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ABSTRACT 

Driver distraction contributes to approximately 43% of motor-vehicle crashes and 

27% of near-crashes. Rapidly developing in-vehicle technology and electronic devices 

place additional demands on drivers, which might lead to distraction and diminished 

capacity to perform driving tasks. This situation threatens safe driving. Technology that 

can detect and mitigate distraction by alerting drivers could play a central role in 

maintaining safety. Correctly identifying driver distraction in real time is a critical 

challenge in developing distraction mitigation systems, and this function has not been 

well developed. Moreover, the greatest benefit may be from real-time distraction 

detection in advance of dangerous breakdowns in driver performance.  

Based on driver performance, two types of distraction – visual and cognitive – are 

identified. These types of distraction have very different effects on visual behavior and 

driving performance; therefore, they require different algorithms for detection. 

Distraction detection algorithms typically rely on either eye measures or driver 

performance measures because the effect of distraction on the coordination of measures 

has not been established. Combining both eye glance and vehicle data could enhance the 

ability of algorithms to detect and differentiate visual and cognitive distraction. 

The goal of this research is to examine whether poor coordination between visual 

behavior and vehicle control can identify diminished attention to driving in advance of 

breakdowns in lane keeping. The primary hypothesis of this dissertation is that detection 

of changes in eye-steering relationship caused by distraction could provide a prospective 

indication of vehicle state changes. Three specific aims are pursued to test this 

hypothesis. The first aim examines the effect of distracting activity on eye and steering 

movements to assess the degree to which the correlation parameters are indicative of 

distraction. The second aim applies a control-theoretic system identification approach to 

the eye movement and steering data to distinguish between distracted and non-distracted 

conditions. The third aim examines whether changes of eye-steering coordination 
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associated with distraction provide a prospective indication of breakdowns in driver 

performance, i.e., lane departures. 

 Together, the three aims show how that a combination of visual and steering 

behavior, i.e., eye-steering model, can differentiate between non-distracted and distracted 

state. This model revealed sensitivity to distraction associated with off-road glances. The 

models derived for different drivers have similar structure and fit to data from other 

drivers reasonably well. In addition, the differences in model order and model 

coefficients indicate the variability in driving behavior: some people generate more 

complex behavior than others. As was expected, eye-steering correlation on straight roads 

is not as strong as observed on curvy roads. However, eye-steering correlation measured 

through correlation coefficient and time delay between two movements is sensitive to 

different types of distraction. Time delay mediates changes in lane position and the eye-

steering system predicts breakdowns in lane keeping. This dissertation contributes to 

developing a distraction detection system that integrates visual and steering behavior. 

More broadly, these results suggest that integrating eye and steering data can be helpful 

in detecting and mitigating impairments beyond distraction, such as those associated with 

alcohol, fatigue, and aging. 
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CHAPTER 1. INTRODUCTION  

According to the Fatality Analysis Reporting System (FARS, 2008) of National 

Highway Traffic Safety Administration (NHTSA),  the fatality rate per 100 million 

vehicle miles decreased by 17 percent from 2000 to 2008 (1.53 and 1.27 respectively). 

These statistics suggest that driving is becoming safer, likely reflecting a combination of 

changes in driver behavior as well as road and vehicle design (SafetyNet, 2009). In-

vehicle information systems (IVIS) and advanced driver assistance systems (ADAS) are 

intended to enhance safety and mobility, and the reduction in fatalities partially reflects 

these advances.  

However, rapid development of in-vehicle technology and electronic devices 

threatens to undermine such improvements. These systems could place demands on 

drivers that might lead to distraction and a diminished capacity to perform driving tasks 

(Hoedemaeker and Neerincx, 2007). Fatal crashes with reported driver distraction 

increased from 10 percent to 16 percent during the period from 2005 to 2009 (NHTSA, 

2010). Moreover, driving is becoming more demanding due to increasing traffic density: 

the number of licensed drivers in the US increased from 190.6 million in 2000 to 208.3 

million in 2008 (FARS, 2008). These trends suggest that driver distraction detection and 

mitigation could help maintain safety by alerting inattentive drivers to demanding driving 

situations. 

Driving is a complex and demanding task, but drivers often shift their attention 

between driving and non-driving tasks (Young and Regan, 2007). Such intermittent 

attention to the road can undermine driving safety, but drivers often adapt their behavior 

to the environment by making decisions as to when to perform the secondary task without 

compromising driving performance (Poysti, Rajalin et al., 2005). To complete the 

secondary task successfully and to maintain safe driving, drivers often compensate for 

decreased attention to driving by increasing their safety envelope, i.e., reducing speed and 
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maintaining larger headways (Horberry, Anderson et al., 2006). However, this 

compensatory strategy is not always successful. Drivers fail to fully compensate for their 

inattention to driving because they often underestimate the risks involved in performing 

particular secondary tasks (Strayer and Johnston, 2001; Lesch and Hancock, 2004; 

Horrey, Lesch et al., 2008). In these cases, drivers fail to divide their attention between 

driving and secondary tasks adequately. This excessive or poorly timed diversion of 

attention from driving can undermine driving performance and increase the crash risk.  

The contribution of such poorly timed diversions of attention make substantial 

contributions to crashes. An analysis of the naturalistic driving data from 100 

instrumented vehicles (100-car study) found that driver inattention contributed to 78% of 

crashes and 65% of near-crashes (Klauer, Dingus et al., 2006). In this study, driver 

inattention included “secondary task engagement,” “driving related inattention to the 

forward roadway,” “non-specific eye glance away from the forward roadway,” and 

“drowsiness.” Distraction caused by secondary tasks associated with off-road glances 

was the most frequent type of inattention observed in this study. It contributed to 

approximately 43% of crashes and 27% of near-crashes, implying that the risk of crash 

while performing secondary tasks is higher than the risk while driving without any 

secondary tasks.  

The type of distraction affected the likelihood of crashing. Complex secondary 

tasks, such as dialing a cell phone or reading, increased the likelihood of crashes/near-

crashes by three times, producing an odds ratio (OR) of 3.10 (confidence interval (CI): 

1.72, 5.47). Moderately complex tasks, such as inserting/retrieving CDs or eating, 

increased the crash likelihood by 2.1 (CI: 1.62, 2.72).  Klauer, Dingus et al, (2006) 

defined task complexity as the number of glances away from the road and the number of 

button presses: the bigger these numbers the more complex the task. In general, glances 

totaling more than two seconds for any purpose increased near-crash/crash risk to double 
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that of normal baseline driving. This result indicates that safe driving can be directly 

related to a driver glance pattern – the combination of off-road and on-road glances.  

Secondary task performance changes in drivers’ glance patterns even when the 

task does not require the driver to look away from the road (Harbluk, Noy et al., 2007). 

Gaze concentration, i.e., percent road centre (PRC), was found to be highly sensitive to 

the demands of visual and cognitive in-vehicle tasks. Gaze concentration decreases with 

visual task difficulty and increases with cognitive task difficulty (Victor, Harbluk et al., 

2005). Moreover, the changes in a driver glance pattern can identify the intention to 

engage in non-driving activities: eye movements in advance of attention shifts are 

motivated by the action preparation and preliminary perception of objects and events  

(Land, 2006). 

Based on the effect of the secondary task on driver performance, two types of 

distraction – visual and cognitive – were distinguished (Victor, 2005). Visual distraction 

associated with glances away from the road leads to lapses in vehicle control. Cognitive 

distraction associated with allocation of glances to the road center leads to the more 

precise vehicle control but diminishes driver’s perception of the broader driving situation. 

Both cognitive and visual distractions are revealed through eye movements. 

Technology that can detect and mitigate distraction could play a central role in 

maintaining safety. A system that can monitor and continuously evaluate distraction to 

warn drivers or even to take over vehicle control could help drivers better assess the 

situation and improve driving performance. Real-time distraction assessment can help 

drivers redirect attention back to the driving task when the system detects distraction 

according to predetermined criteria. Concurrent feedback to guide immediate 

improvement or retrospective feedback after the trip to induce long-term behavioral 

changes helped drivers modulate distracting activities (Donmez, Boyle et al., 2007; 

Donmez, Boyle et al., 2008). The greatest benefit may be from real-time detection of 

diminished driver performance in advance of dangerous situations caused by inattention.  
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Correctly identifying driver distraction in real time is a critical challenge in 

developing these distraction mitigation systems, and this function has not been well 

developed. The difference in visual behavior and driving performance associated with 

different types of distraction requires different sets of sensors and algorithms to detect 

distraction (Liang, 2009). The algorithms for distraction detection are mostly based either 

on eye measures or on driver performance measures (e.g., speed, lane position, and 

steering); the relationship between these two types of measures is not established. The 

combination of different approaches, e.g., coupling the distraction detection algorithms 

based on different sources such as eye glance and vehicle data, could increase sensitivity 

of the system and safety benefit framework to detect different types of distraction. Figure 

1 shows the relationship between visual behavior, vehicle control, vehicle state, and crash 

risk: distraction causes changes in glance patterns that lead to breakdowns in vehicle 

control and, as a result, can undermine safety.  

This research will examine whether poor coordination between visual behavior 

and vehicle control can identify diminished attention to driving and predict breakdowns 

in lane keeping. It is hypothesized that there are time lags between (1) visual behavior 

and vehicle control associated with oculomotor control and (2) vehicle control and 

vehicle state caused by vehicle dynamics. The relationship between eye position and 

steering angle (eye-steering correlation) measured through correlation coefficient and 

time delay is expected to be sensitive to distraction. Thus, detection of changes in eye-

steering relationship caused by distraction could provide a prospective indication of 

dangerous changes in vehicle state, such as lane departures. 

This research investigates the changes in correlation between visual and steering 

behaviors while a driver is involved in a secondary task compared to when a driver is not. 

The degree of correlation will be defined by the strength of relationship between eye 

movements and steering wheel movements and the time delay between them. Changes in 

correlation are expected to precede lane departures, providing a useful measure of 
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distraction. This examination of coordination will also produce a deeper understanding of 

how distractions influence driving. Such an understanding will support design of 

distraction detection systems (Figure 1).  

 

Figure 1. Chronological interrelation between driver state, vehicle control, and vehicle 
state: changes in visual behavior could cause changes in vehicle control that, 
in turn, affect vehicle state 

Research objectives and specific aims 

The long-term goal of this research is to develop control-theoretic techniques to 

identify driver impairment by combining eye movement and driver performance metrics. 

In the context of distraction-related impairment, this objective is achieved through the 

following aims: 
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Aim 1: Examine the effect of distraction on eye movements (i.e., horizontal eye 

position) and vehicle control (i.e., steering angle) and assess the degree to which the 

correlation parameters – coefficient and time delay between these variables – are 

indicative of distraction. An interrupted time series analysis and a correlation analysis are 

performed. The interrupted time series analysis evaluates changes in the steering angle 

and horizontal eye position time series as a response to the intervention of a non-driving 

activity (e.g., visual, cognitive, and cognitive/visual distraction). The correlation analysis 

assesses the relationship between these two time series and the changes caused by 

performing secondary tasks, i.e., distraction. 

Aim 2: Distinguish between distracted and non-distracted driving using a control-

theoretic approach of eye-steering system identification. This approach defines a 

mathematical model of eye-steering system based on measured input-output data from 

baseline (non-distracted) condition. Using data from distracted condition as an input, the 

model performance should change to indicate distraction. The correlation statistics 

defined in Aim 1 support the model development: the choice of a model structure and 

timing between input and output are sustained by auto-correlation and cross-correlation 

analyses results. The evaluated cross-correlation between signals supports prediction of 

steering wheel position through eye movements; and the presence of autocorrelation in 

steering signal supports prediction of a current steering wheel position through its 

previous values. Time delay between eye and steering signals defines relative timing 

between input and output. 

Aim 3: Examine whether predicted distracted condition provides a prospective 

indication of breakdowns in driver performance (lane departures). The eye–steering 

correlation coefficient is examined to assess whether it acts as a moderator or a mediator. 

A moderator affects the direction and strength of the relationship between an independent 

variable and a dependent variable; a mediator explains this relationship. A moderator 

specifies when certain effect will hold; a mediator specifies how or why such an effect 
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occurs. If the eye–steering correlation coefficient emerges as a moderator, then this will 

reveal the circumstances that strengthen or weaken the association between driver state 

and driver performance. Evidence that it acts as a mediator suggests a more direct 

relationship between driver state and driver performance. To examine the effect of a 

driver distracted condition on vehicle state, the relationship between distracted condition 

as an independent variable and lane position as a dependent variable is modeled taking 

into account the eye-steering correlation as a third variable that can change the 

association between them. The statistical significance of the parameters indicates the role 

of correlation parameter as mediator or moderator. If the correlation parameters 

(correlation coefficient or time delay) mediate the effect of distracted condition on lane 

position, then they could act as prospective indicators of lane keeping performance to 

predict lane departures. To examine this assumption, the sensitivity of the eye-steering 

model to lane departures is tested. 

Expected contributions 

The major theoretical contributions of this dissertation will be: 1) a description of 

the effects of visual-motor performance in driving evaluated through the degree of 

correlation and time delay between eye and steering movements. This will allow deeper 

understanding of the role of eye-steering coordination in driver performance; 2) the effect 

of distractions on the degree of eye-steering coordination; and 3) the prediction of lane 

keeping degradation by the driver eye glance and steering behaviors to anticipate near 

crash type breakdown in steering control. 

The practical contribution of this dissertation will be to help design systems 

capable of providing a diagnostic measure of distraction in advance of mishaps. The 

development of a prospective indicator of driver impairment can be helpful in mitigating 

and preventing many impairment-related crashes. The relationship between eye glance 

patterns and vehicle control metrics, i.e., steering, could allow the prediction of driver 
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performance degradation and use this prediction for the distraction detection algorithm 

design. In addition, the use of different sources, i.e., eye and steering signals, will 

increase robustness and accuracy of prediction and will allow the continuous evaluation 

of driver distraction in case of failure of one of the input sources.  
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

Driver distraction 

Driver distraction is a form of “inattention that diverts driver’s attention away 

from the activities critical for safe driving toward a competing activity” (Lee, Young et 

al., 2008, p. 33). These non-driving activities place additional demands on drivers that 

vary in their nature and could impact driver performance differently. In general, driving 

performance declines to the extent that the competing task shares resources with the 

driving task. Which activities would most likely cause an impaired performance and 

increase accident crash risk? When should a driver be considered distracted? How do 

distracting activities influence driving behavior? These are the issues discussed in this 

section. 

Distraction sources and drivers’ involvement 

Of the various types of transportation-related fatalities for 2007, passenger cars 

were the most common (38.4%), followed by light-truck (28.8%). As compared, the 

fatalities in general aviation were only 1.1% (TSAR, 2008). An important contribution to 

fatal car crashes is distraction. An analysis of the data from the 100-car study found that 

driver distraction associated with secondary task performance contributed to 43% of 

crashes out the 78% of crashes caused by inattention (Dingus, Klauer et al., 2006). These 

statistics indicate the influence of distraction on driving safety. This section discusses the 

most frequent types of non-driving activities observed in naturalistic studies and 

evaluated crash/near crash risk caused by these activities.  

Driving task is a complex visual/manual multitask activity (Regan, Lee et al., 

2008). It requires a driver to look to the roadway, at the instrument panel, and at the 

mirrors and windows to assess the environment. The visual assessment of the road and 

the environment plays a critical role in the safety of driving. The higher driving demand 

the more attention to the driving task is needed. The demands of the driving task depend 
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on factors such as traffic density, weather, and presence of passengers (Cooper and 

Zheng, 2002; Strayer, Drews et al., 2003; Sayer, Mefford et al., 2005). Any additional 

non-driving activity can decrease a driver’s situational awareness, which leads to 

diminished driving performance and increased crash risk. The effect of the secondary 

task on crash risk depends on many factors, which include source of distraction (e.g., cell 

phone, objects or events inside or outside the vehicle), type of distraction (e.g., visual, 

cognitive, and auditory), driver personal characteristics (e.g., experience, age), and traffic 

demands. When driving demands are low, tasks that place little demand on drivers may 

be effectively time-shared with the driving task and cause little or no degradation in 

driving performance (Lee, Young et al., 2008). In general, the degree with which 

distraction will contribute to crash risk depends on roadway demands at the time of task 

involvement and is a function of frequency of drivers’ engagement in a particular activity 

and degree to which this activity contributes to crash risk. Both factors are discussed in 

this section. 

Driver distraction research is focused on identifying the most common activities 

and conditions under which engagement in secondary tasks is most likely to distract 

drivers and, as a result, impact driving performance and safety. Observational studies 

reveal that distraction is a common component of everyday driving. Drivers are involved 

in competing activities in about one-third of time during their everyday driving (Sayer, 

Mefford et al., 2005). The first three columns of Table 1 summarize two studies (Stutts 

and Hunter, 2003; Sayer, Mefford et al., 2005) that show the activities drivers perform 

while driving. Almost all drivers manipulated vehicle controls (such as air conditioning 

or window), music/audio knobs, reaching for objects inside the vehicle, and had their 

attention drawn to events or objects outside the vehicle. About three-fourths ate or drank 

something or conversed with a passenger. Both studies found that drivers spent 

approximately 15% of their total driving time engaged in conversation with passengers 

and an approximately equal amount of time engaged in other activities.  
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Table 1. Summary table of drivers’ engagement in secondary task and its influence on 
crash/near crash likelihood 

Observed behavior Sayer et 
al., 2005 

(36 drivers)

Stutts et al., 2003 
(70 drivers) 

Klauer et al., 2006 
(101 drivers) 

% of
time 

% of 
time 

% of 
subjects

Odds ratio 
(95% CL) 

PAR%*
(95% CL) 

Conversation with 
passengers 

15.3 15.5 77.0  

Child in rear seat 0.33 (0.04:2.40) 

Eating  1.9 1.5 71.4 1.57 (0.92:2.67) 2.15(1.85:2.46)

Drinking 1.03 (0.33: 3.28) 0.04(-0.10:0.18)

Music/radio on 71.4  

Manipulating audio 
controls 

1.1 91.4 0.55 (0.13:2.22) 

Inserting CD 2.25 (0.30:16.97) 0.23(0.15:0.32)

Reaching for 
something  

2.3 97.1 1.38 (0.75:2.56) 1.23(0.96:1.50)

Reaching moving 
object 

8.25 (2.50:31.16) 1.11(0.97:1.25)

Talking on cell 
phone  

5.0 1.2 30.0 1.29 (0.93:1.80) 3.56(3.10:4.10)

Dialing/answering 
cell phone 

0.1 0.2 42.8 2.79 (1.60:4.87) 

Reading 0.8 40.0 3.38 (1.74:6.54) 2.85(2.60:3.10)

Smoking  0.6 1.5 7.1  

Grooming  6.5 0.4 45.7  

Applying makeup 3.13 (1.25:7.87) 1.41(1.23:1.59)

Combining hair 0.37 (0.05:2.65) 

External distraction 2.3 85.7 3.70 (1.13:12.18) 0.91(0.77:1.05)
* Population Attributable Risk Percentage 

 

The crash/near-crash likelihood associated with different non-driving activities is 

presented in the last column of Table 1(Klauer, Dingus et al., 2006). Odds ratio shows 

how much the event, i.e., crash/near-crash, is more likely to occur while performing non-

driving task compared with normal (non-distracted) driving.  Some activities such as 

reaching for a moving object, looking outside (external distraction), reading, applying 

makeup, and dialing cell phone had the highest odds ratio which means that performance 
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of these tasks is very dangerous. This table shows that more than 85% of drivers were 

distracted by outside objects or events; and this type of distraction (external) can increase 

crash risk by three times (OR of 3.70 with CI: 1.13,12.18). Other activities, such as 

handling a CD, talking on the cell phone, and reaching for an object, might not actually 

increase crash likelihood or near-crash involvement. It is important to note that any 

activity has potential to increase crash risk depending on driving demands.  

The percentage of crashes and near-crashes that could be attributed to the specific 

behavior was assessed through population attributable risk percentages (PAR%). Some 

odds ratios may have a very high individual risk; however, that behavior does not occur 

frequently and therefore attributes to very few crashes in the population. For instance, 

reaching for a moving object, external distraction, reading, applying makeup, and eating 

have high odds ratio but these factors do not account for a large percentage of actual 

crashes and near-crashes (Table 1). This identification and assessment of the most 

common activities that affect safety and contribute to the crashes can help identify the 

degree of distraction. 

Types and consequences of distraction 

Distraction is a type of inattention when a driver is involved in non-driving 

activities can impact safe driving. These activities place additional demands on drivers 

that vary in their nature and might affect visual, manual, auditory, and cognitive 

attentional resources. Driving performance declines to the extent that the competing task 

shares resources with the driving task (Wickens, 2002; Horrey and Wickens, 2004). The 

distraction caused by interacting with in-vehicle devices while driving has been shown to 

significantly impair driver’s ability to maintain speed, lateral position on the road 

(Horberry, Anderson et al., 2006; Salvucci, Markley et al., 2007), and reaction time 

(Lansdown, Brook-Carter et al., 2004). It can also impair drivers’ visual search patterns 

and decision-making processes and can increase the risk of being involved in a collision.  
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Based on the effect of the secondary task on driver performance, the focus of 

different research was on two types of distraction: visual and cognitive. These two types 

of distraction can be described as “eye-off-road” and “mind-off-road”, respectively 

(Victor, 2005).  Both categories can undermine drivers’ performance.  Visual distraction 

occurs when drivers look away from the roadway (e.g., to adjust a radio). The visual-

manual tasks led to 40 percent less time focused on the road and affected driving 

performance more than auditory-vocal tasks (Angell, Auflick et al., 2006). The off-road 

glances associated with using in-vehicle devices can lead to large and frequent lane 

deviations, uneven steering control, and slow response to lead vehicle braking (Donmez, 

Boyle et al., 2006; Zhang, Smith et al., 2006; Donmez, Boyle et al., 2007).  

In contrast to the visual distraction, cognitive distraction has a more subtle effect 

on drivers. One consequence is it leads drivers to allocate visual attention to the road 

center and decrease looks at the periphery.  These behavioral changes diminish drivers’ 

ability to detect targets across the entire driving scene (Recarte and Nunes, 2003; Victor, 

Harbluk et al., 2005; Reyes and Lee, 2008). Cognitive distraction associated with 

auditory e-mail systems, math calculations, or holding hands-free cell phone 

conversations delays driver response to hazards (Horrey and Wickens, 2006). During 

simulator driving, the reaction times of the drivers conversing on cell phones increased 

and the drivers were more likely to crash compared with drivers talking to passengers  

(Charlton, 2009). This difference showed the effect of additional cognitive demands 

placed on drivers talking on the cell phone. Cognitive distraction impairs both implicit 

perceptual memory and explicit recognition memory for objects even when drivers look 

at the objects (Strayer, Drews et al., 2003). 

Numerous studies examined the effect of different types of distraction represented 

by different activities on the driver performance. The CAMP (Crash Avoidance Metrics 

Partnership) and HASTE (Human machine interface And the Safety of Traffic in Europe) 

research programs provide substantial evidence to distinguish between visual and 
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cognitive distraction (Carsten, Merat et al., 2005; Angell, Auflick et al., 2006). This 

differentiation could help to find specific ways for distraction mitigation and prevention. 

Distraction detection, mitigation, and prevention 

The impact of competing activities on crash risk can be regulated in different 

ways: optimizing design of in-vehicle systems, providing retrospective feedback to the 

driver about driving performance to induce positive behavioral changes, and designing 

real-time distraction detection system to provide concurrent feedback for immediate 

improvement (Regan, Lee et al., 2008). The real success of these systems would be in 

their ability to predict state of distraction based on driver perception and control metrics. 

This approach is directed to predict driver distracted condition and alert the driver before 

driving performance degrades. 

Distraction detection 

This section discusses some considerations in developing distraction detection 

systems, i.e. distraction identification and detection algorithms. The choice of metrics 

indicative of distraction depends on the type of distraction. These different types require 

different algorithms to quantify the level of distraction. 

Indicators of driver distraction 

Numerous studies have examined different types of assessment metrics and 

algorithms that could be sensitive to the distraction. Drivers react to the changes of the 

roadway situation by modulating the lateral and longitudinal controls: steering wheel, 

brake pedal, and accelerator pedal. Steering is an important metric of the vehicle control 

because of its potential of providing a very timely indicator of distraction. Steering wheel 

changes mostly increased for both visual and cognitive distractions in comparison with 

normal (non-distracted) driving but in different ways: a visual secondary task leads to 

increased steering wheel movements in a wide range of amplitudes (i.e., 2-6 degrees), 
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whereas cognitive tasks cause corrective movements with small amplitudes (less than 1 

degree) (Östlund, Peters et al., 2006). Assuming undistracted drivers apply smooth 

steering adjustments suggests that steering entropy might  measure the predictability of 

steering wheel movements and distraction associated with abrupt movements (Nakayama, 

Futami et al., 1999). Distractions can cause abrupt steering corrections to keep the car in 

the safety boundary. The mismatch between the predicted steering wheel position 

associated with a smooth response and the abrupt input has been shown to be sensitive to 

both visual and cognitive distraction: involvement in a secondary task increased entropy. 

Vehicle control inputs of the driver affects vehicle state measured through lane 

position, headway, and speed. Keeping a vehicle in the safety margins denotes that a 

driver successfully performs the driving task. A vehicle position in the lane could be used 

as an indicator of driver performance. Lateral position changes relative to the centerline 

have been reported in the majority of experiments addressing visual distraction.  

Generally, lateral control degrades with increasing level of visual distraction, but it 

becomes more precise under cognitive distraction (Engstrom, Johansson et al., 2005; 

Östlund, Nillson et al., 2006). This can imply that the involvement in the visual task can 

lead to a more degraded driving performance compared with cognitive distraction.  

Time and distance measures of headways could be used to evaluate the effect of 

distraction on driver safety perception. Distractions influence speed and headway 

maintenance. Östlund et al. (2006) found  visual distraction leads to decreased speed and 

cognitive distraction did not influence speed significantly. Similar to speed, headways 

increased under visual distraction and maintained relatively unchanged with cognitive 

distraction (Östlund, Nilsson et al., 2004). On the other hand, the speed variations with 

tendency to decrease were found in numerous studies with hands free and handheld cell 

phones (Patten, Kircher et al., 2004; Rakauskas, Gugerty et al., 2004). These changes in 

speed and headway were caused by the driver compensatory behavior to manage the 

increased attentional demands.  
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Eye movement metrics such as glance duration, frequency, position (horizontal 

and vertical), and type (on-road and off-road), were found sensitive to the demands of 

driving and secondary tasks. Changes in glance pattern measured through these metrics 

can indicate presence of distraction. Moreover, the glance pattern while performing 

cognitive tasks is different from what it is for visual tasks. The frequent and/or long off-

road glances indicate visual distraction and concentrated glances toward the road center 

indicate cognitive distraction (Victor, Harbluk et al., 2005). Distracted drivers check the 

mirrors and the speedometer much less frequently while performing secondary cognitive 

and verbal tasks relative to no task conditions and spend more time looking to the center 

of the road (Recarte and Nunes, 2000; Harbluk, Noy et al., 2002). This gaze 

concentration was reflected in reduced horizontal and vertical variability of gaze 

positioning as well as longer duration of on-road glances. 

In summary, visual and driver performance metrics can be used for distraction 

detection (Table 2). The differentiation of these two types of distraction could be based 

on differences in visual behavior and driving behavior. Some algorithms developed to 

diagnose both types of driver distraction are discussed below.  

Table 2. Summary of distraction assessment through visual and driver performance 
metrics  

 Visual distraction: “eye-off-road” Cognitive distraction: “mind-off-road” 

Visual 
behavior 

frequent and long off-road glances visual attention allocated to the road 
center 

Vehicle 
control 

abrupt steering movements with large 
(2-6 degrees) amplitude, large 
steering entropy 

corrective movements with small (less 
than 1degree) amplitude, small 
steering entropy 

Vehicle 
state 

large and frequent lane deviations 

speed decrease and headway increase  

unchanged or small lane variation 

speed does not changed significantly 
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Distraction detection algorithms 

Visual and cognitive distractions are fundamentally different types of distraction 

and different algorithms are required to predict degradations in driver performance. The 

combination of different glance behavior metrics has been considered in predictive 

models for the risks associated with visual distraction. The goal of the visual distraction 

prediction models was definition of a single visual demand metric that can combine 

duration of off-road glances, their frequencies in the time-window, and their eccentricity 

to assess the degree of distraction. These metrics mainly evaluate visual demands during 

a task, a fixed time-window, or a moving time-window. Cognitive distraction 

identification is a more complex process than visual distraction because the mechanisms 

involved in cognitive impairment have not been precisely described. For the detection of 

cognitive distraction, combination of eye movement and performance measures were 

summarized across a relatively long time interval. 

The combination of glance duration and frequency in Percent Road Centre (PRC) 

or Total Glance Duration (TGD) successfully differentiated between visual and cognitive 

distraction (Victor, 2005). The PRC was the most sensitive visual task measures followed 

by total glance duration. PRC increased with cognitive tasks and decreased with visual 

tasks compared with normal driving. The differences in visual task difficulty were more 

pronounced with TGD. These metrics were proposed to be a good indicator of 

distraction. Further study showed that off-road TGD can evaluate crash/near-crash risk: 

total off-road glance duration of less than two seconds in a six-second window did not 

increase crash/near crash risk but it was doubled when the duration was greater than two 

seconds (Klauer, Dingus et al., 2006). 

Senders et al. (1967) developed an approach for describing uncertainty about the 

driving environment as an effect of glances away from the roadway, where uncertainty 

grows as a 1.5th power function of the occlusion duration. Another algorithm used a 

weighted combination of the current off-road glance duration and the total off-road 
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glance duration in the time-window of three seconds. The threshold of momentary value 

of distraction for less-salient alarm (one-color strip) was 2.0 seconds and 2.5 seconds for 

more salient alarm (two-color strip) (Donmez, Boyle et al., 2006; Donmez, Boyle et al., 

2007). Engström and Mårdh (2007) developed an algorithm that combined duration, 

history, and eccentricity of off-road glances to estimate the total visual demands of a task. 

The visual demands were described as the summation of the product of the 1.5th power of 

duration with a penalty for eccentricity of the glance relative to the road center for each 

off-road glance. A similar summation of off-road glances occurring in a time window 

was used to quantify visual distraction to support a lane-keeping assistant system (Pohl, 

Birk et al., 2007). 

Another approach of integrating the effect of glances over time is to define a 

buffer that reflects drivers’ capacity to respond (Kircher, Kircher et al., 2009). The 

algorithm integrates three types of glances over time: on-road when drivers glance toward 

the “field relevant for driving” (FRD), driving related (e.g., mirrors or speedometer), and 

off-road glances. The level of the buffer increases during on-road glances and decreases 

during glances away from the road in a linear manner. During latency phase of 0.1 sec for 

the transition from off-road to FRD glances and 1 sec for transition from on-driving to 

FRD glances, the buffer level remains at the current position before increasing. Maximal 

buffer is two seconds, and when the buffer goes to zero, the driver is considered 

distracted. 

Cognitive distraction degrades longitudinal control and hazard perception, but is 

less risky, less consistent, and more difficult to identify compared to visual distraction. 

The detection of cognitive distraction needs integration of a number of eye movement 

measures (e.g., blink frequency, fixation duration, and pursuit measurements) and 

performance measures (e.g., steering wheel movements and lane position) summarized 

across a relatively long time interval. Data mining techniques have successfully detected 

cognitive distraction using many measures.  A decision tree technique was applied to 
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estimate driver cognitive workload from eye glances and driving performance measures 

(Zhang, Owechko et al., 2004).  Support Vector Machines (SVMs) and Bayesian 

Networks (BNs) successfully identified the presence of cognitive distraction from eye 

movements and driving performance (Kutila, Jokela et al., 2007; Liang, Lee et al., 2007; 

Liang, Reyes et al., 2007). These approaches assessed the discrete state of cognitive 

distraction, but did not predict the continuous level of distraction. Moreover, cognitive 

distraction detection algorithms need to be customized for different drivers, making them 

more difficult to implement (Liang, 2009). 

All these approaches aim at detecting state of distraction in real time based on 

visual behavior or driving performance metrics. These algorithms could be found helpful 

in distraction detection system design but the real success of these systems would be in 

their ability to predict state of distraction based on driver perception and control metrics. 

This consideration could predict driver intention to get involved in distracting activity 

and alert the driver before driving performance degradation happen. 

Distraction mitigation and prevention 

The impact of distraction on crash risk can be regulated by providing feedback for 

immediate (distraction prevention) and/or future (distraction mitigation) driving 

performance improvement. Distraction mitigation and prevention can be implemented 

through workload management and distraction mitigation functions (Engström and 

Victor, 2008).  

The real-time workload management function (distraction prevention) assumes 

information management according to the current states of a driver and driving 

environment. Driving demand changes cause driver workload fluctuations. When the 

workload is beyond a certain point, additional demands can degrade safety. The purpose 

of the workload management function is to preserve safety by prioritizing, rescheduling, 

and locking out potentially distracting vehicle functions, as well as adapting its format. 
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For instance, the system can interrupt a phone call while performing a lane change 

maneuver (lock out function) or the mode of information presentation could be changed 

from visual to auditory if the driver is highly visually loaded.  

The goal of distraction mitigation is to provide feedback to the driver to enhance 

immediate or future performance. Real-time distraction mitigation function assumes 

redirection of driver attention to the driving scene. Concurrent (immediate) feedback 

would alert the driver to a failure of proper reaction to the current event with the purpose 

to enhance immediate performance. Retrospective feedback (after the trip) would provide 

driving performance assessment and help the driver induce positive behavioral changes. 

Four major timescales were considered for a feedback: concurrent (milliseconds), 

delayed (seconds), retrospective (minutes, hours), and cumulative (days, week, months, 

years) (Donmez, Boyle et al., 2008). 

The real-time warning can enhance driving performance immediately by 

modulating distracting activity (Donmez, Boyle et al., 2007). The functions such as 

locking and interrupting (distraction prevention) and advising (distraction mitigation) 

successfully mitigated visual and auditory distractions (Donmez, Boyle et al., 2006). The 

negative impact of the immediate feedback is that it may impose more workload on a 

driver in addition to the already highly demanding situation (Donmez, Boyle et al., 2008). 

It can also create inappropriate dependence on a feedback and provoke distracting 

behavior. For example, a driver might feel protected by a system capable of generating 

alerts about critical situations and might become involved in the distracting activities 

more often. A very important issue is the accuracy of distraction detection because a high 

number of false alarms (false adaptation) could lead to system mistrust (Donmez, Boyle 

et al., 2006). Consequently, false adaptation and diminished trust can undermine driver 

acceptance of the system (Parasuraman, Hancock et al., 1997). Another issue is that a 

driver’s limited capacity can make it difficult to perceive all the incoming information 
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and understand the reasons for the real-time feedback while driving. This problem could 

be solved by providing summary information after the trip. 

Retrospective and cumulative feedback provides information about inappropriate 

behavior immediately after the trip or over many trips. An advantage of this feedback is 

that the provided information would be more detailed than delayed and concurrent 

feedback. This information can be highlighted and classified based on the most persistent 

behavior that led to the diminished performance. In addition, retrospective and 

cumulative feedback will avoid overloading the driver during the trip, at the cost of not 

achieving the immediate improvement while driving. McGehee, Raby et al. (2007) 

obtained the dramatic positive effect of the cumulative feedback on teenagers’ driving 

behavior when teens and their parents systematically reviewed the driving information in 

the form of weekly graphical report cards and videos.  

These different feedback types can be successfully combined. This combined 

feedback will provide information in different timescales and levels of detail. This can 

improve immediate driving performance and help drivers to learn about inappropriate 

driving behavior that can lead to the crashes (Donmez, Boyle et al., 2008).  In all cases, 

the overall success of a distraction detection system would be mainly based on the 

system’s ability to correctly detect distraction.  

Current distraction detection systems 

There is a growing interest from automobile makers in the design and 

implementation of distraction detection systems. Several distraction detection and 

mitigation systems are on the market or exist as advanced prototypes: Saab’s ComSense 

and Driver Attention Warning System (AttenD), Volvo’s Driver Alert Control, the 

Delphi’s SAVE-IT system, Lexus’ Driver Monitoring System, Toyota’s Wakefulness 

Level Judging System, and Mercedes-Benz's Attention Assist (Table 3). These systems 

intend to detect drowsiness, distraction, and changes in cognitive state. The algorithms 
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that were developed to evaluate and predict driver state use different metrics and 

detection methods. The general approaches applied in the algorithms are presented above. 

Some distraction detection algorithms are based on driver visual behavior and use head 

pose or eye movement metrics, whereas others evaluate driver performance and use 

vehicle state or driver control metrics. Table 3 summarizes the systems intention to 

detect, mitigate, or prevent the specific type of distraction and inputs used for this 

purpose. 

The combination of these variables could increase the sensitivity of the distraction 

algorithms and reduce the number of false alarms. Drivers can successfully perform 

secondary tasks without driving performance degradation under low demanding traffic 

conditions. The system based on the visual behavior metrics will diagnose distraction but 

it is more likely that a driver would not accept an alert about distraction. The system, 

based on the driving performance measures, could diagnose a maneuver performance, 

i.e., lane change, as a change in driver state and issue a false alarm. On the other hand, 

the same system could miss a cognitive distraction.  

The combination of different metrics can not only improve the algorithm but can 

also differentiate the types of inattention. For example, eye movement data could be 

combined with vehicle path data to distinguish between drowsiness (e.g., eyes directed 

towards the road during path departures) and distraction (e.g., eyes directed away from 

the road during path departures). In addition, this approach will allow continuous 

evaluation of driver distraction in the case of a failure of one of the input sources.  
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Table 3. Distraction detection systems 

Systems System 
intention 

Input into the system Countermeasure 

Distraction evaluation metrics Environmental 
conditions 

Mitigation / Prevention 

Eye glance / 
Head pose 

Driver control Driver 
performance 

Wakefulness Level 
Judging System 
(Toyota) 

drowsiness 
detection 

head pose  speed, lane 
positioning 

road type acoustic / corrective 
steering 

Attention Assist 
(Mercedes-Benz)   

drowsiness 
detection 

 steering, 
pedal 
operation 

speed, 
longitudinal and 
lateral 
acceleration 

wind, road surface, 
road conditions, time 
of day, ambient 
temperature 

acoustic & visual / n/a 

Driver Alert 
Control* (Volvo) 

drowsiness 
detection 

  speed, lane 
positioning 

road geometry, 
stationary objects, 
dynamic objects 

acoustic & visual / n/a 

Driver Monitoring 
System (Lexus) 

drowsiness & 
distraction 
detection 

head pose, 
eye glance 

  obstacle ahead acoustic /  emergency 
braking 

ComSense (Saab) distraction 
prevention 

 steering, brake 
pedal position 

speed, turn signal 
status, 

headlamp status, 
wiper status 

no warning / call 
interruption 

Driver Attention 
Warning System 
(AttenD)** (Saab) 

drowsiness & 
distraction 
detection 

eye glance, 
eye blink 

  road type acoustic, visual, seat 
vibration / n/a 

*eye glance characteristics are considered in future prototypes 
** the algorithm is under development 
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Perception and action in driving 

The perception-action control process plays a central role in driving 

(Regan, Lee et al., 2008). Information flow about the roadway and traffic situation 

guides a driver to control the vehicle. Interruptions of this information flow could 

cause diminished vehicle control and, as a result, lane keeping degradation. 

Different visual and driver performance metrics were examined to detect 

distraction, but the relationship between them was not established. The 

examination of the mechanism of action preparation based on visual information 

can reveal the relationship between eye movement and vehicle control. Changes in 

this relationship could identify distraction.  

In vision-guided tasks, including driving, the function of vision is to 

provide information to support action. Action preparation and execution could be 

conventionally represented by three systems: gaze, motor, and visual (Figure 2). 

The gaze system is responsible for locating and fixating task-relevant 

objects (e.g., bend, leading car, or stop sign); the motor system of the limbs carries 

out the task (e.g., steering, braking); and the visual system supplies information to 

those two (Land, 2009). Thus, the role of visual system is crucial in this schema: it 

reflects the scene of the world to provide information to the gaze and motor 

systems for action preparation and execution respectively. The function of the 

visual system in action performance and particularly in driving is discussed in this 

section. 

Visual information from the outside world provides instruction to the 

neuromuscular control system through the perception (path from visual to gaze and 

then to motor system in Figure 2). This coordination between perception and 

action can be observed in everyday activities such as driving, walking, reading, 

drawing, and playing ball games (Land, 2006). The eyes typically search for 
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information about objects of interest to establish their locations and moves to those 

objects about a second before each act initiation. People chose points for eye 

positioning before an action as the best ones for the spatial-temporal demands of 

the task (Land, 1993; Land and Tatler, 2001). This glance behavior is based mostly 

on the role of the objects in the task and not their salience. The eyes seldom move 

to objects that are irrelevant to the task.  This coordinated attention-eye movement 

indicates the preparation for action (path from visual to gaze system on Figure 2). 

 

Figure 2. Relations of the schema, gaze, visual, and motor systems during the 
performance of a visually controlled action (Land, 2009)  

In driving, visual information supports vehicle control. Different studies 

examined the choice of fixation points that provided visual information to guide 

steering. The choice of these points depends on a driving environment. For curve 

negotiation, drivers fixated glance location on the tangent point of an approaching 

bend about 80% of the time to get the estimates of the bend’s curvature (Land and 

Lee, 1994). The need for continuous information to control a vehicle forces drivers 

to direct both foveal and peripheral vision to select information from driving 

environment. The gaze direction precedes steering wheel movements by about 0.8 

seconds. This lag provides drivers with a comfort margin to perceive the path and 
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plan the future action. The vanishing point was fixated on a straight road, and a 

point connected to the lead vehicle was a target point for the car-following task 

performance (Land and Horwood, 1995). The near-region fixation point provided 

information for lane keeping and monitoring vehicles and surrounding objects 

(Land & Horwood, 1995).  

Thus, the need to use distant vanishing and tangent points or points close to 

them on the inside edges of bends increased on open roads at high speeds where 

demands for dealing with other road users and potential obstacles were reduced. In 

urban areas at low speeds, drivers spent most of their time looking at the near 

places from which they needed to obtain information, e.g., cars, pedestrians, road 

signs, and traffic lights and they use peripheral near point for steering (Land and 

Tatler, 2001). 

Specific eye movements observed in driving provide information about the 

roadway and traffic situation to control the vehicle. These coordinated eye 

movements and vehicle control actions support safe driving. Changes in this 

coordination might lead to diminished vehicle control and to dangerous changes in 

vehicle state, such as lane departures. 

Intermittent control 

The role of vision in the motor control, i.e., limb movements, has been 

studied for more than 100 years. The accuracy of visually guided actions depends 

on many factors and one of them is temporal processing delay. The shorter the 

duration between picking up visual information and using this information for 

motor action, the more precise the movement (Carlton, 1992). A delay between 

visual information and motor action has been explained in a reaction time 

paradigm (Donders, 1969) and by the visual processing time associated with the 

control of ongoing movements (Carlton, 1992). Reaction time is defined as an 
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information processing time required to react to stimuli. It is almost constant (190-

210 ms) over a range of stimuli, responses, and subject variations. Visual 

processing time varied with subjects’ experience and by the type and size of the 

error produced during the movement. In general, the visual processing time was 

found to be considerably shorter than the information processing time, when the 

visual information represented feedback from an ongoing movement or when the 

time of the visual event was reasonably certain.  

The delay between visual feedback about the position of the limb in space 

and movement toward the target was studied to understand the stages of visual 

information processing and action planning. The whole path toward a target 

consists of sub-movements that are intended to reduce error developed in the 

previous steps (Miall, Weir et al., 1988). The sub-movement performance 

integrates two control strategies: feedforward control that is used to preprogram 

the future path and feedback control that uses visual information about current 

limb and target positions to make corrections (Stein and Glickstein, 1992).  

Both feedforward and feedback control can occur in a continuous control 

fashion or when the tracking of a continuously moving target is broken up into a 

series of intermittent corrections. The exact mechanism of this sampling process is 

not entirely clear but it could be supposed that the visual processing delay plays a 

role in this discretization. The sampling of the visual information should be 

frequent enough to prevent the decay of the previous sample representation and 

long enough to delay further programming until the results of the previous 

movement are fed back and evaluated (Miall, Weir et al., 1988). In this 

intermittency paradigm, the duration of visual information processing time reflects 

the time necessary for the visuomotor system to evaluate an error between current 

and target positions and initiate a correction to the ongoing movement.  
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The intermittency paradigm explains task performance during visual 

occlusion or inattention when information about a target is eliminated. In the 

absence of the visual information, perceptual memory enables people to memorize 

target trajectories and to track them almost perfectly (Elliott, 1992). This visual 

representation of the movement environment persists for some time following 

visual occlusion and this representation allows continuously guiding limb 

movement. The information representation about the movement could persist more 

than 2 seconds after visual occlusion onset and then decay very rapidly with 

further loss of information for up to 10 seconds (Elliott, 1992; Stein and 

Glickstein, 1992). This visual representation of the movement environment could 

serve as an acquired “skill” and temporarily substitutes for a continuous visual 

information. For this reason, visual occlusion that exceeds this two-second 

threshold would cause diminished performance. Thus, visual information 

intermittency in movement control related to the processing of visual feedback 

resulted in relative discontinuity in movement.  

The vision system provides information to support action preparation and 

execution. The degree of coordination between visual and motor functions could 

influence performance and be used as a driver state indicator.   

Eye-steering coordination 

Several studies have examined the coordination between visual and motor 

functions in driving and found that it plays crucial role in driving performance. 

Eye-steering coordination was observed for drivers approaching bends. Eye 

movements precede steering movements by about one second. The coordinated eye 

and hand movements were explained from a sensory point of view: visual 

information from the fixation point allows computation of the steering movements 

to assist tracking (Land and Horwood, 1995; Land, 2006). This assumption 
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describes how visual input (e.g., tangent point of the road curve) can be used by a 

driver to initiate an appropriate motor response.  

Another assumption for eye-steering coordination is that regardless of 

precisely which visual cues are used to guide movement, the eye movement itself 

contributes to the steering pattern. In this case, the coordinated eye and hand 

movements were explained by the oculomotor controller implying that the ocular 

control system feeds into the manual control mechanism to assist tracking (Miall 

and Reckess, 2002). 

When drivers were instructed to keep their gaze on the center of the screen 

while driving on the curvy road, they spent more time steering straight than they 

did in normal driving conditions (Marple-Horvat, Chattington et al., 2005). This 

disruption of eye-steering coordination damaged driving performance measured 

through task completion time indicating the importance of this correlation. With 

the reduced visibility when the tangent point on a left-hand bend was not 

identifiable, the drivers who moved their eyes to that area performed better than 

those who preferred to focus on the center part of the road (Wilson, Stephenson et 

al., 2007). These results led to the suggestion that steering performance arises from 

eye movements, rather than from the acquired visual information and the eye 

movements could be considered as an input to the steering controller. 

 The degree of coordination between horizontal eye movements and 

steering is highly consistent for both individual drivers and for different drivers 

travelling the same route (Chattington, Wilson et al., 2007). The high covariation 

with eye movements (r =0.84) explained 71% of steering movements on the curvy 

road. Head movement explained smaller percent of steering behavior – only 29%.  

The correlation between eye and steering signals was affected by driver 

impairment, and the driving performance degradation was associated with 

correlation degradation. The correlation was reduced when drivers were exposed to 
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an attentional narrowing through high stress (Wilson, Chattington et al., 2008). 

The horizontal eye movements were more focused in the central part of the road 

scene in the high-threat condition than in the low-threat condition while steering 

movements were not affected. The coordination between eye and steering 

movements deteriorated during drunk driving. The most intoxicated drivers were 

the most affected in terms of their eye-steering coordination and experienced the 

most frequent and most serious crashes (Marple-Horvat, Cooper et al., 2008). The 

time lead between eye and steering movements decreased from 710ms to 402ms 

with an increase of alcohol level from 0mg/100ml to 35mg/100ml.  

These results indicate that (1) eye-steering coordination is highly consistent 

in natural driving on curvy roads; (2) eye movements precede steering; and (3) 

definition of a normal eye–steering coordination can help to identify impaired 

coordination that could be a result of different factors such as distraction, fatigue, 

and alcohol. 

Based on these findings, a measure of correlation between eye and steering 

movements can help in driver state identification. However, state identification 

depends on the degree of correlation between eyes and steering signals for 

different eye movements. For instance, as discussed above, the degree of eye-

steering correlation was very high on curvy roads for normal (non-distracted) 

driving: drivers moved eyes to guide steering. While driving on straight roads, 

drivers move their eyes less frequently to support their steering and this can cause 

weak correlation between two signals. Shifts from off-road to on-road glances 

might be associated with subsequent corrective steering movements. These 

coupled movements will be associated with lapses in vehicle control and can 

designate visual distraction.  

Driving environment can also influence this correlation. Non-distracted 

driving in urban environment could cause weak correlation between eye 
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movements and steering. The substantial visual information causes eye movements 

from driving scene to different locations but does not require the intensive steering 

movements. In this situation, the eye movements reflect glances to and away from 

the road to monitor pedestrians, intersections, and other hazards and do not guide 

steering. Thus, it is important to examine not only the changes in eye-steering 

correlation but also the causes of these changes. 

Driver control modeling through visual information  

The abovementioned findings show that eye and steering movements are 

tightly linked: visual information about future path supports steering and can be 

used for modeling steering control. The control-theoretic models of driving were 

developed to predict driver-vehicle behavior. To represent a driver in a path-

tracking scenario, different approaches such as continuity and intermittency of 

movements and information were considered. Some of these approaches are 

presented in this section. All these efforts are addressed to define a mathematical 

model of visuomotor performance. Accurate description of driver behavior for 

normal (non-distracted) driving could be helpful in distraction prediction: changes 

in model parameters or changes in model fit could indicate distraction. 

Early models of a driver as an adaptive controller were focused primarily 

on control-theoretic descriptions of steering control in lane keeping and curve 

negotiating tasks. These models had compensatory, pursuit, and precognitive 

control structures (McRuer, Allen et al., 1977; Donges, 1978). In compensatory 

behavior, the steering movement is a function of errors of vehicle position in the 

lane: the feedback of position error is an input into the vehicle control system. The 

pursuit control has a feedforward element: a driver has learned to compensate for 

the vehicle dynamics and can anticipate the desired path. The precognitive control 

assumes that a driver can generate steering movements based on previously 
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learned control movements. The approach used in compensatory and pursuit 

control assumes that visual feedback is available for continuous error correction 

and path monitoring. i.e., this approach uses the visual information-vehicle control 

relationship. The examination of this relationship can help understand the role of 

visual feedback in driving tasks more deeply, i.e., which visual information guides 

steering and how visual occlusion affects vehicle control. The following studies 

represent the attempts to answer these questions. Modeling visual information-

vehicle control relationship could elicit if changes in this relationship predict 

distraction.  

The driver steering behavior with various degrees of occlusion was 

examined through two different modeling approaches (Hildreth, Beusmans et al., 

2000). The first model assumed that drivers continually adjust steering to regulate 

the state of perceptual variables relevant to the task such as lateral position, 

heading, and their temporal derivatives. The second model considered continual 

steering toward the virtual target (similar to tangent point for the curve 

negotiation). Both models were considered reasonable for steering control. They 

reproduced the detailed shape of human steering profiles and similar degradation 

in performance with longer occlusion periods across the drivers. The target model, 

however, was found to be more intuitive because the relationship between target 

movement and the driver's response could be easily adapted to other steering tasks.  

A model of steering control based on two salient points in the near and far 

regions of the roadway successfully predicted steering profiles for corrective 

steering maneuvers, lane change, and curve negotiation on winding roads 

(Salvucci and Gray, 2004). The near point located in the center of the road allowed 

the model to monitor both lateral position and stability. The far point allowed the 

model to predict steering angle for the upcoming road profile. 
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The concept of intermittency of visual information processing and steering 

control was applied in modeling of a predictive steering driver control (Roy, 

Micheau et al., 2009). The intermittency of steering control was based on the 

assumption that the muscle torque increases gradually, and the wheel angle reaches 

the desired reference angle with a specific time lag associated with the human 

neuromuscular system. The model with intermittent control behavior was found 

closely mimic driver steering control behavior. This approach showed that the 

intermittence period could vary with the driver workload or driving environment 

(e.g., road curvature). The eye-steering system defined for normal non-impaired 

driving on a specific type of road can differentiate driver impaired state (high 

workload, fatigue, or distraction) when data from the impaired state is used. This 

variation of information processing time could assume that the parameters of the 

model will change with driver state indicating driver high workload or distraction. 

Another attempt of modeling driver steering behavior based on visual 

information was done through considering perception-action aspects of driving 

task performance. An integrated driver model developed in the ACT-R (Adaptive 

Control of Thought-Rational) cognitive architecture is focused on the processes of 

control, monitoring, and decision making for driving tasks (Salvucci, 2006). The 

cognitive architecture is based on chunks of declarative knowledge and condition-

action production rules that operate on these chunks. The model control 

component linked perceptual variables (the visual cues of the environment 

perception) to vehicle control actions – steering, acceleration, and braking. The 

control law for steering angle φ was expressed through a steady far point ∆ , 

near point ∆ , and near point at the center of the lane  

∆ ∆ ∆   ∆ ∆   

As with the models discussed above, this model defines the relationship between 

driver performance and continuous visual information. This approach also assumes 
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that interruptions in visual information could cause changes in the model 

performance. 

All these efforts in driver-vehicle system development address the goal of 

predicting driver performance based on visual behavior. An accurately developed 

model for normal driving can be a practical tool for real-world applications such as 

distraction detection systems. Distraction prediction will be based on changes in 

model performance: it will degrade with visual information interruptions. 

Models based on time series and system 

identification approaches 

The findings that eye and steering movements are tightly linked indicate 

that the driver eye-steering behavioral model can be defined with eye movement 

signal as an input and steering movement as an output. The black box system 

modeling will identify a transfer function that defines the relationship between 

these two signals. The present position of steering wheel can depend not only on 

eye signal but also on past values of steering signal. Thus, system identification 

approach can be used in defining such an eye-steering system. Identifying a model 

with a good fit for normal (non-distracted) driving could be helpful in distraction 

detection: changes in model parameters or model fit variations could indicate a 

deviation from the normal state of a driver, i.e., distraction. 

The system identification approach offers promising methods for 

identifying an eye-steering system (Table 4). System identification is a method to 

obtain the characteristics of a mathematical model of a system using experimental 

data and to create an input-output map (Ljung, 2009). Different parametric models 

that can describe a system in terms of differential equations and transfer functions 

could be generalized by linear polynomial model  
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and 

 

(1) 

and  

where u(t) and y(t) are the input and output of the system respectively; e(t) is zero-

mean white noise, or the disturbance of the system. A(q), B(q), C(q), D(q), F(q) 

are polynomials that contain the time-shift operator q, and  and  are 

transfer functions of the deterministic and stochastic parts of the system 

respectively (Figure 3). 

 

 Figure 3. General linear model structure 

To predict steering angle current value from its past values, autoregressive 

moving average (ARMA) and autoregressive integrated moving average (ARIMA) 

can be considered. When the observed time series is driven by some "forcing" 

signal (i.e., eye movements predict steering), ARX and ARMAX model structures 

with an "exogenous" variable should be considered. 
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Table 4. Summary of models’ structure 

Model structure Polynomials Description 

AR: A(q) y(t) =  e(t) B(q), C(q), 
D(q), and 
F(q)=1 

This structure is for time 
series analyses. There are 
no inputs or disturbances in 
the model; current output 
dependent only on previous 
outputs. 

           

ARMA: A(q) y(t) =  C(q)e(t) B(q), D(q), and 
F(q)=1 

This structure is for time 
series analyses. This model 
is for a single-output time 
series and modeled 
disturbances. There are no 
inputs. 

     

ARX:  

A(q) y(t) = B(q) u(t- nk) + e(t) 

C(q), D(q), and 
F(q)=1 

This is the simplest model 
incorporating the stimulus 
signal. This structure is 
preferable for high order 
models. The disturbances 
are part of the system 
dynamics. 

ARMAX:  

A(q) y(t) = B(q)u(t- nk) + C(q) e(t) 

D(q), and 
F(q)=1 

The structure includes 
modeled disturbance 
dynamics that makes 
models more flexible in 
handling disturbances than 
the ARX structure. 
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Table 4. Continued 

Model structure Polynomials Description 

Box-Jenkins (BJ): y(t) = [B(q)/F(q)] 
u(t-nk) + [C(q)/D(q)] e(t) 

A(q)=1 This structure models 
disturbance separate from 
system dynamics. The 
model is useful when 
disturbances enter late in 
the process.  

 

OE (output-error):  

y(t) = [B(q)/F(q)] u(t- nk) + e(t) 

A(q), C(q), 
D(q), and 
F(q)=1 

This structure is common 
for dynamical systems. It is 
useful for dynamics 
parameterization, but not 
for noise estimation. 

 

 

ARIMA model  

ARIMA model is made up of two parts: (1) the autoregressive (AR) that 

describes the dependence of the current time series value on the previous values; 

and (2) the moving average (MA), a weighted sum of the previous points of the 

noise series. The integrated part (I) of the model refers to the stationarity 

assumption. For the stationary time series data, the ARMA without the integrated 

part is 

  … …  

 

(2) 

The ARIMA model is also named Box-Jenkins model after the 

statisticians Box G. and Jenkins G. who created it.  

AR model of p order  MA model of q order 
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ARX and ARMAX models 

In the dynamic system the output (endogenous variable) can be described 

not only as a linear function of a current value of the input (exogenous variable) 

but also as a function of previous values of both the input and output measured at 

times t, t-1, t-2, etc. 

  1
1  

(3) 

where  , the number of previous outputs that affect the current output , and  

, the number of previous inputs that affect the current output , are the orders 

of the model,  is the number of input samples that occur before the input affects 

the output (time delay or dead time), and  is white-noise.  

This is the simplest ARX, AutoRegressive (related to output) with 

eXogenous input, model. This input-output relationship is presented for the single 

input-single output model (SISO); it could be extended for a multiple input- single 

output (MISO) case. The symbolic representation of the ARX model is 

 
(4) 

where  is the delay operator,  1 , and  

 1  

The coefficient B q A q⁄  is a transfer function that denotes the dynamic 

properties of the system, describing how the output is formed from the input. 

Disturbances at the output depend on noise source  . The coefficient 1 A q⁄  

describes noise properties. Different sets of parameters of the mathematical model 

could describe different conditions of the system, e.g. distracted and non-distracted 

driving. This structure assumes that disturbances are part of the system dynamics 

and this type of model can be accepted when the disturbance of the system is white 
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noise. If disturbances are not part of the system dynamics, the ARMAX structure 

will provide more flexibility for noise modeling through an additional 

term   C q A q⁄  in equation (4). Noise reflects the known and unknown 

influences on measured output that are not captured by the input. It explains the 

differences in output with the same input. There are many sources and causes of 

these disturbances  : measurement noise, uncontrollable environmental effects, 

etc. The system identification problem is to define the coefficients in equation (4). 

Process stationarity 

These models are based on a steady state process (Ljung, 1987). The 

steady-state assumption implies invariance of several statistical properties of the 

signal, i.e., mean, variance, and autocorrelation do not change over the time of 

prediction. In general, time series can be represented as the following sum: 

        

where trend represents a general systematic linear or nonlinear component (i.e., 

mean) that changes over time; a cycles term relates to the seasonality and has a 

fixed frequency, phase, and amplitude; and stationary stochastic process is the part 

of time series that should be modeled (Gottman, 1981). The trend can be 

approximated by a linear function of  , where  is a white 

noise with a constant variance and mean. The data with the nonlinear component 

need to be transformed – logarithmic, exponential, or polynomial functions – to 

remove the nonlinearity associated with variance changes. The cycle of the time 

series can be fitted with periodic function.  

As a rule of thumb, non-stationary data cannot be modeled or forecasted 

accurately with approaches that assume stationarity. The data needs to be 

transformed into stationary data. There are two alternatives to eliminate trend of 

non-stationary data: detrending and differencing. Detrending is the operation of 



40 
 

 
 

removing linear trend from the series by subtracting of the best-fit line from the 

data. Differencing transforms a time series by calculating the difference between 

two consecutive values of the series (Hartmann, Gottman et al., 1980). 

Differencing operation can be applied n times to remove nth-degree polynomial 

trend. Differencing does not remove the treatment effects (McCain and McCleary, 

1979). This transformation simply gives a different representation of a time series 

model without affecting its parameters that represent intervention effect and 

describe systematic behavior of a model (Hartmann, Gottman et al., 1980). Thus, 

removing a trend from the data focuses the analysis on the fluctuations in the data 

about the trend, i.e. stochastic process.  

The tests that evaluate statistical independence of data and underlying 

trends are “run test” and “reverse arrangement test” ensure the transformed data 

are stationary (Bendat and Piersol, 1986). The “run test” was applied to quantify 

the steadiness associated with the absence of a trend in baseline recordings of 

cardiovascular signals and to identify sub-periods of steady state during a sequence 

of physical activities (Castiglioni and Di Rienzo, 2004). The test was based on the 

runs defined as a sequence of identical observations coded by “+” or “−“. These 

symbols designate if the signal value is greater or less than the median value. The 

hypothesis that the signal does not have a trend is associated with the 

independency of observations: the number of consecutive “+” and “−“ is equal. 

The number of runs has a sampling distribution and this hypothesis can be tested at 

any desired level of (Bendat and Piersol, 1986). The mean and variance of the r 

(runs) distribution are M 2⁄ 1 and 2 4 1⁄ .  

Reverse arrangements test was performed on the lateral position data to 

check the signal stationarity (Pilutti and Ulsoy, 1999). This test was based on 

counting the number of times that      . The number of reverse 

arrangements is a random variable with M 1 4⁄  and 
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2 5 1 /72. The total number of times (reversals) when the condition 

is satisfied for all , when 1,2, …  will have a sampling distribution and can 

be tested at any desired level of significance (Bendat and Piersol, 1986). The 

reverse arrangement test is considered more powerful than the run test for 

detecting monotonic trends in a sequence of observations, but not for detecting 

fluctuating trends (Bendat and Piersol, 1986).  

On the other hand, there is an indication that the runs test and reverse 

arrangements test are not always accurate tests for signal stationarity (Becka, 

Housha et al., 2006). This finding may reflect the fact that these tests were 

designed to determine whether or not a signal is random, rather than to ensure the 

signal is stationarity (Siegel and Castellan, 1988).  

A monotonic time series can be detected by plotting the data as a function 

of time and adding the best-fit line (Chambers, Cleveland et al., 1983). The 

nonzero slope of the best-fit line would be an indicator of a trend in the data. 

Another indication of the existence of linear or non-linear trend in the data is a 

nonzero value in a spectral density function at zero frequency (Gottman, 1981, 

p.47). Plotting the autocorrelation function as a function of lag can also reveal the 

presence of a trend in data: without trend, it will decay to zero much more rapidly 

than a linearly decreasing function. The detection of cycles in time series could be 

also done through the spectral and autocorrelation analyses: it will be the presence 

of thin spikes in the spectral density function and cycles in autocorrelation 

function. 

Thus, for the eye-steering system identification using a black box modeling 

approach, the non-stationary data should be transformed into the trend-stationary 

ones. Information about trend and cycle in the time series is important and should 

be modeled before removal. Assuming that the segments with only one type of 

glace, i.e., on-road or off-road, is stationary, then the segments with two or more 
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types of glances could cause changes in trend or cycle. The changes in 

autocorrelation function associated with glance pattern changes might be indicative 

of driver state, i.e., presence of distraction. 

Driver state assessment through system identification 

Efforts in developing a mathematical model of human control performance 

in driving are based on the data from compensatory tracking tasks: subjects control 

a random input signal with the control devices (e.g., accelerator and steering 

wheel) to obtain a desired output (Smiley, Reid et al., 1980). The input-output 

system error (i.e., difference between the output and the input) prompts a driver to 

initiate a control and use it as a system input. For example, visual information from 

the driving scene could be used as a prompt of changes in vehicle state and the 

associated corrective steering movements. The interruptions in error tracking 

might lead to breakdowns in system performance. Thus, such models could trace 

changes in operator performance or behavior. 

The following examples demonstrate the attempts of modeling system 

dynamics based on stationary signals to define driver state. A system identification 

approach was used to develop a model for driver state assessment with vehicle 

lateral position as an input and steering wheel position as an output (Pilutti and 

Ulsoy, 1999). A preliminary second order ARX model was created from desktop 

driving simulator data. It was shown that changes in the bandwidth and parameters 

(i.e., damping ratio, natural frequency, and gain) of such a model may indicate 

changes in driver state, i.e., normal driving vs. fatigued driving. The defined 

identification algorithm was applied to data from two-hour highway driving 

conducted in a full-vehicle driving simulator. The model parameters did not 

exhibit the trends expected as lane keeping performance deteriorates. Several 

reasons of not detecting driver impairment were: (1) the selected model structure 
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was not the most appropriate; (2) the existence of nonlinear effects associated with 

a complacency zone when steering position remains constant while lane deviation 

errors build; (3) the choice of the low order model structure did not result in a good 

fit; and (4) the variations in parameters could cause poor differentiation between 

driver states. The last three reasons relate to model uncertainty.  

An estimated model is always uncertain due to disturbances in the observed 

data and the lack of an absolutely correct model structure. Two types of 

uncertainty were considered in modeling lateral position through steering angle 

with a linear ARMAX structure: structured uncertainty related to the model 

parameters and unstructured uncertainty related to unmodeled dynamics (Chen and 

Ulsoy, 2001). In this study, the structured uncertainty was considered to represent 

the variation of driver behavior with time and the unstructured uncertainty was 

considered to represent model order and nonlinearity. It has been shown that the 

model order and nonlinearity associated with a complacency zone did not 

contribute to the unstructured uncertainty, but the variability in driver’s steering 

behavior may be the primary source of the large uncertainty.  

These two studies showed that the system identification approach could be 

used to detect driver impairment based on model parameters changes. Different 

model structures and orders should be examined for their best fit. Nonlinear 

relationship between input and output should be considered as a possible 

unstructured uncertainty when there is an intervention effect, i.e. changes in driver 

state caused by distracting activity. The changes in model fit could indicate 

changes in driver state, i.e., distraction.  

Gaps in literature and proposed work 

Previous research has demonstrated visual behavior (i.e., glance pattern) 

and driving performance (e.g., steering and lane keeping) reveals distraction. The 
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prototypes and existing algorithms for distraction detection are mostly based on 

either eye measures or driver performance measures (e.g., speed, lane position, and 

steering). These algorithms are intended to provide concurrent and retrospective 

feedback, but a prospective indicator of distraction has yet to be considered. 

The relationship between eye and driving performance metrics in the 

context of driver distraction has not been established. However, previous research 

considering control theoretic models of driver steering behavior suggest changes in 

the coordination between these metrics can indicate distraction and predict 

breakdowns in lane keeping. This consideration can also improve the sensitivity of 

the algorithm by differentiating the type of impairment (drowsiness vs. distraction) 

and robustness of the algorithm. 

A relationship between driver visual behavior and vehicle control is 

expected because of observed eye-body coordination that is highly consistent in 

everyday activities – eye movements precede motor actions (Hollands, Ziavra et 

al., 2004). This coordination is very specific for different activities. The eye-

steering coordination – Land’s visual information framework – was observed in 

driving on open curvy roads (Land and Furneaux, 1997). The alternative (or 

additional) approach explains eye-steering movements through the oculomotor 

controller concept – movement centered framework (Wilson, Chattington et al., 

2008). This concept assumes that some neural centers produce and control eye 

movements and then assist the neural centers that control steering. Visual 

information intermittency in movement control assumes intermittent corrections – 

when each sub-movement is planned to reduce error developed in the previous step 

(Miall, Weir et al., 1988). These different concepts assume that the visual behavior 

and vehicle control relationship is strong enough to make a prediction about driver 

performance; different mechanisms can be responsible for this relationship.  
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Based on these findings, the prediction of steering behavior could be done 

through the eye movements with the oculomotor controller as a transfer function. 

This prediction could be very valuable in crash risk assessment because changes in 

steering lead to changes in lane position with taking into account vehicle dynamics 

(Figure 4). This sequential eye movement – steering – lane position behavioral 

model defined for non-distracted driving could predict large deviations from the 

centerline caused by visual distraction and falsely seeming improved driving 

performance associated with cognitive distraction. In all the cases, the changes in 

driver performance could be caused by changes in eye-steering coordination that, 

in turn, could indicate driver state changes.  

 

Figure 4. Eye movement – steering – lane position relationship 

Driving performance is impaired when eyes remained fixed or when eye 

movements are limited by either a restricted field of view (Wilson, Stephenson et 

al., 2007) or by high a stress condition (Wilson, Chattington et al., 2008). These 

eye movement impairments caused steering control disruption. The eye-steering 

coordination measured through the cross-correlation coefficient decreased while 

driving on curvy roads. Another measure affected by the impairment was time 

delay between eye and steering movements. The average time interval by which 

eye movements preceded steering decreased with diminished coordination. This 
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outcome was observed with alcohol impairment when the optimal eye-steering 

relationship deteriorates with the alcohol level (Marple-Horvat, Cooper et al., 

2008). An intervention effect of impaired condition (high stress) on driver 

performance (task completion time) was mediated by eye-steering coordination 

(Wilson, Chattington et al., 2008). 

These findings suggest: (1) high degree of eye-steering correlation on open 

curvy roads; (2) decrease in this coordination caused by impairment; and (3) a 

relationship between the degree of eye-steering coordination and driver 

performance measured through task completion time. The following research 

questions are still not answered: 

 What is the degree of eye-steering coordination on straight roads? 

 Does secondary task performance affect eye-steering coordination? 

 Does the eye-steering coordination mediate the effect of driver 

impairment on driver performance measured through vehicle position 

in the lane?   

I propose that (1) eye-steering relationship measured through the cross-

correlation coefficient and time delay between two signals will depend on type of 

eye movements, e.g., eye movements guide steering, eye scan road ahead, and eye 

move away from the road scene; (2) it is possible to model a steering wheel 

position as a function of its previous values and eye movement signal. This system 

can distinguish between distracted and non-distracted driving; (3) eye-steering 

correlation changes can predict driver performance degradation. As a prospective 

indicator, it can mitigate and prevent crash risk caused by distraction. Here, the 

crash risk is associated with relatively large deviations from the centerline that can 

impact safety (Figure 5).  

To address these specific goals of my research, three distinct aims were 

addressed:  
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Aim 1: The effect of distraction on eye and steering movements and on the 

relationship between them is assessed through the interrupted time series and 

correlation analyses. 

Aim 2: The black box approach is applied for parametric eye-steering 

system identification. 

Aim 3: The eye–steering correlation parameters are examined to assess 

whether they act as a mediator or moderator in the distracted condition – driver 

performance (i.e., lane position) relationship. The ability of the correlation 

parameter (correlation coefficient and time delay) to mediate the effect of 

distraction on lane position supports the assumption that it could act as prospective 

indicator of lane keeping performance to predict lane departures. 

These three aims will allow: (1) distraction detection based on changes in 

correlation between eye movements and steering; (2) eye-steering model design to 

identify driver distracted condition through changes in model fit; and (3) 

examination if changes in eye-steering coordination can predict driver performance 

degradation.  

 

Figure 5. Comparison of the different timelines for distraction indication. Time of 
event is associated with the time of maximum risk of crash caused by 
distraction 
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CHAPTER 3. MEASURE OF CHANGES IN EYE AND 

STEERING MOVEMENTS CAUSED BY DISTRACTION  

To examine the changes in eye and steering signals caused by distracting 

activity, the interrupted time series analysis using a segmented regression 

modeling is conducted. The interrupted time series analysis examines changes in 

two segments of data: before and after intervention, which is associated with non-

distracted and distracted states of a driver respectively. A correlation analysis 

assesses the relationship within and between eye and steering signals for each of 

these segments of data. The auto- and cross- correlation functions are calculated 

for different types of eye movement associated with non-distracted and distracted 

driving. 

Analysis method 

Interrupted time series analysis 

Interrupted time series analysis is a statistical method for analyzing how an 

intervention affects a subsequent series of observations, i.e. time series. For 

instance, an intervention effect of a distracting activity on eye and steering 

movements can be examined through the interrupted time series analysis by 

comparing two segments of data collected before and after the intervention, i.e., 

before involvement in distracting activity and during distracted driving (Gottman, 

1981).  

An advantage of time series analysis is that it could be applied when the 

observations are serially dependent and when the experimental effect is small 

(Hartmann, Gottman et al., 1980). Serial dependency refers to the cases when 

temporally ordered behavioral measurements for a single subject cannot be 

considered as independent observations and the performance of the subject at a 
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given moment can be predicted from the performance at the earlier points, e.g., 

time series of the steering wheel angle depends on its previous positions.  

Two parameters can define the intervention effect on time series: the level 

that is the value of the series at the beginning of each segment and trend that is the 

slope (rate of change) of a signal within each segment (Figure 6). A change in 

level, e.g. a jump or drop in the outcome, and change in a slope of the segment 

could designate an intervention effect (Gottman, 1981). The intervention 

components in interrupted time series are referred to as transfer functions. These 

functions relate to either the level or the slope of the series from one state (pre-

intervention period) to another state (post-intervention period) (Hartmann, 

Gottman et al., 1980).  

Segmented regression model that fits to each segment estimates the level 

and slope for the pre-intervention and post-intervention segments (Wagner, 

Soumerai et al., 2002): 

   (5) 

where  is the outcome at time  from the start of the observation period; 

 indicates the presence of intervention at a time  and coded as 1, 

otherwise 0; and      is a variable that counts time after the 

intervention. The latter variable is coded as zero before the intervention and 

calculated as  –    after intervention. 

In this model,  estimates the level of the outcome at the beginning of the 

pre-intervention period;  estimates the rate of change in the outcome before the 

intervention (i.e., the baseline trend);  estimates the level change in outcome 

immediately after the intervention; and  estimates the change in the outcome 

trend after the intervention, as compared with the period before the intervention. 

The sum of and  is the post-intervention slope. In this model, the estimation of 
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the level and trend changes associated with the intervention is done in the 

comparison with the baseline level and trend. The error term  at time t represents 

the random variability not explained by the model. The estimated model 

parameters are tested (i.e., t-test) to determine if there is a statistical significance 

between obtained values.  

In driving, shifts from on-road to off-road glances (scanning road ahead vs. 

secondary task performance) could cause changes in the eye position and steering 

angle time series. The segmented regression analysis can assess the changes in 

time series: abrupt vs. gradual, persistent vs. temporary, and delayed vs. immediate 

(Wagner, Soumerai et al., 2002). Plotting the regression models of both segments 

will visualize the dynamics of the outcome response to the intervention (Figure 6). 

The parameter of interest in this study is trend in the steering angle rate and 

horizontal eye position. It is assumed that the level of steering angle would be 

unchanged because with off road glances, the probability of steering to the left and 

to the right is same on straight roads.  

 

Figure 6. The effect of intervention (e.g., distraction) on time series: changes in a 
level and in a trend    
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Correlation analysis 

The interrupted time series analysis examines changes in two segments of 

time series, before and after intervention through modeling the trend changes 

associated with each segment. The correlation analysis assesses the relationship 

between measures within each segment of data (autocorrelation) and the 

relationship between two signals (cross-correlation). The degree to which two 

signals, e.g. steering and eye movements, are correlated could be estimated in time 

domain through cross-correlation analysis (Beauchamp, 1973; Juang, 1994). A 

measure of signal correlation with itself – autocorrelation – shows association 

between observations as a function of the time separation between them (time lag). 

This can reveal not only randomness or periodicity of the signal but also the 

dependency of the current measure from the previous values to identify an 

appropriate time series model. For a given signal  with the time-lag k 

autocorrelation function is  

R k
∑ yN i µ y i k µ

y i µ
N  (6) 

For a random process (white noise), autocorrelation function is near zero 

(inside the confidence interval) for all time lags. For non-random processes, 

autocorrelation coefficient for some time lags is outside the confidence interval. 

For periodic processes, the autocorrelation function shows signs of periodicity 

(Figure 7). 

Cross-correlation analysis is used to compare two signals and measure the 

similarity between them as a function of a time lag applied to one of them. The 

cross-correlation function  between values of input and output signals as a 

function of the time difference (k delay) is defined as  
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∑ µ µN

∑ µN ∑ µN
 (7)

where  is an input,  is an output, µ  and µ  are mean values of the input and 

output signals, k is a time delay, and N is a number of delayed intervals. 

 

Figure 7. Autocorrelation functions for random and periodic signals 

The cross-correlogram represents calculated cross-correlation coefficient 

for different time delays. It assesses the overall relationship between two signals 

that could be considered as a system input and output. The peaks of the cross-

correlogram show the degree and relative timing of any covariation between the 

input and lagged output signals (Figure 8).  

This analysis could be helpful in model definition: the current output value 

will most likely be defined through the input values shifted by time delay defined 

through the peaks of cross-correlation coefficient. The higher the absolute value of 

cross-correlation coefficient the stronger the coordination between input and 

output is. The value of  100  shows the percentage of variance in the output 
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signal that is attributable to covariation with the input signal. In other words, it 

measures the output percent that can be explained by varying the output with input.  

 

Figure 8. Cross-correlogram with one peak calculated for two signals with the 
cross correlation showing a strong association between them: one signal 
is lagged relative to the other one by 4 sec (time delay) 

Eye-steering correlation for eye movement types 

An important issue to examine is the changes in the magnitude of the eye-

steering correlation and reasons for these changes.  

Winding roads place a greater demand on the driver’s eyes to follow 

approaching curves (Wilson, Chattington et al., 2008). Strong eye-steering 

coordination arises on curvy roads when there is a need of a visual guidance for 

steering movements: drivers search for a glance location and fixation to steer while 

approaching a bend (Land & Furneaux, 1997). These horizontal eye movements 

between road center and bend tangent point are associated with steering control. 

While driving on a straight road, drivers scan the road ahead to be aware of 

the driving situation and less frequently to guide their steering. This scanning 

behavior is likely to be weakly correlated with steering (Figure 9, a) because the 

“forcing” input is not strong enough to generate an appropriate output, i.e. there 
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are no reasons for coordinated eye and steering movements. Thus, a low 

correlation between eye position and steering may not always designate driver 

impaired condition as it was shown in the studies of Wilson et al. (2008) and 

Marple-Horvat et al. (2008). 

Eye movements associated with visual distraction (glances away from the 

road and back to the road) have a qualitatively different relationship to steering.  

Glances away from the road might be associated with visual information loss that 

diminishes steering output. Glances back to the road cause subsequent steering 

movements that are needed to correct vehicle state in the lane. Because of this eye-

steering coupling, the correlation might be relatively large (Figure 9, b); but this 

correlation will differ fundamentally from coordination while approaching the 

bend when eye movements guide steering in a smooth consistent way. Another 

expected difference is a relatively large correlation with the absolute value of the 

steering wheel position with glances away from the road, but the correlation with 

visually guided steering would be associated with the direction. The large 

amplitude periodic visual and steering movements provoked by shifts from off-

road to on-road glances will be associated with lapses in a vehicle control and can 

designate visual distraction.  

Cognitive distraction will likely affect the relationship between eye and 

steering movements differently than visual distraction.  Cognitive distraction lead 

to eye movements concentrated in the center of the road (Figure 9, c) and it will 

most likely reduce the association between eye and steering wheel positions. This 

eye-steering pattern will be associated with diminished attention to the road 

environment caused by cognitive distraction. 

In this study, the relationship between eye and steering movements are 

tested for four types of eye movements: (1) scanning road ahead designating non-

distracted driving; (2) shifts of glances between on-road and off-road areas 
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designating visual distraction; (3) reduced eye movement: glances concentrated in 

the road center designating cognitive distraction; and (4) glances concentrated in 

the road center combined with single glances away from the road. This type of 

distraction will be classified as combined cognitive/visual distraction and can be 

associated with the situation when a cognitively distracted driver shifts eyes to the 

in-vehicle system or control panel. 

 

a) Non-distracted driving 

 

  

b) Visually distracted driving 

 

 

c) Cognitively distracted driving 

 

Figure 9. Glance locations and hypothetical scatter plots of associated horizontal 
eye position and steering wheel angle for non-distracted and distracted 
driving on a straight road 
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Data collection and processing  

Experimental data 

For the analysis, data from a simulator study (Liang, 2009) is used. Eye 

movement and steering movement (steering angle) signals from 16 participants (8 

male and 8 female) between 35 to 55 years old were collected while the 

participants drove on a straight, five-lane suburban arterial roadway comprised of 

two lanes in each direction separated by a center turning lane. Participants 

performed 8-minute drives for each non-distracted (baseline) and distracted 

(visual/manual, cognitive, and combined cognitive/visual tasks) condition. This 8-

minute simulator driving included pre-task (first minute) and post-task (last 

minute) segments. The order in which participants received these tasks was 

counterbalanced.  

 For the visual/manual task, the participants were instructed to match the 

direction of a given arrow within a 4x4 arrow matrix using a seven-inch LCD 

touch-screen interface (Figure 10) located on the right side of the dash 25 degrees 

laterally and 20 degrees vertically below drivers’ line of sight.  

For cognitive task, the participants listened to an audio clip and identified 

which direction (e.g., east, north, and southwest) people faced based on the clip. 

The participants were instructed to speak out load the direction as soon as possible 

after hearing each turn and to press a button on the steering wheel at the same time. 

The task required auditory input, verbal and manual output, and spatial working 

memory. 

For the combined cognitive/visual task, the participants listened to audio 

clips similar to those in the cognitive task and selected the orientation using the 

interface similar to the visual task. The timing of the three tasks was the same: the 

participants had five seconds to respond. If they responded in less than five 
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seconds, another task would follow immediately. Otherwise, the next task would 

begin after five seconds. In this way, the participants were constantly distracted by 

the secondary tasks during the six-minute task period. 

Participants were instructed to drive at 45 mph (72kph). The vehicle was 

equipped with a simulated cruise control system to ensure that the participants 

maintained a constant velocity.  The cruise control was automatically activated 

when the vehicle reached 45 mph (72 kph) and deactivated by pressing the brake.  

Participants were encouraged to use the cruise control system as much as possible. 

Braking events were used periodically requiring driver response when the lead 

vehicle slowed down. Steering movement signal was enriched by additional 

continuous external disturbance that forced the vehicle toward the lane boundary 

requiring participants to remain vigilant to the lateral position of the vehicle.  

 

Figure 10. In-vehicle display of the visual-manual arrow matching task (Liang, 
2009) 

Both a faceLabTM eye tracking system by Seeing Machines (version 4.1) 

and the simulator collected data at 60 Hz. The eye tracking system is a two-camera 

system mounted on the dashboard that provides fully automated head and eye 

tracking. The advantage of the system is an ability to work with all eye types, in 

light and dark environments, and with subjects wearing sunglasses, contact lenses, 
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and most eyeglasses. The main advantage is non-intrusiveness. Alternative eye 

tracking systems – head mounted systems – have better accuracy but potentially 

interfere with driving and cannot be implemented for everyday eye tracking on 

roads.  

Data pre-treatment 

As a first data-preprocessing step, the data from each 8-minute simulator 

driving session were reduced to 6 minutes by removing first (pre-task) and last 

(post-task) minutes from each dataset. For the eye-steering system identification 

and correlation analysis, several issues such as presence of outliers, glance type 

identification, segment size, and sampling rate are considered. 

The presence of outliers can have a disproportionate effect on the results of 

correlation analysis and model definition. To check the quality of data, the eye 

movements from each driving session are plotted to determine unusual data points. 

Along with visualization, the calibrated data, when eye position was matched to 

the screen dimensions through scaling and offsetting, is tested for a tracking 

quality using eye tracker code. The outliers are defined through the rate of eye 

position changes: the data points are classified as outliers – sharp spikes – if the 

rate of eye movement exceeds the threshold value. According to the three-sigma 

rule, the rate of eye movement that exceeds three standard deviations defined for 

each subject is used as a threshold (Maronna, Martin et al., 2006). These bursts can 

be caused by eye tracker failures to detect an eye movement or saccade 

movements.  

The sets of data points classified as outliers were interpolated when the 

length of a segment did not exceed 400 ms (i.e., 25 data points).  Since, the most 

common range of fixation is between 200 and 400 ms (Salvucci and Goldberg, 

2000), the segments up to 400ms can be interpolated without significant distortion 
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of eye movement information. Otherwise, the segments were deleted. An example 

of the preprocessed signal is presented on Figure 11. Some spikes remained after 

preprocessing might indicate high-frequency eye movements, e.g., saccades or 

quick glances at relatively far locations. 

  

Figure 11. Horizontal eye position before and after outliers’ identification and 
segments’ interpolation. Sharp spikes are associated with outliers  

The data pre-processing removed artifacts and assured that the datasets 

accurately represent driver visual behavior in different distracted conditions. The 

basic criteria for reduction are that (1) data points fall unreasonably far from the 

locations associated with the task performance; (2) rate of eye movement exceeds 

the threshold defined for each driver; and (3) eye position data is distributed in a 

very unusual way (Figure 12, b).  

Based on these criteria, the process of reduction is not consistent across the 

drivers. The minimum reduction length was 0.1 sec and maximum – 165 sec. On 

average, the 6-minute segments decreased by 50 seconds.  The post-reduction data 
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plots showed that the outliers’ exclusion reduced the number of “unexpected” 

glances for the most of the drivers (Figure 12, a) but not for subjects 3, 6, 12, and 

16 (Figure 12, b). Thus, the data from these drivers were not considered in this 

study and the number of subjects became 12.  

 
 before reduction after reduction 

a) 

b) 

Figure 12. Examples of glance locations before and after exclusion of outliers  

Steering and eye movement behavior can vary during a driving session and 

across drivers (Chen and Ulsoy, 2001). To examine these changes, different types 

of eye movement based on glance location were identified. Two basic types of 

glances are on-road and off-road. These two types are sub-segmented according to 

expected locations: near to the road center, far from road center, at driving scene 

but out of road, at the instrument panel, and at in-vehicle display (the classification 
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process is presented below). The glances at the locations that are not expected for a 

driving task are classified as unusual.  

The overall process of signal preprocessing is on Figure 13. The definition 

of eye movement type through the glance classification is presented in the next 

section.  

 

Figure 13. Data preprocessing flow chart 

Glance classification 

Different types of eye movements are based on combination of two general 

types of glances: on-road and off-road (Figure 14).  

The expected glance locations for non-distracted driving associated with 

road scanning are near the road center and far from the road center (far on-road) 

areas. The glances that fell on the screen but out of road area could be associated 

with the events and objects on the road, e.g., approaching intersection, pedestrians, 

and bicyclist. Reduced eye movements, with more near on-road glances, is 

expected for cognitively distracted driving.  
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The off-road glances to the in-vehicle display area are associated with 

visual task performance. Because this study was performed in a driving simulator 

without rear and side mirrors and with cruise control system, it is expected that the 

participants did not keep their attention on the instrument panel for speed 

maintenance and at mirrors for the environment scanning and the glances at these 

locations should be absent. However, the visualization of the glances through 

scatter plots revealed some glances concentrated at the instrument panel area. The 

glances that are not related to driving (unusual) glances are considered as a 

separate type (Figure 14). 

The glances typical for non-distracted driving, on-road glances, are defined 

as the most frequent fixations at the road center and located in a small (near on-

road) rectangular area of 20x15 degree centered around the road center point 

(Victor, Harbluk et al., 2005; Ahlstrom, Kircher et al., 2009). The expanded 

rectangular area with the same center point defines the eye fixations on the road 

(far from the road center on-road glances). The center point of the on-road glances, 

as mode values of horizontal and vertical eye positions, is calculated by binning 

the data in equal (i.e., 128 x 128) bins for a portion of the data in the forward view. 

The ratio of the small rectangular area and the whole field of view area is the same 

as it was in the study of Victor et al. (2005). The center of this area is defined for 

each driving session. Thus, near on-road glances fall within the rectangular area of 

150x115 pixels (equivalent to 20x15 degree); far on-road glances fall outside this 

area and bounded by expanded rectangular area of 614x460 pixels (equivalent to 

80x60 degree).  

The off-road glances associated with the visual task performance are 

directed toward in-vehicle display. The center of in-vehicle display area is defined 

for visually and cognitively/visually distracted driving in the same manner: it 

reflects the most frequent fixations at the right side below the road center area. The 
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size of the in-vehicle display with the total resolution of 640x480 pixels is taken 

into account; it resulted in rectangular area of 85x63 degrees. 

 

Figure 14. Classification of glances  

This data reduction process considers different combinations of glance 

types to distinguish the segments with different eye movements (Table 5). For 

baseline condition, four types of eye movements are defined: at the road center 

(eye movement 2), at driving scene (eye movement 3); segments with glances at 

instrument panel (the combination of eye movement 3 and 4); and segments with 

glances unusual for driving task glances (the combination of eye movement 3 and 

6). For distracted conditions, the glance patterns are similar during the driving 

session and across drivers. In general, eye movements 1and 2 represent the 

cognitive task; the combination of eye movement 3 and 5 represent the visual task; 

and the combination of 2 and 5 eye movements represent the cognitive/visual task. 
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It is assumed that these eye movements characterize visual behavior associated 

with task performance. 

This classification is mostly intended to reveal differences in eye 

movements during baseline driving for a single driver and across drivers. The 

consideration of the differences in eye movements during baseline drive is 

important for eye-steering model development: different types of eye movement 

can lead to different model parameters and variability in model fit. 

Table 5. Combination of different types of glances to define an eye movement 
typical for different types of distraction  

Eye 
movement 

Glance type 
on-road off-road

near to 
the road 
center 

far from 
the road 
center

at driving 
scene 

at 
instrument 

panel

at in-
vehicle 
display

unusual 

1 √  
2 √ √  
3 √ √ √  
4  √  
5  √  
6  √ 

 

Signal length and sampling   

The accuracy of correlation analysis depends on the number samples, i.e. 

signal length and sampling rate. The choice of a sampling rate is based on the 

spectral analysis (Figure 21). For both states, the signals consist of very low 

frequency – less than 1Hz – meaning that both signals could be re-sampled to 

lower frequencies. However, in this study, the initial sampling rate of 60Hz is kept 

unchanged. There are two reasons for this. First, relatively high sampling rate 

provides timing accuracy, i.e., more precise estimation of time delay between eye 
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and steering movements. Second, because the previous studies that examined the 

eye and steering movements considered high-frequency signals of 200 Hz 

(Chattington, Wilson et al., 2007; Marple-Horvat, Cooper et al., 2008), the 

sampling rate is not reduced.  

The choice of segment size is based on the assumption that it should be 

long enough to capture several glances. For instance, the segments of 30 seconds 

include at least ten glances because the single glance duration rarely exceeds three 

seconds (Liang, 2009). On the other hand, the segment length should be short 

enough to have relatively small variability, i.e., to represent a steady-state process. 

Stationarity assumption is an important issue in the system identification 

procedure. Here, the stationarity is closely related to the eye movement type. The 

segments where glances are slightly deviate from the road center are expected to 

be stationary. The presence of glances with large deviation from the road center, 

i.e., off-road, can make the data non-stationary. Therefore, examining different 

segments for the presence of a trend can reveal the non-stationary properties of a 

signal and help to define an appropriate eye-steering model.  

The fundamental frequency concept can be used to define an appropriate 

length of a segment: this value will define the length of a cycle associated with 

glance shifts between on-road and off-road areas (Beauchamp, 1973). Based on the 

spectrum analysis (see Figure 21), the fundamental frequencies of horizontal eye 

position and in steering angle are low for non-distracted driving and, therefore, the 

cycle length is too long to consider that the signal is periodic (Table 6). The 

fundamental frequency increases (the cycle length decreases) with visually 

distracted driving meaning that the signal gets more signs of periodicity (shifts 

between on-road and off-road areas). The signal length for the correlation analysis 

should contain a number of cycles of the fundamental frequency component, e.g., 

five (Beauchamp, 1973). Thus, an adequate signal length of 30 seconds is 
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considered. To keep the consistency, the same length of a signal is used for non-

distracted driving.  

If the total number of observations is N, then the autocorrelation is 

typically calculated for the first N/4 lags in the data set because higher order 

autocorrelations become increasingly unstable (Hartmann, Gottman et al., 1980). 

Thus, the autocorrelation functions for eye and steering signals are calculated for 

the first 8-second lags considering 30-second segments of data. 

Table 6. Fundamental frequencies and cycle length for eye and steering movement 
signals 

 No distraction Visual distraction 

Horizontal 
eye 

position 

Steering 
angle 

Horizontal 
eye 

position 

Steering 
angle 

Fundamental frequency (Hz) 0.026 0.069 0.259 0.175

Cycle length (sec) 38 14 4 6

Signal length for the analysis (sec)  189 72 19 29

 

Results and discussion 

The segmented regression and correlation analysis was conducted to study 

the intervention effect of distraction (visual, cognitive, and cognitive/visual tasks) 

on eye and steering time series and correlation between them. The expectation of 

this analysis is that the intervention effect of distraction will interrupt horizontal 

eye position time series causing changes in a slope (rate of a signal) and a level 

(mean value) and steering angle time series causing changes in a slope. The eye-

steering correlation coefficient will vary with distraction type that is associated 

with presence of off-road glances: it will be low for non-distracted and cognitively 
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distracted driving and might slightly increase with visual and cognitive/visual 

distraction. This increase will be caused by coupling the glances back to the road 

with corrective steering movements to recover lane position errors built while 

looking off the road. 

The results of these analyses are important for the eye-steering system 

modeling. The presence of a trend in time series is closely related to the signal 

stationarity, particularly the stationarity of mean. For model identification, the time 

series should be stationary. This requires detrending the signals and, thus, the 

trends should be modeled separately. The performance of the system built for one 

condition (i.e., baseline) will change with using signals from another conditions 

(i.e., distracted). It is important to define if these changes are caused by trend 

variations or by changes in correlation statistics. Interrupted series analysis and 

correlation analysis can elicit this information that will be used for eye-steering 

system performance evaluation – Aim 2 of this study.  

Interrupted eye and steering time series analysis 

Interrupted time series analysis was performed for two consecutive 30-

second segments of non-distracted and distracted driving (visual, cognitive, and 

cognitive/visual task conditions). Pre-treated data from 12 subjects was used (see 

Data pre-treatment section). For non-distracted condition (pre-intervention 

segment), segments of pre-task condition and, for distracted condition (post-

intervention segment), segments of task condition are used. The trend lines fitting 

and statistical analysis are performed in Matlab (R2010a) with Statistics Toolbox 

Software (version 7.3). The calculated values of level and slope for each type of 

segment are tested for being statistically significant from zero (i.e., t-test).  

As expected for steering time series, there are no level changes for pre-

intervention and post-intervention segments: on a straight road, the mean value of 
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steering angle should be zero to keep vehicle in the lane. The slopes for steering 

angle do not differ as well. The slopes were always zero for all three driving 

conditions because left and right corrective movements (i.e., negative and positive 

values of steering angle) are equally distributed across the entire segment (Figure 

15, left graph).  

To reveal changes in steering movements, absolute values of the steering 

angle were fitted with the regression model. As a result, the trend difference for 

pre-intervention and post-intervention segments was significant for visual 

distraction (M=0.03, SD=0.64), t(11)=3.32, p=0.007 and for cognitive/visual 

distraction (M=0.001, SD=0.001), t(11)=2.56, p=0.03. For cognitive distraction, 

there was no difference in trend values. This result confirms that steering angle 

amplitude increases with off-road glances causing standard deviation increase. 

This analysis shows that presence of off-road glances changes property of a 

steering signal from stationary to non-stationary. Thus, for the model 

identification, the segments of data that do not include off-road glances should be 

used.   

 

Figure 15. Interrupted time series analysis of steering angle (left) and horizontal 
eye position (right): the time series fitted with polynomial function 
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For horizontal eye position, changes in level happen with visual and 

cognitive/visual distractions when eye movement activity increases toward in-

vehicle display area and back to the road area (Figure 15, b and Figure 16, a). The 

level (i.e., mean value of horizontal eye position) significantly increases for visual 

distraction when drivers equally likely divided glances between driving scene and 

in-vehicle display. For cognitive/visual condition, the glances are more likely 

concentrated on the road ahead than at the in-vehicle display area; and the changes 

in level are not significant. For these two conditions, variation in slope and level 

increases. 

 

Figure 16. Calculated (a) level and (b) slope mean values (with standard deviation 
bar) for horizontal eye position time series 

The slopes in pre-intervention and post-intervention segments do not 

significantly differ from zero for all the distracted conditions (Figure 16, b). This 

result does not confirm the hypothesis about the intervention effect of distraction 

on horizontal eye position time series. As it was for steering angle, this outcome 

can be accounted for the equally distributed on-road and off-road glances across 

the whole segment (Figure 15).  The presence of trend in horizontal eye position 

time series will also be examined in the next chapter for each 30-second segment 
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used for system identification. All the statistical results for horizontal eye position 

are presented in Table 7. 

Table 7. Summary of interrupted time series analysis for horizontal eye position  

Condition Parameters M SD t df p 
Visual task slope pre- -0.03 0.07 -1.35 11 0.20 

post- 0.04 0.23 0.66 11 0.52 
level diff* 493.14 349.40 4.89 11 0.0005 

pre- 507.93 80.02   
post- 1001.07 333.99

Cognitive task slope pre- -0.01 0.05 -0.61 10 0.55 
post- 0.01 0.05 0.86 10 0.40 

level diff* 20.77 49.46 1.39 10 0.19 
pre- 467.04 80.71   

post- 487.81 89.29
Cognitive/visual 
task 

slope pre- 0.00 0.04 -0.43 11 0.68 
post- 0.09 0.22 1.50 11 0.16 

level diff* 125.42 134.84 3.22 11 0.01 
pre- 515.06 53.97   

post- 640.48 154.36
* Test performed for the  coefficient from equation (5), i.e., differences between two 
values 

 

Correlation analysis of eye and steering movements  

The correlation analysis was carried out to describe some statistical 

characteristics of eye position and steering angle time series and their relationship 

for different conditions (i.e., non-distracted and distracted). The auto-correlation 

analysis examines a relationship between two different points of time series to 

elicit properties of the signals, i.e., randomness or periodicity. The cross-

correlation analysis examines the similarity between time series, i.e., if one signal 

causes changes in the other one. This analysis tests the hypothesis that both 

horizontal eye position and steering angle time series are close to random for 

baseline condition and change their properties with distraction, e.g., get periodic 

properties with visual distraction. 
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It was expected that the correlation between these two signals would vary 

with the presence of distraction. It will be low for baseline (non-distracted) driving 

because eye movement associated with road scanning at straight roads is less likely 

to direct steering. A qualitatively different relationship is expected between eye 

and steering movements with presence of off-road glances. While performing 

visual task, drivers share their attention between driving scene and task 

performance area, e.g., in-vehicle display. Glances away from the road are 

associated with loss of information that is necessary for vehicle control. Glances 

back to the road are coupled with steering movements to correct the state of the 

vehicle in the lane. This coupling is most likely to increase the correlation between 

these two signals. It is also expected that eye-steering correlation will change with 

cognitive distraction but not significantly.  

To perform this analysis, the data from 12 drivers were divided into 30-

second non-overlapping segments. The interrupted time series analysis showed 

that segments of horizontal eye position and steering angle from all the driving 

conditions had non-significant trends fluctuating around zero. However, to elicit 

the properties of the signals, all the segments were detrended to remove any slope 

and mean. Auto- and cross-correlation functions are calculated using Signal 

Processing Toolbox Software (Version 6.13 of Matlab R2010a). The 30-second 

segment at frequency of 60 Hz includes 1800 samples. The correlation functions 

are calculated for first 480 lags (8 seconds) (see Signal length and sampling 

section).  

The visual inspection of calculated autocorrelation functions for baseline 

condition shows that these signals are close to random but not completely – the 

function decrease quickly from its peak value at zero lag but has values out of 95% 

confidence interval (CI) (Figure 17, a). The CI is computed as 0±1.96/N following 

an assumption that the sample correlations are normally distributed with mean zero 
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and variance 1/N, where N is a sample size. For the 0.05 α-level and two-tailed 

test, the value 1.96 is the 0.975 probability point of the cumulative distribution 

function (Gottman, 1981). 

The short-term correlation – the large values of autocorrelation function 

that follow the peak value at zero lag and tend to get smaller – was expected and 

can be accounted for the dependency of the eye and steering wheel current 

positions on their preceding values. For some segments, the autocorrelation 

coefficient outside the 95% CI at larger lags can be associated with different types 

of eye movements, i.e., glance shifts between driving scene and out of driving 

scene at instrument panel and at unexpected locations (unusual glances) (Figure 14 

and Table 5). In general, the correlation between these two signals is low. This 

implies that visual “input” on the straight road is not strong enough to generate 

steering movements as an output as it was on curvy roads (Land, 2006).   

The auto-correlation functions for both signals are changed with visual 

distraction. The signs of periodicity appear in this condition and are designated by 

the peaks out of 95% CI at non-zero lags (Figure 17, b). This is more apparent for 

horizontal eye position compared with steering angle – the peaks are higher for eye 

signal than for steering signal. This periodicity in eye movements indicates 

iterative glance switches between on-road and off-road areas. The relatively lower 

correlation in steering movement implies that drivers do not lose their lane keeping 

control with every off-road glance and hence, they do not steer with the same 

periodicity and amplitude to correct their position in the lane. This could be a 

reason of low correlation between eye and steering movements. 

The autocorrelation functions calculated for cognitively and 

cognitively/visually distracted conditions differ from the ones for baseline and 

visual conditions (Figure 17, c and d). The correlation is stronger for some non-

zero lags than that was for baseline condition but the functions are not periodic. 
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This indicates that correlation characteristics (e.g., strength of observations 

dependence) of the time series are changed with these two types of distraction. 

 

Figure 17. An example of autocorrelation and cross-correlation functions for 
detrended steering angle and horizontal eye position for no-distraction 
and distracted conditions. The functions were calculated for all the 30-
second segments from Subject 4 driving session. The dashed lines are 
95% confidence intervals. 

To examine the autocorrelation function changes associated with 

distraction, the magnitudes of the first peaks that exceed confidence interval 

(autocorrelation coefficient) and their x-values (lag time) were compared. The 

analysis was performed through a within-subject ANOVA with repeated measures 

by using SAS 9.2 PROC MIXED procedure. The analysis show that, for horizontal 

eye position, both measures are changed significantly (autocorrelation coefficient: 

F(3,31)=18.05, p<.0001; time lag:  F(3,31)=35.34, p<.0001). For steering angle, 

time lag changes significantly (F(3,28)=5.40, p=0.005) but the autocorrelation 

coefficient does not: F(3,28)=1.86, p=0.16 (Figure 18). 
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Figure 18. Autocorrelation coefficient and time lag changes with distracted 
condition 

The results of pair-wise comparison (Tukey’s test) between distracted 

conditions indicate that the autocorrelation coefficient of horizontal eye position 

time series is sensitive to distraction associated with off-road glances: the 

autocorrelation coefficients for visual and cognitive/visual conditions are 

significantly different from the ones for baseline and cognitive conditions (Table 

8). Off-road glances affect time lag of both horizontal eye position and steering 

angle time series. However, these changes are not consistent. For horizontal eye 

position, cognitive/visual distraction leads to the largest time lag compared to the 

rest of conditions, but visual distraction does not affect the time lag significantly. 

On the contrary, for steering angle, visual distraction causes increases the time lag 

but cognitive/visual distraction does not. 

To examine the correlation between signals for all four driving conditions, 

the magnitudes of cross-correlation function’s first peaks (cross-correlation 
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coefficient) and their time delay were extracted. The values of the cross-correlation 

coefficient are negative and positive indicating both types of correlation. On 

straight roads, the departures from the centerline could happen in both directions 

regardless from the glance direction. These deviations cause equally possible 

negative and positive changes in steering angle (i.e., steering to the left and to the 

right) and, consequently, negative and positive eye-steering correlation coefficient. 

Therefore, the absolute values of cross-correlation coefficient are examined to 

evaluate the strength of correlation. 

Table 8. Statistical results of the autocorrelation coefficient and time delay (in 
seconds) pair-wise comparison 

For bolded values test obtained significant difference at α=0.05; B, V, C, and C/V indicate 
the estimated value of the measures under baseline, visual distraction, cognitive 
distraction, and cognitive/visual distraction conditions 

 

The correlation parameters (cross-correlation coefficient and time delay) 

are examined for all the driving conditions. The results show that driving condition 

has a statistically significant effect on both parameters – cross-correlation 

coefficient (F(3,32)=8.69, p=0.0002) and time delay (Welch’s test: F(3)=9.16, 

p<.0001). Because the correlation analysis was performed for consecutive 

segments of data, the effect of sequence of segments was examined for each 

Correlation 
characteristics 

B vs. V B vs. C B vs. C/V V vs. C V vs. C/V C vs. C/V 

Horizontal eye 
position 

t(31) t(31) t(31) t(31) t(31) t(31) 

Autocorrelation 
coefficient 

-5.03 -0.11 -5.84 4.47 -1.13 -5.26 

Time delay 1.47 1.96 -6.99 0.75 -9.04 -8.38 
Steering angle t(28) t(28) t(28) t(28) t(28) t(28) 
Autocorrelation 

coefficient 
Not significant 

Time delay -3.54 -0.07 -1.62 2.84 2.08 -1.28 
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distracted condition. It has no effect on correlation parameters: for correlation 

coefficient, F(10, 107)=0.60, p= 0.81; and for time delay, F(10, 107)=0.43, p= 

0.93. 

Post-hoc comparison between driving conditions shows that the correlation 

coefficient is significantly higher for baseline and cognitive driving conditions 

than for visual and cognitive/visual ones (Figure 19, Table 9). This result supports 

the hypothesis that the correlation coefficient changes with off-road glances. It was 

expected that the correlation would increase with visual distraction because of the 

coupling of steering movements and eye movements. This analysis shows the 

opposite: the correlation coefficient decreases with visual distraction compared 

with baseline and cognitively distracted conditions. The obtained result is in 

agreement with studies of eye-steering correlation on curvy roads when driver 

impaired condition caused diminished coordination (Marple-Horvat, Cooper et al., 

2008; Wilson, Chattington et al., 2008). The lowest value of the correlation 

coefficient was for cognitive/visual distraction indicating that this is a different 

type of distraction: it has a different effect on correlation coefficient. 

The time delay changes across all the conditions: it significantly decreases 

with visual and cognitive distraction and increases with cognitive/visual. The post-

hoc pair-wise comparison indicates that the time delays for all the conditions are 

significantly different but not between visual and cognitive conditions (Table 9). 

The time delay, which corresponds to the degree that eye movements lead steering 

wheel movements, decrease in a way that matches the results of eye-steering 

coordination study for alcohol impaired driving on a curvy road (Marple-Horvat, 

Cooper et al., 2008). This reduction is accounted for diminished function of the 

oculomotor controller: the late signal to the neural controllers for eye movement 

caused delayed response from oculomotor controller.  
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M 0.27 0.24 0.29 0.21 1.79 1.34 1.44 1.18
SD 0.13 0.10 0.13 0.10 1.54 0.95 1.14 1.60

Figure 19. Cross-correlation analysis statistics: mean values with standard error bar 
for correlation coefficient and time delay (in seconds) 

Table 9. Statistical results of the pair-wise comparisons 

Correlation 
characteristics 

B vs. V B vs. C B vs. C/V V vs. C V vs. C/V C vs. C/V 

t(32) t(32) t(32) t(32) t(32) t(32) 

Correlation 
coefficient 

2.01 -0.88 3.83 -2.83 1.72* 4.64 

Time delay  2.56 2.05 -2.21 -0.52 -4.71 -4.22 
For bolded values test obtained significant difference at α=0.05; * the difference is 
marginally significant; B, V, C, and C/V indicate the estimated value of the measures 
under baseline condition, visual distraction, cognitive distraction, and cognitive/visual 
distraction 
 
 

The observed time delays associated with oculomotor controller are in the 

range of 200–300 ms for visually guided tracking and about 700 ms for normal 

driving on curvy roads (Miall and Reckess, 2002). This difference in time delays is 

most likely affected by the nature of the tasks (Land, Mennie et al., 1999). In this 

study, the time delay mean value is 1.8 seconds. Distraction decreases timing 

between these two movements, and it is most likely due to changes of oculomotor 

controller function. However, this issue requires more investigation, especially, the 

0.20

0.22

0.24

0.26

0.28

0.30

0.32

baseline visual cognitive cognitive 
/visual

Cross‐correlation coefficient

1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

baseline visual cognitive cognitive   
/visual

Time delay between time series
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fact that visual and cognitive distractions cause decrease of time delay but 

visual/cognitive distraction causes increase.  

Overall, these results indicate that the time delay and correlation coefficient 

can be used as diagnostic measures of distraction. The changes in time delay and 

correlation coefficient suggest that they can reflect differences between not only 

distracted and non-distracted driving, but also can differentiate between the types 

of distraction, i.e., visual, cognitive, and cognitive/visual. Due to this, the eye-

steering model could reveal sensitivity to the type of distraction as well. This 

hypothesis will be tested in the next chapter.  

 

Conclusion 

Two analyses were carried out to examine the properties of horizontal eye 

position and steering angle time series and their changes with distraction: visual, 

cognitive, and cognitive/visual. The first analysis – interrupted time series analysis 

– examines the intervention effect of distraction, i.e., the changes in time series in 

term of slope and level for distracted condition compared to baseline (non-

distracted) condition. The second analysis – correlation analysis – examines the 

relationship between two different points of time series to elicit correlation 

properties within and between the signals through autocorrelation and cross-

correlation functions respectively. This analysis tested the hypothesis that the 

correlation characteristics of the signals – correlation coefficient and time delay – 

change with presence of distraction. 

The results of these analyses are important for eye-steering system 

modeling. They show (1) that the trend should not be modeled before eye-steering 

system identification, and (2) the expected eye-steering model performance 
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changes associated with distraction would be caused not by variations of a trend 

but by correlation statistics changes.   

As expected, the level of steering angle time series did not change with 

distraction. The slope did not change as well. This result can be accounted for the 

presence of left and right corrective steering movements equally distributed across 

the whole segment (Figure 15). However, the off-road glances cause steering angle 

standard deviation increase indicating that the presence of off-road glances makes 

a signal non-stationary relative to non-distracted driving. 

For horizontal eye position, the mean values of slopes increased for visual 

and cognitive/visual distraction conditions compared with baseline condition, but 

not significantly. As expected, significant change in level occurs with off-road 

glances (for visual and cognitive/visual conditions) because of the shifted mean 

position of glances toward the in-vehicle display area where the visual task was 

performed.  

Generally, the interrupted time series analysis revealed that both horizontal 

eye position and steering angle time series do not have significant trends 

associated with distraction. This means that trends should not be modeled before 

system identification. Furthermore, assuming that the eye-steering model 

developed for baseline driving will change its performance when signal from 

distracted driving will be used as an input, these changes will not be caused by 

variations in trend. 

The correlation analysis of the time series for baseline condition shows that 

there is a short-term correlation between points implying a dependency between 

current point and its preceding values. This relationship can support building a 

model to predict the current position through its previous values. Presence of off-

road glances changes properties of both eye and steering time series. For visually 

distracted condition, the autocorrelation functions reflect some periodicity 
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associated with glance shifts between on-road and off-road areas and consecutive 

intensive steering movements. These changes identify driver state changes. The 

shape of autocorrelation functions for cognitive and cognitive/visual task condition 

also has been changed: there are more peaks at non-zero lags than for the baseline 

condition indicating changes in the strength of association between observations.  

These changes in association were assessed through the autocorrelation 

coefficient and time lag. This assessment showed that these measures change with 

off-road glances in a different way. The autocorrelation coefficient changes with 

off-road glances for horizontal eye position but does not change for steering angle. 

Time lag increases significantly with cognitive/visual distraction for horizontal eye 

position and with visual distraction for steering angle. 

These changes in autocorrelation functions cause changes in the cross-

correlation function. According to Land’s theory, the eye and steering movements 

are highly coordinated on winding open roads because visual information about the 

road curvature is a strong input to the steering controller (Land and Horwood, 

1995). Driver impairment associated with alcohol and fatigue has been shown to 

diminish this coordination. On a straight open road, this eye-steering relationship is 

different: eyes do not move to guide steering; eyes scan driving environment to 

maintain situation awareness not to solely guide steering movements. This implies 

that, in general, the eye-steering correlation should be lower on a straight road 

compared with curvy road. The eye-steering correlation could increase slightly for 

visual and cognitive/visual conditions compared with baseline and cognitive 

conditions. This increase would be associated with coupling eye and steering 

movements: glance shifts between on-road and off-road areas cause corrective 

steering movements to keep vehicle in a lane.  

The eye-steering relationship is evaluated through the correlation 

coefficient, the absolute magnitude of a cross correlation function first peak and 
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time delay, the position of a first peak. Both these characteristics are found 

sensitive to distraction. The correlation coefficient is sensitive to distraction 

associated with off-road glances, i.e., visual and cognitive/visual distraction. It 

does not change significantly with cognitive task. The time delay is sensitive to all 

three types of distraction. The same result of correlation coefficient and time delay 

decrease was observed with driver impaired condition on curvy roads (Marple-

Horvat, Cooper et al., 2008; Wilson, Chattington et al., 2008). An interesting result 

was for cognitive/visual distraction: it was the only type of distraction where both 

time delay and correlation coefficient changed significantly. Moreover, the 

amplitude of these changes was the largest, indicating that cognitive/visual 

distraction affects eye and steering movements in a different way compared to 

visual and cognitive distraction. 

These changes in eye-steering relationship measured through correlation 

coefficient (CC) and time delay (TD) can be used for distraction differentiation: 

(1) for visual distraction, both CC and TD decrease; (2) for cognitive distraction, 

TD decreases and CC does not change; and (3) for cognitive/visual distraction, CC 

decreases and TD increases (Figure 19). All the comparisons are done relative to 

the baseline condition. This differentiation can help in driver state identification. 

The model defined for baseline condition based on eye and steering movements 

can differentiate driver state when data from distracted driving are used as an input 

into the model. Based on CC and TD changes, the defined model can not only 

differentiate distracted from non-distracted driving but also differentiate types of 

distraction: visual, cognitive, and cognitive/visual. 

In overall, these two analyses show that for eye-steering system definition, 

the trend of a steering angle time series does not have to be modeled separately: it 

does not differ from zero for the baseline condition. It is most likely, that the 

performance of the model defined for baseline condition will be changed 
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significantly with distraction. These changes will be caused by the changes in 

correlation statistics, time delay and correlation coefficient, and not by the changes 

in trend. The variation in time delay and correlation coefficient revealed by the 

analysis in this chapter suggests properties in drivers’ looking and steering 

behavior can support a model that will reflect differences between not only 

distracted and non-distracted driving, but also between the types of distraction, i.e., 

visual, cognitive, and cognitive/visual. This hypothesis will be tested in the next 

chapter. 
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CHAPTER 4. DRIVER STATE ASSESSMENT THROUGH THE 

SYSTEM IDENTIFICATION APPROACH 

A system identification approach is used to construct mathematical models 

of eye-steering system from input-output data. This black-box modeling approach 

fits linear and nonlinear models to data. The fit of the models to the data and the 

values of model parameters might be useful indicators of distraction and might 

also differentiate types of distraction. 

Analysis method 

Parametric models are used to predict steering wheel angle through its 

previous values and eye movement location. This approach identifies a model that 

takes horizontal eye position as an input and generates steering angle as an output.  

It is hypothesized that the model defined for the stationary data from non-

distracted driving will result in different model fit values when data from 

distracted driving are used as an input into this model. If this hypothesis is 

confirmed, then model performance (measured through the Best Fit value) as a 

driver state classifier can identify distracted driving. Model performance will be 

evaluated using a confusion matrix as well. 

The results of the correlation analysis can be used to identify the model 

structure: the correlation within steering time series and between eye and steering 

time series allows prediction of a current value of steering signal through its 

previous values and eye position. The time delay defined through the cross-

correlation analysis in the previous chapter will be examined as relative timing 

between input and output. 
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System identification  

The candidate models that can predict steering wheel position using only 

previous states of the steering output are ARIMA, ARMA, and AR time series 

modeling structures. Models that predict steering wheel position using previous 

states of the steering output and current and previous states of the horizontal eye 

position input are ARX and ARMAX models (Table 4). An advantage of the 

models with moving average (MA) term is more flexibility in modeling 

disturbances than models without MA. The models with MA terms predict the 

current value of the series against previous white noise error terms or random 

shocks that propagate to future values of the time series. On the other hand, AR 

and ARX structures are simpler if the disturbances are a part of the system and 

could be represented as white noise. For the purpose of this study, the 

consideration of the ARX structure is more appropriate because (1) it combines 

two variables that represent driving and visual behavior; (2) it considers time delay 

between input and output that is indicative of distraction. 

It was shown previously that vertical eye movement has not been changed 

significantly for different driver states (Wilson, Chattington et al., 2008);  and it 

was not correlated with steering movements (Wilson, Stephenson et al., 2007). 

Thus, horizontal eye position will be considered as the input to the steering 

controller. 

Modeling should be done under the assumption that the signal is stationary 

(Ljung, 1987). The signal stationarity assumes that a mathematical model should 

be based on the process that is unchanged and stable during the time of prediction. 

This assumption implies that the mean, variance, and autocorrelation do not 

change over the time of prediction (Gottman, 1981). Thus, non-stationary data 

cannot be modeled or forecasted, it needs to be transformed into trend stationary 

data. However, eye movement non-stationarity could indicate changes in glance 
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type and, consequently distracted driving. Therefore, all the segments of data 

should be tested for presence of trend. Before removing trend from the time series, 

i.e., subtracting the best-fit line from the data, it should be modeled. Removing a 

trend from the data focuses the analysis on the fluctuations in the data about the 

trend.  

Model estimation  

The ARX model structure is defined by the three parameters  , , and  

from equation (3). Guided by the correlation analysis, time delay that corresponds 

to the x-value of a cross-correlation function maximum peak can be used for   

selection. Nevertheless, the time delay and the optimal number of previous inputs 

   and previous outputs    terms will be defined by examining models with 

different sets of values and will be based on the model fit parameters. 

The prediction error method (PEM) is applied to model parameter 

identification (Ljung, 1987), where a prediction error is defined as a sum of 

squares of differences between validation data output and one-step-ahead predicted 

output. The parameters of the model will be estimated and tested for statistical 

significance using the least squares method (as a special case of PEM) that 

minimizes the error term through determining B q A q⁄  and H q

1 A q⁄  parameters (see ARX structure in Table 4): 

  argmin  

where   

The candidate models will be examined on the prediction error using the 

Akaike Information Criterion (AIC) or Akaike Final Prediction Error (FPE) as 

measures of model quality. AIC and FPE are defined by the equations 

1 ⁄

1 ⁄
 

(8)
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and 

log   = og  1 log  for d  

where
1

 

is the loss function, d is the number of estimated parameters, and N is the number 

of values in the estimation dataset. 

The lower the prediction error value the better the model. The choice of 

AIC or FPE rather than R2 is that even the adjusted R2 value might lead to 

inclusion of additional model parameters and result in overfitting. Therefore, based 

on a high R2 value, the best model will be the most complex one. Since the model 

simplicity is a critical aspect in model definition, the models will be compared 

with the information lost criteria, i.e., AIC or FPE, as a measure of both accuracy 

and complexity. 

Model validation 

The selected models (with the lowest order and prediction error) will be 

evaluated by (1) Best Fit value that compares simulated or predicted output with 

measured output; and (2) residuals’ analyses.  

The Best Fit shows the percentage of the output that the model reproduces 

and computes as  

  1
| ŷ|
| μ|

x 100 
(9)

where  is the measured output, ŷ is the simulated or predicted model output, and 

μ is the mean of . The closer the value is to 100% the better the fit. When the 

value is 0%, the fit is no better than guessing the output to be a constant  ŷ μ). 

The Best Fit is a model performance function that is essentially the R2 value. Best 

Fit could be negative indicating that the estimation algorithm failed to converge.  
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The model validation process includes an analysis of residuals: the 

examination of the residuals’ auto-correlation and cross-correlation with the input 

(Ljung, 1987). The residual function of a good model should be white noise. This 

assumes that the noise signal should be a random function that is not correlated 

with itself. Based on equation (6), the auto-correlation function of the residuals 

defined as   

1
 

should tend to 0 for any non-zero k and do not leave the confidence interval. The 

exceedence of the confidence interval could indicate that the model structure does 

not fully account for the data. Examination of system linearity could also be based 

on the tendency of normalized cross correlation function toward one. In the 

frequency domain, the coherence test is used to determine the presence of a linear 

relationship between input and output. The tendency of the coherence function to 

zero could be a result of one of the following conditions: (1) noise contaminates 

the measurements, (2) another input affects the output, and (3) the relationship 

between input and output is nonlinear.  

The analysis of the cross-correlation function defined by equation (7) 

between the residuals and the inputs evaluates if the model properly represents the 

relationship between signals: 

1
 

A cross-correlation function that exceeds the confidence interval suggests 

that the output is not properly described. The correlation between  and 

 for negative k, is an indicator of feedback in the model. A slowly varying 

cross correlation function outside the confidence region indicate an insufficient 

number of sampling intervals between the most and least delayed output. The 
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presence of peaks is an indicator of a small number of sampling intervals between 

the most and least delayed input or wrong number of delayed samples between 

input and output (Ljung, 1995). 

Thus, it is assumed that a good model should have (1) the residual 

autocorrelation function inside the confidence interval, indicating that the residuals 

are uncorrelated, i.e., normally distributed white noise (whiteness test); and (2) a 

cross-correlation function that lies inside the confidence interval, indicating that 

the residuals are uncorrelated with past inputs (independency test).  

Driver state differentiation through eye-steering 

system modeling  

As a preliminary study, two different models were developed for non-

distracted and distracted driving to examine the changes in transfer functions 

caused by driver state. The black-box modeling approach was used to define the 

relationship between eye signal as an input and steering signal as an output. The 

parametric models with ARX structure were considered to describe the system 

dynamics using transfer functions. It was hypothesized that the difference in 

models structure, orders, parameters, and fit can indicate different states of a 

driver. 

Steering and visual behavior was compared for non-distracted and visually 

distracted conditions for 12 subjects through histogram plots (Figure 20). The 

comparison indicated that, in general, distribution shapes for steering angle have 

normal tendencies with zero mean for both conditions. In general, the drivers 

performed differently under these two conditions: while driving without 

distraction, the driver made some adjustments with small steering angles, and the 

range of the angles increased with distracting driving. 
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a) 

 
b) 

 

Figure 20. Distribution of (a) steering angle and (b) horizontal eye position for 
non-distracted (dark bars) and visually distracted (white bars) 
conditions 

The horizontal eye position for non-distracted driving has distribution close 

to normal in most cases and it becomes bimodal designating that glances 
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distributed between on-road area and off-road area, i.e., in-vehicle display. This 

examination shows that driving behavior, i.e., eye and steering movements, is 

different across the drivers. The presence of unusual glances that could be 

considered as outliers (subjects 2, 5, and 14) are revealed through the visual 

inspection of the histograms. 

The difference in driving behavior for non-distracted and visually 

distracted conditions is revealed through the spectrum analysis (Figure 21): there is 

a shift from lower frequencies for non-distracted driving toward higher values for 

visually distracted driving. The average fundamental frequency in horizontal eye 

position signal is 0.026 Hz (cycle time of 38 seconds) and in steering angle signal 

is 0.069 Hz (cycle time of 14 seconds) (see also Table 6). Such a relatively low 

fundamental frequency (long cycle) in signals for non-distracted driving can imply 

that the periodic component in these signals is absent and they can be considered 

random. The signs of periodicity appear with visual distraction, when cycle lengths 

decrease and become 4 seconds and 6 seconds for eye and steering movements 

respectively.  

For eye-steering system identification, simulator driving data from Subject 

2 was chosen. Here, the difference in steering performance for distracted and non-

distracted driving was explicit: the distribution for distracted driving is more 

scattered than that for distracted driving (Figure 20, a). The signals were broken 

down into ten-second non-overlapping rectangular windows (600 samples at 60 

Hz). The choice of the window size was based on the intention of determining 

stationary segments of data that include at least three glances and could be used 

without any reduction. Thus, for the model identification and validation, the 

segments of data that do not contain non-task relevant glances were used. 
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a) 

 
b) 

 

Figure 21. Detrended (a) steering angle and (b) horizontal eye position spectra for 
non-distracted (black line) and distracted (red line) conditions 

The signals were detrended to remove means and any linear trend and 

filtered to remove high frequency components. The auto- and cross- correlation 

functions were calculated for both conditions: non-distracted and visually 

distracted. The auto-correlation functions for non-distracted condition showed that 
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the horizontal eye and the steering movements could be considered as random 

signals: the functions decrease faster than linear function (Gottman, 1981) (Figure 

22). 

 

Figure 22. Auto- and cross- correlation functions calculated for eye and steering 
signals for 10-second segments of non-distracted (blue line) and 
distracted (red line) conditions 

The correlation between signals was low. The auto-correlation functions 

suggest periodicity and strong coupling in the distracted condition. This periodicity 

might indicate glance switches between on-road and off-road areas and subsequent 

corrective steering movements. The cross-correlation coefficient between these 

signals also increased with distraction. 

Eye-steering model estimation 

To describe the dynamics of the system by means of a transfer function and 

simplify the calculations, a parametric modeling approach is considered. This 

approach estimates the parameters or transfer functions of a specified model 

structure using input and output data. The advantage of parametric modeling is that 

the output can be easier to interpret as compared to non-parametric approach.  

Model accuracy and simplicity are two issues that should be combined in 

the model design: the large number of parameters can increase the precision of the 
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model but, at the same time, can result in modeling of nonexistent dynamics and 

noise characteristics. The strategy for modeling was to start with the simplest 

design and to increase the complexity to improve the model performance by 

considering noise structure, non-linearity, and an additional input (i.e., external 

disturbance). The non-linear structure was considered because the coherence 

spectrum showed that the relationship between input and output, i.e. coherence 

function, did not tend to one. An additional input was considered because plotting 

eye and steering signals with external disturbance showed that although the 

steering movements for some degree are coordinated with eye glance movements, 

there is a probability that the external disturbance simulates some steering 

movements as well (Figure 23, points 3 and 4 on the graph).  

 

Figure 23. Steering angle and horizontal eye position (60-second sample of non-
distracted driving) 

Among parametric models, the ARX model has the simplest structure 

defined by equation (3). The proposed model has horizontal eye position as a 

single input and a single output that is a steering angle. Two different 10-second 
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samples of simulated driving for each condition were used for model estimation 

and validation purposes. These two segments had similar autocorrelation functions 

shapes. They passed the stationarity reverse arrangement test – the evaluation of  

statistical independence of data and underlying trends – with α = 0.05 for steering 

signal and with α = 0.01 for eye movement signal. The means were removed 

before starting the process of model identification. 

Eye-steering model validation 

Different sets of model order (   , ) and delay   were examined. 

The candidate models were selected based on a model accuracy measure, i.e., FPE 

defined by equation (8). The best model choice was based on how well the 

simulated output matches the measured output (Best Fit value defined by equation 

(9) and through the analysis of residuals. Thus, to validate the model, the models 

with different orders and delays that had the smallest values of FPE (similar to 

AIC based on equation 8) were evaluated through the Best Fit. The residuals were 

tested on whiteness and the independence.  

Different combinations of order and delay were examined to find a 

structure with the lowest prediction error and order. Based on this selection, three 

candidate models were compared for the Best Fit and output residuals (Figure 24). 

This comparison showed that the ARX model (arx131226) could be considered as 

the best one. In this model, the number of previous outputs on which the current 

output depends (na) is 13, and the input is delayed by 3.77 sec (nk = 226). This 

model has the highest Best Fit value of 43.42 %; and residuals passed the 

whiteness and independence tests with the 99% confidence interval (Figure 24, b). 

 



95 
 

 
 

a) 

    

b) 

 

 

c) 

   

Figure 24. Comparison of candidate models for baseline driving: a) simulated and 
measured output comparison with Best Fit values; b) auto- and cross- 
correlation for residuals (the horizontal scale is the number of lags 
(samples) between the signals at which the correlation is estimated); 
and c) measured minus simulated output (error) 
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The consideration of the noise in the model as a separate term through the 

ARMAX structure (amx1312226) did not improve model performance (Best Fit 

decreased to 39.81%) (Figure 24, c). Non-linear modeling with the same structure 

did not improve model performance as well. Moreover, the estimation algorithm 

failed to converge. 

Both horizontal eye position and external disturbance were used as inputs – 

MISO model – to define if consideration of an additional input would improve the 

model. The comparison of SISO and MISO models showed that the outputs for 

both types of models were almost the same (Figure 25).  

 

 

Figure 25. Comparison of SISO (one-input) and MISO (two-input) models 

For the visual task, the model selection based on FPE value showed that the 

influence of the input upon the output was delayed by 4.77 sec (288 samples) 

(Table 10). The highest Best Fit value had the model with the lowest order: the 

number of previous outputs on which the current output depends (na) was 3 

(arx31288) (Figure 26, a). Analysis of the autocorrelation function for the residuals 

(whiteness test) showed that it exceeded the confidence interval of 99% indicating 

that the noise is not white (Figure 26, b). The large number of a sample size allows  
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a) 

 

b) 

 

c) 

 

Figure 26. Comparison of candidate models for distracted driving (with visual 
task): a) simulated and measured output comparison with Best Fit 
values; b) auto- and cross- correlation for residuals (the horizontal scale 
is the number of lags (samples) between the signals at which the 
correlation is estimated); and c) measured minus simulated output 
(error) 
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choosing a liberal criterion of 99% for the confidence interval. The ARMAX 

model with the same structure (amx312288) improved the results of the 

autocorrelation function but caused Best Fit value decrease. The ARX model with 

na of 6 (arx61288) had similar residuals and Best Fit value. The error term for each 

structure is presented in Figure 26 (c). The interesting result is that the Best Fit 

(which is similar to R2) increases even though prediction error (FPE) increases. 

This result is consistent with the greater variability in steering during distraction. 

Table 10. Summary of the models’ estimation and validation characteristics 

Models Model order Input 
delay 

Best Fit Prediction 
error 

number 
of 

previous 
outputs 

na 

number 
of 

previous 
inputs 

nb 

number 
of 

error 
terms 

nc 

nk 
(delay in 
seconds) 

Simulated 
output 

(%) 

FPE 

No task 

amx1312226 13 1 2 226 (3.75) 39.81 0.002

arx131101 13 1 101 (1.68) 27.44 0.001

arx131226 13 1 226 (3.75) 43.42 0.001

arx131122677 
(2 inputs) 

13 1 226 (3.75) 43.20 0.001

1 77 (1.28)

Visual task 

arx61288 6 1 288 (4.78) 66.02 0.004

amx314288 3 1 4 288 (4.78) 64.92 0.008

amx312288 3 1 2 288 (4.78) 65.34 0.008

arx31288 3 1 288 (4.78) 69.25 0.005

nlarx31288 3 1 288 (4.78) -10.82* 0.010

* Negative value of Best Fit indicates that estimation algorithm failed to converge 
 

Two models with the best performance were selected to compare the 

transfer functions – arx131226 for non-distracted driving and amx312288 for 
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distracted driving (Table 11). The comparison of these two models has shown that 

they differ by structure, parameters, time delay, and the number of the previous 

outputs that affected the current output. The number of the previous outputs is 13 

for the non-distracted condition and 3 for the distracted one. This difference 

indicates that the current position of steering angle for baseline driving depends on 

the previous positions up to 0.22 sec (na=13), while this time interval for the 

distracted driving was very short – 0.005 sec (na= 3) (Table 10). 

Table 11. Eye-steering system models for distracted and non-distracted driving  

Condition Model structure Coefficients for input, output and noise terms 

Non-
distracted 
 

ARX structure: 
A(q)y(t) = B(q)u(t) + e(t)   
 

A(q) = 1 - 1.105 q-1 - 0.2679 q-2 + 0.03677 q-3 
+ 0.1086 q-4 + 0.1949 q-5 + 0.1821 q-6 - 
0.08175 q-7 - 0.05496 q-8  + 0.02884 q-9 - 
0.02148 q-10 - 0.06231 q-11 + 0.05494 q-12 - 
0.01198 q-13 

B(q) = -0.0001277 q-226 

Distracted 
(Visual 
task)      
 

ARMAX structure: 
 A(q)y(t) = B(q)u(t) + 
C(q)+e(t)  

A(q) = 1 - 2.834 q-1 + 2.683 q-2 - 0.8485 q-3 
B(q) = -2.878e-006 q-288 
C(q) = 1 - 0.9361 q-1 + 0.3388 q-2 

 

Low correlation between input and output (Figure 22) indicates that driver 

steering movements do not reflect how people look at the road to guide their 

steering while driving on a straight road with light traffic. Non-distracted drivers 

mostly scan a driving environment. Driver awareness about the situation on the 

road led to smooth steering corrections to keep the vehicle in the lane and this 

could explain the greater number of the previous steering positions that influence 

current position. The correlation coefficient increased with distracted driving: 

drivers looked away from the road, then back to the road, and then made corrective 

steering movements. The time delay between eye and steering movements 
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increased by 1 sec (from 3.75 for baseline driving to 4.78 for distracted driving) 

(Table 10). The same difference of 1 sec in time delays was observed between the 

peaks of the cross-correlation functions for distracted and non-distracted driving in 

(Figure 22). This difference indicated that the visual task performance delayed the 

steering movement by 1 sec compared with normal driving.  

However, these models defined for a single driver 10-second driving might 

not generalize to other drivers. Time delay as well as parameters might differ 

significantly for the rest of the segments of the same driver or for other drivers. 

Overall, the difference in transfer functions, time delays, and model 

structures for different distracted conditions showed that it is possible to 

differentiate distracted condition based on a system identification approach. The 

definition of a control eye–steering model could help identify impaired driving 

when changes in parameters or model performance are observed.  

Results and discussion 

A black box modeling approach is used to construct a mathematical model 

of eye-steering system for all the drivers. This approach assumes that input-output 

data should define the parameters of the system. As it was shown in the previous 

section, changes in model parameters and structure might indicate changes in 

condition, e.g., distraction. Moreover, different types of distraction could lead to 

different parameters or structure (Ljung, L., 1987). Another approach to detect the 

condition changes is to develop a model for a specific condition, i.e., baseline 

condition, and then assess changes in model performance when data from different 

conditions is used as an input into the model.       

This study examines the hypothesis that the model defined for non-

distracted driving will change its performance when data from distracted driving is 

used as an input into this model. The overall process of eye-steering models 
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development and using these models for driver state identification is presented on 

Figure 27. The data of the same driver distracted driving (step1) and to data of 

non-distracted and distracted driving from other drivers (step 2) are applied to 

models derived for each driver. Models performance is evaluated through Best Fit 

values. These Best Fit values are examined on their ability to identify presence of 

distraction, i.e., driver distracted condition.  

 

Figure 27. Schema of model development and driver state identification through 
model performance for a single driver (step 1). Step 2, when the data of 
non-distracted and distracted driving from all the drivers are applied to 
each model, is not shown on the schema  

For the models development, the pre-treated datasets (see Data pre-

treatment section) from 12 drivers are divided on 30-second non-overlapping 

segments. For each driver, two different segments from baseline driving that do 

not contain off-road glances are used for the model estimation and validation. For 

this purpose, all the segments from baseline driving are examined on presence of 

off-road and unusual glances (Table 5). Four types of eye movement have been 

identified: at the road center (eye movement 2), at driving scene (eye movement 

3); with presence of glances at instrument panel (the combination of eye 
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movement 3 and 4); and with presence of unusual for driving task glances (the 

combination of eye movement 3 and 6). 

This classification was done to verify the hypothesis that the presence of 

any off-road glance, even driving related, e.g., at instrument panel, could influence 

model performance. As it was discussed in Eye-steering correlation for eye 

movement types section, the eye-steering relationship varies when a driver looks at 

the road from looking off the road. While looking at the road ahead, drivers get 

information about driving environment and this information contributes the vehicle 

control, e.g., steering. This eye-steering coordination is very strong on curvy roads 

because eyes follow road curvature to guide steering (Land, 2006). However, 

while driving on a straight road, even with on-road glances, this relationship is not 

expected to be as strong as it was obtained on curvy roads, i.e., eye movements do 

not “force” steering movements. Off-road glances are also likely to change this 

relationship and diminish eye-steering coordination. Thus, influence of driving 

related (i.e., at instrument panel) and non-driving related (at in-vehicle display) 

off-road glances will be tested.  

Before models development, all the segments of data were examined for 

the presence of a non-zero trend, i.e., non-zero-slope straight line that best fits the 

data in the least squares sense. This was done to confirm the results of interrupted 

time series analysis and ensure that there was no need for trend modeling before 

system identification. Another reason for conducting trend test is verification that 

the changes in model performance, when data from distracted driving is used as an 

input into the model, are not caused by changes in slopes.  

The trend test shows that the mean slope values for steering angle and 

horizontal eye position were very close to zero for all the distracted conditions. 

The slope values deviate from zero in a wider range for visual task (M=0.028, 

SD=0.185) and cognitive/visual task (M=0.031, SD=0.311) compared with 
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baseline (M=-0.002, SD=0.039) and cognitive task (M= -0.002, SD=0.045) 

conditions (Figure 28). These large deviations in slope values are caused by off-

road glances associated with large angles.  

M -0.002 0.028 -0.002 0.031  0.000 0.000 0.000 0.000 

SD 0.039 0.185 0.045 0.311  0.001 0.001 0.001 0.001 

 Figure 28. Slope statistics: mean values (with standard deviation bar) for non-
distracted and distracted driving 

Different combinations of these off-road glances and on-road glances in 

30-second segments make negative, positive, and close to zero slopes (Figure 29). 

The presence of the slope and its direction depends on where the off-road glances 

occur: the negative slope is caused by the off-road glance at the beginning of the 

segment; positive – at the end; and zero – in the middle or at the both ends of a 

segment. Since, the off-road glance positioning is random, it could be concluded 

that slope is zero for all driving conditions. Therefore, for system identification, 

there is no necessity to model the trend before removing it.  

Thus, before system modeling, the segments of data were detrended to 

remove means and any possible trend. As a part of signal preprocessing, the time 

series segments were filtered to remove high frequency component associated with 

saccades and noise (Figure 30). 
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Figure 29. Trend information for 30-second segments of driving with visual task: 
a) negative slope; b) zero slope; c) positive slope 

 

Figure 30. Comparison of a raw and filtered eye movement signal 

For the models development, the Matlab (R2010a) System Identification 

Toolbox Software (version 7.4) is used. Different sets of model structure (ARX, 

ARMAX, and non-linear), number of previous input and output, and time delays 

are examined to identify the best fitting model for each driver. The models are 

validated by the following criteria: (1) minimum value of FPE; (2) models should 

pass whiteness and the independence tests (see Model validation section); and (3) 

if more than one model passed criteria (1) and (2), the model with a minimum 

order is chosen.  
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Based on these criteria, an example of the model selection process for 

Subject 1 is presented on Figure 31. The models with lower order (arx2174 and 

arx6174) did not meet criterion (2) – they did not pass whiteness and the 

independence tests (Figure 31, b). For two other models (arx81171 and arx8174), 

the Best Fit and FPE values were very close; and the preference was given to the 

model with the smaller time delay. The consideration of the noise term (ARMAX 

structure) and non-linear structure did not improve model performance.  

The models are identified for all the subjects through the same procedure. 

The chosen models have some similarity: all the models have ARX structure, i.e. 

non-linearity and noise modeling (MA component) did not improve model 

performance; the number of previous inputs (nb) is 1; and in most cases, the 

number of previous outputs (na) is 8 (M=8; SD=1). The number of input samples 

(nk) that occur before the input that affects the output is in the range from 66 to 98 

(M=78; SD=11).  

The model uncertainty is evaluated through variability of estimated model 

parameters – means and standard deviations of coefficients generated by toolbox 

algorithm. These measures can be used to compare the derived models across the 

drivers. Assuming that the coefficients of a single model are from the normal 

distribution with these ARX-generated means and standard deviations (Table 12), 

the coefficients are compared across the models and assessed by the degree of the 

confidence intervals overlap. If the coefficient confidence intervals from different 

models overlap, then the parameters can be considered from the same distribution 

(Figure 32). 

 



106 
 

 
 

a) 

 
b) 

 

 

c)   

Figure 31. Comparison of candidate models for non-distracted driving of Subject 
1: a) 30 steps ahead predicted and measured output comparison; b) 
auto- and cross- correlation for residuals (the horizontal scale is the 
number of lags (samples) between the signals at which the correlation is 
estimated); and c) residuals (error) 
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This comparison is done for the first seven coefficients of the parameter A 

(a1- a7) and for a single coefficient of the parameter B (Figure 32). These graphs 

show that the distributions overlap for a5, a6, and a7; they partially overlap for a2,a4, 

and bnk; and the least overlap is for a1 and a3. This variability in the models’ 

parameters is most likely due to variations in driving style among the drivers.  

 

Figure 32. Model parameters variation histogram and confidence intervals across 
the subjects 

To assess whether model performance, measured through Best Fit value 

(9), can identify distracted driving, the models are applied to 30-second segments 

of data from different distracted conditions, i.e., non-distracted and three types of 

distracted conditions. First, data from the same driver based on which the model 

has been developed is used. The Best Fit values compared 30 steps ahead predicted 

by the model output with measured output for each segment of data. These values 
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are compared through a within-subject ANOVA with repeated measures using 

SAS 9.2 PROC MIXED procedure. 

Table 12. Summary of the chosen models. The model structure is defined through 
number of previous inputs nb, previous outputs na, and delayed inputs 
nk. Standard deviations of the coefficients are in curly brackets for a1-
ana and bnk 

Mo- 

del 

Model 
structure 

FPE Parameters 

na nb nk A B 

m1 8 1 74 0.001 [-1.228;-0.155;0.183;0.104;0.090;0.065;0.027;-0.086] 

{0.024;0.038;0.038;0.038;0.038;0.038;0.038;0.024} 

0.000058 

{0.000041} 

m2 9 1 67 0.019 [-1.094;-0.005;0.021;0.022;0.01;0.005;0.008;0.015;.023] 

{0.024;0.036;0.036;0.036;0.036;0.036;0.036;0.036;0.024} 

0.000066 

{0.000057} 

m4 8 1 74 0.006 [-1.145;-0.027;0.031;0.049;0.030;0.045;-0.022;-0.071] 

{0.024;0.037;0.037;0.037;0.037;0.037;0.037;0.024} 

-0.000047 

{0.000079} 

m5 6 1 69 0.001  [-1.145 -0.186;0.070;0.150;0.099;0.013] 

{0.024;0.036; 0.036; 0.036; 0.036; 0.024} 

-0.000002 

{0.000066} 

m7 7 1 80 0.004 [ -1.127;-0.062;-0.044;0.085;0.075;0.052;0.026] 

{0.024;0.036;0.036;0.036;0.036;0.036;0.024} 

0.000237 

{0.000020} 

m8 8 1 66 0.007 [-1.125;0.004;0.018;0.010;0.031;0.020;0.026; 0.020] 

{0.024;0.036;0.036;0.036;0.036;0.036;0.036;0.024} 

-0.000045 

{0.000013} 

m9 8 1 76 0.034  [-1.043;-0.020;0.012;0.008;0.009;0.007;0.006;0.033] 

{0.024;0.035;0.035;0.035;0.035;0.035;0.035;0.024} 

0.000050 

{0.000022} 

m10 6 1 97 0.003  [ -1.195;-0.090;0.116;0.052;0.077;0.044] 

{0.024;0.038;0.038;0.038;0.038;0.024} 

0.000020 

{0.000027} 

m11 6 1 87 0.002  [ -1.045;-0.178; 0.003;0.054;0.069;0.100] 

 {0.024;0.035;0.035;0.035;0.035;0.024} 

0.000008 

{0.000023} 

m13 8 1 98 0.002 [ -1.427; 0.010; 0.167;0.253;0.052; 0.038;0.005;-0.096] 

{0.024;0.042;0.042;0.043;0.043; 0.042; 0.042;0.024} 

0.000004 

{0.000026} 

m14 8 1 75 0.002 [ -1.311;-0.173;0.239;0.276;0.065;0.029;-0.049;-0.071] 

{0.024;0.040; 0.040; 0.040; 0.040; 0.040;0.040;0.024} 

0.000010 

{0.000020} 

m15 8 1 76 0.004 [ -0.975;-0.172;-0.052;0.079; 0.001;0.011;0.045;0.069] 

{0.024;0.034;0.034; 0.034; 0.034; 0.034; 0.034; 0.024} 

-0.000019 

{0.000108} 
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The models performance is evaluated for different segments of baseline 

data classified according to the eye movement type (Table 5). The Best Fit values 

are compared for model order defined as a number of previous inputs and previous 

outputs, time delay between input and output (delayed input), and type of eye 

movement. There is no significant effect of the model order (F(1,9)=3.19, p=0.41) 

and number of delayed inputs (F(1,9)=0.99, p=0.54). The result that the models of 

different orders performed equally well indicates the difference in driving 

behavior: the more complex driving behavior is described by more complex 

model. 

Different time delay between input and output might also differentiate 

driver state. Since the each driving session was divided on segments, the sequence 

of segments was examined; and it has no effect (F(9,64)=0.74, p=0.67) on Best Fit 

values. This is an expected result because there was no obvious reason for 

changing driving behavior (visual or steering): driving environment has not been 

changed and driving sessions were too short to cause, for example, fatigue.  

Another expected result is that the eye movement type, defined for baseline 

driving through the combination of on-road and off-road glances (Table 5), 

influences the model performance (F(3,18)=3.63, p=0.03). Pair-wise comparisons 

using the Tukey test show that driving related off-road glances (at instrument 

panel) significantly reduce the Best Fit values: at road center (M=36.49, SD=8.01) 

vs. at instrument panel glances (M=26.29, SD=6.65), t(18)=2.44, p=0.02; at 

driving scene (M=37.25, SD=6.77) vs. at instrument panel glances (M=26.29, 

SD=6.65), t(18)=3.2, p=0.005) (Figure 33, a). On the other hand, the presence of 

the glances unusual for a driving task (M=32.14, SD=6.51) does not affect the 

model performance significantly (at road center vs. unusual glances, t(18)=1.11, 

p=0.28; at driving scene vs. unusual glances, t(18)=1.69, p=0.11). The difference 

between unusual glances and glances at instrument panel is marginally significant 
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(t(18)=1.78, p=0.09).  Because, the focus of these glance is unknown, it is hard to 

explain these results. In sum, the results indicate that some, even driving related, 

off-road glances (i.e., at instrument panel) can be identified by the models derived 

from the segments with on-road glances.  

The analysis of models’ performance is carried out for all the driving 

conditions. It shows that the Best Fit values are higher for baseline and cognitive 

driving conditions than for visual and cognitive/visual ones (Figure 33, b). The 

Levene's test for homogeneity shows that the variances differ from each other, i.e., 

heterogeneous (F(3,44)=2.93, p=0.04). The Welch’s test that accounts the 

inequality of variances shows that distracted condition has a statistically significant 

effect on model performance (F(3,23.6)=13.33, p<.0001). Between-subject factor 

of gender is not statistically significant for model performance across all three 

conditions (F(1,10)=0.56, p=0.47).  

Post-hoc comparisons using the Tukey HSD test indicates that the Best Fit 

value for the visual condition (M=5.87; SD=20.21) is significantly different from 

the baseline condition (M=32.53; SD=12.32) and cognitive task condition (M = 

29.33, SD = 13.64) but not for cognitive/visual, (M=7.74, SD=25.44). The Best Fit 

for cognitive condition does not significantly differ from the baseline condition. 

These results support the hypothesis that the model defined for baseline driving 

can identify distracted driving. 

When the data from all the subjects is used as an input into each model 

from Table 12, the mean values decreased slightly across all the conditions (Figure 

34). The standard deviations decreased substantially for baseline and cognitive 

conditions and slightly for visual and cognitive/visual conditions. 
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a) 

 
b) 

 

Figure 33. Model performance for (a) types of eye movement of baseline condition 
and (b) distracted conditions 

 

Figure 34. Best Fit values (with standard deviation bar) for non-distracted and 
distracted conditions 
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An example of changes in model performance with distracted condition is 

on Figure 35: the model fit values decrease when the models are applied to data of 

visual task condition compared to baseline condition. 

 
a) 

 
b) 

 

Figure 35. Measured and 30 steps ahead predicted by the model m4 output for (a) 
baseline condition and (b) visually distracted condition. Negative value 
of Best Fit indicates that estimation algorithm failed to converge 

To examine the models ability to differentiate distracted driving from non-

distracted driving, the classification cost/benefit analysis was performed. The 

receiver operating characteristic (ROC) – relationship between the hit rate and the 

false alarm rate – is plotted. As cut-off points, 15, 25, 50 and 75-percentiles of the 

Best Fit values of baseline driving from all the subjects are used (Figure 36). The 



113 
 

 
 

distributions for baseline and cognitive conditions almost coincide, making 

classification inaccurate. 

This analysis shows that all the models failed to differentiate cognitive 

distraction from baseline condition – the classification is no better than random 

guessing (Figure 37). The differentiation of visual distraction from baseline 

condition was the most accurate; and there was some similarity in models’ 

performance. For cognitive/visual distraction, the models’ ability to differentiate 

conditions varied and was less accurate than for visual distraction. Among the 

models, the one that most successfully differentiates visual and cognitive/visual 

distraction is m4 (arx8174) (Figure 38). For this comparison, the 25-percentile cut-

off point is used. 

 

Figure 36. Distributions of the Best Fit for non-distracted, visually distracted, and 
cognitively distracted conditions and cut-off points. The probability 
density functions (pdf) for cognitive condition almost coincide with the 
pdf for baseline condition and is not shown on the graph 
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Figure 37. ROC curves. Cut-off points are defined as 15, 25, 50 and 75-percentiles 
of the Best Fit values (baseline condition)  

 

 

Figure 38. Models’ comparison on their ability to detect distraction: triangles – for 
visual distraction and stars – for cognitive/visual distraction  

Conclusion 

This chapter presents efforts in developing an eye-steering model. This 

study tests the hypothesis that eye-steering system defined for baseline (non-

distracted) condition will result in different model fit when data from distracted 

conditions are used as an input to this system. According to this hypothesis, such a 

model can differentiate distracted driving. 
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The underlying theory of this hypothesis is Land’s visual information and 

control framework. It suggests that on curvy roads gaze horizontal position is 

systematically coupled to roadway curvature and guides the steering movements, 

i.e., eye-steering coordination is strong (Land, 2006). Driver impairment might 

diminish this coordination. The change in coordination and associated change in 

model fit might accurately indicate cognitive and visual distraction.  

In this assessment, it is critical to apply models derived for non-distracted 

driving for situations that involve glances away from the road, such as instances of 

visual distraction associated with off-road glances. Cognitive distraction could also 

diminish this coordination. These glances represent a very different type of eye 

movement relative to lane keeping control. When glances are directed away from 

the road, the relationship between eye position and steering wheel position no 

longer holds. The visual information input becomes zero with any off-road glance 

causing reduced steering output. Returning glance back to the road provokes 

steering output. Thus, the system defined for non-distracted driving associated 

with glances at driving scene will be affected by any off-road glance.  

It should be mentioned that curvy roads place a greater demand on driver 

eyes to guide steering and make “input” stronger than straight roads do. The eye-

steering relationship on straight roads is qualitatively and quantitatively different 

from the one observed on curvy roads: drivers scan the road to be aware of the 

driving situation and less frequently to guide their steering. Although eye-steering 

correlation is weak, a presence of any distraction can affect this eye-steering 

relationship. 

To confirm the hypothesis that eye-steering system can differentiate 

distracted driving from non-distracted, the system identification approach is 

applied to define a model for each driver with horizontal eye position as an input 

and steering angle as an output. All the derived models have ARX model structure.  
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The number of previous inputs (nb) is one for all the models. In most cases, the 

number of previous outputs (na) is eight indicating that current steering wheel 

angle depends on previous positions up to 0.13 seconds. Based on this, the model 

order might decrease with re-sampling the signals to the lower rate. This reduction 

can be considered because both steering and eye movement signals have much 

lower than 60 Hz fundamental frequency – less than 1Hz  (see section Signal 

length and sampling). 

The number of previous outputs (na) and time-delay between input and 

output (nk) vary across the drivers without affecting model performance. The result 

that the model complexity (i.e., order) does not affect model performance indicates 

the variability in driving behavior: the more complex model is associated with 

more complex driving behavior. Another support for variability in driving behavior 

is that some models’ coefficients are similar (belong to the same distribution) but 

others are not.  

To examine the fit of the models across drivers, the data from other drivers 

was used as an input into each model. Models’ performance changed very little 

indicating that the models can perform in the same way as it was for a single driver 

(Figure 34). Two results that one model can fit to the data from other subjects 

reasonably well and that some model coefficients are from the same distribution 

leads to the suggestion that the model with the same structure and model order can 

fit to the data equally well if the particular parameters fit to individual drivers. 

Attempts to select a single model that can provide a reasonable fit to the 

data from all the drivers led to the section of the m4 model (arx8174): 

  1.145 1 0.027 2 0.031 3 0.049 4

0.0 30 5 0.045 6 0.022 7 0.071 8

0.000047 74 . This model can differentiate visual and 

cognitive/visual distractions relatively successfully (Figure 38).  
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As was expected, off-road glances affect models’ performance. The models 

performed worse with the presence of large-angle off-road glances (i.e., at in-

vehicle display) during visual and cognitive/visual tasks. During baseline driving 

sessions, drivers exhibited different visual behavior: some drivers concentrated 

their glances at the road ahead and the driving scene; others moved eyes toward 

instrument panel and locations unexpected for driving task (classified as unusual 

glances). The presence of glances to instrument panel diminished model 

performance significantly. This result could mean that eye movement in vertical 

direction can also affect model performance.  

The expectation that changes in relationship between eye and steering 

movements caused by cognitive distraction would affect the model performance is 

not confirmed. This expectation was based on sensitivity of time delay between 

eye and steering movement to cognitive task. Cognitive distraction did not 

significantly affect the model fit compared with non-distracted driving. This could 

be explained by two reasons. First, from the correlation analysis, the time delay 

between eye and steering movements was changed with cognitive distraction but 

the correlation coefficient was not. This causes the model to be less sensitive to 

changes in cognitive state of a driver than that is for visual distraction when both 

time delay and correlation coefficient vary. Second, as it was mentioned 

previously, the eye-steering relationship was not expected to be very strong on 

straight roads as it was obtained on curvy roads. Thus, the possible slight changes 

in this relationship associated with cognitive distraction do not affect model fit. 

Overall, based on the model performance, it was possible to identify visual and 

cognitive/visual distraction associated with off-road glances.  
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CHAPTER 5. ESTIMATION OF THE INDIRECT EFFECT OF 

DISTRACTION ON VEHICLE STATE  

The impact of distraction on driver performance, as measured by lane 

position, might be modulated by the eye-steering coordination. To examine the 

effect of driver distraction on vehicle state, the relationship between distracted 

condition as an independent variable and lane position as a dependent variable is 

modeled by considering the eye-steering correlation. In the causal eye – steering – 

lane position model, an assessment of the relationship between eye-steering 

correlation and lane position will be an important step in defining a prospective 

indicator of vehicle state. This prediction can help in minimizing crash risk caused 

by large deviation from centerline by alerting the driver before or on early in the 

process of lane departure. 

In intervention studies when a hypothesis about a cause-and-effect 

relationship is tested, inclusion of a mediator or moderator can elicit information 

about why or how a direct association occurs between an independent variable and 

a dependent variable (Bennett, 2000). A mediator or moderator is a third variable 

that can change the association between them (Baron and Kenny, 1986). The 

mediator is usually considered when the relationship between the independent and 

the dependent variables is statistically significant; inclusion of the mediator helps 

to reveal the reasons for this association. When the association between the 

independent variable and the outcome variable is weak or inconsistent, a 

moderator can reveal the circumstances that strengthen or weaken the association. 

Inclusion of a mediator or moderator effect requires different statistical analyses.  

Analysis method 

A moderator could be a qualitative or quantitative variable that affects the 

relation between independent and dependent variables. The model with moderator 
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considers three interactions with the dependent variable (i.e., lane position) (Figure 

39): the impact of the independent variable (i.e., distracted condition) (path a), the 

impact of a moderator (i.e., eye-steering correlation) (path b), and the interaction of 

these two (path c) (Baron and Kenny, 1986). The moderator hypothesis is 

supported if the interaction (path c) is significant. To provide a clearly 

interpretable interaction term, it is desirable that the moderator variable be 

uncorrelated with both the independent and dependent variables. The moderator 

has the same level of causality as the independent variable in regard to its impact 

on the dependent variable, whereas mediating events shift roles from effects to 

causes. A mediator reflects the internal property of the subject being studied and it 

is a mechanism that elaborates the meaning of the relationship between the 

independent variable and the outcome variable. 

Mediator inclusion can describe the relationship between independent and 

dependent variables more precisely. It can explain how or why the independent 

variable predicts the outcome (Baron and Kenny, 1986).  The mediator inclusion 

should be supported by the assumption that the dependent variable does not predict 

the mediator variable. Considering the correlation coefficient as a mediator, the 

following conditions should be tested: the independent variable is a significant 

predictor of the dependent variable (lane position) (path a); the independent 

variable (distracted condition) is a significant predictor of the mediator (path b), 

and both the independent variable and mediator affect the dependent variable (lane 

position) (path c) (Figure 40). To check these three conditions, three regression 

models should be estimated:  

 

 

′  

(10) 
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If all these conditions are met, the effect of the independent variable on the 

dependent variable must be less in the third equation than in the first one. The 

mediation would be considered perfect if the independent variable has no effect on 

the dependent variable when the mediator is controlled. The mediation testing 

strategy requires (1) the independent variable affects the dependent variable (a  

0); (2) the existence of an effect of independent variable on mediator (b  0); and 

(3) the indirect effect to be statistically significant in the direction predicted by the 

mediation hypothesis, i.e. correlation coefficient affects driver performance 

measured through the lane position (Preacher and Hayes, 2004). 

Since, the multicollinearity caused by correlation between mediator and 

independent variables leads to reduced power while testing the coefficients in the 

third equation, not only the significance of the coefficients bur also their absolute 

size should be tested (Baron and Kenny, 1986). A Sobel test calculates the critical 

ratio to compare it with the critical value from the standard normal distribution for 

a given alpha level: 

 /  

 

is a standard error of the indirect effect,  and  are standard errors of the b and c 

coefficients respectively. Since, the term  is usually small, it can be omitted. 

However, for the within-subject experiment design, there is no formal statistical 

test for mediation. The decision about mediation and moderation is based on the 

estimation of the effect of the independent variable on the dependent variable in 

the regression models mentioned above (Judd, Kenny et al., 2001). 

To create the regression models, the cross-correlation coefficients and time 

delays between eye and steering signals calculated for the segments of non-

distracted and distracted driving in Chapter 3 (Aim1) are used. The deviation from 
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the centerline calculated for each segment is examined on its sensitivity to 

distraction. Based on this dataset, the models with eye-steering correlation 

parameters (correlation coefficient and time delay) as a moderator and mediator 

are examined. 

 

 

Figure 39. Model with moderator effect 

 

Figure 40. Model with mediator effect 
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Results and discussion 

Correlation parameters – correlation coefficient and time delay – are tested 

as being a moderator or a mediator in order to examine the role of eye-steering 

correlation in distracted condition – lane position relationship. The distracted 

condition is an independent variable that affects lane position as a dependent 

variable. It is expected that the eye-steering correlation coefficient or time delay 

(or even both) as an indicator of distraction can mediate changes in lane position. 

The correlation coefficient and/or time delay acting as a mediator will explain the 

causal relationship between distracted condition and lane position. If this 

hypothesis is confirmed, then the measure of eye-steering correlation could be 

considered as an indicator of lane position changes caused by the changes in 

distracted condition.  

This hypothesis is tested through regression modeling. The correlation 

coefficient and time delay were calculated in Chapter 3 (Aim 1) for each 30-

second segment of data from all the distracted conditions – non-distracted 

(baseline), visual task, cognitive task, and cognitive/visual task. As a measure of 

lane keeping performance in a given 30-second segment, the mean, 95 percentile, 

and maximum values of standard deviations calculated for 200 ms time windows 

were tested on being sensitive to correlation parameter changes. The maximum 

value and 95 percentile value of standard deviations had very similar results. Here, 

the maximum value of standard deviations (MaxSD) of lane position represents the 

results of the analysis. 

To verify if correlation parameters mediate the lane position, three 

regression models (10) are considered by using SAS 9.2 PROC MIXED. The first 

equation tests if the distracted condition significantly predicts the MaxSD of lane 

position. The second equation tests if the distracted condition significantly predicts 

the mediator, i.e., correlation coefficient or time delay. In the third equation, both 
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distracted condition and the mediator are considered to predict MaxSD of lane 

position. Meditation will be established if (1) the first and the second equations are 

shown to be significant; and (2) in the third equation, the mediator significantly 

predicts lane position. The inclusion of the interaction term in the third equation 

assesses the correlation parameters as moderators.  

Two models test the moderation effect of correlation coefficient or time 

delay on MaxSD of lane position. In the first model, MaxSD of lane position is 

regressed on correlation coefficient, distracted condition, and the interaction term 

of these two variables. The regression model of the same structure is built for time 

delay. The results do not reveal any moderator effect for time delay: the interaction 

term does not significantly affect the dependent variable (Table 13). For the 

correlation coefficient, the interaction term is marginally significant. This implies 

that the eye-steering correlation parameters do not significantly influence the 

strength of the relationship between distracted condition and lane position.  

While testing mediation, the first and second regression models meet 

criterion (1) – distracted condition significantly predicts MaxSD of lane position 

and correlation parameters (Table 13). The analysis of the third equation, that 

involves both the mediator and distracted condition as independent variables, 

indicates that the time delay significantly affects MaxSD of lane position – 

criterion (2), but correlation coefficient – does not.  

Thus, it could be concluded that variations in time delay between eye and 

steering movements mediate changes in vehicle state. Because the relationship 

between distracted condition and lane position in the third equation has not been 

reduced as compared to the first equation, the mediation is not perfect, i.e., it is 

partial (Baron and Kenny, 1986). 
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Table 13. Regression models analysis summary 

Model Mediator/ 
moderator 

Variable DF F value p-value 

Mediator analysis 

 I 3,32 78.03 <.0001 

  CC M 3,32 9.18 0.0002 

TD M 3,32 9.33 <.0001 

′  CC I 3,32 74.76 <.0001 

M 1,448 0.36 0.55 

TD I 3,32 77.50 <.0001 

M 1,448 5.42 0.02 

Moderator analysis 

 CC I 3,32 9.25 <.0001 

M 1,445 0.15 0.69 

I*M 3,445 2.41 0.07 

TD I 3,32 36.77 <.0001 

M 1,445 4.12 0.04 

I*M 3,445 1.42 0.24 

I – distracted condition; M – mediator or moderator; I*M – interaction term; CC - 
correlation coefficient; TD – time delay 
 

Lane departures 

The main results from this study are that (1) eye-steering model is sensitive 

to off-road glances; (2) the changes in model performance are caused by changes 

in correlation parameters, particularly by time delay; and (3) time delay mediates 

changes in lane position. These results might assume that the eye-steering system 

can be sensitive to breakdowns in lane keeping as well, i.e., it can predict lane 

departures. 

It is assumed that lane departures are the consequence of dangerous levels 

of distraction. Liang (2009) indicated that visual distraction severely impairs 

vehicle lateral control. That study defined the lane departure event as crossing the 
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lane boundary by any part of the vehicle. This corresponds to a deviation from the 

lane center of more than 1.06 meters. Based on this definition, the frequency of 

lane departures ranged from 89 (10 drivers out of 12) to 24 (5 drivers out of 12) 

during visual and cognitive/visual distractions respectively. The frequency of lane 

departures across the drivers is not evenly distributed: some drivers consistently 

crossed the lane (up to 36 times); others had a few lane departures (from 1 to 9 

times); and two drivers did not experience lane departures in any conditions. The 

lane departures were not observed for baseline condition and only one lane 

departure occurred during cognitive distraction. 

To assess whether the eye-steering model defined for baseline driving can 

differentiate the segments with lane departures from the segments without it, three 

groups of segments are considered. Two groups of segments with and without lane 

departures are from visually distracted condition and the third group of segments 

represents baseline driving (Figure 41). For this comparison, the data from drivers 

that departed the lane several times but not consistently (e.g., 36 times) were 

considered. Two drivers that did not experience any lane departure are not 

considered either. Thus, the data from eight drivers is used for this analysis. 

The length of the selected segments is six seconds. The segments with lane 

departure include five seconds before and one second after the lane departure 

(Klauer, Dingus et al., 2006; Liang, 2009). For visually distracted condition, the 

interval between the segments with lane departure and without it is at least six 

seconds. For the third baseline group, the segments are randomly chosen from the 

same eight drivers. The number of the segments in each group is equal. Model m4 

is used in this analysis because its performance was considered as the best among 

all models (see section Results and discussion from Chapter 4).   
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Visual distraction condition Baseline condition 
Lane departure No lane departure No lane departure 

 

 

Figure 41. Three groups of segments with and without lane departures 

The sensitivity of the model to lane departures is tested through the Best Fit 

measure. The comparison of the Best Fit values for these three groups is done in 

SAS 9.2 using PROC MIXED. The results show that there is a significant 

difference between three groups (F(2,14) = 8.50, p=0.004): for “lane departure” 

group, M=13.74, SD =21.15; for visually distracted “no lane departure” group, 

M=8.57, SD =21.38; and for baseline condition “no lane departure” group, M= 

27.77, SD=18.71. The post-hoc comparisons with Tukey HSD test indicates 

significant difference between baseline “no lane departure” and visual “no lane 

departure” groups (t(14)=2.92, p=0.01) and between baseline “no lane departure” 

and “lane departure” groups (t(14)=3.99, p=0.001). However, the difference 

between “lane departure” and visual “no lane departure” groups was not significant 

(t(14)=1.09, p=0.30).  

Because dangerously distracted condition that could cause lane departures 

is mostly associated with visual distraction, this result might indicate that (1) visual 

behavior does not differ for two groups with and without lane departures or (2) the 

model is not sensitive enough to off-road glances that could impact safety. To 

examine the former assumption, the percent of off-road glances in six-second 

segments is calculated. The difference in percent of off-road glances for these two 
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groups is not significant (t(34)=1.63, p=0.11): for “lane departure”, M= 64.58, SD 

= 20.74; and “no lane departure”, M=58.31, SD=23.91.  

This result might indicate that driver visual behavior is not the only reason 

of lane-keeping performance degradation. Pohl et al. (2007) mentioned that there 

are many reasons for poor lane-keeping behavior, e.g., simply bad driving habits, 

such as task prioritization and choice of safety margins. Horrey et al. (2006) 

showed how task prioritizing affects visual scanning behavior and lane keeping. 

While performing a visual task, lane keeping was improved when drivers were 

concentrated on driving task and degraded with concentration only on the 

secondary task. Such a driving behavior associated with task prioritization might 

affect length and frequency of glances but not the percent of off-road glances. This 

might explain non-significant difference in off-road glances percent and model fit 

between “lane departure” and “no lane departure” groups. In addition, this driving 

behavior might be a primary reason of different frequencies of lane departures 

across the drivers. 

An interesting observation that could support this assumption is made when 

visual behavior of two drivers who did not experience any lane departure was 

compared with visual behavior of two drivers that consistently crossed the lane. 

The percent of off-road glances was almost the same for these two driving 

behaviors: without lane departures, 48.78 and 57.44 and with lane departures, 

48.55 and 58.30.  

Another aspect to consider in the visual behavior – lane position 

relationship is the role of ambient vision. Horrey et al., (2006) investigated the 

degree to which focal vision is responsible for visual scanning and for task 

performance. The lane-keeping task was less dependent on the focal vision; it 

relied on the ambient vision. The ambient vision can directly support vehicle 

control without requiring an eye movement and fixating directly on the outside 
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world. This finding can also explain the results of this study when eye-steering 

model was not sensitive to lane departures. 

To assess whether the model is sensitive to off-road glances that could 

impact safety, the residuals were examined. Residuals represent the portion of data 

not explained by the model and are calculated as difference between the predicted 

output from the model and the measured output. The model-checking techniques 

suggested by Lin, Wei, et al., (2002) is based on residuals comparison. This 

technique assumes that each observed process could be compared with another 

one, both graphically and numerically, through cumulative sum of residuals. For 

example, trends of plotted cumulative sum of residuals could reflect differences in 

model fit when models with different structures are compared. The trend could 

change when different sets of data are used as an input into to the same model. 

These changes could indicate different conditions. 

Thus, the residuals for two groups of segments with and without lane 

departures are plotted (Figure 42). To compare these two groups, sum of residuals’ 

absolute values was calculated for each segment. This comparison shows that the 

group of segments with lane departure has larger sum of residuals values (M=40.4, 

SD=20.2) than the group of segments without lane departure does (M=26.7, 

SD=13.3) (t(34)=4.41, p<.001).  

The cumulative sum of residuals is plotted for the segments from both 

groups (Figure 43, left graph). To compare these two groups, each curve is fitted 

with a linear model (Figure 43, left graph).  The 95 percentile values are calculated 

as well. This comparison of 95 percentile values shows that the group with lane 

departures has significantly higher 95 percentile values (M=36.0, SD = 18.2) than 

the group without lane departures (M=24.6, SD=12.3) (t(34)=3.68, p<.001) . The 

slope values of these two groups are significantly different as well (t(34)=3.07, 
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p=0.004): for lane departure group, M=0.11, SD=0.05; and for no lane departure 

group, M=0.08, SD = 0.04. 

 

Figure 42. The residuals (predicted minus measured output) for two groups of 
segments with (red line) and without (black dotted line) lane departures 

 

Figure 43. Cumulative sum of residuals for two groups of segments with (red line) 
and without (black dotted line) lane departures (left graph) and fitted 
with linear regression cumulative sum of residuals (right graph). For 
any value x on the horizontal axis on the left graph, the corresponding 
value on the vertical axis is the sum of the residuals associated with the 
values less than or equal to x 
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Thus, based only on visual behavior, e.g., percent of off-road and on-road 

glances, it is not possible to predict poor lane-keeping performance associated with 

lane departures. Other aspects of driving behavior, e.g., task prioritization, and eye 

movements, e.g., ambient vision, should be taken into account. These differences 

are reflected to some degree in the eye-steering model. The model is sensitive to 

lane departures when considering the difference in residuals for two groups of 

segments with and without lane departure.  

Conclusion 

This chapter examines the contribution of eye-steering correlation to 

distracted condition – lane position relationship. The correlation parameters might 

affect the magnitude of lane position changes associated with distraction (i.e., 

moderate changes) or might be considered as a mechanism that produces these 

changes (i.e., mediate changes). As a measure of eye-steering correlation, two 

parameters are considered – the correlation coefficient and time delay between eye 

and steering movements. This examination shows that (1) both correlation 

parameters do not moderate lane position changes; and (2) the correlation 

coefficient does not mediate the changes in lane position but time delay does.  

The result that time delay, as a mediator, affects changes in lane keeping 

when a driver is distracted is important in terms of predicting vehicle state based 

on timing between visual input and steering output. The relative timing between 

eye and steering movements can be used as a prospective indicator of a vehicle 

position in the lane. This prediction could guide distraction mitigations that might 

reduce crash risk caused by large deviation from centerline. Because of vehicle 

dynamics, a driver can be alerted before or at an early stage of these changes. This 

mediation is partial, i.e. time delay only partially explains changes in lane position. 
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Thus, it is more likely that there are other mechanisms responsible for these 

changes; and future research should focus on examining them.  

Because time delay between eye and steering movements is sensitive to 

distraction and affects lane-keeping performance, it was expected that an eye-

steering model might be sensitive to lane departures as a result of a dangerously 

distracted condition. This hypothesis is tested for two groups of data from visual 

distraction condition: one group of segments includes lane departures and the other 

does not. The selected eye-steering model performance measured through Best Fit 

did not significantly differ for these two groups. However, the analysis of residuals 

(predicted minus measured output) revealed differences in model performance 

between two groups. The total sum of residuals’ absolute values and trends of 

cumulative sum of residuals differentiated these two groups. 

An assumption that lane departures are associated with longer off-road 

glances was not confirmed: the percent of off-road glances was not significantly 

different for these two groups. Thus, although visual behavior is the indicator of 

poor driver performance and is associated with lane departures, it is not sufficient 

to predict lane departures. There are factors responsible for breakdowns in vehicle 

control, e.g., safety margin preferences and task prioritization. Another reason is 

that eye movements are associated with focal vision, but not with ambient vision 

that is most likely responsible for lane keeping. All these assumptions require 

additional examination to investigate risky driving. The interesting result is that 

although model performance measured through Best Fit was not sensitive to lane 

departures, the cumulative sum of residuals differs when two groups of segments 

with and without lane departures were compared.        

Overall, an eye-steering model defined for baseline condition can 

distinguish not only distracted condition associated with off-road glances but can 
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also predict breakdowns in lane keeping, i.e. lane departures. This model succeeds 

where simpler approaches based only on eye movement data fail. 
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CHAPTER 6. CONCLUSIONS 

Driver distraction contributes to crashes and fatalities. Rapidly developing 

in-vehicle technology and electronic devices could worsen situation and 

jeopardizes safety. Technology that can detect and mitigate distraction by alerting 

drivers could play a central role in maintaining safety. 

Numerous attempts have been made in the development of distraction 

detection algorithms. These algorithms use visual or driver performance metrics to 

detect visual and cognitive distractions that have the highest impact on driver 

performance. Several distraction detection and mitigation systems are on the 

market or exist as advanced prototypes; and there is a growing interest from 

automakers regarding the design and implementation of such distraction detection 

systems. Correctly identifying driver distraction in real time is a critical challenge 

in distraction detection and mitigation; and this function has not been well 

developed. The benefit from these systems would be a prediction of dangerous 

situations associated with breakdowns in lane keeping control. This prediction can 

also reduce the number of false alarms. This dissertation contributes to the 

development of a new algorithm based on both visual behavior and driver 

performance to detect driver distraction and predict breakdowns in lane keeping. 

The central hypothesis of this study is that it is possible to detect distraction 

by considering relationship between visual and steering behavior. Furthermore, the 

changes in eye-steering behavior should prospectively indicate vehicle position in 

the lane and predict breakdowns in vehicle control, i.e., lane departures. 

The underlying assumption stems from strong eye-steering coordination 

observed on curvy roads where eye movements guide steering. Three different 

concepts were considered to explain this relationship: visual information 

framework, oculomotor controller concept, and intermittent control concept. It is 



134 
 

 
 

assumed that eye-steering relationship depends on the type of eye movements, e.g., 

eye movements guide steering, eyes scan road ahead, and eyes move away from 

the road scene. This study demonstrates the initial attempts to evaluate eye-

steering correlation on a straight road with an assumption that it is a qualitatively 

and quantitatively different relationship compared with curvy roads. Eye 

movements associated with road scanning when there is no need for steering leads 

to a low correlation. However, even this weak eye-steering relationship could be 

sensitive to distraction.  

To study the hypothesis, three specific aims were fulfilled. The first aim 

examined the effect of distracting activity on eye movements and steering wheel 

position to assess the degree to which the correlation parameters are indicative of 

distraction. The second aim used a control-theoretic approach of eye-steering 

system identification to distinguish between distracted and non-distracted 

conditions. The third aim examined whether changes in the eye-steering 

correlation associated with distraction provides a prospective indication of 

breakdowns in lane keeping, i.e., lane departures.  

The first aim demonstrates that the eye-steering correlation parameters – 

correlation coefficient and time delay – are sensitive to distraction. Time delay is 

sensitive to all three types of distraction, i.e., visual, cognitive, and 

cognitive/visual. The correlation coefficient is mostly affected by off-road glances: 

visual and cognitive/visual distracted conditions cause its decrease. The 

cognitive/visual distraction has the strongest effect on correlation statistics: the 

correlation coefficient has the lowest and the time delay has the highest value 

among three distracted conditions. Based on correlation coefficient and time delay 

changes, it is possible to differentiate between not only distracted and non-

distracted driving but also between the types of distraction: visual, cognitive, and 

cognitive/visual. 
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The second aim demonstrates efforts for eye-steering system identification 

to predict the current steering angle through its previous values and eye position. 

The eye-steering model derived for non-distracted condition shows sensitivity to 

off-road glances, i.e., visual and cognitive/visual distraction. The models derived 

for each driver have some similarity and each model fits to the data from other 

subjects reasonably well. In the meantime, some differences (e.g., time delay 

between input and output and the number of previous outputs that predict the 

current output) indicate the variability in driving behavior: some people have more 

complex driving behavior than others do. The attempt to select a single model that 

can successfully discriminate between distracted and non-distracted conditions for 

all the drivers was successful: the selected model effectively distinguishes visual 

and cognitive/visual distractions. Generalizing all the results, the model with the 

same structure and order can fit to the data equally well if the particular parameters 

fit to individual drivers. This model can predict distraction associated with off-road 

glances. 

The third aim demonstrates that the time delay between eye and steering 

movements mediates changes in lane position. The hypothesis that eye-steering 

model could be sensitive to breakdowns in lane keeping, i.e. lane departures, was 

confirmed. This hypothesis was based on the assumption that lane departures are a 

result of a dangerously distracted condition associated with off-road glances. 

However, the percent of off-road glances calculated for two groups of segments 

with and without lane departures was not significantly different. Thus, although 

visual behavior is considered as a main indicator of distraction and poor driving 

performance, this outcome implies that it is not a sufficient indicator of 

breakdowns in vehicle control. Other factors contribute to these breakdowns. With 

this approach, the role of ambient vision in lane keeping should be considered as 

well. All these assumptions require additional examination to investigate 
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relationship between visual behavior and lane keeping. When model performance 

was used to predict lane departures, the Best Fit values did not significantly change 

when the instances with lane departures were compared to the instances without 

lane departures from the visually distracted condition. However, the analysis of 

residuals revealed the differences in the total sum and cumulative sum of residuals 

between these two groups. 

All three aims indicate that (1) the eye-steering correlation parameters, i.e.,  

correlation coefficient and time delay, can be considered as indicators of 

distraction; (2) the eye-steering model is sensitive to distraction associated with 

off-road glances; (3) time delay between eye and steering movement mediates 

changes in lane position; and (4) the model fit measured through the residuals are 

different for segments with lane departures compared with the segments without 

lane departures.  

The limitation of this study is that the results are obtained from simulator 

driving and they cannot be generalized to driving on the full range of roads and 

traffic situations drivers face on a daily basis. Any driving simulator has a number 

of intrinsic limitations, i.e., restricted field of view (no rearview and side view 

mirrors), image resolution and presentation delay, and, the most important, driver 

perception of a safety. 

The practical contribution of this dissertation will be toward design of the 

systems adaptive to driver state. These systems can provide a diagnostic measure 

of distraction in advance of mishaps. The development of a prospective indicator 

of diminished driver performance can be helpful in mitigating and preventing 

many impairment-related crashes. Based on the results of this study, a prospective 

indication of breakdowns in lane keeping could be based on visual behavior and 

vehicle control, i.e., correlation between eye and steering movements.  
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A crucial part of this prediction is the examination of factors that can affect 

this correlation. The future research should focus on studying different factors 

(e.g., driving environment, age, and experience) that can influence the eye-steering 

correlation. Another important direction of the future research is an examination of 

the changes in eye-steering correlation caused by off-road glances at different 

locations. This examination can distinguish between different degrees of 

distraction associated with the location of off-road glances indicating that some of 

them could be more dangerous than others. The vertical eye position could also be 

considered as an additional input into the model. The examination of eye-steering 

correlation in different driving environments provides evaluation and deeper 

understanding of visual-motor performance in driving. 

This approach of visuomotor performance could also be applied to other 

domains, including robotic control, human-computer interaction (HCI), and 

medical diagnostic and rehabilitation. 
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