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ABSTRACT 

We develop dynamic breathing lung models for healthy and asthmatic subjects by 

utilizing two or multiple volumetric multi-detector-row computed tomographic (MDCT) 

of lung images acquired from both static CT and four-dimensional CT (4D-CT) scans. A 

mass preserving image registration is utilized to derive local variables including Jacobian 

(ratio of volume change) and maximum shear strain or anisotropic deformation index 

(ADI) for assessment of lung deformation, and local air volume and flow rate for 

assessment of regional ventilation. First, lung image data of six normal human subjects 

acquired at three static inflation levels, 20% of vital capacity (VC), 60% VC and 80% VC, 

are used to evaluate the non-linear characteristics of the human lung during deep breathing. 

We quantify the non-linearity by comparing the variables which are interpolated linearly 

between 20% and 80% VC images with those of direct registration of 20%, 60% and 

80%VC images to observe how the results are deviated from linear curves. Then, we assess 

regional ventilation, nonlinearity, and hysteresis of the lung motion during dynamic 

breathing using 4D-CT data sets. Six healthy adult humans are studied during controlled 

tidal breathing as well as during total lung capacity (TLC) and functional residual capacity 

(FRC) breath holds. Results from static analysis are utilized to contrast static vs. dynamic 

(deep vs. tidal) breathing. A rolling-seal piston system is employed to maintain consistent 

tidal breathing during 4D-CT spiral image acquisition, providing required between-breath 

consistency for physiologically meaningful reconstructed respiratory motion. Lobar 

distributions of air volume change during tidal breathing are correlated with those of deep 

breathing to differentiate regional ventilation between deep and tidal breathing. With ADI, 

we are able to quantify nonlinearity and hysteresis of lung deformation that can only be 
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captured in dynamic images. In addition, 4D-CT data sets for six mild/moderate asthmatic 

subjects are added during tidal breathing following acquisition of two static scans at TLC 

and FRC. We analyze those data to assess ventilation heterogeneity, non-linear deformation 

and hysteresis of lung motion to distinguish regional and global features of asthmatic lungs 

from those of healthy lungs during breathing. Eventually, 4D-CT data for healthy and 

asthmatic lungs are utilized to derive physiologically consistent boundary conditions for 

computational fluid dynamic (CFD) simulation of airflow in the human lungs during tidal 

breathing. We investigate the effect of dynamic breathing on air flow distribution and 

pressure drop along the central airways. 
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PUBLIC ABSTRACT 

The objective of this work is to develop a realistic dynamic model for breathing human 

lungs to evaluate lung functions for healthy and asthmatic subjects. We acquire lung images 

at different inflation level during deep breathing (static) as well as normal (dynamic) 

breathing. Then, we apply image processing techniques to analyze these lung image data. 

Image processing techniques provide essential tools to assess how human lung locally 

moves and how air changes inside the airways of the lung. We quantify non-linear features 

of human lungs by analyzing lung motion and air volume change using static and dynamic 

images. We utilize those features to distinguish lung functions derived from static and 

dynamic imaging. In addition, we use dynamic images to study differences of lung 

functions between inhaltion and exhalation during normal breathing due to lung hysteresis. 

Furthermore, knowing these differences helps differentiate lung functions between healthy 

and asthmatic subjects. Lastly, we use computational fluid dynamics techniques to simulate 

air flow and pressure distribution in the airways for both healthy and asthmatic lungs during 

dynamic breathing. The simulation has a potential to provide essential indicators such as 

airway resistance to predict and evaluate the progress of asthma. 
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1 INRODUCTION 

1.1 Background 

1.1.1 Healthy and asthmatic lung physiology 

The lungs are the main respiratory organ in humans. There are two lungs located 

on each side of the body. Their main function is to exchange oxygen and carbon dioxide 

so that oxygen is transferred into the blood and CO2 is released from that. Lung sizes are 

not the same and the right lung has greater proportion. The left lung is divided into two 

lobes by an oblique fissure: left lower lobe (LLL) and left upper lobe (LUL) while the right 

lung consists of three lobes: right lower lobe (RLL), right middle lobe (RML) and right 

upper lobe (RUL). A horizontal and an oblique fissures separate lobes in the right lung. 

Lobes are able to slide against adjacent lobes and chest wall (33). 

The lung as a part of respiratory system transport the gas through airways. Airways 

are like a bifurcation network which starts from largest airway called trachea and split into 

smaller and smaller airways called bronchi and bronchioles. The bronchioles where air is 

transferred to the alveoli are called the respiratory bronchioles. Air is transferred from the 

pharynx to the trachea. Then, trachea split the air to the left and right lungs until air is 

transferred to alveoli where oxygen and CO2 are exchanged. 

Global lung function can be evaluated using pulmonary function test (PFT) 

considered as non-invasive tests. The test provides information to diagnose the lung 

disorders and find a certain treatment for that. The PFT data include: 

• Tidal volume: Lung volume difference between end-inhaltion and end exhalation 

during normal breathing. The normal value is about 500-600 ml in adults. 
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• Residual volume (RV): The amount of air remaining in the lung after the most 

forced exhalation. This volume should be calculated via indirect methods and 

cannot be measured.  

• Vital Capacity (VC): The maximum amount of air breathed out after a maximum 

inhalation.  

• Total lung capacity (TLC): The amount of air remaining in the lung after a 

maximum inhalation. This volume is the summation of RV and VC. 

• Functional residual capacity (FRC): The volume representing amount of air at 

the end of a normal exhalation. 

• Forced expiratory volume (FEV): The amount of air measured during a forced 

exhalation. The amount can be measured at the first (FEV1), second (FEV2), or 

third seconds (FEV3) of the forced exhalation. 

• Forced vital capacity (FVC): The maximum amount of air during the 

measurement of forced expiratory volume. 

Two important types of lung disorders are obstructive and restrictive lung diseases 

where produce problems with airflow within the lungs. Those disorders are observed in 

lung disease such asthma and chronic obstructive pulmonary disease (COPD). In this study, 

we focus on asthmatic human lungs. Asthma is a lung disease characterized by airway 

inflammation, airway hyper-responsiveness and airflow obstruction. With use of PFT, we 

are able to find obstructive patterns within the asthmatic lungs. Increase of airway 

resistance in asthma causes airflow obstruction which can be observed in decrease of FEV1 

and FEV1/FVC ratio, and FVC is reduced due to hyperinflation of lung. To evaluate the 

severity of asthma, a methacholine challenge which increase restriction. Several studies 
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identified and introduced qualitative and quantitative variables to examine physiological 

heterogeneity among asthmatic lungs. 

1.1.2 Static and dynamic computed tomography imaging  

Computed tomography (CT) imaging produces high resolution of two-dimensional 

slices (tomographic images) using combination of several x-ray images obtained from 

different angles. All slices of a volumetric image are acquired continuously with the 

scanner table movement and x-ray tube rotation simultaneously.  A reconstruction process 

is applied to generate a three-dimensional image by connecting individual slices. With 

advances in image acquisition techniques, multi-detector CT (MDCT) imaging allows to 

collect multiple slices simultaneously in order to provide faster acquisition and more 

coverage of a volumetric image. As result of high spatial resolution and short acquisition 

time, MDCT has been used as an effective tool for lung imaging. With use of MDCT 

imaging, detailed anatomical information of lungs can be extracted. With use of lung 

segmentation algorithms (35), different parts of such as lungs (left and right lungs), lobes 

(64), bronchial trees (68), vessel trees (65) and fissures can be segmented. Those accurate 

segmentation can provide detailed information such as regional lung volumes, airway 

geometry and local lung density.  

CT data sets can be used to assess lung function and respiratory motion. Volumetric 

lung images can be acquired using both static and dynamic imaging. Static lung images 

usually are achieved at controlled volumes during breath-hold condition. However, four-

dimensional (4D) dynamic image data set are acquired during breathing. 4D-CT imaging 

has potential to provide physiological meaningful information to assess breathing lungs 

and distinguish between inhalation and exhalation ((5), (40), (20), (79)). However, relative 
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to static scans, they have lower resolution and higher radiation dose. In addition, to reduce 

artificial motion and acquire consistent images, it is important that subjects to be scanned 

at consistent lung volumes (60). In this study, both static and 4D-CT image data were 

acquired during breath-hold and tidal breathing, respectively. All CT image acquisition 

were approved by the University of Iowa’s Institutional Review Board. 

1.1.3 Regional ventilation and deformation  

Analysis of lung volume change and respiratory motion is the primary metric to 

assess the lung function and its health. Because the lung moves non-uniformly and has 

non-linear behavior, its motion yields regional heterogeneous ventilation and displacement 

field within the lung (59). Therefore heterogeneity of regional values leads to that 

diagnostic of lung diseases and consequently, radiotherapy techniques to be region-

specific. 

Regional ventilation is assessed by estimating local volume change (Jacobian) and 

distribution of local air volumes within the lung. The given regional ventilation would give 

more physiological information if we achieve and analyze those values during breathing 

and combine those with a measured respiratory cycle like what it is done with 4D-CT image 

data during tidal breathing. Combining regional ventilation with the respiratory cycle 

allows to quantify local dynamic flow within the lung to simulate local breathing pattern 

of healthy and diseased lungs (15). Further studies showed that assessment of regional 

deformation is not just volume change (1). Anisotropic deformation may also exist 

independent from volume change. In the other word, the local volume may be constant 

while it deforms significantly when we have expansion in one direction and contraction 

along other direction. Anisotropic deformation can be used to capture non-linearity of the 
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lung motion during breathing (41). Although non-linear motion is observed in both static 

and dynamic breathing scans, we can differentiate breathing characteristics between 

inhalation and exhalation using dynamic scans (40). Therefore, estimation of non-linearity 

in dynamic breathing results in quantifying hysteresis of lung motion between inhaltion 

and exhalation ((5), (15)). 

1.1.4 Image registration techniques  

Image registration is a method to determine a spatial transformation to match any 

pairs of images acquired at different positions and times or image data from different 

imaging modalities. Because of non-uniform deformation of the lung, it is better to use 

non-rigid image registration methods to capture accurate motion of each local point within 

the lung (83). Several image registration techniques as powerful tools in medical imaging 

have been utilized in several studies to link the lung images from different lung volumes, 

times or modalities ((8), (25), (43)). Image registration can provide regional functional 

parameters such as regional ventilation, regional deformation, and deformation of the 

airway tree to assess lung function and respiratory motion. In addition, those regional lung 

information can be used to evaluate altered local function of diseased lungs such as asthma 

and COPD. 

1.1.5 Computational fluid dynamics 

Computation fluid dynamics (CFD) has become an important tool to assess flow 

pattern, particle deposition and shear forces at the airways surfaces ((26), (52), (80)). 

Quantitative assessment of regional ventilation allows to generate physiologically 

meaningful boundary condition to be applied in CFD simulation. Several studies developed 

CFD methods using breath-hold lung images to analyze flow pattern assuming ideal 
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breathing cycles ((80), (81)). However, regional ventilation estimated from 4D-CT image 

data can be combined with actual breathing cycle to derive time-varying global and local 

flow rate at the boundaries of terminal airways to estimate more physiological results. 

Furthermore, air flow simulation can be developed for application such as analysis of flow 

pattern in lungs with asthma or COPD to predict regional airflow obstruction and pressure 

distribution. 

1.2 Overall goals 

The main purpose of this study is to develop breathing lung models for both healthy and 

asthmatic human subjects using volumetric lung images at different phases with image 

registration techniques. An algorithm is implemented to link local variables to global lung 

volume to assess lung motion during breathing. Local variables such as regional 

ventilation, Jacobian and anisotropic deformation are quantified from displacement field 

obtained from a mass preserving image registration method. In this study, we consider two 

ways to achieve different lung volumes at different inflation levels. First, we acquire three 

static MDCT lung images at FRC, TLC and an intermediate lung volume between FRC 

and TLC for healthy human subjects. In the second way, we obtain 4D-CT lung volumes 

during tidal breathing following acquisition of two deep breathing scans at TLC and FRC 

for both healthy and asthmatic human lungs. The novelty of 4D-CT image acquisition in 

this study is that a rolling-seal piston system is employed to maintain consistent tidal 

breathing during 4D-CT spiral image acquisition, providing required between-breath 

consistency for physiologically meaningful reconstructed respiratory motion. Therefore, 

unlike static scans, actual breathing waveform is measured. In the three-image analysis, we 

evaluate non-linear characteristics of lung behavior by quantifying regional ventilation and 
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deformation during deep berating. In this case, an ideal sinusoidal waveform is assumed to 

calculate the flow and deformation rates. Then, the results are compared with two-image 

(TLC and FRC) linear interpolation to quantify the degrees of non-linearity of variables 

being deviated from those based on linear assumption. In the 4D-CT image analysis, the 

healthy subjects are first analyzed to define sensitive local variables during dynamic 

breathing. The aim is to assess asymmetric regional ventilation, nonlinearity, and hysteresis 

of human lungs during dynamic breathing at tidal volume. In addition, quantitative 

assessments of 4D-CT image data are utilized for comparison with the results obtained 

from two-image and three-image based analyses to contrast static vs dynamic (deep vs. 

tidal) breathing. Then, the analysis is utilized for asthmatic subjects to distinguish regional 

and global features of asthmatic lungs from those of healthy lungs during breathing. 

Quantification of ventilation heterogeneity, non-linearity and hysteresis of lung motion 

allow to evaluate different characteristics between healthy and asthmatic lungs. 

Furthermore, precise analysis of regional ventilation during tidal breathing allows us to 

estimate physiologically meaningful time-varying airflow distributions in order to define 

improved boundary conditions for CFD simulation. Then, we will apply those improved 

boundary conditions and deforming lung geometric models for CFD simulation of airflow 

in healthy and asthmatic lungs. 

1.3 Specific aims 

The specific aims of this study are listed as follows: 

1. Evaluation of non-linear characteristics of human lungs via image registration-

derived local variables based on MDCT lung volumetric image data of six normal 

human subjects acquired at three inflation levels: 20% VC, 60% VC and 80% VC. 
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• Constructing a quadratic relationship between local variables and global air 

volumes of the lung. 

•  Comparing three-image-based results with the two-image-based results in 

which local variables change linearly. 

2. Assessment of regional ventilation, nonlinearity, and hysteresis of human lungs 

during dynamic breathing via image registration of 4D-CT scans for six healthy 

subject during tidal breathing as well as during TLC and FRC.  

• Controlling the tidal volume during dynamic imaging with a with a unique 

dual rolling-seal piston for accurate image reconstruction. 

• Deriving sensitive local variables, such as air volume and flow rate for 

assessing regional ventilation and anisotropic deformation index (ADI) for 

quantifying nonlinearity and hysteresis of lung motion. 

• Comparing 4D-CT-derived regional ventilation with those estimated by 

linear and non-linear assumption in static scans. 

3. Differentiation of characteristics of regional functional variables in asthmatic lungs 

from healthy lungs during dynamic and static breathing.  

• Quantifying regional ventilation, heterogeneity, non-linearity and 

hysteresis of lung deformation to assess differences in respiratory motion 

between healthy and asthmatic subjects using 4D-CT image data. 

• Comparing analysis of tidal breathing with that of deep breathing in 

asthmatic lungs. 
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• Quantifying local alterations of structural variables [bifurcation angle, 

circularity, airway wall thickness (WT), and hydraulic diameter (Dh)] in 

asthmatic subjects during tidal breathing. 

4. CFD simulation of airflow in selected healthy and asthmatic subjects using 4D-CT 

image data. 

• Deforming the surface mesh to match other CT images using the image 

registration technique. 

• Investigating the effect of dynamic breathing on pressure drop and 

resistance along the central airways for both healthy and asthmatic lungs. 
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2 ASSESSMENT OF REGIONAL NON-LINEAR VENTILATION AND 

TISSUE DEFORMATION USING THREE BREATH-HOLD CT 

DATA SETS 

2.1  Introduction   

The non-linear characteristics of the human lungs make quantitative assessment of lung 

deformation at intermediate inflation levels challenging. Previous studies showed that 

changes inside lungs, such as lung deformation, occur regionally (59). The ability to detect 

more sensitively regional changes of the lungs as a function of inflation level can 

potentially improve early detection of abnormalities in diseased lungs.  

   Several image-processing methods have been proposed to evaluate regional 

changes of the lungs ((4), (14)). One technique to assess lung expansion is deformable 

image registration ((15), (62)). Yin et al. (83) developed a mass preserving non-rigid 

registration technique for pairs of lung images. Matching of two images yields the 

displacement field needed to calculate regional tissue deformation and air volume change.  

To evaluate lung expansion, parameters such as regional lung deformation and ventilation 

can be estimated. West & Matthews (73) showed that lung may exhibit regionally 

anisotropic deformation, being independent from volume change.  Consequently, some 

studies employed anisotropic deformation index in addition to volume change to provide 

some sensitive measures of regional lung deformation (1, 13). However, if only two lung 

volumetric images, typically one image at the end of normal expiration (functional residual 

capacity, FRC, or residual volume, RV) and the other at the end of a maximal inspiration 

(total lung capacity, TLC), are available, analysis and prediction of lung mechanical 
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behaviors may not adequately account for non-linear behaviors of the lungs at intermediate 

inflation steps during normal breathing. 

Recent advances in MDCT and four-dimensional CT allow one to interrogate 

regional changes in the lungs at multiple inflation levels and time points. Different studies 

used those images to consider different aspects of lung motion, such as dynamic airflow 

and tissue motion, to study the pulmonary function at different inflation levels ((19), (27), 

(48), (62)). Although dynamic images are more desirable than static images to study lung 

functions, static images provide higher spatial resolution images. Ding et al.(17) performed 

CT experiments on four adult sheep to evaluate lung expansion for both static and dynamic 

images via image registration. They compared registration-derived volume changes to 

regional ventilation measured from Xenon-CT images, demonstrating good correlations 

between them for both dynamic and static images. However, only a few of studies 

investigated the non-linear behaviors of the lungs in comparison with linear counterparts 

using two images. Yin et al. (80) proposed a method to simulate air flow in the human lung 

by registering two lung images for subject-specific regional ventilation, demonstrating 

more physiologically consistent lobar air distribution than the one image-based approach 

(49). Later, Yin et al. (81) proposed a multiscale breathing lung model based on three 

MDCT lung images of one human subject. Unlike the two image-based approach with 

constant flow rates during respiration, the three image-based algorithm can derive time-

varying flow boundary conditions for computational fluid dynamics analysis of pulmonary 

airflow.   

   The objective of this paper is to examine non-linear characteristics of the human 

lung by matching MDCT volumetric lung images at three inflation levels. Local variables 
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of lung deformation and air flow derived via image registration are then used to construct 

a quadratic relationship between local variables and global air volumes of the lung. The 

results are compared with the two-mage based results in which local variables change 

linearly. We further quantify the differences of these local variables at intermediate 

inflation levels obtained by two-image linear interpolation and three-image quadratic 

interpolation, and discuss non-linear lung behaviors. 

2.2  Method  

2.2.1 MDCT image acquisition  

The MDCT lung volumetric images for six normal human subjects were acquired in the 

supine position at three static inflation levels: 20% of vital capacity (VC), 60% VC and 

80% VC. Variables corresponding to 20%, 60% and 80% VC are denoted with subscripts 

1, 2 and 3, respectively.  We used a Siemens Sensation 64-slice MDCT scanner 

(Forchheim, Germany) with 120 kV, 75 mAs, 0.75 mm slice thickness, 500 mm field of 

view. The University Institutional Review Board approved the scanning protocol. The 

software Apollo (VIDA Diagnostics, Coralville, Iowa) was used to segment the lungs and 

lobes of CT images. 

2.2.2 Image registration  

If image intensity 𝐼𝐼(𝐱𝐱) in the Hounsfield unit (HU) is known at position x, the air and tissue 

fractions are calculated as  

𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱) = 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐼𝐼(𝐱𝐱)
𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎

   and   𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐱𝐱) = 𝐼𝐼(𝐱𝐱)−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎
𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎

 (2.1) 

where the HUs of air and tissue are taken as HUair= -1000 and HUtissue=55, respectively. In 

mapping two images, one image is chosen as the reference image and the other the floating 

image. The registration is to determine an optimal spatial transformation that matches the 
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two images by minimizing a cost function E based on the local tissue difference between 

the corresponding regions (83). 

𝐸𝐸 =  ��𝑣𝑣𝑎𝑎(𝐱𝐱)𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎 (𝐱𝐱) − 𝑣𝑣𝑓𝑓�𝐓𝐓(𝐱𝐱)�𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓 �𝐓𝐓(𝐱𝐱)��

2

𝐱𝐱∈Ω

 (2.2) 

where T(x) is the transformation function which maps a point at location x in the reference 

image to the corresponding point in the floating image. 𝑣𝑣𝑎𝑎 and  𝑣𝑣𝑓𝑓 are the volumes of the 

corresponding point in the reference and floating images, respectively. The subscripts (or 

superscripts) r and f denote the reference and floating images, respectively. In this study, 

mappings are done for 20%-80% VC and 20%-60% VC pairs with 80% VC and 60% VC 

images as the reference images, respectively, and 20% VC is used as the floating image. 

2.2.3  Variables definition 

Deformation Indices  

The transformation function obtained by image registration is used to construct variables 

for assessment of local volume change and anisotropic deformation. The deformation 

gradient tensor is defined below as the gradient of transformation function  

𝐅𝐅 = ∇𝐓𝐓 (2.3) 
 
The eigenvalues of 𝐅𝐅T𝐅𝐅, 𝜆𝜆′𝑝𝑝𝑎𝑎, at a given point, are associated with each local volume from 

80% to 20% VC or 60% to 20% VC. Consequently, the principal strains of lung tissue 

deformation, 𝜆𝜆𝑝𝑝𝑎𝑎, from 20% to 80% VC or 20%  to 60%VC are  calculated as (13) 

𝜆𝜆𝑝𝑝𝑎𝑎 =
1

�𝜆𝜆′𝑝𝑝𝑎𝑎 
 (2.4) 

 With principal strains, we can define two independent indices that measure lung 

deformation. 
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Jacobian, 𝐽𝐽 = 𝑣𝑣𝑎𝑎(𝐱𝐱)/𝑣𝑣𝑓𝑓�𝐓𝐓(𝐱𝐱)�, is defined as the ratio of local lung volume at a 

given inflation level to the volume at 20% VC, measuring contraction or expansion relative 

to the 20% VC. That is, there is local expansion if J > 1 and local contraction if J < 1. The 

definition of Jacobian in terms of principal strains is 

𝐽𝐽 = 𝜆𝜆𝑝𝑝1𝜆𝜆𝑝𝑝2𝜆𝜆𝑝𝑝3 (2.5) 

 
where subscripts p1, p2  and p3 denote three principal strains. Also, a body can deform 

while its volume is constant. For example, consider a cube whose lines are initially 

perpendicular to each other. A cube can be deformed into a parallelepiped volume by 

change in angle between any pair of orthogonal lines while remaining a constant volume. 

This change in angle, 𝜓𝜓, from 90° is a representation of shear strain, 𝛾𝛾, defined as 

𝛾𝛾 = tan𝜓𝜓 (2.6) 

By sorting these eigenvalues as 𝜆𝜆𝑝𝑝1 > 𝜆𝜆𝑝𝑝2 > 𝜆𝜆𝑝𝑝3, the local shear strain, 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚, is given by 

(24) 

𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚 =
𝜆𝜆𝑝𝑝1 − 𝜆𝜆𝑝𝑝3

2
 (2.7) 

 

Similarly, Napadow et al. (54) determined anisotropy index by subtraction of axial strains 

in a 2D plane. Since 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚 is proportional to maximum difference between principle strains, 

it can be considered as an anisotropy index in a 3D domain. Thus, isotropic deformation 

occurs when volume increases equivalently in all direction (e.g. 𝜆𝜆𝑝𝑝1 = 𝜆𝜆𝑝𝑝2 = 𝜆𝜆𝑝𝑝3), which 

corresponds to 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚 = 0. On the other hand, anisotropic deformation is associated with 

greater difference between principal strains, resulting in higher value of  𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚. 
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Air volume 

For each registration, air volume at position 𝐱𝐱 can be calculated at the two levels as 

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐱𝐱) = 𝑣𝑣𝑎𝑎(𝐱𝐱)𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (𝐱𝐱) 
(2.8) 

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎
𝑓𝑓 (𝐱𝐱) = 𝑣𝑣𝑓𝑓�𝐓𝐓(𝐱𝐱)�𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓 �𝐓𝐓(𝐱𝐱)� 
 
where 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎

𝑓𝑓  are the air volumes at the reference image (60% or 80% VC) and 

floating image (20% VC), respectively. βair is calculated by Eq. (2.1).  

2.2.4  Interpolation method 

For lung air volumes at three states 20% (𝑉𝑉1), 60% (𝑉𝑉2) and 80% VC (𝑉𝑉3), corresponding 

local variables 𝑓𝑓1,𝑓𝑓2 and 𝑓𝑓3, are used to approximate variable f  as a quadratic function of 

the total lung air volume.  

𝑓𝑓(𝐱𝐱,𝑉𝑉(𝑡𝑡)) = 𝑚𝑚(𝐱𝐱) + 𝑏𝑏(𝐱𝐱)𝑉𝑉(𝑡𝑡) + 𝑐𝑐(𝐱𝐱)𝑉𝑉(𝑡𝑡)2 (2.9) 

Since the images are scanned statically and the time information is not available, 

the global lung air volume change is assumed following a sinusoidal breathing waveform. 

The global lung air volume at a reference normalized time, t*, with a time period of unity 

is taken as 

𝑉𝑉(𝑡𝑡∗) = 𝑉𝑉1 +
∆𝑉𝑉
2

(1 − cos(2𝜋𝜋𝑡𝑡∗)) (2.10) 

where 𝑉𝑉1 and 𝑉𝑉3 are roughly corresponding to FRC and TLC, respectively and ∆𝑉𝑉 = 𝑉𝑉3 −

𝑉𝑉1. Thus, the reference times for the minimum volume (𝑉𝑉1) and the maximum volume (𝑉𝑉3) 

are 0 and 0.5, respectively, and the peak inspiratory flow rate corresponds to 𝑡𝑡∗ = 0.25 

(81). In the case of using linear interpolation based on two images (20% and 80% VC), the 

coefficient c(x) in Eq. (2.9) is set to zero, whereas the waveform Eq. (2.10) remains the 

same. 
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By using air volume, Jacobian and local shear strain, respectively, as f in Eq. (2.9) 

measured at 𝑉𝑉1, 𝑉𝑉2 and 𝑉𝑉3, quadratic interpolation functions of these variables can be 

constructed as a function of global lung air volume. Then, the time rate of change of these 

variables can be calculated as  

𝜕𝜕𝑓𝑓(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝑡𝑡

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑉𝑉

�
𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡∗

�
𝑑𝑑𝑡𝑡∗

𝑑𝑑𝑡𝑡
= (𝑏𝑏 + 2𝑐𝑐𝑉𝑉)[𝜋𝜋( ∆𝑉𝑉) sin(2𝜋𝜋𝑡𝑡∗)]

𝑑𝑑𝑡𝑡∗

𝑑𝑑𝑡𝑡
 

 (2.11) 

where 𝑑𝑑𝑡𝑡
∗

𝑑𝑑𝑡𝑡
 is uniform and set to unity with t*=t hereafter.  

The entire human lung can be divided into left and right lungs. The left lung consists 

of two lobes [(left upper lobe, left lower lobe)=(LUL, LLL)], whereas the right lung 

consists of three lobes [(right upper lobe, right middle lobe, right lower lobe)=(RUL, RML, 

RLL)]. Thus, there are a total of five lobes and the left lung is usually smaller than the right 

lung. To find the rate in a region of interest R, we calculate 

�
𝜕𝜕𝑓𝑓(𝐱𝐱, 𝑡𝑡)
𝜕𝜕𝑡𝑡

𝐱𝐱∈𝑅𝑅

= ��
𝜕𝜕𝑓𝑓
𝜕𝜕𝑉𝑉

𝐱𝐱∈𝑅𝑅

�
𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

=
𝜕𝜕 ∑ 𝑓𝑓𝐱𝐱∈𝑅𝑅

𝜕𝜕𝑉𝑉
𝑑𝑑𝑉𝑉
𝑑𝑑𝑡𝑡

 (2.12) 

With the assumption that the region R is the total lung and f is local air volume, ∑ 𝑓𝑓𝐱𝐱∈𝑅𝑅 =

𝑉𝑉,   ∑ 𝜕𝜕𝑓𝑓(𝐱𝐱, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄𝐱𝐱∈𝑅𝑅 =𝑑𝑑𝑉𝑉 𝑑𝑑𝑡𝑡⁄ , indicating that the above method conserves the global lung 

air flow. The local variables of air volume, Jacobian and shear strain are normalized by 

their respective medians at the 80% VC level, and are denoted by 𝑚𝑚𝑎𝑎𝑎𝑎𝑉𝑉∗, 𝐽𝐽∗ and 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗ , 

respectively. Furthermore, the total air volume V in Eq. (2.10) is normalized as  

𝑉𝑉∗ =
(𝑉𝑉 − 𝑉𝑉1)
∆𝑉𝑉

 (2.13) 

Thus, 0 ≤ 𝑉𝑉∗ ≤ 1 and 𝑉𝑉∗ = (0, 0.5,1) correspond to the beginning, peak and end of the 

inspiration t*=t=(0, 0.25, 0.5), respectively, in a sinusoidal waveform. In the following 

analysis, 𝑉𝑉∗ is used in Eqs. (2.9) and (2.11) to account for inter-subject variations of lung 
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size so that the average coefficients of a, b, and c based on all the subjects can be calculated. 

In the following presentation, data at different inflation levels are warped to the 80% VC 

domain for comparison. 

2.3 Results 

2.3.1 Assessment of two-image linearly interpolated intermediate state 

If CT images are available only at 20% and 80% VC, variables at any intermediate state 

between them, e.g. 60% VC, can only be approximated using linear interpolation.  Since 

the intermediate state at 60% VC is available in this study, we can derive, via registration, 

the variables in association with the volume change from 20% to 60% VC, and compare 

them with those linearly interpolated using the results from registering 20% and 80% VC 

images (see section 2.2.4, Eq. (2.9) with c=0). Figure 2.1 (left column) shows the 

distributions of air volume, Jacobian and shear strain obtained via direct registration of 

images at 20% and 60% VC, while Figure 2.1 (right column) shows those obtained from 

linear interpolation between 20% and 80% VC. To quantify the differences between the 

two methods, the relative errors, the correlation factors using linear regression analysis and 

the paired student t-tests were performed for each subject (see Table 2.1). The sample size 

for local variables in the whole lung as well as in each of the five lobes was large and 

ranged between 40,000 and 500,000. These data exhibit normal distributions. The t-tests 

are significant for all variables (P < 0.05) and the errors are greater in shear strain than 

those found in Jacobian and air volume. Also, correlation factors (𝑎𝑎2 < 0.85) show that 

the variables at the intermediate state of 60 %VC calculated with linear interpolation only 

roughly agree with those by matching 20% and 60 %VC.  
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2.3.2 Three image-based, quadratic interpolation 

With three images, the quadratic interpolation as described by Eq. (2.9) is employed to 

calculate variables at intermediate states. In all cases the lung air volume changes from 

20% to 80% VC. The results are presented by lung and by lobe at multiple inflation 

levels (see 𝑉𝑉∗ in Eq. (2.13)). Also the average rates of change of each variable with respect 

to 𝑉𝑉∗ are displayed. Note that the rates of change based on linear interpolation between 

20% and 80% VC are constant with respect to 𝑉𝑉∗. 

Air volume 

Figure 2.2A shows the air volume distributions of a subject at 𝑉𝑉∗ = 0.01, 0.25, 0.50, 0.75 

and 0.99 in a sagittal section at which the dorsal surface and the ventral surface are on the 

right and left, respectively, and the diaphragm is at the bottom. Air volume at 𝑉𝑉∗ = 0.01, 

closest to the 20% VC, has the minimum value in all regions and increases to the maximum 

value at 𝑉𝑉∗ = 0.99, closest to 80% VC, which is almost uniform in all regions. The result 

shows that the ventral section reaches the maximum capacity for air first and then, the 

dorsal regions are filled with air. Figure 2.2B shows the average lobar distributions of air 

volume based on all the subjects at various inflation levels. At the initial states, the upper 

and middle lobes have greater values than the lower lobes, but with increasing 𝑉𝑉∗, the 

difference of the air volumes between them is diminished and they reach to almost the same 

level and become uniform at the final stage. The averages of the coefficients in Eq. (2.9) 

for all the subjects are tabulated in Table 2.2 for the whole lung and for each lobe. In 

addition, to compare the air volumes calculated with two-image linear interpolation and 

three-image quadratic interpolation, paired student t-tests were done in the whole lung and 

in each lobe, indicating that they are different (P < 0.05).  
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Figure 2.3A shows the average total lung air flow rate calculated with Eq. (2.12). 

As expected, air flow rate has its peak at the middle with V*=0.5. Since the global variable 

in Eq. (2.9) is the total air volume, two image-based (linear interpolation between 20% and 

80% VC) and three image-based (quadratic interpolation between 20%, 60% and 80% VC) 

methods give the same result for the flow rate of the whole lung. However, the local flow 

rates in three image-based method are different from those of two image-based method in 

which the rates are constant. For example, Figure 2.3B and C show the lobar flow rates in 

the respective left and right lungs. The flow rates in the lower lobes are greater than those 

of the upper and the middle lobes, and reach their maxima later at 𝑉𝑉∗ ≅ 0.54 and 0.56 for 

LLL and RLL, respectively, than the peak of the total lung flow rate. On the other hand, 

the peaks of the middle and upper lobes occur earlier at 𝑉𝑉∗ ≅ 0.39, 0.46,  and 0.44 for 

RML, RUL and LUL, respectively.  

 Jacobian 

Figure 2.4A shows the distributions of Jacobian at four different volumes of 𝑉𝑉∗ =

0.25, 0.5, 0.75, 1. Jacobian at volume close to 20% VC is almost unity and is not shown. 

The dorsal surface and the bottom close to the diaphragm have most expansion as the 

volume increases. Furthermore, Figure 2.4B shows that the largest and smallest Jacobian 

values occur in the lower lobes and the upper lobes, respectively. The averages of the 

coefficients in Eq. (2.9) for Jacobian based on all six subjects are given in Table 2.3. To 

compare two and three image-based results, paired student t-tests were performed, showing 

that the Jacobin calculated by linear and quadratic interpolations are different (P < 0.05).  
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shear strain 

Figure 2.5A shows the distributions of local shear strain 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  at different inflation levels. 

Local shear strain is mainly found at the bottom of the ventral surface. With increasing 𝑉𝑉∗, 

the increase of 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  starts from the bottom of the ventral surface, and then spreads to the 

upper regions. Figure 2.5B shows that the lobar changes of average 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  at various inflation 

levels. The results show that high 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  is located in the lower and middle lobes of LLL 

and RML, whereas low 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  is found in the upper lobes of LUL and RUL at all inflation 

levels. The average interpolation coefficients for 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  are listed in Table 2.4. Paired 

student t-tests were performed to compare 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  calculated by two image-based and three 

image-based methods. The result shows P<0.05, indicating that they are different. Also, a 

comparison between 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  and the anisotropic deformation index (ADI) defined as 

 ��𝜆𝜆𝑝𝑝1−𝜆𝜆𝑝𝑝2
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by Amelon et al. (1) shows a strong correlation coefficient of 

r2>0.88. 

Figure 2.6A exhibits the average rates of 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  in the total lung as a function of  𝑉𝑉∗ 

calculated with two-image linear interpolation and three-image quadratic interpolation. 

With quadratic interpolation, average rates of 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  reaches the peak at 𝑉𝑉∗ = 0.37, which 

is earlier than those of air volume and Jacobian at 𝑉𝑉∗ = 0.5. Figure 2.6B and C further show 

the averages of 𝛾𝛾𝑚𝑚𝑎𝑎𝑚𝑚∗  in the left and the right lungs, respectively. The peaks of the rates in 

the lower and middle lobes occur earlier (at 𝑉𝑉∗ ≅ 0.32, 0.34, 0.31 for LLL, RLL and RML, 

respectively) than those of the upper lobes (at 𝑉𝑉∗ ≅ 0.39 and 0.44 for LUL and RUL, 

respectively). 
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2.4  Discussion 

In this study, we examined non-linear behaviors of lung deformation and air volume 

change by applying image registration to CT images acquired at three static inflation levels. 

Specifically the change of local volume and anisotropy in lung deformation were measured 

by two independent indices: Jacobian and shear strain. These indices were calculated using 

the eigenvalues obtained from the registration-derived transformation function (Eqs. (2.5) 

and (2.7)). Moreover, to investigate air volume change in the lung, we calculated air 

volume by Eq. (2.8). With two images, regional variables are assumed to change linearly. 

With three images, non-linear behaviors of the lung in terms of the above variables can be 

investigated by employing quadratic interpolation.  

Comparison of air volumes obtained by directly matching 20% and 60 %VC images 

and by linearly interpolating between 20% and 80% VC (Table 2.1 and Figure 2.1) showed 

that the linear interpolation reveals non-uniform regional air volume, but is not sensitive 

enough to detect local non-linear features with 𝑎𝑎2 < 0.85, RMS error > 12% and P < 0.05. 

Subsequently, a three image-based method was applied to examine the changes of air 

volume at multiple inflation levels.  Because of body posture and diaphragm motion, dorsal 

surface and lower lobes can inflate more so that air is distributed uniformly at the 80% VC 

stage in the whole lung (Figure 2.2). These results are consistent with the observed 

physiology of ventilation in subjects with supine position ((50), (62))  

As for Jacobian, both two and three image-based method showed that the Jacobian 

has the largest values in the lower lobes and also in the dorsal surfaces (Figure 2.1 and 

Figure 2.4), which are consistent with the diaphragm motion and in good agreement with 

the principle that volume changes more in the regions close to the diaphragm (1). However, 
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unlike the flow rates obtained by two-image linear interpolation whose peaks occur at the 

middle of 𝑉𝑉∗ = 0.5, the three-image results (see Figure 2.3) showed that the peaks of the 

flow rate in the upper and the middle lobes occur earlier than those of the lower lobes. 

These observations agree with the fact that some regions in these lobes reach their 

maximum capacity for air before the 80% VC level (Figure 2.1A).  

In this study, the index of shear strain was adopted to represent anisotropic 

deformation. Since there was a good correlation between the shear strain and the ADI index 

proposed by Amelon et al. (1) with r2 > 0.88, it is concluded that shear strain can be used 

to measure the degree of anisotropic deformation. As for shear strain, Table 1 and Figure 

1c showed that the two-image linear interpolation approach yields more error in predicting 

local non-linear tissue deformation in terms of shear strain (or ADI) than air volume and 

Jacobian. The three-image results showed that shear strain has the highest value in the 

inferior region due to large deformation in association with the diaphragm motion. With 

two image linear interpolation, the rates of all local variables with respect to 𝑉𝑉∗ are constant 

and the peaks of both the flow and the shear strain rates occur at V*=0.5, being the same 

as the peak of the sinusoidal waveform (Figure 2.3A and Figure 2.6A). However, three 

image-based results showed that shear strain rate peaks at 𝑉𝑉∗ ≅ 0.37, which is earlier than 

the peak of the flow rate (Figure 2.6A). This earlier peak was also observed in the results of 

ADI.  

From the perspective of lung mechanics, the current result is consistent with the 

notion that under quasi-static conditions the elasticity at low lung volume is lower, 

especially in dependent lung regions, than at high lung volumes. Thus, lung tissue deforms 

more at low lung volumes, as has been shown by Hoffman et al using early volumetric CT 
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methodologies ((31), (32), (33)). That is, shear strain represents tissue deformation and 

tissue deforms more at low lung volumes, thus the peak of shear rate occurs earlier than 

the peak inspiration. In addition, the lower lobes have higher shear strains and airflow rates 

than the upper lobes. Therefore, the three image-based variables, as expected, provide more 

sensitive measures of non-linear lung mechanics both in time and space. This is important 

when seeking to understand regional interactions associated with lung pathophysiology, 

particularly when evaluating the lung for mechanical changes associated with early 

pathological processes. A critical pathway that bridges lung mechanics and biology is 

through the mechanosensing capability of bronchial epithelial cells (22). Sensitive 

measures of local lung structural and functional variables can allow one to study local 

alterations of mechanical forces that may lead to inflammation. 

In all cases, we constructed the interpolation function as a function of total air 

volume and then we applied the sinusoidal waveform independently to calculate the rates 

(Eq. (2.10)). For other waveforms, the time rate of change of variables can be assessed by 

merely re-calculating [dV dt∗⁄ ] in Eq. (2.11). Also, the calculated interpolation coefficients 

(Tables 2.2-2.4) allow one to estimate the average of each variable in the total lung and 

each lobe at arbitrary inflation levels. This is important to improve simulation of pulmonary 

gas flow as described in Yin et al. (80) and (81). In conclusion, we showed that three image-

based method is able to capture some non-linear behaviors of the lung that are missing in 

the two-image based analysis.   
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Table 2.1. Comparison of two-image based and image registration methods for the air 
volume, Jacobian and shear strain in the total lung and each lobe 

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂∗ RMS error% r (correlation factor) P (t test) 
Total lung 11.27 0.82 < 0.05 

LLL 12.39 0.81 < 0.05 
LUL 11.19 0.77 < 0.05 
RLL 11.35 0.85 <0.05 
RML 11.49 0.82 <0.05 
RUL 9.41 0.86 <0.05 
𝑱𝑱∗  RMS error % r (correlation factor) P (t test) 

Total lung 7.34 0.86 < 0.05 
LLL 9.26 0.82 < 0.05 
LUL 8.55 0.77 < 0.05 
RLL 8.33 0.86 < 0.05 
RML 9.43 0.81 < 0.05 
RUL 6.85 0.84 < 0.05 
𝜸𝜸𝒎𝒎𝒂𝒂𝒎𝒎∗  RMS error% r (correlation factor) P (t test) 

Total lung 28.34 0.78 < 0.05 
LLL 27.07 0.78 < 0.05 
LUL 27.54 0.73 < 0.05 
RLL 32.21 0.77 < 0.05 
RML 31.66 0.79 < 0.05 
RUL 23.16 0.81 < 0.05 
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Table 2.2. Means (±SE) of a, b and c coefficients in Eq. (9) for the air volume of the total 
lung and each lobe 

𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂∗ a b c 
 Mean (± SE) Mean (± SE) Mean (± SE) 

Whole 0.0129  (0.001)  0.4317 (0.010) 0.5433 (0.009) 
LLL 0.0459  (0.004) 0.4623 (0.009) 0.4695 (0.017) 
LUL -0.0413  (0.006) 0.4398 (0.021) 0.5873 (0.015) 
RLL 0.0766  (0.001) 0.4105 (0.004) 0.4908 (0.002) 
RML -0.0519 (0.001) 0.4051 (0.028) 0.6511 (0.022) 
RUL -0.0220  (0.005) 0.4180 (0.003) 0.5941 (0.007) 

 

 

Table 2.3. Means (±SE) of a, b and c coefficients in Eq. (9) for the Jacobian of the total lung 
and each lobe 

𝑱𝑱∗ a b c 
 Mean (± SE) Mean (± SE)  

Whole -0.0193 (0.001) 0.4038 (0.008) 1 
LLL 0.0059 (0.008) 0.4698 (0.021) 1 
LUL -0.0465 (0.005) 0.3793 (0.016) 1 
RLL 0.0056 (0.007) 0.4371 (0.006) 1 
RML -0.0652 (0.005) 0.3375 (0.018) 1 
RUL -0.0307 (0.001) 0.3526 (0.008) 1 

 

 

Table 2.4. Means (±SE) of a, b and c coefficients in Eq. (9) for the shear strain of the total 
lung and each lobe 

𝜸𝜸𝒎𝒎𝒂𝒂𝒎𝒎∗  a b c 
 Mean (± SE) Mean (± SE)  

Whole -0.4969 (0.028) 1.4131 (0.034) 0 
LLL -0.5988 (0.021) 1.7023 (0.071) 0 
LUL -0.3487 (0.011) 1.2054 (0.028) 0 
RLL -0.6491 (0.097) 1.5609 (0.117) 0 
RML -0.6792 (0.017) 1.7938 (0.051) 0 
RUL -0.3739 (0.049) 1.1602 (0.045) 0 
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Figure 2.1. Comparison between normalized variables obtained by image registration 
between 20% and 60 %VC and linear interpolation at 60% VC between 20% and 80% VC:  

(a) Air volume (b) Jacobian (c) Shear strain 
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Figure 2.2. Regional normalized air volume at different levels. A: Air volume distribution 

for a certain subject. B: Bar graph showing lobar air volume values. The average and 
standard deviation show the median of a group of six subjects 
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Figure 2.3. Normalized flow rates. A: the whole lung: comparison between linear and 
quadratic forms. The lines represent the average and standard deviation of the median flow 

rate of six subjects. B: left lobes C: right lobes 
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Figure 2.4. Regional normalized Jacobian at different levels. A: Jacobian distribution for a 

certain subject. B: Bar graph showing lobar Jacobian values. The average and standard 
deviation show the median of a group of six subjects 
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Figure 2.5. Regional normalized shear strain at different levels. A: shear strain distribution 

for a certain subject. B: Bar graph showing lobar shear strain values. The average and 
standard deviation show the median of a group of six subjects 
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Figure 2.6. Normalized shear rates. A: the whole lung: comparison between linear and 

quadratic forms. The lines represent the average and standard deviation of the median flow 
rate of six subjects. B: left lobes C: right lobes 
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3 ASSESSMENT OF REGIONAL VENTILATION AND 

DEFORMATION USING 4D-CT IMAGING FOR HEALTHY 

HUMAN LUNGS DURING TIDAL BREATHING 

3.1 Introduction 

Precise analysis of lung motion during respiration is essential to study sensitive 

structure and function relationships at the local level. Several studies have used imaging 

tools such as magnetic resonance imaging (MRI) ((3), (37)) and single photon emission 

computed tomography (SPECT) ((61), (84)). The studies have shown regional lung 

information such as regional ventilation and perfusion to perform physiological evaluation 

of those imaging modalities. Although MRI is radiation free and SPECT has the ability to 

analyze ventilation-perfusion, the low resolution and long acquisition time of these 

imaging techniques limit precise evaluation of lung function and reduce number of 

examinations. Multi-detector-row computed tomographic (MDCT) imaging equipped with 

a two-dimensional array of detectors (multiple detector rows) greatly shortens image 

acquisition time, allowing acquisition of a large number (128 in this case) of slices 

simultaneously for assessment of detailed structure and function of the lung (7, 10). In 

applications such as four-dimensional computed tomography (4D-CT) imaging where the 

travel of the table bed is slowed during spiral acquisitions and the air flow at the mouth is 

recorded along with the projection images, one can reconstruct the lung volume using only 

projections from a select portion of the respiratory cycle. By repeating this for many points 

in the respiratory cycle (gathered in a single spiral acquisition), the result is a four-

dimensional (4D) digital representation of the lung. With its advantage of fast acquisition 
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and more coverage of lung volume, MDCT can be utilized to improve 4D-CT imaging 

process.  

4D-CT dynamic imaging can provide more detailed physiological information of 

lung motion during tidal breathing. However, in addition to lowered spatial resolution (due 

to motion and a need to limit radiation dose) compared with static imaging, there are 

limitations with previous studies due to inconsistencies of tidal breathing during scan 

acquisition (58). For example, if tidal breaths vary, the actual lung volume varies along the 

z-axis (apical to basal). This can clearly lead to erroneous physiologic representations. 

Thus, critical to this process, when seeking to define the mechanical characteristics of the 

lung, is maintenance of a consistent tidal volume and respiratory rate during scanning. This 

is critical both for the reconstruction of a meaningful lung volume at each point of the 

respiratory cycle in a single acquisition and also when seeking to compare subjects and to 

evaluate regional lung mechanics longitudinally. To resolve this issue, Fuld et al. (23) have 

devised a dual rolling-seal piston system that maintains the same lung tidal volumes over 

multiple breathing cycles for wash-in xenon CT studies.  

Recent advances in image registration techniques provide accurate matching of 

local lung volumes, mapping pairs of lung images to a common coordinate system (83). 

The image registration techniques have been utilized to compute regional lung deformation 

and ventilation (1, 7, 23). For example, Yin et al. (80) have used a (tissue) mass preserving 

non-rigid registration method (83) to match two static MDCT images to compute lung 

deformation and regional ventilation. Later, Yin et al. (81) have proposed a method to 

derive nonlinear characteristics of lung deformation in three static MDCT images. Jahani 

et al. (41) then have compared regional lung mechanics between two and three static 
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images to analyze lung motion at different inflation levels. Unlike the two image-based 

method, the three image-based method was able to capture non-linear characteristic of lung 

deformation.  However, static image-based analysis could not capture asymmetric 

physiologically characteristics and irreversible nonlinearity of the lung motion, so-called 

hysteresis, between inhalation and exhalation. In order to assess those characteristics, 

image registration methods also have been applied to the 4D-CT volumetric images to 

estimate continuous displacement fields of a lung and to derive more sensitive local 

functional variables during dynamic breathing. For example, Christensen et al. (15) have 

applied image registration to a few selected lung slices (i.e. not the whole lung) acquired 

at limited breathing cycles. They have demonstrated a strong correlation between the lung 

motion evaluated by image registration and the change of air volume measured by 

spirometry. Boldea et al. (5) have introduced new parameters based on trajectories of 

material points in the 4D-CT images over exhalation and inhalation to quantify nonlinearity 

and hysteresis. When comparing motion of tumor volume to healthy tissue, they found that 

hysteresis motion in the tumor volume is larger. White et al. (74) have applied a lung tissue 

trajectory model that depends on tidal volume and air flow to registration-processed 4D-

CT images to study lung tissue hysteresis. They observed significant differences in 

hysteresis values between lower and upper lung regions.  

The main objective of this study is to derive the displacement fields of image voxels 

by image registration to assess regional ventilation, lung anisotropic deformation and 

nonlinearity and hysteresis of anisotropic deformation for healthy human lungs during 

volume controlled free breathing (VCFB). The novelty of the study is two-fold. First, tidal 

volumes during dynamic imaging are controlled with a unique dual rolling-seal piston for 
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accurate image reconstruction that is important for assessment of regional lung functions. 

Second, displacement fields obtained from registration are used to derive sensitive local 

variables, such as air volume and flow rate, for assessing regional ventilation and 

anisotropic deformation index (ADI), for quantifying nonlinearity and hysteresis of lung 

motion. A driving motivation for our work is to use regional lung dynamic flow for 

improved boundary conditions required for the application of computational fluid 

dynamics (CFD) to the study of lung function (81). This may potentially lead to a better 

understanding of particle deposition patterns, shear forces at the airway surfaces, or 

regional distribution of and clearance of inhaled gases (19, 28, 29). These 4D-CT-derived 

regional air volume and flow rates are also compared with those estimated by linear or 

nonlinear assumption in the static scans (41). The comparison allows quantification of the 

differences between static vs. dynamic breathing. Furthermore, much of the motivation, to 

date, for assessing lung motion and hysteresis via 4D-CT is based upon the desire to adjust 

for regional lung motion during radiation treatment planning e.g. by tracking tumor 

structures (9, 24, 30).  

3.2  Methods 

3.2.1 Static and Dynamic Image Acquisition  

Six healthy human volunteers (50% male/female) were recruited for this study. 

Prior to CT scanning, pulmonary function tests (PFT), including body plethysmography 

(nSpire Health, Longmont, CO), were performed to obtain preliminary lung volume 

information, such as total lung capacity (TLC), functional residual capacity (FRC), residual 

volume (RV), vital capacity (VC), forced vital capacity (FVC) and forced expiratory 

volume in 1 second (FEV1) in upright body posture. During a CT scanning session, both 
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static and dynamic MDCT image scans were performed in the supine position for each 

subject. For static CT (SCT) imaging, accurate breath-hold volumes were achieved by use 

of a pneumotachometer-controlled device (23). This system uses a balloon occlusion valve 

that closes when the individual is at the desired percent of their VC. In this study, we 

targeted 95% VC and 15 % VC approximating TLC and FRC, respectively. This method 

has been validated to provide strong correlations with the corresponding PFT-based TLC 

and FRC, being significantly improved over simple coaching methods used at other 

imaging centers (12). The repeatability of the method has previously been demonstrated 

from multiple visits relative to breath-hold verbal coaching (38).  

For dynamic scans and 4D-CT volumetric reconstruction, a dual rolling-seal piston 

system (23) was employed to guide the subject’s inspiratory and expiratory depths of 

breathing and subjects were coached to breath at least 12 breaths per minute (bpm) due to 

scanning limitations. This 12 bpm lower limit is dictated by the scanner rotation speed, the 

table translation rate and radiation dose limits. Scanning time took approximately one 

minute to acquire the projection images covering the full apex-to-base extent of the lungs. 

Tidal depth was set based upon assessment of a comfortable minute ventilation obtained 

for each subject during PFT as a first approximation. This was then adjusted in the CT 

facility to accommodate what the subject perceived as a comfortable depth for the desired 

>12 bpm ventilation rate. Subjects rehearsed breathing through the rolling seal piston 

device and coached to breath at a consistent, comfortable respiratory rate above 12 bpm. 

With 5 subjects, we were able to achieve consistent multi-slice MDCT lung volumes 

between end inhalation (EI) and the end exhalation (EE) for multiple breathing cycles. One 

subject dropped below this 12-breath limit during scanning. In this case, we were unable 
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to collect an adequate number of projects for use in reconstruction of each phase of the 

respiratory cycle.  Thus, this subject was eliminated from further analysis. This was the 

first subject studied and motivated additional coaching prior to scanning in the subsequent 

6 subjects leading to scanning success in all of the remaining 5 subjects. 

The imaging protocols for acquiring MDCT human lung volumetric images were 

approved by the University of Iowa Institutional Review Board and the radiation safety 

committee. For the static and dynamic scanning, a Siemens Somatom Definition Flash 

dual-source 128-slice MDCT scanner (Forchheim, Germany) was employed. The scanner 

parameters of scan type, peak voltage, effective current and slice thickness were set to 

spiral, 120 kV, 75 mAs and 0.75 mm, respectively. Each volumetric data set was acquired 

at a section spacing of 0.5 mm and a reconstruction matrix of 512 × 512 using the B35f 

kernel. A semi-automatic segmentation software, Apollo (VIDA Diagnostics, Coralville, 

Iowa), was utilized to segment the airways, lungs, and lobes of both static and dynamic 

images.  

Figure 3.1 illustrates the process of lung volume reconstruction at a selected phase. 

For each subject, 4D-CT volumetric image datasets were reconstructed by the scanner at 

8-10 automatically defined phases based upon the signal provided by the turbine-based 

flow meter recorded together with the projection images. To achieve a greater number of 

reconstructed phases of the respiratory cycle, there was an option for the user to manually 

identify additional points within the respiratory cycle. The air volumes obtained from the 

initial, automatically defined 8-10 phases were used for validation of air volumes assessed 

by image-matching. The additional reconstructed time points were required for spline 

interpolation analysis where 8 exhalation and 8 inhalation phases were utilized. Because 
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the phases at EE (minimum volume) and EI (maximum volume) were common for 

exhalation and inhalation, there were a total of 14 phases for each breathing cycle. 

3.2.2 Average of respiratory cycles 

Since the inhalation period, the exhalation period and the tidal volume vary from 

subject to subject, times (t) in respective inhalation and exhalation phases, and continuous 

air volumes measured with a flow meter (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚) were normalized as follows: 

𝑡𝑡𝑎𝑎𝑖𝑖∗𝑖𝑖 = 𝑡𝑡−𝑡𝑡𝐸𝐸𝐸𝐸
𝑛𝑛−1

𝑡𝑡𝐸𝐸𝐸𝐸
𝑛𝑛 −𝑡𝑡𝐸𝐸𝐸𝐸

𝑛𝑛−1 ;  𝑡𝑡𝑡𝑡𝑚𝑚∗𝑖𝑖 = 𝑡𝑡−𝑡𝑡𝐸𝐸𝐸𝐸
𝑛𝑛

𝑡𝑡𝐸𝐸𝐸𝐸
𝑛𝑛 −𝑡𝑡𝐸𝐸𝐸𝐸

𝑛𝑛 , where 𝑡𝑡𝐸𝐸𝐸𝐸𝑖𝑖−1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐸𝐸𝐸𝐸𝑖𝑖  and 𝑡𝑡𝐸𝐸𝐸𝐸0 = 0 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗𝑖𝑖 (𝑡𝑡∗𝑖𝑖) =

 𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚(𝑡𝑡)− 𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚,𝐸𝐸𝐸𝐸
𝑛𝑛

𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚,𝐸𝐸𝐸𝐸
𝑛𝑛  − 𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚,𝐸𝐸𝐸𝐸

𝑛𝑛 , where 𝑡𝑡∗𝑖𝑖 = �𝑡𝑡𝑎𝑎𝑖𝑖
∗𝑖𝑖, if 𝑡𝑡𝐸𝐸𝐸𝐸𝑖𝑖−1 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝐸𝐸𝐼𝐼𝑖𝑖  
𝑡𝑡𝑡𝑡𝑚𝑚∗𝑖𝑖, if 𝑡𝑡𝐸𝐸𝐼𝐼𝑖𝑖 < 𝑡𝑡 ≤ 𝑡𝑡𝐸𝐸𝐸𝐸𝑖𝑖    

  

(3.1) 

where 𝑡𝑡𝑎𝑎𝑖𝑖∗𝑖𝑖, 𝑡𝑡𝑡𝑡𝑚𝑚∗𝑖𝑖 and 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗𝑖𝑖  are normalized inhalation time, normalized exhalation time and 

normalized flow-meter-measured air volume, respectively, at the nth cycle. Thus, 𝑡𝑡𝑎𝑎𝑖𝑖∗ = 0 

(or 𝑡𝑡𝑡𝑡𝑚𝑚∗ = 0) corresponds to the beginning of inhalation (or exhalation), and 𝑡𝑡𝑎𝑎𝑖𝑖∗𝑖𝑖, 𝑡𝑡𝑡𝑡𝑚𝑚∗𝑖𝑖 and 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗𝑖𝑖  all range from 0 and 1. Then, the mean was computed as 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚

∗ (𝑡𝑡∗ = 𝑡𝑡∗𝑖𝑖) =

∑ 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗𝑖𝑖 (𝑡𝑡∗𝑖𝑖)𝑁𝑁

𝑖𝑖=1 𝑁𝑁⁄ , where N is the total number of cycles, along with its standard error 

(±SE). With the normalized mean air volume (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗ ), we obtained the normalized total 

flow rate at any time point 𝑡𝑡𝑝𝑝∗   (𝑄𝑄∗�𝑡𝑡𝑝𝑝∗� ) using a central finite difference scheme as follows: 

𝑄𝑄∗(𝑡𝑡𝑝𝑝∗) = �𝑑𝑑𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚
∗

𝑑𝑑𝑡𝑡∗
�
𝑡𝑡𝑝𝑝∗
≈  

𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚
∗ �𝑡𝑡𝑝𝑝+1 2⁄

∗ �−𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝑚𝑚
∗ (𝑡𝑡𝑝𝑝−1 2⁄

∗ )

𝑡𝑡𝑝𝑝+1 2⁄
∗ −𝑡𝑡𝑝𝑝−1 2⁄

∗ , (3.2) 

where the time interval (t*
p+1/2-t*p-1/2) is taken as 0.01 in this study.  

3.2.3 Image Registration 

Given the image density in Hounsfield Unit (HU) at position x, the air and tissue fractions 

were estimated by 
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𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱) = 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐼𝐼(𝐱𝐱)
𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎

 and  𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐱𝐱) = 𝐼𝐼(𝐱𝐱)−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎
𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎

,   

 (3.3) 

where βair(x), βtissue(x), I(x), HUtissue and HUair denote air fraction, tissue fraction, CT 

density, HU of tissue, and HU of air, respectively. HUair and HUtissue were set to -1000 and 

55, respectively (31). We employed a mass preserving image registration method to match 

two CT lung images, one as a reference image and the other as a moving image. A spatial 

transformation T(x), was determined to minimize a cost function E, based on the sum of 

squared tissue volume difference (SSTVD) between two images (83). 

𝐸𝐸 =  ��𝑣𝑣1(𝐱𝐱)𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,1(𝐱𝐱)− 𝑣𝑣2�𝐓𝐓(𝐱𝐱)�𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,2�𝐓𝐓(𝐱𝐱)��
2

𝐱𝐱∈Ω

 (3.4) 

where 𝑣𝑣1 and  𝑣𝑣2 are local volumes of the corresponding regions of reference and moving 

images, respectively. 

3.2.4 Registration-derived Variables  

For each registration between a pair of CT images, local air volume for the moving 

image at position 𝐱𝐱 of the reference image was calculated as 

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱) = 𝑣𝑣�𝐓𝐓(𝐱𝐱)�𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎�𝐓𝐓(𝐱𝐱)�, (3.5) 

  

where 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎(or 𝑣𝑣) is the local air volume (or local volume). We employed TLC of static scan 

and EE of dynamic scan as reference images. The summation of 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 within the whole lung 

is equal to total air volume of a CT image (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶), and the local air volume fraction 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 

is defined as the ratio of 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 to 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶. In addition, local air volume (𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎) at dynamic scan 

was normalized as 
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𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗ = 𝑣𝑣𝑎𝑎𝑡𝑡𝑎𝑎−𝑣𝑣𝑎𝑎𝑡𝑡𝑎𝑎,𝐸𝐸𝐸𝐸
𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸−𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝐶𝐶𝐶𝐶,𝐸𝐸𝐸𝐸

. (3.6) 

 

Since the measured air volume should be equal to the corresponding CT image-

derived air volume, we compared them using linear regression to validate the equality of 

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ = 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗ =  𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶

∗ . 

 In addition, we employed static CT-based TLC and FRC for 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶, and 

corresponding %VC of the TLC and FRC to derive RV and VC in supine position of a 

subject  as follows. 

%𝑉𝑉𝑉𝑉 = (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶 − 𝑅𝑅𝑉𝑉)/𝑉𝑉𝑉𝑉 × 100 (3.7) 

We then computed %VC of each phase with corresponding total air volume of a 

dynamic scan for 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶 and the obtained VC and RV using Eq. (3.3.7).  

Furthermore, to calculate lung deformation at a local position x, we compute the 

principle strains of lung tissue deformation, 𝜆𝜆𝑎𝑎 (1), where 𝜆𝜆1 > 𝜆𝜆2 > 𝜆𝜆3. We used the 

principle strains to estimate anisotropic deformation index (ADI) as follows 

𝐴𝐴𝐴𝐴𝐼𝐼 = ��
𝜆𝜆1 − 𝜆𝜆2
𝜆𝜆2

�
2

+ �
𝜆𝜆2 − 𝜆𝜆3
𝜆𝜆3

�
2

 (3.8) 

ADI indicates the preferential deformation of local lung volume in one or two 

directions. In this study, ADI was computed from the lung volume at EE and normalized 

by its maximum value at EI state (ADI*) for inter-subject comparisons. To quantify 

nonlinearity of lung motion in dynamic breathing, we defined a new quantity 𝛿𝛿𝐴𝐴𝐴𝐴𝐼𝐼∗ that is 

based on the ADI* difference at a certain phase from the corresponding point on the straight 
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line between EE and EI. That is, the straight line is expected of linear behaviors, whereas 

any deviation from the line reflects non-linear behaviors. Similarly, the hysteresis of the 

lung motion is defined as a function of ADI* at each point (𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐼𝐼∗(𝐱𝐱)) as the absolute 

difference between the ADI* values of inhalation and exhalation at the same phases.  

𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐼𝐼∗(𝐱𝐱) = |𝐴𝐴𝐴𝐴𝐼𝐼∗(𝐱𝐱)𝑎𝑎𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑖𝑖 − 𝐴𝐴𝐴𝐴𝐼𝐼∗(𝐱𝐱)𝑡𝑡𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑎𝑎𝑖𝑖| (3.9) 

3.2.5  Interpolation method 

 In this study, we used a cubic spline interpolation method to construct a continuous 

function of a local variable s, such as 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 and ADI at various 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗  based on those derived 

from CT images at the discrete phases. The interpolation function is piecewise cubic 

polynomials for a set of q+1 phases {�𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,0
∗ , 𝐻𝐻0�, … , �𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑞𝑞

∗ , 𝐻𝐻𝑞𝑞�}. The function in each 

interval (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎
∗ ,𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎+1

∗ ) is defined as  

𝐻𝐻𝑎𝑎(𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ ) = 𝑚𝑚𝑎𝑎�𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎
∗ �

3
+ 𝑏𝑏𝑎𝑎�𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎

∗ �
2

+ 𝑐𝑐𝑎𝑎(𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎
∗ ) + 𝑑𝑑𝑎𝑎 (3.10) 

 

where the constructed functions pass through q+1 control points. This method is twice 

continuously differentiable and used for inhalation and exhalation separately. Combining 

the breathing waveform �𝑑𝑑𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎
∗

𝑑𝑑𝑡𝑡∗
� with interpolated variables (s) allowed us to find the time 

rate of s as follows, 

𝑑𝑑𝐻𝐻𝑎𝑎(𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ )
𝑑𝑑𝑡𝑡∗

=
𝑑𝑑𝐻𝐻𝑎𝑎
𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗

�
𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑡𝑡∗
�

= �3𝑚𝑚𝑎𝑎�𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎
∗ �

2
+ 2𝑏𝑏𝑎𝑎�𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ − 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎

∗ � + 𝑐𝑐𝑎𝑎� �
𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑡𝑡∗
� 

(3.11) 
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For example, to assess regional ventilation, the local normalized flow rate q*, can 

be calculated as  

𝑞𝑞∗ =
𝑑𝑑𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑡𝑡∗
=
𝑑𝑑𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗
𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑡𝑡∗
 (3.12) 

In addition to the measured waveform, we also performed a symmetric sinusoidal 

waveform (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ = 1
2

 (1 − cos(𝜋𝜋𝑡𝑡∗)) for inhalation and 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ = 1
2

 (1 − cos(𝜋𝜋(1 − 𝑡𝑡∗)) for 

exhalation) to evaluate the effect of waveform on regional flow rate and on inter-subject 

variability. Furthermore, the flow rate fraction (𝑞𝑞𝑓𝑓) in each region is defined as the flow 

rate in that region over total flow rate. In dynamic analysis, 𝑞𝑞𝑓𝑓 is computed as follows. 

𝑞𝑞𝑓𝑓 =
𝑞𝑞∗

𝑄𝑄∗ =
𝑑𝑑𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗
 (3.13) 

It is noted that 𝑞𝑞𝑓𝑓 is independent from the waveform. In two static images, 𝑞𝑞𝑓𝑓is 

equivalent to the ratio of local air volume change to total air volume change 

(∆𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎/∆𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶), so it could be used for CFD boundary condition if only two CT images 

are available (80). The flow rate fraction 𝑞𝑞𝑓𝑓 is mainly used to compare the distributions of 

air volume changes derived from dynamic vs. static scans.  

Furthermore, all the variables plotted in the result section were derived from their 

corresponding continuous functions, but we only plotted a certain number of SE for clarity. 

3.3 Results 

3.3.1 Reliability of dynamic lung volume controller system 

Demographic information and PFT data of the six healthy subjects are shown in 

Table 3.1. The percent predicted values of the six subjects indicates that the measurements 
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were within normal ranges ((29), (67)). Meanwhile, 4D-CT analysis was performed for the 

five subjects for whom we were able to reconstruct volumetric image data sets. As 

discussed in the methods, the respiratory rate of Subject 1 fell below 12 breaths per minute, 

limiting our ability to reconstruct volumetric image data. Figure 3.2A and B show 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗  

(±SE) for exhalation and inhalation for Subject 6. For all subjects, the SEs of the means 

were less than 4% between all the cycles. The results indicate that the dual piston-based 

volume controller adequately maintained consistent tidal volumes over multiple breathing 

cycles. It was this consistency that provided for the consistent trends shown in the data 

across all five subjects. 

3.3.2 Total lung volume and flow rate 

Based upon data acquired at the time of imaging, Table 3.2 shows the actual %VC 

achieved for the inspiratory and expiratory breath holds (TLC and FRC) in the supine body 

posture and the corresponding air volumes for these two breath holds along with the air 

volumes achieved for EI and EE of the 4D-CT scans of the five subjects. Table 3.2 also 

indicates the supine RV, VC, %VC of EI and EE estimated by Eq. (3.3.7). TLC, FRC and 

RV in Table 3.2 show strong correlations with those volumes obtained from PFT shown in 

Table 3.1 (𝑅𝑅2 > 0.89). While %VCs of EI and EE show large standard deviations of 14-

15% among different subjects, the difference of %VC between EI and EE (viz. %VC of 

tidal volume) has a standard deviation of 6% (Table 3.2).  

Figure 3.3 shows the means (±SE) of normalized total flow rate Q* for the five 

subjects during exhalation (positive values) and inhalation (negative values). The Q* for 

each subject was used to calculate the normalized regional flow rate q* by Eq. (3.3.12). To 

validate registration results, approximated values for normalized air volumes from the 
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measurement (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗ ) were compared with the corresponding air volumes in the whole 

lungs derived from image registration (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶
∗ ). Since we compared the data at 8-10 phases 

automatically selected by the scanner, there were 42 data points. The comparisons for the 

five subjects are plotted in Figure 3.4, demonstrating that 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶
∗  is significantly correlated 

with 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚
∗  for the five subjects (𝑅𝑅2 ≈ 0.98). Thus, it validates the assumption of 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ =

𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶
∗ =  𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑚𝑚

∗ .  

3.3.3 Local air volume and flow rate 

Figure 3.5 illustrates the mean (+SE) of lobar air volume fraction 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 during 

inhalation and exhalation for the five subjects. As the lung volume increases, 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 in the 

lower lobes increase while those in the upper and the middle lobes decrease. In addition, 

𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 values at EE (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ = 0) and at EI states (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ = 1) for both the lower and upper lobes 

are significantly different in VCFB range (P<0.005).  

In regard to regional ventilation, Figure 3.6A and B exhibit the mean (+SE) of 

medians 𝑞𝑞∗ in each lobe as a function of 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗  calculated using Eq. (3.3.12) for exhalation 

and inhalation, respectively. The results show that the 𝑞𝑞∗ values of the lower lobes always 

remain greater than those of the upper and the middle lobes during breathing. Next, to 

evaluate the effect of the waveform on asymmetric patterns of regional flow rates and on 

inter-subject variability, instead of the measured waveforms, we imposed an ideal 

symmetric sinusoidal waveform to compute 𝑞𝑞∗ for all subjects. Figure 3.6C and D 

demonstrate the mean (+SE) of the medians of lobar 𝑞𝑞∗ at which the overall trends of q* 

remain similar with those using the measured waveform, and further inter-subject 

variability does not vary significantly (mean of SE decrease from 24% to 23%). While the 
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sinusoidal waveform provides the same notion that q* of the lower lobes is greater than 

that of the upper and the middle lobes, the values and peak location of the sinusoidal 

waveform are different from those in the measured waveform, and asymmetric pattern 

between inhalation and exhalation is reduced (Figure 3.6) 

3.3.4 Comparison of tidal and deep breathing (dynamic and static scans) 

We compared air volume changes obtained from 4D-CT at VCFB with those 

obtained from SCT at deep breathing to see how deep breathing analysis is able to estimate 

regional ventilation in VCFB range in the case that 4D-CT image data are not available. 

Linear interpolation (like Eq. (3.3.10) where 𝑚𝑚𝑎𝑎 and 𝑏𝑏𝑎𝑎 equal zero) of lobar 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 from FRC 

to TLC for SCT gives a constant flow rate fraction 𝑞𝑞𝑓𝑓 equivalent to lobar air volume 

difference over total air volume difference (𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶 = Lobar ∆𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝐶𝐶𝐶𝐶
Total  ∆𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝐶𝐶𝐶𝐶

). We compared 𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶 

with the average of flow rate fractions of 4D-CT obtained from Eq. (3.) (𝑞𝑞𝑓𝑓,4𝐴𝐴−𝐶𝐶𝐶𝐶�����������). 

Figure 3.7A shows the linear regression between 𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶 and 𝑞𝑞𝑓𝑓,4𝐴𝐴−𝐶𝐶𝐶𝐶����������� in all lobes for the five 

subjects, indicating good correlation (𝑅𝑅2 ≈ 0.84).  

However, the comparison of 𝑞𝑞𝑓𝑓 in the left lungs (LL) with 𝑞𝑞𝑓𝑓 in the right lungs 

(RL) for the five subjects indicates that in deep breathing, the contributions of the left and 

the right lungs in air volume change are almost the same (𝑞𝑞𝑓𝑓,𝐿𝐿𝐿𝐿= 0.492, 𝑞𝑞𝑓𝑓,𝑅𝑅𝐿𝐿= 0.508) while 

in VCFB, the average contribution of the right lung in air volume change is significantly 

(P < 0.05) greater than that of the left lung (𝑞𝑞𝑓𝑓,𝐿𝐿𝐿𝐿������=0.449, 𝑞𝑞𝑓𝑓,𝑅𝑅𝐿𝐿������= 0.551). In addition, means 

of air volume fractions in the lower lung volumes (FRC, EE and EI) are 0.56 < 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 <

0.58 for the right lung and 0.42 < 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 < 0.44 for the left lung, while the air volume 

fraction at full inspiration (TLC) was 0.53 ± 0.02 for the right lung and 0.47 ± 0.02 for 
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the left lung. Since inter-subject variability of 𝑞𝑞𝑓𝑓 is small (SE < %2), we can compute flow 

rate fraction of the left and the right lungs at tidal breathing from deep breathing analysis 

with two correction weighting factors of 𝑊𝑊𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 = 0.449
0.492

= 0.913 and 𝑊𝑊𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 = 0.551
0.508

=

1.085, respectively for the all subjects. Therefore, to predict 𝑞𝑞𝑓𝑓 during VCFB range more 

accurately, we assume that 𝑊𝑊𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 and 𝑊𝑊𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 can be multiplied by 𝑞𝑞𝑓𝑓 in any region of the 

left and right regions computed by the deep breathing analysis, respectively. Figure 3.7B 

shows the linear regression between 𝑞𝑞𝑓𝑓,4𝐴𝐴−𝐶𝐶𝐶𝐶����������� and 𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶 modified by 𝑊𝑊𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 and 𝑊𝑊𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 

(denoted by 𝑞𝑞𝑓𝑓,𝑚𝑚𝑎𝑎𝑑𝑑𝑎𝑎𝑓𝑓𝑎𝑎𝑡𝑡𝑑𝑑). In this case, the correlation factor R2, was improved from 0.84 to 

0.92 so that we can roughly use the equations (𝑞𝑞𝑓𝑓,𝑚𝑚𝑎𝑎𝑑𝑑𝑎𝑎𝑓𝑓𝑎𝑎𝑡𝑡𝑑𝑑)𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 = (𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶)𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 × 𝑊𝑊𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 and 

(𝑞𝑞𝑓𝑓,𝑚𝑚𝑎𝑎𝑑𝑑𝑎𝑎𝑓𝑓𝑎𝑎𝑡𝑡𝑑𝑑)𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 = (𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶)𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 × 𝑊𝑊𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 to predict air volume change during VCFB. A 

comparison between original and modified values of the left and right lungs showed that 

they are significantly different (P < 0.05).  

Furthermore, the comparison of the left and right lungs for ADI of FRC-TLC 

normalized by total ADI at TLC (𝐴𝐴𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿∗ = 1.02, 𝐴𝐴𝐴𝐴𝐼𝐼𝑅𝑅𝐿𝐿∗ = 0.97) and ADI of EE-EI 

normalized by total ADI at EI (𝐴𝐴𝐴𝐴𝐼𝐼𝐿𝐿𝐿𝐿∗ = 0.87, 𝐴𝐴𝐴𝐴𝐼𝐼𝑅𝑅𝐿𝐿∗ = 1.19) illustrates consistency with 

the left-right lung differences observed by air volume changes in each left and right lungs. 

3.3.5 Nonlinearity and hysteresis of ADI 

To observe nonlinearity and hysteresis of the lung motion during dynamic breathing, 

we examined ADI* values during VCFB. Figure 3.8A shows that the means (±SE) of ADI* 

values in the whole lung at different 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗  over a breathing cycle for the five subjects. The 

results showed that ADI* values are not along a straight line and the values of inhalation 

are greater than those of exhalation (P < 0.05), capturing nonlinear and asymmetric lung 
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deformations between two certain points (EE and EI). In Figure 3.8B, we also observed 

greater ADI* values for the right lung rather than the left lung. Figure 3.9A and B show the 

lobar distributions of ADI* over exhalation and inhalation, respectively. We observed that 

ADI* values in the middle and the lower lobes are greater than those in the upper lobes for 

both exhalation and inhalation. We further quantified the nonlinearity 𝛿𝛿𝐴𝐴𝐴𝐴𝐼𝐼∗. Figure 3.9C 

and D show that 𝛿𝛿𝐴𝐴𝐴𝐴𝐼𝐼∗ in inhalation is greater than that of exhalation, and lower and middle 

regions represent greater 𝛿𝛿𝐴𝐴𝐴𝐴𝐼𝐼∗. Furthermore, Figure 3.10 shows mean and maximum of 

𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐼𝐼∗ in the whole lung, the left and the right lungs and each lobe for different phases. 

The results demonstrate that the right lung has greater 𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐼𝐼∗than the left lung (P < 0.05). 

3.4 Discussion 

3.4.1 Controlled tidal volume  

The limitations of inconsistent tidal volumes and irregular breathing patterns during 

4D-CT have been recognized by others ((5), (15), (58)). The amplitude difference produces 

artificial motions in the reconstructed 4D volumetric CT data set, leading to erroneous 

assessment of regional mechanical behavior. With the introduction of a dual rolling-seal 

piston system (23) for control of tidal breathing during 4D-CT data collection we presented 

a means of regionally assessing lung mechanics that provides physiologically meaningful 

metrics. The results demonstrated that the dual-piston system successfully controlled the 

subject’s respiratory cycle to obtain consistent air volume change and breathing waveforms 

(SE < 4%), thus allowing for the collapse of multiple-cycle data into a single cycle 

(Figure 3.2A and B). To further harmonize subject data, air volumes derived from 

registration were normalized utilizing measurements via the same scheme as discussed in 

Eq. (3.1) and Eq. (3.6). The strong correlation between the measured air volume and the 
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air volume computed by image registration not only validates the accuracy of 4D-CT data, 

but also enables use of a single normalized air volume for analysis of measurement and 

4D-CT data. Because of inter-subject variability in respiratory waveforms, other studies 

had to examine each subject separately ((15), (74)). In contrast, with use of a dual-piston 

system, we were able to derive consistent normalized flow rates and lobar air volume 

fractions during inhalation and exhalation in a group of healthy subjects (Figure 3.3 and 

Figure 3.5). This is particularly important for future studies that seek to define phenotypes 

based upon altered regional mechanical properties in a patient population. 

 

3.4.2 Regional air volume and flow rate 

Several studies used linear assumption between each two successive phases to 

estimate 4D-CT lung motion ((5), (15)). Piecewise linear interpolation yields discontinuity 

in calculation of air flow rate at each phase while, in the present study, we used a cubic 

spline interpolation function to construct a continuous function for any local variable, 

which is independent of breathing waveform. Regional air volume and flow rates obtained 

from 4D-CT analysis showed that lower lobes always have more contribution to air volume 

change compared with upper and middle lobes during dynamic breathing (Figure 3.5 and 

Figure 3.6). This supports the analysis of Yin et al. (81) and Jahani et al. (41) based on 

interpolation of three static MDCT images. It is speculated the predominance of diaphragm 

motion in driving lung expansion leads to the greater volume change in the lower lobes 

than the upper lobes.  

Furthermore, since the interpolated function is independent of lung volume 

waveforms, it can be incorporated with any other lung volume curve for various 
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waveforms. Thus, if measured temporal lung volume curves are not available, an ideal lung 

volume waveform can be assumed to compute local air flow rates (Eq. 3.3.12) for various 

respiratory condition. For example, in order to examine the effect of waveform, we 

replaced the actual waveform with a sinusoidal one. Although, the results showed similar 

trends when using a symmetric waveform, asymmetric patterns of local flow rates (Eq. 3.) 

of exhalation and inhalation were reduced (Figure 3.6).  

3.4.3  Regional tidal vs. deep breathing (dynamic vs. static scans) flow rate  

Several studies have utilized static scans acquired at static points to evaluate 

regional lung ventilation and deformation ((31), (41), (80)). Although 4D-CT images can 

provide more physiological information, they typically yield lower spatial resolution 

compared with static imaging and expose subjects to higher radiation doses. Newer 

generation CT scanners are serving to dramatically drop radiation doses (56). Because of 

the need for high resolution acquired with lower radiation doses, lung mechanics studies 

have typically been carried out with static breath hold imaging. Our study provides, 

possibly for the first time, a means of comparing the mechanical data derived from breath 

hold vs. dynamic imaging and provides a methodology which, when coupled with newer 

methods for low dose imaging, can provide important dynamic regional lung mechanics 

which, in the future, can be used as novel phenotypes, differentiating populations at early 

stages of lung disease. In some studies, FRC and TLC data (instead of end tidal lung 

volumes) have been used to derive mean flow rate fraction, equivalent to the fractions of 

lobar air volume change ((13), (80)). Our comparisons between tidal breathing (4D-CT) 

vs. static imaging at FRC and TLC demonstrated that fractions of lobar air volume change 

across lung volumes are in good correlation with the flow-rate fractions in 4D-CTs 
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(Figure 3.7A). This suggests that, in normal subjects, static breath-hold derived metrics 

may be adequate for certain lung mechanics studies. However, we found that during VCFB 

the air volume change fractions in the right lung is greater than that of the left lung, while 

the air volume change fractions of both lungs derived from static FRC and TLC images are 

almost the same, consistent with findings of Voorhees et al. (71). Since the left lung was 

less well expanded at lower lung volumes and during VCFB, it is able to expand more than 

the right lung when inspiring to full lung capacity, equalizing lung volume changes 

between the two lungs at TLC while at tidal breathing, one observes differences in 

distribution of lung volume changes. Flow rate fractions for the left and right lungs, 

between VCFB and deep breathing, are significantly different where respective values for 

the five subjects were similar with small standard errors (SE < 2%). Therefore, we 

proposed two correction weighting factors 𝑊𝑊𝑎𝑎𝑡𝑡𝑓𝑓𝑡𝑡 = 0.913 and 𝑊𝑊𝑎𝑎𝑎𝑎𝑟𝑟ℎ𝑡𝑡 = 1.085, which 

were multiplied by mean flow rate fractions, i.e. air volume change fractions, obtained 

from the SCT analysis in left and right lungs, respectively. The improved correlation 

implies that the proposed correction factors could be utilized to estimate regional 

ventilation predictions (Figure 3.7B). Yin et al. (80) have proposed an image-based 

technique using two static CT lung datasets to estimate a subject-specific boundary 

condition for CFD simulation. Thus, those two correction factors can be employed in their 

method to estimate more realistic boundary conditions for CFD simulation in tidal 

breathing range.  

  Yin et al. (81) and Jahani et al. (41) have used 3 static images to study non-linear 

behaviors of lung mechanics with a sinusoidal waveform. They showed that, as lung 

volume increases for a deep breathing, the peaks of flow rate occur earlier in the upper 
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lobes than the peaks in the lower lobes while our dynamic breathing analysis with the 

assumption of a sinusoidal waveform did not show any ascending or descending trend in 

lobar flow rate fractions (Figure 3.6). One reason is that most regions in the upper lobes 

are fully inflated before the lung volume reaches its maximum volume, while the upper 

lobes in VCFB still have capacity to accommodate more air at the maximum volume of EI 

because of lower lung volume. In addition, acquiring 4D-CT data can allow assessment of 

regional flow volume loop that is asymmetric between inhalation and exhalation. In 

contrast to 4D-CT analysis, two static scans can provide only constant flow rate, and three 

static scans can provide a nonlinear but symmetric volume-dependent flow rate between 

inhalation and exhalation (81).  

3.4.4 Nonlinearity and hysteresis 

In this study, ADI was used to quantify nonlinearity and hysteresis in lung 

deformation during VCFB. Our results indicated that ADI and nonlinearity are greater in 

inhalation, being consistent with the parameters of anisotropic deformation and 

nonlinearity quantified by Jahani et al. (41) and Boldea et al. (5), respectively. Our 

observations may reflect the fact that the diaphragm and chest wall muscles are typically 

active only during inhalation, producing greater directional forces than occur during 

passive exhalation.  It is noted that Boldea et al. (5) have used trajectories of material points 

to quantify nonlinearity. They assumed that local points have uniform motion relative to 

total volume change over inhalation and exhalation, while our study showed that local 

points might move non-uniformly relative to the motion of normalized total lung volume. 

Similar to point trajectory, ADI is a Lagrangian quantity obtained via the registration-

derived one-to-one mapping field.  
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Physiologically, the hysteresis of lung motion is attributed to the fact that some part 

of the transmitted energy in inhalation is dissipated due to local forces such as surface 

tension and tissue stress and is not recovered in exhalation (42). Locally, those forces are 

correlated with strains. For example, Jahani et al. (41) have used shear strain expressed as 

(𝜆𝜆1 − 𝜆𝜆3)/2  to quantify nonlinearity in the lung and have demonstrated a strong 

correlation between shear strain and ADI (𝑅𝑅2 > 0.89), being consistent with our results. 

The significant difference between ADI values on inhalation and those on exhalation 

suggests that anisotropic deformation can be used to assess the hysteresis of lung motion. 

The computed hysteresis showed the maximum value at the middle of breathing and greater 

hysteresis in the right lung (Figure 3.8 and Figure 3.10). 

3.4.5 Limitations and future work 

In this study, we investigated 4D-CT analysis for only five healthy subjects while 

more subjects are needed to fully define the characteristics of a normal population. 

Nonetheless, we performed t-test between different regions (e.g. lower vs. upper lobes, left 

vs. right lung, and inhalation vs. exhalation) to assure that the reported characteristics are 

statistically significant. With P<0.05, the heterogeneous pattern of lung characteristics are 

confirmed. Furthermore, in order to evaluate inter-subject variability, means and standard 

errors between the five subjects were reported for all variables.  To achieve more subjects 

we need to resolve the remaining issues such as imaging protocol and limitation in 

breathing rates and it will be desirable to identify lower dose protocols, taking advantage 

of newer scanner technologies (56). In addition, application of the current analysis to 

disease states, such as asthma, chronic obstructive lung disease, and interstitial fibrosis is 

desirable because heterogeneity in diseased lungs may pose new challenges on 
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normalization of inter-subject data ((13), (11)). Several studies have applied CFD to 

simulate respiratory air flow in a breathing lung based on static-image derived flow 

boundary conditions ((48), (81)). The regional air flow distributions and flow rates 

extracted from the current 4D-CT analysis can be further used in CFD to better predict the 

distributions of flow-induced shear stress and pressure as well as temperature, water loss 

rate ((76), (77) and particle depositions (52) for various applications. In addition, using the 

methods in this study for tracking the motion of lung cancers could provide more accurate 

information regarding lung motion required for the targeting of radiotherapy and for the 

assessment of regional, longitudinal changes in lung mechanics throughout therapy ((2), 

(5), (16), (79)). 
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Table 3.1. Demographic information* and PFT values (% predicted normal values) for the 
six subjects 

Subject 1 2 3 4 5 6 

Gender F F M F M M 

Age (yrs.) 24 44 23 39 53 58 

BMI (kg/m2) 25 26 26 24 30 32 

FEV1 (L) 3.3 (99 %) 2.6 (95 %) 3.7 (91 %) 3.0 (97 %) 3.5 (87 %) 3.4 (83 %) 

FVC (L) 4.1 (105 %) 3.4 (101 %) 4.6 (95 %) 3.6 (97 %) 4.6 (86 %) 4.4 (82 %) 

FEV1/FVC 0.806 0.762 0.813 0.818 0.774 0.768 

TLC (L) 4.8 (93%) 4.5 (99%) 5.4 (87%) 5.2 (104%) 6.6 (88%) 7.2 (93%) 

FRC (L) 2.1 (76%) 2.2 (85%) 1.9 (71%) 2.8 (102%) 2.9 (79%) 2.9 (78%) 

RV (L) 1.0 (73%) 1.1 (73%) 0.9 (69%) 1.5 (97%) 2.1 (90%) 2.3 (93%) 

RV/TLC 0.209 0.249 0.157 0.296 0.315 0.318 

*: All subjects are white non-Hispanic except subject 4 that is white Hispanic. F: female; M: 
male. 

 

 

Table 3.2. Lung volume information at the TLC, FRC, EI and EE states for the five subjects 
Subject 2 3 4 5 6 Average SD 

%VC from measurement 
TLC  92.7% 91.6% 88.2% 95.3% 89.9% 92% 3% 
FRC 15.8% 13.3% 16.2% 11.5% 13.4% 14% 2% 

CT lung volume (L)   
TLC  4.73 5.19 5.31 6.82 7.77 5.96 1.28 
FRC 2.41 2.21 2.87 3.34 3.69 2.90 0.62 
EI 3.84 2.96 3.46 5.42 5.99 4.33 1.31 
EE 3.69 2.08 2.67 4.56 4.88 3.58 1.20 

Volume (L) From Eq. (3.3.7) 
RV  1.93 1.70 2.32 2.86 2.97 2.35 0.56 
VC  3.02 3.81 3.38 4.15 5.33 3.93 0.88 

%VC from Eq. (3.3.7) 
EI 63.2% 33.1% 33.7% 61.7% 56.5% 50% 15% 
EE 28.5% 9.9% 10.3% 40.9% 35.8% 25% 14% 

EI-EE 34.7% 23.2% 23.4% 20.8% 20.7% 25% 6% 
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Figure 3.1. A flow chart of lung volume reconstruction process at a certain phase 
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A 

 
B 

 
Figure 3.2. Normalized air volume (±SE) for (a) exhalation and (b) inhalation for Subject 6 
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Figure 3.3. Means (±SE) of normalized flow rates obtained from measurement for 

exhalation (+) and inhalation (-) in the whole lung for the five subjects 
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Figure 3.4. Linear regression between normalized measured air volume and normalized 

registration-derived air volume for the five subjects 
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A 

 
B 

 
Figure 3.5. Mean (+SE) of lobar air volume fraction during (a) exhalation and (b) inhalation 
for the five subjects. [(LLL, LUL, RLL,RML,RUL) =(left lower lobe, left upper lobe, right 

lower lobe, right middle lobe, right upper lobe)] 
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A B 

  
C D 

  
Figure 3.6. Mean (+SE) of median of lobar flow rate during exhalation (+) and inhalation (-) 

for the five subjects: Plots correspond to results using measured waveform for (a) the left 
lobes and (b) the right lobes, and using sinusoidal waveform for (c) the left lobes and (d) the 

right lobes 
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A 

 
B 

 
Figure 3.7. Linear regression (a) between lobar qf  of static images (FRC-TLC) and average 
qf of dynamic (EE-EI)  (b) between lobar average qf of dynamic (EE-EI) and qf  modified 

from static images (FRC-TLC) for the five lobes of the all five subjects 
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Figure 3.8. (a) Mean (±SE) of ADI* in the whole lung (b) Mean of ADI* in the whole, left and 

right lungs during VCFB for the five subjects 
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A B 

  
C D 

  
Figure 3.9. Bar graph showing (a) mean (±SE) of lungs and lobar ADI* values of exhalation 
and (b) inhalation, (c) mean (±SE) and maximum (±SE) of lungs and lobar nonlinearity of 

exhalation and (d) inhalation 
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Figure 3.10. Bar graph showing mean (±SE) and maximum (±SE) of lungs and lobar 

hysteresis for the five subjects 
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4 A 4D-CT COMPARISON OF HEALTHY VS. ASTHMATIC HUMAN 

LUNGS 

4.1 Introduction 

In obstructive lung diseases such as asthma, accurate quantification of regional 

features and their heterogeneity is essential for advancing our understanding of the 

underlying mechanisms of disease. Due to non-linear behavior and hysteresis of lung 

motion, the analysis for breathing lungs is desirable to characterize alterations of regional 

ventilation and tissue deformation in asthmatic lungs. Magnetic resonance (MR) and X-

ray computed tomography (CT) have recently been used to advance our understanding of 

the lung function in asthmatic patients ((7), (9), (44)), but imaging has been carried out 

during inspiratory and expiratory breath holds.  Using those static breath-hold techniques, 

regional ventilation, ventilation heterogeneity and regional deformation, have been 

performed to identify the regions of air flow obstruction and airway resistance in asthmatics 

((13), (45)). However, it is well recognized that hysteresis, representative of regional 

differences in lung mechanics is minimized or eliminated during step-wise inflation or 

deflation of the lung. With the introduction of four-dimensional CT (4D-CT) methods (40) 

for assessing the lung under well controlled tidal breathing techniques and with the 

introduction of ultra low-dose imaging methods which maintain quantitative accuracy of 

the reconstructed image (56), dynamic imaging for total lung volume is feasible, allowing 

for the assessment of regional lung mechanics during active respiration. Advances in image 

registration techniques provide the ability to assess regional functional and structural 

metrics such as ventilation and directional tissue deformation ((41), (62), (83)). 



66 
 

 

Jahani et al. (40) have utilized 4D-CT image data for healthy human lung during 

tidal breathing to estimate regional ventilation and hysteresis of lung motion between 

inhalation and exhalation, and compared their findings to those obtained from static images 

at deep breathing. The study demonstrated that non-linearity of anisotropic deformation 

was greater in lower regions and it was smaller during exhalation. Although some studies 

have applied 4D-CT imaging in patients with emphysema (78) and lung cancers ((5), (74)), 

it has yet to be investigated for asthmatic subjects. In a study of healthy vs. asthmatic lungs, 

Tzeng et al. (69) showed that airway resistance provoked by bronchial challenge causes 

ventilation heterogeneity for both healthy and asthmatic subjects with greater heterogeneity 

in asthmatics. With matching of inhalation vs. exhalation scans, Choi et al. (12) showed 

similar regional lung function for healthy and non-severe asthmatic lungs by estimating 

regional air volume change and air trapping. In a different study, they quantified structural 

and functional alterations for both non-severe and severe asthmatics, yet the alterations in 

non-severe asthmatics were not significant as compared with severe asthmatics, but being 

close to healthy subjects (11).  It is our hypothesis that because of airway resistance during 

breathing dynamic imaging will serve to enhance the heterogeneity of lung function 

metrics and this increased heterogeneity will be greater in the severe asthmatic. 

Furthermore, it is expected analysis of dynamic imaging provide new information about 

lung deformation in asthmatics which can be extracted by quantifying non-linearity and 

hysteresis of lung motion.  

This study aims to assess regional ventilation and deformation for asthmatic human 

lungs using 4D-CT image data for comparison with our already reported healthy population 

(40). We utilize a unique dual rolling-seal piston to control tidal breathing for consistent 
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reconstruction of lung volumes ((23), (40)). In addition, a mass preserving image 

registration method (83) is employed to derive regional ventilation and anisotropic 

deformation. In this study, ventilation heterogeneity estimated from dynamic lung images 

of both healthy and asthmatic subjects are compared with those obtained from static deep-

breathing lung images. We seek to establish tools for assessing heterogeneity for the 

purposes of utilizing these tool, eventually, for the development and assessment of new 

interventions and to better sub-phenotype an asthma population. In addition, precise 

estimation of regional ventilation during breathing can provide physiological boundary 

conditions for computational fluid dynamic (CFD) analysis in quantifying air flow and 

pressure distribution ((80), (81)). Furthermore, anisotropic deformation is utilized to 

quantify non-linearity and hysteresis of lung motion for healthy vs. asthmatic human lungs 

between inhalation and exhalation. A motivation for quantification of non-linearity and 

hysteresis using 4D-CT in asthmatics is to provide essential information to capture 

abnormal movements and sensitive regions within diseased lungs.  

4.2 Method 

4.2.1 Image data acquisition  

 Datasets were acquired from five non-severe asthmatics and one severe asthmatic 

human volunteer for comparison with previously acquired set of 5 normal subjects (40). A 

full set of pulmonary function tests (PFTs) were performed for each subject in the upright 

body posture. The PFTs provided preliminary lung information such as total lung capacity 

(TLC), functional residual capacity (FRC), residual volume (RV), vital capacity (VC), 

forced vital capacity (FVC), and forced expiratory volume in 1 second (FEV1). Asthmatic 
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subjects and their severity were categorized based on the National Heart, Lung, and Blood 

Institute (NHLBI) guidelines for the diagnosis and management of asthma (55). 

CT scanning was performed for each subject to acquire both static and dynamic 

MDCT image data sets in supine position, withholding of bronchodilators for 12 hours to 

observe baseline lung function. Two static scans were acquired at FRC (~15% VC) and 

TLC (95% VC) using a pneumotachometer-controlled device to achieve accurate breath-

hold volumes (38). For dynamic imaging, a dual rolling-seal piston system (23) was 

utilized to control amplitudes of inhalation and exhalation during breathing as previously 

described (40). Using this system, we coached the subjects to breathe through the device 

at a regular and consistent respiratory rate. Because of scanning limitation the respiratory 

rate should be above 12 breaths per minute to achieve consistent multiple breathing cycles. 

Reconstruction of volumetric lung image from 4D-CT image data was performed at 10-14 

selected phases of each subject’s respiratory cycle. 

All subjects were studied under the University of Iowa Institutional Review Board 

and the radiation safety committee approval and with informed consent. Siemens Somatom 

Definition Flash dual-source 128-slice MDCT scanner (Forchheim, Germany) was utilized 

for the static and dynamic scanning. The parameters for scanner such as scan type, slice 

thickness, peak voltage and effective current were set to spiral, 0.75 mm, 120 kV and 75 

mAs, respectively. All MDCT lung images were acquired at a reconstruction matrix of 512 

× 512 and a section spacing of 0.5 mm with use of B35f kernel. Furthermore, in order to 

segment lungs, lobes and airways, a semi-automatic segmentation software, Apollo (VIDA 

Diagnostics, Coralville, Iowa), was employed in the same way is for the prior healthy 

volunteers (40). 
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4.2.2 Respiratory cycle 

The total lung volume was reconstructed from multiple respiratory cycles. To 

construct a single respiratory cycle, air volumes and corresponding times, recorded by a 

turbine-based flow meter, were normalized at the nth cycle, denoted by 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗𝑖𝑖  and 𝑡𝑡∗𝑖𝑖, 

respectively. The mean of those normalized air volumes for all cycles was obtained for a 

single respiratory cycle [𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ (𝑡𝑡∗), for more details, see (40)]. Thus, the normalized total air 

flow at time point 𝑡𝑡𝑝𝑝∗  was computed as follows: 

𝑄𝑄∗(𝑡𝑡𝑝𝑝∗) = �𝑑𝑑𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎
∗

𝑑𝑑𝑡𝑡∗
�
𝑡𝑡𝑝𝑝∗
≈  

𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎
∗ �𝑡𝑡𝑝𝑝+1 2⁄

∗ �−𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎
∗ (𝑡𝑡𝑝𝑝−1 2⁄

∗ )

𝑡𝑡𝑝𝑝+1 2⁄
∗ −𝑡𝑡𝑝𝑝−1 2⁄

∗ , (4.1) 

In this study, the time step (t*
p+1/2-t*p-1/2) was set to 0.01.  

4.2.3 Image Registration 

We extracted fractions of lung tissue and air volume using CT density in Hounsfield 

Unit (HU) as follows 

  𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐱𝐱) = 𝐼𝐼(𝐱𝐱)−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎
𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎

, and 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱) = 𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐼𝐼(𝐱𝐱)
𝐻𝐻𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐻𝐻𝐻𝐻𝑎𝑎𝑡𝑡𝑎𝑎

  (4.2) 

where βtissue(x), βair(x), I(x), HUtissue and HUair are tissue fraction, air fraction, image 

density at position x, HU of tissue and HU of air, respectively. In this study, we set 55 for  

HUtissue and -1000 for HUair.  

A mass preserving image registration method (83) was utilized to obtain a spatial 

transformation T(x) to match each pair of lung images at differing inflation levels. T(x) 

was determined by minimizing the sum of squared local tissue volumes difference 

(SSTVD) between two images (83). One image was considered as a reference image and 
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the other was considered as a floating image. In this study, lung images at TLC and end 

exhalation (EE) were taken as reference images for respective static and dynamic scans. 

4.2.4 Registration-derived variables 

Local air volume (𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎) at location x was computed with the spatial transformation 

T(x) as 

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎(𝐱𝐱) = 𝑣𝑣�𝐓𝐓(𝐱𝐱)�𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎�𝐓𝐓(𝐱𝐱)�, (4.3) 

 

where 𝑣𝑣 is local volume. With Eq. 3.5, regional air volume fraction, 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 , was defined as 

the ratio of sum of 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎 in each region to total air volume. Furthermore, for consistency 

with air volume measured by the turbine-based flow meter, CT-based local air volume 

during tidal breathing was normalized as follows: 

𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗ = 𝑣𝑣𝑎𝑎𝑡𝑡𝑎𝑎−𝑣𝑣𝑎𝑎𝑡𝑡𝑎𝑎,𝐸𝐸𝐸𝐸
𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝐸𝐸𝐸𝐸−𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎,𝐸𝐸𝐸𝐸

. (4.4) 

where 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 is the sum of local air volumes at end inhalation (EI) or EE within the whole 

lung. 

Furthermore, air trapping percentage (AirT%) was defined as the ratio of number 

of voxels with air trapping to total number of voxels in each lobe or total lung. Instead of 

single density-threshold-based air trapping approach (Ithreshold = −850 HU) (6), we used a 

fraction-threshold-based air trapping approach (𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡ℎ𝑎𝑎𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑑𝑑 = 0.9) to eliminate inter-

subject variability (12). The subject-specific threshold (Ithreshold) is calculated as 

𝐼𝐼𝑡𝑡ℎ𝑎𝑎𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑑𝑑 = (1 − 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡ℎ𝑎𝑎𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑑𝑑)𝐻𝐻𝐻𝐻𝑡𝑡𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡ℎ𝑎𝑎𝑡𝑡𝑡𝑡ℎ𝑎𝑎𝑎𝑎𝑑𝑑𝐻𝐻𝐻𝐻𝑎𝑎𝑎𝑎𝑎𝑎,𝑡𝑡𝑎𝑎𝑎𝑎𝑡𝑡ℎ𝑡𝑡𝑎𝑎 (4.5) 

. 
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We then assessed local anisotropic deformation using principle strains, i.e., λ1 > 

λ2 > λ3, obtained from lung displacement at each location (1). The anisotropic deformation 

index (ADI) was calculated as:  

𝐴𝐴𝐴𝐴𝐼𝐼 = ��
𝜆𝜆1 − 𝜆𝜆2
𝜆𝜆2

�
2

+ �
𝜆𝜆2 − 𝜆𝜆3
𝜆𝜆3

�
2

 (4.6) 

ADI quantified the degree of preferential deformation of a local volume.  To reduce 

inter-subject variability, we normalized ADI with its value at EI. Normalized anisotropic 

deformation index, ADI*, was used to quantify non-linearity and hysteresis of lung 

deformation during tidal breathing. Non-linearity, 𝛿𝛿𝐴𝐴𝐴𝐴𝐼𝐼∗, at each location was defined as 

the difference of ADI* estimated from cubic interpolation for each phase and corresponding 

values obtained from linear assumption between EE and EI. In addition, the hysteresis at 

each location, 𝐻𝐻𝐻𝐻𝐻𝐻𝐴𝐴𝐴𝐴𝐼𝐼∗(𝐱𝐱), was quantified by the absolute difference between the ADI* of 

inhalation and exhalation at the same 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ . 

4.2.5 Interpolation method 

A cubic spline interpolation was utilized to estimate a continuous function for each 

variable during tidal breathing. The interpolated values at phase i were computed from the 

values derived from given lung images as a function of 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗  [𝐻𝐻𝑎𝑎(𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗ )] (40), where 𝐻𝐻𝑎𝑎 is a 

local variable interpolated in the interval of (𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎
∗ ,𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎,𝑎𝑎+1

∗ ). In this study, the variable s 

was either 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗  or ADI*. Thus, the normalized air flow was calculated as 𝑑𝑑𝑣𝑣𝑎𝑎𝑡𝑡𝑎𝑎
∗

𝑑𝑑𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎
∗ �𝑑𝑑𝑉𝑉𝑎𝑎𝑡𝑡𝑎𝑎

∗

𝑑𝑑𝑡𝑡∗
� from 

the composition of the derivative of 𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗  and the derivative of breathing waveform (Eq. 

3.2) . Consequently, the local air flow fraction, 𝑞𝑞𝑓𝑓 , was defined as the ratio of local air flow 

to total air flow  
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𝑞𝑞𝑓𝑓 =
𝑑𝑑𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎∗

𝑑𝑑𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎∗
 (4.7) 

To compare distribution of air volume change between static and dynamic scans, 

we assume linear interpolation between TLC and FRC and the average values from cubic 

interpolation between EE and EI, respectively. For linear assumption, 𝑞𝑞𝑓𝑓 was simplified as 

the ratio of local air volume change to total air volume change (∆𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎/∆𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎). Furthermore, 

regional coefficient of variations (CV) of air volume changes (defined as standard 

deviation of ∆𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎/ mean of ∆𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎) was calculated to quantify heterogeneity between static 

and dynamic scans or between healthy and asthmatic subjects. 

4.3 Results 

4.3.1 PFT-, CT-based volumes, and air-trapping percentage  

Table 4.1 indicated demographic information and PFT, %predicted values, ((67), 

(28), (29)) of five healthy, five non-severe, and one severe asthmatic subjects. FEV1, 

%predicted values and FEV1/FVC for non-severe asthmatic subjects were significantly 

smaller than those of healthy subjects (P < 0.01). FRC and RV, %predicted values of non-

severe asthmatics were within normal range while those of the severe asthmatic subject 

were greater than normal range. Furthermore, TLC and FRC values obtained from CT 

images in supine position were significantly correlated with those obtained from PFT in 

upright position (𝑅𝑅2 > 0.88). Next, with the static image at FRC, we calculated air-

trapping percentages (AirT%) for all subjects (Table 4.2). There was no significant 

difference of AirT% between healthy and non-severe subjects (P > 0.46), whereas AirT% 

was considerably elevated in the severe asthmatic subject, being consistent with the 

increased RV and FRC of the subject (Table 4.1). 
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4.3.2 Total and lobar air volumes and air flows 

Total air volumes from CT images at respective phases, e.g., 10-14 phases per 

subject, were significantly correlated with corresponding air volumes measured by the 

turbine-based flow meter (𝑅𝑅2 > 0.97). With the meter-measured air volumes, we further 

estimated normalized total air flow (Q*, Eq. 4.1) for the five healthy and six asthmatic 

subjects (Figure 4.1). Both healthy and asthmatic subjects demonstrated similar trends 

during tidal breathing. However, the asthmatic subjects had greater Q* during exhalation 

(P < 0.05) while the difference was not significant during inhalation (P > 0.15).  

We obtained the means of lobar air volume fraction, 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎, i.e. the ratio of lobar air 

volume to total air volume, for five non-severe asthmatics and one severe asthmatic during 

exhalation and inhalation, respectively (Figure 4.2). The trends of non-severe asthmatic 

subjects (Figure 4.2, A and B) were similar with those of healthy subjects (40) in that 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 

of upper lobes decreased and 𝑣𝑣𝑓𝑓,𝑎𝑎𝑎𝑎𝑎𝑎 of lower lobes increased with increasing total lung 

volume (P < 0.05, between EE and EI). On the other hand, the severe asthmatic subject 

exhibited the opposite trends (Figure 4.2, C and D). Lobar flow fractions qf (Eq. ) for all 

subjects were then compared between static and dynamic scans in Figure 4.3. In this figure, 

linear interpolation was employed to calculate qf for static scans between TLC and FRC 

(denoted by  𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶), and cubic interpolation was used to calculate qf for dynamic scans 

between EE and EI (denoted by 𝑞𝑞𝑓𝑓,4𝐴𝐴−𝐶𝐶𝐶𝐶). The 𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶 values were in similar range for all 

subjects during deep breathing (Figure 4.3A). On the other hand, the 𝑞𝑞𝑓𝑓,4𝐴𝐴−𝐶𝐶𝐶𝐶 for the severe 

asthmatic subject showed different values in the left lower lobe (LLL), left upper lobe 
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(LUL) and right upper lobe (RUL) as compared with those for healthy and non-severe 

asthmatic subjects during tidal breathing (Figure 4.3B). Figure 4.3C indicated that there was 

a good correlation between lobar 𝑞𝑞𝑓𝑓,𝑆𝑆𝐶𝐶𝐶𝐶 and 𝑞𝑞𝑓𝑓,4𝐴𝐴−𝐶𝐶𝐶𝐶 for both healthy (R2 = 0.84) and non-

severe asthmatic (R2 = 0.90) subjects. Nonetheless, the severe asthmatic subject showed 

deviations in three lobes from the identity line.  

4.3.3 Heterogeneity of regional ventilation 

To quantify global and lobar heterogeneity for air flow, we calculated CVs of local 

air volume changes for both static (FRC vs. TLC) and dynamic (EE vs. EI) scans 

(Table 4.3). Heterogeneity in dynamic images significantly increased as compared with that 

in static images for both healthy and asthmatic subjects (P < 0.005). In addition, 

heterogeneity of lower lobes in the severe asthmatic subject was much greater than that of 

upper lobes in dynamic images while this feature was not observed in static images. To 

demonstrate the difference in heterogeneity between dynamic and static images, Figure 4.4 

displayed normalized histograms for the ratio of local air volume change over their average 

value over the whole lung for two representative subjects. One was a healthy subject with 

FEV1/FVC = 0.77 and the other was a non-severe asthmatic with FEV1/FVC = 0.60. The 

histogram based on dynamic images showed a more widespread distribution, signifying 

greater variation in air volume change at local (image-voxel) scale although lobar air flow 

fractions at global scale for static and dynamic images were similar (see Figure 4.3). 

4.3.4 Non-linearity and hysteresis of lung motion 

The normalized anisotropic deformation index (ADI*) was used to quantify global 

and local non-linearity and hysteresis of lung deformation during tidal breathing. For both 

healthy and asthmatic subjects, ADI* and non-linearity (𝛿𝛿𝐴𝐴𝐴𝐴𝐼𝐼∗, distance from the identity 
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line) during inhalation were in a same range and greater than those of exhalation 

(Figure 4.5). However, during exhalation, the δADI∗ values for asthmatic subjects were 

greater than those of healthy subjects. Consistent with total lungs, in all lobes except RUL, 

the δADI∗ values for asthmatic subjects during exhalation were greater than those of healthy 

subjects (Figure 4.6A, P < 0.05). Furthermore, for both healthy and asthmatic lungs, the left 

lungs had greater δADI∗ during exhalation (Figure 4.6A), while the right lungs had greater 

δADI∗ during inhalation (Figure 4.6B, P < 0.05). Furthermore, the lower lobes had greater 

δADI∗ than the upper lobes for all subjects (P < 0.05). Consequently, greater values of δADI∗ 

in asthmatic subjects during exhalation resulted in less global and lobar hysteresis 

(HysADI*) during tidal breathing (Figure 4.6C). HysADI* of asthmatics was less than that of 

healthy subjects in all regions. HysADI* of the right lungs was greater than that of the left 

lungs for both healthy and asthmatic subjects. 

4.4 Discussion 

Using the unique dataset of dynamic 4D-CT volumetric lung images, we analyzed 

regional ventilation, heterogeneity and lung deformation for asthmatic subjects including 

five non-severe asthmatics and one severe asthmatic subject. The results were compared 

with the previously published 4D-CT data of five healthy subjects (40). We further 

compared the differences between the analyses based on dynamic and static images. A dual 

rolling-seal piston system (23) was utilized to control tidal volume and reduce inter-subject 

viability for both healthy and asthmatic subjects (Figure 4.1). For analysis of regional 

ventilation, we employed an image matching technique (83) to derive additional metrics, 

such as anisotropic deformation (ADI), to quantity non-linearity as well as lung hysteresis 

during tidal breathing.   
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4.4.1 Regional ventilation 

We first investigated air trapping (AirT%) at FRC scans for all subjects, because it 

has been widely used as a putative index of small airways disease ((6), (12), (57)). In the 

current study, AirT% in non-severe asthmatics was similar with that of healthy subjects 

(Table 4.2), implying that the baseline lung functions of non-severe asthmatic lungs are 

close to normal (6). This was further supported by the fact that both healthy and non-severe 

asthmatic subjects showed similar trends of lobar air volume fraction during tidal breathing 

((40) and Figure 4.2A and B). However, unlike the non-severe asthmatic and healthy 

subjects, the air volume fraction in upper lobes increased at larger lung volumes in the 

severe asthmatic subject (Figure 4.2C and D). This is possibly due to the significant air 

trapping of lower lobes (Table 4.2) as demonstrated by Choi et al. (13) that air trapping 

predominantly occurs in the lower lobes than the upper lobes of severe asthmatics.  

Ventilation heterogeneity during tidal breathing was predominantly increased 

relative to those during deep breathing for both healthy and asthmatic subjects. However, 

there was no significant difference of ventilation heterogeneity between healthy and non-

severe asthmatic subjects. In the non-severe asthmatic population it may require a 

methacholine challenge to bring out significant differences. However, these subjects were 

not given a bronchodilator. The increased heterogeneity in dynamic scans may be 

attributable to the presence and heterogeneous variation of airway resistance during tidal 

breathing and the absence of airway resistance during breath hold for static scans (30). 

Similar characteristics of airway resistance between asthmatic and non-asthmatic lungs 

were also observed in Wongviriyawong et al.’s study (75). In their study, at baseline before 

methacholine challenge, airway resistances for healthy and asthmatic subjects were similar, 
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whereas greater resistance, as expected, was found in asthmatic lungs after methacholine 

challenge. Investigation of lobar ventilation heterogeneity also increased during dynamic 

breathing, but their quantities were different in each lobe. For example, the severe 

asthmatic subject exhibited higher heterogeneity especially in lower lobes. Furthermore, 

since lobar air flow fractions between static and dynamic scans were well correlated for 

both healthy and non-severe asthmatic subjects in lobar scale (Figure 4.3C), smaller regions 

such as constricted small airways might be responsible for different ventilation 

heterogeneity between dynamic and static images (70). Downie et al. (18) also 

demonstrated that ventilation heterogeneity can be used to determine airway hyper-

responsiveness in asthmatics. Since heterogeneity increased during tidal breathing, if 

asthmatic subjects respond to methacholine challenge, ventilation heterogeneity in 4D-CT 

may be utilized as a sensitive metric to diagnose asthmatic alterations.  

4.4.2 Non-linearity and hysteresis 

Assessment of lung deformation during tidal breathing illustrated larger non-

linearity of all asthmatics (non-severe and severe:Figure 4.5) relative to healthy subjects 

during exhalation. Air flow resistance due to airway narrowing would be elevated during 

exhalation as compared with that during inhalation, because transpulmonary pressure is 

negative during expiration (36). Therefore, the respiratory system needs to provide higher 

forces and works to overcome the resistance during exhalation ((36), (46)).  Some of those 

forces, such as shear forces, are correlated with anisotropic deformation ((24), (41)). Thus, 

we speculated that larger anisotropic deformation and non-linearity of asthmatic lungs 

during exhalation were due in part to increased shear forces produced during exhalation. 

Furthermore, the characteristics in total lungs showing the increase of non-linearity during 
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exhalation were demonstrated in most regions of asthmatics as compared with healthy 

subjects. Thus, lower total and regional hysteresis during exhalation in asthma is due to the 

higher non-linearity of increased shear forces, relative to healthy subjects.  

4.5 Conclusions 

In this study, we found two significant differences between healthy and asthmatics 

(both non-severe and severe) during exhalation. First, the increased normalized air flow 

(Figure 4.1), and the other was the increased anisotropic deformation (Figure 4.5) in 

asthmatics. In addition to the metrics discussed here, there is a need to investigate the 

relationship of local lung mechanics with global alterations. CFD simulation may be used 

to shed light on the underlying mechanics. Analysis of 4D-CT image data can provide 

actual regional air flow during breathing to implement CFD simulation to estimate pressure 

distribution. Having regional air flow and pressure distribution would provide information 

to identify and predict regional air flow obstruction and airway resistance in asthmatics.  

Increased ventilation heterogeneity during dynamic breathing was observed in both 

healthy and asthmatic subjects. However, the heterogeneity was different between the 

population of non-severe and the one severe subject but, because there is only one severe 

subject, a statistical statement is not possible. To define common characteristics among a 

group of asthmatic and healthy subjects, more subjects are needed. However, statistical 

tests were performed to verify significant difference between regional characteristics. 

Furthermore, we obtained means and SE of every global and regional variable in each 

group to evaluate inter-subject variability. To acquire more dynamic lung images, it is 

necessary to resolve issues such as radiation dose, imaging protocols, image quality and 

cost.  
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Table 4.1. Demographic and PFT information for five healthy, five non-severe asthmatic and 
one severe asthmatic subjects 

 Healthy Non-severe 
asthmatic  

Severe 
asthmatic 

Mann-Whitney U 
test† (P value) 

Subjects, n (female) 5 (2) 5 (2) 1 (1)  
Age, yr 40 ± 15 37 ± 13 52 0.89 

BMI, kg/m2 27 ± 3 26 ± 5 31 0.91 
Race, n (white non-

Hispanic/Hispanic/Asian) 4 / 1 / 0 5 / 0 / 0 0 / 0 / 1 - 

TLC, %predicted 94 ± 7 95 ± 7 99 0.92 
FRC, %predicted 82 ±10 95 ± 16  128 0.12 
RV, %predicted 83 ± 12 89 ± 6 153 0.76 

FVC, %predicted 94 ± 9 92 ± 9 72 0.75 
FEV1, %predicted 92 ± 6 76  ± 7 36 < 0.05 
FEV1/FVC × 100 79 ± 2 67  ± 5 39 < 0.01 

 
Values are means ±SD; n, no. of subjects. †Statistical tests were performed between five healthy 
and five non-severe asthmatic subjects. 
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Table 4.2. Means ± SD of total and lobar AirT% at FRC for 5 healthy, 5 non-severe asthmatic, 
and 1 severe asthmatic subjects 

 Healthy subjects Non-severe 
asthmatics 

Severe 
asthmatic 

Mann-Whitney 
U test† (P value) 

Total 9.1% ± 7.6% 6.1% ± 4.3% 51.3% 0.60 
LLL 1.5% ± 1.1% 1.3% ± 0.5% 62.7% 0.75 
LUL 10.7 ± 9.9% 6.7% ± 4.3% 42.1% 0.74 
RLL 1.1% ± 0.7% 1.8% ± 2.1% 54.3% 0.75 
RML 27.4% ± 20.2% 24.2% ± 16.4% 66.6% 0.92 
RUL 9.3% ± 8.4% 6.4% ± 6.9% 30.3% 0.46 

† Statistical tests were performed between five healthy and five non-severe asthmatic subjects 
 
 
 
 
 
 
Table 4.3. Means ± SD of Coefficient of Variations of whole and lobar air volume change for 
healthy and asthmatic subjects during deep and tidal breathing 

 
Healthy subjects Non-severe asthmatics Severe asthmatic Mann-Whitney U 

test† (P value) CVstatic CVdynamic CVstatic CVdynamic CVstatic CVdynamic 
Whole 0.31 ± 0.03 0.79 ± 0.29 0.29 ± 0.02 0.68 ± 0.18 0.413652 0.934951 <0.005 
LLL 0.22 ± 0.02 0.73 ± 0.19 0.22 ± 0.01 0.65 ± 0.20 0.412511 1.78656 <0.005 
LUL 0.27 ± 0.05 0.80 ± 0.36 0.27 ± 0.02 0.63 ± 0.25 0.40323 0.62237 <0.005 
RLL 0.23 ± 0.02  0.61 ± 0.21 0.23 ± 0.02 0.61 ± 0.15 0.370018 0.932261 <0.005 
RML 0.49 ± 0.15 2.4 ± 3.04 0.43 ± 0.16 1.11 ± 0.39 0.534224 0.972335 <0.005 
RUL 0.26 ± 0.02 0.59 ± 0.19 0.25 ± 0.02 0.55 ± 0.14 0.332232 0.398269 <0.005 

CVstatic, Coefficient of Variation during deep breathing; CVdynamic, Coefficient of Variation during 
tidal breathing; † Statistical tests were performed between CVstatic and CVdynamic for both healthy 
and non-severe asthmatic subjects 
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Figure 4.1. Means (±SE) of normalized air flow (Q*) measured by the turbine-based flow 
meter for exhalation (positive value) and inhalation (negative value) in the total lung for 

both asthmatic and healthy subjects 
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A B 

  
C D 

  
Figure 4.2. Means (+SE) of lobar air volume fraction for five non-severe asthmatics A: 

during exhalation and B: during inhalation, and for the severe asthmatic subject C: during 
exhalation and D: during inhalation 
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A 

 
B 

 
C 

 
Figure 4.3. Means (±SE) of A: lobar air flow fraction (qf,SCT) in static scans, B: lobar air flow 

fraction (qf,4D-CT) in 4D-CT scans among healthy, non-severe asthmatic, and the severe 
asthmatic subjects; C: Comparison between lobar qf,SCT  and qf,4D-CT for all subjects 
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B 

 
Figure 4.4. Voxel ventilation histogram for A: a representative healthy subject and B: a 

representative asthmatic subject 
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Figure 4.5. Means of ADI* in the total lungs for five healthy and six asthmatic subjects 
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A 

 
B 

 
C 

 
Figure 4.6. Means (±SE) of lung and lobar A: non-linearity of ADI* during exhalation B: 
non-linearity of ADI* during inhalation, and C: hysteresis of ADI* between five healthy 

and six asthmatic subjects 
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5 CFD SIMULATION OF ASTHMATIC LUNGS DURING TIDAL 

BREATHING 

5.1 Introduction 

In asthmatic lungs, due to increased local airway resistance and airflow obstruction, 

quantification of regional distributions of variables such as air volume change and pressure 

drop are essential to assess breathing mechanism of asthmatic lungs. Computational fluid 

dynamics (CFD) simulation can be used as a tool to provide regional air flow pattern and 

pressure distribution within airways to evaluate airway resistance, as an important indicator 

in asthmatic lungs, and understand flow characteristic in asthmatic lungs. However, 

accurate estimations of flow pattern and pressure distribution are highly dependent on 

airway geometry model and boundary condition (BC) used in CFD simulation. Due to the 

complexity of airway geometry, earlier studies idealized the airway models to estimate 

flow pattern in human lungs ((34), (72)). However, the idealized models could not capture 

the features specific to individual subjects. With recent advances in imaging techniques, 

high resolution computed tomography (CT) images allow us to extract subject-specific 

three-dimensional (3D) realistic airway models for CFD simulation ((10), (49)). However, 

those studies neglected the heterogeneous nature of BCs in the lung and applied uniform 

pressure or velocity at ending branches. Lin et al. (47) utilized a 3D-1D coupled airway 

model to propose a multiscale CFD simulation method. Based on their method, Yin et al. 

(80)  estimated a subject-specific realistic BC for CFD simulation using functional residual 

capacity (FRC) and total lung capacity (TLC) scans with TLC airways as the geometry 

model. With use of image registration, they quantified realistic regional ventilation by 

mapping the two CT lung images.    
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Previously, most existing studies applied CFD simulation using rigid airways as the 

geometry model. However, since the lung deforms during breathing it is important to 

consider lung motion. Yin et al. (82) utilized the displacement field derived from registered 

lung images at FRC and TLC to construct a dynamic lung geometry model. Then, they 

extended their work for multiple lung images to develop more realistic time-varying BCs 

considering non-liner motion of the lung (81). However, all those studies used static scans 

for their simulation and did not consider the dynamic motion during breathing. Recent 

advances in dynamic imaging make it possible to acquire four-dimensional CT images 

during tidal breathing. 4D-CT imaging technique could provide more physiological 

boundary conditions. Miyawaki et al. (51) utilized 4D-images to develop a CFD model for 

a healthy breathing lung. They studied the effect of dynamic imaging on pressure drop 

predicted by CFD simulation. However, because of airway narrowing in asthmatic lungs, 

CFD simulation in asthmatics is much more challenging. Jahani et al. (39) utilized 4D-CT 

imaging to investigate differences between healthy and asthmatic lungs during breathing. 

They showed that dynamic breathing causes different regional ventilation and deformation 

in comparison with breath-hold condition. 

In this study, we aim to utilize CFD simulation for an asthmatic subject using both 

static and dynamic images during tidal breathing to assess the effect of dynamic imaging 

on air flow structures for asthmatics. Then, we compare the results with CFD analysis of a 

healthy subject reported by (51). We use a mass preserving image registration technique to 

provide regional ventilation to set BCs and a CFD model with a multiscale 3D-1D coupled 

airway geometry. Knowing regional pressure drop and air flow distribution provides 

essential information to differentiate airway resistance indicating progression of asthma. 
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5.2 Methods 

In this study, CFD simulation of air flow was performed in asthmatic human lung for 

both static and 4D-CT images. Then, the results were compared with those of a healthy 

subject (51). 4D-CT imaging technique accounts for space and time, yielding more realistic 

results due to irregular human lung motion. Air volume and displacement field of lung 

motion were obtained from a mass preserving image registration method (83). Then 1D 

tree and consequently 3D mesh were generated. While a computational-solid-mechanics 

(CSM)-based algorithm was used to account for mesh deformation, a volume filling 

method was used to employ a physiologically realistic and meaningful air flow boundary 

condition to compensate unresolved airways in CT images. The aforementioned methods 

were used to perform CFD simulations of airflow in both healthy and asthmatic human 

airways.  

5.2.1 Image acquisition  

4D-CT and static CT images for one healthy subject and one asthmatic subject were 

acquired as described by (40) and were used to perform the CFD simulation.  

5.2.2 CFD mesh generation 

In this study, we segmented TLC volumes as the reference images for the asthmatic 

lung like what Miyawaki et al. did for a healthy subject (51). The segmented airway 

geometry with labeling for the asthmatic subject is shown in Figure 5.1. Deformation field 

and 1D tree were obtained from the mass preserving image registration technique. Then, 

the geometric model and meshing methods proposed by Miyawaki et al. (53) were used to 

to generate 3D mesh for airway geometry. First, airway skeleton as well as airway wall 

geometry were extracted from TLC images. Then, the obtained airway skeleton was used 
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to generate 3D mesh so that airway volume is filled with tetrahedral elements. Then the 

image registration technique was used to find the transformed reference surface mesh at 

different times in 4D-CT imaging.   

5.2.3 Boundary conditions 

A subject-specific boundary condition, such as flow rate, can significantly improve 

results of CFD simulation of pulmonary air flow. To measure the flow rate at the branches 

at the end of CT-resolved bronchial tree, a regional volume 𝑉𝑉𝑅𝑅 was defined such that 𝑉𝑉𝑅𝑅 is 

equal to the peripheral regions to which the ending branch ventilates. Using volume filling 

method to construct airways in CT-unresolved region, 𝑉𝑉𝑅𝑅 can be obtained at the reference 

time point. The time rate of the change of 𝑉𝑉𝑅𝑅 yields the flow rate at an ending branch. Also 

𝑉𝑉𝑅𝑅 at different time points can be obtained using deformable image registration.  

5.2.4 CFD simulation  

Large eddy simulation (LES) in a Lagrangian-Eulerian (ALE) framework was applied 

to capture laminar, transitional and turbulent flow (81). The filtered continuity equation as 

well as Navier-Stokes equations for incompressible flow were included in the governing 

equations. 

𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑚𝑚𝑗𝑗

= 0 

𝜕𝜕𝑡𝑡𝑡𝑡
𝜕𝜕𝑡𝑡

+ �𝑢𝑢𝑗𝑗 − 𝑢𝑢𝑗𝑗𝐴𝐴𝐿𝐿𝐸𝐸�
𝜕𝜕𝑡𝑡𝑡𝑡
𝜕𝜕𝑚𝑚𝑗𝑗

=  − 1
𝜌𝜌
𝜕𝜕𝑝𝑝
𝜕𝜕𝑚𝑚𝑡𝑡

+  𝜕𝜕
𝜕𝜕𝑚𝑚𝑗𝑗

�(𝑣𝑣 +  𝑣𝑣𝐶𝐶) 𝜕𝜕𝑡𝑡𝑗𝑗
𝜕𝜕𝑚𝑚𝑗𝑗
�, 

(5.1) 

 

  



91 
 

 

where 𝑢𝑢𝑎𝑎, 𝑢𝑢𝑎𝑎𝐴𝐴𝐿𝐿𝐸𝐸,  p, 𝜌𝜌, 𝑣𝑣, and 𝑣𝑣𝐶𝐶 are the  ith components of fluid and grid velocities, 

pressure, density, kinematic viscosity, and subgrid-scale eddy viscosity, respectively. The 

density and kinematic viscosity of air were 1.2 kg m3⁄  and 1.5 m2 s⁄ , respectively.  

Using the displacement of two surface meshes as an essential boundary condition at 

two different time points, a CSM-based algorithm (66) was applied to deform the volume 

mesh.  

5.3 Results 

Demographic information and PFT results of the healthy and the asthmatic subjects 

are shown in Table 5.1. In addition, Table 5.2 indicates global breathing information of both 

subjects. Total air flow, trachea hydraulic diameter and Reynolds number at peak 

inhalation for the healthy subject (or the asthmatic) are 50 L/min, 18.9 mm and 3740 (or 

36 L/min, 16.1 mm and 2791), respectively. Figure 5.2 shows total normalized flow rates 

for both subjects during a single breathing cycle. It can be observed that with the dual 

piston system we could control breathing rate to achieve consistent air flow. 

First, we utilized the CFD simulation for 4D-CT scans at EE and EI and for static 

scans at TLC and FRC. Table 5.3 demonstrates how air flow fraction (local flow/total flow) 

was distributed in the first and second generation airways (which include the left main 

bronchus (LMB) and right main bronchus (RMB), LUL, LLB6, RUL and BronInt, 

Figure 5.1). The results showed that in large airways both healthy and asthmatic subjects 

had similar ranges in terms of flow rate fractions (with a difference of less than 12%). 

However, the distributions of air flow in the left and right healthy lungs based on the 

dynamic images were different from the static one. That is consistent with our results in 

Chapter 3. Table 5.4 shows different pressure drop distributions along the airways. The 



92 
 

 

results indicated that pressure drop distribution was different between static and dynamic 

simulation for both healthy and asthmatic lungs even in large airways although the values 

in larger airways are small. Figure 5.3 indicates that pressure distributions in smaller 

airways were quite different between static and dynamic scans for both healthy and 

asthmatic subjects. 
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    Table 5.1. Demographic information* and PFT values (% predicted                                                                                            
    normal values) for healthy and asthmatic subjects 

Subject Healthy subject Asthmatic 

Gender M M 

Age (yrs.) 58 49 

BMI (kg/m2) 32 27 

FEV1 (L) 3.4 (83 %) 2.9 (73%) 

FVC (L) 4.4 (82 %) 4.35 (85%) 

FEV1/FVC 0.768 0.66 

TLC (L) 7.2 (93%) 6.08 (85%) 

FRC (L) 2.9 (78%) 2.86 (80%) 

RV (L) 2.3 (93%) 1.73 (79%) 

RV/TLC 0.318 0.28 
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Table 5.2. Global breathing information for the healthy and asthmatic subjects 

Subject Tidal breathing 
(L) 

Time period 
(s) 

Inhalation time 
(s) 

Peak inhalation 
time (s) 

Healthy  0.98 4.34 2.57 0.26 
Asthmatic 0.89 4.24 2.25 0.42 

 

 
 
Table 5.3. Flow rate fractions of 4D-CT analysis in the 1st and 2nd generations of the 
airways at peak inhalation 

  Healthy subject 
Dynamic Static 

LMB RMB LMB RMB 
0.42 0.58 0.48 0.52 

LUL LLB6 RUL BronInt LUL LLB6 RUL BronInt 
0.17 0.25 0.16 0.42 0.20 0.28 0.14 0.38 

Asthmatic 
Dynamic Static 

LMB RMB LMB RMB 
0.49 0.51 0.47 0.53 

LUL LLB6 RUL BronInt LUL LLB6 RUL BronInt 
0.23 0.26 0.21 0.30 0.19 0.28 0.17 0.36 

 

 

 

Table 5.4. Pressure drop (in pa) of 4D-CT analysis in the 1st and 2nd generations of the 
airways at peak inhalation 

Healthy subject 
Dynamic Static 
Trachea Trachea 

1.66 0.0585 
LMB RMB LMB RMB 

4.9 0.04 5.89 -0.247 
LUL LLB6 RUL BronInt LUL LLB6 RUL BronInt 
0.879 5.40 18.11 7.95 2.07 1.68 17.86 6.03 

Asthmatic 
Dynamic Static 
Trachea Trachea 

3.69 4.95 
LMB RMB LMB RMB 
13.1 1.15 4.18 0.362 

LUL LLB6 RUL BronInt LUL LLB6 RUL BronInt 
1.46 -0.23 8.14 3.33 1.51 2.75 4.33 2.14 
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Figure 5.1. The segmented airway with its labeling at TLC for the healthy subject 
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Figure 5.2. Normalized flow rates obtained from measurement for exhalation (+) and 

inhalation (-) in the whole lung 
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 Dynamic Static 
 Asthmatic 

Figure 5.3. Pressure distribution at peak inhalation  
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6 SUMMARY AND FUTURE WORK 

6.1 Summary 

In this thesis, we developed dynamic breathing lung models using static and 

dynamic CT images for both healthy and asthmatic human lungs. We extracted new local 

features of the lung function in association with the non-linear nature of lung motion for 

both healthy and asthmatic lungs. 

6.1.1 Assessment of regional non-linear ventilation and tissue deformation using three 

breath-hold CT data sets 

We evaluated the non-linear characteristics of the human lung via image 

registration-derived local variables based on volumetric MDCT lung image data of six 

normal human subjects acquired at three inflation levels: 20% of vital capacity (VC), 60% 

VC and 80% VC. Local variables included Jacobian and maximum shear strain for 

assessment of lung deformation, and air volume change for assessment of air distribution. 

First, the variables linearly interpolated between 20% and 80% VC images to reflect 

deformation from 20% to 60% VC were compared with those of direct registration of 20% 

and 60% VC images. The result showed that the linearly-interpolated variables agreed only 

qualitatively with those of registration. Then, a quadratic (or linear) interpolation was 

introduced to link local variables to global air volumes of three images (or 20% and 80% 

VC images). A sinusoidal breathing waveform was assumed for assessing the time rate of 

change of these variables. The results indicated significant differences between two-image 

and three-image results (P<0.05). The three-image results for the whole lung showed that 

the peak of the maximum shear rate occurred at 37% of the maximum volume difference 

between 20% and 80% VC, while the peaks for the Jacobian and flow rate occurred at 50%. 
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This was in agreement with accepted physiology whereby lung tissues deform more at 

lower lung volumes due to lower elasticity and greater compliance. Furthermore, the three-

image results showed that the upper and middle lobes, even in the recumbent, supine 

posture, reached full expansion earlier than the lower lobes. 

6.1.2 Assessment of regional ventilation and deformation using 4D-CT imaging for 

healthy human lungs during tidal breathing 

We assessed regional ventilation, nonlinearity, and hysteresis of human lungs 

during dynamic breathing via image registration of 4D-CT scans. Six healthy adult humans 

were studied by spiral multidetector-row CT during controlled tidal breathing as well as 

during total lung capacity and functional residual capacity breath holds. Static images were 

utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston 

system was employed to maintain consistent tidal breathing during 4D-CT spiral image 

acquisition, providing required between-breath consistency for physiologically meaningful 

reconstructed respiratory motion. Registration-derived variables including local air volume 

and anisotropic deformation index were employed to assess regional ventilation and lung 

deformation. Lobar distributions of air volume change during tidal breathing were 

correlated with those of deep breathing (R2 ≈ 0.84). Small discrepancies between tidal and 

deep breathing were shown to be likely due to different distributions of air volume change 

in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow 

rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity 

and hysteresis of lung deformation that can only be captured in dynamic images. 

Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower 
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lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation 

and exhalation is more significant in the right lungs than that in the left lungs. 

6.1.3 A 4D-CT comparison of healthy vs. asthmatic human lungs 

We tried to explore new insights in the dynamics of asthmatic human lungs using 

four-dimensional computed tomography (4D-CT) image data acquired during tidal 

breathing. Volumetric image data were acquired for 5 non-severe asthmatic and one severe 

asthmatic human volunteers. Besides 4D-CT image data, function residual capacity and 

total lung capacity image data during breath-hold were acquired for comparison with 

dynamic scans. Quantitative results were compared with the previously reported analysis 

of five healthy human lungs. Using an image registration technique, local variables such 

as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional 

ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy 

subjects, but different from the severe asthmatic subject. Lobar air flow fractions were also 

well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation 

heterogeneity significantly increased during tidal breathing in both healthy and asthmatic 

subjects relative to that of breath-hold perhaps because of airway resistance present only 

in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion 

during tidal breathing. Non-linearity was greater on inhalation than exhalation among all 

subjects. However, exhalation non-linearity among asthmatic subjects was greater than 

healthy subjects and the difference diminished during inhalation. An increase of non-

linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to 

that of healthy ones. Thus, assessment of non-linearity differences between healthy and 
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asthmatic lungs during exhalation may provide quantitative metrics for subject 

identification and outcome assessment of new interventions. 

6.1.4 CFD simulation of asthmatic lungs during tidal breathing 

We applied CFD to model an asthmatic breathing lung using both static and 4D-

CT image data. We applied improved algorithms introduced by Miyawaki et al.  (51) to 

deform airway mesh and achieve physiologically-consistent boundary conditions. We 

quantified regional air flow and pressure drop distribution within the airways. Furthermore, 

we compared our results with the analysis obtained from the CFD simulation for a healthy 

subject.  The result showed that there is no significant change in air flow and pressure drop 

in the 1st and 2nd generations of the airways. However, in smaller airways, we observed 

different distributions of air flow and pressure distribution. The results suggested that CFD 

simulation may use as a predictor of airway resistance in small airways.  

6.2 Future work 

6.2.1 Quantitative assessment of regional structural alteration in asthmatic lungs using 

4D-CT image data 

Functional variables such as regional ventilation and deformation estimated in 

Chapters 3 and 4 can be utilized to establish a relationship with structural variables. Local 

alterations of structural variables in asthmatic subjects during tidal breathing include 

bifurcation angle, circularity, airway wall thickness (WT), and hydraulic diameter (Dh). 

Their correlations with other imaging and PFT-based global and lobar metrics, including 

lung shape, regional ventilation, and anisotropic deformation can be investigated. It is 

expected that the correlation between those variables may provide necessary information 

to predict regional airflow obstruction and constricted airways. 
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6.2.2 CFD simulation of a deforming human lung using 4DCT images for multiple 

subjects of asthmatic and healthy lungs 

In this study only one healthy subject and one asthmatic subject were investigated with 

CFD simulations based on dynamic and static images. To find common features and 

classify those features among a population of healthy and asthmatic lungs, more subjects 

shall be utilized. Also, image data from subjects with non-severe and sever asthmatics can 

be acquired to estimate and predict the progression of asthma among patients. For this 

purpose, the image data and results obtained in Chapters 3 and 4 can be used for the CFD 

simulation of 4D-CT analysis. However, if more data is needed, we need to address issues 

such as imaging protocol, radiation dose and cost. 
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