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ABSTRACT 

The objective of this study is to develop an integrated multibody dynamics 

computational framework for the deterministic and reliability-based design optimization 

of wind turbine drivetrains to obtain an optimal wind turbine gear design that ensures a 

target reliability under wind load and gear manufacturing uncertainties. Gears in wind 

turbine drivetrains are subjected to severe cyclic loading due to variable wind loads that 

are stochastic in nature. Thus, the failure rate of drivetrain systems is reported to be 

relatively higher than the other wind turbine components. It is known in wind energy 

industry that improving reliability of drivetrain designs is one of the key issues to make 

wind energy competitive as compared to fossil fuels. Furthermore, a wind turbine is a 

multi-physics system involving random wind loads, rotor blade aerodynamics, gear 

dynamics, electromagnetic generator and control systems. This makes an accurate 

prediction of product life of drivetrains challenging and very limited studies have been 

carried out regarding design optimization including the reliability-based design 

optimization (RBDO) of geared systems considering wind load and manufacturing 

uncertainties. 

In order to address these essential and challenging issues on design optimization of 

wind turbine drivetrains under wind load and gear manufacturing uncertainties, the 

following issues are discussed in this study: (1) development of an efficient numerical 

procedure for gear dynamics simulation of complex multibody geared systems based on 

the multi-variable tabular contact search algorithm to account for detailed gear tooth 

contact geometry with profile modifications or surface imperfections; (2) development of 

an integrated multibody dynamics computational framework for deterministic and 

reliability-based design optimization of wind turbine drivetrains using the gear dynamics 

simulation software developed in (1) and RAMDO software by incorporating wide 

spatiotemporal wind load uncertainty model, pitting gear tooth contact fatigue model, and 

rotor blade aerodynamics model using NREL AeroDyn/FAST; and (3) deterministic and 

reliability-based design optimization of wind turbine drivetrain to minimize total weight of 

a drivetrain system while ensuring 20-year reliable service life with wind load and gear 

manufacturing uncertainties using the numerical procedure developed in this study. 
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To account for the wind load uncertainty, the joint probability density function 

(PDF) of 10-minute mean wind speed (V10) and 10-minute turbulence intensity (I10) is 

introduced for wind turbine drivetrain dynamics simulation. To consider wide 

spatiotemporal wind uncertainty (i.e., wind load uncertainty for different locations and in 

different years), uncertainties of all the joint PDF parameters of V10, I10 and copula are 

considered, and PDF for each parameter is identified using 249 sets of wind data. This 

wind uncertainty model allows for the consideration of a wide range of probabilistic wind 

loads in the contact fatigue life prediction. For a given V10 and I10 obtained from the 

stochastic wind model, the random time-domain wind speed data is generated using NREL 

TurbSim, and then inputted into NREL FAST to perform the aerodynamic simulation of 

rotor blades to predict the transmitted torque and speed of the main shaft of the drivetrain 

that are sent to the multibody gear dynamics simulation as an input.  

In order to predict gear contact fatigue life, a high-fidelity gear dynamics simulation 

model that considers the detailed gear contact geometry as well as the mesh stiffness 

variation needs to be developed to find the variability of maximum contact stresses under 

wind load uncertainty. This, however, leads to a computationally intensive procedure. To 

eliminate the computationally intensive iterative online collision detection algorithm, a 

numerical procedure for the multibody gear dynamics simulation based on the tabular 

contact search algorithm is proposed. Look-up contact tables are generated for a pair of 

gear tooth profiles by the contact geometry analysis prior to the dynamics simulation and 

the contact points that fulfill the non-conformal contact condition and mesh stiffness at 

each contact point are calculated for all pairs of gears in the drivetrain model.  

This procedure allows for the detection of gear tooth contact in an efficient manner 

while retaining the precise contact geometry and mesh stiffness variation in the evaluation 

of mesh forces, thereby leading to a computationally efficient gear dynamics simulation 

suited for the design optimization procedure considering wind load uncertainty. 

Furthermore, the accuracy of mesh stiffness model introduced in this study and 

transmission error of gear tooth with tip relief are discussed, and a wind turbine drivetrain 

model developed using this approach is validated against test data provided in the literature. 

The gear contact fatigue life is predicted based on the gear tooth pitting fatigue 

criteria and is defined by the sum of the number of stress cycles required for the fatigue 
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crack initiation and the number required for the crack to propagate from the initial to the 

critical crack length based on Paris-Erdogan equation for Mode II fracture. All the above 

procedures are integrated into the reliability-based design optimization software RAMDO 

for design optimization and reliability analysis of wind turbine drivetrains under wind load 

and manufacturing uncertainties.  

A 750kW GRC wind turbine gearbox model is used to perform the design 

optimization and the reliability analysis. A deterministic design optimization (DDO) is 

performed first using an averaged joint PDF of wind load to ensure a 20-year service life. 

To this end, gear face width and tip relief (profile modification) are selected as design 

variables and optimized such that 20-year fatigue life is ensured while minimizing the total 

weight of drivetrains. It is important to notice here that an increase in face width leads to a 

decrease in the fatigue damage, but an increase in total weight. On the other hand, the tip 

relief has almost no effect on the total weight, but it has a major impact on the fatigue 

damage. It is shown in this study that the optimum tip relief allows for lowering the greatest 

maximum shear stresses on the tooth surface without relying heavily on face width 

widening to meet the 20-year fatigue life constraint and it leads to reduction of total 

drivetrain weight by 8.4%. However, if only face width is considered as design variable, 

total weight needs to be increased by 4.7% to meet the 20-year fatigue life constraint. 

Furthermore, the reliability analysis at the DDO optimum design is carried out 

considering the large spatiotemporal wind load uncertainty and gear manufacturing 

uncertainty. Local surrogate models at DDO optimum design are generated using Dynamic 

Kriging method in RAMDO software to evaluate the gear contact fatigue damage. 49.5% 

reliability is obtained at the DDO optimum design, indicating that the probability of failure 

is 50.5%, which is as expected for the DDO design. RBDO is, therefore, necessary to 

further improve the reliability of the wind turbine drivetrain.  

To this end, the sampling-based reliability analysis is carried out to evaluate the 

probability of failure for each design using the Monte Carlo Simulation (MCS) method. 

However, the use of a large number of MCS sample points leads to a large number of 

contact fatigue damage evaluation time using the 10-minute multibody drivetrain dynamics 

simulation, resulting in the RBDO calculation process being computational very intensive. 

In order to overcome the computational difficulty resulting from the use of high-fidelity 
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wind turbine drivetrain dynamics simulation, intermediate surrogate models are created 

prior to the RBDO process using the Dynamic Kriging method in RAMDO and used 

throughout the entire RBDO iteration process. It is demonstrated that the RBDO optimum 

obtained ensures the target 97.725 % reliability (two sigma quality level) with only 1.4 % 

increase in the total weight from the baseline design with 8.3 % reliability. This result 

clearly indicates the importance of incorporating the tip relief as a design variable that 

prevents larger increase in the face width causing an increase in weight. This, however, 

does not mean that a larger tip relief is always preferred since an optimum tip relief amount 

depends on stochastic wind loads and an optimum tip relief cannot be found 

deterministically. Furthermore, accuracy of the RBDO optimum obtained using the 

intermediate surrogate models is verified by the reliability analysis at the RBDO optimum 

using the local surrogate models. It is demonstrated that the integrated design optimization 

procedure developed in this study enables the cost effective and reliable design of wind 

turbine drivetrains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii 

7
 

PUBLIC ABSTRACT 

This study aims to develop an integrated computational framework for the 

reliability-based design optimization (RBDO) of wind turbine drivetrains to ensure a target 

reliability under wind load and gear manufacturing uncertainties. Gears in wind turbine 

drivetrains are subjected to severe cyclic loading due to variable wind loads that are 

stochastic in nature. Thus, the failure rate of drivetrain systems is reported to be higher than 

the other wind turbine components, and improving drivetrain reliability while minimizing 

the cost (weight) is one of the key issues to make wind energy more competitive as 

compared to fossil fuels. In the numerical procedure developed in this study, a wide 

spatiotemporal variability for wind loads is considered using 249 sets of wind data to 

evaluate probabilistic contact fatigue life for the sampling-based RBDO. To address 

computational burdens resulting from multiple 10-minute gear contact dynamics 

simulations considering precise contact geometry, a tabular contact search algorithm using 

the combined nodal and non-conformal contact search approach is generalized to gear tooth 

contact. Using this simulation capability, an integrated computational framework for wind 

turbine drivetrain RBDO is developed by incorporating the wind load uncertainty model, 

the rotor blade aerodynamics model, drivetrain dynamics model, and the probabilistic 

contact fatigue failure model. It is demonstrated that the RBDO optimum obtained in this 

study for the 750kW GRC wind turbine drivetrain ensures the target 97.725 % reliability 

for 20-year service life by only 1.4 % increase in the total weight from the baseline design 

with 8.3 % reliability.  
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CHAPTER 1                                                                                    

INTRODUCTION 

This study is aimed to develop an integrated multibody dynamics computational 

framework for the reliability-based design optimization of wind turbine drivetrains 

considering wind load and manufacturing uncertainties. In this chapter, background and 

motivation of this study are provided. In particular, failure modes of wind turbine 

drivetrains and existing approaches for failure prediction of wind turbine drivetrains are 

overviewed and then existing gear contact analysis models used in general multibody 

dynamics simulation are discussed in order to highlight important features and drawbacks 

of various approaches that are currently in use. Furthermore, the deterministic and 

reliability-based design optimization procedures for gears are briefly overviewed and the 

need for profile optimization are discussed for complex multi-stage wind turbine 

drivetrains. Finally, the objectives and organization of this thesis are provided. 

1.1 Background and Motivation 

1.1.1 Wind Turbine Drivetrain Failure 

An accurate prediction of the product life of drivetrains is crucial for safe and 

reliable operation of wind turbines. It is reported that the failure rate of gearboxes is higher 

than other wind turbine components [1-3]. Failures of gear components stop wind turbine 

operation, and pecuniary loss due to turbine downtime and maintenance increases 

dramatically, resulting in wind energy being less competitive when compared to existing 

fossil fuels [2]. For this reason, establishing a reliable and cost-effective design procedure 

for wind turbine components is of crucial importance.  

According to the National Renewable Energy Laboratory (NREL) report [4], wind 

turbine drivetrain failure modes are classified as follows: (a) bending fatigue, (b) contact 

fatigue, (c) wear, (d) scuffing, (e) grinding cracks, and (f) case-core separation cracks. 

Main cause of bending fatigue is an inadequate material cleanliness or incomplete 

hardening on the tooth root. Wear is due to the tearing of asperities and it can be alleviated 

by sufficient lubrication on tooth surfaces. Scuffing also called as severe adhesion occurs 

when lubricant dries out accidently. It is known that grinding cracks and case-core 
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separation cracks are caused by improper heat treatment of gear materials. These failures 

can be prevented by the use of appropriate materials and careful surface treatments. On the 

other hand, more careful consideration needs to be given to rolling contact fatigue in gear 

design [5]. Since a gear tooth experiences severe cyclic rolling and sliding contact resulting 

from highly variable wind loads which are stochastic in nature, prediction of fatigue failure 

is not straightforward, thus contact fatigue becomes one of the major causes of unintended 

gearbox failure that would prevent wind turbines from achieving the expected service life 

[6, 7]. Furthermore, the gear shaft misalignment, which can be classified into a parallel 

misalignment and angular misalignment due to the manufacturing assembly error and/or 

the driveshaft defection caused by an overhanging load of the wind turbine rotor blades, 

alters gear tooth contact stress distribution and can have significant impact on the gear 

contact fatigue damage [8-10]. 

The gear tooth contact fatigue is caused by either surface-initiated cracking or 

subsurface-initiated cracking [11]. Overheating of tooth surfaces due to insufficient 

lubrication leads to the surface-initiated failure, while the subsurface crack is initiated for 

properly lubricated gears in most cases. It is widely agreed that the contact fatigue failure 

process due to the subsurface-initiated crack can be divided into two stages: [12, 13] (1) 

crack initiation period, and (2) crack propagation period. Contact fatigue life is estimated 

by the sum of total number of load cycles required for the crack initiation and that required 

for the crack to propagate to the surface [11]. The crack initiation process can be modeled 

by the multi-axial high cycle fatigue criteria [14-16], which is influenced by contact stress 

and material fatigue parameters. The crack propagation process is modeled by the Paris 

equation using mode II stress intensity factor [17, 18]. For case-hardened materials, it is 

observed that the crack propagation under rolling contact is influenced by the ratio of the 

maximum shear stress to the material hardness [19, 20]. In other words, to estimate the 

contact fatigue life of wind turbine drivetrain gear teeth, the maximum shear stress needs 

to be predicted accurately under various dynamic load conditions. The use of a 

deterministic single domain simulation may, however, lead to an unrealistic load prediction 

due to high variability of wind loads, thereby resulting in underestimation or 

overestimation of the gear tooth fatigue life. A probabilistic pitting fatigue life prediction 

procedure is proposed in the literature [21], in which the wind load uncertainty is defined 
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solely by the probability density function (PDF) of the mean wind speed using the 

generalized gamma function and the random maximum contact pressure, obtained using 

the probabilistic analysis of the multibody drivetrain dynamics, is used to find the pitting 

fatigue life, considering the effect of wind load variability. 

1.1.2 Multibody Dynamics Simulation of Geared Systems 

Multibody dynamics simulation is widely used to predict the dynamic mesh force 

variation as well as transmission error of complex gear trains. Lumped torsional mass-

spring models that account for the effect of variable stiffness associated with the gear tooth 

contact are widely used in the vibration analysis of gear systems [22-24]. While the lumped 

vibration models are computationally efficient and provide an important insight into the 

dynamic response of gear trains, they are, in general, used for the analysis of steady-state 

response in the frequency domain and the three-dimensional gear tooth geometry is not 

fully considered in the model.  

To perform the time-domain transient analysis of gear systems, multibody dynamics 

models have been used for various engineering applications [25-28]. The tangential and 

bending deformation of the gear tooth can be considered by introducing discrete 

translational and rotational springs defined between the rigid tooth and rigid gear body [29, 

30]. Flexibility of the entire gear body can be incorporated into multibody dynamics 

simulation using the floating frame of reference formulation with modal reduction 

techniques, allowing for prediction of accurate tooth impact force influenced by the tooth 

and gear wheel deformation [31]. Since flexible multibody models, in general, lead to large 

dimensionality to ensure accuracy, the computational cost is high and application to the 

gear train dynamics simulation would be impractical. To reduce the computational cost for 

the full finite element gear model, the surface integral solution for the tooth contact is 

integrated into the finite element model, thereby allowing for the use of coarse finite 

element meshes while retaining the precise gear tooth contact calculation [32, 33]. For 

wind turbine applications, various drivetrain models are developed using either rigid or 

flexible multibody dynamics approaches [34-37], some of which are validated against test 

bench results [38]. Furthermore, the probabilistic flexible multibody gear dynamics 
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simulation has been advocated for wind turbine gearboxes to account for uncertainties 

associated with wind loads and manufacturing errors [39]. 

In gear dynamics simulation, precise tooth surface geometry description and 

accurate prediction of the location of the contact point are crucial to the mesh force and 

transmission error evaluation of gear trains [40]. In particular, contact search for the tooth 

surface geometry obtained by CAD and/or direct tooth measurement leads to extensive 

computation efforts in the dynamic simulation. In the constraint contact formulation, the 

non-conformal contact condition between tooth surfaces in contact is imposed on the 

equations of motion as constraint equations and the normal contact forces are evaluated by 

Lagrange multipliers associated with the contact constraint. This formulation leads to an 

accurate and efficient prediction of the contact point on the continuous smooth surface [41]. 

However, intermittent contact of multiple gear teeth is involved in the time-domain 

dynamic analysis, thus use of the constraint contact formulation necessitates ad hoc 

numerical procedures for modeling the gear tooth impact as well as loss of contact due to 

changes in the system degrees of freedom. Furthermore, a rigid contact assumption used in 

the formulation prevents consideration of the effect of variable mesh stiffness. For this 

reason, the elastic (penalty) contact approach has been widely used in the analysis of 

multibody gear contact dynamics and the normal contact force is defined as a compliant 

force function of the penetration between two surfaces in contact. The contact point can be 

determined online by either solving nonlinear contact search equations iteratively to ensure 

the tangency condition or searching a pair of nodes that have the maximum penetration on 

the discretized surfaces. The nodal search method, however, is not recommended due to 

the discrete surface representation which causes numerical noise in mesh forces. In the use 

of contact search equations, on the other hand, nonlinear equations need to be solved 

iteratively at every time step, leading to extensive computational time for the entire gear 

train model. Furthermore, a special technique is required for treating a discontinuous 

contact event such as impact, loss, or jump in contact point that can occur when gear 

geometry imperfections are involved.  To address these fundamental and essential issues 

in the contact search algorithm for gear tooth surfaces with geometric imperfection, a 

combined nodal and non-conformal contact search algorithm is introduced and generalized 

to the gear tooth contact problem in this study. 
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1.1.3 Gear Design Optimization 

Gear design is a complicated iterative process, involving many design variables, 

requirements, and constraints [42]. Many gear design optimizations have been carried out 

using deterministic design variables and loads. In most literature, optimization of the 

contact ratio, face width, and tooth tip and root profiles is explored to meet the fatigue life 

constraint associated with gear tooth bending and surface pitting failures [43-45]. 

Minimization of gear transmission error, which is the main source of gearbox noise and 

vibration, is also explored by modifying the gear tooth profile through lead crowning and 

tip/root relief [46-48]. Since tooth profile modification is on an order of microns and it is 

in the same order of manufacturing variance, a robust design optimization using Taguchi 

Method is adopted in the literature [49-51] to make the gear profile design insensitive to 

the manufacturing variance.  

It is suggested in the literature [49] that a gear tooth profile optimization process 

consists of two steps: (1) generation of a candidate design that meets design requirements 

(e.g., the center distance, gear ratio, etc.) and constraints (e.g., maximum face width, 

maximum bending and contact stresses, etc.); and (2) tooth profile optimization. That is, 

the candidate design is found at the first stage and then further refinement is made by the 

profile modification at the second stage such that the transmission error can be minimized 

and insensitive to the manufacturing variance [49].  

It is also shown that the maximum contact pressure due to the cyclical contact 

loading can be lowered by tooth profile modification (tip relief) [18], thereby allowing for 

the lowering of the maximum shear stress beneath the contact surface, which is a major 

driving force for the crack growth due to pitting fatigue. It is important to notice here that, 

for the evaluation of the effect of profile modification on the contact fatigue life, precise 

gear tooth contact geometry as well as the mesh stiffness variation need to be incorporated 

into the multibody gear dynamics simulation model to account for the contact pressure 

variation associated with the gear tooth microgeometry.  

Furthermore, to meet a target reliability for gear tooth contact failure, reliability-

based design optimization (RBDO) of an automobile gearbox is discussed in the literature 

[52], in which gear face width is selected as design variable. RBDO has proven to be an 

effective approach that enables reliable and cost-effective design for a wide variety of 
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engineering applications under uncertainties [53-56]. In structural design problems, RBDO 

is usually utilized such that the design cost function can be minimized while ensuring a 

target probability of failure under uncertainty, associated with design variables as well as 

system parameters including material properties, geometry, loads, etc [57].  

In the RBDO process, reliability analysis is carried out for different values of the 

design variables in the iterative solution process, and sensitivity based or sampling based 

methods are employed to evaluate the reliability. In the sensitivity based approach, the first 

order reliability method (FORM) [58] or the second order reliability method (SORM) [59] 

are commonly used to approximate the constraint performance functions. However, for 

many engineering problems, the gradient of constraint performance functions required to 

calculate the probability of failure [58] is difficult to obtain. Thus, sampling based methods 

are utilized and the probability of failure is evaluated by Monte Carlo simulation (MCS) 

instead. This, however, requires a large number of evaluations of constraint performance 

functions, making the sampling based approach computationally intensive.  

To overcome the computational burden introduced by MCS method, surrogate 

models are created and used to evaluate the constraint performance functions for various 

selections of design variables [60]. There are many types of surrogate models proposed in 

the literature [61-65]. Among others, polynomial response surfaces [61]; support vector 

repressors and classifiers (SVR, SVC) [62]; neural networks [63]; radial basis functions 

[64]; and kriging methods [65] are widely used due to their capability of dealing with 

highly nonlinear problems. The dynamic kriging method [57], suited for highly nonlinear 

problems, is successfully applied to RBDO of wind turbine composite blades under wind 

load uncertainty [66]. 

1.2 Objective of the Study 

Despite many studies on the gear contact and failure analysis of wind turbine 

drivetrains, limited studies have been carried out regarding reliability-based design 

optimization (RBDO) of geared systems considering wind load and manufacturing 

uncertainties. Furthermore, a wind turbine is a multi-physics system involving mechanical 

and aerodynamics simulations, thus an integrated simulation framework is required such 

that the wind load uncertainty, random wind field generation, rotor blade aerodynamics, 

drivetrain dynamics considering the gear tooth contact geometry including the profile 
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modification effect, and contact fatigue failure models can be integrated into the design 

optimization framework. It is, therefore, the objective of this study to develop an integrated 

multibody dynamics computational framework for the deterministic and reliability-based 

design optimization of wind turbine drivetrains considering wind load and manufacturing 

uncertainties to meet the target reliability for 20-year service life. To this end, the following 

issues are addressed in this thesis: 

(1) Develop an efficient numerical procedure for gear dynamics simulation of complex 

multibody geared systems based on the multi-variable tabular contact search algorithm 

to account for detailed gear tooth contact geometry with surface modifications or 

imperfections. 

(2) Develop an integrated multibody dynamics computational framework for deterministic 

and reliability-based design optimization of wind turbine drivetrains using the gear 

dynamics simulation software developed in (1) and RAMDO software by incorporating 

a wide spatiotemporal wind load uncertainty model, pitting gear tooth contact fatigue 

models, and rotor blade aerodynamics models using NREL AeroDyn/FAST.  

(3) Conduct the deterministic and reliability-based design optimization of wind turbine 

drivetrains using the numerical procedure developed. To this end, gear tooth width and 

tip relief (profile modification) are selected as design variables to minimize the total 

weight of a drivetrain system while ensuring 20-year service life under uncertainties 

associated with wind loads and gear tooth manufacturing. 

1.3 Organization of Thesis 

This thesis is organized as follows: a numerical procedure for gear dynamics 

simulation of general multibody systems is developed based on the multi-variable tabular 

contact search algorithm to account for detailed gear tooth contact geometry with surface 

modifications or imperfections in Chapter 2. Several numerical examples are presented to 

demonstrate the numerical procedure developed for gear dynamic simulation, and 

validation against test results for NREL wind turbine drivetrains is presented in Chapter 3. 

In Chapter 4, the pitting contact fatigue model considering both gear subsurface crack 

initiation and crack propagation is introduced to evaluate gear contact fatigue damage and 

integrated into the multibody gear dynamics simulation framework presented in Chapter 2. 
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Furthermore, an integrated computational framework for design optimization of 

wind turbine drivetrains is developed using the gear dynamics simulation capability 

developed in this study and RAMDO software by incorporating a wide spatiotemporal 

wind load uncertainty model, pitting gear tooth contact fatigue model, and rotor blade 

aerodynamics model using NREL AeroDyn/FAST. Deterministic design optimization 

(DDO) of a wind turbine drivetrain using averaged PDF of wind uncertainty model is 

discussed. In Chapter 5, the reliability analysis is discussed considering a wide 

spatiotemporal wind load uncertainty and gear manufacturing variance associated with 

gear face width and profile modification (i.e., tip relief). In Chapter 6, a numerical 

procedure for RBDO of wind turbine drivetrains is developed to meet the target probability 

of failure for 20-year service life while minimizing the total weight. The intermediate 

surrogate model is introduced using the dynamics kriging method to address the large 

computational cost required for the RBDO process. Summary, conclusions, and future 

work are provided in Chapter 7. 
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CHAPTER 2                                                                                          

GEAR DYNAMICS SIMULATION 

2.1 Introduction 

In this chapter, a numerical procedure for gear dynamics simulation of multibody 

systems is developed using the tabular contact search method. Existing online contact 

search algorithms, which are widely used in multibody dynamics simulation, lead to a 

computational intensive procedure if detailed tooth surface geometry described by CAD or 

measured data points are considered with geometric imperfections. In the numerical 

procedure developed in this chapter, the contact geometry analysis based on the non-

conformal contact condition is performed using the detailed tooth surface description prior 

to the dynamic simulation, and then the contact point as well as the tooth geometry at the 

contact point stored in the look-up contact tables are used to determine mesh forces in the 

multibody gear dynamics simulation. This allows for detecting multi-point contact without 

any iterative procedures and the contact point on the back side of the tooth can also be 

considered by switching look-up contact tables in a straightforward manner. 

2.2 Parameterization of Gear Tooth Surface 

As shown in Fig. 2.1, the global position vector of a contact point on the tooth k of 

rigid gear body i can be expressed as 

                                     ik i i ik r R A u                         (2.1) 

where [ ]i i i i T

X Y ZR R RR  is the global position vector of the origin of the body 

coordinate system attached to the center of gear body; iA  is the orientation matrix 

parameterized by the three Euler angles [ ]i i i i T  θ  (successive rotations about the 

iZ , iX  and iY  axes of the body coordinate system); and 
ik

u defines the location of the 

contact point defined with respect to the body coordinate system. The gear tooth geometry 

is parameterized by two surface parameters 1

iks  and 2

iks , and the local position vector 
ik

u  

can be expressed as 

                        1 2 0 0 1 2( , ) ( , )ik ik ik ik ik ik ik ik

ps s s s u u A u                                        (2.2) 
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In the preceding equation, 0
ik

u  and 0

ik
A  define the location and orientation of the 

tooth profile coordinate system with respect to the body coordinate system, respectively. 

The location of the contact point on the tooth profile is defined by 1 2( , )ik ik ik

p s su  with respect 

to the profile coordinate system using the surface parameters in either analytical [40] or 

numerical form [67, 68]. In the B-spline computational surface geometry representation, 

the tooth surface can be described with respect to the profile coordinate system as follows 

[67]: 

1 2 , 1 , 2 ,

1 1

( , ) ( ) ( )
n m

p a p b q a b

a b

s s N s M s
 

u P                                (2.3) 

For simplicity, the superscripts ik that denote the body and contact numbers are omitted. 

In the preceding equation, p and q are orders of polynomials, n and m are the numbers of 

basis functions  , 1( )a pN s  and , 2( )b qM s , respectively, and 
,a bP  ( 1, , ; 1, , )a n b m   

is a vector of control points. The surface parameters in Eq. 2.3 are defined as knots in the 

entire parametric B-spline domain.  

On the other hand, in the case of tooth surface obtained from the direct 

measurement, smoothing of the original data points ( ) [ ]T

p ij i j ijx y zu  

 

 

 

 

 

 

 

 

 

 

Fig 2.1. Gear coordinate systems 
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( 1,..., ; 1,..., )x yi n j n   needs to be performed to remove undesirable irregularities 

associated with the measurement noise that causes numerical convergence problems in the 

contact analysis. To this end, smoothing spline function ( , )f x y  is generated from the data 

points such that the following functional J can be minimized [68]: 

 

22
24

2 2 2
1

2
2

2

2
1 1 1

( , )( , ) 1
( )

( , )1 1
( , )

x
b a a

a a a

y yx
b

a

n
y x y

i

y x y
i i

n nn
x j

i j ij
x

j i jj i j

f x yf x y
J f dxdy dy

x y y

f x y
dx f x y z

x



 



  

   
    

     

 
     

  

 

                       (2.4) 

where [ , ]a bx x  and [ , ]a by y  are the data domain and 0i   and 0j   are weight 

coefficients for smoothing. Furthermore, to ensure the continuity of the derivatives of the 

generated surface, the three-layer smoothing spline technique is employed [41]. If the tooth 

profile is assumed to be constant along the width, the smoothing spline curve can be used 

instead to parameterize the tooth surface. 

Using the local position vector defined by Eq. 2.3, a unit normal vector to the 

tangent plane can be defined in the profile coordinate system as 

                                                         1 2

1 2

ik ik
ik

ik ik






t t
n

t t
                                                 (2.5) 

where 1 1/ik ik ik

p s  t u  and 2 2/ik ik ik

p s  t u  are the tangent vectors. The principal curvature 

ik

l  can then be obtained as the eigenvalues from the following generalized eigenvalue 

problem [40]: 

                                                     , 1, 2ik ik ik ik

l l l  B A X 0                                    (2.6) 

where 

ik ik

ik

ik ik

E F

F G

 
  
 

A    and   

ik ik

ik

ik ik

L M

M N

 
  
 

B                        (2.7) 

In the preceding matrices, ikE , ikF , and ikG  are coefficients of the first fundamental form 

defined by 

1 1 1 2 2 2, ,ik ik ik ik ik ik ik ik ikE F G     t t t t t t                      (2.8) 

and ikL , ikM  and ikN  are coefficients of the second fundamental form defined as follows: 
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n
t

n n
t t

n
t

                      (2.9) 

The principal directions of the principal curvatures 1

ik  and 2

ik  can be defined by the 

eigenvectors associated with them and they are used to evaluate the Hertzian contact patch 

between the tooth surfaces in contact. 

 

2.3 Gear Contact Formulation 

2.3.1 Tabular Contact Search for Gear Tooth Contact 

With the detailed tooth surface description discussed in the previous section, the 

contact search is performed in the multibody dynamics simulation. Use of online contact 

search algorithms, which are widely used in general multibody dynamics computer 

formulations, lead to extensive computational time if general CAD or measured tooth 

profiles [69,70] are considered together with various gear geometry imperfections. For this 

reason, a contact search algorithm based on look-up contact tables is generalized in this 

study to the gear dynamics simulation of multibody systems. The tabular contact search 

method has been successfully used for solving wheel and rail contact problems in 

multibody railroad vehicle dynamics simulation, in which the contact geometry between 

wheel and rail surfaces is essential to the evaluation of normal and tangential contact forces 

[41]. This procedure allows for incorporating measured wear profiles with plastic material 

flows [71] and complex rail geometries in switching and crossing described in 

computational geometry representation [72] while retaining the detailed contact geometry 

in multibody dynamics simulation.  

Since the gear tooth contact is periodic, solution to the contact geometry problem 

of a one-tooth contact model can be repeatedly used for detecting the contact of all the teeth 

in the gear body. In other words, the contact geometry analysis for a one-tooth model is 

performed a priori for various rotation angles and the contact point as well as the tooth 
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geometry at the contact point, that includes tangents, normal, and principal curvatures, are 

stored at various configurations in the look-up table. The look-up table obtained for the 

one-tooth model is then interpolated as a function of rotation of gear bodies to determine 

the location of the contact point online. One can also include the in-plane and out-of-plane 

relative displacement between centers of the gear bodies as an input to the look-up contact 

tables to consider the effect of the shaft deflection and the bearing compliance on the 

change in the contact point on the tooth surfaces. Furthermore, use of look-up contact tables 

allows for the detection of a jump in contact point in a straightforward manner for measured 

tooth profiles with tooth surface imperfections [73]. While look-up contact tables of all 

pairs of gears in the gear train under consideration need to be prepared in advance, the gear 

tooth contact search can be performed efficiently without any iterative solution procedures 

in the dynamic simulation while retaining the detailed gear contact geometry in calculation 

of the mesh forces. 

2.3.2 Contact Geometry Analysis Using Non-conformal Contact Constraints 

In order to generate the look-up contact tables, the contact geometry analysis of a 

one-tooth model is carried out. The method is based on the non-conformal contact 

condition imposed on gear teeth in contact. That is, two points on the two surfaces must 

coincide and the two surfaces must have the same tangent planes at the contact point. These 

two conditions are described by the following five constraint equations for contact k 

between surface i and j [41, 74]: 

                                  

1

2

1

2
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( )

( , , , ) ( )

jk ik jk

jk ik jk
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ik jk
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 
  

t r r

t r r

C q q s s 0n r r

t n

t n

                                  (2.10) 

The preceding equations are defined for sixteen unknowns (i.e., six generalized 

coordinates [( ) ( ) ]i i T i T Tq R θ   and two surface parameters 
1 2[ ]ik ik ik Ts ss  for each 

body). To determine all the sixteen unknowns, the three translational coordinates and two 

rotations about the axes perpendicular to the gear rotation axis of gear j are constrained 

first. This leads to the following five constraint equations: 
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0 0 0, 0, 0j j j j j j        R R 0                             (2.11) 

where the gear spin axis is defined by the jY -axis of the body coordinate system as shown 

in Figs. 2.1 and 2.2; j  and j  are Euler angles about the jZ  and jX  axes of the body 

coordinate system, respectively. The subscript 0 in the preceding equations denotes 

coordinates at the initial configuration. By imposing the non-conformal contact constraint 

equations given by Eq. 2.10, the location of the contact point (i.e., surface parameters i
s  

and js ) and the spin angle j  of gear j are determined for prescribed position and 

orientation of gear i. In the simplest case, only spin rotation angle i  is selected as a 

variable and it leads to the following six equations: 

                       ( )

0 0 0, 0, 0, 0i i i i i i i i n

            R R 0               (2.12) 

where ( )i n

  defines the prescribed spin angle at incremental step n and the spin angle is 

defined in the range that the two teeth are in contact. The effect of the axial, radial and 

angular misalignments of gear shaft can also be considered by prescribing the relative 

deviations between gear body i and j. A total of sixteen equations given by Eqs. 2.10, 

2.11and 2.12 are solved iteratively using Newton-Raphson method for sixteen unknowns 

at every step n and the results are stored in the look-up contact table. The look-up table 

contains not only the generalized coordinates and surface parameters of both bodies at each 

configuration, but also the tangent vectors (
1

ik
t  and 

2

ik
t ), unit normal ( ikn ), principal 

curvatures (
1

ik  and 
2

ik ) at the contact point evaluated by Eqs. 2.5 and 2.6. 

2.3.3 Combined Nodal and Non-Conformal Contact Search 

For ideal involute profiles, use of the non-conformal equations lead to efficient 

solutions in the contact geometry analysis of gear teeth. On the other hand, in the case of 

measured tooth profiles with tooth surface imperfections [69,70], undesirable jumps in the 

contact point occur on the surface and use of the non-conformal contact search leads to a 

difficulty in finding the correct contact point. Since the solution of the iterative solution 

procedure is obtained around the initial estimate provided, it fails to detect the 

discontinuous jump in contact point if the initial estimate is far from the solution sought. 

For this reason, in this study, the nodal search is employed as a global search to provide a 

rough estimate of the contact point (i.e., surface parameters) and then the contact point 



15 
 

 

obtained is used as the initial estimate for the non-conformal contact search equations as 

shown in Fig. 2.2. Such a two-stage procedure leads to a robust algorithm, which allows 

for detecting an appropriate initial estimate for non-conformal contact search for tooth 

surfaces with tooth surface imperfections. 

To determine the contact point between two arbitrary surfaces in the three-

dimensional space using the nodal search method, each tooth surface is discretized into 

nodal points first and the nodal coordinates, defined with respect to its profile coordinate 

system, are stored in a tabular form together with the surface parameters associated with 

them. For a given configuration of two gear teeth, the global position of the discretized 

nodal points are evaluated using Eq. 2.1. The gear surfaces in the three-dimensional space 

are then sliced into a number of two-dimensional plane along the Z-axis as shown in Fig. 

2.2.  

The cut planes that contain both tooth profile curves are extracted for further 

consideration. Having obtained the multiple two-dimensional profile curves discretized by 

a number of nodal points in the XY cut planes, the relative distances between the two curves 

along the X-axis are calculated and the minimum distance is identified for each plane. If 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 Combined nodal and non-conformal contact search for gear tooth 

contact 
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the distance is negative, the two surfaces at the nodal points are penetrated. If none of the 

minimum distances is negative, the pitch angle j  of gear j is incremented until the contact 

nodes with penetration are detected. Recall here that the pitch angle i  of gear i is 

prescribed by Eq. 2.12 at every step. Having determined the contact point (i.e., a pair of 

nodes in contact on body i and j), the surface parameters associated with these nodes are 

obtained and used as initial estimates for the interactive solution procedure for the non-

conformal contact search equations given by Eqs. 2.10, 2.11 and 2.12. The accuracy of the 

contact point and the computational effort in the nodal search stage depends on the 

resolution of the nodal surface discretization. However, the contact point obtained by the 

nodal search is not used as the final solution, but rather used as the initial estimates for the 

iterative solution procedure, thus one can use relatively coarse mesh. 

2.4 Numerical Procedure in Dynamic Simulation 

2.4.1 Tabular Contact Search in Dynamic Simulation 

In the contact geometry analysis discussed in the previous section, the global 

coordinate system is defined such that: (1) the origin of the coordinate system is attached 

to the center of the gear body i; (2) the global Y-axis is parallel to the axis of spin rotation 

of gear body i; and (3) the global Z-axis passes through the center of gear body j as shown 

in Fig. 2.2. In other words, the generalized coordinates stored in the look-up contact tables 

are defined with respect to this coordinate system introduced in the contact geometry 

analysis. For this reason, the generalized coordinates of gear bodies defined in the dynamic 

simulation need to be transformed to those consistent with the contact geometry analysis 

and then the look-up contact table needs to be utilized with the transformed generalized 

coordinates. Hereinafter, this coordinate system is called the look-up table coordinate 

system. The orientation of the look-up table coordinate system [ ]ij ij ij ij

T T T TA i j k  for gear 

body i and j is defined by the following three unit vectors: 

                         , ,
j i

ij ij ij ij i ij

T T T T T j i


   



R R
i j k j j k

R R
     (2.13) 
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where i
j  is the unit vector along the Y-axis (spin axis) of the body coordinate system of 

gear body i. The orientation matrices of gear i and j defined with respect to the look-up 

table coordinate system are defined as  

                         ˆ ( )i ij T i

TA A A    and   ˆ ( )j ij T j

TA A A      (2.14) 

from which, one can extract Euler angels ˆ ˆ ˆˆ[ ]i i i i T  θ  and ˆ ˆ ˆˆ[ ]j j j j T  θ  

defined with respect to the table coordinate system used for the tabular interpolation. The 

three translational coordinates that defines the origin of the body coordinate system can 

also be defined in the look-up table coordinate system as follows: 

                                    ˆ i R 0    and   ˆ j j i R R R      (2.15) 

from which, the six coordinates of gear body i and j used for the tabular contact search in 

the dynamic simulation are defined as follows: 

              ˆˆˆ [( ) ( ) ]i i T i T Tq R θ    and   ˆˆˆ [( ) ( ) ]j j T j T Tq R θ      (2.16) 

The preceding sets of coordinates are consistent with the generalized coordinates 

stored in the look-up contact tables. The tabular contact search is then carried out for all 

the gear teeth positioned in the searching range given in the look-up table tooth by tooth. 

This allows for detecting multi-point contact as shown in Fig. 2.3(a) without ad hoc 

procedures. The contact point on the back side of the tooth as shown in Fig. 2.3(b) can also 

be considered by switching the look-up table with that of the back-side contact in a 

straightforward manner. 

 

 

 

 

 

       

                 (a) Multi-point contact                                 (b) Back-side contact 

                                 Fig 2.3. Contact scenario 
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2.4.2 Numerical Procedure for Planetary Gear System 

To demonstrate the use of the tabular contact search method for complex geared 

systems, the numerical procedure for a planetary gear model that consists of three planet 

gears (bodies 1 through 3), one ring gear (body 4), one sun gear (body 5) and one carrier 

(body 6) shown in Fig. 2.4 is discussed in this sub-section. The ring gear is fixed to the 

ground and the carrier is connected to the centers of the three planet gears by revolute joints. 

The carrier is assumed to rotate at a constant speed by imposing a driving constraint.  

In this planetary gear model, look-up tables for (1) the ring and planet gear teeth; 

and (2) the planet and sun gear teeth are prepared prior to the dynamic simulation. For each 

gear tooth contact, a contact table for the back-side tooth surface contact is also prepared 

if the backlash effect is considered in the dynamic simulation. To determine contact points 

using look-up contact tables at every time step, the look-up table coordinate system is 

defined as shown in Fig. 2.4 for each pair of gears in a way described in Section 2.4.1. As 

shown in Fig. 2.4, the look-up table coordinate systems defined for the planet and ring 

gears and the planet and sun gears coincide since centers of the ring and sun gears coincide. 

The look-up table coordinate system rotates about its Y-axis as the planet gear rotates 

around the sun gear.  

In what follows, the numerical procedure in the dynamic simulation is summarized. 

Step 1: For each pair of gears, the look-up table coordinate system is defined at the current 

configuration and the generalized coordinates of gear bodies defined with respect to the 

look-up table coordinate system q̂  are calculated. 

Step 2: Using the rotational coordinates defined with respect to the look-up table 

coordinate system, the angular position of the gear tooth profile coordinate system 

positioned in the tabular search range is determined with respect to the look-up table 

coordinate system at the current configuration. In Fig. 2.5, the three teeth, k, k+1, and k+2 

are positioned in the tabular search range, and the rotation angles 14,k

p , 14, 1k

p
 , and 14, 2k

p
  

of the tooth profile coordinate systems are defined, where the superscript 1 indicates the 

body number of the planet gear, while superscript 4 indicates that of the ring gear. 

Step 3: Using the rotation angle of the tooth profile coordinate system k defined with 

respect to the look-up table coordinate system, the tabular contact search is performed to 

determine the location of the contact point (i.e., surface parameters) and the geometric 
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properties at the contact point. The same procedure is repeated for all the teeth in the tabular 

search range (i.e., tooth k+1 and k+2 in the model shown in Fig. 2.5). 

Step 4: If the tooth under consideration has a tooth geometry imperfection, the look-up 

table is switched to that accounts for the tooth geometry imperfection. 

 

 

 

 

 

 

 

 

 

 

 

     

            Fig 2.4. Look-up table coordinate systems of planetary gear 

contact 

 

 

 

 

 

 

 

 

 

 

 

         Fig 2.5. Tooth profile coordinate system of planet and ring gears 
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Step 5: If the back-side tooth surface contact is considered, the angular position of the 

back-side tooth profile coordinate systems positioned in the tabular search range is 

determined (i.e., 14,k

pb , 14, 1k

pb  , and 14, 2k

pb   in the model shown in Fig. 2.6). These rotation 

angles are used to determine whether the back-side tooth surface contact occurs or not. The 

look-up contact tables for the back-side contact are used to determine the location of the 

contact point and the geometric properties at the contact point. That is, the backlash effect 

can be considered by simply switching the look-up contact tables. 

Step 6: The normal and tangential contact forces are calculated using the procedure 

presented in Section 2.5 with the variable mesh stiffness model, and then the generalized 

mesh force vectors are evaluated. 

Step 7: The same procedure from Step 1 to 6 is repeated for all the other pairs of gears in 

the system. 

Step 8: The generalized mesh force vectors of all of the gear bodies under consideration 

are added to the generalized external force vector eQ  in the equations of motion of the 

multibody gear system defined as 

 

 

 

 

 

 

 

 

 

 

Fig 2.6. Back-side tooth profile coordinate system of planet and ring gears 
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 

q
Mq C λ Q Q

C q 0
   (2.17) 

where C  is the vector of the system constraint equations that describe mechanical joints 

and/or specified motion trajectories, and q is the vector of the system generalized 

coordinates. M  is the system mass matrix; 
vQ  is the vector of inertia forces that are 

quadratic in velocity; eQ  is the vector of the generalized external forces. 
qC  is the 

Jacobian matrix of the constraint equations, and λ  is the vector of Lagrange multipliers 

that are used to define the generalized constraint forces. 

Step 9: The system equations of motion are integrated forward in time to determine the 

generalized coordinates and velocities using a time integration scheme for differential 

algebraic equations. Steps 1 to 9 are repeated until the simulation time is exceeded. 

2.5 Gear Mesh Stiffness and Contact Forces 

The normal contact force between two tooth surfaces is defined as 

                                            ijk ijk ijk ijk ijk ijk

N N NF k c          (2.18) 

where ijk

Nk  is the mesh stiffness; ijk

Nc  is the damping coefficient; 
ijk  is the penetration 

defined by ( )ijk ik jk jk   r r n ; 
ijk  is its velocity; and 

jk
n  is the unit normal at the 

contact point defined in the global coordinate system. For an accurate prediction of the 

transmission error, which is the main source of noise and vibration of gear trains, the mesh 

stiffness needs to account for the effect of the contact stiffness, tooth bending stiffness, and 

gear body (foundation) stiffness [75]. Due to the non-uniform gear tooth thickness, tooth 

bending stiffness varies as the contact point move along its length. The compliance of gear 

tooth i can be modeled with the following series spring model  

                                                       
1 2 3

1 1 1 1
ik ik ik ik

N N N Nk k k k
        (2.19) 

In the preceding equation, the contact compliance is defined based on the semi-

empirical Hertz contact model as [76] 

                                                   
0.9 0.8 0.1

1

1 1.37

( ) ( ) ( )N eff eff Nk E b F
       (2.20) 
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For simplicity, the superscripts ik that denote the body and contact numbers are omitted. 

In the preceding equation, 
effb  is the effective face width; 

NF  is the normal load acting on 

the tooth face, 
effE  is the effective Young’s modulus determined by Young’s modulus and 

the tooth width to thickness ratio [76].  

The tooth bending stiffness is approximated by the non-uniform cantilevered beam 

of an effective length eL  discretized by transverse segments of rectangular cross section 

as shown in Fig. 2.7. The tooth bending compliance is expressed as [76] 

                                                 
12

1
( )cos

Ns

ti si mi

iN

Q Q Q
k




        (2.21) 

where Ns is the number of the discretized segments and   is the pressure angle at the 

contact point. The tooth stiffness associated with the transverse normal, transverse shear 

and bending deformations are considered in the preceding expression by the compliance

tiQ , siQ and miQ  for segment i, respectively. These compliances are defined as [76]: 
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 
       (2.24) 

where iL , 
iI  and 

iA  are the thickness, the mean second moment of area, the mean cross-

section area of segment i, respectively. iS  is the distance between the segment i and the 

contact point, G is the shear modulus of rigidity. 

The third factor that contributes to the mesh stiffness is the foundation stiffness of 

the gear tooth. The foundation compliance is defined as follows [75]: 

                      

2
2

2

3

1 cos
(1 tan )

f f

N f f

L L
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k b E H H
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               

     (2.25) 

where b is the tooth face width, E is Young’s modulus, 
fL  is the effective tooth length, 

and 
fH  is the effective tooth thickens. The coefficients L, M, P and Q in the preceding  
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equation, based on the semi-infinite elastic plane assumption, are given in Table 2.1 [75

].The semi-analytical formula for the gear body rotational stiffness for an elastic ring 

model, on the other hand, is derived in the literature [77]. In this case, the four coefficients 

L, M, P and Q in Eq. 2.25 are defined by the following polynomial in terms of angle 
f  as 

shown in Fig. 2.7: 

                    2

1 2 3 4 5 62

1 1
( , ) ( )

( )

f

f f f f

f f f

h
X h a a h a a a h a

  
          (2.26) 

where the polynomial coefficients ia  ( 1, ,6i  ) defined for L, M, P and Q are given in 

Table 2.2 [77], and 
fh  is the ratio of the radius of the root circle to the inside radius of the 

gear body. 

 

Table 2.1 Coefficients L, M, P and Q for semi-infinite elastic plane assumption  

model [75] 

 Narrow tooth (R > 5) Wide tooth (R < 5) 

L 5.306 5.306(1-ν2) 

M 2(1-ν) 2(1-ν-2ν2) 

P 1.534 1.534(1-ν2) 

Q 0.4167/(1+ν) 0.4167/(1+ν) 

    * / pR b H  (b: tooth width, Hp: tooth thickness at the pitch point) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.7. Tooth compliance model 
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Table 2.2 Polynomial coefficients L, M, P and Q for an elastic ring model [77] 

 a1 a2 a3 a4 a5 a6 

L -5.57410-5 -1.998610-3 -2.301510-4 4.770210-3 0.0271 6.8045 

M 60.11110-5 28.10010-3 -83.43110-4 -9.925610-3 0.1624 0.9086 

P -50.95210-5 185.5010-3 0.053810-4 53.30010-3 0.2895 0.9236 

Q -6.204210-5 9.088910-3 -4.096410-4 7.82910-3 -0.1472 0.6904 

 

 

Using Eq. 2.20, 2.21 and 2.25, one can define the tooth compliance and then the 

total mesh stiffness at contact k between tooth i and j is defined as: 

                                               
ik jk

ijk N N
N ik jk

N N

k k
k

k k



      (2.27) 

from which, the normal contact force vector defined by Eq. 2.18 is expressed in the global 

coordinate system as follows: 

                                                 ijk ijk jk

N NFF n       (2.28) 

In order to account for the effect of friction, the unit relative velocity vector along 

the tangent plane of contact can be determined as: 

                                   
( )

( )

ijk ijk jk jk
ijk

T ijk ijk jk jk

 


 

r r n n
v

r r n n
     (2.29) 

where 
ijkr  is the relative velocity vector at the contact point. Using an assumption of 

Coulomb friction, the friction force vector at the contact point can be defined as: 

                                            sign( )ijk ijk ijk ijk ijk

F T N TF F v v      (2.30) 

where ijk  is a coefficient of friction. For a more accurate prediction of tangential contact 

forces on lubricated tooth surfaces, one can use models based on elasto-hydrodynamic 

lubrication theory [78,79].  
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CHAPTER 3 

NUMERICAL EXAMPLES OF GEAR DYNAMICS SIMULATION  

3.1 Introduction  

In this chapter, several numerical examples are presented in order to evaluate the 

accuracy and validity of the numerical procedure proposed for the gear dynamics 

simulation of multibody systems. In particular, an accuracy of mesh stiffness model 

introduced in this study and transmission error of a gear tooth with tip relief are discussed 

first. A planetary gear model is then introduced to discuss the effect of tooth surface 

irregularity on mesh force variation. A wind turbine drivetrain model is presented in the 

last example and is validated against test data provided in the literature.  

3.2 Mesh Stiffness Model 

In the first numerical example, the accuracy of the mesh stiffness model presented 

in Section 2.5 is discussed. The specification of the spur gear and pinion models considered 

in this example is summarized in Table 3.1 [80]. The tooth and mesh stiffness evaluated 

using Eqs. 2.18 and 2.26 are presented in Fig. 3.1 as a function of the pinion rotation angle. 

In this figure, the rotational gear body stiffness based on the semi-infinite elastic plane 

assumption, defined as Model 1 (see Table 2.1), and the elastic ring model, defined as 

Model 2 (see Table 2.2), are used for comparison. The tooth and mesh stiffness obtained 

using the finite element model created by ANSYSTM are also presented in this figure. The 

eight-node hexahedral and six-node pentahedron elements are used with the augmented 

Lagrangian method for modeling gear tooth contact. The element is carefully refined 

around the contact region to ensure the accuracy as shown in Fig.3.2. The external torque 

of 3500 Nm is assumed.  

It is observed from Fig.3.1 that use of the elastic ring rotational stiffness model 

(Model 2) leads to good agreement with the finite element solution, while Model 1 with 

the semi-infinite elastic plane assumption overestimates the tooth stiffness. In particular, 

error in the gear tooth is larger than that of the pinion gear due to the larger ratio of the root 

circle to the inside radii of the gear body. 
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                       Table 3.1 Specification of the spur gear model 

 Gear Pinion 

Number of teeth 82 23 

Module (mm) 8.5 

Tooth width (mm) 170 186 

Inside diameter (mm) 240 100 

Root diameter (mm) 675.75 174.25 

Applied torque (Nm) 3500 

 

 

 

 

 

 

 

 

 

 

          

                                Fig 3.1. Tooth and mesh stiffness 

 

                      (a) Gear tooth mesh                       (b) Mesh around contact region 

Fig 3.2. Finite element tooth contact model 
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3.3 Transmission Error of Spur Gear Teeth with Tip Relief 

In this example, the transmission error of the gear tooth with tip relief is evaluated 

using the procedure developed in this study. The transmission error is defined by the 

deviation of the theoretical angular position of a pair of gears from its actual position at a 

constant steady rotation and is the main source of gear noise and vibration. To reduce the 

transmission error at an operating torque, the tip relief is introduced. The linear tip relief, 

as shown in Fig. 3.3, is defined by the following equation: 

                                              ( ) s
a

a s

r r
r

r r
 





                                                    (3.1) 

where sr  is the point that the tip relief starts and its end point is defined by ar . The amount 

of tip relief at the end point is defined by a .  

To evaluate the transmission error with the linear tip relief, the specification of the 

spur gear and pinion in Houser et al. [81] is used in this study and summarized in Table 

3.2, where the linear tip reliefs of the pinion and gear are assumed to be 12.7 μm and 10.16 

μm, starting at the pitch point [81]. The peak to peak transmission errors (PPTEs) with and 

without the tip relief are compared in the Fig. 3.4. It is observed from this figure that V-

pattern of the transmission error versus torque curve is predicted as presented in Houser et 

al. [81]. If the tip relief is not considered, the PPTE increases as the torque increases. In 

Fig.3.4, the lowest PPTE of 36.07 μin (0.9163 μm) is obtained for the external torque of 

1550 lbs-in (175 Nm), which are in good agreement with that of Houser et al. [81]. 

 

 

 

 

 

 

 

 

                                      Fig 3.3. Tooth tip relief 
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Table 3.2 Specification of the spur gear model with tip relief 

Number of teeth 50 Outside diameter 156 mm 

Gear ratio 1:1 Root diameter 141 mm 

Center Distance 150 mm Pitch diameter 150 mm 

module 3 mm Pinion tip relief * 12.7 μm 

Pressure angle 20 deg Gear tip relief * 10.16 μm 

                      * The tip relief starts at the tooth pitch point (r = 75mm) 

 

3.4 Dynamic Simulation for Planetary Gear with Tooth Surface Imperfection 

In this example, a planetary gear model, which consists of three planet gears, is 

considered as shown in Fig. 3.5, and the specification is given in Table 3.3. In this model, 

a small tooth surface imperfection is considered in one of the planet gear teeth as shown in 

Fig.3.5 with H = 0.288 mm and W = 1.492 mm. All the look-up contact tables for the 

planet/ring gear teeth contact and planet/sun gear teeth contact are generated first using the 

 

            

 Fig 3.4. Peak to peak transmission error with and without tip relief 
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procedure discussed in Section 2.3, and these contact tables are used to predict the contact 

points in the planetary gear in the dynamic simulation. The change in the location of contact 

point between the planet gear tooth with the imperfection and the internal ring gear tooth 

is shown in Figs. 3.6 and 3.7. It is observed from these figures that the contact point moves 

along the line of action and then it deviates from the line of action after the contact point 

reaches the edge of the groove. A jump in contact point occurs from one edge to the other 

(see points A and B). This behavior is clearly observed in the surface parameter presented 

in Fig. 3.8 as a function of the planet gear rotation. 

 

Table 3.3 Specification of the planetary gear model  

Component # of teeth 

Pressure 

angle 

(deg) 

Pitch 

diameter 

(mm) 

Tooth 

width 

(mm) 

Circular 

crowning 

(mm) 

Sun 21 20 214.2 220 0.5 

Planet 39 20 397.8 227.5 0.5 

Ring 99 20 1009.8 230 0.5 

 

 

 

 

 

 

 

 

 

 

 

            

 Fig 3.5. Planetary gear model with tooth surface imperfection 
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Fig 3.6. Location of contact point 

 

 

 

 

 

 

 

 

 

   

 

 

       Fig 3.7. Jump in contact point around the surface imperfection 
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In order to discuss the performance of different contact search methods used in the 

contact geometry analysis, the accuracy and CPU time are compared and summarized in 

Table 3.4. The accuracy is measured by the norm of the non-conformal contact constraint 

violation for solutions obtained by each method and is defined by the following equation: 

                                    ( , , , )ijk i j ik jke  C q q s s       (3.2) 

It is observed from this table that use of the nodal search method leads to extensive 

computational burden and violation of the non-conformal contact condition is noticeable, 

despite the fact that a very fine nodal discretization (10 m) is used. Furthermore, the use 

of the nodal search method leads to discontinuous change in the contact point on the entire 

surface as shown in Fig. 3.8 and is not suited for an accurate prediction of mesh forces. On 

the other hand, the non-conformal contact search method failed to reach the convergent 

solution in the vicinity of the groove on the gear tooth surface, where a jump in contact 

point is supposed to occur.  

The combined nodal and non-conformal contact search proposed in this study leads 

to accurate solutions with significantly less CPU time. This is attributed to the fact that the 

nodal search used in the vicinity of the groove allows for detecting the discontinuous 

change in the contact point, while the non-conformal contact search used in the region 

where the tooth surface is smooth and continuous leads to fast and accurate solutions. The 

contact point estimated by the nodal search method is refined using the non-conformal 

contact equation, thereby enforcing the non-conformal contact condition strictly at every 

configuration considered in the simulation scenario. It is important to notice here that use 

of relatively coarse nodal discretization (250 m) leads to less CPU time while keeping the 

same order of accuracy, leading to a robust contact detection algorithm which allows for 

not only detecting the discontinuous change in the contact point, but also the smooth 

change in the contact point before/after the jump in contact point as shown in Fig. 3.8. 

Using the multiple look-up contact tables prepared prior to the dynamic simulation 

that include the one considering the planet/ring teeth contact with the imperfection, the 

dynamic simulation is performed. The look-up table needs to be switched when the non-

ideal planet tooth enter into the contact search region to consider the effect of the tooth 

surface imperfection in the mesh force calculation. It is important to notice here that the 

non-ideal planet gear tooth surface shown in Fig. 3.5 does not come into contact with the 
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sun gear since the other side of the ideal tooth surface comes into contact with the sun gear. 

The carrier is rotated at a constant angular speed of 25 deg/s and the mesh forces of all the 

planet/ring teeth contact as well as the planet/sun teeth contact are shown in Figs. 3.9 to 

3.11. The results in Fig. 3.9 involve the tooth with the imperfection in one of the planet 

gear teeth. It is observed from Fig. 3.9 that the impulsive change in the mesh force occurs 

in the planet/ring gear teeth contact when the tooth with the surface imperfection comes 

into contact. 

 

 Table 3.4 Comparison of contact search methods 

Contact search method 
Nodal 

search 

Non-conformal 

contact search 

Combined nodal & non-

conformal contact search 

(proposed) 

Distance between nodes (m) 1.0010-5 - 1.00 10-5 2.5010-4 

Maximum error (m) 5.8510-4 Not converged 4.36 10-12 5.6510-12 

CPU time (s) 20,520 Not converged 2,222 97 

 

 

 

 

 

 

 

 

 

 

 

 

          

Fig 3.8. Location of contact point (s1) as a function of rotation angle  
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Fig 3.9. Mesh forces of planet-1/ring and planet-1/sun teeth contact with 

surface imperfection 

  

 
Fig 3.10. Mesh forces of planet-2/ring and planet-2/sun teeth contact  
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Fig 3.11. Mesh forces of planet-3/ring and planet-3/sun teeth contact 

 

 

      
  Fig 3.12. Dynamic transmission error of planet-1/ring teeth contact 
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In particular, a loss of the contact force is observed when the jump in contact point 

occurs, and it leads to an increase in the mesh force of the tooth next to the one with 

imperfection. The similar result is observed in the dynamic transmission error (DTE) 

presented in Fig. 3.12. In this figure, the dynamic transmission errors between the ring and 

planet gears with and without the tooth surface imperfection are compared. It is observed 

from this figure that the transmission error increases and its magnitude becomes same as 

that of the single point contact when the loss of contact due to the imperfection occurs. 

This is attributed to the fact that the double tooth contact is changed to the single tooth 

contact while the contact is lost. Furthermore, the change in the transmission error due to 

the mesh stiffness variation is also captured in both results. It is also important to notice 

here that the abrupt change in mesh force caused by the tooth surface imperfection 

influences the mesh force with the sun gear and a change in the mesh force is transmitted 

to the other two planet gears without tooth surface imperfections through the contact with 

sun gear as observed in Figs. 3.10 and 3.11.  

 

3.5 Helical Gear Modeling and Verification  

To model helical gear tooth contact in the gear dynamic simulation, the gear tooth 

is cut into a number of slices across the face width to describe the helix curve as shown in 

Fig. 3.13 and a point contact is defined on each sliced surface of a helical gear. By doing 

so, the load distribution across the face width of helical gears can be described as a 

collection of forces acting on the sliced tooth surfaces in a straightforward manner using a 

look-up contact table. The transverse module and transverse pressure angle for a helical 

gear are considered. Since the tooth surface is cut into a number of slices, tabular contact 

search is repeated for all the slices for one tooth surface in a way described in Section 2.4.2. 

It is important to notice here that the look-up coordinate system defined on sliced tooth 

needs to be rotated by   from the one side to the other incrementally to account for the 

helix curve and   is given by 

                                    
cos tant h

s b

B

n r

 


 
 


      (3.3) 



36 
 

 

where B is the face width, t  is the transverse pressure angle, h  is the helix angle, br  is 

the base radius, and ns is the number of slices. The helical gear mesh force distribution 

obtained using 21 slices is shown in Fig. 3.14. 

 

 

                                  Fig. 3.13. Sliced helical gear tooth 

 

Fig. 3.14. Example of helical gear tooth mesh force distribution with 21 slices 
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To verify the helical gear mesh model in the gear dynamics simulation, the mesh 

forces obtained using the present approach and the finite element model using ABAQUS 

are compared. The gear geometry parameters and material properties of the model under 

consideration are shown in Table 3.5 and 3.6, respectively. The CAD model of four-tooth 

gear and pinion as shown in Fig. 3.15 is generated using PTC-Creo and then imported into 

ABAQUS for the quasi-static contact analysis between the gear and pinon for various 

angular positions. The center of the pinion is rigidly fixed to the ground for a given pinion 

angle in each analysis, while the gear is allowed to rotate about the spin axis, about which 

a constant torque of 5122 Nm is applied to evaluate the mesh forces on the gear and pinion 

tooth surfaces. The mesh size of the finite element model is approximately 2.6 mm. The 

pinion rotational angle is incrementally changed from -16 deg to 16 deg with 2 deg 

increment as shown in Fig. 3.16. The resultant mesh force of one of the teeth in the pinion  

 

Table 3.5 Basic gear geometry parameters 

 
No. of 

teeth 

Normal 

module 

Root 

diameter 

Pressure 

angle 

Helix 

angle 

Face 

width 

Center 

distance 

Gear 39 10 372 mm 20o 7.5o L 220 mm 
308 mm 

Pinion 21 10 186 mm 20o 7.5o R 220 mm 

 

Table 3.6 Gear material properties 

Young’s modulus 210 GPa 

Poisson ratio 0.3 

Density 7850 kg/m3 
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                             Fig. 3.15. Static gear teeth contact model 
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at each configuration is presented in Fig. 3.17 and compared with the result obtained using 

the sliced helical gear model implemented in the gear dynamics simulation code. In the 

gear dynamics simulation, the pinion is rotated very slowly with the same driving torque 

as the finite element model. The gear and pinion teeth are cut into 21 slices. It is observed 

from Fig. 3.17 that the gear dynamics simulation results agree well with those of the 

ABAQUS model for various pinion angles. In order to compare the contact force 

distribution for different pinion angels, the mesh force distribution at -16, 0, and +14 

degrees are compared with ABAQUS results in Fig. 3.18, Fig. 3.19, and Fig. 3.20, 

respectively. While only a single tooth is in contact at the pinion angle of 0 degree, two 

teeth are in contact at the pinon angle of -16 and +14 degrees. The similar mesh force 

distributions are obtained in both models for the three pinon angels. 

 

 

 

             Fig. 3.17. Total contact force variation on pinion second tooth 
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(a) ABAQUS FE model result 

 

(b) FORTRAN Geardyn model result 

           Fig. 3.18.Contact force distribution at pinion configuration: -16 deg 
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(a) ABAQUS FE model result 

 

(b) FORTRAN Geardyn model result 

            Fig. 3.19.Contact force distribution at pinion configuration: 0 deg 
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(a) ABAQUS FE model result 

 

(b) FORTRAN Geardyn model result 

           Fig. 3.20.Contact force distribution at pinion configuration: 14 deg 
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3.6 Wind Turbine Drivetrain Model and Dynamic Simulation  

In this section, a wind turbine drivetrain model utilized in the Gearbox Reliability 

Collaborative (GRC) project led by National Renewable Energy Laboratory (NREL) is 

developed, and the gear dynamics simulation capability developed for reliability-based 

design optimization of wind turbine drivetrains is demonstrated.  

3.6.1 Wind Turbine Drivetrain Model and Specification 

In the 750kW GRC wind turbine as summarized in Tables 3.7 [80], the drivetrain 

consists of one planetary gear at the low-speed stage and two parallel axis gears at the 

intermediate and high-speed stages as shown in Fig. 3.21. Planetary gear systems are 

commonly used in wind turbine drivetrains to provide high power density that can be 

achieved by sharing the large input torque by multiple planet-ring and planet-sun gear 

contact loads. In the low-speed stage of the GRC drivetrain, there are three planet gears 

framed on the carrier, which carries the input load from wind turbine rotor. The ring gear 

is fixed to the gear train housing. The sun gear is connected to the input shaft of the 

intermediate-speed stage parallel axis gear. The overall gear ratio of the GRC gear train is 

81.49 [80]. Considering a lubricated gear toot surface condition, the coefficient of friction 

is assumed to be 0.04. The gear geometry parameters are summarized in Table 3.8 [80, 82

]. The mass and inertia properties of the gears are presented in Table 3.9 [82] and the 

bearing stiffness are shown in Table 3.10 [82].  

Table 3.7 General description of the wind turbine [80] 

Type Three blade up wind 

Power rating 750 KW 

Rotor diameter 48.2 m 

Rated rotor speed  22 rpm 

Power regulation Stall 

Aerodynamic brake Pitchable tips 

Tower Welded tubular steel 

Nominal hub height 55 m 

Blade length 23.5 m 
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                                         Table 3.7 Continued 

Gearbox ratio 1:81.491 

Gear teeth contact friction coefficient 0.04 

Generator rotational speed at rated power 1809 rpm 

Rated wind speed 16 m/s 

Design life 20 years 

 

 

Table 3.8 Basic wind turbine gear geometry parameters [80,82] 

Components 
No. of 

teeth 

Normal 

module 

Root 

diameter 

Pressure 

angle 

Helix  

angle 

Face 

width 

Low-speed 

stage 

Ring gear 99 10 1047 mm 20o 7.5o L 230 mm 

Planet gear 39 10 372 mm 20o 7.5o L 227.5 mm 

Sun pinion 21 10 186 mm 20o 7.5o R 220 mm 

Intermediate-

speed stage 

Gear 82 8.25 678 mm 20o 14o R 170 mm 

Pinion 23 8.25 174 mm 20o 14o L 186 mm 

High-speed 

stage 

Gear 88 5 440 mm 20o 14o L 110 mm 

Pinion 22 5 100 mm 20o 14o R 120 mm 

 

 

Table 3.9 Mass and inertia properties of the planetary gears [82] 

 Sun Carrier Planet Ring Housing 

Mass (kg) 181.6 756.9 104.0 480.0 1213.0 

Ixx (kgm2) 1.26 59.1 3.20 144.2 340.0 

Iyy (kgm2) 24.0 60.3 2.04 75.4 554.4 

Izz (kgm2) 24.0 60.3 2.04 75.4 424.8 
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Table 3.10 Bearing stiffness of the planetary gears [82] 

 Carrier (Up) Carrier (Down) Planet 

Kx (N/m) 1.01013 1.01013 1.0 1013 

Ky (N/m) 1.8109 1.4109 3.4 109 

Kz (N/m) 1.8109 1.4109 3.4 109 

Kθx (Nm/rad) 0 0 0 

Kθy (Nm/rad) 5.5104 2.7104 5.3 105 

Kθz (Nm/rad) 5.5104 2.7104 5.3 105 

 

 

NREL conducted field and dynamometer tests for the GRC wind turbine drivetrain 

[83] and the test data was used to evaluate the accuracy and computation efficiency of the 

gear train numerical models with different levels of fidelity. In the experimental test setup, 

the proximity and strain measurement sensors are placed on the planet rim and planet 

bearings to measure the planet gear motion and its bearing loads, respectively. More details 

on the test instrumentation can be found in the literature [83]. The test data was compared 

with simulation results obtained using drivetrain models with different fidelity. Those 

computational models include P1 and P2 models created by NREL’s partners in industry 

and academia as well as M1A, M1B, M3B models created by NREL. The P1 model is a 

planetary stage multibody model and the gear face width is divided into nine force elements. 

The planet carrier and pins are modeled as flexible bodies. The P2 model is a quasi-static 

fully flexible model created using a software called RomaxWIND. The M1A and M1B 

models are rigid gear train models created by SIMPACK, where bearing clearance is 

considered in M1B model. The M3B model is a fully flexible multibody drivetrain model 

and the housing and carrier deformations are modeled using finite element software 

ABAQUS and then the reduced order modal models are imported into SIMPACK. Further 

details on the model description can be found in literature [83]. 
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                                    (a) Drivetrain components 

 

       

(b) Drivetrain for dynamometer testing [82] 

Fig. 3.21. GRC wind turbine drivetrain 
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3.6.2 Numerical Result and Validation against Test Data 

To demonstrate the capability of the gear dynamic simulation program developed 

in this study using the tabular contact search method for complex multibody geared systems, 

some numerical examples are presented. The carrier is assumed to rotate at either a constant 

or variable speed by imposing a driving constraint and effect of gravity is considered in the 

dynamics simulation. To describe contact geometry of gear teeth in contact in the GRC 

drivetrain model, the following four look-up tables are generated prior to the gear dynamics 

simulation using the contact geometry analysis described in Section 2.3:  

(1) ring-planet gear tooth contact;  

(2) planet-sun gear tooth contact;  

(3) pinion-gear tooth contact at the intermediate-speed stage; 

(4) pinion-gear tooth contact at the high-speed stage.  

In the first numerical example for the GRC wind turbine drivetrain, a rated constant 

angular velocity of 22 rpm is applied to the carrier of planetary gear at the low-speed stage, 

and the rotational resistance of the output shaft connected to the generator is modeled by a 

torsional damping (16.92 Nm/rad) at the high speed stage. There is no gear tooth profile 

modification (i.e., tip relief). A two-second simulation is carried out to discuss the mesh 

force variation. The contact forces between the planet and sun gears at time 0.99 s are 

shown in Fig. 3.22, where the length and direction of the arrow indicate the magnitude and 

direction of each contact force on the sliced tooth surface, respectively. The gear tooth is 

cut into 21 slices in this example. It is observed from this figure that the contact forces are 

distributed along the straight contact line across the face width and the angle between the 

contact line and spin axis corresponds to the helix angle.  

Since the tooth surface is sliced to model gradual engagement between helical 

gears, the number of contact points on a tooth surface increases gradually from zero to the 

maximum number of slices, and then gradually decreases to zero for one mesh cycle. The 

total contact forces on the planet and sun gear tooth contact is shown in Fig. 3.23. It can be 

seen from this figure that two or three teeth are in contact alternately at the same time. 

Since the sun-planet gear contact ratio is 2.15, 2 or 3 pairs of teeth are always in contact as 

demonstrated in Fig. 3.23.  
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To discuss effect of the number of slices on the helical gear mesh force accuracy, 

the 21-slice model and the 11-slice model are compared. The contact forces acting on all 

of the slices on one tooth are shown in Fig. 3.24(a) for 21-slice model and in Fig. 3.25(a) 

for 11-slice model. It is observed from these figures that contact force taken by one slice is 

almost doubled in the 11-slice model, despite the fact that total mesh force are in good 

agreement as shown in Figs. 3.24(b) and 3.25(b). However, the contact force of 21-slice 

model is smoother than that of the 11-slice model as expected. The computational time of 

the 21-slice model is increased by 80 % as compared to the 11-slice model. 

 

 

                   Fig. 3.22. Helical gear mesh force distribution 

 
                        Fig. 3.23. Total contact force on planet and sun gear teeth 
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(a) Contact forces of 21-slice model on planet and sun gear tooth 

 

  
(b) Total contact force on planet and sun gear tooth for 21-slice model 

Fig. 3.24. Contact force on planet and sun gear tooth for 21-slice model 
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(a) Contact forces of 11-slice model on planet and sun gear tooth 

 

  
  (b) Total contact force on planet and sun gear tooth for 11-slice model 

Fig. 3.25. Contact force on planet and sun gear tooth for 11-slice model 
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To validate the drivetrain model developed in this study against test data, the planet 

gear bearing loads calculated in the multibody drivetrain dynamic simulation are compared 

with test data of NREL dynamometer test [83]. The sinusoidal torque as shown in Fig. 3.26 

(a) is applied to the carrier of the drivetrain simulation model to describe the input torque 

data of NREL dynamometer test. There are two bearings mounted on each side of the planet 

gear shaft. The one on the front side is called upwind bearing, while that on the rear side is 

called downwind bearing. The bearing stiffness listed in Table 3.10 are used for the 

spring/damper force element. The gravitational force is applied to the geometrical center 

of each drivetrain component. The upwind bearing forces are compared with NREL test 

results in Figs. 3.26(b) and (c), showing good agreement in magnitude and frequency with 

the NREL test results. Furthermore, it is also observed that the simulation results are close 

to the NREL M1A simulation model results [83], which is a rigid multibody drivetrain 

model developed using SIMPACK. 

 

 

Fig. 3.26. Planetary gear bearing load comparison between simulation results and 

NREL test results [83] 
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It is important to notice there that the non-torque loads caused by the wind turbine 

rotor overhang weight and aerodynamic forces are not considered in the bench test. In the 

original GRC wind turbine design, as shown in Fig. 3.21 (b), the widely used three point 

suspension (one main bearing on the rotor shaft and two mounts for the gearbox trunnion) 

can transfer significant bending loads of the main shaft to the drivetrain, which is 

approximately 60% of wind turbine rated torque. This main shaft deflection can cause the 

carrier angular misalignment in the planetary stage of the drivetrain. Despite the micron 

level deflection of the main shaft, the contact stress distribution, the planetary gear load 

sharing factor and the gear teeth mesh phasing can be altered. The resulting unequal loads 

have an adverse impact on the drivetrain contact fatigue life. The non-torque loads are the 

combination of rotor weight and complex aerodynamic loads which have uncertainty. Thus, 

the non-torque loads raise a reliability issue for the three-point suspension drivetrains. 

To address this issue, Alstom designed a new hub support configuration. In this 

design, the non-torque loads are transferred directly to the tower rather than through 

gearbox as in original design. It’s called Alstom’s Pure Torque drivetrain. A significate 

reduction of carrier misalignment as well as main shaft bending load is demonstrated using 

the newly designed drivetrain [10].  
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CHAPTER 4 

WIND TURBINE GEAR TRAIN DESIGN OPTIMIZATION 

4.1 Introduction 

In this chapter, the multibody gear dynamics simulation procedure presented in the 

previous chapters is integrated into design optimization procedure for the wind turbine 

drivetrain design optimization considering wind load uncertainty. To this end, the wind 

load uncertainty model using the joint probability density function of the ten-minute mean 

wind speed and turbulence intensity, rotor blade aerodynamics, drivetrain dynamics 

considering the detailed gear tooth contact geometry including the profile modification, 

and probabilistic contact fatigue failure model is integrated for use in the gear tooth design 

optimization of wind turbine drivetrains to ensure the expected design life. 

4.2 Wind Load Uncertainty Model 

For evaluation of fatigue life of wind turbine systems, 10-minute wind data is 

widely used to characterize the short-term wind load variability at a specific location [84]. 

In this study, the joint probability density function (PDF) of 10-minute mean wind speed 

(V10) and 10-minute turbulence intensity (I10) is introduced to characterize the wind load 

uncertainty [85]. The turbulence intensity accounts for the severity of the wind speed 

fluctuation and is defined by 

10
10

10

I
V


               (4.1) 

where 10  is the standard deviation of the wind speed for the 10-minute wind data. 

Because of the preceding mathematical relation, the joint PDF of V10 and I10 is 

derived through the 10-minute joint PDF of V10 and 10  using the copula density function 

Vc   for wind data measured for one year as [85] 

                10 10 10 10 10 10 10 10 10( , ) ( , ) ( ) ( )VI V Vf v i c v f v f v                             (4.2) 

where 10v , 10i  and 10 10 10v i    are realizations of random variables V10, I10 and 10 , 

respectively. In the preceding equation, 10Vf  and 10f  are, respectively, PDFs for V10 and

10 , and they are identified by the measured wind data using Weibull and Gamma 

distributions as 
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where C and k are the scale and shape parameters for the Weibull distribution for V10, 

respectively. In the gamma distribution for 10 , a and b are the shape and scale parameters, 

respectively, and ( )a  is a Gamma function of the parameter a. The Gumbel copula 

density function is chosen as 
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                 (4.5) 

where u and v are marginal cumulative distribution functions (CDFs) of V10 and 10 , 

respectively. w is given by ( ln ) ( ln )w u v     , where   is defined by the copula 

parameter  as 1/ (1 )   . To define the joint PDF of V10 and I10, the following five 

parameters need to be identified: 

[ ]TC k a b y                                              (4.6) 

It is important to notice here that one joint PDF characterizes the wind uncertainty 

measured at one location during one year only. However, the wind load distribution varies 

at different locations (i.e., wind farms) in different years and such a spatiotemporal 

variability needs to be considered in the wind uncertainty model [86]. To this end, using 

249 groups of wind data collected from different sites in different years, 249 sets of C, k, 

a, b,   parameters are identified and each set of parameters represents the annual wind 

load variation at specific location in specific year. Using the maximum likelihood estimate 

method, the distribution types for C, k, a, b,   parameters are identified as the log-logistic, 

normal, generalized extreme value, Weibull, and extreme value distributions, respectively 

[86]. It is important to notice here that wind speeds are measured at a different height above 

the ground for each set of data, thus the measured wind speeds need to be converted to 

those at the hub height of the wind turbine under consideration using the normal wind 

profile model [87]. This wind uncertainty model allows for considering wide range of 
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probabilistic wind loads for evaluation of the contact fatigue life of wind turbine 

drivetrains.  

For gear design optimization, the averaged wind load probability model is 

developed using Monte Carlo simulation of the joint PDFs for V10 and I10 considering the 

spatiotemporal wind load variability. To this end, one million joint PDFs defined by one 

millions sets of [ ]l l l l l l TC k a b y  ( 1, , VIl N  ) are defined as 

10 10 10 10 10 10 10 10 10( , ; ) ( , ; ) ( ; , ) ( ; , )ijl i j l i ij l i l l ij l l i

VI V Vf v i c v f v C k f a b v      y                 (4.7) 

where 61 10VIN    and the PDF is evaluated for 
10

iv  and 
10

ji . Using the resulting one 

million joint PDFs, the mean of the PDF evaluated for each 
10

iv  and 
10

ji  are calculated to 

develop the averaged wind load PDF model used for the design optimization as  
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                                                (4.8) 

where the lower bound of the mean wind speed is selected as the cut-in wind speed, while 

the upper bound is the cut-out wind speed for the wind turbine under consideration.  

In this study, the speed range is defined from 5 m/s to 25 m/s with an increment of 

2 m/s (i.e., 1, ,12i  ), while the turbulence intensity range is assumed from 0.02 (2 %) 

to 1 (100 %) with 0.02 (2 %) increment (i.e., 1, ,50j  ). The averaged joint PDF 

obtained for the measured wind data is presented in Fig. 4.1 at the hub height of 55 m and 

PDFs for C, k, a, b and   at this height used to obtain the joint PDF are summarized in 

Appendix. The volume of each bar gives an averaged probability for one scenario defined 

for V10 and I10 considering the wind load variation in a wide spatiotemporal range. It is 

observed from this figure that the probability for wind condition in the range of V10 < 13 

m/s and I10 < 0.3 is relatively high, while the probability of the extreme wind condition 

given in the range of 20 < V10 < 25 m/s and 0.5 < I10 < 1 is low. The highest probability 

density of 0.576 occurs at V10 = 7 m/s and I10 = 0.1. 
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4.3 Contact Fatigue Prediction Using Multibody Gear 

Dynamics Simulation 

4.3.1 Pitting Contact Fatigue Model 

Using the wide spatiotemporal wind uncertainty model introduced in the previous 

section, a numerical procedure for predicting the pitting fatigue life is discussed in this 

section. The pitting fatigue is a typical failure mode exhibited in properly lubricated gears 

and is classified as the subsurface-initiated failure [11]. That is, the total fatigue life is 

defined by the sum of the number of load cycles required to initiate the subsurface crack 

iN  and that required for the crack to propagate to the surface 
pN  as [11,18] 

i pN N N                                                                (4.9) 

Using the Dang Van’s assumption that the fatigue micro-crack appears when the 

mono-crystal reaches the elastic shakedown due to shearing, the number of cycles for crack 

initiation is defined by [18]: 

 

 
Fig. 4.1 Averaged joint probability density function for V10 and I10 
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where max  and Hp  are, respectively, the maximum shear stress and hydrostatic stress in 

the subsurface; 
f   and 

f   are fatigue strength coefficients for tension/compression and 

shearing, respectively; and c is a fatigue strength exponent. It is assumed that the crack is 

initiated at a point where the ratio of the maximum shear contact stress to the hardness is 

maximal and the initial crack is parallel to the surface [11].  

Assuming the Hertzian contact between two cylinders has the radius of curvature 

of 1R  and 2R , the maximum contact pressure is obtained by 
max 02 /p F b  as shown in 

Fig. 4.2(a) [87], where F  is the contact force per unit length along the cylinder axis and 

0b  is the half width of the contact patch defined by 
0 2 /b FR E . Note that E  is an 

equivalent Young’s modulus of two materials in contact defined by 

2 2

1 1 2 21/ (1 ) / (1 ) /E E E     ; and R  is an equivalent radius evaluated by the principal 

radii of curvature at the contact point on surfaces in contact and is defined by 

1 21/ 1/ 1/R R R  . The greatest value of the maximum shear stress occurs at 

0 00.786z b  measured from the contact surface with a value of max max0.3p   [87] and it 

is assumed that the subsurface crack parallel to the surface is initiated at this point when 

the number of load cycles reaches iN  as illustrated in Fig. 4.2(a). 

After the subsurface crack is initiated, the crack propagates under cyclical contact 

loads to the surface. Using the Paris equation, the crack propagation is modeled by [18] 

 0( ) ( )
p m m

p

da
C K K

dN
                                              (4.11) 

where ap is the half length of the crack; N is the number of load cycles; 
pC  and m are 

constants; and K  is the model   stress intensity factor range. 0K  is the threshold for 

the crack growth given by the empirical formula 3

0 2.45 3.41 10K HV     for the 

Vickers hardness HV [88]. That is, the crack grows only if K  is greater than 0K . The 

stress intensity factor K  is defined by [11,18] 
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 ( )p pK s a U a                                                       (4.12) 

where ( )pU a  is a factor considering the crack closure given by the empirical formula of 

Newman ( ) 0.89(1 0.11exp( 0.1 ))p pU a a    [89], while s is the crack growth driving 

force. It is shown in the literature [20] that growth of the subsurface crack under rolling 

contact loads is driven by the value defined by a ratio of the maximum shear stress to the 

hardness and the following expression for s is suggested by considering the effect of 

porosity and notch effects [18,20]: 

2

max 1Ks
HV

 



 
  
 

                                                      (4.13) 

where ( 1) 1K tK     and 4.3e    for empirically identified parameters Kt,  and  

[90]. Using Eq. 4.11, the number of cycles that causes the initial crack, parallel to the 

surface, to reach the surface is calculated as 

 0
0

1

( ) ( )

ca

p pm ma
p

N da
C K K


  

                                         (4.14) 

where 0a  is the half length of the initial crack assumed by [18] 

2

0
0

1

8 0.475 u

K
a

S

 
  

 
                                                   (4.15) 

 

 
                   (a) Contact stresses                         (b) Subsurface-initiated crack 

Fig. 4.2 Contact stresses and crack and subsurface-initiated crack 
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and uS  is the ultimate tensile strength. ca  in Eq. 4.14 is a half of the critical crack length 

and is defined by 
0 / sinca z   as shown in Fig. 4.2(b), where  defines the direction that 

the subsurface crack grows and 
0z  is the depth from the surface at which the crack is 

initiated, i.e., a point where the maximum shear stress occurs. Accordingly, the total 

number of load cycles to pitting failure can be predicted by a sum of Eqs. 4.10 and 4.14 as 

a function of the maximum shear stress under a cyclic rolling contact load. 

4.3.2 Use of Gear Dynamics Simulation for Prediction of Maximum 

Contact Pressure 

As shown in the previous subsection, the crack growth is driven by the maximum 

shear contact stress max  due to the contact load and, therefore, an accurate prediction of 

the maximum contact pressure maxp  during gear meshing is of crucial importance in 

predicting the pitting fatigue life. Furthermore, to account for the wind load uncertainty 

characterized by the averaged joint PDF of the 10-minute mean wind speed (V10) and 

turbulence intensity (I10) introduced in Section 4.2, multiple 10-minute drivetrain dynamics 

simulations need to be performed for various choices of 10v  and 10i , thus the multibody 

drivetrain dynamics simulation becomes a computational burden in the entire design 

optimization process. In addition, since the tooth contact pressure is sensitive to the gear 

tooth profile, an accurate description of the tooth profile geometry and precise contact 

geometry calculation are required and use of a simplified gear contact dynamics model is 

not suited. For example, profile modification called tip relief is widely used to lower the 

transmission error that is a cause of gear noise and vibration [40,76] and a slight 

modification of the tooth profile geometry on the order of microns alters the contact 

pressure on the profile surface, thereby influencing the pitting fatigue damage (i.e., crack 

growth). For this reason, the amount of tip relief is one of the important design parameters, 

together with the tooth face width [49] and the effect of micro geometry needs to be 

precisely evaluated using the gear dynamics simulation.  

For this reason, a numerical procedure for the multibody gear dynamics simulation 

based on the tabular contact search algorithm presented in Chapter 2 is introduced and 

integrated into the gear design optimization procedure considering the wind load 
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uncertainty in this study. This procedure allows for the detection of the gear tooth contact 

in an efficient manner by introducing the look-up contact tables while retaining the precise 

contact geometry and mesh stiffness variation in the evaluation of mesh forces, thereby 

leading to a computationally efficient gear dynamics simulation suited for the design 

optimization procedure considering wind load uncertainty. 

4.4 Numerical Procedure for Wind Turbine Drivetrain Design Optimization 

    4.4.1 Formulation of Optimization Problem 

For gear design optimization to ensure the expected service life under the wind load 

uncertainty, an integrated numerical procedure is developed using the wind uncertainty 

model, the pitting fatigue prediction model, and multibody gear dynamics simulation 

procedure discussed in previous sections [91]. For given design variables d, including gear 

tooth geometry parameters such as face width and tip relief, the random time-domain wind 

speed data is generated for given 10-minute mean wind speed v10 and turbulence intensity 

i10 characterized by the averaged joint PDF using NREL TurbSim [92].TurbSim is used to 

generate the three-dimensional time-domain wind field using a prescribed power spectral 

density function (PSD) and a coherence function using Veer’s method [92]. The PSD 

function is given as a function of both v10 and i10, while the coherence function is given as 

a function of v10 only. The Veer’s method is based on a general random process to a 

generate time series of wind speed at discrete points. The wind speed data is then inputted 

into NREL FAST [93] to perform the time-domain coupled nonlinear aero-hydro-servo-

elastic simulation of a wind turbine considering the pitch control of the rotor blade. The 

input data of FAST that includes the wind turbine structure and aerodynamic properties are 

summarized in Appendix B. The wind turbine blade pitch control is considered using the 

subroutine “PitchCntrl” in FAST with the control region 3 (speed control). The pitch 

control parameters used in this design optimization problem are summarized in Table 4.1. 

The transmitted torque and speed of the rotor hub are predicted and used as input to the 

high-fidelity multibody gear dynamic simulation for calculating the 10-minute mesh force 

variation.  

Since the probability of v10 and i10 is defined by the averaged joint probability 

density function
10 10( , )VIf v i , the 10-minute fatigue damage can be defined as follows: 
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10min 10 10 10min 10 10 10 10( ) ( , ) ( , , )
U U

L L

I V

VI
I V

D f v i D v i dv di  d d                        (4.16) 

where 10min 10 10( , , )D v id  is the 10-minute fatigue damage evaluated for v10 and i10; VL and 

VU indicate the lower and upper bounds of the mean wind speed under consideration, and 

IL and IU are those of the turbulence intensity. By numerically integrating Eq. 4.16 using 

Riemann integral, one-year fatigue damage can be obtained as 

1year 10 10 10min 10 10 10 10

1 1

6 3000 ( , ) ( , , )
v in n

ij i j ij i j

VI

i j

D f v i D v i v i
 

    d                   (4.17) 

where 
10min 10 10( , , )ij i jD v id  is evaluated for 1, , vi n  and 1, , ij n . It is assumed that a 

wind turbine is operated for 3000 hours per year [94]. It is important to notice here that the 

gear teeth do not experience cyclical loading during the maintenance period and when the 

wind speed is lower than the cut-in wind speed or higher than the cut-out speed. To evaluate 

the one-year fatigue damage for given design variable d, the 10-minute damage 

10min 10 10( , , )ij i jD v id  needs to be calculated at v in n  sampling points for 
10

iv  ( 1, , vi n ) and 

10

ji  ( 1, , ij n ) using the 10-minute gear-train dynamics simulation. It is important to 

notice here that the input rotational speed varies as a function of time, thus the maximum 

contact pressure used for the pitting fatigue life calculation varies at each load cycle.  

 

                             Table 4.1 Control parameters for blade pitch control 

Name Value 

Gain on TF 1 -1.0 

Rotor speed set point  20.463 rpm 

Integrator anti-windup gain  0.3 

Minimum pitch angle 2.6 deg 

Maximum pitch angle 90.0 deg 

Time interval for pitch control 0.025 s 

Pitch angle at start of gain scheduling 0.0454 rad 

Pitch angle at end of gain scheduling 0.5 rad 

Power law gain sched. coefficient 0.213 

Power law gain sched. exponent -0.500 
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To account for the contact load variation, the pitting fatigue damage is evaluated 

by Miner’s rule as [95] 

10

10min 10 10

1 max

1
( , , )

( )

ijn
ij i j

ijk ijk
k

D v i
N p

d                                    (4.18) 

where ijkN  is the number of load cycles to failure for each meshing cycle k and 
10

ijn  is the 

number of load cycles of the gear tooth under consideration in the 10-minute simulation. 

That is, ijkN  is defined using the maximum contact pressure 
max

ijkp  at load cycle k for the 

wind scenario defined by 
10

iv  and 
10

ji . As an alternative to Miner’s rule, one can determine 

the 10-minute damage as  

10
10min 10 10

max

( , , )
( )

ij
ij i j

ij ij

n
D v i

N p
d                                     (4.19) 

where 
max

ijp  is the equivalent maximum contact pressure for the 10-minute wind load 

scenario as [21] 

 max

1/

max max max max
0

( ) ( )
n

ij ij n ij ij ij

pp p f p dp


                           (4.20) 

where 
max max( )ij ij

pf p  is a probability density function of the maximum contact pressure for 

the 10-minute simulation for 
10

iv  and 
10

ji . The exponent n is selected to be the exponent of 

the Paris equation given in Eq. 4.11, i.e., n m  [21], while 1n   leads to a mean value of 

the maximum contact pressures in the 10-minute simulation. 

The expected service life of wind turbines is 20 years, thus the constraint for the 

optimization problem is defined by 
1year( ) 20 1 0G D  d  for 

L U d d d , where L
d  and 

Ud  are lower and upper bounds of the design variable d. Accordingly, the following 

optimization problem is posed: 

                                   Minimize ( )J d   

subject to 
1year( ) 20 1 0G D  d                                  (4.21) 

                                           for    L U d d d  
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where the objective function ( )J d  is defined by a total weight of the drivetrain, while gear 

tooth geometry parameters such as gear face width and tip relief are selected as the design 

variable d. The optimization problem is solved using a multidisciplinary reliability-based 

design optimization software RAMDO [96]. 

 

    4.4.2 Summary of Numerical Procedure 

In what follows, the entire numerical procedure is summarized as shown in Fig. 

4.3. 

Step 1: For given measured wind data at different locations (i.e., wind farms) in different 

years, the joint probability density functions for V10 and I10 are identified as 

10 10( , ; )VIf v i y  and then PDFs of [ ]TC k a b y  are identified to account 

for the wide spatiotemporal wind load uncertainty. The averaged joint PDF 

10 10( , )ij i j

VIf v i  is generated using the 106 samples for v in n  points of 
10

iv  (

1, , vi n ) and 
10

ji  ( 1, , ij n ). 

Step 2: For v in n  points of 
10

iv  and 
10

ji  in the range of the averaged joint PDF, the time-

domain 10-minute random wind data 
10 10( , ) [ ( ) ( ) ( )]ij i j ij ij ij Tv i u t v t w tU  is 

generated using the wind field simulation software TurbSim. 

Step 3: Using the 10-minute wind data obtained at Step 2, the time-domain coupled 

nonlinear aero-hydro-servo-elastic simulation of a wind turbine is performed 

using FAST software to predict rotor angular velocity variation for each wind 

scenario 
10

iv  and 
10

ji . The elastic deformation of rotor blades and its interaction 

with aerodynamics are considered with a simplified pitch control algorithm. 

Step 4: For all the pairs of gears in the drivetrain model under consideration for design 

variables d, the contact geometry analysis for a one-tooth model considering 

profile modification is performed using the combined non-conformal and nodal 

contact search method for various rotation angles and then the contact point as 

well as the tooth geometry at each contact point including the tangents, normal, 

and principal curvatures are stored in the look-up contact tables. 
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Step 5: Using the multiple look-up contact tables generated for design variable d, 

multibody gear train dynamics simulation is performed for the 10-minute input 

rotor angular velocity data obtained at Step 3 for each wind scenario 
10

iv  and 
10

ji

. The tabular contact search is performed to determine the contact point for all 

the pair of gears using multiple look-up contact tables and the contact forces are 

calculated using the variable mesh stiffness model that accounts for the effect of 

the contact stiffness, tooth bending stiffness, and gear body (foundation) 

stiffness. The mesh force time-history data for each tooth are stored as output 

for contact fatigue prediction. Notice that the 10-minute multibody drivetrain 

simulation is performed for all the v in n  wind scenarios and the simulation for 

each scenario runs in parallel using parallel computing technique. 

Step 6: Using the mesh force time-history data obtained at Step 5, the 10-minute damage 

10min 10 10( , , )ij i jD v id  is calculated and then the critical tooth with the largest damage 

is selected. The 
10min

ijD  is evaluated by either Miner’s rule (Eq. 4.18) or the 

equivalent maximum contact pressure method (Eq. 4.19) for all the v in n  wind 

scenarios and then the one-year fatigue damage 
1yearD  for the current design d is 

evaluated by Riemann integral as Eq. 4.17.  

Step 7: Using the one-year fatigue damage evaluated, the constraint is defined such that 

contact fatigue life is longer than 20 years as given by Eq. 4.21 and the cost 

function is evaluated for the current design d.  

Step 8: Step 4 through 7 are repeated by updating the design variables d until the cost 

function is minimized while meeting the fatigue failure constraint using the 

optimization solver. 

 

 4.5 Deterministic Design Optimization under Mean Wind Load 

In this Section, the 750KW GRC wind turbine [97-99] as shown in Fig. 4.4 is used 

to demonstrate the integrated multibody gear dynamics simulation capability for design 

optimization of wind turbines considering wind load uncertainty [91]. As shown in Fig. 

4.4, the gearbox consists of one planetary gear at the high-speed stage and two parallel axis  
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Fig. 4.3 Numerical procedure of integrated gear dynamics simulation 
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gears at the intermediate and high-speed stages as presented in Section 3.5. The overall 

gear ratio is 81.49 [80]. The basic gear geometric parameters are summarized in Table 3.6 

and one can refer to the literature [80] for more details on the specification. Gear face 

widths in the planetary stage are all assumed to be the same. The gear material is assumed 

to be 18CrNiMo7-6 and material properties used in the pitting fatigue model are 

summarized in Appendix C. The sun gear has the smallest pitch diameter in the planetary 

stage and it is engaged with three planetary gears at the same time. Therefore, the sun gear 

is most critical in terms of the contact fatigue failure for this drivetrain [21].  

To generate time-domain angular velocity data given to the input main shaft of the 

drivetrain model, random time-domain wind speed data is generated first using NREL 

TurbSim and then aero-hydro-servo-elastic simulation of the wind turbine is carried out 

using NREL FAST. To create the wind turbine model for FAST, rotor blade cross section 

geometry data and tower properties of the GRC wind turbine summarized in Appendix B 

are used. 

    4.5.1 Probabilistic Contact Fatigue Damage 

Using the procedure summarized in Fig. 4.3, the 10-minute fatigue damage 

10min 10 10( , , )D v id  at the recess point on the most critical tooth of the sun gear is calculated 

for each wind load scenario defined by V10 and I10 as shown in Fig. 4.5. Each length of the 

bar in this figure indicates the magnitude of 10-minute fatigue damage. It is observed from 

this figure that the fatigue damage increases with an increase of the mean wind speed since 

the number of load cycles and contact loads increase as the rotor speed increases. However, 

the fatigue damage plateaus when the wind speed gets higher than the rated speed of 16 

m/s. This is attributed to the fact that the blade pitch control is activated at the rated speed 

(16 m/s) to maintain constant power generation at a constant rotor speed [99]. The highest 

value of 10-minute fatigue damage of 3.44E-5 occurs in the mean wind speed range of 17 

m/s < V10 < 25 m/s.  

In general, the fatigue damage increases as the turbulence intensity increases for 

the same mean wind speed. However, the opposite trend is observed when the blade pitch 

control is active. This is explained by change in rotor angular velocity of the wind turbine 
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shown in Fig. 4.6. In this figure, mean wind speed of 11m/s is assumed as an example and 

time histories of rotor angular velocity for different turbulence intensities from 0.06 to 1 

are compared. As observed from this figure, the rotor velocity amplitude increases as the 

turbulence intensity increases. However, since the pitch control is activated when the wind 

speed exceed rated speed, maximum rotor speed is bounded, whereas minimum rotor speed 

is not bounded. For this reason, a larger turbulence intensity wind scenario has smaller 

minimum rotor speed value, resulting in smaller damage evaluated by the contact fatigue 

model. If pitch control is off, the maximum rotor speed is not bounded, larger turbulence 

intensity leads to larger damage value.  

The integrand of Eq. 4.16 is calculated as a product of averaged joint PDF of 

random wind load 
10 10( , )ij i j

VIf v i and 10-minute fatigue damage distribution 10min 10 10( , , )D v id

as shown in Fig. 4.7. The volume of each bar gives a probabilistic 10-minute fatigue 

damage with certain design d for one wind load range defined for V10 and I10. It is observed 

from this figure that probabilistic damage value for wind condition in the range of 10 m/s 

< V10 < 15 m/s and 0.05 < I10 < 0.2 is relatively high, while the probabilistic damage value 

of the extreme wind condition given in the range of 20 m/s < V10  < 25 m/s and 0.4 < I10 < 

1 is low. Furthermore, the highest probability density of 3.6910-6 occurs at V10 = 11 m/s 

and I10 = 0.1, which is different from those of averaged wind load (V10 = 7 m/s and I10 = 

0.1) as shown in Fig. 4.1. It means that the V10 and I10 giving the highest probability density 

depends on not only the distribution of random wind load 
10 10( , )ij i j

VIf v i , but also the 10-

minute fatigue damage distribution 10min 10 10( , , )D v id .  

Furthermore, to discuss the effect of the way to evaluate the cumulative contact 

fatigue damage, the one-year fatigue damage evaluated using three different fatigue 

damage evaluation approaches is presented in Table 4.2. The first approach is the Miner’s 

rule as given by Eq. 4.18, while the second and third approaches assume the mean of the 

maximum contact pressure to evaluate the fatigue damage during 10 minutes as presented 

by Eq. 4.19 together with Eq. 4.20. In the second approach, the exponent n is same as that 

of the Paris equation, while n=1 is assumed in the third approach, leading to the mean of 

the maximum contact pressure during 10 minutes. It can be seen from this table that one-

year fatigue damage values are very similar for this wind uncertainty model. In the 
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following design optimization study, the Miner’s rule approach is used to evaluate the gear 

contact fatigue damage. 

In order to illustrate the effect of wind load variation in a wide spatiotemporal range 

on one-year fatigue damage, the two sets of (C, k, a, b, τ) that characterize wind load 

distributions at different location and in different years are selected. They are C =6.00, k = 

1.75, a = 2.00, b = 0.20, τ = 0.30, and C =10.00, k = 2.75, a = 4.00, b = 0.40, τ = 0.70, 

respectively. The corresponding joint PDFs of wind load variation for V10 and I10 are named 

as joint PDF 1 and joint PDF 2 and they are shown in Fig 4.8 and Fig. 4.9, respectively. 

They can represent two extreme cases of different annual wind load variation. It is observed 

from Fig. 4.8 that a high probability region lies in the low speed range (5 m/s < V10 < 10 

m/s) and in the low turbulence intensity range (0.0 < I10 < 0.1). The highest probability 

density of 1.22 occurs at V10 = 5 m/s and I10 = 0.04, where both mean wind speed and 

turbulence intensity are small. 
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          Fig.4.5 10-minute fatigue damage at recess point of sun gear 

 

 

Fig.4.6. 10-minute rotor angular velocity under 11m/s mean wind speed  

and different turbulence intensity 



72 
 

 

 

 

Fig.4.7 The product of averaged joint PDF of wind load and 10-minute  

fatigue damage distribution 

 

 

                              Fig. 4.8 Joint PDF-1 for V10 and I10 
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                             Fig. 4.9 Joint PDF-2 for V10 and I10 

 

 

Fig.4.10 The product of joint PDF-1 of wind load and 10-minute fatigue  

damage distribution 
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Table 4.2 One-year contact fatigue damage from different evaluation approaches 

Approach One-year fatigue damage 

Miner’s rule 6.48 10-2 

Mean of the maximum contact pressure (n=1) 6.56 10-2 

Equivalent  maximum contact pressure (n=3.05) 6.57 10-2 

 

Table 4.3 Different wind load PDFs effect on 1-year and 20-year fatigue damage 

Wind load PDF 1-year fatigue damage 20-year fatigue damage 

Joint PDF 1 3.6510-2 0.729 

Joint PDF 2 1.5910-1 3.183 

Averaged joint PDF 6.4810-2 1.296 

 

Fig.4.11 The product of joint PDF-2 of wind load and 10-minute fatigue  

damage distribution 
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On the other hand, for PDF 2 shown in Fig 4.9, the high probability region lies in 

the mild speed range (7 m/s < V10 < 17 m/s) and in the mild turbulence intensity range (0.1 

< I10 < 0.3). The highest probability density of 1.21 occurs at V10 = 13 m/s and I10 = 0.2. 

The mean wind speed and turbulence intensity are higher than those of PDF 1. To discuss 

the effect on the contact fatigue damage distribution, the integrands of the product of the 

joint PDF 1 of random wind load 1,

10 10( , )ij i j

VIf v i  and the corresponding 10-minute fatigue 

damage distribution 10min 10 10( , , )D v id  are shown in Fig. 4.10 and that of the joint PDF 2 is 

shown in Fig. 4.11. It is observed from these figures that the damage distribution and the 

magnitude differ significantly. The one-year and 20-year fatigue damage values for sun 

gear calculated using the joint PDF 1, joint PDF 2 and the averaged joint PDF wind load 

are compared in Table 4.3. It can be seen from this table that contact fatigue damages 

associated with PDF 1 (small wind load case) and PDF 2 (large wind load case) differ 

significantly. Furthermore, the averaged PDF obtained using MCS indicates that sun gear 

fails earlier than 20-year service life. As shown in this example, consideration of wide 

spatiotemporal wind load distributions (i.e., PDF of the joint PDF parameters (C, k, a, b, 

τ)) is crucial to realistic prediction of the gear tooth contact fatigue life for design 

optimization of wind turbine drivetrains. 

    4.5.2 Selection of Design Variables 

To improve the pitting fatigue life under the wind load uncertainty, the face width 

and the amount of the tip relief are defined as design variables for the sun gear. In the initial 

(reference) design, the face width is 220 mm and no tip relief (i.e., involute profile) is used 

[80]. To demonstrate the effect of those two design variables on the pitting fatigue life, the 

maximum contact pressure evaluated at various points on the gear tooth for one mesh cycle 

is shown in Fig. 4.12 for four different face widths without tip relief. In this figure, the 

rated mean wind speed of 16m/s and turbulence intensity of 0.14 categorized in the medium 

range based on ISO standard [100] are assumed as a wind load. It is observed from this 

figure that the maximum pressure at the recess point P3 is largest regardless the face width 

selected and it is clear that larger face width leads to smaller maximum contact pressure 

over the tooth surface, resulting in smaller damage as shown in Fig 4.13. 
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Figure 4.12 Effect of face width on maximum contact pressure 

 

        Figure 4.13 Effect of face width on 10-minute fatigue damage 
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However, increase in face width makes the total weight of the drivetrain larger and 

it also has an impact on the increase of cost. The other way of altering the contact pressure 

on the tooth surface is the profile modification. The linear tip relief defined by Eq. 3.1 is 

considered and the maximum contact pressure for different tip relief amount is shown in 

Fig. 4.14. In this figure, the face width of 220 mm is assumed and the tip relief start point 

is the pitch point. It is observed from this figure that the maximum contact pressure over 

the tooth surface changes in a different way as the tip relief increases and the greatest 

maximum contact pressure is shifted to the pitch point as the tip relief amount increases.  

It is also observed from this figure that the greatest maximum contact pressure can 

be minimized at a tip relief amount of 55 m. That is, there exists an optimum tip relief 

amount that can minimize the greatest maximum contact pressure over the tooth profile as 

shown in Fig. 4.15 summarizing the 10-minute fatigue damage for different tip relief 

amount. It is important to emphasize at this point that the optimum value depends on the 

wind condition defined by the mean wind speed and turbulence intensity. Furthermore, the 

material removed is in the order of microns, thus the tip relief has almost no effect on the 

total weight, but has major impact on the fatigue life defined as a constraint.  

For this reason, in what follows, design optimization is discussed to find an 

optimum face width and tip relief that leads to minimization of the total weight of the gear-

train under the wind load uncertainty while ensuring the 20-year fatigue life.  
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Figure 4.14 Effect of tip relief on maximum contact pressure 

 

 

Figure 4.15 Effect of tip relief on 10-minute fatigue damage 
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    4.5.3 DDO Results and Discussion 

The following optimization problem is defined: 

0 0 0

ring sun planet 0

1year

Minimize ( ) ( 3 )

Subject to ( , ) 20 1 0

for and

a

L U L U

a a a

B
J B M M M

B

G B D

B B B



  

  

  

   

                              (4.22) 

where design variables include the face width B and the tip relief amount 
a  of the sun 

gear defined by [ ]T

aB d ; the cost function ( )J B  is defined as the total mass of the 

planetary stage gears consisting of a ring gear, a sun gear and three planet gears. The 

superscript 0 in Eq. 4.22 indicates the value of the initial design 

0 0 0[ ] [220 mm 0 m]T T

aB   d . 0

ringM , 0

sunM  and 0

planetM  are initial masses of the 

ring, sun and planet gears, respectively. The constraint is imposed to ensure that the pitting 

fatigue life is longer than 20 years (i.e., the 20-year fatigue damage is less than 1). The 

upper and lower bounds of the face width and tip relief amount are assumed as 

167.5 272.5B   mm and 0 100a   m. The sequential quadratic programming 

(SQP) method is used for this design optimization in RAMDO software [96]. The design 

sensitivity is calculated using forward finite difference method (FDM) with 1% 

perturbation.  

By minimizing the cost function and satisfying the constraint, the optimum design 

is obtained. The results are summarized in Table 4.4. In this table, the optimum solution 

obtained without considering the tip relief as design variable is also included. As it can be 

seen from this table, face width of the sun gear is increased to 231 mm from 220 mm in the 

initial design to satisfy 20-year fatigue life when only face width is included in the design 

variable. This leads to 4.7 % increase in the normalized mass. On other hand, if the tip 

relief is introduced to the design variable vector d, the optimum face width becomes 202 

mm with a tip relief amount of 41 m. This optimum tip relief allows for minimization of 

the greatest maximum shear stress on the gear tooth surface without relying heavily on face 

width widening to meet the 20-year fatigue life constraint and it leads to mass reduction by 

8.4%, leading to a more cost-effective design.  
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Table 4.4 Design optimization results 

 Baseline design 
Optimum design  

w/o tip relief 

Optimum design 

w/ tip relief 

Face width (mm) 220 231 202 

Tip relief (μm) 0 0 41 

Pitting fatigue life 15 years 20 years 20 years 

Normalized mass 1.000 1.047 0.916 
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CHAPTER 5 

RELIABILITY ANALYSIS OF WIND TURBINE DRIVETRAIN 

UNDER WIND LOAD UNCERTAINTY 

5.1 Introduction 

In this chapter, the reliability analysis is carried out for wind turbine drivetrain with 

gear contact fatigue constraint under wind load and gear tooth manufacturing uncertainties. 

Formulations and numerical procedure for the reliability analysis to estimate the 

probability of failure of a wind turbine are explained in Section 5.2, while reliability 

analysis results are presented in Section 5.3 for the baseline drivetrain design as well as the 

DDO optimum design obtained in Chapter 4. For each design, effect of the wind load 

uncertainty, gear tooth manufacturing uncertainty, and both uncertainties on the probability 

of failure is discussed. 

5.2 Reliability Analysis Using Monte Carlo Simulation 

In the deterministic design optimization discussed in the previous chapter, wind 

load uncertainty is incorporated by an averaged joint PDF defined by 

10 10 10 10

1

( , ) ( , ; ) /
VIN

ij i j ijl i j l

VI VI VI

l

f v i f v i N


 
  
 
 y  using Monte Carlo simulation (MCS), where 

[ ]TC k a b y  characterizes uncertainty of PDF parameters of the joint PDF wind 

load uncertainty model. That is, 20-year fatigue damage of a gear is approximated as 

20year 1year( ) 20 ( )D Dd d  using the one-year damage 
1year ( )D d  for design variable d. 

However, in reality, wind variability changes over 20 years, and randomness of PDF 

parameters [ ]TC k a b y  need to be considered over 20 years. That is, a random 

vector for PDF parameters Y for 20 years can defined as [101] 

                                 [ ]T T T T T TY C k a b τ        (5.1) 

where the preceding vector contains 20 random variables for each parameter as 

1 2 20[ ]TC C CC , 1 2 20[ ]Tk k kk , 1 2 20[ ]Ta a aa , 1 2 20[ ]Tb b bb , and 

1 2 20[ ]T  τ . Accordingly, the 20-year gear contact fatigue damage considering wind 

load and gear manufacturing uncertainties can be defined as 
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20

20year 10 10 10min 10 10 10 10

1 1 1

( , ) 6 3000 ( , ; , , , , ) ( , , )
v in n

ijl i j l l l l l ij i j

VI

l i j

D f v i C k a b D v i v i
  

   d Y d   (5.2) 

where d  is a vector of random design variables using normal distribution; 
10min 10 10( , , )ij i jD v id  

is the 10-minute fatigue damage for random design variable d ; and 

10 10( , ; , , , , )ijl i j l l l l l

VIf v i C k a b   is the joint PDF of annual wind load determined for 

( , , , , )l l l l lC k a b   every year for 20 years (i.e., 1, ,20l  ). Using the preceding equation, 

the probability of gear contact fatigue failure can be evaluated using sampling-based 

reliability method as follows [101]: 

                                     
20year

1

1
( ( ; ) 1) [ , ]

F

NMCS
i i

F

i

P D I
NMCS





  d Y d Y                           (5.3) 

where 
id  and 

iY  are, respectively, the i-th realization of d and y selected randomly from 

the corresponding PDFs; NMCS is the number of realizations for MCS; and F  is the 

failure domain defined by 
20year ( ; ) 1D d Y ; and 

F
I  is an indicator function defined as 

follows: 

                                            
1 for [ , ]

( , )
0 otherwiseF

i i

i i FI
 

 


d Y
d Y                                    (5.4) 

It is important to notice here that 
20year 1D   indicates that fatigue life is less than 20 years. 

If the design variables are treated deterministically, the probability of gear contact fatigue 

failure can be obtained as 

                                       
20year

1

1
( ( ) 1) [ ]

F

NMCS
i

F

i

P D I
NMCS





  Y Y                                   (5.5) 

On the other hand, if the wind load is treated as an averaged PDF 
10 10( , )ij i j

VIf v i  as in 

the deterministic optimization discussed in Chapter 4, the 20-year gear contact fatigue 

damage can be approximated as 

                                                
20year 1year( ) 20 ( )D Dd d                                                    (5.6) 

where the one-year gear contact fatigue damage is defined using Riemann integral as 

                        1year 10 10 10min 10 10 10 10

1 1

( ) 6 3000 ( , ) ( , , )
v in n

ij i j ij i j

VI

i j

D f v i D v i v i
 

   d d                  (5.7) 
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It is important to notice here that variability of C, k, a, b, and  over 20 years are 

approximated using the averaged joint PDF 
10 10( , )ij i j

VIf v i  in this special case, while different 

C, k, a, b, and  are selected every year in Eq. 5.2 for the sake of generality. Accordingly, 

the probably of failure considering design variable uncertainty using the averaged joint 

PDF of wind load can be defined as: 

                                         
20year

1

1
( ( ) 1) [ ]

F

NMCS
i

F

i

P D I
NMCS





  d d                                 (5.8) 

It is important to notice here that use of MCS requires a lot of computational power 

since 10-minute dynamics simulations of drivetrains have to be carried out for all the 

realizations of random design vectors d to evaluate 20-year contact fatigue damage using 

MCS. For this reason, surrogate models are introduced to circumvent time-consuming 

contact fatigue damage calculation associated with design variable uncertainty. To this end, 

N realizations of random design vectors are selected from the PDFs of the design variables 

(N=14 in this study) and the gear dynamic simulation is carried out N times to obtain N sets 

of 10-minute gear contact fatigue damage. Using the N sets of 10-minute gear contact 

fatigue damage, surrogate models are generated using dynamic kriging method [102,103] 

in RAMDO [96]. With the surrogate model, 10-minute gear contact fatigue damages can 

be obtained for realizations of random design vectors using MCS in the reliability analysis. 

5.3 Reliability Analysis Results and Discussion 

Using the procedure discussed in Section 5.2, the reliability analysis is carried out 

for the baseline design and DDO optimum design obtained in Chapter 4. The face width 

and tip relief of sun gear of low-speed stage planetary gear for both designs are summarized 

in Table 5.1. Uncertainty of design variables are assumed to be normal distribution. Please 

notice here that, in the baseline design, the tip relief is not treated as a design variable. 

Means of the design variables are assumed as shown in Table 5.1, while the standard 

deviations are estimated from the design tolerances [104-106] as presented in Table 5.2. 

50,000 realizations of random design vectors are selected from the PDFs of the design 

variables for MCS in the reliability analysis and 50,000 10-minute contact fatigue damages 

10min 10 10( , , )ij i jD v id  are evaluated using the surrogate model. For wind load uncertainty,  
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                         Table 5.1 Baseline and DDO optimum designs 

 Baseline design DDO optimum design 

Face width (mm) 220 202 

Tip relief (μm) 0 41 

 

Table 5.2 Standard deviations and tolerances of the design variables 

 Standard deviation Tolerance 

Face width (mm) 1.2 3.6 

Tip relief (μm) 1.5 4.5 

 

                                  Table 5.3 Reliability analysis results 

Uncertainties 
Probability of failure 

Baseline design DDO optimum design 

Case 1 91.81 % 49.06 % 

Case 2 100.00 % 52.65 % 

Case 3 91.70 % 50.49 % 

 

50,000 realizations of random vectors C, k, a, b and τ are also created for MCS, and each 

realization contains 20 sets of ( , , , , )C k a b   used to generate 20 annual wind joint PDFs. 

With this procedure, 50,000 20-year fatigue damages are calculated to find the probability 

of failure using Eq. 5.3. 

The reliability analysis results are shown in Table 5.3 for the baseline and DDO 

designs. For each design, the following three cases are considered: 

Case 1: Wind load uncertainty over 20 years is considered, but design variable 

uncertainty is not considered, i.e., the probability of failure is evaluated by 

20year( ( ) 1)FP D Y . 

Case 2: Wind load uncertainty is considered as an averaged joint PDF, but design 

variable uncertainty is considered by normal distribution, i.e., the probability 

of failure is evaluated by 20year( ( ) 1)FP D d . 
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Case 3: Wind load uncertainty over 20 years as well as design variable uncertainty are 

considered, i.e., the probability of failure is evaluated by 
20year( ( ; ) 1)FP D d Y .  

It is observed from Table 5.3 that the probability of failure of the baseline design is 

close to 100 % and is much higher than that of the DDO design for all the three cases. In 

particular, the baseline design under the averaged wind load variation model (Case 2) leads 

to 100 % probability of failure and the product life is estimated as only 15 years. On the 

other hand, if the wide spatiotemporal wind load uncertainty over 20 years is considered 

(Case 1 and 3), the probability of failure during 20-year operation decreases to 

approximately 92 %. On the other hand, the probability of failure of DDO design is 

approximately 50% as expected since DDO design is obtained by treating design variables 

deterministically. Similar to the baseline design results, probability of failure for Case 2 is 

higher than Case 1 and 3, indicating that use of the averaged joint PDF leads to an 

underestimation of reliability of design slightly. For this reason, consideration of wind load 

and design variable (manufacturing error) uncertainties is of crucial importance in not only 

the reliability analysis, but also the reliability-based design optimization to ensure the target 

reliability. 
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CHAPTER 6                                                                                            

RELIABILITY-BASED DESIGN OPTIMIZATION OF WIND 

TURBINE DRIVETRAIN UNDER WIND LOAD UNCERTAINTY 

6.1 Introduction 

In this chapter, reliability-based design optimization (RBDO) of a wind turbine 

drivetrain, under wind load and gear design variable uncertainties, is carried out to achieve 

an optimum gear design that meets 20-year service life with a target reliability while 

minimizing the cost (weight). In the deterministic design optimization (DDO) discussed in 

Chapter 4 and 5, the probability of failure under the spatiotemporal wind load uncertainty 

as well as the gear design variability turned out to be approximately 50 %. To improve the 

design reliability (i.e., decrease the probability of failure), a numerical procedure for 

RBDO of wind turbine drivetrains is developed in this chapter. 

6.2 Reliability-Based Design Optimization 

The objective of RBDO is to find an optimum design within the feasible design 

domain defined by the constraint functions considering randomness of input variables. For 

a two-dimensional design problem given by two design variables X1 and X2 as illustrated 

in Fig. 6.1, a deterministic optimum stays on the limit state line that ensures the constraint 

equation being zero. The ellipse shown in the figure accounts for the variability of variables 

X1 and X2 within twice of their standard deviations (i.e., two sigma). A part of the ellipse 

outside the feasible region shown in red area corresponds to the probability of failure, 

which is approximately 50% for the deterministic design optimization as demonstrated in 

Chapter 5. On the other hand, in the RBDO, the center of ellipse is shifted toward the 

feasible region such that the probability of failure can be further reduced while minimizing 

the objective function. The reliable optimum is obtained such that the target probability of 

failure is achieved while minimizing the objective function. That is, an RBDO problem is 

formulated as follows: 

                

Minimize   Obj ( )

Subject to   [ ( ) > 0] , 1,...,

for   , ,

j

DV

Tar

j F c

N NL U

P G P j N 

   

d

X

d d d d X

                                    (6.1) 
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where d is the NDV-dimensional design variable vector; X is the N-dimensional random 

variable vector which includes not only the random design variables, but also the random 

system parameters; Obj indicates the objective function; jG  is the j-th constraint function; 

[ ( )]jP G X  is the probability of failure of the j-th constraint; 
j

Tar

FP  is the target probability of 

failure of the j-th constraint; and Nc is the number of constraint equations. The RBDO 

process attempts to minimize the objective function while making the probability of failure 

less than or equal to the target the probability of failure. The RBDO optimum design is 

obtained when all the convergence criteria are satisfied.  

There are two approaches in the reliability analysis (i.e., [ ( )]jP G X ) to calculate the 

probability of failure for given design: the sensitivity-based reliability analysis and the 

sampling-based reliability analysis. The sensitivity-based reliability analysis transforms 

the input random variables into uncorrelated standard Gaussian random variables and 

approximates the nonlinear performance measure by Taylor series expansion [58, 59]. The 

Taylor series expansion requires the calculation of the sensitivity of the constraint measure. 

However, for many engineering applications including the wind turbine drivetrain contact 

fatigue damage considered in this study, the sensitivity of the constraint function is difficult 

obtain since the constraint function is an implicit function of design variables. For this 

reason, the sampling-based reliability analysis approach is selected in this study. In the 

 

 

Figure 6.1 Conceptual two-dimensional RBDO problem 
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sampling-based reliability analysis, the probability of failure is directly calculated using 

MCS method, which uses MCS samples taken from the joint PDF of input random 

variables. The probability of gear contact fatigue failure can be calculate using Eq. 5.3 to 

account for uncertainties of both design variables and wind loads. Equation 5.5 is used if 

only wind load uncertainty is considered, while Eq. 5.8 is employed if only design variable 

uncertainty is considered. The accuracy of the calculated probability of failure depends on 

the number of MCS samples, NMCS. The percentage error of the calculated probability of 

failure can be defined based on the 95% confidence interval as [101] 

(1 )
% 200 %

Tar

F

Tar

F

P

NMCS P



 


                                          (6.2) 

where Tar

FP  is the target probability of failure. It can be seen from Eq. 6.2 that the error is 

reduced as NMCS increases. Table 6.1 summarizes the NMCS required to meet 2 % error 

for different target probability of failure Tar

FP , indicating that a larger number of MCS 

samples is needed in the case that a smaller target probably of failure is desired. It is 

important to notice here that constraint functions need to be evaluated NMCS times and use 

of the large number of MCS samples causes a computational burden, making the RBDO 

calculation process very computational intensive and practically infeasible in the worst 

case. In particular, for the wind turbine drivetrain considered in this study, the contact 

fatigue damage needs to be evaluated at each DOE point using the nonlinear multibody 

dynamics simulation for various 10-minute wind scenarios. In order to overcome the 

computational difficulty, surrogate models are used in this study for the sampling-based 

reliability-based design optimization. 

 

Table 6.1 NMCS required to meet 2 % error for different target probability 

of failure Tar

FP  

Tar

FP  %   NMCS 

0.5 2.0 10,000 

0.2 2.0 40,000 

0.1 2.0 90,000 

0.05 2.0 190,000 

0.02275 2.0 429,560 
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6.3 Surrogate Model 

A surrogate model, also called a response surface model, meta-model, or emulator, 

is widely used to obtain approximated responses to input variables in various design 

optimization problems. A surrogate model is constructed using a data-driven approach for 

a limited number of design of experiment (DOE) points and their system responses 

obtained from experiments or simulations. Using this data, the approximated input-output 

behavior can be constructed. There are a wide variety of surrogate models proposed in the 

past such as polynomial response surfaces [61], support vector regression and classifiers 

(SVR, SVC) [62], neural networks [63], radial basis function [64], and kriging predictors 

[65].  

The kriging method has been widely used due to its capability of dealing with 

highly nonlinear problems [102]. The basic idea of this method is to predict a function 

value at a given design point by calculating a weighted average of the response values of 

the function in the neighborhood of a given point based on a Gaussian process governed 

by prior covariance. For instance, for n sample points 
1 2[ , ,..., ]T

s nx x x x , the n responses 

1 2[ ( ), ( ),..., ( )]T

s ny y yy x x x  are modeled as [102]: 

                                               s  y Fβ e                                                            (6.3) 

Fβ  is the mean structure of the response, where [ ( )]iF f x  

{ ( ) [ ( )], 1,..., , and 1,..., }s k sf i n k K  f x x  is an n K  model matrix, and ( )sf x  

represents user-selected basis functions; 
1 2[ , ,..., ]T

K  β  is the vector of the regression 

coefficients; 
1 2[ ( ), ( ),..., ( )]T

ne e ee x x x  is a realization of the stochastic process; and ( )e x  

has zero mean and a covariance that is equal to 
2 ( , , )i jR θ x x , where 2  is the process 

variance and ( , , )i jR θ x x is the correlation function of the stochastic process, 

1 2[ , ,..., ]T

m  θ  is the process correlation parameter vector of dimension m. Having 

determined θ  through the maximum likelihood estimator (MLE) [102], β can be obtained 

from the generalized least squares regression and then response of a kriging model can be 

obtained through the interpolation of n sample points as 

                                                  
1ˆ( ) ( )T T

sy   x f β r R y Fβ                                           (6.4) 
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where [ ( )] ( 1,..., )T

kf k K f x  is the basis-function values evaluated at the point x  and 

1[ ( , , ),..., ( , , )]T

nR Rr θ x x θ x x . A standard kriging method constructs the mean structure 

Fβ  using a fixed set of polynomial basis functions, which may not be accurate enough for 

highly nonlinear problem. The dynamic kriging method proposed in the literature [102], 

on the other hand, obtains an optimum mean structure using basis functions selected by a 

genetic algorithm, and an accurate optimum of the correlation parameters 

1 2[ , ,..., ]T

m  θ are obtained through the generalized pattern search algorithm. Thus, the 

dynamic kriging method can, in general, create more accurate surrogate model than the 

conventional kriging method [107]. In this study, the dynamic kriging method is utilized 

to generate a surrogate model for prediction of the wind turbine gear contact fatigue 

damage. 

The accuracy of a system response predicted by a surrogate model depends not only 

on the number of sampling points, but also on the location of sampling points. In the wind 

turbine drivetrain model, the CPU time of the 10-minute dynamic simulation under wind 

load uncertainty (35 wind scenarios considered) is approximately 12 hours for one DOE 

point using a server computer (two 3.1GHz Intel Xeon E5-2687W CPUs having 20 cores 

each, i.e., 40 logical processors, 768GB RAM). In general, a local surrogate model is 

created at the current design point within the two sigma range of design variables [101]. It 

is, however, important to notice here that the design point could move to a point beyond 

the two sigma range in an iterative RBDO process, thus the local surrogate model needs to 

be generated at each design iteration of RBDO, making the RBDO process very 

computationally expensive. Suppose that 14 DOE points are used for generating a local 

surrogate model and 10 design iterations are assumed to be needed to obtain a RBDO 

optimum design; then the CPU time for RBDO amounts to roughly 1,680 hours (70 days). 

To address this fundamental computational issue in wind turbine drivetrain RBDO, 

an intermediate surrogate model covering the range from the DDO optimum to the 

expected RBDO optimum is utilized in this study. That is, surrogate models are generated 

once prior to the RBDO process and used throughout the RBDO iteration process. To 

ensure its accuracy, 50 DOE points are selected using Latin Centroidal Voronoi 

Tessellations (LCVT) sampling method with hypercube window and the window size is 
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selected in the range of twelve sigma as shown in Fig. 6.2. The area of this window covers 

approximately one ninth of the entire design variable domain. It is important to notice here 

that the center of the intermediate window is intentionally shifted by three sigma of the 

face width from the DDO optimum as shown in Fig. 6.2 as “+” point since it is unlikely 

that the gear face is decreased from the DDO optimum to meet the higher target reliability 

in RBDO. The window has to be appropriately selected such that the design variables taken 

in the RBDO iterative process lie within the window to assure the accuracy. Furthermore, 

the window size has to be small enough to minimize the number of DOE points to reduce 

the computational cost for the surrogate model generation. The numerical procedure for 

generating the surrogate model is summarized as follows: 

(1) At the DDO optimum design point of the wind turbine drivetrain, 50 DOE points are 

created using truncated Gaussian sampling (TGS) method with hypercube window in 

the twelve sigma range. 

(2) The wind turbine drivetrain dynamics simulation is carried out for 50 DOE points 

considering wind load uncertainty to obtain 50 fatigue damage response vectors. Each 

response vector contains 10-minute gear contact fatigue damages for all 35 wind load 

cases considered in the wind load uncertainty model. Each wind load scenario needs a 

surrogate model that predicts the corresponding 10-minute contact fatigue damage for 

the give design point. 

(3) Using the 10-minute fatigue damage response vectors for 50 DOE points, 35 surrogate 

models associated with 35 wind load scenarios are generated by the dynamic kriging 

method. 

It is imporatant to notice here that since the intermediate surrogate models are generated 

only once, an estimated CPU time using the above-mensioned server computer is reduced 

to 25 days if 50 DOE points are used. This leasds to a significant reduction in CPU time as 

comparied to that of local surrogate models. Furthermore, if simulations at all DOE points 

can run concurrently using computer that has a sufficient number of cores, the CPU time 

using the intermeduate surrogate models is futher reduced to 12 hours. On thet other hand, 

CPU time of the local surrogate models is 12 N  hours, where N is the number iterations 

required to complete the RBDO process. 
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Fig.6.2 Randomly generated 50 DOE ponits for an intemediate surrogate model; 

                  + : DDO optimum design 

 

6.4 RBDO of Wind Turbine Drivetrain 

In this section, a numerical procedure for the RBDO of wind turbine drivetrain 

under wind load uncertainty and gear manufacturing variability is developed. First, a 

formulation of wind turbine drivetrain RBDO is presented and then an entire numerical 

procedure developed for RBDO of wind turbine drivetrains is presented. 

6.4.1 Formulation of Wind Turbine Drivetrain RBDO 

In reference to Eq. 6.1, RBDO of wind turbine drivetrains is formulated as follows: 

           20

Minimize  ( ) ( ) ( ) 3 ( )

Subject to [ ( , ; ) 1]

for and
a a a

B ring B sun B planet B

Tar

year a F

L U L U

B B B

J M M M
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  
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
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  

 

   

Y                       (6.5) 

where B  and 
a

  are means of the random face width B and the random tip relief amount 

δa of the sun gear, respectively; the lower and upper bounds of the design variables are 

same as the deterministic design optimization in Chapter 4 (i.e., 167.5 272.5B   mm 

and 0 100
a

  μm); the cost function ( )BJ   is defined as the total mass of the planetary 

stage gears consisting of a ring gear, a sun gear and three planet gears; y is the random 

wind load vector including 20 sets of (C, k, a, b,  );  and 20 ( , ; )year aD B  Y  is the 20-year 
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contact fatigue damage of the sun gear. For each of the MCS design point, 
20 yearD is 

evaluated as follows: 

20

20 10 10 10min 10 10 10 10

1 1 1

ˆ ˆˆ ˆˆ( , ; ) 6 3000 ( , ; , , , , ) ( , ; , )
v in n

h h h ijlh i j lh lh lh lh lh ij h h i j

year a VI a

l i j

D B f v i C k a b D B v i v i  
  

   y  

for 1,...,h NMCS                                                                                                                                     (6.6) 

where ˆ hB  and ˆh

a  are realizations of random face width B and tip relief amount a , 

respectively; and ˆ h
y  is the realization vector of random wind load parameters. The 

probabilistic constraint 20[ ( , ; ) 1]year aP D B  Y  is imposed to ensure that the probability of 

contact fatigue life being shorter than 20 years is smaller than the target probability of 

failure Tar

FP  . 

6.4.2 Numerical Procedure of Wind Turbine Drivetrain RBDO 

A numerical procedure of wind turbine drivetrain RBDO using the intermediate 

surrogate model is summarized as follows:  

Step 1: As shown in Fig. 6.3, using the DDO optimum design (face width = 202 mm, tip 

relief = 41 μm) obtained in Chapter 4, 50 DOE points are randomly generated 

using the truncated Gaussian sampling (TGS) method with hypercube window 

in the twelve sigma range. The intermediate surrogate models of the sun gear 10-

minute contact fatigue damages are generated using the dynamic kriging method. 

The numerical procedure for generating the surrogate models is summarized in 

Fig. 6.4. For each DOE point, the 10-minute fatigue damages for all the wind 

load conditions (35 scenarios) under consideration are calculated and the 

obtained 10-minute fatigue damages are inputted to RAMDO software to 

generate 35 surrogate models associated with 35 wind load conditions using the 

dynamic kriging method. 

Step 2:     The RBDO process starts from the DDO optimum design. At every RBDO 

design, NMCS realizations of designs are created considering the manufacturing 

variabilities as defined in Table 5.2. The NMCS realizations are inputted to the 

35 surrogate models to obtain the NMCS 10-minute fatigue damage tables 

containing 35 10-minute fatigue damages under 35 wind load conditions. 
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Step 3:  The NMCS realizations of 20 sets of (C, k, a, b, τ) are defined using the PDFs, 

and NMCS 20 wind load probability tables are created. Each table contains the 

probabilities of 35 wind load conditions. 

Step 4: The NMCS 20-year fatigue damages are calculated using Eq. 6.6, and then the 

probabilistic constraint is evaluated inside RAMDO at the current design. If the 

convergence criteria is met, the RBDO iteration stops and an optimum design is 

obtained. Otherwise, the design is updated and then continues the RBDO process 

by repeating Step 2 to 4 until the RBDO optimum design is achieved. 
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Fig.6.3 Flowchart of the RBDO process  
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Fig.6.4 Flowchart of surrogate model generation 
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6.5 RBDO Results and Discussions 

Starting from the DDO optimum design (face width = 202 mm, tip relief = 41 μm), 

the reliability-based design optimization is carried out using RAMDO software on a server 

computer (two 3.1GHz Intel Xeon E5-2687W CPUs having 20 cores each, i.e., 40 logical 

processors, 768GB RAM). 500,000 MCS realizations of design points are created based 

on the joint PDF of the face width B  and the tip relief amount 
a  at each design iteration 

to calculate the probability of failure and design sensitivities of the probabilistic constraints. 

The standard deviations of B  and a  are assumed as previously presented in Table 5.2. 

Three different target probabilities of failure ( 10 %Tar

FP  , 5 %Tar

FP   and 

2.275%Tar

FP  ) are considered.  

The RBDO results are presented in Table 6.2 and compared with the baseline 

design as well as the DDO optimum design. It is observed from this table that the face 

width and tip relief amount increase from the DDO design to meet the target probability of 

failure. This leads to an increase in weight. However, as compared to the baseline design 

exhibiting 91.7 % probability of failure (8.3 % reliability), the weight is increased by only 

1.4%, while the probability of failure is improved significantly from 91.7 % to 2.275 % 

(i.e., 97.725 % reliability) in the case of 2.275%Tar

FP   (two sigma quality level). It is also 

important to notice that 5 % probability of failure is achieved without increasing the weight 

Table 6.2 RBDO result comparison with different Tar

FP  

 Baseline 

design 

DDO 

design w/ 

tip relief 

RBDO design w/ tip relief 

10%Tar

FP   5%Tar

FP   2.275%Tar

FP   

Face width (mm) 220 202 216 220 223 

Tip relief (μm) 0 41 51 53 54 

Fatigue life 15 yrs 20 yrs 20 yrs 20 yrs 20 yrs 

Probability of 

failure 
91.700 % 50.490 % 9.993 % 5.000 % 2.275 % 

Normalized mass 1.000 0.916 0.983 1.000 1.014 
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(i.e., without increase the face width) from the baseline design by an optimum tip relief of 

53 m. These results clearly indicate the importance of incorporating the tip relief as a 

design variable and justify needs for the gear dynamics simulation capability that accounts 

for micro-geometry of gear tooth contact. This, however, does not mean that a larger tip 

relief is always preferred since an optimum tip relief amount depends on stochastic wind 

loads and an optimum tip relief cannot be found deterministically. 

To discuss how the two design variables converge to the RBDO optimum, change 

in the face width and the tip relief is presented in Fig. 6.5 (a), 6.6 (a) and 6.7 (a) for Tar

FP 

10 %, 5 %, and 2.275 %, respectively. Furthermore, the objective function and the 

probability of failure are also presented in Fig. 6.5 (b), 6.6 (b) and 6.7 (b) as a function of 

the iteration step. It is observed from these figures that the face width and the tip relief 

increase sharply in the first few iterations to meet the target probability of failure. It is 

important to notice here that an increase in the tip relief prevents a larger increase in the 

face width that results in a larger increase of the objective function. In the case of Tar

FP 

10 % and 5 %, the face width slightly decreases from the 3rd to 4th iteration to start 

minimizing the objective function. However, to avoid violating the target probability of 

failure satisfaction, the tip relief continuously increases to compensate for it. From the 4th 

to 5th iteration, the tip relief in turn decreases slightly, while the face width increases to 

find the optimum design. The optimum design variables are found at the 8th iteration. As 

observed from this convergence curve, these two design variables interplay in the RBDO 

iteration process to meet the optimum and target reliability conditions. 

In order to ensure the accuracy of RBDO optimum obtained using the intermediate 

surrogate model, the reliability analysis at the RBDO optimum obtained for 

2.275%Tar

FP   is carried out using the local surrogate models. To this end, the following 

steps are taken: 

(1) 50 DOE points are created using the truncated Gaussian sampling (TGS) method with 

hypersphere local window with the three sigma range as shown in Fig. 6.8. The center 

of the local window is the RBDO optimum design (face width = 223 mm, tip relief = 

54 μm) for 2.275%Tar

FP  .  

(2) Local surrogate models are created using the same procedure summarized in Fig. 6.4. 
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(3) 500,000 MCS design points are created using the joint PDF of the face width and tip 

relief. 

(4) The 500,000 10-minute fatigue damage tables are generated through the local 

surrogate models and then 500,000 20-year fatigue damages are calculated using Eq. 

6.5. 

(5) Probability of failure is calculated and compared with the target probability of failure. 

 

The probability of failure calculated using the local surrogate models is 2.5042 %, 

while the converged value of probability of failure at this RBDO optimum is 2.2748 %. 

The difference is 0.2294 %, which is small enough, and the RBDO optimum turned out to 

be on the safer side. This result justifies the use of intermediate surrogate models in the 

wind turbine drivetrain RBDO involving the high-fidelity gear dynamics simulation. 

Furthermore, it is demonstrated that the integrated design optimization procedure 

developed in this study enables the cost effective and reliable design of wind turbines 

drivetrains. 
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(a) Change of design variables 

 

(b) Change of normalized mass and probability of failure 

Fig.6.5 RBDO design iteration for 10%Tar

FP   
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(a) Change of design variables 

 

(b) Change of normalized mass and probability of failure 

Fig.6.6 RBDO design iteration for 5%Tar

FP   

  



102 
 

 

 

 

(a) Change of design variables 

 

(b) Change of normalized mass and probability of failure 

Fig.6.7 RBDO design iteration for 2.275%Tar

FP   
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Fig.6.8 Randomly generated 50 DOE ponits in local window at RBDO optimum design; 

             + : RBDO optimum design 
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CHAPTER 7                                                                                            

CONCLUSIONS AND FUTURE WORK 

7.1 Summary and Conclusions 

Gears in wind turbine drivetrains are subjected to severe cyclical loading due to 

variable wind loads that are stochastic in nature and the failure rate of drivetrain systems 

is reported to be relatively higher than the other wind turbine components. For this reason, 

improving reliability of drivetrain design is one of the key issues to make wind energy 

more competitive to fossil fuels. However, limited studies have been carried out regarding 

deterministic and reliability-based design optimization (DDO and RBDO) of wind turbine 

drivetrains considering wind load as well as manufacturing uncertainties. It requires an 

extensive numerical procedure involving uncertainty quantification of wind loads as well 

as manufacturing errors of gears, the contact dynamics of multibody geared systems, 

probabilistic contact fatigue prediction of gear teeth, and design optimization procedures 

to meet 20-year service life while minimizing the cost (weight) of drivetrains. This thesis 

is aimed to develop an integrated multibody dynamics computational framework for the 

deterministic and reliability-based design optimization of wind turbine drivetrains 

considering wind load and gear manufacturing uncertainties.  

To this end, a numerical procedure for gear dynamics simulation of multibody 

geared systems is developed first using the tabular contact search method in Chapter 2. 

Since 10-minute wind data is widely used to characterize the short-term wind speed 

variability in wind energy industry, 10-minute wind turbine gear dynamic simulations 

under different wind load conditions are required to evaluate probabilistic contact fatigue 

life under random wind load. Furthermore, since the tooth contact pressure is sensitive to 

the gear tooth profile, an accurate description of the tooth profile geometry and precise 

contact geometry calculation are required and use of a simplified gear contact dynamics 

model is not suited.  

To improve computational efficiency associated with the gear contact dynamics 

simulation considering precise contact geometry as well as mesh stiffness variations, a 

tabular contact search algorithm using the combined nodal and non-conformal contact 

search approach is generalized to gear tooth contact in this study. To predict the jump in 

contact that can occur for measured tooth profiles with tooth surface imperfections due to 
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the wear and surface failures, a combined nodal and non-conformal contact search 

algorithm for gear tooth contact is developed. In this procedure, the nodal search is 

employed as a global search to provide a rough estimate of the contact point and then the 

contact point is used as the initial estimate for the non-conformal contact search equations 

to fulfill the non-conformal contact condition. By doing so, a robust contact search 

algorithm which allows for detecting an appropriate initial estimate for non-conformal 

contact search for tooth surfaces with gear geometry imperfections can be achieved.  

In the dynamics simulation, the tabular contact search is performed for all the gear 

teeth positioned in the searching range defined in the look-up table tooth by tooth. This 

allows for detecting multi-point contact without any iterative procedures. Furthermore, the 

coordinate transformation between the generalized coordinates and those defined in the 

look-up table coordinate system introduced in the contact geometry analysis is established. 

With this transformation, the look-up contact table can be directly applied to any pair of 

gears in the dynamic simulation. Several numerical examples are presented in Chapter 3 in 

order to demonstrate the use of the numerical procedure developed in this study. In 

particular, an accuracy of the mesh stiffness model introduced in this study and the 

transmission error of gear tooth with tip relief are discussed. A planetary gear model is then 

introduced to discuss the effect of tooth surface irregularity on mesh force variation. A 

wind turbine drivetrain model is presented in the last example and is validated against test 

data provided in the literature. 

An integrated numerical procedure for design optimization of wind turbine 

drivetrains is developed in Chapter 4 using the gear dynamics simulation procedure based 

on the multi-variable tabular contact search algorithm considering wind load uncertainty. 

The joint probability density function (PDF) of the 10-minute mean wind speed (V10) and 

10-minute turbulence intensity (I10) is introduced to characterize the short-term wind speed 

variability at a specific location and time. Since the wind load distribution varies at 

different locations in different years, a wide spatiotemporal variability is considered by 

identifying PDF of all the joint PDF parameters (C, k, a, b, τ) using 249 sets of wind data 

and these PDFs are used in the reliability-based design optimization (RBDO). The 

averaged joint PDF obtained using Monte Carlo simulation (MCS) is used in the 

deterministic design optimization (DDO). The random time-domain wind speed data is 
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generated using NREL TurbSim and then inputted into NREL FAST to perform the aero-

hydro-servo-elastic simulation of rotor blades under pitch control to predict the transmitted 

torque and speed of the main shaft of the drivetrain, which are sent to the multibody gear 

dynamics simulation for contact fatigue prediction.  

To account for the wind load uncertainty characterized by the averaged joint PDF 

of the 10-minute mean wind speed and turbulence intensity, multiple 10-minute drivetrain 

dynamics simulations are performed. However, multibody drivetrain dynamics simulation 

becomes a computational burden in the entire design optimization process. In addition, 

since the tooth contact pressure is sensitive to the gear tooth profile, an accurate description 

of the tooth profile geometry and precise contact geometry calculation are required, 

resulting in use of a simplified gear contact dynamics model being not suitable. For this 

reason, a numerical procedure for the multibody gear dynamics simulation based on the 

tabular contact search algorithm developed in Chapter 2 is integrated into the gear design 

optimization procedure considering wind load uncertainty.  

The pitting fatigue model based on the Paris equation is then used to predict the 

contact fatigue life of gear tooth using the maximum contact pressure obtained using the 

multibody drivetrain dynamics simulation under various 10-minute wind scenarios. 

Numerical results obtained at different locations and in different years characterized by 

joint PDF parameters (C, k, a, b, τ) indicate that the predicted contact fatigue life differ 

significantly and wind load variation plays an important role to realistic estimation of 

contact fatigue life of wind turbine drivetrain systems.  

Using the optimization procedure developed in this study, it is demonstrated for a 

750kW GRC wind turbine gearbox model that an optimum tip relief allows for lowering 

the greatest maximum shear stresses on the tooth surface without relying heavily on face 

width widening to meet the 20-year fatigue life constraint and it leads to weight reduction 

by 8.4 %, which leads to more cost-effective design. If only face width is considered as 

design variable, total weight needs to be increased by 4.7 % to meet the 20-year fatigue life 

constraint. 

Furthermore, the reliability analysis at the DDO optimum design is discussed in 

Chapter 5 considering the large spatiotemporal wind load uncertainty and gear 

manufacturing uncertainty. Surrogate models are generated using the dynamic kriging 
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method in RAMDO software to evaluate the gear contact fatigue damage. One million 

MCS sets of gear design variables are generated. For each set of design variables, the 10-

minute gear contact fatigue damage is obtained from the surrogate models and then twenty 

sets of (C, k, a, b, τ), which represents uncertain annual wind loads for 20 years, are 

randomly generated to calculate the probabilistic fatigue damage. The 49.5 % reliability is 

obtained at the DDO optimum design obtained in Chapter 4, indicating that the probability 

of failure is 50.5 %, as expected, for DDO design and RBDO is necessary to further 

improve the reliability of the wind turbine drivetrain. To this end, the sampling-based 

reliability analysis is carried out to evaluate the probability of failure for each design using 

the Monte Carlo Simulation (MCS) method. However, use of a large number of MCS 

sample points required leads to a large number of contact fatigue damage evaluations using 

the 10-minute multibody drivetrain dynamics simulation, resulting in the RBDO 

calculation process being very computational intensive.  

In order to overcome the computational difficulty resulting from the use of high-

fidelity wind turbine drivetrain dynamics simulation, intermediate surrogate models are 

created once prior to the RBDO process using the dynamic kriging method and used 

throughout the entire RBDO iteration process. The area of the intermediate window chosen 

for generating the surrogate model covers approximately one ninth of the entire design 

variable domain. It is demonstrated that the RBDO optimum obtained ensures the target 

97.725 % reliability (two sigma quality level) by only 1.4 % increase in the total weight 

from the baseline design with 8.3 % reliability. This result clearly indicates the importance 

of incorporating the tip relief as a design variable that prevents larger increase in the face 

width causing an increase in weight. This, however, does not mean that a larger tip relief 

is always preferred since an optimum tip relief amount depends on stochastic wind loads 

and an optimum tip relief cannot be found deterministically. Furthermore, accuracy of the 

RBDO optimum obtained using the intermediate surrogate models is justified by the 

reliability analysis at the RBDO optimum using the local surrogate models. It is 

demonstrated that the integrated design optimization procedure developed in this study 

enables the cost effective and reliable design of wind turbines drivetrains. 



108 
 

 

7.2 Future Work 

There are several topics that would be recommended for further study to address 

the design optimization of wind turbine drivetrains and these topics are summarized as 

follows: 

1. In this study, the time-domain rotor blade speed and the input shaft toque under wind 

loads are predicted using NREL FAST software, in which a drivetrain is modeled by a 

simplified lumped mass model. To ensure the consistency between the simplified 

drivetrain model used in the aerodynamics simulation of rotor blades and the high-

fidelity model used in the gear tooth contact fatigue damage evaluation, a coupled 

multi-physics simulation capability that integrates the high-fidelity computational fluid 

dynamics (CFD) simulation for rotor blades and the multibody dynamics simulation 

for drivetrains would be pursued. A co-simulation technique proposed in the literature 

[108] would be one of the approaches that can be applied to the numerical procedure 

developed in this study. 

2. While gear manufacturing uncertainties associated with the face width as well as the 

tip relief are considered in this study, the axial misalignment of a gear shaft alters the 

contact pressure distribution over the gear tooth, causing a significant impact on the 

contact fatigue life. That is, uncertainty associated with an assembly error would also 

be considered in RBDO to prevent unexpected failure due to gear assembly errors. 

Consideration of an axial misalignment requires developing a variable contact stiffness 

model for misaligned teeth in contact. Furthermore, an axial misalignment has a 

significant impact on the gear transmission error. 

3. Deflection of the overhung main shaft of wind turbines alters the gear mesh phasing in 

the planetary gear. In particular, bending deflection of the shaft causes a misalignment 

of gear teeth in contact and the tooth contact pressure distribution may also be altered. 

Such a structural deformation of wind turbine components should be considered in the 

future work. 

4. Rotor blade pitch control is crucial for achieving high energy production efficiency as 

well as preventing rotor blades from damages under stochastic wind loads. While an 

ideal region-3 speed control model is utilized in this study, more study is needed in the 



109 
 

 

future to shed light on the effect of the pitch control design and parameters on the 

drivetrain fatigue damages. 
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APPENDIX                                                                                                 

A. The Probability Density Functions 

The probability density functions (PDFs) of C, k, a, b, and  are identified as 

follows: 
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B. 750kW GRC Wind Turbine Specifications 

Specification of 750kW GRC wind turbine used in this thesis is summarized in 

Appendix B. The rotor blade properties are given in Table B.1 through B.3, while 

properties of the tower are provided in Table B.4 through B.6.  These data are used for 

creating the wind turbine model using NREL FAST.  

 

Table B.1 Twist and chord distribution for the GRC blade [97] 

Station Twist wrt Hub Chord length Comments 

(m) (deg) (mm)  

0.00  1330.00 

Large Calipers 

3.66 16.00 1845.00 

4.88 18.10 2155.00 

6.10 17.20 2265.00 

7.01 14.70 2205.00 

8.23 12.30 2135.00 

10.06 10.50 2075.00 

10.06 9.00 1984.00 

Medium Calipers 

10.97 7.80 1909.00 

11.89 7.10 1824.00 

12.80 6.10 1747.00 

13.72 5.20 1667.00 

14.63 4.50 1575.00 

15.54 3.80 1493.00 

16.46 2.90 1389.00 

17.37 2.40 1286.00 

18.29 2.00 1187.50 

19.20 1.30 1156.00 

20.07 1.10 989.00 

20.07 1.10 916.00 

20.80 0.60 834.00 



112 
 

 

Table B.1 Continued 

20.80 0.80 873.00  

 

Small Calipers 21.72 0.30 752.00 

22.63 -0.70 640.00 

 

Table B.2 GRC blade structural parameters [97] 

Section 

number 

Normalized 

section location 

Mass/length 

(kg/m) 

Flap stiffness 

(N-m2) 

Lag stiffness 

(N-m2) 

1 0.000 1427.29 3.74 109 3.74 109 

2 0.021 200.79 6.12 108 6.12 108 

3 0.053 205.39 5.36 108 4.47 108 

4 0.105 213.15 4.09 108 4.09 108 

5 0.158 221.05 2.82 108 3.71 108 

6 0.211 229.08 1.55 108 3.33 108 

7 0.263 213.27 1.32 108 2.89 108 

8 0.316 196.96 1.08 108 2.45 108 

9 0.368 180.18 8.45 107 2.02 108 

10 0.421 162.91 6.10 107 1.58 108 

11 0.474 145.16 3.77 107 1.14 108 

12 0.526 129.29 3.13 107 9.57 107 

13 0.579 113.00 2.49 107 7.75 107 

14 0.632 96.28 1.84 107 5.94 107 

15 0.684 79.13 1.18 107 4.12 107 

16 0.737 61.56 5.18 106 2.31 107 

17 0.789 52.33 4.28 106 1.88 107 

18 0.842 42.87 3.31 106 1.46 107 

19 0.895 33.18 2.27 106 1.03 107 

20 0.947 23.27 1.18 106 6.03 106 

21 1.000 13.13 6.83 104 1.77 106 

 



113 
 

 

 

 

Table B.3 Polynomial approximations of the mode shapes for GRC blade [97] 

Mode Frequency(Hz) 
               Polynomial terms 

   ---------X2+---------X3+---------X4+---------X5+---------X6 

1st flap 1.7217 0.02395 2.2453 -4.1649 5.1454 -2.2498 

1st Lag 2.4098 0.69226 1.2286 -2.4026 2.5294 -1.0477 

2nd Flap 4.8427 -1.92770 10.168 -34.565 46.353 -19.029 

 

 

 

                            Table B.4 GRC tower dimensions [97] 

Section Distance from tower base Outside diameter Wall thickness 

 (m) (m) (m) 

1 0.000 3.026 0.019 

2 5.361 2.931 0.019 

3 10.723 2.866 0.016 

4 16.084 2.853 0.016 

5 21.446 2.694 0.016 

6 26.807 2.470 0.013 

7 32.169 2.278 0.013 

8 37.530 2.046 0.013 

9 42.891 1.893 0.013 

10 48.253 1.740 0.013 

11 53.614 1.646 0.013 

 

 

 

 

 



114 
 

 

Table B.5 GRC tower structural properties [97] 

Station 

Normalized 

section 

location 

mass EI GJ EA Iy,Iz 

  Kg/m Nm2 Nm2 GN Kg-m 

1 0.000 1.404 103 4.206 1010 3.235 1010 3.721 101 1.586 103 

2 0.098 1.359 103 3.820 1010 2.938 1010 3.604 101 1.441 103 

3 0.196 1.109 103 2.985 1010 2.296 1010 2.939 101 1.126 103 

4 0.293 1.104 103 2.945 1010 2.265 1010 2.926 101 1.111 103 

5 0.391 1.042 103 2.476 1010 1.905 1010 2.762 101 9.340 102 

6 0.489 7.647 102 1.530 1010 1.177 1010 2.027 101 5.772 102 

7 0.587 7.051 102 1.200 1010 9.227 109 1.869 101 4.524 102 

8 0.685 6.328 102 8.670 109 6.669 109 1.678 101 3.270 102 

9 0.783 5.852 102 6.857 109 5.275 109 1.551 101 2.586 102 

10 0.880 5.377 102 5.319 109 4.092 109 1.426 101 2.006 102 

11 0.978 5.083 102 4.493 109 3.456 109 1.348 101 1.695 102 

 

 

Table B.6 Polynomial approximations of the mode shapes for GRC tower [97] 

Mode Frequency(Hz) 
Polynomial terms 

---------X2+---------X3+---------X4+---------X5+---------X6 

1st side to side 0.4673 1.1445 -0.5231 0.0140 1.0153 -0.6507 

1st fore-aft 0.4719 1.1562 -0.5406 0.0423 0.9883 -0.6462 

2nd side to side 2.4537 32.4280 -50.238 79.921 -90.890 29.779 

2nd fore-aft 2.9071 78.7820 -123.44 192.26 -232.90 86.292 
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C. Gear Material Properties  

Material properties of gears for 750kW GRC wind turbine drivetrain model used in 

the pitting fatigue calculations are summarized in Appendix C.  

 

Table C.1. Mechanical parameters  

of 18CrNiMo7-6 

E(Mpa) 2.1 105 

G(Mpa) 0.8 105 

ν 0.3 

Su(Mpa) 1172 

σy (Mpa) 835 

μ 0.04 

 

 

Table C.2 Fatigue parameters  

of 18CrNiMo7-6. 

Cp 4.87 10-16 

m 3.05 

'

f  (Mpa) 3470 

'

f  (Mpa) 2499 

b -0.085 

tk  3 

  0.7 

  0.11 

Hv (HV) 720 
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Table C.3 Chemical composition  

of 18CrNiMo7-6. 

C(%) 0.150-0.210 

Si(%) 0.400 

Mn(%) 0.500-0.900 

P(%) 0.025 

S(%) 0.035 

Cr(%) 1.500-1.800 

Mo(%) 0.250-0.350 

Ni(%) 1.400-1.700 
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