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ABSTRACT 

 Accurate prediction and control pervades domains such as engineering, physics, 

chemistry, and biology. Often, it is discovered that the systems under consideration 

cannot be well represented by linear, periodic nor random data. It has been shown that 

these systems exhibit deterministic chaos behavior. Deterministic chaos describes 

systems which are governed by deterministic rules but whose data appear to be random or 

quasi-periodic distributions.  

 Deterministically chaotic systems characteristically exhibit sensitive dependence 

upon initial conditions manifested through rapid divergence of states initially close to one 

another. Due to this characterization, it has been deemed impossible to accurately predict 

future states of these systems for longer time scales. Fortunately, the deterministic nature 

of these systems allows for accurate short term predictions, given the dynamics of the 

system are well understood. This fact has been exploited in the research community and 

has resulted in various algorithms for short term predictions. 

 Detection of normality in deterministically chaotic systems is critical in 

understanding the system sufficiently to able to predict future states. Due to the 

sensitivity to initial conditions, the detection of normal operational states for a 

deterministically chaotic system can be challenging. The addition of small perturbations 

to the system, which may result in bifurcation of the normal states, further complicates 

the problem. The detection of anomalies and prediction of future states of the chaotic 

system allows for greater understanding of these systems. 

 The goal of this research is to produce methodologies for determining states of 

normality for deterministically chaotic systems, detection of anomalous behavior, and the 
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more accurate prediction of future states of the system.  Additionally, the ability to detect 

subtle system state changes is discussed. The dissertation addresses these goals by 

proposing new representational techniques and novel prediction methodologies. The 

value and efficiency of these methods are explored in various case studies. 

 Presented is an overview of chaotic systems with examples taken from the real 

world. A representation schema for rapid understanding of the various states of 

deterministically chaotic systems is presented.  This schema is then used to detect 

anomalies and system state changes. Additionally, a novel prediction methodology which 

utilizes Lyapunov exponents to facilitate longer term prediction accuracy is presented and 

compared with other nonlinear prediction methodologies. These novel methodologies are 

then demonstrated on applications such as wind energy, cyber security and classification 

of social networks.  
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CHAPTER 1. INTRODUCTION 

Accurate prediction and control of systems is an issue which pervades many 

domains including engineering, physics, chemistry and medicine. Often, it is discovered 

that the systems under consideration are not well represented as linear, periodic nor 

random. It has however been shown that these types of systems can be well represented 

as being influenced by deterministic chaos. Deterministic chaos is a relatively new term 

used to describe systems which are governed by deterministic equations of motion but 

whose data may appear to be random or quasi-periodic [1]. 

While an exact definition for chaos does not yet exist, systems which are 

governed by deterministic chaos are fundamentally characterized by: (1) an essentially 

continuous and possibly banded frequency spectrum that resembles random noise; (2) 

sensitivity to initial conditions such that states initially close to one another often diverge 

at an exponential rate; and (3) an ergodicity and mixing of the dynamical state trajectories 

which in essence implies the wholesale visit of the entire phase space by the chaotic 

behavior [2]. Often, deterministically chaotic systems are misclassified as stochastic 

systems with noise [3].  

Due to the characteristic traits, and the misclassification of systems as stochastic 

rather than chaotic, prediction of future states of these systems has been problematic. 

This is especially true for prediction in large time scales. Deterministically chaotic 

systems can be predicted very accurately if the equations of motion are known, or, to a 

lesser extent, if the system is analyzed from a chaotic point of view. Unfortunately, it is 

often the case that the equations of motion are not known or that analysis of the systems 

is performed external to chaotic phase space. 
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Detection of normality in deterministically chaotic systems is critical to 

understanding the system sufficiently for prediction of future states. Due to the sensitivity 

to initial conditions, the detection of normal operational states for a deterministically 

chaotic system can be challenging. Complicating the problem further is that the addition 

of small perturbations to the system which may result in bifurcation of the normal states. 

The detection of anomalies and the ability to predict future states allows for greater 

understanding of the system’s normal states. 

 Many theories for prediction and control of nonlinear systems have been posited 

in the literature. Unfortunately, these methodologies are inefficient and ineffective for 

determination of the states of normality for a chaotic system and are not applicable in 

detection and prediction of divergences from the norm of the system. Nonlinear 

smoothing [4], data mining and machine learning algorithms [5], as well as spatial 

transformation methodologies [6] have been reported in the literature. Unfortunately, 

these methodologies have proven to provide only limited accuracy over longer time 

frames for chaotic systems. 

Rapid advances in technology, especially in safety critical domains, have resulted 

in a greater need for accurate description and fault prediction of deterministically chaotic 

systems. Domains such as the Smart Grid [7], alternative energy control, advanced 

cryptographic communications and even the human heart are driven by deterministic 

chaos and require accurate state characterization for prediction of future anomalies. 

Current methodologies are appropriate for approximating short term prediction and 

control [1]. However, these methods are less effective for longer term anomaly and fault 

detection. 
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1.1 Motivation and Research Objective 

  

 This research is specifically directed towards systems which are deterministically 

chaotic (examples of these systems and a complete description of chaotic systems is 

given in Chapter 2 of this thesis). Recently, Chaudhury et al. [8] reported the discovery of 

chaotic characteristics at the quantum level. Should this finding prove to be correct, the 

statement that chaos is found universally cannot be denied. Until such time as this 

discovery is validated, it is sufficient to state that deterministic chaos is present in a great 

many systems. As such, it must be understood and accounted for in system analysis, 

prediction, control and monitoring. This requirement fuels, in part the motivation of the 

presently proposed research. 

 In addition to the ubiquitous nature of deterministically chaotic systems, such 

systems are often fallaciously classified as stochastic systems or periodic systems heavily 

influenced by noise. The results of these misclassifications are inappropriate control 

strategies, incomplete system understanding, and suboptimal prediction and anomaly 

detection schemas. To achieve results satisfactory to a rapidly changing technological 

society it is critical for systems to be correctly identified and understood.  

 A second motivation for this research is the fact that deterministically chaotic 

systems often have an interesting topology and geometric structure. This geometry is 

formulated through the complex interactions which make up such systems. As will be 

presented in this thesis, very simple equations of motion can generate extremely complex 

behaviors which can be transformed into a number of topologies and geometries. Often 

the spaces in which these systems are analyzed are of fractional dimension and produce 
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beautiful natural characteristics, both from a mathematical perspective as well as a 

qualitative perspective. 

 The final motivation for this research is the fact that the domain of complexity 

and deterministic chaos is still a relatively young, open field. The first major discovery of 

chaotic characteristics was not published until 1963 when Lorenz reported the sensitivity 

of his systems to initial conditions [9]. The term “chaos” was first utilized to describe 

deterministically nonlinear dynamical systems with the work of Li and Yorke regarding 

the Logistic equation in 1975 [10]. While there was a great fervor of work performed in 

the domain of chaos during the 1980’s and 1990’s there still remain a large number of 

open problems in this field. Thus, the domain is relatively young and there exists much 

room for growth. 

 Based on the above mentioned motivations, this research seeks to fulfill a number 

of objectives related to the domain of deterministic chaos. These objectives are listed, in 

no particular order, below. 

• The development of a course grained representation of the dynamics of the 

chaotic system. 

 

• The use of the course grained representation for the detection of normal 

system states in chaotic systems. 

 

 

• The development of methodologies for real-time, or near real-time, 

detection of system state changes and anomalies. 

 

• The development of more accurate prediction techniques for 

deterministically chaotic systems. 

  

 It is hypothesized that the development of a course grained representation of the 

dynamical system will assist in a clearer understanding of the system states and the 
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traversal of these states by the chaotic system. Obtaining such an understanding of the 

chaotic system should lead to the ability to detect system normality. With the detection of 

system normality is the implied ability to understand abnormal behavior. As such, it is 

hypothesized that the detection of abnormal, anomalous and shifted (state change) 

behavior should be achievable in an accurate manner. 

 The objective of the development of real-time, or near real-time, methodologies 

for the detection of system state change and anomalous behavior is becoming more 

critical as deterministically chaotic systems are being discovered in systems which are 

themselves critical. Chaotic systems, such as the impending Smart Grid, medical 

prosthetics which make use of real-time computing (e.g. pace makers and brain 

controlled prosthetic limbs), communications and cyber security, require accurate 

monitoring for changed behavior. It is hypothesized that the change detection 

methodology discussed above can be utilized in a real-time, or near real-time, 

environment for the benefit of such systems. 

 Finally, there exists a need to develop more accurate prediction methodologies for 

deterministically chaotic systems.  As will be presented, often prediction of the systems 

being studied here are attempted in the stochastic realm which is suboptimal given that 

these systems are not derived from such distributions. The need for accurate prediction is 

also present in the other objectives of this research, if only for the completion of missing 

data values in the experimental datasets. 
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1.2 Expected Contributions 

 

This thesis proposes new methodologies for prediction and detection of normality, 

state changes, and anomalies in deterministically chaotic systems. The expected 

contributions of this research are listed below. 

• A novel course-grained visualization technique for representation of the 

states of a chaotic system. 

 

• A novel state prediction methodology utilizing the above visualization 

technique. 

 

 

• A novel methodology for representing the normality of a deterministically 

chaotic system 

 

• A novel, computationally simple, mathematical representation of the 

system state traversal of a deterministically chaotic system which allows 

for near real-time detection of anomalies and system state changes. 

 

 

• A new prediction algorithm for more accurate prediction of 

deterministically chaotic systems. 

 

To validate the accuracy and effectiveness of the novel algorithms, real world 

case studies are presented. Detection of the normal and anomalous states of systems is 

preformed on case studies from various domains. Prediction of various attributes of wind 

turbines and other devices is given to validate the novel prediction methodology.  

The remainder of this thesis is organized as follows. The next section offers an 

overview of deterministic chaos. This overview includes examples of real and theoretical 

systems which exhibit deterministic chaos. Chapter 3 presents a new methodology for 

understanding normal system states. Included in this section is the detection of 

anomalous states of chaotic systems. Chapter 4 presents a novel prediction algorithm and 

illustrates its accuracy and effectiveness on various real and theoretical datasets. Chapter 
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5 describes a novel methodology for the detection of system shifts and anomalies within 

chaotic systems. Validation of the proposed theories on real world applications is 

presented in Chapter 6 and conclusions are given in Chapter 7. 
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CHAPTER 2. DETERMINISTIC CHAOS OVERVIEW 

 Many domains, such as physics, hydrodynamics, biology and medicine, have 

struggled to develop satisfactory models and methods for complex datasets. Some 

researchers in these fields have looked towards deterministic chaos to interpret the 

complex datasets. Fraser [11] suggested that this is due to the fact that phenomena whose 

explanations were previously thought to require high-dimensional phase space or 

independent noise sources can be explained in terms of simple low-dimensional 

deterministic chaos models. But what is deterministic chaos? This section offers an 

introduction to deterministic chaos. Presented are the basic properties, or characteristics 

of deterministically chaotic systems (e.g. §2.1), methodologies to determine if a dataset 

originated from a deterministically chaotic system (e.g. §2.2) as well as an overview of 

chaotic attractors, the topological spaces in which these objects occur, and the benefits to 

considering systems in these spaces (e.g. §2.3). 

  

2.1 Properties of Deterministically Chaotic Systems 

Deterministic chaos is a term used to represent systems which are governed by 

deterministic equations of motion but whose datasets resemble random or quasi-periodic 

(multiply periodic) data [12]. Hidden within this loose definition is the fact that even 

extremely simple equations of motion can represent very complex behavior. Grassberger 

et al [13] stated that the simplest examples of chaotic systems are represented by systems 

which map some interval onto itself. The Logistic equation given in Eq. 1 is a well 

known simple example of such a mapping. The data for the map of Eq. 1 is plotted in Fig. 
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1 with the horizontal axis representing time increments, t, and the vertical axis 

representing the value of the map, x, at time t. The value of a in Fig. 1 is given as 3.8. 

 


��
 � �
��� � 
��     (1) 

 

 

 
Figure 1. Logistic equation with a = 3.8 

 

 

As can be clearly seen in Fig. 1, the data for the Logistic equation with a = 3.8 is 

very complex and has a similar appearance to random data or data with large amounts of 

noise. A close examination of the data in Fig. 1 indicates that the dataset is not well 

represented as periodic or random. It is also clear that the system described in Eq. 1 does 

not attend asymptotically to a fixed point for the given value of a. This space of non-

random, non-periodic and non-fixed data is the realm of deterministic chaos. 
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The Logistics equation is an interesting map in that chaos is not always present in 

the system. As the values of the system increase from 1 to less than 3, the system will 

asymptotically approach a fixed value. Increasing the value of a from 3 to less than 3.57 

causes the system to oscillate, first around two values and then four and so forth. Chaos 

sets in at a = 3.57. The nature of these changes is due to bifurcations experienced in the 

system. These bifurcations represent a transitional route to chaos which has been 

traditionally termed the period doubling route to chaos. Fig. 2 plots a bifurcation diagram 

for this route to chaos by representing the value of the parameter a on the horizontal axis 

while the vertical axis represents the distinct values of the system for each value of a. 

 

 
Figure 2. Bifurcation diagram of the Logistics equation. 
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Deterministically chaotic systems exhibit a number of distinct characteristics not 

normally associated with other systems. One important characteristic is sensitivity to 

initial conditions. Glasner et al [14] offered a topological definition for this characteristic. 

Call a pair (X, T), where X is a d dimensional compact metric space and T is a continuous 

map from X to itself, a system. Then, a system (X, T) has sensitive dependence on initial 

conditions if there exists an � � � such that for every 
 � � and every neighborhood U 

of x, there exists � � � and � � � with  ����
 ���� ! �. 

The definition given in [14] simply states that if two points in a system are 

initially close to one another, they will be significantly far apart after n iterations of the 

system. Regardless of the selection of the initial configuration of points this phenomena 

holds true, given the system is experiencing sensitive dependence on initial conditions. 

The characteristic of sensitive dependence to initial conditions is easily observed 

in the Logistic equation. Fig. 1 displays an instance of the Logistic equation with a = 3.8. 

Simply adding an extremely small value to a (e.g. 0.001) produces a completely different 

dataset as illustrated in Fig. 3. 

The data in Fig. 1&3 may not be easily discernable as representing differing 

systems. However, once the two systems are systematically compared the difference is 

evident.  Fig. 4 displays the absolute difference between the two systems by plotting the 

absolute difference of the data for the two systems at each time increment. As can be seen 

in Fig. 4 there is a significant deviation between the datasets of the Logistic equation for 

a = 3.8 (e.g. Fig. 1) and a = 3.8001 (e.g. Fig. 3). 
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Figure 3. The Logistic equation with a = 3.8001 

 

 

 
Figure 4. Deviation between two instances of the Logistic equation. 
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 To solidify the difference between the two representations of the Logistic 

equation two error metrics are calculated. Error, for the present purpose, is simply a 

representation of the absolute difference between the two systems. The total absolute 

error (TAE), given in Eq. 2, and the mean absolute error (MAE), as given in Eq. 3, are 

the calculated metrics. The TAE for the two systems is 100.6307 while the MAE is 

0.4025. This difference is significant and illustrates clearly the characteristic of sensitive 

dependence to initial conditions for chaotic systems. Even slight rounding errors can 

produce significantly different system dynamics as was discovered by Lorenz in 1963 

[9]. 

 

�"# � $ %
& � 
'&%(&)
       (2) 
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( $ %
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 Another characteristic property of deterministically chaotic systems is that of 

ergodicity. Ergodic systems are those which hold to the Poincare Recurrence Theorem 

[15] which states, in an interval of significant duration, a system will return to states that 

are very similar to previous ones. This property is illustrated in the Logistic equation of 

Fig. 1&3 and represents the quasi-periodicity previously mentioned. To see this property 

in a clearer manner the data used in Fig. 1 is used to generate the phase portrait in Fig. 5. 

A phase portrait is a geometric representation of the trajectories of a dynamical system in 

the phase plane [12]. In the case of Fig. 5, the phase portrait is generated by plotting 
�+� 

versus 
�+ , �� in a method known as delay embedding which shall be discussed shortly. 

The ergodicity of the Logistic equation is easily discerned in such a plot. The system 
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produces dynamics whose trajectories visit very similar spaces with each orbit. The 

ergodic property of chaotic systems will be discussed at great length and used in assisting 

the understanding of normality for such systems in Chapter 3. 

 These chaotic characteristic traits are summed up by Zhang et al [2] as discussed 

in the introduction of this thesis. Implicit is the fact that systems which do not exhibit 

these characteristics are not deterministically chaotic. Unfortunately, the converse to this 

statement is not necessarily always true. As such there exist some distinct techniques for 

determining if a system is deterministically chaotic or not. These techniques are given in 

Section 2.2. 

 

 
Figure 5. Phase portrait of Logistic equation given in Fig. 1. 
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 It is an intuitive reaction to assume that the data which is transformed to generate 

the simple delay plot of Fig. 5 is from a periodic or random system and contains a great 

deal of noise. However, this reaction is obviously incorrect as the plot of Fig. 5 

illustrates. Analysis/observation tools in common use, such as the Fourier analysis and 

Wavelet analysis become of little value for such systems as shall be shown in the next 

section. 

2.1.1. Analysis/Observation Techniques 

 

 Many domains are tasked with the analysis/observation of signals. Engineering, 

physics, chemistry and medical are a few examples of such domains. Due to the 

ubiquitous nature of signal analysis, there exists a good set of analysis tools which have 

been developed. Two of the most prominent analysis tools are the Fourier and Wavelet 

analysis techniques. While these techniques have proven themselves valuable for the 

analysis of many systems, they are less advantageous when the system under question is 

chaotic.  

 This section briefly describes the Fourier and Wavelet analysis techniques as well 

the delay embedding technique for chaotic systems. For a complete treatment of Fourier 

analysis the reader is referred to [16] and for a complete treatment of Wavelet analysis 

the reader is referred to [17]. A comparison of the techniques used to analyze the Logistic 

equation is presented to further solidify the differences between the techniques. It is 

hoped that at the end of this section the reader will have an appreciation for why standard 

analysis techniques fail to accurately and helpfully describe the dynamics of a chaotic 

system. 
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2.1.2 Fourier Analysis 

 Named after Joseph Fourier, the Fourier analysis assumes that general functions 

may be represented as sums of simpler trigonometric functions [16]. Two types of 

Fourier analysis are common – continuous time and discrete time. For the purposes of 

this paper only the discrete time Fourier analysis is considered, however it has been 

shown that the results presented here hold for continuous Fourier analysis. 

 The discrete time Fourier analysis considers a signal x(n) which is periodic with 

period N, that is to say that x(n + N) = x(n). Given this assumption, the signal x(n) can be 

represented by a series of N harmonically related functions given by Eq. (4) where j
2
≡ -1. 

 

-./01�2(  3 � � � 4  5 � �     (4) 

 

Then the signal x(n) can be expressed as in Eq. (5) where ck is given in Eq. (6) [18]. 

 


��� �  $ 61-./01�2((7
1)8      (5) 

61 � 

( $ 
���-7./01�2((7
�)8      (6) 

 

As Gao et al [18] stated, it is easy to see that ck is also periodic in N. Thus, the sequence 

%61%/ for k = 0,1, …, N-1 is the distribution of power as a function of frequency. This is 

often called the power density spectrum of the signal and is a tool often used for the 

analysis of signals. The power density spectrum indicates frequencies which are most 

prominent in the signal.  
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 To assist in the understanding of how the power density spectrum is useful in 

understanding the dynamics of signals the following example is supplied. Consider the 

Logistics equation with the parameter a = 3.50. As was eluded to earlier, this value of a 

causes the Logistics equation to be periodic. This periodicity is illustrated in the plot of 

the raw data in Fig. 6. It is easy to see that there are multiple levels of the periodicity in 

Fig. 6.  It is also clear that the Fourier analysis’ power density spectrum effectively 

captures these levels as shown in Fig. 7. 

 
Figure 6. Raw data for the Logistics equation with a=3.50. 
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Figure 7. Fourier power density spectrum for the raw data in Fig. 6. 

 
 

 Often the Fourier analysis of a signal is considered to be a combination of the 

trigonometric functions of sine and cosine. It is assumed that the real signal, buried 

within the noise of the data, is some representation of this combination if the signal 

contains periodicity in N.  One should also note that the transformation of the Fourier 

analysis in usually invertible. All of these features, as well as the fact that the power 

density spectrum is effective a capturing the periodic amplitudes of the system, make the 

Fourier analysis a desirable technique. 

 

2.1.3 Wavelet Analysis 

 In a manner akin to the Fourier analysis technique, Wavelet analysis considers 

that the signal x(n) can be represented as a sum of specific functions. The Wavelet 

analysis uses a mother wavelet function for its analysis similar to the Fourier analysis’ 

use the sum of trigonometric functions. Unique to the Wavelet analysis though is the fact 
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that these mother wavelets can be of any nature, not just trigonometric, so long as the 

sum of the points in the mother function is zero [17]. Two common mother wavelets, the 

Harr wavelet and the Daubechies 4 wavelet, are shown in Fig. 8. 

 

 

 
Figure 8. The Harr (left) and Daubechies 4 (right) mother wavelets. 

 

 

 The Wavelet analysis uses a scaled and shifted version of the mother wavelet, 

9�+� to generate approximations and details of the signal x(n). The performance of the 

Wavelet analysis results in the generation these two, the approximation and details, series 

at multiple levels of decomposition. When properly combined the approximations and 

details fairly accurately recreate the signal. To illustrate this, Fig. 9 plots the 

approximation and details of the first level of a Wavelet analysis on the raw data used in 

Fig.6 using the common Daubechies 4 wavelet. 
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Figure 9. First level Wavelet analysis of the data in Fig. 6 using the Daubechies 4 

wavelet. The approximations of the signal are given on the left and the details of the 

signal are given on the right. 

 

 

 

 It is easy to see from Fig. 9 that the Wavelet analysis is able to correctly 

determine that the signal is periodic, as in the approximation, and that it is periodic with a 

period of 4 for the Logistics equation with a = 3.50. The fact that the Wavelet analysis 

can use many variants of mother wavelet functions makes it a desirable tool for signal 

analysis. However, as shall be shown next, both the Wavelet and the Fourier analysis are 

not as effective as the Embedding Phase Space technique for the observation of the 

dynamics of chaotic signals. 

 

2.1.4 Technique Comparison 

 This subsection compares the techniques of subsections 2.1.2 and 2.1.3 to the 

technique of the simple delay plot previously shown and often referred to as Embedding 

Phase Space. The techniques are compared using the Logistics equation. Due to the 

ability of the Logistics equation to represent both periodic and chaotic signals, depending 

on the value of the parameter a, it is an appropriate system to compare the three 

techniques adequately. 
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 As was seen in the bifurcation diagram of Fig. 2, the Logistics equation undergoes 

a period doubling route to chaos. Therefore, there are values for a in Eq. (1) for which the 

Logistics equation represents a single fixed point system, a period two periodic system, a 

period four periodic system and so forth, until a = 3.57 at which time the system becomes 

chaotic. Here we will compare the three techniques for three values, a = {3.50, 3.56, 

3.79}. For each value of a discussion and illustrations will be presented which will 

highlight the observational differences between the standard Fourier and Wavelet 

techniques and the Embedding Phase Space technique. Throughout this subsection the 

Daubechies 4 wavelet is used as the mother wavelet for the Wavelet analysis. 

 Consider first, the Logistics equation of Eq. (1) where a = 3.50. A sample of the 

output of the Logistics equation, so defined, is given in Fig. 10. As can be seen in Fig. 10, 

the Logistics equation assumes a periodicity with period N = 4 for a = 3.50. Due to this 

periodicity, the Fourier and Wavelet analysis techniques aptly describe the dynamics of 

the system as illustrated in Fig. 11-12. The Embedding Phase Space technique also does 

well at describing the system as a system which traverses between four distinct values as 

shown in Fig. 13. For this sub-section the delay value of the Embedding Phase Space is 

given as 1 and the dimension of the space is set to 2. 

 Now consider the system where the Logistic equation has the value of a increased 

to 3.56 whose raw data is given in Fig. 14. This system is also a periodic system, albeit 

with a period of N = 8. Again, the Fourier and Wavelet analysis techniques are adequate 

for describing the system as can be seen Fig. 15-16. The Embedding Phase Space 

technique also illustrates its prowess by showing that the system oscillates between eight 

fixed points as given in Fig. 17. 
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Figure 10.Sample output of the Logistics equation with a = 3.50. 

 

 

 

 
Figure 11. The power density spectrum of the Fourier analysis of the data in Fig. 10. 
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Figure 12. The first level of the Wavelet analysis of the data in Fig. 10. 

 

 

 
  

 
Figure 13. The Embedding Phase Space for the data in Fig. 10. 
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Figure 14. A sample output of the Logistics equation with a = 3.56. 

 

 

 
Figure 15. The Fourier power density spectrum for the system whose data is given in Fig. 

14. 
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Figure 16. The first level of the Wavelet Analysis of the system whose data is given in 

Fig. 14. 

 

 
Figure 17. The embedding phase space for the system whose data is given in Fig. 14. 

 

 

 

 Thus far, all of the techniques have performed well on data from the Logistics 

equation. Each represents the dynamics of the system in their own manner. However, as 

the Logistics equation is pressed to the level of chaos, with a = 3.79, a weakness of the 

two standard techniques is noticed. A sample of the output for the Logistics equation with 

a = 3.79 is given in Fig. 18. It is easy to see that this data is no longer periodic, or at least 
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not periodic within a reasonable length period. In fact, this data is deterministically 

chaotic. 

 

 
Figure 18. Sample output for the Logistics equation with a = 3.79. 

 

 

 

 Without inherent periodicity in this version of the Logistics equation the standard 

analysis techniques of the Fourier and Wavelet analysis are not as beneficial at clearly 

representing the system dynamics. As can be seen in Fig. 19-20 the standard techniques 

offer little information as to the true dynamical nature of the system. In fact, taken to the 

fifth level, the Wavelet analysis is incapable of representing the dynamics in a legible 

format as shown in the expanded analysis plots of Fig. 20. 
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Figure 19. The Fourier power density spectrum of the Logistics equation with a = 3.79. 

 

 

 

Figure 20. Five levels of Wavelet analysis for the Logistics equations with a = 3.79. 
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 It is easy to see that the Fourier analysis of Fig. 19 does not represent the 

dynamics of the system well. In fact, it offers very little useful information, aside from 

asymptotic boundaries. The same can be said for the Wavelet analysis of Fig. 20. In that 

analysis, the signal is not well approximated or detailed. Further, little useful information, 

concerning the system’s dynamics, can be gleaned from the analysis plots. The 

Embedding Phase Space technique however does well at representing the dynamics of the 

system and at highlighting the ergodicity present in the system as can be seen in the delay 

plot of Fig. 21. 

 

 
Figure 21. Embedding Phase Space plot of the Logistics equation with a = 3.79. 
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 The chaotic data, which has been used in the above comparisons, varies greatly 

from data which is periodic, stochastic or attends to a fixed point. The constant revisiting 

of regions of phase space, as was shown the Embedding Phase Space plot of Fig. 21, 

cause the system to appear either random or periodic with a great deal of noise. Due to 

this difference in the nature of the data, the Fourier and Wavelet analysis methodologies 

suffer. 

 From the above examples, it is easily seen that for chaotic data the Embedding 

Phase Space technique offers a much clearer view of the dynamics inherent in chaotic 

systems than is given by the standard analysis techniques. Further, it was shown that the 

Embedding Phase Space technique performs equally well at representing systems which 

are not chaotic but rather are periodic. As such, the Embedding Phase Space technique of 

system representation is a more desirable analysis/observation tool than the standard 

frequency analysis techniques for chaotic systems. 

 Using the standard analysis techniques to analyze chaotic data would lead one to 

assume that the system is noisy or random. Obviously, this is an incorrect assumption and 

would account for the issues that have been experienced in the past with poor 

performance in prediction and normality detection on such systems. Thus, it is critical 

that such systems be considered in the chaotic realm rather than the standard stochastic 

domain which is so favored by many researchers.  

 

2.2 Determination of Deterministic Chaos from System Data 

This section presents methodologies for determining whether or not a system, 

represented by some dataset, is deterministically chaotic or not. Most often the datasets 

that will be considered for analysis come from time dependent sources. Rarely in real 
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world systems does the data come from a non-time dependent source given correct 

collection methodologies. As such, this section’s presentation is concerned primarily with 

time series datasets collected in discrete intervals. However, to be complete a brief 

discussion will first be presented concerning systems whose equations of motion are 

known apriori of the analysis. 

There exist two types of chaotic systems - maps and flows. Maps are 

mathematical systems which model variables as they change over discrete steps in time 

[19]. Maps are often referred to as difference equations, iterated maps or recursion 

relations. Flows are systems of differential equations which, for the study herein, produce 

chaotic properties
1
. The main difference between maps and flows is continuity. Flows are 

continuous while maps are generated in discrete time intervals. This continuity obviously 

effects whether or not the system is smooth. The Logistic equation of Eq. (1) is a sample 

of a one dimensional map. The time-series of the Logistic equation indicates that points 

in successive time intervals vary greatly about the map. This is a result of the 

discontinuity discussed. The Lorenz system, given in Eq. (7), is an example of a chaotic 

flow as shown in Fig. 22. The time-series of the Lorenz system is continuous and as such 

points in successive time intervals are extremely close to one another. 
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1
 Flows whose dimensions are less than three cannot produce chaos; three or more dimensions are required 

for a flow to be chaotic. 
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Chaotic flows and chaotic maps adhere to the principle that points initially close 

to one another, albeit on different orbits (trajectories), rapidly diverge as their orbits 

progress. The rate of divergence in a chaotic system is measured through the use of 

Lyapunov exponents [20].  

The Lyapunov exponents of a system indicate a great deal concerning the 

dynamics of that system. A positive Lyapunov exponent indicates divergence of points 

initially close to one another in the direction of the Lyapunov exponent (I.E. chaos) while 

a negative exponent indicates convergence [21]. Further, Lyapunov exponents indicate 

the predictability of the system in question [22]. The larger the absolute value of the 

Lyapunov exponent the smaller the window of accurate predictability becomes. 

Calculation of the Lyapunov exponents of a system is straight forward when the 

equations of motion are known. 

 

 
Figure 22. Lorenz Attractor plotted for x and y. 
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The calculation of the Lyapunov exponents for difference equations is a simple 

iteration of the map through the discrete time steps and a measurement of the 

divergence/convergence of points initially close together. Consider two points on a map, 

initially close together, X0 and X0 + ∆X0, then after one iteration of the map the points are 

separated as in Eq. (8). 

 

B�
 � C��8 ,  B�8� �  C��8� D B�8CE��8�  (8) 

 

The local Lyapunov exponent λ at �8 can be defined as F � G� HIJK
IJL

H M�NO. The local 

Lyapunov exponents of a map are the same value as the eigenvalues of that map [12]. 

The local Lyapunov exponent is helpful in determining the dynamics of a region of phase 

space while the global Lyapunov exponent is indicitive of the entire space. The 

calculation of the global Lyapunov exponent, for maps, is simply the average of the local 

exponent over many iterations.  

 Calculation of the Lyapunov exponents of a flow proceeds in a similar manner. 

Consider two points, initially close to one another, on a flow, x0 and x0 + ∆x0. Then after 

a small amount of time, ∆t, the points are seperated as given in eq. (9). As with maps, the 

local Lypunov exponents are equal to the eigenvalues of the flow. Further the sum of the 

Lyapunov exponents are equal to the determanit of the Jacobian matrix [23]. 

 

P

 � P
8 , MC�
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8�B+O  (9) 

 



33 

 

 

 

Calculation of the Lyapunov exponents of a time-series, without the aid of 

knowing the equations of motion apriori, is a more complicated task. The calculation of 

this important measure for a time-series dataset requires the calculation of a time delay 

and an embedding dimension, as in the embedding phase space of the previous section. 

These metrics are used to transform the time-series dataset into embedding phase space, 

in which the Lyapunov exponents of the system may be calculated. The remainder of this 

section discusses the detection of chaos in a time-series data set, the transformation into 

embedding phase space and the calculation of Lyapunov exponents for such a system. 

Consider an n dimensional system X composed of time increments T s.t. + � � for 

some discrete measure of time; then QRRS�+� � T

�+� 
/�+� 4  
��+�U represents the state 

of the system X at time t. A dataset V � TQRRS��� QRRS��� 4  QRRS�W�U representing the system X 

for i iterations is possibly deterministically chaotic if QRRS�X� is dependent in some manner 

upon QRRS�3� for X � 3 , B+. Using this definition of a system it is possible to determine if 

the system X is non-chaotic through a simple null hypothesis test [3]. To perform this test 

an ensemble of surrogate datasets are formed through the random reordering of the 

original dataset D. An invariant metric, such as the autocorrelation function, is used to 

measure the original dataset and the ensemble of surrogate datasets. If the invariant 

metric results in similar measures for the ensemble and the original dataset then the 

original dataset is not time dependent and therefore is not from a deterministically chaotic 

system. However, if there is a significant difference, to the 95% significance level, 
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between the surrogate dataset and the original dataset then the original dataset may be 

chaotic
2
.  

The literature reports variants for null hypothesis testing of deterministically 

chaotic systems. The simplest of the metrics used for testing is the autocorrelation 

function as presented by Kantz & Schreiber [3]. The autocorrelation function is the 

measure of the correlation between two values of the same variable at different times. 

Given measurements QRRS�+� � T

�+� 
/�+� 4  
��+�U for time + � � the autocorrelation 

function is then defined as Eq. (10). 

 

Y � $ �;�&�7 ;Z��;�&�1�7;Z�[\]^_K
$ �;�&�7;Z�`[̂_K

     (10) 

 

 

 Other methods to form the surrogate ensemble and other invariant metrics have 

been suggested as well. Schriber et al [24] suggested the use of a simple iteration scheme 

for forming the surrogate dataset through a Fourier transformation, replacing the squared 

amplitudes and then transforming back again. The authors [24] made a claim for better 

surrogate formation through their methodology which results in more precise null 

hypothesis testing. Similarly, Theiler et al [25] proposed another amplitude adjusted 

Fourier transformation algorithm for surrogate formation. Steuer et al [26] suggest the 

use of the mutual information metric as the invariant metric with which to test the null 

hypothesis against the original and ensemble data. The mutual information metric 

describes numerically the information already known about a data point 
�+ , �� from 

                                                 
2
 It is important to note that systems which do not reject the null hypothesis testing may still be derived 

from a non-chaotic dataset. Null hypothesis testing only definitively excludes the hypothesis that the 

system is chaotic; it does not however confirm that the system is chaotic. 
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the information given from the data point 
�+�. Denote by pi the probability that the 

signal (data) assumes a value inside the ith bin of a histogram for the dataset, and let 

a&.�
 +� be the probability that 
�+� is in bin i and 
�+ , �� is in bin j. Then the mutual 

information for the time delayed dataset is given as Eq. (11). 

 

bc�+� �  $ a&.�
 +� de a&.�
 +� � f $ a& de a&&& .    (11) 

  

The methodology chosen for null hypothesis testing, in this thesis, uses the 

autocorrelation function as the invariant metric and surrogate formation using simple 

random reordering. This is due to the simplicity of the metric and formulation as well as 

due to the dataset sizes being addressed herein. Should extremely large datasets, or a 

large number of datasets be considered then the use of one of the above algorithms may 

be computationally preferred. 

Once the null hypothesis testing has been performed, and the time series dataset 

has been determined to possibly be from a deterministically chaotic system, a more 

concrete metric must be used to determine succinctly whether or not the time series is 

truly chaotic. The best metric for this determination is estimate of the maximal Lyapunov 

exponent of the system. According to Wolf et al [20], calculation of a systems Lyapunov 

exponents has proven to be the most useful dynamic diagnostic for chaotic systems.  

Estimation of the maximum Lyapunov exponent of a system is calculated in 

embedding phase space. Embedding phase space has been previously introduced but is 

now defined accurately. Embedding phase space is a metric space into which the data of 

the system is transformed to better represent the dynamics of the system. The theory of 
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this transformation was first formalized by Takens [27] in 1981 and requires the 

calculation of two parameters, a time delay and a minimum embedding dimension. 

 In order to transform the time series data into the embedding phase space the 

aforementioned two parameters must be calculated. These parameters are then used to 

define the points within the embedding phase space. Consider, for example, the two 

dimensional system of the Duffing Map, given in Eq. (12) where a = 2.75 and b = 0.2, 

whose x- axis’ data is represented in Fig. 23 for the first 4000 points of the time series. 

 

g 
��
 � ��                            
���
 � �h
� , ��� � ��i

j    (12) 

 

 This data series can be represented very effectively in embedding phase space 

through the use of a time delay and minimum embedding dimension. For this example, 

let the time delay, τ, equal 1 and the minimum embedding dimension, d, be 2. Then the 

embedded phase space can be recreated through the use of the embedding vector 

QRRS � T
�+ � k� 
�+�U which produces the phase portrait of the dynamical system as 

shown in Fig. 24. 

Consider a time series which contains a parameter x among other parameters. 

Then a two dimensional phase space time delay plot for the given variable x can be 

generated as xt plotted versus xt-τ where τ is a delay factor. The time delay, τ, must be 

selected carefully when reconstructing a phase space. Too small of a τ results in close 

points which cease to be independent while too large of a τ causes the spatial 

relationships to break down [3]. Often this is computed as the first coefficient rτ of the 

autocorrelation function (e.g., Eq. (10) where 
Z is the mean of the data) smaller than 1/e ≈ 
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0.368 [3], [27]. As an alternative, the first minimum of the mutual information function 

may also be used. 

 

 
Figure 23. The x values of the Duffing Map for 4000 iterations. 

 

 

 

 
Figure 24. Phase portrait of the Duffing Map whose x values are given in Fig. 6. 
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Table 1. Duffing map autocorrelation. 

Delay Factor (τ) Autocorrelation Coefficient (rτ) 

1 0.026 

2 0.136 

3 0.1186 

 

 

 

Once the delay factor τ has been calculated for the given dataset, the remaining 

parameter to calculate is the minimum embedding dimension for the reconstructed phase 

space. This dimension indicates the minimum number of dimensions required to 

reconstruct, or unfold, the scalar phase space back to a multivariate phase space that is 

representational of the original phase [28], [29]. 

Consider a scalar time series for a given variable x represented notationally as 


 � T
8 
8�l 
8�/l 4  
8��:7
�lU in embedding phase space with delay factor τ 

calculated from the autocorrelation of the variable. We wish to discover a minimal 

embedding dimension, d for which the scalar times series is most representational of the 

dynamics of the original phase space. To calculate the embedding dimension d the False 

Nearest Neighbors (FNN) methodology is used [28]. The FNN methodology iteratively 

considers a point x(n) and the point ))(()( rUnr
xx ∈  which is the rth nearest neighbor of 

x(n), in the neighborhood, U, of points whose distance to x(n) is below a given threshold 

�. The distance between these two points in d dimensional space is given in Eq. (13).  

 

m:/�� Y� � n$ M
�� , 3k� � 
o�� , 3k�O/:7
1)8 p
K
`  (13) 
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where τ is the time delay from the autocorrelation function [23]. Next the embedding 

dimension is increased from dimension d to dimension d + 1; such that, by time delay 

embedding, the (d+1)th coordinate is added to each of the vectors x(n). Once the 

dimension of the embedding space is increased the distance of each point 

))(()( nUnr
xx ∈ to x(n) is recalculated using Eq. (13). Those points whose distance to 

x(n) is larger than � are removed from the neighborhood U(x(n)). The removed points are 

considered false nearest neighbors to x(n) as they were nearest neighbors in the smaller 

embedding dimension but are not such when that dimension is increased. The minimum 

embedding dimension for the scalar phase space is given by the smallest d in which no 

false nearest neighbors are discovered. Takens [27] suggested that the best embedding 

dimension is given as 2d + 1 however this is not strictly the case. 

 To visualize the FNN methodology, consider another two dimensional chaotic 

system, the Henon Map (e.g. Eq (14) with a =1.4 and b = 0.3), and a reconstruction of the 

original phase space using only the x variable. For d = 1 the reconstructed scalar phase 

space is a line. In d = 1 dimension embedding space some points a and b are close to c as 

given in Fig. 25. If the embedding dimension is increased to d = 2 it is then clear, from 

Fig. 26, that while in this example a is close to c, b was a false neighbor in d = 1 

dimension embedding space due to the constriction of the embedding space. 

 


��
 � �� , � � �
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 � h
�                      (14) 
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Figure 25. 1 Dimensional reconstruct of Henon Map with 2 nearest neighbors to c. 

 

 

 
Figure 26. 2 dimensional reconstruction of the Henon map with 1 nearest neigh to c and 

one FNN b. 

 

 

Once the time delay and minimum embedding dimension are calculated it is 

possible to estimate the maximum Lyapunov exponent of the time series. It is important 

to note that there exist as many Lyapunov exponents as dimensions of a given system. 

The estimation of the maximum Lyapunov exponent proceeds as follows. Consider two 
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trajectories, in reconstructed phase space, as given in Eq. (15) starting respectively from 

x(n1) and y(n1). 

QRRS��&� � q
8 
8�l 
8�/l 4  
8��:7
�lr
sRRS��&� � q�8 �8�l �8�/l 4  �8��:7
�lr   (15) 

 

 

Let the distance between x(n1) and y(n1) be some small value �. Then denote by 

Eq. (16) the distance between the trajectories at some time, ∆t, in the future. 

 

�B� � tQRRS�K�B� � sRRS�K�B�t    (16) 

 

Then the Lyapunov exponent, λ, of the trajectories for the selected variable is determined 

by Eq. (17) [30]. 

 

�B� u �8-vB� wY
F � dxy�z{



� $ G� |tQRRS}K~B�7sRRS}K~B�t

QRRS�K7sRRS�K
�{�)8
   (17) 

 

Eq. (17) utilizes the limit as t approaches ∞. It would be a rare event in which the 

data collected from a given system represents an infinite time. Therefore, a time series 

analysis of the Lyapunov exponent is required to determine the degree of non-linearity 

within a constrained system. Consider a time series T and a neighborhood U(x(n1)) about 

a point ∈)(n1x  T, such that each point ))(nU( 11 xy ∈n has a distance from x(n1) of some 

small value less than or equal to �. Then the maximum Lyapunov exponent of the time 

series T can be calculated as given in Eq. (18) [20]. 
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The maximum Lyapunov exponent serves to determine if the given system is non-

linear. Any system containing at least one positive Lyapunov exponent is defined to be 

chaotic [20]. Further, the magnitude of the maximum exponent indicates the degree of 

chaos involved in the system. The appendix of this thesis contains a sample method 

(using the C# programming language) for the calculation of the maximum Lyapunov 

exponent as discussed here. As has been shown above, the determination of chaos within 

a system involves a number of calculations but does result in a very clear metric for the 

evaluation of the system under question. The benefit of using the null hypothesis testing 

to eliminate non-chaotic systems should be clear due to the number of calculations 

required to declare a system chaotic. 

The set of all Lyapunov exponents form the Lyapunov spectrum of the system. It 

may be desirable to calculate the Lyapunov spectrum to better understand the non-

linearity’s within the system. Unfortunately, calculation of the complete Lyapunov 

spectrum for a time series data set is extremely computationally intense and is therefore 

rarely attempted. The reader is referred to [30] for details on calculation of the complete 

Lyapunov spectrum for a given system. 

 

2.3 Chaotic Attractors 

 Clearly, the chaotic systems under consideration in this thesis vary greatly from 

systems which are linear, random, or periodic. But what benefits are gained from 

considering systems as chaotic rather than using standard statistical or machine learning 

methods? This section further details the space of chaotic systems and highlights the 

benefits of using the embedded phase space for data analysis, prediction and control. 
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 In §2.1 the Logistic equation was presented as an example chaotic system for 

specific values of a. Included at the end of that section was a phase portrait of that map. 

From the phase portrait it was clear that the system displayed distinct ergodicity. If 

ergodicity is defined in an exclusive context, such that systems may return to states that 

are very similar to previous ones but may not repeat exactly any of the previous states
3
, 

then these systems are known as chaotic attractors. 

 Chaotic attractors are systems which revisit portions of the phase space in a 

ergodic fashion, with mixing, resulting in orbits (trajectories) of the system [31]. More 

formally, in a system with D degrees of freedom, an attractor is a subset of D-

dimensional phase space towards which almost all sufficiently close trajectories are 

attracted asymptotically [13], [32]. Obviously, there are many attractors for which the 

behavior of the attractor is very simple and anticipated. Consider, for example, the system 

represented by Eq. (19). This system is asymptotically attracted to the fixed point 1. 

 


��
 � �
�     (19) 

 

Similarly, the system defined by the cosine function (e.g. Eq. (20)) attends to a periodic 

cycle.  


��
 � �������    (20) 

 

There is little remarkable about either of the systems in Eq. (19) or Eq. (20). 

However, there are systems which do produce remarkable attractors. Systems which 

exhibit chaotic dynamics, such as those of the focus of this thesis, produce very 

remarkable attractors. These types of attractors have been termed strange attractors due 

                                                 
3
 Revisiting exactly a previous state would cause a deterministic system to be periodic rather than chaotic. 
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to the chaotic dynamics of the systems they represent [33]. Confirming this, Eckmann et 

al [30] stated that the notion of strangeness refers to the dynamics on the attractor and not 

just to its geometry and that this applies whether the time is discrete or continuous. 

The transformation of a time series dataset into phase space through the time 

delay embedding [27] discussed in §2.2 provides for a representation of the attractor of 

the system. As Cross et al [34] stated, each embedding is a representation of the original 

phase space and its attractor. Interestingly, this attractor will form regardless of the 

parameter upon which the transformation is built, given the parameter was pertinent in 

the dataset. Eckmann et al [30] stated that an attractor is by definition invariant under a 

dynamical evolution. Further, all geometric measures of embeddings are diffeomophism 

invariants [34]. Thus for the Henon map given in Eq. (14) the attractor which appears 

when the x axis of the system is transformed into embedding phase space will also appear 

if the y axis is transformed in a similar manner. This fact is illustrated in Fig. 27 & 28. 

Attractors allow for a simpler representation of the dynamics of a chaotic system. 

Often the original (experimental) data of a chaotic system is represented in a high 

dimensional space (e.g. more than 100 dimensions/parameters for wind turbines [35]). 

However, it is often the case that a number of these parameters do not specifically 

represent the dynamics of the system, nor do they represent the topology of the dynamics 

properly. Attractors, usually, have a significantly simpler topology [36] thus, they 

represent the dynamics of the system in a simpler, clearer fashion. 

 

 



 

Figure 27. Reconstructed phase space for Henon Map using the 

 

 

 

Figure 28. Reconstructed phase space for Henon Map using the 

 

 

. Reconstructed phase space for Henon Map using the y 

. Reconstructed phase space for Henon Map using the x 
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Embedding of a dynamical system into phase space, and therefore describing its 

attractor, offers many benefits for analysis, prediction and control over working with the 

original dataset. Perhaps the largest benefit is found in clear understanding of the 

divergence/convergence of initially close points (e.g. the system dynamics). Obtaining 

this understanding will greatly assist in the prediction of future states of the system based 

upon current states. This guidance is not clearly discovered in standard data mining, 

machine learning or statistical methodologies that are often employed to predict, classify 

and control these types of systems.  

In addition to the understanding of divergence/convergence, embedding a 

dynamical system into phase space, and thus recreation of its attractor, offers a greater 

understanding of system variable interactions. Often in machine learning, statistical 

algorithms such as singular value decomposition or principle component analysis are 

employed specifically to determine important parameters of a system [5]. Through the 

use of embedding phase space these interactions are automatically discovered and are 

implicit to the embedding therefore requiring no addition algorithmic steps to complete 

this understanding. 

This section has offered an overview of deterministic chaos. The nature of chaotic 

dynamics has been presented. The transformation of time series datasets into embedding 

phase space has been described. The calculation of important metrics for the embedding 

phase space has been presented. Finally, the nature, use and benefit of chaotic attractors 

for analysis and prediction have been discussed. The next section shall propose a method 
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for the detection of normality in chaotic systems, using the above mentioned chaotic 

dynamics. 
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CHAPTER 3. NORMALITY IN CHAOTIC SYSTEMS 

  

Understanding normal activity, or states, of a chaotic system is a nontrivial task. 

Determining the normal system dynamics requires a transformation into embedding 

phase space, accomplished through techniques such as the delay embedding theorem of 

Takens [27] discussed in the previous section. There exist cases, such as with data 

derived from an experimental time series rather than exact equations of motion, where the 

embedding phase space can prove to be of limited assistance to the visualization of the 

dynamics of the system in general. This is due, in part, to the “bird’s nest” quality of the 

phase space often experienced in visualization of traditional embedding phase space for 

such data. This section seeks to present a methodology for determining normality within 

deterministically chaotic systems and to better represent the dynamics in a course-grained 

fashion for those scenarios where the normal embedding phase space is of little 

assistance. 

The literature indicates a large amount of work has been performed in the domain 

of anomaly detection, which is closely related to normality detection. Chandola et al [37] 

presented a comprehensive survey of research performed in this area, in general. Specific 

to deterministically chaotic systems, work has been reported on chaotic anomaly 

detection by Aydin et al [38] using a chaos-based negative selection algorithm. Geisel et 

al [39] discussed the diffusion of anomalies in chaotic systems. These are but two of a 

great many works specific to anomaly detection in chaotic systems. Application oriented 

works are also present in the literature such as the work of Xiong et al [40] which 

presented research on computer network anomaly detection. 
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 Curiously, the literature is largely silent on the specific detection and analysis of 

normal operating states of deterministically chaotic systems. While much work has been 

illustrated on the analysis of specific chaotic equations of motion (see for example [41], 

[42], and [23]) little has been mentioned of a generalized understanding of normality for 

such systems. This is especially true for the analysis of experimental data of a chaotic 

system.  

3.1 Ergodicity Plots 

 This section presents a novel methodology for determining normal system states. 

Additionally, a new visualization technique is presented that represents a significant 

advance over current visualization techniques for the general understanding of the 

dynamics of deterministically chaotic systems.  The methodology proposed in this section 

is used to detect anomalous behavior of the system as well as to predict future states of 

the system. A short case study concerning the weather in Cedar Rapids, IA, USA, is 

presented as illustration of the efficacies of the methodology. Further case studies are 

reserved for later sections of this thesis. 

 Consider a system exhibiting deterministic chaos. The mathematical space best 

used for understanding the dynamics of this system is that of embedding phase space as 

presented in section 2. Due to the nature of the system, as deterministically chaotic, there 

exists a wholesale revisiting of the entire phase space by the chaotic behavior [43]. This 

revisiting previous regions of the phase space is a representation of the property of 

ergodicity and closely follows the Poincaré Recurrence Theorem.  

Due to this ergodicity there exists an ability to understand the manners by which a 

chaotic system revisits certain regions of phase space. Such an understanding enhances 
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the overall system understanding in general and is the basis for the understanding of the 

general dynamic states of the chaotic system being proposed in this section. 

 Eckmann et al [44] utilized the property of ergodicity to create recurrence plots 

(RP), described below. The RP is effective in describing the timing of revisitation of 

regions of the phase space, especially for larger dimensional systems. In fact, the purpose 

of RP is to indicate, for a given moment in time, the times at which a phase space 

trajectory revisits the same area in the phase space as the point under consideration. 

Taken as a matrix the RP can indicate the wholesale revisiting of the phase space spoken 

of previously. 

 Consider a point QRRS�W� on the orbit describing a dynamical system in d-

dimensional embedding phase space, for i=1,…,N. The RP is an array of pixels, in a 

5 � 5 square, where a pixel is colored at (i,j) if x(j) is within some small distance ε of 

x(i) [44]. The RP should be viewed as a binary 5 � 5 matrix where element (i,j) is 

assigned 1 if x(j) is within some small distance ε of x(i) otherwise it is assigned 0. This 

matrix is fairly symmetric with respect to the identity diagonal; however this symmetry is 

not a necessary condition of the RP. The RP indicates times in which points revisit the 

embedding phase space in an ergodic fashion. This can be beneficial in determining 

system dynamics such as quasiperiodicity.  In fact, diagonal lines parallel with a central 

diagonal of the RP matrix indicate periodicity within the dynamic system; and the longer 

these diagonal lines are the greater the periodic component of the system. This can be 

seen in Fig. 29 &30 which plot the RP for the periodic system of Eq. (21) and the chaotic 

system of Eq. (22) respectively. 
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Figure 29. Recurrence Plot for the system in Eq. (21). 

 

Unfortunately, the RP does not offer a clear understanding of the normal activity 

of visiting regions of phase space, rather just what times points are in similar regions. It is 

difficult to determine clearly from the RP which regions of phase space are being 

revisited and at what frequency these regions are visited. Further, the RP does not give a 

clear indication of normal local dynamics of the system. It is well known that certain 

regions of chaotic systems are more divergent while other regions tend to converge [45]. 

This information is not clearly portrayed in the RP. 
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Figure 30. Recurrence Plot for the system in Eq. (22). 

 

 

To understand which regions, or states, are being revisited by the trajectories of a 

system, a new visualization algorithm is suggested. Consider the embedding phase space 

of a given chaotic system. Impose on the embedding phase space an 5 � 5 grid such that 

regions of phase space are equally divided into square cells of size 


( � 


( where N is a 

user defined parameter. Then plot the embedding phase space by assigning to each point 

the centroid of the grid cell representing the region of phase space which that point is a 

member of.  Each centroid can be considered a region of phase space, or more 

importantly a state of the dynamical system. This plot is herein termed the Ergodicity 

Plot (EP) of the embedding phase space. The appendix of this thesis contains a 

pseudocode method for computer software for the generation of an EP as described here. 
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 The EP of a system allows for better visualization of the regions of phase space 

being dynamically visited by the system and therefore the states in which the dynamical 

system finds itself at given times. Fig. 31 & 32 graph the EP for the systems in Eq. 21 & 

22 respectively. From Fig. 31 & 32 it is clear that the systems revisits specific regions of 

the phase space in a recurring fashion, a fact that was not abundantly clear in the RP of 

the systems. Additionally, the Ergodicity Plot indicates the states that are traversed during 

the ergodic revisiting of previous states. 

 

 

 
Figure 31. Ergodicity Plot for the system in Eq. (21) with N=10. 
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Figure 32. Ergodicity Plot for the system in Eq. (22) with N = 5. 

 

 

 To clearly demonstrate the effectiveness of the EP over the RP the following 

example is given. Consider the raw data for the monthly mean temperature (F) for Cedar 

Rapids, IA, from 1902 through 2009, given in Fig. 33 where the horizontal axis 

represents time (months since 1902) and the vertical axis represents the mean temperature 

in degrees Fahrenheit. Generating an EP for this data with a time delay of 1 and an 

embedding dimension of 2 it is possible to detect system states as shown in the EP of Fig. 

34. These states are rendered less clearly in the RP of Fig. 35, although the 

quasiperiodicity is discovered in the slight diagonal lines displayed by the RP upon 

magnification. 
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Figure 33. Monthly mean temperature (F) for Cedar Rapids, IA from 1902 through 2009. 

 

 

 

 
Figure 34. EP for the data in Fig. 33 with N = 15. 
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Figure 35. RP for the data in Fig. 33. 

 

The EP is a powerful new tool for determining the activity of a deterministically 

chaotic system. Consider such a system operating under normal conditions. Here normal 

conditions are considered such when the system is experiencing no unique or rare 

perturbations or other external influences, aside from the normally present external 

influences that may cause noise.  Through the use of the EP, it is easy to determine the 

normal state transitions of the given system as discussed in the next subsection. Coupling 

the normal state transitions with the invariant metrics of the Lyapunov exponent and the 

system entropy give a more complete picture of the system’s normal operation. 

Due to the enhanced understanding of the normal operations of a deterministically 

chaotic system, there also exists a new ability to detect anomalies that may occur within 

the system. Anomalies may be automatically detected when a change in the Lyapunov 

exponent, �� � �, is detected to be greater than some threshold. Anomalies may also be 
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detected by a change in the normal ergodicity of the system resulting in new or rare 

ergodic paths being traversed with a greater probability than under normal conditions. 

Finally, anomalies can be detected as new points in embedding phase space which vary 

from the anticipated orbit of the system by some value greater than a set threshold. 

Not every anomaly that is detected can be considered negatively. Many chaotic 

systems will evolve over time and the detection of these changes will initially be 

perceived as anomalous. In example, the cyber activity of a given user is well represented 

by deterministic chaos (see the cyber security case study in Chapter 5). However, the 

activity of that user may change over time such that the user is performing new duties 

related to a new project that would not fit into a representation of their normal cyber 

activity. Therefore, it is beneficial to study anomalies over time and if needed evolve the 

EP and Lyapunov exponents based on new normal data. 

Another important benefit of the EP is that it allows for classification of systems. 

Through the more course grained representation of the dynamics of the system, given by 

an EP, it is possible to plot the EP for various systems and to use these plots as data for a 

classification or pattern detection algorithm (In Chapter 6, presentation is given of the use 

of the EP to classify users of a massive multiplayer online environment.). The EP can be 

used by standard pattern detection and image analysis algorithms to classify, or even 

cluster, multiple chaotic systems. This data mining advantage is not accomplished easily 

using the standard attractor reconstruction or the use of RPs. 
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3.2 Future State Prediction 

The EP can be considered akin to symbolic dynamics of mathematics. The study 

of Symbolic dynamics offers a course-grained description of systems [46]. Symbolic 

dynamics typically considers smooth topological systems and represents them in a 

discrete space consisting of sequences of abstract symbols. Unfortunately, not all 

deterministically chaotic systems can be considered “smooth”. Nor are the states of the 

systems generally considered abstractly. Regardless, the relation between the EP and 

symbolic dynamics exists and is close.  

 Similar to the relation between the EP and symbolic dynamics, a relation is found 

between thermodynamic formalism and the EP. Gupta et al [47] posited the use of Potts 

models (e.g. extensions of the standard Ising model) for detection of patterns in complex 

systems. This methodology utilized the discovery of Markov symbol chains in the system 

as it was described using symbolic dynamics [47].  

Due to the similarities between the EP and the theories of symbolic dynamics and 

thermodynamic formalism it is possible to use the EP to describe mathematically state 

visitation of the system as well as to predict the order and time of the visiting of future 

states. The deterministically chaotic systems under consideration here can be viewed as a 

matrix of regional state spaces that are visited in a specific order, ergodically, over time. 

Therefore, similar to symbolic dynamics, it is possible to generate Markov style chains of 

the states visited by the system and to determine, with a given probability which states 

will be visited next. Crutchfield et al [48] indicated that the Markov style models (IE: 

Hidden Markov Model) were insufficient for expressing the dynamics of chaotic systems. 
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The state prediction algorithm proposed in this section is not a Markov chain, nor a 

Hidden Markov Model, however, as it more closely follows an Apriori style algorithm. 

Using the proposed EP it is possible to determine frequent system state change 

motifs for any given system. System state change motifs indicate the traversal of the 

system states by the orbits/trajectories of the systems under consideration. The system 

state change motifs further assist in understanding the dynamical system represented by 

its time series data. Frequent system state change motifs are generated from the EP using 

an Apriori style analysis as follows.  

While generating the EP, for the given system, an ordered list of regions of the 

phase space (system states) visited may be maintained. From this ordered list it is 

possible to generate a list of frequent 1 region sets; these are sets in which the number of 

times the region has been visited is above a certain threshold. After the formation of the 

frequent 1 region sets, all records containing regions not deemed frequent can be 

removed and the frequent 1 region sets may be combined, in order, to form 2 region sets. 

The iterative removal of the non-frequent records and the combining of the remaining 

records continue until such time as no records remain to combine. This combination and 

evaluation of the region sets closely follows the Apriori style analysis of data sets [5].  

The frequent patterns generated in the above Apriori style algorithm form system 

state change motifs for the system under consideration. Associated with each system state 

change motif is a support and confidence metric which indicate the strength of the motif. 

The greater the support metric for a motif, the more often it is discovered in the system. 

These motifs offer a deeper understanding of the traversal of the system orbits and 

indicate the changes taking place in the system as it evolves over time. These motifs not 
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only offer substantial insight into the system but may be used to assist in prediction of 

future system states. 

A mathematical representation of the generation of frequent state change motifs 

can be described follows. Let Ω be the set of all system states σi created through the 

imposition of the 5 � 5 grid on the embedding phase space of the system. Then each 

initial state 
� � � of the system generates a sequence of visited states defined by a 

mapping * such that *�
8� � T<8 <
 4  <�U indicates the regions of phase space that 

have been visited in order. *�
8� is frequent if, and only if, the probability of the 

sequence is greater than the frequency threshold, �Ywhn*�
8�p � �. It is, therefore, easy 

to see that the traversal of frequent system states forms a Markov type chain with a given 

probability of occurrence. 

Prediction of future system states is based upon the traversal of the orbits about 

the phase space in the EP. Using the system state change motifs described above, it is a 

relatively straight forward task to predict the next states of a system, given a set of the 

most recent states of the system. Given a system has most recently traversed a small set 

of ordered state regions; it is simply a matter of comparing the most recent traversals with 

the detected system state change motifs. From the system state change motifs it is 

possible to assign a probability to predict the next set of states a system will traverse with 

a given accuracy. 

In the example of the mean temperature data above it was discovered that the 

system frequently moved from the state represented by the centroid 68,73 to the state 

represented by the centroid 63,68 and then to 53,63 then to 37,53 and finally to 21,37. 

This motif was found to exist in 67% of the orbits. Thus, 67% of the orbits moved from 
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68,73 to 63,68 to 53,63 and so forth. It was also discovered that 18% of the orbits 

traversed from the state represented by the centroid 68,73 to the state represented by the 

centroid 63,68 and then to 47,63.  Therefore, it is possible to state that if a system was 

recently in the region of 68,73 and then 63,68, there is a 67% probability that it will next 

be in the region 53,63 then in region 37,53 and finally be in region 21,37 and there is an 

18% probability that the system will next visit the region 47,63.  

The results above are intuitive for the system of mean temperature. It is often 

discovered that the mean temperature, of the considered region, cycles from warm to cold 

to warm again. This is easily seen in the system state motifs that were discovered. The 

system traversed from a warm state (68,73) to a cooler state (63,68) to an even cooler 

state (56,63) and then to (37,53) and finally to (21,37). This traversal was discovered in 

67% of the orbits of the system. However, in 18% of the trajectories there was a path 

from the same initial starting point (68,73) to a similar second state (63,68) and then to a 

different third state of (47,63).  

There may exist cases where the simple list of probabilities may be insufficient as 

a result. In such cases it is possible to form a weighted mean of the resulting states to 

enhance the prediction of the next system state. The weighted mean utilizes the 

probabilities discovered in the system state motif detection algorithm as described in Eq. 

(23) where �Y-��
&� is the predicted value for the ith state coordinate, >1 is the 

probability of the 
1 state discovered in the motif detection. 

 

�Y-��
&� � $ �];][]_K
$ �][]_K

     (23) 
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Using this mean state prediction technique the first three states of the weather 

system in the above example would be 68,73 to 63,68 and then to 54,63. In addition to 

allowing for a single predictive point on the third state in this example, it is also 

instructive to see that the single predictive point forms a norm of sorts for the cyclical 

action of the chaotic system. The state predictive algorithm suffices for system 

generalization when actual single point prediction is not necessary. Further, the state 

predictive algorithm allows for prediction of longer periods than obtainable by single 

point prediction using chaotic prediction techniques, discussed in Chapter 4 of this thesis, 

or stochastic prediction methods. 

In conclusion, a new methodology for visualizing the states of a chaotic system 

has been introduced. The traversal of these system states was represented by the novel 

Ergodicity Plot (EP). The proposed EP represents the system dynamics in a much clearer 

fashion than is given in the standard RP and can be used to detect system normality. 

Further, the use of the EP allows for detection of frequent system state change motifs 

which are then used to predict the next system states. The motif detection algorithm 

presented closely followed the Apriori algorithm for discovery of frequent sets and was 

used to discover frequent state change patterns or motifs. The frequent state change 

patterns allow for efficient prediction of future states of the system without the need for 

individual value prediction discussed in Chapter 4 of this thesis. 
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CHAPTER 4. PREDICTION OF CHAOTIC SYSTEMS 

Time series prediction plays an important role in many domains including 

medical diagnosis, energy planning, weather prediction, and warning of catastrophic 

events. Unfortunately, many of these domains are represented by systems which exhibit 

deterministic chaos, making accurate prediction of future data values difficult.  

 Prediction of future values in a system which appears random, but operates from 

deterministic equations is a challenging task that has been addressed by many researchers 

over the past two decades. Farmer et al. [49] addressed this topic in 1987 using a k-

nearest neighbors methodology in embedding phase space to predict the next states of the 

system. The prediction technique of [49] is considered a local technique based upon a 

given neighborhood about the point being predicted. The nearest neighbor technique, as it 

is often called, simply selects the nearest neighbor to the last point in the time series (on a 

separate orbit) and follows that point’s orbit for n time increments. Casdagli [50] 

proposed a nonlinear prediction algorithm which derived the equations of motion for the 

chaotic system through interpolation of the chaotic time series data. Zhang et al. [2], in 

2004, utilized the idea of Lyapunov exponents and local neighborhoods to predict values 

k iterations in the future. 

 Other researchers have sought to enhance chaotic time series prediction rather 

than introducing new prediction techniques. Karunasingha et al. [51] proposed the 

enhancement of prediction through the use of non-linear noise-reduction techniques to 

improve data quality. It was proposed by [4] that the reduction of noise in the chaotic 

time series improved the prediction accuracy. As recent as 2009, Zhao et al. [43] 

introduced the technique of using multiple axes of data to predict another axis. Damle et 
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al. [52] sought to enhance time series prediction techniques through data mining in the 

nonlinear phase space. 

 While the literature contains various prediction techniques for chaotic time series 

data, it is widely accepted that the accurate prediction of deterministically chaotic time 

series is a relatively open problem. This section seeks to offer a solution which is aimed, 

at least partially, at solving the problem of accurate prediction. The proposed 

methodology makes use of Lyapunov exponents and the calculation of a globally optimal 

constant through the use of a modified evolutionary algorithm to predict values of a 

chaotic system in embedded phase space. As will be shown, this methodology holds 

promise for accurate prediction to the limit of the Lyapunov exponent of the considered 

variable. The proposed methodology is also very useful in predicting points which may 

be missing from a chaotic dataset in use by the other algorithms of this thesis. 

 

4.1 A New Chaotic Prediction Algorithm 

 This section highlights a new algorithm for predicting future values of a chaotic 

system. The proposed chaotic prediction methodology makes use of the embedding phase 

space and the Lyapunov exponents discussed in Chapter 2. These elements are coupled 

with a modified evolutionary algorithm for the calculation of an optimal constant for the 

prediction schema. As described in Chapter 2, Lyapunov exponents determine the rate 

of divergence or convergence of points in embedded phase space. This fact can be 

exploited to the benefit of a prediction algorithm. Let s1 and s2 be two points in 

embedding phase space with distance ��
 � �/� � �8 � �, some small value. Denote by 

δn the distance between the evolution of s1 and s2 at some point n ahead in phase space. 
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Then define the Lyapunov exponent, λ, used here as given in Eq. (24) where c is some 

constant and e is the exponential [3].  

 

�� � �8-�v      (24) 

 

 This important definition forms the basis of the proposed prediction methodology. 

From this definition it is possible to accurately predict a new point given the current state 

(last point) of the time series and another point in the series which is close to the current 

state  as follows. From the current state (last point) of the time series, xcur, the nearest 

neighboring point, xi, on a different orbit from the current state is found. The distance, δ0, 

between these two points is calculated. The the distance, δ1, is caluclated using Eq. (24). 

The system is then advanced one time step forward from the nearest neighboring point, 

xi+1, and the predicted point, xpred, is calculated as given in Eq. (25). 


�o�: � 
&�
 , �
     (25) 

The prediction methodology above is described intuitively in Fig. 19. 

 

 

 

Figure 36. Proposed prediction schema 
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 The prediction methodology then continues iteratively with the newly predicted 

point becoming the current state (last point) of the time series in embedding phase space. 

The predictions are easily transformed back into the original data space for the variable 

which the embedding phase space was created. Each prediction is appended to the end of 

the real space for the variable under consideration. 

 The methodology above assumes that the constant c in Eq. (24) has been 

calculated optimally. For this the use of a modified evolutionary algorithm is considered. 

Evolutionary algorithms are population based optimization algorithms which utilize the 

evolutionary processes of mutation and crossover [53]. The algorithm suggested here 

uses a population of individuals which are randomly generated as variants of an initial 

seed given to the algorithm for the constant c of Eq. (24). The individuals have a 

representation of the single number c and are being evolved to discover the optimal 

constant for the predictions schema. The mutation operator of the modified evolutionary 

algorithm mutates the individual by randomly adding/subtracting a small value to/from 

that individual’s value respectively. The crossover operator is the major modification of 

the algorithm and produces a single child which is the mean value of the two parent’s 

values. 

 The modified evolutionary algorithm takes an initial seed of c as input. The initial 

c is calculated from the current state (last point) of the time series and its closest neighbor 

as described above. The distance, δ0, is calculated as before; then the distance, δ-1, 

between the points preceding these two points is also calculated. The two distance 

measures are then used to estimate c as in Eq. (26) 
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where λ is the, possibly local, Lyapunov exponent of the time series for the variable 

being predicted. 

 The fitness function of the modified evolutionary algorithm uses a training set of 

data from the time series and the c value of the individual to calculate the individual’s 

error on predicting the training set. The algorithm  progresses until the best individual’s 

(the individual with the lowest error on the training data) error value has not changed for 

100 iterations of the algorithm. The best individual of the algorithm is selected and its c 

value is used in the proposed prediction methodology.  

 For some datasets, especially those with larger Lyapunov exponents, the 

discovered constant may need to be updated throughout the prediction run. Larger 

Lyapunov exponents indicate greater divergence and therefore the constant may need 

updating to maintain good prediction results. Alternatively, local Lyapunov Exponents 

may be used in specific regions to enhance the prediction accuracy. Those datasets with 

smaller positive Lyapunov exponents do well with the single optimization of the constant 

for relatively larger numbers of prediction steps. The next section shall illustrate the use 

of this prediction methodology on three chaotic systems. 

 

4.2 Prediction in Practice 

This section illustrates the accuracy of the proposed prediction methodology on 

two well known chaotic systems, the Henon Map and the Duffing Map. Additionally, the 

methodology is applied to prediction of the generator speed of a wind turbine from a time 
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series containing historic values of the generator speed and wind speed. The accuracy of 

the proposed prediction methodology is indicated in each case by the relative and 

absolute errors for specific prediction points and the mean absolute error for 100 

prediction points. 

 

4.2.1 Prediction with the Duffing Map 

 The Duffing Map, as described in Eq. (12) is a well known difference equation 

with well understood chaotic dynamics. For the validation of the proposed prediction 

methodology 10,000 data points are used as the training set of the prediction algorithm. 

The prediction algorithm is then used to predict the next 100 points. The Lyapunov 

exponent for the 10,000 points of the Duffing Map was calculated to be 0.50493 and the 

optimal constant for the prediction algorithm given in Eq. (24) was generated by the 

modified evolutionary algorithm to be 0.760247. Table 2 describes the prediction 

accuracy for the first 10 points. 

 

Table 2. Prediction Accuracy for the First 10 Predictions for the Duffing Map 

Actual Predicted 
Absolute 

Error 
Relative 

Error 

0.088 0.086 0.002 0.030 

0.260 0.253 0.007 0.028 

0.681 0.662 0.018 0.027 

1.505 1.237 0.268 0.178 

0.592 1.376 0.783 1.322 

1.120 0.946 0.174 0.155 

1.555 1.474 0.081 0.052 

0.288 0.650 0.362 1.257 

0.457 1.218 0.761 1.667 

1.103 1.413 0.311 0.282 
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 As can be seen from Table 2 the proposed prediction algorithm does well until the 

5
th

 prediction step at which time it produces larger errors but then recovers. This is due to 

the region of phase space the prediction is in and its compression. This indicates a need 

for the use of the local Lyapunov Exponent. Fig. 37 shows the relative error for the 100 

predictions of the Duffing Map. Clearly, the prediction schema does fairly well with most 

of the 100 predictions but there are some points in which the prediction schema performs 

poorly. As will be seen in §4.2.2, this is dataset dependent. The mean absolute error for 

the predictions of the Duffing Map was calculated to be 0.99687. 

 

 
Figure 37. Relative error for the proposed prediction technique on the Duffing Map. 

 

 

 

 To facilitate a complete analysis of the new prediction technique a comparison 

against existing techniques is given. Two existing techniques are chosen for comparison. 

The neural network technique is chosen as it is a very well known and accepted technique 

often used to perform prediction of nonlinear systems. The neural network used in this 

comparison consisted of a topology with an input layer of 5 nodes, a hidden layer of 10 

nodes and an output layer, the prediction. Standard sigmoidal activation functions were 

used throughout the network and were updated in a back propagation methodology [5]. 
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The second existing technique chosen is the nearest neighbor prediction algorithms put 

forth by Farmer et. al. [49] and described above. 

 Applying the neural network prediction schema to the Duffing Map produced a 

result which was significantly better than the currently proposed technique. The neural 

network predictor predicted with a mean absolute error of only 0.3278. Fig. 38 plots the 

relative error for the neural network predictor on the Duffing Map. 

 

 
Figure 38. Relative error of the neural network predictor on the Duffing Map. 

 

 

 

 For the final comparison, the nearest neighbor methodology of prediction is 

applied to predict the next 100 data points of the Duffing Map. The nearest neighbor 

technique produced a result with a mean absolute error of 1.1519. Fig. 39 illustrates the 

relative error for the nearest neighbor technique on the prediction of the next 100 data 

points of the Duffing Map. 
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Figure 39. Relative error of the nearest neighbor prediction technique on the Duffing 

Map. 

 

 

 

 In the case of the Duffing Map, the neural network prediction methodology 

outperformed the two chaotic techniques. Disappointingly, the proposed technique was 

not as accurate as the neural network technique for prediction. However, it did 

outperform the nearest neighbor technique. Table 4 illustrates directly the performance of 

the three techniques on the Duffing Map. It is hypothesized that the cause of this poor 

performance was the sparseness of data in the center of the Duffing Map. As will be seen 

in the next sub-section, the new technique performs far better when the phase space does 

not contain this sparseness. 

 

Table 3. Comparison of the mean absolute error of the prediction techniques on the 

Duffing Map. 
Prediction Technique Mean Absolute Error 

Neural Network 0.3278 

Nearest Neighbor 1.1519 

Proposed Technique 0.9969 
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4.2.2 Prediction with the Henon Map 

 The Henon Map, as described in Eq. (27), is another well known difference 

equation with well understood dynamics. As with the Duffing map, the validation of the 

proposed prediction methodology uses the first 10,000 data points as the training set of 

the prediction algorithm. The prediction algorithm is then used to predict the next 100 

points. The Lyapunov exponent for the 10,000 points of the Henon Map was calculated to 

be 0.427386 (given a = 1.25 and b  = 0.3) and the optimal constant for the prediction 

algorithm given in Eq. (24) was generated by the modified evolutionary algorithm to be -

4.4055. Table 4 illustrates the prediction accuracy for the first 10 points of the prediction. 

 

g
��
 � �� , � � �
�/                           
���
 � h
�                                                              

j    (27) 

 

 As can be seen from Table 4, the prediction algorithm does much better with the 

Henon Map dataset than it did with the Duffing Map dataset. This is partly due to the 

lower Lyapunov exponent value of the first 10,000 points of the Henon Map and the lack 

of the sparse center region found in the Duffing Map. Fig. 40 shows the relative error for 

the 100 predictions of the Henon Map. Clearly, the prediction schema does fairly well 

with most of the 100 predictions. While there are some larger relative errors in the 

predictions, there is not the large error exhibited in the Duffing Map. The mean absolute 

error for the predictions of the Henon Map was calculated to be 0.512295. 
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Table 4. Prediction Accuracy for the First 10 Predictions for the Henon Map 

Actual Predicted 
Absolute 

Error 
Relative 

Error 

1.148 1.177 0.029 0.025 

-0.933 -1.030 0.097 0.104 

0.125 -0.133 0.258 2.064 

0.698 0.666 0.032 0.046 

0.355 0.339 0.016 0.045 

1.0328 1.039 0.006 0.006 

-0.387 -0.411 0.024 0.062 

1.101 1.07561 0.025 0.023 

-0.812 -0.743 0.069 0.0850 
0.408 0.550 0.142 0.348 

 

 

 
Figure 40. Relative error the proposed prediction technique on the Henon Map 

 

 Again, the results of the new prediction methodology should be compared with 

those of existing methods. Using the same initial conditions as those which created the 

results in Fig. 40, a neural network, with the topology as described for the Duffing Map 

example, was used to predict the next 100 points of the Henon Map. The neural network 

produced a mean absolute error of 0.8857. Fig. 41 shows the relative error of the neural 

network for the 100 prediction points.  
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Figure 41. Relative error of the neural network on the Henon Map 

 

 

 To complete the comparison of the new prediction methodology to existing 

methodologies on the Henon Map, the nearest neighbor methodology, as described above 

in the Duffing Map example, was used to predict the next 100 points of the map. The 

nearest neighbor prediction methodology produced a mean absolute error of 0.6242. Fig. 

42 plots the relative error of the nearest neighbor method prediction of the Henon Map. 

 

 
Figure 42. Relative error of the nearest neighbor prediction methodology on the Henon 

Map. 

 

 

 

 It is easily seen that the proposed prediction methodology outperforms the 

existing methodology techniques. It is also shown that the neural network technique 
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performs the worst of the three techniques. With the lack of sparseness that was 

experienced in the Duffing Map, it is clearly shown that chaotic prediction techniques are 

more adept than standard stochastic techniques for deterministically chaotic systems. 

This statement is especially true of those systems which do not contain sparse regions of 

phase space within the orbits of the system. Table 5 illustrates directly the comparison of 

the three prediction techniques. 

 

Table 5. Comparison of errors for prediction of the Henon Map. 
Prediction Technique Mean Absolute Error 

Neural Network 0.8857 

Nearest Neighbor 0.6242 

Proposed Technique 0.5123 

 

 

4.2.3 Prediction on Wind Turbine Generator Speed. 

 For this section, data from a commercial wind turbine in service was captured at 

10 second intervals. From the over 100 parameters of the captured SCADA data two 

parameters were used for this example, the generator speed and the wind speed.  The 

combination of these two parameters was used in this prediction exercise. 4000 data 

points were used as the training set for the prediction algorithm and the generator speed 

was selected as the variable to predict. The original 4000 points of the generator speed 

are shown in Fig. 39, with the corresponding wind speed, and the phase portrait of those 

4000 points is given in Fig. 44. 
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Figure 43. The first 4000 data points for the generator speed of a given wind turbine at 10 

second intervals 

 

 

 

  
Figure 44. Phase Portrait of first 4000 points for generator speed of a given wind turbine. 
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The prediction algorithm is used to predict the next 100 points of the generator 

speed for the given turbine. The Lyapunov exponent for the first 4,000 points of the 

generator speed was calculated to be 0.17662 and the optimal constant for the prediction 

algorithm, given in Eq. (24), was generated by the modified evolutionary algorithm to be 

-3.6091. Table 4 illustrates the prediction accuracy for the first 10 points of the 

prediction. 

 

Table 6. Prediction Accuracy for the First 10 Predictions for the Generator Speed 

Actual Predicted 
Absolute 

Error 
Relative 

Error 

869.8 870.7 0.9 0.001 

870 869.7 0.3 0.0003 

870.5 870.0 0.5 0.0006 

868.8 868.6 0.2 0.0002 

868.1 871.9 3.8 0.004 

871.7 870.8 0.9 0.001 

870.1 870.2 0.1 0.0001 

870.2 871.4 1.2 0.001 

868.7 869.4 0.7 0.0008 

870 868.84 1.16 0.001 
 

 

As can be seen from Table 6, the prediction algorithm does very well with the 

prediction of generator speed. Fig. 45 illustrates the relative error for the 100 predictions 

of the generator speed. Clearly, the prediction schema does extremely well with the 100 

predictions. The mean absolute error for the predictions of the generator speed was 

calculated to be 11.95782. The mean absolute error is influenced by the large values of 

the actual data. The mean relative error better illustrates the error rate for this data set. 
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The mean relative error for the 100 predictions of generator speed was calculated to be 

0.013143 which is a strong validation of the proposed prediction methodology. 

 

 

Figure 45. Relative error for generator speed predictions. 

 

 

 Again, a comparison was performed between the three prediction methodologies 

discussed above. The neural network prediction algorithm was configured as in the 

previous two examples and produced results with a mean absolute error of 25.6415 for 

the next 100 points in the wind dataset. For the same dataset and prediction points the 

nearest neighbor methodology performed better, producing results with a mean absolute 

error of 14.2319.  The results of the neural network and nearest neighbor methodologies 

are given in Fig. 46 and 47 respectively. The direct comparison of the errors for the three 

prediction techniques is given in Table 7. 
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Figure 46. Relative error of the neural network for generator speed predictions. 

 

 

 
 

Figure 47. Relative error of the nearest neighbor methodology for generator speed 

predictions. 

 

 

 

 

Table 7. Comparison of the prediction methodologies mean absolute error for the wind 

dataset. 
Prediction Technique Mean Absolute Error 

Neural Network 25.6415 

Nearest Neighbor 14.2319 

Proposed Technique 11.9578 

 

  

 It is clear to see from Table 7 that the chaotic prediction methodologies again 

performed far better than the non-chaotic neural network on the chaotic dataset. 
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However, due to the nature of the data set, with its divergent regions of values, it is 

desirable to choose multiple regions of the dataset and compare the predictions of the 

three methodologies for each region. Table 8 describes the results of this comparison. 

The first column of Table 8 is the index from which the predictions began in each region. 

 

Table 8. Mean absolute error of prediction of the wind generator dataset. 

Starting Index Proposed Technique Nearest Neighbor Neural Network 

1001 9.879 9.983 11.388 

2001 6.448 7.053 8.981 

2901 5.310 6.753 93.513 

3501 7.662 8.082 9.564 

 

  

 As can be seen from Table 8, the proposed prediction technique does very well 

with the wind turbine generator dataset. The technique was able to adequately predict 

data points in all regions. In the region which produced the most difficulty for the neural 

network, the region where the data tends to zero, the proposed technique was able to 

respond with accurate predictions. These results clearly indicate that the proposed 

technique is a viable prediction algorithm. 

 

 

4.3 Discussion of Prediction Results 

The results of the examples given above indicate that the proposed prediction 

methodology does well in practice and remains fairly accurate over the length of the 

predictions to the limit of the Lyapunov exponent. It is also clear that the algorithm does 
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much better for Lyapunov exponents which are smaller in value, as would be expected. 

Table 9 illustrates this fact through comparison of the three examples above. 

 

Table 9. Prediction Methodology Accuracy 

Dataset λ value MAE MRE 

Duffing Map 0.505 0.997 2.153 

Henon Map 0.427 0.512 1.433 

Generator Speed 0.177 11.958 0.0131 

 

 

 The results given in Table 9 hold great promise for the proposed methodology’s 

accuracy. An additional benefit of the proposed prediction methodology is that it can be 

customized to the given dataset. Should a dataset produce prediction errors larger than 

desired it is possible to increase the frequency of the calculation of the constant c by the 

evolutionary algorithm. Additionally, the computation time for the predictions is 

moderate, relative to the dataset. Thus, the algorithm is appealing for control strategies as 

well as basic predictions. 
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CHAPTER 5. SYSTEM STATE CHANGE AND ANOMALY DETECTION IN 

CHAOTIC SYSTEMS 

 Many domains, such as industrial control systems, health care, and computer 

networking, are concerned with system state change detection. The early detection of 

system changes can assist in preventing catastrophic failure in critical systems such as the 

power grid. Additionally, state change detection can warn of such issues as cyber attacks 

on computing networks. The detection of these phenomena can be a challenging task. 

However, this task becomes more difficult when the system under question is represented 

by deterministically chaotic data. 

 The literature contains many references related to anomaly detection in linear, 

linearized, and stochastic systems. As examples, in the computer network/cyber domain 

research has been presented by Patcha et al. [54], Wang et al [55] and Fang et al [56]. 

Work was also reported in the medical domain such as the survey presented by Chandola 

et al [57] or the work of Chuah et al [58]. The state change detection domain is also well 

represented for the linear, linearized and stochastic realms. Azad et al [59] presented 

research related to state change detection in active and inactive systems and Radke et al 

[60] presented a survey of change detection techniques for the image domain. 

Unfortunately, the techniques of linear and stochastic state change, detection algorithms 

are insufficient for use on deterministically chaotic systems. 

Rapid advances in technology, especially in safety critical domains, have resulted 

in a greater need for accurate description and anomaly detection of deterministically 

chaotic systems. Domains such as the Smart Grid [7], alternative energy control, 

advanced cryptographic communications and even the human heart are driven by 
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deterministic chaos and require accurate state characterization and early detection of 

forthcoming anomalies. 

Limited research has been conducted in the domain of chaotic system state change 

detection. Tykierko [61] presented work which utilized changes in invariant metrics 

related to the chaotic system, such as the fractal dimension or the maximal Lyapunov 

exponent, to detect state changes. Chakraborty et al [62] proposed the use of symbolic 

dynamics filtering for anomaly detection. Ref. [62] was extended by Rao et al [63] in 

their review of the topic. However, these methodologies lack the ability to be readily 

visualized by the user and are computationally intense, therefore inappropriate for real 

time implementation. 

This section presents a system state change detection algorithm specifically for 

systems exhibiting deterministic chaos. The presented material takes advantage of the 

reconstructed phase space of the chaotic system through the course grained Ergodicity 

Plot and a novel transition matrix. The novel transition matrix can be utilized to detect 

system changes as new data is streamed into the algorithm. As will be shown, the 

proposed algorithm can be used in real time systems due to its extremely small 

computational footprint and is highly effective at detecting small changes in a chaotic 

system as well as direct anomalies. Further, the proposed algorithm is tunable with user 

defined parameters to assist in reducing false positive rates.  

 

5.1 Ergodic Transition Matrixes 

 It is possible to utilize the new Ergodicity Plot to better understand 

mathematically the regions of phase space which are visited by the orbits of the chaotic 
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system. To do so, a matrix of the transitions can be generated. Transition probability 

matrices are not novel in of themselves. The Markov Chain has been well studied and 

well represents the transition probabilities of a system [64]. However the matrix that will 

be generated here diverges from the standard Markov model through the use of the local 

Lyapunov exponent of the region represented by a member of the partition of the 

previous section to generate a transition measure rather than a transition probability. 

The calculation of the local Lyapunov exponent is performed as given in Chapter 

2, with only the data in the local region being considered. With the local Lyapunov 

exponent calculated for each region in the partitioned embedding phase space the Ergodic 

Transition Matrix can be generated as follows. Consider a equivariant partition I on the 

embedding phase space resulting in a 



�� � 

�� square matrix. For each cell, mi,j of the 

matrix, calculate the probability, ρ, that the orbit transitions from the ith region of the 

partitioned phase space to the jth region. Then the ergodic transition measure etm(●) for 

the cell mi,j is given in Eq. (28). The appendix of this thesis contains a pseudocode 

method of computer software for the creation of the ETM as described here. Table 9 

illustrates a small portion the Ergodic Transition Matrix for the data used to generate the 

EP for the Cedar Rapids, IA temperature data discussed in Chapter 3 and illustrated in 

Fig. 34. 

 

-+�n�& .p �  >F     (28) 
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Table 10.Portion of the Ergodic Transition Matrix for the EP in Fig. 34. 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0.000779 0.000779 0 0 0 0 

 

 

As can be seen in Table 10, The Ergodic Transition Matrix is often a sparse matrix. This 

is extremely beneficial though when seeking to perform real time analysis as will be 

shown in Chapter 6 with case studies. To facilitate the visualization of the entire Ergodic 

Transition Matrix the matrix is plotted as a surface plot in Fig. 48. 

 

 

Figure 48. Surface Plot of the Ergodic Transition Matrix for the Data in Fig. 16. 
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The Ergodic Transition Matrix (ETM) is highly effective at representing the 

manners by which the chaotic system traverses the embedding phase space. More 

importantly though, the partitioning of the embedding phase space can be viewed as the 

generation of system states where each member of the partition represents a specific 

system state. Then, the ETM can be viewed as representational of the traversal of system 

states by the chaotic system. As such it can be used for system state change and anomaly 

detection as presented next. 

 

5.2 Change Detection using the ETM 

 The ETM is a concise and manageable representation of the ergodicity of the 

chaotic system. As such, it contains useful information pertaining to the normal operating 

conditions of the chaotic system under consideration. It is possible to utilize the ETM to 

determine when the chaotic system is experiencing small state changes which could 

indicate the early occurrence of anomalous features (e.g. changes in the system states 

which indicate system degradation, possibly to failure). This section defines the use of 

the ETM for state change detection. Actual case study examples of this methodology are 

left for presentation in Chapter 6. 

 Consider a chaotic system which is currently operating without anomalies or 

outliers and is not experiencing changes in the system states. The attractor representing 

that system is representational of the system’s normal operating conditions. As such, it is 

possible to form the EP and ETM from the system’s attractor of normality. The ETM 

generated from the system’s attractor, and EP, forms a baseline pattern of trajectory 
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traversal within the embedding phase space and may be used as a benchmark by which 

future traversals may be measured. Define this type of ETM as the ETM of Normality, 

ETMNorm. It should be noted that, as with all machine learning techniques, the larger the 

training, or in this case normal, dataset available, within a reasonable limit, the more 

accurate the model will be. Thus, a sufficient sized sample of the normal operating states 

is desirous for the algorithm; however, this is subjective and dependent upon the system 

under consideration. 

 Given the ETM of Normality, ETMNorm, for the system under consideration, it is 

possible to stream new data into the algorithm and compare the ETM of the new data to 

the ETMNorm. To facilitate the comparison, a buffer is maintained, in a moving window 

method, of the new streaming data, as single data points do not facilitate the generation of 

an ETM. The size of this buffer is system dependent but a sufficient buffer size consists 

of 4-5 complete orbits of the chaotic system.  The ETM of the streaming data is created 

each time a complete (mean) orbit has been added to the buffer. As the new orbit is added 

to the buffer, the previous first orbit of the buffer is removed to facilitate maintaining a 

constant buffer size. The absolute difference between the ETM for the buffer, #�*���, 

and the, ETMNorm represents the degree of system state change, ∆s, as given in Eq. (29). 

 

B� � �#�*(�o� � #�*����     (29) 

  

The degree of system state change, ∆s, can be used to warn of systems which may 

be experiencing shifts in their operating states, as these phenomena will appear as 

differences between the buffer ETM from the ETM of Normality. It is possible to set a 
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threshold, �, based on the degree of state change metric, ∆s, such that a warning is given 

for state changes B� � �. The degree of system state change metric is sensitive to even 

small changes in the system operation and is therefore highly effective for state change 

detection. The use of the alarm threshold affords the tuning of the state change detection 

algorithm to reduce false positive rates. 

The buffer of the detection algorithm forms a moving window as new data is 

streamed into the system. Therefore, it is possible to continue to compare new data as it is 

encountered. Additionally, it is possible to evolve the ETMNorm to include recently 

encountered data, such as may be desired for systems which may include a break in 

period. In such systems it would then be more desirable to consider the initial data as 

transient to the actual ETMNorm. Obviously, evolution of the #�*(�o� is system 

dependent.  

Due to the compact size of the ETM, as a real valued matrix, it is easy to see how 

this methodology could be used in a real time monitoring system with little 

computational overhead. The ETMNorm is only a matrix of state change metrics, double 

precision, which is easily stored in resident memory for even the smallest of systems. The 

buffer ETM is easily generated with little overhead as well, making the proposed 

algorithm a very attractive near real-time detection system. The appendix of this thesis 

contains a pseudocode method for a computer program to perform anomaly and system 

state change detection as described here. 

In conclusion, this section has presented a novel anomaly and state change 

detection technique. The validity of this technique on actual chaotic systems is given in 

Chapter 6. The technique has been shown to be computationally simple and maintains a 
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small system footprint allowing it to be utilized in a near real-time environment on 

smaller embedded devices.   
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CHAPTER 6. CASE STUDIES 

 This section illustrates the effectiveness of the techniques proposed in this thesis 

through case studies in various domains. The case studies presented here represent real 

world systems and actual collected data. However, due to the sensitivity of some of the 

data presented, any information reflecting specific individuals has been cleansed and 

represented by discrete naming conventions which protect individual identities. The 

studies utilize one or more techniques from the material presented in the previous 

sections of this thesis. 

 

6.1 Classification of MMO Users through Ergodicity Plots 

 

This section describes research conducted in the domain of motif detection and 

association in Massive Multiplayer Online (MMO) environments. This research included 

classifying user types through network motif pattern recognition techniques, comparing 

these motifs to chaotic attractors reconstructed for each user, and determining if any such 

comparisons could be used as classification techniques in their own right. This case study 

illustrates the ability of chaotic attractors and EPs to be used as classifiers for instances of 

chaotic systems. 

 The dataset used for the research conducted was gleaned from publicly available 

Internet Relay Chat (IRC) logs for the online game Eve Online
®

. The dataset represented 

individual messages posted to the IRC logs by members of the gaming community. There 

were 274 channels from which the data was taken. Combined, there were 1,075,490 

messages logged. Each message consisted of a timestamp indicating when the message 
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posted to the IRC channel, the username (avatar name) of the user posting the message, 

and the message content. 

 The data obtained from the IRC logs represented a time span beginning on 

November 2006 and ending on May 2010. These logs were parsed into a SQL server 

database to facilitate easy retrieval of the data. In addition to the simple parsing of the 

data, a database of id numbers for each user (avatar) which consisted of simple integer 

values was generated. This was done in order to preserve privacy of the individual users 

during the course of the research. Additionally, a database of relations was generated to 

indicate the relationships between users in the IRC channels. These relations were 

generated based on temporal proximity to a given message. Therefore, distinct users who 

had posted messages to the IRC channel in a given time prior and following the posting 

of a message are considered to have a relationship, albeit implicit. 

 A network diagram was generated for each user in the database using an open 

source network software tool. A visual inspection of these diagrams revealed patterns 

which could be used for classification. Due to these patterns being detected the author 

undertook a pattern analysis of the network diagrams and discovered a number of distinct 

classes of patterns.  For the sake of the present study, the number of classes was limited 

to be three; however this is a user selected parameter and can be changed. These classes 

were related to the user’s role within the game. The three classifications that emerged 

were the leader role (one who leads missions within the MMO environment), workers 

(one who follows instructions and works at a low level to perform tasks during MMO 

missions) and finally spies (one who communicates with both their own team and the 

opposing team in the MMO environment).  These classifications were confirmed through 
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polling users of the IRC logs in this particular MMO environment. Fig. 47 illustrates the 

network diagram for a user classified as a leader, while Fig. 48 shows a follower and Fig. 

49 a spy. 

As can be clearly seen in Fig. 49-51 there are distinct relationship link motifs for 

each class of user. Leaders link to a select few other users in the IRC channels
4
 whereas 

workers link to a large number of other users. It is clear from Fig. 51 that users classified 

as spies link to two or more distinct user groups. Assumptions concerning different IRC 

channels and chat rooms were taken into account in developing these diagrams and do 

not influence the classifications presented herein. 

 

 

Figure 49. Network Diagram for a user classified as a leader. 

                                                 
4
 For the game known as Eve Online it has been shown that leaders are most often utilizing voice 

communications such as Skype rather than IRC chat. 
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Figure 50. Network Diagram for a user classified as a worker. 

 

 

 

 

 
Figure 51. Network Diagram for a user classified as a spy. 
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From the network diagram classification it was possible to determine specific 

network motifs. These motifs were discovered during the pattern recognition phase of 

this research. The motifs alone are sufficient for correctly classifying the network 

diagrams. It was discovered that this classification was accurate to above 80% for the 

data tested. The IRC logs indicated that some users only communicated once or twice 

during the period considered and as such these may have been misclassified. 

 In addition to performing a pattern discovery analysis of the network diagrams, 

research was performed to understand if the data representing user chats in IRC channels 

was nonlinear (deterministically chaotic). To determine if the user data in the IRC 

channels comes from a deterministically chaotic distribution a dataset was created of the 

user data which utilized the timestamp and the length of the message. These values form 

a vector for each communication event. The timestamp is transformed to represent the 

hour in which the message was sent but the temporal order is maintained during the 

transformation. The text length is used to represent the size of the message. The message 

content is not used for this research which presents a large benefit for the analysis of 

large datasets. 

Transforming the IRC data into embedding phase space utilizes the embedding 

theorems discussed in Chapter 2 of this thesis. This results in visualization (in 2 or 3 

dimensions in these cases) of the chaotic system. The ergodicity of the orbits in the 

trajectory offer a unique classification point that will be discussed shortly. Fig. 52-54 

illustrates the chaotic attractors for the users whose network diagrams are given in Fig. 

49-51. 
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Figure 52. Chaotic Attractor for user in Fig. 47. 

 

 

 

 
Figure 53. Chaotic Attractor for user in Fig. 48. 
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Figure 54. Chaotic Attractor for user in Fig. 49. 

 

 

As can be seen in Fig. 52-54, the attractors for each specific type of user are 

distinct. This uniqueness between classes was discovered to exist in common for the 

users when classified by their network diagrams. Since the network diagrams and the 

chaotic attractors represent two distinct types of information from the dataset it is 

possible to conclude that the classifications are distinct enough as well.  

The plots in Fig. 52-54 are difficult to read and extract understandable 

information from. However, these plots can be used as another form of classification. It 

was discovered that leaders communicated with short directed messages while workers 

had a tendency to communicate with longer, more disjoint, messages and for a longer 
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time. The users classified as spies tended to closely mimic the workers with the addition 

of some of the leader characteristics. This discovery is seen graphically in Fig. 53-55. 

Since the data from the IRC channels if from a chaotic distribution it is ergodic. 

To better visualize the embedding phase spaces, Ergodicity Plots were constructed by 

following the methods described in section 3 of this thesis. The EP is a condensed version 

of the chaotic attractor and is suitable for rapid classification of users based upon 

communications data. Fig. 55-57 illustrates the Ergodicity Plots for the attractors given in 

Fig. 52-54. The EPs of Fig. 55-57 have been colored red to highlight their differences 

from the chaotic attractors. 

 

 

Figure 55. EP for the attractor shown in Fig. 50. 

 



98 

 

 

 

 

 

 
Figure 56. EP for the attractor shown in Fig. 51. 

 

 

 

 
Figure 57. EP for the attractor shown in Fig. 52. 
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The research discussed in this section has shown that using simply the time stamp 

and message size of a log of messages for a specific user it is possible to classify the user 

as a leader, a worker or a spy (as well as other classes defined by the user)  in the MMO 

environment. The computation time of this classification is greatly reduced over semantic 

mining of the tests of communications thus offering an added benefit to the algorithm. 

Further, the work presented in this section has highlighted an application of the novel 

Ergodicity Plot (EP). The EP is easily utilized in a classification, or pattern recognition, 

scenario in a far more efficient manner than the simple reconstruction of the attractor of 

the nonlinear system. The use of the EPs for classifying the users in the MMO 

environment presented an accuracy of 81%. This compares very well with the 

computationally more intense method of developing network diagrams for each user. 

 

6.2 Chaotic Attractors for Cyber Security 

Cyber security is critical for uninterrupted functioning of our government, private 

and public enterprises. Realizing the cyber security threat, the Cyber Command has been 

created by our government to protect our infrastructure. Protection of such national 

infrastructure depends upon real time detection of cyber threats and subsequent remedial 

action. Extensive resources are being leveraged by government and private enterprises for 

cyber security but the complexity of the problem requires new ideas to be developed and 

implemented to overcome it.  Many companies face cyber attacks daily because of the 

nature of their business. This section presents the theory and results of a unique research 

project to develop an innovative attractor model for cyber security. 
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Today’s advanced, targeted malware typically goes undetected by commercial 

anti-virus software. The Advanced Persistent Threat (APT), in particular, is a 

classification of adversary which uses social engineering and sophisticated malicious 

code to gain a persistent presence inside an organization and, over time, to exfiltrate 

sensitive and proprietary company information [65]. Since these attacks change rapidly 

and are highly targeted, knowledge of past attacks is not sufficient to prevent future 

attacks. In particular, the traditional reactive approach of creating and using security 

patches does not root out the next threat. Rather, a robust and dynamic model of normal 

behavior (for a computer, user, network, etc.) is needed in order to identify malicious or 

abnormal patterns of behavior. Most approaches to modeling system behavior do not take 

into account the non-linearity (i.e., time dependence) of the data. The proposed 

methodology, however, will leverage deterministic chaos to learn the behavioral norm for 

systems in an adaptive fashion. The proposed evolutionary attractor model adapts as new 

information comes in. This case study project uses the theory of deterministic chaos and 

chaotic attractors to develop an adaptive model of normal behavior for individual user 

email. The intent is to use such models to detect behaviors that lie outside the region of 

normal behavior, thus identifying sophisticated attacks such as the APT attack in real 

time.  

6.2.1 Normal Cyber Activity 

Users operate in the cyber domain as part of their daily activity. Various tasks are 

accomplished in this domain including communications, planning, productivity, 

transactions, and entertainment. By nature, users perform these actions within some 

relative pattern. These patterns are governed by many factors including sleeping habits, 
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family life, and work schedules. These patterns are inherently nonlinear (time-dependent) 

due to many intervening events. This section discusses the exploitation of these patterns 

for determining a strange attractor which represents a user’s “normal” cyber activity and 

how that normality may be used to detect cyber attacks. 

Consider a user in a corporate environment. On a given day that user checks 

email, surfs the Internet, interacts with software (causing file I/O operations to take 

place), sends instant messages, checks social networking sites, banks online, and so forth. 

Those actions can all be considered linked to cyber activity directly or indirectly. 

Monitoring these activities in some form of a log file generates a time series data set 

which can be analyzed for nonlinearity. It is hypothesized that while exact activity at the 

same time every day is an unlikely event, certain forms of cyber activity will be 

conducted in relative proximity to a pattern of some given time interval. This pattern 

forms a strange attractor. 

Translation of the monitoring log into values that can be utilized by a nonlinear 

analysis is not a trivial task. Email activity is logged containing parameters for the 

sender’s email address, the recipient’s email address, the size of the email in bytes, the 

number of attachments, the time it was sent, the GMT time offset, and the content of the 

subject line. The majority of this data is non-numeric and therefore must undergo some 

transformation, or discretization, to be utilized in the reconstruction of a nonlinear phase 

portrait for that user.  

Email addresses can be transformed simply through the assignment of a unique 

identifying integer or through more complicated means such as clustering by domain. 

The size of emails and number of attachments already represent a real-valued 
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measurement. The GMT time offset is also an integer value and can remain as such. The 

subject line transformation poses an interesting problem as it is not easily transformed 

into a real value. To transform the subject line into a real value, a cluster analysis can be 

performed on all of the subject lines in a given training dataset. Each subject line will 

therefore belong to a specific cluster. The number of that cluster can be used to represent 

the subject line for the email under consideration. Time should also be truncated to an 

integer value for the hour of the day to avoid setting the granularity of the model too fine. 

Other forms of cyber activity may be transformed similar to email activity. Once the 

transformation of the cyber activity logs into real-valued space has been performed, the 

data may be analyzed to determine if the activity represents a deterministically chaotic 

system. This determination was performed following the methods given in Chapter 2 of 

this thesis. 

Knowing that the system is deterministically chaotic indicates a strange attractor 

can be recreated in embedding phase space to properly represent the dynamics of the 

system. The attractor reconstruction is performed as explained in Chapter 2 of this thesis. 

If the data used to reconstruct the attractor is known to come from normal cyber activity 

and that there were no cyber attacks recorded in the data, then the strange attractor can be 

used as the boundaries of normality for the training data. This normality can be 

associated with a single user if the training data represents the cyber activity of that user 

only. Each user will have a unique normality attractor. This is a fact that should be 

exploited to monitor for cyber attacks. 

A cyber attack can be detected as an outlier to the attractor of normal behavior. A 

point would be considered an outlier if it is outside the boundaries of the attractor of 
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normality for the user under consideration as discussed in Chapter 3 of this thesis. 

However, not all points that fall outside the attractor will be from a cyber attack. Often 

times a user’s work details changes, this will have an impact on normality for that user. 

Hence, points outside the bounds of the attractor are flagged as anomalous and 

monitored. Should further activity, similar to the anomalous behavior, be detected the 

attractor can be evolved to include that activity. Other heuristics may also be used. 

Initially, this would be a manual process to ensure proper characterization of the 

anomalous behavior. Should no further activity correlate to the anomalous detected 

activity, then that activity is most likely something that should be considered for deeper 

analysis by a technician. 

The monitoring of cyber activity for outliers to the bounds of the attractor could 

be adjusted such that the number of false positives being reported is reduced. Conversely, 

the system could be adjusted to report every anomaly without evolution of the attractor. 

Evolution and reporting are fully customizable by the end user to assure satisfactory 

results. 

6.2.2 Case Study Results 

For this project, 28 users were chosen as test subjects. The dataset collected for 

building the attractors contained metadata on email into and out of a government 

contractor company for each individual user. A training set of two months’ worth of 

email was collected for each user and was used to create chaotic attractors for each user. 

The email address parameter and the email size parameter were large enough that they 

could have overwhelmed the remaining parameters of the email data. Therefore, all 

parameters are normalized such that they reside in a similar (albeit not the same) interval 
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to avoid this problem. Additionally, the reconstruction of phase space is performed on the 

norm of the vector of all the parameters for each email as opposed to individual 

parameters alone. This allows for a better understanding of the data in general and a 

cleaner attractor representation for detection. With the norm calculated it is possible to 

determine if the system is truly nonlinear by calculating the maximum Lyapunov 

exponent of the data. Fig. 58 illustrates the raw data that has been normalized for the 

emails of a specific user. The Lyapunov exponent of this data was calculated to be 3.4328 

which clearly indicates a chaotic system. 

 

 
Figure 58. Raw normalized, timestamp ordered email data for a single user. 

 

 

Fig. 59 displays the embedded phase space for the data in Fig. 58. It is easy to see 

the ergodicity of the cyber behavior of this user from the repetitious revisiting of specific 

regions within the phase space. New emails were added to the attractor generated in Fig. 
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59. As this new email data was evaluated, points which were outside the bounds of the 

attractor were automatically flagged as anomalous and therefore highlighted to be 

monitored. Fig. 60 depicts this activity and the flagged data points. Since the emails 

identified here were responded to and were from the same (new) sender email address, 

the emails are likely legitimate. It may be desirable to include this as a rule for when to 

include outliers and evolve the attractor. Fig. 61 indicates another email attractor for a 

separate user. In this figure the outliers are identified and labeled.  

 

 

Figure 59. Embedded Phase Space for the data in Fig. 56. 

 

 

 



 

Figure 

 

 This section has presented the results of a cyber security project. An explanation 

of the use of strange attractors to model normal cyber behavior

successfully shown in this case study that cyber activity is deterministically chaotic. 

Further, the novel methodologies of section 3 of this thesis were supported through the 

detection of email anomalies in the cyber data set.

 

 

 
Figure 60. Email Attractor with detected anomalies. 

This section has presented the results of a cyber security project. An explanation 

of the use of strange attractors to model normal cyber behavior was given. It was 

successfully shown in this case study that cyber activity is deterministically chaotic. 

Further, the novel methodologies of section 3 of this thesis were supported through the 

detection of email anomalies in the cyber data set. 
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This section has presented the results of a cyber security project. An explanation 

was given. It was 

successfully shown in this case study that cyber activity is deterministically chaotic. 

Further, the novel methodologies of section 3 of this thesis were supported through the 



107 

 

 

 

 

 

 

 

 

 

 Figure 61. Email attractor with outliers described.  

 

 

  

Email from co-worker’s home email 

that was replied to immediately 

Email from competitor for data analysis 

(only 1 time) 

Email from father’s work email. Only 

one of its type. 
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6.3 ETMs for Anomaly and State Change Detection Case Study 

 This section presents case studies supporting the proposed system state change 

detection algorithm described in Chapter 5.2. The case studies presented use data from 

both mathematical difference equations and real world systems. The difference equations 

considered in this section are the Duffing Map and the Henon Map. The real world 

systems observed here consist of a cyber security dataset and a dataset captured from 

existing wind turbines in service. 

 

6.3.1 EMTs for the Duffing and Henon Maps 

 The Duffing map, given in Eq. (12), is a well known chaotic system. In order to 

represent the effectiveness of the proposed detection methodology a set of 4000 iterations 

is used as the initial training set forming the #�*(�o�. The first 4000 iterations of the 

Duffing map were illustrated in Fig. 23 for the x axis. The #�*(�o� for this initial set 

was generated, using a 15 by 15 square partition,  and is plotted as a contour map in Fig. 

62. 

 

Figure 62. Contour plot of the ETM of Normality for the first 4000 iterations of the 

Duffing Map. 
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As would be expected for the Duffing Map, the majority of the transitions take 

place in the periphery of the attractor. For the purposes of simple change detection 

illustration, the second 4000 points of the Duffing Map were generated and ran as 

streaming data to the change detection algorithm. The mean orbit length of the Duffing 

Map’s EP for a phase space generated with delay τ = 1 and embedding dimension d = 2 

was calculated as 219 iterations. Therefore, a buffer window of size 876 iterations was 

used to compare the second 4000 iterations to the first. Table 11 illustrates the mean 

differences, δmean, minimum differences, δmin, (greater than zero) and the maximum 

differences, δmax, between the #�*(�o� and the #�*���� for the streaming of the 

second 4000 iterations. 

 

Table 11. Differences between the ETM of Normality and the buffer ETM for the 1st and 

2nd 4000 iterations of the Duffing Map 

Buffer 

Number 
δmin δmax δmean 

1 1.05E-04 0.0186 4.58E-06 

2 3.98E-05 0.0211 8.53E-06 

3 3.98E-05 0.0452 1.59E-05 

4 1.05E-04 0.0532 1.80E-05 

5 1.05E-04 0.0727 2.12E-05 

6 3.98E-05 0.0612 2.05E-05 

7 3.98E-05 0.0383 1.33E-05 

8 1.05E-04 0.0163 8.29E-06 

9 1.05E-04 0.0320 1.13E-05 

10 1.08E-04 0.0457 1.37E-05 

11 3.46E-05 0.0293 1.00E-05 

12 4.26E-05 0.0174 7.80E-06 

13 3.98E-05 0.0271 1.08E-05 

14 1.05E-04 0.0467 1.72E-05 

15 1.05E-04 0.0467 1.72E-05 
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To better illustrate the absolute differences between the ETMNorm (first 4000 

iterations) of the Duffing Map and the ETM for the second 4000 iterations Fig. 63 plots 

the absolute difference between the cells of the compared ETMs as a line graph. The plot 

in Fig. 63, considers an ETM for the entire second 4000 points as opposed to the buffer 

methodology whose results were illustrated in Table 11. As can be seen in Fig. 63, the 

absolute differences between the two ETMs are relatively small. This illustrates the 

ability of the proposed detection methodology to detect even small state changes in the 

system. 

To complete the case study of the Duffing Map the third 4000 iterations of the 

map were streamed against the initial 4000 iterations in a manner similar to the second 

4000 iterations. The buffer size remained constant at 876 iterations. Table 12 illustrates 

the differences between the #�*(�o�and the #�*���� for the streaming of the third 

4000 iterations in a manner identical to that of Table 10. 

 

 
Figure 63. Absolute differences between the ETM of Normality and the ETM of the 

second 4000 iterations of the Duffing Map. 
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Table 12. Differences between the ETM of Normality and buffer ETM for the 1st and 3rd 

4000 iterations of the Duffing Map 
Buffer 

Number 
δmin δmax δmean 

1 3.46E-05 7.35E-02 2.00E-05 

2 3.98E-05 6.69E-02 1.99E-05 

3 3.98E-05 5.12E-02 1.76E-05 

4 3.98E-05 3.16E-02 1.16E-05 

5 1.05E-04 1.94E-02 7.67E-06 

6 3.46E-05 2.25E-02 8.67E-06 

7 3.46E-05 2.09E-02 8.27E-06 

8 3.46E-05 2.00E-02 8.22E-06 

9 3.46E-05 1.29E-02 7.82E-06 

10 4.26E-05 1.26E-02 7.09E-06 

11 1.42E-04 3.41E-02 1.18E-05 

12 3.46E-05 5.15E-02 1.79E-05 

13 1.08E-04 5.45E-02 1.91E-05 

14 1.05E-04 5.33E-02 1.77E-05 

15 6.22E-05 3.43E-02 1.22E-05 

 

 

The example of the Duffing map has illustrated that the proposed state change 

detection methodology is highly effective at detecting even small changes to the system. 

It was shown that the Duffing map does experience slight system shifts as it moves 

through time and that these shifts can be detected as state changes to the system. 

However, the Duffing Map case study does not directly indicate the ability of the 

proposed algorithm to detect direct outliers of the system. To illustrate this ability the 

Henon map, given in Eq. (14), is used. 

 The generation of the ETMNorm for the Henon map (with a = 1.4 and b  = 0.3) is 

performed using the first 4000 iterations of the difference equation for the embedding of 
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the x axis data with a square 20 by 20 partition. Fig. 64 displays the EP for the Henon 

map and Fig. 65 illustrates the contour plot for the ETMNorm for this system. 

 

 
Figure 64. EP of the first 4000 iterations of the Henon Map 

 
Figure 65. Contour plot of the ETM of Normality for the first 4000 iterations of the 

Henon Map 
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To illustrate the ability of the proposed methodology to detect direct anomalies in 

a chaotic system, a single point is modified in the first buffer of the Henon map. The 

mean orbit length of the Henon map with an imposed 20 by 20 square partition is 76; 

therefore, a sufficient buffer size is 304 iterations. Fig. 66 displays the contour plot of the 

first buffer of the Henon map with a single point modified by 10% to form an anomaly. 

Fig. 67 displays the contour plot of the absolute differences between the ETMNorm and the 

ETM of the first buffer for the Henon Map.  

 

 
Figure 66. Contour plot of the ETM of the first buffer of the Henon Map with a single 

point modified manually by 10% to be an anomaly. 
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Figure 67. Contour plot of the absolute differences of the ETM of Normality and the 

ETM of the first buffer (with a single point modified) for the Henon Map. 

  

 As can be seen in Fig. 67, the proposed methodology correctly displays a shift in 

the system for a single anomalous point. This detection is highly effective at detecting 

even small anomalies. The data point which was changed to develop the ETMs for Fig. 

16-17 was originally -1.0667 and was changed by 10%; however the proposed 

methodology detected this anomaly as a direct outlier in the system showing a maximum 

B� = 0.0106. Given that the mean difference between the ETMNorm and the first buffer of 

the Henon map is ~0.00205, the maximum difference would be detected even though a 

threshold may have been set to filter out the small changes of the system. 

 This sub-section has illustrated the use of the proposed methodology on two well 

known; the difference equations of the Henon map and the Duffing map. The use of the 

Duffing map illustrated the ability of the system to detect even small shifts in the chaotic 
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system which could indicate state changes forthcoming. The Henon map was used to 

illustrate the ability of the proposed methodology to detect direct anomalies. Further, this 

sub-section has illustrated the effectiveness of the novel Ergodic Transition Matrix to 

detect system state changes and anomalies. It was show, using two deterministically 

chaotic systems that the ETM detection algorithm is highly accurate and is capable of 

detecting extremely small system state changes as well as direct anomalies in 

mathematical difference equations. 

 

6.3.2 ETMs for Cyber Security 

 This sub-section presents the results of a case study in which the proposed chaotic 

state change and anomaly detection algorithms were applied to a cyber security dataset. 

The dataset used for this study was originally produced by the Massachusetts Institute of 

Technology’s (MIT) Lincoln Laboratory for the Defense Advanced Research Projects 

Agency (DARPA) [66]. The dataset consists of network data captured from a simulated 

United States military network. The simulated network was representational of a true 

military cyber network while maintaining obvious identification constraints pertinent to 

the national security level of the network. The captured data was organized into 5, week 

long, increments. The first, week long, increment of data represented a clean network 

with no intrusions or attacks. The second week of data represented the network in normal 

operation with 43 intrusions/attacks tagged with their attack name and time. The 

remaining 3, week long, increments represented normal network operations without 

tagging the intrusions/attacks. 
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 For the purposes of this case study, only week 1 and week 2 data was used. This 

constraint was placed to illustrate clearly the ability of the proposed ETMs to capture 

anomalies present in the data. The ETM of Normality, ETMNorm was generated using the 

data from week 1. The continuous buffer ETM, ETMBuff was created using through 

streaming the data from week 2. The ETMBuff was generated for in segments of 4 mean 

orbits of the data, where each orbit consisted of 228 records captured from the network. 

 The DARPA Intrusion Detection dataset used here was the 1999 version of the 

available datasets (3 dataset were available: 1998, 1999 and 2000). This version consisted 

of 6 files for each day of the week being considered – a Transmission Control Protocal 

(tcp) dump of data being received from outside the network, a tcp dump of data generated 

inside of the network, Solaris BSM audit data, NT audit data, dumps of selected 

directories and a file system listing record. Of these 6 files, only two were considered for 

this case study: the tcp dumps from both internal and external sources. These two files 

contained the same variables – a record identification number, the time of the record, the 

source address of the record, the destination address of the record, the protocol which was 

used, and a comment field. There exist a total of 14,406,511 records for week 1 and 

13,178,081 records for week 2 in the files being considered. 

 The proposed ETM state change and anomaly detection methodology functions 

best when the system dynamics are represented by a single variable. In order to utilize the 

ETM methodology on the DARPA dataset a transformation was required to render the 

data useful. This transformation consisted of discretizing the source, destination and 

protocol fields. The identification, time and comment fields were removed from the 

dataset while the time-based ordering of the data was preserved, as is required for chaotic 
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systems. The number of distinct values for the three variables considered is given in 

Table 13, where only week 1 and week 2 were considered. 

 

Table 13. Number of distinct values for the variables considered in the DARPA case 

study. 

Week Variable Number of Distinct Values 

1 Source 1631 

2 Source 1610 

1 Destination 1638 

2 Destination 1616 

1 Protocol 47 

2 Protocol 47 

 

  

 To facilitate the most complete representation of the system, each record was 

appended with an integer value which represented the string concatenation of the three 

variables considered. Thus a record which contained a discretized source of 1245, a 

discretized destination of 1047 and a discretized protocol of 25 was appended with the 

integer 1245104725. It is this integer value that is used to create the embedding phase 

space for the intrusion detection dataset, which is also used to form the ETMs which will 

be considered here. 

 Initially, it was hypothesized that a single ETM of Normality would be generated 

based on the training data from week 1. Following this methodology, the validation data 

of week 2 would be streamed into the ETM system in buffers whose sizes are four mean 

orbits. The ETM of the buffer is compared to the ETM of Normality for detection of 

system shifts or anomalies. The ETM partition size that showed optimal results was a 15 

x 15 square partition (this was based on an embedding phase space reconstruction with a 

time delay of 8 and an embedding dimension of 3).  
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 Disappointingly, it was discovered that this process was not effective at detecting 

intrusions/attacks. It was determined that this was due to the overwhelming size, and 

variance, of the training data. Table 14 illustrates this fact through the use of a confusion 

matrix of the single ETM of Normality ran on the cyber dataset. The confusion matrix 

indicates the number of actual intrusion/attacks that were detected in the system (upper 

left cell), the number of records which were falsely determined to be intrusions/attacks 

(upper right cell), the number of intrusions/attacks which were not detected (lower left 

cell) and the number of records which were not intrusions/attacks and were not detected 

as an intrusion/attack (lower right cell). 

 

Table 14. Confusion matrix for the proposed ETM detection system on the DARPA 

dataset with a single ETM of Normality. 
 True Anomaly False Anomaly 

True Anomaly 24 345 

False Anomaly 19 13177693 

 

 

 As can be seen in Table 14, the single ETM of Normality misclassified 345 

records sets as intrusions/attacks which were not of such a class. Also, the system also 

ignored 19 intrusions/attacks which were present in the system. The false positive rate of 

the single ETM of Normality for the system is unacceptable for use as a true cyber 

security detection system. Further, the number of intrusions/attacks which were missed 

by the system is also too high to be acceptable.  

 To facilitate a more robust detection system, it was determined that an ensemble 

of ETMs of Normality should be created from the week 1 training data. To perform this 

task, it was determined to split the training data into a number of segments, each of which 

consisted of a relatively equal number of mean orbits. After much trial and error it was 
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found that 18 segments worked most effectively for the cyber security dataset. Therefore, 

an ensemble of 18 ETMs of Normality was generated. Fig 68 illustrates two of these 

ETMs of Normality in the form of a surface plot of the ETM. 

 

 

 
Figure 68. Two examples from the ensemble of ETMs of Normality for the DARPA 

dataset. 

 

 

 The use of the ensemble of ETMs of Normality inherently increased the 

computation cost of comparison to the buffer ETM. Each buffer ETM was required to be 

compared to the full ensemble of ETMs of Normality. This required a determination of 

which ETM in the ensemble of ETMs of Normality best matched the buffer ETM, and 

calculation of the differences between that ETM of Normality and the buffer ETM. If the 

difference between the two ETMs was above the given threshold then the buffered record 

set was flagged as containing an intrusion/attack. While there was an increase in 

computation, it was discovered that the system still operated in near real-time conditions 

due to the sparse matrix format of the ETMs. Table 15 illustrates, in the form of a 

confusion matrix, the gain in accuracy that was achieved through the use of the ensemble 

of ETMs of Normality.  
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Table 15. Confusion matrix for the DARPA dataset using an ensemble of ETMs of 

Normality. 
 True Anomaly False Anomaly 

True Anomaly 42 8 

False Anomaly 1 13178030 

 

 

 

 As can be seen in Table 15, the use of an ensemble of ETMs of Normality greatly 

increased the accuracy of the detection system. With a single missed intrusion/attack and 

only 8 record sets misclassified as intrusions/attacks, the detection system is highly useful 

as a cyber security intrusion/attack detection system. Thus, this it has been successfully 

shown that the ETM detection system proposed in this thesis is effective at detection of 

anomalies and can be made to perform very well even with extreme dataset sizes. 

 

6.3.3 ETMs for the Detection of Mechanical System Change 

 This sub-section highlights a case study of system change detection, using the 

proposed ETM change detection system, in a mechanical system. The system under 

consideration for this study is a wind turbine in existing use on a wind farm in Iowa. Data 

from the wind turbine Supervisory Control and Data Acquisition (SCADA) system was 

collected by the Intelligent Systems Laboratory of the University of Iowa [35]. The 

captured data was continuous for only short times due to the collection system deployed 

at the time of the data capture. Thus, the case study of this sub-section uses this SCADA 

data to build a model of continuous wind turbine data which is then slowly modified to 

indicate a shift in the mechanical system. 

 The SCADA data used in this study consisted of 105 different variables, along 

with time, date, and the turbine number, for each record. The data used here was 

collected every 10 minutes from a single wind turbine. For the purposes of this study only 
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two variables were used from the 105 available variables – wind speed and torque. Other 

variables were initially considered, such as bearing temperatures and drive train 

acceleration; however it was discovered that each of these variables varied 

proportionately with the wind speed. Thus, it was decided that wind speed and torque 

would suffice for the study.  

 The SCADA data was used to form a model of torque versus wind speed. To 

facilitate an accurate model, many different samples of data were extracted from the 

SCADA data (Fig. 69 illustrates an instance, of the torque measurement over time, from 

the samples extracted). This extracted data was then used to generate an equation in 

which torque is a function of wind speed. The equation generation was performed using a 

genetic program which evolved a population, of randomly defined equations. The genetic 

program’s fitness function was the calculation of the MAE of the evolved equation from 

the actual data.  

 
Figure 69. Torque (vertical axis) given in relation to time for a single wind turbine for 

17.36 days. 
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 The software used to generate model equation for torque, using the genetic 

program algorithm, is a freely available solution created at Cornell University entitled 

Eureqa [67]. This software generate the equation used for this case study as a function of 

wind, as given in Eq. (30) where � is the wind speed at a given time. This model 

produced a polynomial whose MAE to the actual data was 0.0178.  

 

+wY ¡- � f¢�N£¤ � f¢¥fN¦� , ¦£¢£�/ � �¦¢§¦�i , f¢���¨ � �¢��N�© , �¢��fN�©      (30) 

 

 To generate the data for the ETM system shift and anomaly detection algorithm to 

use, wind speed must be given for each time increment. Rather than develop a model for 

wind speed, which could introduce further differences between the model and the real 

data, it was decided to use data collected from an anemometer. The author purchased and 

installed a commercial anemometer at a height of 30 feet above the ground in an open 

area with no buildings or significant contours within 500 feet of the site. Data was 

captured for a period of three months from this instrument and was used to generate the 

model data for this case study. 

 An ETM of Normality was generated using two months worth of the model data. 

For this time frame no anomalies or shifts were allowed to enter the torque model, thus 

forming the normal operating conditions of the modeled turbine. The embedding phase 

space for this system was generated with a time delay of 2 and an embedding dimension 

of 3. The ETM’s for this system were created based upon a 10 x 10 square partitioning of 

the embedding phase space. The ETM of Normality for this time period is presented in 

the surface plot of Fig. 70. 
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Figure 70. ETM of Normality for the wind turbine torque model. 

 

 

 

 To simulate the wind turbine experiencing small system changes in the torque 

parameter, the model equation was modified to include a very small increase in the 

torque value. This was accomplished through the addition of a value proportionate to the 

torque value as given in Eq. (31). This modified data was then streamed into the ETM 

detection system as a buffer, in a manner similar to previous case studies in this thesis. 

Fig. 71 illustrates an example ETM for this buffer. 

 

+wY ¡- � +wY ¡- , �+w¡Y ¡- ª �¢����   (31) 
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Figure 71. Buffer ETM for the wind turbine torque model. 

 

 

 

 It is very difficult to detect the differences present between the ETM of Normality 

given in Fig. 70 and the Buffer ETM given in Fig. 71. To facilitate ease of observation, a 

surface plot of the absolute differences between these ETMs is given in Fig. 72. As can 

be seen from Fig. 72, the ETM system change and anomaly detection methodology was 

successful at capturing the extremely small system shift introduced in this model. In fact, 

it was discovered that the system detected the small perturbations in the first buffer ETM 

that contained the perturbations. 

 Fig. 72 definitively illustrates that the ETM system shift and anomaly detection 

methodology effectively captures minute system changes. The scale of the absolute 

difference (vertical axis) in Fig. 72 is in the level of 10
-4

, hence even very small system 

shifts are able to be captured using the ETM methodology. 
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Figure 72. Absolute difference between the ETM of Normality (Fig.  70) and the buffer 

ETM (Fig. 71) for the wind turbine torque model. 

 

 

 This section has effectively illustrated that the ETM system shift and anomaly 

detection methodology is adept at detecting direct anomalies (e.g. the Duffing Map) and 

system shifts (e.g. the Henon Map) in mathematical difference equations. Further, this 

section has show that this methodology is effective at detecting direct anomalies (e.g. 

DARPA Intrusion Detection dataset) and system shifts (e.g. the wind turbine torque 

model) in real world systems as well. The results of the case studies in this section 

indicate that there is just cause to pursue further research into the application of the  

detection methodology presented in Section 5.2   
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CHAPTER 7. CONCLUSIONS 

 This thesis has presented research related to the detection of normality and non-

normality in deterministically chaotic systems. The research presented illustrated a 

number of novel techniques for accomplishing this detection. This concluding section 

highlights these techniques and the results of the use of these techniques in the various 

case studies which were presented. 

 In Section 3, a new methodology for visualizing the states of a chaotic system was 

introduced. The traversal of system states was represented by this visualization known 

herein as the Ergodicity Plot (EP). The proposed EP represented system dynamics in a 

much clearer fashion than has been given in standard Recursion Plots and can be used to 

detect system normality. Further, the use of the EP allowed for detection of frequent 

system state change motifs which are then used to predict the next system states. 

 A new prediction technique for chaotic systems was presented in Section 4 of this 

thesis. This technique took into account the sensitive dependence on initial conditions, 

which is a hallmark of chaotic systems, to produce more accurate results in prediction. 

The technique was validated on three dataset, the standard Henon and Duffing maps as 

well as a dataset captured from a working industrial wind turbine. The results of the 

prediction technique on these datasets indicated that it is a viable technique for 

determining future values of a chaotic system, 

 Section 5 presented a novel anomaly and state change detection technique. This 

technique utilized the inherent ergodicity of chaotic systems to determine normality of 

the system and to detect small system shifts as well as direct anomalies. It was shown that 

the presented technique offers a unique ability to detect such changes and does so in a 
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computationally small manner which allows for real time deployment of the technique. 

The technique was validated in Section 6 using the standard Henon map, a mechanical 

system and a cyber security dataset. The results of these validation case studies clearly 

indicated the viability of the technique in real world scenarios. 

 

7.1 Future Research 

 The research described above has illustrated that there is merit in pursuing further 

work related to the domain of normality and anomaly/state change detection in chaotic 

systems. The encouraging results of the presented novel algorithms and methodologies, 

as seen in the successful case studies, should be extended to facilitate better 

understanding of deterministically chaotic systems and to assist in real time monitoring of 

such systems. This section describes future work extending the research of the previous 

sections.  

 The novel Ergodic Transition Matrix of Chapter 5 accurately detects outliers, 

anomalies and system state changes in deterministically chaotic systems. Future work 

concerning the ETMs includes applying the ETM detection methodology to embedded 

devices to facilitate real-time anomaly and system shift detection in mission critical 

electronic devices. Devices such as critical communications systems and air 

navigation/collision avoidance systems may benefit from the application of this detection 

methodology. 

 Finally, future research in this domain includes the use of Ergodic Transition 

Matrices on human physiological data. Some initial work performed in this area has 

indicated the ability to accurately monitor and detect anomalies in the human heart. 
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Future research should explore the possibilities of the detection of such ailments as 

epileptic seizures prior to their attack, detection of heart arrhythmias prior to a heart 

attack or stroke, and possible detection of heightened stress in soldiers as they enter 

combat arenas.  
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APPENDIX 

 

C# Method for the Calculation of Lyapunov Exponent 

 This section presents a sample C# method for the calculation of the Lyapunov 

exponent discussed in Chapter 2 of this thesis. The method assumes that the time series 

dataset has been stored in a C# data table object and that the embedding dimension of the 

reconstructed phase space has been stored as an integer in a variable called 

_embeddingDim. Finally, the method presented here assumes that the time delay 

parameter of the reconstructed phase space has been stored as an integer in a variable 

called _timeDelay. Fig A1-A2 presents the C# code for this method. 

 

 

 

 

 

 

 

 

Figure A1. C# Method for calculating the Lyapunov exponent of a time series. 

 

 

 

 

 

private double CalculateLyapunov() 
{ 
      double sum = 0.0; 
      int cnt = 0; 
      int embedDim = _embeddingDim; 
      int _tau = _timeDelay; 
             
      for (int tt = 0; tt < _currentData.Rows.Count - (int)(embedDim * _tau);  
     t++) 
      { 
           //create a vector for the initial point 
           Dictionary<int, double> initPt = new Dictionary<int, double>(); 
           for (int m = 0; m < embedDim; m++) 
           { 
             initPt.Add(m,  
     Convert.ToDouble(_currentData.Rows[tt + (int)(m * _tau)][0])); 
           } 
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Figure A2. Method for calculating the Lyapunov exponent of a time series continued. 

//find the closest point to the initial point 
Dictionary<int, double> closePoints = new Dictionary<int, double>(); 
for (int uu = 0; uu < _currentData.Rows.Count - (int)(embedDim * _tau); uu++) 
{ 
   if (uu == tt) 
      continue; 
   Dictionary<int, double> pt = new Dictionary<int, double>(); 
   for (int n = 0; n < embedDim; n++) 
   { 
      pt.Add(n,Convert.ToDouble(_currentData.Rows[uu + (int)(n * _tau)][0])); 
   } 
   //calculate the Euclidean distance between these points 
   double tempDist = 0.0; 
   foreach (int d in initPt.Keys) 
   { 
       tempDist += Math.Pow(initPt[d] - pt[d], 2); 
   } 
   tempDist = Math.Sqrt(tempDist); 
   closePoints.Add(uu, tempDist); 
} 
int closestPt = -1; 
double distance = double.MaxValue; 
foreach (int w in closePoints.Keys) 
   if (closePoints[w] < distance) 
   { 
       distance = closePoints[w]; 
       closestPt = w; 
   } 
//Evolve the attractor by _tau and recalclate the distance of each point 
Dictionary<int, double> initPt2 = new Dictionary<int, double>(); 
for (int m = 0; m < embedDim; m++) 
{ 
   initPt2.Add(m, Convert.ToDouble(_currentData.Rows[tt + (int)_tau +  
               (int)(m * _tau)][0])); 
} 
 
Dictionary<int, double> closePt2 = new Dictionary<int, double>(); 
for (int m = 0; m < embedDim; m++) 
{ 
    closePt2.Add(m, Convert.ToDouble(_currentData.Rows[closestPt +  
  (int)_tau + (int)(m * _tau)][0])); 
} 
double tDist = 0.0; 
foreach (int d in initPt2.Keys) 
{ 
    tDist += Math.Pow(initPt2[d] - closePt2[d], 2); 
} 
tDist = Math.Sqrt(tDist); 
//calculate the sum 
double val = Math.Abs(tDist / distance); 
if (val != 0.0) 
{ 
   if (val < double.MaxValue) 
       sum += Math.Log(val, 2); 
   if (sum < double.MinValue || sum > double.MaxValue) 
        break; 
} 
cnt++; 
tt += (int)_tau; 
} 
if (sum == 0.0) 
  return sum; 
sum = sum * (1.0 / (double)(cnt * _tau)); 
  return sum; 
} 
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Pseudocode Method for Creating an Ergodicity Plot 

 This section presents pseudocode for a computer software method for creating an 

ergodicity plot discussed in Chapter 3 of this thesis. The code supplied here assumes that 

the time series has been transformed into embedding phase space using the time delay 

and embedding dimension parameters discussed in Chapter 2 of this thesis. The code also 

assumes a user supplied parameter, gridSize, of the size of the partition to be imposed on 

the phase space. Figure A3 presents this pseudocode. 

 

 
Figure A3. Pseudocode method for creating an ergodicity plot. 

 

CreateErgodicityPlot(int gridSize) 
{ 
   //determine the maximum and minimum values of the phase space 
   //methods are not supplied as they are intuitive 
   double max = MaximumPhaseSpaceValue(); 
   double min = MinimimPhaseSpaceValue(); 
   double binSize = (max-min)/gridSize; 
   List bins = new List(); 
   for tt=0; tt<gridSize; tt++ 
  for ii=0; ii<gridSize; ii++; 
       { 
   Bin.LowY = min + (tt * binSize); 
   Bin.HighY = min + (tt * binSize) + binSize; 
    Bin.LowX = min + (ii*binSize); 
   Bin.HighX = min + (ii*binSize) + binSize; 
   bins.Add(Bin); 
 } 
   //assign each point to the centroid of the bin that contains that point 
   for tt=0; tt<embeddingPhaseSpace.Size; tt++ 
   { 
 double x = embeddingPhaseSpace[tt].X; 
 double y = embeddingPhaseSpace[tt].Y; 
 foreach Bin in bins 
 { 
   if(x>=Bin.LowX and x<=Bin.HighX) 
      if(y>=Bin.LowY and y<=Bin.HighY) 
         Bin.Points.Add(x,y); 
 } 
   } 
   //plot the centroids following the time series order, place the bin in an orbit 
   List orbits = new List(); //list of bins in order of traversal 
   foreach point in embeddingPhaseSpace 
 foreach Bin in bins 
    if(Bin.Points.Contains(point)) 
           { 
   Plot(Bin.Center); 
               Orbits.Add(Bin); 
     } 
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Pseudocode Method for Creation of an ETM 

 This section presents a pseudocode method for the creation of an Ergodicity 

Transition Matrix discussed in Chapter 5 of this thesis. The presented method assumes 

that an Ergodicity Plot, whose pseudocode presentation was given in previous appendix, 

has previously been created and uses the Orbits parameter, and the Bin structures, of that 

method. The code also assumes a user supplied parameter, gridSize, of the size of the 

partition to be imposed on the phase space. Figure A4 presents this pseudocode. 

 

 
Figure A4. Pseudocode method for the creation of an ETM. 

 

 

CreateErgodicityTransitionMatix(gridSize, Orbits) 
{ 
   size = gridSize * gridSize; 
   double[,] transitions = new double[size,size]; 
 
   //initialize the array 
   for ii=0; ii<size; ii++ 
   { 
 for tt=0; tt<size; tt++; 
    transitions[ii,tt] = 0; 
   } 
   
   //using the bins of the Ergodicity Plot, create the ETM 
   for (int tt = 1; tt < orbits.Count; tt++) 
   { 
       Bin toCell = orbits[tt]; 
       Bin fromCell = orbits[tt - 1]; 
       row = (gridSize * fromCell.Center) + fromCell.Center; 
       col = (gridSize * toCell.Center) + toCell.Center; 
       transitions[row, col] += 1; 
   } 
   for (int r = 0; r < gridsize * gridsize; r++) 
   { 
        for (int c = 0; c < gridsize * gridsize; c++) 
             transitions[r, c] = (transitions[r, c]/orbits.Count); 
   } 
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Pseudocode Method for Using ETMs of Normality and Streaming Data to Detect 

Anomalies 

 This section presents a pseudocode method for a computer software program for 

the detection of anomalies or system state changes in a chaotic system using the 

methodology described in Chapter 5 of this thesis. The presented method assumes that 

the time series data for the training set has been transformed into embedding phase space 

as described in Chapter 2 of this thesis. The method also assumes that the user is 

supplying the streaming data as a parameter in segments of 3-4 mean orbit lengths. 

Finally, the method requires a user supplied parameter which determines the threshold of 

differences between the training data ETM and the streamed data ETM. Methods of 

previous appendices are also utilized. Fig. A5 illustrates the pseudocode method. 

 

 
Figure A5. Pseudocode method for the detection of anomalies or system shifts in 

streamed data into the ETM methodology. 

  

DetectShiftsAndAnomalies(trainingData, streamedData, gridSize, deviation) 
{ 
    
   //create the etm of the training data    
   Orbits = CreateErgodicityPlot(trainingData, gridSize); 
   normETM = CreateErgodicityTransitionMatrix(trainingData, gridSize, Orbits); 
    
   //create the etm of the streaming data 
   SOrbits = CreateErgodicityPlot(streamedData, gridSize); 
   buffETM = CreateErgodicityTransitionMatrix(streamedData, gridSize, SOrbits); 
 
   //compare the matrices 
   for ii=0; ii<gridSize*gridSize; ii++ 
 for tt=0; tt<gridSize*gridSize; tt++ 
    if(AbosluteValue(normETM[ii,tt]-buffETM[ii,tt])>deviation) 
  return true; 
 
   //no anomalies or shifts are detected if execution arrives at this point 
   return false; 
} 
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