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ABSTRACT 

This thesis presents two important contributions to the modeling of entrainment of 

air bubbles in water, with focus on ship hydrodynamics applications. 

The first contribution consists of a general framework for modeling turbulent air 

entrainment. The framework attempts to describe the evolution of bubbles from their 

formation at the free surface, size distribution changes due to breakup and coalescence, and 

rise due to buoyancy. This proposed framework describes the complex entrainment process 

as a series of simpler mechanisms which can be modeled independently. For each 

mechanism a simple but mechanistic model is developed to provide closure while leaving 

the door open for future improvements. These unique characteristics enable the 

entrainment model to be used in general problems while still producing results at least as 

good as the few other available models. 

The massive entrainment of air that takes place around a ship leads to very high 

void fractions and accumulation of bubbles against the hull, particularly underneath the flat 

regions of the hull and in low pressure regions near appendages. These processes also pose 

challenges for two phase solvers. As a second contribution in this thesis, numerical 

algorithms for two phase flows are developed to eliminate the numerical instabilities 

normally occurring at high void fractions or large void fraction gradients. A hybrid method 

to improve pressure-velocity coupling for collocated grids is introduced, which keeps 

advantages typical of staggered grids in mass conservation and face flux computations. A 

new two phase coupling strategy is developed to guarantee stability at high void fraction. 

The balanced force method is extended to general curvilinear grids to suppress spurious 

velocities. The overall methodology provides strong coupling among pressure, velocity and 

void fraction, while avoiding numerical instability, and works for free-surface flows on 

dynamic overset grids. 
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The proposed numerical schemes are tested for 1D and 2D cases. It is shown that 

the two phase solver is stable and efficient, even for extreme cases. Good mass 

conservation properties for multigroup simulations are also demonstrated. The air 

entrainment model is tested for a 2D wave breaking case and compared with extensive 

experimental data. The results show good predictions for entrainment location and other 

two-phase metrics such as size distributions.  

Full scale simulations for Athena R/V are performed using the same modeling 

constants obtained for the 2D wave breaking case. A grid study is also carried out to 

evaluate grid convergence properties of the model. While the model can predict well 

experimental data at full scale for the ship, it also shows dramatic improvements respect to 

previous entrainment models by converging in grid and not needing to re-evaluate the 

model constants for each new application. A high-speed Kann boat is also simulated at full 

scale, showing encouraging results for a preliminary entrainment model for aeration due to 

impact. The proposed numerical schemes are proved stable and robust in high Reynolds 

number flows with complex relevant geometries. In addition, these full scale simulations 

also identify modeling and numerical issues for future improvements. 
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PUBLIC ABSTRACT 

Bubbles entrained around a ship have significant effects to the ship hydrodynamics. 

This thesis presents two important contributions to the modeling of air entrainment relevant 

to ship applications. 

The first contribution contains a general framework for modeling air entrainment 

in turbulent flows. This proposed framework describes the complex entrainment process 

as a series of simpler mechanisms which can be modeled independently. For each 

mechanism a simple but mechanistic model is developed while leaving the door open for 

future improvements.  

The massive entrainment of air that takes place around a ship leads to accumulation 

of bubbles, particularly underneath the flat regions of the hull and in low pressure regions 

near appendages. These processes also pose challenges for numerical solver. As a second 

contribution in this thesis, numerical algorithms for air-water flows are developed to 

eliminate the numerical instabilities normally occurring in regions where large amount of 

bubbles accumulate. 

The proposed numerical schemes can improve the stability of simulations as shown in 

1D and 2D cases. The air entrainment model is tested for a 2D wave breaking case and 

compared with experimental data. Simulations for a vessel, Athena R/V, are performed using 

the same configuration for the model as in the 2D wave breaking case. The model can predict 

well experimental data and shows dramatic improvements respect to previous entrainment 

models. A high-speed Kann boat is also simulated, showing encouraging results for a 

preliminary entrainment model for aeration due to impact.  
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CHAPTER 1    INTRODUCTION  

1.1 Motivation 

Air entrainment occurs naturally when a surface ship is advancing in a seaway. 

Bubbles can be entrained at bow and shoulder waves, the contact line of the hull with free 

surface and turbulent flow of stern. The sizes of bubbles can range from micrometers to 

millimeters. These bubbles have significant importance to the ship signature. Firstly, the 

entrainment of wave breaking near the ship is a source of acoustic noise. This noise can be 

detected by acoustic means (Borowski et al. 2008), resulting in increased probability of 

detection. Secondly, the presence of bubbles also has an impact on the hydrodynamic 

motion of the ship. Experiments in ships and flat plates of bubble-induced drag reduction 

show drag reduction can vary more than 4% (Latorre et al. 2003, Elbing et al. 2008). This 

can have dramatic impact on economy considering that 80% of volume of world trade is 

through maritime transportation (UNCTAD 2009). Thirdly, the bubbly wake behind the 

ship can last for a long distance. Experiments demonstrate that the length of the bubbly 

wake can reach 5000 m and the depth could be up to 10 m (Trevorrow et al. 1994, 

Trevorrow et al. 2006, Sutin et al. 2009). This signature can be observed on the sea surface 

as white water wake and detected acoustically from underwater. It enables the ship to be 

monitored by airplanes and satellites, increasing the risk for a navy ship to be an attack 

target. 

Air entrainment is important for other natural and engineering applications. It can 

enhance mass and energy transfer between air and water in natural world, resulting a key 

role in global climate change. Air entrainment also contributes to the efficiency of the 

mixture flow in gas-liquid reactors, and the quality of products in casting industry. 
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Figure 1.1: Example of bubbly flow around a ship. 

As shown in Figure 1.1, the white water around the ship is the indicator of presence 

of bubbles. These bubbles are mainly generated from interactions between the flow and the 

free surface, with potential bubble production by propeller cavitation. The main types of 

air entrainment around a ship can be summarized as follows: (see Figure 1.2)  

a. Plunging jet entrainment: A falling liquid jet pierces a free surface and causes 

entrainment around the contact line. Wave breaking produced by ships can result in 

such form of air entrainment. 

b. Cavity fragmentation entrainment: The jet or splash of breaking waves can entrap 

large air cavities into the water. These cavities are then subject to the flow turbulence 

and breakup into smaller bubbles.  

c. Droplet impact entrainment: Sprays and splash formed by wave impact and wind 

form droplets that hit the free surface and trap air into the water. The resulting bubble 

sizes can be very small (for example, typically around 50 μm  in diameter for Mesler 

entrainment).  

d. Vortex induced entrainment: Vortices interacting with a free surface can entrain 

bubbles when they are energetic enough. The high turbulent flow at the stern and in the 
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boundary layer near the free surface of a ship can entrain significant amounts of air 

bubbles. 

The described main mechanisms of entrainment may be caused by a variety of 

processes present around a ship. Bow and shoulder waves often exhibit plunging jets and 

high levels of turbulence. The contact line between the hull and the free surface is subject 

to the highly turbulent ship boundary layer. The stern flow, mostly in transom sterns, 

exhibits highly energetic large-scale vortices and massive entrainment. It should be noticed 

that other air entrainment processes may also exist around ships, but the complexity of the 

problem is evident even if the study is limited to the mechanisms discussed above.  

 

Figure 1.2: Schematic diagram for different entrainment processes. 

Though bubble transport is a complex problem and far from a mature state of 

development, it has been tackled extensively by the nuclear industry (Wallis 1969, Ishii 

1975, Ishii and Hibiki 2006, Drew and Passman 1999, Behzadi et al. 2004, among others) 

and applied to surface ships (Carrica et al. 1998, 1999, Moraga et al. 2008, Castro 2011, 

Ma et al. 2010b). The transport of bubbles around the ship and in its wake has unique 

challenges, mostly due to the very high Reynolds number boundary layer and the presence 

of the air/water interface not found in other applications. It is in this context that air 
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entrainment modeling is extremely important, since the development has not kept pace 

with bubble transport modeling. Although much progress has been achieved over last few 

decades, the current entrainment models still cannot predict bubbly flow correctly around 

a ship. It is recognized at this point that the entrainment of bubbles is the most 

underdeveloped component in modeling the bubbly flow around ships, and is crucial to 

properly predict the bubbly wakes (Castro et al. 2014). This topic is specially challenging 

due to the multiple physical phenomena involved in the entrainment process. 

1.2 Air entrainment background 

As discussed before, air entrainment involves several physical processes. 

Experimental and modeling work in literature has been limited to a few canonical flows. 

Simple plunging jets were studied first, measuring mostly air entrainment rate. Breaking 

waves have more recently become another important flow to study air entrainment, though 

much more complicated than the plunging jet. Vortex interaction with a free surface and 

consequent air entrainment can now be studied numerically and experimentally. Advanced 

cameras enable capturing bubble entrainment from droplet impact. Air entrainment caused 

by these flows is still at an early stage of research. This section mainly reviews for the state 

of the art on modeling these four air entrainment mechanisms. 

1.2.1 Plunging jet 

A plunging jet consists of an incoming fluid steam of velocity 
jU  impacting a 

receiving pool of the same fluid (Kiger and Duncan 2011). Key parameters characterizing 

the flow are defined as: 

 2

Fr

We

Ca

l j

l

j

j

U gL

U L

U

 

 







 (1.1) 
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where Fr  is the Froude number, We  is the Weber number, Ca  is the capillary number, 

L  is the length of the jet, l  is the liquid density, l  is the liquid dynamic viscosity and 

  is the surface tension. 

When the jet impacts the pool surface, it may or may not entrain bubbles. No 

bubbles are observed in the pool when the jet velocity is low. As the velocity increases, 

and the process gains enough energy to entrap air by overcoming surface tension and 

potential energy due to gravity, bubbles begin to appear around the impact region. A key 

parameter for plunging jets is then the condition for onset of air entrainment. Lara (1979) 

established two regions of onset jet velocity for a vertical plunging liquid jet: continuous 

jet and jet droplets. The author showed that the droplet region has lower onset velocity. Bin 

(1993) proposed a correlation 
0.5345eU L  (here subscript means entrainment, the same for 

later use in equation) for the droplet region based on the data of Bin (1988) and Kumagai 

and Endoh (1983). Lin and Donnelly (1966) measured the onset velocity for different fluids 

with high viscosity, and proposed a correlation as 
0.74We 10Ree e , where the length scale 

is the diameter of the jet at the impact point. Lorenceau (2003) combined her data with that 

from Lin and Donnelly (1966) to obtain a new correlation for the onset of entrainment 

 Ca 1.6ln 13.7g le     . For low-viscosity jets the onset condition is not well defined. 

Ciborowski and Bin (1972) proposed We 400e   for turbulent short-length jets. El 

Hammoumi et al. (2002) observed a condition given by Ca 0.04e   for Re ~ 200  using an 

oil/air system. A dimensionless correlation for the onset velocity including turbulent 

fluctuation (denoted as 'u ) but without physical motivation was developed by Chanson 

(2009) :  0.0109 1 3.375exp 70 'e el u UU        . 

A second key parameter is the entrainment rate 
AQ , typically separated into two 

regions according to the jet velocities. van de Sande and Smith (1974, 1976) proposed  

 
0.75

12 3 .50.5

00.015 sinj jAQ d U L  for low jet velocities ( 2m/s 5m/sjU  ) (valid for 

certain experimental parameters), where 
0d  is the nozzle diameter and   is the jet 

deviation angle from horizontal free surface. For high jet velocities, two different 
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mechanisms are proposed: air entrained by the jet roughness and air dragged by the 

boundary layer along the jet. Ervine et al. (1980) and McKeogh and Ervine (1981) 

formulated an entrainment rate equation based on these two mechanisms and experimental 

data. Bin (1993) reported that the boundary layer air entrainment contributed 20 to 70% to 

the total and thus cannot be ignored. Sene (1988) deduced an analytical equation for the air 

layer trapped in water using a Couette flow assumption, resulting in 
1.5

~A jQ U . Kiger and 

Duncan (2011) reported more recent developments for the relationship between 
AQ  and 

jU . The entrainment rate follows 1.8~A jQ U  for a low velocity jets and 0.5~A jQ U  for higher 

velocity jets in the work by Brattberg and Chanson (1998), while Ma et al. (2010a) 

proposed 2~ jAQ U  and 1~ jAQ U  for low and high velocities, respectively. Results of El 

Hammoumi et al. (2002) imply 1.23~ jAQ U  for high speed jets. Though these results 

indicate certain similar characteristics, it is difficult to make universal conclusions due to 

different experimental conditions.  

Several attempts at numerically simulating air entrainment caused by plunging jets 

are reported in the literature. Iafrati et al. (2004) and Brouilliot and Lubin (2013) simulated 

2D plunging jets, though conclusions are of little consequence since bubbles are inherently 

3D.  Deshpande et al. (2012) simulated a 3D inclined plunging jet using the volume of fluid 

(VOF) method. Even though large cavities can be captured, the grid is not fine enough to 

resolve small bubbles. 

1.2.2 Breaking waves 

Breaking waves can be classified as four types: spilling, plunging, collapsing and 

surging (Galvin 1968). Though all these can entrain bubbles, research on entrainment has 

mainly focused on spilling and plunging breakers. For plunging breakers, Kiger and 

Duncan (2011) summarized four major mechanisms for entrainment: entrapment of a 

closed air cavity when the jet hits the front wave face, entrainment around the impact 

region, entrainment by forward splash and backward splash, and entrainment over the 
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splash and turbulent breaking regions. Spilling breakers not always entrain bubbles, but 

occur more frequently than plunging breakers. The progress in experimental measurements 

and modeling has been slow due to the complexity of the breaking process (Duncan 2001).  

Experimental data is scarce for entrainment due to the complexity of the two phase 

flow during the early process of wave breaking. Two important aspects are usually reported 

in the literature: bubble size distribution and energy dissipation during the process. Deane 

and Stokes (2002) measured the size distribution of bubbles for plunging breaking waves. 

Two distinct phases are observed in the experiments: acoustically active phase and 

quiescent plume phase. Entrainment occurs mainly in the first phase, where acoustic noise 

from the splash and bubble formation takes place. Cavity fragmentation generating large 

bubbles (large than 2 mm in radius) is observed from noise spectrograms. The bubble size 

distribution for the acoustic phase has the form of   sf r r , where s  is the slope in a log-

log plot. Two different slopes are found: 3/ 2  for bubbles smaller than 1 mm in radius 

and 10 / 3  for the rest, with 1 mm reported as the Hinze scale for the breaking waves. 

Leifer and de Leeuw (2007) studied bubble plumes generated by paddle-amplified, wind-

stress breaking waves subsequent to formation. Two main categories of plumes are 

reported: diffuse plumes with low concentration of bubbles and dense plumes containing 

large numbers of bubbles which can obscure the background. The bubble size distribution 

responds to a power law and two distinct regions of different slopes are separated by a 

critical radius. Both slope and critical radius vary for different plumes. The size distribution 

is found to steepen with time as large bubbles breakup and/or rise and leave the domain. 

Mori et al. (2007) studied void fraction and bubble size distribution for wave breakers in 

laboratory experiments at two different scales. It was found that the slope of the time and 

space-averaged bubble size distributions is independent of the experimental scale within a 

range -1.2~-1.9 while the scale effect becomes evident in void fraction. Blenkinsopp and 

Chaplin (2010) used highly sensitive optical fiber phase-detection probes to measure high 

void fraction on breaking waves. They observed bubbles up to 60 mm in diameter close to 
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the surface but away from the active entrainment region. The slope reported for plunging 

waves varies from 1.4  to 3.15  while it changes from 2.1  to 2.9  in the 

spilling/plunging case. The variation in the slope occurs at diameters between 1.7 mm and 

2.4 mm.  

Johansen et al. (2010) performed measurements around the Full-scale Athena 

research vessel. The bubble size distribution at the plunging bow wave was reported, 

showing a slope around -2.35. Tavakolinejad (2010) also measured the bubble size 

distribution for a 2D+T simulated breaking bow waves using a high speed camera 

technique. The bubble size distributions at different times (equivalent to positions along 

the ship) follow a power law. It has to be mentioned that the measurements were not 

performed near the active entrainment region, thus bubbles experienced coalescence, 

breakup and dissolution processes before being measured.  

Energy dissipation is significant in wave breaking process. Horikawa and Kuo 

(1966) proposed that bubbles entrained by breakers is significant in energy dissipation, at 

least at initial stages. Rapp and Melville (1990) concluded that the energy dissipated by 

wave breaking could be up to 40% of the initial energy. The amount of entrapped air can 

be related with the energy dissipation in breaking waves (Loewen and Melville 1994). 

According to Lamarre and Melville (1991), entraining bubbles can cost a high fraction (30 

to 50%) of the wave energy. Hoque (2002) demonstrated that wave steepness is important 

for the volume of entrained air and energy dissipation rate. Iafrati (2011), from a 2D 

numerical study, concluded that entraining air could account for a fraction between 10 to 

35% of the energy dissipated by a wave breaking event. 

Numerical simulation of breaking waves is more challenging than plunging jets. 

2D plunging breakers were simulated by Dalrymple and Rogers (2006) and Landrini et al. 

(2007) using smooth particle hydrodynamics techniques. An interesting conclusion is that 

the jet does not penetrate the front surface of the wave deeply, unlike the situation in a 

typical steady plunging jet, but bounces up to form a forward splash. A vortex dipole can 
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be formed for the backsplash which drags bubbles deeper. Adams et al. (2010) used VOF 

with 134 million nodes to simulate a plunging breaking wave without surface tension and 

viscous effects. Though quite a few bubbles can be found after wave breaking, the small 

bubbles cannot be predicted correctly due to the absence of surface tension. On the other 

hand, the small bubbles require even higher spatial resolution. 

1.2.3 Vortex interaction with a free surface 

A vortex can entrain bubbles by interacting with a free surface. A bathtub vortex, 

also known as drain-type vortex, can form an air tube dependent on the vortex strength. 

Takahashi et al. (1988) performed an experiment to investigate the onset conditions for air 

entrainment by a drain-type vortex, providing empirical criteria based on their data. 

Transient behavior of air entrainment was studied by Ezure et al. (2008) with visualization 

techniques. It was observed that the extension of the air core length delays to the increase 

of circulation around the vortex. Ezure et al. (2011) studied the bubble size distribution for 

the entrainment by a drain-type vortex. The mean equivalent bubble diameter varies from 

1.3 to 2.1 mm and is influenced by the thickness of air core.  

When the direction of a vortex is parallel to the free surface, it can also entrain 

bubbles by fragmenting the surface with strong shear stress. Greaves and Kobbacy (1981) 

observed that small vortices formed due to turbulence generated at interface when 

investigating surface aeration. Oguz et al. (2002) proposed that large scale vortex rings 

were responsible for destabilizing the meniscus formed in a plunging jet. Jeong and Moffatt 

(1992) carried out experiments using a pair of counter-rotating cylinder with a free surface, 

observing that a sharp cusp occurs on the free surface when the vortex strength increases 

to a certain level. Jeong (2012) analytically studied free surface deformation before 

entrainment due to a vortex in Stokes flow. A much more complicated situation occurs 

with free surface turbulence, which has been studied widely (Shen and Yue 2001, Lang 

and Manglano 2004, Savelsberg and van de Water 2009). The up-swelling and spiral eddies 



10 
 

can destabilize the free surface and cause entrainment (Townsend 1966, Davies 1972, Hirt 

2003). 

1.2.4 Droplet impact 

Entrainment processes are well described by Pumphrey and Elmore (1990) when a 

drop of water impacts on a water surface. The process that can result in a large number of 

small bubbles is called Mesler entrainment. When a droplet impacts a flat liquid interface 

with a relatively low velocity, a large number of very small bubbles (typically below 50μm

in diameter) are produced. This phenomena is referred to as Mesler entrainment (Mesler 

and Mailen 1977, Bergman and Mesler 1981, Esmailizadeh and Mesler 1986). Sigler and 

Mesler (1990) conducted a photographic study that showed a chandelier style pattern of 

bubbles formed after the droplet impacted the interface. Thoroddsen et al. (2003) used a 

one million fps camera to temporally resolve the air film between the drop and bulk fluid. 

They found that about 5000 bubbles with size 15 μm  could be formed during a single drop 

impact for low impact velocities. Bick et al. (2010) studied bubble formation via multi-

drop impacts, quantifying the critical crater depth formed upon impact and the time interval 

between drop impacts for entrainment to happen. It was established that bubbles could be 

produced at much lower velocities if two or more drops impacted the liquid-air interface 

within an appropriate short interval in time. Saylor and Bounds (2012) performed an 

experiment that studied the role of the Weber and capillary numbers on Mesler 

entrainment, it was found the region of onset of Mesler entrainment in plots of percent 

occurrence can be scaled by these parameters. 

1.3 State of the art on air entrainment modeling 

Direct simulation of air entrainment for engineering applications will be beyond the 

computational capabilities over the foreseeable future. Modeling of air entrainment 

processes compatible with feasible numerical approximations to engineering problems 

(RANS/DES approaches) is still on its infancy (Castro et al. 2014). A good entrainment 
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model has to answer three key questions: where to entrain (place to activate entrainment), 

when to entrain (conditions for entrainment), and how to entrain (entrainment rate and 

bubble size distribution). It is unlikely that these questions will be answered satisfactorily 

soon, due to the incomplete understanding of the physical process involved in entrainment. 

However, models developed recently show hope that reasonable predictions of entrainment 

for many applications are feasible. Since the aim of this thesis is air entrainment around 

ships, our focus will be on entrainment for air-water systems.  

Baldy (1993) assumed bubble generation at small scales was self-similar, 

borrowing the idea from turbulence theory. According to this assumption, the entrainment 

rate depends only on the state of eddies in the inertial range and formation energy of a 

bubble without considering other effects. A simple entrainment equation is derived through 

energy balance with dimensional considerations:  

   2 /

t

l

S d K
d




  (1.2) 

where K  is a constant, 
t  is turbulence dissipation, d  is the bubble diameter. This equation 

shows that the entrainment source is strong when the turbulence dissipation is large.  

For computational fluid dynamics (CFD) applications, air entrainment models can 

be implemented in two ways, as boundary conditions at the free surface or as volumetric 

sources near the entrainment region. Air entrainment is an interfacial process as bubbles 

are entrained by destabilizing the free surface. However this process is short, transient, and 

greatly localized, resulting in difficult implementation in a CFD code. Thus, there is a trend 

to model air entrainment as a volumetric source. 

The work by Carrica et al. (1999) probably is the first attempt in applying air 

entrainment in computational ship hydrodynamics, where air was entrained in a certain 

region manually determined by the authors, with the bubble size distribution imposed as in 

the experimental data from Cartmill and Su (1993). Bubbles are transported into the water 

by assigning void fraction and bubble velocity as boundary conditions at the free surface. 
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This model essentially uses Dirichlet boundary conditions for both group void fraction and 

velocity. 

Moraga et al. (2008) proposed the first predictive model for CFD applications in 

ship hydrodynamics. The entrainment, modeled as a volumetric source, can be written for 

each bubble size as 

      0g g

E

E gS S f D D    E
x x x  (1.3) 

where 0S  is a constant which determines the source intensity, Ef  is the bubble size 

distribution function and gD  is the bin width for the group diameter gD . The summation 

of   functions is designed to selectively choose active grid nodes. This model does not 

provide bubble size distribution; instead Ef  is obtained from experimental data in the 

acoustic phase measured by Deane and Stokes (2002). Entrainment conditions can be 

summarized as, 

   0.22m/sc eu  
E

g
u x

g
 (1.4) 

   ˆ 0.22m/sc eu >Eu x n  (1.5) 

   ent0   Ex  (1.6) 

where g  is the gravity vector, n̂  is the normal direction to the interface pointing into the 

water,   is the signed distance to the free surface and ent  is a constant estimated from the 

penetration depth of a plunging jet. There are two adjustable constants, 0S   and ent , which 

may vary for different flows.  

Ma et al. (2010a) developed a quantitative sub-grid model of air entrainment based 

on plunging jets. Entrainment rate equations are derived for different jet speeds under 

strong assumptions for the jet. The non-dimensional volumetric rate per unit width of the 

jet can be written as, 
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where 
1K  and 

2K  are two modeling constants, tU  is the non-dimensional transition 

velocity that separates different mechanisms for entrainment, and 
jU  is the non-

dimensional jet velocity. The velocity scale is the critical velocity which is set to 1 m/s. 

Experimental data from several researchers can be generalized into Equation (1.7) by using 

different constants. The location of entrainment is determined according to the criterion in 

Moraga et al. (2008). The model is active near a free surface within a given region and only 

one bubble size is included. Carrica et al. (2012) also proposed an entrainment model based 

on experimental data of plunging jets. The entrainment rate per unit width is written as, 

  2.43A j eq U u R   (1.8) 

 
1/2

22.5 1.31eu R   (1.9)  

where R  is the surface roughness of the jet which can be estimated from turbulent kinetic 

energy at the plunging point. This model is applied along a contact line for wave breaking 

manually, which is inconvenient for implementation in general flows. 

Using dimensional analysis, Garrett et al. (2000) showed that the bubble size 

spectrum depends on the turbulence dissipation. Cox and Shin (2003) studied the void 

fraction dependence on turbulence intensity for waves in the surf zone. Mori et al. (2007) 

found a linear relationship between void fraction and turbulence intensity in an 

experimental study. These studies highlight the importance of turbulence in air 

entrainment, prompting recent efforts to focus on turbulence as a significant parameter for 

air entrainment modeling. 

Hirt (2003) proposed a model based on a simple energy balance law assuming that 

turbulent eddies raise small liquid elements out of the water, which could trap air into the 

liquid. The volume rate of entrainment is  
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where sA  is the surface area, tE  is the turbulent kinetic energy per unit volume, dE  is the 

disturbance kinetic energy per unit volume including surface tension and potential energy 

due to gravity, and airC  is a constant.  

Shi et al. (2010) proposed a model by assuming that the entrainment source was 

proportional to the shear production term in the k   turbulence model with bubble size 

distribution following the experimental data of Deane and Stokes (2002). The results of 

wave breaking simulations show a reasonable prediction of the entrainment position. Ma 

et al. (2010b) presented a model assuming that cavities with size equal to the surface 

roughness could be entrained in the normal direction to the free surface. The volumetric 

source is written as, 
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where ˆˆ
n nu n u   n  with n̂  the normal vector to surface pointing into water, nu  is the 

liquid velocity in the normal direction, tk  is the turbulent kinetic energy, g  is the 

acceleration of gravity, and ent  is the depth of active region near the free surface for 

entrainment. The source strength is controlled by entC . Castro (2011) applied this model to 

the bubbly flow around the US Navy research vessel Athena R/V. It was found the void 

fraction at the bow was two orders of magnitude smaller than that in experiments when the 

source strength constant was calibrated using the void fraction at stern. 

Ma et al. (2011a) followed the ideas from Baldy (1993) and proposed an 

entrainment model for multiple bubble sizes. The entrainment source for each bubble size 

is written as, 
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where bc  is the source strength constant. Ef  is obtained from experimental data (Deane 

and Stokes 2002). The entrainment region is selected by setting a critical turbulence 

dissipation c  in simulation. 

Carrica et al. (2012) presented a model for unresolved turbulent entrainment. The 

flux of entrainment per unit area is written as  

 
0 2 t

q T T k

E

k
V fF

g
V     (1.13) 

where 0  is the void fraction at free surface,   is the fraction of turbulent energy that can 

entrain bubbles, kf  is a factor considering not all turbulent scales are energetic enough to 

entrain air, TV  is bubble terminal velocity, and E  is the entrainment depth, equal to the 

integral length scale of turbulence in the model.  

As can be seen from the previous discussion, current entrainment models are 

loosely based on physical mechanisms. They are usually limited to a single type of 

entrainment with adjustable constants for the strength. The important information of bubble 

size distribution is determined from experiment data for all available models. The loss of 

energy in water by entraining bubbles is also neglected. Much more work is needed to 

properly predict air entrainment, and this thesis attempts to contribute to the topic. 

1.4 Contribution of this dissertation 

In this thesis, a general framework to develop mechanistic air entrainment models 

focused on entrainment caused by turbulence near a free surface is developed and 

implemented in the CFD code REX. The air entrainment framework consists of several 

mechanisms that attempt to follow the history of the bubbles from their formation at the 

free surface, size distribution changes due to breakup and coalescence, and rise due to 

buoyancy. In this manner, the proposed framework describes the very complex entrainment 

process as a series of simpler mechanisms which could hopefully be modeled 

independently with various levels of complexity. The model for each mechanisms is based 
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on physical processes which are different from existing models. The final model can in 

principle provide 

1. Total air entrainment rate. A mechanistic model based on interaction between 

vortices and the free surface is developed. The onset condition is naturally obtained. 

2. Bubble size distribution. Force balances are applied to the formation of bubbles for 

different sizes. Also, size distribution is changed due to bubble breakup, 

coalescence, and filtering by buoyancy. 

3. Locations where to activate the model. Bubbles are formed at free surface and then 

transported down to certain depth decided mainly by turbulent mixing and 

buoyancy effects. The source location is obtained from probabilistic considerations.  

This thesis also contributes to the development of algorithms needed to stabilize 

the bubble transport when the volume fraction is high. To this aim, a two phase solver for 

pressure-velocity-void fraction coupling suitable for high void fraction problems in 

collocated overset curvilinear grids are developed. Traditional collocated grid methods are 

unstable and may result in divergence when the void fraction or its gradient is high. Also, 

a new mass conservation form is developed to avoid instabilities at high void fraction level. 

For complex bubbly flows around ships, high void fraction may occur in certain regions 

due to air entrainment or bubble accumulation. Improvements for the two phase solver can 

avoid numerical instability under such conditions. In addition, a balanced force method is 

extended to general curvilinear grid to suppress spurious velocity. Overall, it has the 

following advantages compared with previous implementation in CFDShip-Iowa 4.5: 

1. Stronger coupling between the continuous and dispersed phase. Robust and stable. 

2. Stronger pressure velocity coupling in the projection method. 

3. Better conservation of all quantities in the fluid field. 

4. Stable Solution as the time step decreases. 

5. Much more stable for bubbly flow in the boundary layer. 



17 
 

CHAPTER 2    MATHEMATICAL MODEL OF POLYDISPERSED FLOWS 

A two-fluid model is used to describe the two phase bubbly flow. The governing 

equations for each phase can be derived by ensemble averaging the Navier-Stokes 

equations (Ishii and Hibiki 2006, Drew and Passman 1999). The original two-fluid model 

equations can be simplified for the case of dispersed bubbly flows (Carrica et al. 1999, 

Castro and Carrica 2013a, 2013b and references therein), such that the governing equations 

for the continuous phase (liquid) can be written as (Castro 2011) 
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where a reference length L  and velocity U  are used to non-dimensionalize the equations, 

resulting in the Reynolds and Froude numbers defined as Re UL   and Fr LU g , 

respectively, with   the continuous fluid kinematic viscosity,   fluid density, and g  the 

acceleration of gravity. Subscripts c and d are used to denote the continuous phase (water) 

and the disperse phase (bubbles) variables. The turbulent exchange of momentum is 

modeled with a turbulent viscosity t  obtained from an appropriate turbulence model. 

Though the continuous phase is incompressible, its velocity field in general is not 

divergence-free due to the presence of bubbles as stated by Equation (2.2). 

A multigroup approach, based on the Boltzmann theory of gases, is used to model 

the disperse phase (Carrica et al. 1999), where bubbles of similar sizes are grouped together 

in discrete groups. The resulting multigroup equation is: 
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where g  is the group number, 1,...,g G , and G  is the number of discrete bubble size 

groups. The bubble number density gN  is the number of bubbles per unit volume in group 

g. g , g , gS  are the source terms due to bubble breakup, bubble coalescence, and bubble 

entrainment, respectively. Gas void fraction is a derived quantity computed as 

 
1

d g g

G

g

v N


   (2.4) 

with gv  the group-g bubble volume and relates to the continuous phase void fraction by  

1c d   . Turbulent dispersion and bubble packing are modeled as dispersive terms with 

effective viscosities / bt Sc  and p  with bSc  a bubble Schmidt number. The purpose of 

the packing diffusivity p  is to model the dispersion of bubbles due to the action of random 

collisions with other bubbles as the void fraction increases. These collisions have been 

modeled in the past for particle flows as collision forces (Gidaspow 1994). Similarly, 

turbulence dispersion can be modeled using a volumetric force (Lopez de Bertodano 1994, 

Carrica et al. 1999) that for small bubbles it can be shown to be equivalent to a diffusive 

term in Equation (2.3) (Moraga et al. 2003). In this work the dispersion of bubbles due to 

random collisions is modeled using a diffusive term following the ideas for turbulent 

dispersion. The model proposed in this work has the form 

 32 32( ) ( )p T dd dV    (2.5) 

with 32d  the Sauter diameter, 32( )TV d  the terminal velocity at this bubble size and ( )d 

, with the nondimensionalization in Equation (2.5), an assumed universal function of void 

fraction that goes to infinity as void fraction approaches a hundred percent.  

In analogy to the dispersive forces due to turbulence, the packing force term in 

Equation (2.1) can be obtained for the simple case in which bubbles rise against a wall only 

due to buoyancy: 

 , ,
ˆ

d g g D g

g g

T g p gC V       P P  (2.6) 
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where ,
ˆ

D gC  is a group-g drag coefficient defined in the work by Castro (2011), ,T gV is the 

bubble terminal velocity for group g  and g g gv N   is the void fraction for group g . 

Lacking experimental data to choose a functional form for ( )d   and in analogy to work 

in fluidized beds (Gidaspow 1994), here an ad-hoc model is proposed which increases with 

void fraction but does not go to infinity for numerical stability reasons 
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where the multiplication factor is calibrated for problems of rising bubbles towards a wall 

to avoid void fraction to reach 100%. The momentum equation for group-g can be written 

as (Carrica et al. 1999): 
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where the inertial and viscous terms are neglected. , cr g g u u u  is the group-g slip 

velocity and VMC , ,D gC , LC  are the modeling coefficients for virtual mass, drag and lift, 

respectively.  

In addition to the conservation of momentum and mass for each phase, the complete 

model includes a blended - / -k k   model with detached eddy simulation (DES) 

capabilities for turbulence modeling (Xing et al. 2007) and a single-phase level set method 

to model free surface flows (Carrica et al. 2007b). The multigroup methodology for bubbly 

two-phase flows is thoroughly described in Castro et al. (2013a, 2013b) and references 

therein.  
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CHAPTER 3    NUMERICAL METHODS 

It is well known that the staggered arrangement of pressure and velocity leads to a 

very stable pressure-velocity coupling that allows to preserve mass to machine precision. 

This scheme is attractive since no special care on how fluxes are computed needs to be 

taken to obtain a strong pressure-velocity coupling. This is particularly important for 

applications with density changes and in particular for high density ratios as in the case of 

free surface flows (Dommermuth et al. 2006). On the other hand, the collocated 

arrangement of velocity and pressure provides a configuration of simpler implementation 

since only one grid for all variables can be used in contrast to having a different grid for 

each velocity component and pressure separately.  While this does not represent a particular 

advantage for codes using Cartesian grids, it does make a significant difference for 

implementations using curvilinear grids for which significantly more complex geometric 

metrics are needed (Thompson et al. 1985). The evaluation of several metrics is not only 

cumbersome but requires a significantly larger amount of computations and memory. In 

addition, curvilinear grids can be body fitted allowing the representation of complex 

geometries and proper refinement normal to solid walls to resolve boundary layers. This 

technique has proven very effective in combination with overset methods (Carrica et al. 

2007a, Buning and Pulliam 2011) allowing to represent even more complex geometries, 

multibody simulations with motions and control surfaces and even localized refinement 

while still exploiting highly efficient strategies for structured grids (Carrica et al. 2010). 

The implementation of overset with staggered arrangements would require the computation 

of separate Domain Connectivity Information (DCI) for four grids corresponding to the 

three velocity components and pressure. In this regard collocated methods are more 

convenient since only one DCI needs to be computed for all variables. However, the 

collocated arrangement of variables does not provide the natural coupling of pressure and 
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velocity offered by staggered grids. Decoupling between pressure and velocity may occur 

if no special care is taken in the computation of face fluxes.  

In their pioneer work, Rhie and Chow (1983) presented a method that estimates 

face velocities by interpolation from nodal velocities. Regardless of the interpolation used 

to compute face fluxes, with collocated methods mass is not preserved exactly. As a result, 

these small errors in the conservation of mass lead to mass sinks or sources that ultimately 

may result in the divergence of the system of equations or unphysical pressure oscillations. 

This issue can usually be overcome in single phase codes leading to very robust 

implementations that provide accurate results for practical applications (Mofidi and Carrica 

2014)). However, these mass conservation errors may be very unforgiving for applications 

involving large density changes or free surface flows.  

In addition to errors in mass conservation that may or may not be acceptable 

depending on the application, the original Rhie and Chow interpolation suffers of spurious 

pressure oscillations that worsen as the time step is decreased (Shen et al. 2001, Pascau, 

2011) due to an inappropriate interpolation for face fluxes. In the past different alternatives 

were proposed by several authors to compute face fluxes to remove pressure oscillations. 

Kothe (1999) estimated face fluxes using high order Taylor expansions. Aksoy and Chen 

(1992) proposed a momentum-weighted interpolation method to estimate face velocities. 

Thorough reviews of different alternatives are presented by Miettinen (1997) and by 

Pascau (2011).  

This work focuses on the development of a robust numerical strategy for the 

solution of high void fraction two-phase bubbly flows with free surface on overset 

curvilinear grids. The main application targeted in this paper is the simulation of bubbly 

flows around full scale surface ships though the techniques presented herein have a much 

broader range of applications. These are very challenging flows from the computational 

point of view given that they involve high Reynolds number free surface flows spanning a 

wide range of spatial and temporal scales, complex geometries that move in reaction to the 
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flow and high void fraction levels caused by massive air entrainment and accumulation of 

bubbles as they rise towards the hull. Bubble diameters range from a few micrometers to 

several millimeters and therefore a polydisperse model to describe several bubble sizes is 

adopted (Castro and Carrica 2013a). This model adds a considerable number of unknowns 

tightly coupled by a highly non-linear system of equations further increasing the 

computational cost.  

In the simulation of bubbly two-phase flows pressure, velocity and void fraction 

are tightly coupled by mass conservation. Small errors in mass conservation admissible for 

practical single phase flow simulations become intolerable for two-phase flows especially 

with high void fraction. Yoeh and Tu (2010) reviewed several variations of the SIMPLE 

pressure-velocity coupling method extended to multi-phase flows. Castro and Carrica 

(2013a) and Castro (2011) extended the projection method from Huang et al. (2008) for 

the simulation of polydispersed bubbly flows.  

This work extends the work by Castro (2011), resulting in a two-way coupled 

methodology for the simulation of bubbly two-phase flows with free surface and high void 

fraction. The pressure-velocity coupling is based essentially on the projection method by 

Rhie and Chow (1983) with face fluxes computed as in Lien and Leschziner (1994). The 

strategy presented herein uses a hybrid approach in which staggered face velocities are 

used for transport and pressure-velocity coupling while the momentum equation is solved 

on a collocated grid. The methodology is presented in Section 3.1. Section 3.2 presents an 

alternative form of mass conservation for a strong and robust coupling of void fraction with 

pressure and velocity. As described in Section 3.2, void fraction coupling with pressure 

and velocity is achieved by solving a predictor step within a fixed-point iteration. 

Implementation details near boundaries and overset interfaces are given in Section 3.3. In 

Section 3.4 the balanced forced method developed by Montazeri and Ward (2014) to avoid 

the generation of spurious currents is extended for curvilinear grids. A two-way coupled 

solution with high void fraction is achieved even when very stiff non-linear packing forces 
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accounting for collision between bubbles are accounted for. The methodology allows 

integrating the full bubbly phase model all the way into solid boundaries where grid aspect 

ratios often result in stability issues. Such a capability can then be used in the development 

of near wall bubbly flows models, an area for which much more research is needed. 

The code REX is used in this work. REX uses multiblock structured curvilinear 

body-fitted grids with a dynamic overset capability that allows the placement of local 

refinements where needed and to perform computations with large amplitude motions 

(Carrica et al. 2007a, 2010). A single-phase level set approach is used for free surface 

modeling (Carrica et al. 2007b). Turbulence is modeled using a blended - / -k k   model 

with DES capabilities (Xing et al. 2007). The governing equations are discretized using a 

control volume/finite differences approach on a collocated grid in space. The convection 

terms are discretized with linear upwind biased or TVD schemes (Ismail et al. 2010). 

SUGGAR (Noack 2005) is used to dynamically obtain overset the domain connectivity 

information. Either projection (Bell et al. 1991) or PISO (Issa 1986) are used for pressure-

velocity coupling. A coordinate transformation from the physical domain to the 

computational domain is used to discretize the equations, where control volumes in the 

computational domain are cubes with unit volume and unit area on each face (Thompson 

et al. 1985). 

The methodology is tested for stability and accuracy in Section 3.6 including 

convergence studies on a series of 1D and 2D cases reaching over 96% void fraction. 

Finally, the method is applied to the simulation of a full scale polydisperse bubbly flow 

around ships for which experimental data in the near field region is available.  

3.1 Pressure-velocity coupling in collocated grids 

The pressure-velocity coupling scheme used in this work is based on the second 

order projection method by Bell et al. (1996) using linear interpolation to compute face 

fluxes as in Rhie and Chow (1983). This scheme as implemented for general curvilinear 
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grids in REX will be referred to as the collocated scheme (CS). Improvements to this 

scheme are presented and the resulting strategy is referred to as hybrid scheme (HS). 

3.1.1 Discretization in general curvilinear coordinates 

The governing equations are transformed from physical coordinates ix  into non-

orthogonal coordinates i  with unit cells in each direction. A partial transformation is used 

in which only the spatial coordinates are transformed leaving the velocity components in 

the original physical space. Here only the needed notation is introduced referring the 

interested reader to Thompson et al. (1985). In this transformation the covariant base vector 

/i i  xa   length equals the cell size in the i-th direction. The normal vector to constant 

i-planes is then given by 
1 2 3( , , )i i i i

j kb b b  b a a  with indices , ,i j k  in cyclic order and its 

modulus being the cell face area. The Jacobian of the transformation 1 2 3( )J  a a a  

provides the cell volume. The geometric quantities i

jb  and J  fully specify the 

transformation. Given a vector t  the contravariant vector 
i

it   tb  represents the flux of 

that vector across a face in the i-th direction, in indicial notation i

i j jt b t  . The gradient of 

a scalar   is computed as 
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and the contravariant gradient is computed as 
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3.1.2 Projection method 

Regardless of the spatial and temporal schemes used, the discretization of the 

momentum conservation Equation (2.1) at node p  for the -thi  component leads to a 

discrete system of the form 
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where the summation over nb  includes all neighbor nodes within the discretization stencil. 

The coefficients ( ,p iA , ,nb iA ) result from the spatial discretization of convection and 

diffusion terms while l  are weights arising from the time marching discretization. The 

source term ,p iS  includes body forces as well as cross diffusion terms originated from the 

discretization of the diffusion terms in a non-orthogonal system. These are usually small 

and are treated as known quantities within a fixed-point iteration. For convenience, the 

following shorthand variables are defined 
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thus Equation (3.3) can be written as 
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where the diagonal term pA  is the same for all components if a linear convection scheme 

is used, i.e. ,p i pA A  and the pseudo-momentum iw  is defined. An approximate discrete 

form of the momentum equation can be obtained using the latest available pressure 
*p  in 

Equation (3.5) to obtain a predicted velocity *
u  that in general does not satisfy mass 

conservation 
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It is key to notice that Equation (3.6) is discretized at the cell centers. A momentum 

equation at the faces is not available. Assume at this point that such an equation can be 

written for face f  as 
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Using contravariant fluxes the conservation of mass Equation (2.2) can be discretized as 
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where the summation includes all cell faces , , , , ,f u d w e s n  and the flux components are 

1i   for ,f u d , 2i   for ,f w e  and, 3i   for ,f s n . The contravariant fluxes in 

Equation (3.8) can be obtained by taking the dot product of Equation (3.7) with i
b  
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where the contravariant pressure gradient is computed using Equation (3.2). Combining 

Equations. (3.8) and (3.9) results in a Poisson equation for the pressure 
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Different alternatives exist to obtain the approximate momentum equation at the 

face in Equation (3.7) using the predicted velocity from Equation (3.6) and leading to 

various definitions of 
,

n

f iw  in Equation (3.10). These alternatives have a strong impact in 

the stability and convergence of the method and are the subject of the next two subsections. 

Coupling with void fraction through its time derivative in Equation (3.10) is also a crucial 

since a weak coupling may lead to the divergence of the system especially at high void 

fractions. This is treated in Section 3.2. 

3.1.3 Collocated scheme 

In the collocated scheme the pseudo-momentum 
,

n

f iw  needed in the right hand side 

of Equation (3.10) is first computed at the nodes using the approximation 
,

*

,

n

p i p iw w  with 

*

,p iw  computed from Equation (3.6) after the predictor step as 
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The value at the face is then obtained as ,f i iw w  with the overbar denoting 

interpolation from nodal values. Once pressure is computed from Equation (3.10), velocity 

is updated from Equation (3.5) as 
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This strategy was used by Huang et al. (2007) for free surface flows and by Castro 

(2011) for two-phase bubby flows. This approach, however, results in pressure oscillations 

that can become acute as time step decreases (Shen et al. 2001). In presence of high void 

fraction the problem dramatically increases.  

The divergence of the solution at small time steps can be explained by noticing that 

the discrete divergence of iw  in Equation (3.10) contains two contributions, one of which 

depends on the time step. Applying linear interpolation to find ,f iw  on Equation (3.6) 
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the discrete divergence of 
,

n

f iw  in Equation (3.10) is 
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According to mass conservation, Equation (3.8), and the definition of iF  given by 

Equation (3.4), the last term in Equation (3.14) reduces to 
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and therefore should be zero for a steady void fraction. However, even for single phase 

systems, the term in Equation (3.15) is in general not zero given that ,f iF  is computed by 

interpolation of nodal values. This error is amplified when divided by t  in Equation (3.15) 

and feeds into the pressure Poisson equation in Equation (3.10). This problem can many 

times go unnoticed specially for the time steps used in practical computations. It does 
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however become a source of instabilities for high void fraction two-phase flows and it thus 

must be addressed.  

3.1.4 Hybrid scheme 

The scheme presented in this section solves a nodal (collocated) momentum 

equation while computing mass-preserving face velocities used for convection and 

pressure coupling as in a staggered approach. The computational cost increases slightly, 

since while only three velocity components need to be stored in CS at the nodes, the hybrid 

scheme (HS) presented herein stores three additional face velocities. 

According to Pascau’s (2011) analysis for single phase flow, improper interpolation 

for cell face velocities from node values can result in a scheme with time step dependence. 

Here we choose the approach originally implemented by Lien and Leschziner (1994) for 

single phase flow and later used for interfacial flows by Udaykumar et al. (1997) on 2D 

Cartesian grids. It’s convergence at small time steps was demonstrated by Yu et al. (2002). 

This method computes a predicted face velocity *

,f iu  from an algebraic momentum 

equation at the cell faces obtained as 
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with * *

,f i iV V  and 
fA A , and the face void fraction computed by linear interpolation. 

Another option to estimate *

,f iV  is from *

,

* / /f i f iV A AV , which is claimed to be 

unconditionally consistent by Pascau in 1D test (2011). The two methods show identical 

results for applications in this thesis. From Equation (3.16), *

,f iu  is explicitly computed as 
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Then the momentum term in Equation (3.7) is estimated as 
,

*

,

n

f i f iw w , with *

,f iw  

computed from Equation (3.16). This momentum term as needed in the Poisson Equation 

(3.10), as well as the face velocities, can be evaluated directly in contravariant form as 
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With the pseudo-momentum computed from Equation (3.19), the pressure is 

computed from Equation (3.10). Nodal velocities are updated using Equation (3.12) and in 

general do not satisfy mass conservation. However, contravariant face velocities do satisfy 

mass conservation exactly, after being updated from the contravariant version of Equation 

(3.16) 
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f

fn c

u w p
t

 
   (3.20) 

The convective face velocities that must be stored in a general curvilinear approach 

are the contravariant face velocities. These are used in the set of equations in Equation 

(3.19) as well on the discretization of the convection term of any transport equation. If the 

contravariant velocities 1

,

n

f iu   and 2

,

n

f iu   are also stored, the computation of 
,f iF  in Equation 

(3.19) satisfies Equation (3.15) exactly, eliminating time step dependence.  

3.2 Two phase coupling strategy 

In the pressure-velocity coupling schemes presented above the void fraction was 

assumed to be known. However, in a two-way coupled bubbly flow simulation the void 

fraction is computed from the group number densities, Equation (2.4). These in turn are 

solved from the multigroup transport Equation (2.3). The void fraction affects the flux of 

liquid momentum, which interacts with pressure through mass conservation. At the same 

time, changes in void fraction affect the pressure through the mass conservation Equation 

(3.10). This coupling becomes very tight especially at high void fraction levels.  
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In Castro and Carrica (2013a) the full system is solved using a partitioned approach 

in which each model is solved in sequence within a fixed-point iteration: turbulence, 

number densities and void fraction, level-set, and finally liquid velocity and pressure. The 

iteration is repeated until a converging criteria is reached. The void fraction time derivative 

in Equation (3.10) is obtained before computing the pressure. The pressure, however, 

modifies the liquid velocity field which in turn is responsible for bubble transport. This 

approach may not converge for high void fraction levels. Castro and Carrica (2013a) show 

how to treat bubble compressibility, but the approach fails for void fraction levels higher 

than 40%. The divergence of this explicit approach is demonstrated in Section 3.6.2.2. 

A new strategy is developed here for a strong pressure-velocity-void fraction 

coupling. The key idea is to write an evolution equation for the total void fraction that can 

be used in a predictor step to estimate the void fraction at the next time step. In addition, 

when combined with mass conservation in Equation (2.2), a new form of mass conservation 

results where the void fraction time derivative is eliminated. Multiplying Equation (2.3) by 

the group volume and summing over all groups, a transport equation for total void fraction 

d  is obtained 
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where du  is the void fraction effective velocity. Breakup and coalescence sources are 

eliminated since they preserve bubble mass. Adding Equations. (2.2) and (3.21) yields 
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where the time derivatives cancel out since 1c d   . ,d ru  is the relative velocity 

between the average bubble velocity and the liquid. This equation strongly couples velocity 
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with void fraction since bubble transport is already used in its formulation. In addition, the 

right hand side of Equation (3.22) is weakly dependent on the liquid phase velocity, 

allowing to treat velocity variations in a strongly implicit way. Lastly, large volume 

changes that would otherwise be detected by the time derivative in Equation (3.10) are 

implicitly included. Equation (3.22) represents an alternative form of the mass conservation 

equation and is used to replace Equation (2.2). 

 The contravariant velocity needed to compute the discrete divergence in Equation 

(3.22) is obtained dividing Equation (3.9) by the void fraction 
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Summing over all faces, and using the discrete version of Equation (3.22) for the 

divergence of the velocity, produces a new pressure Poisson equation as 
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with the contravariant slip flux defined as 

 
,

, , , , , ,

t f

f i p f i d f d f d r f i
b

v
u

Sc
q   

 
   
 

  (3.25) 

It is important to use the same convection/diffusion schemes in Equation (3.25) as 

in Equation (3.21), to avoid the introduction of a spurious divergence in the liquid velocity 

field. To understand the reason, consider a steady state problem for which 0c u  and 

0dS  . In steady state the discrete version of Equation (3.21) implies that the divergence 

of the discrete slip flux, computed using the convection schemes in Equation (3.21), is zero, 

i.e. 
, 0f if

q  . Exactly zero divergence of the velocity can only be achieved if the same 

approximations are used for ,f iq  in Equations (3.22) and (3.24). 
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The scheme then proceeds with the projection of face velocities, Equation (3.20), 

and node velocities, Equation (3.12). The procedure for the proposed two-phase projection 

solver implemented in REX is summarized in Figure 3.1. 

 

Figure 3.1: Coupling strategy for the main time step solver. To save computational cost, a 
void fraction predictor is used within a fixed-point iteration loop, coupling pressure, 
velocity, and void fraction. At the end of the main non-linear loop, the void fraction is 
updated with the full multigroup model. 
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3.2.1  Semi-Implicit treatment of the packing force 

The packing force term is determined by the void fraction of each group. In the 

proposed two phase coupling strategy, it cannot be discretized implicitly as the buoyancy 

term during fixed-point iteration given that the multigroup Equation (2.6) is solved at the 

end of the fixed-point inner iteration. The highly nonlinear dependence on d  may cause 

instabilities when treated explicitly. Here the following semi-implicit method is proposed 

to discretize this term. The packing force can be written as, 
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 (3.26) 

where /g g d    is the void fraction size distribution. In the fixed-point non-linear 

iteration, p  and d  in Equation (3.26) can use latest available values while g  uses the 

group information from last time step.  

3.3 Boundary conditions 

The formulation derived above is valid only for inner nodes for which a momentum 

equation such as Equation (3.3) is valid. For these inner nodes the pseudo-momentum 

fluxes ,f iw  and the contravariant pressure gradients are well defined for all faces, and the 

pressure Poisson equation in Equation (3.24) is fully specified. 

In an overset free surface code such as REX, a computational node is either an 

interior node, a boundary condition node, a node on the air side or a fringe point 

interpolated from another grid, see (Carrica et al., 2007a; Carrica et al., 2007b)  for details. 

This is illustrated in Figure 3.2 where a sample interior cell is labeled as p . Cells for which 

a momentum equation is not available are generally referred as boundary condition cells 

and samples are labeled with b  in Figure 3.2. Cells sharing at least one of their faces with 
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a neighbor boundary condition cell are referred as transition cells (squares) and samples 

are labeled with q  in Figure 3.2. 

 

Figure 3.2: Cells definition at grid points next to a boundary condition. 

For these nodes the momentum equation, Equation (3.5), is well defined and the 

predictor step is valid. The Poisson equation, Equation (3.24), can be written as 
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and is valid even for transition nodes, though the computation of the contravariant fluxes 

at faces between inner and transition nodes (crosses in Figure 3.2) needs to be revised.  

 Boundary condition nodes (circles) in Figure 3.2 do not have a momentum equation 

but the velocity is either imposed, interpolated from another grid, or computed from a 

particular boundary condition. As a consequence, the diagonal coefficient fA  in Equation 

(3.16) and a face momentum equation are not defined, and neither the face velocity 
,

n

f iu  

nor the pseudo-momentum 
,

n

f iw , needed in Equation (3.27), can be computed. In this work 
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a face momentum equation at these faces is obtained by interpolation between the transition 

cell momentum equation and the boundary condition  
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where  0,1   is a weighting factor function of the distance between a transition node q  

and a boundary node b  in Figure 3.2. Equation (3.28) reduces to the boundary condition 

, ,

n n

b i bc iu u  for 0    and to the nodal momentum equation, Equation (3.5), for 1  . In 

the curvilinear coordinate system the face between these two cells is located at 1 2   and 

Equation (3.28) reduces to 
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Equation (3.29) is used to replace the face momentum equation in Equation (3.7) 

allowing computation of the pseudo-momentum 
,

n

f iw  at these transitional faces for 

Equation (3.27). Notice that, for Dirichlet boundary conditions, Equation (3.29) implies 

that the pressure gradient used in Equation (3.27) is half of what is needed in a normal 

inner node. This approach allows to treat transitional cells with a unified procedure. 

Particulars for each boundary condition are discussed below. 

3.3.1 No-slip walls and velocity boundary conditions 

For node centered codes as REX, boundary cells are actually half cells as depicted 

in Figure 3.2 and therefore metrics i

jb  and J  reflect this. Next to a solid boundary, flow is 

parallel to the boundary and normal slip fluxes ,f iq  are neglected. In the general case these 

fluxes are not zero in the tangential directions but are neglected for stability reasons. This 

approximation is exact at zero void fraction or if the void fraction is solved for boundary 

control volumes, especially considering how small these cells are in the normal direction 

for boundary layers where ~ 1y
. Therefore 

, 0f i

f

q   is assumed for these cells. This 
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condition is equivalent to 0c u  when 0dS   in Equation (3.27), which enforces 

conservation of volume. 

3.3.2 Free surface nodes 

REX uses a single-phase level set method to solve unsteady viscous free surface 

flows (Carrica et al. 2007b). The velocity in the air is extended from water along the 

direction normal to the free surface to enforce a zero shear stress condition. Pressure on the 

air side is imposed such that interpolation on the free surface results on constant 

atmospheric pressure. As a result, a momentum equation is not solved on these nodes and 

the approach described in Section 3.3 is applied on nodes one cell within the fluid.  

3.3.3 Fringe points 

Figure 3.2 depicts a typical transition node q  next to a fringe point b  for which 

both velocity and pressure are found by interpolation from another donor grid (Carrica et 

al. 2007a). The situation is similar to what was described above in that a momentum 

equation is not available at node b  and therefore a face momentum equation is not 

available on the shared face.  

On these cells the pressure Poisson equation is discretized as for any other inner 

cell as in Equation. (3.27). However, the pseudo-momentum term 
,

n

f iw  is found by 

interpolation, i.e. ,

n n

f i iw w , as done in the original collocated scheme (CS) described in 

Section 3.1.3.  

3.4 Balanced force method for volumetric forces 

Montazeri and Ward (2014) show that body forces balance the pressure gradient at 

the faces, not at the nodes. Therefore, if the body force at the nodes for the momentum 

equation in Equation (3.3) is not consistent with the discrete version of the body forces at 

the faces, spurious velocities may be induced by an unbalanced pressure gradient. A 

balanced-forced method is developed in (Montazeri and Ward 2014) to circumvent this 
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issue. In the two-phase model for bubbly flows, these volumetric forces are the packing 

force and the net buoyant term in Equation (2.1). In this work the method in (Montazeri 

and Ward 2014) is extended to curvilinear grids.  

To understand the issue, consider a 1D problem where a volumetric force f  

balances the pressure gradient at steady state. Since the Poisson Equation (3.10) is built 

from the momentum balance at the faces Equation (3.9) in steady state implies 
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When solving Equation (3.3) , the pressure gradient at node i  is 
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and consequently i ip f  . If the volumetric force is simply evaluated as if , the pressure 

gradient in the momentum equation is not balanced and spurious velocities occur.  

To avoid this inconsistency, Montazeri and Ward (2014) propose to reconstruct 

volumetric forces at the nodes using face values. In this work the method is extended to 

curvilinear grids in an approximate way such that it reduces to Montazeri and Ward (2014) 

method for Cartesian grids. The scheme proposed computes the contravariant body forces 

at the faces, interpolates them into the cell center and transforms them back to physical 

space for the momentum equation. Since the total discrete force equals the body force times 

the cell volume, this quantity is interpolated instead 

 ,
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i p i
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b
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where 
,i p

 takes the mean value between faces upstream/downstream for 1i  , 

west/east for 2i   and north/south for 3i  . The contravariant force in Equation. (3.33) is 

converted to physical space using the inverse of metric i

jb   
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with the metric inverse defined such that 
,

i k

k j i jg b   and 2 31,( ),i i i ig g gg . 

3.5 Near wall treatments 

As bubbles are transported under a ship, they can accumulate at the wall due to 

buoyancy, resulting in high void fraction. Though wall force models in a bubble column, 

where bubbles move parallel to the wall, were tackled by researchers (Antal et al. 1991, 

Hosokawa et al. 2002), these models are not applicable to the situation in which bubbles 

are pushed against a solid surface, since the only forces they account for are related to the 

presence of a solid boundary to the force of a sphere moving parallel to it. At high Reynolds 

number flows the grid aspect ratio near the wall is extremely large resulting in very stiff 

nonlinear equations, which complicates the problem further. Lacking acceptable 

theoretical or experimental data, a preliminary model is developed to prevent bubbles from 

penetrating the wall. An extra force is added to the bubble momentum Equation (2.8) for 

each group 
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where n̂  is the normal direction of the wall pointing to the liquid, wd  is the distance 

between the bubble center and the wall. Considering an example in which bubbles rise 

towards the wall only due to buoyancy, the model predicts zero bubble velocity at w gd R

while net velocity pointing away from the wall at w gd R . The other forces on bubbles 

except buoyancy are assumed to linearly decrease to zero from w 2 gd R  to w gd R . This 

model has expected trends, though the absolute values and functional forms of the 

equations can be far from how actual forces should look. More work is needed in wall 

forces, highly relevant for ship hydrodynamics. 
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3.6 Evaluation Tests and Discussion 

The proposed method is tested for 1D and 2D cases with high void fraction and 

bubble packing. The 1D cases focus on comparing the hybrid and the collocated 

approaches, and stability and convergence rates are assessed. A 2D polydisperse case 

illustrates decoupling between groups when the packing force is explicitly treated in the 

liquid momentum equation and how the semi-implicit method proposed in Section 3.2.1 

solves the issue. Finally, the proposed methodology is applied in Chapter 5 to the 

simulations of full scale ships for which experimental data is available. 

3.6.1 Forced radial flow 

One-dimensional configurations have been used in the past as benchmarks to 

examine different pressure-velocity coupling strategies (Pascau 2011) because, though 

simple, still contain the essential features of the pressure-velocity coupling problem and 

therefore can be used to highlight potential pitfalls and advantages of different numerical 

strategies. An interesting solution with a non-constant velocity solution is obtained in 

cylindrical coordinates. Solutions to the following problem are investigated 

 
1

( ) 0c
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

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where r  is the radial coordinate and u  the velocity in the radial direction. Equations (3.36) 

and (3.37) are obtained by writing Equations (2.2) and (2.1) in cylindrical coordinates and 

dropping the functional dependences along the axial and azimuthal directions. The problem 

is solved within the domain (1,6)r  with an inlet boundary condition ( 1) 1u r    and a 

zero gradient boundary condition at the outer radius. For these tests the void fraction is a 

known function of space and time of the form 

 ( , ) ( )d r t tg r   (3.38) 
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and thus / ( )c t g r     in Equation (3.36). Void fraction and velocity are zero at 0t  . 

Notice that for this case the velocity field is completely determined from the mass 

conservation Equation (3.36). The numerical tests are performed with two different 

functional forms for ( )g r : a step function with ( ) 1g r   for (1.5, 2)r  and zero otherwise, 

and a continuous Gaussian function of the form 

 

 
2

3.5

2( )

r

g r e




  (3.39) 

 The discontinuous functional form of ( )g r  results in discontinuities in the velocity 

and pressure fields constituting a difficult test for the overall approach. The smoother 

functional form provided by Equation (3.39) tests the solver on a situation more commonly 

found on actual computations where the void fraction usually is a continuous function in 

space.  

 Notice that in this test the void fraction is not transported with the velocity field as 

it would be in the simulation of a bubbly flow. In this regard this test case reproduces a 

situation similar to the flow across a porous media rather than an actual bubbly flow, 

resulting in a harder problem to solve given the discrete jumps of pressure and velocity 

across void fraction discontinuities. Notice also that the mass flux is continuous all across 

the domain. Equation (3.36) can be integrated analytically to obtain the velocity, and 

Equation (3.37) is then integrated numerically to obtain the pressure using a fine resolution 

with appropriate jump conditions at the locations with discontinuous in ( )g r . The solution 

thus obtained is used as reference solution to gauge the performance of the numerical 

methods. 

To avoid the generation of wiggles due to high order discretization schemes that 

might mask numerical issues with the pressure-velocity coupling under study, first order 

upwind in space and implicit Euler in time are used unless otherwise stated. 
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3.6.1.1 Instability at small time steps 

Equations (3.36) and (3.37) are solved for the step function in ( )g r  using 

0.05r   and 6109t    to discretize space and time, respectively. Successively larger 

time steps are used to illustrate convergence in time. The solution is advanced in time until 

a 99.9% void fraction is reached. Solutions for HS and CS are shown in Figure 3.3. 

The fluid injected at 1r   with velocity 1u   slows down as 1r  due to mass 

conservation as the radius expands. The decrease in velocity continues up to 1.5r   where 

the higher void fraction causes a discontinuous jump in velocity to conserve mass flux. A 

similar jump but decreasing velocity occurs at 2r   as the void fraction goes back to zero. 

From this point forward the velocity keeps decreasing with 1r . Pressure then adjusts to 

these changes in momentum according to Equation (3.37). 

Solutions obtained with CS manifest spurious oscillations that originate at the 

discontinuities and propagate through the domain. The amplitude of these oscillations 

grows as smaller time steps are used. 

The solutions obtained with HS represent a significant improvement upon the 

previously obtained solutions. Though not completely eliminated at the discontinuous void 

fraction interfaces, oscillations in velocity are greatly reduced and are confined to a small 

region of about two grid points in width. This can be observed in the insets for the velocity 

in Figure 3.3. More importantly, the solutions obtained with HS do converge for small time 

steps. 

The solutions obtained with HS practically overlap on top of each other indicating 

a solution that is converged in time even for the larger time steps. Notice that HS 

underpredicts the total pressure jump when compared to the reference solution. This is an 

acceptable error considering the coarse grid used and the large jump in void fraction that 

forces a jump in velocity of three orders of magnitude. HS proved to be more stable and to 

provide more accurate solutions than CS and converges with time step with minimum 

spurious oscillations. 
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Figure 3.3: Pressure and velocity obtained with CS (top) and HS (bottom). 

3.6.1.2 Grid study 

A grid study is performed keeping the time step at 6109t    while successively 

refining the grid by a factor of two with the coarsest grid consisting of 101N   points. The 

test is performed with both the step and Gaussian functions for ( )g r  using HS. The solution 

is advanced in time until a 99.9% void fraction is reached. 

Solutions obtained for the case with discontinuous void fraction are practically 

indistinguishable from each other except near the discontinuities. Particularly at 1.5r   

the overshoot in velocity decreases as the grid is refined and gets confined within a smaller 
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region. Notice that the same problem solved with N  grid points using CS in Figure 3.4 

exhibits large oscillations in pressure and velocity that pollute the entire domain.  

The inlet pressure is underpredicted irrespectively of the grid refinement. This finite 

error in the pressure occurs because the numerical formulation presented assumes 

continuous pressure and velocity fields. For the bubbly flows of interest for this work, the 

void fraction, velocity and pressure are expected to be continuous and therefore a test with 

a continuous ( )g r  is more representative. Results obtained for the Gaussian function in 

Equation (3.39) are presented in Figure 3.5. In this case a clear convergence to the reference 

solution is obtained as the grid is refined. The inset in Figure 3.5 shows that the inlet 

pressure converges towards the reference solution as the grid is refined, in contrast to the 

discontinuous case in Figure 3.4. 

 

Figure 3.4: Grid study for pressure and velocity using HS. Discontinuous ( )g r . 
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Figure 3.5: Grid study for pressure and velocity using HS. Gaussian ( )g r . 

3.6.2 Accumulation of bubbles against a wall 

A serious problem in the simulation of bubbly flows around ships is the buildup of 

void fraction as bubbles rise towards the bottom of the ship’s hull. The only mechanism 

preventing the accumulation of bubbles beyond a hundred percent void fraction is packing 

in Equation (2.3). The packing model is highly non-linear with void fraction, causing a 

tight interaction between pressure, velocity and void fraction, especially at high bubble 

concentration levels.  

To test the overall coupling strategy under this particularly hard condition a 1D 

problem is solved in which gravity acts in the positive x-coordinate. Unless otherwise 

stated variables are non-dimensionalized using /s1 mU   and  m1L  . At 0t   bubbles 

with a Sauter diameter 32 mm2 d   are located in (1.3,1.8)x , with an initial void fraction 

0d , and rise with a fixed terminal velocity 32( ) cm/s10 TV d   towards a wall located at 

2x  . Bubbles rise due to buoyancy and accumulate as they encounter the wall. As the 

void fraction increases packing takes place until a steady state is reached. This test is also 

used to fix the functional form and strength of the packing function in Equation (2.5), under 

the constraint of not exceeding a hundred percent void fraction. The same packing model 

is then used throughout the rest of the paper.  
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Besides the grid study in Section 3.6.2.5, the domain (1.0,2.0)  is discretized using 

101 grid points and the time step is 210t   . Second order upwind biased (Shu 1998) is 

used for convection. A second order TVD scheme with superbee limiter (Ismail et al. 2010) 

is used for bubble transport. 

3.6.2.1 Comparison of CS against HS. Spurious oscillations. 

To illustrate the generation of wiggles when using CS at moderate void fractions 

the problem is first solved with 0 0.1d   and using a small time step of 310t   . First 

order upwind is used to highlight that the generation of spurious oscillations is not 

introduced by the convection scheme. Figure 3.6 compares CS and HS at two time 

instances. After only ten time steps the void fraction and velocity still retain steep profiles. 

This causes spurious oscillations in the velocity that remain at later stages when the void 

fraction has been smoothed out due to numerical diffusion as shown for 1t  . These 

oscillations occur not only near void fraction gradients but also pollute the entire section 

of the domain where the velocity should essentially be zero. The HS in contrast, exhibits 

no oscillations even where void fraction undergoes sharp transitions.  

 

Figure 3.6: Comparison of CS and HS at low void fraction. Spurious oscillations 
generated using CS are completely removed when switching to HS. 
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3.6.2.2 Explicit coupling of void fraction 

As discussed in Section 3.2, the coupling between pressure, velocity and void 

fraction may become unstable if the time derivative of the void fraction on the right hand 

side of the pressure Poisson Equation (3.10) is updated explicitly only after a new updated 

void fraction is available within the fixed-point iterative procedure. To demonstrate this 

issue the 1D accumulation of bubbles against a wall test case is solved using this explicit 

procedure with 0 0.4d   and the results are shown in Figure 3.7. As bubbles approach the 

wall on the right and start accumulating the scheme eventually becomes unstable as the 

void fraction reaches high levels.  

A new version of the mass conservation equation that solves this issue is presented 

in Section 3.2 and its robustness is demonstrated in the next sections.  

3.6.2.3 Volumetric forces treatment 

As discussed in Section 3.4, inconsistent treatment of volumetric forces in the 

momentum equation can result in the generation of spurious oscillations in the nodal 

velocities. For the modeling of bubbly flows these volumetric forces consist of the net 

buoyant term and packing. To illustrate the severity of this issue, the test case of 1D 

accumulation of bubbles is solved, this time using the coupling strategy presented in 

Section 3.2 using the Poisson Equation (3.24). The initial void fraction packet has 

maximum void fraction 0 0.4d  . Figure 3.8 shows the resulting velocities at time 20t   

for which a stable scheme would yield a solution close to steady state with zero velocity 

and bubbles packed against the wall. Face velocities are entirely determined by the discrete 

mass conservation Equation (2.2) and practically overlap for both methods in Figure 3.8(b). 

Notice that these velocities are very close to zero, as they should be in steady state. Nodal 

velocities shown in Figure 3.8(a), however, undergo large oscillations when simply the 

nodal evaluation of volumetric forces is used. The balanced force method introduced in 

Section 3.4 solves this issue. 
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Figure 3.7: Explicit treatment of the void fraction time derivative. (a): void fraction 
distribution; (b) pressure distribution; (c) nodal velocity distribution. 

 

Figure 3.8: (a) nodal and (b) face velocities. Nodal evaluation of volumetric forces vs. 
balanced force method at 20t  . 
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3.6.2.4 Stable solution at high void fraction 

This test case exemplifies the robustness of the numerical strategy for very large 

void fractions. For this test the initial void fraction is 0 0.4d   and HS with balanced 

treatment of volumetric forces is used. A time sequence of the solution in Figure 3.9 shows 

how as bubbles rise towards the wall the liquid is displaced and forced to back out. As 

bubbles reach the wall they accumulate within a narrow region ( 4t  ) and as they continue 

to rise the void fraction increases reaching around 96% at the wall in steady state. Face and 

node velocities practically overlap on top of each other though face velocities satisfy mass 

conservation exactly while node velocities do not. At 20t   the solution is practically 

steady. Notice that the pressure goes to zero in steady state, due to the fact that with the 

packing model presented in Section the fluid is free to flow and in equilibrium at zero 

velocity the pressure gradient vanishes.  

 

Figure 3.9: Time sequence of velocity, pressure and void fraction as bubbles travel from 
the left towards a wall on the right. 

3.6.2.5 Convergence study 

A grid study is performed on the full 1D test case of bubbles approaching a wall for 

which pressure, velocity and void fraction convergence rates are analyzed. The 
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configuration conditions are the same as the case above, except that the initial conditions 

here is a Gaussian distribution of the from  

 

 
2

2
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2 0.0
0

5( ) 0.1

x

d x e




  (3.40) 

The grid spacing is progressively refined according to 
1

0 /1.5i

ix x    , 1,2,3,4i   

with the coarsest grid spacing set to 0 0.01x  .  The time step is kept fixed at 3102t    

for a Courant number 0.4Co   for the finest grid, ensuring that the results are converged 

in time. In this case upwind biased ENO schemes (Shu 1998) are used for convection of 

liquid momentum and bubbles. A reference solution is computed with a 4th order ENO 

using a grid size 0 / 20x x   . The results are compared with the reference solution at 

3t   before accumulation at the wall takes place and large gradients could pollute the 

convergence analysis. 

Figure 3.10 shows the error computed in 1l  norm for different convection schemes. 

The pressure solution reaches at most second order given that the Laplacian operator in 

Equation (3.24) is discretized using second order central differences. Since all variables 

are coupled by the model the upper bound in the pressure convergence rate can affect the 

convergence rate of the other variables. While the nodal velocity converges with second 

order at best, the face velocity can reach a faster rate. If a 4th order ENO is used for bubble 

transport, the void fraction reaches approximately 3rd order convergence rate due to the 3rd 

order interpolation of the face velocity used for the transport.  
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Figure 3.10: Convergence in 1l  norm using different convection schemes at 3.0t  : (a) 
nodal velocity; (b) face velocity; (c) pressure; (d) void fraction.   

3.6.3 2D tank case 

A 2D case with high void fraction is designed to test the proposed scheme. Figure 

3.11 shows a schematic of the configuration. The reference length and velocity are 1 m and 

1 m/s, respectively, resulting in a Reynolds number of 61 10 . The computational domain 

is    1 2x z  and the initial void fraction distribution is given by 

 0

0.4 0.09 0.91,1.04 1.85

0 otherwise
d

x z


   
 


 (3.41) 
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The computational domain is discretized using a uniform Cartesian grid with 

101 201  nodes. Three bubbles sizes spanning a wide range of diameters are chosen to 

highlight the fundamentally distinct dynamic behavior due to their different terminal 

velocities, as summarized in Table 3.1, which shows terminal velocity TV  and discrete size 

distribution /g g totD N N .  

 

Figure 3.11: 2D tank initial flow configuration. 

Table 3.1: Bubble size distribution for 2D tank simulation. 

Radius ( mm ) gD  TV  ( cm/s ) 

0.1  0.25  1.55  

0.5  0.5  9.11 

1 0.25  15.9  

The two phase blended /- -k k   SST turbulence model is used to model turbulence 

(Moraga et al. 2008). All the boundaries have no-slip wall boundary conditions. The 

simulation is run for 50  non-dimensional time units with a time step 3105t   . Second 

order in space and time are used for discretization. The total void fraction transport and 

multigroup number density transport are solved using a TVD scheme with superbee limiter 

(Ismail et al. 2010) to avoid undershoots that can result in unphysical negative void 

fraction. A second-order upwind linear scheme is used for the liquid momentum.  
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Given that number densities are updated at the end of the time step iteration, see 

Figure 3.1, these are not available to update the packing force in the momentum equation. 

As discussed in Section 3.2.1, using the previous time step information to compute this 

term may lead to unstable coupling. A semi-implicit approach was proposed which uses 

the latest void fraction information while only leaving the size distribution, not its 

magnitude nor its gradient, explicitly computed. To test these ideas, the 2D tank problem 

is solved using both approaches. 

Figure 3.12 shows void fraction contours comparing solutions obtained using both 

approaches at 50t   when the solution is close to a steady state. Notice that the contours 

are colored in a logarithmic scale to visualize the small void fraction contributions of the 

smallest bubbles. While large bubbles quickly rise up towards the top where they 

accumulate due to packing, small bubbles behave essentially as fluid tracers leaving 

characteristic traces caused by the fluid motions, see Figure 3.12. Besides small secondary 

motions at the bottom of the tank, at 50t   the fluid is practically steady. Nonetheless, 

oscillations develop at the sharp interface of packed bubbles at the top of the tank when the 

packing forces are updated explicitly as observed by the wavy pattern in Figure 3.12. The 

proposed semi-implicit scheme however yields a stable solution.  
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Figure 3.12: Void fraction distribution at 50t  . Explicit (Left) and semi-implicit (Right) 
approaches for the computation of the packing term. 

Figure 3.13 shows the time history of the total liquid kinetic energy in the tank. The 

oscillations for the explicit method grow in time increasing the energy of the system 

eventually causing divergence, while the proposed semi-implicit method shows a 

continuous decrease in energy as expected. 

 

Figure 3.13: Total liquid energy varies with time. 
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Figure 3.14 (a) shows a time evolution of the total void fraction. At 0.3t   bubbles 

rise and expand in width mainly due to contact forces modeled by packing. Two lobes 

appear at 0.6t   due to the presence of counter rotating vortices formed as the rising 

bubbles displace liquid. Bubbles accumulate against the wall as they reach the top of the 

tank where packing balances with buoyancy in steady state. Large bubbles initially dragged 

down by the primary pair of vortices eventually rise back up and join the foamy region 

near the wall. Given their small terminal velocity, small bubbles are dragged by the liquid 

and highlight weaker secondary vortices that reach the bottom of the tank. This behavior 

is better appreciated in Figure 3.15 which shows contours of group void fraction g  for 

each bubble size. While 0.5 mm and 1.0 mm bubbles quickly concentrate at the top, 0.1 

mm bubbles follow liquid currents at the bottom of the tank. 

A time sequence of pressure contours is shown in Figure 3.14(b). The proposed 

scheme yields a very smooth and stable pressure field that, as expected, approaches zero at 

50t  . 
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Figure 3.14: Void fraction (a) and pressure distribution (b) for different time steps. Top:
0.3, 0.6,1,1.5t  ; Bottom: 2.5, 3.5, 5.5, 40t   

The conservation of bubble mass is assessed by monitoring the defect of mass 

0 0 100) %( ( ) /m m t m m    with ( )m t  the integral of void fraction over the entire domain 

and 0m  the initial mass. This is shown in Figure 3.16 where good mass conservation is 

observed with a maximum defect of 0.25% over the large time span of the simulation. 
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While the proposed scheme should preserve mass exactly, small convergence errors lead 

to mass defects, most of which occur during the process of settlement of the foam on top 

of the tank. 

 

Figure 3.15: Void fraction distribution for each group at 50t  . 

 

Figure 3.16: Bubble total mass variation varies with time. 
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CHAPTER 4    TURBULENT ENTRAINMENT MODEL 

Air entrainment in turbulent flows is a very intricate phenomenon given the difficult 

treatment of polydisperse bubbly flows, the inherent complexity of turbulence and the very 

convoluted interfacial transport taking place at the free surface. Even when extensive 

research has been performed separately in each of these areas, their interaction is still a 

little explored area. 

The model developed in this work attempts to model the physical phenomena that 

cause and influence the formation and transport to depth of bubbles. This approach is 

greatly differentiates from previous work in that the model is built from mechanistic 

processes. This model starts considering the effect that one single vortex has on the 

deformation of the free surface. Using models of turbulence successfully used before in 

theories of bubble breakup, the effect of several turbulent length scales is taken into 

account. Considering these mechanisms, the model predicts no entrainment for large, deep 

vortices since they only generate waves with long wave lengths but not steep enough to 

cause the breakage of the free surface. In addition, very small vortices are not able to entrain 

air either due to the strong stabilizing effect of surface tension forces on small scales. As a 

result, the model is able to predict entrainment for a range of turbulent scales that are 

energetic enough. 

Figure 4.1 shows vortex interacting with free surface. These vortices can be 

described as different length scale eddies of turbulence. They can deform and break the 

surface. Bubbles can be entrained when the energy of eddies is suitable. Also the bubbles 

have to fight against buoyancy as dragging down by liquid. In this case large bubbles rise 

and escape through the free surface faster than smaller bubbles and therefore it is more 

likely to find small bubbles rather than large bubbles at larger depths. In addition bubbles 

are still subject to breakup and coalescence as they are pulled deeper into the bulk of the 

fluid. 
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Figure 4.1: Schematic of air entrainment by turbulence.  

The assumption at this point is that the shape of the vortex can be neglected, giving 

priority to the energy content of that vortex scale. In addition, smaller vortices may induce 

deformations on top of the deformations caused by larger vortices. In this regard, a 

“superposition” hypothesis is used. This hypothesis has previously been used with good 

success in the development of breakup models. 

This chapter is organized as follows. In Section 4.1 a general framework is 

presented which would allow, under different levels of approximation, to obtain a series of 

entrainment models. This framework attempts to describe air entrainment by turbulence as 

a cascade of separate processes that can be treated individually. It also tries to obtain a 

general expression for the air entrainment rate which is composed of multiplicative factors 

independent of each other. Different approximations and modeling strategies for each of 

these terms would then allow to attaining a simple but mechanistic model. Sections 4.2 to 

4.7 describe modeling strategies for each of the terms appearing in the general framework 

in Section 4.1. Finally in Section 4.8 further simplifications are presented that allow to 

achieve an air entrainment model which only requires the computation of a one-

dimensional integral. To complete the picture, Section 4.9 presents how the momentum 

and turbulence model equations need to be modified in order to satisfy the basic energy 

and momentum conservation laws. Section 4.10 introduces a free surface turbulence model 

which considering turbulence generation due to unresolved roughness on free surface. 
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Section 4.11 discusses limitations in the model with recommendations for future work. A 

preliminary entrainment model due to impact between the boat and the rough free surface 

is presented in Section 4.12. 

4.1 A general framework 

The air entrainment framework described in this section is composed of several 

factors that attempt to describe bubble motions for formation at the free surface, breakup 

and coalescence when descending and filtering due to buoyancy. These sequences are 

summarized in Table 4.1.  

Consider the schematic of Figure 4.2 where a single vortex of size  located at a 

depth z  entrains air across the free surface at a rate , )(Q z  in m3/s. From now on the 

set of variables characterizing a given vortex configuration (size and distance from the free 

surface) is denoted by  , z . n d  is the number of vortices per unit volume with 

size within d  of . The contribution to the total amount of air entrained by vortices 

located at a depth z  in a differential volume d dV zA   is given by Equation (4.1) in 

Table 4.1 where A  is an arbitrary transversal area. The number of bubbles entrained can 

be obtained through dividing this number by the mean bubble volume entrained at the free 

surface, namely 0v . 

Bubbles entrained by the interaction of a vortex and the free surface have a size 

distribution 0( | )p D , characteristic of the formation process. This size distribution may 

be changed later due to two basic processes: 1) breakup and coalescence of the entrained 

bubbles and 2) filtering due to buoyancy. The number of entrained bubbles with size within 

0dD  of 0D  is proportional to 0 0 0( | )p D dD . This is reflected by Equation (4.2) in Table 

4.1.  

After these bubbles travel to a depth z  into the fluid the size distribution can be 

changed as 0( ),|hp D D z  because of breakup and coalesce. 0( ),|hp D D z  represents the 

size distribution for bubbles entrained with size 0D  and then travel a distance z  into the 
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water. The proportion of the above bubbles having size within dD  of D  at depth z  is 

0 ,( | )hp D D z dD , Equation (4.3) in Table 4.1.  

The last factor considered contains information about the filtering in size due to 

buoyancy. ( | )zp z D dz , the probability of a bubble with size D  being pushed down to 

within dz  of a depth z, should account for this effect, Equation (4.4) in Table 4.1.  

 

Figure 4.2: Single vortex contribution to air entrainment. 
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Table 4.1: Sequential events during the lifetime of a bubble entrained at the free surface. 

NO. Description Equation 

 

 

(4.1) 

Total air 
entrainment by 
vortices located in 
a volume dV   at 
depth z  

 

 

   n d dVQ   

(4.2) Bubbles within 

0dD  of size 0D  
      0 0 0 0|n d dV pQ dD vD  

 

 

(4.3) 

The bubbles travel 
into a depth z  and 
change their size 
distribution due to 
breakup and 
coalescence into 

0 )( ,|hp D D z  

 

       0 0 0 0| ,|hn d dV p D p D vQ z dDD  

 

 

(4.4) 

Size distribution 
also changes due 
to the probability 
that a bubble is 
transported down 
to a depth z  

 

         0 0 0 0|,| |h zn d dV p D p D D p z D dzz dD vQ   

 

The total source of entrainment is obtained by integrating in 0D , the size of the 

bubbles originally formed at the free surface. Then all vortex sizes are considered by 

integrating over . Finally the contribution to the whole turbulent field (homogenous and 

isotropic is assumed in the turbulent field) underneath the free surface is taken into account 

by integrating in z . The entrainment rate can be written as 

           0 0 0

2

00 0

0

0

1
|, | | ,z

dV
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hz D dz d n dD pQ D z dz A D pdD p Q zD D
v

 

     (4.5) 

where the area A  in dV   is taken outside of the integral together with dz  to form 

dV zAd , the differential volume to where bubbles are dragged down. The integral ranges 

are decided based on following assumptions: Vortices of size  can only entrain bubbles 

smaller than the vortex size, as a result, the upper limit of the innermost integration cannot 

exceed . It is also assumed that only vortices with a diameter  smaller than 2zcan 



62 
 

entrain air and thus the integration in  only goes to 2z . This assumption essentially is a 

geometrical limit that a vortex must be fully located below the free surface. In addition, it 

is assumed that the probability of reaching a given depth is not a function of the vortex size 

but rather a function of the overall flow condition. Therefore ( | )zp z D dz  does not depend 

on the vortex  and can be factored out.  

It has to be noticed that the two depth coordinates z  and z  have a completely 

different meaning. The contribution to the entrainment at a depth z  is considered due to 

vortices located at a given depth z . Thus bubbles can be entrained at depths that can be 

different from the location of the vortex responsible of entraining them. 

The entrainment source for a bubble size D  at depth z  is obtained as 
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S D z p Qz D dz d n dD p D p D D

dV d v
z

D

 

      (4.6) 

As shown in Equation (4.6), the following terms require modeling to close this 

model: 

1. ( )Q  [m3/s], the rate of air entrainment by a single vortex . 

2. ( )n  [1/m3 m], the vortex number density distribution. 

3. 0 0( | )p D  [1/m], bubble size distribution of bubbles entrained by a vortex . 

4. 0( ),|hp D D z  [1/m], bubble size distribution of bubbles entrained with a size 0D

due to breakup and coalescence as they traveled to a depth z . 

5. ( | )zp z D  [1/m], the probability of finding a bubble of size D  at a depth z  in 

monodisperse flow.  

4.2 Turbulence scales 

Pope (2000) gives an analytical model of a spectrum for homogeneous turbulence,  
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where 2   is the wavenumber, 3/2

t t
L k   and  

1/4
3

t    is the Kolmogorov 

scale. The model coefficients, obtained from experimental data, are 1.5C  , 0 2p  , 

6.78Lc  , 5.2   and 0.4c  . The corresponding turbulent kinetic energy and 

dissipation are 

 
2

0

0

)(

)2 (

t

t

k E

E

d

d

 

   













 (4.8) 

The transition length from the energy containing range to inertial range 
EIL  is 

defined as 05/3
( ) 0.95

p

L EILf


  and the transition length from the inertial range to the 

dissipation range is defined as ) 0( .95IDf L  . This results in the limits 
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In the inertial subrange the r.m.s. velocity of eddies with size  scales as 

1/2 1/3( )tu    with 2  ,  which is verified by the experiments performed by Kuboi et 

al. (1972). To extend this relation into the energy containing range it is assumed that u   

and a smooth transition with a functional form similar to the one for Lf  in Equation (4.7) 

is proposed. Therefore, the r.m.s. velocity of eddies with size  is estimated as 
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 (4.10) 

According to this model 01.28uu   at 11L  and the maximum r.m.s. velocity is 

01.6u u  for 113.25L .  
1

0

/2
2 3tu k  is the r.m.s of the velocity fluctuation for 

isotropic turbulence. 
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Typical turbulent scales at the stern of Athena R/V are summarized in Table 4.2. In 

addition, it shows the Hinze diameter 
HD  estimated according to (Hinze 1955) 
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Bubbles with a diameter smaller than 
HD  are strongly stabilized by surface tension 

difficult to break up. However, bubbles smaller than 
HD  can be formed by the breakage 

of bubbles larger than 
HD  and by highly energetic impact processes. 

Table 4.2: Mean flow characteristics at the stern of the Athena R/V. 

Scale Symbol [unit] Value 

Turbulent intensity 
tI  [-] 0.2 

Integral length scale 
11L  [m] 0.3 

r.m.s velocity.  
0u   [m/s] 1.08 

Turbulent kinetic energy 
tk   [m2/s2] 1.75 

Turbulent dissipation 
t   [m2/s3] 3.32 

Turbulent viscosity 
t   [m2/s] 0.0831 

Kolmogorov scale    [m] 23.43 x 10-6 

Hinze’s diameter 
HD [m] 1.47 x 10-3 

 

Figure 4.3: The scales of turbulence at the stern of Athena. 
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These scales are shown in Figure 4.3 together with the turbulent spectrum according 

to the model in Equation (4.7) and the r.m.s. velocity in Equation (4.10). Integral length 

scale in blended /k k     SST model (Menter 1993) 
t
  is also shown to be smaller 

than 
11L . Different axes are used to show )(E   and u  in the same plot. 

4.3 Vortex density in turbulent flow 

The density of vortices n  in Equation (4.6) is modeled by Luo and Svendsen 

(1996) through describing vortices as spheres of diameter  with mean kinetic energy 

3 2 12ce u . According to this idea the energy spectrum is related to the vortex density 

by 

    1 d cE en     (4.12) 

where the factor (1 )d  is the fraction of liquid. Considering Equation (4.7) and Equation 

(4.12) the vortex density is found as 

 0 1

4

(1 )
( ) 0.8413

pd
Ln f

 
  (4.13) 

Therefore, the vortex density is proportional to 4  for L  and, with 
0 2p  , to 5  for 

L . 

4.4 Single vortex air entrainment 

Air entrainment by a single vortex is modeled considering a simplified problem 

consisting of a vortex of size  at a distance z  from the free surface. This vortex induces 

deformations on the free surface that may eventually lead to air entrainment.  

The vortex is modeled using the potential flow solution to a line vortex with the 

condition that / 2)( uu  . To obtain the pressure distribution and a first approximation 

to the induced deformation on the free surface, the mean free surface is assumed to be 

located at 0z   and thus a vortex image is located at z z  .  The stream function for this 

simplified problem is 
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Pressure is computed using the Bernoulli equation as 

 
2( , ) ( , )

1

2
ap x z p g z u x z     (4.15) 

where ap  is the atmospheric pressure. Using the dynamic pressure induced at 0z   the 

free surface elevation ( )h x  is then approximated through ( , ( )) ap x h x p , then 
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In Duncan (2001) it is mentioned that waves with a slope below approximately 18
 

are stable, while steeper slopes may result in spilling breaker. Therefore, this model 

assumes that air entrainment occurs when the slope of the free surface deformation reaches 

a critical angle of 18  or a slope of cr 0.325s  . From Equation (4.16) the free surface slope 

s  is obtained 
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where the vortex Froude number is defined as Fr /u g . 

It is assumed the vortices form a ring of vortex tube under the free surface. This 

vortex tube induces an entrainment ring of diameter sD . In analogy to the analysis carried 

out by Carrica et al. (2012) for plunging jets, the air entrainment rate for a single vortex is 

modeled as the flux of air through this ring of diameter sD  and a thickness due to surface 

roughness  . Air is entrained through this ring with the surface velocity su . Therefore the 

flux of air through this ring is s suD  . However, given that the single vortex 

configuration is more complex than that of a plunging jet, the air entrainment is modeled 

to be proportional to this flux. Therefore 
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0)( s sQ S uD   (4.18) 

with 
0S  hopefully a universal enough constant for a wide range of air entrainment 

problems. Using the potential vortex solution the velocity at the free surface is estimated 

as 

 , )(s u
z

zu   (4.19) 

According to Hunt (1984) the free surface roughness can be modeled from a 

balance between the potential energy of the surface deformation and the kinetic energy of 

the vortex leading to 2 /s gu  . 

The ring vortex diameter 
sD  is found at the position where the slope according to 

Equation (4.17) is critical. Thus 
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 (4.20) 

where 'z  is replaced by z  considering the variant position when the vortex moves to the 

free surface from a place far away. As the vortex approaches the free surface the 

deformation predicted according to Equation (4.16) increases. It can result in very large, 

unphysical deformations, for strong enough vortices close to the free surface. This is due 

to the model simplification (such as potential flow, no surface tension). Here a remedy is 

proposed to avoid unphysical result. It is assumed that when the free surface slope reaches 

a maximum deflection Ms  the deformations are so strong that the simple model used to 

estimate the slope breaks down. The free surface shape freezes at the one with a maximum 

slope Ms  for this situation. Lacking experimental or numerical results guiding a better 

decision this maximum slope is taken to be 45  or 
M 1.0s  . The minimum depth at which 

a vortex induces this maximum slope is denoted by 
mz . As a consequence, the free surface 

does not vary for 
mz z  reaching its maximum size MsD . 

When the vortex is not strong enough to induce the minimum slope 
crs  for air 

entrainment to occur, Equation (4.20) does not have a solution and therefore 0sD   is used 
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for convenience. The onset depth at which the slope at the free surface reaches crs  is 

denoted as ez . Vortices farther than ez  from the free surface are not able to induce 

deformation slopes larger than crs  and therefore do not entrain air. 

The onset depth ez  of entrainment is found as the point at which the maximum of 

s  corresponds to a slope crs . Correspondingly, the minimum depth for maximum 

deformation is found as the point at which the maximum of s  corresponds to a slope Ms . 

This results in 

 

2/3

2/3

m

1.168 Fr

0.803 Fr

ez

z




 (4.21) 

and for the maximum ring diameter  

 2/3

M 1.914 FrsD   (4.22) 

These results suggest that the length scale 
2/3

Fr  can be used to make all the vortex 

ring diameters as a function of depth to collapse into a single curve for all vortex strengths 

(given by Fr ). Finally, if the onset depth is used as a reference length the entrainment 

diameter is 
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 (4.23) 

This profile is shown in Figure 4.4 together with the onset of entrainment depth. 

The onset of entrainment depth is shown in Figure 4.5 as a function of Fr  as well as a 

function of vortex size  for the parameters in Table 4.2 . 
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Figure 4.4: Entrainment ring diameter as a function of vortex size 

 

 

Figure 4.5: Onset of entrainment depth as a function of vortex size. 

Using the above results in Equation (4.18) the air entrainment model is obtained as 
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Recall that according to this model / 2z   and therefore z  never reaches zero. 
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4.5 Probability of breakage 

The probability of breakage | )(BP D  represents the probability that a vortex  of 

size  located at depth z  is energetic enough to break the surface and form a bubble with 

size D . The probability of breakage was introduced by Luo and Svendsen (1996) and later 

used by Lehr et al. (2002) in the context of bubble breakup by turbulence. 

The mean energy required to form a bubble of size D  is 2

se D   if only 

consider surface tension energy. Luo and Svendsen (1996) consider the probability of a 

vortex of size  having energy larger than the formation energy, while Lehr et al. (2002) 

consider instead a force balance between dynamic and surface tension forces. Then they 

estimate probability of a vortex with size  being able to provide a force larger than the 

critical value to break a bubble.  In this thesis, the force balance approach is followed given 

that the model by Lehr et al. (2002) predicts breakup rates that are closer to experimental 

values. The dynamic pressure forces need to counteract the stabilizing effect of the surface 

tension, thus 
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
   (4.25) 

Fluctuations in velocity for vortices with a characteristic size  approximately 

follow a Gaussian distribution with zero mean and a standard deviation equal to the 

characteristic velocity u . If each component of the velocity vector follows a Gaussian 

distribution and is independent to each other, the speed, or velocity vector magnitude, then 

follows a Maxwellian distribution 
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From Equation (4.25) a bubble of size D  can be formed by a vortex of size  if 

 min 4 cu u D   . The probability for this to happen is 
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Figure 4.6 shows the probability of breakage when the r.m.s. velocity u  follows 

the model in Equation (4.10) and the turbulent field is from Table 4.2. 

 

Figure 4.6: Probability of breakage as a function of vortex size for different bubble sizes. 
Solid: mm5 D  , dashed: mm1 D  , dotted:  m100D  . 

With this model 0.57BP   for We 2.0 , 0.80BP   for We 4.0  and 0.94BP   

for We 10.0 . Critical Weber numbers in the range 3-4.7 have been measured by Lewis 

and Davidson (1982) and by Martínez-Bazán et al. (1999).  

4.6 Size distribution of bubbles at formation 

The probability of breakage | )(BP D  gives the probability that a vortex of size  

has the energy to form by breakage of the surface a bubble of size D . However, if a vortex 

has the energy to form a bubble with size D , it also has the energy to form bubbles of any 
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size larger than D . Therefore, the probability to form a bubble with any size within 

( , )D D dD  is 

 0

( |
( | ( |

)
) )( |) B

B B

dP D
p D D ddD P P dDD D

dD
    (4.29) 

Thus the formation size distribution 0( | )p D  is normalized by the probability of 

breakage, 
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Using the probability of breakage from Equation (4.27), the probability of formation of a 

bubble with size D  by a vortex  is 
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where x  is the dimensionless variable defined in Equation (4.28). This expression is only 

valid for 1/D   since it is assumed that a vortex cannot entrain a bubble larger than itself. 

For the turbulent flows at the stern of the Athena summarized in Table 4.2, Figure 4.7 

shows the size distribution of the bubbles for three vortex sizes. 

 

Figure 4.7: Bubble size distribution  0 |p D  of bubbles at formation using the 
parameters in Table 4.2. 
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4.7 Probability of finding a bubble at a given depth  

Consider an idealized isotropic turbulent flow with zero mean velocity and mean 

free surface located at 0z  . If air is entrained through the free surface at a constant rate 

eventually an equilibrium status is reached when the bubble entrainment rate is balanced 

by bubbles’ loss as they rise and escape through the free surface. To obtain the equilibrium 

profile the steady state transport equation for ( )f D  is solved neglecting breakup and 

coalescence 
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  (4.32) 

where the turbulent viscosity t  is a function of the depth z  only since the turbulent field 

is assumed homogeneous in the horizontal direction and the terminal velocity TV  is a 

function of the bubble size. Equation (4.32) can be solved as 
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Therefore, different solutions can be obtained depending on the functional form of t  for 

a given bubble size D . The solutions for different t s is given in Table 4.3. 

Table 4.3: Summary of analytical solutions for different functional forms of t . 

Turbulent profile type Equations for t  Bubble number density profile 

Homogeneous 
0( )t tz   

/

0 0    ( , ) ( ) ( ) / ( )Dz L

D t TLf z D f D e D V D   

Linearly decreasing  0 111( )t tz z L      11

0

/

11( , ) ( ) 1 DL L
Lf f D zz D    

Exponentially 

decreasing 

11/

0( ) z L

t tz e      11/

0 11 0( , ) ( ) exp 1z L

T tLf z D f D e V    

The homogeneous turbulence predicts a solution that exponentially decreases with 

depth. However it is as unrealistic as having uniform turbulence all the way to infinite 

depths. A more reasonable assumption is that if 11L  is the integral length scale of 
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turbulence, turbulent fluctuations are damped away for depth larger than 11L . The linearly 

and exponentially decreasing profiles can be used to approximate this situation. Figure 4.8 

shows the resulting profiles for the three cases with three different values of terminal 

velocity (and thus different bubble sizes). Turbulence scales are chosen to approximate 

those at Athena’s stern as in Table 4.2. 

 

Figure 4.8: Bubble density profile for different turbulent profiles and terminal velocities. 
Turbulent values approximate Athena’s stern. Solid: Homogeneous. Dashed dot: 
exponentially decreasing. Dashed: Linearly decreasing. Blue: 0.01 m/sTV  . Red: 

0.1 m/sTV  . Magenta: 0.3 m/sTV  . 

The probability that a bubble of diameter D  reaches a depth z   can then be modeled 

using one of the previous solutions normalized to one 
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In this thesis, the linearly decreasing turbulent viscosity is used then  

 11 /

11( | ) (1
1
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zP z
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z D L   (4.35) 

with  
1

1 1

11z DL L L


  . zL  is always smaller than either DL  or 11L .  
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4.8 Simplifications of the general model framework 

One of the advantages of the general framework stated in Equation (4.6) is that each 

term can be analyzed, ideally, separately from the others. However, a closed analytical 

expression may be difficult to obtain from performing these multiple integrals on complex 

functional forms of the integrands. This section presents a series of approximations used 

on the different terms in order to arrive to a closed analytical form. 

4.8.1 Bubble size distribution history 

The history function 0 )( ,|hp D D z  is the size distribution of bubbles originally 

formed at the free surface with a diameter 0D  and that traveled a depth z  into the water. 

A model for this history would require to deal with bubble transport equations including 

breakup and coalescence effects.  

To be able to analytically integrate Equation (4.6), it is assumed that breakup and 

coalescence reach equilibrium instantly. Under such condition, 0 )( ,|hp D D z  reduces to 

the equilibrium size distribution 
eq ( )p D  and therefore no longer depends on the initial 

bubble size and depth. This hypothesis of fast equilibrium is most likely not correct. 

However the approximation of a hp  independent on the bubble diameter of the originally 

formed bubbles allows to quickly obtain a usable approximation of the air entrainment 

framework. Further improvements to this model would include a more suitable model for 

hp . 

If history size distribution depends only on bubble size, namely, 

0( | , ) ( )hh D D z pp D . Equation (4.6) can be written as 
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     (4.36) 

The innermost integral can now be computed using the definition of 0p  in Equation 

(4.30), reducing Equation (4.36) to  
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To simplify the integration of Equation (4.37) the order of integration between  

and z  is changed as 
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In this work, the equilibrium size distribution is obtained from experiments. 

Johansen et al. (2010) measured size distribution at the bow of Athena R/V at several 

depths, and the closest measurement to the free surface at a depth of 10 cm is assumed to 

be turbulent equilibrium size distribution. Then the bubble history size distribution is 

replaced by 
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such that at 0z   the entrainment size distribution given by Equation (4.38) reduces to the 

turbulent model size distribution ( )tp D , which is assumed to be that measured at the bow 

of Athena R/V where the entrainment occurs. 

4.8.2 Single vortex entrainment  

Using the change of variables / eu z z  the integral of Q  in z  in Equation (4.38) 

can be written as 
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where ( )F u  is the function defined in Equation (4.24). The integral 
QI  can be performed 

numerically and it is found that it can be approximated to within 5% by the function 

 4/30.808((Fr ) F5 r 1).46QI    (4.41) 
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which is the analytical result obtained when using for the vortex ring diameter in Equation 

(4.23) the approximation 

 1.615 (1 / )s
e

e

D
H z z

z
  (4.42) 

with ( )H x  the Heaviside function. Figure 4.9 shows 
QI  as a function of the vortex Froude 

number. This integral is zero for Froude numbers Fr 0.28 . The Froude number decreases 

for large vortices due to 1/6Fr  . Therefore, the fact that 0QI   for small Froude 

numbers indicates that large vortices do not entrain air. This is consistent with the idea that 

very large vortices generate long wave length waves with slopes that are not steep enough 

to entrain air. 
QI  increases for small vortices. The whole integral in Equation (4.40) goes 

to zero due to the factor 3 3 / eu z  when the vortex size reduces to zero.  

 

Figure 4.9: Single vortex entrainment source integrated in the depth coordinate. 

4.8.3 Integral in vortex sizes 

After above simplifications the entrainment model reduces to an expression 

requiring only a one dimensional integral 
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where J  is the total volumetric flux per unit area per unit time and J  represents the 

contribution to this flux from a vortex of size ,    1d d    . In order to terminate 

entrainment when void fraction is high, which is more realistic, another form of 

   max 1 ,0d d dc      is proposed with dc  is a critical constant ( 0.3  for this thesis) 

for entrainment. Given the wide spectrum of scales in a turbulent flow, the computation of 

the integral in Equation (4.43) is performed more accurately in a logarithmic scale. The 

change of variables ( )lnu   in Equation (4.43) results in 

 ˆ ( )J du J




   (4.44) 

The integrand is shown in Figure 4.10 for parameters from Table 4.2. 

 

Figure 4.10: Contribution to the total air entrainment flux from vortices of size . 
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The flux J  is found for several values of turbulent kinetic energy tk  and turbulent 

dissipation t  and is shown in Figure 4.11. While J  always increases with t , it eventually 

reaches a maximum asymptotic value in tk . This is due to the fact that for a fixed t  

increasing the value of tk  implies adding larger scales. As mentioned before when solving 

for 
QI  in Equation (4.41), large vortices may only create long waves without breaking the 

surface to entrain air. Increasing t  however, keeping the value of tk  constant, has the 

effect of expanding the range of small length scales that are strong enough to break the 

surface. 

 

 

Figure 4.11: Air entrainment flux as a function of turbulent dissipation (top) and turbulent 
kinetic energy (bottom) for an air-water system. 
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4.9 Energetic considerations for the liquid phase 

The entrainment model presented is a volumetric source active under the free 

surface. This means bubbles have to travel downward, requiring energy and momentum to 

make it happen. However the liquid governing equations do not describe the process of 

entrainment. Thus, if bubbles are entrained at surface level, work needs to be done to carry 

the bubbles deep into the liquid.  

The potential energy per unit time required to entrain these bubbles to a depth   is 

 
0

ent( ) ( , ) ( )G

c c dE dD v D S D Sg g v   


  x x  (4.45) 

where entv is the mean entrained bubble volume and ( )S x  is the total entrainment source 

for void fraction. This energy to pull the bubbles down must be provided by the liquid 

phase and therefore the momentum change of the liquid pushing bubbles down is 

 
GdP
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E

V
  (4.46) 

where V  is the averaged downward velocity with which the bubbles are being entrained 

from the free surface to depth  . The loss of momentum can be accounted for in the 

dimensional momentum equation as 
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where V  needs to be estimated appropriately from the average downward velocity of the 

entrained bubbles, 
,eff c  is the effective dynamic viscosity, ˆ

cp is the piezometric pressure. 

Since bubbles are entrained by turbulent vortices in the model presented, the 

turbulent kinetic energy has to decrease correspondingly due to the energy it takes (a) to 

entrain the bubbles and (b) to transport them to depth as in Equation (4.45). Entraining 

bubbles requires a minimum formation energy given by ( )a D  with ( )a D  the surface area 

of a bubble with size D . 
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The formation energy is probably larger than this surface tension energy due to the 

simultaneous formation of surface waves. A first approximation of the energy rate supplied 

to form entrained bubbles is  

 
0

ent( ) ( , ) ( )dE C dD a D S D C Sa

  


  x x  (4.48) 

where C
 is a factor larger than 1, enta  is the mean bubble surface area. The formation 

energy equals potential energy (one bubble size) at a depth 
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As an example and arbitrarily assuming 3C  , Equation (4.49) yields a depth of 0.132 m 

for a bubble of 1mm  diameter.  

The model presented in this work assumes that bubbles are entrained by a process 

of energy exchange between turbulence and the free surface. Thus, the turbulent kinetic 

energy must decrease as bubbles are entrained. This turbulent energy loss can be included 

as a source of energy dissipation in the two phase blended /- -k k   SST model (Moraga 

et al. 2008) used in this research. 
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The energetic considerations involving in this section complicate the modeling 

strategy, however it is physical requirement on the state art of entrainment modeling. In 

this thesis, only the term in turbulent kinetic energy equation is included with 1C   as a 

first approximation. 
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4.10 Free surface turbulence model 

The prediction of the turbulent entrainment model requires a suitable turbulence 

model near the free surface. Present turbulence models are calibrated in flow without free 

surface. Hirt (2003) found existing turbulence model cannot predict enough turbulence 

near impact region to active air entrainment model in a plunging jet simulation. In addition, 

single level set does not include surface tension and air action to liquid which can disturb 

free surface. These factors can enhance the momentum mixing near the free surface. The 

RANS simulation with single level set method cannot describe such behavior near the free 

surface. Here it is proposed to model these behaviors as turbulent mixing resulting in 

increasing turbulence level near the free surface. A simple mixing length free surface 

model is developed to improve the turbulence prediction account for above reasons. 

This model introduces a new production term in the turbulent kinetic energy 

equation that attempts to model the generation of these free surface fluctuations. It can be 

written as 
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where   is a new turbulence viscosity,   is the length scale of the free surface roughness, 

  is the distance to the free surface, C  is a constant. The max function enforces this 

turbulence model to be active only close to the free surface. 

4.11 Model limitations 

In the development of model there are a number of assumptions and 

approximations. It should be kept in mind that these limitations are the result of the attempt 

to describe a complex phenomenon using simple descriptions in order to close the model. 

The idea is to reasonably capture main physical process and enable the model to be 
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implemented in CFD code conveniently. The following list attempts to identify and 

summarize the major model limitations: 

1. Potential flow model for vortex interaction with free surface in a turbulent flow 

situation. The free surface deformation is different when considering viscous and 

surface tension effect, which is quite difficult, if not impossible, to obtain.  

2. Superposition of the combined effects of several turbulent scales. The total air 

entrainment is assumed to be integral of each entrainment rates caused by a 

continuum of turbulent scales. It does not consider the interactions between 

different scales and corresponding effects to free surface deformation resulting in 

difference in entrainment rates. 

3. Model does not separate small scales and larger scales energetic enough to generate 

chunks of water that separate from the main fluid and collapse back again in the 

turbulent field. The model assumes the free surface is mildly deformed and no 

detached water is generated. In reality droplets can be generated near the free 

surface which can also cause entrainment. 

4. Different geometrical/topological configurations are not considered. The model 

presented mainly considers vortex energetics though particular configurations may 

have different impacts on air entrainment. Vortex rings parallel to the free surface, 

funnels, and line vortices aligned with the free surfaces are possible examples of 

particular configurations. 

5. Homogeneous and isotropic turbulence is assumed in order to obtain closed 

relations. In reality the flow is highly anisotropic and inhomogeneous near the free 

surface. No simple models available in literature to describe these regimes. Even 

though LES/ DES could be used in these regions, it complicates the modeling due 

to the topological changes of the free surface and difficulty to estimate average 

turbulent levels required for the proposed model. 
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4.12 Air entrainment by impact 

As a boat moves forward and hits incoming free surface disturbances at high speed 

it can entrap air cavities. This process is not accounted for in the turbulent air entrainment 

model presented in this thesis. A schematic of the air entrainment process is shown in 

Figure 4.12. A model assuming that a fraction of the volume in these cavities is entrained 

can be written as 

  w 0e FSdS d d b C b U   (4.53) 

where 0U  is the boat speed, b  is the width in the perpendicular direction,   is the wave 

length and C  represents the fraction of total air contained by these cavities that results in 

entrainment and can be a function of the wave length. FS  is the peak to peak amplitude of 

the free surface waves. The entrainment is assumed to occur in a region of size wd  in 

direction normal to the wall with depth ed . The final form of the impact entrainment source 

is then written as 

    0 w/d FS e dS C U d d     (4.54) 

where  d  is added to avoid entrainment when large amounts of bubbles are already 

present in the flow (high void fraction prevents further entrainment) as done in Equation 

(4.43). This model is relevant to Kann boat simulations, presented in Chapter 5. 

 

Figure 4.12: Schematic of entrainment due to impact motion. 
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CHAPTER 5    MODEL VALIDATION AND APPLICATION IN BUBBLY FLOW 

AROUND SHIPS 

The turbulent air entrainment model presented in the previous chapter has a 

constant that needs to be calibrated against experimental data. As far as the author knows, 

there is no experiment aimed to measure bubble entrainment purely due to turbulence. To 

obtain the modeling constant, a breaking bow wave case with extensive data, in which 

turbulent entrainment is an important factor is chosen as an evaluation case. Though it is 

an application of the turbulent entrainment model a bit beyond its original assumptions, it 

can assess the capabilities of the model in natural entrainment conditions present around a 

ship.  

Section 5.1 describes the simulation of a breaking bow wave (Tavakolinejad 2010). 

The model constant is estimated to match this experimental data. In the following two 

sections, the calibrated model will be used to simulate the two phase flow around the full 

scale craft Athena R/V and Kann boat. These simulations can evaluate the entrainment 

model in relevant problems involving complex geometries and flows, testing the robustness 

of the numerical scheme in demanding 3D simulations. 

5.1 2D+T bow wave breaking simulation 

5.1.1 Simulation setup 

Bow wave breaking is a key process causing entrainment around ships. 

Tavakolinejad (2010) performed a set of experiments to simulate the passage of a ship 

using a 2D+T technique. A steel plate deforms in time to model the shape of a ship crossing 

a plane in time, as shown in Figure 5.1. The water is pushed away by the steel plate, 

resulting in a transient wave in the tank that mimics the waves at different axial cross 

sections in an advancing ship. The experiment simulated a scaled DTMB 5415 model with 

a waterline length 21.03mL   moving at the speed 5.441m/sU  . Based on these two 
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scale parameters, the Froude and Reynolds numbers are Fr 0.379 and 8Re 1.14 10 , 

respectively. The Tank used in the experiment is 14.8m  long, 1.15m  wide, and 2.2m  

deep.  

 

Figure 5.1: Deformed board and wave tank for experiment. (Figure is from 
Tavakolinejad, 2010) 

To discretize such a large domain while retaining a proper level of refinement for 

the plunging breaker and the regions of interest where bubbles are formed, three blocks are 

designed. The overset grid system is shown in Figure 5.2. Block 1 (68 K grid nodes) 

discretizes the large wave tank used in the experiment. The deformable wall of the wave 

maker advances from left to right in Figure 5.2. In the computation this is simulated by 

deforming the left side of the domain to follow the experimental wall profile shapes. The 

shape of the board is linearly interpolated in time from the wave board profiles reported in 

the experiment. To maintain the quality of the grid the inner grid points of Block 1 are 

moved using a series of simple linear interpolations between pre-generated grids together 

with smoothing. Thirteen 2D grids are designed for the interpolations representing typical 

time series. Blocks 2 (221 K grid nodes) and 3 (234 K grid nodes) are used to refine the 
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solution domain in the areas of interest, taking advantage of the overset capabilities of the 

code. Block 3 consists of a Cartesian grid that rigidly moves in time to follow the main 

features of the wave created and the clouds of bubbles entrained. Block 2 consists of a 

second smaller Cartesian grid that follows the position of the breaker. It is a refinement to 

properly capture the plunge and subsequent cavity formation and collapse. 

 

Figure 5.2: Overset grid system for 2D+T wave maker simulation. 

Table 5.1: Grid details for simulation 

Grid I J Total 

Block 1 226 301 68K 

Block 2 657 337 221K 

Block 3 969 241 234K 

The trajectory of the refinement blocks, which move following the evolution of the 

features of interest, is estimated from an initial single phase run. In all the following 

simulations the time step is set at 
45. s04 1t   . The two phase blended /k k    

SST turbulence model (Moraga et al. 2008) is used to predict the turbulence field for the 

air entrainment model. 
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5.1.2 Model application to wave breaking process 

As explained in Chapter 1, the entrainment during a wave breaking process involves 

many entrainment mechanisms. However, it is insightful to test whether the model 

functions as expected in such turbulence-dominated process.  

A numerical experiment is carried out at first with four bubble groups to estimate 

constants in the models. Bubble diameters span from 20μm  to 1cm . These bubbles are 

uniformly distributed in a logarithmic scale. Bubble group information is shown in Table 

5.2. ent

gD  is the group size distribution used for estimating the history size distribution, 

obtained from the data measured at the bow of Athena R/V (Johansen et al. 2010). 

Table 5.2: Entrainment  size distribution for groups. 

Group No. Radius (μm ) ent

gD  

1 10  19.14 10  

2 80  28.09 10  

3 630  34.66 10  

4 5000  0  

The turbulent entrainment model requires reasonable turbulence quantities to 

activate the model. However, existing RANS turbulence models do not consider the effect 

of the free surface. For this breaking wave simulation, as shown later, the value of turbulent 

kinetic energy predicted by the blended /k k    SST turbulence model at the jet 

impact region is negligible. As a result, the air entrainment model does not activate as it 

should and the void fraction distribution shows that the first bubble cloud is not as clear as 

the second one (in the experiment, two distinct clouds are generated in the wave tank. The 

one near the wave board is referred to as the first cloud, see Figure 5.10). Hirt (2003) 

proposed to enhance turbulence levels by adding extra energy, which would help activate 

the entrainment model in the simulation of a plunging jet.  
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It is known the impact of the plunging jet formed at wave breaking can result in 

significant turbulence at impact that produces bubble entrainment. Based on this fact, 

additional turbulence is introduced to Menter (1993) turbulence model. A first change is to 

remove the production limit in the two phase turbulence model to generate free surface 

turbulence. According to Menter (1993), the production term in the kinetic energy equation 

is limited as  min ,20k k tP P  , where kP  is the production due to shear. This limit is 

originally designed to remove unphysical turbulence generation due to numerical wiggles 

in the velocity field and turbulence accumulation near stagnation regions at solid 

boundaries. Though shown to provide good agreement with experiments in the simulation 

of flows with stagnation points such as airfoils, this limit actually does not have a clear 

physical motivation. Quite the opposite, the original /k k    equations without this 

limit carry the proper physical scaling. It is therefore for this reason we propose to remove 

Menter’s limit in regions away from bodies. Even though further research is needed to 

study this term in broader free surface flows with strong shear, the results shown in this 

thesis are encouraging to justify removing the limit away from bodies Also, the mixing 

length turbulence model developed in Section 4.10 is activated to introduce extra 

turbulence when there is high shear flow motion near the surface. From now on these two 

measures will be referred as MNL (Menter’s model with No Limit in production) and ML 

(Mixing Length model near the free surface) for short. The original two phase turbulence 

model by Menter (1994) as modified by Moraga (2008) for two-phase flows is referred as 

TPM (Two Phase Menter’s blended /k k    model). According to the ML, the length 

scale of surface roughness can be estimated from the jet thickness. Simulation results show 

the jet thickness is around 1cm . A length scale of 0.5cm  is then estimated for the 

simulations. The constant c  in the mixing length turbulence model and entrainment 

constant 0S  are calibrated against experimental data as 0.001c   and 2

0 2.6 10S   , 

after several numerical tests and iterations to match Athena’s experimental data at the 

stern , where turbulent entrainment is the main mechanism of aeration. 
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Additional simulations with 15 groups are performed to describe bubble size 

distributions in more detail with the calibrated constants. These groups are also uniformly 

distributed in a logarithmic scale as listed in Table 5.3, and are also used in Athena R/V 

simulations later on. 

Figure 5.3 shows comparisons of turbulent kinetic energy for different proposed 

turbulence models. As it can be observed, the turbulent kinetic energy in TPM case is 

extremely small or negligible. The TPM+MNL case shows significant amount of turbulent 

kinetic energy at the impact region. For the last case, the kinetic energy level is increased 

further due to the mixing length model. The turbulent kinetic energy is mainly generated 

at the high shear region of impact and then is transported near the surface as shown in the 

figure. It is found that the production of turbulent kinetic energy from TPM+MNL is 

around 50 to 100 times that from the mixing length model at the impact region. This 

indicates that the difference in kinetic energy should not be significant between 

TPM+MNL and TPM+MNL+ML, which is also manifested by the contour levels in the 

figure. Figure 5.4 shows the entrainment sources for three different cases. As expected that 

the TPM has no entrainment for bubbles while TPM+MNL+ML has the strongest source. 

Bubbles entrained can enforce liquid out of that region due to mass conservation, as 

explained in Chapter 3. The increase in the thickness of the little splash is a good example. 

The closed cavity does not break into bubbles as in the experiment due to the single phase 

level set method limitations, but the entrainment model can help to close the cavity and 

replace the cavity with mixture flow when bubbles are entrained around the cavity.  

Void fraction contours for / 0.5x L   are shown in Figure 5.5. The TPM case has 

one cloud formed by the second plunging breaker while the first cloud is not evident 

because no entrainment occurs for the first plunging breaker. Although there are two 

bubble clouds for the TPM+MNL case, the void fraction is not as high as that in 

TPM+MNL+ML case and the depth that bubbles can reach is smaller. Another notable 

feature is the bubbles entrained at the right of surface wave. The turbulence level there near 
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the free surface is not high but enough to entrain bubbles according to the entrainment 

model. In the experiment, it can be observed this entrainment is spilling wave type 

entrainment with droplet entrainment. As a conclusion, the turbulence level for the first 

plunging jet is crucial to the formation of bubble clouds and the depth bubbles can reach. 

The TPM+MNL+ML case shows the best match with experimental data on the wave 

breaking process. 

Table 5.3: Air entrainment bubble size distribution for 15 groups. 

Group No. Radium (m) ent

gD  

1 1.00E-05 3.19E-01 

2 1.56E-05 2.98E-01 

3 2.43E-05 1.73E-01 

4 3.79E-05 9.50E-02 

5 5.90E-05 5.22E-02 

6 9.20E-05 2.86E-02 

7 1.43E-04 1.57E-02 

8 2.24E-04 8.64E-03 

9 3.49E-04 4.75E-03 

10 5.43E-04 2.61E-03 

11 8.47E-04 1.43E-03 

12 1.32E-03 7.86E-04 

13 2.06E-03 3.59E-04 

14 3.21E-03 0.00E+00 

15 5.00E-03 0.00E+00 
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Figure 5.3: Turbulent kinetic energy at / 0.18x L   for TPM (Top), TPM+MNL 
(Middle), TPM+MNL+ML (Bottom) when the jet hits on the free surface. 
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Figure 5.4: Void fraction entrainment source at / 0.18x L  for TPM, TPM+MNL and 
TPM+MNL+ML. The order is the same as in Figure 5.3.  
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Figure 5.5: Void fraction contours at half ship length ( / 0.5x L  ) for TPM, TPM+MNL 
and TPM+MNL+ML. The order is the same as in Figure 5.3 

The turbulent dissipation is shown in Figure 5.6. The dissipation is extraordinarily 

high at the impact region where the maximum magnitude is approximately 2 3~100 m /st

. Moraga et al. (2008) reported the maximum dissipation 2 3~ 68m /st  in a simulation of 

3D breaking bow wave generated with a low free stream velocity and flat plate, different 
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from this case. In the experimental work by Deane and Stokes (2002) and Loewen and 

Meville (1991), the cited estimation of the dissipation is around 2 3~13 m /st . The value 

is reported at the start of the breaker in this work while it can dramatically and quickly 

decrease as the breaker develops. As a result, the average value in the entrainment region 

might be much smaller than 
2 3100 m /s . It is believed that the dissipation generated in 

TPM+MNL+ML case is appropriate and acceptable when considering those different 

breakers and the complexity of the problem. 

 

Figure 5.6: Turbulent dissipation contours for TPM+MNL+ML at / 0.18x L  .  

Figure 5.7 shows the void fraction contours around the impact region. The void 

fraction can reach 0.3 in 0.02 seconds due to the high turbulence levels driving a strong 

entrainment. Figure 5.8 shows the entrainment source for the subsequent splash and 

breaking. As can be seen in Figure 5.8(a), there is entrainment source around the large 

cavity, which can help the cavity close and break faster. Also, a strong source is active for 

the splashed fluid. In the experiment the splash includes droplets, bubbles and a violent 

free surface, absent in a RANS simulation result. For the second breaker, formed by the 

splash, the entrainment source is active near the surface. As is the case for the first breaker, 
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the strength is higher at the impact region. Since the flow is highly turbulent after the first 

breaker, a broad area near the surface is observed to entrain bubbles, as shown in Figure 

5.8(b). The resulting two bubble clouds are formed from the two breakers. 

 

Figure 5.7: Void fraction contours around the jet impact region for TPM+MNL+ML at 
/ 0.18x L  . 

According to the study of the entrainment process by different turbulence 

approaches, we believe that TPM+MNL+ML can predict reasonable turbulence levels 

during the wave breaking process, allowing the turbulent entrainment model to work 

satisfactorily for this complicated wave process. Unfortunately no data is available to 

validate the turbulent quantities predicted by the model, but extensive comparisons with 

available data are presented in the following section. 
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Figure 5.8: Contours of void fraction entrainment source for TPM+MNL+ML at (a):
/ 0.208x L  ; (b): / 0.319x L  .  

5.1.3 Model comparison with experimental data 

Tavakolinejad (2010) reported extensive experimental data of bubbly flow for the 

breaking bow wave. These results can be used to evaluate the performance of the 

entrainment model. The simulation is performed with 15 groups listed in Table 5.3 using 

TPM+MNL+ML. The profile of surface elevation at the wave board exhibits good 

agreement with the experimental data, as shown in Figure 5.9, where the elevation is non-

dimensionalized with the ship draft D  and time with the wavemaker run time wmT .  
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Figure 5.9: Surface elevation on wave board versus time. 

Bubble clouds are reported in detail for the half ( / 0.5x L  ) and one ship length (

/ 1x L  ) positions. Figure 5.10 shows two bubble clouds at / 0.5x L   for experiment and 

simulation. The experimental location of the two clouds is estimated from void fraction 

contours in the work by Tavakolinejad (2010). Numerical results predict two clouds 

qualitatively similar to those observed in the experiment. The thin layer of bubbles to the 

left of the second cloud is also predicted by current model. Though the positions of the two 

clouds do not match the experimental data perfectly, the trends are promising when 

considering the complexity of the flow and entrainment processes involved. Further 

research would be required to refine the model and obtain an even better match. 

It is well known that the bubbles are not uniformly distributed under the free 

surface, therefore a good comparison requires the knowledge of experimental process to 

retrieve data. Figure 5.11 presents the experimental measurement regions in blue, where 

bubbles are measured bubbles inside each window. The experiment is performed several 

times and raw data is ensemble averaged.  
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Figure 5.10: Bubble clouds at / 0.5x L  . Experiment (left) and void fraction contours 
(right). (Experimetal figure is from Tavakolinejad (2010)) 

 

Figure 5.11: Experimental measurement regions. (Figure is from Tavakolinejad (2010)) 

Predicted bubble size distributions for two clouds at different positions are shown 

in Figure 5.12. The experimental data from Tavakolinejad (2010) is originally averaged 

over the entire bubble cloud. The bubble size distributions predicted by the model are 

reported at three depths in each cloud since the precise experimental region over which the 

ensemble averages were taken is not available. The profiles’ slopes for small bubbles have 

good agreement with experimental data. Between the two positions, small bubbles do not 

escape significantly due to their low terminal velocities, while larger bubbles in simulation 

exit more quickly than in the experimental data. Also, the size distributions for large 
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bubbles at different depths indicates that large bubbles do not reach deep due to their high 

terminal velocities. These large bubbles rise up to surface and escape quickly resulting in 

steeper slope from / 0.5x L   to / 1x L  .  

 

Figure 5.12: Bubble size distribution for first (top) and second (bottom) clouds. d in the 
legend indicates the distance to the free surface. 
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Figure 5.13: Normalized void fraction size distribution for first cloud (top) and second 
clouds (bottom). 

Normalized void fraction size distributions are shown in Figure 5.13. The 

simulation results are obtained from the same positions as those in Figure 5.12. It can be 

observed that the two phase model cannot predict the bimodal behavior present in the 

experimental data. This bimodal distribution could be due to the averaging process over all 

the experimental cloud, counting small bubbles at the bottom and bigger on top. For the 

first cloud, profiles are close to the experiment data except for the deepest position, where 

small bubbles contribute to the most part of void fraction. More large bubbles are predicted 

for the second cloud resulting in a lower value of the peak because the profiles have to 

preserve unit area. Overall, the amount of large bubbles decreases when going deeper, as 
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indicated by the shifting peaks from large to small bubbles in simulation results. It is also 

noticed that the peaks for the deepest position occur close to the left peaks in experimental 

data, supporting the view that the bimodal behavior may be caused by the average 

processing. On the other hand, the bimodal distributions observed in the experimental data 

provide some hints to improve the entrainment model: 

1. The entrainment size distribution could be bimodal. 

2.  Cavity fragmentation (large bubbles) and droplet impact entrainment (small 

bubbles) may be needed and require additional modeling. 

Figure 5.14 shows the void fraction as a function of depth. Three lines are extracted 

from simulation results to represent the variation of void fraction in each cloud. The 

bubbles for the first cloud cannot reach as deep as those in the experiment, although the 

bubbles go deeper at / 1x L  . Since the first cloud is mainly affected by the turbulence 

model, improvements may be needed in this regard. For the second cloud at / 0.5x L  , 

the model overpredicts the void fraction near the surface by a factor of approximately 20. 

The result at / 1x L   shows good match with experimental data. It is observed in 

experiment that there is a peak of void fraction from 4cm  to 10cm  in depth 

(Tavakolinejad 2010). This feature is also well predicted by the simulation as shown in the 

figure, although it is not noticeable for the first cloud at / 0.5x L  . 
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Figure 5.14: Void fraction profiles versus depth for first (top) and second (bottom) 
clouds. Xc is the x  position of the middle line extracted in the cloud. 
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5.2 Model application to US Navy Athena R/V 

The ultimate goal of the entrainment model is to predict bubble entrainment around 

ships. The near field bubbly flow has important effects to the acoustic signature, therefore 

it is crucial to evaluate the performance of the entrainment model around relevant ships. 

Athena R/V is a US Navy research vessel with appendages such as skeg, stabilizers, and 

masker system. Experimental data, though not considerable, is available to quantitatively 

validate the entrainment model.  

This section applies the entrainment model developed in this work in a full scale 

simulation of Athena R/V. In Section 5.2.1, the simulation setup will be discussed in detail. 

A grid convergence study for the model is presented in Section 5.2.2. Finally, the analysis 

of the bubbly flow around Athena R/V is presented in Section 5.2.3.  

5.2.1 Simulation conditions for Athena R/V 

As shown in Figure 5.15, the CFD geometry includes all the appendages except 

propellers. Symmetry about the centerplane is considered to reduce grid size and 

computational cost. The ship is mirrored for a better visualization in Figure 5.15. To save 

computational time, the propeller is replaced by a body force model using the load 

distribution from Hough and Ordway (1964), allowing larger time steps and the use of a 

static overset grid system. In addition, the grid system is more complicated and elaborate 

when using discretized propellers (Carrica et al. 2010a). The focus of this simulation is to 

evaluate the entrainment model occurring near the free surface far from propellers, and 

thus there is no need to fully discretize the propeller geometry.  
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Figure 5.15: Geometry of Athena R/V with appedages. 

The complex geometry for Athena R/V requires careful design of the grid system 

to properly resolve the flow around the ship. The overset grid system is shown in Figure 

5.16 and Figure 5.17. Three levels of refinement are placed to resolve the breaking wave 

at the bow as required by the entrainment model. Although the grid size is much coarser 

than that used in the 2D+T simulation of Tavakolenijad (2010) for the breaker in Section 

5.1 (approximately 3 times for the very fine grid), it provides a good evaluation of the air 

entrainment model for a practical grid system for a 3D ship simulation. A refinement is 

placed near the masker to resolve the entrainment in that area. Refinements at stern are 

designed to capture the highly turbulent bubbly flow there.  A summary of important 

parameters of the coarse grid is shown in Table 5.4. To achieve a better efficiency a proper 

load balancing is attained by equally distributing the number of grid points across 

processors. There are 23 grid blocks in total and the load is split in about 55K  grid points 

per processor. The refinements take around 70% of the total number of grid points. Four 

grid systems are used in the grid study: Coarse, Medium, Fine, and Very fine (VFine). The 

refinement ratio in each direction is 3 2 , doubling the total number of grid points with each 

successive refinement. For the four grids, grid sizes are shown in Table 5.5. The grid size 



106 
 

for the block at the bow is much finer than other refinements in order to resolve the 

breaking wave, with a larger grid size in the downstream direction. As for the boundary 

along the hull, the first grid point to the ship hull is around 0.11mm  for the VFine grid. 

Considering the mean shear stress reported in Castro (2011), it can be estimated that 

~17y
 at this first grid point (see Table 5.5 for details of different grids). The impact on 

the solution by this level of refinement near the wall still needs to be revised given that the 

two-layer boundary layers models (Esch and Menter, 2003) used in these full scale 

simulations are only applicable within a given range of y
. 

The length for this ship is 47 mL  . The simulation is performed at a speed of 

5.4 m/sU  . Based on these two reference scales, the Froude and Reynolds numbers are 

0.252  and 82.53 10 , respectively. To better represent the experimental conditions, is 

incorporated in the simulation. A regular incoming wave with amplitude is 0.05 m and 

wave length 35.2 m  is used, mimicking the experimental conditions of Johansen et al. 

(2010), who performed the tests in the ocean with small amplitude waves. A small time 

step of 
29.2 10 st     is used to avoid large Courant number for all the grid systems. The 

simulations are performed on a Cray XC30, Lightning, at the U.S. Air Force Research 

Laboratory (AFRL) DoD Supercomputing Resource Center.  

Second order backward differences in time are used for momentum, and a fourth-

order ENO scheme (Shu 1998) is used for convection. A second-order TVD scheme with 

superbee limiter (Ismail et al. 2010) is used to solve the transport equations of group 

number densities. As the grid size is not fine enough to resolve the viscous sublayer, the 

two layer wall function implementation by Bhushan et al. (2009) is used. Dissolution is 

modeled in the number density (2.3), but is neglected in the total void fraction (3.21). The 

models of Prince and Blanch (1990) and Lehr et al. (2002) are used to model coalescence 

and breakup, respectively. 
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Figure 5.16. Overset grid system for Athena R/V. 

 

Figure 5.17. Refinements around Athena R/V. 

The air entrainment constant is set to 0 0.026S  , the same as in Section 5.1. The 

mixing length turbulence model is also active near the free surface with the same constants 

obtained from the 2D+T breaking wave case. The simulation is performed for three ship 
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lengths until a periodic solution driven by the incoming waves is achieved. Two additional 

wave periods are simulated to perform averages on the solutions.  

Table 5.4: Summary of the Coarse grid. 

Block Name Grid points Processors Grid points/proc 

Hull 1246560 24 56448 

Masker 416500 8 54180 

Rudder Bottom 102900 2 52920 

Rudder Top 208250 4 54180 

Rudder Prop 148824 3 50544 

Skeg 205800 4 54432 

Stabilizer Body 211140 4 54180 

Stabilizer Cap 102900 2 52920 

Shaft Cap 51450 1 51450 

Shaft Propeller 311640 6 54432 

Shaft Collar 102900 2 52920 

Strut port 205800 4 54432 

Strut starboard 205800 4 54432 

Background 1244600 24 57024 

Rudder Refinement1 105056 2 53312 

Wake refinement 1038800 20 57960 

Bubbly wake refinement 416232 8 56448 

Stern refinement 1573040 32 54432 

Free surface Refinement 1244600 24 57024 

Masker refinement 1573040 32 54432 

Bow refinement 1 416500 8 55440 

Bow refinement 2 2382032 48 54432 

Bow refinement 3 3463800 70 54723 

 

 

                                                 
1 This block is only required for Coarse and Medium grids due to orphans for overset grids. 
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Table 5.5: Typical grid sizes for grid study. 

Grid # Points [Million] Grid Spacing [mm] 

Bow (dx1) Stern BL (𝑦+)  

Coarse 17.0  4.0 (27.0) 50.0 0.22 (34) 

Medium 34.0  3.2 (21.4) 39.7 0.17 (27) 

Fine 67.6 2.5 (17.0) 31.5 0.14 (21) 

Very fine 135.8  2.0 (13.5) 25.0 0.11 (17) 

5.2.2 Grid study for air entrainment model 

Most of the air entrainment models reported in the literature are tested with only 

one grid (Ma et al. 2010a, Shi et al. 2010), and evidence suggests that there are significant 

changes in entrainment for different grid sizes (M. Hyman, personal communication). 

Besides that the model constants may vary significantly for different problems (Ma et al. 

2010b, Ma et al. 2011b). In addition to model validation with experiments, the 

independence of the model to grid size changes is important for practical applications. In 

this work, the grid convergence of the numerical solutions is assessed at several positions 

where data is available from Johansen et al. (2010). 

5.2.2.1 Void fraction contours 

Since the experimental data are averaged in time, results are averaged over two 

wave periods and shown in Figure 5.18. The black dots inside the figure indicate the 

positions where solutions are extracted at different depths to compare with experimental 

data. The bubbles entrained at the breaking bow wave region are transported along the ship 

and finally mix with the bubbly flow at the stern. The Kelvin waves are captured more 

clearly as the grid is refined. Qualitatively, the mean void fraction at the stern seems to 

converge in grid, but quantitative comparisons are provided in the following sections. The 

                                                 
1 dx  denotes the grid size in the mainstream direction. 
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bow insets on the left show details of the void fraction contours and exhibit grid 

convergence of the solution in this region. 

 

Figure 5.18: Free surface colored with void fraction contours around Athena R/V 
predicted by the model. From top to bottom: Coarse, Medium, Fine, VFine. 

 

Figure 5.19: Void fraction contours on the hull of Athena R/V. From top to bottom: 
Coarse, Medium, Fine, VFine. 
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Figure 5.19 shows void fraction contours on the ship hull under the free surface. 

Bubbles are entrained at the bow and are swept down underneath the ship by convective 

and diffusive transport. These bubbles form a band region and go through the shaft and the 

propellers. The void fraction for the band region is higher than other parts on the hull. 

Overall, the void fraction contours on the hull show qualitative convergence since no major 

difference can be observed between Fine and VFine grids. 

5.2.2.2 Void fraction profiles 

Void fraction profiles with depth at the bow are shown in Figure 5.20 along with 

experimental data. Although grid convergence is not obvious, the difference among the 

four grids is not significant considering how sensitive the breakers are to small changes in 

turbulence levels. The exact vertical position of the probe in the experiment was difficult 

to determine given that the ship was experiencing roll, pitch and yaw motions. Considering 

these difficulties, the simulation results are sampled at ( , ) (0.158,0.052)x y  , at about 3.5 

meters downstream the second cloud. As shown in Figure 5.20, the void fraction is 

underpredicted about one order of magnitude in comparison with experimental data. 

Johansen et al. (2010) filter their raw data by only counting bubbles when the probe is in 

water and therefore the time the probe is in the air phase is not counted as an additional 

void fraction. This, however, is acknowledged by the authors as a significant source of 

error in the experiment that can lead to considerable overprediction of the void fraction 

since the probe frequently was exposed to air as the ship rolled. It was observed, however, 

a clear trace of white water right downstream of the breakers and void fraction levels of 

about 2% and higher are reasonably expected. On the other hand, the void fraction drops 

to zero faster than experimental data in depth as also found with the 2D+T breaker.  
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Figure 5.20: Void fraction versus depth at bow expermental position for different grids. 

Void fraction variations in depth at the stern are shown in Figure 5.21. The void 

fraction at the free surface monotonically increases as the grid is refined but it unexpectedly 

decreases for the VFine grid. Deeper than 0.4 m, the solution shows good grid convergence 

as observed in Figure 5.21(b) with logarithmic scale. The reason for the void fraction 

behavior near surface is that the turbulence variables, critical for the bubble entrainment 

model, do not converge in grid for the VFine grid as shown in Figure 5.22. Both turbulent 

kinetic energy and dissipation are found to decrease respect to the values in the Fine grid. 

In addition, higher frequency fluctuations than those from the incoming wave develop as 

the grid is refined (see Figure 5.22). It is unknown whether the fluctuations resolved in the 

VFine grid decrease the source from the mean flow and result in lower turbulence levels. 

Another possible source of error is the wall function, since the first grid point to the wall 

is ~17y
 for the VFine grid, a distance that may not be appropriate for the two layer wall 

function model. Inappropriate turbulence levels from the bottom boundary layer of the hull 

can directly affect the turbulence flow at stern. More work is needed to understand the 

behavior of turbulence quantities in the stern region as the grid is refined.  
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The location for the experimental position at the stern is ( , ) (1.0106,0.021)x y   

(Johansen et al. 2010). Although the experimental data from Terril and Fu (2008) is taken 

at the centerline, 0.2 meters aft of Johansen et al. probe location, and no filtering was 

performed to account for when the probe is in air, it is included here for completeness and 

because of the scarcity of experimental results.  

Generally, good agreement is found between the predicted profiles and the 

experiments even for the coarse grid. Based on this result it is concluded that the air 

entrainment model is a good predictive tool for a highly turbulent free surface flow as is 

the case for the stern of a ship at low Froude number. Figure 5.21(b) highlights the 

transition region in void fraction at the bottom of transom. Bubbles are pushed away by the 

incoming high speed boundary layer flow under the ship as they reach the bottom of the 

transom’s depth. However, the experiments show higher void fraction levels than in the 

simulation below this depth. Possible reasons can be: 1. The turbulent dispersion and 

interaction with the hull are underpredicted, So bubbles cannot be pulled down deep 

enough by turbulent mixing. The same trend is observed for Kann boat. 2. Bubbles coming 

from underneath the ship are underpredicted by the model.  

 

Figure 5.21: Void fraction versus depth at the stern for different grids at the experimental 
position. (a): linear scale; (b): logrithmic scale. Black vertical line indicates the depth of 
the bottom of transom. 
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Figure 5.22: Turbulent kinetic energy and dissipation  variations in two wave periods for 
VFine grid at z =-0.007 at experimental loaction (around 0.05 m from the averaged free 
surface). T  is the incoming wave period. 

5.2.2.3 Bubble size distribution 

Normalized bubble size distribution for several depths at the stern are reported in 

Figure 5.23. The bubble groups reported in the experiment are different from those chosen 

for the numerical simulation, thus the numerical results are integrated over the 

experimental groups for comparison. The group size information can be found in Johansen 

et al. (2010). The experimental data shown in Figure 5.23 was taken at 9 knots, while 

simulations were performed at 10.5 knots. It is assumed that the size distribution does not 

vary significantly when increasing the speed to 10.5 knots.  

At 0.1 m the profiles for the four grids are practically indistinguishable from each 

other as a result of the entrainment source being the dominating term at this depth. The 

profiles show convergence at depths of 0.3 m and 0.5 m. However, a significant difference 

among grids at 0.6 m is observed, where the transition region at the bottom of transom 

occurs (Figure 5.21). Although the Coarse grid predicts large bubbles dominating in the 

void fraction, small bubbles become the main contribution as the grid is refined. The reason 

for such large difference is the difficulty to predict the sharp transition with the coarse grid, 

numerical diffusion can strongly affect the size distribution around the region. As the depth 
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increases further, the profiles show good grid convergence. While the void fraction near 

the free surface does not converge well as the grids are refined, the normalized group void 

fraction shows great grid convergence trends.  

Overall, two peaks can be observed in the profiles at all depths. These peaks are not 

always predicted by the numerical simulation. For the depth at 0.1 m, the experimental data 

shows a small peak at 80 μmR  , which is not predicted by the two phase model. This peak 

is also seen at all other depths in the experiments suggesting that a fraction of these bubbles 

might come from the ship’s boundary layer. Another fraction can be entrained form the 

surface by droplet impact, a process important in the highly energetic stern flow and 

ignored at this point in the entrainment model, or the product of breakup from large 

bubbles. The experimental data at 0.3 m shows a slight drop in value for largest group due 

to high terminal velocity, which is also predicted by the simulation. The experimental data 

suggests a peak at 2 mmR  , underpredicted slightly by the simulations. At 0.6 m, the 

numerical simulation predicts a peak at around 80 μmR  , present in the experimental data, 

and repeated for depths 0.6 m, 0.65 m and 0.7 m. The transition region (between 0.5 m and 

0.6 m) predicted by the simulation is narrower than that for the experimental data (between 

0.5 m to 0.7 m).  
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Figure 5.23: Normalized void fraction for experimental groups at different depths. The 
order (a) to (f) indicates 0.1 m, 0.3 m, 0.5 m, 0.6 m, 0.65 m, 0.7 m in depth. 

The Sauter diameter 
32d  and mean diameter 

10d  at the same stern location are 

shown in Figure 5.24, displaying a satisfactory grid convergence. The Sauter diameter 

predicted at the free surface is around 2.6 mm and slowly decreases to 1 mm at about 0.5 
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m deep. A narrow transition region between 0.5 m and 0.6 m can be observed for the finer 

grids. This transition in 32d  was already hinted by Figure 5.23. Both 32d   and 10d  show 

good convergence below 0.6 m in agreement with the results in Figure 5.23. As for the 

mean diameter, the profile increases until a peak occurs at around 0.46 m. The mean 

diameter (Castro 2011) is the zero-th moment of ( )D f D  ( ( )f D  is normalized by the total 

number of bubbles). As can be seen in Figure 5.25 for the normalized ( )D f D , a peak is 

observed for large bubbles around 1 mm  for depths near 0.4 m  in accordance to the peak 

in mean diameter observed in Figure 5.24. 

 

Figure 5.24: Sauter diameter and mean diameter vs. depth for different grids. 

 

Figure 5.25: Normalized  ( )D f D  for diferent depths at the stern experimental location  
for Fine grid. 
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5.2.3 Flow features 

This section presents a detailed analysis of the main flow features of the bubbly 

flow around Athena R/V. Solution from the fine grid is used to this end. 

5.2.3.1 Entrainment source predicted by the model 

The entrainment source around Athena is shown in Figure 5.26 with logarithmically 

distributed contour levels. Three key regions are observed with high entrainment source, 

the stern, the bow wave breaking are, and the hull/free surface contact line, as expected 

from experimental observations of bubble locations. Although the area for entrainment at 

the stern is broad due to the strong turbulent flow, the strength decreases rapidly away from 

the ship. The source remains active deeper at the center than in the shoulder waves. The 

wave breaking results in strong entrainment. At the contact line the source remains active 

in a very narrow region close to the free surface as a result of the small turbulent scales that 

drive the process. In addition, the entrainment source has a larger entrainment region at the 

masker compared with neighboring areas. It has to be pointed out that breaking at the 

masker as observed in the experiment is a very violent process resulting in a very 

fragmented free surface and sprays that are not resolved by the grids used herein.  

  

Figure 5.26: Entrainment source of void fraction around Athena R/V predicted by the 
model. Slices and free surface are colored with entrainment source of void fraction. 
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A detailed view of the bow breaker is shown in Figure 5.27. The entrainment source 

is active along the bow wave breaker and has a large value at the impact region as 

previously observed for the 2D+T breaker. Additionally, a region of high entrainment 

source attached to the hull where the breaker begins to develop is observed. The 

entrainment strength there is significantly affected by the incoming wave, resulting in 

pulsating bubble clouds with a frequency given by the wave encounter frequency. Even 

though there are bubbles in the entire boundary layer for the hull/free surface contact line, 

air entertainment source may not be active there. As shown in Figure 5.28, the integral 

length scale in boundary layer near surface can be less than 1 cm. As a result, zP  in the 

entrainment source decreases to zero in an extremely short depth and the probability of 

entrainment is low. Figure 5.28(a) shows the source is deactivate very close to the wall. 

Bubbles entrained at places where the integral length scale is larger than the depth can be 

transported to the wall by turbulent mixing in the boundary layer. 

Figure 5.29 shows the instantaneous entrainment source for the bow breaker at 

/ 0.064x L  . The impact region is characterized by a large entrainment source while 

locations around the cavity have less entrainment. Although the jet is different form the jet 

in the 2D+T simulation in Section 5.1, the source is active at similar places. To make a 

comparison, several characteristic parameter are chosen in Table 5.6 where the shear 

strength is chosen when the jet hits the free surface. Overall, the 2D+T breaker is stronger 

than the 3D breaker, which makes sense since the Froude number is higher. Additionally, 

it is found that the production contributed by the mixing length model is negligible 

compared with the production by the TPM+MNL model described in Section 5.1.2. 

Therefore, the mixing length model does not play such an important role as it did with the 

2D+T breaker.  
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Table 5.6: Comparison between two breakers. 

 3D breaker 2D breaker 

Height (m) 0.1 0.16 

Thickness (m) 0.012 0.016 

Shear strength ( S ) (1/s) 215 654 

 

Figure 5.27: Wave breaking at the bow. Hull colored with void fractoin. Free surface 
colored with entrainment source. 

 

Figure 5.28: Instantaneous solution at / 0.8x L   colored with (a) entrainment source and 
(b) integral length scale 11L .  
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Figure 5.29: Slice / 0.064x L   at bow wave breaking region colored with entrainment 
source of void fraction. 

5.2.3.2 Void fractions around the Athena R/V 

Figure 5.30 shows void fraction contours around Athena R/V. Bubbles are observed 

at the bow wave breaking, hull/free surface contact line, and stern. The masker also causes 

wave breaking and entrainment as observed in the experiment even though the grid 

resolution is insufficient to capture it to the full extent. Previous work by Castro (2011) 

predicts higher void fraction levels at the hull when using RPI’s (Ma et al. 2010b) model. 

However it was observed that RPI’s model tends to improperly predict air entrainment in 

regions of high velocity gradients especially near solid boundaries. This thesis improves 

on these results in two ways: 1) the air entrainment model is a function of local turbulent 

quantities and is reasonably grid independent. 2) Bubble transport equations are integrated 

all the way into the wall in contrast to the work by Castro (2011), which solves for average 

quantities near a wall region. Bubbles at the bow are transported down by the strong 

downward velocity field and turbulence mixing, as indicated by the void fraction contours. 

Slices colored with void fraction in Figure 5.30 show the bubbly boundary layer evolves 

from the bow to the stern of the ship. The void fraction contours shown on the rudders 

indicate strong effects of the propeller on the bubble transport.  
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Figure 5.30: Predicted void fraction contours around Athena R/V. 

 

Figure 5.31: Void fraction contours at bow. 

Bubble clouds similar to those observed in the 2D+T experiment (Tavakolinejad 

2010) are also predicted in the Athena R/V bow wave as shown in Figure 5.31. The clouds 

downstream of the breaker finally disappear before reaching the masker as bubbles leave 

the domain due to buoyancy. Bubbles can go deep, depending on bubble size, as they are 

transported around the ship with the flow, which can be seen from the thickness of the 
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bubbly layer near the free surface. Bubbles forming the band region shown in Figure 5.19 

are transported from the near surface region at bow by the flow (see Figure 5.35 for 

streamlines).  

The streamline in Figure 5.31 goes through the second bubble cloud produced by 

the breaker. Void fraction along this streamline is presented in Figure 5.32. Two peaks in 

the profile are marked out by circles. They are caused by the entrainment at bow and stern 

respectively. The void fraction decreases quickly due to escape of bubbles through the 

surface but with different rates after entrainment in bow and stern. This difference is mainly 

caused by differences in turbulence mixing and bubbles sizes. The void fraction does not 

vary significantly form / 0.4x L   to / 1x L   because small bubbles, with low terminal 

velocity, dominate the size distribution in this region. 

 

Figure 5.32: Void fraction variation along streamline 0. 

As shown in Figure 5.33, the void fraction distribution changes significantly as 

bubbles move close to the propeller. Upstream of the propeller, bubbles are sucked 

downward gradually. Since mostly small bubbles are present at this depth, the relative 

velocity is negligible compared with the liquid velocity. As a result, they are essentially 
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markers transported along the shaft by the shedding vortices from the shaft collar. Bubbles 

are pulled deeper when they go through the propeller and finally reach the rudders, 

producing a wake with a very characteristic cloud signature behind the propellers. The 

bubbly wake behind the ship is shown in Figure 5.34 with slices colored by void fraction. 

The void fraction gradually decreases as the wake grows in the spanwise direction due to 

mixing and bubbles leaving the domain due to buoyancy. In addition, stronger turbulence 

in the center of the wake, as indicated by the entrainment source in Figure 5.26, results in 

higher void fraction and mixes bubbles deeper than those on two sides.  

 

Figure 5.33: Void fraction contours near the propellers. 
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Figure 5.34: Bubbly wake for Athena R/V. Slices and free surface are colored with void 
fraction. 

  

 

Figure 5.35: (a) Extracted streamlines along Athena R/V (All are colored with void 
fraction); (b) Definition of positions along hull. 

Five streamlines are extracted along the starboard side of the hull, chosen to 

represent most of the near wall region. They are numbered 1 to 5 from top to bottom in 
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Figure 5.35(a). Streamline 1 is near the hull/free surface contact line. Streamline 2 is close 

to the strut and stabilizer. Streamline 3 goes through the two struts, 4 goes through the 

propeller and 5 covers the deepest regions that bubbles can reach on the hull, close to the 

skeg and inner strut. In addition, streamlines 3 and 5 are close to the center in the bubbly 

wake behind the ship, where the depths for all the streamlines except 4 are less than 10cm

. The definition of positions along the ship are shown in Figure 5.35(b).  

 

Figure 5.36: Void fraction along streamlines. 

Void fraction along the streamlines is shown in Figure 5.36. Increases in void 

fraction are initially observed when the path gets into bubbly locations. The void fraction 

then decrease or increase slowly, with values varying from 410  to 610  depending on 

streamline from / 0.5x L   to / 1x L  . The void fraction jumps to much higher values at 

the stern except for streamline 4, which is deeper and not affected by the entrainment at 

the stern. Downstream of the stern the void fraction decreases quickly due to bubble 

buoyancy and release through the free surface. The deaeration rates beyond / 1.4x L   are 

similar for streamlines close to the surface (1, 2, 3 and 5) 
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Turbulent kinetic energy and dissipation are shown in Figure 5.37. Streamlines 3 

and 5 (lines overlap in the figure) go through the highest 
tk  and t  downstream of the ship. 

The turbulence field not only affects the entrainment source but also the bubble transport, 

resulting in differences in void fraction and bubble size distribution.  

 

Figure 5.37: Turbulence kitnetic energy and dissipation in the ship’s wake. 

5.2.3.3 Bubble size distribution along sample streamlines 

Normalized void fraction size distributions along streamline 0 are shown in Figure 

5.38. The distribution for the entrainment source is also shown, which peaks at 4 mm in 

diameter. Large bubbles rise quickly after entrainment as indicated by the shifts toward 

smaller bubbles for different downstream positions in Figure 5.38(a). At / 0.1x L  , close 

to the breaker, the peak value occurs at 2mmD  , half of the value for entrainment source, 

and drops to 300 μm  in a distance of 1.4 m along the streamline. From / 0.2x L   to 

/ 0.4x L   the peak diameter decreases from around 200 μm  to 100 μm . Beyond 

/ 0.4x L  , the bubble size distribution does not show significant variations. Considering 

Figure 5.32 and Figure 5.38, we conclude that large bubbles entrained at wave breaking 

region escape quickly through the free surface resulting in a rapid drop in void fraction as 

the remaining small bubbles dominate the bubble size distribution, leading to lower 

decrease rates in void fraction.  
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Figure 5.38: Normalized void fraction size distribution at different positions along 
streamline 0. 

 

Figure 5.39: Normalized void fraction size distribution at different depths for the bow 
experimental position. 

Figure 5.39 presents the normalized void fraction size distribution at different 

depths for the bow experimental position in Johansen et al. (2010), 3.5 m downstream of 

the breaker. As expected, the size distribution peak shifts to smaller bubbles as the depth 

increases. The size distribution peaks around 80 μm at 0.15 m, coincident with the 
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distributions shown in Figure 5.23. The size distribution does not change considerably from 

0.05 m to 0.1 m in depth while it varies substantially from 0.1 m to 0.15 m.  

The Sauter diameter for different streamlines is shown in Figure 5.40. From 

/ 0.4x L   to / 1x L  , the Sauter diameter is small at 32  ~1 m70μd  ( 270 μm   for 

streamline 3), concluding that the size distribution quickly develops along the hull. The 

strong entrainment at the stern causes sharp increases of the Sauter diameter near the free 

surface, reaching values of 32  ~ 2 m350 μd . The Sauter diameter decreases quickly 

downstream mainly as a result of large bubbles leaving the domain, with the exception of 

streamline 4.  

 

Figure 5.40: Predicted Sauter diameter 
32d  variation along streamlines. 

The number density of three groups (groups 1, 8 and 15) are shown in Figure 5.41. 

The evolution along the streamlines for groups 1 and 8 groups are considerably similar 

downstream of the ship, with both decreasing slowly away from the ship. For bubbles with 

0.45mmD   (group 8), the number density stays almost constant from / 0.5x L   to 

/ 1x L  . Few bubbles with 1cmD   can be found under the ship, and though they are 

entrained massively at the stern, large bubbles leave the fluid rapidly downstream of the 
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ship. Since these streamlines go through regions with different turbulence levels (see 

Figure 5.37), dispersion, coalescence and breakup rates differ for different streamlines.  

 

Figure 5.41: Group number density along the hull for different streamlines. (a): No. 1 
group with 20μmD  ;(b): No. 8 group with 0.45mmD  ; (c): No. 15 group with 

1cmD  .  

Figure 5.42 presents the normalized void fraction size distribution along 

streamlines. Recall that the streamline may go through different depths, which can affect 

the size distribution, see Figure 5.39. For / 1x L  , most bubbles along all streamlines are 

smaller than 500 μm . For streamlines 1 and 2 the size distribution in the wake shifts 

gradually to smaller bubbles. Streamlines 3 and 5, however, experience high turbulence 

levels (see Figure 5.37) that produce entrainment resulting in size distributions similar to 

the entrainment size distribution.  
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Figure 5.42: Normalized void fraction distributions at different positions along the five 
extracted streamlines.  
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5.3 Model application for Kann boat 

Bubble transport around ships can be significantly different depending on the 

geometry characteristic of ship. This section presents two phase simulation of Kann boat 

using the proposed numerical scheme, with turbulent entrainment and impact entrainment 

model. Also, extensive experimental data is available from Perret et al. (2014) to make a 

comparison. 

For this case, the waterline length is 6 mL   and the boat speed is 9.26 m/sU  , 

resulting in 7Re 5.67 10  and Fr 1.21 . Half of the ship is simulated, taking advantage 

of the centerplane symmetry of the geometry. The grid system has 7 blocks with 10.3 

million grid nodes in total as shown in Figure 5.43. Two refinements are placed at the bow 

to properly capture wave breaking and entrainment. 

The two phase blended /k k    SST turbulence model (Moraga et al. 2008) 

with MNL+ML method in Section 5.1 is used in the simulation. The liquid momentum 

equation is solved with second order discretization in time and fourth order in space. The 

time step is 46. s05 1t   . The boat is free to heave with the trim fixed at 2.3 , as 

measured in experiments. Bubble sizes are discretized in 15 groups in the range 

 20μm, 2cmD  equally spaced on a logarithmic scale. The models of Prince and Blanch 

(1990) and Lehr et al. (2002) are used to model coalescence and breakup, respectively. 

Bubble dissolution is also modeled as in (Castro and Carrica 2013a) though it could be 

neglected in this case given the short time scales considered. Impact entrainment model 

parameters are: 0.025 med  , 
w 0.05 md  , 0.05 mFS  . The modeling strength constant 

is   0.15C   . Entrainment size distribution taken from the bow experimental data 

(Johansen et al 2010) is used to obtain the entrainment source for each group. Other 

modeling constants are the same as in Athena R/V case. The simulation is performed 

without two phase model for 3 ship lengths and then continues with two phase model until 

the flow finally reach a quasi-steady status. The solution for the following analysis is 

obtained at 6t  .  
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Figure 5.43: Overset grid system for Kann boat. 

 

Figure 5.44: Free surface and hull colored with void fraction. 

Free surface colored with total void fraction is shown in Figure 5.44 at 6t  , when 

the bubbly flow is fully developed behind the boat. The experimental locations are marked 

out as black points. The top view shows the bubbly wake behind boat. High void fraction 
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are observed near transom. It has to be mentioned that results from increasing mixing 

length model constant are different at the bow, which have splashes plunging into water 

forming bubble trails on two sides (Li et al. 2015). Slices colored with void fraction in a 

view from the bottom in Figure 5.44 follow the evolution of the boundary layer as its 

thickness grows from the bow to the stern, revealing that a large amount of the bubbles in 

the wake behind the boat comes from the boundary layer bubbles generated at the bow. 

The contour levels of void fraction at the hull show a fairly uniform two-phase flow 

underneath the boat with no significant secondary flows that might disturb the experimental 

conditions. 

Figure 5.45 compares profiles of void fraction against distance to the hull at the 

bow and the stern at the experimental locations reported by Perret et al. (2014). The 

experiments reveal a fairly uniform profile at the bow most likely due to the very intense 

mixing taking place at this location near the entrainment region. The void fraction increases 

at the stern location as bubbles rise up towards the hull. The computational model is able 

to reproduce levels of void fraction similar to those in the experiments and even the 

shrinking of the boundary layer towards the stern. However a better match requires the 

development of breakup and coalescence models for the extreme conditions of shear and 

turbulence within a full-scale boundary layer. The result from Li et al. (2015) is also shown 

in Figure 5.45. The major difference is the void fraction level away from hull at bow. It is 

due to the high turbulence level introduced by the mixing length model that the void 

fraction reaches zero slowly. Although the void fractions differ for two models, the 

normalized void fraction distribution and bubble number density are very similar at 

experimental locations.  



135 
 

 

Figure 5.45: Void fraction versus distance to the hull for experimental positions. 

Normalized void fraction distribution is shown in Figure 5.46 at locations at the 

bow and stern and at three distances from the wall where experimental data is available. 

Both computational and experimental results exhibit a size distribution 5 mm away from 

the hull that shifts towards smaller bubbles when compared to the distribution at 10 mm, 

though this shift is more dramatic in the experiments. A significant difference in the 

experiments is observed for the size distribution at 0 mm from the wall (where the probe 

tip is practically touching the hull) which dramatically shifts towards much smaller bubbles 

at the stern. This shift most likely is caused by the highly enhanced breakup of bubbles in 

the boundary layer, which current breakup models greatly underpredict given that the 

combined interaction between shear and turbulence is not taken into account. An important 

observation is that during the process of unfolding used in the post-processing of 

experimental data to obtain size distributions, an isotropic field of bubbles is assumed. This 

assumption clearly does not hold near the wall and may cause overprediction of larger 

bubbles near the wall.  

The bubble size distribution is shown in Figure 5.47. The good agreement between 

model predictions and experimental data shows that the improvements in robustness and 
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accuracy enable computations that were not possible with less careful implementation of 

numerical schemes. 

 

Figure 5.46: Normalized void fraction size distribution for different depths. 

 

Figure 5.47: Bubble number density distribution at experimental locations. 
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CHAPTER 6    CONCLUSIONS AND FURTURE WORK 

This thesis presents the development of a mechanistic turbulent bubble entrainment 

model. The model was designed for ship flow applications, and validation was performed 

for several flows of interest for ship hydrodynamics. The model shows good predictive 

capabilities when the air entrainment process is dominated by turbulence. The entrainment 

model is also extended to account for air entrapment due to hull/wave impact processes.  

Application of the new entrainment model results in regions of very high void 

fraction that the original Rhie and Chow (1983) projection method is unable to handle. A 

novel two-phase numerical approach, developed to handle high void fractions while 

preventing instability, is also presented in this thesis. The approach was successfully 

applied to a variety of flows, including high Reynolds number ship flows with complex 

geometries at high void fractions. 

6.1 Main contributions and conclusions 

The main contributions and corresponding conclusions of this thesis can be 

summarized as follows: 

Physical modeling 

A general framework focusing on turbulent entrainment model is developed and 

applied to bubbly flow simulations relevant to ship hydrodynamics. The model is 

mechanistic, in the sense that all terms are the result of direct modeling of physical 

mechanisms or processes, and based on local quantities. The only modeling constant is 

calibrated using experimental data for bow wave breaking entrainment. This constant is 

also proved to be appropriate for Athena R/V simulations. Overall, the model constitutes a 

significant improvement over previous bubble entrainment models by virtue of better 

accuracy and robustness while using less adjustable parameters.  
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Proper turbulence levels for entrainment near the free surface are obtained through 

modifications to the classical two phase /k k    SST turbulence model. Also a 

mixing length model is proposed to describe unresolved turbulence due to roughness on 

the free surface. This model can appropriately add otherwise absent turbulence near a free 

surface and activate the turbulent entrainment model. These two improvements to the 

turbulence model show improved results for wave breaking entrainment.  

A packing model, similar to those used for fluidized beds, is developed to prevent 

unphysically high void fractions as bubbles start “packing” by exerting pressure on each 

other when void fraction increases. It is modeled as a diffusion term in the bubble transport 

equation, and is shown to be stable for high void fractions. The corresponding momentum 

transferred to the liquid is added as a body force to the liquid momentum equation. This 

force is also expanded to be consistent with the multi-group approach followed in this 

work.  

A preliminary impact model is proposed to incorporate entrainment caused by blunt 

bow shapes hitting a rough free surface. The model provides insights to another different 

but important entrainment process occurring in ships. Though further work is necessary, 

encouraging results show the potential of the model. 

Numerical methods 

An efficient, robust and stable numerical scheme for two phase flow is developed 

to solve highly nonlinear multiphase equations. It mainly includes the following 

improvements: 

A hybrid method is developed to achieve strong pressure velocity coupling in two 

phase flows. The methodology introduces face velocities in a collocated grid, effectively 

achieving mass conservation performance found on staggered grid methods in the context 

of a single-phase level set, overset grid solver. As a result, conservation of all flow variables 

is greatly improved. A non-linear interpolation for predicted face velocities is introduced 
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to obtain time step independent solutions and is able to handle large Courant numbers. The 

method is also shown to be much more stable under situations of high void fraction or large 

gradients of void fraction. 

To improve coupling between the bubbly phase solver and the liquid solver, a total 

void fraction equation is introduced as a predictor step. This proved to be an efficient 

approach while keeping a strong coupling between the phases. 

A new mass conservation equation is formulated to implicitly couple void fraction 

in the projection method, which removes instabilities observed at high void fractions. . 

The introduction of packing forces, needed to prevent unphysical accumulation of 

bubbles typical of disperse two-phase flow models, is a source of instability. A semi-

implicit implementation of the multi-group approach is developed to handle packing 

forces. 

Finally, the balanced force method is extended to general curvilinear grids. This 

improvement can remove the spurious currents observed on node velocities in body force 

dominated flows. 

Validation and applications work 

Due to its relevance to ship flows and the high-quality data available, a 2D+T 

experiment was chosen to calibrate and validate the bubble entrainment model. The 

turbulent air entrainment model predicts well the bubble clouds generated by the wave 

breaking, including position, void fraction and bubble size distribution. It is found that the 

turbulence generated by the plunging breaker has a strong effect on the two-phase 

parameters of the resulting bubble clouds. The turbulence model modifications proposed 

in this thesis can satisfactorily predict turbulence dissipation during wave breaking. 

Although extra work is required to refine the models, they can be a starting point for 

improving free surface capabilities of isotropic turbulence models. 
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Further validation and demonstration was performed for the Athena R/V ship. Data 

is available for this ship of void fraction and bubble size distribution at the bow and stern 

(Johansen et al. 2010). The study shows that bubbles entrained at the bow are swept down 

underneath of ship. A large amount of bubbles generated due to entrainment at the bow 

and contact line are transported down and reach the stern, strongly affected by incoming 

waves. The experiment does not support a study of the effect of bubbles on ship 

hydrodynamics performance. A transition for the bubble size distribution is predicted, 

which is also observed in the experimental data. Bubbles coming from the bottom boundary 

layer of the ship are small with size 80μmR  . Simulation results show good agreement 

with experiment data in this regard. For Athena R/V a grid convergence study was 

performed to analyze the grid independence of the model, a major issue with previous 

entrainment models. Since the entrainment model strongly depends on the turbulence 

levels, it shows good convergence for void fraction and bubble size distribution as the 

turbulence converges. It is shown that a medium grid size is a good choice for full scale 

simulations. According to the model, bubbles reach size distribution equilibrium quickly 

as they travelling around the ship. In agreement with the experiments, the predicted void 

fraction is very high in the highly aerated transom stern.  

Simulations of Kann boat show that the turbulent air entrainment model grossly 

underpredicts entrainment at the bow due to the low levels of turbulence predicted. The 

impact entrainment model properly supplements turbulent bubble entrainment for cases 

where bubbles are entrapped. The proposed numerical methodology can predict bubble 

transport in the boundary layer, where extensive data is available, providing a 

computational tool for development and evaluation of breakup/coalescence models inside 

boundary layer. The current model predicts that bubbles are uniformly distributed under 

the boat and the bubbly boundary layer thickness is underpredicted at the bow due to the 

inability to capture intense turbulent mixing, but properly predicts that the bubbly boundary 

layer under the boat grows as the boundary layer develops. The current breakup model 
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underpredicts the amount of small bubbles in the boundary layer. Interaction between 

turbulence and strong shear should result in high breakup rates into smaller bubbles, as 

observed in the experiments, but presently bubble breakup models do not include this 

mechanism. 

6.2 Future work 

Bubble entrainment is a challenging research field, in particular for ship flows. 

Progress made in this thesis provides guidance on possible areas for future work. There is 

a lack of experimental data, as geared towards development and validation of bubble 

entrainment modeling. Laboratory experiments should be designed to study parameters 

affecting entrainment to help improve modeling, for instance measuring two-phase 

parameters but also turbulence quantities. Additional experimental campaigns for full scale 

ships are needed to evaluate model application under practical conditions. The following 

discusses some areas of future research to improve simulation of bubbly flows around 

ships, mostly focusing on entrainment modeling: 

Two phase modeling 

Refinements to the entrainment model developed in this work. As a short term 

target, more work is needed to study grid convergence at the stern. Longer term, work to 

minimize the limitations of the turbulent air entrainment model is needed. For example, 

anisotropic turbulence should be considered to introduce entrainment caused by strong 

normal vortices interacting with the free surface (dimples), which can cause bubbles to be 

pulled deep. As the computation costs decrease, hybrid RANS/LES approaches (like DES) 

are being introduced in computational ship hydrodynamics. Improvements need to be 

introduced to adapt the model for DES simulations. 

Improvements on impact entrainment model. The constants involved inhibit 

application of this model to general problems. This is an area of importance and significant 

potential since many ships have blunt bows where impact entrainment is important. 
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Bubble breakup. Current models account for turbulence-induced breakup or shear-

induced breakup. In a boundary layer both effects are important and interact, shear 

deforming bubbles and making turbulent eddies more efficient at breaking. Current models, 

as shown in the simulations of Kann boat, cannot predict breakup of small bubbles inside 

the boundary layer.  

Extension to coarser grids. Modifications to the model are needed to predict 

entrainment on coarse grids that cannot capture wave breaking. The simulation for Athena 

R/V already shows little entrainment at the masker due to inability to capture wave 

breaking in the coarser grid. It is desirable an entrainment model can predict appropriate 

entrainment under situations where the grid cannot capture wave breaking and consequent 

turbulence generation. This can be done by using indicators as wave slope to determine if 

entrainment is to occur, adding some non-mechanistic nature to the model. 

Wall forces. Models accounting for interaction bubbles with the wall for bubbles 

about a diameter away or closer are needed to prevent excessive bubble accumulation at 

the wall and better match experiments. A preliminary model is presented in this work with 

insufficient justification. More work should focus on improvements for such forces. 

Numerical improvements 

1. Pressure coupling for two phase solver. The current two phase solver is proven to 

be robust and stable for bubbly flows dominated by buoyancy. The effect of the 

pressure gradient effect on bubble velocity are explicitly treated in the solver, 

which may cause numerical instability when the pressure gradient force overcomes 

buoyancy. 

2. Computational efficiency for turbulent entrainment model. It is found the 

entrainment model takes around 20% of the total computation time for the finest 

grid in the Athena R/V simulation. A faster strategy for the 1D integration of 
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turbulent entrainment model needs to be developed to lower the computational 

cost. 

3. Smoothing the pressure gradient for force on bubbles. The pressure gradient in 

regions of complex geometry or with bad quality grid can result in local unphysical 

bubble velocities. An efficient and reasonable averaging strategy could solve such 

numerical issues. 

4. Air/water solver for the free surface. The single level set method is a well-

established free surface capturing method for ship hydrodynamics. However, by 

ignoring the air flow, entrapped air resulting in cavities or large bubbles cannot be 

modeled. An air/water solver, like the traditional level set method or the VOF 

method could improve modeling of wave breakers and the performance of the 

present entrainment model.  

 



144 
 

REFERENCES 

Adams P, George K, Stephens M, Brucker KA, O’Shea TT, Dommermuth DG. 2010. A 
numerical simulation of a plunging breaking wave. Physics of Fluids. 22(9):091111–
12 

Aksoy H, Chen C-J. 1992. Numerical Solution of Navier-Stokes Equations with 
Nonstaggered Grids Using Finite Analytic Method. Numerical Heat Transfer, Part B: 
Fundamentals. 21(3):287–306 

Antal SP, Lahey RT, Flaherty JE. 1991. Analysis of phase distribution in fully developed 
laminar bubbly two-phase flow. International Journal of Multiphase Flow. 17(5):635–
52 

Baldy S. 1993. A generation-dispersion model of ambient and transient bubbles in the close 
vicinity of breaking waves. Journal of Geophysical Research: Oceans (1978–2012). 
98(C10):18277–93 

Behzadi A, Issa RI, Rusche H. 2004. Modelling of dispersed bubble and droplet flow at 
high phase fractions. Chemical Engineering Science. 59(4):759–70 

Bell JB, Colella P, Howell LH. 1991. An efficient second-order projection method for 
viscous incompressible flow. 10th Computational Fluid Dynamics Conference 

Bergman T, Mesler R. 1981. Bubble nucleation studies. Part I: Formation of bubble nuclei 
in superheated water by bursting bubbles. AIChE Journal. 27(5):851–53 

Bhushan S, Xing T, Carrica P, Stern F. 2009. Model- and Full-Scale URANS Simulations 
of Athena Resistance, Powering, Seakeeping, and 5415 Maneuvering. Journal of Ship 
Research. 53(4):179–98 

Bick AG, Ristenpart WD, van Nierop EA, Stone HA. 2010. Bubble formation via 
multidrop impacts. Physics of Fluids. 22(4):042105 

Bin AK. 1988. Minimum air entrainment velocity of vertical plunging liquid jets. Chemical 
engineering science. 43(2):379–89 

Bin AK. 1993. Gas entrainment by plunging liquid jets. Chemical Engineering Science. 
48(21):3585–3630 

Blenkinsopp CE, Chaplin JR. 2010. Bubble Size Measurements in Breaking Waves Using 
Optical Fiber Phase Detection Probes. IEEE Journal of Oceanic Engineering. 
35(2):388–401 

Borowski B, Sutin A, Roh H-S, Bunin B. 2008. Passive acoustic threat detection in 
estuarine environments. In Society of Photo-Optical Instrumentation Engineers (SPIE) 
Conference Series. 6945 

Brattberg T, Chanson H. 1998. Air entrapment and air bubble dispersion at two-
dimensional plunging water jets. Chemical Engineering Science. 53(24):4113–27 



145 
 

Brouilliot D, Lubin P. 2013. Numerical simulations of air entrainment in a plunging jet of 
liquid. Journal of Fluids and Structures. 43:428–40 

Buning PG, Pulliam TH. 2011. Cartesian Off-Body Grid Adaption for Viscous Time-
Accurate Flow Simulation. 20th AIAA Computational Fluid Dynamics Conference, 
Honolulu HI 

Carrica PM, Bonetto FJ, Drew DA, Lahey Jr. RT. 1998. The interaction of background 
ocean air bubbles with a surface ship. International Journal for Numerical Methods in 
Fluids. 28(4):571–600 

Carrica PM, Castro AM, Li J, Politano M, Hyman MC. 2012. Towards an air entrainment 
model. 29th Symp. Naval Hydrodyn., Gothenburg, Sweden 

Carrica PM, Castro AM, Stern F. 2010a. Self-propulsion computations using a speed 
controller and a discretized propeller with dynamic overset grids. Journal of Marine 
Science and Technology. 15(4):316–30 

Carrica PM, Drew D, Bonetto F, Lahey Jr RT. 1999. A polydisperse model for bubbly two-
phase flow around a surface ship. International journal of multiphase flow. 25(2):257–
305 

Carrica PM, Huang J, Noack R, Kaushik D, Smith B, Stern F. 2010b. Large-scale DES 
computations of the forward speed diffraction and pitch and heave problems for a 
surface combatant. Computers & Fluids. 39(7):1095–1111 

Carrica PM, Wilson RV, Noack RW, Stern F. 2007a. Ship motions using single-phase level 
set with dynamic overset grids. Computers & Fluids. 36(9):1415–33 

Carrica PM, Wilson RV, Stern F. 2007b. An unsteady single-phase level set method for 
viscous free surface flows. International Journal for Numerical Methods in Fluids. 
53(2):229–56 

Cartmill JW, Yang Su M. 1993. Bubble size distribution under saltwater and freshwater 
breaking waves. Dynamics of atmospheres and oceans. 20(1):25–31 

Castro AM. 2011. Polydispersed bubbly flow model for ship hydrodynamics with 
application to Athena R/V. PhD thesis. University of Iowa 

Castro AM, Carrica PM. 2013a. Bubble size distribution prediction for large-scale ship 
flows: Model evaluation and numerical issues. International Journal of Multiphase 
Flow. 57:131–50 

Castro AM, Carrica PM. 2013b. Eulerian polydispersed modeling of bubbly flows around 
ships with application to Athena R/V. International Shipbuilding Progress. (1-4):403–
33 

Castro AM, Carrica PM. 2011. Full Scale Simulations of the Bubbly Flow Around the 
Research Vessel Athena With Incoming Waves and Discretized Propeller. ASME-
JSME-KSME 2011 Joint Fluids Engineering Conference. 1709–20 

Castro AM, Li J, Hyman M, Carrica PM. 2014. Turbulent and Cavity Free Surface Bubble 
Entrainment with Application to Ship Hydrodynamics. 30th Symposium on Naval 
Hydrodynamics, Tasmania, Australia. 



146 
 

Chanson H. 2009. Turbulent air–water flows in hydraulic structures: dynamic similarity 
and scale effects. Environmental fluid mechanics. 9(2):125–42 

Chanson H, Cummings PD. 1994. Modelling air bubble entrainment by plunging breakers. 
Proceedings of the International Symposium: Waves-Physical and Numerical 
Modelling, IAHR. 2:783–92 

Ciborowski J, Bin A. 1972. Minimum entrainment velocity for free liquid jets. Inz. Chem. 
(Polish). 2:453–69 

Cox DT, Shin S. 2003. Laboratory measurements of void fraction and turbulence in the 
bore region of surf zone waves. Journal of engineering mechanics. 129(10):1197–1205 

Cummings PD, Chanson H. 1999. An experimental study of individual air bubble 
entrainment at a planar plunging jet. Chemical Engineering Research and Design. 
77(2):159–64 

Dalrymple RA, Rogers BD. 2006. Numerical modeling of water waves with the SPH 
method. Coastal engineering. 53(2):141–47 

Davies JT. 1972. Turbulence phenomena at free surfaces. AIChE Journal. 18(1):169–73 

Deane GB, Stokes MD. 2002. Scale dependence of bubble creation mechanisms in 
breaking waves. Nature. 418(6900):839–44 

Deshpande SS, Trujillo MF, Wu X, Chahine G. 2012. Computational and experimental 
characterization of a liquid jet plunging into a quiescent pool at shallow inclination. 
International Journal of Heat and Fluid Flow. 34:1–14 

Dommermuth D, O’Shea T, Wyatt D, Sussman M, Weymouth G, Yue D, Adams P, Hand 
R. 2006. The numerical simulation of ship waves using cartesian-grid and volume-of-
fluid methods, Rome, Italy. 

Drew DA, Passman SL. 1999. Theory of Multicomponent Fluids. Springer 

Duncan JH. 2001. Spilling breakers. Annual review of fluid mechanics. 33(1):519–47 

Elbing BR, Winkel ES, Lay KA, Ceccio SL, Dowling DR, Perlin M. 2008. Bubble-induced 
skin-friction drag reduction and the abrupt transition to air-layer drag reduction. 
Journal of Fluid Mechanics. 612:201–36 

El Hammoumi M, Achard JL, Davoust L. 2002. Measurements of air entrainment by 
vertical plunging liquid jets. Experiments in fluids. 32(6):624–38 

Ervine DA, Elsawy E, McKeogh E. 1980. Effect of turbulence intensity on the rate of air 
entrainment by plunging water jets. ICE Proceedings. 69(2):425–45 

Esch T, Menter FR. 2003. Heat transfer prediction based on twoequation turbulence models 
with advanced wall treatment. Proceedings, International Symposium on Turbulence, 
Heat and Mass Transfer, 4, pp. 614–21 

Esmailizadeh L, Mesler R. 1986. Bubble entrainment with drops. Journal of Colloid and 
Interface Science. 110(2):561–74 



147 
 

Ezure T, Kimura N, Hayashi K, Kamide H. 2008. Transient Behavior of Gas Entrainment 
Caused by Surface Vortex. Heat Transfer Engineering. 29(8):659–66 

Ezure T, Kimura N, Miyakoshi H, Kamide H. 2011. Experimental investigation on bubble 
characteristics entrained by surface vortex. Nuclear Engineering and Design. 
241(11):4575–84 

Galvin CJ. 1968. Breaker type classification on three laboratory beaches. Journal of 
geophysical research. 73(12):3651–59 

Garrett C, Li M, Farmer D. 2000. The connection between bubble size spectra and energy 
dissipation rates in the upper ocean. Journal of physical oceanography. 30(9):2163–71 

Gidaspow D. 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory 
Descriptions. Academic press 

Greaves M, Kobbacy KAH. 1981. Surface aeration in agitated vessels. Institue of Chemical 
Energy Symposium Series, 64, H1 

Hinze JO. 1955. Fundamentals of the hydrodynamic mechanism of splitting in dispersion 
processes. AIChE Journal. 1(3):289–95 

Hirt CW. 2003. Modeling turbulent entrainment of air at a free surface. Flow Science, Inc 

Hoque A. 2002. Air Bubble Entrainment by Breaking Waves and Associated Energy 
Dissipation. PhD thesis. Toyohashi University of Technology, Japan. 

Horikawa K, Kuo C-T. 1966. A study on wave transformation inside surf zone. Coastal 
Engineering Proceedings. 1:217–33 

Hosokawa S, Tomiyama A, Misaki S, Hamada T. 2002. Lateral Migration of Single 
Bubbles Due to the Presence of Wall. Proceedings of ASME Fluids Engineering 
Division Summer Meeting,Montreal, Oue., Canada, pp. 855–60.  

Hough GR, Ordway DE. 1964. The generalized actuator disk. Technical Report TAR-TR 
6401, Therm Advanced Research, Inc. 

Huang J, Carrica PM, Stern F. 2007. Coupled ghost fluid/two-phase level set method for 
curvilinear body-fitted grids. International Journal for Numerical Methods in Fluids. 
55(9):867–97 

Hunt JCR. 1984. Turbulence structure and turbulent diffusion near gas-liquid interfaces. In 
Gas Transfer at Water Surfaces, pp. 67–82. Springer 

Iafrati A. 2009. Numerical study of the effects of the breaking intensity on wave breaking 
flows. Journal of Fluid Mechanics. 622:371–411 

Iafrati A. 2011. Energy dissipation mechanisms in wave breaking processes: Spilling and 
highly aerated plunging breaking events. Journal of Geophysical Research. 116(C7): 

Iafrati A, Campana EF, Gomez Ledesma R, Kiger KT, Duncan JH. 2004. Air entrainment 
induced by the impact of a planar translating jet on a flat free surface. Proc. 25th 
Symposium on Naval Hydrodynamics. 3:84 



148 
 

Ishii M. 1975. Thermo-fluid dynamic theory of two-phase flow. NASA STI/Recon 
Technical Report A 

Ishii M, Hibiki T. 2006. Thermo-Fluid Dynamics of Two-Phase Flow. Springer 
Science+Business Media 

Ismail F, Carrica PM, Xing T, Stern F. 2010. Evaluation of linear and nonlinear convection 
schemes on multidimensional non-orthogonal grids with applications to KVLCC2 
tanker. International Journal for Numerical Methods in Fluids. 64(8):850–86 

Issa RI. 1986. Solution of the implicitly discretised fluid flow equations by operator-
splitting. Journal of computational physics. 62(1):40–65 

Jeong J-T. 2012. Free-surface deformation due to spiral flow owing to a source/sink and a 
vortex in Stokes flow. Theoretical and Computational Fluid Dynamics. 26(1-4):93–
103 

Jeong J-T, Moffatt HK. 1992. Free-surface cusps associated with flow at low Reynolds 
number. Journal of fluid mechanics. 241:1–22 

Johansen JP, Castro AM, Carrica PM. 2010. Full-scale two-phase flow measurements on 
Athena research vessel. International Journal of Multiphase Flow. 36(9):720–37 

Kiger KT, Duncan JH. 2011. Air-entrainment mechanisms in plunging jets and breaking 
waves. Annual Review of Fluid Mechanics. 44:563–96 

Kothe DB. 1998. Perspective on Eulerian Finite Volume Methods for Incompressible 
Interfacial Flows. In Free Surface Flows, eds. HC Kuhlmann, H-J Rath, pp. 267–331. 
Springer Vienna 

Kuboi R, Komasawa I, Otake T. 1972. Behavior of dispersed particles in turbulent liquid 
flow. Journal of Chemical Engineering of Japan. 5(4):349–55 

Kumagai M, Endoh K. 1983. A note on the relationship between gas entrainment curve 
and its starting velocity. Journal of Chemical Engineering of Japan. 16(1):74–75 

Lamarre E, Melville WK. 1991. Air entrainment and dissipation in breaking waves. Nature. 
351(6326):469–72 

Landrini M, Colagrossi A, Greco M, Tulin MP. 2007. Gridless simulations of splashing 
processes and near-shore bore propagation. Journal of Fluid Mechanics. 591:183–213 

Lang AW, Manglano CE. 2004. An experimental study of a turbulent shear layer at a clean 
and contaminated free-surface. Experiments in Fluids. 36(3):384–92 

Latorre R, Miller A, Philips R. 2003. Micro-bubble resistance reduction on a model SES 
catamaran. Ocean Engineering. 30(17):2297–2309 

Lara P. 1979. Onset of air entrainment for a water jet impinging vertically on a water 
surface. Chemical Engineering Science. 34(9):1164–65 

Lehr F, Millies M, Mewes D. 2002. Bubble-Size distributions and flow fields in bubble 
columns. AIChE Journal. 48(11):2426–43 



149 
 

Leifer I, de Leeuw G. 2006. Bubbles generated from wind-steepened breaking waves: 1. 
Bubble plume bubbles. J. Geophys. Res. 111(C6):C06020 

Lewis D, Davidson JF. 1982. Bubble splitting in shear flow. Transactions of the Institution 
of Chemical Engineers. 60(5):283–91 

Lien FS, Leschziner MA. 1994. A general non-orthogonal collocated finite volume 
algorithm for turbulent flow at all speeds incorporating second-moment turbulence-
transport closure, Part 1: Computational implementation. Computer methods in applied 
mechanics and engineering. 114(1):123–48 

Li J, Castro AM, Carrica PM. 2015. A pressure-velocity coupling approach for high void 
fraction free surface bubbly flows in overset curvilinear grids: Pressure-velocity 
coupling for free surface bubbly flows with overset. International Journal for 
Numerical Methods in Fluids. DOI: 10.1002/fld.4054 

Lin TJ, Donnelly HG. 1966. Gas bubble entrainment by plunging laminar liquid jets. 
AIChE Journal. 12(3):563–71 

Loewen MR, Melville WK. 1991. Microwave backscatter and acoustic radiation from 
breaking waves. Journal of Fluid Mechanics. 224(-1):601 

Loewen MR, Melville WK. 1994. An experimental investigation of the collective 
oscillations of bubble plumes entrained by breaking waves. The Journal of the 
Acoustical Society of America. 95(3):1329–43 

Lopez de Bertodano M, Moraga FJ, Drew DA, Lahey RT. 2004. The modeling of lift and 
dispersion forces in two-fluid model simulations of a bubbly jet. Journal of fluids 
engineering. 126(4):573–77 

Lorenceau E. 2003. Interfaces en grande deformation: oscillations, impacts, singularites. 
PhD thesis. Univeristy Paris VI 

Luo H, Svendsen HF. 1996. Theoretical model for drop and bubble breakup in turbulent 
dispersions. AIChE Journal. 42(5):1225–33 

Ma G, Shi F, Kirby JT. 2011a. A polydisperse two-fluid model for surf zone bubble 
simulation. Journal of Geophysical Research: Oceans (1978–2012). 116(C5):C05010 

Ma J, Oberai AA, Drew DA, Lahey Jr RT, Moraga FJ. 2010a. A quantitative sub-grid air 
entrainment model for bubbly flows–plunging jets. Computers & Fluids. 39(1):77–86 

Ma J, Oberai AA, Hyman MC, Lahey Jr RT, Drew DA. 2010b. A generalized subgrid air 
entrainment model for RaNS modeling of bubbly flows around ship hulls. 7th 
International Conference on Multiphase Flow-IcmF 2010 Proceedings, Tampa, 
Florida 

Ma J, Oberai AA, Lahey RT, Drew DA. 2011b. Modeling air entrainment and transport in 
a hydraulic jump using two-fluid RANS and DES turbulence models. Heat and Mass 
Transfer. 47(8):911–19 

Martínez-Bazán C, Montanes JL, Lasheras JC. 1999. On the breakup of an air bubble 
injected into a fully developed turbulent flow. Part 1. Breakup frequency. Journal of 
Fluid Mechanics. 401:157–82 



150 
 

McKeogh EJ, Ervine DA. 1981. Air entrainment rate and diffusion pattern of plunging 
liquid jets. Chemical Engineering Science. 36(7):1161–72 

Menter FR. 1994. Two-equation eddy-viscosity turbulence models for engineering 
applications. AIAA Journal. 32(8):1598–1605 

Mesler R, Mailen G. 1977. Nucleate boiling in thin liquid films. AIChE Journal. 
23(6):954–57 

Miettinen A. 1997. A study of the pressure correction approach in the colocated grid 
arrangement. Helsinki University of Technology 

Mofidi A, Carrica PM. 2014. Simulations of zigzag maneuvers for a container ship with 
direct moving rudder and propeller. Computers & Fluids. 96:191–203 

Montazeri H, Ward CA. 2014. A balanced-force algorithm for two-phase flows. Journal 
of Computational Physics. 257:645–69 

Moraga FJ, Carrica PM, Drew DA, Lahey Jr. RT. 2008. A sub-grid air entrainment model 
for breaking bow waves and naval surface ships. Computers and Fluids. 37(3):281–98 

Moraga FJ, Larreteguy AE, Drew DA, Lahey Jr RT. 2003. Assessment of turbulent 
dispersion models for bubbly flows in the low Stokes number limit. International 
Journal of Multiphase Flow. 29(4):655–73 

Mori N, Suzuki T, Kakuno S. 2007. Experimental study of air bubbles and turbulence 
characteristics in the surf zone. Journal of Geophysical Research: Oceans (1978–
2012). 112(C5):C05014 

Noack R. 2005. SUGGAR: a general capability for moving body overset grid assembly. 
AIAA paper. 5117:2005 

Oguz HN, Prosperetti A, Lezzi AM. 1992. Examples of air-entraining flows. Physics of 
Fluids A: Fluid Dynamics (1989-1993). 4(4):649–51 

Pascau A. 2011. Cell face velocity alternatives in a structured colocated grid for the 
unsteady Navier–Stokes equations. International Journal for Numerical Methods in 
Fluids. 65(7):812–33 

Perret MN, Esmaeilpour M, Carrica PM. 2014. Two Phase Flow Measurements in a Full 
Scale Boundary Layer. 30th Symp. Naval Hydrodyn., Hobart, Australia 

Pope SB. 2000. Turbulent Flows. Cambridge university press 

Prince MJ, Blanch HW. 1990. Bubble coalescence and break-up in air-sparged bubble 
columns. AIChE Journal. 36(10):1485–99 

Pumphrey HC, Elmore PA. 1990. The entrainment of bubbles by drop impacts. Journal of 
Fluid Mechanics. 220:539–67 

Rapp RJ, Melville WK. 1990. Laboratory measurements of deep-water breaking waves. 
Philosophical Transactions of the Royal Society of London. Series A, Mathematical 
and Physical Sciences. 735–800 



151 
 

Rhie CM, Chow WL. 1983. Numerical study of the turbulent flow past an airfoil with 
trailing edge separation. AIAA journal. 21(11):1525–32 

Savelsberg R, Van De Water W. 2009. Experiments on free-surface turbulence. Journal of 
Fluid Mechanics. 619:95–125 

Saylor J, Bounds GD, others. 2012. Experimental study of the role of the Weber and 
capillary numbers on Mesler entrainment. AIChE Journal. 58(12):3841–51 

Sene KJ. 1988. Air entrainment by plunging jets. Chemical Engineering Science. 
43(10):2615–23 

Shen L, Yue DK. 2001. Large-eddy simulation of free-surface turbulence. Journal of fluid 
mechanics. 440:75–116 

Shen WZ, Michelsen JA, Sørensen JN. 2001. Improved Rhie-Chow interpolation for 
unsteady flow computations. AIAA journal. 39(12):2406–9 

Shi F, Kirby JT, Ma G. 2010. Modeling quiescent phase transport of air bubbles induced 
by breaking waves. Ocean Modelling. 35(1-2):105–17 

Shu C-W. 1998. Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory 
Schemes for Hyperbolic Conservation Laws. Springer 

Sigler J, Mesler R. 1990. The behavior of the gas film formed upon drop impact with a 
liquid surface. Journal of Colloid and Interface Science. 134(2):459–74 

Sutin A, Benilov A, Roh H-S, Nah YI. 2008. Acoustic measurements of bubbles in the 
wake of ship model in tank. Journal of the Acoustical Society of America. 123(5):3751 

Takahashi M, Inoue A, Aritomi M, Takenaka Y, Suzuki K. 1988. Gas Entrainment at Free 
Surface of Liquid,(II) Onset Conditions of Vortex-Induced Entrainment. Journal of 
Nuclear Science and Technology. 25(3):245–53 

Tavakolinejad M. 2010. Air bubble entrainment by breaking bow waves simulated by a 
2D+T technique. PhD thesis. University of Maryland 

Thompson JF, Warsi ZU, Mastin CW. 1985. Numerical Grid Generation: Foundations 
and Applications, Vol. 45. North-holland Amsterdam 

Thoroddsen ST, Etoh TG, Takehara K. 2003. Air entrapment under an impacting drop. 
Journal of Fluid Mechanics. 478:125–34 

Townsend AA. 1966. The mechanism of entrainment in free turbulent flows. Journal of 
Fluid Mechanics. 26(04):689–715 

Trevorrow MV, Vagle S, Farmer DM. 1994. Acoustical measurements of microbubbles 
within ship wakes. The Journal of the Acoustical Society of America. 95(4):1922–30 

Trevorrow MV, Vasiliev B, Vagle S. 2006. Wake acoustic measurements around a 
maneuvering ship. Canadian Acoustics. 34(3):112–13 

UNCTAD. 2009. United Nations Conference on Trade and Development. Summary of 
Proceedings, Geneva 



152 
 

van de Sande E, Simith JM. 1974. Mass transfer in a pool with plunging liquid jets. 
Proceedings of the international Chem. Engng Symposium Multiphase Flow Systems, 
Glasgow 

van de Sande E, Smith JM. 1975. Mass transfer from plunging water jets. The Chemical 
Engineering Journal. 10(2):225–33 

Wallis GB. One-dimensional two-phase flow, 1969. McGraw-Hill, New York 

Xing T, Shao J, Stern F. 2007. BKW-RS-DES of unsteady vortical flow for KVLCC2 at 
large drift angles. Proc 9th Int Conf on Numerical Ship Hydrodynamics, Ann Arbor, 
MI 

Yeoh GH, Tu J. 2010. Computational Techniques for Multi-Phase Flows. Elsevier Ltd. 

Yu B, Kawaguchi Y, Tao W-Q, Ozoe H. 2002. Checkerboard Pressure Predictions Due to 
the Underrelaxation Factor and Time Step Size for a Nonstaggered Grid with 
Momentum Interpolation Method. Numerical Heat Transfer, Part B: Fundamentals. 
41(1):85–94 

 

 

 

 


	University of Iowa
	Iowa Research Online
	Summer 2015

	Contributions to modeling of bubble entrainment for ship hydrodynamics applications
	Jiajia Li
	Recommended Citation


	PrelimPages_jia
	Thesis_Def_v63

