5

7

0

3

1

68

4

1

56

4

2

7

8

1

3

4

3

4

7

2

0 5

0

1

9

2

3

2

3

5
5

7

8

4

9

9

7

1

1

9

0

7
8

3

4
8

6

3

8

0

9

6

2

1

0

1

0 62

3

8

9

0

7

2

3

4

5

5

2

8

5

46

66

7

9

1

82

1

5

3

4

7

9

4

0

0

0

1

2
3

4

5

6

7
8

9
0

1

2
3

4

5

6

7

8

9

0

1

2

3

4 5

6

9

0 1

3

1

5
1

2

4

9

2

4
6

8

0

1
1

9

2

6

6

8

7

4

2

9
7

0

2

1

0
3

6

0

1

2

3

4

56

7

8

9

0

1

2
3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

8

6
5

9

7
0

2
3

43

8

5

1

52

3

0

1

2

1

3

2

6

5

3

0

7

2

7
4

6
4

0 5

9

9

8

9

5

3

1

7

4

7

6
5

4

0

0

6

6

2

06

3

7

7

4

4

3

9

2

8

9

6

0

9

5
3

8

8 7

1

4

0

4

8

52

3

9

0

1

9

1

5

1

7

4

8

6

2

16
8

8

0

1

2

3

4

7

8

9

0

1

2

3

4

6

7

8

9

0

1

2

3

4 7

8

9

1

4

53

3

0

9

5

4

3
0 8

4

6

7

0

7

7

16

9

1

3

6

2

3 8

2

3
8 9

5

8
8

7

1

7

1

1

0

3

4

2

6
4

7

42 7

4

2

9

2

7

9

2

1

0

6

5

3

48
5

9

6

9

0

6

3

0

8

1

6

0

0
1

2

3

4

5

6

7

0

1

2

3

4

7

8

9

0

1

2

3

4

7

2

5

1
6

4

3

9
9

0

9

7

1

6

4

3
6

20

9

8

6

5

7

0
0

1

7

4

3

2

4

13

7

6

4

7

7

7
9

8

4

3

8

2
8

3
5 8

0 5

4

7

1

3

1

7

9

6
2
0

9

1

7

3

3

9

1

6

4

3

9

8

2

1

86

4

1

5
5

6

50

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1
2

3

4

5

6

7

8

9

6

9

7

0

2

3

4

3
8

5

13

0

1

2

13

2

0

7

2

6

4

0 5

9
9

8

9

5
3

1

7

4

7

0

0

6

6
6

3

7
4

2

8

9

8

7

1

4

0

4

8

5

2
3

9

0

1

9

1

5

1

7

6

1

2

1

68

0

123

4

5

6

7

8

9

0

12

3

45

6

7

8
0

1

2

3

5

6

7

8

1

0

4

5

6

6

3

4

4

2

8

1

0

6 4
9

7

2

9

2

0

9

3

3

9

1

5
2

3
1

6

7

3

7

8

4

0

2

4

0

2

4

7

8
0

7

0
6

9

3

2

4

8
6

0

5

7

5 1
0

8

1

6

7

2

9

7

9

5 6
5

2

6

2
8

1

7

5

5

7

3

5

0

1
1

3
8

4
9

4

5
1

8

6 8

9

0

1

2

3

4

5

6

7

8

9

0 1
2

3

4

5

6

7

8

9

0

12

3

4

5

6

7

8

9

3

5

3

2

9

3
2

1

4

5
5

2

3

2 1

3

9

7

2 1
2

8

9

1

8
8

7

8

1

0
0

6

7

7

8

7

5

0

6

1

5

74

6

1
2

5

0

7

9

9

0

3

4

4

8

4

1

8

6

5

9

0
0 0

3

7

1

6

4

60

4

5

4

1

3

8

6 3

9

9

5

9

3

7

8

5

6

4

7

6

2

2

0

9

4

0

1

2 3

4

5
6

7

8

9

0
1

2

3

4

5

6

7

8

9

0 12

3

4

5

6

7

8

9

6

4

2

6

4

7

55

4

7

2

9

3

9

3 8

2

0

9

5

6
0

1

0 6
5

3

5

3

8

0

0

3

4

1
5

3

0

8

3

0

6

2

7

8

1

7

1
3

8

5

4

2
0

9
7

6

7

4

1
6

2

6

7

1

9

8
0

6

9

4

9

9

6

2

3

7

1

9

2

2

5

3

7

8

0

1

2

3

4

7

8

9

0
1

2

3

4

7

8

9

0

1

7

8

9

8

9

2

6

1
3

5

4

8

2

6

4

3

4

5

9

2

0

3

94

9

7

3

8

7

4
4

9

8 58

2

6

6

2 3 1

3
2

7

3

1

9

0

1
1

3
5

0

7

8 1

5

1

4

600

4

9

1

6 6

9

0

7

6

11
0

12

3

4

72

3

4

5
6

7

0

1

27

8

6

3

9

7
1

9

3

9

6

1

7

2

4

4

57

0

0

166

8

2

77

2

4

2

1
6

1

0

6

9

8

3

9

6

3

0

1

2

3

4

56

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

1

6

8

9

9

0

1

2

4
4

3

7

4

4

4

0

3

8

7

5

8

2

1

7

5

3

8

5

2

5

1
1

62

13

8

6

4

2

6

2
5

5

0

2

8

0

6

8

1

7

9

1

9

2

6

7

6 6

8

7

4

9

2 1

3

3

0

5
5

8

0

3

7

9

7

0

2

7

9

1

7

8

0

3

5

3

6

0

12

3 4

5

6

7

8

9

0
1

23

4

5
6

7

8

9

0

1

2

3

4

7

8

9

6

4

2

6

4

7

8

9

2 9

3

9

3

0

0
1

0

4

2
6

3

5

3

0

3

4

1

5

3

0
8

3

0

6
1

7

8

0

9

2

6

7

1

9

6

9

4

9
9

6

7

1

2

5

3

7

8

0 1

2

4
5

6

7

8

9

0
13

4

5

6

7

8
0

1

3

4

7

8

9

7

5

5
1

9

9

7

1

0

0

5

9

7

1

7

2
2

3

6

8

3

2

0

0

6

1

7

58

6

2

94

8
8

7

1

0

8

7

7

5

8
5

3

4

6

1
1

5

5

0

7

2

3

6

4

12

4

1

5

4

2

0

4

8
6

1

9

0

2

5

6

9

3

6

3

60

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9
0

1

2

3

5

6

7

8

1

0

9

5

7

5
1

8

6

9

0 4

1

9

3

8

4
4

7

0 1

9

2

8

7

8

2

5

9

6

0

6

5

5

3

3

3

9

8

11

0
6

1

0

0

6
2

1
1

3

2

7 7

8

8

7

8

4

6

0

2

0

7

0

3

6

8

7

1

5

9

9

3

7

2

4

9

4

3

6

2

2

5

3

2

55

9

4

1

7

2

0

1

2

3

4

5
6

7

8

90

12

3

4

5

6

7

8 9

0

1
2

3

4

5

6

7

8

9

1

0

1

2

7

5

3

4

4

0

0

6

9

6

6

5

7

2

3

4

4

9

1

4

0

7

9

5

7

2

3 1

4

4

0
9

9

6

1

8

3

3 7
3

9

88

4

7

7

6

2

1

9

8

7

88

7

2

2

3

9

3

3

5
5

0

7

956

5

1

4

1

1

28

2

6

1

5

0
1

2
3

4

5

6

7

8
9

0 1

2

3

4

5

6

7
8

90

1

2

3

4

5

6

7

8 8

0 6
0

0

2

3

7

94

7

1

9

1

7

1

4

0
0 1

7

5

7

1

3

3

3 1
6

9

7

1

30

2

6
0

8

9

4

3
5

4

8

1

5

9

0
6 6

3

8

1

4

7

5

20
0 1

7

8

9

6

8

8

2

3

6

1

2

9

5

2

0

1
2

3

4
5

6

7

8

9

0
1

2
3

4
5

6

7

8

9

0 1

2
3

4

5

6

7

8

9

7

4

6
1

4

0

99

3

7

8

4

7

5

8

5

3

2

2

0

5

8

6
0

3 8

1

0
30

4

7

4

9

2

9

5

7

1

7

16

6

5

6

2 8

7

6

4

9
9

5

3

7

4

30

4

6

6
11

3
2

1

0

0

1

2

3

4

7

8

9

0
1

2

3

4

5

6

7

8

0

12

3

4

7

8

9

0

8

3

9

5
5

2

6
8

4

1

7

1

2

3

5

6

9

111

2

1
2

0

7

7

58

2

9

86

7

3

4

6 8

7

0

4

2

7

7

5

4

3

4

2

8

1

5

10

2

3

3

5

7

0

6

8
6

3

9

9

82

7

7

10
1

7

8

9

0 1

2

3

4
5

6

7

80
1

2 3

4

7

8

9
7

8
6

4

1

9

3

8

4

4

7

0
1

9

2
8

7

8

2

6

0

6

5

3

3

3

9

1

4

0

6

10
0

6
2

1
1

7

7
8

4

6

0

7

0

3

6

8

7

1

5

2

49

4

3

6
4

1

7

2

6
5

0

1

2
3

4

5

6

7

8

9

0

1

2

3

4

56

Figure 3.23: PCA visualization of MNIST handwritten digits test set with 10,000

samples. Computations with singular value decomposition take only 0.25 second, but

PCA fails to show inner data structure and separate different digits.

107

Visualization of MNIST Training Set

Another experiment is done with full training set of MNIST with N = 60000

samples, see Figure 3.24. The visualization without batch updates took a few hours

on the desktop, because GPU cannot be used due to insufficient memory for stor-

ing matrix A60000×60000, and a larger possible swap space which is quadratic in the

number of samples N . ELMVIS+ optimization is run by multiple consecutive steps

with a limit of 500 updates for each step, having the intermediate results saved. The

output is visualized as separate images and a video. Visualization points are selected

uniformly at random on a plane, and the initial assignment is random. The result

of ELMVIS+ is visualized by printing the original pictures of MNIST digits at coor-

dinates of their corresponding visualization points, using different colors for different

digits and making the black background transparent.

A clear self-organization is observed during the convergence stage (Figure 3.25

presents visualization in the middle of convergence), which is supported by a large

enough number of samples such that every cluster of data is large and clearly visible.

Some samples of different classes (like several writings of numbers 4 and 9) never

cluster separately, because they are very similar — but other style of writing of the

same numbers are never confused. This experiment shows that Big Data scale adds

more value to visualization than simply processing more data, and shows new useful

insights.

108

Figure 3.24: Visualization of MNIST handwritten digits training set with 60,000

samples after 500,000 updates, using ELM with 15 neurons. Original image are

4000× 4000 pixels.

109

Figure 3.25: Visualization of MNIST handwritten digits training set with 60,000

samples after 100,000 updates. Convergence is in process, some clusters have formed.

110

Visualization on Arbitrary Spaces

The ELMVIS+ takes any visualization points, which don’t have to be gener-

ated by a particular probability distribution. Arbitrary data can be used as visual-

ization input.

In this example, the two-dimensional visualization points are taken in a shape

of a football team emblem of our university. MNIST digits are mapped onto the visu-

alization points, and an ELM model de-projects the two-dimensional inputs back into

the original digits data space. Visualization on Figure 3.26 is shown using separate

five different digits classes to show different digits.

Figure 3.26: Visualization of MNIST digits using an Iowa Hawkeyes football team

emblem shape. It uses 10,000 samples from only five classes of MNIST digits for

clarity.

111

3.3 Detection of Mislabeled Samples with ELMs

This section focuses on finding data samples with incorrect labels in a given

dataset. Such samples create ”label noise”, which is generally considered more harm-

ful than feature noise [ZW04]. The work is motivated by studies on a financial

dataset [du 07] where each sample corresponds to a company labeled as either healthy

or bankrupt. In this dataset, incorrectly labeled samples are important both by them-

selves (i.e. as companies eligible for a loan but mislabeled by ”bankrupt”), and for

the whole dataset to allow building more precise Machine Learning models with a

limited amount of data (because each sample is expensive and slow to obtain). There

are other areas where detection of particular mislabeled samples is important, like

medical applications [GLG99].

The idea of detecting mislabeled samples is to utilize their effect of increasing

the model complexity [BF99, LCLo09]. In SLFN, a more complex model requires

more hidden neurons to learn [Hay98], or equally a more complex model will result in

a lower accuracy with the same amount of hidden neurons. Correcting an incorrect

sample label will decrease a model error of a fixed SLFN. Note a difference between

mislabeled samples and outliers — an outlier is not a typical sample of any class, so

changing its label will not lead to a decrease in model error; although outlier detector

methods are also used for dealing with mislabeled data [LND09].

112

3.3.1 Methodology

There exist multiple sources of label noise. First, noise can be generated by

simple mistakes in data gathering and processing, like people mistyping or sensor

malfunction [BF99, ZW04]. For real datasets, such noise is estimated to be roughly

5% not including other factors [Red98]. Second, experts who label the data can

make mistakes. This happens especially in cases where labelling quality is traded

for lower labeling price, for instance with crowdsourcing [YKL11] like Amazon Me-

chanical Turk [SOJN08] framework. Third, labeling criterion may be vague, then

different experts will produce different labels. For example, in EEG segmentation

exact beginnings and ends of signals are not formally defined, and different doctors

give slightly different signal boundaries [HRT04]. At last, the existing information

may be insufficient for reliable labelling of data [BF99].

Recent methods of Machine Learning in the presence of mislabeled data can be

aggregated in three categories [FV14]. Data cleansing (or filtering) methods [BF99]

pre-process dataset and fix incorrect labels or remove such samples [ZWC03]. The

resulting clean dataset is used with general Machine Learning methods. Noise-robust

methods [JWF10, CKW12] like k-nearest neighbors [ON97] are tuned to perform well

despite the presence of label noise. It is even possible to achieve same theoretical

performance with label noise as without one, although in simple cases [Lac74]. Noise-

tolerant methods include label noise in their model; an extensive overview of such

methods is presented in [FV14], section VII. A good survey is given by Frénay in his

PhD thesis [Ben13].

113

Overview of the Methodology

Let’s take an original dataset {X,T} of N data samples with d features stored

as a matrix X ∈ RN×d, and the associated output labels T ∈ {0, 1}N×c with c different

classes, only one of which is non-zero for each sample. This work distinguishes be-

tween three types of data samples: correctly labeled, originally mislabeled (unknown

samples with incorrect labels), and artificially mislabeled (known samples with arti-

ficially corrupted labels). Each sample in a dataset has an associated sample score

S, which shows how likely for that sample is being a mislabeled. Artificially misla-

beled samples have higher than average score, and they work as a baseline for finding

originally mislabeled ones.

The method starts by creating some artificially mislabeled samples in a dataset;

denote outputs with artificially mislabeled samples as T∗. Then the baseline estima-

tion of the generalization mean squared error MSELOO is calculated for the dataset

with artificial mislabels {X,T∗}, using the OP-ELM classification model. After that,

a flip is generated by making k more artificial mislabeled samples randomly (where k

is the size of a flip). The new model error MSELOO is estimated for the flip {X,T∗F},

and if it is lower than the baseline error, scores of the k added artificial mislabeled

samples are increased by 1. After the flip is analyzed, data labels are reverted back

to T∗.

114

Detecting Unknown Mislabeled Samples

Sample scores after a large number of flips are shown on Figure 3.27. They

are randomly distributed, with different distributions for artificially mislabeled and

correctly labeled samples, but the same distribution for artificial and original misla-

bels.

0 50 100 150 200 250 300
sample index

0

50

100

150

200

250

sa
m

p
le

 s
co

re

artificially mislabeled
correctly labeled
originally mislabeled

Figure 3.27: Sample scores of 300 samples after a large number of flips, for a XOR toy

dataset. First 100 samples are artificial mislabels, second 100 samples are correctly

classified, and the last 100 samples are original mislabels.

Sample scores can be formally analyzed by fitting Gaussian distributions to

them - one for the artificially mislabeled samples, and one for the others (correctly

115

labeled and a small proportion of originally mislabeled). Initially all scores are zero,

so the two Gaussian distributions have the same zero mean and zero variance. But as

the scores increase, artificially mislabeled distribution will have a significantly higher

mean value. The hypothesis that these two distributions have different means is

checked with a Welch’s t-test [Wel47], an adaptation of an independent Student’s

t-test to distributions with different variances (the variances on Figure 3.27 are obvi-

ously different).

Flips are repeated until a null hypothesis of the same distributions’ means can

be rejected with a high confidence (0.1%). Then non-artificially mislabeled samples

with scores outside of the 3 sigma area of their Gaussian distribution are marked as

detected original mislabels.

One issue with that method is the quantization of scores, as shown on Fig-

ure 3.28. Gaussian approximation works poorly with a low number of quantization

levels. The second MD-ELM parameter for stopping the flips is introduce to account

for the score quantization effect. This is a quantization threshold q, equal to the av-

erage score of artificially mislabeled samples. The effect of the quantization threshold

and its optimal value is analyzed in the experimental results section.

The last parameter to take into account is a number of models m to build.

Originally mislabeled samples are unknown and artificially mislabeled samples are

ignored in the detection stage. With only one model, it is possible to select an original

mislabel as an artificial mislabel, and fail to detect it. This scenario is avoided by

having several models with different artificial mislabels, and averaging their scores

116

0 50 100 150 200 250 300
sample index

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sa
m

p
le

 s
co

re

artificially mislabeled
correctly labeled
originally mislabeled

Figure 3.28: Sample scores of 300 samples after a low number of flips, for a XOR toy

dataset. A strong quantization effect makes Gaussian approximation of score values

erroneous. This plot corresponds to a score quantization threshold q = 1.

for non-artificially mislabeled samples before the detection. In that case, there will

be scores for all samples, and all originally mislabeled ones are possible to detect.

MD-ELM Algorithm

The full MD-ELM algorithm is presented below in Algorithm 3.2. There α is

a proportion of artificially mislabeled samples created in a dataset; it is set to 5%

117

in the experiments. Stopping criteria are computationally expensive to evaluate, so

an evaluation occurs after every M flips of each model. A reasonable value of M

is 1000. Each model keeps track of indexes of artificially mislabeled samples, and

returns scores for artificially mislabeled Sart and original samples Sorig separately.

When the final scores are calculated, each sample is processed separately because

only non-artificially mislabeled scores are used, so different samples have different

amount of scores (not always m scores per sample).

Algorithm 3.2 Algorithm of the proposed MD-ELM.

1: Original inputs X ∈ RN×d and outputs T ∈ {0, 1}N×c

2: Parameters: number of models m, quantization threshold q∗, size of a flip k

3: for i = 1..m do

4: Generate T∗i with αN random artificial mislabels

5: Build OP-ELM model with {X,T∗i } and calculate MSEi
LOO for that model

6: Initialize sample scores Si ∈ NN = 0 for that model

7: end for{continues at next page}

3.3.2 Experiments

Datasets

The methodology is tested on a three real world datasets for experiments.

Two of them are are Nursery and Breast Cancer UCI datasets [Lic13], which are

118

9: repeat

10: for i = 1..m do

11: for l = 1..M do

12: Generate flip targets T∗i,F l by creating k artificial mislabels

13: Evaluate MSEi
LOO using {X,T∗i,F l}

14: if MSEi
LOO < MSEi

LOO then

15: Increase score Si by one for those k samples

16: end if

17: Discard flip targets T∗i,F l

18: end for

19: end for

20: Obtain scores Sart for all artificial mislabels from all m models

21: Obtain scores Sorig for all non-artificial mislabels from all m models

22: Get t statistic using Welch’s t-test on {Sart,Sorig}

23: Compute quantization level q = m
|Sart|

∑
Sart

24: until t < 10−4 and q > q∗

25: Get final scores Si = 1

|Sorig
i |

∑
Sorig
i , i = 1..N

26: Calculate mean µ and standard deviation σ of final scores S

27: Report indexes of original mislabels i | Si > µ+ 3σ

119

used for classification performance analysis after application of the MD-ELM method.

Only the average classification performance can be evaluated because exact original

mislabeled samples are unavailable for those datasets. They are available for the

last dataset of 500 companies from the field of Corporate Finance [du 07], with 50%

healthy ones and 50% bankrupt. The samples detected with the MD-ELM method

are checked with the experts in the field, and a summary of the method’s performance

is given.

Two toy datasets are used for illustration of MD-ELM method, as well as for

parameter selection and validation (Figure 3.29). One is a XOR dataset for binary

classification (denoted as ”XOR”). The other one is a 3-class dataset for multi-class

tasks, denoted as ”PIE”. Both datasets have inputs X ∈ RN×2 generated i.i.d. within

the range {−1, 1}. Outputs are T ∈ {0, 1}N×2 for XOR and T ∈ {0, 1}N×3 for PIE.

The datasets have N = 1000 samples, 20 of which are made originally mislabeled.

Number of Models and Quantization Threshold

MD-ELM uses artificially created mislabeled samples in its algorithm, which

are ignored in the detection stage. Thus one model can miss originally mislabeled

samples, if they are selected as artificially mislabeled ones. This problem is solved by

having multiple data models; in MD-ELM this is multiple OP-ELM models.

The quantization threshold is the major parameter setting the required num-

ber of iterations, and the runtime. It is the mean score of artificially mislabeled

samples; in case of multiple models scores are summed over all the models. Higher

120

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0 class 1
class 2

(a) XOR dataset

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0 class 1
class 2
class 3

(b) PIE dataset

Figure 3.29: Examples of two- (a) and three-class (b) toy datasets used for parameter

selection. Different classes are depicted by different colors and marker types.

quantization threshold produces larger score values (with more discrete levels) which

are approximated by the Gaussian distribution more precisely, and provide better

accuracy. The effects of different models and different quantization scores are shown

on Figure 3.30.

The plots show that the quantization threshold q has a large impact on the

performance - it should be large to achieve good results. But the runtime is directly

proportional to the quantization threshold in the experiments. The minimum value

which leads to good results lie between 32 and 64; it is taken as q = 50 in further

experiments. The number of models m influence the results much less. There should

be more than 1 model; 5 models are used through the experiments. The amount of

models has almost no effect on runtime of flips (iterations) and provide a very minor

increase of runtime of the method by initializing more distinct OP-ELM

121

Figure 3.30: Effect of different amount of models and quantization thresholds on

detection accuracy and the amount of false positives. Experiments are for a XOR

dataset, averaged over 10 repetitions.

122

Optimal Number of Samples to Flip

An important parameter of MD-ELM is an optimal number k of samples to

artificially mislabel at each flip. It can be 1,2,3 or more samples at once. With

k > 1, reaching the required quantization threshold q will take more flips, because

the decrease of MSELOO from fixing a label of originally mislabeled sample might be

countered by its increase from corrupting another correct label. On the other hand,

re-labeling several samples at once allows for detecting several mislabeled samples

close together.

The effect of relabeling only one sample (k = 1) in each flip is shown on

Figure 3.31. The method finds all originally mislabeled samples with a high quanti-

zation threshold, but the amount of False Positives is very high. An advantage of the

MD-ELM method is a low number of False Positives, so k = 1 should not be chosen.

1 2 4 8 16 32 64 128
quantization threshold q

1

2

3

4

5

6

7

8

9

10

n
u
m

b
e
r

o
f

m
o
d
e
ls

 m

59% 74% 83% 89% 93% 94% 94% 94%

59% 75% 83% 94% 95% 96% 96% 98%

66% 78% 83% 93% 96% 98% 99% 99%

71% 77% 88% 96% 98% 99% 99% 99%

66% 76% 85% 93% 99% 100%100%100%

71% 79% 88% 93% 99% 100%100%100%

77% 75% 90% 96% 100%100%100%100%

73% 82% 90% 94% 99% 100%100%100%

73% 74% 87% 96% 98% 100%100%100%

71% 80% 88% 95% 98% 100%100%100%

Prediction accuracy

1 2 4 8 16 32 64 128
quantization threshold q

1

2

3

4

5

6

7

8

9

10

n
u
m

b
e
r

o
f

m
o
d
e
ls

 m

15.0 17.4 20.0 22.5 22.9 23.0 23.0 23.0

14.6 17.3 18.0 20.6 23.2 26.6 29.3 31.1

18.1 19.5 20.7 22.3 22.2 24.0 23.5 20.9

18.9 20.3 19.4 22.4 24.0 22.7 23.1 24.2

23.4 19.5 21.4 22.5 23.6 24.3 25.6 26.2

15.7 18.0 19.3 21.1 23.5 22.7 22.7 22.7

23.9 15.9 22.5 21.0 21.2 21.5 20.8 21.3

19.7 16.7 18.4 21.6 21.6 22.2 22.2 23.1

20.9 17.7 21.0 22.3 22.8 22.7 23.2 22.5

19.8 20.8 19.1 20.8 22.0 22.3 23.6 22.8

False positives

Figure 3.31: Experimental results for a XOR dataset with size of a flip k = 1, averaged

over 10 repetitions.

123

Experimental results with k = 3 are shown on Figure 3.32. Surprisingly, the

amount of False Positives is also high, so k = 3 is a bad choice for MD-ELM. A

possible explanation is that if classes of 3 samples are changed on a border, the ELM

model can learns that change and achieve a lower MSELOO, increasing sample scores

as if they are originally mislabeled. The position of False Positives with the best

experimental setting for XOR dataset are shown on Figure 3.33.

1 2 4 8 16 32 64 128
quantization threshold q

1

2

3

4

5

6

7

8

9

10

n
u
m

b
e
r

o
f

m
o
d
e
ls

 m

59% 61% 80% 90% 92% 94% 94% 94%

65% 65% 81% 87% 93% 95% 98% 98%

64% 62% 79% 88% 93% 97% 99% 99%

69% 61% 79% 89% 97% 97% 99% 99%

58% 67% 80% 91% 95% 99% 100%100%

66% 66% 84% 96% 99% 100%100% 99%

69% 61% 74% 93% 98% 99% 100%100%

59% 61% 81% 94% 98% 99% 100%100%

56% 60% 79% 93% 96% 99% 99% 99%

60% 64% 81% 94% 98% 99% 100%100%

Prediction accuracy

1 2 4 8 16 32 64 128
quantization threshold q

1

2

3

4

5

6

7

8

9

10

n
u
m

b
e
r

o
f

m
o
d
e
ls

 m

52.2 19.4 18.6 21.7 18.5 19.3 17.5 19.0

60.8 18.7 15.4 16.5 16.7 17.4 18.0 17.9

55.3 16.5 21.7 17.6 16.9 16.4 16.6 16.8

65.6 16.3 17.1 18.7 17.3 16.4 16.1 14.8

50.0 20.0 18.7 20.0 16.8 16.9 15.4 15.8

54.2 19.5 27.1 20.0 17.3 15.4 16.1 15.5

73.5 21.1 23.3 21.3 18.0 15.7 15.4 15.8

55.8 19.1 21.9 20.7 17.9 16.7 15.6 14.5

54.9 14.6 19.1 20.8 17.7 15.6 14.4 15.2

60.8 16.6 20.8 21.0 15.0 14.4 13.7 13.9

False positives

Figure 3.32: Experimental results for a XOR dataset with size of a flip k = 3, averaged

over 10 repetitions.

Considering the runtime, k = 1 and k = 2 require similar number of flips,

while k = 3 needs more flips. Graph of runtime for XOR and PIE datasets is shown

on Figure 3.34. Runtime is directly proportional to the number of flips, and for small

tasks like XOR or PIE the program runs at approximately 300,000 flips per minute

on a fast 4-core i7 CPU.

124

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0 class 1
class 2
false positives
original mislabels

Figure 3.33: False Positives in detected originally mislabeled samples for a XOR

dataset with k = 3 and q = 128. All False Positives are located at the classification

borders.

125

0 20 40 60 80 100 120 140
quantization threshold q

0

50000

100000

150000

200000

250000

300000

n
u
m

b
e
r

o
f

fl
ip

s
to

 r
e
a
ch

 q

XOR, k=1
XOR, k=2
XOR, k=3
PIE, k=1
PIE, k=2
PIE, k=3

Figure 3.34: Number of flips required to achieve the desired quantization threshold

q for XOR and PIE datasets. For k = 3, the method required much more flips than

for k = 1 and k = 2. The Welch’s t-test was never a limiting factor for those two toy

datasets.

126

As a summary of parameter selection, the best parameter values are m = 5

models, k = 2 samples to re-label in each flip, and q = 50 quantization threshold.

These values are used in the next experiments.

Results on XOR Dataset

The XOR dataset has been presented before for the analysis of the parameters

of the methodology, and is used here with 1000 samples. Of these samples, a set of

20 samples are mislabeled intentionally, to act here as original mislabels. Detection

results for the 2-class XOR dataset are presented on Figure 3.35.

The figure shows that 17 out of 20 original mislabels are found in all 10 runs,

one is found in 90% cases, one in 50% and only one sample is almost never detected

(10% cases). Samples which are rarely detected lie in a central region, which is the

most hard to predict by OP-ELM. The reason they are not detected is probably that

in a region with low classification confidence the change of a sample label might not

decrease an overall MSELOO, and such sample is not detected as a mislabeled one.

Results on PIE Dataset

As for the XOR dataset, this toy dataset is the same as the one used for

the parameters analysis, with 1000 samples and 3 classes. 20 samples are mislabeled

intentionally to act as original mislabels. Detection results for the 3-class PIE dataset

are presented on Figure 3.36.

Again, 16 out of 20 original mislabels are detected in all runs, 1 in 9 out of 10

runs, 2 samples detected half of the time, and only 1 sample is almost never detected

127

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

100%

10%

100%

100%

100%
100%

100%

100%

100%

90%

100%

100%

100%
50%

100%

100% 100%

100%

100%

100%

class 1
class 2
original mislabels

Figure 3.35: Plot of XOR data with marked mislabeled samples and their detection

percentages. Experiments are performed 10 times with m = 5, k = 2 and q = 50.

(1 out of 10 times). This last sample lies on a border near the center of the plot, in

an area which is the hardest for the classifier to work on.

Results on Nursery Dataset

In this dataset from the UCI Machine Learning Repository [Lic13] there are

12960 samples, lying in 8 dimensions and with an output consisting in 5 classes. The

MD-ELM method is used to detect originally mislabeled samples — 146 samples are

128

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

90%

100%

100%

10%

100%

40%

100%

100%

100%

100%

100%

100%

100%

90%

50%

100%

100%

100%

100%
100%

class 1
class 2
class 3
original mislabels

Figure 3.36: Plot of PIE data with marked mislabeled samples and their detection

percentages. Experiments are performed 10 times with m = 5, k = 2 and q = 50.

detected; and then the classification accuracy is checked with original classes and

classes with fixed originally mislabeled. The results are shown on Figure 3.37.

The results show that the classification accuracy with modified class labels is

higher than with the original ones, in a wide range of model sizes. The maximum

accuracy improvement is 0.5% and the average over different number of neurons is

0.25%. The computational time of MD-ELM method for the Nursery dataset is 15

minutes on a 4-core i7 CPU.

129

50 100 150 200 250 300
number of neurons

89.0

89.5

90.0

90.5

91.0

91.5

92.0

92.5

93.0

93.5

cl
a
ss

if
ic

a
ti

o
n
 a

cc
u
ra

cy
,

%

original labels
modified labels

Figure 3.37: Classification accuracy of ELM for Nursery dataset with original labels,

and with labels with fixed detected originally mislabeled. Results are average over

100 runs.

130

Results on Breast Cancer Dataset

This dataset from the UCI Machine Learning Repository [Lic13] has 689 sam-

ples with 9 features, and 2 classes. The MD-ELM has found only 6 original mislabels

in that dataset. The results with those mislabels fixed are shown on Figure 3.38.

20 40 60 80 100 120 140 160 180 200
number of neurons

96.5

97.0

97.5

98.0

98.5

cl
a
ss

if
ic

a
ti

o
n
 a

cc
u
ra

cy
,

%

original labels
modified labels

Figure 3.38: Classification accuracy of OP-ELM for Breast Cancer with original la-

bels, and with labels with fixed detected originally mislabeled. Results are average

over 100 runs.

The results show a large improvement in classification with only 6 samples

fixed. Those samples are probably the original mislabels of the dataset. The compu-

tational time of the MD-ELM method for the Breast Cancer dataset takes only a few

131

seconds.

3.3.3 Results of Real World Financial Dataset

The ability to predict bankruptcy of a firm is crucial for an investor or a

creditor (bank) who wishes to ensure that he will be reimbursed later on. This

experiment adopts binary classification to label the firms. An healthy company means

that it is able to reimburse its debt and it has continuity and future. However, a

bankrupted company is one that is unable to meet its financial obligations. In other

words, it cannot pay back its debtors and begin a liquidation process that stands

for sale or cessation of the company. The data set was built by du Jardin [du 07],

and includes 500 firms from year 2002. In the data set, the proportion of healthy

and bankrupted firms is 50 : 50 and the firms are all from the trade sector. Before

acquiring the anomalies of each sample, variable selection was applied [KME+11] with

7 variables selected for the training. The histogram of the calculated sample scores

Sorig is shown on Figure 3.39.

The method shows 20 samples with high anomaly that may be mislabeled.

Those samples have been analyzed by two independent financial experts. For the

selected samples #41, #212, #437 and #448, both experts consider that the samples

are surely mislabeled in the first place. For the most of samples, one out of two experts

considers that they are mislabeled. This is the case for the selected samples: #160,

#168, #301, #427, #458, #465, #474, #482, #483, #485, #490 and #494. For

#288, #452, #454 and #486, the experts do not consider these selected samples as

132

0 100 200 300 400 5000

500

1000

1500

sample index

Sc
or

e

Financial problem

Figure 3.39: Sample scores for the bankruptcy prediction dataset. Expert-identified

originally mislabeled samples are denoted with red stars.

mislabeled. Taking into account the experts classification, the proposed method seems

to be successful in 16 mislabeled samples out of 20. These selected mislabel samples

will be investigated in detail in the future by other financial experts using more

information about the selected companies. It can be considered that the proposed

methodology is successful since only 20 companies have to been analyzed furthermore

instead of the initial 500 companies, to identify actual mislabels.

133

3.4 Confidence Intervals for ELM Predictions

ELMs are powerful nonlinear methods, but they share one common drawback

of nonlinear methods in practical applications, which is a non transparency of results

(predictions). A prediction made by a linear model from input data is easily explained

and interpreted by observing the coefficients of the input data features. Results with

an explanation are easier to trust and apply for people outside a Machine Learning

field. nonlinear models lack such transparency, so their results are less trusted, and

thus nonlinear methods (including ELM) are sometimes rejected despite a supreme

performance compared to linear methods.

This paper proposes a way of providing transparent and interpretable results

for ELM models by adding confidence intervals [SH15, LJRV05, PLB10] to predic-

tions. Unlike the usual statistical approach with Mean Squared Error (MSE) [Bis06]

that evaluates an average performance of an ELM model over the whole dataset,

the proposed method computes particular confidence intervals for each data sample.

These intervals are small for samples on which a model is accurate, and large for

samples where a model is unstable and inaccurate. A confidence for each particular

sample makes ELM predictions more intuitive to interpret, and an ELM model bet-

ter applicable in practice under task-specific requirements to precision and recall of

predictions.

134

3.4.1 Methodology

Intuition

Confidence of a predicted output for a data sample, and the confidence inter-

vals, are properties of a particular dataset. A training sample alone is an input-output

pair (x,y), where an output y is a fixed number (or vector) without confidence notion.

When many training samples (xi,yi), i ∈ J1, NK are gathered in a dataset

(X,Y), that dataset represents an implicit projection function f : X→ Y. An ELM

approximates function f by a smooth function f̂ : X→ Ŷ. The smoothness (enforced

by regularization) improves generalization performance, but it prohibits the function

f̂ to pass exactly through points (xi,yi). Instead, f̂ passes through (xi, ŷi), and a

true output yi is assumed to be randomly drawn from a normal distribution centered

at a predicted output ŷi. Here random values and confidence intervals come into the

ELM prediction model. A confidence interval is simply a scaled standard deviation

of an output for sample (xi,yi), which tells how reliable a corresponding predicted

output ŷi is.

Confidence Intervals for Predictions

Confidence interval is a property of a particular dataset, not a sample by

itself. For a test sample a, if training samples with inputs like a have similar outputs,

then an output of a is predicted accurately. It is still predicted accurately if some

of these training samples are missing. For another test sample b, if training samples

with inputs like b have very different outputs, then an output of b is not known

135

precisely. Also if some of these training samples are missing, prediction for b can

change drastically. See Figure 3.40 for a visual example.

a
1.1

1.20.9

0.8

1

a
0.9

0.8

0.9

b
-7

-10-3

20

0

b
-3

20

9

Figure 3.40: Idea of the confidence intervals method: difference between samples with

a small confidence interval (a, left) and a large confidence interval (b, right) comes

from a dataset. Using a subset of training data affects b much more than a.

It is worth noting that if confidence intervals for all data samples are equal, the

corresponding standard deviation is given by a Root Mean Squared Error (RMSE) [Bis06].

Confidence intervals are then obtained by scaling a standard deviation to the desired

coverage percentage; for instance multiplying by 2 to get 95.4% or by 3 to get 99.7%

intervals.

136

Per-sample Confidence Intervals

Per-sample confidence intervals method is based on an uneven increase of

prediction error for different samples, as the training set size shrinks. This increase

is larger for large confidence interval samples than for small confidence interval ones.

The error increase is taken proportionally to an average error increase on a test set

for the same setup, and that proportion is applied as a scaling factor for RMSE to

get a per-sample confidence interval.

The dataset is divided into k non-intersecting subsets, so as to find the error

increase. As that increase varies greatly with a particular initialization, experiments

are repeated with all k subsets and results are averaged. Moreover, the value k is

varied from 2 to a large number (for example 10 or 50), at which point the training

set becomes so small that ELM over-fits and produces a high error on the validation

set. ELM over-fits because the model structure is selected for the whole dataset, and

fixed. The experiments ignore ELM models if they produce three times higher RMSE

on a reduced dataset than on a full dataset, and stopped when the number of ignored

ELMs reaches k (every second model is ignored).

Define a dataset consisting of three parts: training set (Xtr,Ytr), validation set

(Xval,Yval) and test set (Xtest,Ytest) where Ytest is unknown. Let Ŷ denote outputs

predicted by ELM, and a subscript ·k denotes data or model obtained on a 1/kth part

of the training set.

First, two ELM models are trained as on Figure 3.41 — one on a full dataset,

and another on a 1/kth part of it. Denote the second ELM as ELMk. An RMSE

137

Per-sample	Confidence	Intervals

4

ELMXval,Xtest

Xtr
k ,Ytr

kXtr,Ytr

Yval,Ytest Ŷval, Ŷtest Ŷval
k , Ŷtest

k

ELMk

RMSEval �val
E

Figure 3.41: First stage of confidence intervals: computing an average statistics. ELM

is trained on a whole training set, while ELMk on a 1/kth part of it.

Per-sample	Confidence	Intervals

5

ELMXval,Xtest

Xtr
k ,Ytr

kXtr,Ytr

Yval,Ytest Ŷval, Ŷtest Ŷval
k , Ŷtest

k

ELMk

RMSEval �val
E�test

i �test
Ei

�test
i = RMSEval�

test
Ei

�val
E

Figure 3.42: Second stage of confidence intervals: finding per-sample standard de-

viation. As Ytest does not exist, only ∆test
Ei

can be computed directly, and σtest
i is

obtained from a proportion.

138

is computed on a validation set for ELM. An error increase ∆val
E is computed be-

tween predictions of ELM and ELMk, and it describes how a smaller training set

increases validation error. These two values are computed per-dataset, averaged over

all validation set samples.

Second, per-sample standard deviations σtest
i are found as on Figure 3.42.

Unfortunately the Ytest does not exist, so only per-sample error increase between

ELM and ELMk is possible to compute directly. The σtest
i is then obtained from a

following expression.

σtest
i = RMSEval∆

test
Ei

∆val
E

(3.35)

The expression is obvious because for constant confidence intervals, a Mean

Squared Error equals to the variance of prediction error as explained in [Bis06], so an

RMSE equals to the standard deviation of the same. Confidence intervals themselves

are found by multiplying σtest
i by a factor corresponding to the desired confidence

level, for examples a factor 2 gives 95.4% confidence intervals.

ELM Confidence Intervals Algorithm

Values ∆test
Ei

are sensitive to a random initialization of ELM and the particular

training samples of the 1/kth part of a dataset. Thus they are averaged twice: first

by repeating the experiment k times with all 1/kth parts of a dataset, and second

by varying k from 2 until ELMk becomes unstable (about 10-50). A side advantage

of repeating the method multiple times are precise predictions Ŷtest averaged over

139

Algorithm 3.3 ELM Confidence Intervals Algorithm

given data sets (Xtr,Ytr), (Xval,Yval) and Xtest

Select optimal ELM model parameters on (Xtr,Ytr)

for k = 2 . . . N
10

do

Split (Xtr,Ytr) into k parts (Xtr
j ,Y

tr
j), j ∈ J1, kK

for j = 1 . . . k do

initialize ELM model m and train it with (Xtr,Ytr)

predict Ŷtest, predict Ŷval and find RMSEval
k,j

re-train m with (Xtr
j ,Y

tr
j)

predict Ŷval
j and find ∆val

E,k,j

if ∆val
E,k,j > 3 ∗ RMSEval

k,j then

Stop the main loop, ignore results for current j

end if

predict Ŷtest
j and find per-sample ∆test

Ei,k,j

end for

end for

find RMSEval, ∆val
E and ∆test

Ei
by averaging over j and k

Find σtest
i as in equation (3.35)

Multiply σtest
i by a factor corresponding to desired confidence interval percentage

Report average Ŷtest with the confidence intervals

140

numerous ELM models. An algorithm of confidence intervals method for ELM is

presented in Algorithm 3.3.

3.4.2 Experiments

Artificial Dataset

This artificial dataset has one-dimensional inputs and targets, for ease of visu-

alization. The task is to predict a highly nonlinear function f (shown on Figure 3.43),

constructed as a sum of two sine waves. The dataset is created by adding normally

distributed zero-mean noise, which has input-dependent variance to simulate variable

confidence intervals. The training and validation sets have 1000 data samples each.

Effect of Splitting Dataset on Predictions

The ELM used in the method is tuned for the full dataset size. It gives precise

predictions when trained on a full training set, or on a large part of it at a low split

level k. When k raises, the training set size shrinks and ELM learns worse predictions.

It over-fits ofter at high split levels; so the trained model is validated and refused if

it exceeds the validation error threshold. The method stops if the current split level

starts producing over-fitted models. Effect of training an ELM at high split levels is

shown on Figure 3.44.

Effect of splitting dataset on particular samples is shown on Figure 3.45. The

increase in error for each particular sample as the dataset size shrinks varies a lot

(top left plot), but averaging over multiple k splits provides a reliable estimate. The

original ∆test
Ei

is scaled with RMSEval to obtain σtest
i . Then this σtest

i is multiplied by

141

Toy	Example:	Sine	Wave

6

true 95% (2�) confidence intervals

x

y

Prediction	Error	vs	Training	Set	Size

7

x

y

Figure 3.43: Toy dataset and its predictions with five different ELM models, trained

on the whole dataset. Points are samples, red line is the original function.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

6

4

2

0

2

4

6

Split = 50, all models

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

6

4

2

0

2

4

6

Split = 50, validated models

Figure 3.44: Validation of ELM models in confidence intervals. At high split levels,

trained ELM model easily overfits (top) due to a smaller training set. Overfitted

models are sorted out by a validation error threshold (bottom).

142

a scaling factor to show the confidence intervals themselves (top right plot).

3	Test	Samples:	Red,	Green,	Blue

11

k

�val
E

�
te

st
E

i
(k

)

14

true 95% (2�) confidence intervals

ŷ1 ± 2�1

ŷ3 ± 2�3

ŷ2 ± 2�2

y1

y3

3	Test	Samples:	Red,	Green,	Blue

x

y

12

�
te

st
E

i

�val
E

i = 1 i = 2 i = 3

�test
E1

�test
E2

�test
E3

3	Test	Samples:	Red,	Green,	Blue

13

�
te

st
i

i = 1 i = 2 i = 3

�test
1 �test

2

�test
3

3	Test	Samples:	Red,	Green,	Blue

RMSEval

Figure 3.45: Example of finding confidence intervals for three test samples, denoted

by red, green and blue colour.

Results on an Artificial Dataset

The 95% confidence intervals on an artificial dataset are shown on Figure 3.46.

The obtained confidence intervals follow the true ones well in the middle of prediction

range, but grow larger towards the boundaries. The reason is that many ELM models

give unstable predictions at boundaries (see Figure 3.44, right) so that follows from

a property of an ELM itself. In general the confidence intervals are little exaggerated

143

compared to the true ones, but this again can be explained by some uncertainty of

ELM predictions in general.

Confidence intervals (both true and estimated ones) for datasets with the same

projection function but a constant variance noise are shown on Figure 3.47. The

method learns and predicts constant variance noise as well (except on boundaries), so

it can be used universally for evaluating both variable and constant noise confidence

boundaries.

The experiments use ELM model with 11 sigmoid neurons. The runtime is

0,5-1 minute on a 1.4GHz Core i5 laptop.

3.4.3 Skin Color Dataset

Confidence intervals for ELM predictions are tested on a Face/Skin Detection

dataset [PBC05], a useful Big Data benchmark [CAK+15] with a non-trivial prediction

task. It includes 4000 real-world photos of different people under various lighting

conditions, with manually created masks for skin and faces. The paper uses the

original dataset separation into 1300 training, 700 validation and 2000 test images.

A skin detection task is used for a real-world illustration of method perfor-

mance in the paper, because of a good visualization it provides. It is a binary clas-

sification task, turned into a regression one by assigning skin pixels a +1 output,

non-skin pixels a -1 output, and choosing valid skin/non-skin predictions that are ασ

distance from zero (with α corresponding to a desired confidence level). The pre-

diction is done per each pixel independently, with a 7 × 7 pixel mask for an input

144

Estimated	2!	Intervals,	Variable

15

x

y

Figure 3.46: 95% confidence intervals on an artificial dataset. These intervals are

larger towards the boundaries of prediction range, but the general trend is observed

well.

145

(7×7×3 = 147 input features in RGB color space). A 3-pixel image border is ignored

because a full pixel mask is not obtainable there.

Training and validation sets are balanced in skin/non-skin classes, and made by

randomly selecting 800 skin and 800 non-skin pixels from each training and validation

image. A test set consists of all pixels from a single image (shown on Figure 3.48).

This results in two million training samples, one million validation and 470.000 test.

The method uses ELM with 147 linear and 1000 sigmoid neurons, runs for a maximum

of 15 splits in single or double precision with GPU acceleration (GTX Titan Black)

provided by an ELM toolbox [ABML15]. Experiment in single precision takes only

11 minutes to complete.

Skin predictions for different confidence levels are shown on Figure 3.49. It

works well by correctly predicting the skin even at a high confidence. The skin-

coloured floor is predicted as skin at lower confidence levels, but is excluded as con-

fidence threshold increases, which is an expected behaviour and confirms that the

method is working well. Recall for skin is good even at 99.5% confidence because

most of skin in a photo is predicted correctly.

The non-skin prediction is shown on Figure 3.50. It is apparently a much

harder task than skin prediction because non-skin has higher variety, and indeed the

photo has skin-toned background. Still the white dress and walls are predicted as

non-skin, with white color predicted as a highly confident non-skin.

The confidence level is an interesting thing to analyze. It starts from a his-

togram of σ values, shown on Figure 3.51. The histogram shows three different

146

regions in the value of σ: σ < 0.4, 0.4 < σ < 0.7 and σ > 0.7. Images corresponding

to those regions are presented on Figure 3.52. The most confident image (Figure 3.52,

left) clearly shows the skin, the non-skin walls at the back, and some of the yellow

floor which is indeed skin color. The average confidence image (Figure 3.52, cen-

ter) shows most of the floor and some hair. The least confident image (Figure 3.52,

right) presents edges of the skin, facial features (which are not labeled as skin in the

original dataset) and the rest of hair. The skin and face edges are predicted least con-

fidently (with the largest confidence interval), that confirms correct behavior of the

method and it’s ability to separate uniform high-confidence areas from low-confidence

transition regions.

Another interesting discovery emerges at ELM computed and solved in single-

precision, shown on Figure 3.53 (note that all the previous results are obtained with

double-precision ELM). Single-precision computations are much faster on GPU due

to GPU inner structure, and the availability of corresponding BLAS functions and

solvers. The predicted skin results are similar to double-precision ELM at 66% and

95% confidence levels, but single precision apparently is not enough to ensure 99.7%

confidence of the results. This behaviour was not predicted in the experiments, but it

illustrates the connection between the provided ”confidence interval” and the actual

confidence in the predicted results.

147

Estimated	2!	Intervals,	Small	Constant

16

x

y

Estimated	2!	Intervals,	Large	Constant

17

x

y

Figure 3.47: 95% confidence intervals on an artificial dataset with constant noise.

These intervals are larger towards the boundaries of prediction range, but the general

trend is observed well.

148

Figure 3.48: The original test image for skin pixels classification.

Figure 3.49: Predicted skin with 66%, 95%, 99.5% confidence.

149

Figure 3.50: Predicted non-skin with 66%, 95%, 99.5% confidence. Non-skin is harder

to detect due to its variety.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
sigma

Figure 3.51: Histogram of σ values, showing a separation in three regions: σ < 0.4,

0.4 < σ < 0.7 and σ > 0.7.

150

Figure 3.52: Images with transparency mask corresponding to different regions of σ:

σ < 0.4 (left), 0.4 < σ < 0.7 (center) and sigma < 0.7 (right).

Figure 3.53: Predicted skin with 66%, 95%, 99.5% confidence for single-precision

ELM. Single precision is not enough to provide highly confident predictions. This is

an interesting finding rather than an expected functionality.

151

CHAPTER 4
EXTREME LEARNING MACHINES FOR BIG DATA

Big Data is different from conventional Machine Learning or Data Mining in

the sense that the available data has the potential to become larger than can be

processed by simple tools, is more unstructured and heterogeneous in various aspects

(e.g., different sources, sampling rates, data types, reliability and precision, etc.) and

often has a crowd-sourcing aspect. Rather than defining Big Data by size (in, e.g.,

terabytes or petabytes), Big Data is defined here as data that require entirely novel

and specific evaluation procedures. The Machine Learning process must be revised

in order to place significantly more emphasis on investigating novel ways of data

cleansing, facilitating the transformation from raw, unstructured data to structured

data, aligning (temporal) data, data fusion, inferring missing data, and resolving

contradicting data.

Extreme Learning Machine is one of the best suited methods for dealing with

Big Data, because it immediately resolves the data size limitation. Only things need

to be addressed are an adjusted algorithms to satisfy limited computer memory con-

straints and a basic parallelization; and a data pre-processing which is very problem-

specific and is tuned to adapt for the particular demands of the task in question.

152

4.1 ELMs for Processing Big Data

Extreme Learning Machine is a good candidate method for solving Machine

Learning problems on Big Data, or large datasets in general. But an original ELM

faces multiple challenges when dealing with such tasks.

ELMs easily run out of memory for storing the matrix H with large number of

data samples and hidden neurons. Previously this problem was tackled by iteratively

updating the output weights. However, these methods are computationally slower

because they perform updates of large matrices for each data sample [vT15], or need

to calculate a solution repeatedly [HZDZ12].

This chapter introduces Big Data adaptations of an ELM model itself, as well

as the corresponding software and hardware tools to help addressing the Big Data

challenges.

4.1.1 Iterative Solution of ELMs

The original solution of an output layer equation in Extreme Learning Ma-

chines require a pseudo-inverse of matrix H[N×L] to solve Hβ = T matrix equation.

The size of H grows linearly with the number of training samples in a dataset, ex-

ceeding an available computer memory for very large or Big Data problems, and

restricting the use of accelerators with typically a relatively small amount of memory

compared to computer nodes in a cluster. Also, the pseudo-inverse H† is a computa-

tionally heavy operation, which takes a large amount of time to complete on a single

machine.

153

However, there exist an iterative batch solution of the same Hβ = T equation;

batch means that matrix H is processed by a single batch H̃[b×L] of arbitrary size

b < N at a time, iterating until the whole matrix H is used. The obtained solution β is

numerically equal to the pseudo-inverse solution and has the same complexity in terms

of O() notation. The memory requirements are reduced from NL to (L+ b)L and are

independent of the number of training data samples. Also, most of the computational

complexity (> 99% in large practical tasks) resides in the batch stage. This allows

an embarrassingly parallel [Fos95] implementation with a large theoretical speedup

allowed by Amdahl’s law [Amd67]. The final stage requires a simple summation of

batch results, followed by a solution with complexity O(L3) instead of O(NL2).

ELM Solution with Best Linear Unbiased Estimator

Iterative batch solution of ELM is derived from the best linear unbiased esti-

mator, that gives the optimal least squares solution to the matrix equation Xβ = T

for stochastic vectors x and t combined into the corresponding matrices. It uses two

theoretical correlation matrices

E[xTx] = Cxx, E[xT t] = Cxt (4.1)

which are assumed to be known. The best linear unbiased estimator of T,

denoted by Y, is then

Y = C−1xxCxtX = βX. (4.2)

The inverse of Cxx exists because x is a stochastic variable for which Cxx =

E[xTx] has a full rank.

154

The output layer problem of an ELM has a finite amount of projected data

samples H and corresponding targets T, so the correlation matrices are replaced by

their estimations

Cxx ≈ HTH = Ωh, Cxt ≈ HTT = Ωt, (4.3)

and the ELM output weights are computed from those estimates

β = (HTH)−1(HTT) = Ω−1h Ωt. (4.4)

The inverse of Ωh = HTH matrix exists if it has full rank. In ELM model, the

nonlinear random projection produces almost orthogonal features which are linearly

independent. If the number of hidden neurons (columns of H) is smaller than the

number of training samples (rows of H), then the rank of matrix H equals its number

of columns, thus matrix HTH = Ωh is full rank and its inverse exists. Otherwise,

an ELM requires some regularization to obtain a non-overfitted solution, which again

leads to a full rank of Ωh matrix.

Batch ELM Solution Complexity Analysis

The comparison of computational complexity and memory requirements for

the pseudo-inverse versus correlation matrices ELM solutions are presented in ta-

ble 4.1.

A memory requirement of a correlation ELM solution is constant for any num-

ber of training samples, because the correlation matrices Ωh and Ωt can be computed

for batches of training data. The batch computation replaces the number of samples

N in the memory requirements by a batch size. A good trade-off in terms of memory

155

Table 4.1: ELM computation and memory requirements; computations along the

dimension Ñ can be performed in parallel in L-size batches.

Operation Comp. complexity Memory

Projection to hidden layer

XN×d O(Ñd) O(Ñd)

HN×L = f(XW + b) O(ÑLd+ ÑL) O(ÑL)

Pseudo-inverse solution
AL×N = H† O(NL2 + L3) O(NL)

βL×c = AT O(ÑLc) O(ÑL+ Ñc)

Correlation matrices solution

AL×L = HTH O(ÑL2) O(L2)

BL×c = HTT O(ÑLc) O(Lc)
βL×c = A−1B O(L3 + L2c) O(L2 + 2Lc)

Comparison of solutions
β† = H†T O(NL2 + L3) O(NL)

βcorr = (HTH)−1(HTT) O(ÑL2 + L3) O(L2 + 2Lc)

requirement and computational overhead is achieved with a batch size equal to L. The

final Ωh and Ωt are computed from batches by a simple summation. The summation

operation adds no runtime overhead, because in software and hardware implemen-

tations, matrix multiplication and summation are performed in a single operation1:

gemm(A,B,C) = AB + C.

1http://www.netlib.org/blas/#_level_3

156

4.1.2 Accelerated ELM

In ELM implementation with best linear unbiased estimator, only the Ωh =

HTH and Ωt = HTT matrices need to be kept in memory — with sizes being in-

dependent of the number of data samples N . Furthermore, these matrices may be

computed in k separate batches, which reduces the memory requirement for storing

the H matrix k times.

H =

H1

...
Hk

 , Ωh = HTH = H1TH1 + . . .+ HkTHk. (4.5)

The batch computation of HTH is a simple matrix multiplication with rela-

tively low memory requirements and a high computational cost (constituting more

than 95% of runtime for an ELM with L > 10, 000), so this, along with HTT, are ideal

parts for GPU acceleration, which significantly reduces the total ELM computational

time. The output matrices are accumulated in the GPU memory, and the solution

of β from (HTH)β = (HTT) is also accelerated by GPU, although this operation

is fast anyway because of a very fast available solution for the symmetric positive

semi-definite matrices involved.

4.1.3 Parameters of Generated Random Weights

Sigmoid function is a common choice of a nonlinear transformation function

for hidden nodes of ELM. However, it is sensitive to the range of input weights, which

are XW + b. If inputs to the sigmoid function have small magnitude, it performs

similarly to linear function. If these inputs have very large magnitude, it performs as

a cutoff value. The effect can be seen by checking the difference between predictions of

157

SLFNs with the same weights and sigmoid/linear/threshold transformation functions.

If the input data has zero mean and unit variance, the range of inputs to SLFN is

governed by the range of weights W generated from W = N (0, s) with different

values of standard deviation s. The range of weights W also affects the performance.

The effects are shown on Figure 4.1.

Another issue is an increase in standard deviation of inputs to the transfor-

mation function, if the dataset has high dimensionality. For a single additive hidden

layer neuron, an input to the transformation function ak =
∑d

i=1 xiwi,k is a sum of

d components. If a single component has standard deviation s, then that sum has a

larger standard deviation
√
ds. This leads to larger magnitudes of inputs to a trans-

formation function and sub-optimal performance for large d, for example in MNIST

dataset (see Figure 4.2). The effect of large input dimensionality is fixed by dividing

the standard deviation s by
√
d, and generating weights as W = N (0, s/

√
d) (see

Figure 4.3).

158

0.001 0.01 0.1 1 10 100 1000
Standard deviation of random weights W

0

1

2

3

4

5

M
S
E
 d

if
fe

re
n
ce

sigm vs. linear
sigm vs. threshold

0.001 0.01 0.1 1 10 100 1000
Standard deviation of random weights W

0

5

10

15

20

25

C
la

ss
if
ic

a
ti

o
n
 e

rr
o
r,

 %

linear
threshold
sigmoidal

Figure 4.1: Mean squared error difference (top) of predictions of SLFNs with 5 hidden

neurons, and test error of SLFNs (bottom) with 25 hidden neurons, for different values

of s in W = N (0, s). For small s, outputs of sigmoid SLFN are similar to linear SLFN,

and for large s they are similar to threshold SLFN. The data is Iris dataset (average

over 100 runs) with 100 training and 50 test samples, balanced over the 3 classes.

159

0.001 0.01 0.1 1 10 100 1000
Standard deviation of random weights W

0

10

20

30

40

50

60

70

80

M
S
E
 d

if
fe

re
n
ce

sigm vs. linear
sigm vs. threshold

0.001 0.01 0.1 1 10 100 1000
Standard deviation of random weights W

10

12

14

16

18

20

C
la

ss
if
ic

a
ti

o
n
 e

rr
o
r,

 %

linear
threshold
sigmoidal

Figure 4.2: MSE difference (top) of predictions, and test error (bottom) of SLFNs

with 500 hidden neurons on MNIST dataset, for different values of s in W = N (0, s).

The data has 60000 training and 10000 test samples, results are averaged over 10

runs. Due to high dimensionality of inputs, the optimal value of s differs from 1.

160

0.001 0.01 0.1 1 10 100 1000
Standard deviation of random weights W

0

10

20

30

40

50

60

70

80

M
S
E
 d

if
fe

re
n
ce

sigm vs. linear
sigm vs. threshold

0.001 0.01 0.1 1 10 100 1000
Standard deviation of random weights W

10

12

14

16

18

20

C
la

ss
if
ic

a
ti

o
n
 e

rr
o
r,

 %

linear
threshold
sigmoidal

Figure 4.3: MSE difference (top) of predictions, and test error (bottom) of SLFNs

with 500 hidden neurons on MNIST dataset, for different values of s. Results are

averaged over 10 runs. With input dimensionality fix W = N (0, s/
√
d), the optimal

value of s is around 1 even for high dimensional data.

161

4.2 HP-ELM Toolbox for Big Data Processing

Prior to this work, there exists only two ELM toolboxes [LHSS06, vT15] of

all2 available can process a dataset larger than a given computer memory, and they

both implement a particular method rather than focus on overall ELM performance.

A GPU acceleration [vML+09, vMOL11] speeds up the computation significantly, but

there is no ready to use implementation before the proposed toolbox.

The purpose of developing and publishing a new high-performance ELM im-

plementation is to approach the vast field of Extreme Learning Machines from a

practical performance point of view, and to provide an efficient and easy toolbox,

which saves time of researchers and data analysts desiring to apply ELM to their

existing problems. An analysis of training methods is done in this piece of software,

to select the fastest, least bounded by memory, scalable and simplest way of train-

ing ELMs. An efficient implementation is created which suits even old machines of

low performance, and the software also handles Big Data on modern workstations

with accelerators. The proposed toolbox includes all major model structure selection

options and regularization methods, tools for Big Data pre-processing and parallel

computing. In the next two sections we explain theoretical and practical aspects of

the ELMs methodology. Section 4.2.2 explains the actual ELM toolbox, and sec-

tion 4.2.3 compares and discusses on the toolbox performance on various datasets,

including test sets of Big Data.

2http://www.ntu.edu.sg/home/egbhuang/elm_codes.html

162

4.2.1 ELMs in Practice

Data Normalization

Input data normalization is a critical preprocessing step for many Machine

Learning methods, including ELMs. Raw data often has features of different scales,

for example an age of a man is at a scale 1-100, and his annual salary in dollars

is 3 orders of magnitude larger. Without normalization, small relative variations in

the salary make large relative variations in the age negligible. Normalization sets all

features at the same scale. Then all features have the same influence, and the training

method learns which ones to use for the prediction.

In the ELM toolbox, weights can be given explicitly or generated automati-

cally. Automatic weights generation assumes that the data has zero mean and unit

variance. The generated weights keep the performance of neural network with sigmoid

neurons near the optimum, and compensate for large number of inputs. For the ex-

planation and experimental evaluation of the automatic random weights parameters,

refer to section 4.1.3.

Numerical Stability of an ELM Solution with Correlation Matrices

If numerical instabilities are faced in the inverse, a regularization term is ap-

plied to the correlation matrix Ωh = HTH + αI, where α is a small positive con-

stant. This approach is called Ridge Regression [HK70] aka. Tikhonov regulariza-

tion [Tik63]. A greater than zero parameter α reduces the effective number of variable

in the model, increasing the inverse stability but decreasing predictive power. The

163

default Ridge regression is used in all matrix inverse functions of Python (Numpy)

and Matlab R© with α = 50ε where ε is a machine precision constant.

Extreme Learning Machines also benefit greatly from model structure selec-

tion and regularization, which reduces possible negative effects of random initializa-

tion and over-fitting. The methods include L1 (see section 2.2) and L2 (section 2.3)

regularization, as well as other methods [YME+13] like handling imbalance classifi-

cation [ZHC13]. A reason to include these methods is that they are typically compu-

tationally intensive, and challenging to implement efficiently for Big Data.

Weighted Classification with ELMs

In a classification task with highly uneven number of data samples for different

classes, ELM predictions are biased towards the class with the most data. This

behaviour is improved by using a weighted linear system solution in the output layer

of an ELM [ZHC13]. A weighted linear system has a Least Squares solution similar

to the BLUE solution:

Ωh = HTAH, Ωt = HTAT, (4.6)

where A ∈ RN×N is an arbitrary weight matrix. If only sample weights are used,

the A matrix is diagonal; but these weights are complicated to obtain if they are not

given explicitly. In a classification task, diagonal elements of A for all samples of

class j ∈ J1, cK are given the same weight aj

aj =
N∑N
i=1 Tij

, j ∈ J1, cK. (4.7)

The solution of ELM obtained this way is unbiased for any class. An addi-

164

tional multiplication by A is avoided by applying weights
√
aj directly to the rows of

matrices H,T which correspond to the data samples of a class j.

Alternatively, the correlation matrices can be computed for each class sepa-

rately Ω1
h,Ω

1
t , . . . , Ωc

h,Ω
c
t . Then the weights are applied during the summation of

the correlation matrices Ωh and Ωt:

Ωh = α1Ω
1
h + . . .+ αcΩ

c
h, (4.8)

Ωt = α1Ω
1
t + . . .+ αcΩ

c
t . (4.9)

4.2.2 Toolbox Overview

The HP-ELM toolbox implements the state-of-the-art knowledge in ELMs and

high-performance programming. It is written to save the time of end users on creating

yet another implementation of ELM, which is better spent on their own research or

application area instead.

An ELM is a simple method which can be written in three lines in Matlab R©.

But performance of such ELMs is sub-optimal. ELMs achieve best accuracy with

parameter selection, regularization and pruning for small datasets, and best scalability

with out-of-memory accelerated processing on Big Data. The toolbox is written to

provide the best performing ELM implementation to all interested researches and end

users.

165

How to Get the Toolbox

The toolbox is a Python library, also available from Matlab R©. It is written in

Python programming language using efficient numerical libraries Numpy3 and Scipy4.

The toolbox requires Python and the following libraries: Numpy, Scipy, Num-

expr and pyTables5. The easiest way to get Python with all required libraries is to use

the Anaconda6 Python distribution. It is a one-click install on Windows/Linux/OSX,

free and provides free MKL acceleration to all university affiliates. Any other Python

installation will work as well.

To install the toolbox for CPU, open the console and type pip install hpelm.

This will download and install the toolbox with all required libraries. Anaconda pro-

vides a python console on Windows; Linux and OSX have built-in ones.

To obtain an accelerated toolbox, first download and install MAGMA7 math

library for your accelerator: Nvidia GPU with CUDA, AMD GPU with OpenCL

or Xeon Phi accelerator card (called MIC architecture). All versions of MAGMA

are available from the website; it also has a forum for installation support. To

build MAGMA, rename one of the make.inc.xxxx files as make.inc and edit that

file according to your system installation. Then install MAGMA by running make,

make shared and make install in console from MAGMA directory.

3http://www.numpy.org

4http://www.scipy.org

5http://www.pytables.org

6http://continuum.io/downloads

7http://icl.cs.utk.edu/magma/

166

Second, download the toolbox archive from its repository https://pypi.

python.org/pypi/hpelm or the latest version from Github8, extract it and go to

a sub-folder ./hpelm/acc. There is an accelerated code which must be compiled. To

get compilation flags, add your MAGMA library to pkg-config path, or use the same

flags as MAGMA used to compile its tutorial files during an installation. To com-

pile an accelerated ELM library, run python setup_gpu.py build_ext --inplace

replacing _gpu by _ocl for OpenCL MAGMA or _mic for Xeon Phi MAGMA. You

can test an acceleration by running pyhton try_gpu.py from the same folder. After

that, go to the root directory of the toolbox and install the now-accelerated toolbox

with python setup.py install.

Big Data Versus Small Data

Based on the number of training samples and underlying model complexity,

all Machine Learning tasks can be separated into two categories: big data and small

data. In the big data, the number of samples is enough to learn the model accurately

without over-fitting, but the training time is a limiting factor. For the small data,

there is not enough samples for learning an underlying model exactly, thus a model

structure selection is necessary to find an optimal model complexity.

Training a small data model is computationally intensive, but the whole data

is kept in the working memory for quick access. The big data training algorithm

relies on iterative processing of small chunks of data (which normally does not fit

8https://github.com/akusok/hpelm

167

into memory), but with a huge amount of training samples there is no need for a

model regularization (there is enough samples for a model to learn ignoring noise).

Processing a small data which does not fit into memory is not implemented, because

a typical server node has up to 256-512GB RAM, and anything large would certainly

be limited by the computational speed. A big data for an easy problem which fits

into memory is solved by either of the two first methods.

Out-of-memory Accelerated Big Data ELM

The HP-ELM toolbox for big data is provided by the hpelm.HPELM class. All

data is stored in HDF59 format. The toolbox takes names of HDF5 files as inputs

and outputs. Thus a size of processed data is limited only by a disk capacity.

The HDF5 file format provides a fast and convenient access to huge data

matrices on a hard drive as if they are in memory: data can be read from or written

to any place of a matrix. It also supports transparent data compression, and is native

to Matlab R©. A convention is used to store only one matrix in one HDF5 file, which

allows to avoid providing the path to a matrix inside an HDF5 file. Additional utility

functions make_hdf5 and normalize_hdf5 create HDF5 files from text/csv or matrix

data, and normalize these files.

The HPELM class supports a GPU or Xeon Phi acceleration. The accelerated

functions are provided by MAGMA library, an accelerated linear algebra library simi-

lar to LAPACK. It must be compiled by a user to get the acceleration, but it supports

9http://www.hdfgroup.org/HDF5/

168

any brands of GPUs and Xeon Phi accelerators. Accelerated parts are correlation ma-

trices computation from BLUE ELM solution, and the calculation of β. These two

operations take more than 95% of runtime for ELMs with very large numbers of

hidden neurons.

The ELM solution is computed iteratively by reading chunks of data from

HDF5 files. Only the Ωh, Ωt and β matrices are stored in memory. The large

H matrix is never obtained explicitly. Targets for new inputs are also predicted

iteratively and saved into an HDF5 file; and the error is computed iteratively. This

makes Big Data ELM independent of the number of samples in the dataset, so even

the largest problems can be solved on a workstation with GPU.

HPELM has one model structure selection function that tests different numbers

of hidden neurons on a validation set. It takes pre-computed Ωh, Ωt as an input,

and creates solutions βk for different k ∈ J3, LK spaced equally on a logarithmic

scale. Then the validation data is projected iteratively, and errors for all values of

k are computed from the same projected data. This function does the most time

consuming process of projecting the data (see section 4.2.3) only once. The optimal

number of hidden neurons is chosen by a minimum validation error.

Model Structure Selection for Small Data ELM

The small data support in the HP-ELM toolbox is provided by the hpelm.ELM

class. It has three types of model structure selection alternatives: with a validation

set, with cross-validation and with a LOO validation error computed by PRESS

169

statistics. All model structure selection methods find an optimal number of hidden

neurons less of equal than current L. Neurons are ordered randomly, except when the

L1 regularization is used. These methods remove the extra neurons from the model

and re-calculate the solution.

Both L1 and L2 regularization are available in ELM. The L1 regularization is

done by MRSR (section 2.2.2), a multi-output version of LARS [EHJT04]. It ranks

the neurons starting from the most relevant to the problem. All model structure

selection methods work better with such ranked neurons, with a trade-off of extra

runtime.

The toolbox includes another method of performing L1-regularization, based

on an updated MRSR algorithm [ST06]. The original MRSR includes a part with

O(2c) complexity w.r.t. number of outputs c. It takes noticeable runtime with 10

outputs, and makes the method impractically slow with more than 15 outputs. The

complexity of an updated version scales linearly with the number of outputs. It allows

L1 regularization for a larger set of problems, including an auto-encoder for ELMs in

image processing [HBKV15].

L2 regularization is a class parameter of ELM called alpha which can be

changed freely. A notable benefit from L2 regularization is making an ill-conditioned

ELM solvable. One can use any single-variable optimization method to find an opti-

mum value of alpha parameter.

What kind of data does HP-ELM support?

The ELM supports matrices (second order tensors) as inputs, and HPELM uses

170

names of HDF5 files as inputs. The utility function make_hdf5 creates an HDF5 file

from a matrix, or a text/csv file.

What about Classification?

The HP-ELM toolbox supports three kinds of classification: multi-class (one

correct class for each sample), multi-label (arbitrary number of correct classes for

each sample) and weighted multi-class (each class has a weight, it is independent

of the number of samples in a class). ELM targets must have one feature per class

(binary classification is a two-class multi-class classification), where the true class(es)

for a sample are set to one and irrelevant classes are set to zero. This convention

is required for correct work of the classification error and model structure selection.

Classification is set with an argument while training, see section 4.2.2 below.

How to create an ELM?

An ELM is an object of ELM or HPELM class. Two mandatory parameters

are numbers of input and output features. The HPELM also accepts a batch size for

iterative processing, and a type of accelerator.

An ELM is created without any neurons. Neurons are added with elm.add_neurons

function. It has two mandatory parameters: a number of neurons and their type, and

two optional ones: projection matrix W and bias vector b. Types of neurons are the

following: lin, sigm, tanh, rbf_l1, rbf_l2, rbf_linf. For RBF neurons, W are

coordinates of RBF centers and b are corresponding kernel widths. Multiple different

types of neurons can be added to a single ELM.

How to train an ELM?

171

The train function provides a universal wrapper for training an ELM. Two

mandatory parameters are data samples X and targets T, and optional arguments

and keyword arguments specify the selected way of training:

• "V" — perform a model structure selection using validation error; requires key-

word arguments Xv and Tv for validation dataset

• "CV" — perform a model structure selection using cross-validation error; optional

keyword argument k for number of data splits (k ≥ 3)

• "LOO" — perform a model structure selection using PRESS LOO error

• "OP" — perform L1 regularization that ranks neurons starting from the most

useful one; works with any model structure selection

• "c", "mc", "wc" — use classification multi-class/multi-label/weighted multi-class

error instead of MSE, see explanations above; "wc" requires keyword argument w

for class weights vector

How to train a large ELM in parallel?

For an ELM with a large number of neurons trained on a huge dataset, almost

all the running time is spent on computing Ωh. Hopefully, an operation of computing

Ωh is conveniently parallel: a large dataset can be split in n parts, matrices Ωi
h,Ω

i
t, i ∈

J1, nK computed simultaneously for all the parts of a dataset using the same ELM

parameters (loading the same ELM model). The results are combined together by a

simple summation Ωh =
∑n

i=1 Ωi
h, Ωt =

∑n
i=1 Ωi

t. The output weights β will take

seconds to compute.

To perform ELM training in parallel, first split the data into multiple parts

172

and store them in HDF5 format required by HPELM. Then compute partial matrices

Ωi
h,Ω

i
t using function HPELM._project on each data part separately. This operation

takes the most runtime, and is easy to run in parallel. Save the outputs on a disk as

they are computed. When all partial matrices are ready, obtain the final correlation

matrices by a summation Ωh =
∑

i Ω
i
h, Ωt =

∑
i Ω

i
t. The output weights β are

computed from Ωh,Ωt by function HPELM._solve_corr.

To validate multiple different numbers of hidden neurons efficiently, use func-

tion HPELM.train_hpv with pre-computed Ωh,Ωt and a validation data set. It out-

puts errors for each of the given numbers of neurons, and solves β for an optimal

number of neurons.

How to use a trained ELM?

The predict function takes inputs X and returns corresponding calculated

outputs Y. Works only on a trained ELM. For HPELM, the second input gives an

HDF5 file name for Y where the predicted outputs are written, and the function

returns nothing. ELM predictions Y are always real numbers, predicted classes are

found by taking the maximum number (multi-class) or a threshold Y > 0.5 (multi-

label).

How to get an error of an ELM?

Error of model predictions is given by error function of ELM, which takes

true targets T and predicted targets Y as inputs. It uses the same classification

settings as the ones used for training, if any. For HPELM, the error function takes file

names of HDF5 files containing T and Y matrices.

173

Three examples of HP-ELM toolbox

Below there are three examples of running the ELM and HPELM toolboxes in

Python, with the data obtained from Matlab R©. The input data has 9 features and

the output has one. Example ELMs using 100 sigmoid and 9 linear neurons are given.

If the data is already in Python, one can skip the import from Matlab R© section.

Matlab R© section for Examples 1 and 2. Here four variables: x, y, xtest and

ytest are saved as a comma separated values (.cvs files).

c svwr i t e (’ x . csv ’ , x)

c svwr i t e (’ t . csv ’ , y)

c svwr i t e (’ x t e s t . csv ’ , x t e s t)

c svwr i t e (’ t t e s t . csv ’ , y t e s t)

Example 1, Python part. Here the .csv files are converted to HDF5 ones in

Python, and an HPELM is trained with those files. Training and test errors are printed.

import hpelm

hpelm . make hdf5 (’ x . csv ’ , ’ x . h5 ’ , d e l im i t e r=’ , ’)

hpelm . make hdf5 (’ t . csv ’ , ’ t . h5 ’ , d e l im i t e r=’ , ’)

hpelm . make hdf5 (’ x t e s t . csv ’ , ’ x t e s t . h5 ’ , d e l im i t e r=’ , ’)

hpelm . make hdf5 (’ t t e s t . csv ’ , ’ t t e s t . h5 ’ , d e l im i t e r=’ , ’)

model=hpelm .HPELM(9 ,1)

model . add neurons (100 , ’ sigm ’)

model . add neurons (9 , ’ l i n ’)

model . t r a i n (’ x . h5 ’ , ’ t . h5 ’)

model . p r ed i c t (’ x . h5 ’ , ’ y . h5 ’)

print model . e r r o r (’ y . h5 ’ , ’ t . h5 ’)

174

model . p r ed i c t (’ x t e s t . h5 ’ , ’ y t e s t . h5 ’)

print model . e r r o r (’ y t e s t . h5 ’ , ’ t t e s t . h5 ’)

Example 2, Python part. Here the ELM model is trained with different model

structure selection. Previously created .csv files are loaded into Python and nor-

malized to zero mean and unit variance. Then a basic ELM is trained printing the

training and test error. After that a 10-fold cross-validation is used to reduce the

number of neurons, showing an updated test error and selected neurons in the model.

Finally the model is re-trained using an L1 regularization (OP parameter), showing

again re-calculated test error and model neurons.

import hpelm

import numpy

x=numpy . l oadtx t (’ x . csv ’ , d e l im i t e r=’ , ’)

t=numpy . l oadtx t (’ t . csv ’ , d e l im i t e r=’ , ’)

x t e s t=numpy . l oadtx t (’ x t e s t . csv ’ , d e l im i t e r=’ , ’)

t t e s t=numpy . l oadtx t (’ t t e s t . csv ’ , d e l im i t e r=’ , ’)

xx=(x−x .mean (0)) / x . std (0)

t t=(t−t . mean (0)) / t . s td (0)

xxte s t=(xtes t−x .mean (0)) / x . std (0)

t t t e s t =(t t e s t−t . mean (0)) / t . s td (0)

model=hpelm .ELM(9 ,1)

model . add neurons (100 , ’ sigm ’)

model . add neurons (9 , ’ l i n ’)

model . t r a i n (xx , t t)

t th=model . p r ed i c t (xx)

print model . e r r o r (tt , t th)

175

yyte s t=model . p r ed i c t (xx te s t)

print model . e r r o r (yytest , t t t e s t)

model . t r a i n (xx , tt , ’CV’ , k=10)

yyte s t=model . p r ed i c t (xx te s t)

print model . e r r o r (yytest , t t t e s t)

print str (model)

model . t r a i n (xx , tt , ’LOO’ , ’OP’)

yyte s t=model . p r ed i c t (xx te s t)

print model . e r r o r (yytest , t t t e s t)

print str (model)

Matlab R© section for Example 3. The training data: x and y is saved as HDF5

files using build-in Matlab R© functions. Note the transpose operation, as Matlab R©

uses Fortran matrix ordering by default for HDF5 files.

h5create (’ x . h5 ’ , ’ /data ’ , s i z e (x ’)) ;

h5create (’ t . h5 ’ , ’ /data ’ , s i z e (y ’)) ;

h5write (’ x . h5 ’ , ’ /data ’ , x ’) ;

h5write (’ t . h5 ’ , ’ /data ’ , y ’) ;

Python part for Example 3. An HPELM is built and trained using the HDF5

files created by Matlab R©.

import hpelm

model=hpelm .HPELM(9 ,1)

model . add neurons (100 , ’ sigm ’)

model . add neurons (9 , ’ l i n ’)

model . t r a i n (’ x . h5 ’ , ’ t . h5 ’)

model . p r ed i c t (’ x . h5 ’ , ’ y . h5 ’)

print model . e r r o r (’ y . h5 ’ , ’ t . h5 ’)

How to use Gaussian (RBF) Neurons?

176

The ELM toolbox has Gaussian neurons. Centroids are given instead of a

projection matrix W and kernel widths in a bias vector b. There are three kinds of

distance functions: L2 (Euclidean), L1 and L∞. They are chosen by a type of neurons:

rbf l2, rbf l1 or rbf linf correspondingly. The RBF neurons are about 10 times slower

to compute than sigmoid ones, even though the computation is parallelized.

My ELM solution does not exist!

An ELM may not converge if there are a few input features (2-3) with a large

number of hidden neurons, if the data features are strongly correlated and not inde-

pendent, or if the number of data samples is close to the number of hidden neurons.

In these cases, matrix Ωh will be almost singular, and it’s inverse is numerically

unstable.

The numerical stability problem is solved by increasing the value of the L2

regularization parameter α (an ELM parameter called alpha). The default value of

α = 10−9 can be increased up to 10−2 or higher. This reduces the effective number

of parameters in the model. The regularization parameter α should be increased if

the output matrix β has elements with a large magnitude (larger than 102 . . . 103).

However, it is not worthwhile increasing the parameter excessively, as this may reduce

the accuracy of ELM predictions.

177

4.2.3 Experiments

Datasets

The HP-ELM toolbox is tested in three scenarios: regular datasets with reg-

ularization, large datasets and a Big Data problem.

Small datasets are 11 regression and 4 classification problems from the Uni-

versity of California at Irvine (UCI) Machine Learning Repository [Lic13]. Ten dif-

ferent permutations of the datasets are taken without replacements, and for each of

them 2/3 of the data is used for training and 1/3 for testing. Comparison results

for Support Vector Machines [CL11] (SVM), Multilayer Perceptron [Bis06] (MLP),

Gaussian Processes [Ras04] (GP) are taken from the previous work [MSB+10]. Small

datasets are tested on ELMs with model structure selection and without.

Large datasets are 6 relatively large datasets, available from UCI Machine

Learning repository with clear prediction targets. They are Banana dataset of two

banana species, Adult dataset of people with annual income below/above $50,000,

MNIST handwritten digits dataset for classification of 10 digits based on their image

representation, Record Linkage dataset for detecting duplicate person records with 5.5

millions samples, and HIGGS dataset for detecting processes which produce a Higgs

boson or not, with 11 million samples (one of the largest UCI datasets available).

Each dataset is split into training and test parts (respecting the guidelines where

applicable), stored in HDF5 file format and normalized to zero mean and unit variance

for all features. Categorical features from Adult dataset are encoded as binary inputs

(one per each category); these are not normalized. Large datasets are tested without

178

model structure selection, but multiple ELMs are built with different numbers of

hidden neurons.

The Big Data is obtained from a Face/Skin Detection dataset [PBC05]. It

consists of 4000 photos of people with hand-made masks for skin and faces, under var-

ious lightning conditions, surrounding and human skin colors. Skin occupies roughly

20% of the pixels in all images. The dataset is separated into 2000 training and 2000

test images. The problem is to classify each image pixel to be a skin or a non-skin.

Dataset inputs are RGB color values of 7×7 pixel mask centered on a classified pixel.

The 3-pixel wide boundaries of images are omitted. There are 7× 7× 3(RGB) = 147

features and 109 (one billion) data samples in total. It gives a 1.1 TB dataset in HDF5

format when stored in double precision. Two separate datasets for all training and

all test samples are created from training/test images. Data features (color values

of pixels) are normalized to zero mean and unit variance. A single ELM is trained

with 19,000 neurons, limited by the available GPU memory. Performance is tested

on differently sized subsets of these 19,000 neurons, as explained in section 4.2.2.

In the following experiments, ELM is used with automatically generated weights

from W = N (0, s/
√
d). The input data is normalized to zero mean and unit variance.

Biases are initialized from N (0, 1).

Performance on Small Datasets

The performance results and runtime for regular size datasets are presented

on tables 4.2 and 4.3. The datasets are chosen similarly to those in section 2.2.4

179

for comparison purposes. Three ELM setups are tested using the toolbox: a basic

ELM (ELM), an ELM with pruning of hidden neurons (P-ELM) using a Leave-

One-Out error, and an OP-ELM (OP-ELM) which is an L1 regularized P-ELM.

They are initialized with 100 hidden neurons and sigmoid activation function. The

actual number of neurons in P-ELM and OP-ELM is smaller after pruning. In three

regression problems the pruning algorithm has selected > 95% of neurons, pointing

to an insufficient model complexity. For these tasks (denoted by an asterisk), the

number of neurons is increased to 500 where the pruning algorithm selects < 90% of

neurons on average; the accuracy and runtime for 500 L are reported. Experiments

are run on a single 2.6GHz core on a cluster for comparable runtimes.

The MSE and classification performance of the proposed HP-ELM toolbox is

consistent with the results of other methods. The basic ELM performs worse in some

cases (Auto Price), but P-ELM and OP-ELM results are comparable to the best

result between the other three methods.

Considering runtime, ELM is much faster than other methods, and this speedup

does not decrease the performance. A basic ELM is 6 orders of magnitude faster than

SVM in Computer regression problem and 5 orders of magnitude faster in Wisconsin

Breast Cancer classification problem, and it has better performance in both cases.

Performance on Large Datasets

Large datasets are classified with the toolbox on a workstation with 4-core

4GHz CPU and GTX Titan Black GPU. Additional experiments show runtime com-

180

Table 4.2: Mean Squared Error (bold) and runtime in seconds for the regression

datasets. Results denoted by ∗ are computed with 500 hidden neurons, as suggested

by pruning. All ELM results are from the new implementation.

Abalone Ailerons Elevators Computer Auto P. CPU

ELM 4.6 2.9e-8 2.1e-6 1.4e+1* 8.4e+9 6.8e+4
0.07 0.08 0.11 0.18 0.04 0.01

P-ELM 4.6 2.9e-8 2.1e-6 1.3e+1* 1.5e+7 9.5e+3
0.12 0.24 0.26 2.5 0.06 0.06

OP-ELM 4.6 2.9e-8 2.1e-6 1.4e+1* 1.5e+7 6.3e+3
1.2 1.2 1.2 8.9 0.80 0.78

SVM 4.5 1.3e-7 6.2e-6 1.2e+2 2.8e+7 6.5e+3
6.6e+4 4.2e+2 5.8e+2 3.2e+5 2.6e+2 3.2e+2

GP 4.5 2.7e-8 2.0e-6 7.7 2.0e+7 6.7e+3
9.5e+2 2.9e+3 6.5e+3 6.3e+3 2.9 3.2

MLP 4.6 2.7e-7 2.6e-6 9.8 2.2e+7 1.4e+4
2.1e+3 3.5e+3 3.5e+3 8.2e+3 7.3e+2 5.8e+2

Servo Breast C. Bank Stocks Boston

ELM 5.6 6.3e+3 1.1e-3* 1.1* 2.2e+1
0.02 0.03 0.10 0.02 0.06

P-ELM 7.3e-1 1.2e+3 1.1e-3* 8.1e-1* 2.1e+1
0.08 0.05 1.1 0.10 0.11

OP-ELM 7.9e-1 1.2e+3 1.1e-3* 7.8e-1* 2.3e+1
0.78 0.83 6.4 1.9 0.79

SVM 6.9e-1 1.2e+3 2.7e-2 5.1e-1 3.4e+1
1.3e+2 3.2e+2 1.6e+3 2.3e+3 8.5e+2

GP 4.8e-1 1.3e+3 8.7e-4 4.4e-1 1.1e+1
2.2 8.8 1.7e+3 4.1e+1 8.5

MLP 2.2e-1 1.5e+3 9.1e-4 8.8e-1 2.2e+1
5.2e+2 8.0e+2 2.7e+3 1.2e+3 8.2e+2

181

Table 4.3: Accuracy in % (bold) and runtime in seconds for the classification datasets.

Iris Wisconsin B.C. Pima I.D. Wine

ELM 92.6 96.7 71.8 90.0
3.4e-3 0.02 0.02 0.01

P-ELM 95.0 96.6 73.6 95.8
6.4e-3 0.12 0.09 0.07

OP-ELM 95.6 95.7 75.0 95.3
0.08 0.83 0.82 0.81

SVM 95.4 91.6 72.7 95.8
2.3e+2 2.9e+3 3.3e+3 3.8e2

GP 95.6 97.3 76.3 96.1
0.76 6.1 5.8 1.9

MLP 94.8 95.6 75.2 96.0
7.6e+2 1.7e+3 4.1e+2 1.2e+3

parison with a cluster node having two 8-core 2.6GHz CPUs, and with a Macbook

Air laptop having a 2-core 1.4GHz CPU.

Datasets is split into training and test sets, stored in HDF5 format. They are

processed by HPELM toolbox class on both CPU (up to 4096 hidden neurons) and

GPU (up to 19,000 hidden neurons, limited by the GPU memory). The classification

is done by a basic ELM model with sigmoid hidden neurons. Multiple models are

trained for different numbers of hidden neurons. Prediction performance on a test set

and training time are shown on Figure 4.4.

The results show fast training times even for the largest datasets with moderate

numbers of neurons. Only the largest ELM models surpass the 1 hour training time.

With low number of neurons, even HIGGS datasets is processed in a few seconds on

any hardware including the laptop.

182

16 32 64 128 256 512 1,000 2,000 4,000 8,000 19,000
Number of hidden neurons

0

10

20

30

40

 50

C
la

ss
if
ic

a
ti

o
n
 e

rr
o
r,

 %
 (

C
P
U

+
G

P
U

)

higgs
linkage (x0.001)
mnist
adult
banana

16 32 64 128 256 512 1,000 2,000 4,000 8,000 19,000
Number of hidden neurons

0.001s

0.01s

0.1s

1s

10s

1m

10m

1h

10h

R
u
n
ti

m
e
 o

n
 4

-c
o
re

 C
P
U

higgs
linkage
mnist
adult
banana

16 32 64 128 256 512 1,000 2,000 4,000 8,000 19,000
Number of hidden neurons

0.001s

0.01s

0.1s

1s

10s

1m

10m

1h

10h

R
u
n
ti

m
e

4-core CPU
2x8-core CPU
2-core laptop
4-core CPU + GPU

Figure 4.4: Test errors (top) and runtimes (center) on different hardware (bottom)

for large datasets, on logarithmic scale. Runtime on different hardware is shown for

two datasets only for image clarity. The 4-core CPU runs at 4 GHz, 2x8-core CPU

run at 2.6 GHz, a 2-core laptop CPU runs an 1.4 GHz and GPU is GTX Titan Black.

183

High computational power devices like GPU on multi-processor nodes speedup

ELM training with more than 1000 hidden neurons. This happens because operations

with small matrices cannot fully utilize those devices, thus the sequential performance

and disk access become limiting factors. With very high L, a speedup provided by the

GPU is roughly 5 times, which is consistent with the relative theoretical CPU:GPU

= 1:5 performance in double precision.

A low-power laptop performs surprisingly well in comparison with other hard-

ware. The maximum difference in runtime (vs. a GPU at L = 4096) is only 10 times.

For smaller numbers of neurons the runtime difference is even less. Thus a medium

size ELM model can be trained fast even on a common laptop with a low-power CPU.

Runtime Analysis of HPELM with MNIST Dataset

The runtime analysis of the HPELM implementation from the toolbox is done on

MNIST classification dataset. It has 60,000 training samples with 784 features, and 10

target classes. The training and test data is stored in HDF5 file format. Experiments

are performed using a basic ELM with small (64) and large (4096) numbers of sigmoid

hidden neurons. First, an ELM model is trained for each number of neurons. Second,

classes are predicted for the training data and a mis-classification error is computed.

The training data is used for prediction to obtain a comparable runtime.

The runtime for 3 different hardware setups is shown on Figure 4.5 (64 neurons)

and Figure 4.6 (4096 neurons). The runtime is obtained with a Python line profiler10

10https://pypi.python.org/pypi/line_profiler

184

0.0 0.2 0.4 0.6
Runtime, seconds

laptop

CPU

CPU+GPU

read
HDF5 XW f() HT H HT T β

(a) Training with 64 hidden neurons

0.0 0.2 0.4 0.6
Runtime, seconds

laptop

CPU

CPU+GPU

read
HDF5 XW f()

save
HDF5

read
HDF5

compute
error

(b) Prediction with 64 hidden neurons

Figure 4.5: Training (a) and prediction (b) runtimes of a basic ELM for MNIST

dataset with 64 neurons. ELM predictions are obtained on the same training dataset

for comparable runtimes.

185

tool. Processing steps with insignificant runtime are omitted; altogether they take

less than 1% of runtime.

For a small number of hidden neurons, the training takes only 0.2 seconds on

4-core CPU. The runtime is spent on loading, projecting the data and applying a

nonlinear function. The largest overhead is reading data from an HDF5 file, where a

laptop with a slow CPU spends half of the runtime. Applying a function has a larger

overhead on 4-core CPU because it starts in parallel on all cores. Also, there is a

small overhead for using a GPU to compute HTH. The useful work (XW, HTH and

f()) takes about a half of the runtime, which is normal for such short runtimes with

a universal toolbox.

With 4096 hidden neurons, > 98% of runtime is spent on actual computations.

File access time and other overheads are negligible. Computing the covariance matrix

HTH = Ωh takes the most of runtime during training. The time to compute Ωh is

reduced significantly by GPU acceleration. The prediction runtime on all devices

is completely dominated by the cost of projecting the input data into hidden layer,

which is not accelerated by the GPU.

Interestingly, computing weights β has an insignificant runtime when done

from correlation matrices Ωh and Ωt. Data read and write with HDF5 files is fast,

thus the HDF5 file format is used in HP-ELM. Also, an application of a nonlinear

function takes little time, which is noticeable only on slow hardware and small models.

The GPU in the current HP-ELM accelerates the computation of Ωh, Ωt and

β. It speeds up an ELM with large number of neurons (see Figure 4.6) because ELM

186

0 10 20 30 40 50
Runtime, seconds

laptop

CPU

CPU+GPU

read
HDF5 XW f() HT H HT T β

(a) Training with 4096 hidden neurons

0 10 20 30 40 50
Runtime, seconds

laptop

CPU

CPU+GPU

read
HDF5 XW f()

save
HDF5

read
HDF5

compute
error

(b) Prediction with 4096 hidden neurons

Figure 4.6: Training (a) and prediction (b) runtimes of a basic ELM for MNIST

dataset with 4096 neurons. ELM predictions are obtained on the same training

dataset for comparable runtimes.

187

computational complexity is cubic w.r.t. the number of neurons.

Overall, the runtime analysis shows high efficiency of the proposed toolbox.

The effective runtime starts at 50% with a small ELM and goes over 98% for larger

models. These computations are done by calling extremely well optimized BLAS ma-

trix subroutimes, which guarantee the smallest possible runtime. BLAS subroutimes

are called by Numpy Python library, which can use various implementations of BLAS

including open source ones.

Also the analysis clearly shows the part which requires acceleration in large

ELM mode: the computation of Ωh = HTH. It is combined with HTT and β in

a simple GPU-accelerated part, which however greatly benefits the training time of

larger ELMs (reducing it twice on Figure 4.6).

4.2.4 Big Data Processing and Performance

An example Big Data problem has 0.5 billion training samples in 147-dimensional

space. It is solved by training an ELM with 19,000 sigmoid hidden neurons. A

weighted classification is used to counter imbalance between the two target classes.

The computations are done by splitting the data into small parts with about 1 hour

of processing time each. This prevents the loss of data in case of computer failure,

and allows for parallelization.

The skin detection Big Data dataset sets two additional challenges to the ELM

model compared to large datasets. It requires a balanced classification as the amount

of data in the two classes is uneven (17% of skin and 83% of non-skin). It also requires

188

testing different numbers of neurons to find out whether 19,000 hidden neurons is

enough and if there is any over-fitting. The two aforementioned requirements become

challenges, because the training time with 0.5 billion training data samples is so

long that an ELM can be trained only once. More specifically, the matrix Ωh can

be computed once as it takes more than 99% of the runtime. The model structure

selection and class balancing must rely on one particular computed Ωh. Same holds

true for the matrix Ωt, but with only two outputs it’s much faster to compute.

An ELM is trained using one workstation with 4-core 4GHz CPU with GTX

Titian Black GPU (similar to Tesla K40). Due to GPU acceleration, it took 135

hours in total which is less than a week. Runtimes for other hardware are estimated

in Table 4.4. Without GPU acceleration, the processing time of Big Data problem

becomes prohibitively large — almost 2 months using a laptop.

Table 4.4: Training time of an ELM with 19,000 hidden neurons on 0,5 billion samples

with 147 features.

4-core CPU + GPU 4-core CPU laptop 2x8-core CPU

5d 15h ≈ 16d 4h ≈ 51d 2h ≈ 15d 5h

The final test accuracy with 19,000 hidden neurons is 86,46%, and the confu-

sion matrix is presented on Table 4.5.

Test accuracy for different numbers of neurons is computed from a single ma-

trix Ωh, as explained in section 4.2.2. 100 different numbers of neurons are tested,

189

Table 4.5: Test Confusion matrix for ELM with 19,000 neurons.

True class Predicted class
Non-skin Skin

Non-skin 374,840,727 66,107,142
Skin 9,626,072 108,786,059

spaced equally on a logarithmic scale from 3 to 19,000. For each number, ELM output

weights β are solved and a separate confusion matrix is computed. The classification

results for skin and non-skin from these confusion matrices are shown on Figure 4.7.

Getting this test accuracy plot took 60 hours: 13 hours to obtain hidden layer output

H, and 47 hours to compute confusion matrices for all the 100 different numbers on

hidden neurons.

The test accuracy plot shows very good results for skin pixels classification,

owing to a balanced classification method used. An ELM without class balancing

would be heavily biased towards predicting non-skin pixels, which are 83% of samples

in the dataset. The improvement of skin classification accuracy slows down past

128 hidden neurons, so a smaller ELM can be used for detecting skin. However,

the non-skin classification accuracy grows steadily up to the maximum number of

neurons. This can be explained by a higher variety of non-skin pixel masks than skin

ones. ELM does not overfit even with 19,000 neurons, although the performance gain

decreases at large numbers of hidden neurons.

190

4 8 16 32 64 128 256 512 102420484096 8192 19000
Number of neurons

55

60

65

70

75

80

85

90

95

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
,

%

Skin
Non-Skin

(a) Test classification accuracy.

128 256 512 1024 2048 4096 8192 19000
Number of neurons

91.0

91.2

91.4

91.6

91.8

92.0

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
,
%

Skin
Non-Skin

(b) Zoom on skin accuracy.

128 256 512 1024 2048 4096 8192 19000
Number of neurons

80

81

82

83

84

85

86

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy
,

%

Skin
Non-Skin

(c) Zoom on non-skin accuracy.

Figure 4.7: Test classification accuracy for skin and non-skin pixels. Model does not

overfit with 19,000 neurons. Note the logarithmic x axis.

191

4.3 Image Classification with ELM

Analyzing web content is one of the most basic tasks in the Big Data environ-

ment, which emerged with the first Internet search engines. Being able to describe

or classify a webpage is essential when returning relevant search results [FFPZ10],

finding similar pages [JB08], or blocking unwanted or dangerous websites [LHF02]

like phishing ones.

Traditional webpage analysis relies on text processing methods [JM09] (web-

page text body, address, keywords and links), but with the increase in bandwidth,

storage, and processing power, image data becomes omnipresent in webpages as an

expressive format easily understood by humans. A modern user will probably be

surprised at seeing a text-only webpage without any graphical elements.

Image data, while being an important source of information on the web, is not

easily analyzed due to its extreme variability and large amount of data compared to

text. Even if image understanding is too challenging today, a simpler task of multi-

class image classification can be addressed instead. Existing classification methods in-

clude target-specific algorithms [ZZWW04], which cannot be generalized to arbitrary

classification. Examples can be found in adult content detection methods based on

the amount of skin color in the image [MS10]. Other methods are very elaborate and

aim at image understanding with object extraction and recognition [CSH12, Vii12].

They are commonly present in annual competitions like PASCAL VOC [EGW+10]

or benchmark datasets like Caltech101 [FFP07]. They are also impractical due to a

complicated adaptation to other problems and there is a lack of ready-made toolboxes

192

as well as long training and running times.

This section challenges a greater goal of solving the web content filtering prob-

lem with the power of ELMs. This is an integral part of an automated Internet

security framework. Internet security is not new as a domain, but the need for its

automation has emerged quite recently. While computer networks are penetrating

into all parts of human activity, and the potential danger of their misuse rises, a de-

mand for capable safety measures remains high. Due to a large volume of information

produced every day (both content and malicious software), human experts are unable

to respond to every potential threat in time. One possibility to address this task is to

pre-process data automatically, giving machine decision for easy or well-known cases,

and leaving much lower number of cases for human analysis. This work addresses

dangers or inconveniences that web content of some kind may give to people, by cre-

ating a tunable web content filtering system. The work is done in collaboration with

F-Secure Corp.11.

Web content filtering is done by estimating whether a particular website be-

longs to one of the offensive classes, and blocking it if needed. The scientific part of

the method consists of a procedure to achieve a multi-label classification of websites,

based on a large volume of image data. The available dataset has 20 target classes

— 19 offensive ones, which reflect concepts like ”Hate” or ”Beer”, and a benign class

called ”Unknown”. A large dataset of URLs (web addresses) for these classes is pro-

vided by F-Secure Corp. A list of classes with the number of corresponding URLs is

11F-Secure http://www.f-secure.com/en/web/home_global/home

193

given in Figure 4.8.

0 20,000 40,000

unknown
wine

weapons
violence

sports betting
spirits

religion
racist groups
racism white

prescription drugs
occults

marijuana
jew related

dating
cults

cigars
cigarette

casino
beer

adult (216,446)

Figure 4.8: Details of the dataset of websites (black) and images (grey), provided by

F-Secure Corp. ”Adult” class is not shown at scale.

A typical approach for classification of webpages is text-based. This is done

indeed on the same set of URLs, but in the context of the given problem domain,

a text-based approach has several limitations. First, it performs poorly on websites

with little or no text. Such websites are commonly present in important categories like

194

”Adult”. Second, a text-based classifier is learned for one language. It requires adap-

tation to cover multiple languages, which is problematic as the number of languages

is high, and for many of them there is very little training data. An image-based clas-

sifier could overcome these difficulties by being invariant to the language of websites

and able to use training data from all languages altogether.

The image-based classification task belongs to the field of Big Data, with very

specific challenges. The first attribute of Big Data presented in the task is volume

— the dataset has 600,000 images which take 50 GB of disk space originally, and the

200,000,000 extracted image features take 200 GB in a database. Processing such

volumes cannot be done in a few minutes on a desktop computer like with small

sized datasets. A specific high performance database and tailored parallel processing

programs can handle the data. But they are slow and risky to develop, because

programming bugs and methodology errors are often found only after a few hours

of program execution. The available alternatives for classification methods are also

limited. In addition, the methods with the quadratic complexity with respect to a

number of data samples may not be feasible in this realm.

The second attribute of Big Data in the image-based websites classification is

variety, see examples on Figure 4.9. Interestingly, the image dataset has too much

and too little variety at the same time. Too much variety comes from the fact that

the correct class labels are known only for websites. An assumption is made that all

the images in a website have the same class label. This is obviously not always true,

as some images may be irrelevant to the class of a website. They are called semantic

195

noise. The proportion of semantic noise significantly varies per class: the ”Adult”

class has relatively low amount of irrelevant images, about 5%; and webpages of the

”Cults” class mostly contain relevant text and lots of irrelevant images, like avatars

of people chatting at forums, with a proportion of image semantic noise close to 70%.

But even aside of the semantic noise, images from abstract classes like ”Hate” are

very different from each other. A useful methodology must recognize similar images

in previously unseen websites to produce a decision about their class.

Figure 4.9: Randomly selected images related to alcohol from the dataset (provided

by F-Secure Corp.).

196

But there is also too little variety, because images from different URLs are far

from being unique and independent. Different pages of the same forum will have the

same images at a header and a footer; advertisements tend to repeat in websites on

the same topic. A number of webpages an individual opens per month is huge but

the amount of unique websites is usually limited; for example, one can browse tens of

news webpages daily from the same news web portal. Removing previously observed

images from a webpage will not work, because most of webpages then will be left with

one random image, or with no images at all.

This work takes the dataset of URLs as the ground truth about the Internet,

and considers different URLs to be different websites. It works with webpages, but

might not work with photos or benchmark datasets of unique images. This is the

third attribute of Big Data, called veracity. An interesting recent overview about Big

Data properties independent of the application area is found in [ZOT14].

Image understanding and machine vision are an active research frontier in Ma-

chine Learning. However very few problems are successfully solved so far. The next

section discusses about modern image classification, image retrieval and object recog-

nition methods. It describes typical approaches to image-based Machine Learning,

and highlights those which form the image processing core of the proposed website

classifier. Additional steps of methods for False Positives-optimized classification and

merging image predictions into website labels are discussed in section 4.3.1.

197

Related Work

Extracting semantic information from image data is currently an active re-

search frontier [DRS+13, OBLS14]. It includes topics like image classification, re-

trieval or segmentation, object detection in images, image labeling, and video pro-

cessing as well. Problems connected with image processing are hard to solve, partially

because most images are 2-dimensional projections of a 3-dimensional world, and suc-

cessful usage of images by humans is based on an extensive use of prior and context

knowledge.

The authors are aware of only two complex image-related tasks, which have

a satisfactory solution so far. One is a face detection method, which is found in

most modern smartphones and digital cameras. It is based on the Viola-Jones face

detector [VJ01], which scans an image with a sliding window at different scales. It

uses an ensemble of simple classifiers, selected and trained on a large dataset of

labeled faces. That sliding window, being a slow method in general, achieves extreme

speedup by using integral images [Cro84] with its simple classifiers, which allows for

a real-time performance even on relatively slow devices.

The second problem with an accurate solution available is traffic signs recog-

nition12. The approach is similar — an image is scanned with a sliding window of dif-

ferent sizes and shapes, and each window is processed separately by a neural network.

Without rolling sum trick, the performance is far from real-time even with accelerated

computations on GPU, but the method’s accuracy exceeds 99% [MTBG13].

12http://benchmark.ini.rub.de

198

Both these successful cases use the prior knowledge of objects they aim to find:

faces or road signs. Another interesting research classified 100,000 classes reasonably

fast [DRS+13], but again they represent typical objects mostly in a canonical view.

This will not hold for a general-purpose image classifier of object detector. One

well-known annual competition for general image-based classification and detection

methods is PASCAL VOC [EGW+10]. Other popular publicly available complex

image datasets include Caltech-101 [FFP07], Caltech-256 [GHP07], MIRFLICKR-

1M [HL08] and an 80 million tiny images [TFF08] dataset. The state-of-the-art

methods are found among the winners of PASCAL VOC [CSH12] or recent publication

on the other image datasets [BBD+12]; links can be found on corresponding websites.

The developed algorithms are large and complex (see [Vii12, BBD+12, DZ11]),

but most of them utilize the same basic building blocks — local image features (”lo-

cal features” or ”image features”). The idea is that useful information in image is

not distributed uniformly, and some parts (i.e. corners, see Figure 4.10) are more

important for image understanding than others (i.e. a uniform background).

The process of obtaining local image features involves two major steps: feature

detection and feature extraction. The detection phase finds potential informative re-

gions in an image. A good overview of image feature detectors is given in [TM08].

Feature detection phase can be skipped with dense image sampling, but this method

results in more local features, and not all of them are useful. Common feature de-

tection methods are Harris-Laplace [MS04] and Harris-Affine [MTS+05]; the former

method is both scale- and rotation-invariant. The latter is also affine-invariant, al-

199

Figure 4.10: Local image features: non-informative (left) and informative (right).

Informative features capture corners and junctions, while non-informative represent

lines or uniform image regions. An object (flashlight) is recoverable with informative

image features. This figure is from a human image understanding paper [Bie87].

though it detects less stable features across different images of the same scene.

In a feature extraction stage, pixel values of a found image patch are trans-

formed into a special fixed-size descriptor vector. Its major property is that two

such vectors calculated from two similar patches on different images (two patches

of the same object part, which look similar to humans, but may have very different

pixel values) lie close in the Euclidean space [Low04]. This property allows matching

descriptor vectors for detecting similar objects across images, for instance pedestri-

ans [MLS05, BMTG12]. Different methods of calculating descriptor vectors produce

features of various dimensionality, but in general it should be large enough for accurate

matching [BG09]. Descriptors are calculated for intensity maps, which are gray-scale

images in general; color descriptors are possible by concatenating particular descrip-

200

tors from intensity maps of colors in different color spaces [VGS10]. Common choices

of descriptors are different variants of SIFT [Low04, VGS10] and SURF [BETV08],

the latter is less precise but much faster. Modern development train descriptors with

Convolutional Neural Networks to obtain the state-of-the-art performance [OBLS14].

General image classification frameworks often use the approach to search over

image in order to produce confidence maps [CSH12]. This works well in class-specific

methods, like in a search for a naked body in the Adult images detection prob-

lem [MS10, WHY09]. Such methods often use a Bag-of-Visual-Words (BoVW) ap-

proach [BBD+12, SZ03, HKQ10], similar to Bag-of-Words in text processing [BNJ03].

The occurrence histogram produced by a BoVW method is useful for an SVM clas-

sifier with a histogram kernel [CHV99].

Table 4.6: Approaches to semantic image processing

Method Example application Limitations

Exhaustive search Face detection [VJ01] Well-defined objects
(sliding window) Road sign recogn. [MTBG13] to be searched

Deep 80 Million tiny images [TFF08] Image shows one object
representations 100,000 classes [DRS+13] in canonical view

Bag-of-visual-words Image classification [CSH12] ”Typical” objects
to build bag-of-words

A summary of current semantic image processing methods is presented in

table 4.6. The website classification task does not satisfy any limitations from the

summary. Thus a different approach is chosen. It is inspired by works on per-

201

feature analysis [CXWZ11], based on k-NN feature matching [AF10]. The idea is

that all parts of an image hold some class information. For all the parts of a test

image, similar parts of different training images can be found [BSI08], and the test

image class derived from classes of those training images. This uses an image-to-class

distance [CXWZ11], which is useful for learning with abstract non-uniform classes.

The next section introduces the proposed methodology for learning abstract

image classes from a large and noisy dataset. It uses color SIFT image features, and

a per-feature k-NN based image classification. Predicted image classes are merged

together for websites, as websites are the targets for classification in the imposed

problem.

4.3.1 Image-based Classification Methodology

Overview of the Methodology

The methodology (presented on Figure 4.11) is created from an idea of mean-

ingful local regions in images (as illustrated on Figure 4.10), some of which are relevant

to the classification problem [BSI08]. It starts by extracting all local feature descrip-

tors from training images and inheriting the class of their corresponding image. These

features define a class distribution in the descriptor space. The first step creates a

large set of classified local features (200,000,000 features for the proprietary dataset

from F-Secure Corp.).

Next, the created dataset is used for classifying feature descriptors of new

images. Classification is based on the Nearest Neighbor idea, i.e. that the class of a

202

Figure 4.11: Diagram of image classification process. Five major steps are given in

bold rectangles, with corresponding sub-steps depicted below. See explanation in the

text.

test feature is similar to the classes of its nearest neighbors. Calculation of the exact

nearest neighbor with 200,000,000 samples is infeasible. Thus a smaller representative

subset of training features is used to define the class distribution in the feature space.

Samples in this subset are called ”centroids” for convenience, in resemblance to the

centroids in k-means clustering. These centroids are classified once on a full training

set (which takes thousands of core-hours in the local computer cluster). Then the

several closest centroids are found for each test local feature, and the class description

of a test feature is derived from the classes of these centroids. Details are explained

203

in subsection 4.3.1.

With the classes of test local features, test images can be classified by a

general method like OP-ELM, a regularized variation of the Extreme Learning Ma-

chine [ZQSH05, HMZ+06] model. This method has only one parameter with a low

sensitivity to its exact value (the number of hidden neurons, which should be large

enough; an exact number is chosen by the Optimal Pruning procedure). OP-ELM

scales linearly with the number of training samples, and even for big problems the

runtime remains sufficiently short (order of hours) to validate the parameter. This

makes OP-ELM well suited for large-scale Machine Learning problems [vMOL11]. A

comparison with other common classification methods is provided in section 4.3.2.

The last step is the classification of websites. It is based on class predictions

of images on a website. Such predictions are not binary, but are continuous numbers

(one per each available class) where a higher value means higher class likelihood. An

assumption is made that only a few of available classes are correct for one website.

Prediction values for irrelevant classes are distributed normally, while predictions for

correct classes in images of that website are generated from another normal distri-

bution with a higher mean value. This hypothesis is tested by a paired t-test with

an adjustable threshold between the mean values of the two normal distributions,

and results in a multi-label website classification. An advantage of such method is

an ability to reject websites with not enough confidence. The rejection is important

for this particular problem, because low False Positives rate is preferred over a high

coverage in the given problem setup: missing an offensive website label sometimes

204

is acceptable, because the method is not perfect; but blocking a benign website can

force a user to remove the website filtering tool, which is an unwanted situation.

Obtaining Images from Websites

An input to the methodology is a single website URL (and a class of that

website for the training set). The data collection stage (Figure 4.11, 1a-1e) transforms

website image data into a uniform representation.

A website URL is searched for any files that have image extensions. The list

of useful extensions is taken from an image processing toolbox for Python language

(Python Image Library, PIL13), and includes .bmp, .dib, .dcx, .gif, .im, .jpg, .jpeg,

.jpe, .pcd, .pcx, .png, .pbm, .pgm, .ppm, .psd, .tif, .tiff, .xbm and .xpm.

Then any damaged or non-image files are deleted. Image files can be detected

by a file header, but this does not detect damaged images (created by errors during

download, incorrect encoding, or something else). An easy way of finding valid images

is to load image content from all files with a toolbox. If an error occurs at any stage,

the file is deleted as an invalid image.

Downloaded image content from a website often includes decoration elements

like lines or uniform background. They are unlikely to convey any class-relative

meaning, and can introduce class noise. Thus they are discarded in the methodology.

An empirical threshold on a minimum file size of a meaningful image is estimated by

manually browsing a large collection of downloaded images sorted by file size. This

13http://www.pythonware.com/products/pil/

205

threshold is fixed at 2400 bytes. Most image files smaller than 2400 bytes are either

decoration elements, or tiny previews of other images, and can be safely discarded.

Images of a huge resolution create another problem. One example was found

in a rasterized vector image with a size of 6400×6400 pixels. It contained many sharp

edges, and produced over 100,000 local features, significantly slowing down the whole

method without any benefits in accuracy of predictions. Thus an upper bound in the

longest edge is set for all images. The current system sets this bound to 500 pixels;

the value can be adjusted for smaller runtime or better performance, but not having

such value at all significantly slows down the method at some websites. Down-scaling

of images which exceed upper size boundary is done with an anti-aliasing algorithm,

keeping the original image proportions.

The final step of obtaining image data is to encode all images in the RGB

color space. This step is performed on all images, even the ones which are already

in RGB — because they often include an alpha channel, which makes them different

for the feature extractor. A low compression level is chosen for JPEG algorithm to

prevent an occurrence of visual artifacts.

An important remark is that although website images are pre-processed as

explained before, some of them will be irrelevant to the problem. These images form

semantic noise, which is empirically estimated to range from 5% for ”easy” classes

like Adult up to 70% for ”difficult” classes like Cults. In ”easy” classes, most infor-

mation is presented by picture and video content, which is a favorable case for an

image-based methodology. In ”difficult” classes, however, information is transferred

206

mostly in textual form. For instance, a major part of images from the Cults category

is formed by avatars of people who chat on forums. Such images don’t help much in

classification; but an abundance of textual information makes text-based classifiers

good complimentary methods for these areas. Highly variable quality of initial image

content is an unavoidable difficulty for image-based methods, that is why a rejec-

tion option for low-confidence predictions is added to final classifiers of the proposed

methodology.

Extraction of Local Image Features

Local image features are ”meaningful” or ”informative” regions of an im-

age [BETV08, Low99]. Think about about a picture of an airplane in the sky —

a patch of a uniform blue sky is not very informative, whereas a patch contain-

ing an airplane is. Local features usually contain corners, edges or strong changes

in color and contrast [TM08]. These features are specifically made to be invariant

to image transformations (scaling, rotation) and noise (for instance from different

image encodings). Thus they are useful for finding similar objects in different im-

ages [Low04, MS05, VS05]. These features can also be used for image classification,

by finding image patches similar to those from some particular classes [BSI08].

Harris-Laplace Image Feature Detector

Edge and corner detection in an image uses derivative (or gradient) of image

intensity map — pixel values of a gray-scale image. Edge detection is based on image

smoothing. A difference between an original image and a smoothed image will be

207

small at uniform areas and large at edges.

Corners provide better positions for local image features than just edges. The

word ”corners” here includes corners, junctions, occlusion boundaries and strong

texture — all areas with a high curvature. Corners are found by analyzing two

orthogonal pixel gradients. Small values of both gradients point to a uniform area,

and one large gradient points to an edge. If an edge changes its direction, the second

orthogonal gradient becomes non-zero at that pixel, pointing to a corner. Formally,

the two orthogonal gradients are given by eigenvalues of the second derivative matrix

around a pixel. Practically, there is a fast way of estimating only the magnitudes

of these gradients. The obtained number is called ”cornerness”, and the detected

corners are located at local maximums of the ”cornerness” across an image. This is

the Harris corner detector [TM08].

For finding an optimal size of each feature, the cornerness is estimated with

different size of image smoothing kernel (which is proportional to a size of local

features). The results are stacked in a 3-dimensional tensor, and the corners are found

as local maximums across the tensor. Two dimensions give the position of a feature

and the third one estimates the scale (a so-called ”characteristic scale”) [Lin98]. A

good overview of this and other feature detection methods is given in the following

summary paper [TM08].

The main benefit of the Harris-Laplace detector is that a large portion of

similar regions are found on images with the same scene but different resolutions and

noise levels [MS05] (for instance from different encoding). The detected regions are

208

still composed from very different pixel values, and an encoding method is required

for their comparison, which is invariant to noise and particular pixel brightness. One

such commonly used method, called SIFT (Scale-Invariant Feature Transform) is

described below.

SIFT Image Feature Descriptor

The Scale Invariant Feature Transform [Low99] is a local image feature de-

scriptor, based on histograms of oriented gradients (HOG) [DT05]. As its inputs,

SIFT takes position and size (scale) of a local feature. The image feature orientation

is defined as the orientation of an average gradient of that image patch.

The SIFT method starts by placing a 16× 16 regular square grid at an image

feature, aligned with that feature’s orientation. Then local gradients are calculated

for each cell of that grid, based from values of pixels inside the grid cells. Magnitudes

of those gradients are weighted with a Gaussian kernel to give more importance to

gradients near the center of the feature. Then these weighted gradients are accu-

mulated into 4 × 4 orientation histograms with 8 discrete orientations each. Values

of histograms are obtained as vectors by reading them counter-clockwise. Finally,

vectors for each histogram are concatenated to get the whole SIFT descriptor vector.

Its length is thus 16 histograms × 8 directions = 128 features. An example of SIFT

descriptor calculation is shown on Figure 4.12.

The original SIFT descriptor uses only image intensities, and is suitable for

gray-scale images. Color SIFT descriptors are obtained by concatenating particular

209

Figure 4.12: Example of SIFT descriptor calculation; reduced dimensionality is used

for better visibility. First, local gradients are obtained for each cell of 8 × 8 grid

(16× 16 in full SIFT). These gradients are weighted with a Gaussian kernel, denoted

by a circle. Then an oriented histogram is calculated on 2 × 2 grid (4 × 4 in full

SIFT); a length of each arrow in a histogram equal to the sum of gradients in the same

direction. Finally, histogram values are read counter-clockwise and concatenated into

a SIFT descriptor.

SIFT vectors for each color in some color space. Recent surveys [BG09, VGS10]

suggest that a weighted opponent color space (cSIFT descriptor) is a good choice.

This type of image feature descriptor is used in the methodology.

The next two subsections introduce the method of utilizing cSIFT image de-

scriptor for image classification. It is based on the k-Nearest Neighbor classification

of image descriptors, so that a test image is compared to whole training classes, not

210

on an image-per-image basis.

Nearest Neighbor Classification of Local Features

A major assumption behind the proposed image-based classifier is that local

image features convey class-related meaning. That is, there is a distribution of image

classes in the local feature space (384-dimensional space for cSIFT features). This

distribution can be estimated, and allows for the classification of local features of a

test image.

A suitable method of estimating the class distribution is k-Nearest Neighbors

(k-NN). For each local feature of a test image, the k closest features from the training

set are found using a space metric (Lp norm is a common choice, with p = 1 or

p = 2). An estimated class of a test feature is obtained by, for instance, a majority

vote between classes of k closest training features.

Unfortunately, an exact k-NN method is infeasible with the amount of features

in the training set (200,000,000 for F-Secure dataset). The feature dimensionality of

384 makes approximate nearest neighbor computations ineffective as well [WSB98].

Thus a reduced version of k-NN method is used, where all features of the training

set are represented by their smaller representative subset. Samples of that subset are

called centroids, as they are often found as centroids of a k-means clustering algorithm

with a large number of clusters. These centroids with corresponding classes store the

information about class distribution in the local feature space. In practice, centroids

can be selected randomly from a dataset. The effect of k-means versus random

211

selection, and the optimal number of centroids are discussed in the Experiments

section 4.3.2.

Given a smaller set of centroids, it is feasible to find the closest k centroids of

each class for each local feature of a test image, with corresponding distances. Then

for each class, distances to the closest centroids are pooled together for all the local

features of an image. Three parameters are extracted per class: the smallest distance,

the average distance and the standard deviation of all distances. It produces 20 classes

× 3 parameters = 60 numbers. These 60 numbers create an image representation

vector, which has the same dimensionality for images of any shape and with any

number of local features. Feature vectors of images are used in general purpose OP-

ELM classifiers, as explained in the next section.

Combining Image Predictions to Website

The previous step provides labels for particular local features, and image labels

can be inferred from them by a simple majority vote. But such approach disregards

possible interactions between classes, and the effect of an uneven number of training

samples per class. Also, an increased tolerance against the False Positive predictions

is desired for the specific problem, even at the cost of decreased coverage. All these

constraints are satisfied by a general classifier algorithm. The algorithm of choice is

an OP-ELM.

The OP-ELM classifier provides predictions for single images. For website

classification, these predictions are combined together. Another goal is a multi-label

212

website classification, because the target labels are not mutually exclusive — for

instance, the same website can belong to ”Spirits” and ”Cigarette” classes.

The combination uses the fact that most of the 20 classes will be negative

for a given website. The image classifier can predict all negative classes (if website

images are non-informative), or one or more classes can be predicted as positive.

Per-image prediction of a positive class may vary, and will always have the highest

confidence (ELM output) value. However, among all the website images, predictions

for a positive class have a significantly higher average value than predictions for a

negative class. This significance level is evaluated formally with a t-test.

An example is shown on Figure 4.13. The top left frame shows classifier

outputs for a website with 5 images, and 3 possible classes. The exact output values

incorporate some randomness. Thus a normal distribution can be fit to them, as on

a top right frame. If one class is positive, then a normal distribution fitted to that

class will have significantly higher mean than a normal distribution fitted to all other

classes, as on a bottom right frame. The bottom left frame shows a fitted distribution

of a negative class, which does not have a significantly higher mean value.

The t-test makes a parametric website classifier, because minimum thresholds

between the global mean and particular class means must be found for the multi-

label classification task. It can be implemented as another generic classifier, which

uses mean and standard deviation of samples of each class as inputs. One additional

useful input is the number of images in a website, which gives 41 input features in

total. Using mean and standard deviation values imply the normality of data distri-

213

-1 0 1

OP-ELM outputs for 3 classes

-1 0 1

average of all classes

-1 0 1

blue class vs. others

-1 0 1

red class vs. others

Figure 4.13: An example of a multi-label website classification using t-tests. A website

has 5 images and 3 classes (red, green and blue). Top left : the original classifier

outputs for all images and all classes (a small vertical variation is added for visibility).

Top right : all outputs together can be approximated by a single Gaussian distribution.

Bottom left : an example of a positive class (blue) for a website - a normal distribution

fitted to the blue samples has significantly higher mean than a normal distribution

fitted to all except blue samples. Bottom right : an example of a negative class (red)

for a website.

214

bution, and gives a similar method to t-test; but all inner parameters are evaluated

automatically from the training set. For a multi-label classification, only threshold

on the final classifier outputs is to be evaluated; and for a simpler multi-class clas-

sification there are no parameters at all, because the largest output is taken as the

predicted class. Such simplified multi-class classifier is used in the experiments.

4.3.2 Experiments

Selecting a Number of Centroids

An image classifier is based on a class distribution in the local feature space.

Due to infeasibility of an exact k-NN, only a subset of all training local features is

used; samples in this subset are called centroids. Centroids can be selected randomly,

or taken as centroids of k-means clustering with a high number of clusters. Centroids

need to have a class; this can be a class of an image they are taken from (for random

centroids), or it is selected with a majority vote among k-Nearest Neighbors from

training local features. A comparison between random and k-means centroids, with

different centroids classification methods, is given on Figure 4.14. For the experiment,

images from the Caltech-101 dataset are used because classes of Caltech are well-

defined and certain.

As Figure 4.14 shows, local feature classification performance grows for both

training and validation set as the number of centroids increases. It is probably limited

by an exact Nearest Neighbor approach, which is computationally infeasible except for

toy data. Among centroids selection method, k-means outperforms random selection

215

0 4,000 8,000 12,000 16,000
Number of centroids

6

8

10

12

14

16

18
A
cc
u
ra
cy
 i
n
 %

 (
v
a
lid

a
ti
o
n
 s
e
t)

original class
k=1
k=3
k=21
k=51
k=101
k=201

Figure 4.14: Classification accuracy of each local image feature for a validation set,

using 1-NN on a set of centroids. Solid lines correspond to randomly chosen centroids,

dashed lines to centroids obtained by a k-means algorithm (initialized by the same

randomly chosen centroids). Dark blue label correspond to original class of local

features, which are chosen to be centroids. Other colors correspond to centroids,

classes of whose are obtained by the majority vote between k-NN on all local features

from the training set, values of k shown on the legend. The dataset used is 20 classes

of Caltech-101 with 5 images for training and validation, around 53,000 training local

features in total.

216

on the training set, but on a validation set the accuracy with k-means grows slower for

large numbers of centroids. Taking into account a significant computational cost of

obtaining k-means centroids even on the given toy example with 53,000 training local

features (not to mention the 200,000,000 local features of the realistic web images

dataset), the random sampling centroids selection method is chosen.

The best method for centroids classification also depends on the experiment

scale. At less than 4,000 centroids, re-calculating the class of centroids with a majority

vote between k-NN of a training set improves accuracy. Larger values of k (k = 201

on the figure) provide better accuracy than smaller values (k = 3 or k = 1). This ap-

proach is often used in conjunction with Bag-of-Visual-Words and SVM classification

in the literature [BBD+12]. However, the best classification accuracy is reached with

a high number of randomly selected centroids, using original classes of corresponding

local features. The original centroids’ classes and a high number of randomly chosen

centroids are therefore used in the experiments.

Classification Results

The experiments are performed on a large dataset of images and websites,

provided by F-Secure Corp., with 20 target classes (19 offensive and one benign,

called ”Unknown”). For training and validation datasets, websites with all of their

images are chosen randomly (without repetitions) and added to a training dataset

until it has 10,000 images per class, and a validation dataset until it has 5,000 images

per class. For classes with less than 15,000 images, 2/3 of websites are taken for

217

training and 1/3 for validation. The total size of a training dataset is 190,600 images

and a validation is 96,000 images.

For the final website classification, only websites with at least 3 images are

retained. This gives 14,000 training websites and 7,200 test websites. Ten training/-

validation datasets are created with this method (which is similar to a Monte-Carlo

cross-validation), and averaged results of ten experiments are reported.

Centroids are selected randomly from the available image descriptors. There

are 220 centroids in total, with equal amounts from each class (roughly 53,000 per

class). Prediction accuracy is tested with different amounts of centroids, and a smaller

set of centroids is always a subset of a larger one. The maximum number of centroids

220 is limited by the computational complexity of processing the dataset (more than

10,000 core × hours for the given number of centroids), and the practical limitation

on runtime for website class predictions at F-Secure Corp. (target runtime is less

than one minute per website).

The final results for image and website classification are presented on Fig-

ure 4.15. Classification performance grows steadily as the number of centroids in-

creases, possibly reaching the maximum with an exact k-NN (all training local fea-

tures are centroids). The benign class is especially hard to predict, because it includes

all possible images (except for the other 19 offensive classes) and has a high intro-

class variability. Mis-predicting a benign website as an offensive is effectively a False

Positive in the website classification methodology, because it will deny access to a

good website and can make a user unhappy about the website filtering tool.

218

102 103 104 105 106

Number of centroids

20

40

60

80

100

A
cc
u
ra
cy
 i
n
 %

Images and website classification performance

websites
images
benign class

Figure 4.15: Website, image and benign website classification accuracy for the F-

Secure Corp. dataset. The number of centroids is given on a logarithmic scale, from

256 to 220. Images and websites accuracy is averaged over all 20 classes; results are

for validation. Random guessing accuracy is 5%.

Comparison with Other Classification Methods

An OP-ELM two-stage classifier is compared with other commonly used clas-

sification methods: SVM, linear model, ELM, RBF-ELM (a Radial Basis Function

network) and a Multilayer Perceptron (MLP). Results are shown for the largest num-

ber of centroids, which corresponds to the rightmost part of Figure 4.15. All the

methods are run on a whole training dataset except SVM, which is run on 1/10 of the

219

dataset due to computational complexity constraints (this is the only method of the

aforementioned with the quadratic complexity with respect to the number of training

samples). The results for image and website classification are shown on Figure 4.16.

A bad performance of SVM can be explained by a smaller amount of training

data. The training time of a linear method is 5 seconds, ELM and RBF-ELM methods

— 30 seconds, OP-ELM — 3 minutes, SVM and MLP — 30 minutes. Difference

between all the classification methods is within 1% because most of the classification

information is obtained during the k-NN stage, and the final classification stage is

an easy problem where a sophisticated method cannot get a significant advantage.

OP-ELM and MLP classifiers perform similarly well, but OP-ELM is ten times faster

in training, thus it is used through the rest of the chapter.

Runtime

The methodology includes three main parts: feature extraction, reduced k-NN

classification of descriptors, and two OP-ELMs for image and website classification.

• Feature extraction (image pre-processing, detection of local image features and

calculation of SIFT descriptors) takes 0.5-5 seconds per image. This part is done

in parallel on a cluster with 2,000 cores in several hours.

• Reduced k-NN classification runtime is dominated by distance calculation. An

average image has 300 descriptors with 384 features, and there are 1,050,000

centroids. Computing 300×1,050,000 distances takes 155 seconds with single

core, 17 seconds with optimized C code running in parallel on an i7 CPU, or 6

220

SVM linear ELM RBF-ELM OP-ELM MLP

81.5

82.5

83.5
A
cc

u
ra

cy
 i
n
 %

Image classification performance

linear ELM RBF-ELM OP-ELM MLP

96.0

96.5

97.0

A
cc

u
ra

cy
 i
n
 %

Website classification performance

Figure 4.16: Image and website classification results using different methods combined

with the k-NN local features classifier. SVM uses only 1/10 of the dataset due to

training time limitations, and is not applied to website classification because of a bad

performance.

221

seconds with an OpenCL code running on Iris Pro 5200 integrated GPU. The k

closest centroids are found by a partial sorting algorithm with a 1 second runtime

on an i7 CPU (see partition() function in numpy Python module). All these

computations are also done in parallel with a fixed set of centroids, which took 5

days on a cluster with 2,000 cores.

• The two OP-ELM have insignificant runtime, an order of milliseconds. Training

an OP-ELM for image classification with the whole image dataset takes 3 minutes

on an i7 CPU, if there is enough memory.

The computations can be accelerated with GPUs. But this requires using non-

free libraries for SIFT descriptors (or re-implementing a complicated algorithm), also

an efficient partial sorting algorithm is non-trivial to implement on a GPU. GPU ac-

celeration will work well for testing new websites if end-to-end runtime is important,

but for the training set a large computer cluster provides higher throughput (an aver-

age number of processed images per minute) with a lower programming complexity.

222

4.4 Malware Detection with ELM

Classification problems typically involve putting in relation certain knowledge,

in the form of a data matrix, with a discretized output, with the goal of maximizing

accuracy, e.g. Despite the existence of many possible classification techniques, very

few put an emphasis on the matter of decision making under constraints in non-

Euclidean space (in which the data matrix lies).

Cognitive computation is a challenging research topic which focuses on solving

problems related to recognition, perception, as well as learning and decision making.

The interest in this paper is in using a cognitive-based technique, the Extreme Learn-

ing Machine, in the context of learning and decision making under a very specific set

of constraints, in a nominal data space problem. The reason for this choice lies in the

need for a human cognitive ability, that of not providing an actual decision: The very

nature of the classification task studied in this paper calls for a model that is able to

simply say ”I do not know” in situations where a False Positive or Negative is likely

to happen. This paper thus focuses on a classification problem in a non-Euclidean

data space, with the constraints of zero False Positives, high coverage as well as the

smallest computational time possible.

Classification problems relying solely on the distances between the different

samples are common in genetics [Lel93], or syntactic and document resemblance prob-

lems [BGMZ97, Bro97]. The reason for the direct use of the distance matrix in these

setups is that the original data does not lie in a Euclidean space, but is usually nom-

inal data, i.e. without any sense of ordering between two different values. As such,

223

distance matrices need to be calculated using non-Euclidean metrics, usually.

While the high coverage constraint is rather typical (achieving the highest

True Positive and True Negative rates possible), the zero False Positive constraint

is not. In addition, the False Negatives are not regarded as very important in this

problem setup: even if lowering False Negatives means increasing the coverage, the

most highly regarded requirement is on the False Positives. In this regard, the ability

of the cognitive model making the final decision to state that the uncertainty in said

decision is too great is paramount.

As mentioned, the fact that the data is nominal makes it mandatory to use

methods which directly deal with the distance matrix. A means of computing this

distance matrix is first described, by the use of an approximation technique based on

Min-Wise independent hash function families.

The following section 4.4.1 describes a very specific application of this proposed

methodology to Malware detection for computer security. This application is exactly

framed by the previously mentioned constraints. In addition, this application provides

experimental data on which the proposed methodology is tested in section 4.4.3.

Section 4.4.2 describes first the matter of calculating distances between samples and

then how the use of the Jaccard distance remains possible with the low-computational

time imperative, by estimating it using Locality Sensitive Hashing. A 1-Nearest

Neighbor classifier is then proposed as a first step and its shortcomings listed, while

section 4.4.3 details the complete two-step methodology which addresses these issues

using a combination of the distance based K-Nearest Neighbours and cognitive-based

224

Extreme Learning Machine, along with the experimental results.

4.4.1 A Specific Application

The goal of Anomaly Detection in the context of computer intrusion detec-

tion [RRZ+09] is to identify abnormal behavior — defined as deviating from what

is considered “normal” behavior — and signal the anomaly in order to take appro-

priate measures: identification of the anomaly source, shutdown/closing of sensitive

information or software. . .

Most current anomaly detection systems rely on sets of heuristics or rules to

identify this abnormality. Such rules and heuristics enable some flexibility on the

detection of new anomalies, but still require action from the expert to tune the rules

according to the new situation and the potential new anomalies identified. One ideal

goal is then to have a global system capable of “learning” what constitutes normal and

abnormal behavior and therefore be able to identify reliably new anomalies [SG10,

BOA+07]. In such a context, the only human interaction required is the monitoring

of the system, to ensure that the learning phase happened properly.

A small part of the whole anomaly detection problem is studied in this paper,

in the form of a binary classification problem for malware and clean samples. While

the output of this problem is quite typical, the input is not. In order to compare files

together and compute a similarity between them, a set of features is needed. F-Secure

Corporation devised such a set of features [F-S06], based partly on sandbox execution

(virtual environment for a sample execution [WHF07, YHOM10]). This sandbox is

225

capable of providing a wide variety of behavioral information (events), which as a

whole can be divided into two main categories: hardware-specific or OS-specific.

The hardware-specific information is related to the low-level, mostly CPU-specific,

events occurring during execution of the application being analyzed in the virtual

environment (up to the CPU instruction flow tracing). The other category mostly

relates to the events caused by interaction of the application with the virtual OS (the

sandbox). This category includes information such as General Thread/Process events

(e.g. Start/Stop/Switching), API call events, specific events like Structure Exception

Handling, system module loading etc. Besides, the sandbox can provide (upon user

request) some other information about application execution, like reaching pre-set

breakpoints, detecting behavioral patterns, which are not typical for traditional well-

written benign applications (e.g., so-called anti-emulation and anti-debugging tricks),

etc.

The sandbox features used in the following research are thus the dynamic

component of the collected features. Dynamic features in this context refer to those

gathered from the Sandbox while an inspected application was executed in it. Some

examples of those are what API calls were called and with what parameters, various

types of memory and code fingerprints. Static features refer to some of the features

gathered from the executable binary itself without actually executing it. Some ex-

amples of those are what packer it was compressed with and various code and data

fingerprints. There are 15 features from the static domain and as many from the

dynamic domain, containing up to tens of thousands of values each. Each of these

226

Static Features

Feature set

Sample
Dynamic
Features

Sandbox

Figure 4.17: Feature extraction from a file (sample): The sandbox runs the sample in a

virtual environment and extracts dynamic (run-time specific) information; meanwhile

a set of static features are extracted and both sets are combined in the whole feature

set.

features can be present or absent for one sample (e.g. if the sample studied does not

perform some classical operations in the sandbox, some features do not get activated).

As such, the input data obtained per sample usually consists of tens of thousands of

values for each feature number. The feature values are represented by CRC64 hashes.

One of the major challenges is related to this data size: Each sample hav-

ing some tens of thousands (on average) of feature-value pairs (at most 30 features

per sample, with thousands of values per feature for one sample), sample to sample

comparisons are non-trivial computationally speaking. Also, due to the nature of the

data, measuring similarities between files requires specific metrics that can be applied

to nominal data (i.e. with no sense of order between values, as opposed to ordinal

data). Indeed, since the actual feature values are encoded as hashes (and represent

227

function strings and series of arguments, parameters. . .), classical measures used in

Euclidean spaces do not apply. The Jaccard similarity enables such comparisons and

is detailed in section 4.4.2, with the computational challenges it poses.

In addition to this specificity of the data, the requirements on the performance

of the classifier are particular as well. As a security company, F-Secure Corporation

needs to have very low false positives on any anomaly detection system deployed: If a

clean file is labeled as a malware (i.e. is a false positive), it is likely that several clients

will see this same error deployed on their machines as well. This single mistake will

potentially hinder seriously the work on all the affected machines, making the clients

unhappy about the product and thus deactivating it or switching to a concurrent one.

Therefore, while typical binary classification problems addressed by Machine Learning

focus on optimizing the accuracy, one of the goals of the methodology presented in

this paper is to lower the false positives to achieve 0, at the obvious cost of lowered

coverage. The ability of the cognitive model ELM making the final decision to give

the ”I do not know” decision is what enables the whole methodology to have control

over said false positives and coverage. To clarify notations, table 4.7 summarizes the

confusion matrix used in this paper.

Table 4.7: Confusion Matrix for this binary classification problem.

Actual
Malware Clean

Prediction
Malware True Positive (TP) False Positive (FP)

Clean False Negative (FN) True Negative (TN)

228

Some additional practical constraint also makes this problem particular. Since

the goal is the identification and classification of new malware samples, there is an

imperative on the time it takes to have a decision per sample: The fastest an answer

is provided, the quicker will be the deployment of the information concerning a new

sample, possibly preventing infection at many other sites. As such, computational

times need to be reduced as much as possible.

4.4.2 Problem Description

This section first describes the problem in terms of the nature of the data at

hand, and a way to calculate distances between files, using this very data. The matter

of the computational requirements for such calculations are addressed by an approx-

imation based on Min-Wise independent families of hash functions. The parameters

of this approximation are then determined and its effects investigated.

Data Specifics

Distances in a traditional Euclidean sense are usually calculated for points

which have a set of coordinates to locate them in the space. Having a data set con-

sisting of multiple hashes with different hashes representing incomparable properties

or attributes, makes that data effectively categorical, and does not allow to calculate

distances in a classical manner. The specifics and origin of the data set used in this

paper are confidential as the data is provided by F-Secure Corporation. Original

values present in the data have been hashed using the CRC64 hash function, so as to

obfuscate the original details.

229

The data set is composed of a large amount of files (samples), each having the

following structure:

• 30 possible feature numbers (each representing a different class of information

recorded about the sample)

• For each of these feature numbers, a variable amount of hashes (from 0 to tens of

thousands).

The reason for this structure is that some feature numbers are standing for a wide

range of possible informations: if one such feature number stands for “the names of

all the functions called in this sample”, e.g., the number of values associated to it

is bound to be large for some samples. It is important to note that the number of

feature values per feature number can be very different from file to file.

With this data structure, it is impossible to use traditional Machine Learning

techniques, as most of them rely on the data points position in the sample space

(usually expected to be Euclidean). In this paper, distances between samples are

calculated by using the Jaccard index [Jac01, TSK05], as presented in the next sub-

section.

Distance Calculation for Nominal Data

One of the most classical similarity statistics for nominal data is the Jaccard

index [Jac01]. It enables the computation of the similarity between two sets of nominal

attributes as the ratio between the cardinalities of their intersection and of their union.

Denoting A and B as two sets of nominal attributes, the Jaccard index is defined as

230

J(A,B) =
|A ∩B|
|A ∪B| . (4.10)

This index intuitively gives a good sense of overlap (similarity) between the

two sets; the more common attributes (hashes in this case) they have, the more

statical and dynamical properties the corresponding files — each associated with one

set — share, thus the higher the chance that they are of the same class. In addition,

considering the Jaccard distance Jδ(A,B) = 1 − J(A,B) yields an actual metric,

which enables to use Machine Learning techniques directly.

In the case of this paper, the files not only have one set of attributes, but

multiple, identified by their feature number. As such let us redefine A = {Ai}i∈A,

where Ai is the set of hashes associated to feature number i, and A is the set of

all feature numbers available for file A. Therefore, the Jaccard index needs to take

into account all such feature numbers. A straightforward modification of the Jaccard

index for this case is to define it as

J(A,B) =
1

|C|
∑
i∈C

|Ai ∩Bi|
|Ai|+ |Bi| − |Ai ∩Bi|

(4.11)

where Ai and Bi are the sets of feature values for feature number i for file A and B

respectively, and C = A⋂B, with A (resp. B) the set of the feature numbers for file

A (resp. B).

This way, only feature numbers present in both files are accounted for. In

addition, expressing the index like this enables to avoid computing the cardinality of

the union, which saves some computational time, as the cardinality of the sets Ai and

231

Bi are known.

The computational time required for the multiple calculations of the Jaccard

distance remains a problem, due to the intersection cardinality calculation. This

problem is addressed in the following subsection by approximating the Jaccard dis-

tance.

Speeding Up the Distance Calculations

The main drawback of the original Jaccard distance lies in the computational

time required for its calculation. While the intersection of two sets (the upper part

of the fraction in Eq. (4.11)) is relatively fast — for example, the Python language

implementation of it has an average complexity of O(min {|Ai| , |Bi|}) and a worst

case of O (|Ai| × |Bi|)14—, the intersection of such large sets repeated multiple times

makes the total computational time intractable. As mentioned before, the sets Ai for

one single feature number i can total some tens of thousands of elements.

As such, the direct Jaccard distance calculations using Eq. (4.11) cannot be

used. The specific requirement for this problem of “near real-time” computations

raises the need for an fast approximation of the Jaccard distance.

Resemblance as an Alternative to Jaccard Index

Consider a file named A, and denote by |A| the number of hashes in this file

(to avoid heavy notations, it is considered that only one feature number is present

in the files; the following extends directly to the practical case of multiple feature

14http://wiki.python.org/moin/TimeComplexity#set

232

numbers per file). Let us define by S(A, l) the set of all contiguous subsequences of

length l of hashes of A. Using these notations, one can define [Bro97] the resemblance

rl(A,B) of two files A and B based on their hashes as

rl(A,B) =
|S(A, l) ∩ S(B, l)|
|S(A, l) ∪ S(B, l)| , (4.12)

which is similar to the original definition of the Jaccard index. Defining the resem-

blance distance as

dl(A,B) = 1− rl(A,B) (4.13)

yields an actual metric [BGMZ97, Bro97].

Let us fix the size of the contiguous subsequences of hashes l and denote by Ωl

the set of all such subsequences of length l. Let us assume that Ωl is totally ordered

and set a number of elements n. For any subset ωl ⊆ Ωl denote by MINn (ωl) the set

of the smallest n elements (using the order on Ωl) of ωl defined as

MINn (ωl) =

the set of the smallest n elements from ωl, if |ωl| ≥n

ωl, otherwise.

(4.14)

From [Bro97], the following theorem gives an unbiased estimate of the resem-

blance rl(A,B).

Theorem 4.1. Let π : Ωl → Ωl a permutation on Ωl chosen uniformly at random

and let M(A) = MINn (π (S (A, l))). Defining M(B) similarly, the following is an

unbiased estimate of rl(A,B):

r̂l(A,B) =
|MINn (M(A) ∪M(B)) ∩M(A) ∩M(B)|

|MINn (M(A) ∪M(B))| .

233

The proof can be found in [Bro97].

As such, once a random permutation is chosen, it is possible to only use the

set M(A) (instead of the whole of A) for resemblance-based calculations.

Weak Universal Hashing and Min-Wise Independent Families

Note that while CRC64 cannot be considered as a random hash function, the

notion of weak universality for a family of hash functions proposed in [CW79] makes

it possible to further extend the former approximation to families of hash functions

satisfying

Pr (h (s1) = h (s2)) ≤
1

M
, (4.15)

with h a hash function chosen uniformly at random from the family H of functions

U → M, s1 and s2 elements from the origin space U of the hash function in H

and M = |M|. More precisely, in [BCFM00], the definition of min-wise independent

family of functions is proposed in the spirit of the weak universality concept, and the

authors show that for such families of functions, the resemblance can be computed

directly.

Define as min-wise independent a family H of functions such that for any set

X ⊆ J1, NK and any x ∈ X, when the function h is chosen at random in H, we have

Pr (min {h(X)} = h(x)) =
1

|X| . (4.16)

That is, all elements of the set X must have the same probability to become

the minimum element of the image of X under the function h. Assuming such a

234

min-wise independent family H, then

Pr (min {h(S(A, l))} = min {h(S(B, l))}) = rl(A,B), (4.17)

for files A and B and a function h chosen uniformly at random from H; it is therefore

possible to compute the resemblance rl(A,B) of files A and B by computing the

cardinality of the intersection

{min (h1 (S (A, l))) , . . . ,min (hk (S (A, l)))} ⋂
{min (h1 (S (B, l))) , . . . ,min (hk (S (B, l)))} , (4.18)

where h1, . . . , hk are a set of k independent random functions from H. This way of

calculating the resemblance of two files is sometimes called min-hash, and this name

is used in the rest of this paper to denote this approach.

For computational and practical reasons, in this paper only one hash func-

tion is used (CRC64) and the cardinality of the intersection of equation (4.18) is

approximated as the cardinality of

{mink (h (S (A, l)))}
⋂
{mink (h (S (B, l)))} , (4.19)

where the notation mink(X) denotes the set of the k smallest elements in X (assuming

X is fully ordered). While this is a crude approximation, experiments show that the

convergence with respect to k towards the true value of the resemblance is assured,

as shown in the following subsection.

235

Influence of the Number of Hashes on the Proposed Min-hash Approxi-

mation

Figure 4.18 illustrates experimentally the validity of the proposed approxima-

tion of the Jaccard distance by the min-hash based resemblance. These plots use a

small subset of 3000 samples from the whole dataset, used only for this purpose of

validating the amount of hashes k required for a proper approximation.

As can be seen, with low amounts of hashes, such as k = 10 or 100 (subfigures

in the top row), quantization effects appear on the estimation of the resemblance, and

the estimation errors are large. These quantization problems are especially important

in regard to the method using these distances —K-Nearest Neighbors —, as presented

in the next section: Since distances are so much quantized, samples being at different

distances appear to be at the same, and can thus be taken as nearest neighbors

wrongly.

The quantization effects are lessened when k reaches the hundreds of hashes,

as in subfigures on a middle row, while the errors on the estimation remain large.

k = 2000 hashes reduces such errors to only the largest distances, which are of less

importance for the following methodology. While k = 10000 hashes reduces these

errors further (and even more so for larger values of k), the main reason for using the

min-hash approximation described is to reduce drastically the computational time.

Figure 4.19 is a plot of the average time required per sample for the deter-

mination of the distances to the whole reference set, with respect to the number of

hashes k used for the min-hash. Thanks to the use of the Apache Cassandra backend

236

Figure 4.18: Influence of the number of hashes k ∈ {10, 100, 500, 1000, 2000, 10000}

(top left to bottom right) over the min-hash approximation of the resemblance r. The

exact Jaccard distance is calculated using the whole amount of the available hashes

for each sample.

237

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100000

50

100

150

200

250

300

Number of hashes used (k)

Av
er

ag
e

Ti
m

e
pe

r S
am

pl
e

(s
ec

on
ds

)

Figure 4.19: Average time per sample (over 3000 samples) versus the number k of

hashes used for the min-hash approximation.

(with three nodes) for these calculations, the computational time only grows linearly

with the number of hashes (and also linearly with the number of samples in the ref-

erence set, although this is not depicted here). Unfortunately, large values of k do

not decrease the computational time sufficiently for the practical application of this

methodology. Therefore, in the following, k = 2000 hashes is used for the min-hash

approximation of the Jaccard distance, as a good compromise between computational

time and approximation error. Note that the choice of this value for k is based on

the empirical analysis above and is therefore directly tied to the nature of the data

used in this paper.

238

Sandbox
Data

Malware

Clean

Unknown
Nearest Neighbors

with Jaccard Distance

ELMFP

ELM FN

Clean

Malware

Unknown

} }

First Stage
Decision

Second Stage
Decision

Figure 4.20: 1-NN-ELM: Two stage methodology using first a 1-NN and then spe-

cialized ELM models to lower false positives and false negatives. The first stage uses

only the class information C1−NN of the nearest neighbor, while the second stage uses

additional neighbors information: the distance d1−NN to the nearest neighbor, the

distance dNN6= to the “nearest neighbor of the opposite class” and the rank RNN6= (i.e.

which neighbor is it) of this opposite class neighbor.

4.4.3 Methodology Using Two Stage Classifiers

This section details the use of a two-stage decision strategy so as to avoid False

Positives while retaining high coverage. The first stage decision uses a 1-NN, which

still yields too high False Positive rates; this rate is lowered by using an optimized

Extreme Learning Machine model, specialized either for False Positives or False Neg-

atives minimization; this model has the very specific cognitive ability to also decide

that it would rather not take a decision in some cases than create such False Positive

or Negative.

239

First Stage Decision using 1-NN

The K-Nearest Neighbor [CH67] method for classification is one of the most

natural techniques to use in this setup, since it relies directly and only on distances.

As mentioned in the previous subsection, for this classifier to perform well, it requires

the proper identification of the “real” nearest neighbors: the approximation made

using the min-hash cannot be too crude.

Using k = 2000 hashes, a reference set is devised — by F-Secure Corporation

— which contains samples that are considered to be representative of most current

malware and clean samples. This set contains about 10000 samples (for each of which

the k = 2000 minimum hashes have been extracted per feature number), balanced

equally between clean and malware samples. The determination of this reference set

is especially important as it should not contain samples for which there are some

uncertainties about the class: Only samples with the highest probability of being

either malware or clean are present in the reference set.

Once this reference set is fixed, samples can be compared against it using the

min-hash based distances and a K-NN classifier.

Determining K for this problem is done using a validation set for which the

certainty of the class of each sample is very high as well. The validation set contains

3000 samples, checked against the reference set of 10000 samples. Figure 4.21 depicts

the classification accuracy (average of True Positive and True Negative rates) versus

the value of K used for the K-NN. Surprisingly, the decision based on the very first

nearest neighbor is always the best in terms of classification accuracy. Therefore, in

240

3 5 7 9 11
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy

Number of Nearest Neighbors used (K)
13 15 17

Figure 4.21: K = 1 is the best for this specific data regarding classification accuracy.

the following methodology presented in Section 4.4.3, a 1-NN is used as the first step

classifier.

1-NN is Not Sufficient

As mentioned earlier, one of the main imperatives in this paper is to achieve

0 False Positives (in absolute numbers). As Table 4.8 depicts, by using a test set

(totally separate from the validation sets used above) composed of 28510 samples

for which the class is known with the highest confidence, with the 1-NN approach

still yields large amounts of False Positives. Note that this test set is unbalanced,

although not significantly.

The results of the 1-NN are not satisfactory regarding the constraint on the

False Positives. An obvious way of addressing directly the amount of False Positives

is to set a maximum threshold on the distance to the first nearest neighbor: Above

241

Table 4.8: Confusion Matrix for the sole 1-NN on the test set. If only the first stage

of the methodology is used, results are unacceptable in terms of False Positive rates.

Actual
Malware Clean

Prediction
Malware 18160 183

Clean 277 9890

this threshold, the sample is deemed too far from its nearest neighbor, and no decision

is taken.

While this strategy would effectively reduce the number of False Positives, it

lowers significantly the number of True Positives as well, i.e. the coverage. For this

reason, and to keep a high coverage, the following methodology using a second stage

classifier as the ELM, is proposed.

As can be seen from Figure 4.19, the computational time required to calculate

the distance from a test sample to the whole 10000 reference set samples is about

35 seconds on average, using k = 2000 hashes. This is still acceptable, from the

practical point of view, but adding a second stage classifier has the obvious drawback

of increasing this time.

In order to make this increase the smallest possible, an Extreme Learning

Machine model specialized for False Positives (and another for False Negatives) is

used. Figure 4.20 illustrates the global idea of this two-stage methodology.

The motivation for an additional classifier comes from the fact that the single

information from the 1-NN is not sufficient: the distance to that first neighbor is

242

?
?

Figure 4.22: Illustration of different situations with identical 1-NN: in (a) the density

of reference samples of the same class around the test sample gives the decision high

confidence; in (b) while the 1-NN is of the same class as for (a), the confidence should

be very different on the decision.

important as well, and so is the distance and the “rank” of the nearest neighbor of

the opposite class. Figure 4.22 attempts to illustrate two different situations for which

a test sample has its first nearest neighbor in the same class — note that the position

of the samples has no meaning here, due to the nominal nature of the data; the

distances are the interesting fact. In the first case (a), the confidence on the decision

must be high, as many of the neighbors of the test sample are near and of the same

class. The case (b) is very different and needs to have a much lower confidence on

the decision taken, if any.

A means of describing such situations is to account for:

1. The distance to the nearest neighbor d1−NN: If the nearest neighbor is far, it is

likely that the test sample is in a part of the original space where the reference

samples density is insufficient;

243

2. The distance to the “nearest neighbor of the opposite class” dNN6=: If d1−NN is

very similar to dNN6=, the test sample lies in a part of the space where reference

samples of both classes are present and at similar distances;

3. The “rank” of this neighbor of opposite class RNN6= (is it the 3rd or 100th neigh-

bor?): This information gives a rough sense of the “density” of the reference

samples of the same class as that of the nearest neighbor around the test sample.

The combination of these additional three pieces of information describes roughly the

situation in which the test sample lies. This is the information fed to the second stage

classifier for the final decision.

Second Stage Decision using modified ELM

As depicted on Figure 4.22 , the single information of the class of the nearest

neighbor is not sufficient to obtain zero False Positives. The proposed second stage

classifier uses modified ELM models for lowering the amounts of False Positives —

one of the two modified ELM models reduces False Negatives as well; only the False

Positive minimizing one is mentioned in the following.

The modified ELM model used in the second stage of the methodology is

specially optimized so as to minimize the False Positives (a similar model to minimize

the False Negatives is used as well, in the same fashion). It uses additional information

gathered while searching for the nearest neighbor (so no additional computational

time is required to obtain the training data): the distance to the nearest neighbor

d1−NN, the distance to the nearest neighbor of the opposite class dNN6=, and the rank

244

of this neighbor of opposite class RNN6=. With this input data, the False Positive

Optimized ELM is trained using a weighted classification accuracy criterion.

While for binary classification problems, the classification rate Acc defined as

the average of the True Positive Rate TPR and True Negative Rate TNR,

Acc =
TNR + TPR

2
, (4.20)

is typically used as a performance measure, the proposed modified ELM uses the

following weighted accuracy Acc(α)

Acc(α) =
αTNR + TPR

1 + α
. (4.21)

By changing the α weight, it becomes possible to give precedence to the True Negative

Rate and thus to avoid false positives. The output of the proposed False Positive

Optimized ELM is calculated using Leave-One-Out PRESS statistics as explained in

section 2.2.3.

In order to obtain a parsimonious model in the shortest possible time, the

proposed modified ELM uses the idea of the TROP-ELM 2.3.3 and OP-ELM 2.2.1 to

prune out neurons from an initially large ELM model. In addition, for computational

time considerations, the maximum number M of selected neurons desired for the final

model is taken as a parameter. Overall, the False Positive Optimized ELM used in

this paper follows the steps of Algorithm 4.1.

245

Algorithm 4.1 False Positive Optimized ELM.

Given a training set (xi, yi),xi ∈ R3, yi ∈ {−1, 1}, an activation function φ : R 7→ R,

a large number of hidden nodes N and the maximum number M < N of neurons to

retain for the final model:

1: Randomly assign input weights wi and biases bi, i ∈ J1, NK;

2: Calculate the hidden layer output matrix H;

3: for i = 1 to M do

4: Perform Forward Selection of the i best neurons (among N) using PRESS LOO

output with Acc(α) criterion, and ELM determination of the output weights

βi;

5: end for

6: Retain the best combination out of the M different selections as the final model

structure.

The selection of the optimal α is done experimentally, following the two con-

straints of 0 False Positives and highest possible coverage (i.e. as many True Positives

as possible). Figure 4.23 is the Receiver Operating Characteristic curve for various

values of α, plotted for a balanced 3000 samples validation set. As can be seen, the

requirement on absolutely 0 False Positives has a strong influence on the coverage

(represented by the True Positives rate here). If one allows as low as 0.06% False

Positives, the coverage reaches 92% already.

Figure 4.24 depicts the plot of the False Positive rate against the α value.

246

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.4

0.5

0.6

0.7

0.8

0.9

1

FP rate

TP
 ra

te

Figure 4.23: ROC curve (True Positive Rate versus False Positive Rate) for varying

values of α.

This plot is using the same validation data as Figure 4.23. The value of α for which

the 0 False Positives requirement is met while keeping highest possible coverage is

α = 30, from Figure 4.24.

The case of evaluating α for the False Negative minimizing ELM is not depicted

here as the false negatives are of less interest to the practical application at hand in

this paper. Nonetheless, the α value of the False Negative minimizing ELM has been

found to be 27 using the same experimental setup as for the False Positive minimizing

one. This value can be seen as a tuning parameter of the model which enables the user

to have control over the specific decision making ability of the model: by adjusting

it, it is possible to get a smaller amount of false positives, at the cost of coverage, as

the final cognitive model then prefers to take no decision than to make a mistake.

247

0 5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α

Fa
ls

e
Po

si
tiv

e
R

at
e

Figure 4.24: Evolution of the False Positive Rate as a function of the α weight. The

first attained zero False Positive Rate is for α = 30.

Final Results on Test Data

With the parameters of the two-stage methodology determined as above, i.e.:

• k = 2000 hashes used for the min-hash approximation of the Jaccard distance;

• K = 1 for the K-NN first stage classifier;

• α=30 for the False Positive Optimized ELM second stage classifier,

• α = 27 for the False Negative Optimized ELM second stage classifier,

the presented methodology is applied to a test set of 28510 samples spanning from

early 2008 until late 2011. The reference set of 10000 samples mentioned before is

within the same time frame and balanced between malware and clean so as to reflect

the “real” proportions, i.e. that of the samples received by F-Secure Corporation.

The proportions are — roughly — 2/3 malware and 1/3 clean.

248

Tables 4.9 give the previous results of the sole 1-NN to be compared against

the ones of the 1-NN and False Positive Optimized ELM methodology.

Table 4.9: Confusion matrices for (a) the training data (Leave-One-Out results) when

training the False Positive/Negative Optimized ELMs; on the whole test set, (b)

using only the 1-NN approach and (c) using the proposed 1-NN and ELM two-stage

methodology. The reduction in coverage from the second stage ELM is noticeable, as

False Positives and Negatives are decreased significantly.

Actual
Malware Clean

Prediction

Malware 1930 1
Clean 1 908

Unknown 2473 1623

(a) Confusion Matrix for the two-stage classifier methodology on the training data.
Actual

Malware Clean

Prediction
Malware 18160 183

Clean 277 9890

(b) Confusion Matrix for the sole 1-NN on the test set.
Actual

Malware Clean

Prediction

Malware 8393 2
Clean 7 4115

Unknown 10037 5956

(c) Confusion Matrix for the two-stage classifier methodology on the test set.

It can be seen that the False Positive rate achieved in test is in line with the

results from the Leave-One-Out in (a).

249

The results depicted in Table 4.9 (c) use not only a False Positive Optimized

ELM but also a False Negative Optimized ELM, to reduce the False Negatives, as

mentioned on Figure 4.20. The improvements in the reduction of the False Positives

and the coverage achieved are satisfying for this test set.

A value of 2 False Positives in this test set is probably acceptable in practice.

If the strict goal of 0 False Positives in test is to be enforced, then one possibility is

to increase the α parameter to a higher value, more conservative. This has the effect

of lowering further the coverage, though.

Two additional experiments are presented in Tables 4.10 and 4.11 for classi-

fication datasets from UCI Machine Learning repository [Lic13]. In order to apply

the exact same methodology as presented in this paper, pairwise distances have been

computed between samples so as to be in the same situation as for the specific data

treated in this paper. Data has been shuffled and two thirds are taken for training

and the remaining third is kept for test. As can be seen from Tables 4.10 and 4.11,

the proposed methodology also enables to reduce the amount of false positives at

the cost of reduced coverage. It is worth noting that the quality of the results for

these two other datasets is less than for the main dataset considered in this paper.

This is possibly due to the difference in the metric used. For the UCI datasets, the

Euclidean metric has been used, while the proposed approximation to the Jaccard

distance behaves probably differently in terms of the distance matrices it produces.

250

Note on Hardware and Computational Time Considerations

While the details of the implementation are not mentioned in this paper, the

proposed methodology uses a set of three computers, each equipped with 8GB of

RAM, and Intel Core2 Quad CPUs. Apache Cassandra is the distributed database

framework used for performing efficient min-hash computations in batches, and a

memory-held queueing system (based on memcached) is holding jobs for execution

against Cassandra database. All additional computations are performed using Python

code on one of the three computers mentioned.

With this setup, as seen on Figure 4.19, the average per sample evaluation

time — i.e. calculating pairwise distances to the 10000 reference samples and finding

the closest elements — is about 35 seconds. The choice of Cassandra as a database

backend is meant so that the computational time grows only linearly if the precision

of the min-hash or the number of reference samples is increased linearly: growing the

number of reference samples linearly or the number k of hashes used for the min-hash

approximation only requires a linear growth in the number of Cassandra nodes for

the computational time to remain identical.

251

Table 4.10: Confusion matrices for Pima Indians Diabetes dataset from UCI [Lic13].

(a) the training data (Leave-One-Out results) when training the False Positive/Neg-

ative Optimized ELMs; on the whole test set, (b) using only the 1-NN approach and

(c) using the proposed 1-NN and ELM two-stage methodology.

Actual Actual Actual
Mal. Clean Mal. Clean Mal. Clean

Mal. 105 0 Mal. 34 44 Mal. 5 10
Clean 0 227 Clean 42 136 Clean 41 135
Unkn. 87 93 Unkn. 30 35

(a) 2-stage in training (b) 1-NN in test (c) 2-stage in test

Table 4.11: Confusion matrices for Wisconsin Breast Cancer dataset from UCI [Lic13].

(a) the training data (Leave-One-Out results) when training the False Positive/Neg-

ative Optimized ELMs; on the whole test set, (b) using only the 1-NN approach and

(c) using the proposed 1-NN and ELM two-stage methodology.

Actual Actual Actual
Mal. Clean Mal. Clean Mal. Clean

Mal. 124 0 Mal. 69 3 Mal. 63 1
Clean 0 229 Clean 4 114 Clean 4 114
Unkn. 15 11 Unkn. 6 2

(a) 2-stage in training (b) 1-NN in test (c) 2-stage in test

252

4.5 Improvements to HP-ELM Toolbox

The HP-ELM Toolbox remains in active development and support after pub-

lication of the paper, to keep it a useful practical tool for all Machine Learning prac-

titioners around the world. A summary of most important recent changes is given

below.

First, the GPU support is significantly improved. The code is based on

a very recent ”scikit-cuda” library [Giv15] that was released after the publication

of [ABML15]. This library provides linear algebra computations on GPU in native

Python code, and is easily installed with standard package manager. Scikit-CUDA

enables GPU support in HP-ELM without additional compilation step, providing the

power of accelerated ELM to people not experienced with C or C++ languages.

This convenient library also facilitated moving all computation-heavy steps on

GPU (including prediction with ELM), and saving runtime by computing one triangle

of a symmetric helper matrix in some cases. It also allowed writing an asynchronous

code that runs GPU computations while on CPU it prepares the next batch of data

and sends it to the graphics card. Asynchronous code removes the time of waiting for

disc access from ELM training time, thus ELM runs at the maximum speed allowed

by an accelerator.

Another improvement provided a distributed parallel training of ELM. It re-

quires only a shared storage between different computers and suits well to clusters

or any machines in a shared network. Additional ELM training methods run asyn-

chronously with CPU and GPU alike, saving time for slow network access, for example

253

to a shared drive. They are tested and proved useful on several machines in a class-

room.

The documentation15 is significantly improved, which is a very important part

of any toolbox or library aimed to be useful for a vast range of programmers. All

methods are comprehensively documented, and the modern documentation website

is automatically updates when a new version of code is uploaded online. The docu-

mentation includes tutorial for distributed computation with ELM.

15hpelm.readthedocs.org

254

CHAPTER 5
CONCLUSIONS

This thesis is dedicated to the Extreme Learning Machines (ELMs), a non-

linear neural network-like structures with linear system solution. ELMs exist at the

intersection between linear and nonlinear methods of Machine Learning, and take the

best from both of these worlds. nonlinear methods provide a universal approximation

property, which is an ability to learn (approximate with any precision) any function

or dependency in the world, if only there is enough training data and computational

power. Linear methods give robust and fast solution (based on Single Value Decom-

position), or simply an extremely fast solution (based on LU decomposition), which

both are unique solutions with exact computation algorithm, implemented in an ex-

tremely efficient standard subprograms on CPUs or accelerators. Also linear methods

provide all sorts of existing computational tricks like computing LOO error with a

single non-iterative equation, rank neurons by usefulness and retain only a necessary

minimum, or easily control range of solution coefficient with L2 regularization.

The biggest impact of Extreme Learning Machines in a whole field of Machine

Learning lies in their practical applicability. The core of ELM is a PCA method

between a nonlinearly transformed inputs and output; thus ELMs are basically a

nonlinear version of PCA. While basic linear systems are outdated in scientific com-

munity, fascinated by Deep Learning and Quantum Computing nowadays, they are a

backbone of most practical applications used at a large scale even by an advanced hi-

tech company like Google. Extreme Learning Machines can add nonlinear capabilities

255

to all these practical systems without virtually any change in infrastructure.

That idea, and reviewing multiple beautiful application papers with ELMs,

motivated the author for creation of an ELM toolbox that would provide the fastest,

the most convenient and the most easy to use implementation of ELM for all those

practical programmers and researchers. The toolbox also aims at addressing one

significant drawback, that some regularization and model selection practices of ELM

are not straightforward to understand and implement, while they benefit greatly to the

performance of the method. The toolbox includes all these improvements activated

by a simple option without extensive parameter selection process. ELM toolbox is

an ambitious project for a single person, but it is feasible with the simplicity of the

method, and is currently a work under active development.

The fast solution and universal approximation property make Extreme Learn-

ing Machines a good candidate for Big Data analysis. The aforementioned toolbox

presents the raw performance on Big Data applications, which is limited only by hard

disk capacity and common sense. ELMs solution can be conveniently distributed

across multiple machines, because it requires very few synchronizations (precisely –

one). Big Data is about complexity as well, and often requires complex solutions.

ELM serves well in such setups as a building block for a large and complex Machine

Learning approach; and it simply works without much tuning, leaving time and effort

for addressing harder parts of the whole methodology. Two successful examples of

such methodologies are presented in the thesis in sections 4.3 and 4.4. The first prob-

lem required analysis of image data collected online, in various sizes, resolutions and

256

encodings. The input data in the second problem consisted of hashes, with equality

check being the only operation possible with them. Both methodologies put large

effort at just handling the data and extracting features from it, then ELMs helped

to test and compare multiple feature extraction methods without worrying about the

ELM classifier, and tune the final solution according to requirements of the specific

problem.

The linear algebra tricks allow to change ELM method for non-typical appli-

cations, with promising results not available if ELM is replaced by a more common

nonlinear method like SVM. A good example of that is ELMVIS+, a visualization

method based on ELM. Visualization methods work well if the data manifold is two-

dimensional, and fits natively on a two-dimensional visualization space. With higher

manifold dimensions, it is hard to calculate meaningful coordinates of visualization

point. An ELMVIS+ method approaches the problem from another perspective, sim-

ply taking any set of points as visualization coordinates, and finding the best possible

visualization with them. The problem becomes an assignment problem, where ELM

provides the global reconstruction error and ELMVIS+ randomly searches for pairs

of data samples which would decrease the global error if swapped their places. A

random search may be slow, but numerical tricks allow testing over a million candi-

dates per second in a set of 10,000 MNIST handwritten digits, with dimensionality

around 600. The visualization is obtained much faster than for any other nonlinear

method, while the results are comparable to the best of these nonlinear methods.

With a similar approach one can search for samples in the dataset with wrong labels

257

(mislabeled samples) and fix them, filtering the errors of dataset creators and getting

better generalization performance for any method trained on a filtered dataset. More

details are given in chapter 3

An important and under-researched are in Extreme Learning Machines is the

reliability of predictions. Sure there are metrics like Mean Squared Error, but it

is hard to tell how reliable is a particular predicted value for a particular test in-

put. The predictions may be stable for some inputs while rough and approximate

for others, and averaging their quality is unacceptable in many applications. Such

applications include for example financial institutions, and nowadays they often use

linear models, predictions of which are easily explainable despite a generally worse

performance. A proposed method computes confidence intervals (estimates standard

deviation of error, assuming it is normally distributed) individually for particular

test samples. It can tell which samples are predicted reliably and for which an ELM

could not compute exact answer. Such confidence intervals can be used to consider

only reliable predictions and leave unreliable ones for human experts. They facilitate

the automated processing and promote higher efficiency in reliability-oriented practi-

cal applications like financial institutions, where current analysis is limited to linear

models or simply humans.

What is the future of ELM? What has still to be done? In our opinion, one

of the challenges for ELM is the problem of multi-labels classification for Big Data.

And researchers will have to focus on this issue. One possibility is to transform ELM

into a model that can provide probabilities as outputs. A second challenge is to

258

combine classification and visualization in a single method. Researchers and users

would benefit a lot of such merge. ELMVIS+ is probably a good starting point to go

in that direction. I will continue such research and will develop novel methods which

base on ELM in the future since I consider that ELM is the keystone of Machine

Learning for Big Data.

259

REFERENCES

[AAAY13] Anton Akusok, Alexander Grigorievskiy, Amaury Lendasse, and Yoan
Miche, Image-based Classification of Websites, Machine Learning Re-
ports 02/2013 (Saarbrücken, Germany) (Thomas Villmann and Frank-
Michael Schleif, eds.), Machine Learning Reports, vol. ISSN: 18, Work-
shop of the GI-Fachgruppe Neuronale Netze and the German Neural
Networks Society in connection to GCPR 2013, September 2013, pp. 25–
34.

[ABML15] Anton Akusok, Kaj-Mikael Björk, Yoan Miche, and Amaury Lendasse,
High-Performance Extreme Learning Machines: A Complete Toolbox for
Big Data Applications, IEEE Access 3 (2015), 1011–1025.

[ADY+14] Anton Akusok, David Veganzones, Yoan Miche, Eric Séverin, and
Amaury Lendasse, Finding Originally Mislabels with MD-ELM, Pro-
ceedings of ESANN2014: 22nd European Symposium on Artificial Neu-
ral Networks, Computational Intelligence and Machine Learning, i6doc,
Bruges, Belgium, 23-25 April 2014, pp. 689–694.

[AF10] Giuseppe Amato and Fabrizio Falchi, kNN Based Image Classification
Relying on Local Feature Similarity, Proceedings of the Third Interna-
tional Conference on SImilarity Search and APplications (New York,
NY, USA), SISAP ’10, ACM, 2010, pp. 101–108.

[AGM+16] Anton Akusok, Andrey Gritsenko, Yoan Miche, Kaj-Mikael Björk, Rui
Nian, Paula Lauren, and Amaury Lendasse, Adding Reliability to ELM
Predictions by Confidence Intervals, Neurocomputing (submitted 2016).

[All74] David M. Allen, The Relationship between Variable Selection and Data
Agumentation and a Method for Prediction, Technometrics 16 (1974),
no. 1, 125–127.

[AMB+16a] Anton Akusok, Yoan Miche, Kaj-Mikael Björk, Rui Nian, Paula Lauren,
and Amaury Lendasse, ELMVIS+: Improved Nonlinear Visualization
Technique Using Cosine Distance and Extreme Learning Machines, Pro-
ceedings of ELM-2015 Volume 2: Theory, Algorithms and Applications
(II) (Jiuwen Cao, Kezhi Mao, Jonathan Wu, and Amaury Lendasse,
eds.), Springer International Publishing, Cham, 2016, pp. 357–369.

260

[AMB+16b] , Evaluating Confidence Intervals for ELM Predictions, Proceed-
ings of ELM-2015 Volume 2: Theory, Algorithms and Applications (II)
(Jiuwen Cao, Kezhi Mao, Jonathan Wu, and Amaury Lendasse, eds.),
Springer International Publishing, Cham, 2016, pp. 413–422.

[AMB+16c] , ELMVIS+: Fast Nonlinear Visualization Technique based on
Cosine Distance and Extreme Learning Machines, Neurocomputing
(forthcoming 2016).

[Amd67] Gene M. Amdahl, Validity of the Single Processor Approach to Achiev-
ing Large Scale Computing Capabilities, Proceedings of the April 18-20,
1967, Spring Joint Computer Conference (New York, NY, USA), AFIPS
’67 (Spring), ACM, 1967, pp. 483–485.

[AMH+14] Anton Akusok, Yoan Miche, Jozsef Hegedus, Rui Nian, and Amaury
Lendasse, A Two-Stage Methodology Using K-NN and False-Positive
Minimizing ELM for Nominal Data Classification, Cognitive Compu-
tation 6 (2014), no. 3, 432–445.

[AMK+15] Anton Akusok, Yoan Miche, Juha Karhunen, Kaj-Mikael Björk, Rui
Nian, and Amaury Lendasse, Arbitrary Category Classification of Web-
sites Based on Image Content, IEEE Computational Intelligence Maga-
zine 10 (2015), no. 2, 30–41.

[AVM+15] Anton Akusok, David Veganzones, Yoan Miche, Kaj-Mikael Björk,
Philippe du Jardin, Eric Séverin, and Amaury Lendasse, MD-ELM:
Originally Mislabeled Samples Detection using OP-ELM Model, Neuro-
computing 159 (2015), 242–250.

[BBB98] Gianluca Bontempi, Mauro Birattari, and Hugues Bersini, Recursive lazy
learning for modeling and control, Machine Learning: ECML-98: 10th
European Conference on Machine Learning Chemnitz, Germany, April
21–23, 1998 Proceedings (Claire Nédellec and Céline Rouveirol, eds.),
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, pp. 292–303.

[BBD+12] Lamberto Ballan, Marco Bertini, Alberto Del Bimbo, Andrea M Serain,
Giuseppe Serra, and Benito F Zaccone, Combining generative and dis-
criminative models for classifying social images from 101 object cate-
gories, Pattern Recognition (ICPR), 2012 21st International Conference
on, 11-15 Nov. 2012, pp. 1731–1734.

[BCFM00] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzen-
macher, Min-Wise Independent Permutations, Journal of Computer and
System Sciences 60 (2000), no. 3, 630–659.

261

[BDM12] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems, So-
ciety for Industrial and Applied Mathematics, Philadelphia, 2012.

[Ben13] Benoit Frénay, Uncertainty and label noise in machine learning, Ph.D.
thesis, Université catholique de Louvain, September 2013.

[BETV08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool,
Speeded-Up Robust Features (SURF), Similarity Matching in Computer
Vision and Multimedia 110 (2008), no. 3, 346–359.

[BF99] Carla E Brodley and Mark A Friedl, Identifying mislabeled training data,
Journal Of Artificial Intelligence Research 11 (1999), 131–167.

[BG09] Gertjan J. Burghouts and Jan-Mark Geusebroek, Performance evalua-
tion of local colour invariants, Computer Vision and Image Understand-
ing 113 (2009), no. 1, 48–62.

[BGMZ97] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey
Zweig, Syntactic clustering of the Web, Papers from the Sixth Interna-
tional World Wide Web Conference 29 (1997), no. 8–13, 1157–1166.

[BGRS99] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft,
When Is “Nearest Neighbor” Meaningful?, Database Theory — ICDT’99:
7th International Conference Jerusalem, Israel, January 10–12, 1999 Pro-
ceedings (Catriel Beeri and Peter Buneman, eds.), Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1999, pp. 217–235.

[BHV99] H.-U. Bauer, Michael Herrmann, and Thomas Villmann, Neural maps
and topographic vector quantization, Neural Networks 12 (1999), no. 4–5,
659–676.

[Bie87] I Biederman, Recognition-by-components: a theory of human image un-
derstanding, Psychological Review 94 (1987), no. 2, 115–147.

[Bis96] Christopher M. Bishop, Neural Networks for Pattern Recognition, Ad-
vanced Texts in Econometrics, Clarendon Press, January 1996.

[Bis06] Christopher M Bishop, Pattern Recognition and Machine Learning, In-
formation science and statistics, vol. 4, Springer Science+Business Me-
dia, Singapore, 2006.

262

[BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte, and Luc Van Gool,
Pedestrian detection at 100 frames per second, Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, 16-21 June
2012, pp. 2903–2910.

[BN01] Mikhail Belkin and Partha Niyogi, Laplacian eigenmaps and spectral
techniques for embedding and clustering, Advances in Neural Information
Processing Systems, vol. 14, MIT Press, 2001, pp. 585–591.

[BN03] , Laplacian eigenmaps for dimensionality reduction and data rep-
resentation, Neural computation 15 (2003), no. 6, 1373–1396.

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan, Latent Dirichlet
Allocation, Journal of Machine Learning Research 3 (2003), no. 4-5, 993–
1022.

[BOA+07] Michael Bailey, Jon Oberheide, Jon Andersen, Z. Morley Mao, Farnam
Jahanian, and Jose Nazario, Automated Classification and Analysis of
Internet Malware, Recent Advances in Intrusion Detection: 10th Inter-
national Symposium, RAID 2007, Gold Goast, Australia, September 5-7,
2007. Proceedings (Christopher Kruegel, Richard Lippmann, and An-
drew Clark, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2007,
pp. 178–197.

[BP92] H. U. Bauer and Klaus R. Pawelzik, Quantifying the neighborhood preser-
vation of self-organizing feature maps, IEEE Transactions on Neural Net-
works 3 (1992), no. 4, 570–579.

[Bro97] Andrei Z Broder, On the resemblance and Containment of Documents,
Proceedings of Compression and Complexity of Sequences 1997, SE-
QUENCES ’97, IEEE Computer Society, 1997, pp. 21–29.

[BSI08] Oren Boiman, Eli Shechtman, and Michal Irani, In defense of Nearest-
Neighbor based image classification, Computer Vision and Pattern
Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, June 2008,
pp. 1–8.

[BSW98] Christopher M Bishop, Markus Svensén, and Christopher K I Williams,
GTM: The generative topographic mapping, Neural computation 10
(1998), no. 1, 215–234.

263

[CAK+15] Colin Swaney, Anton Akusok, Kaj-Mikael Björk, Yoan Miche, and
Amaury Lendasse, Efficient Skin Segmentation via Neural Networks:
HP-ELM and BD-SOM, INNS Conference on Big Data 2015 Program
San Francisco, CA, USA 8-10 August 2015 53 (2015), 400–409.

[CCG91] S. Chen, C. F. N. Cowan, and P. M. Grant, Orthogonal least squares
learning algorithm for radial basis function networks, IEEE Transactions
on Neural Networks 2 (1991), no. 2, 302–309.

[CH67] Thomas M. Cover and Peter E. Hart, Nearest neighbor pattern classi-
fication, IEEE Transactions on Information Theory 13 (1967), no. 1,
21–27.

[CHV99] Olivier Chapelle, Patrick Haffner, and Vladimir N Vapnik, Support vector
machines for histogram-based image classification, IEEE Transactions on
Neural Networks / a publication of the IEEE Neural Networks Council
10 (1999), no. 5, 1055–1064.

[CKW12] Jingjing Cao, Sam Kwong, and Ran Wang, A noise-detection based Ad-
aBoost algorithm for mislabeled data, Pattern Recognition 45 (2012),
no. 12, 4451–4465.

[CL11] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: A library for support
vector machines, ACM Transactions on Intelligent Systems and Tech-
nology 2 (2011), no. 3, 27:1–27:27.

[Co13] Eric Cambria and others, Extreme Learning Machines [Trends & Con-
troversies], IEEE Intelligent Systems 28 (Nov.-Dec. 2013), no. 6, 30–59.

[Cro84] F C Crow, Summed-area tables for texture mapping, ACM SIGGRAPH
computer graphics 18 (1984), no. 3, 207–212.

[CSFS02] Barbara Caputo, K. Sim, F. Furesjo, and Alexander Smola, Appearance-
based Object Recognition using SVMs: Which Kernel Should I Use?, Proc
of NIPS workshop on Statistical methods for computational experiments
in visual processing and computer vision (Whistler), 2002.

[CSH12] Qiang Chen, Zheng Song, and Yang Hua, Hierarchical matching with side
information for image classification, Proc. of 2012 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, June 2012,
pp. 3426–3433.

[CV95] Corinna Cortes and Vladimir Vapnik, Support-vector networks, Machine
learning 20 (1995), no. 3, 273–297.

264

[CW79] J. Lawrence Carter and Mark N. Wegman, Universal classes of hash
functions, Journal of Computer and System Sciences 18 (1979), no. 2,
143–154.

[CXWZ11] Xinyuan Cai, Baihua Xiao, Chunheng Wang, and Rongguo Zhang, A lo-
cal learning based Image-To-Class distance for image classification, Pat-
tern Recognition (ACPR), 2011 First Asian Conference on, 28-28 Nov.
2011, pp. 667–671.

[DH97] Pierre Demartines and Jeanny Herault, Curvilinear component analy-
sis: a self-organizing neural network for nonlinear mapping of data sets,
IEEE Transactions on Neural Networks 8 (1997), no. 1, 148–154.

[DRS+13] Thomas Dean, Mark A. Ruzon, Mark Segal, Jonathon Shlens, Sud-
heendra Vijayanarasimhan, and Jay Yagnik, Fast, Accurate Detection
of 100,000 Object Classes on a Single Machine, Computer Vision and
Pattern Recognition (CVPR), 2013 IEEE Conference on, 23-28 June
2013, pp. 1814–1821.

[DT05] N. Dalal and B. Triggs, Histograms of oriented gradients for human de-
tection, Computer Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, vol. 1, 25-25 June 2005, pp. 886–
893 vol. 1.

[du 07] P. du Jardin, Prévision de la défaillance et réseaux de neurones: l’apport
des méthodes numériques de sélection de variables, Université de Nice-
Sophia-Antipolis, 2007.

[DZ11] Bala S Divakaruni and Jie Zhou, Image Categorization using Codebooks
Built from Scored and Selected Local Features, Proc. of The 2011 Inter-
national Conference on Image Processing, Computer Vision and Pattern
Recognition (IPCV), vol. 1, 2011, pp. 3–9.

[DZC09] Wanyu Deng, Qinghua Zheng, and Lin Chen, Regularized Extreme Learn-
ing Machine, Computational Intelligence and Data Mining, 2009. CIDM
’09. IEEE Symposium on, March 30 2009-April 2 2009, pp. 389 –395.

[EGW+10] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John
Winn, and Andrew Zisserman, The Pascal Visual Object Classes (VOC)
Challenge, International Journal of Computer Vision 88 (2010), no. 2,
303–338.

265

[EHJT04] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani,
Least Angle Regression, The Annals of Statistics 32 (2004), no. 2, 407–
499.

[F-S06] F-Secure Corporation, F-Secure DeepGuard – A proactive response to
the evolving threat scenario, November 2006.

[FFP07] Li Fei-Fei, Rob Fergus, and Pietro Perona, Learning generative visual
models from few training examples: An incremental Bayesian approach
tested on 101 object categories, Special issue on Generative Model Based
Vision 106 (2007), no. 1, 59–70.

[FFPZ10] R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman, Learning Object
Categories From Internet Image Searches, Proceedings of the IEEE 98
(2010), no. 8, 1453–1466.

[Fos95] Ian Foster, Designing and building parallel programs, Addison-Wesley,
1995.

[FV14] Benoit Frénay and Michel Verleysen, Classification in the Presence of
Label Noise: A Survey, IEEE Transactions on Neural Networks and
Learning Systems 25 (2014), no. 5, 845–869.

[GHP07] Gregory Griffin, Alex Holub, and Pietro Perona, Caltech-
256 object category dataset, Tech. report, Technical Re-
port. California Institute of Technology, Pasadena, CA, 2007,
http://resolver.caltech.edu/CaltechAUTHORS:CNS-TR-2007-001.

[GHW79] Gene H. Golub, Michael Heath, and Grace Wahba, Generalized Cross-
Validation as a Method for Choosing a Good Ridge Parameter, Techno-
metrics 21 (1979), no. 2, 215–223.

[Giv15] Lev Givon, Scikit-CUDA, https://scikit-cuda.readthedocs.org,
2015.

[GLG99] Dragan Gamberger, Nada Lavravc, and Ciril Grovselj, Experiments
with noise filtering in a medical domain, Proc. 16th International Conf.
on Machine Learning, Morgan Kaufmann, San Francisco, CA, 1999,
pp. 143–151.

[GP02] Gregory Gutin and Abraham P. Punnen (eds.), The traveling salesman
problem and its variations, Combinatorial optimization, Kluwer Aca-
demic, Dordrecht, London, 2002.

266

[GS96] Geoffrey J Goodhill and Terrence J Sejnowski, Quantifying neighbour-
hood preservation in topographic mappings, Proceedings of the 3rd Joint
Symposium on Neural Computation, vol. 6, Citeseer, 1996, pp. 61–82.

[Hay98] Simon Haykin, Neural Networks: A Comprehensive Foundation (2nd
Edition), 2nd ed., Prentice Hall, July 1998.

[HBKV15] Guang-Bin Huang, Zuo Bai, L.L.C. Kasun, and Chi Man Vong, Local
Receptive Fields Based Extreme Learning Machine, IEEE Computational
Intelligence Magazine 10 (2015), no. 2, 18–29.

[HCS06] Guang-Bin Huang, Lei Chen, and Chee-Kheong Siew, Universal approxi-
mation using incremental constructive feedforward networks with random
hidden nodes, IEEE Transactions on Neural Networks 17 (2006), no. 4,
879–892.

[HK70] Arthur E Hoerl and Robert W Kennard, Ridge Regression: Biased Es-
timation for Nonorthogonal Problems, Technometrics 12 (1970), no. 1,
55–67.

[HKQ10] Jian Hou, Jianxin Kang, and Naiming Qi, On Vocabulary Size in Bag-
of-Visual-Words Representation, Advances in Multimedia Information
Processing - PCM 2010: 11th Pacific Rim Conference on Multimedia,
Shanghai, China, September 21-24, 2010, Proceedings, Part I (Guoping
Qiu, Kin Man Lam, Hitoshi Kiya, Xiang-Yang Xue, C.-C. Jay Kuo, and
Michael S. Lew, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg,
2010, pp. 414–424.

[HL08] Mark J Huiskes and Michael S Lew, The MIR Flickr retrieval evaluation,
MIR ’08: Proceedings of the 2008 ACM International Conference on
Multimedia Information Retrieval (Vancouver, Canada), ACM, 2008,
pp. 39–43.

[HMZ+06] Guang-bin Huang, Senior Member, Qin-yu Zhu, KZ Z Mao, Chee-kheong
Siew, P Saratchandran, and Narashiman Sundararajan, Can threshold
networks be trained directly?, IEEE Transactions on Circuits and Sys-
tems II: Express Briefs 53 (2006), no. 3, 187–191.

[HRT04] Nicholas P. Hughes, Stephen J. Roberts, and Lionel Tarassenko, Semi-
supervised learning of probabilistic models for ECG segmentation, Engi-
neering in Medicine and Biology Society, 2004. IEMBS ’04. 26th Annual
International Conference of the IEEE, vol. 1, 1-5 Sept. 2004, pp. 434–437.

267

[Hua14] Guang-Bin Huang, An Insight into Extreme Learning Machines: Ran-
dom Neurons, Random Features and Kernels, Cognitive Computation 6
(2014), no. 3, 376–390.

[Hua15] , What are Extreme Learning Machines? Filling the Gap Between
Frank Rosenblatt’s Dream and John von Neumann’s Puzzle, Cognitive
Computation 7 (2015), no. 3, 263–278.

[HZDZ12] Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, and Rui Zhang, Ex-
treme learning machine for regression and multiclass classification., Sys-
tems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions
on 42 (2012), no. 2, 513–529.

[HZS04] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew, Extreme learn-
ing machine: a new learning scheme of feedforward neural networks,
Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Con-
ference on, vol. 2, 25-29 July 2004, pp. 985–990 vol.2.

[HZS06] , Extreme learning machine: Theory and applications, Neural
NetworksSelected Papers from the 7th Brazilian Symposium on Neu-
ral Networks (SBRN ’04)7th Brazilian Symposium on Neural Networks
70 (2006), no. 1–3, 489–501.

[IP95] B Igelnik and Y.-H. Pao, Stochastic choice of basis functions in adaptive
function approximation and the functional-link net, Neural Networks,
IEEE Transactions on 6 (1995), no. 6, 1320–1329.

[Jac01] Paul Jaccard, Étude comparative de la distribution florale dans une por-
tion des Alpes et du Jura, Bulletin de la Société Vaudoise des Sciences
Naturelles 37 (1901), 547–579.

[JB08] Yushi Jing and Shumeet Baluja, VisualRank: Applying PageRank to
Large-Scale Image Search, IEEE Transactions on Pattern Analysis and
Machine Intelligence 30 (2008), no. 11, 1877–1890.

[JM09] Dan Jurafsky and James H Martin, Speech and language processing : an
introduction to natural language processing, computational linguistics,
and speech recognition, 2nd ed., Prentice Hall series in artificial intelli-
gence, Pearson Prentice Hall, Upper Saddle River, N.J., 2009.

[JWF10] Piyasak Jeatrakul, Kok Wai Wong, and Chun Che Fung, Data cleaning
for classification using misclassification analysis, Journal of Advanced
Computational Intelligence and Intelligent Informatics 14 (2010), no. 3,
297–302.

268

[KL51] Solomon Kullback and Richard A Leibler, On information and suffi-
ciency, The Annals of Mathematical Statistics 22 (1951), no. 1, 79–86.

[KME+11] L. Kainulainen, Yoan Miche, Emil Eirola, Qi Yu, Benoit Frénay, Eric
Séverin, and Amaury Lendasse, Ensembles of Local Linear Models for
Bankruptcy Analysis and Prediction, Case Studies in Business, Industry
and Government Statistics (CSBIGS) 4 (2011), no. 2, 116–133.

[Koh82] Teuvo Kohonen, Self-organized formation of topologically correct feature
maps, Biological Cybernetics 43 (1982), no. 1, 59–69.

[KP03] Samuel Kaski and Jaakko Peltonen, Informative discriminant analy-
sis, Proceedings of the Twentieth International Conference on Machine
Learning (ICML-2003), vol. 20, AAAI Press, Menlo Park, CA, 2003,
pp. 329–336.

[KP11] , Dimensionality Reduction for Data Visualization [Applications
Corner], IEEE Signal Processing Magazine 28 (2011), no. 2, 100–104.

[Kru64] Joseph B Kruskal, Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis, Psychometrika 29 (1964), no. 1, 1–27.

[Lac74] Peter A. Lachenbruch, Discriminant Analysis When the Initial Samples
Are Misclassified II: Non-Random Misclassification Models, Technomet-
rics 16 (1974), no. 3, 419–424.

[LAV03] John Aldo Lee, Cédric Archambeau, and Michel Verleysen, Locally lin-
ear embedding versus isotop, ESANN’2003 proceedings - European Sym-
posium on Artificial Neural Networks, d-side publi., Bruges (Belgium),
23-25 April 2003, pp. 527–534.

[LCLo09] Giampaolo Luiz Libralon, André Carlos Ponce de Leon Carvalho,
Ana Carolina Lorena, and others, Pre-processing for noise detection in
gene expression classification data, Journal of the Brazilian Computer
Society 15 (2009), no. 1, 3–11.

[Lel93] Subhash Lele, Euclidean Distance Matrix Analysis (EDMA): Estima-
tion of mean form and mean form difference, Mathematical Geology 25
(1993), no. 5, 573–602.

[LHF02] Pui Y. Lee, Siu C. Hui, and Alvis Cheuk M. Fong, Neural networks for
web content filtering, IEEE Intelligent Systems 17 (Sep/Oct 2002), no. 5,
48–57.

269

[LHSS06] Nan-Ying Liang, Guang-Bin Huang, Paramasivan Saratchandran, and
Narasimhan Sundararajan, A fast and accurate online sequential learning
algorithm for feedforward networks, Neural Networks, IEEE Transactions
on 17 (2006), no. 6, 1411–1423.

[Lic13] M. Lichman, UCI machine learning repository, 2013.

[Lin98] Tony Lindeberg, Feature Detection with Automatic Scale Selection, In-
ternational Journal of Computer Vision 30 (1998), no. 2, 79–116.

[LJRV05] Amaury Lendasse, Yongnan Ji, Nima Reyhani, and Michel Verleysen,
LS-SVM Hyperparameter Selection with a Nonparametric Noise Estima-
tor, Artificial Neural Networks: Formal Models and Their Applications
– ICANN 2005, Lecture Notes in Computer Science, vol. 3697, Springer
Berlin Heidelberg, 2005, pp. 625–630.

[LLDV00] John Aldo Lee, Amaury Lendasse, Nicolas Donckers, and Michel Verley-
sen, A robust nonlinear projection method, ESANN’2000 proceedings -
European Symposium on Artificial Neural Networks (Bruges (Belgium)),
D-Facto public., 26-28 April 2000, pp. 13–20.

[LLV04] John Aldo Lee, Amaury Lendasse, and Michel Verleysen, Nonlinear pro-
jection with curvilinear distances: Isomap versus curvilinear distance
analysis, New Aspects in Neurocomputing: 10th European Symposium
on Artificial Neural Networks 2002 57 (2004), 49–76.

[LND09] Hanna Lukashevich, Stefanie Nowak, and Peter Dunker, Using one-class
SVM outliers detection for verification of collaboratively tagged image
training sets, Multimedia and Expo, 2009. ICME 2009. IEEE Interna-
tional Conference on, June 28 2009-July 3 2009, pp. 682–685.

[Low99] David Lowe, Object recognition from local scale-invariant features, Com-
puter Vision, 1999. The Proceedings of the Seventh IEEE International
Conference on (J Tsotsos, ed.), ICCV ’99, vol. 2, IEEE, 1999, pp. 1150–
1157.

[Low04] David G. Lowe, Distinctive Image Features from Scale-Invariant Key-
points, International Journal of Computer Vision 60 (2004), no. 2, 91–
110.

[LV07] John A Lee and Michel Verleysen, Nonlinear dimensionality reduction,
Springer, 2007.

270

[MAV+15] Yoan Miche, Anton Akusok, David Veganzones, Kaj-Mikael Björk, Eric
Séverin, Philippe du Jardin, Maite Termenon, and Amaury Lendasse,
SOM-ELM—Self-Organized Clustering using ELM, Neurocomputing
165 (2015), 238 – 254.

[MBJ+08] Yoan Miche, Patrick Bas, Christian Jutten, Olli Simula, and Amaury
Lendasse, A Methodology for Building Regression Models using Extreme
Learning Machine: OP-ELM, Proceedings of the European Symposium
on Artificial Neural Networks (ESANN), 2008, pp. 247–252.

[MLS05] Krystian Mikolajczyk, Bastian Leibe, and Bernt Schiele, Local features
for object class recognition, Computer Vision, 2005. ICCV 2005. Tenth
IEEE International Conference on, vol. 2, 17-21 Oct. 2005, pp. 1792–
1799.

[MS04] Krystian Mikolajczyk and Cordelia Schmid, Scale & Affine Invariant
Interest Point Detectors, International Journal of Computer Vision 60
(2004), no. 1, 63–86.

[MS05] , A performance evaluation of local descriptors, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27 (2005), no. 10,
1615–1630.

[MS10] Mahmoud A Mofaddel and Samy Sadek, Adult image content filtering:
A statistical method based on Multi-Color Skin Modeling, Signal Pro-
cessing and Information Technology (ISSPIT), 2010 IEEE International
Symposium on, 15-18 Dec. 2010, pp. 366–370.

[MSB+10] Yoan Miche, Antti Sorjamaa, Patrick Bas, Olli Simula, Christian Jutten,
and Amaury Lendasse, OP-ELM: Optimally-Pruned Extreme Learning
Machine, IEEE Transactions on Neural Networks 21 (2010), no. 1, 158–
162.

[MSL08] Yoan Miche, Antti Sorjamaa, and Amaury Lendasse, OP-ELM: Theory,
Experiments and a Toolbox, LNCS - Artificial Neural Networks - ICANN
2008 - Part I, Lecture Notes in Computer Science, vol. 5163/2008,
Springer Berlin / Heidelberg, September 2008, pp. 145–154.

[MTBG13] Markus Mathias, Radu Timofte, Rodrigo Benenson, and Luc Van Gool,
Traffic sign recognition — How far are we from the solution?, Neural
Networks (IJCNN), The 2013 International Joint Conference on, 4-9
Aug. 2013, pp. 1–8.

271

[MTS+05] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zis-
serman, Jiri Matas, F. Schaffalitzky, T. Kadir, and L. Van Gool, A Com-
parison of Affine Region Detectors, International Journal of Computer
Vision 65 (2005), no. 1, 43–72.

[MvB+11] Yoan Miche, Mark van Heeswijk, Patrick Bas, Olli Simula, and Amaury
Lendasse, TROP-ELM: A double-regularized ELM using LARS and
Tikhonov regularization, Advances in Extreme Learning Machine: The-
ory and ApplicationsBiological Inspired Systems. Computational and
Ambient IntelligenceSelected papers of the 10th International Work-
Conference on Artificial Neural Networks (IWANN2009) 74 (2011),
no. 16, 2413–2421.

[Mye90] R. H. Myers, Classical and Modern Regression with Applications, 2 ed.,
Duxbury, Pacific Grove, CA, USA, 1990.

[NM65] John A. Nelder and Roger Mead, A Simplex Method for Function Mini-
mization, The Computer Journal 7 (1965), no. 4, 308–313.

[OBLS14] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic, Learning
and Transferring Mid-level Image Representations Using Convolutional
Neural Networks, Computer Vision and Pattern Recognition (CVPR),
2014 IEEE Conference on, 23-28 June 2014, pp. 1717–1724.

[ON97] Seishi Okamoto and Yugami Nobuhiro, An Average-case Analysis of the
K-nearest Neighbor Classifier for Noisy Domains, Proceedings of the
15th International Joint Conference on Artifical Intelligence - Volume
1 (San Francisco, CA, USA), IJCAI’97, Morgan Kaufmann Publishers
Inc., 1997, pp. 238–243.

[Owe06] Art B. Owen, A robust hybrid of lasso and ridge regression, Contempo-
rary Mathematics (Joseph Stephen Verducci, Xiaotong Shen, and John
Lafferty, eds.), vol. 443, Stanford University, 2006.

[PBC05] S L Phung, A Bouzerdoum, and Sr. Chai D., Skin segmentation using
color pixel classification: analysis and comparison, Pattern Analysis and
Machine Intelligence, IEEE Transactions on 27 (2005), no. 1, 148–154.

[Pea01] Karl Pearson, LIII. On lines and planes of closest fit to systems of points
in space, The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science 2 (1901), no. 11, 559–572.

[PG90] Tomaso Poggio and Federico Girosi, Networks for approximation and
learning, Proceedings of the IEEE 78 (1990), no. 9, 1481–1497.

272

[PLB10] Federico Montesino Pouzols, Amaury Lendasse, and Angel Barriga Bar-
ros, Autoregressive time series prediction by means of fuzzy inference
systems using nonparametric residual variance estimation, Fuzzy Sets
and Systems 161 (2010), no. 4, 471–497, Theme: Forecasting, Classifi-
cation, and Learning.

[PPS94] Yoh-Han Pao, Gwang-Hoon Park, and Dejan J Sobajic, Learning and
generalization characteristics of the random vector functional-link net,
Neurocomputing 6 (1994), no. 2, 163–180.

[Ras04] CarlEdward Rasmussen, Gaussian Processes in Machine Learning, Ad-
vanced Lectures on Machine Learning (Olivier Bousquet, Ulrike von
Luxburg, and Gunnar Rätsch, eds.), Lecture Notes in Computer Sci-
ence, vol. 3176, Springer Berlin Heidelberg, 2004, pp. 63–71.

[Red98] Thomas C. Redman, The Impact of Poor Data Quality on the Typical
Enterprise, Communications of the ACM 41 (1998), no. 2, 79–82.

[RM72] C. Radhakrishna Rao and Sujit Kumar Mitra, Generalized inverse of a
matrix and its applications, Proceedings of the Sixth Berkeley Sympo-
sium on Mathematical Statistics and Probability, Volume 1: Theory of
Statistics (Berkeley, Calif.), University of California Press, 1972, pp. 601–
620.

[Ros58] Frank Rosenblatt, The perceptron: a probabilistic model for information
storage and organization in the brain., Psychological review 65 (1958),
no. 6, 386–408.

[ROTZ08] Hai-Jun Rong, Yew-Soon Ong, Ah-Hwee Tan, and Zexuan Zhu, A
fast pruned-extreme learning machine for classification problem, Ma-
chine Learning for Signal Processing (MLSP 2006) / Life System Mod-
elling, Simulation, and Bio-inspired Computing (LSMS 2007) 72 (2008),
no. 1–3, 359–366.

[RRZ+09] Y Robiah, S Siti Rahayu, M Mohd Zaki, S Shahrin, M A Faizal, and
R Marliza, A New Generic Taxonomy on Hybrid Malware Detection
Technique, International Journal of Computer Science and Information
Security 5 (2009), no. 1, 56–61.

[RS00] Sam T. Roweis and Lawrence K. Saul, Nonlinear Dimensionality Reduc-
tion by Locally Linear Embedding, Science 290 (2000), no. 5500, 2323–
2326.

273

[RW06] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning, The MIT Press, 2006.

[Sam69] John W. Sammon, A Nonlinear Mapping for Data Structure Analysis,
IEEE Transactions on Computers C-18 (1969), no. 5, 401–409.

[SG10] Abhinav Srivastava and Jonathon Giffin, Automatic Discovery of Par-
asitic Malware, Recent Advances in Intrusion Detection: 13th Interna-
tional Symposium, RAID 2010, Ottawa, Ontario, Canada, September
15-17, 2010. Proceedings (Somesh Jha, Robin Sommer, and Christian
Kreibich, eds.), Lecture Notes in Computer Science, vol. 6307, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 97–117.

[SH15] Zhigen Shang and Jianqiang He, Confidence-weighted extreme learning
machine for regression problems, Neurocomputing 148 (2015), 544–550.

[SLWV03] G. Simon, Amaury Lendasse, V. Wertz, and Michel Verleysen, Fast Ap-
proximation of the Bootstrap for Model Selection, ESANN’2003 proceed-
ings - European Symposium on Artificial Neural Networks (Bruges (Bel-
gium)), d-side Publications, 23-25 April 2003, pp. 475–480.

[SOJN08] Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y Ng,
Cheap and Fast—but is It Good?: Evaluating Non-expert Annotations
for Natural Language Tasks, Proceedings of the conference on empirical
methods in natural language processing, EMNLP ’08, Association for
Computational Linguistics, Stroudsburg, PA, USA, 2008, pp. 254–263.

[SSSM98] Bernhard Schölkopf, Alexander Smola, Er Smola, and Klaus-Robert
Müller, Nonlinear component analysis as a kernel eigenvalue problem,
Neural Computation 10 (1998), no. 5, 1299–1319.

[ST83] David W Scott and James R Thompson, Probability density estimation
in higher dimensions, Computer Science and Statistics: Proceedings of
the Fifteenth Symposium on the Interface, vol. 528, North-Holland, Am-
sterdam, 1983, pp. 173–179.

[ST05] Timo Similä and Jarkko Tikka, Multiresponse Sparse Regression with
Application to Multidimensional Scaling, Proceedings of the 15th Inter-
national Conference on Artificial Neural Networks: Formal Models and
Their Applications - Volume Part II (Berlin, Heidelberg), ICANN’05,
Springer-Verlag, 2005, pp. 97–102.

274

[ST06] T. Simila and J. Tikka, Common Subset Selection of Inputs in Mul-
tiresponse Regression, Neural Networks, 2006. IJCNN ’06. International
Joint Conference on, 2006, pp. 1908–1915.

[SZ03] Josef Sivic and Andrew Zisserman, Video Google: a text retrieval ap-
proach to object matching in videos, Computer Vision, 2003. Proceedings.
Ninth IEEE International Conference on, 13-16 Oct. 2003, pp. 1470–1477
vol.2.

[TdL00] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford, A Global
Geometric Framework for Nonlinear Dimensionality Reduction, Science
290 (2000), no. 5500, 2319–2323.

[Ten98] Joshua B Tenenbaum, Mapping a manifold of perceptual observations,
Advances in Neural Information Processing Systems 10 (M. I. Jordan,
M. J. Kearns, and S. A. Solla, eds.), MIT Press, 1998, pp. 682–688.

[TFF08] Antonio Torralba, Rob Fergus, and William T Freeman, 80 Million Tiny
Images: A Large Data Set for Nonparametric Object and Scene Recogni-
tion, IEEE Transactions on Pattern Analysis and Machine Intelligence
30 (2008), no. 11, 1958–1970.

[Thi76] Ronald A. Thisted, Ridge regression, minimax estimation, and empiri-
cal bayes methods, Tech. Report 28, Division of Biostatistics, Stanford
University, 1976.

[Tib96] Robert Tibshirani, Regression Shrinkage and Selection Via the Lasso,
Journal of the Royal Statistical Society, Series B (Methodological) 58
(1996), 267–288.

[Tik63] A N Tikhonov, Solution of incorrectly formulated problems and the reg-
ularization method, Soviet Math. Dokl. 5 (1963), 1035–1038.

[TK07] Grigorios Tsoumakas and Ioannis Katakis, Multi-Label Classification:
An Overview, International Journal of Data Warehousing and Mining
(IJDWM) 3 (2007), no. 3, 1–13.

[TM08] Tinne Tuytelaars and Krystian Mikolajczyk, Local Invariant Feature De-
tectors: A Survey, Foundations and Trends in Computer Graphics and
Vision 3 (2008), no. 3, 177–280.

[TSK05] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, Introduction to
Data Mining, 1 ed., Pearson, May 2005.

275

[VGS10] Koen EA Van De Sande, Theo Gevers, and Cees GM Snoek, Evaluat-
ing color descriptors for object and scene recognition, IEEE Trans. on
Pattern Analysis and Machine Intelligence 32 (2010), no. 9, 1582–1596.

[Vii12] Ville Viitaniemi, Visual Category Detection: An Experimental Perspec-
tive, Ph.D. thesis, Aalto University, Helsinki, Finland, 2012.

[VJ01] Paul Viola and Michael Jones, Rapid object detection using a boosted
cascade of simple features, Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Con-
ference on, vol. 1, 2001, pp. I–511–I–518.

[VK01] Jarkko Venna and Samuel Kaski, Neighborhood Preservation in Non-
linear Projection Methods: An Experimental Study, Artificial Neural
Networks — ICANN 2001: International Conference Vienna, Austria,
August 21–25, 2001 Proceedings (Georg Dorffner, Horst Bischof, and
Kurt Hornik, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2001,
pp. 485–491.

[vML+09] Mark van Heeswijk, Yoan Miche, Tiina Lindh-Knuutila, Peter A. Hilbers,
Timo Honkela, Erkki Oja, and Amaury Lendasse, Adaptive Ensemble
Models of Extreme Learning Machines for Time Series Prediction, Pro-
ceedings of the 19th International Conference on Artificial Neural Net-
works: Part II (Berlin, Heidelberg) (Cesare Alippi, Marios Polycarpou,
Christos Panayiotou, and Georgios Ellinas, eds.), ICANN ’09, Springer-
Verlag, 2009, pp. 305–314.

[vMOL11] Mark van Heeswijk, Yoan Miche, Erkki Oja, and Amaury Lendasse,
GPU-Accelerated and Parallelized ELM Ensembles for Large-scale Re-
gression, Neurocomputing 74 (2011), no. 16, 2430–2437.

[VPN+10] Jarkko Venna, Jaakko Peltonen, Kristian Nybo, Helena Aidos, and
Samuel Kaski, Information retrieval perspective to nonlinear dimension-
ality reduction for data visualization, The Journal of Machine Learning
Research 11 (2010), 451–490.

[VS05] Andrea Vedaldi and Stefano Soatto, Features for recognition: view-
point invariance for non-planar scenes, Computer Vision, 2005. ICCV
2005. Tenth IEEE International Conference on, vol. 2, 17-21 Oct. 2005,
pp. 1474–1481 Vol. 2.

276

[vT15] André van Schaik and Jonathan Tapson, Online and adaptive pseudoin-
verse solutions for ELM weights, Advances in neural networksAdvances
in Extreme Learning MachinesSelected papers from the Tenth Inter-
national Symposium on Neural Networks (ISNN 2013)Selected articles
from the International Symposium on Extreme Learning Machines (ELM
2013) 149, Part A (2015), 233–238.

[Wel47] Bernard L. Welch, The Generalization of ‘Student’s’ Problem when Sev-
eral Different Population Variances are Involved, Biometrika 34 (1947),
no. 1/2, 28–35.

[WHF07] C. Willems, T. Holz, and F. Freiling, Toward Automated Dynamic Mal-
ware Analysis Using CWSandbox, IEEE Security & Privacy 5 (March-
April 2007), no. 2, 32–39.

[Whi89] Stephen H. White, An additional hidden unit test for neglected nonlinear-
ity in multilayer feedforward networks, Neural Networks, 1989. IJCNN.,
International Joint Conference on, 1989, pp. 451–455 vol.2.

[Whi06] Halbert White, Chapter 9 Approximate Nonlinear Forecasting Meth-
ods, Handbook of Economic Forecasting (C.W.J. Granger G. Elliott and
A. Timmermann, eds.), vol. Volume 1, Elsevier, 2006, pp. 459–512.

[WHY09] Xiaoyin Wang, Changzhen Hu, and Shuping Yao, An adult image recog-
nizing algorithm based on naked body detection, Computing, Communica-
tion, Control, and Management, 2009. CCCM 2009. ISECS International
Colloquium on, vol. 4, 8-9 Aug. 2009, pp. 197–200.

[WMR92] W.F. Schmidt, M.A. Kraaijveld, and R.P.W. Duin, Feedforward neural
networks with random weights, Pattern Recognition, 1992. Vol.II. Con-
ference B: Pattern Recognition Methodology and Systems, Proceedings.,
11th IAPR International Conference on, 30 Aug-3 Sep 1992, pp. 1–4.

[WSB98] Roger Weber, HJ Schek, and Stephen Blott, A quantitative analysis
and performance study for similarity-search methods in high-dimensional
spaces, Proceedings of the 24rd International Conference on Very Large
Data Bases (San Francisco, CA, USA), VLDB ’98, Morgan Kaufmann
Publishers Inc., 1998, pp. 194–205.

[YHOM10] Katsunari Yoshioka, Yoshihiko Hosobuchi, Tatsunori Orii, and Tsutomu
Matsumoto, Vulnerability in Public Malware Sandbox Analysis Systems,
Applications and the Internet (SAINT), 2010 10th IEEE/IPSJ Interna-
tional Symposium on (Washington, DC, USA), IEEE Computer Society,
19-23 July 2010, pp. 265–268.

277

[YKL11] Man-Ching Yuen, Irwin King, and Kwong-Sak Leung, A Survey of
Crowdsourcing Systems, Privacy, Security, Risk and Trust (PASSAT)
and 2011 IEEE Third Inernational Conference on Social Computing (So-
cialCom), 2011 IEEE Third International Conference on, 9-11 Oct. 2011,
pp. 766–773.

[YME+13] Qi Yu, Yoan Miche, Emil Eirola, Mark van Heeswijk, Eric Séverin, and
Amaury Lendasse, Regularized extreme learning machine for regression
with missing data, Advances in Extreme Learning Machines (ELM 2011)
102 (2013), 45–51.

[ZH05] Hui Zou and Trevor Hastie, Regularization and variable selection via the
elastic net, Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 67 (2005), no. 2, 301–320.

[ZHC13] Weiwei Zong, Guang-Bin Huang, and Yiqiang Chen, Weighted extreme
learning machine for imbalance learning, Neurocomputing 101 (2013),
229–242.

[ZOT14] Yiteng Zhai, Yew-Soon Ong, and I. W. Tsang, The Emerging ”Big
Dimensionality”, IEEE Computational Intelligence Magazine 9 (2014),
no. 3, 14–26.

[ZQSH05] Qin-Yu Zhu, A. Kai Qin, Ponnuthurai N. Suganthan, and Guang-Bin
Huang, Evolutionary extreme learning machine, Pattern Recognition 38
(2005), no. 10, 1759–1763.

[ZRY09] Peng Zhao, Guilherme Rocha, and Bin Yu, The composite absolute penal-
ties family for grouped and hierarchical variable selection, Annals of
Statistics 37 (2009), no. 6A, 3468–3497 (en).

[ZW04] Xingquan Zhu and Xindong Wu, Class Noise vs. Attribute Noise: A
Quantitative Study, Artificial Intelligence Review 22 (2004), no. 3, 177–
210.

[ZWC03] Xingquan Zhu, Xindong Wu, and Qijun Chen, Eliminating class noise
in large datasets, Proceedings of the 20th International Conference on
Machine Learning (ICML-03), 2003, pp. 920–927.

[ZZWW04] Qing-Fang Zheng, Wei Zeng, Gao Wen, and Wei-Qiang Wang, Shape-
based adult images detection, Image and Graphics (ICIG’04), Third In-
ternational Conference on, 18-20 Dec. 2004, pp. 150–153.

	University of Iowa
	Iowa Research Online
	Spring 2016

	Extreme Learning Machines: novel extensions and application to Big Data
	Anton Akusok
	Recommended Citation

	tmp.1472141886.pdf.S3wvj

