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ABSTRACT 

New methods are employed to develop an anatomically accurate, analysis-ready 

isogeometric model of skeletal muscles.  Current modeling techniques for the analysis of 

skeletal muscles include the utilization of finite element meshing, which inherently poses 

a few well-known problems that provide motivation for isogeometric analysis.  In 

addition to those issues, standard FEA meshing cannot preserve smooth geometries, 

therefore the accuracy of the foregoing model and analysis is reduced.  Moreover, there is 

no easy means to characterize fiber direction in the FEA framework due to discontinuities 

at element boundaries.  Additionally, material property distributions such as the transition 

of the muscle-tendon complex along the longitudinal axis through FEA are prescribed on 

an element by element basis, leading to abrupt, unrealistic property changes at element 

boundaries.  

The current research builds on the idea of an isogeometric tensor-product rod 

using harmonic coordinates and NURBS [1].  Through a direct comparison between a 

meshed, FEA model and the tensor-product rod model, it can be shown that the tensor-

product rod model preserves smoothness, enhancing the geometric representation passed 

through to analysis while reducing the total DOF of the model.  Muscle fibers can be 

easily implemented as parametric lines with muscle-specific orientations along the 

muscles’ longitudinal axis that match distinct fiber orientations existent within common 

skeletal muscles.  This technique not only allows for the representation of perfectly 

parallel-fibered structures, but also those that do not directly follow the longitudinal axis 

such as a helical twist.  Utilizing this geometric method also provides the framework for 

implementing material properties using an interpolative-style scheme.  Varying properties 
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at specific longitudinal control point cross-sections near muscle termination areas can be 

designated to more accurately represent the muscle-tendon complex.  These new 

techniques allow for the creation of an analysis-ready, realistic skeletal muscle model of 

the male human arm.   The model contains 28 muscles complete with muscle-specific 

geometric, fiber, and heterogeneous property characterizations all compiled into a 

complete “digital muscle library.”  
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INTRODUCTION 

Skeletal muscle modeling has become an extremely active field of research in the 

last few years and has been typically driven by two distinct motivations, computer 

graphics and biomechanical analysis.  The motivation for computer graphics is to be able 

to accurately replicate the shape of muscles and simulate realistic looking muscle 

deformation.  Three-dimensional models can be created using a number of techniques but 

the most common include polygonal modeling, NURBS, and subdivision surfaces [2].  In 

polygonal modeling meshes are formed from points in 3D space, called vertices, 

connected by line segments.  Polygonal modeling one of the oldest modeling techniques 

and is employed in many applications because the models are flexible and can be 

rendered extremely quickly [2].  A drawback here is the inability to model curved 

surfaces accurately as they must be approximated by a series of lines segments, which 

can look unrealistic and limit accuracy.  Moreover, attempting to refine the polygon 

structure to make curved surfaces look as smooth as possible will result in larger 

processing times.  The second modeling type is NURBS (Non-Uniform Rational B-

Splines).  NURBS curves are generated by utilizing control points which lie off the curve 

and influence the curve’s shape.  Curves can be combined to form NURBS surfaces and 

solids.  Conceptually NURBS modeling is a little less straightforward than polygonal 

modeling but its benefit lies in its ability to accurately model curved shapes.  NURBS can 

offer smoother surfaces with a smaller footprint in memory storage and faster processing 

[2].  The last modeling technique is subdivision surfaces.  This technique essentially 

combines polygonal modeling and NURBS.  Subdivision surfaces are rendered from a 

polygon mesh and then subdivided so the surfaces appear smoother and more rounded.  
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The original polygon mesh still acts as a control cage that can be manipulated similar to 

NURBS surfaces [2].  This is the most common modeling type used today.   

Most 3D skeletal muscle models available today are constructed from polygonal 

meshes and subdivision surfaces.  There have been numerous detailed 3D anatomical 

models developed with this type of geometry that available for purchase.  A couple 

examples include polygonal models of “3D Male Muscular System Model 5.0” by 

Zygote Anatomy and “Human Male Anatomy Complete 3D Model Pack V04” developed 

by Plasticboy [3][4].  These models can be viewed and manipulated using common 3D 

CAD modeling software such as Maya, 3D Studio Max, or Softimage, all geared toward 

CG animation. 

Other computer graphics modeling techniques such as NURBS have been used 

for skeletal muscles but not near the magnitude of polygonal geometry.  Most 

applications utilizing 3D NURBS muscle objects strive for the goal of creating realistic-

looking muscle deformation from underneath a model’s skin.  Christopher Evans and 

Peter Shipkov are technical artists that have spent extensive time modeling in this manner 

[5][6].  In the case of CG artists, realistic looking muscle deformation takes precedence 

as the subsequent anatomical accuracy becomes less of a priority.   

Thus regardless of the modeling geometry utilized in generating 3D CG models, 

the primary goal is to create a realistic looking muscle model.  Thus no emphasis is 

placed on analysis or real-time muscle capabilities, which leads to the second distinct 

motivation in muscle modeling, biomechanical analysis.  Here there is a need to create a 

model from which efficient analysis techniques can be performed and overall muscle 

force or stress results can be determined.  Here there are really two major techniques for 
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modeling skeletal muscles, line-of-action and finite element analysis (FEA) models.  For 

gross muscle model behavior involving multiple muscles in unison, a line-of-action 

modeling technique must be used [7].  In this model type muscles are modeled by 

connecting straight lines from each muscle’s origination point to its insertion point.  The 

data characterizing the model is minimal, which makes the computational side of analysis 

for determining force production and direction trivial, allowing for real-time capabilities.  

However, being a simplistic model with no associated volumes, this model type is only 

useful for determining overall force data and not stress-related characteristics.  

Furthermore modeling with this technique, complex muscle geometries and fiber 

orientations cannot be accurately represented, which limits the realistic nature of the 

overall model.  An example of this a similar type of analysis was conducted by Patrick 

and Abdel-Malek in 2007 [8]. 

To obtain a more detailed and accurate depiction of muscle behavior, FEA models 

are commonly utilized and accepted as the standard analysis technique.  Through FEA, 

volumetric data is utilized and useful stress results can be obtained.  There has been 

extensive research conducted utilizing FEA to model stand-alone skeletal muscles and 

develop muscle stress distributions.  An example of such research was conducted by 

Spyrou and Avaras in 2011.  The objective here was to introduce a 3D FEA model of the 

human foot and lower leg to simulate human ankle flexion and estimate internal stresses 

and strains as well as shape changes of the deformed tissues during human movement [9].   

Although FEA is the commonly accepted practice for stress determination in 

CAD models, it does however have a number of limitations associated with its use.  First, 

model generation for analysis is done through the use of a meshed approximation.  To 
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obtain accurate results for smooth domains, this meshed approximation consisting of 

nodes connected by straight lines must be significantly refined to approximate smooth, 

curved surfaces.  If this level of refinement is neglected, the ensuing analytical results 

will suffer.  This fine approximation also drastically increases the computational cost due 

to the large number of degrees of freedom (DOF) necessary to construct the model.  The 

robust nature of the FEA meshed, geometric model is the main reason only individual 

muscles, not multiple muscles working in unison, are typically analyzed in most of the 

studies conducted today.   

Modeling fiber orientation in skeletal muscles has also historically been a difficult 

task to model within the FEA framework.  Fiber direction is one of the main determinants 

of overall muscle force generation [10].  Therefore a proper parameterization scheme is 

essential to an accurate model.  The drawback here is that each element of the FEA 

model is parameterized separately by a piecewise polynomial approximation.  Therefore 

   exists at element boundaries and it follows that there is no easy way to trace fibers 

across elements.  Most current methods involve creating a mesh whose fiber direction is 

associated with the structure of the ensuing meshed element boundaries and/or shape.  

Such is the case in the work of Lemos [11] in which eight-node brick-like elements were 

assembled one on top of another to represent parallel-fibered and pennate-fibered 

muscles.  Thus fiber orientation was determined directly from the structural 

representation.  Tang [12] used a method to model fiber orientation in which the 

distribution of fibers take on the outline of the fusiform muscle geometry.  This was done 

for each element by determining the line that connected the two central points on the two 

end surfaces.  Models of this nature are muscle-specific, meaning a unique mesh structure 
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must be created for each muscle to accurately represent the geometry and fiber direction.  

Also, to alter the mesh structure one must refer back to the original geometry, which 

lacks the versatility needed for a general-use model.  In yet another study, Blemker [13] 

created a fiber map of interpolated cubic splines based on fascicle arrangement 

measurements of ultrasound images.  For each element the fiber length was determined 

from the vector tangent to the spline curve that runs the element’s center.  Oomens [14] 

measured fiber directions using tensor imaging and then described them with polynomial 

fits.  In both of these cases the fiber maps utilized remained detached from the actual 

geometric model itself.   

The previously discussed discontinuity between FEA elements is also limiting for 

the assignment of material properties within the model.  Elements must be assigned on an 

element-by-element basis, which translates to an unrealistic, abrupt property change at 

element boundaries of the meshed model.  In realistic skeletal muscle the muscle-tendon 

complex exhibits a gradual transitional period, thus it is imperative to model this region 

as accurately as possible to ensure the highest possible accuracy in analytical results.  In 

many current FEA muscle studies, this transitional period is predominantly neglected and 

studies that include properties assignment schemes generally do so element-by-element 

[11][14][12]. 

All of the afore mentioned limitations culminate in an FEA analysis-ready model 

that lacks accuracy due to a misrepresentation of volumetric results and the inability to 

model muscle fiber and material properties in a smooth and efficient manner.  In addition, 

modern FEA models of this nature utilize a high number of DOF in implementation, 

which limits the possibilities for multi-muscle analysis.  To alleviate many of the issues 
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common with FEA, an alternative method termed “Isogeometric Analysis” was 

developed by Hughes in 2005 which can be utilized [15].  This method satisfies both of 

the two previously discussed motivations of skeletal muscle modeling, computer graphics 

and biomechanical analysis.  In this manner the physical realism can be combined with a 

useful stress analysis technique, i.e. merging a CAD (Computer Aided Design) geometric 

representation with FEA capabilities.  There are a few different geometric modeling 

techniques utilized in isogeometric methods, but of the most relevance in this application 

of smooth-bodied skeletal muscles is NURBS.  More specifically, a structural variation of 

NURBS called the tensor-product rod formulation pioneered by Lu and Zhou in 2020 

will be utilized [1].   

The tensor-product method is ideal modeling skeletal muscles because of their 

intrinsic rod-like shape.  This method merges cross-sectional and axial representations to 

form this rod-like structure.  The cross-sectional representation uses rational Bezier arcs 

as a base and combines multiple Bezier arcs to form the unit circle, which can be reduced 

to ensure continuity across the cross-sectional boundaries.  Extending that boundary 

description to the interior is done through harmonic mapping.  The result of which is an 

interior that is completely parameterized by the boundary control points only.  Using this 

harmonic mapping, cross-sectional isoparametric master elements are developed.  The 

combination of the cross-sectional and axial descriptions represented by a simple 

NURBS curve is done through the utilization of the tensor-product, for which the domain 

is described by a unit cylinder.  Finally, the master rod structure can be mapped to that of 

the physical domain as determined by the overall muscle shape. 
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The tensor–product rod formulation has numerous benefits which allow us to 

exceed the current capabilities of FEA for skeletal muscle modeling.  NURBS models 

such as this can preserve smooth boundaries and exactly represent conic cross-sections.  

This allows for a much lower total DOF model, decreasing the overall computational 

burden.  However, perhaps the most important feature that accompanies the tensor-

product model is the globally smooth representation, meaning that elements have levels 

of continuity across their boundaries that are nonexistent in FEA.  The global parametric 

setup and continuity across element boundaries of tensor-product rod allows for easy 

implementation of the various fiber arrangement schemes that are common within 

skeletal muscles, leading to more accurate results.  Also exploiting that element 

continuity and globally smooth representation, the structure of the tensor-product rod can 

be utilized for easy assignment of material property variations along the muscle’s 

longitudinal axis, which again allows for a more accurate depiction of realistic material 

property distributions associated with the muscle-tendon complex.   

Knowing the limitations of FEA and the benefits of the tensor-product 

isogeometric method, the objectives of this work can clearly be defined.  The overall goal 

of this work is to create an analysis-ready isogeometric model of skeletal muscles within 

the human arm that utilize much lower total DOF and is more accurate in the 

parameterization of muscle fibers and material property distribution than currently 

possible through modern FEA techniques.  To completely characterize an analysis-ready 

model in this manner, one needs to accurately satisfy three main criteria.  The first is 

creating an anatomically accurate geometric model that is fully 3D and capable of 

handling the complexities of muscle geometry with a lower number of DOF.  Secondly, a 
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model needs to accurately reflect the fiber architecture presented within skeletal muscles 

as fiber direction is the major determinant of overall force generation.  And lastly a model 

needs to accurately represent heterogeneous property distributions, such as the muscle-

tendon complex.  Utilizing the isogeometric tensor-product method, an anatomically 

accurate geometric model of the male human arm will be developed and new techniques 

for muscle-specific fiber parameterization and material property assignment will be 

employed to complete all steps in the characterization process and satisfy this hypothesis.   

The need for an accurate as possible and low DOF analysis-ready model has 

become more and more explicit as of late due to computational analysis being an 

exponentially expanding field.  Here the end goal is a full scale muscle model capable of 

analyzing muscle stresses through real-time interaction.  The application possibilities 

with a model such as this are numerous.  Ergonomists in industry could utilize a model to 

predict muscle stress and overall force capabilities in a number of virtual environments 

before actual product prototypes are constructed.  This would lead to immediate cost 

savings and a reduction in the overall design process.  Here injury prevention also 

becomes a real possibility through the prediction of muscle overexertion in a digital 

environment.   

This thesis begins with a brief description of isogeometric analysis. It then 

proceeds to discuss the background and basics of the most prominent geometric tool 

utilized in isogeometric analysis, NURBS.  The NURBS elemental structure and 

fundamental manipulation tools are described in detail.  Next the tensor-product rod 

method is derived through the utilization of NURBS as a base geometry.  The mesh-like 

structure and elemental breakdown of the tensor-product rod geometry is derived.  The 
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geometric accuracy of this method is compared to that of standard FEA techniques.  The 

construction of a complete NURBS model of the human arm is presented along with the 

tensor-product rod method to model realistic skeletal muscles.  Actual muscle specific 

parametric fiber orientations are presented and employed.  Derived fiber 

parameterizations are explained including parallel, helical, convergent, and pennate 

orientation cases.  The material property implementation scheme through the tensor-

product rod structure for the muscle-tendon complex and respective constitutive relations 

are described with emphasis on fiber stretch determination.  The complete 

characterization of this muscle model is then summarized with the concept of a “Digital 

Muscle Library” along with its usefulness discussed in further detail.  Lastly, limitations 

of the model and future work are examined. 

  



10 
 

 

CHAPTER I 

ISOGEOMETRIC ANALYSIS BACKGROUND 

What is Isogeometric Analysis? 

The idea of isogeometric analysis was first introduced by Thomas Hughes, a 

professor at the University of Texas, in 2005 [15].  This approach is a new method for 

analyzing partial differential equations and is similar to existing techniques of finite 

element analysis (FEA) and mesh-less methods.  NURBS are the most commonly used 

geometry type when implementing isogeometric analysis.  Other types of geometric 

representations do exist and are used in isogeometric analysis but are not as prevalent.  

One major generalization of NURBS is called T-splines.  T-splines work exceptionally 

well for local refinement and coarsening, but are very robust and computationally 

extensive when sewing together adjacent patches [16].  Subdivision surfaces, Gordon 

patches, Gregory patches, S-patches, and A-patches have also been utilized and could 

play future roles in isogeometric research.   

The current engineering analysis procedure is to develop a CAD model and use 

that model’s geometric shape to develop a mesh structure to conduct analysis.  The mesh 

generated in these cases is an approximation of the original geometry, implying there are 

inherent errors in any analytical results arising from the geometric error.  When creating a 

mesh of a geometric model in this manner, the link to the original geometry is completely 

severed.  Any refinement strategies thereafter must utilize the original CAD model rather 

than the most recent meshed approximation.  A benefit of the geometric structure of a 

NURBS model is that it allows for direct analysis, eliminating the need to create that 

external mesh.  Using this approach, there is no longer a need for the mesh generation 
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process in isogeometric methods, which can be an extremely time consuming.  Currently, 

the mesh generation process, which includes meshing and mesh manipulation, accounts 

for about 20% of overall analysis time [16].  Therefore it is the primary goal of 

isogeometric analysis is to be geometrically exact no matter how coarse the 

discretization.  Another goal is to simplify mesh refinement by eliminating the need for 

communication with the CAD geometry once the initial mesh is created [15]. 

Origin of NURBS 

As NURBS are the primary basis for the current analysis technique, a brief 

background on the subject is necessary.  NURBS are a parametric formulation.  Simple 

parametric or mapped curves can be represented by  

                                     (1) 

where the x, y, and z components trace out a curve as u varies from a to b.  Parametric 

curves are extremely flexible because they are axis independent, easily represent multi-

valued functions, and have additional degrees of freedom when compared to explicit or 

implicit formulations [17]. 

NURBS are derived from the Bezier curve discovered by Pierre Bezier in the late 

1960’s and early 1970’s [17].  The method of shape description developed was suitable to 

model free-form curves and surfaces.  Originally the method was used to model 

automobiles, aircraft wings, and yacht hulls, but has since expanded into a much broader 

field [17].  A Bezier curve follows a parametric representation and can be described by 

                 

 

   

              (2) 
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where    is the ith polygon vertex location, or control point as it will be here on referred 

to as, in the form of a position vector.          is the ith nth-order Bernstein polynomial 

which is described by  

          
 
 
                          (3) 

where 
 
 
 
  

  

        
 (4) 

is the binomial coefficient.  In these equations n is the degree of the Bezier basis function 

or the polynomial curve segment.  Therefore an nth degree curve would require n + 1 

control points. 

Bezier curves are very useful in their own sense, yet they have a few limitations 

inherent in their formulation.  One limitation is that the number of specified control 

points, as mentioned, fixes the order of the polynomial curve.  Hence, the only way to 

reduce the order is to reduce the number of control points.  This also means that a high 

degree is required to fit complex shapes.  Secondly, each basis function of the curve is 

nonzero for all parameter values.  This is limiting in the sense that a change in any one of 

the control points would affect the shape of the entire curve, so local changes cannot be 

made.   

Shortly following Bezier’s discovery, methods applying a B-spline basis were 

developed [17].  B-splines are piecewise Bezier curves that all have the same polynomial 

degree.  B-spline curves are non-global in nature because each control point has a local 

influence region meaning perturbing a control point will only affect a certain range of 

parameter values.  B-splines also allow for the order of a curve to be altered without 

changing the total number of control points.  A B-spline curve is described by 
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             (5) 

with    again being control point locations.  Here         are the normalized B-spline 

basis functions described by the Cox-de Boor recursion formula given as 

          
           

           
  (6) 

and         
      

         
          

          

             
            (7) 

These basis function are of degree p (order p + 1) and controlled by n +1 control points.  

The values of    are elements of a knot vector, called knots.  A knot vector is a non 

decreasing sequence of real numbers of the form            
   

                       
   

  

for the non-periodic and non-uniform case.  Each knot at the beginning and ending of the 

knot vector is repeated p + 1 times.  The end conditions ensure that the curve initiates and 

terminates at the initial and final control point locations.  Interior knots can be repeated 

up to p times, but each time a knot is repeated, the continuity at that location will 

decrease by one.  Each knot interval           represents an individual Bezier segment.  

The number of control points required to describe a B-spline curve is        , 

where m is the length of the knot vector and p is the degree of the B-spline curve.  The 

number of basis functions required is      , corresponding to the number of control 

points forming the curve.   

The basis functions can be better understood by looking at de Boor’s recursive 

triangle as show in Figure 1.   
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Figure 1. de Boor’s recursive triangle 

Consider a knot vector described by six knots as given by                      .  

These values are shown off to the left-hand side.  The second, third, and fourth columns 

represent the degree p = 0,  p = 1, and p = 2 basis functions, respectively.  Considering a 

degree p = 0 curve over the knot span        ,      is the only basis function that is non-

zero over the knot span.  Considering a degree     curve over the knot span        , 

the basis functions      and      are both non-zero over the knot span.  Likewise for a 

degree p = 2 curve over that same knot span,     ,     , and      are all non-zero basis 

functions.  Thus a triangle of non-zero basis functions is formed for this particular knot 

span. 

A rational B-spline curve is the projection of a non-rational B-spline curve 

defined in (d+1)-D homogeneous coordinate space back to d-D physical space, where 
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      is the dimension of the physical space [17].  Dividing through by the 

homogeneous coordinate yields the formal definition for a NURBS curve 

      
             

 
   

           
 
   

            

 

   

              (8) 

The transformation of the equation for a B-spline curve to this representation includes the 

addition of a weighting term,   , for each control point.  Here,      for all values of i. 

The term         represents the rational basis functions.  All previous symbols for the B-

spline definition retain similar meanings.  The weighting terms in the NURBS 

representation allows for exact representation of conics as discussed earlier.  B-splines do 

not have that capability and cannot exactly represent these basic geometric shapes.  The 

NURBS curve has the following analytic and geometric characteristics [17]: 

           for all parameter values. 

 

The basis functions exhibit partition of unity, i.e.,             
    

 

Except for first-order basis functions, each rational basis function has only one 

 maximum. 

 

A NURBS curve of degree p is      continuous everywhere, providing that no 

 internal knots are repeated.   

 

A NURBS curve exhibits the variation-diminishing property, meaning no plane 

 has more intersections with the curve than with the control polygon [18]. 

  

A NURBS curve generally follows the shape of the control polygon and      lies 

 within the convex hull of control points          . 

 

Any projective transformation is applied to a NURBS curve by applying it to the 

 control points, i.e., the curve is invariant with respect to affine and projective 

 transformations.   

Some brief examples of NURBS curves and common variations are explored further in 

Appendix A.   
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Fundamental NURBS Tools 

There a few useful manipulation techniques of NURBS curves which prove to be 

very useful in isogeometric analysis.  These include degree elevation, degree reduction, 

knot insertion, knot refinement, and knot removal.  Degree elevation is the process of 

increasing the degree of a NURBS curve, which may always be done if desired and will 

not change the geometry or parameterization.  Degree reduction is the exactly opposite 

process of degree elevation.  This is useful when combining NURBS curves and surfaces 

because before doing so it is necessary for them to have a common degree.  Degree 

elevation can be thought of as p-refinement in the FEA framework.  Degree elevation 

will not visually yield a different result.   

Following the notation in [18], consider the basic representation for a NURBS 

curve as shown in (8),                 
 
   .  This is a pth-degree NURBS curve 

parameterized by the knot vector  .  By elevating the degree of this polynomial curve to 

   , the resulting curve has the notation 

                      

  

   

              (9) 

where               and they represent the same curve both geometrically and 

parametrically.  The new control point locations    and knot vector    are the unknowns 

solved for in the degree elevation process. 

Knot insertion is the process of inserting a knot into a knot vector.  This is just a 

change of vector space; the curve again is not changed geometrically or parametrically 

[18].  Knot insertion is used for the evaluation of points and derivatives on curves, 

subdividing curves, and adding control points in order to increase flexibility in shape 
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control.  Knot refinement is similar to knot insertion, but instead multiple knots are 

inserted at one time.  Knot removal is the reverse process of knot insertion.  This can be 

useful in generating a more compact geometric representation.  For example, when 

combining curves the first step is to make the curves have a common degree.  Next, 

composition is accomplished by using interior knots of multiplicity equal to the common 

degree.  Thus knot removal can be invoked afterward to remove unnecessary knots.  In 

general, as many knots as possible can be removed as long as the continuity of the curve 

permits.   

Knot insertion is similar to FEA’s h-refinement.  Again following the notation 

found in [18], consider the basic representation for a NURBS curve as shown in (8), 

               
 
   , which is defined on the knot vector            .  Inserting a 

knot span              into this knot vector results in a new knot vector    

                                                .  Therefore the new 

curve takes the form 

                  

   

   

              (10) 

with          as the pth-degree basis functions on   .  The new control point locations    

are determined by solving the following set of linear equations 

                       

   

   

 

   

 (11) 

The proof in its entirety is shown in [18].  The solution of which is determined to be  

                    (12) 

where  
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 (13) 

A visual example showing the effect of knot insertion is shown in Figure 2.  The NURBS 

information for a curve prior to knot insertion as depicted in Figure 2a is: 

                               

                

          

    

Figure 2b shows the same curve after a knot has been inserted at      .  Here the 

number of knots increases but the curve geometry remains exactly the same as it was 

before the knot was inserted.  The NURBS information for the curve after knot insertion 

as depicted in Figure 2b is: 

                                            

                    

            

    



19 
 

 

  
a      b 

Figure 2. Knot insertion NURBS example 
(a) Before knot insertion 
(b) After knot insertion 

In this work, the algorithms of each of these processes will not be covered in 

detail.  Instead it is simply adequate for the reader to just be aware of these manipulation 

techniques.  Details regarding the various computational algorithms for degree elevation, 

knot removal, etc. can be found in [17] or [18].  

NURBS Surfaces 

A NURBS surface as one could imagine is developed by varying two different 

parametric quantities in two different directions.  In general a parametric surface can be 

described by  

                                                    (14) 

A NURBS surface is then represented by 
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(15) 

where p is the degree of the surface in the u direction and q is the degree in the v 

direction.  In contrast to the curve representation described by control points, the surface 

representation is described by a control net     .          and         are the basis 

functions in the two directions with distinct knot vectors 

           
   

                       
   

  and            
   

                       
   

 .  

The properties of NURBS surfaces are the same as discussed earlier for NURBS curves. 

NURBS Solid Representation 

NURBS tensor solids are defined in a similar manner to NURBS surfaces.   The 

general parametric solid is defined by  

 

                                       

                 . 

(16) 

It then follows that the NURBS solid representation  

 

         
                              

 
         

 
     

   

                              
 
   

 
   

 
   

                       

 

   

 

   

 

 

   

 

                   

(17) 

where p is the degree of the solid in the u direction, q is the degree in the v direction, and 

r is the degree in the w direction.  The solid representation is controlled by a tri-variate 

control lattice       .         ,        , and         are the basis functions in the three 
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directions with distinct knot vectors            
   

                       
   

 ,    

         
   

                       
   

 , and            
   

                       
   

 .  Here 

again the properties of a NURBS curve also pass through to the solid representation.   

It should be noted that the NURBS tensor solid representation as defined here is 

an adequate geometric and parametric representation for muscle analysis.  However, the 

focus in the present work is for tubular skeletal muscles.  Therefore a more suitable 

method simplifying the geometric description is available for this case.  This 

parameterization method is termed the tensor-product rod method and will be described 

further in future sections.   

NURBS for Analysis 

Analysis of a NURBS based geometric model is very similar to that of traditional 

FEA (Finite Element Analysis) techniques.  In FEA the assumed solution is an 

interpolation of nodal values via basis functions which are defined by polynomials over 

each specific element.  The assumed solution is infinitely smooth within an element, but 

   continuous at element boundaries, meaning the values of the primary unknowns in 

neighboring elements must be equal where the derivatives do not.  Displacing nodes 

generates a displacement field, which can then be linked to stress with the use of 

constitutive relations.   

Unlike FEA, in the NURBS case control points are the “element nodes.”  

Therefore the degrees of freedom in NURBS analysis are associated with these control 

points located off the physical curve/surface/solid.  These control points in general do not 

lie on the physical surface itself, thus two different meshes ensue.  The control mesh is 

formed by the connecting the actual control points off the body, which determine overall 
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surface orientation.  Analysis of a NURBS model is formulated using the control mesh.  

The physical mesh lies on the actual surface of the model.  The physical mesh is really 

just used for visualization purposes.  A physical mesh is possible because NURBS curves 

consist of piecewise segments combined together and the locations where those segments 

are joined together can be thought of as the division lines between elements.  For each 

non-empty knot span          , the curve can be viewed as infinitely smoothly and thus 

each span is an individual element.  Again, a major difference between FEA and NURBS 

is that at the NURBS element boundary, the curve is      continuous if no multiplicity 

occurs.  Perturbing the control points in a NURBS analysis technique leads to similar 

results as displacing nodes in FEA.  

The elemental breakdown is understood by referring to the example from Figure 

A21 and Figure A22 of Appendix A.  This is a curve of degree p = 2 and a knot vector 

of                    .  There are three non-empty knot spans therefore the curve 

must contain three elements.  Each element is determined by three control points or 

“element nodes.”  The results are summarized in Table 1. 

Table 1. Elemental summary of NURBS example 

Element Knot Interval Element Nodes 

(Control Points) 

1                  

2                  

3                  
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Development of Tensor-product Rod Method 

With the formulation behind NURBS known, one may begin to see the numerous 

benefits of using such a geometric representation.  One particular benefit of NURBS is 

the fact that it can exactly represent conic curves and surfaces [18].  This is ideal for the 

development of the tensor-product rod method because rod-like structures can be 

constructed from circular cross-sections.  Representing conical and circular cross-sections 

is done through utilizing a special case of NURBS, the rational Bezier circle.   

Rational Bezier Circles 

A quadratic rational Bezier arc has the form 

  

 

 

where 

     
                             

                       
 

                               

        
         

          
 
   

              

(18) 

Here         are the Bezier basis functions described previously.  If         and 

    , the arc shaped with weighting values of                 will lead to a 

hyperbolic, parabolic, and elliptical representation, respectively [19].   

For the present case, circular arcs are of the most importance.  A circle is a special 

case of an ellipse, therefore with the right value of   a circular arc can be formed from 

the above equations.  In this case three control points form an isosceles triangle because 

of symmetry and from there geometrically it can be determined that        [19].  

Here   is the angle between the line segments      and      as shown in Figure 3.  

Thus, a circular arc can be represented with the control point locations 
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                                  (19) 

 

Figure 3. A circular Bezier that sweep a value of    

The previous description of a circular arc allows for a sweep of up to     .  

Therefore at least three circular arc segments of this nature are needed to piece together a 

complete circle.  When piecing arcs together, the termination point for one arc becomes 

the starting point for the next arc.  These specific points are referred to as junction points.  

Thus, a circle can be defined by   equal arcs and      control points [19].  Keeping the 

arcs of equal lengths provides a cleaner parameterization.  The resulting circle can be 

thought of as a piecewise rational Bezier curve or a NURBS curve. 

A circle parameterized by four arcs is shown in Figure 4a.  The combination of 

arcs can be represented by a single parametric domain      , where each arc interval is 

represented on the parametric interval                   for          .  This 

representation also can be thought of as a degree p = 2 NURBS curve.  For the 4-arc 

P0

P1

P2

2
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circle in Figure 4a with similar control point locations, the NURBS representation would 

contain the following weighting values and knot vector:  

     
  

 
   

  

 
   

  

 
   

  

 
    

                            

   
a      b 

Figure 4. 4-arc Bezier circle 
(a) Before reduction 
(b) After reduction 

In this representation the circle may be deformed by displacing the control points.   

If deformed in the present configuration and for example    did not remain collinear with 

its neighboring control points, a cusp may form and smoothness may be lost.  Following 

the procedure described in [20] to maintain    continuity, junction points can be 

eliminated and the piecewise Bezier curve depicted in Figure 4a can be reduced to Figure 

4b.  Considering the arc represented by         , the following substitutions of     

 

 
          and     

 

 
          are made resulting in a curve given by 
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    (20) 

The process is repeated for all arcs and only n control points are left, which will be 

referred to as   .  The resulting formulation is  

              

 

   

 (21) 

with 

   

 
 
 
 

 
 
 

 

 
     

      

         

             

 

 
      

      

       

        
      

       

        
      

       

            

 

 
     

    

       

           

           

  

(22) 

Replacing   with the normalized value is needed because the original rational, quadratic 

Bezier arc is defined on the domain         where now multiple arcs are used. As the 

rational Bezier circle is constructed from Bezier arcs, the basis functions for the circle 

satisfy many of the properties that were applicable to the Bezier arc basis functions. Of 

the most importance are: 

Partition of Unity:    
    

      

 

Affine Invariance: affine transformation applied to circle is done by 

 displacing control points 

 

Smoothness: curve is    over the entire domain 

 

Convex Hull Property: the curve generated by control points is contained within 

 the hull formed by those control points 

 

Locality: basis functions are nonzero over three consecutive know spans 

 

Tangent: tangent of curve knot values is parallel to vector connecting 

 adjacent control points 
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Harmonic Mapping on a Unit Disk 

With the boundary represented by the reduced Bezier circle in the manner above, 

any point on the circle can be represented as a convex combination of control points.  The 

wish is then to extend that boundary representation to the interior of the circular element.  

The results in a circular domain that is completely characterized by boundary control 

points only.  The computer graphics field utilizes a number of techniques similar to this 

quite often for boundary data interpolation or graphic morphing.  Some common 

techniques include barycentric coordinates, mean-value coordinates, and harmonic 

coordinates.   

Barycentric and mean-value coordinates are used for the parameterization 

polygonal elements.  When using Barycentric coordinates, points within the interior of a 

convex polygonal element are determined from point masses placed at each of the 

vertices.  With             as points in a plane forming a star-shaped polygon, 

         

 

   

 (23) 

      

 

   

 (24) 

where    are the barycentric coordinates of    [21].  Barycentric coordinates are only    

and only well-defined and positive when the geometric mesh is convex in nature.  Mean-

value coordinates eliminate these drawbacks.  They are a generalization of barycentric 

coordinates and are derived from the Mean Value Theorem.  With    as the angle at the 

vertex    in the triangle as shown in Figure 5, the weights  
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 (25) 

are coordinates for    with respect to         .  Further derivations can be found in [21]. 

 

Figure 5. A star-shaped polygon 

Mean value coordinates are based on straight line distance and can be negative, 

leading to less desirable graphic results.  A better geometric representation of the interior 

can be generated by using harmonic coordinates, which also allows for easy interpolation 

of smooth domains.  With solutions to Laplace’s equation being termed as harmonic 

functions, coordinates produced as solutions to Laplace’s equation are termed harmonic 

coordinates.  These coordinates have advantages in the computer graphics application of 

[22]: 

Increased topological flexibility 

Interior locality: influences fall off with distances within the convex hull 

No counter motion: ability to retain positiveness even in strongly concave 

 situations 

 

Interior control: option for additional vertices, edges, and faces to be added 



29 
 

 

To parameterize the interior using harmonic mapping, the wish is to be able to 

express any interior point ( ) as a function of the boundary control points with the 

expression 

           

 

   

 (26) 

In the foregoing discussion about techniques used in the computer graphics field,    is 

typically a physical point located on the boundary whereas in the present case coordinates 

reside off of the physical boundary.  Here the basis       is the solution of the Laplace 

equation and these bases are constructed using harmonic coordinates.   

 In this work, harmonic coordinates were selected because it is most useful for the 

interpolation of smooth domains.  The coordinate functions are constructed in a circular 

domain and are then applied to other convex domains isoparametrically.  With the 

displacement boundary data given, the solution of the Dirichlet problem provides an 

interpolation of boundary data.   The Dirichlet problem can be explicitly solved for on the 

unit disk with the implementation of Poisson’s integral formula.  Following the notation 

in [20], with the boundary data described by         on the unit circle         , the 

solution is given by 

             
   

         (27) 

w

here 
       

 

  
 
      

      
 (28) 

Here        is known as Poisson’s kernel which has the following three important 

properties [20]: 
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Partition of unity: sum of all function values is 1 for all values of   in the domain, 

 i.e.        
   

     . 

 

Linear consistency: linear distribution prescribed on the boundary uniquely results 

 in a linear distribution in the domain, that is           
   

   . 

 

Kronecker delta property: boundary representation is preserved for the interior,   

i.e.        
   

               when    . 

 

Applying Poisson’s kernel and the corresponding properties to our particular case, the 

harmonic basis functions can be derived.  The boundary values are described by  

                

 

   

 

(

(29) 

Thus from the linear consistency property, 

           
   

     

 

   

             (30) 

with              
   

      . (31) 

Therefore utilizing the derived bases above, a point inside the circle can be 

described as a linear combination of the boundary control points.  Since the bases      , 

is the solution to Laplace’s equation, it follows that they may also be termed harmonic 

basis.  These derived bases also have the following properties: 

Smoothness: bases are infinitely smooth for all values within the domain,  i.e. 

           
 

Positiveness: no negative coordinates, i.e.         

 

Partition of Unity: sum of all function values at each interior point is 1, i.e. 

       
 
      

 

Affine Invariance: any affine transformation to interior points is applied by 

 displacing the boundary control points 
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In the same manner physical isoparametric elements can be mapped from the 

circular harmonic element to the physical domain.  If the boundary of the physical 

element is described by the Bezier form 

              

 

   

 (32) 

where    are the physical control point coordinates. The harmonic basis functions are 

used to achieve 

           

 

   

 (33) 

where the interior of the circular element is mapped smoothly to the physical element.  A 

visual description can be seen in Figure 6.  It is important to note that this mapping in its 

current state is only valid for convex-shaped physical elements.   

   
a      b 

Figure 6. Isoparametric element mapping example 
(a) Master element 
(b) Physical element 
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Tensor-Product Rod 

After utilizing Bezier circles for the cross-sectional representation, a NURBS 

centerline is used to add the longitudinal component into the 3D rod representation, 

formally known as the tensor-product rod.  As derived in the previous section, the method 

assumes that the cross-sections of the rod are parameterized using harmonic mapping of a 

Bezier circle with   control points.  The centerline of the rod-like structure can be 

described by a NURBS curve with   control points.  In this method each longitudinal 

control point is replaced by a harmonically mapped cross-section.  Combining in this 

manner gives the tensor-product rod formulation 

         
             

 

   

 

   

 (34) 

with     
      as the cross-sectional representation and       as the axial representation.  

The domain in this case is defined by  

 

                                              

         
(35) 

which is that of a cylindrical element with a NURBS knot span of            .   

Cylindrical Element 

The tensor-product rod drives the geometric basis for the analysis of a cylindrical 

element.  The reference (undeformed) geometry and current (deformed) geometry can 

both be described by the same basis functions.  The current geometry is determined by 

arbitrarily displacing the control points of the reference configuration.  Using the tensor-

product rod formulation, a 3D solid is naturally subdivided into multiple elements much 

like that in FEA.  In the present case the cylinder is parameterized longitudinally by a 
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NURBS centerline of degree  ; therefore each segment of the centerline can be thought 

of as an individual element.  This divides the cylinder into sub-cylinders where each sub-

cylinder corresponds to a non-empty knot span of          .  With   control points per 

reduced Bezier cross-section and a centerline of degree  , each element in this case 

contains         control points.  An example of a portion of an undeformed tensor-

product rod is shown in Figure 7a.  The NURBS centerline is of degree p = 2.  Therefore 

this cylinder contains two elements as shown in the physical mesh of Figure 7b.  With the 

model having four control points per cross-section, this leads to 12 control points being 

utilized for each of the two elements.   

   
      a       b 

Figure 7. Master element definition example 
(a) Cylindrical rod with control point locations  
(b) Gauss point locations for 4 x 2 x 2 quadrature 



34 
 

 

Following common FEA practice, integration over the rod-element is required to 

compute the weak form.  To do so the following quadrature rule was implemented as 

described in [1].  First the cylindrical domain is divided into   angular slices of 
  

 
, with   

representing the number of control points of the reduced Bezier circle.  Each slice will 

then be assigned Gauss quadratures utilizing cylindrical-polar coordinates.  Integration of 

a function F is computed by 

                                 

 

   

 

   

 

   

 

 

    

 (36) 

Here  ,   and   represent quadrature points in the radial, angular, and longitudinal 

direction, respectively.  Also           is the position of a gauss point and     is the 

corresponding radius.  Weights for the  ,  , and   directions are    ,    , and    , 

respectively.  This quadrature rule is denoted as        .  As an example, the 

following configuration was utilized for the cylinder shown in Figure 7a:    ,    , 

and    .  The gauss point locations are shown along with the physical mesh in Figure 

7b. 

Geometric Accuracy 

As mentioned before, one of the major benefits of using isogeometric analysis is 

the fact that the geometric representation used for analysis is exactly the same as the 

CAD model it was developed from.  In fact this is where the term isogeometric analysis 

originated from.  With traditional FEA techniques, approximations or meshed models are 

used to conduct analysis.  It can be shown that the tensor-product rod method does indeed 

follow the isogeometric trend by providing a much more accurate model for analysis. 
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The following is a comparison between an FEA meshed object compared to a 

tensor-product rod isogeometric object.  A simple baseball bat was modeled using 

Rhinoceros, a NURBS CAD modeling software, with 32 control points per cross-section.  

An IGES file of the model was exported for analysis.  This file was then uploaded in 

ABAQUS for FEA mesh construction and Mathematica for tensor-product rod pre-

analysis.  The baseball bat was meshed in ABAQUS using 2,677 tetrahedral elements and 

742 nodes.  The baseball bat in Mathematica code was broken down into 20 elements by 

definition as determined from the 736 total control points.  Gaussian quadrature 

integration was conducted using the configuration    ,    , and    , for a total of 

128 quadrature points per element.  The corresponding volume from the meshed FEA 

object was 114.4 in
3
 while that from the tensor-product rod was 122.2 in

3
.  The actual 

volume of the baseball bat is 121.8 in
3
 as determined from Rhinoceros, leading for an 

error of 6.08% in FEA and 0.328% in the tensor-product method.  Therefore it is easily 

shown that the FEA meshed object provides low accuracy volumetric results when 

compared to the tensor-product rod.  This means that the ensuing analysis will also be 

affected by this approximation.  Furthermore, the tensor-product rod was constructed 

using a significantly less number of elements and control points compared to the 

elements and nodes utilized in the FEA meshed model.  A geometric comparison of the 

two methods is shown in Figure 8. 
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a     b     c 

Figure 8. A geometric comparison of a baseball bat model 
(a) Rhinoceros CAD software 
(b) ABAQUS FEA analysis program 
(c) Mathematica tensor-product analysis code 
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CHAPTER II 

APPLICATION TO SKELETAL MUSCLE MODELING 

The tensor-product method as previously mentioned is ideally suited for the 

skeletal muscle modeling application.  There are a few characteristics of the geometric 

representation that make it a suitable candidate.  First, skeletal muscle bodies are 

generally referred to as long, slender rod-like bodies which provide an easy mapping to 

the physical domain.  Secondly, the globally smooth nature of the rod in the axial 

direction allows for easy, smooth parameterization of muscle fibers and assignment of a 

smooth material property distribution.  Before describing these unique contributions, a 

brief background on pertinent skeletal muscle information is given. 

Skeletal Muscle Background 

Muscle Matter 

Skeletal muscle is the basic machinery that generates contractions and produces 

driving forces in the human body.  Approximately 80% of muscle matter consists of two 

types of contractile proteins, actin and myosin.  The arrangement of these two proteins in 

a highly ordered array allows for the generation of force and which produces movement.  

The thick myosin filaments are arranged so that thin actin filaments can slide between 

them.  This is termed as the sliding filament theory of muscle movement [10].  Groups of 

about 100 to 400 of these filaments are combined to form a myofibril.  Each myofibril is 

enveloped in a membranous bag, called the sarcoplasmic reticulum and theses 

membranous bags are bound transversely by a network of branching T-tubules.  Bundles 

of these fibers then combine to form the overall skeletal muscle shape that is commonly 

known.  Other elements within a skeletal muscle are fibroblasts, which secrete collagen 
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fibers to form a thin connective tissue matrix, the endomysium.  A thicker layer of 

connective tissue called the perimysium also surrounds groups of 10 to 100 muscle fibers 

to form fascicles.  Small blood vessels and motor axons also traverse the space to make 

connections with muscle fibers which add to the overall contribution of passive ground 

materials present within skeletal muscles [10]. 

Tendons serve as the joining material connecting bones to skeletal muscles.  They 

transmit the forced produced by the muscles to the respective bone it is attached.  

Tendons are tough parallel bands containing arrays of collagen fibers and their stiffness is 

much greater than that of muscle fibers.  Functionally, they act somewhat similar to a 

spring, storing and recovering energy while also protecting fibers against high velocities 

[10]. 

Classifications of Contractions 

There are few different types of voluntary muscle contractions.  If muscle tension 

is developed and a load is not moved, the contraction is called isometric [23].  This 

occurs when a muscle is attempting to move a load that it is not capable of and no 

external work is done.  In this case, the muscle length does not change.  Isometric 

contractions are a prerequisite of isotonic contractions.  Isotonic contractions occur when 

a load is moved and muscle shortening takes place [23].  In isotonic contractions, the 

tension remains fairly constant after the initial tension is developed to move the load.  

Shortening then stops when the active tension drops to the point where it equals the load 

and the contraction again becomes isometric.  A concentric contraction is when the force 

generated overcomes the applied resistance and muscle shortening occurs while 

generating a force.  Eccentric contraction is elongation of muscle because the force 

generated is insufficient to overcome the resistance.  Another type of contraction is the 
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isokinetic contraction in which the velocity remains constant while the force is allowed to 

vary [23]. 

Muscle Fiber Orientation 

  As mentioned, fiber orientation is one of the primary determinants of the force 

capabilities of individual skeletal muscles.  There are three general fiber architecture 

types common in skeletal muscles: (1) parallel-fibered, (2) Convergent-fibered, and (3) 

pennate-fibered muscles.  Parallel-fibered muscles have orientations which are directed 

along the longitudinal direction or line-of-action of the muscle.  They generally have one 

origination point and one termination point.  Convergent fibers generally follow the 

longitudinal axis of the muscle but have multiple attachment points on one end which 

converge to a much smaller tendon attachment location at the other end.  Pennate-fibered 

muscles have one or more tendons running through the bulk of the muscle body and 

fibers are attached to these tendons(s) at a distinct angle relative to the line-of-action of 

the muscle.  Pennate-fibered muscles can be classified further into unipennate-, 

bipennate-, or multipennate-fibered muscles, which have one, two, and multiple distinct 

fiber directions, respectively.   

The arrangement of muscle fibers in skeletal muscle is extremely critical for the 

determination of a muscle’s range of motion and power.  In general, the closer the fiber 

direction is to the muscle’s longitudinal axis, the more a muscle can shorten.  It follows 

that the more a muscle can shorten, the lower the force generating potential.  Therefore 

muscles with parallel arrangements have the greatest shortening potential and least force 

generating potential.  Muscle power rather is directly proportional to the total number of 

fibers in the muscle.  Therefore the fascicles in bipennate and multipennate types of 

muscle pulls on the tendons at an angle therefore they do not shorten as much as their 
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parallel muscle counterparts [24].  Despite this they generate greater tension because they 

possess a greater amount of muscle fibers than similarly sized parallel muscles.  

Convergent arrangements allows for a more versatile movement but the fibers cannot 

produce as much force as paralleled-fibered muscles because the fibers are not all pulling 

in the same direction [24].   

Geometric Muscle Model of Male Human Arm 

The aim of the current research again is to create an analysis-ready muscle model 

of the entire male human arm.  There are currently a large number of muscle models 

available but most are polygonal in nature and were produced only for visual purposes.  

In this work an entire muscle and bone model of a male human arm was constructed 

entirely from NURBS geometry.  This was done using the NURBS-based 3D CAD 

software, Rhinoceros, and data from the Visible Human Data Set collected by the 

National Library of Medicine in 1994 [25].  To generate the data set, a male cadaver was 

encased and frozen in a gelatin and water mixture and then cut in the axial plane at 1 

millimeter intervals.  This resulted in 1,871 slices that were sequentially photographed.   

 Utilizing these muscle cross-sections, each specific muscle’s boundary was 

traced out.  An excerpt from the data set is shown in Figure 9 with a cross-sectional 

breakdown of the different muscles. 
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Figure 9. Cross-section of the upper male arm from the Visible Human Data Set with 
labeled muscles [25] 

In this work, cross-sections were traced out at approximately 10-15 millimeter intervals.  

Solid models were then generated by compiling all cross-sections for each specific 

muscle and lofting them into a NURBS surface model.  The cross-sections were each 

rebuilt with 8 control points and skeletal muscle shapes were terminated near their 

tendon/bone origination/termination locations.  At these endpoint locations, 8 point 

objects are positioned in a single location.  This was a necessary feature to create a 

complete-looking surface model and may need to be altered or neglected to avoid 
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singularity errors in future analysis.  Each model contains a varied number of cross-

sections and total number of control points, which depends on the overall length of each 

individual muscle.  The arm model can be seen as a rendered Rhinoceros object in Figure 

10.  All 28 muscles from the deltoid down to the wrist were modeled. 



43 
 

 

 

Figure 10. Rhinoceros rendered images of the complete NURBS-based arm muscle 

model  
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Each individual muscle was exported as an IGES file and imported to a Fortran 

IGES reader.  The reader did not directly utilize the parameters from the Rhinoceros 

surface model.  Rather, it extracted the model’s control point coordinates.  This geometric 

data was then introduced into Mathematica code for further analysis.  Utilizing the 

control point information, the NURBS model was then converted to fully defined tensor-

product model with cross-sectional representations, control point locations, and NURBS 

centerline described by a     degree NURBS curve with respective knot vector and 

weighting values.  The geometric solid model was then fully defined and ready for fiber 

parameterization and material property assignment.  

Parametric Modeling of Fiber Orientation 

Fiber parameterization in this work through the tensor-product rod framework is 

much more straightforward than previous methods which have been utilized through 

FEA.  The fiber direction can be implemented directly within the rod structure utilizing 

the parametric nature of the axial knot vector.  The idea is to define the fiber lines in the 

master rod, and then pass them through to the physical geometry using the mapping 

technique discussed earlier.  This method is illustrated in Figure 11. 
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Figure 11. Mapping of fibers from the master rod to the physical rod 

In this way the parameterization is universal in nature and can be applied to any 

muscle shape that has a similar fiber structure.  There is also no need for a specific 

ordered arrangement of elements or a completely separate fiber mapping approximation 

like many of the FEA techniques in use today.  The following are a few example fiber 

parameterizations developed that can be applied to the master tensor-product rod to 

accurately represent realistic fiber directions as determined visually from cadaver 

dissections [26]. 

Parallel Fibers  

Within the tensor-product rod framework, parallel fibered architecture can be 

easily implemented.  In the master rod, parallel fibers are modeled as straight lines 

parallel to the longitudinal axis.  The two coordinate directions associated with the cross-

sectional representation of the tensor-product rod method         are fixed.  Utilizing the 
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parametric nature of the centerline represented by a NURBS curve, the variable   can be 

traced out in the longitudinal direction.  Thus, in the physical domain, the fiber curve is 

represented by 

                                       (37) 

where again the two cross-sectional coordinates are fixed. The tangent of this curve at 

any point defines the fiber direction.  In particular, fiber directions for points of interest 

within the tensor-product rod, i.e. the Gaussian integration points, can be determined.  An 

example of a parallel fibered muscle is the extensor carpi ulnaris, a strap-like muscle 

located on the back of the forearm which assists in adduction and extension of the wrist.  

The muscle fiber orientation can be seen visually in the pictorial representation shown in 

Figure 12a.  The tensor-product muscle model is shown in Figure 12b plotted utilizing 

the parallel fiber parameterization.   
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 a      b 

Figure 12. Parallel-fibered extensor carpi ulnaris  
(a) Actual muscle location and fiber direction [27]  
(b) Tensor-product rod model and fibers 

Helical Fibers 

The human body is a very complex system and as one could imagine, not all 

muscles have fiber orientations that behave in a perfectly parallel-fibered manner.  As it 
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is extremely important to model fiber orientation as closely as possible to mimic actual 

muscle fiber behavior, these small differences should be accounted for to ensure the best 

possible accuracy.  One minor deviation is the twisting of parallel-fibered muscles along 

their longitudinal axis.  Again the parametric nature of the tensor-product rod easily 

allows for this type of behavior to be implemented.  A fiber orientation that is helical in 

nature can be represented by 

 

 
                                               (38) 

with                  and               .  Here   is a constant that can modify 

the severity of the helical twist and twist direction.  Increasing   will produce more coils 

per unit length while decreasing will produce fewer.  The helical direction is reversed by 

the use of a negative constant.  Due to the longitudinal division into knot spans of the 

tensor-product rod, this type of representation can be implemented for an entire skeletal 

muscle or in conjunction with another type of fiber parameterization such as the parallel-

fibered case.  An example of a muscle with fibers that behave in this manner is the 

brachioradialis shown in Figure 13a, which is located mainly in the forearm wraps around 

the outside of the elbow to help with flexion as well as pronation and supination of the 

forearm.  The brachioradialis model is shown in Figure 13b with a parallel fiber 

parameterization for the majority of muscle length and a helical-fiber parameterization 

applied where the muscle wraps around the brachialis muscle just above the elbow.  
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a       b 

Figure 13. Helical-fibered brachioradialis 
(a) Actual muscle location and fiber direction [27]  
(b) Tensor-product rod model and fibers 

Convergent Fibers 

Assigning a fiber direction for convergent muscles requires yet another variation.  

Convergent muscles do not necessarily terminate at a common tendon location as in the 
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parallel case, but rather they have multiple attachment points.  In the muscle model 

created, the tensor-product solid has a single origination and termination point.  This 

means if fiber direction were assigned along the isocurves as described in the parallel 

fiber case, fiber direction would converge rapidly on the origination/termination point 

regardless of geometric shape.  To remedy this, a parameterization was used in which the 

fiber direction can converge or diverge from the isocurves, leading to fiber termination 

points at the walls of the tensor-product muscle model.  The formulation for this 

procedure is depicted by the following representation 

                                                   (39) 

Here the variable   is the convergence/divergence intensity of the particular skeletal 

muscle.  Increasing   will cause the fibers to diverge radially outward from the parallel 

case.  A negative value for   will cause fibers to converge to the NURBS centerline of 

the tensor-product rod shape.  A boundary condition was utilized that disallows fibers 

from passing through the skeletal muscle’s wall.  An example of a muscle that is 

convergent in nature is the pronator teres shown in Figure 14a.  The fiber convergent 

parameterization of this muscle model, which drives pronation of the forearm, can be 

seen in Figure 14b.  
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a      b 

Figure 14. Convergent-fibered pronator teres 
(a) Actual muscle location and fiber direction [27]  
(b) Tensor-product rod model and fibers 

Pennate Fibers 

Pennate fibers are yet another common orientation type for skeletal muscles.  

Pennate-fibered muscles have one or more tendons running the through the bulk of the 

muscle body and the fibers are attached to the tendons at a distinct angle relative to the 
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line-of-action of the muscle.  A pennate fibered muscle represented in the tensor-product 

rod domain can be defined by 

                                        (40) 

with        . The degree of pennation is determined by the slope factor   and   is 

the longitudinal location of the point which fibers are running through in each element. 

Switching signs of the slope factor will switch the pennate direction.  Of course 

pennation can also be implemented in the    direction, as well as any combination of the 

two.  An example of a pennate fibered muscle is the anconeus muscle shown in Figure 

15a.  This smaller muscle located on the posterior of the elbow joint which supports 

elbow extension.  The anconeus tensor-product muscle model and pennate fiber 

parameterization is shown in Figure 15b.   
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a        b 

Figure 15. Pennate-fibered anconeus 
(a) Actual muscle location and fiber direction [27]  
(b) Tensor-product rod model and fibers 

The fibers shown in the actual model do not originate and terminate on the muscle 

walls one would expect because the formulation does not visually pass well through to 

adjacent knot spans.  So fibers look disconnected but the actual fiber direction at any 
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particular point in each knot span still remains valid.  If allowed the fibers would 

terminate at the side walls of the muscle as opposed to the ends shown in the parallel and 

helical cases.  Due to this instability,  analysis is limited to points away from the muscle 

boundaries.  This particular formulation is a rough derivation but it shows that pennate 

fibered arrangements can indeed be implemented within the tensor-product framework. 

Issues with Modeling Fiber Orientation 

A few notable drawbacks of the previously mentioned techniques should be 

noted.  Within previous research dedicated to the tensor-product rod, it was discovered 

that arbitrary elements with largely concave-shaped domains present a few issues with 

the current method.  If a shape’s cross-section is too concave, mapping from the master 

element to the physical element will not be accurate.  This is because the mapping is not 

invertible over the entire domain.  The determinant of the Jacobian must not be zero 

anywhere in the geometric domain, meaning a sign change cannot occur.  This is a 

known drawback to the tensor-product rod method.  For example, the deltoid’s concavity 

proved to be too large to achieve one-to-one mapping from the master element to the 

physical element.  This error in mapping of the deltoid is plotted with gauss point 

locations in Figure 16, with a Gaussian quadrature of          .  Here one can easily see 

the gauss points lay outside the deltoid’s boundary.  The supinator is another muscle in 

the current scope of research that has a largely concave geometric domain.  Thus fiber 

parameterizations cannot be implemented directly for these muscles using the current 

technique. 
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Figure 16. The deltoid muscle where mapping is not one-to-one 

Another useful note is that the computational time to derive the fiber orientations 

can be quite high depending upon the level of accuracy one is seeking.  Increasing the 

number of gauss points in any direction will cause the computational time to increase 

significantly.  However, these calculations are only necessary during initial fiber 

parameterization.  Therefore in the analysis thereafter those fiber arrangements are 

already stored and need not be derived again.  

 In addition to the computational time issues, there are also problems with 

determining actual fiber orientation with human muscle tissue.  Ideally the best method to 

determine actual fiber orientation is to dissect human muscle tissue and determine 

pennate angles and muscle fiber types through visual inspection and measurement.  

Currently, most methods for determining actual fiber orientations are based on 

measurements from cadavers.  This is limiting in a sense that it does not encapsulate a 
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good representative sample of the entire population as most cadavers used are of an older 

age.  MRI, ultrasonic, other innovative techniques have been utilized more and more in 

recent years, but they remain expensive to conduct and require a substantial amount of 

experimental time.  These also require separate fitting techniques to approximate the fiber 

orientation.  To date there is not a comprehensive database with explicitly listed fiber 

orientations for all muscles within the human body. 

Many current FEA models also assume that the pennate angle is constant 

throughout all fibers of a skeletal muscle, which is also not an accurate assumption. 

Pennate angles may change during muscle contraction say from a 30 degree pennation 

angle from the axis at its resting state to a 15 degree pennation angle at an active state, 

further complicating the fiber parameterization process.  This continues to be an ongoing 

challenge in muscle modeling.  Only a select few research studies on fiber orientation 

have been conducted to determine fiber orientation and pennate angles of actual human 

skeletal muscles and have done so with varying levels of success.   

Defining Heterogeneous Material Properties 

Utilizing the Rod Structure 

The final step in developing a completely characterized analysis-ready model is to 

accurately assign material properties, i.e. parameters for constitutive relations.  Current 

FEA techniques of muscle analysis inaccurately assign muscle properties to specific 

elements.  In most FEA analysis conducted to date on skeletal muscles, entire elements 

for muscle tissue and tendon properties were assigned specific property values.  In 

actuality the muscle-tendon complex is a gradual change of properties, not an abrupt, 

unrealistic property change at element boundaries as depicted by most researchers.  A 

close look at a dissection of the human arm will reveal that this is in fact the case.  
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Therefore muscle tissue properties can also assumed to vary longitudinally along skeletal 

muscle body models. 

This longitudinal distribution of varying properties can be broken down in a 

number of ways.  In this work the NURBS centerline description was utilized, more 

specifically the globally smooth basis functions.  Recalling the description of a basic 1D 

NURBS curve, 

                

 

   

  

it is shown that a curve can be mapped out from the control point locations   .  Using the 

exact same basis function distribution, an overall material property distribution of  

                 

 

   

 (41) 

can be assumed.  Here    are material components that can be arbitrarily determined to 

match any muscle’s specific muscle-tendon transitional period in the longitudinal 

direction.  Remembering the tensor-product formulation, each NURBS centerline control 

point can be thought of as being replaced by a cross-sectional representation.  Thus cross-

section specific material property parameters are assigned.  By assigning properties in 

this manner with the globally smooth representation of the tensor-product model’s 

NURBS centerline, a smooth transition at the property level is also assumed.  Therefore 

as long as the basis functions,     , are smooth the resulting property distribution will also 

be smooth.  Application of the property distribution is done in a similar manner to the 

fiber parameterization technique.  The properties are applied to the master rod which then 

mapped through to the physical rod.  In this way the formulation is again easily applied 

and universal in nature, allowing for greater flexibility and accuracy in the ensuing model 
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description.  Of course similar techniques of applying the variations of material 

properties could be done radially or circumferentially at the cross-sectional level as well 

as the longitudinal direction, but this was deemed unnecessary for the current work. 

The material property distribution is not easily represented graphically.  An 

attempt to more clearly define the distribution is shown in Figure 17 with a visual 

representation of the muscle-tendon color scheme for the bicep short head.  A specific 

color scheme was assigned to each cross-section along the muscle body using the 

formulation in equation (41).  Here the parameters assigned to each cross-section of the 

master rod are the control values,   , of the material property distribution.  In between the 

individual cross-sections, the NURBS basis functions essentially blend the property 

control values of each cross-section to ensure a smooth transition from one control value 

to the next.  The process is repeated until the color scheme has completely transitioned 

from white (tendon) to red (muscle fiber) or vice versa.  After assigning the material 

properties, the tendon-to-muscle and muscle-to-tendon transitional periods are defined 

from               on the left hand side (distal end) and            on the right hand 

side (proximal end) in the physical domain.  This type of implementation is possible 

because a NURBS element is not confined to nodes on the element boundary like an FEA 

element.  Instead the boundaries for NURBS elements are      continuous, meaning 

control points within the NURBS framework are shared among neighboring elements, 

exhibiting the globally smooth nature of the tensor-product rod and delivering the 

heterogeneous property distribution that is desired. 
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Figure 17. Visually assigned tendon/muscle fiber properties and their cross-sectional 
breakdown 

Further refinement of the original geometry through the use of knot insertion 

allows for the material property distribution to be more accurately defined.  Adding knots 

in between existing knot values of the NURBS centerline provides an additional 

interpolation data point that can be assigned to make the overall distribution of the 

muscle-tendon complex more accurately reflect the realistic nature present within cadaver 

studies after model creation has already been completed.  Here again it is important to 

note that the local changes made to the axial NURBS centerline through refinement 

techniques do not affect the overall geometric shape.  This refinement is done easily and 

gives great flexibility in the refinement of models regardless of the original longitudinal 

element breakdown.   

Constitutive Model 

Similar results can be expected for the assignment of muscle specific constitutive 

parameters.  As mentioned earlier, muscle tissue is a complex material in the sense that it 

is active, nonlinear, incompressible, anisotropic, and hyperelasic.  Thus all these material 

properties must be accounted for in an accurate muscle model.  There are numerous 

mathematical models employed today but for use in this work the energy density 

functions developed by Oomens and colleagues in 2003 were utilized [14].  Following his 
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formulation, muscle makeup contains of both an isotropic and anisotropic portion given 

by  

                          . (42) 

Here   is the Cauchy stress tensor. The isotropic portion represents the ground material 

present such as the membranous sarcoplasmic reticulum and branching T tubules that 

encase muscle fibers and ensure their connectivity to one another.  The ground material is 

assumed to take the form of a neo-Hookean material which is described by  

            
 

 
             

 

 
        (43) 

where          is the first principal invariant and        is the determinant of the 

deformation gradient.  Here    is the effective shear modulus and    is the effective bulk 

modulus.  It has been shown that for nearly incompressible behavior, the bulk modulus 

must be approximately 1000 times that of the shear modulus [28].  In this work these 

material constants are assumed to be             and            for the ground 

material in muscle tissue [13].  Tendon properties can also be modeled using the neo-

Hookean formulation but with much stiffer with material constants of            

and             [13]. 

The actual fiber portion of the muscle tissue is anisotropic and contains both an 

active and passive components.  This is represented by the following energy density 

function 

                                   . (44) 

The active portion is controlled by neural excitation and is dependent on the fiber stretch 

  and level of activation  .  It represents the interactions of the contractile proteins that 

drive muscle movement and produces stresses that occurs in the fiber direction.  The 
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passive portion exists because of collagen and other cytoskeletal materials present within 

skeletal muscles that are not affected by any type of muscle activation level [14].   

Digital Muscle Library 

The objective of this research is to completely characterize an isogeometric 

muscle model that is analysis-ready.  As defined earlier, an analysis-ready model requires 

three essential characterizations to be fully defined.  The first characterization is a 

geometric model that accurately reflects actual muscle anatomy and is capable of 

handling the structural complexities.  The second characterization is an accurate 

representation of fiber architecture and the last characterization is an accurate 

representation of the heterogeneous property distribution, such as the muscle-tendon 

complex.  It has been shown by employing new techniques through the utilization of the 

tensor-product rod method that these three characterizations are satisfied and 

implemented in a manner that exceeds the capabilities of current FEA techniques.   

By implementing the analysis-ready characteristics for each of the 28 muscles in 

the entire model of the male human arm, a working “Digital Muscle Library” is formed.  

Here each specific muscle is complete with its respective geometric, fiber, and material 

property characterization and has that data locally stored.  More specifically, the 

geometric description will contain all control point locations with weighting values and 

the knot vector that characterizes the NURBS centerline of degree of p = 2.  Cross-

sectionally the models all contain 8 control points per cross-section.  Each muscle also 

has stored a specific fiber parameterization tailored to meet each muscle’s specific fiber 

architecture, i.e. any of the previously described parallel, helical, pennate, and convergent 

fiber descriptions or combination.  All fiber parameterization constants such as the helical 
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direction and intensity, pennate angle and direction, and level of convergence are also 

stored.  Lastly, the muscles also have the material property values as determined by the 

previously described constitutive relations stored for each cross-section.  More 

specifically, the parameters that vary in the axial direction are the two assumed material 

constants   and  .  Their distribution can arbitrarily be assigned to each muscle to match 

its specific muscle-tendon distribution.     

An example of the information stored within a muscle of the digital library can be 

exhibited with the abductor pollicis longus.  The muscle can be seen in its complete, 

analysis-ready form in Figure 18. 

 

Figure 18. Analysis-ready isogeometric model of the abductor pollicis longus 
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The abductor pollicis longus has the following control point locations:  
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The knot vector for the NURBS centerline of the abductor pollicis longus is 

                                                                                     

with weighting values of                                  .  This knot vector 

begins at the top of the muscle shown in Figure 18.  The abductor pollicis longus is 

primarily a parallel fibered muscle in the forearm which runs from the back of the 

forearm and wraps around the brachioradialis muscle and the radius bone near the wrist 

to control abduction and extension of the thumb.  Therefore a parallel fiber representation 

is applied until the knot         , where the fiber parameterization switches to a 

helical representation with a helical intensity and direction of       .  Then the 

material properties   and   that vary axially are applied to each cross-section.  For these 

heterogeneous properties of the constitutive equations, the longitudinal assignments are 

shown in Table 2. 

Table 2. Cross-sectional property distribution for abductor pollicis longus tensor-product 
model 

Longitudinal Property                     
   50.0 100. 

   49.0 98.2 

   47.3 95.0 

   12.7 32.2 

   0.500 10.0 

   0.500 10.0 

   0.500 10.0 

   12.4 31.6 

   36.6 75.6 

   50.0 100. 

    50.0 100. 

    50.0 100. 

    50.0 100. 

    50.0 100. 

    50.0 100. 
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Graphically this distribution can be seen in Figure 18 with the tendon properties 

modeled in white and muscle properties modeled in red.  The transition periods for the 

muscle-tendon complex are again shown by the color blending scheme.  The key here is 

the utilization of the smooth basis functions and the fact that cross-sectional control point 

values are utilized by neighboring elements in the longitudinal direction.   

Similar data are stored for all 28 muscles within the male human arm.  A 

complete listing of all the muscles from this research with muscle location data, fiber 

type, and geometric model is given in Table 3. 

These muscles are completely characterized with the previously mentioned 

criteria for an analysis-ready model.  Therefore individual muscles and/or specific muscle 

groups can be pulled at will to be analyzed for any type of isometric or isotonic 

simulation.  With a completely characterized digital muscle library, there is no longer a 

need to determine any of these characteristics and the focus can then be shifted to the 

analysis itself, striving for the end goal of a realistic stress analysis for muscles working 

in collaboration with a minimized computational burden.   
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Table 3. Summary of muscles present within the previously pictured muscle model 

Muscle Description with 

Origination (O), Insertion 

(I), Primary Actions (A), and 

Fiber Type (F) 

Model with Fiber Parameterization and Material 

Property Distribution 

Deltoid 

O: anterior border and upper 

surface of the lateral 3
rd

 of the 

clavical acromion, line of the 

scapula 

I: deltoid tuberosity of 

humerus 

A: shoulder abduction, flexion, 

and extension 

F: pennate (no fiber direction 

shown due to excess 

concavity) 

 

Bicep Short Head 

O: oricoracoid process of the 

scapula 

I: radial tuberosity and medial 

part of forearm 

A: supination of the forearm  

F: parallel, fusiform (modeled 

as separate muscle bellies) 
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Table 3. Continued 

Bicep Long Head 

O: supraglenoid tubercle 

I: radial tuberosity and medial 

part of forearm 

A: flexion of the forearm 

F: parallel, fusiform (modeled 

as separate muscle bellies) 

 

Coracobrachialis 

O: coracoid process of scapula  

I: medial humerus 

A: adducts humerus and flexes 

arm 

F: parallel 

 

Brachialis 

O: anterior of distal humerus 

I: coronoid process and 

tuberosity of ulna 

A: flexion at elbow 

F: parallel 

 

 

  



68 
 

 

Table 3. Continued 

Tricep Long Head 

O: infraglenoid tubercle of 

scapula 

I: olecranon process of ulna 

A: adduction of shoulder 

F: pennate 

 

Tricep Medial Head 

O: posterior humerus 

I: olecranon process of ulna 

A: extension of forearm 

F: parallel 

 

Tricep Short Head 

O: posterior humerus 

I: olecranon process of ulna 

A: extension of forearm 

F: pennate 
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Table 3. Continued 

Brachioradialis 

O: lateral supracondylar ridge 

of humerus 

I: distal radius (radial styloid 

process) 

A: flexion of forearm 

F: parallel, helical 

 

 

Extensor Carpi Radialis 

Longus 

O: lateral supracondylar ridge 

of humerus 

I: 2
nd

 metacarpal 

A: extension at wrist and 

adduction of the hand 

F: parallel 

 

Extensor Carpi Radialis 

Brevis 

O: humerus at anterior of 

lateral epicondyle 

I: base of the 3
rd

 metacarpal 

A: extension and abduction of 

the hand at wrist joint 

F: parallel 
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Table 3. Continued 

Extensor Digitorum 

O: lateral epicondyle  

I: extensor expansion of 

middle and distal phalanges of 

the 2
nd

, 3
rd

, 4
th

, and 5
th

 fingers 

A: extension of hand, wrist, 

and fingers 

F: parallel 
 

Extensor Digiti Minimi 

O: anterior of the lateral 

epicondyle of humerous 

I: the extensor expansion at 

the base of the proximal 

phalanx on dorsal side 

A: extends little finger at all 

joints 

F: parallel 

 

Extensor Carpi Ulnaris 

O: lateral epicondyle on the 

ulna 

I: 5
th

 metacarpal 

A: extension/adduction of 

carpus/wrist 

F: parallel 
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Table 3. Continued 

Anconeus 

O: lateral epicondyle of the 

proximal humerous 

I: lateral surface of the 

olecranon process and the 

posterior/distal ulna 

A: extension of and stability 

for pronation/supination of  

forearm 

F: pennate 

 

Pronator Teres 

O: medial epicondyle of 

humerus and coronoid process 

of ulna 

I: middle of lateral body of 

radius 

A: pronation of the forearm 

and flexion at elbow 

F:  convergent 

 

Flexor Carpi Radialis 

O: medial epicondyle of 

humerous 

I: bases of 2
nd

 and 3
rd

 

metacarpals 

A: flexion and abduction at 

wrist 

F: parallel 
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Table 3. Continued 

Palmaris Longus 

O: medial epicondyle of 

humerus 

I: palmar aponeurosis 

A: flexion of wrist  

F: parallel 

 

Flexor Digitorum 

Superficialis 

O: medial epicondyle of the 

humerus as well as radius and 

ulna 

I: anterior bases of the middle 

phalanges of four fingers 

A: flexion of fingers primarily 

at the proximal interphalangeal 

joints 

F: pennate 

 

Flexor Digitorum Profundus 

O: upper ¾ of volar and 

medial surfaces of the ulna and 

interosseous membrane 

I: base of the distal phalanges 

of the fingers 

A: flexion of hand at the 

interphalangeal joints 

F: parallel 
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Table 3. Continued 

Flexor Carpi Ulnaris 

O: medial epicondyle 

I: pisiform 

A: flexion and adduction of 

wrist 

F: parallel 

 

Flexor Pollicis Longus 

O: middle volar surface of 

radius and interosseous 

membrane 

I: base of the distal phalanx of 

the thumb 

A: flexion of the thumb 

F: pennate  

 

Supinator 

O: lateral epicondyle of 

humerus, supinator crest of 

ulna, radial collateral ligament, 

annular ligament 

I: lateral proximal radial shaft 

A: supination of forearm 

F: pennate (no fiber direction 

shown due to excess 

concavity) 
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Table 3. Continued 

Abductor Pollicis Longus 

O: ulna, radius, interosseous 

membrane 

I: first metacarpal 

A: abduction and extension of 

thumb 

F: parallel, helical 

 

Extensor Pollicis Longus 

O: middle of posterior surface 

of the ulna 

I: thumb, distal phalanx 

A: extension of thumb 

F: parallel 

 

Extensor Indicis 

O: ulna, interosseous 

membrane 

I: index finger 

A: extension of the index 

finger and wrist 

F: parallel 
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Table 3. Continued 

Extensor Pollicis Brevis 

O: radius and the interosseous 

membrane 

I: thumb, proximal phalanx 

A: extension of thumb at 

metacapophangeal joint 

F: parallel, helical 

 

Pronator Quadratus 

O: medial, anterior surface of 

the ulna 

I: lateral, anterior surface of 

radius 

A: pronation of forearm 

F: pennate  

 

Source: Origination points, insertion points, and muscle actions taken from [27]. 
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A Taste of Analysis 

Kinematics 

Analysis of an isogeometric model using NURBS has many similarities to FEA 

with a few key differences.   Specifically, the nodal locations in FEA lie on the geometric 

boundaries where nodes in NURBS the control points reside off the actual geometric 

boundary.  Therefore displacement of a NURBS model is applied by manipulating the 

control points instead.  This control point displacement is then transferred through the 

basis functions to depict the actual displacement of the model.  As in FEA, displacement 

is determined by the difference between the reference and current positions of the nodal 

values, or control points.  In the case of the NURBS rod representation, the displacement 

field is given by the equation  

         
             

 
   

 
   , (45) 

where     is the control point displacement,  

            
 . (46) 

The deformation gradient of the form  

   
  

  
 

      

  
 

  

  
   (47) 

is then determined for each Gauss point with   as the current position and   as the initial 

position.  The identity matrix is added to the ratio of change in displacement with respect 

to the reference configuration.  In implementation, the chain rule of the following form is 

utilized: 

   
  

  
 

  

  
  

  

  
 
  

 (48) 

With the deformation gradient known, the Cauchy-Green deformation tensor given by 
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       (49) 

is also be determined for each Gauss point location.  The Cauchy-Green strain tensor is 

the primary determinant of the overall strain map within a deformed object. 

Fiber Stretch 

The fiber parameterization, as previously mentioned, is extremely important for 

the analysis of an anisotropic solid or skeletal muscle in this case.  Strength properties 

along the longitudinal axis of a skeletal muscle are much greater than those in the 

transverse direction.  Thus using the fiber parameterizations previously derived, the fiber 

direction at each Gauss point in the undeformed configuration of the model can be 

determined.  With undeformed fiber direction   and the Cauchy-Green deformation 

tensor  , the fiber stretch   is determined through the following relation, 

         (50) 

The undeformed fiber direction is of course taken from one of the preceding fiber 

parameterization techniques. With those curves, for example in the parallel fibered case, 

                                       ,  

the fiber direction at a specific Gauss integration point is determined by taking the 

derivative of the basis functions with respect to the axial parameter  .  Then normalizing 

the result leads to the following fiber direction formula 

      

     
  

 
     
  

 
 

 
               

  
 

  
               

  
  

  (51) 

The fiber stretch values determined can be thought of as resembling the actual muscle 

contractions necessary to attain a particular model shape, i.e. the deformed state.  By 

logging the specific fiber stretches at each Gauss point, a contour plot can be developed 
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to produce a visual depiction of fiber contraction and fiber lengthening for a deformed 

body. 

Stress Functions 

Utilizing the strain map, one of the many constitutive equations available can be 

applied to determine the overall stress results.  In this example, the relations discussed 

earlier as developed by Oomens are applied [14].  Stress terms are derived by taking the 

derivatives of the energy density functions with respect to the fiber stretch which leads to  

          
             

  
                    (52) 

and 

           
            

  
  

   
       

                

                                                  
   (53) 

Here        
 

    is the assumed maximum stress that can be generated by the muscle 

fiber while       and        are material coefficients for the passive properties of 

muscle fiber [1].   

The second Piola-Kirchhoff stress takes the form 

    
  

  
   

        

  
 

       

  
   (54) 

Here the partial of the matrix material with respect to the Cauchy-Green deformation 

tensor is 

 
        

  
 

 

 
        

 

 
       (55) 

and the partial of the fiber material can be separated into the two previously mentioned 

components of 
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(56) 

Therefore combining the results leads to an overall second Piola-Kirchhoff stress of  

                    
 

 
 
        

  
 

         

  
     (57) 

and a Cauchy stress of  

 

  
 

 
    

 
 

 
                

 

 
 
        

  
 

         

  
     

(58) 

where       and          is the fiber direction in the current configuration.  

When simulating contractions, the stress derived here using the previously assumed 

constitutive relations can be calculated exactly at any point.   

Example of Kinematic Analysis 

An example of a snake is used to demonstrate possible kinematic analysis that can 

be facilitated using the muscle model descriptions.  Initial preliminary analysis was 

conducted utilizing a king cobra snake model created using the NURBS modeling 

software, Rhinoceros.  Incremental elliptical and circular cross-sections of various sizes 

were swept about a centerline, creating a straight NURBS surface model of the snake.  

The straight snake model serves as the reference or undeformed configuration in the 

present work.  Using this model, a current configuration or deformed snake was created 

by wrapping the reference snake model around a NURBS curve of an identical length.  In 

this process the exact shape, cross-sections sizes, and number of control points were 
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preserved.  Each model contains 61 cross-sections with 4 nodes per cross-section, leading 

to a total of 244 control points.  It should also be noted that the termination point on 

either end of the snake models consists of 4 point objects, all located in the same position.  

Again this is necessary to create a complete-looking surface model.  In the present 

analysis this is irrelevant but future research may need to be conducted in order to attain 

useful analytical results.  The snake in the undeformed and deformed configurations are 

depicted in Figure 19 as rendered Rhinoceros objects. 

            
a                b   

Figure 19. Model of a king cobra snake created in Rhinoceros 
(a) Undeformed state 
(b) Deformed state 

The two surface models were exported as IGES files and imported to a Fortran 

IGES reader.  The reader extracted information from the NURBS model and converted it 

into tensor-product form with control point locations, knot vectors, knot weights, and the 

degree of the NURBS centerline  necessary to exactly reconstruct the surface model.  

This data was introduced into Mathematica analysis code for some preliminary testing. 

The contour plot for the fiber stretches within the snake model is shown in Figure 

20 on the deformed configuration.  Here the red portion of the snake depicts muscle 
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fibers contractions and blue portions represent passive fiber lengthening.  Referencing the 

notation used earlier,    ,     and    , which indicates the number of quadrature 

points in the radial, angular, and longitudinal direction, respectively.  Therefore each 

meshed patch has 8 angular divisions and 8 longitudinal divisions.  Each division in this 

case represents the fiber stretch value for the respective Gaussian quadrature point in that 

region using a parallel fiber orientation. 

 

Figure 20. A contour plot produced from fiber stretches of gauss points at deformed state 

The fiber stretch information, or muscle contraction drivers, determined from the 

deformed tensor-product rod solid opens numerous possibilities for future research.  For 

example, a force balance can be conducted on the snake to determine the muscle 

contractions necessary to raise the snake’s head from its original resting position.  

Furthermore, utilizing the information and constitutive relations discussed, one could 

then attempt to apply those relations to the undeformed configuration in an attempt to 
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derive the stress results and movement depicted in the previous figures showing the 

deformed configuration.  This inverse analysis is just one possibility that the analysis-

ready model can support.   
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CHAPTER III 

FUTURE WORK 

With a fully defined analysis-ready model of the human arm, there are numerous 

other possibilities to expand on the current work.  The models for all muscles need to be 

verified quantitatively.  Muscle simulations for isometric and isotonic contractions can be 

performed to do so.  To simulate isometric behavior within a muscle model, both ends of 

the muscle must be fixed ensuring the overall muscle length remains constant.  Utilizing 

one of the fully defined muscle models with fiber parameterization, material property 

distribution, and suggested constitutive relations, the activation level could be increased 

to the maximum level and ensuing stress results analyzed.  Comparable simulations were 

performed by Lu and Zhou in 2010 on a generic model of the biceps brachii [1].  This 

model consisted of 56 control points per bicep head.  A total of 5 elements were used 

with the two end elements of the model strictly modeled with tendon properties and the 

three interior elements modeled with muscle properties.  Resulting von Mises stress 

results for the tensor-product model and FEA models were compared and shown to be in 

qualitative agreement [1].   

In the previously mentioned model, an isogeometric contact algorithm developed 

by Lu was utilized [29].  With the end goal of a full-scale 3D model of the arm working 

in unison, more work needs to be completed to verify the applicability of this contact 

algorithm to each specific muscle’s case.  It would need to be robust enough to handle the 

large amounts and varieties of muscle contact between the various muscle bodies and 

bones.  In general, further efforts should be devoted to analysis of multiple muscles 
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working together.  Similarly, end conditions for the muscles need to be re-evaluated to 

avoid singularities. 

As mentioned earlier one of the limitations of this model includes the utilization 

of only tubular shapes.  Therefore further work needs to be explored to determine a 

suitable method for handling arbitrary geometry in which the mapping is not invertible 

over the entire domain.  One proposed possibility is to bisect a master rod formulation  

into multiple tensor-product rods and patch them together to form one complete bi-

concave muscular shape in which the preceding fiber parameterizations and materials 

property assignments could be applied.  This may decrease the overall continuity along 

these patched locations on the cross-sectional boundary but it would allow for the 

preceding characterizations to be employed.  Alternatively one could use the normal tri-

variate NURBS solid representation to effectively model arbitrary muscle shapes with a 

generic B-spline mapping technique used for fiber parameterization and property 

distribution. 

A number of simulations could be performed to test and compare the different 

derived concepts of the current work.  One comparison could include choosing one 

specific model and running the same analysis for each of the different fiber 

parameterization schemes.  By doing so, one could compare the overall impact of 

utilizing the correct fiber parameterization.  It should be verified that a muscle is capable 

of producing a larger force/stress for the pennate-fibered arrangement as opposed to the 

parallel case, following previous research.  The largest difference in stress results should 

be noticed for the pennate and helical results, which should have higher overall stress 

magnitudes than the parallel and convergent cases.  Another comparison would exonerate 
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the beneficial value of the smooth combination scheme of assigning material properties.  

The accuracy of this method should be shown to exceed the capabilities and accuracy of 

traditional FEA assignment schemes.  The expectation here is that employing the linear 

combination scheme for the NURBS rod model should provide more accurate results near 

the musculo-tendon regions when directly compared to traditional approaches of property 

assignment on an element-by-element basis as in FEA. 

With a model constructed in this manner, there is also the potential for integration 

with a higher level model that predicts muscle activation.  Through research conducted 

by Patrick and Abdel-Malek in 2007, a real-time simulation of the musculoskeletal 

system has been developed which includes realistic constraints on joints and real-time 

wrapping algorithms for muscle action lines.  They have coupled this model with known 

optimization algorithms where muscle activation levels for prescribed joint torques can 

be calculated in real time.  Furthermore, integrating the analysis-ready model of the 

human arm created in the present work with a model such as this allows for the 

possibility to venture into the field of multi-scale modeling.   
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CONCLUSION 

Isogeometric analysis is an extremely new field which has opened numerous 

possibilities for future research.  Isogeometric analysis has benefits of being able to retain 

the exact geometry all the way through to analysis.  Unlike FEA, isogeometric analysis 

techniques do not require a separate meshing step, which can be extremely time 

consuming for large models.  Instead the elemental dissection and intrinsic mesh 

structure is inherent within the geometric representation itself.  In comparison to FEA, 

the total number of so called “nodes” and “elements” can also be reduced with the 

implementation of an isogeometric method, leading to a reduced overall computational 

burden.  The tensor-product rod is an exceptional isogeometric analysis tool for modeling 

and analyzing skeletal muscles due to the rod-like nature of the geometric structure.   

Exploiting the globally smooth nature of the NURBS centerline basis functions along 

elements within this method allows for universal, flexible, and more accurate fiber 

parameterizations and property assignments than previously capable through common 

FEA techniques.   

Utilizing the tensor-product method, an anatomically accurate, analysis-ready 

isogeometric muscle model has been produced.  This muscle model satisfies the three 

main criteria that fully characterize an analysis-ready model: geometric description, fiber 

parameterization, and heterogeneous property assignment.  Contributions of the current 

work include creating an anatomically accurate geometric NURBS muscle model based 

on realistic images of the National Library of Medicine’s Visible Human Data Set.  Also, 

new techniques were employed for muscle-specific fiber parameterization and material 

property assignment of individual muscles within this model to more accurately represent 
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depict these characterizations.  Specifically, muscle fiber parameterizations were 

proposed for parallel, helical, convergent, and pennate arrangements and were shown to 

be easily implemented.  These parameterizations are universal and can be tailored to any 

skeletal muscle with that fiber orientation through implementation on the master rod.  

Parameterizing in this way eliminates the need for any completely separate fiber mapping 

technique or specifically ordered elemental arrangement.  They also allow for 

adjustments to be made such as fiber direction, pennation angle, and divergence intensity.  

Along the same line, heterogeneous material properties of the muscle/tendon complex 

can be implemented as a smooth combination of cross-sectional property control values.  

In this case the elements are      continuous at the element boundaries leading to cross-

sectional property values that are shared among elements.  Assigning properties in this 

way enables a more accurate depiction of the muscle-tendon complex previous FEA 

modeling techniques.  Furthermore, refinement techniques are easily implemented, do not 

alter the geometry and allow for local refinement of the muscle-tendon region.  Fiber 

parameterization and property assignment are again made possible primarily because of 

the globally smooth nature of the basis functions corresponding to the NURBS centerline 

of the tensor-product rod. 

A total of 28 muscles within the male human arm have been modeled.  Each 

individual muscle is completely characterized with all muscle-specific criteria and stored 

within a “digital muscle library.”  Muscles from this library can be readily utilized for 

various types of analysis.  Examples of potential analysis applications and overall 

usefulness of a library of this nature were shown through the fiber stretch of a NURBS 

snake model and previous research results depicting analysis of the human bicep [1].  The 
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work conducted here constitutes as the first steps toward the end goal of creating an 

anatomically accurate, analysis-capable, multi-scale model of the human arm with 

optimized integration of muscle activation. 

The current formulation for the tensor-product rod is limited to convex shapes.  

Further research needs to be conducted in order to determine a suitable method for 

handling arbitrary, convex-shaped muscles.  The integration of contact formulations and 

suitable attachment locations or end-point conditions within the current model are 

additional challenges that will require further research before future in vivo muscle 

simulations and applications can be conducted.   
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APPENDIX 

NURBS CURVE BASICS 

NURBS geometry is better understood by exploring a few examples.  As it is the 

simplest to understand, the 2D case will be explored with a single curve.  First, an 

arbitrary NURBS curve is shown in Figure A21.  The corresponding knot vector of this 

curve is                    , which is categorized as non-periodic and uniform.  It is 

also of degree p = 2, therefore the number of control points needed is         

       .  The weight vector for these control points is given by   

            .  Therefore the effect of altering weighting values for the control point    

by setting             can be realized.  The dashed line connecting each control point 

represents the boundary for the convex hull.  The corresponding basis functions for this 

curve are depicted in Figure A22.  There are five basis functions corresponding to the 

five control points shaping the given curve.  Note that these are the basis functions for 

when all weighting terms are equal to one, meaning the basis functions are identical to 

the non-rational basis functions.  If the weights were to change as in Figure A21, the 

basis functions would also be affected. 
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Figure A21. 2D NURBS curve showing the effect of varying weights 

 

Figure A22. 2D NURBS curve basis functions 

An example of de Boor’s triangle for this particular case is shown in Figure A23.   
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Figure A23. Example of de Boor’s recursive triangle for  

In this figure, the 8 knots are shown on the left hand side with their respective 

values.  The second, third, and fourth columns represent the degree p = 0, p = 1, and p = 2 

basis functions.  Considering the knot span from 0 to 1, it is shown that the basis 

functions     ,     , and      affect the shape of the resulting curve in that span for p = 2.  

Likewise it follows that the knot span 1 to 2 is dependent on basis functions     ,     , 

and     .  Thus a perturbation of the last control point would not affect either of these 

segments of the curve.  For this curve, there are a total of 3 non-empty knot spans.  Each 

of these spans is shown in Figure A23 with their respective triangle and non-zero basis 

functions. 
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In the previous example, the curve was altered by adjusting the weighting value 

associated with   .  Of course the curve can also be modified by displacing individual 

control points as shown in Figure A24.  Notice the right side of the curve remains 

identical to the curve before displacing   .  The reason being that this is curve is 

composed of three parabolic segments joined with    continuity where the curve 

intersects the dashed line.  The three parabolic segments are determined by control 

points           ,           , and           , respectively.  Therefore the last 

parabolic segment remains unaffected in this case.  This exhibits one of the major 

benefits of using NURBS because it allows for local change. 

 

Figure A24. Displacement of control point    

Representations of curves with degrees p = 3 and p = 4 can also be shown using 

the same exact same control point locations.  Of course here the knot vectors will change 

due to the change of order.  The degree p = 2 knot vector,                    , will 

be changed to                       for a curve of degree p = 3 and  
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                        for a curve of degree p = 4.  This difference is shown in 

Figure A25 and the corresponding basis functions are shown in Figure A26.  The curve of 

degree p = 3 is represented by 2 cubic polynomials and the curve of degree p = 4 is 

represented by a single, quartic curve.  Notice that as the order increases, the curve begins 

to flatten out and becomes less influenced by each control point, exhibiting a smoothing 

effect.  As can be seen, basis functions are dependent of the degree of the curve, knot 

vector values, and weighting values.   

 

Figure A25. Effect of changing the degree of a NURBS curve 
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a 

 
b 

 
c 

Figure A26. Effect of varying degree on basis functions 
(a) p = 2  
(b) p = 3  
(c) p = 4 



95 
 

 

Adding a duplicate control point at an identical location will also modify a 

NURBS curve.  In the following case a control point was repeated at the    location.  

Therefore the new knot vector will be                      .  This result is plotted 

against the same curve with no repeating points and is shown in Figure A27.  For a 

degree     curve, repeating a control point once will make that particular segment 

exactly follow the convex hull or line segments connecting the control points.  If it were a 

degree     curve, then three repeated control points would be needed to get the same 

effect.  If there were only two repeating knots for a degree     curve, then that 

segment would be pulled closer to that particular control point, much like that which 

occurs when increasing the weighting value for a control point.  In the current case, the 

curve is    continuous at the    location.   

 

Figure A27. Effect of multiple control points in a single location on the NURBS curve 

The basis functions for this particular knot vector are shown in Figure A28.  Here 

again it is clearly shown that the curve will have a cusp at the location where the 
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duplicate control point is placed.  In general a curve is      continuous everywhere and 

each repeated knot value drops the continuity by one.   

 

Figure A28. Basis functions for the knot vector                     

All examples up until now have used uniform knot vectors, meaning that knot 

values have been incremented uniformly.  If these knot values are non-uniform, the 

respective curve and basis functions will also appear in a non-uniform nature.  For 

example, altering the previous knot vector of                     to   

                        gives the curve and basis functions shown in Figure A29.   
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a 

 
b 

Figure A29. Non-uniform knot vector NURBS example  
(a) Curve  
(b) Basis functions 

All previously shown curves have also been non-periodic, meaning that the 

beginning and ending elements of a knot vector have exhibited a multiplicity equal to the 

degree of the curve plus one.  A knot vector for a periodic NURBS curve does not exhibit 

this characteristic. For example, the curve shown in Figure A30 shows the same curve in 

the previous examples but with a periodic knot vector of the form 
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                   .  Notice that because of this change, the curve does not fully 

extend and initiate/terminate at the initial/final control point locations.   

 
a 

 
b 

Figure A30. Periodic knot vector NURBS example 
(a) Curve 
(b) Basis functions 
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