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ABSTRACT 

HVAC (Heating Ventilating and Air-Conditioning) system is multivariate, 

nonlinear, and shares time-varying characteristics. It poses challenges for both system 

modeling and performance optimization. Traditional modeling approaches based on 

mathematical equations limit the nature of the optimization models and solution 

approaches. 

Computational intelligence is an emerging area of study which provides powerful 

tools for modeling and analyzing complex systems. Computational intelligence is 

concerned with discovery of structures in data and recognition of patterns. It 

encompasses techniques such as neural networks, fuzzy logic, and so on. These 

techniques derive rules, patterns, and develop complex mappings from the data. The 

recent advances in information technology have enabled collection of large volumes of 

data.  Computational intelligence embraces biology-inspired paradigms like evolutionary 

computation and particle swarm intelligence in solving complex optimization problems. 

Successful applications of computational intelligence have been found in business, 

marketing, medical and manufacturing domains. The focus of this thesis is to apply 

computational intelligence approach in modeling and optimization of HVAC systems. In 

this research, four HVAC sub-systems are investigated: the AHU (Air Handling Unit), 

VAV (Variable Air Volume), ventilation system, and thermal zone. Various 

computational intelligence approaches are used to identify parameters or problem solving. 

Energy savings are accomplished by minimizing the cooling output, reheating output or 

fan running time as well as on-line monitoring. One contribution of the research reported 

in the thesis is the use of computational intelligence algorithms to establish nonlinear 

mappings among different parameters. Another major contribution is in using heuristics 

algorithms to solve multi-objective optimization problems. 
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CHAPTER1.  

INTRODUCTION 

HVAC (Heating Ventilating and Air-Conditioning) systems provide thermal 

comfort and air quality  in buildings. Due to rapidly growing energy use, energy savings 

are stressed in almost every aspect of our lives. HVAC systems are major energy 

consumers in buildings,. According to the published statistics, HVAC systems account 

for almost 31% of the electricity consumed by U.S. households [1]. Therefore, energy 

conservation in HVAC system is an issue. 

Energy conservation problem in HVAC systems is multi-dimensional. 

Minimizing the system cost and energy requirements should not compromise an 

acceptable level of occupancy comfort and indoor air quality.  

In addition, as the size of the buildings increase, the complexity of HVAC system 

expands to meet the various building functions.  

1.1 Analytical approaches for modeling and optimization of 

HVAC systems 

An analytical approach to modeling HVAC systems relies on detailed physics-

based models and simulation software. Analytical models are often derived from 

fundamental laws of energy, mass, heat transfer, and so on in the form of mathematical 

equations. Cumali et al [2] modeled the HVAC system as an optimization problem based 

on the first principles and applied a generalized reduced gradient method to provide 

consistent results in handling the equality constraints. Yu et al [3] developed dynamic 

models for both dry and wet cooling coils using the mass balance and energy equations. 

Zhang et al [4] proposed a physics-based supervisory control strategy to minimize the net 

external energy consumption under a series of constraints. If basic assumptions are 

satisfied, these physics-based models are reliable. However, detailed physics-based 

models often involve high computational cost and memory demand due to their 
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complexity, which makes them difficult to use in real online applications [5]. To 

overcome this obstacle, many simplified models are incorporated in simulation programs 

and on-line applications. Wang et al [6] presented a simple yet accurate model for 

cooling coil unit and yield better real time control and optimization. Several commonly 

used simulation programs are TRNSYS [7], HVACSIM+ [8] and SIMBAD [9]. Henze et 

al [10] modeled a building in TRNSYS and proposed a model predict control strategy to 

control active and passive building thermal storage inventory in real time. One restriction 

in these simulation programs is that many components models are steady-state or quasi-

steady-state, which makes them not suitable for handling high frequency disturbances 

[11].   

To solve optimization problems formulated by analytical models, many nonlinear 

local optimization techniques can be used. Rink et al [12] solved the optimization 

problem of multi-zone HVAC system with substantial energy storage by using state-

increment dynamic programming. Kota et al [13] applied the DDP (differential dynamic 

programming) technique of optimal control to HVAC systems and compared its 

performances with sequential quadratic programming method. Other nonlinear local 

techniques like direct search [14], conjugate gradient method [15], univariate search [16], 

etc were also used in HVAC field.  

1.2 Data-driven approaches  

Unlike the analytical approaches, a data-driven approach relies on empirical 

behavior of the system or process. Data mining algorithms like classification or 

regression map relationships between the input and output variables without requiring 

detailed prior knowledge. Xi et al [17] built a 2-by-2 nonlinear dynamic model of a 

HVAC system by SVM and designed a nonlinear model predictive controller based on 

that model. Chow et al [18] identified the thermal system by applying the reduced-order 

functional link neural network. Namburu et al [19] developed a generic FDD (fault 
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detection and diagnosis) scheme for centrifugal chillers by employing three well-known 

statistical inference techniques, namely SVM (Support Vector Machine), PCA (principal 

component analysis) and PLS (partial least squares) to isolate faults.  A nominal data-

driven model of the chiller was also developed by PLS to predict the system response 

under new loading conditions. One shortcoming for data-driven approach is that 

insufficient training data will result in instability of models since prediction error 

becomes obvious in ranges out of which training data has covered.  

Since some models are derived from advanced techniques like NN (Neural 

Network), no explicit knowledge is available. Nonlinearity and opaqueness 

characteristics of these optimization models pose challenge for traditional mathematical 

programming methods. Some heuristic search algorithms like SA (Simulated annealing) 

[20], EA (Evolutionary Algorithms) [21, 22, 23], and so on, are suited for finding near-

optimal solutions for complex problems in building energy. 

1.3 Computational Intelligence in modeling and 

optimization of HVAC systems  

 CI (Computational Intelligence) was first proposed by Bezdek [24] and gained 

widespread attention. Originated from emulating intelligent phenomenon in nature, 

computational intelligence centers on the study of adaptive mechanism to enable or 

facilitate intelligent behavior in complex and changing environment. It includes 

paradigms like neural network [25, 26], evolutionary computation [27, 28], swarm 

intelligence [29], fuzzy system [30] and so forth [31]. Computational intelligence 

methods provide great functions in nonlinear mapping and optimization. Thus, in recent 

years, many researches have been done in HVAC modeling, control and optimization 

areas [32, 33, 34].  
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Figure 1.1 Structure of the thesis 

Figure 1.1 illustrates the structure of the thesis. Different applications of 

computational intelligence in HVAC systems are introduced from Chapter 2 through 

Chapter 5. Chapter 2 focuses on modeling HVAC systems in a computational intelligence 

approach. A neural network is employed to establish nonlinear mappings among different 

parameters. Chapter 3 focuses on applying multi-objective evolutionary algorithm for 

solving the optimization model formulated by physics-based equations. Chapter 4 and 5 

discuss the use of computational intelligence methods in model formulation and solving. 

In each chapter, an appropriate HVAC sub-system is selected. Figure 1.2 describes 

typical HVAC system. Chapter 2 focuses on establishing mappings among different 

parameters in a single HVAC zone. Chapter 3 presents an optimal ventilation control 

scheme in a single zone. Chapter 4 is concerned with optimization of the AHU (Air 

Handling Unit). Chapter 5 presents optimization of the VAV (Variable Air Volume) Box.  
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Figure 2.2 Diagram of a typical HVAC system 

Computational intelligence allows modeling systems of different complexity. In 

Chapter 2, NN is used for modeling IAQ (indoor-air-quality) sensors used in HVAC 

systems. The IAQ sensors considered in the chapter measure three basic parameters, 

namely temperature, CO2, and relative humidity. The computational results produced by 

models built with different data mining algorithms are discussed. In comparison with 

other data mining algorithms, NN produced the best results for all three IAQ sensors 

among all algorithms tested on the HVAC data set collected at an office-type facility. The 

models built with NN can serve as virtual IAQ sensors in buildings and be used for on-

line monitoring and calibration of the IAQ sensors.  

Computational intelligence methods also offer powerful searching techniques in 

solving complex optimization problems. In chapter 3, based on analytical model of 

indoor CO2 concentration, a two-mode ventilation control of a single facility is 
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formulated as a scheduling model over multiple time horizons. Using the CO2 

concentration as the major indoor air quality index and expected room occupancy 

schedule, optimal solutions leading to reduced CO2 concentration and energy costs are 

obtained by solving the multi-objective optimization model formulated in the chapter. A 

modified evolutionary strategy algorithm is used to solve the model at different time 

horizons. The optimized ventilation schedules result in energy savings and maintain an 

acceptable level of indoor CO2 concentration. 

In Chapter 4, computational intelligence methods are first applied in both 

optimization problems formulating and solving. A model extracted by a neural network is 

selected for identifying the functional mapping between specific outputs and controllable 

and non-controllable inputs of the AHU. To minimize the cooling output while 

maintaining the corresponding thermal properties of the supply air within a certain range, 

a bi-objective optimization model is proposed. The evolutionary strategy algorithm is 

applied to solve the optimization problem with the optimal control settings obtained at 

each time stamp. The minimized AHU’s cooling output reduces the chiller’s load, which 

leads to energy savings. 

In Chapter 5, computational intelligence methods are applied for optimizing the 

reheating process in VAV box. Compared to Chapter 4, time delay among inputs and 

outputs are investigated more deeply in this chapter. NN is selected to derive the 

temporal predictive models from real data and the reheating process is transformed into a 

bi-objective optimization model. Unlike previous two chapters of using evolutionary 

algorithms in solving optimization problems, a modified PSO (Particle Swarm 

Optimization) based on two levels of non-dominated solutions is introduced to find near-

optimal solutions with decent computation cost in consideration of on-line 

implementation. Based on the model predictive control strategy, recommended control 

output is obtained to minimize the reheating output while maintaining the thermal 

comfort at certain acceptable level in the future. 
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Chapter 6 summarizes the concepts presented in the thesis and provides future 

research directions. 
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CHAPTER 2.  

INDOOR-AIR-QAULITY VIRTUAL SENSOR MODELING AND ON-

LINE MONITORING 

2.1 Introduction 

The growing complexity of building HVAC systems has become a major 

challenge for applying strategies for reducing costs and enhancing air quality [35]. 

Degraded equipment, failed sensors, improper installation, poor maintenance and aged 

control systems have contributed to poor performance of HVAC systems of various 

commercial buildings.  

Indoor air quality is usually measured by the level of temperature [°C], CO2 [PPM] 

and relative humidity [%]. The performance of IAQ sensors greatly impacts the air 

quality and energy savings of HVAC systems. The physical sensors installed in any 

HVAC system degrade over time, and this leads to inferior performance, poor air quality, 

and energy waste due to incorrect feedback from the degraded IAQ sensors. Various 

researchers have focused on modeling sensors, detection of sensor faults and developing 

cost-efficient control strategies for HVAC systems. Namburu et al. [19] proposed a real-

time fault diagnosis scheme for chillers based on a data-driven approach. Cho et al. [36] 

developed a model based on pattern classification and residual ratios to diagnose, identify, 

and detect multiple-faults occurring in HVAC systems. Salsbury et al. [37] used 

simulation to predict performance targets and compare monitored system outputs for 

performance validation and energy analysis. Hou et al. [38] combined a rough set 

approach with a neural network algorithm to build a model based on past HVAC 

performance data. The model was intended to detect and diagnose sensor faults in HVAC 

systems. Schein et al. [39] developed a rule-based method for fault detection in air 

handling systems. The rules were derived by experts from mass and energy balances.  
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In this chapter, ANN has been applied to build models of IAQ sensors. The 

constructed models are used as on-line profiles and virtual sensors for indoor air quality. 

They can be also used to monitor the performance of IAQ sensors installed in HVAC 

systems. The IAQ sensor models are built based on historical data from an HVAC system 

at an existing facility. Identifying sensor faults and on-line monitoring of the IAQ sensors 

is useful for optimizing the performance of HVAC systems. 

2.2 Methodology for IAQ Sensor Modeling and On-line 

Monitoring  

Instead of having a real physical sensor, virtual sensor refers to its word meaning 

of using other sensed data collected from related sensors in replacement of measuring the 

process condition or product properties directly. Virtual sensor technology is often 

applied when the direct observation is impossible, expensive or unreliable. In this chapter, 

neural network is applied in building the virtual sensor to achieve the function of on-line 

monitoring.  Neural networks have been widely used to model and control dynamic 

processes because of their capability of approximating nonlinear model functions.  

Control charts are used in process monitoring to determine and eliminate the 

sources of process variation so that the process returns to its normal state. They have been 

widely researched in the statistical quality and process control literature [40]. Recent 

advances in profile monitoring have led to applications in manufacturing, calibration, 

logistics, service, marketing, finance and accounting [41, 42, 43, 44, 45].  

Figure 2.1 illustrates the basic concept of IAQ sensor modeling and on-line 

monitoring presented in this paper. A data mining algorithm is used to identify IAQ 

sensor models based on the historical HVAC process data. The model can be updated to 

reflect the process change over time. The update frequency could be, for example, two 

weeks. The operational update frequency depends on the HVAC system operational 

conditions and the accuracy requirements. Alternatively, a separate routine could monitor 
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the model performance and refresh the model once its performance degraded. A control 

chart generated from the HVAC data can be used for on-line monitoring of an IAQ 

sensor. The IAQ models and control chart monitor the IAQ sensor performance at a 

certain time interval, e.g., every five minutes. 

HVAC system

Data mining 
algorithms

Virtual IAQ sensor 
model

Control chart

Process data

On-line monitoring

Update the process 
model  using new 

process data

Statistical 
process control 

1-minute  
HVAC data

 

Figure 2.1. Modeling and on-line monitoring of IAQ sensors 

 The residual control chart approach (statistical quality control) [42, 43] is used to 

analyze residuals between the model predicted IAQ value and the observed (measured by 

sensor) IAQ value. The residual ε  is expressed in Equation (2.1) [43]:  

                                   ŷ yε = −                                  (2.1) 

where y  is the observed IAQ value, and ŷ  is the reference value predicted by an IAQ 

sensor model.  

The control chart approach [41, 42, 43] allows the residuals and their variations to 

be monitored, and thus detect abnormal conditions and an IAQ sensor fault. A training 

data set of trainN  observations with outliers removed was selected to build a control chart. 

The training data set is represented as ˆ_ ( ), ( )y TrainSet y i y i= ⎡ ⎤⎣ ⎦ ,  1,..., traini N= .  
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Using the training data set, the residual ε  for each point is computed, as well as 

the mean and the standard deviation of ε . The mean residual Trainμ  and the standard 

deviation Trainσ  are shown in Equations (2.2, 2.3) [46]: 

                                   1

1 ˆ( ( ) ( ))
N

Train
train i

y i y i
N

μ
=

= −∑
                    

(2.2)
  
 

                  

2

1

1 ˆ(( ( ) ( )) )
1

N

Train Train
train i

y i y i
N

σ μ
=

= − −
− ∑                

(2.3) 

The test data set ˆ_ ( ), ( )y TestSet y i y i= ⎡ ⎤⎣ ⎦   includes testN  consecutive data points drawn 

in time sequence from the test data set. 

Similarly, the mean residual Testμ  and the standard deviation Testσ  of the test data 

set are expressed as Equations (2.4, 2.5) [46]:  

                                     1

1 ˆ( ( ) ( ))
n

Test
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y i y i
N

μ
=

= −∑
                   

(2.4) 

                        

2

1

1 ˆ(( ( ) ( )) )
1

n

Test Test
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y i y i
N

σ μ
=

= − −
− ∑             

(2.5) 

Once Trainμ  and Trainσ  are known, the upper and lower control limits of the control 

chart are computed and used to detect anomalies. Based on Equation (2.2, 2.3), the 

control limits of the control chart are derived from Equation (2.6) [41, 42]:  

                                          

1

1

1

Train
Train

test

Train

Train
Train

test

UCL
N

CenterLine

LCL
N

σμ η

μ
σμ η

= +

=

= −

                      (2.6) 

testN  is the number of points in _y TestSet , η  is the integer multiple for the control 

limits, and Ntest (usually fixed as 3) can be adjusted to make the control chart less 

sensitive to the data variability and thus reduce the risk of false alarms. In this paper, 

testN was set at 5 to make the control chart less sensitive to the data variability. If Testμ  is 

above 1UCL  or below 1LCL , the IAQ parameter value at the sampling time _y TestSet  is 
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considered to be deficient, and this type of fault detected by the control chart is defined as 

Fault Type I. 

Similarly, the control limits for 2
Testσ  are calculated from Equation (2.7) [41, 42]: 

                                             

2
2

2 / 2, 1

2
2

2

1

0

test
Train

N
test

Train

UCL
N

CenterLine
LCL

α
σ χ

σ

−= ×
−

=

=

                (2.7) 

where 2
/ 2, 1testNαχ −  denotes the right / 2α  percentage points of the chi-square distribution, 

1testN −  is the degree of freedom of the chi-square distribution. The parameter α  needs to 

be adjusted to make the control chart less sensitive to the variability of the data. 2LCL  is 

set to 0 to indicate that the variation of residuals in the test data is 0, so that the measured 

IAQ value matches the reference IAQ value in the normal status. If 2
Testσ  is above 2UCL , 

the IAQ parameter value at the sampling time _y TestSet  is considered as deficient, and 

this type of fault detected by control chart is defined as Fault Type II. 

2.3 Case Study and Computational Results 

2.3.1 Data Description 

The data used in this research was collected at the Iowa Association of Municipal 

Utilities (IAMU) Office Building and Training Complex, which included 12,500 square 

feet of office space, maintenance, and shop facilities. The HVAC control system 

collected data for more than 60 parameters with a sampling interval of one minute. Due 

to the type of data collecting system, the values stored for all HVAC parameters are the 

(last-measured) point data rather than the one-minute average data. The HVAC data from 

the sensors installed at the IAMU was supplemented with the outside weather data 

collected by the Iowa Energy Center over a two-month period.  

For each IAMU office/room of interest to this research, the data was collected for 

the same set of IAQ parameters: temperature, CO2, and relative humidity, as well as other 

parameters. In this paper, the IAMU auditorium was selected for in-depth analysis; 
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however, the approach presented can be applied to any office in the building. Table 2.1 

lists the HVAC parameters of the IAMU auditorium used in this research. The first three 

parameters in Table 2.1 are the indoor air quality parameters collected from the IAQ 

sensors; the parameter “Aud_IAQ_Temp” is the temperature measured at the thermostat 

installed in the auditorium; the last eight parameters indicate the outside weather 

conditions which were collected by the Iowa Energy Center. 

Table 2.1 Parameter description of the HVAC data set 

Parameter Description Unit 
Aud_IAQ_Temp Auditorium temperature from IAQ sensor °C 
Aud_IAQ_ CO2 Auditorium CO2 from IAQ sensor PPM 
Aud_IAQ_RH Auditorium Relative Humidity from IAQ sensor % RH 
Aud_Temp Controllable  auditorium temperature °C 
Aud_Lite Auditorium light level FC 
BAR-PRES Barometric pressure Bar 
OA-HUMD Relative humidity % RH 
OA-TEMP Dry-bulb temperature °C 
SOL-BEAM Direct normal solar irradiation Btu/hr-ft2 
SOL-HORZ Total horizontal irradiation Btu/hr-ft2 
WIND-DIR Wind direction ° 
WIND-VEL Wind speed Mile/hour 
 
 

The data set used for IAQ sensor modeling was divided into two independent data 

subsets, a training data set and a test data set. The training data set was used to develop 

models of IAQ sensors, while the test data set was used to validate the performance of the 

models learned from the training data set. Figures 2.2 to 2.4 show typical plots of 

temperature, CO2 and relative humidity, respectively over a one-day period. It can be 

observed that the IAQ parameter values change during the day. X axis refers to the data 

point sequence number. 
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Figure 2.2. Illustrative plot of IAQ temperature parameter 

 

Figure 2.3. Illustrative plot of IAQ CO2 parameter 
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Figure 2.4. Illustrative plot of IAQ humidity parameter 

The values of the temperature, CO2, and relative humidity are continuously 

changing. However, the IAQ sensor plots shown in Figures 2.2 to 2.4 are not all 

continuously-changing curves, rather they contain steep changes. Various reasons could 

explain the abnormal spikes, including the degraded performance of sensors, faulty 

HVAC control, and unexpected working conditions around sensors. If accurate and 

robust virtual models of IAQ sensors were available, the physical IAQ sensors could be 

monitored and calibrated on-line or even replaced by the virtual IAQ sensors. 

2.3.2 Algorithm Selection for IAQ Sensor Modeling 

Data mining algorithms were used to build models for the IAQ sensors in the 

HVAC system. Virtual IAQ sensor modeling used other HVAC parameters as predictors 

to predict IAQ parameters as dependent, and the IAQ parameters included temperature, 

CO2 and relative humidity. The relationship between IAQ parameters and various other 

HVAC parameters are complicated, and thus it is hard to identify the model and 

accurately predict IAQ parameters with high-dimension HVAC parameters as input using 
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mathematical modeling. However, data mining is a powerful tool in extracting 

knowledge from voluminous data.  

A virtual IAQ sensor model represents the underlying function between the IAQ 

parameter and the other HVAC parameters. Equations (2.8) to (2.10) show the sensor 

models for predicting temperature, CO2 and relative humidity, respectively.  
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In Equations (2.8) to (2.10), y
 
is the dependent IAQ parameter,

 
x is the IAQ 

parameter used in this model as a predictor, v  is the parameter indicating the outside 

weather conditions. The v and x parameters are listed in Table 2.1. The model ( )f i  is 

learned by a data mining algorithm. An obvious advantage of the data-driven approach is 

that ( )f i  can be easily and timely updated by the most current HVAC process data. 

Deriving an accurate virtual IAQ model that maps complicated relationships among the 

parameters of the HVAC system is a challenge.   

The selection of an appropriate data mining algorithm is important for building an 

accurate, stable, and robust IAQ model. Different data mining algorithms were applied 

for IAQ sensor modeling, and the performance of the various data mining algorithms was 

analyzed. Two basic metrics, the MAE (mean absolute error) and Std (standard deviation 

of absolute error) were used to compare prediction accuracy. They were computed to 

select the best data mining algorithm to extract the accurate IAQ sensor model (Equations. 

(2.8) to (2.10)). The small value of the MAE and Std implies the superior prediction 
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performance of the IAQ model. The AE (absolute error), MAE (mean absolute error), and 

the Std (standard deviation) are expressed in Equations (2.11) to (2.13) [46].
   

                                              
ˆAE y y= −                               (2.11) 

                                         1
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==
∑

                          (2.12) 
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∑
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where ŷ  is the predicted IAQ parameter value, y  is the observed (measured by 

sensor) IAQ parameter value, and N  is the number of test data points used to validate the 

performance of the IAQ sensor model learned by a data mining algorithm.  

To select the best data mining algorithm for constructing accurate and robust IAQ 

sensor models, a two-day-long data set was used. Table 2.2 shows data set 1 with a 

beginning time stamp of “3/30/2005 0:00” and an ending time stamp of “3/31/2005 

23:50”. Data set 1 was divided into two data subsets using a random sampling method, 

data set 2 and data set 3. Data set 2 contains 2304 randomly selected data points and was 

used to develop a model ( )f i  estimating the IAQ parameters. Data set 3 includes 576 

randomly selected data points and was used to test the performance of the model ( )f i  
learned from data set 2.  

Table 2.2 The two-day-long data set characterization 

Data set Sample size (%) Description 

1 100 Total data set; 2880 observations 

2 80 Training data set; 2304 observations 

3 20 Test data set; 576 observations 
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Four different algorithms were used to learn (identify) the IAQ sensor models. 

They included the MLP (Multi-layer perceptron) NN (neural network) [47, 48], RBF 

(Radio-basis-function) NN [47, 49], support vector machine regression (SVM) [50, 51], 

and Pacereg (Pace regression) [52, 53]. The MLP NN and RBF NN algorithms are 

usually used in non-linear regression and classification modeling due to their ability to 

capture complex relationships between parameters. The SVM regression is a supervised 

machine learning algorithm. It avoids difficulties of using linear functions in the high 

dimensional feature space and optimization problem is transformed into dual convex 

quadratic programming problem. In regression case the loss function is used to penalize 

errors. The Pace regression algorithm consists of a group of estimators that are either 

optimal overall or optimal under certain conditions. It is a relatively new approach for 

developing linear models in high dimensional spaces.  

In this research 35 MLP NN and 35 RBF NN models with different kernels and 

structures were built, and the most accurate and robust model was selected based on the 

objective function of sum of square errors between observed and predicted values. Five 

different activation functions were used for the hidden and output neurons, namely, the 

logistic, identity, tanh, exponential, and sine function. The number of hidden units was 

set between 4 to 14, and the weight decay for both hidden and output layer varied from 

0.0001 to 0.001.  

Table 2.3 summarizes the prediction performance of IAQ sensor models learned 

by different data mining algorithms. In the figure, mean and std are computed from 

Equations (2.12) and (2.13). Max and min are the maximum and minimum absolute error 

from data set. The performance of data mining algorithms is ranked using the MAE 

(Equations (2.12) and (2.13)) metrics for the test data set from Table 2.2. The small value 

of the MAE and Std indicates accurate, stable, and robust prediction performance. 

Figures 2.5 to 2.7 illustrate the mean absolute error for each of the three IAQ sensor 

models (temperature, CO2 and relative humidity). Y axis refers to the mean absolute error 
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of the model obtained by different algorithm. The MLP algorithm performed best among 

the four data mining algorithms due to its smallest MAE and Std in all three IAQ sensor 

models, while the RBF performed the worst, as indicated by the largest value of MAE 

and Std. The Pacereg and SVM algorithms performed quite well for prediction of 

temperature and relative humidity. The MLP algorithm provided high quality predictions 

for the test data set and captured the HVAC system dynamics with high fidelity. The 

performance of models built by the MLP algorithm is validated in Section 2.3.3, based on 

a larger data set. 

Table 2.3 Prediction accuracy of different algorithms 

Algorithm Parameter Mean Std Max Min 

Temp (°) 0.0311 0.0276 0.3052 0.0000 

CO2 (PPM) 6.4238 8.5631 86.1721 0.0133 MLP 

RH (%) 0.1111 0.1096 1.2297 0.0004 

Temp (°) 0.9478 0.6593 2.9145 0.0096 

CO2 (PPM) 184.1855 208.7004 799.9020 0.1212 RBF 

RH (%) 1.7544 0.9513 4.7719 0.0069 

Temp (°) 0.1668 0.1474 0.7421 0.0007 

CO2 (PPM) 71.3895 78.2013 534.2520 0.3677 Pacereg 

RH (%) 0.5458 0.4051 2.7928 0.0019 

Temp (°) 0.1473 0.1951 0.9691 0.0000 

CO2 (PPM) 61.1816 106.5812 575.9267 0.0069 SVM 

RH (%) 0.5343 0.4859 3.3849 0.0015 
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Figure 2.5 The bar-chart of prediction performance of temperature for test data set 3 of 
Table 2.2. 

 

Figure 2.6 The bar-chart of prediction performance of CO2 for test data set 3 of Table 2.2. 
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Figure 2.7 The bar-chart of prediction performance of humidity for test data set 3 of 
Table 2.2. 

Figures 2.8 to 2.10 show respectively the first 100 predicted (by MLP) and 

observed temperature, CO2 and relative humidity computed for the test data set of Table 

2.2. It is easy to see that the observed and predicted values of IAQ parameters are almost 

identical and even overlap, and the predicted value follows exactly the trend of the 

observed value. The three IAQ sensor models built by MLP algorithm predict accurately 

CO2, temperature and relative humidity, respectively, on the data set 3 of Table 2.2. X 

axis refers to the data point sequence number. 
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Figure 2.8 Predicted and observed value of IAQ temperature of the test data set from 
Table 2.2. 

 

Figure 2.9 Predicted and observed value of IAQ CO2 of the test data set from Table 2.2. 
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Figure 2.10 Predicted and observed value of IAQ humidity of the test data set from Table 
2.2. 

2.3.3 Validation of IAQ Models Based on a Two-Week 

Data Set 

The MLP NN algorithm performed best among the four different data mining 

algorithms based on the two-day data set, and thus it was selected for further 

investigation on a two-week data set. Table 2.4 shows the two-week data set with a 

beginning time stamp of “5/1/2007 0:00” and an ending time stamp of “5/11/2007 23:50”. 

Data set 1 was divided into three data subsets, data set 2, data set 3 and data set 4. All the 

data sets contain consecutive data points drawn in a time sequence. Considering that the 

HVAC system of the IAMU building operates at different conditions during weekdays 

and weekends, the weekend data of 5/5/2007 and 5/6/2007 was removed from data set 1, 

and thus two training data sets were created due to a weekend (two-day) data set between 

the two weekday data sets. Data set 2, containing 5760 time-consecutive data points, and 

data set 3, containing 4320 time-consecutive data points, were used to develop a model 

( )f i  estimating the IAQ parameters. Data set 4, containing 2880 time-consecutive data 

points, was used to test the performance of the models ( )f i  learned from data set 2 and 

data set 3.  
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Table 2.4 The description of two-week data set 

Data Set Start Time End Time Description 

1 5/1/2007 0:00 5/11/2007 23:50 Total data set; 15840 observations 

2 5/1/2007 0:00 5/4/2007 23:50 Training data set;5760 observations

3 5/7/2007 0:00 5/9/2007 23:50 Training data set; 4320 observations

4 5/10/2007 00:00 5/11/2007 23:50 Test data set; 2880 observations 
 
 

Figures 2.11 to 2.13 show the first 200 predicted (by MLP) and observed 

temperature, CO2 and relative humidity for the test data set of Table 2.4. The observed 

and predicted values of IAQ parameters match well, and the predicted values follow 

exactly the trend of the observed value or even overlap. On the two-day data set shown in 

the Table 2.4, the three IAQ models constructed by MLP algorithm perform satisfactorily. 

X axis refers to the data point sequence number.  

 

Figure 2.11 Predicted and observed values of IAQ temperature for the data set 4 from 
Table 2.4  
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Figure 2.12 Predicted and observed values of IAQ CO2 for the data set 4 from Table 2.4  

 

Figure 2.13 Predicted and observed values of IAQ humidity for the data set 4 from Table 
2.4  

Table 2.5 summarizes the prediction accuracy of three IAQ models built by the 

MLP algorithm. The MLP algorithm performs well on both the two-day data set (data set 

2 and 3 in the Table 2.4) and the two-week data set (data set 4 in the Table 2.4). The 

performance is maintained accurate and robust. However, in real practice, updating the 

learned model with the new data is necessary for processes that are temporal. The 

temporal process modeling task is accomplished by using data mining algorithms. A 
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large prediction error (MAE and Std) indicates that the model built on historical data 

needs to be updated. The update time is impacted by various factors, e.g., if the seasonal 

and rapid change of weather conditions.  

Table 2.5 Prediction accuracy of different algorithms                                                       
for the test data set of Table 2.4 

Parameter Mean Std Max Min 

Temp (°) 0.2749 0.2815 2.1389 0.0001 

CO2 (PPM) 25.4649 28.9067 277.6084 0.0010 

RH (%) 0.7443 0.6962 4.8757 0 
 
 

The sensitivity of a neural network's output to its input perturbation is an 

important issue in theory and practice. The sensitivity analysis [47, 49] indicates input 

variables that are most important for a particular neural network. It often identifies 

variables that can be safely ignored in subsequent analyses and key variables that must 

always be retained. Sensitivity analysis ranks variables according to the deterioration of 

the model performance if that variable is no longer available for the model. In so doing, it 

assigns a single rank value to each variable. Table 2.6 shows the sensitivity analysis of 

the three IAQ sensor models built by the MLP based on the two-week data set. Different 

parameters have different sensitivity ranks in the three IAQ sensor models. The 

sensitivity analysis offers insight into the complicated and non-linear relationship 

between various HVAC parameters and the outside weather condition parameters.  
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Table 2.6 Sensitivity analysis of MLP NN for test data set of Table 2.4 

Temperature CO2 Relative Humidity 

Parameter Sensitivity Parameter Sensitivity Parameter Sensitivity

Aud_Temp 797.5280 Aud_IAQ_Temp 207.6935 Aud_IAQ_Temp 305.3133 

Aud_IAQ_CO2 235.3234 Aud_Temp 183.0385 Aud_IAQ_ CO2 236.4275 

BAR-PRES 94.3404 BAR-PRES 181.5638 BAR-PRES 188.0380 

Aud_IAQ_RH 66.1309 Aud_IAQ_RH 101.6903 Aud_Temp 73.9207 

OA-TEMP 34.5833 SOL-HORZ 66.4172 OA-TEMP 22.9534 

OA-HUMD 10.6605 SOL-BEAM 54.0379 SOL-BEAM 15.5511 

SOL-BEAM 6.3443 OA-TEMP 8.7827 SOL-HORZ 9.5619 

SOL-HORZ 5.2809 Aud_Lite 3.2909 Aud_Lite 7.0401 

Aud_Lite 2.8174 OA-HUMD 1.4673 OA-HUMD 5.7857 

WIND-DIR 1.3425 WIND-DIR 1.1229 WIND-DIR 1.2634 

WIND-VEL 1.0893 WIND-VEL 1.0449 WIND-VEL 1.0526 
 
 

2.3.4 On-line IAQ Sensor Monitoring With Virtual Sensor    

Model 

The approach and equations of Section 2.3 have been implemented to form 

control charts for the three IAQ sensor models. The three IAQ sensor models (Equations 

(2.8) - (2.10)) are constructed by the MLP NN algorithm based on data set 2 and data set 

3 of Table 2.4, and the parameters of three control charts for CO2, temperature and 

relative humidity are computed based on the same training data set. On-line monitoring 

simulation of the three virtual IAQ sensor models is performed and validated on the 

testing data set of Table 2.4. 

Table 2.7 shows the control chart parameters of the three IAQ sensor models 

formed based on the training data set of Table 2.4. The parameter α  in Equation (2.7) is 

fixed as 2, and η  of Equation (2.6) is set to 3 to enhance the confidence of detecting 
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anomalies in the IAQ sensors. Two important parameters α  and η  can be adjusted 

according to the real situation in practice to reduce the risk of a false alarm in mistaking 

the normal state as an abnormal one. A control chart monitors the residual mean and 

variation of the sampling data at the same time. In this research, the 1UCL  and 1LCL  
calculated in Equation (2.6) monitor the residual mean of the test data set, and the sensor 

fault detected due to the abnormal residual mean is defined as Fault Type I; 2UCL  
calculated from Equation (2.7) monitors the residual variation of the test data set, and the 

sensor fault detected due to the abnormal residual variation is defined as Fault Type II. 

Table 2.7 Control limit values for IAQ parameters 

Parameter UCL1 LCL1 UCL2 LCL2 

Temp (°C) 0.2794 -0.2780 0.2330 0.0000 

CO2 (PPM) 51.6453 -49.6820 4278.0080 0.0000 

RH (%) 1.1661 -1.1550 2.2448 0.0000 
 
 

Figures 2.14 to 2.16 show the on-line monitoring simulation results of the control 

limits of the three IAQ sensor models trained by the MLP NN algorithm based on the 

training data set of Table 2.4; the observed IAQ parameter curves and the curve of the 

upper and lower limits were constructed from the test data set of Table 2.4; the first three 

hundred data points among the 2800 test data points of Table 2.4 are shown in three 

figures. The upper limits (boundary) of three normal IAQ parameters curves are 

calculated based on the 1UCL of Equation (2.6). The lower limits (boundary) of three 

normal IAQ parameter charts are calculated based on the 1LCL  of Equation (2.6).  X axis 

refers to the data point sequence number.  
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Figure 2.14 Temperature control chart 
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Figure 2.15 CO2 control chart 
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Figure 2.16 Humidity control chart 

Table 2.8 shows the statistics of the on-line monitoring simulation results of three 

IAQ sensor control charts based on data set 4 of Table 2.4.  Fault Type I is the abnormal 

data point detected by the residual mean (Equation (2.6)), and Fault Type II is the sensor 

fault detected by residual variation. Table 2.8 shows the number of Type I faults and 

Type II faults and their percentage among the total test data set (2800 data points in total) 

of Table 2.4. The RH control chart detected more sensor faults than CO2 and temperature. 

There several possible explanation for this: the control chart could be sensitive, the 

relative humidity could be hard to measure by sensors, the sensor could have drifted or 

operated in abnormal working conditions, or the prediction of IAQ models may not have 

been accurate and robust enough. As shown in the Table 2.8, fault type II has less number 

of faults detected. Therefore, the parameters in Equations (2.6, 2.7) could make the three 

control charts more robust and less sensitive. These parameters could be adjusted 

dynamically based on the practical operations of an individual HVAC system.  
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Table 2.8 The statistics of IAQ sensor fault detection of control charts 

IAQ parameter Fault Type I 
(%) 

Fault Type II 
(%) 

Fault Type 
I   

Fault Type 
II  

Temperature(°) 9.4097 2.7431 271 79 

CO2 (PPM) 10.7292 1.8750 296 54 

RH (%) 20.3125 0.5903 585 17 
 
 

2.4 Summary 

A comprehensive comparative analysis of the IAQ sensor models built with 

different data mining algorithms and a sensitivity analysis of the three IAQ sensor models 

built by the MLP was reported in this chapter. The performance of the selected MLP 

algorithm was validated on a two-week data set. MLP neural network identified IAQ 

sensor models from the actual HVAC process data, and capture the complicated 

relationship between HVAC parameters and outside weather condition parameters.  

The IAQ sensor models were used as the reference IAQ sensors (on-line profile) 

for monitoring the performance of physical IAQ sensors and the indoor air quality of the 

HVAC system. The control chart approach can be used to monitor the residuals between 

the observed and the reference IAQ parameter values, and variation of the residuals. The 

IAQ sensor faults in non-stationary HVAC processes with certain structures can be 

detected in an on-line fashion. On-line IAQ sensor monitoring provides a data-driven 

approach for IAQ sensor fault detection for the HVAC industry. Three IAQ sensor 

models could be used as virtual sensors for monitoring, calibration, and even replacement 

of the physical sensor installed in HVAC systems. Virtual sensor provides the estimated 

value of a parameter in place of the actual physical sensor. The approach developed in 
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this paper provides a basis for HVAC control optimization sustaining indoor air quality at 

lowered energy costs.  
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CHAPTER 3.  

OPTIMAL DECISION MAKING IN VENTILATION CONTROL 

3.1 Introduction 

Maintaining air quality and providing thermal comfort is important for facilities 

supported by heating, ventilating and air-conditioning (HVAC) systems. According to 

published statistics, HVAC systems account for large proportion of energy consumption 

in both commercial and residential buildings [1]. Therefore, appropriate consumption of 

energy while maintaining the desired air quality has an impact on energy cost and indoor 

comfort.  

The traditional approach to ventilation is to provide a fixed minimum ventilation 

rate per person based on the maximum occupancy of a facility. To provide air quality 

guidelines, ASHRAE Standard 90.1 [54] specifies the minimum ventilation rate of 2.5 l/s 

per person, while ASHRAE Standard 62-2004 [55] has been revised to the minimum 

ventilation rate of 10 l/s per person [56]. The number of occupants in any facility varies 

over time, and it is rare that the facility is fully occupied. This provides a good 

opportunity to save energy by ventilating facilities on demand [57]. Thus, the demand-

control ventilation (DCV) is a commonly used strategy in HVAC systems based on 

signals from the indoor sensors, e.g., a CO2 sensor. Both simulations and field tests of the 

CO2-based DCV have demonstrated the potential to save energy [58], especially in 

facilities with a high occupancy density. A major difficulty with this approach is that CO2 

can only be used as a surrogate of human generated pollutants, whereas a CO2 sensor 

cannot respond to pollutants such as emissions from furniture or painted materials. The 

location and stability of CO2 sensors are also problematic. Therefore, different control 

strategies [59, 60] have been developed to deal with these issues. Other sensors like the 

VOC (volatile organic compound) sensor, occupancy sensor, humidity sensor, particle 

sensor, and so on, are used to modulate the ventilation rate over time under various 



 

 

34

conditions. In addition, devices such as air-side economizers are also used in ventilation 

systems to reduce energy consumption [61]. The quantity of fresh air supply is 

determined on the basis of the outside air dry-bulb temperature, enthalpy or other thermal 

properties. These approaches are usually cost-effective in areas where the heating or 

cooling cost is high. 

Various optimization models [62, 63, 64] and algorithms [65, 66] have been 

discussed in the HVAC literature. In this chapter, the on-off ventilation control is 

formulated as an optimization model. The model involves three objectives, namely the 

fan-on time period, the average CO2 above threshold, and the time period corresponding 

to the CO2 above a threshold. The model is solved by an evolutionary algorithm. By 

optimizing fan on-and-off schedules on the basis of the trade-off among the three 

objectives, energy savings can be achieved, while proper air quality can be ensured by 

maintaining the CO2 concentration in an acceptable range without installing any analog 

indoor sensors. 

3.2 Methodology for Optimal Decision Making in 

Ventilation Control  

3.2.1 Multiobjective Optimization by Evolutionary 

Algorithms 

Many optimization problems are not only non-linear, which asks for heuristic 

approaches in solving these problems, but also involve multiple non-commeasurable 

objectives. Evolutionary algorithms are good candidates in solving multi-objective 

optimization problems [67], and Fonsecan et al [68] classified them into three categorical 

approaches: aggregating approaches, non-Pareto-based approaches and Pareto-based 

approaches. Most popular aggregating approaches are the weighted-sum, goal 

programming, and ε -constrained methods [69]. Most popular non-Pareto-based 

approaches are vector evaluated genetic algorithm (VEGA) [70], multisexual genetic 
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algorithm (MGA) [71] and weighted min-max approach [72] , while some Pareto-based 

approaches are niched Pareto genetic algorithm(NPGA) [73], nondominated sorting 

genetic algorithm (NSGA) [74] and strength Pareto evolutionary algorithm (SPEA) [75]. 

The generalized form of multi-objective optimization problem can be defined as 

[76]: 

                              j

Minimize ( ) 1,...,

g ( ) 0   1,...,
Subject to: 

( ) 0   1,...,

i obj

k

f x i N

x j M

h x k K

=

= =⎧⎪
⎨

≤ =⎪⎩

                     (3.1) 

Where  if refers to the thi objective function, x is the decision variable and objN is the 

number of objectives. Several objectives are optimized simultaneously while decision 

variables should satisfy both the equality and inequality constraints.  

A more formal definition of Pareto optimality can be defined as follow 

[68] :assume 1( ) ( ( ),... ( ))
objNF x f x f x= . A decision variable ux is said to be Pareto-optimal if 

and only if there is no vx for which 1( ) ( ,..., )
objv Nv F x v v= = dominates 1( ) ( ,..., )

obju Nu F x u u= = . In 

other words, there is no vx such that 

                      {1,..., }, {1,..., },obj i i obj i ii N v u i N v u∀ ∈ ≤ ∩∃ ∈ ≤               (3.2) 

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set, 

while the corresponding set of objective vectors is called the non-dominated set.  

To solve the optimization problem formulated in this chapter, one of the Pareto-

based approaches, the Strength Pareto Evolutionary Algorithm (SPEA) [77, 78] is used to 

search the space of non-dominated solutions and update them to the elite set at each 

generation. To solve the model at hand, the modified evolutionary strategy algorithm 

presented next has been used.  

Step 1. Initialize a population 0P as the current population currentP  and create an empty 

external population externalP  to store elite solutions; 

Step 2. Find non-dominated solutions in currentP and copy them into externalP ; 

Step 3. Find non-dominated solutions in externalP  and update the elite population externalP ;  
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Step 4. Cluster solutions, if the size of externalP exceeds the limit N .   

Step 5. Assign fitness values to each individual in currentP and externalP ; 

Step 6. Select parentN individuals into parentP from current externalP P+ by using the binary tournament 

selection scheme with replacement; 

Step 7. Randomly select two individuals and retain the fitter individual for inclusion 

in offspringP . offspringP has the same population size as currentP ; 

Step 8. Apply recombination and mutation operators to offspringP ; replace currentP with offspringP and 

go back to Step 2 until the stopping criterion (here the maximum number of generations) 

is met.  

To reduce computational effort, clustering takes place in Step 4. Euclidean 

distance is used as a distance metric between the data points. If the size of the external 

population is larger than the limit N , clustering will be performed by setting a distance 

limit to filter similar points in each cluster while remaining a representative point in each 

group. For solutions with 2 0Obj = and 3 0Obj = , all possible solutions are kept until the 

final generation by choosing the lowest 1Obj .    

The fitness functions assigned in Step 5 to the individuals in currentP and externalP differ. 

For individuals in the elite population externalP , the fitness function is: 

                                 1
i

i
current

M
F

N
=

+                                 
(3.3) 

where iF is the fitness of i
th elite individual in the external population externalP , iM is 

the number of individuals in currentP that solution i dominates, currentN  is the population size 

of currentP . 

For the individuals in the current population currentP  , the fitness function is: 

                                   
1j i

i A
F F

∈

= +∑
                                

(3.4) 
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 where jF is the fitness of jth
  individual in the current population currentP , iF is the 

fitness of ith
 elite which dominates the solution j , A is an elite set including all elite 

solutions that dominate the solution j .   

Individuals with smaller fitness values have a higher probability to reproduce 

(Step 6). The mutation operation of Step 8 is realized by adding noise ir+ to ir , where ir is 

the thi solution variable and ir+ is a Gaussian distribution with a mean of zero and standard 

deviation σ  [79]. Solution ir is updated to 'ir by ' [ (0, )]i ir r N σ= + , where[ ]i is the nearest 

integer. The value of σ is selected for each variable, and it remains fixed for all 

generations. The mutated solutions are checked for possible constraint violations. When a 

constraint is violated, the value of the violating solution is replaced with a corresponding 

constraint-bound value to make sure all solutions remain in the specified search space. 

3.2.2 CO2 Predictive Model 

Carbon dioxide concentration in indoor air is commonly used as an indicator of 

the outside air ventilation rate [80]. CO2 is a practical and widely used metric for 

measuring air quality. Though it does not reflect all air containments, a high level of CO2 

concentration points to insufficient ventilation of indoor space. In facilities, such as 

classrooms with relatively stable occupancy rates during certain time periods, a high 

concentration of CO2 can degrade the productivity of students [81, 82]. In this paper, CO2 

is used as the index to optimize ventilation control.  

The equilibrium CO2 concentration in a single facility can be derived based on the 

number of occupants, the CO2 generation rate of the occupants, and the supply quantity 

of the outside air. A diagram of a single facility ventilation system is shown in Figure 3.1.  
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Figure 3.1. Single facility ventilation system 

Define the air exchange rate /v Q Vλ = , where Q is the overall outside air 

ventilation rate and V is the volume of the facility. The steady-state of indoor CO2 

concentration is obtained from the mass balance in Equation (3.5) [81]. 

                       
ac

v out v d ac
QdC G AC C v C C

dt V V V
λ λ ε= + − − −                      (3.5) 

where:  C :  the indoor CO2 concentration,  

 G :  the CO2 generation rate of occupants,  

vλ :  the air exchange rate (defined above),  

outC : the outside air CO2 concentration,  

  A :  the surface area on which indoor pollutants are deposited,  

  dv :  the deposition velocity of the pollutant,  

  acQ : the air flow rate in an air cleaner, 

  acε :  the efficiency of an air cleaner.   
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Equation (3.5) is based on the assumption that the indoor air CO2 is completely 

mixed and the air flow rate in and out of the facility, including mechanical ventilation, 

infiltration, exfiltration, and so on, is balanced.    

Note that the unit of C and outC  is a fractional concentration (v/v). A conversion 

factor between the fractional concentration and ppm is 106. All concentration-related 

variables used in this paper have been expressed in ppm. Assuming no pollutant 

deposition and no air cleaning is taking place, Equation (3.6) is derived.  

                                                      ( )out
dCV G Q C C
dt

= + −                                  (3.6) 

Replacing G with the product of the number of people S and the average CO2 

generation rate R , Equation (3.6) can be transformed into an iterative form which is 

convenient for simulation with a fixed time step [83].  

                                           
/ /( / )(1 )Q T V Q T V

next lastC RS Q e C e− Δ − Δ= − +                       (3.7) 

where nextC  is the difference between the CO2 concentration in the indoor and the outside 

air at nextt  ; lastC  is the difference between the CO2 concentration in the indoor and the 

outside air at lastt  . 

Using the CO2 predictive model, the optimal ventilation rate can be determined as 

a trade-off between the energy savings and the air quality. 

3.2.3 Optimization Model of Ventilation in a Single 

Facility 

A facility ventilation control can be represented as a fan on-off scheduling model. 

Unlike demand-control ventilation relying on indoor sensor measurements, the indoor 

CO2 concentration can be estimated by applying the CO2 steady-state Equation (3.7) and 

the statistically described occupancy pattern drawn from the occupancy information, e.g., 

meeting or course schedules. In this case, ventilation can be determined without using 
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any sensor feedback signals. Based on simplifying assumptions a scheduling model is 

formulated.  

Denote: 0t , Nt the time stamps when a facility opens and closes for a work day, e.g., 8:00 

AM to 6:00 PM. In other words, occupants may only appear in the interval between 

0t and Nt  (see Figure 3.2). 

,i ix x+  in the time period ( )1,i it t−  represents the fan-on time period. 

tC  is the relative CO2 concentration at time stamp t . 

0t 1t Nt1Nt −1x 1 1x x+ Δ N Nx x+ ΔNx

tΔ

0t
C

1x
C

1 1x xC +Δ 1t
C

1Nt
C

− NxC
N Nx xC +Δ Nt

C  

Figure 3.2. On-off schedule of the ventilation fan 

Assumption 1: Assume the time horizon is divided into N equal time intervals, 

0 1 1, ,..., ,N Nt t t t− . The time interval length is 0Nt t
t

N
−

Δ = . During each time period ( )1,i it t− , 

define a random variable iS  , 1,...,i N= . 0iS = represents the number of occupants in this 

period with a probability density function of ( )if ⋅ . For example, if the probability of 

0iS = is 1, it refers to the unoccupied facility during the time period ( )1,i it t− . If the 

probability of constantiS = is high, it implies meetings or courses where the number of 

occupants is relatively stable over a certain time period. With a more complex probability 

density function, iS may describe a more dynamic occupant pattern during a certain time 

period.  

Assumption 2: Assume during time period ( )1,i it t− the ventilation fan is to be turned 

on at most once. This assumption is practical if the time interval tΔ is relatively short. 

Note that a user may define tΔ as short as needed.  Another reason is that frequently 
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turning the ventilation fan on and off may adversely impact the lifetime of the mechanical 

motor.  

Assumption 3: Assume a fan operates in two modes, on and off. Furthermore, 

assume that the ventilation speed of the fan is constant. The proposed methodology 

applies to multi-mode ventilation as well as continuous ventilation fans by discretizing 

continuous values into discrete ones. Thus, the overall ventilation rate Q discussed in [83] 

is shown in Equation (3.8). 

mech natQ IQ Q Q= ⋅ +                                (3.8) 

Where 10                  [ , ) [ , )
    1,2,...,                   

1                   [ , )
i i i i i

i i i

t t x x x t
IQ i N

t x x x
−∈ ∪ +Δ⎧

= =⎨ ∈ +Δ⎩
 

IQ : denotes the status of the ventilation fan, 

mechQ : is the mechanical ventilation rate of the fan, and  

natQ : is the natural ventilation. 

In a single facility ventilation system, optimal fan control involves determining 

the start time of the ventilation fan and the duration of its run. Minimizing the run time of 

the fan decreases the power consumption of the fan and reduces the AHU heating/cooling 

load due to the reduced amount of air used while maintaining air quality at the desired 

level. Quantification of energy savings could be provided once the proposed 

methodology is fully implemented. Assume a maximum allowable level of an indoor CO2 

concentration of 1600 ppm and 100 occupants using an indoor facility for an hour. Vary 

the fan start time in five-minute intervals from the first hour to the second hour with the 

occupants present. The fan run time is fixed at 30 minutes. The simulation result is shown 

in Figure 3.3. 
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Figure 3.3. The simulated CO2 curve 

As shown in Figure 3.3, different start times of the fan result in various CO2 

curves, some of which reach but others do not, the preset threshold of 1600 ppm. 

Therefore, an appropriate start time for the fan not only can maintain indoor CO2 

concentration under the specified threshold, but offers a potential for operating the fan for 

much less time than the original 30-minute-long run time. Thus, formulating an 

optimization model to determine the optimal schedule is worthy of further research. 

For a specific facility and time period ( )1,i it t− ,V is constant.  Assume iS is the 

number of occupants and the average generation rate is determined in ( )1,i it t− . Equation 

(3.7) can be generalized as Equation (3.9). 

                                                    ( , , )next next last lastC g Q t t C= −                    (3.9) 

where nextC is the difference between the CO2 concentration in the indoor and the outside 

air at nextt , and lastC is the difference between the CO2 concentration in the indoor and the 

outside air at lastt . 

Therefore, the CO2 concentration at any time during the interval 0( , )Nt t can be 

represented as follows: 

 



 

 

43

0

1

0

1

                                                                                                

( , , )                                                                       
i

t t

t nat i t

C C t t

C g Q t t C
−−

= =

= −

1

1

1

1

1

( , ]                                     

( , , ( , , ))                                   ( , ]  

( , , ( , , ( , , )))
i

i

i i

t nat mech i nat i i t i i i

t nat i i nat mech i nat i i t

t t x

C g Q Q t x g Q x t C t x x x

C g Q t x x g Q Q x g Q x t C
−

−

−

−

−

∈

= + − − ∈ +

= − − + −

+

+ +         ( , ],  1,2,...,i i it x x t i N

⎧
⎪
⎪
⎨
⎪
⎪ ∈ + =⎩ +

(3.10) 

As the total run time of all intervals is included in the objective function, the 

single facility ventilation control can be formulated as model (3.11).
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        (3.11) 

In this model (3.11), constraint lim( )th C C≤  limits the CO2 concentration. For 

example, when ( )t th C C=  , the constraint indicates that the CO2 concentration at any time 

interval will reach the set limit limC . In a typical application scenario, the upper CO2 

threshold limC may be replaced with a tolerance or a preference function. The more it 

exceeds a certain value, the higher dissatisfaction value produced. In Section 3, a tri-

objective optimization model is presented. 

3.3 Computational Study and Results 

A single room ventilation model is formulated by evenly dividing working time 

intervals into N intervals with a specific probability density function of the number of 

occupants (see Section 3.2.3). Two scenarios, a single-time interval and two-time 

intervals, are considered. The model is generalized to a ten-interval model discussed 

towards the end of this section.  

3.3.1 Optimization Model for a Single-time Interval 

Assume the expected number of occupants to appear at this time interval is known 

and fixed. This is a reasonable assumption in practice, e.g., for classrooms and 
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conference rooms, because the number of students or conference participants registered 

can be used as the expected value in the probability density function. As the number of 

occupants to appear in the interval is defined as a random variable S , consider the 

constraint function ( ) ( )t th C E C=  and Equation (3.7) shown in (3.12). 

/ /( ) ( ( ) / )(1 ) ( )Q T V Q T V
next lastE C RE S Q e E C e− Δ − Δ= − +      (3.12) 

Let ( )pN E S= , where pN is the number of occupants.  

To include different additional situations when indoor CO2 exceeds the threshold, 

the CO2 constraint in optimization model (3.11) can be transformed into two objective 

functions.  

iCΔ

1 2 i 1n − n

2CΔ
1CΔ 1nC −Δ

nCΔ

above thresholdT −Δ

 

Figure 3.4. CO2 exceeding a threshold. 

Based on Figure 3.4, define the average CO2 concentration above the threshold.  

Assume n sampling points of the CO2 concentration above the threshold; then the second 

optimization objective is expressed in (3.13). Note the first objective represents the total 

amount of the fan run time. 

            2Obj =  Average CO2 concentration above the threshold =
1

1 n

i
i

C
n =

Δ∑
        

(3.13)                              

where iCΔ denotes the difference between the thi point CO2 concentration and CO2 

threshold.  
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The third objective is expressed in (3.14) 

3Obj = Elapsed time= above thresholdT −Δ                (3.14)                                              

where above thresholdT −Δ , shown in Figure 3.4, is the total time the indoor CO2 concentration is 

above the threshold.  

The three objectives, 1Obj , 2Obj , and 3Obj , are integrated into the optimization 

model for time interval 0 1( , )t t shown in (3.15): 

                                        

{ }
1 1,

0 1 1 1 1

min 1, 2, 3

. .
x x

Obj Obj Obj

s t
t x x x t≤ ≤ + ≤

+

+
                                 (3.15) 

where 1 1,  x x+ are the start time and running time of the fan (both integers): 

         11Obj x=+ , 

         
1

12
n

i
i

Obj C
n =

= Δ∑  

         3 above thresholdObj T −= Δ  

For 2 0Obj = and 3 0Obj = , model (3.15) ensures that the indoor CO2 concentration is 

below the threshold value at any time. Transforming the constrained model into a non-

constrained one, a bi-objective optimization problem can be built by constructing 

objective functions 11Obj x=+ and
1

12 max(0, ) max(0, )
n

i above threshold
i

Obj C T
n −

=

= Δ + Δ∑ . In this paper, a 

more general tri-objective optimization model is built to include all these situations. In 

solving this model, a Pareto-based evolutionary strategy is proposed for finding an elite 

set which includes non-dominated solutions. To find solutions for CO2 strictly under the 

CO2 threshold, simply choose solutions in this elite set with both 2 0Obj = and 3 0Obj = . 

2.3.2 Model Solving by the Evolutionary Strategy 

Algorithm 

To solve model (3.15), some parameters need to be initialized. The parameters 

used in this research are listed in Table 3.1. The unit associated with the solution 
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variables, the start time and the run time of the fan (shown in Tables 3.2, 3.3 and 3.5), is 

ten seconds.  

 Table 3.1 Parameters’ descriptions 

Variable Value Description Unit 

 V  2000 Facility volume 3m   

 pN  100 Number of occupants  person 
natQ   240 Natural ventilation rate  

3m / hr  

 mechQ  3000 Mechanical ventilation rate 
3m / hr   

outC   400 Outside CO2 concentration ppm  

 0t
C  500 Initial indoor CO2 concentration ppm   

thresholdC   1500 CO2 threshold ppm  

 R  0.01 Average CO2 generation rate l / s   
 
 

To solve the model at hand, the Strength Pareto Evolutionary Algorithm (SPEA) 

has been used. In the one-time interval scenario, solution variables 1 2,r r are 

1 1,x x+ respectively. Set 2σ = . The maximum number of generations (the stopping criterion) 

is set as 30, as there is no significant difference in the solution quality when the number 

of generations exceeds 30. The values of the parameters used in the evolutionary strategy 

algorithm, such as the ratio of the parent and offspring size and the initial population size, 

are set as follows. The evaluation criterion is based on solutions with 2 0Obj = and 3 0Obj = in 

the final elite set.  

For each of the four runs of the SPEA algorithm, the initial population size varies 

from 30 to 390. Figure 3.5 demonstrates 1Obj of the solution in the final elite set, 

with 2 0Obj = and 3 0Obj = , for different values of the initial population size. Figure 3.6 

shows the average values of 1Obj based on four runs of the algorithm. 
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Figure 3.5 Values of objective function 1Obj  for different initial population size based on 
four runs of the algorithm. 
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Figure 3.6 Average 1Obj for four runs of the algorithm for different initial population sizes. 

As illustrated in Figure 3.6, the initial population size of 250 has a relatively low 

average value and therefore is selected as the initial size. Figure 3.7 demonstrates the 

change of 1Obj for different parent and offspring ratios.  
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Figure 3.7 Values of the objective function 1Obj  for different parent offspring ratios for 
four runs of the algorithm. 

The parent offspring ratio of 1/4 is selected, as it has produced the best quality 

results (the lowest value Obj1, as shown in Figure 3.7). The algorithm is run using the 

tuned parameters above. Distributions of the offspring and the elite objective values at 

different generations are shown in Figures 3.8 and 3.9. 
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Figure 3.8 Distributions of the offspring in two dimensional space of objective values at 
different iterations. 
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Figure 3.9 Distributions of the offspring and the elite objective values before and after 
clustering at 30th generation. 

As shown in Figure 3.8, with the increase of the number of iterations, the points in 

the offspring set move towards the origin point (0, 0) in the two dimensional objective 

space. It indicates that the distribution front of the offspring moves towards the origin 

point (0, 0, 0) in the three dimensional space as the number of iteration increases.  Figure 

3.9 outlines the shape of the Pareto front in the space of objective values It also 

demonstrates the difference in the elite set before and after the clustering. Each point in 

the elite set cannot dominate another. Points with a small Euclidean distance are removed, 

while one remains to represent that cluster for computational cost consideration. Here the 
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elite size limit N  is set as 10. The Euclidean distance limit is set to 50, which means that 

if a point’s distance is less than 50, it will be considered for clustering. When considering 

the diversity of solutions with both 2 0, 3 0Obj Obj= = , points on the 1Obj axis are not 

clustered. At the last iteration, the smallest 1Obj value is kept, while the larger ones are 

filtered out. 

2.3.3 Optimal Solution Selection 

The selection of the optimal solution from the elite set depends on the importance 

of each objective. Assigning weights to each objective and transforming them into a 

single objective is a commonly used approach. The final solution corresponds to the 

minimum value of Obj in (3.16). 

min min min
1 2 3

max min max min max min

1 1 2 2 3 3
1 2 3

1 1 2 2 3 3
Obj Obj Obj Obj Obj Obj

Obj w Obj w Obj w Obj
Obj Obj Obj Obj Obj Obj

− − −
= + +

− − −      
  (3.16) 

where 1 2 3, ,w w w are the user-defined weights indicating the importance of each objective 

and max1Obj and min1Obj are the maximum and the minimum values of 1Obj in the final elite 

set. Similar notation is used for max min max2 , 2 , 3Obj Obj Obj , and min3Obj . 

Note that 3

1
1mm

w
=

=∑ , with 1 2 3, ,w w w being either constants or functions of other 

objectives. For example, if the indoor CO2 concentration is required to be below a certain 

CO2 threshold, 2w and 3w are assigned relatively large values compared to 1w . If the value 

of 2Obj is the range[0, ]a , 2w is constructed as follows 

2
1

0                                     2 [0,  ]
large compared to       2 ( , )

Obj a
w

w Obj a
∈⎧

= ⎨ ∈ +∞⎩   

Figure 3.10 shows five cases of the change in the indoor CO2 concentration. The 

ventilation schedule varies among the five cases. In all cases, the occupants arrive at 8:00 

AM and leave the facility at 9:00 AM.  
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Figure 3.10 Five cases of the indoor CO2 concentration. 

The details of each of the five cases are illustrated in Figure 3.10. The weights, 

optimal solutions, and the experiment description are provided in Table 3.2. 

Table 3.2  Description of the weight assignment and the results 

Curve 1w  2w  3w  1x  1x+  Description 

A      0 0 Fan is not on 

B 
1, 2 3 0w w= =  
0.002,

2 3 0.499w w= =  

0, 2 [0,100]Obj ∈  
0.499,

2 (100, )Obj ∈ +∞  

0, 3 [0,20]Obj ∈  
0.499,

3 (20, )Obj ∈ +∞  
202 124 

 2Obj admitted  
in bound [0,100] 

3Obj admitted  
in bound [0,20] 

C 0.5 0.4 0.1 208 128 Different weights

D 
1, 2 3 0w w= =  
0.002,

2 3 0.499w w= =  

0, 2 [0,50]Obj ∈   
0.499,

2 (50, )Obj ∈ +∞  

0, 3 [0,10]Obj ∈   
0.499,

3 (10, )Obj ∈ +∞  
199 142 

2Obj admitted  
in bound [0,50] 

3Obj admitted  
in bound [0,10] 

E 0.002 0.499 0.499 182 171 2 0, 3 0Obj Obj= =  
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As presented in Table 3.2, by assigning different weights to the three objectives, 

the fan-on time period varies. Maintaining the CO2 concentration strictly below the CO2 

threshold, e.g., 1500 ppm, implies higher fan energy consumption, while allowing the 

CO2 concentration to remain at a certain threshold interval can reduce the run time of the 

fan, thus resulting in higher energy savings. 

2.3.4 Statistical Analysis 

In the one-time-interval optimization model, the expectation of the number of 

occupants is used. Other assumptions based on different probability functions and 

probability of the number of occupants can also be made. For example, assume the 

occupancy distribution function is the Poisson distribution [46]. 

                                              
1

1 1
1

( )               0,1,2,...
!

S ef S S
S

λλ −

= =                       (3.17) 

If 1( 100) 0.95P S ≤ = , λ is 85 . Consider the optimal solution chosen in section 3.3 to 

keep the CO2 strictly under threshold. Because Equation (3.7) is a non-decreasing 

function, fewer people than 100 can always satisfy the constraints. The maximum number 

of people is 101. Therefore, statistical confidence of this optimal decision making 

with 2 0, 3 0Obj Obj= = can be computed as 1( 101) 0.96P S ≤ = . 

The probability of the number of people less than 102 is 0.96. If the number of 

people less than that particular number is true, the indoor air CO2 concentration will be 

strictly under 1500 ppm, using the proposed optimal solution of 1 11820 , 1710x s x s= =+ . 

Define 2_ ( )CO Maxf z as the maximum CO2 concentration for 1S z= . 

Then 2_( ( ) 1500) 0.96CO MaxP f z <= = . If the CO2 threshold is lowered, the probability will 

decrease. Assume the acceptance probability is 0.95 and introduce the variation of the 

CO2 threshold. 

                       2_( ( ) 1500 2 ) 0.95CO Max thresholdP f z CO<= −Δ >=                 (3.18) 



 

 

54

From that calculation, 2 19thresholdCO ppmΔ <= . In other words, statistical confidence 

of this optimal decision making can also hold if the variation of the CO2 threshold is less 

than a limited value. The distribution of the occupants can be any other probability 

density function, e.g., exponential family or probability density functions learned from 

the occupancy data.  

3.3.5 Optimal Model for Two-time Intervals 

Like the one-time interval, the optimization model of two consecutive time 

intervals can be formulated as follows: 

                                           

{ }
1 1 2 2, , ,

0 1 1 1 1

1 2 2 2 2

min 1, 2, 3

. .
x x x x

Obj Obj Obj

s t
t x x x t
t x x x t

≤ ≤ + ≤
≤ ≤ + ≤

+ +

+
+

                                (3.19) 

where: 1 1,x x+ are the start time and run time of the fan during the first interval 0 1[ , ]t t ;  

2 2,x x+ are the start time and run time of the fan during the second interval 1 2[ , ]t t ; 

1 21Obj x x= ++ + , 2, 3Obj Obj are defined the same as in the one-time interval. 

Searching four solution variables by applying the evolutionary algorithm 

mentioned above, distribution of points in the offspring and the elite and clustered elite 

set at the last iteration is shown in Figure 3.11. The maximum iteration here is 40.  
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Figure 3.11 Distributions of the offspring and elite objective values before and after 
clustering. 

The optimal solutions selecting criteria is the same by assigning weights to each 

objective. Figure 3.12 demonstrates the change of indoor CO2 concentrations in five 

cases. People appear from 8:00 AM to 10:00 AM. The number of people is 100 and 30, 

respectively, in each one-hour interval. 
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Figure 3.12 Change of indoor CO2 concentration in five cases 

The weight assignment and solutions to model (3.19) are shown in Table 3.3. 
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Table 3.3  The weight assignment and the results 

Curve A B C D E 

1w    
1, 2 3 0w w= =  
0.002, 2 3 0.499w w= =  

0.5 
1, 2 3 0w w= =  
0.002, 2 3 0.499w w= =  

0.002 

2w    
0, 2 [0,100]Obj ∈  
0.499, 2 (100, )Obj ∈ +∞  

0.4 
0, 2 [0,50]Obj ∈   
0.499, 2 (50, )Obj ∈ +∞  

0.499 

3w    
0, 3 [0,100]Obj ∈  
0.499, 3 (100, )Obj ∈ +∞  

0.1 
0, 3 [0,50]Obj ∈   
0.499, 3 (50, )Obj ∈ +∞  

0.499 

1x  0 198 178 172 160 

1x+  0 159 175 183 197 

2x   0 75 14 65 22 

2x+   0 80 112 91 105 

Total run 
time 

0 239 287 274 302 

Descripti
on 

Fan is 
not on 

2Obj admitted  
in range [0,100] 

3Obj admitted  
in range [0,100] 

Different 
weights 

2Obj admitted  
in range [0,50] 

3Obj admitted  
in range [0,50] 

2 0, 3 0Obj Obj= =

 
 

3.3.6 The Scenario With Ten-time Intervals 

For N consecutive intervals, the number of solution variables is 2nand
1

1
N

i
i

Obj x
=

= ∑+ . 

For example, assume the working hours are from 8:00 AM to 6:00 PM. The occupancy 

schedule is established on an hourly basis (see Table 3.4). Therefore, there are ten 

intervals and 10N = . Some intervals may not include occupants, e.g., the lunch time 

period, 12:00 AM to 1:00 PM.  
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Table 3.4  Occupancy schedules for ten-time periods. 

 

8:00
AM 
- 
9:00
AM 

9:00
AM 
-
10:00
AM 

10:00
AM 
- 
11:00
AM 

11:00
AM 
- 
12:00
AM 

12:00
AM 
- 
1:00
PM 

1:00
PM 
- 
2:00
PM 

2:00
PM 
- 
3:00
PM 

3:00
PM 
- 
4:00
PM 

4:00
PM 
- 
5:00
PM 

5:00
PM 
- 
6:00
PM 

1  50 10 100 0 0 40 0 30 0 10 

2 30 20 35 15 10 43 0 30 0 27 

3 10 50 45 9 0 17 40 30 14 5 

4 13 25 14  9 5 17 16 21 14 35 
 
 

Optimal solutions for the scenario with 2 0, 3 0Obj Obj= = are to be determined. To 

reduce the solution search space, the fan is turned off during intervals in which the 

number of occupants is 0. This is feasible because the CO2 concentration can never 

exceed the threshold in these intervals provided that the CO2 concentration at the start 

point of such intervals is below the threshold. For a population size to 2000, the number 

of generations at 30, and an elite population size of 100, the optimal solutions for each of 

the four occupancy schedules of Table 3.4 are shown in Table 3.5. The units of values 

below are listed in 10s.  

Table 3.5  Computed ventilation schedules. 

 1 1,x x+  2 2,x x+  3 3,x x+  4 4,x x+ 5 5,x x+ 6 6,x x+  7 7,x x+ 8 8,x x+  9 9,x x+ 10 10,x x+

1  131,41 111, 119 64, 291 0,0 0,0 67,103 0,0 93,114 0,0 214,83

2  218,19 27,53 48,96 161,36 228,74 73,117 0,0 78,121 0,0 196,42

3 258,18 194,119 118,129 40,77 0,0 194,101 207,85 80,83 128,16 146,54

4 32,9 281,10 149,33 17,49 226,47 245,66 5,4 56,6 11,195 261,98
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Note that search is performed in parallel so that the entire schedule is considered 

at the same time. Solutions can be also determined based on the time interval by a time 

interval basis. The optimal solution for the first interval is determined first, and then a 

solution for the second interval is determined based on the previous one. In this paper, the 

parallel approach is followed. The CO2 charts for the four schedules are shown in Figure 

3.13.  

 

Figure 3.13 CO2 concentration for different optimized schedules. 

3.4 Summary 

In this chapter, a scheduling model was developed for a ventilation control 

problem. Optimal ventilation was determined for different occupancy schedules. The fan 

start and run times were determined to maintain the CO2 level below a pre-selected 

threshold. The optimized run time of the mechanical ventilation system reduced power 
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consumption of the fan and the heating and cooling costs. These savings were 

accomplished while the indoor air quality was guaranteed without installing any analog 

indoor sensors. Future research will focus on modeling cases where the fan operates in 

more than two modes. The CO2 model needs to be improved by considering the quasi-

steady state and CO2 spatial distribution.   
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CHAPTER 4.  

COOLING OUTPUT OPTIMIZATION OF AN AIR HANDLING UNIT 

4.1 Introduction 

In modern buildings, heating, ventilating and air conditioning systems consumes a 

large part of total building energy consumption to maintain suitable thermal comfort and 

acceptable air quality for occupants. Therefore, HVAC systems play a significant role in 

the energy savings equation. Since it is a complex, nonlinear, discrete system involving 

numerous constrains, it poses big challenge for system modeling and optimization. 

Numerous studies on optimization of HVAC systems and energy efficiency have 

been published. Fong et al. [23] discussed reducing energy consumption by optimizing 

set points of the chilled water supply temperature and supply air temperature in response 

to the dynamic cooling load and changing weather. Mathews et al. [35] applied 

simulation to evaluate the impact of control strategies on energy savings while ensuring 

sufficient indoor comfort. Huang et al. [1] introduced new functions for an energy 

management control system based on the dynamic model of a VAV-HVAC system and 

demonstrated energy reduction by using simulation. Nassif et al. [84] developed a simple 

control strategy for minimum energy use which is suitable for online implementation. 

Using mathematical models of the cooling load and energy consuming devices, Lu et al. 

[85] proposed a systematic approach to the optimization of the overall system energy 

consumption. Ari et al. [86] presented an optimization approach to minimize energy 

consumption of a typical building with a constraint on the individual dissatisfaction 

generated. Based on the thermodynamic modeling of the air-conditioning system, 

Kintner-Meyer et al. [87] investigated an optimal protocol for indoor temperature and 

humidity control, as well as operating point settings for the chiller to achieve energy 

savings.  
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Unlike many studies centered on mathematical models [88] and simulation 

approaches [89], this chapter presents a computational intelligence approach as a viable 

alternative for building predictive models. Such models are solved with evolutionary 

computation algorithms. In this chapter, ANN is applied to extract dynamic models based 

on the data collected from HVAC systems. The identified models are validated and tested 

with independent HVAC data sets.  

4.2 Methodology for Cooling Output Optimization of an 

Air Handling Unit  

The energy used by a chiller accounts for a large portion of the total energy 

consumption of any HVAC system. Designed to meet the peak load of a building, the 

chiller operates at its full capacity only a limited time. Most of time, it operates at a part 

load, and its power input changes in response to the cooling load.  

Define the chiller part load ratio PLR [90] as shown in Equation (4.1). 

                                                               /chl chrPLR Q Q=                              (4.1)              

where chlQ is the part cooling load and chrQ is the full cooling capacity, a design 

parameter specified for a certain type of chiller. The relationship between the PLR and the 

power input of the chiller [91] is expressed in Equation (4.2).  

                                 2 3kW a bPLR cPLR dPLR= + + +                    (4.2) 

where , , ,a b c d are coefficients determined by the chiller design. Typically, as the 

chiller’s load ratio increases from, for example, 60% to 100%, the power input increases 

[92]. Therefore, by optimizing the PLR , or more specifically chlQ , as shown in (4.3), 

energy is saved due to the reduced power input.  

                                      ( )chl pw w chwr chwsQ C m T T= −                          (4.3) 

where:  chlQ is the cooling load,  

pwC is the specific heat capacity of chilled water,  

wm is the mass flow rate of the chilled water,  
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chwrT and chwsT is the chiller water supply and return temperature, respectively [93].  

In the AHU side, the cooling output of the cooling coil accounts for the major 

load of a chiller. As the chilled water flows through the pipes to the cooling coil in the air 

handling unit (AHU) and returns to the chiller for cooling after absorbing heat, both the 

measured values of the cooling coil entering water temperature chwc ewtT − and the cooling 

coil exiting water temperature chwc lwtT − are selected as approximations of the chwsT , chwrT . 

Therefore, the load chlQ is represented by cooling output chlQ ′  using the approximations of 

chwrT and chwsT  shown in (4.4).  

                                        ( )chl pw w chwc lwt chwc ewtQ C m T T− −
′ = −                         (4.4) 

To minimize chlQ ′ , the function 1( )y t = 1( )f i should be established between the 

output chlQ ′  and the input variables of the AHU. The input variables fall into three 

categories: the previous status of chlQ ′ , controllable variables, and uncontrollable variables. 

The function 1( )y t  [94] is shown in (4.5).  

                                         [ ] [ ] [ ]1 1 1( ) ( ( ) , ( ) , ( ) )d D d D d Dy t f y t d t d t d
∈ ∈ ∈

= − − −
y x v

x v
                                   

(4.5)
                 

 

where:    1( )y t d− ∈R  includes previous states of 1( )y t , e.g., 1( 1)y t − and 1( 2)y t − ; 

∈ kx R   is a vector of k controllable variables with time variables, e.g., 1x is the 

cooling coil valve position variable and 1( 1)x t −  refers to its previous state at 1t −  

time stamp;  

∈ mv R is a vector of muncontrollable variables with time variables, e.g., 1v is the 

outside air temperature variable and 1( 2)v t −  refers to its previous state at 2t −  

time stamp;   

yD , xD , vD are sets containing time variables of the corresponding variables; e.g., 

{ }
1

0,1xD = , which means there are two values for variables 1x , and they are 1( )x t , 

1( 1)x t − , respectively.  

Let 1y = 1( )f i be an objective function to be optimized by global search algorithms 

determining optimal controllable variables in Section 3.4 and 3.5. Models of 
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2 2 ( )y f= i and 3 3 ( )y f= i , where 2y is the supply air temperature and 3y  is the supply air 

humidity, should be built using the same controllable and uncontrollable inputs, since 

different values of both controllable and uncontrollable variables not only influence the 

cooling output, but also affect the supply air quality. The optimization model considered 

in this research is presented in (4.6). 

               

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]

1

1 1 1

2 2 2

3 3 3

x

 :
( ) ( ( ) , ( ) , ( ) )

( ) ( ( ) , ( ) , ( ) )

( ) ( ( ) , ( ) , ( ) ) 
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i
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d D d D d D

d D d D d D

d D d D d D

i

y

min y
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y t f y t d t d t d

y t f y t d t d t d

y t f y t d t d t d

x S i  is the number of  controllable vectors

S

∈ ∈ ∈

∈ ∈ ∈

∈ ∈ ∈

= − − −

= − − −

= − − −

∈

∈

y x v

y x v

y x v

x v

x v

x v

 j = 2,3

          (4.6) 

A modified evolutionary strategy algorithm is used to search for optimal control 

settings. The AHU supply air temperature and humidity are treated as constraints, with 

their values changing in a certain range so that the air thermal properties are not 

compromised as the cooling output is minimized to reduce the energy consumption. 

4.3 Case Study and Computational Results 

The approach proposed in this paper has been tested on the data collected at the 

Energy Resource Station (ERS) in Ankeny, Iowa. The ERS is designed for testing and 

demonstrating commercial HVAC systems. The data includes more than 300 variables 

captured at the AHU, heating and chilling plants, and different testing zones. The 

sampling time interval is one minute, and data points collected are the last values 

recorded at one-minute time intervals, rather than the average data used in other 

applications. 
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4.3.1 Variable Selection and Data Dimensionality 

Reduction 

In this paper, a data set collected at the AHU over a two-day period was used for 

model development, testing, and analysis. The data set includes over 90 variables, 

including the data collected at coils, dampers, fans, ducts, and pipes. A schematic 

diagram of the AHU is shown in Figure 4.1.  

Return fan

Supply fan

Heating  
coil

Cooling 
coil

Return 
air

Supply 
air

Exhaust 
air

Outside 
air

Recirculation
air

Damper

Damper
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Mixed 
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Valve Valve
Supply 
water Supply

water
Return 
water

Return 
water

 

Figure 4.1 Schematic diagram of the AHU 

Variable selection is performed to eliminate variables of relatively less 

importance in this two-day data set, since it can improve the comprehensibility, 

scalability, and possibly, accuracy of the resulting models [95]. For example, relative 
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open damper values are important in the AHU, and they directly determine the amount of 

air volume in or out. But in this scenario, these variables are removed in the variable 

selection process because their values remain almost the same in the two-day data set. 

This is also true for the heating coil because, in this case, the heating water coil valve is 

100% closed in the two-day data set and no heating process is performed. Many methods, 

like wrappers [96], can be used to reduce the dimensionality of the variable space. 

However, the wrapper-type approaches can be computationally expensive, as a specific 

search algorithm searches the space of all possible variables and evaluates each subset of 

variables after building a model based on this subset. In this paper, a boosting tree 

algorithm [97, 98] was applied to reduce the number of variables at a relatively low 

computational effort. Boosting tree methods have been applied in many areas [99]. They 

generate standard measures of variable importance that can be used to develop optimal 

feature sets. The boosting tree algorithm is robust and effective in eliminating variables 

(input variables) that are not relevant.  

Four significant variables have been selected as inputs to the model of cooling 

output, supply air temperature, and supply air humidity. Two of them are controllable 

variables, i.e., the cooling coil chilled water valve position and the relative speed of the 

supply air fan. The other two are uncontrollable variables, the outside air temperature and 

the chilled water supply temperature. The outside air temperature measured at the inlet 

duct is an independent variable. The chilled water supply temperature determined by the 

control settings of the chillers is relatively independent of the controllable variables in 

AHU.  

The time delay should also be considered in modeling the AHU. For instance, 

past values of some variables may have more impact on the model accuracy of the 

HVAC system than their current values. The boosting tree algorithm was used to select 

the most significant time delays (periods) at which the values of the variables should be 

considered. Table 4.1 lists the variables selected to model the cooling output, supply air 
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temperature, and supply air humidity at time stamp t . Two of them, namely 1( )x t  and 

2 ( )x t , are current time controllable variables, which will be optimized in the next section.  

Table 4.1 Variables selected for building model (4.6) at t time stamp 

Variable Point Name Description Unit 

1( )x t   CHWC-VLV Chilled water coil valve position at time t  %Open 

 1( 4)x t −  CHWC-VLV Chilled water coil valve position at time 4t −   %Open 

 2 ( )x t  SF-SPD Supply fan VFD speed at time t  % Spd 

1( 4)v t −   CHWC-EWT Chilled water coil entering water temperature at time 4t −  °C 

 2 ( 3)v t −  OAD-TEMP OA duct temperature at time 3t −  °C 
 
 

4.3.2 Cooling Output Modeling and Validation 

As shown in Equation (4.4), chlQ ′ can be computed from the measured values of 

the water temperature entering the cooling coil, the water temperature leaving the cooling 

coil and the flow rate of the chilled water. The value computed from Equation (4.4) 

approximates the part load of a chiller. Values of chlQ ′ obtained at the previous time 

periods also affect the current value of chlQ ′ . Therefore, 1( 1)y t − , 1( 2)y t − , 1( 3)y t − , 

1( 4)y t − have been selected as the previous values (states) of chlQ ′ together with the 

variables selected above to build the cooling output model 1( )f i  at t time stamp. 

      1 1 1 1 1 1 2 1 1 2( ) ( ( 1), ( 2), ( 3), ( 4), ( ), ( ), ( 4), ( 4), ( 3))y t f y t y t y t y t x t x t x t v t v t= − − − − − − −       (4.7) 

Four data mining algorithms, including the MLP (Multiple-layer Perceptron) 

neural network, boosting tree [100], random forest [101], and support vector machine 

[102] have been applied to build predictive models of the cooling output. The multi-layer 

perceptron is a commonly used feed forward neural network consisting of a number of 

units organized into multiple layers. Through adaptive adjusting weights among units 

under supervised learning, the MLP is capable of identifying and learning patterns based 
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on input data sets and the corresponding target values. The boosting tree [97, 98] is a data 

mining algorithm involving the application of boosting methods to regression trees used 

in classification as well as in regression. The random forest is a data mining method for 

classification and regression introduced by Breiman and Cutler [101]. Unlike the standard 

classification trees that use the best split among all variables at each node for splitting, 

the random forest algorithm uses the best split among a subset of randomly selected 

predictors at that node. The support vector machine is a supervised learning method 

based on kernel functions and is used for classification and function approximation. SVM 

regression is applied here. It avoids difficulties of using linear functions in the high 

dimensional feature space and optimization problem is transformed into dual convex 

quadratic programming problem. In regression case the loss function is used to penalize 

errors.  

By applying four data mining algorithms to build the cooling output model, a 

comparative analysis of the generated results has been performed. The data set of 1440 

observations (1 day data, July 19, 2005) was divided into a training data set (70% were 

randomly sampled data points) and a testing data set (the remaining 30% of the data).  

The quality of the predictive models has been compared using the following metrics: 

MAE (Mean Absolute Error), Std (Standard Deviation), and MRE (Mean Relative Error) 

defined in Equations (2.11) to (2.13).  

Table 4.2 summarizes the prediction performance of the cooling output models 

built by four data mining algorithms.  
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Table 4.2 Prediction accuracy of cooling output models                                                 
built by four different data mining algorithms 

Cooling Output 

  MAE Std MRE Max Min 

MLP NN 0.1841 0.1666 0.20% 1.5686 0.0008 

Random Forest 0.2018 0.1770 0.22% 1.3473 0.0001 

Boosting Tree 0.2475 0.2280 0.27% 1.5004 0.0004 

SVM 0.1938 0.1532 0.22% 0.7682 0.0002 
 
 

The results in Table 4.2 demonstrate that the model built by the MLP neural 

network produces the most accurate and stable results. Therefore, the MLP neural 

network algorithm is selected for building a predictive model of a cooling output from a 

larger data set. The first-day data from the two-day data set is used as the training set to 

build the model, while the second day is used as the testing data set to validate the model. 

Table 4.3 shows the description of the two data sets. 

Table 4.3 The description of the two-day data set  

Data Set Start Time End Time Description 

1 6/19/2005 0:00 6/19/2005 23:59 Training data set; 1440 observations

2 6/20/2005 0:00 6/20/2005 23:59 Testing data set; 1440 observations 
 
 

For the hidden and output neurons of the MLP neural network algorithm, five 

different activation functions were selected as candidates, namely, the logistic, identity, 

tanh, exponential, and sine functions. The number of hidden units was selected between 5 

and 18, and the weight decay for both the hidden and output layer varied from 0.0001 to 

0.001. In the final neural network model, nine hidden neurons are chosen. The activation 
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functions in the hidden and the output layers are exponential functions. Figure 4.2 

illustrates 200 one-minute data points drawn from the test data set to validate the 

accuracy of the model.  
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Figure 4.2 Validation of the cooling output model with 200 test points 

The predicted load function in Figure 4.2 follows fairly closely the observed load 

curve. Table 4.4 summarizes the numerical values  

Table 4.4 Predictive cooling output model accuracy                                                      
by using the MLP neural network  

Cooling  Output 

Data Set MAE Std MRE Max Min 

Training Data 0.1732 0.1492 0.19% 1.5983 1.3701E-05 

Test Data 0.2013 0.1669 0.22% 1.2797 0.0004 
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4.3.3 Supply Air Temperature and Humidity Modeling and 

Validation 

In a typical HVAC system, the temperature of the supply air leaving the AHU is 

maintained around 55 °F (12.8°C) to accommodate air condensation. As controllable 

variables such as the position of the chilled water cooling coil valve and the supply air 

fan speed change, the overall thermal conditions of the supply air are also affected. 

Models of supply air temperature and humidity should be built so that cooling output 

optimization can conform to the acceptable fluctuation range of the supply air 

temperature and humidity. Using the previously introduced methodology (Section 4.2) of 

building a cooling output model, the temperature and humidity predictive models are 

represented as 2 ( )f i and 3 ( )f i , as seen below (see Equations (4.8) and (4.9)). 

            2 2 2 2 2 1 2 1 1 2( ) ( ( 1), ( 2), ( 3), ( 4), ( ), ( ), ( 4), ( 4), ( 3))y t f y t y t y t y t x t x t x t v t v t= − − − − − − −     (4.8) 

             3 3 3 3 3 1 2 1 1 2( ) ( ( 1), ( 2), ( 3), ( 4), ( ), ( ), ( 4), ( 4), ( 3))y t f y t y t y t y t x t x t x t v t v t= − − − − − − −  (4.9) 
where 2 ( 1)y t − , 2 ( 2)y t − , 2 ( 3)y t − , 2 ( 4)y t − are supply air temperature at 1t − , 2t − , 

3t − and 4t − time stamp; 3 ( 1)y t − , 3 ( 2)y t − , 3 ( 3)y t − , 3 ( 4)y t −  are supply air humidity at 1t − , 

2t − , 3t − and 4t − time stamp; other input variables are the same as those in the cooling 

output model. 

Using the MLP neural network algorithm and the same data split shown in Table 

3 for training and testing, the model validation results with 200 test points are shown in 

Figure 3 and Figure 4. The supply air temperature model includes 12 hidden units and a 

hyperbolic tangent function. Exponential functions are used as the activation functions in 

the hidden and output layers. The supply air humidity model has five hidden neurons and 

a hyperbolic tangent function is used as the activation function in the hidden and output 

layers.  
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Figure 4.3 Validation of the supply air temperature model with 200 test points 
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Figure 4.4 Validation of the supply air humidity model with 200 test points 

The results in Table 4.5 present the accuracy of the temperature and humidity 

model.  
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Table 4.5 Prediction accuracy of the MLP neural network                                          
model  

Supply Air Temperature 

Data Set MAE Std MRE Max Min 

Training Data 0.0283 0.0274 0.05% 0.1628 2.0444E-05 

Test Data 0.0298 0.0290 0.06% 0.1618 2.8944E-05 

Supply Air Humidity 

Data Set MAE Std MRE Max Min 

Training Data 0.0583 0.0519 0.07% 0.5034 0.0002 

Test Data 0.0618 0.057 0.07% 0.5365 1.9700E-05 
 
 

4.3.4 Optimization Model 

Models learned by the MLP neural network have been used for optimization. To 

minimize the cooling output, the objective function is represented as 1 1( )y f= i . Major 

constraints are supply air temperature and humidity, so 2 2 ( )y f= i and 3 3 ( )y f= i need to be 

maintained in a certain range. Here, the supply air temperature is constrained between 

54°F (12.2°C) to 56°F (13.3°C), and the humidity range is set between 87% RH to 90% 

RH. As uncontrollable input variables are essentially independent of the controllable ones, 

the values of uncontrollable variables, such as the outside air temperature or chilled water 

supply temperature, can be fixed in seeking the optimal control settings at each minute 

time stamp. Therefore, only the values of controllable variables are modified at each time. 

The search space of the two controllable variables, the chilled water cooling coil valve 

position and the relative speed of the supply air fan, are set based on their learning range. 

The optimization model is stated in (4.10). 
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(4.10)

 
The constraints 2 ( )y t and 3 ( )y t in (4.10) are neural network derived models. Solving 

such a nonlinear constrained optimization problem is a challenge. To solve model (4.10), 

its constraints are placed into the objective function shown in (4.11).  

                 2 2 3 3max{0,12.2 ( )} max{0, ( ) 13.3} max{0,70 ( )} max{0, ( ) 90}y t y t y t y t− + − + − + −  (4.11) 

Each of the four terms in (4.11) remains 0, and the sum equals 0 when 2 ( )y t and 

3 ( )y t are within their bounds. When either 2 ( )y t or 3 ( )y t violates a constraint, the sum 

becomes a positive number. The larger this constraint is, the larger the sum. Therefore, 

minimizing the objective function (4.11) can push 2 ( )y t and 3 ( )y t  towards their bounds. 

Then, the optimization model can be modified to (4.12). 
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(4.12) 

where 1 1obj = y , 

2 2 2 3 3max{0,12.2 ( )} max{0, ( ) 13.3} max{0,70 ( )} max{0, ( ) 90}obj y t y t y t y t= − + − + − + − . 

To solve this bi-objective optimization problem, an evolutionary strategy 

algorithm is used. Note that this optimization model is solved at different time stamps in 

Section 4.3.5. Observed values rather than the predicted values are used at the next point 
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optimization. For example, to obtain 1( )y t at t  stamp, the observed values 

1( 1)y t − , 1( 2)y t − , 1( 3)y t − , and 1( 4)y t −  are used rather than the predicted ones. 

4.3.5 Problem Solving by the Evolutionary Strategy  

Unlike single objective optimization, the solution to a bi-objective optimization 

problem converges to the Pareto-optimal front. Different solutions trade off differently 

between the two objectives. Optimal solutions change with the weights assigned to the 

objectives. It is possible that one solution is better than the other for one objective (e.g., 

cooling output minimization) but is worse for the other objective (e.g., supply air 

temperature). Neither can dominate the other, and they are called non-dominated 

solutions. The Strength Pareto Evolutionary Algorithm (SPEA) [77, 78] is used to search 

the space of non-dominated solutions and update them to the elite set at each generation.  

Detailed algorithm is presented in the section 3.2.1 of Chapter 3.  

The mutation operation in Step 7 is realized by adding noise ix+ to the ix , where 

ix is the thi controllable variable and ix+ is a Gaussian distribution with zero mean and 

standard deviation σ [79].  Solution ix is updated to 'ix by ' (0, )i ix x N σ= + . The value of σ  

is selected for each variable, and it remains fixed for all generations. The mutated 

solutions are checked for possible constraint violations. When a constraint is violated, the 

value of the violating solution is replaced with a corresponding constraint-bound value to 

make sure all solutions remain in the specified search space. For 1( )x t , set 1 0.4σ = and 

for 2 ( )x t , set 2 0.1σ = . In case no feasible solution satisfying the supply air temperature and 

humidity constraints exists, the evolutionary strategy algorithm is repeated. The 

parameters of this algorithm are tuned to meet the solution quality and the computational 

cost requirements. The values of the parameters used in the evolutionary strategy 

algorithm, such as the ratio of the parent and offspring size, the initial population size, 

and the maximum number of generations (the stopping criterion), are set as follows.  
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For three time stamps, namely 12:09 AM, 8:57 AM and 8:08 PM, Fig. 5 

demonstrates the fitness function values for different ratios of parent and offspring sizes. 

Note that the objective function at the vertical axis refers to the 1obj in model (4.12), not 

the fitness values computed in Equations (3.3) and (3.4) at each generation.  

 

Figure 4.5 Values of the objective function 1obj for different ratios of the parent and 
offspring sizes 

As shown in the Figure 4.5, the parent offspring ratio of 1/3 is selected as 

producing the best quality results. Using this ratio, initial population sizes from 40 to 200 

individuals have been tested, and the results are shown in Figure 4.6.  
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Figure 4.6 Values of the objective function 1obj for different initial population sizes 

Figure 4.6 shows that the initial population size of 120 minimizes the objective 

value and therefore is selected as the optimal initial population size. Figure 4.7 shows the 

average value of the objective function for the elite solutions at each generation. The elite 

population is updated at each generation, and the average value converges as the number 

of iterations increases. 

 

Figure 4.7 Average value of the objective function obj1 of elite solutions at each 
generation 
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As shown in the Figure 4.7, when the number of iterations exceeds 110, the 

average value of the objective function obj1 of elite solutions converges to a small value 

that slightly fluctuates. Therefore, the maximum generation number is set to 110 as the 

stopping criterion for the evolutionary computation algorithm.  

Figure 4.8 to Figrue 4.11 present distributions of the offspring and elite 

population sets at different generations, respectively. The horizontal axis refers to 1obj and 

the vertical axis to 2obj . As the number of generations increases, the distributions of 

offspring and elite individuals move from the right to the left, thus following a 

minimizing trend. The algorithm terminates when the generation number reaches the 

maximum number, and the minimum 1obj  with 2obj equals 0 ( 2 ( )y t and 3 ( )y t obey the 

constraints) and will be chosen as the final optimal value for optimized cooling output. 

The optimal controllable settings which are obtained correspond to the minimum cooling 

output.  
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Figure 4.8 Distribution of the offspring and elite objective values (2nd generation) 
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Figure 4.9 Distribution of the offspring and elite objective values (10th generation) 

 

 

Figure 4.10 Distribution of the offspring and elite objective values (20th generation) 
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Figure 4.11 Distribution of the offspring and elite objective values (30th generation) 

4.3.6 Optimization Results and Discussion 

At each time stamp, the evolutionary strategy algorithm is applied to solve the 

optimization model (4.12). Optimal solutions of controllable settings, namely the chilled 

water cooling coil valve position and the supply air relative fan speed, satisfy the two 

objective functions. The simulation results for the first 100 points of training data set in 

the Table 4.3 are shown in Figure 4.12 to Figure 4.16. It should be noted that observed 

values are used as the previous status values in solving the dynamic equations of 1 1( )y f= i , 

2 2 ( )y f= i and 3 3 ( )y f= i . 
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Figure 4.12 The first 100 points of the optimized cooling output 
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Figure 4.13 The first 100 points of the recommended valve position 
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Figure 4.14 The first 100 points of the recommended supply air relative fan speed 
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Figure 4.15 The first 100 points of the measured and optimized supply air temperature 
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Figure 4.16 The first 100 points of the measured and optimized supply air humidity 

The graph in Figure 4.12 shows that the cooling output at each time stamp is 

reduced by adjusting the controllable variables. Both the value position and the relative 

fan speed have smaller values compared to the original control settings, as illustrated in 

Figure 4.13 and Figure 4.14. Meanwhile, Figure 4.15 and Figure 4.16 show that the 

supply air temperature and the humidity remain in an acceptable range. By lowering the 

speed of a supply fan, the amount of cooling air discharged out of the AHU is reduced. In 

this scenario, heat transferred from the chilled water is decreased, because there is 

relatively more cooling air at the cooling coil end part. For this reason, adjusting the 

chilled water entering the cooling coil valve position at the same time to decrease the heat 

transfer from the water side to the air side can decrease the difference in temperature of 

the chilled water entering and leaving. A lower temperature difference refers to a smaller 

cooling output for the cooling coil and the chiller. Therefore, by adjusting two 

controllable variables simultaneously at each time stamp to minimize the cooling output, 

an energy saving potential can be achieved from the chiller side. 
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4.4 Summary 

In this chapter, the cooling output of an Air Handling Unit (AHU) was minimized 

by using a computational intelligence approach. MLP neural networks were applied to 

build dynamic models for controllable and uncontrollable input variables and output 

variables, such as cooling output, supply air temperature, and humidity.  A modified 

evolutionary strategy algorithm was applied to solve the bi-objective optimization model 

while providing values of optimal controllable variables. The simulation results 

demonstrated that the cooling output was reduced while the supply air temperature and 

humidity in the AHU remained in an acceptable range. A reduced cooling output 

decreased the part load for the chiller, and therefore energy consumption was reduced. 

Further research involving wider ranges of data is needed. In this chapter, one step 

optimization was discussed. In the future research, iterative replacement of the observed 

values with the predicted ones will be considered. 
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CHAPTER 5  

OPTIMIZATION OF REHEAT PROCESS IN A VARIABLE-AIR-

VOLUME BOX 

5.1 Introduction 

With upheavals of energy cost in recent years, operations efficiency of HVAC 

(Heating, Ventilating and Air-conditioning) system becomes more and more significant. 

Therefore, many research has been done in modeling and optimizing the local devices 

and process or even the overall HVAC system from an optimization perspective. 

Traditional approaches in optimizing HVAC systems are based on analytical models and 

mathematical programming methods. Lu et al [103] propose a systematic approach in 

optimizing the general HVAC systems based on mathematical models of the energy 

consuming components. Based on steady state models, Zheng et al [54] formulate the 

thermal process in a variable air volume as a constrained problem and provide optimal 

daily operating trajectories in achieving both energy saving and optimal outdoor air-flow 

rates. Rink et al [12] consider the minimum-cost control of multi-zone cooling system as 

a three-dimensional periodic optimization problem and solve it by using state-increment 

dynamic programming. Substantial savings of energy coast have been demonstrated by 

providing the optimal use of cooling storage. Due to the nonlinear, highly constrained 

and multidimensional nature of HVAC system, recent efforts incorporate computational 

intelligence aspects into the systems modeling and optimization. Yang et al [104] present 

an application of ANN (Artificial Neural Network) in establishing non-linear mapping in 

a building control system to determine the optimal start time for a heating system. Xi et at 

[105] develop the 2-by-2 nonlinear dynamic model of a HVAC system by SVR (Support 

Vector Regression) and generate online control signals to improve control performance 

by using SMO (Sequential Minimal Optimization) algorithm to solve the optimization 
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problem. To tackle two HVAC energy management problems, Fong et al [106] present 

the robust evolutionary algorithm to improve the optimization effectiveness.  

The research reported in this chapter focuses on using computational approach to 

transform the reheating process in VAV (Variable Air Volume) box into a bi-objective 

optimization problem. Compared to other data mining algorithms, ANN is applied to 

derive the dynamic models from real data collected in HVAC system. To solve the 

problem, a modified PSO based on two levels of non-dominated solutions is introduced 

with fast convergence features. Based on the model predictive control (MPC) strategy, 

recommended current reheating coil valve positions are obtained in minimizing reheating 

output while maintaining VAV discharge air temperature and room humidity under 

certain acceptable level in the future.  

5.2 Methodology for Optimizing reheating process in a 

VAV box  

5.2.1 Model Predictive Control Based Reheating Process 

Optimization 

Reheat system in the VAV terminal provides a quantity of conditioned air to the 

specific thermal zone in the building envelop. For the reheat system with hydronic reheat 

coil, hot water goes through coils adjusted by the valve position and heat exchange takes 

place between water side and air side. Amount of air entering the zone is accomplished 

by dampers in the VAV box. Based on the idea of model predictive control strategy, 

which is commonly used in the process control area, reheating process is optimized under 

some criterion by giving the recommended control output. Some common elements in 

MPC algorithms are employed in this research, namely predictive model, objective 

function and control law [107].  

Predictive models refer to fully capturing the dynamic process while providing 

reasonable predictions of outputs in the future with known values up to current time. 
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Predictive models could be analytical models on the basis of mathematical equations, 

empirical models developed from the real data or mixed models combining both 

advantages of the previous two types. In this paper, since reheating process in the VAV 

box is a dynamic process with nonlinear and time-varying features, temporal process 

models are derived from the real data based on certain data mining algorithms.  

Considering the process as a multi-input-single-output (MISO) system, it can be 

represented as  ( , )y f= x v , where ( )f ⋅ is the function capturing the process, mR∈x is a 

vector of m controllable variables, nR∈v is a vector of n uncontrollable variables and y is 

the response variable. For the reheating process, y could be target variable to be 

optimized,  e.g. reheating output, or performance variables to be satisfied under some 

constraints, e.g. acceptable discharge air temperature or humidity. x may refer to 

controllable variables like reheating valve position or damper position while v  may refer 

to uncontrollable variables like VAV entering air temperature. In a discrete-time form, 

nonlinear process model can be viewed as mappings between those variables that are 

available for predicting system behavior up to the current time and those to be predicted 

at or after that instant.[108] It can be expressed by the general equation below:[94] 

         1 11 1( ) ([ ( )] ,[ ( )] ,...,[ ( )] ,[ ( )] ,...[ ( )] )
y x x v vm nd D d D m d D d D n d Dy t f y t d x t d x t d v t d v t d∈ ∈ ∈ ∈ ∈= − − − − −    (5.1) 

Where yD is the set containing all the possible time delays related to response 

variable ( )y t at the time stamp t ; 
ixD is the set containing all the possible time delays 

related to thi controllable variable ( )ix t at the time stamp t ;
jvD is the set containing all the 

possible time delays related to thj uncontrollable variable ( )jv t at the time stamp t . 

It is noted that considering the real implementation of providing recommended 

control output at current time stamp, other input variables should only take values up to 

the current time. For example if the predictive model is expressed as 

( ) ( ( 1), ( 2), ( 3))y t f y t x t v t= − − − . The function could be rearranged as 

( 2) ( ( 1), ( ), ( 1))y t f y t x t v t+ = + − . In determining the controllable variable ( )x t at time stamp t , 
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information after this time stamp is unknown and therefore could not be obtained. 

Therefore, ( 1)y t + cannot be used in this function.  

After developing the temporal process model, optimization model could be 

formulated with certain objective functions and constraints. Optimization model 

considered in this chapter is to minimize the reheating output while maintaining the 

corresponding VAV discharge air temperature and room humidity under certain threshold. 

Minimization of reheating output will realize some energy saving potential from the hot 

water supplied side. Reheating output can be calculated as [90]: 

                                         ( )heat pm w hwst hwltQ C m T T= −                                      (5.2) 

Where pmC is the specific heat capacity of the hot water, wm is the mass flow rate of the 

hot water, hwstT and hwltT are entering and leaving water temperature of the hot water 

respectively.  

The Optimization model can be presented in the following Equation (5.3) 
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Where ( )t∗x refer to the vector of recommended adjusting controllable variables at current 

time stamp t ; 
11 ( )yy t d∗ + , 

22 ( )yy t d∗ + and 
33 ( )yy t d∗ + are predicted values with response time 

delay 
1yd , 

2yd  and
3yd  to the adjusted controllable variables; other variables without 

asterisks are real measured values.  

Due to the nonlinearity, complexity and opaqueness of the temporal models built 

in this paper, it poses challenge for solving by traditional mathematical programming 

methods. Therefore, multiple objective Particle swarm optimization (MOPSO) algorithm 

is employed in solving the optimization problem by searching out near-optimal solutions. 
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Fast converging advantage of particle swarm algorithms make it very promising in real 

on-line optimization.      

5.2.2 Multiobjective Optimization by Particle Swarm 

Optimization Algorithms 

Unlike evolutionary algorithms, Particle Swarm Optimization (PSO) [29] is a 

stochastic optimization technique inspired by the bird flocks. As one of the swarm 

intelligence algorithms, PSO has a well-balance mechanism to enhance and adapt the 

global and local exploration abilities. PSO first obtains great success in single objective 

optimization [109, 110] with its fast convergence advantage. Recently, multi-objective 

PSO has gained attention gradually in the research communities. In this chapter, a 

modified PSO based on two level of non-dominated solutions is introduced which is first 

proposed by M. A. Abido [76]. 

The basic algorithm of the canonical PSO can be described as follow [29]: 

Step 1: Initialize n particles dimN
ix R∈ and velocities dimN

iv R∈  ; 

Step 2: Compute fitness function ( )f i for each particle; 

Step 3: Find current best position îl for each particle and let ĝ be the global best; 

Step 4: For each particle, update the particle velocities and positions: 

1 2 ˆ           ()( - ) ()( - )
           

ii i i i

i i i

v v c rand l x c rand g x
x x v

ω← + +
← +

�

 
Step 5: If the stop criterion is satisfied, global best ĝ is the final optimal solution with 

fitness ˆ( )f g ; otherwise, return to Step 2. 

Where ix , iv refer to the position and velocity of thi particle. dimN is the dimension of 

searching space. il� is the local best particle for thi particle while ĝ is the global best 

particle for all particles. For the velocity updating part, ω is the inertia factor, which is 

used to balance the global and local search. Two random generated coefficients are drawn 
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from uniform distribution U(0,1) . 1 2c ,c are learning factors which control the influence of 

the social and cognitive components. In this paper, set 0.95w = and set 1 2 2c c= = . 

The canonical PSO is often applied to solve the single objective optimization 

problem. To make it adapt into solving the multi-objective optimization problem, some 

modifications have been done as follow [76]: 

Modification 1: Generate a storing set iS for each particle ix to store the non-dominated 

solutions through iterations for that particle; 

Modification 2: Generate a storing set G to store the non-dominated solutions from all iS at 

each iteration; 

Modification 3: Generate an external set E to store the non-dominated solutions 

from G through iterations; 

Modification 4: Local non-dominated set iS updating process: at each iteration, compare 

current particle solution and stored solutions in the previous rounds in the objective 

values space, dominated solutions are removed from the set while non-dominated 

solutions are kept.  

Modification 5: Global non-dominated set G updating process: at each iteration, copy all 

local non-dominated sets at this iteration into global non-dominated set. Solutions are 

compared among one to another and only non-dominated solutions are kept.  

Modification 6: External non-dominated set E updating process: at each iteration, copy 

the global non-dominated set G to E . Previous solutions at E and newly entered solutions 

from G  at current iterations are compared while only non-dominated solutions are kept. 

Modification 7: Local and global best solution generating process: for each particle at 

each iteration, Euclidean distance among solutions from corresponding local non-

dominated set and global non-dominated set are measured, the pair with minimum 
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distance in the objective value space is selected as the local and global best for this 

particle in undertaking the later velocity and position updating process. 

In contrast to the canonical PSO which mainly solve the single objective problem, 

idea of Pareto-optimality is incorporated into the algorithm to expand its capability in 

solving problems with several conflicting objectives simultaneously. In the modified 

algorithm, several sets are generated to store the non-dominated solutions under different 

scales. 

5.3 Industrial Case Study and Computational Results 

5.3.1 Data Description and Feature Selection 

Data used in this research is collected at Energy Resource Station (ERS), home to 

the Iowa Energy Center.  

More than 50 data points for each test room are recorded and data sampling time 

is 1 minute. Data from May 8th to May 26th in 2009 of one test room is used to investigate 

the reheat process in this paper. During this period, set back heating and cooling set 

points are set as 66°F and 78°F from 18:00 to 6:00 on the next day while occupant 

heating and cooling set points are set as 70°F and 74°F on the rest of the day. Reheating 

process data for each day has been selected from the original data set. Table 5.1 describes 

the data used for feature selection, model training and testing.  

Table 5.1 Data description 

Data set  Time period  Data description 

1 5/8/2009~5/10/2009 Feature selection, algorithms selection, 404 observations

2 5/8/2009~5/25/2009 Model training,1526 observations 

3 5/26/2009 Model testing, 114 observations 
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Due to the larger number of parameters in the original data set, many parameters 

are relatively irrelevant or redundant for the reheating process and therefore feature 

selection needs to be preformed. For example, damper position is important in the 

reheating process by determining amounts of air entering the room. But in this data set, it 

is kept as 30% open and could be discarded as irrelevant information. In this paper, a 

boosting tree algorithm is used to perform the feature selection, as it shares advantages of 

the decision tree induction and tends to be robust in removal of irrelevant parameters [97, 

98]. In the boosting method, a sequence of binary trees is built. Each tree focuses on 

learning instances misclassified by the previous trees based on the prediction error.  All 

trees are integrated with different weights in a single model. In the boosting tree 

algorithm, a split at every node of any regression tree is based on certain criteria, e.g., 

minimization of the total regression error used in this chapter. In the process of 

generating successive trees, the statistical importance of each variable at each split of 

every tree is accumulated and normalized. Predictors with a higher importance rank 

indicate a larger contribution to the predicted output parameter.  Based on both the 

domain knowledge and boosting tree results, four variables are selected for building the 

models of VAV reheating output, VAV supply air temperature and room humidity. 

Parameters are described in the Table 5.2.  
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Table 5.2 Parameters description for developing models 

Variable Point name Description Unit 

1y   HEAT Output variable, reheating output Watt 

2y   VAV-DAT Output variable, VAV box discharging air temperature °F 

3y   RM-HUMD Output variable, room humidity RH 

1v   INT-WIN Input uncontrollable variable, light level on window Ftc 

 2v  PLN-HUMD Input uncontrollable variable, plenum air humidity RH 

3v   VAV-EAT Input uncontrollable variable, VAV box entering air temperature °F 

1x   VAVHCVLV Input controllable variable, VAV box heating coil valve position %Open
 
 

As shown in the table, 1 2,v v and 3v  are measured variables which cannot be 

manipulated.  1x is the controllable variable and the recommended adjusting value will be 

searched in minimizing the reheating output while maintaining the VAV box discharging 

air temperature and room humidity under certain tolerance level. Since the reheating 

process is a dynamic process, time delay of current valve position changes influencing on 

reheating output and thermal comfort may vary. Both correlation coefficients and 

boosting tree algorithms are applied to investigate strengths of linearity and nonlinearity 

among different previous status values of inputs and outputs in building the dynamic 

models and three models to be built could be represented as the functional mapping 

described below.  

                 1 1 1 1 1 1 1 2 3( 1) [ ( ), ( 1), ( ), ( 1), ( ), ( ), ( )]y t f y t y t x t x t v t v t v t+ = − −             (5.4) 

                 2 2 2 2 1 1 1 2 3( 4) [ ( ), ( 1), ( ), ( 1), ( ), ( ), ( )]y t f y t y t x t x t v t v t v t+ = − −           (5.5)                       

                 3 3 3 3 1 1 1 2 3( 8) [ ( ), ( 1), ( ), ( 1), ( ), ( ), ( )]y t f y t y t x t x t v t v t v t+ = − −            (5.6) 

It is noted that the minimum time interval is 1 minute. The adjustment of valve 

position value at current time stamp t will influence most on reheating output at 1t + time 
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stamp, VAV discharge air temperature at 4t + time stamp and room humidity at 8t + time 

stamp.  

5.3.2 Temporal Predictive Model Building and Validating 

Several data mining algorithms, namely MLP neural network, SVM, Boosting 

tree, Pace regression and Random forest, have been applied to extract the models from 

data based on these three mapping equations. MLP (Multi-layer Perceptron) neural 

network [111, 112] is a commonly used feed-forward neural network involving numerous 

units organized into multiple layers. Through adaptive adjusting weights among units 

under supervised learning, the MLP is capable of identifying and learning patterns based 

on input data sets and the corresponding target values. In this paper, four different 

activation functions (the logistic, identity, tanh, and exponential functions) are selected 

for the hidden and output neurons of the MLP neural network algorithm. The number of 

hidden units is set between 5 and 25, and the weight decay for both the hidden and output 

layer varies from 0.0001 to 0.001. SVM [98] (Support Vector Machine) is a supervised 

learning method based on kernel functions, and it is used for classification and function 

approximation. The support vector machine is a supervised learning method based on 

kernel functions and is used for classification and function approximation. SVM 

regression is applied here. It avoids difficulties of using linear functions in the high 

dimensional feature space and optimization problem is transformed into dual convex 

quadratic programming problem. In regression case the loss function is used to penalize 

errors. In this paper, the radial basis function (RBF) is used as the kernel function in the 

SVM algorithm. Apart from feature selection, boosting tree [97, 98] can also applied in 

applied in regression and classification. In this paper, the maximum number of additive 

trees equals 200 and to avoid overfitting, each consecutive tree is built using a subset of 

data, and the subset proportion is set to 0.5. The Pace regression algorithm [52, 53] is a 

relatively new approach for developing linear models in high dimensional spaces. It 
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consists of a group of estimators that are either optimal overall or optimal under certain 

conditions. In this paper, empirical Bayes is used as the estimator. The random forest is a 

data mining method for classification and regression introduced by Breiman and Cutler 

[101]. Unlike the standard classification trees that use the best split among all variables at 

each node for splitting, the random forest algorithm uses the best split among a subset of 

randomly selected predictors at that node. In this paper, the maximum number of trees 

from the forest is set to 200.  

As shown in the table 5.1, data set 1 of three days have been used to select the 

algorithms for building the models. The following metrics are used to measure the 

prediction accuracy of the model: the MAE (mean absolute error), Std_AE (standard 

deviation of absolute error) [46]. They are defined in Equations (2.11) to (2.13) 

Tables 5.3 to 5.5 summarize the prediction performance of the reheating output 

model, VAV discharge air temperature model and room humidity model built by five 

data mining algorithms respectively. Max and Min refer to the maximum and minimum 

absolute error between observed and predicted values.  

Table 5.3 Prediction accuracy comparison of reheating                                                
output model 

Algorithms  MAE Std_ AE Max Min 

MLP  58.1708 66.8506 486.3586 0.0141 

Random Forest 66.4441 93.5182 663.5640 0.7633 

SVM 64.1313 81.2788 560.7002 0.1322 

Boosting 66.3925 88.6143 522.4716 0.7342 

Pace Regression 68.7535 88.5757 562.6107 0.2320 
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Table 5.4 Prediction accuracy comparison of VAV                                                       
discharge air temperature model 

Algorithms  MAE Std_AE Max Min 

MLP  0.3991 0.4235 3.1832 0.0016 

Random Forest 0.9591 0.8009 3.9914 0.0002 

SVM 0.8264 0.8630 5.1879 0.0017 

Boosting 0.9718 0.8370 4.4633 0.0121 

Pace Regression 1.1049 0.9405 5.2009 0.0033 
 
 

Table 5.5 Prediction accuracy comparison of room humidity model 

Algorithms  MAE Std_ AE Max Min 

MLP  0.2240 0.2212 2.5902 0.0008 

Random Forest 0.3896 0.7951 6.9207 0.0009 

SVM 0.8088 0.4894 3.2795 0.0005 

Boosting 0.7230 1.0365 9.9106 0.0056 

Pace Regression 0.5523 0.6604 5.5368 0.0039 
 
 

As shown in the tables, MLP neural network overperforms other data mining 

algorithms with the smallest mean absolute error and standard deviation of absolute error. 

Therefore, it is selected as the best algorithm for further development of three models. 

Training data set of data set 2 and testing data set of data set 3 shown in Table 1 are 

selected for building and validating the models respectively. Training and testing results 

are present in the Table 5.6.  
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Table 5.6 Prediction accuracy of models training                                                           
and testing 

Reheating output 

Data set MAE Std of AE Max Min 

Training 57.9976 70.1547 633.0374 0.0960 

Testing 64.5382 54.4437 242.8076 0.1180 

VAV discharge air temperature 

Data set MAE Std of AE Max Min 

Training 0.5073 0.5081 3.4058 0.0016 

Testing 0.6425 0.4952 2.6043 0.0096 

Room humidity 

Data set MAE Std of AE Max Min 

Training 0.2457 0.2160 1.5635 0.0006 

Testing 0.3717 0.3728 2.0252 0.0007 
 
 

In developing the neural networks, sum of squared error is used as the cost 

function and weights are modified in minimizing that cost function accordingly. Table 

5.7 describes the detailed information of three neural networks 

Table 5.7 Detailed information of three models 

Model output Hidden 
units 

Activation function on hidden 
units 

Activation function on output 
units 

Reheating output 15 Logistic function Exponential function 

VAV discharge air 
temperature 24 Hyperbolic tangent function Logistic function 

room temperature 19 Hyperbolic tangent function Hyperbolic tangent function 
 
 

Model testing results of 114 data points are shown in the Figures 5.1 to 5.3.  
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Figure 5.1 Testing results of reheating output model 
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Figure 5.2 Testing results of VAV discharge air temperature model 
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Figure 5.3 Testing results of VAV room humidity model 

As shown in the figures, predicted values track relatively close to the observed 

ones. Therefore, three models will be applied in formulating the optimization model.  

 

5.3.3 Optimization Model Formulation 

Three models of reheating output, VAV discharge air temperature and room 

humidity have been established by the MLP neural networks. To minimize the reheating 

output so as to achieve some energy saving potentials, the reheating process needs to be 

transformed into an optimization model. 1 1( 1) ( )y t f+ = •  is selected as the objective 

function to be minimized by searching the optimal solution of reheating valve position at 

the current time t . In the mean time, VAV discharge air temperature and room humidity 

will be affected in the future and therefore they should be included in constraints. In this 

paper, future temperature is constrained not to go beyond 1 °F while humidity is limited 

not to go beyond 0.5 RH. These tolerance values could be replaced by any other values 

based on people’s preference and the methodology will be remained the same. The 

optimization model could be formulated as: 
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(5.7) 

where *
2y , *

3y are predicted values of temperature and humidity by applying the 

original reheating coil valve position value. In minimizing the reheating output at 

1t + time stamp by manipulating valve to the optimal position, VAV discharge air 

temperature and room humidity are maintained in certain acceptable level relative to 

original values without optimization. Transforming the constrained problem into a non-

constrained problem, a bi-objective optimization problem can be built by constructing 

objective functions as 11 ( 1)Obj y t= + ,  

* * *
2 2 2 2 3 3

*
3 3

2 max{0, ( 4) 1 ( 4)} max{0, ( 4) ( 4) 1} max{0, ( 8) 0.5 ( 8)}

max{0, ( 8) ( 8) 0.5}

Obj y t y t y t y t y t y t

y t y t

= + − − + + + − + − + + − − +

+ + − + −

Then the bi-objective model is formulated as: 
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           (5.8) 

It is noted that when 2 0Obj = , all the constraints are satisfied. In solving this 

optimization problem, a multi-objective PSO (Particle Swarm Optimization) algorithm is 

employed.  

5.3.4 Problem solving by MOPSO 

In solving the optimization problem shown in Equation (5.8), one instance is 

randomly selected from the training data set described in the table to tune certain 

parameters of the algorithm. Two parameters are tuned here, namely the initial population 
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size and the number of iterations. Table 5.8 shows the detailed description of the instance 

selected.   

Table 5.8 Instance selected for tuning parameters  

DATE TIME INT-WIN(T) PLN-HUMD(T) 

2009-5-8 7:14:00 22.813 45.063 

VAV-EAT(T) VAVHCVLV(T-1) VAVHCVLV(T) HEAT(T-1) 

57.875 20.547 20.641 2.25504 

HEAT(T) HEAT(T+1) VAV-DAT(T-1) VAV-DAT(T) 

2.318 2.5365 65.438 64.688 

VAV-DAT(T+4) RM-HUMD(T-1) RM-HUMD(T) RM-HUMD(T+8)

64.688 52.906 53 53.5 
 
 

Vary the initial population size from 1 to 30. The maximum number of iterations 

is set as 100. Since the final results are not a single solution, but a set of solutions, 

optimal solution selecting criteria are needed for making the final decision. Here the 

selecting criterion is to satisfy constraints as much as possible. Figure 5.4 shows the 

optimal results with different initial population size.  
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Figure 5.4 Optimal results with different initial population size 

As shown in the figure, when the number of particles initially generated is small, 

there is no guarantee that constraints could be satisfied since searching range is limited. 

As the initial size becomes larger, final optimal results are relatively the same after 100 

iterations. Figure 5.5 demonstrates the computation cost for each running with different 

initial population size.  
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Figure 5.5 Computation cost with different initial population size 

As shown in the figure, although the larger size of initial population size can 

increase the possibility of finding out near-optimal solutions, computation cost will 

become more obvious. Considering the on-line implementation, time for searching out 

good solutions should be short. Therefore, initial population size is set as 15 since it can 

both give good results and reasonable computation cost.  

Another factor influencing the computation cost is the maximum number of 

iterations. Set initial population size as 15 and record the best solution at different 

iterations. Figure 5.6 demonstrates the optimal results at different iterations.  



 

 

105

310

320

330

340

350

360

370

380

390

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

O
bj

1(
w

at
t)

Iterations

Final optimized Obj1  

Figure 5.6 Optimal results at each iteration 

As shown in the figure, as the number of iterations goes beyond certain threshold, 

the Obj1 converges. The larger the number of iterations, the more running time that will 

be taken (shown in the Figure 5.7). Therefore, the maximum number of iterations is set as 

50. Major time cost comes from the local, global and external non-dominated set 

updating process. To further reduce the computation cost, clustering technique is applied 

to these three procedures. When the updating process finishes, if the number of non-

dominated solution exceed certain threshold, clustering will be preformed to randomly 

select one solution as the representative from a group of solutions with similar close 

distances in objective value space. Here set size to trigger clustering in local, global and 

external non-dominated set are 5, 15 and 30 respectively. The tolerance distance along 

Obj1 and Obj2 axis are 0.2 and 0.05. Solutions with distance smaller than these two 

tolerance distance in objective value space will be clustered as a group and one will be 

randomly selected as the representative. Noted that solutions with Obj2=0 will not be 

involved in the clustering. Figure 5.7 shows the comparison of computation cost with and 

without employing clustering techniques.  
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Figure 5.7 Comparison of computational cost with and without clustering 

As seen in the figure, as the number of iterations goes up, clustering technique 

apparently restricts the further increase of the computation cost. Figure 5.8 describe the 

distribution of solutions from external set at 30th iteration in objective value space with 

and without clustering performed.  
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Figure 5.8 Comparison of solutions distribution in objective value space with and without 
clustering  

As shown in the figure, the number of solutions has been dramatically reduced 

after clustering. But the shape of the distribution front is not destroyed since points in the 

small neighborhood are well represented.  

5.3.5 Optimization Results and Discussion 

Proposed multiple objective PSO algorithm is applied to solve the model on the 

one time stamp at a time fashion. 70 data points from 6:36 AM to 7:45 AM on May 8th, 

2009 are selected. It is noted that observed values, rather than predicted ones are used in 

the next time stamp optimization. Figures 5.9 to 5.12 show the optimization results.  
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Figure 5.12 Comparison of room humidity before and after optimization 

As shown in the figures, recommended values of reheating valve position could 

be given by minimizing the reheating output in the future time stamp and maintaining the 

VAV discharge air temperature and room humidity under certain acceptable range. It is 
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straightforward that less reheating output will hinder the speed of temperature increase, 

and there exist a trade-off. If a small tolerance of temperature and humidity in the future 

is admitted, a quantitative adjusting value of reheating valve position could be given at 

the current time in achieving some energy saving potentials by minimizing the reheating 

output at next time stamp.   

5.4 Summary 

In this chapter, a computational intelligence approach for optimization the 

reheating process in the VAV box was presented. The MLP neural network outperformed 

other data mining algorithms and therefore was selected to build the model of reheat 

output, VAV discharge air temperature, and room humidity. The reheat process was 

solved by the modified PSO algorithm Based on the model predictive control strategy, 

the optimal control output value of the reheat valve position was generated. 

Computational results demonstrate that energy savings could be achieved by the 

recommended reheating valve position as the trade-off between energy consumption and 

thermal comfort. Future research will focus on on-line implementation of the proposed 

methodology. 
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CHAPTER 6.  

CONCLUSION 

This thesis is focused on applying computational intelligence in HVAC systems 

modeling and optimization. The framework presented in the thesis includes three major 

parts. The first part (Chapters 1 and 2) introduces a computational intelligence approach 

in HVAC modeling 2. Neural network is applied to establish nonlinear mappings among 

different air quality parameters applicable for construction of control charts for on-line 

monitoring of sensors. It may provide information to operators and thus decrease the risk 

due to the sensor failures.  

Second part (Chapter 3) is centered on applying computational intelligence in 

optimization. A bi-objective optimization model is formulated based on the steady state 

equations of indoor CO2 concentration. Due to the model complexity, a multi-objective 

evolutionary algorithm is employed. The run time of the fan is minimized while level of  

CO2 concentration is maintained below a preference threshold.  

In the third part (Chapters 4 and 5), computational intelligence is applied to 

process optimization. Neural networks are used to develop temporal models of air 

handling unit and VAV box. Different optimization models are established with 

conflicting objectives of energy consumption and thermal comfort. Due to the 

nonlinearity and complexity of the models, two heuristics algorithms, an evolutionary 

algorithm and a particle swarm algorithm are considered in searching for near optimal 

solutions. Energy savings are realized (minimization of cooling output of AHU or 

reheating output of VAV box) while supply air temperature and humidity are maintained 

at acceptable level. 

The future research will involve integration of the analytical models and data-

driven model. Issues such as models overfitting, bias-variance trade off, and 

computational complexity will be also addressed.   
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