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CHAPTER 1 

INTRODUCTION 

This study presents development of efficient and accurate classification methods 

for reliability-based design optimization (RBDO) and several accuracy improvement 

strategies for the Kriging method. Previously the dynamic Kriging method (DKG) is 

developed and applied for sampling-based RBDO. However, reliability analyses using 

the Kriging model are expensive due to complicated matrix calculations in the Kriging 

method, and thus the efficiency needs to be improved. A new virtual support vector 

machine (VSVM) is proposed using an efficient classification methodology. Computer 

simulations are expensive in many engineering problems, thus the number of design of 

experiment (DoE) samples needs to be minimized in sampling-based RBDO to reduce the 

total computational cost. By applying four accuracy improvement strategies such as 

accurate parameter estimation in maximum likelihood estimation (MLE), penalized MLE 

(PMLE) for small DoE sample size, optimum correlation function selection and mean 

structure selection in the Kriging method, the accuracy of surrogates can be improved and 

consequently the number of DoE samples can be reduced. 

Section 1.1 presents background and motivation of the proposed research; Section 

1.2 provides objectives of the proposed research; and Section 1.3 describes the thesis 

organization. 

1.1 Background and Motivation 

1.1.1 Sampling-based RBDO and Surrogate Modeling 

Methods 

Accurate reliability analysis is of great importance for solving engineering design 

problems. Inaccurate reliability analysis result can lead to an unreliable or overly 

conservative design. Numerous methods that are based on the most probable point (MPP) 
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are available in literature for carrying out reliability analyses of many engineering 

problems for which the sensitivity information can be obtained [Hasofer and Lind 1974; 

Hohenbichler and Rackwitz 1986; Breitug 1984; Ditlevsen and Madsen 1996; Haldar and 

Mahadevan 2000; Tu et al. 1999; Hou et al. 2004; Youn et al. 2005; Madsen et al. 2006; 

Rahman and Wei 2006; Lee et al. 2008; Valdebenito and Schueller 2010]. On the other 

hand, the sensitivity is often not available or difficult to obtain accurately in complex 

multi-physics or multidisciplinary design problems. Without sensitivity, an alternative to 

the MPP-based reliability analysis method is to directly perform the probability 

integration numerically by carrying out computer simulations at the Monte Carlo 

simulation (MCS) sampling points [Rubinstein 1981; Zeeb and Burns 1997; Haldar and 

Mahadevan 2000; Ching 2011]. However, this method requires a large number of 

response function evaluations and can be impractical in terms of computational cost. 

Therefore, surrogate-based methods are used to reduce the computational cost 

[Booker et al. 1997, 1998] without requiring sensitivity analysis. The main advantage of 

the surrogate-based method is that a limited number of function evaluations can be used 

to construct surrogate models. Many different surrogates, such as polynomial response 

surface (PRS) [Barton 1994; Jin et al. 2001; Simpson et al. 2001b; Queipo et al. 2005; 

Wang and Shan 2007; Forrester et al. 2008; Forrester and Keane 2009; Fang et al. 2010; 

Zhao et al. 2011], radial basis function (RBF) [Barton 1994; Jin et al. 2001; Queipo et al. 

2005; Wang and Shan 2007; Forrester et al. 2008; Forrester and Keane 2009; Zhao et al. 

2011], multivariate adaptive regression spline (MARS) [Barton 1994; Jin et al. 2001; 

Wang and Shan 2007; Fang et al. 2010], moving least squares (MLS) [Kim et al. 2005, 

2009; Forrester and Keane 2009; Kang et al. 2010], support vector regression (SVR) 

[Wang and Shan 2007; Forrester et al. 2008; Forrester and Keane 2009] and Kriging 

[Sacks et al. 1989a, b; Cressie 1991; Barton 1994; Jin et al. 2001; Simpson et al. 2001b; 

Queipo et al. 2005; Wang and Shan 2007; Forrester et al. 2008; Forrester and Keane 

2009; Kleijnen 2009; Fang et al. 2010; Zhao et al. 2011], have been developed and 
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applied to engineering problems. These surrogates provide approximations of otherwise 

expensive computer simulations. Once an accurate surrogate model is generated, MCS 

can be carried out using the surrogate model to estimate the reliability. This method is 

called the sampling-based reliability analysis or sampling-based RBDO. In the sampling-

based RBDO, probabilistic constraints are used. Thus, not only the probability of failure 

but also its sensitivity needs to be accurately estimated.  

DKG was developed and applied successfully for sampling-based methods [Zhao 

et al. 2011]. However, when the response values are evaluated, all samples within the 

design space are used to calculate the trend and random component of the Kriging 

method. Furthermore, complex matrix calculations are also required. Therefore, response 

evaluations using the Kriging method could be computationally expensive since the 

sampling-based reliability analysis and RBDO need response evaluations at a very large 

number of MCS points to accurately estimate the probability of failure and its sensitivity. 

Furthermore, surrogate-based approaches usually obtain response function values over 

the entire domain. Therefore, the surrogate-based method requires a large number of 

samples even at the unnecessary regions to reach the target accuracy (i.e., mean squared 

error or R2), and thus they become inefficient [Hurtado and Alvarez 2003]. The 

computational burden becomes heavier in high-dimensional space due to the curse of 

dimensionality [Vapnik 1998; Cherkassky and Mulier 1998; Burges 1998]. Therefore, a 

classification method with simpler formulation needs to be investigated while achieving 

similar accuracy.  

1.1.2 Virtual Support Vector Machine 

The support vector machine (SVM) is a classification method, and thus it 

constructs only the decision (i.e., limit state) function, which maximizes the distance to 

the existing samples [Vapnik 1998, 2000; Cherkassky and Mulier 1998; Scholkopf 1999; 

Kecman 2001, 2005; Scholkopf and Smola 2002]. In SVM, only support vectors are used 
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instead of all samples for evaluations of responses and most calculations are performed 

through the kernel function. Thus, the response evaluation process is very efficient for 

MCS, compared to the Kriging method. Another advantage of the classification method is 

that they can deal with multiple constraints at once [Basudhar et al. 2012]. The SVM with 

a sequential sampling strategy, which is called the explicit design space decomposition 

(EDSD), is developed and applied to discontinuous and disjoint problems successfully 

[Basudhar et al. 2008, 2012; Basudhar and Missoum 2008, 2010]. Even though EDSD 

can be also used for continuous and differentiable problems, it often converges very 

slowly, and thus requires a large number of DoE samples. One of the main reasons for the 

inefficiency of EDSD for continuous problems is that it only uses the classification 

response function values rather than the actual function values to construct the decision 

function. Therefore, the accuracy needs to be improved for continuous problems.  

Accurate probability of failure can be predicted using accurate limit state 

function, and accurate sensitivity can be calculated by using the score function [Lee et al. 

2011]. It is interesting to note that the score function method depends on the derivatives 

of the input joint and marginal distributions. Therefore, the sampling-based method 

requires only an accurate decision function to evaluate the probability of failure and its 

sensitivity. That is, only the decision between a success and a failure is used instead of 

the function value. Thus, even though SVM, being a classification method, cannot be 

directly used for deterministic design optimization due to lack of surrogate model and 

thus design sensitivity, it is applicable for sampling-based RBDO.  

In this research, a virtual SVM (VSVM) is proposed to improve the accuracy of 

SVM, while maintaining the desirable features of SVM, by using the available response 

function values. Unlike EDSD, VSVM is developed primarily for continuous design 

problems. The VSVM constructs the decision function rather than the surrogate model 

over the given domain. The proposed adaptive sampling method provides new samples 

near the limit state, which makes the method efficient. The proposed method provides an 
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explicit form of the limit state function, so it is efficient in obtaining response values at 

MCS points. Then, VSVM is applied to RBDO processes in this research. An efficient 

uniform sampling method is also proposed for hyper-spherical local window. For VSVM, 

a fixed large local window is used instead of moving small local windows as was done 

for the DKG surrogate model. Sample reuse strategy is also proposed to improve the 

stability of VSVM. 

1.1.3 Accuracy Improvement Strategies for the Kriging 

Method 

By using VSVM, the computational cost in reliability evaluations can be reduced. 

However, the computational cost can be reduced further if the number of expensive 

computer simulations is reduced. Less DoE samples are required to construct accurate 

surrogates, if the accuracy of surrogates is improved for given DoE samples. The Kriging 

method is one of the widely used surrogate modeling methods [Sacks et al. 1989a, b; 

Cressie 1991; Barton 1994; Simpson et al. 2001b; Forrester et al. 2008; Forrester and 

Keane 2009; Dubourg et al. 2011] and it is also used in VSVM to improve the accuracy 

of SVM. One advantage of the Kriging method is that it is an interpolation method and 

not a regression method. Thus, this method reproduces the same responses at given 

sample locations, and it is appropriate to approximate deterministic computer 

experiments. Another advantage is that it provides uncertainty information at the 

prediction point on un-sampled region, which has motivated a number of adaptive 

sampling methods [Sacks et al. 1989a, b]. To construct an accurate Kriging model, an 

appropriate form of the Kriging model should be selected and the correlation parameters 

should be estimated accurately. In geostatistics, a sample variogram is usually plotted 

first from given data [Bohling 2005a; Hengl 2007; Roustant et al. 2012]. Based on the 

variogram, an appropriate correlation model is selected and parameters are estimated. 

However, this process requires users’ knowledge on the Kriging method and it is not 
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practical to check all directional dependence in the empirical variogram with high 

dimensional problems. Therefore, the correlation model is usually fixed, and the 

maximum likelihood estimation (MLE) approach is applied to estimate parameters in 

many engineering applications [Martin and Simpson 2003, 2005; Gano et al. 2006; 

Martin 2009; Deng et al. 2011; Zhao et al. 2011]. Correlation parameter estimation using 

cross-validation can be an alternative to MLE, but MLE usually outperforms CV [Martin 

and Simpson 2005; Refaeilzadeh et al. 2009]. 

Zhao et al. showed the importance of parameter estimation in the Kriging model, 

and the generalized pattern search (GPS) algorithm was used to find the optimal 

parameter in MLE [Lewis and Torczon 1999; Zhao et al. 2011]. They found that GPS 

performed better than the Hooke and Jeeves (H-J) method [Lophaven et al. 2002; Martin 

2009], the Levenberg-Marquardt (L-M) method [Martin 2009; Zhao et al. 2011], or 

genetic algorithm (GA) [Forrester and Keane 2009; Zhao et al. 2011]. However, 

performances of GPS are influenced by initial parameter values, and so it is important to 

use better initial values for GPS. Therefore, GA is proposed in this research to find better 

initial parameters for GPS.  

In many engineering applications, the Gaussian correlation function is the most 

commonly used spatial correlation function (SCF) since it provides a relatively smooth 

and infinitely differentiable surface, which can be beneficial for gradient-based 

optimization algorithms [Martin and Simpson 2005; Gano et al. 2006; Martin 2009; Deng 

et al. 2011; Zhao et al. 2011]. However, there could be many different data structures, 

and thus the fixed correlation model may not be able to describe the given data well 

[Bohling 2005a; Roustant et al. 2012; Lophaven et al. 2002; Koehler and Owen 1996]. 

MLE is used for identifying the best correlation model among seven different SCF types 

in the literature [Lophaven et al. 2002].  

When enough samples are not provided, performance of MLE is often not 

satisfactory due to inaccurate log-likelihood function [Fan and Li 2001; Li and Sudjianto 
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2005; Ginsbourger et al. 2009; Roustant 2012; Kok 2012]. To overcome this problem, 

penalized MLE (PMLE) is introduced, which includes the penalty function in addition to 

the log-likelihood function [Fan and Li 2001; Li and Sudjianto 2005]. However, PMLE is 

computationally more expensive due to costly CV estimations, and this research found 

that PMLE is not always more accurate than MLE. Thus, an appropriate condition should 

be applied for the usage of PMLE, and, in this research, PMLE is only applied when the 

log-likelihood function has flat region near the optimum. 

Zhao et al. also showed that the accuracy of the Kriging method can be enhanced 

by selecting appropriate basis functions instead of using all possible basis functions 

[Zhao et al. 2011]. Even though the idea is noble, it is found that the process variance is 

not appropriate for selecting better mean structures. In this research, leave-one-out cross-

validation (LOOCV) [Refaeilzadeh et al. 2009] is used instead of the process variance. 

Finally, these proposed improvements are carefully integrated and implemented to 

propose a new method.  

1.2 Objectives of the Proposed Study 

The first objective of this study is to propose an efficient sampling-based RBDO 

using VSVM. To show advantages of the proposed method, comparison studies will be 

carried out with EDSD and DKG. EDSD is based on SVM, which is a classification 

method and only classification information is used in EDSD. DKG is more accurate 

compared with other surrogates such as polynomial response surface, radial basis 

function, universal Kriging and blind Kriging [Joseph et al. 2008]. Therefore, EDSD and 

DKG are compared with VSVM. Sequential samples based on VSVM are inserted near 

the limit state function. For initial DoE samples, Latin hypercube sampling (LHS) 

[McKay et al. 1979; Queipo et al. 2005] is widely used for generating uniform samples in 

the hypercube. However, it becomes inefficient for hyper-spherical windows due to the 

curse of dimensionality [Lee et al. 2011]. Therefore, the Transformation/Gibbs sampling 
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method (TGS) [Cumbus et al. 1996] is implemented to provide uniform initial DoE 

samples in hyper-spherical local windows. VSVM is a classification method so it requires 

a balance between success samples and failure samples. Therefore, enlarged fixed local 

windows are used rather than moving local windows in RBDO as was done for surrogate 

modeling methods.  

The second objective is to improve the accuracy of surrogates. By improving the 

accuracy of surrogates, the number of required DoE samples can be reduced to construct 

surrogates with targeted accuracy. Parameter estimation in MLE is improved by using 

GA for generating initial correlation parameters for GPS. When DoE sample size is 

small, PMLE is often more accurate than MLE. Performances of the Kriging method are 

dependent on correlation functions and mean structures. Therefore, the performance of 

surrogates can be enhanced by employing better correlation functions and mean 

structures.  

1.3 Organization of Thesis 

Chapter 2 presents basic concepts of MPP-based RBDO and sampling-based 

RBDO.  

Chapter 3 presents surrogate modeling methods and classification methods. The 

new virtual support vector machine is proposed and compared with EDSD and DKG. 

Chapter 4 presents different initial and sequential sampling methods. Hyper-

spherical local windows and TGS are introduced.  

Chapter 5 presents sampling-based RBDO using VSVM. Several efficiency 

strategies to reduce the computational cost are introduced. The proposed method is 

compared with previous sampling-based RBDO using DKG. 

Chapter 6 presents how to improve the accuracy of the Kriging method. By using 

mathematical and engineering examples, performance of each accuracy improvement 

strategy is compared with existing Kriging method results.  
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Chapter 7 presents conclusions of the study. Several future research topics are 

proposed to improve the performance.
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CHAPTER 2 

DESIGN UNDER UNCERTAINTY 

2.1 Introduction 

This chapter presents review of fundamental concepts in design under uncertainty 

including MPP-based and sampling-based RBDO methods. Sections 2.2 and 2.3 discuss 

basic ideas of reliability analysis and inverse reliability analysis, which are necessary for 

RBDO. In Section 2.4, MPP-based RBDO using the first order reliability method 

(FORM) and the dimension reduction method (DRM) is explained. Sampling-based 

RBDO will be used for problems without sensitivity information in Section 2.5. In 

sampling-based RBDO, the Monte Carlo Simulation (MCS) is used to calculate 

probabilistic responses and sensitivities without any assumption in calculating the 

probability of failure for the performance function.  

2.2 Reliability Analysis 

A reliability analysis requires calculation of the probability of failure, denoted by

FP , which is defined using a multi-dimensional integral [Madsen et al. 1986] 

 
 

( ) 0
[ ( ) 0] ( )F G

P P G f d
>

≡ > = ∫ XX
X x x  (2.1) 

where T
1 2={ ,  , ,  }nrX X XX   is an nr-dimensional random vector, G(X) is the 

performance function such that ( ) 0G >X  is defined as failure, and ( )fX x  is the joint 

probability density function (PDF) of the random variables X. In most engineering 

applications, the exact evaluation of Eq. (2.1) is very difficult or often impossible to 

obtain since ( )fX x  is non-Gaussian in general and G(X) can be highly nonlinear. To take 

care of the non-Gaussian ( ),fX x  a transformation from the original X-space into the 

independent standard normal U-space is introduced [Rosenblatt 1952]. For highly 

nonlinear G(X), G(X) is approximated using first order Taylor series expansion in the 
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first order reliability method (FORM); or second order Taylor series expansion in the 

second order reliability method (SORM). 

2.2.1 Transformation 

Consider an nr-dimensional random vector X  with a joint cumulative distribution 

function (CDF) ( )FX x . Let :T →X U  denote a transformation from X-space to U-space 

that is defined by Rosenblatt transformation [Rosenblatt 1952] as  

 
 ( )

( )

( )

1

2

1
1 1

1
2 2 1

1
1 2 1

:

, , ,
nr

X

X

nr X nr nr

u F x

u F x x
T

u F x x x x

−

−

−
−

  = Φ  
  = Φ  

  = Φ  





 (2.2) 

where ( )1 2 1, , ,
iX i iF x x x x −  is the conditional CDF given by 

 
 

( ) 1 2

1 2 1

1 2 1
1 2 1

1 2 1

( , , , , )
, , ,

( , , , )

i

i

i

i

x

X X X i
X i i

X X X i

f x x x d
F x x x x

f x x x

ξ ξ

−

−−∞
−

−

= ∫ 









 (2.3) 

and ( )Φ •  is the standard normal CDF given by   

 
 21 1( ) ( ) exp

22
u u

u d dφ ξ ξ ξ ξ
π−∞ −∞

 Φ = = − 
 ∫ ∫  (2.4) 

where φ  is the standard normal PDF. 

The inverse transformation can be obtained from Eq. (2.2) as  
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 ( )
1

2

1
1 1

1
2 2 11

1
1 2 1

( )
:

( , , , )
nr

X

X

nr X nr nr

x F u

x F u x
T

x F u x x x

−

−
−

−
−

 = Φ  
 = Φ  

 = Φ  





 (2.5) 

If the nr-dimensional random vector X is independent, that is, the joint PDF is given by 

 
 

1 21 2( ) ( ) ( ) ( )
nrX X X nrf f x f x f x= × × ×X x   (2.6) 

where ( )
iX if x  are the marginal PDF’s. Then, Rosenblatt transformation and the inverse 

transformation are simplified as  

 
 ( ) ( )1 1  and  

i ii X i i X iu F x x F u− − = Φ = Φ     (2.7) 

where ( )
iX iF x  are the marginal CDF’s. Table 2.1 shows five representative distributions 

and their transformations assuming random variables are independent. 

 

Table 2.1 Probability Distribution and Its Transformation between X and U-space 

 Parameters PDF Transformation 

Normal 
meanµ =  
standard deviationσ =  

20.5[ ]1( )
2

x

f x e
µ

σ

πσ

−
−

=  X Uµ σ= +  

Log-
normal 

2 2ln[1 ( ) ]σσ
µ

= + , 

2ln( ) 0.5µ µ σ= −  

2ln0.5[ ]1( )
2

x

f x e
x

µ
σ

π σ

−
−

=

 
exp( )X Uµ σ= +  

Weibull 

1(1 )v
k

µ = Γ + ,  

2 2 22 1[ (1 ) (1 )]v
k k

σ = Γ + −Γ +

 

( )1( ) ( )
kx

k vk xf x e
ν ν

−−=  
1

[ ln(1 ( ))]kX v U= − −Φ  

Gumbel 
0.577µ ν
α

= + ,
6
πσ
α

=  ( )( )( )
xx ef x e

α να να
− −− − −=  

1 ln[ ln( ( ))]X Uν
α

= − − Φ  
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Table 2.1. Continued 

 

Uniform 
2

a bµ +
=

, 12
b aσ −

=
 

1( ) ,f x a x b
b a

= ≤ ≤
−  

( ) ( )X a b a U= + − Φ  

 

 

2.2.2 First Order Reliability Method (FORM) and Second 

Order Reliability Method (SORM) 

To calculate the probability of failure of the performance function ( )G x  using 

FORM and SORM, it is necessary to find the most probable point (MPP), which is 

defined as the point *u  on the limit state function ( ( ) 0g =u ) closest to the origin in the 

standard normal U-space as shown in Fig. 2.1. In this study, the performance function in 

U-space is defined as ( ) ( ( )) ( )g G G≡ =u x u x  using the Rosenblatt transformation. Hence, 

MPP can be found by solving the following optimization problem 

 
 minimize     

subject to     g( ) 0.=

u
u

 (2.8) 

The distance from MPP to the origin is commonly called the Hasofer-Lind 

reliability index [Hasofer and Lind 1974] and denoted by HLβ . Using the reliability index

HLβ , FORM can approximate the probability of failure using a linear approximation of 

the performance function as  

 
 FORM

HL( ).FP β≅ Φ −  (2.9) 

The probability of failure also can be calculated using SORM, which uses a 

quadratic approximation of the performance function in U-space and the rotational 
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transformation from the standard normal U-space to the rotated standard normal V-space 

[Breitung 1984; Hohenbichler and Rackwitz 1988; Rahman and Wei 2006].  
 

  

 

Figure 2.1 MPP and Reliability Index HLβ  in U-Space 

 

 

2.3 Inverse Reliability Analysis 

The reliability analysis presented in Section 2.2 is called the reliability index 

approach (RIA) [Tu et al. 1999] since it finds the reliability index HLβ  using Eq. (2.8). 

The advantage of RIA is that the probability of failure for the performance function can 

be calculated at a given design. However, the inverse reliability analysis in the 

performance measure approach (PMA) [Tu et al. 1999, 2001; Choi et al. 2001; Youn et 

Source: Wei, D. “A Univariate Decomposition Method For Higher-Order Reliability 
Analysis And Design Optimization,” Ph. D. Thesis, University of Iowa, 2006. 
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al. 2003] is known to be numerically more efficient and stable compared to RIA. In 

PMA, the probability of failure is not calculated directly. Instead, PMA judges whether or 

not a given design satisfies the probabilistic constraint for a given target probability of 

failure Tar
FP . The optimization problem for PMA is expressed as  

 
 maximize    g( )

subject to    tβ=
u

u
 (2.10) 

where tβ  is the target reliability index. Eq. (2.10) is the inverse problem of Eq. (2.8), 

therefore, this is called the inverse reliability analysis. If the constraint function value at 

the MPP *( )g u  is less than zero ( ( ) 0G <X  is defined as safe), then the probabilistic 

constraint is satisfied for the given target reliability index tβ .  

To find the MPP using the inverse reliability analysis with the given target 

reliability index tβ , there exist several methods available such as the mean value (MV) 

method, advanced mean value (AMV) method [Wu et al. 1990; Wu 1994], hybrid mean 

value (HMV) method [Youn et al. 2003], and enhanced hybrid mean value (HMV+) 

method [Youn et al. 2005].  

The MV method linearly approximates the performance function using the 

function and gradient information at the mean value in standard normal U-space. This 

MV method is a crude method to find MPP of the inverse reliability analysis. However, 

since it does not require additional function evaluation and sensitivity analysis, MPP by 

the MV method can be a good approximation to judge which constraint is active or not 

when a constraint function is far from the design point.  

The AMV method uses the MPP obtained by the MV method as its first iteration. 

AMV uses the gradient at the MPP obtained by the MV method to find next MPP 

candidate and the iteration continues until the approximate MPP converges to the correct 
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MPP. This AMV method is known as an efficient method when the constraint function is 

convex.  

To resolve the weakness of AMV for a concave function, the HMV method uses 

the conjugate mean value (CMV) [Youn et al., 2003] method when a constraint function 

is concave. For convex constraint functions, AMV is still used. HMV+ method uses an 

interpolation between two previous MPP candidate points if the constraint function is 

concave instead of using the CMV method. 

2.4 MPP-based RBDO 

2.4.1 MPP-based RBDO Using FORM 

The mathematical formulation of a general RBDO problem is expressed as 

 
 

Tar

minimize      Cost( )
subject to     [ ( ) 0] , 1, ,

, and
ii F

L U nd nr

P G P i nc> ≤ =

≤ ≤ ∈ ∈

d
X

d d d d R X R

  (2.11) 

where T{ } , 1 ~ ,id i nd= = =d μ(X)  is the design vector; T{ }iX=X  is the random vector; 

and nc, nd and nr are the number of probabilistic constraints, design variables, and 

random variables, respectively. Using the inverse reliability analysis, the ith probabilistic 

constraint can be rewritten as  

 
 Tar *[ ( ) 0] 0 ( ) 0

ii F iP G P G> − ≤ ⇒ ≤X x  (2.12) 

where *( )iG x  is the ith probabilistic constraint evaluated at the MPP *x  in X-space.  

Using FORM, Eq. (2.11) can be reformulated to 
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Tar

minimize      Cost( )
subject to     [ ( ) 0] ( ), 1, ,

, and
i ii F t

L U nd nr

P G P i ncβ> ≤ = Φ − =

≤ ≤ ∈ ∈

d
X

d d d d R X R

  (2.13) 

where 
it

β  is the target reliability index for the ith constraint and the probabilistic 

constraint can be changed into  

 
 *

FORM[ ( ) 0] ( ) 0 ( ) 0
ii t iP G Gβ> −Φ − ≤ ⇒ ≤X x  (2.14) 

where *
FORMx  is the FORM-based MPP.  

To solve in Eq. (2.13), it is required to calculate the sensitivity of the probabilistic 

constraint in Eq. (2.14) with respect to a design parameter ( )i id Xµ= . The sensitivity of 

the probabilistic constraint with respect to the design parameter is written using the chain 

rule as  

 
 

* * ***

T*

1

( ) nr
i

i i

xG G G G
x== = ===

∂∂ ∂ ∂ ∂ ∂ = = =  ∂ ∂ ∂ ∂ ∂ ∂ 
∑

x x x x x xx xx x

x x
d d d d x

 (2.15) 

and Eq. (2.15) can be further simplified as [Gumbert et al. 2003; Hou et al. 2004] 

 
 

* * *

T*( ) .G G G
= = =

∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂ x x x x x x

x x
d d x x

 (2.16) 

 

2.4.2 MPP-based RBDO Using DRM 

The dimension reduction method [Xu and Rahman 2004, Rahman and Xu 2004; 

Wei 2006] approximates the multi-dimensional integration of a performance function 

using a function with reduced dimension. A univariate dimension reduction method is an 

additive decomposition of nr-dimensional performance function into one-dimensional 

 
 



18 
 

functions and an nr-dimensional performance function G(X) can be additively 

decomposed into one-dimensional functions at the MPP of the random vector X as 

 
 * * * * *

1 1 1
1

ˆ( ) ( ) ( , , , , , , ) ( 1) ( )
nr

i i i nr
i

G G G x x X x x nr G− +
=

≅ ≡ − −∑X X x   (2.17) 

where * * * T
1 2={ ,  , ,  }nrx x x*x   is the FORM-based MPP of the performance function ( )G X  

obtained from Eq. (2.10) and nr is the number of random variables. This MPP-based 

univariate DRM provides more accurate reliability analysis result compared to FORM. 

2.5 Sampling-Based RBDO 

In the MPP-based RBDO, the probability of failure of the performance function is 

approximated by FORM, SORM or DRM. For highly nonlinear problems, these 

approximations can be inaccurate and lead to unreliable designs. Furthermore, sensitivity 

information, which can be difficult or impossible to obtain in many real applications, is 

required to perform MPP-based RBDO. Therefore, a sampling-based RBDO is proposed 

and it uses the score function by Monte Carlo Simulation to calculate the probability of 

failure and the sensitivity of the probabilistic constraint in RBDO.  

2.5.1 Sampling-Based Probability of Failure 

In the sampling-based RBDO, the reliability analysis, for both the component and 

the system level, involves calculation of the probability of failure, denoted by FP , which 

is defined using a multi-dimensional integral  

 
 ( ) [ ] ( ) ( ; ) ( )

nr F FF FP P I f d E IΩ Ω ≡ ∈Ω = =  ∫ Xψ X x x ψ x X


 (2.18) 

where  ψ  is a vector of distribution parameters, which usually includes the mean (µ) 

and/or standard deviation (σ) of the random input { }T
1, , nrX X=X   , [ ]P •  represents a 

probability measure, FΩ  is the failure set, ( ; )fX x ψ  is a joint probability density function 
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(PDF) of X, and [ ]E •   represents the expectation operator. The failure set is defined as   

{ }: ( ) 0F iGΩ ≡ >x x for component reliability analysis of the ith constraint function Gi(x),  

{ }1
: ( ) 0nc

F ii
G

=
Ω ≡ >x x



 and { }1
: ( ) 0nc

F ii
G

=
Ω ≡ >x x



 for series system and parallel 

system reliability analysis of nc performance functions, respectively. ( )
F

IΩ x   in Eq. 

(2.18) is called an indicator function and defined as 

 
 1,

( )
0, otherwiseF

FIΩ
∈Ω

≡ 


x
x  (2.19) 

In this research, since the mean of X, { }T
1, , nrµ µ=μ  , is used as a design vector, the 

vector of distribution parameters ψ can be simply replaced with µ for the computation of 

the probability of failure in Eq. (2.18). 

2.5.2 Probabilistic Sensitivity Analysis 

For the derivation of the sensitivity of the probability of failure, the following four 

regularity conditions need to be satisfied [Zhao 2011]. 

1. The joint PDF  ( ; )fX x μ  is continuous. 

2. The mean  , 1, , ,i i i nrµ ∈Μ ⊂ =R   where iΜ  is an open interval on R. 

3. The partial derivative ( ; )

i

f
µ

∂
∂

X x μ   exists and is finite for all x and iµ . In addition, 

( )FP μ is a differentiable function of µ. 

4. There exists a Lebesgue integrable dominating function r(x) such that  

 
 ( ; )( ) ( )

i

fg r
µ

∂
≤

∂
X x μx x  (2.20) 

for all µ. 

With the four assumptions satisfied, take the partial derivative of Eq. (2.18) with 

respect to iµ  and use the interchangeability between the differential and integral 
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operators, then the sensitivity of the probability of failure can be obtained as [Lee et al. 

2011] 

 
 ( ) ( ) ( ; )

( ; )( )

ln ( ; )( ) ( ; )

ln ( ; )( ) .

nr F

nr F

nr F

F

F

i i

i

i

i

P I f d

fI d

fI f d

fE I

µ µ

µ

µ

µ

Ω

Ω

Ω

Ω

∂ ∂
=

∂ ∂
∂

=
∂

∂
=

∂

 ∂
=  ∂ 

∫

∫

∫

X

X

X
X

X

μ x x μ x

x μx x

x μx x μ x

x μx







 (2.21) 

The partial derivative of the log function of the joint PDF in Eq. (2.21) with respect to iµ  

is known as the first-order score function for iµ  and is denoted as 

 
 (1) ln ( ; )( ; ) .

i
i

fsµ µ
∂

≡
∂

X x μx μ  (2.22) 

As shown in Eq. (2.22), the proposed probabilistic sensitivity analysis using the 

first-order score function for iµ  does not depend on the sensitivity of the response ( )jG x . 

Instead, it uses the sensitivity of the input joint distribution, which can be obtained 

analytically. This can be shown in Fig. 2.2. Assume the horizontal axis represents the 

multiple dimensional random variable T
1 2[ , ,..., ]nrx x x=x  with ( ) 0jG >x  as the failure 

region for jth constraint ( )jG x . The input joint PDF ( ; )fX x μ  is shown in the Fig. 2.2. At 

the given design point μ, if we are considering the deterministic design optimization, the 

design sensitivity of the constraint function ( )jG x  at point A needs to be used.  On the 

other hand, for the probabilistic constraint (i.e., probability of failure which is the volume 

of the gray shaded region under the input joint PDF), the input joint PDF ( ; )fX x μ  will 

move as the design point μ moves and the rate change of the probabilistic constraint will 
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depend on the slope of the natural logarithm of the input joint PDF ( ; )fX x μ  at point B as 

shown in Fig. 2.2 and Eq. (2.22). 

 

 

Figure 2.2 Probabilistic Sensitivity Analysis and First Order Score Function 

 

For independent input random variables, the first order score function for iµ  in 

Eq. (2.22) can be expressed as 

 
 

(1) ln ( ; )ln ( ; )( ; ) .i

i

X i i

i i

f xfsµ
µ

µ µ
∂∂

≡ =
∂ ∂

X x μx μ  (2.23) 

Since the marginal PDF and the CDF are available analytically as listed in Table 2.2, the 

derivation of the first-order score function for the statistically independent random input 

is very straightforward as listed in Table 2.3 [Lee et al. 2011].  

µ

Failure Region0
x

fX(x;µ)

Gj(x) < 0
•

jFΩ

Gj(x) > 0

•
B

A

Gj(x)
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Table 2.2 Marginal PDF, CDF, and Parameters 

 PDF, ( )Xf x  CDF, ( )XF x  Parameters 

Normal 
20.5[ ]1

2

x

e
µ

σ

πσ

−
−

 
x µ
σ
− Φ 

 
 ,µ σ  

Log-normal 
2ln0.5[ ]1

2

x

e
x

µ
σ

π σ

−
−

 
ln x µ
σ
− Φ 

 
 

2 2ln[1 ( ) ]σσ
µ

= + , 

2ln( ) 0.5µ µ σ= −  

Gumbel ( )( ) xx ee
α να να

− −− − −  
( )xee

α ν

α
− −−  

0.577µ ν
α

= + ,
6
πσ
α

=  

Weibull 
( )1( )

kx
k vk x e

ν ν
−−  ( )

1
kx

ve
−

−  

1(1 )v
k

µ = Γ + , 

2 2 22 1[ (1 ) (1 )]v
k k

σ = Γ + −Γ +  

Table 2.3 First-Order Score Function for iµ  for Independent Random Variables 

Marginal 
Distribution 

First-Order Score Function, (1) ( ; )
i

sµ x μ  

Normal 2
i i

i

x µ
σ
−  

Log-normal 2

ln1 1 (ln )i i i i i
i i i

i i i i i i

x xσ µ µ σσ µ
σ µ σ σ µ µ

   ∂ − ∂ ∂
− + × + −   ∂ ∂ ∂   

 

Gumbel ( )i i ix
i ie

α να α − −−  

Weibull 
( 1)1 1 ln ( ) lniki i i i i i i i i i i

i i i i i i i i i i i i i

k k x k x k x k
k

ν ν ν
µ ν µ µ ν ν µ ν µ ν ν µ

 ∂ ∂ ∂ − ∂ ∂ ∂
− + − − − ∂ ∂ ∂ ∂ ∂ ∂ 

 

 

 

For a bivariate correlated random input T{ , }i jX X=X , the joint PDF of X is 

expressed as [Noh et al. 2009; Noh et al. 2010; Lee et al. 2011] 

 
 2

,
( , ; )( ; ) ( ; ) ( ; ) ( , ; ) ( ; ) ( ; )

i j i jX i i X j j uv X i i X j j
C u vf f x f x C u v f x f x

u v
θ µ µ θ µ µ∂

= =
∂ ∂X x μ  (2.24) 
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where C is the copula function, ( ; ) and ( ; )
i jX i i X j ju F x v F xµ µ= =

 
are marginal CDF’s 

for iX  and jX , respectively, and θ is the correlation coefficient between iX  and jX . The 

partial derivative of the copula function with respect to u and v is called the copula 

density function and denoted as 

 
 2

,
( , ; )( , ; ) ( , ; ).uv

C u vc u v C u v
u v

θθ θ∂
≡ =

∂ ∂
 (2.25) 

Using Eq. (2.24), the first order score function in Eq. (2.22) for a bivariate correlated X 

are expressed as 

 
  

(1) ln ( ; )ln ( ; ) ln ( , ; )( ; ) i

i

X i i

i i i

f xf c u vsµ
µθ

µ µ µ
∂∂ ∂

≡ = +
∂ ∂ ∂

X x μx μ  (2.26) 

The derivation of the first term of the right side of Eq. (2.26) is listed in Table 2.4. 

Therefore, sensitivity of the probability of failure in Eq. (2.21) can be obtained for 

bivariate correlated random input variables. 

 

Table 2.4. Log-Derivative of Copula Density Function 

Copula Type 
ln ( , ; )

i

c u v θ
µ

∂
∂

 

Clayton 
(1 )1 (2 1)

1 i

u u
u u v

θ

θ θ

θ θ
µ

− +

− −

 + + ∂
− + + − ∂ 

 

AMH 
( )

( )( ) ( ) ( )( )

2

2

1 ( 1) 3 (1 )
1 1 1 2 1 1 1 i

v v v u
u v u v uv u v
θ θ θ

θ θ θ µ
 − − + + − ∂

− + − − − − − − − − − ∂   

Frank 
( )(1 ) ( )

(1 ) (1 ) ( )

2
1

u u v

u v u v
i

e e u
e e e e

θ θ

θ θ θ θθ
µ

+ +

+ + +

 − ∂
 +

− − + ∂  
 

 

 
 



24 
 

Table 2.4. Continued 

 

FGM ( )( )
2 (2 1)

1 1 2 1 2 i

v u
u v

θ
θ µ

 − ∂
 + − − ∂ 

 

Gaussian 
1 1 1

1 1 2

( ) ( ) ( )
( ( )) ( ( ))(1 ) i

u v u u
u u

θ
φ φ θ µ

− − −

− −

 Φ Φ −Φ ∂
+ Φ Φ − ∂ 

 

Independent 0 

 

Since it is computationally very expensive to compute the probability of failure 

using true responses for Eq. (2.18), surrogate models are used. Denote the surrogate 

model for the jth constraint function ( )jG x  as ˆ ( )jG x . Then the probability of failure can 

be approximated as 
 ( ) Tar

ˆ
1

1( ) 0 ( )
j jFj

M
m

F j F
m

P P G I P
M Ω

=

 ≡ > ≅ ≤  ∑x x  (2.27) 

where M is the number of MCS samples, x(m) is the mth realization of X, and the failure 

region ˆ
jFΩ  for the surrogate model is defined as ˆˆ { : ( ) 0}

jF jGΩ ≡ >x x . The sensitivity of 

the probabilistic constraint in Eq. (2.21) can be approximated as 

 
 

( ) (1) ( )
ˆ

1

1 ( ) ( ; ).j

iFj

M
F m m

mi

P
I s

M µµ Ω
=

∂
≅

∂ ∑ x x μ  (2.28) 

Accuracy of the MCS is dependent on the number of MCS samples and the target 

probability of failure. Based on the 95% confidence interval of the estimated probability 

of failure, the percentage error can be defines as [Haldar and Mahadevan 2000] 
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Tar

(1 ) 200%.F
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ε −
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Therefore, for small target probability of failure, the number of MCS samples M needs to 

be increased to maintain target accuracy level.  

In this Section, only component probabilities of failure are considered. However, 

if the failure set is appropriately defined for the system reliability, Eqs. (2.27) and (2.28) 

can be also used for the system RBDO. Therefore, only the component RBDO will be 

considered in this research without loss of generality. Equations (2.27) and (2.28) require 

only success or failure information based on the limit state obtained from the surrogate 

model ˆ ( )jG x . Therefore, classification methods can be used effectively for RBDO.
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CHAPTER 3 

EFFICIENT SURROGATE MODELING METHOD FOR 

RELIABILITY ANALYSIS 

3.1 Introduction 

Many industrial engineering simulation models are computationally expensive or 

without sensitivity information. Therefore, surrogate models are often used to carry out 

reliability analysis and RBDO. The Kriging method is one of widely used surrogates, but 

its functional form is complicated. In this chapter, an efficient classification methodology 

is developed for reliability analysis and RBDO while maintaining an accuracy level 

similar to or better than existing response surface methods. The Kriging method and 

dynamic Kriging method are reviewed in Section 3.2. Support vector machines and 

virtual SVM (VSVM) are presented in Sections 3.3 and 3.4. They include basic ideas of 

SVM and VSVM. And, an adaptive sequential sampling for VSVM is explained in 

Section 3.5. In Section 3.6, comparison study results are shown using three different 

examples. Finally, conclusion is followed in Section 0. 

3.2 Dynamic Kriging Method 

3.2.1 The Kriging Method 

The Kriging method became popular for constructing surrogates of deterministic 

computer simulations in recent years. In the Kriging method, responses are considered as 

a realization of a stochastic process. Consider N design of experiment (DoE) samples 
T

1 2( , ,..., )DoE N=x x x x  with N responses T
1 2( , ,..., )Ny y y=y , where m

DoE ∈x R  and m is 

the number of input variables. In a Kriging model, there are two parts, and the 

mathematical form can be expressed as, 

 
 = +y Fβ Z  (3.1) 
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where Fβ  is the mean structure of the response, [ ( )], 1, 2,..., , 1, 2,...,j i i N j K= = =F f x  is 

an N K×  design matrix, and T
1 2[ , ,..., ]Kβ β β=β  are the regression coefficients from the 

generalized least square regression method. Z is a model of a Gaussian random process 

with zero mean and covariance: 

 
 2( , ) ( , , )i j i jV Rσ=x x θ x x  (3.2) 

where 2σ  is the process variance, R is the spatial correlation function (SCF), θ is the 

correlation function parameter, and ix , jx  are two sampled sites. For engineering 

problems, the Gaussian function is widely applied for its SCF, since it is infinitely 

differentiable and provides a smooth response surface, which is beneficial with gradient-

based optimization algorithms [Simpson et al. 2001b; Martin 2009]. The mathematical 

form of the Gaussian correlation function is expressed as 

 
 ( ) ( ) ( ) 2

1

( , , ) exp( ( ) )
m

l l l
i j i j

l

R x xθ
=

= − −∏θ x x  (3.3) 

The universal Kriging (UKG) method is defined with a set of basis functions: 

 
 T

1 2( ) { ( ), ( ), , ( )} .Kf f f=f x x x x  (3.4) 

Polynomials are widely used for the basis functions in UKG. The ordinary Kriging 

(OKG) method is a special case of universal Kriging when its basis function is expressed 

as 

 
 T( ) {1} .=f x  (3.5) 

The Kriging prediction is the best linear unbiased estimator (BLUE) and can be 

expressed as 
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 T T 1ˆ( ) ( ) ( ) ( )y −= + −x f x β r x R y Fβ  (3.6) 

where y is true responses at known samples, T
1 2( ) { ( , , ), ( , , ),... ( , , )}NR R R=r x θ x x θ x x θ x x ; 

the generalized least-squares estimate of β is 

 
 T 1 1 T 1ˆ ( ) ( ) .− − −=β x F R F F R y  (3.7) 

The optimal correlation parameter θ is often chosen using the maximum 

likelihood estimation (MLE). Under the Gaussian assumption, the log-likelihood of the 

model parameters is defined as 

 
 2 T 1

2

1 1ln[2 ] ln[ ( ) ] ( ) ( ) ( ).
2 2 2
NL πσ

σ
−= − − − − −R θ y Fβ R θ y Fβ  (3.8) 

By taking the derivative of Eq. (2.1) with respect to β and 𝜎𝜎2 and using Eq. (3.7), 𝜎𝜎2 is 

estimated as 

 
 2 T 11 ˆ ˆˆ ( ) ( ).

N
σ −= − −y Fβ R y Fβ  (3.9) 

Therefore, the best θ which maximizes Eq. (2.1) can be found using optimization 

algorithms. 

3.2.2 Dynamic Kriging Method 

There are a number of different methods to estimate the correlation parameter θ in 

MLE such as the downhill simplex method [Martin and Simpson 2005; Martin 2009; 

Deng et al. 2011], the Newton-Raphson method [Martin 2009; Deng et al. 2011], the 

quasi-Newton method [Martin and Simpson 2005; Gano et al. 2006; Deng et al. 2011], 

the Fisher scoring algorithm [Martin 2009; Deng et al. 2011], the adaptive simulated 

annealing [Gano et al. 2006; Deng et al. 2011], the genetic algorithm [Forrester and 
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Keane 2009; Zhao et al. 2011] and generalized pattern search algorithm [Gano et al. 

2006; Deng et al. 2011; Zhao et al. 2011]. Gradient-based algorithms often perform 

poorly for highly nonlinear problems, thus global optimization algorithms are often used. 

The generalized pattern search algorithm (GPS) showed better performance compared 

with the Hooke and Jeeves method [Lophaven et al. 2002], Levenberg-Marquardt (L-M) 

method [Martin 2009], or genetic algorithm (GA) [Zhao et al. 2011], therefore, GPS is 

used in DKG. 

For the UKG method, the basis function f(x) in Eq. (3.4) is fixed during the entire 

surrogate modeling process. However, the best basis function set is different for different 

data and problems; and a larger basis function set is not always better than the smaller 

basis function set. Therefore, in DKG, the best basis function selection process is 

expressed as 

 
 

2 T 1

Find the basis function set
1 ˆ ˆˆto minimize the process variance ( ) ( ).
N

σ −= − −y Fβ R y Fβ
 (3.10) 

The GA is applied in this selection process, since the exhaustive algorithm is 

computationally expensive while performances are similar. 

3.3 Support Vector Machines (SVM) 

An SVM is a machine-learning concept used for the classification of data in 

pattern recognition [Vapnik 1998, 2000; Cherkassky and Mulier 1998; Scholkopf 1999; 

Scholkopf et al. 1999; Cristianini and Shawe-Taylor 2000; Kecman 2001, 2005; 

Scholkopf and Smola 2002; Ben-Hur and Weston 2008; Basudhar et al. 2012; Basudhar 

and Missoum 2008, 2010]. It has the ability to explicitly construct a multidimensional 

and complex decision function that optimally separates multiple classes of data. Even 

though SVM is able to deal with multi-class cases, only two classes – success or failure – 
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are used in reliability analyses, and thus only a two-class classification problem will be 

considered in this research. Good features for the high-dimensional problem make SVM 

an appropriate method for the formulation of the explicit limit state function. In this 

section, an overview of SVM is presented, including basic ideas and some important 

features.  

3.3.1 Linear SVM 

For the given multidimensional problem, N samples are distributed within the 

given window. Each sample ix  is associated with one of two classes characterized by 

values 1iyc = ± , which represents a success (−1) or a failure (+1). The SVM algorithm 

constructs the decision function that optimally separates two classes of samples. The 

corresponding linear explicit boundary function is expressed as 

 
 

1
( ) ( )

N

i i i
i

s b ycα
=

= + ⋅∑x x x  (3.11) 

where b is the bias, iα  are Lagrange multipliers obtained from the quadratic 

programming optimization problem used to construct SVM, and x is an arbitrary point to 

be predicted. The classification of any arbitrary point x is given by the sign of s(x) in Eq. 

(3.11). The optimization process is used to solve for the optimal SVM decision function 

with a maximal margin. Figure 3.1 shows a linear SVM result, and the notion of margin 

can be easily noticed. In this case, the margin is the shortest distance between two 

parallel hyperplanes given by s(x) = ±1 in the design space. These hyperplanes are called 

support hyperplanes and pass through one or several samples, which are called support 

vectors. The SVM optimization process also does not allow any samples to exist between 

two hyperplanes. 

The Lagrange multipliers associated with the support vectors are positive while 

the other Lagrange multipliers are zero. It means that the explicit SVM decision function 
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uses only support vectors in its formulation, and thus an SVM constructed only with 

support vectors is identical to the one obtained with all samples. Typically, the number of 

support vectors is much smaller than the number of samples N.  

 

 

 

Figure 3.1 Linear Decision Function for Two-Dimensional Problem 

 

3.3.2 Nonlinear SVM and Kernel Functions 

To construct nonlinear decision functions, kernels are introduced in SVM. In the 

formulation of the SVM decision function, it is assumed that there exists a higher-

dimensional space where the transformed data can be linearly separated. The 

transformation from the original design space to the higher-dimensional space is based on 

the kernel function ( , )iK x x  in SVM. The nonlinear decision function is expressed as  

 
 

1
( ) ( , )

N

i i i
i

s b y Kα
=

= +∑x x x  (3.12) 
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Instead of the linear function ( )i ⋅x x    in Eq. (3.11), the nonlinear kernel function 

( , )iK x x  is used in the form of nonlinear decision function. Therefore, s(x) is linear with 

respect to ( , )iK x x   and nonlinear with respect to x. 

The kernel ( , )iK x x  in the SVM equation can have different forms, such as 

polynomial, Gaussian, Sigmoid, etc. The Gaussian kernel is applied in this research, since 

the Gaussian kernel can deal with both linear and nonlinear problems [Lin and Lin, 2003; 

Hsu et al. 2004]. Furthermore, the number of hyper-parameters is relatively small and the 

Gaussian kernel has fewer numerical difficulties [Hsu et al. 2004]. For example, the 

kernel function K is equal to or less than 1 in contrast to polynomial kernels which may 

go to infinity or zero [Vapnik 2000; Hsu et al. 2004]. The form of the Gaussian kernel is 

given as [Vapnik 1998, 2000; Cherkassky and Mulier 1998; Scholkopf 1999; Kecman 

2001, 2005; Scholkopf and Smola 2002; Ben-Hur and Weston 2008]: 

 
 2

2( , ) exp
2

i
iK

γ

 −
= − 

 
 

x x
x x  (3.13) 

where γ is the parameter of the Gaussian kernel. Figure 3.2 is an example of nonlinear 

SVM decision function with the Gaussian kernel for a two-dimensional problem. Even 

though the boundary is always linear in the transformed higher-dimensional space, the 

boundary is nonlinear in the original design space. In this research, SVM and Kernel 

Methods Matlab toolbox [Canu et al. 2005] is used for the formulation of SVM. 

The SVM can deal with high-dimensional problems and can separate two classes 

of data with the maximal margin. The SVM decision function has an explicit form, and 

thus predictions based on SVM can be computed faster for MCS than those based on 

implicit surrogate methods such as the Kriging method. The prediction speed is important 

for sampling-based RBDO, since a very large number of MCS points are required in 

evaluating the probability of failure. 
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Figure 3.2 Nonlinear Decision Function for Two-Dimensional Problem 

 

3.3.3 Parameter Estimation in SVM 

It is very important to use appropriate kernel parameter value for γ in Eq. (3.13) 

because the nonlinearity of SVM model depends on the parameter γ. A number of 

parameter estimation methods have been proposed for SVM [Chapelle and Vapnik 1999; 

Seeger 2000; Vapnik 2000; Cawley 2001; Chapelle et al. 2002; Keerthi 2002; Momma 

and Bennett 2002; Staelin 2002; Ali and Smith 2003; Chung et al. 2003; Wang et al. 

2003; Kulkarni et al. 2004; Frohlich and Zell 2005; Gold and Sollich 2005; Boardman 

and Trappenberg 2006; Huang and Wang 2006; Men and Wang 2008; Wang and Ma 

2008]. There are mainly three ways to evaluate the performance of the kernel parameter. 

If DoE samples are cheap and enough, then samples can be divided into two groups: one 

for modeling and the other for testing. However, this is not possible for expensive 

computer simulations. Leave-one-out cross-validation (LOOCV) is also widely used but 

the computational cost may increase rapidly when there are a number of support vectors. 

Finally, upper bounds on the error expectation are available such as radius-margin bound 
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[Vapnik 1998; Chapelle et al. 2002; Wang et al. 2003; Men and Wang 2006] and 

Jaakkola-Haussler (J-H) bound [Chapelle et al. 2002]. 

The radius-margin bound is defined as 

 
 2

2

1LOOCV R
l M

≤  (3.14) 

where l is the number of DoE samples, R is the radius of the smallest sphere containing 

all samples, and M is the margin of SVM defined in Section 3.3.1. Therefore, LOOCV is 

bounded by the right side term in Eq. (3.14) and this right side is minimized instead of 

calculating the LOOCV directly. The right side of Eq. (3.14) is approximated by Fisher 

linear discriminant function in Wang et al. 2003.  

The Jaakkola-Haussler bound is defined as 

 
 

1
LOOCV ( ( , ) 1)

l

i i i
i

Kα
=

≤ Ψ −∑ x x  (3.15) 

where iα are the Lagrange multipliers, Ψ is a step function, and K is the kernel function.  

Using Iowa 2-D example, both error measures are estimated and compared to the 

true classification error. One hundred DoE samples and one million uniform test points 

are used. According to Figs. 3.3, 3.4, and 3.5, the shape of the J-H bound is similar to that 

of true classification error compared to the radius-margin bound. However, the location 

of the optimum still does not match exactly.  

Deterministic computer simulations are our main target problem to deal with, and thus 

the limit state function with zero training error always exists. The training error is defined 

as the classification error with respect to the DoE and virtual samples, and thus zero 

training error means that there is no wrong identifications for the DoE and virtual 

samples. Therefore, the largest kernel parameter γ with the zero training error means that 

the corresponding VSVM model is the simplest model, which can describe given DoE 
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and virtual samples. And, in VSVM, virtual samples are forced to be close to the limit 

state function, and thus, a smaller parameter value can means an over-fitted model. 

Therefore, the largest kernel parameter γ with zero training error can be the optimal γ that 

minimizes the classification error. 

Using the Iowa 2-D example, 9-D Rosenbrock function and 12-D Dixon-Price 

function, performances of the J-H bound and the largest kernel parameter γ with zero 

training error are compared. Examples are defined in Section 3.6. According to Figs. 

(3.7), (3.8), and (3.9), the largest kernel parameter γ with zero training error identified the 

optima correctly compared to the J-H bound. Therefore, the largest kernel parameter γ 

with zero training error is used as the optimal parameter in VSVM.  

 

 

 

 

Figure 3.3 Radius-Margin Bound Using Fisher Linear Discriminant Function 
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Figure 3.4 Jaakkola-Hausler Bound 

 

 

 

Figure 3.5 True Classification Error 
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Figure 3.6 The J-H Bound, Training Error and Classification Error for Iowa 2-D Example 
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Figure 3.7 The J-H Bound, Training Error and Classification Error for 9-D 

Rosenbrock Example 
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Figure 3.8 The J-H Bound, Training Error and Classification Error for 12-D 

Dixon-Price Example 
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Initially, equal interval search (EIS) algorithm [Arora 2004] is applied to find the 

optimal parameter. However, to improve the efficiency, golden section search (GSS) 

algorithm [Arora 2004] is used for the kernel parameter estimation process. The main 

steps of parameter estimation based on GSS are as follows: 

Step 1. Define lb, ub and Δ where TE(lb) = 0, TE(ub)>0, and ub  ̶  lb > Δ > 0. 

 TE is the training error. 

Step 2. Evaluate TE(a) where a = lb + 0.382 (ub  ̶  lb). 

 If TE(a) > 0, then go to Step 3. Otherwise, go to step 4. 

Step 3. ub = a.  

If (ub  ̶  lb) < Δ, then go to Step 5. Otherwise, go to Step 2. 

Step 4. b = lb + 0.618 (ub  ̶  lb). Evaluate TE(b). 

 If TE(b) > 0, then lb = a, ub = b. Otherwise, lb = b. 

 If (ub  ̶  lb) < Δ, then go to Step 5. Otherwise, go to Step 2. 

Step 5. The optimal kernel parameter γ = lb. 

 

In Table 3.1, it is shown the golden section search performed better than the equal 

interval search. 

Table 3.1 Performances of EIS and GSS 

Problem Initial Value Search 
Method 

No. of 
Training 

Error 
Estimations 

Optimum 
Parameter 

Time 
(Sec.) 

9-D 

19.87 EIS 2 19.87 0.77 
GSS 2 19.87 0.69 

1 EIS 19 19.95 7.95 
GSS 17 19.87 6.59 

100 EIS 17 19.95 6.44 
GSS 13 19.88 5.20 
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Table 3.1. Continued 
 

12-D 

18.50 EIS 2 18.50 0.84 
GSS 2 18.50 0.90 

1 EIS 19 18.62 11.14 
GSS 17 18.45 9.43 

100 EIS 17 18.62 10.47 
GSS 14 18.46 7.62 

Note: EIS is the equal interval search algorithm and GSS is the golden section search 
algorithm.  

3.4 Virtual Support Vector Machine (VSVM) 

The explicit design space decomposition (EDSD) method, which is based on the 

conventional SVM, yields good performance for discontinuous limit state functions. 

However, there exists a limitation for continuous problems. Since EDSD does not use 

function values, EDSD converges very slowly, and consequently requires many samples 

in dealing with continuous problems. Therefore, the accuracy needs to be improved for 

continuous problems, which can be achieved by inserting virtual samples generated based 

on available function values. 

3.4.1 Virtual Sample Generation and VSVM 

For the construction of SVM, initial samples, which include both success and 

failure samples, should be given. Initial samples are generated by Latinized Centroidal 

Voronoi Tessellation (LCVT), since it shows very good uniformity and randomness 

[Basudhar et al. 2012; Saka et al. 2007]. 

Since SVM deals only with classification of responses, i.e., successes (−1) or 

failures (+1), the SVM decision function is usually located in the middle of opposite 

signed samples regardless of the function values of the given samples as shown in Figure 

3.9. However, in reality, samples with small absolute function values are more likely to 

be located closer to the limit state function than those with large absolute function values. 
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Figure 3.9 SVM Decision Function 

 

In this research, two types of samples are used. The first type is real samples, 

which include initial samples and sequential samples. Sequential samples are inserted 

when the VSVM model does not meet the accuracy requirement. These real samples 

require function evaluations. The second type is virtual samples, which are generated 

using an approximation method to improve the accuracy of the VSVM decision function. 

Such virtual samples do not require real function evaluations and only have virtual signs. 

The basic idea of VSVM is to increase the probability of locating the decision function 

close to the true limit state function, by inserting two opposite signed virtual samples 

between the given two samples. These virtual samples play two major roles in VSVM. 

One is to make the predictions more accurate, and the other is to locate new sequential 

samples near the limit state function, which will be presented in Section 3.5. In Figure 

3.10, the VSVM decision function is shifted towards the sample with a small absolute 

function value by inserting two virtual samples. The virtual samples with opposite signs 
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should be near the limit state function and be equally distanced from the limit state 

function to obtain the best VSVM decision function.  

 

 

 

Figure 3.10 VSVM Decision Function with Virtual Samples 

 

3.4.2 Informative Sample Set and Valid Distance 

Virtual samples could be generated from the approximation method using any 

pair of real samples. However, it is desirable to use two opposite class samples. If both 

samples have the same sign, then finding the decision function requires an extrapolation, 

which is often inaccurate and the decision function is not located between two given 

samples. If two existing samples have opposite signs (+1 and −1), then the decision 

function should exist between the two samples for the continuous problem. Even though 

any pair of different class samples can be used in theory, if the distance between two 
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given samples is large or both samples are far from the limit state function, then accurate 

positioning of the zero point between two samples is difficult. Thus, at least one of two 

points should be close to the limit state function, and both should be close to each other to 

make approximations more accurate and useful. Therefore, an informative sample set, 

from which virtual samples are generated, is defined first. The original SVM is 

constructed first based on existing samples to identify support vectors. Support vectors 

are located near the limit state function, and thus they are included in the informative set. 

It is highly probable that some samples with small absolute values are also located close 

to the limit state function, even though they may not be support vectors. Therefore, all 

samples that have absolute response values that are smaller than the maximum absolute 

responses of the support vectors are chosen as members of the informative set. The 

informative sample set can be expressed as 

 
 *

max SV

max

max( ( ) ), 1, ,

{ | ( ) , 1, , }

ii

j j

f f i N

f f j N

= =

≤ =

x

x x





 (3.16) 

where *
ix  is the ith support vector, Nsv is the number of support vectors, jx is the jth 

sample, N is the number of samples, and f is the function value at the given sample. 

From the previously chosen informative samples, the closest opposite signed 

samples are paired to generate virtual samples between each pair. However, there exist 

some pairs that can generate important virtual samples, even though they do not belong to 

the closest pairs. To solve this problem, a valid distance concept is introduced. Pairs can 

generate virtual samples if the distance between them is shorter than the valid distance. If 

the valid distance is too large, then there is a risk of including many unnecessary virtual 

samples and producing poor approximations. If the valid distance is too short, it may not 

include information that is more useful. To introduce more informative virtual samples 

while maintaining virtual samples from the closest pairs, the largest distance among all 
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distances between the closest pairs is defined as the valid distance. Figure 3.11 and 

Figure 3.12 show the influence of the valid distance concept in a two-dimensional 

example. By inserting three additional pairs of virtual samples, the accuracy is improved 

in the area near the new virtual sample pairs.  

 

 

Figure 3.11 VSVM Decision Function without the Valid Distance Concept 

 

3.4.3 Approximations for Zero Positions 

Two additional steps are needed for generation of the virtual samples after the 

informative sample set and the valid distance are defined. Firstly, since the true limit state 

function is not known in general, a zero position is approximated from two different class 

samples by using approximation methods such as linear approximation, Kriging, moving 

lease squares (MLS) method [Kim et al. 2005, 2009; Kang et al. 2010], etc. A zero 

position means a point where the approximation value is zero among all the points on the 

line between two opposite signed samples. A linear approximation simply assumes that 

the function value between two given samples is linear and finds the zero point. The 
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linear approximation is very efficient and easy to apply but can be inaccurate for highly 

nonlinear functions.  

 

 

 

Figure 3.12 VSVM Decision Function with the Valid Distance Concept 

 

The Kriging or MLS methods are accurate near existing samples, so they are 

appropriate to obtain better approximations, especially for highly nonlinear functions. In 

this research, the universal Kriging method is used by using all existing samples to 

approximate zero points between two opposite signed samples, and the SURROGATES 

toolbox [Viana 2010] is used for the construction of the universal Kriging model. The 

optimization problem for finding the zero position between two samples is expressed as 
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where ix and jx  are original samples with opposite signs, x is a point on the straight-line 

connecting ix  and jx , and ˆ ( )f x  is an approximated value at x obtained by the universal 

Kriging method. 

It requires a fair amount of computational time to solve Eq. (3.17) accurately. In 

particular, Kriging approximations take a large amount of time if approximations are 

calculated one by one due to its implicit formulation. Therefore, the line connecting two 

opposite signed samples ix  and jx  is divided into multiple elements, their Kriging 

approximations are evaluated all at once, and the position with the minimum absolute 

function value is chosen. The size of one element needs to be smaller than the virtual 

margin, which is the distance between a pair of virtual samples, to generate an accurate 

surrogate. Thus, the number of elements depends on the virtual margin. Then vector 

calculation can be carried out all at once rather than one-by-one calculation, which is 

more efficient in Matlab. In this way, the elapsed time for generating virtual samples is 

reduced from 39.94 sec. to 2.01 sec. per iteration for a twelve-dimensional problem.  

To make the estimation process more efficient, the history of parameter changes 

was investigated to find that the new optimum correlation parameter θ is close to the 

previous optimum θ in general. If the current VSVM model is similar to the previous 

VSVM, then both optimum Kriging parameters are also close to each other. Therefore, 

the previous optimum Kriging correlation parameter θ value is used as the initial value 

for the GPS method [Zhao et al. 2011]. By implementing this efficiency strategy, the 

elapsed time to find the optimum θ is reduced by 90% per iteration on average. 

3.4.4 Generation of Virtual Samples from Zero Positions 

Secondly, two opposite signed virtual samples are generated near the zero point. 

One is located in the direction of the success sample, and the other is in the direction of 

the failure sample. Both virtual samples should be between the given two opposite signed 

samples and on the line that connects these points, as shown in Figure 3.10. Then, a new 
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SVM decision function based on the original and virtual samples will be located between 

the virtual sample pairs, because the virtual samples in each pair have different signs and 

are close to each other. If approximations for zero points are accurate, then both virtual 

samples and a new decision function will be near the limit state function. 

One important question is how closely a pair of virtual samples should be located. 

If the distance between a pair of virtual samples is too long, then these virtual samples 

will not be chosen as support vectors and they become ineffective. To make the virtual 

samples effective, the distance should be short enough that the virtual samples are 

selected as support vectors so that the supporting hyperplanes are located near the 

decision function. If a smaller target error is required, the virtual margin needs to be 

reduced accordingly. 

If many virtual samples are clustered together within a small region, the 

additional information from the most closely located virtual samples is negligible, and the 

computational time increases. In selection of virtual samples, the trade-off between the 

amount of additional information and the computational cost should be considered. After 

the valid distance is defined based on SVM with an initial sample set, virtual sample 

candidates are generated from two opposite samples within the valid distance. The first 

pair of virtual samples is the pair between a sample with the smallest absolute function 

value and its closest opposite signed sample, since they provide the most accurate 

information. Next pair is the candidate which has the longest distance from both real and 

previously selected virtual samples to prevent clustered virtual samples within a small 

region. Virtual samples are selected and added until new virtual samples are close to 

previously chosen virtual samples. In Figure 3.13, suppose that pair 2 is generated from 

the smallest absolute value. Then, pair 2 is the first pair of virtual samples. Pair 4 has the 

longest distance from pair 2 and thus pair 4 is selected as virtual samples next. By 

applying this method, virtual samples are spread out uniformly in the design space. Once 

 
 



49 
 

all virtual samples are selected, the VSVM decision function is constructed by using both 

existing and virtual samples. 

 

 

 

Figure 3.13 Selection of Virtual Samples – Pairs within Solid Squares Are Selected 

 

As explained in Section 3.1, true function values at location of “zero point” and 

virtual samples are not evaluated. Their signs are decided by approximations. Even 

though signs and locations of virtual samples may not be accurate with initial samples, 

the accuracy is improved as new samples are inserted sequentially. 

3.5 Adaptive Strategy for Sampling and Stopping Criteria 

3.5.1 Adaptive Sequential Sampling 

The surrogate-based methods construct a model that is accurate over the given 

domain, and thus samples tend to spread out on the given domain to satisfy the target 

accuracy. However, since only an accurate decision function is required for the sampling-
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based reliability analysis and RBDO [Lee et al. 2011], samples near the limit state 

function are more informative than samples far away from the limit state function. Such 

efficiency cannot be achieved by using a uniform sampling strategy, and thus a sequential 

sampling method is proposed for better efficiency and accuracy.  

In this research, new samples are selected such that they are located within the 

margin (|s(x)|<1), which is narrow since each pair of virtual samples are closely located 

near the decision function. In addition, new samples should have the maximum distance 

from the closest existing sample to maximize additional information from new samples. 

This strategy is similar to the sequential sampling method developed by Basudhar and 

Missoum, but the computational burden can be reduced by using the within-the-margin 

(i.e., inequality) constraint (|s(x)|<1) rather than the on-the-decision-function (i.e., 

equality) constraint (s(x)=0), which is more difficult to satisfy. On the other hand, this 

new constraint is effective since the virtual margin is very narrow compared with 

conventional SVM margins. A less strict constraint can be used with VSVM since new 

samples do not need to be on the limit state function by introducing virtual samples. In 

other words, if new samples are located near the limit state function, accurate virtual 

samples close to the limit state function can be obtained. The optimization problem is 

defined as 

 
 

nearestmax

. . ( ) 1s t s

−

<
x

x x

x
 (3.18) 

where nearestx is the existing sample closest to the new sample x. Since nearestx  changes as 

the position of new sample candidate x moves, Eq. (3.18) is a moving target problem. In 

Figure 3.14, a new sample is positioned by solving Eq. (3.18) and inserted into a region 

near the limit state function and where there is no existing sample nearby. In Figure 3.15, 

the VSVM decision function is improved significantly near the newly inserted sample. 
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Any efficient optimization method can be applied to solve Eq. (3.18). The 

gradient-based optimization methods such as trust-region-reflective algorithm [Coleman 

and Li 1994, 1996], active-set algorithm [Powell 1978a, b] or interior-point algorithm 

[Byrd et al. 2000; Waltz et al. 2006] can be used instead of the GPS method since they 

are faster than the GPS method [Lewis and Torczon 1999] without sacrificing much 

accuracy. In the research, active-set algorithm is used and initial points are selected 

among zero points in sparse region. 

In the beginning, locations of virtual samples may not be accurate, because their 

signs are decided based on approximations. However, the accuracy is improved as new 

samples are inserted sequentially near the decision function. 

 

 

Figure 3.14 VSVM Decision Function and a Sequential Sample 
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Figure 3.15 VSVM Decision Function with a New Sample 

3.5.2 Stopping Criteria 

Stopping criteria are required to determine when the decision function is 

converged. Since the true limit state function is not known, the criterion is based on the 

variations of the approximated decision function. A set of testing points is generated 

using input distributions because the MCS points are also generated in the same way for 

the sampling-based reliability analysis. In this research, ten thousand testing points for 

stopping criteria (Nstop) were used for all examples. The fraction of testing points that 

show different signs from the previous surrogate is calculated as [Basudhar and Missoum 

2008] 
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where k is the current iteration number in the sequential sampling process, and k∆   is the 

fraction of testing points for which the sign of the VSVM evaluation changes between 

k−1th and kth iterations. ( )k iI x  in Eq. (3.19) is an indicator function defined as 

 
 

10, ( ( )) ( ( ))
( )

1, otherwise
k i k i

k i

sign s sign s
I − =

≡ 


x x
x  (3.20) 

where 1( )k is − x  and ( )k is x  represent the VSVM value at x i at the k−1th and kth iterations, 

respectively. Changes in the VSVM decision function fluctuate and usually decrease as 

the number of iterations increases, as is shown in Figure 3.16.  

In order to implement more stable stopping criteria, the fraction of testing points 

changing signs between successive iterations is fitted by an exponential curve as 

[Basudhar and Missoum 2008] 

 
 ˆ Bk

k Ae∆ =  (3.21) 

where ˆ
k∆  represents the fitted values of k∆ , and A and B are the parameters of the 

exponential curve. The value of ˆ
k∆  and the slope of the curve are calculated when new 

samples are added. If k∆  is large while ˆ
k∆  is small, it means that a large change occurred 

in the model at kth iteration, which ˆ
k∆  did not catch. If k∆  is small while ˆ

k∆  is large, the 

situation is that the new sample is inserted into a region where zero-position 

approximations are already accurate, so there is a small change between recent two 

models but it may not be converged yet. Therefore, both k∆ and ˆ
k∆  should be small for 

more robust results. In addition, the slope of the curve needs to be small for stable 

convergence. 
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Figure 3.16 Changes of ∆𝑘𝑘 and Fitted Exponential Curve 

 

To stop the updating process, the maximum of  k∆  and ˆ
k∆  should be less than a 

small positive number 1ε . Simultaneously, the absolute value of the slope of the curve at 

convergence should be lower than 2ε . Thus, the stopping criteria can be defined as 
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where 1ε  and 2ε  are determined so that the target classification error level can be 

achieved. The target classification error is 2.0% in this research. For more accurate limit 

state function, smaller values can be used. Generally, 2ε  should be smaller than 1ε  for 

stable convergence. When parallel computing is available and thus multiple sequential 

samples can be used, changes in the VSVM decision function do not fluctuate much. 

Then, the slope of the curve in Eq. (3.22) may not be necessary anymore. 

The overall procedure of the proposed VSVM method with the sequential 

sampling strategy is shown in Figure 3.17. Initial DoE samples are generated by LHS or 
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LCVT and their responses and classification information are evaluated. SVM is 

constructed and support vectors, informative sample set, and valid distance are estimated. 

VSVM is constructed using virtual samples. If VSVM is accurate, the process stops. 

Otherwise, new sequential samples are inserted near the limit state function and repeat 

the modeling process from function evaluations. 
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Figure 3.17 Flowchart of VSVM with Sequential Sampling Strategy 
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3.6 Comparison Study between VSVM and Other 

Surrogates 

3.6.1 Comparison Procedure 

 Recently developed classification and surrogate modeling methods with 

sequential sampling schemes are selected for comparison with the proposed VSVM 

method. The classification method is the explicit design space decomposition (EDSD) 

method with an improved adaptive sampling scheme that is based on the conventional 

SVM [Basudhar et al. 2012; Basudhar and Missoum 2008, 2010]. The adaptive sampling 

method of EDSD has two kinds of methods to select new samples. One method is to 

select new samples which maximize the distance to the closest existing samples while 

lying on the SVM decision function. The other method is to increase the convergence and 

selects new samples in a region where data from one class is sparse in the vicinity of the 

boundary. For a fair comparison for both EDSD and VSVM, the same Gaussian kernel 

parameter γ in Eq. (3.13) is used.  

The surrogate modeling method is the dynamic Kriging (DKG) method with a 

sequential sampling method [Zhao et al. 2011]. Zhao et al. showed that, when the same 

number of samples is used, DKG performs better compared with the polynomial response 

surface, radial basis function, support vector regression, and universal Kriging method. 

Therefore, DKG is chosen to compare the accuracy of VSVM. The sequential sampling 

method chooses new samples where the prediction variance is largest.  

Three examples are used to test the performance of the adaptive sampling-based 

VSVM. One example is a low-dimensional problem, and the other two are high-

dimensional problems. All three methods can be applied to both global and local 

windows. However, a global window usually requires unnecessarily many samples to 

achieve the target accuracy in RBDO compared with local windows. Therefore, all three 
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methods are applied to local windows of the original input domain. Since classification 

methods can be used when the limit state function exists within the local window, 

original functions are shifted appropriately to include both signed samples. In Sections 

3.6.2, 3.6.3 and 3.6.4, the domains of interest are hyper-cube local windows, which are 

defined by the lower and upper bounds.  

For the Gaussian kernel in Eq. (3.13), parameter γ should be provided. Selection 

of optimum γ is an ongoing research subject. In this research, a fixed γ value, which is 

small enough to maintain zero training error, is used. The training error is defined as the 

classification error with respect to the existing and virtual samples and not testing 

samples.  

Since SVM is a classification method and only takes care of the decision function, 

the mean squared error (MSE) or R2, which are widely used for the surrogate-based 

methods, is not appropriate for comparison. Therefore, the accuracy of the SVM decision 

function should be judged by its closeness to the true limit state function. In practical 

applications, the true limit state function is not known, and so is the error measure. 

However, the error measure can be obtained for academic analytical test problems. One 

million testing points for error measure (Ntest) are generated based on input distributions 

because the MCS samples are also generated in the same way for the sampling-based 

reliability analysis. These testing points are used to calculate the classification error, 

which is the fraction of misclassified testing points over total number of testing points. A 

test point for which the sign of VSVM does not match the sign provided by the true limit 

state function is considered as misclassification [Basudhar and Missoum 2008]. 

Therefore, the classification error c is  
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where ( )iI x  is the indicator function defined as 
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where iyc  represents the corresponding classification value (±1) at ix , and ( )is x  is the 

VSVM approximation at ix . 

Our purpose is to evaluate the probability of failure accurately and efficiently. 

The relationship between the probability of failure measurement error and the 

classification error is approximately proportional. Therefore, accurate probability of 

failure can be obtained by keeping the classification error small. In addition, the 

classification error represents the accuracy of the obtained limit state function, so the 

classification error is used as the error measure for comparison in this research. 

3.6.2 Iowa 2-D Example 

The analytic function is the second constraint of Iowa 2-D example function [Tu 

et al. 1999; Youn et al. 2005], which is expressed as 
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Since the performance is influenced by sample positions, 20 different test cases are used. 

The number of initial samples, Ni, is 10, and parameters γ, 1ε , and 2ε are 3, 0.8, and 0.3, 

respectively, for both EDSD and VSVM. To compare these methods, VSVM is 

performed first, and DKG and EDSD are applied later using the same number of 

additional samples, Na, as VSVM. Each process is forced to stop when it reaches the 

same number of final samples. Since each method has its own sequential sampling 

 
 



59 
 

strategy, sample profiles of the final results are different except the 10 initial samples. 

According to Table 3.2, which shows averaged values of 20 test cases, EDSD is the 

fastest, but the classification result is not accurate. This clearly shows that EDSD 

converges slowly since it does not use the response function values. VSVM is the most 

accurate and requires a similar amount of time as DKG (33.1 sec. vs. 35.3 sec.) for 

modeling. However, VSVM is about 30 times faster than DKG (1.1 sec. vs. 32.5 sec.) in 

estimating response values at one million MCS points due to its simpler formulation. 

Better classification error (2.57% vs. 0.34%) is due to different sampling strategies.  

 

Table 3.2 Average Results for 2-D Example (Ni=10, Na=5.6, 20 Test Cases) 

 DKG EDSD VSVM 
Classification error (%)     2.57 15.34     0.34 

Elapsed time (sec) Modeling 35.3 3.2 33.1   
MCS 32.5 0.6   1.1 

 

3.6.3 9-D Rosenbrock Example 

The nine-dimensional extended Rosenbrock function [Dixon and Szego 1978; 

Viana et al. 2009] is used for the test, which is expressed as 
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The initial sample size is 20; and 20 different test cases are used. For both EDSD and 

VSVM, γ, 1ε , and 2ε  are 5, 0.5, and 0.03, respectively. Twenty-seven additional samples 

are used for all surrogate methods. In Table 3.3, EDSD requires less time than other 
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methods, but it is not accurate. The VSVM uses about half amount of time as DKG (103 

sec. vs. 196 sec.) for modeling and results in better classification error. While VSVM is 

about twice faster than DKG in estimating response values for MCS at one million 

sample points, VSVM is about 15 times more efficient than DKG (3.4 sec. vs. 49.6 sec.). 

 

Table 3.3 Average Results for 9-D Example (Ni=20, Na=27, 20 Test Cases) 

 DKG EDSD VSVM 
Classification error (%) 2.31 6.79 1.78 

Elapsed time (sec) Modeling 196 60 103 
MCS 49.6 1.8 3.4 

 

3.6.4 12-D Dixon-Price Example 

For a twelve-dimensional example, the Dixon-Price function [Dixon and Szego 

1978; Viana et al. 2009] is used and its mathematical expression is 
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The initial sample size is 35 for 20 different test cases. Parameters γ, 1ε , and 2ε  are 15, 

0.25, and 0.015, respectively. Thirty-three additional samples are used for all three 

methods. In Table 3.4, EDSD is very efficient but does not provide accurate results. The 

VSVM uses less time than DKG for both modeling and estimating response values for 

MCS and results in a better classification error. 
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Table 3.4 Average Results for 12-D Example (Ni=35, Na=33.3, 20 Test Cases) 

 DKG EDSD VSVM 
Classification error (%) 2.02 8.88 1.67 

Elapsed time (sec) Modeling 289 64 169 
MCS 64.3 1.9 4.6 

 

 

For another way of comparison, EDSD is performed using the same stopping 

criteria as VSVM so that EDSD can use more samples to construct the decision function. 

According to Table 3.5, the average number of additional samples of EDSD is 77.9, 

which is far more than 33.3 of VSVM. The EDSD also uses a similar amount of time as 

VSVM, and the classification error is still quite large. Clearly, VSVM is more accurate 

than EDSD. 

Since DKG and VSVM use different stopping criteria, a smaller stopping criterion 

is used for DKG to achieve a classification error similar to that of VSVM. In Table 3.6, 

DKG can achieve a classification error level similar to that of VSVM after it uses about 

six more samples. Furthermore, the elapsed time of DKG is larger than that of VSVM for 

both modeling (341 sec. vs. 169 sec.) and estimating response values for MCS (65.1 sec. 

vs. 4.6 sec.). 

 

Table 3.5 Average Results of EDSD and VSVM for the Same Stopping Criteria ( 1ε
=0.25, 2ε =0.015, 20 Test Cases) 

 EDSD VSVM 
No. of additional samples 77.9 33.3 
Classification error (%) 6.9 1.67 

Elapsed time (sec) 
Modeling 149 169 

MCS 1.9 4.6 
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In Figure 3.18, even though classification errors with initial samples are not 

satisfactory, they are decreasing as new samples are inserted. Compared with EDSD, the 

classification error of VSVM is significantly reduced. Both VSVM and DKG are 

accurate overall and their convergences are also stable. If new samples are inserted into 

the region which is already accurate, then new surrogate model will be almost identical to 

previous surrogate model. This is the reason some flat regions exist for all three methods 

as shown in Figure 3.18. 

 

 

 

Figure 3.18 Classification Error Changes as VSVM Converges 

 

The VSVM is more efficient than DKG in terms of the elapsed time for both 

surrogate modeling and estimating response values for MCS, while maintaining a better 

accuracy level. The EDSD converges very slowly and is inefficient in terms of the 

number of additional samples. This will be more problematic when the computer 

simulations at each sample point are expensive for practical application problems. 
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Table 3.6 Average Results of DKG and VSVM for Similar Classification Errors (20 Test 
Cases) 

 DKG VSVM 
No. of additional samples 39.4 33.3 
Classification error (%) 1.74 1.67 

Elapsed time (sec) 
Modeling 341 169 

MCS 65.1 4.6 

 

3.6.5 Different Initial DoE Sample Sizes 

Previously, one fixed initial sample size is applied for three different problems. Now, 

different initial sample sizes are applied. Constraint boundary sampling (CBS) method in 

Section 4.3.4 and convergence classification error (CCE) in Section 4.4 are applied with 

VSVM. In Table 3.7 and 3.8, more DoE samples are used for larger initial DoE samples, 

but they are not significantly different. Final classification error levels are also consistent 

for different dimensional problems. On the contrary, DKG with MSE-based sampling in 

Section 4.3.1 often prematurely converged with the same convergence criterion. 

Therefore, any reasonable initial DoE sample size is fine for VSVM. And, CBS with 

CCE is recommended for more stable performance. 

 

Table 3.7 Average Results of DKG and VSVM for Different Initial DoE Samples 
(Rosenbrock, 20 Test Cases)  

Problem Method Initial 
Samples 

Final 
Samples 

Classification 
Error 

Response Evaluation 
Time 

Rosenbrock 

VSVM 20 169 6.47% 29.0 
DKG 20 29 14.19% 68.4 

VSVM 30 197 6.82% 29.8 
DKG 30 39 14.16% 69.3 

VSVM 40 216 7.43% 31.6 
DKG 40 49 14.07% 71.4 
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Table 3.8 Average Results of DKG and VSVM for Different Initial DoE Samples 
(Dixon-Price, 20 Test Cases)  

Problem Method Initial 
Samples 

Final 
Samples 

Classification 
Error 

Response Evaluation 
Time 

Dixon-
Price 

VSVM 20 278 2.55% 37.8 
DKG 20 120 13.12% 381.3 

VSVM 35 275 2.39% 40.2 
DKG 35 142 6.09% 488.8 

VSVM 50 306 2.29% 40.8 
DKG 50 117 12.29% 386.0 

  

3.7 Conclusion 

A sequential sampling-based virtual support vector machine (VSVM) method is 

developed to efficiently construct the accurate decision function for the reliability 

analysis. Virtual samples are generated from real samples to improve the accuracy of the 

SVM decision function, and a sequential sampling method is developed to increase the 

efficiency and accuracy of VSVM by inserting new samples near the true limit state 

function.  

The proposed method is compared with a classification method EDSD and a 

surrogate modeling method DKG with their own sequential sampling strategies. DKG 

can construct accurate surrogates with a relatively small number of samples, but it is 

inefficient for MCS since it has an implicit expression for response evaluations, and the 

dynamic basis selection process requires significant computational effort. For a low-

dimensional problem, both VSVM and DKG are accurate and require similar modeling 

time. However, VSVM becomes more efficient than DKG or EDSD while achieving 

excellent accuracy for high-dimensional problems. VSVM is much more efficient than 

DKG in evaluating response values for MCS, and thus VSVM is preferred for sampling-

based RBDO. In this comparison study, better classification error of VSVM compared 

with DKG is due to the fact that VSVM used the new sequential sampling method near 
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the constraint boundary. Therefore, sampling near the constraint is more efficient than 

sampling on the whole domain; and it is desirable to implement a constraint boundary 

sampling method [Bichon et al. 2008, 2011; Ranjan et al. 2008; Lee and Jung 2008; Bect 

et al. 2012; Viana et al. 2012] for DKG for sampling-based RBDO. 

The proposed method is developed and applied to sampling-based RBDO using 

local windows. Therefore, whenever the design is changed, active/violated constraints are 

identified and DKG and VSVM are applied only for the active/violated constraints [Lee 

et al. 2011; Youn et al. 2005; Zhao et al. 2011]. Thus, both DKG and VSVM will use 

local windows. The RBDO problem usually has multiple constraints and the current 

VSVM method requires building VSVM model for each constraint. It would be more 

efficient if we can construct one VSVM model for multiple constraints.  Another fact to 

point out is that response surface methods such as Kriging have advantage that they can 

describe not only the limit state but also the overall design space. However, only the limit 

stat information is required for the sampling-based RBDO so the classification method 

can be very effectively used. 
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CHAPTER 4 

DESIGN OF EXPERIMENT 

4.1 Introduction 

The design of experiment (DoE) is the sampling plan in the design space and is of 

great importance for surrogates and VSVM. Many researchers have developed a number 

of sampling techniques for different surrogates and purposes. These sampling methods 

can be roughly divided into two groups: one-stage sampling and sequential sampling 

methods. Comprehensive reviews of different DoE’s are available in the literatures 

[Simpson et al. 2002; Queipo et al. 2005; Wang and Shan 2007]. 

In one-stage sampling approaches, all DoE samples are generated at once to 

maximize the target criterion. Typical one-stage sampling approaches include orthogonal 

array design (OA) [Owen 1992; Koehler and Owen 1996; Hedayat 1999; Simpson et al. 

2001a, b; Giunta et al. 2003; Queipo et al 2005; Fang et al. 2010], maximum entropy 

design [Shewry and Wynn 1987; Currin et al. 1991; Koehler and Owen 1996], Latin 

hypercube sampling (LHS) [McKay et al. 1979; Sacks et al. 1989b; Park 1994; Koehler 

and Owen 1996; Huntington and Lyrintzis 1998; Butler 2001; Simpson et al. 2001a; 

Giunta et al. 2003; Leary et al. 2003; Queipo et al 2005; Fang et al. 2010], Hammersley 

sequence sampling (HSS) [Kalagnanam and Diwekar 1997; Wong et al. 1997; Simpson 

et al. 2001a; Giunta et al. 2003], D-optimal design [Chaloner and Verdinelli 1995; Butler 

2001; Goel et al. 2008] and Latinized Centroidal Voronoi Tessellation (LCVT) [Burkardt 

et al. 2002; Saka et al. 2006]. 

One-stage sampling methods focus on initial sampling in order to achieve certain 

space filling properties [Wang and Shan 2007]. On the other hand, sequential and 

adaptive sampling methods insert new samples into the design space to achieve the target 

accuracy of surrogates. They have become popular in recent years mainly because the 

appropriate sampling size is difficult to know a priori. In sequential and adaptive 
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sampling methods, locations of new samples are decided based on existing samples, 

current surrogates and the infill criteria. There are many different infill criteria available 

for the surrogate-based design optimization. Typical sequential and adaptive sampling 

approaches are error based exploration [Sacks et al. 1989a, b; Forrester et al. 2008], 

prediction based exploration [Forrester et al. 2008], statistical lower bound [Jones 2001; 

Lin et al. 2004; Forrester et al. 2008], probability of improvement [Jones 2001; Forrester 

et al. 2008], expected improvement [McKay et al. 1979; Jones et al. 1998; Jones 2001; 

Forrester et al. 2008] and conditional likelihood approaches [Jones 2001; Forrester et al. 

2008]. 

4.2 Initial Sampling Methods 

4.2.1 Uniform Sampling Methods in Hyper-Cube 

Without any prior information, initial samples need to be distributed uniformly 

within the design space. Any one-stage sampling methods listed in Section 4.1 can be 

used for generating initial samples. Among many one-stage sampling methods, LHS and 

its variants are most popular, mainly because they do not require more samples for more 

dimensions and samples are non-collapsing. In this study, however, LCVT is usually 

applied for generating initial samples in hyper-cubic design spaces, since LCVT tends to 

provide more uniformly distributed samples within the design space [Romero et al. 2006; 

Saka et al. 2007; Basudhar and Missoum 2008]. Even though Romero et al. showed 

uniformity of HSS is better than LCVT or LHS for two-dimensional design space, the 

minimum statistical distance between samples is maximized with LCVT for higher 

dimensional design space as shown in Table 4.1. 

. 
  

 
 



68 
 

Table 4.1 Mean of Minimum Distances between 100 Samples 

Dimensions LHS HSS LCVT 
2             0.018             0.038             0.031 
3             0.056             0.089             0.101 
5             0.17             0.21             0.26 
10             0.48             0.51             0.61 
15             0.77             0.51             0.87 

 

4.2.2 Uniform Sampling Method in Hyper-Sphere 

For local or global windows, hyper-cubic windows have been widely applied. 

However, test points in the grey area in Figure 4.1 do not significantly affect the accuracy 

of the reliability analysis using surrogate models, and the volume of the hyper-cube is 

much larger than that of the hyper-sphere due to the curse of dimensionality, especially in 

high-dimensional spaces. Ratio of the volume of a hypersphere to that of a 

circumscribing hypercube is expressed as [Jiang et al. 2011]  

 
 (2 ) 2 .

nd nd

V nd
d d

R ndr
S R S

nd

= =  
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where R is the radius of the hypersphere, and the coefficient dS  for the number of 

dimensions nd is: 
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For example, according to Table 4.2, the volume of a hypercube is 3,057 times larger 

than that of the corresponding hyper-sphere for a 12-D problem. Therefore, the hyper-
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cubic local window requires more samples to construct accurate limit state functions in 

the grey area, which is unnecessary. Thus, the number of required samples can be 

reduced by employing the hyper-spherical local window [Lee et al. 2011].   

 

 

 

Figure 4.1 Hyper-Sphere and Hyper-Cube 

Table 4.2 Volume Ratios of Hyper-Sphere and Hyper-Cube 

Dimension Volume Ratio 
(Hyper-cube / Hyper-sphere) 

2 1.27 
4 3.25 
6 12.4 
8 63.1 
10 402 
12 3057 

 

 

To generate initial samples or test points for the calculation of stopping criteria, 

uniform sampling methods need to be applied. A disadvantage of factorial design and 

orthogonal arrays is that the user cannot specify an arbitrary number of samples [Owen 

1992; Simpson et al. 2001; Giunta et al. 2003; Rai 2006]. Latin hyper-cube sampling 

R 
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(LHS), Hammersley sequence sampling (HSS) and Latin Centroidal Voronoi 

Tessellations (LCVT) are available for generating uniform samples in hyper-cubic 

windows. However, since these sampling methods cannot be directly applied to hyper-

spherical windows, the rejection algorithm needs to be used. In the rejection algorithm, 

uniform samples within a hyper-cubic window are generated first, and then the samples 

located outside of the hyper-spherical window are rejected. However, the rejection 

method is very inefficient, especially for high-dimensional problems according to Table 

4.2. For example, 3057 times the target number of samples needs to be generated and 

rejected in a 12-D problem. Jiang et al. proposed a sampling method in a hyper-sphere 

that satisfies uniformity [Jiang et al. 2011]. In their proposed method, MCS samples are 

generated initially and the first sample in the DoE is selected as the farthest MCS sample 

from the mean. Subsequent samples are selected from the remaining MCS samples by 

maximizing the minimum distance to the already selected DoE samples. However, their 

local window size depends on the location of random MCS samples and thus, if any MCS 

sample happens to be far away from the design, the local window can be very large. 

Furthermore, distances between MCS samples and selected DoE samples should be 

calculated, and thus their uniform sampling method is inefficient. Therefore, the efficient 

Transformations/Gibbs sampling method (TGS) that generates uniform samples via latent 

variables and the Gibbs sampler is introduced [Cumbus et al. 1996]. For example, the 

Transformations/Gibbs sampling method is 235 times more efficient than the rejection 

methods for a 10-D problem.   

4.3 Sequential Sampling Method 

Currently, DoE samples are selected one-by-one in the sequential sampling 

method in Chapter 3. If parallel computing is available, multiple samples are more 

efficient than one-by-one sampling due to expensive computational cost for computer 

simulations. However, it is difficult to select multiple DoE samples using the sequential 
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sampling strategy in Chapter 3. For multiple samples, Eq. (3.16) needs to be solved in 

serial, thus the sampling process can become inefficient. Furthermore, since Eq. (3.16) 

has multiple local optimums, it is easy to fall into local optimums and the distance 

between new samples cannot be controlled. Therefore, Kriging-based constraint 

boundary sampling methods are investigated. 

4.3.1 Sequential Sampling Method Using Mean Squared 

Error in the Kriging Prediction 

In DKG, an error based sequential sampling method is used [Sacks et al. 1989a, b; 

Forrester et al. 2008]. An estimated error in the Kriging model is available and so it is 

possible to position new samples where the predicted error is the largest. The mean 

squared error (MSE) in the Kriging prediction can be expressed as 

 
 2 2 T 1 T 1 T T 1 1 T 1ˆ ( ) 1 ( ) ( ) ( ) .s σ − − − − − = − + − − x r R r F R r f F R F F R r f  (4.3) 

where 2σ is the process variance, R is the correlation matrix, F is a design matrix, 
T

1 2( ) { ( ), ( ), , ( )}Kf f f=f x x x x  and T
1 2( ) { ( , , ), ( , , ),..., ( , , )}NR R R=r x θ x x θ x x θ x x . And 

the infill criterion is to maximize the predicted error 2ˆ ( )s x .  

4.3.2 Sub-Domain Sampling near Constraints 

In Zhao 2011, the strategy is to insert new DoE sample at the weakest point. If 

multiple samples are selected using the same sampling strategy, new samples can be 

clustered near the weakest point. Therefore, new sampling strategy needs to be developed 

for multiple samples.  

The basic concept of new sampling strategy is (1) to divide the whole domain into 

𝑛𝑛2 sub-domains (2) to select 𝑛𝑛1 sub-domains which are located near the limit state 

function (3) to find the weakest point within each selected sub-domain. Therefore, first, 

𝑛𝑛2 uniform samples, where 𝑛𝑛1 < 𝑛𝑛2, are generated in the local window and all test points 
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can be divided into 𝑛𝑛2 sub-domains using a Voronoi diagram [Voronoi 1908]. Then, 𝑛𝑛1 

sub-domains out of 𝑛𝑛2 domains, for which mean response values at test points are close 

to 0, are selected. Within each selected subdomain, the weakest point is selected. 

Consequently, 𝑛𝑛1 samples are selected near the limit state function. However, this 

methodology is not efficient as other constraint boundary sampling methods, since new 

samples are located near the limit state function instead of being located on the limit state 

function. Furthermore, 𝑛𝑛2 affects the result and should be specified by the user. 

4.3.3 Efficient Global Reliability Analysis (EGRA) 

Given the constraint g(x) < 0, the feasibility at x is defined as 

 
 ( ) max( ( ) ( ) ,0)F Gε= −x x x  (4.4) 

where x is the sample location, G(x) denotes the random variable representing g(x) and 

measures the uncertainty in G(x). The feasibility F(x) is maximized when the uncertainty 

is largest and G(x) is close to the limit state function. If G(x) is a Gaussian process, then 

the expected feasibility function (EFF) is defined as 
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where Φ  and φ  are the standard Gaussian CDF and PDF, respectively, ˆ ( )g x  is the 

Kriging prediction, ( )Gσ x  is the square root of the Kriging prediction variance, 

( )Gε ασ= x , 
ˆ ( )
( )G

gu
σ
−

=
x
x

, 
ˆ ( )
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+ −
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x
x

, and 
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− − −
=

x
x

. Bichon et al. 2008 

recommended 2 ( )Gε σ= x .  
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For multiple samples, a Kriging-believer EGRA is proposed by Viana et al. 2012. 

In this method, after one new point is obtained, the Kriging model is updated as if one 

sample is inserted at the selected location. Then, one more sample is selected using 

updated Kriging model. Therefore, if n samples are needed, Kriging models are 

constructed n times sequentially.  

On the other hand, multiple sample points can be located on the constraint 

boundary by multiplying the nearest distance D(x) from existing samples [Lee and Jung 

2008]. Then EFF2 can be expressed as 
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 (4.6) 

where distance D(x) is calculated in normalized space. Then, new samples are not 

selected on previously selected locations. In this method, previous EFF value does not 

change and only D(x) changes as more samples are inserted. For example, if n samples 

are needed, n D(x) need to be calculated sequentially. 

These two methods are compared using Iowa 2-D (I-A) function, Branin-Hoo (B-

H) function, Camelback (C-B) function, Hartmann3 (H3) function, Hartmann6 (H6) 

function, Rosenbrock (R-B) function and Dixon-Price (D-P) function. The number of 

variables, initial samples, sequential samples at once, and final samples are summarized 

in Table 4.3. According to  

Table 4.4, EFF is more expensive compared to EFF2 especially for high 

dimensional problems. However, classification errors are similar to each other. Therefore, 

EFF2 will be used for EGRA in this research. 
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Table 4.3 Test Environments 

Number  I-A B-H C-B H3 H6 R-B D-P 
Variables 2 2 2 3 6 9 12 

Initial Samples 4 4 4 9 150 150 150 
Sequential Samples at 

Once 
5 5 5 5 10 10 10 

Final Samples 24 19 39 54 350 350 350 

 

Table 4.4 Performances of EFF and EFF2 

 Methods I-A B-H C-B H3 H6 R-B D-P 

CE EFF 4.29% 0.49% 1.11% 1.83% 7.33% 11.25% 10.34% 
EFF2 0.70% 0.86% 0.50% 1.87% 7.64% 11.05% 10.42% 

Time 
(sec.) 

EFF 44.8 29.8 143 253 24,054 33,556 25,262 
EFF2 4.7 3.58 11.3 18.7 99 215 142 

Note: CE is the classification error. 
 
 

4.3.4 Constraint Boundary Sampling (CBS) 

If the failure region is defined as G(x) > 0, the feasible probability of a Gaussian 

process is defined as follows: 

 
 ˆ ( )

( )G

GF
σ

 −
= Φ  

 

x
x

 (4.7) 

where Φ  is the standard Gaussian CDF, ( )Gσ x  is the standard deviation at x and ˆ ( )G x  is 

the Kriging prediction. Then a new sampling criterion by using standard normal PDF φ  

can be proposed as follows: 
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where nc is the number of constraints and D(x) is the nearest distance from the existing 

sample points. The proposed criterion will become large along constraint boundary, since 

PDF has the largest value at 
ˆ ( ) 0i

G

G
σ

−
=

x
. By including D(x) in the formulation, CBS 

becomes large when new candidate point is far away from existing samples. EGRA and 

CBS are conceptually similar and the difference between them is that CBS only chooses 

samples in the feasible regions. 

After intensive tests using different numerical examples, CBS is chosen as the 

sequential sampling method for both VSVM and DKG. 

4.4 Convergence Criterion 

In DKG, prediction variance is used as the convergence criterion. However, 

prediction variance does not guarantee accurate response surface or decision function, 

since it shows large variation for different problems. If prediction variance is not used, 

there is no independent accuracy measure for surrogates or classification models. 

Therefore, convergence MSE (CMSE) is proposed, in which two consecutive surrogates 

are compared. Even though CMSE is more stable compared to the Kriging prediction 

variance, it is still affected by the scale of responses and it is not directly related to the 

probability of failure or its sensitivity. Therefore, it is very difficult to choose the 

threshold value for the convergence. 

Next, convergence probability of failure (CPF) and convergence classification 

error (CCE) are proposed. CPF compares two consecutive probabilities of failures and it 

is directly related to the probability of failure but not to its sensitivity. On the contrary, 

CCE calculates the classification error between two consecutive decision functions, and 

CCE is directly related to the probability of failure and its sensitivity.  
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CMSE, CPF and CCE are intensively tested and compared using different mathematical 

examples. Overall, CPF and CCE perform more efficiently compared to CMSE. Table 

4.5 shows RBDO results for Iowa 2D example. Two different types of test points are also 

compared. One is a MCS-based measure and the other is a hypersphere-based measure. 

In the MCS-based measure, MCS test points are used to calculate CPF or CCE. On the 

other hand, uniform test points in the hypersphere are used in the hypersphere-based 

measure. With MCS test points, more DoE samples are required to achieve similar 

accuracy in Table 4.5. And, there is no significant difference between CPF and CCE. 

Since CCE takes care of both the probability of failure and the sensitivity, CCE using 

hyper-spherical uniform test points will be used for the stopping criterion. 

 

Table 4.5 CPF VS. CCE for Iowa 2D Example (Average over 10 Cases) 

Stopping Criterion X1 X2 Cost No. 
Iter. No. BB No. FE 

CPF(MCS) 
1E-3 4.7372 1.5490 -1.9091 7.00 40.20 66.50 
5E-3 4.7357 1.5498 -1.9088 7.60 44.20 71.70 
1E-2 4.7389 1.5482 -1.9095 8.60 49.60 78.20 

CCE(MCS) 
1E-3 4.7362 1.5498 -1.9088 8.30 48.00 79.00 
5E-3 4.7381 1.5497 -1.9088 8.00 39.80 64.20 
1E-2 4.7365 1.5499 -1.9087 7.60 50.80 80.70 

CPF(HS) 
1E-3 4.7357 1.5504 -1.9085 7.30 28.70 49.20 
5E-3 4.7358 1.5509 -1.9083 8.40 34.40 56.40 
1E-2 4.7356 1.5502 -1.9086 7.40 32.80 53.40 

CCE(HS) 
1E-3 4.7359 1.5505 -1.9085 7.10 32.70 54.60 
5E-3 4.7357 1.5505 -1.9085 7.30 37.00 60.20 
1E-2 4.7356 1.5508 -1.9084 7.80 27.80 45.70 

Note: MCS means MCS samples are used to calculate the convergence criterion. HS 
means uniform samples in the hypersphere are used to calculate the convergence 
criterion. BB means blackbox calls and FE means function evaluations. 
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CHAPTER 5 

SAMPLING-BASED RBDO USING VSVM 

5.1 Efficiency Strategies for Practical Use of Sampling-

Based RBDO 

Five strategies are introduced in this section to carry out the sampling-based 

RBDO accurately and efficiently, which are launching RBDO at a deterministic optimum 

design, applying hyper-spherical local window for surrogate model generation, filtering 

of constraints, reusing samples and generating virtual samples efficiently.  

5.1.1 Launching RBDO at a Deterministic Optimum 

Design 

Even though deterministic design optimization (DDO) optimum is not reliable, 

most probabilistic optima are located near the deterministic ones. Therefore, we can 

improve numerical efficiency by starting from deterministic optima and thus reducing the 

number of RBDO iterations [Du and Chen 2004; Youn et al. 2005; Lee et al. 2011]. In 

this research, if the probabilistic optimum candidate is very close to the deterministic 

optimum design, the previous VSVM model can be reused to save computational cost. 

However, probabilistic optimum design may not be very close to the deterministic 

optimum design. If so, a new local window and a new surrogate need to be constructed at 

the probabilistic optimum candidate to obtain accurate probabilistic optimum design.  

5.1.2 Hyper-Spherical Local Window  

Instead of using the global window, the local window concept is used for the 

generation of surrogate and VSVM models as shown in Fig. 5.1 to achieve accuracy and 

efficiency [Lee et al. 2011]. The radius R of the local window can be decided as 

 
 R tR c β=  (5.1) 
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where Rc  is the coefficient for the size of local window, which is usually between 1.0 and 

3.0, and tβ is the target reliability index of RBDO. However, Eq. (5.1) works only in the 

standard normal U-space where all random variables have the standard normal 

distribution, whereas the local window in X-space may not be a hyper-sphere. Hence, for 

the generation of samples in the X-space, samples are generated in the hyper-sphere with 

the radius R given in Eq. (5.1) in the normalized U-space, and the generated samples are 

transformed back to the X-space using the Rosenblatt transformation [Rosenblatt 1952]. 

If the target reliability index tβ  is different for each constraint, then the maximum tβ  can 

be used for Eq. (5.1).  

 

Figure 5.1 Hyper-Spherical Local Window for RBDO 

 

Since VSVM is a classification method, VSVM performs better with a balanced 

sample set, which means there exists a similar number of positive and negative samples. 

Near the deterministic optimum, probabilities of failure of the active constraints are 

approximately 50%. Therefore, the local window for VSVM is centered at the 
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deterministic optimum, and Rc  in Eq. (5.1) is set up to be reasonably large 2.5~3.0, so 

that the local window would include the RBDO optimum design and corresponding MCS 

samples in general. The distance between DDO optimum and RBDO optimum is 

approximately 1.0 tβ×  in the U-space in many problems. Thus, new local window with 

2.5 ~ 3.0Rc =  can include new RBDO optimum and previous local window with 

1.2 ~ 1.5Rc = . If Rc  is small, we may need to construct a VSVM model whenever the 

design changes. If Rc  is too large, we may end up with a number of DoE samples in 

unnecessary regions. In this way, the local window for VSVM does not have to be 

changed. On the contrary, Lee et al. used 1.2~1.5 for Rc  and local windows are 

constructed whenever new RBDO optimum candidate is proposed [Lee et al. 2011]. By 

implementing a larger fixed local window, VSVM model is more stable and modeling 

time can be reduced. If the distance between the deterministic optimum and the RBDO 

optimum is large, then a new local window needs to be set up such that a new local 

window includes the RBDO optimum and corresponding MCS samples. 

Instead of the hyper-cubic local window, the hyper-spherical local window is used 

in this research. As explained in Chapter 4, hyper-spherical local windows are more 

efficient than hyper-cubic local windows especially for high-dimensional problems due to 

the curse of dimensionality. Thus, the number of required samples can be reduced by 

employing the hyper-spherical local window [Lee et al. 2011]. To generate initial 

samples or test points for the calculation of stopping criteria in the hyper-spherical local 

window, Transformations/Gibbs sampling method is applied [Cumbus et al. 1996] in this 

research. 

5.1.3 Filtering of Constraints 

After computer simulations are carried out at DoE sample points in the local 

window, function values for each constraint are saved and used to determine if the 

constraints are feasible at those sample points or not. If function values for a certain 
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constraint are negative at all sample points on the local window, which means that the 

constraint is feasible because we define a constraint as failing if ( ) 0G >X  in Eq. (2.1), 

then a surrogate model for the constraint is not generated because we can conclude that 

the probability of failure for the constraint will be zero without generating the surrogate 

model. Hence, if a constraint is identified as very feasible, −1 for the constraint value and 

0 for the sensitivity of the constraint are assigned without generating a surrogate model to 

save computational cost [Lee et al. 2011]. 

5.1.4  Sample Reuse  

At each iteration, the local window is scanned to check whether samples exist 

before generating rN  initial samples. If there are already existing samples whose number 

is denoted as eN  in the local window, and if eN  is less than rN  , then r eN N−  samples 

are generated in the local window instead of generating rN  samples. New samples are 

inserted in the sparse region first to avoid sampling in a clustered region. Even though 

eN  is larger than rN , new samples are inserted in the sparse region only when existing 

samples are clustered within a small region. 

During the deterministic optimization process, random parameters are ignored and 

only design variables are considered, whereas both random design variables and 

parameters are used during the RBDO process. Therefore, if there exist random 

parameters in the problems, samples generated during the deterministic optimization 

process cannot be reused during the RBDO process. Even though there is no random 

parameter in problems, samples from the DDO process can be clustered within the 

RBDO local window due to the size difference between DDO and RBDO local windows. 

And it is noted that such clustered DoE samples can cause numerical difficulty for the 

Kriging method [Bohling 2005b]. 
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5.1.5 Generation of Virtual Samples 

In Chapter 3, the original SVM is constructed first to identify informative samples 

before generating virtual samples. This procedure is necessary for local approximation 

methods such as simple linear approximation or moving least squares method (MLS), 

since local approximation results are only effective within a sub-local region and only 

DoE samples near the limit state function are effective. On the contrary, the Kriging 

method is a global approximation method, where all DoE samples are used in the 

modeling process. With the Kriging model, therefore, the informative sample set is not 

necessary and all combinations between positive and negative samples can be considered.  

However, it can be inefficient to use all combinations of samples since many virtual 

samples might be clustered within a small region as explained in Chapter 3. In selection 

of virtual samples, the trade-off between the amount of additional information and the 

computational cost is considered.  

Figure 5.2 shows the overall algorithm flowchart of the sampling-based RBDO 

using VSVM for the limit state function and the probabilistic sensitivity analysis by the 

score function. At the deterministic optimum, the local window is defined and scanned to 

use existing samples within the local window. Additional DoE samples are generated if 

necessary and responses are evaluated at sample locations. Responses are converted into 

classification form and active and violated constraints are identified. Kriging models are 

constructed for active and violated constraints, virtual samples are generated, and virtual 

SVM is constructed. If current model is not accurate enough, sequential adaptive samples 

are inserted. Since sequential samples are located near limit states, the accuracy of 

Kriging model near the limit state is improved efficiently by new samples. Therefore, 

VSVM models are also accurate near limit states and RBDO optimum is searched for by 

using accurate VSVM models. 
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Figure 5.2 Flowchart of Sampling-Based RBDO Using VSVM 
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5.2 Comparison Study  

5.2.1 Comparison Procedure 

The sampling-based RBDO using the DKG method was compared with sampling-

based RBDO using the VSVM. Two mathematical examples are used to compare 

performances of two sampling-based RBDO methods. In this research, a fixed γ value, 

which is small enough to maintain zero training error, is used for the Gaussian kernel in 

Eq. (3.13).  

5.2.2 RBDO of Iowa 2-D Example 

Consider a 2-D mathematical RBDO problem called the Iowa example [Tu et al. 

1999; Youn et al. 2005; Lee et al. 2011], which is formulated to 
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where three constraint functions are expressed as 
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where 1 20.9063 0.4226Y X X= +  and 1 20.4226 0.9063Z X X= − , which are drawn in Fig. 

5.3. The properties of two random variables are listed in Table 5.1, and they are 

independent. As shown in Eq. (5.2), the target probability of failure is 2.275% for all 

constraints. The sequential quadratic programming (SQP) algorithm is used for design 

optimization [Arora 2004]. 
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Figure 5.3 Shape of Cost and Constraint Functions 

As shown in Fig. 5.4 and Table 5.1, the deterministic optimum design is used as 

initial design 0 (5.19,0.74)T=d . To find the deterministic optimum, I-RBDO code, which 

is developed by the University of Iowa and contains the DKG method in addition to the 

sensitivity-based RBDO, is used. At the deterministic optimum design, the sampling- 

based RBDO using VSVM is launched with the local window coefficient Rc = 2.5. Using 

the same initial design, sampling-based RBDO using DKG is also performed. Table 5.2 

shows the probabilistic sensitivities at the deterministic optimum. Both sampling-based 

RBDO results are close to probabilistic sensitivities with true functions, and thus both 

VSVM and DKG are accurate enough for sampling-based RBDO. Table 5.3 and Figs. 5.4 

and 5.5 compare the numerical results of two different sampling-based RBDO methods. 

Sampling-based RBDO using VSVM results in better probability of failure while 

requiring a smaller number of samples, since the sequential sampling method for VSVM 

selects new samples near the limit state function as shown in Fig. 5.5. At each iteration, 

probability of failure is calculated at the current design using a large number of MCS 

points. Five design iterations are required for both sampling-based RBDO methods to 
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find the RBDO optimum from the DDO. In Table 5.3, sampling-based RBDO using 

VSVM requires 15 times less time due to its simpler explicit formulation. Therefore, 

sampling-based RBDO using VSVM is more efficient than sampling-based RBDO using 

DKG both in terms of the number of required samples and computational cost. 

 

Table 5.1 Properties of Random Variables for Iowa 2-D Example 

Random 
Variables Distribution dL d0 dU Standard 

Deviation 
X1 Normal 0.01 5.19 10.0 0.3 
X2 0.01 0.74 10.0 0.3 

 

 

Figure 5.4 Result of Sampling-Based RBDO Using DKG 
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Figure 5.5 Result of Sampling-Based RBDO Using VSVM 

Table 5.2 Probabilistic Sensitivities at the Deterministic Optimum for 2-D Example 

Method Using DKG Using VSVM Using True Functions 
Design Variables X1 X2 X1 X2 X1 X2 

Constraint 1 -16.2924 -56.0533 -16.5789 -56.0133 -16.2177 -55.9779 
Constraint 2  57.7814    4.6555  57.6350    4.9174  57.7028    4.6091 

Table 5.3 Comparison of Sampling-Based RBDO Using DKG vs. Using VSVM for 2-D 
Example 

Sampling-
based RBDO Cost Optimum 

Design 

MCS (10,000,000) 
Number of 
Function 

Evaluations 1FP , % 
2FP , % 

Elapsed 
Time per 
Iteration 

(sec.) 
Using DKG -1.9062 4.7153 1.5567 2.3399 1.9407 464 25 

Using 
VSVM -1.9093 4.7333 1.5489 2.3391 2.2623 31 20 

Using True 
Functions -1.9080 4.7380 1.5513 2.2441 2.3055 N.A. N.A. 
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5.2.3 RBDO of 3-D example 

Another mathematical example is used to compare two sampling-based RBDO 

methods [Arora 2004]. This can be formulated to 

 
 2 2 4

1 2 3
ar

3 3

minimize Cost( ) ( 10) 5( 12)

subject to ( ( ( )) 0) 2.275%,

1 ~ 4, ,
and

j

T
j F

L U

d d d
P G P

j

= − + − +

> ≤ =

= ≤ ≤

∈ ∈

d
X d

d d d
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 (5.4) 

where four constraint functions are expressed as 
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 (5.5) 

There are three independent random design variables and four constraints. The 

deterministic optimum, which is obtained by the I-RBDO code, is used as the initial 

design 0 (2.881,2.457,1.000)T=d  as shown in Table 5.4 .  

 

Table 5.4 Properties of Random Variables for 3-D Example 

Random 
variables 

Distributio
n dL d0 dU Standard deviation 

X1 
Normal 

1 2.881 5 0.05 
X2 1 2.457 5 0.05 
X3 1 1.000 5 0.05 
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In Table 5.5, optimums obtained using both sampling-based RBDO methods are 

very close to the optimum using the sampling-based RBDO using true values. Their costs 

and probability of failures are also very close. However, sampling-based RBDO using 

VSVM requires less number of samples and less evaluation time than sampling-based 

RBDO using DKG. Six and five iterations are used for sampling-based RBDO methods 

using DKG and VSVM, respectively. 

 

Table 5.5 Comparison of Sampling-Based RBDO Using DKG vs. Using VSVM for 3-D 
Example 

Sampling-
based 

RBDO 
Cost Optimum design 

MCS (1,000,000) 
Number of 

function 
evaluations 1FP , % 

2FP , % 
3FP , % 4FP , % 

Elapsed 
time per 
iteration 

(sec.) 
Using 
DKG 517.66 2.7528 2.3653 1 2.2956 0 0 2.3150 94.6 51 

Using 
VSVM 517.64 2.7519 2.3656 1 2.2982 0 0 2.2180 9.7 31 

Using 
True 

Functions 
517.67 2.7522 2.3653 1 2.2678 0 0 2.2756 N.A. N.A. 

 

5.2.4 RBDO of Correlated 2-D Example 

Correlated Iowa 2-D example has the same formulation as Eq. (5.2) and Eq. (5.3). 

However, two input random variables are assumed to be correlated with the Clayton 

copula (τ = 0.5). With correlated input, RBDO optimum and corresponding MCS samples 

are located outside of the VSVM local window. Since VSVM may not show stable 

performances with unbalanced DoE samples, universal Kriging is used for designs far 

away from the deterministic optimum. In Table 5.6, both DKG and VSVM found reliable 
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optimal designs but sampling-based RBDO using VSVM required 25% less time and 

18% less DoE samples. Relatively small difference in elapsed time is due to the fact that 

Kriging is also used for sampling-based RBDO using VSVM when RBDO optimum is 

far away from the deterministic optimum. 

Both DKG and VSVM used 5 iterations in RBDO. With VSVM, unfortunately 4 

designs out of 5 are located outside of the effective region of the VSVM local window. 

Therefore, 25% reduction in the computational cost in Table 5.6 is from one design 

within the effective region. Therefore, if DDO and RBDO optimums are located closer, 

the benefit will be more significant. 

 

Table 5.6 Comparison of Sampling-Based RBDO Using DKG vs. Using VSVM for 
Correlated Iowa 2-D Example 

Sampling-
based 

RBDO 
Cost Optimum 

Design 

MCS (1,000,000) Elapsed 
Time for 
RBDO 
(sec.) 

Number of 
Function 

Evaluations 1FP , % 
2FP , % 

Using 
DKG -1.8859 5.0508 1.5904 2.3173 2.2632 328 60 

Using 
VSVM -1.8844 5.0595 1.5938 2.2649 2.2837 246 49 

 

5.3 Conclusion 

The virtual support vector machine (VSVM) is developed for sampling-based 

RBDO to improve the efficiency of the RBDO process. The number of samples is 

reduced to achieve accurate limit state function by employing the sequential sampling 

method. The evaluation time for probability of failure is also reduced due to the explicit 

formulation of VSVM. 
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The proposed method is compared with sampling-based RBDO using the DKG 

method. The DKG method can construct accurate surrogates with a relatively small 

number of samples, but it is inefficient for MCS since it has complicated expression for 

response evaluations, and the dynamic basis selection process requires significant 

computational effort. Since VSVM has simple explicit expression for limit state functions 

and only support vectors are used in response evaluations, sampling-based RBDO using 

VSVM can reduce the computational cost significantly. During the RBDO process, 

probability of failure is evaluated using MCS at each iteration, and thus the 

computational cost is proportional to the number of iterations. The number of required 

samples is also reduced by the efficient sequential sampling method. This is significant 

when expensive computer simulations are required for modeling and simulation. 

Therefore, the VSVM is more efficient than the DKG method in estimating response 

values for MCS and in reducing the number of required samples.
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CHAPTER 6  

ACCURACY IMPROVEMENT STRATEGIES FOR THE KRIGING 

METHOD 

6.1 Introduction 

Deterministic computer simulations of physical phenomena have been widely 

used in science and engineering for design guidance; and as more sophisticated and larger 

size models are used, they become computationally expensive. Therefore, it is of great 

importance to minimize the number of computer experiments in DDO and RBDO. The 

main advantage of the surrogate-based method is that a limited number of function 

evaluations can be used to construct surrogate models. Therefore, surrogate models are 

introduced to reduce the computational burden for solving problems without sensitivity. 

The Kriging method is one of the widely used surrogate modeling methods. To construct 

an accurate Kriging model, an appropriate form of the Kriging model should be selected 

and the correlation parameters should be estimated accurately. Therefore, the number of 

computer experiments (i.e., DoE) for surrogates can be reduced, if accuracy of surrogates 

is improved by using appropriate forms and parameters. 

Section 6.2 briefly reviews accurate correlation parameter estimation methods for 

the Kriging method, and Section 6.3 explains penalized maximum likelihood estimation 

(PMLE) for small sample size problems. In Sections 6.4 and 6.5, appropriate correlation 

models and mean structures in the Kriging model are selected, and a combined method, 

which includes all previous improvement schemes, is proposed. Performances of 

proposed methods for numerical and engineering examples are shown in Section 6.6. 

Section 6.7 concludes the current study. 

6.2 Accurate Parameter Estimation 

Parameter estimation is the process of selecting the regression function 

coefficient, process variance, and correlation function parameters  2{ , , }σβ θ  in Eq. (3.8). 
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To estimate accurate parameters, various statistical techniques are available, such as the 

variographic analysis (VA), Bayesian estimation (BE), cross-validation (CV), or MLE 

[Zimmerman and Zimmerman 1991; Martin and Simpson 2005; Dubourg et al. 2011]. In 

geostatistics, the empirical variogram is usually obtained first from the autocovariance 

structure of the data [LeMay 1995; Bohling 2005; Hengl 2007; Roustant et al. 2012]. 

However, this methodology requires users’ interaction and knowledge on the Kriging 

method, so it is very sophisticated and not appropriate for our purpose. With the BE 

technique, prior information is needed, which might not be available [Dubourg et al. 

2011]. In computer experiments, the MLE technique is most widely used, and Martin and 

Simpson showed that the MLE method outperformed the CV technique [Martin and 

Simpson 2005]. Therefore, the MLE technique will be mainly used. 

In MLE, the log-likelihood function L in Eq. (3.8) is maximized. Since 2σ and β 

can be estimated using Eqs. (3.7) and (3.9), the goal of the MLE method is to find 

optimal θ that maximizes the likelihood function based on all observations. It is a global 

optimization problem, and various optimization algorithms have been applied, such as the 

downhill simplex method [Martin and Simpson 2005; Martin 2009; Deng et al. 2011], the 

Newton-Raphson method [Martin 2009; Deng et al. 2011], the quasi-Newton method 

[Martin and Simpson 2005; Gano et al. 2006; Deng et al. 2011], the Fisher scoring 

algorithm [Martin 2009; Deng et al. 2011], the adaptive simulated annealing [Gano et al. 

2006; Deng et al. 2011], the genetic algorithm [Forrester and Keane 2009; Zhao et al. 

2011] and generalized pattern search algorithm [Gano et al. 2006; Deng et al. 2011; Zhao 

et al. 2011]. The first four gradient-based methods are local optimization methods, so 

they are not appropriate for highly nonlinear problems. Adaptive simulated annealing is 

much more computationally intensive because it is a Monte Carlo method [Gano et al. 

2006; Deng et al. 2011]. Zhao et al. showed that GPS performed better than H-J, L-M, or 

GA and the performance of GPS is influenced by its initial design point [Zhao et al. 

2011]. Thus, if the initial design is far from true optimum, GPS is computationally 
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expensive and sometimes inaccurate. Therefore, GA can be used to find a better initial 

point for GPS. Even though GA is considered unreliable for continuous optimization 

problems, GA can provide useful initial design for GPS. 

6.3 Penalized MLE (PMLE) 

The log-likelihood function near the optimum may be flat, or it can give wrong 

information in some situations [Fan and Li 2001; Li and Sudjianto 2005; Kok 2012]. For 

example, true optimal correlation parameter in normalized root mean square error 

(NRMSE), which is defined in Eq. (6.10), is different from the optimal correlation 

parameter in MLE in Fig. 6.1. One way to solve this problem is to add a constraint 
UBθ θ<  in MLE, but it is another problem to choose an appropriate threshold UBθ . 

Therefore, penalized MLE (PMLE) is introduced for parameter estimation instead of 

MLE [Fan and Li 2001; Li and Sudjianto 2005; Roustant et al. 2012]. In PMLE, a penalty 

function is added to the log-likelihood function, such as 

 
 2 1

2
1

1 1ln[2 ] ln[ ] ( ) ( ) ( )
2 2 2

nr
T

i
i

nQ N pλπσ θ
σ

−

=

= − − − − − − ∑R Y Fβ R Y Fβ  (6.1) 

where N is the number of DoE samples, nr is the number of random variables, pλ is the 

penalty function, and λ is the parameter in the penalty function. Three penalty functions 

are introduced; they are the 1L  penalty, ( )pλ θ λ θ= ; the 2L  penalty, 2( ) 0.5pλ θ λ θ= ; 

and the smoothly clipped absolute deviation (SCAD) penalty. The first derivative of the 

SCAD penalty is defined as 

 
 ( )( ) ( ) ( )

( 1)
ap I I
aλ
λ θθ λ θ λ θ λ

λ
+ −′ = ≤ + > − 

 (6.2) 

where a = 3.7, θ > 0, with (0) 0pλ =  [Li and Sudjianto 2005]. The SCAD penalty 

function is recommended in the literature [Li and Sudjianto 2005]. However, other 
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penalty functions showed similar performances with global optimization algorithms, so 

the 1L  penalty is applied in this research. The amount of penalty is decided by the penalty 

function parameter λ. In the literature [Li and Sudjianto 2005], a set of grid samples for λ 

are chosen, and the best λ is selected based on CV error. However, when exhaustive grid 

samples are used, it is not easy to decide the grid size and the penalty parameter range for 

λ. If the grid size is too small, the computational cost becomes unnecessarily high. On the 

other hand, if the grid size is too large, the optimum λ may not be found. With grid 

samples, a large penalty parameter range also increases the computational cost. 

Therefore, an optimization algorithm needs to be applied to enhance the efficiency. Local 

optimization methods such as a golden section method [Arora 2004] or a gradient-based 

method are tested, but they often fail to find the optimum. Cross-validation error is not a 

smooth function and may have multiple local optima, so local optimization algorithms 

often fall into local optima. Therefore, GPS is applied to find optimal λ in PMLE.  

 

 

Figure 6.1 Log-Likelihood Function and NRMSE with Six Samples 
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6.4 Correlation Model Selection 

The choice of the correlation model is crucial to the Kriging model. Gaussian 

correlation models are widely applied for many engineering problems, since 

corresponding Kriging models are infinitely differentiable and smooth. However, the best 

correlation model can be different for different data or problems. If mean structures are 

the same for given data, the residual information is also the same. Then, MLE can be 

used to select the best correlation function. Seven different correlation models are 

considered in Table 6.1 [Lophaven et al. 2002]. 

 

Table 6.1 Correlation Functions 

Name 1 2( , , )j jR x xθ  

Exponential 2 1exp( )j x xθ− −  

General Exponential 1

2 1 1exp( ),  0 2n

j nx x θθ θ+

+− − < ≤  

Gaussian 2
2 1exp( )j x xθ− −  

Linear { }2 1max 0,1 j x xθ− −  

Spherical 31 1.5 0.5 ,j jξ ξ− +  { }2 1min 1,  j j x xξ θ= −  

Cubic 2 31 3 2 ,j jξ ξ− +         { }2 1min 1,  j j x xξ θ= −  

Spline 

2 3

3

1 15 30 ,  for 0 0.2

1.25(1 ) ,      for 0 1

0,                       for 1,

j j j

j j

j

ξ ξ ξ

ξ ξ

ξ

 − + ≤ ≤
 − < <
 ≥

 

where  2 1j j x xξ θ= −  

 

6.5 Mean Structure Selection 

In DKG, the best mean structure is selected based on the minimum of process 

variance 2σ  in Eq. (3.9) [Zhao et al. 2011]. However, DKG tends to choose the model 
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with full basis functions for its mean structure, and chosen models are often not the best 

in terms of accuracy. For example, in Table 6.2, full basis functions (first order UKG) are 

selected based on 2σ , but the best model is ordinary Kriging method (OKG), whose 

mean value is a constant, in terms of NRMSE. This means that 2σ  may not be a good 

measure to select the better mean structure. On the contrary, cross-validation error 

identified the best model correctly in Table 6.2 and thus CV is applied instead of 2σ  to 

decide better mean structures. However, CV is computationally expensive, and it may not 

be sensitive enough to identify the difference among all basis function combinations. 

Therefore, the best mean structure is chosen among only OKG and first- and second-

order UKG methods.  

 

Table 6.2 2σ , CV and NRMSE for 12-D Dixon-Price Problem 

Basis Selection σ2 CV NRMSE 1 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 
1 0 0 0 0 0 0 0 0 0 0 0 0 6.12E10 7.24E11 12.80% 
1 1 0 0 0 0 0 0 0 0 0 0 0 6.06E10 7.82E11 12.86% 
1 1 1 0 0 0 0 0 0 0 0 0 0 6.06E10 8.98E11 12.86% 
1 1 1 1 0 0 0 0 0 0 0 0 0 6.06E10 9.48E11 12.86% 
1 1 1 1 1 0 0 0 0 0 0 0 0 6.03E10 1.05E12 12.85% 
1 1 1 1 1 1 0 0 0 0 0 0 0 5.71E10 1.24E12 13.00% 
1 1 1 1 1 1 1 0 0 0 0 0 0 5.63E10 1.32E12 13.09% 
1 1 1 1 1 1 1 1 0 0 0 0 0 5.63E10 1.54E12 13.09% 
1 1 1 1 1 1 1 1 1 0 0 0 0 5.61E10 1.76E12 13.09% 
1 1 1 1 1 1 1 1 1 1 0 0 0 5.42E10 2.13E12 13.60% 
1 1 1 1 1 1 1 1 1 1 1 0 0 5.42E10 2.21E12 13.60% 
1 1 1 1 1 1 1 1 1 1 1 1 0 5.42E10 2.61E12 13.59% 
1 1 1 1 1 1 1 1 1 1 1 1 1 5.32E10 2.91E12 13.36% 
Note: 1 means selected and 0 means not selected. 
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6.6 Numerical Experiments 

6.6.1 Analytical Examples 

To test the effectiveness of the proposed methods, a set of analytical functions are 

employed [Tu et al. 1999; Youn et al. 2005; Dixon and Szego 1978; Lee 2007; Viana et 

al. 2008]. These are:  

Iowa 2-D second constraint function (2 variables) 

 
 2 3

1 2 1 2
4

1 2 1 2

1 2

( ) 1 (0.9063 0.4226 ) (0.9063 0.4226 6)

0.6(0.9063 0.4226 ) ( 0.4226 0.9063 )
0.01 , 10

y x x x x
x x x x

x x

= + ⋅ + ⋅ + ⋅ + ⋅ −

− ⋅ + ⋅ − − ⋅ + ⋅
≤ ≤

x
 (6.3) 

Branin-Hoo (2 variables)  

 
 22

1 1
2 12

1 2

5.1 5 1( ) 6 10 1 cos( ) 10,
4 8

5 10,0 15.

x xy x x

x x
π π π

   = − + − + − +   
  

− ≤ ≤ ≤ ≤

x  (6.4) 

Camelback (2 variables) 

 
 4

2 2 2 21
1 1 1 2 2 2

1 2

( ) 2.1 4 (4 4) ,
3

3 3, 2 2.

xy x x x x x x

x x

 
= − + + + − 
 

− ≤ ≤ − ≤ ≤

x
 (6.5) 

 

Hartmann 3 (3 variables) 

 
 

1 1
( ) exp ( )2 ,

0 1, 3, 4, [1,1.2,3.0,3.2],

q m

i ij j ij
i j

j

y a b x d

x m q
= =

 
= − − − 

 
≤ ≤ = = =

∑ ∑x

a
 (6.6) 
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 3.0 10.0 30.0
0.1 10.0 35.0

,
3.0 10.0 30.0
0.1 10.0 35.0

0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.03815 0.5743 0.8828

 
 
 =
 
 
 

 
 
 
 
 
 

=

b

d

  

Hartmann 6 (6 variables) 

 
 

1 1
( ) exp ( )2 ,

0 1, 6, 4, [1,1.2,3.0,3.2],

10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0

,
3.0 3.5 1.7 10.0 17.0 8.0
17.0 8.0 0.05 10.0 0.1 14.0

0.1312 0.1696 0.5569 0.0124 0

q m

i ij j ij
i j

j

y a b x d

x m q
= =

 
= − − − 

 
≤ ≤ = = =

 
 
 =
 
 
 

=

∑ ∑x

a

b

d

.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 
 
 
 
 
 

 (6.7) 

Extended Rosenbrock (9 variables) 
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 (6.8) 

Dixon-Price (12 variables) 
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( ) ( 1) 2 ,

10 10, 1,2, , , 12.

m

i i
i

i

y x i x x

x i m m

−
=

 = − + − 

− ≤ ≤ = =

∑x



 (6.9) 

Different numbers of samples are used depending on the number of variables in 

each example. Sample locations are generated using Latin Centroidal Voronoi 

Tessellations (LCVT), which has better uniformity compared with Latin hypercube 

sampling (LHS) [Saka et al. 2007]. For the CV error, leave-one-out CV (LOOCV) is 

applied. For the Kriging model, DACE MATLAB toolbox is used [Lophaven et al. 

2002]. 

6.6.2 Engineering Example 

As described by He et al., statistical analysis in irregular wave and uncertainty 

quantification in variable regular wave are presented for resistance and motions [He et al. 

2012]. There are two input variables and they are zero-crossing period T and the 

significant wave height H. Deterministic regular head wave simulation for total/added 

resistance, heave and pitch motions, is studied. For each target performance function, 

mean, RMS, amplitude and period values are investigated. Therefore, there are twelve 

performance functions in the study. Figure 6.2 shows the shapes of all performance 

functions. One hundred twenty-nine true samples are evaluated using computational fluid 

dynamics (CFD) simulations. Among the 129 DoE samples, 9, 17, 33, and 65 samples are 

selected and used to construct Kriging models. The unused 120, 112, 96, and 64 samples, 

respectively, are used to evaluate the accuracy of surrogates. Therefore, there are 

4×12=48 CFD test cases. 

The normalized root mean square error (NRMSE) is used to compare the 

accuracies of different surrogates and is defined as 
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(6.10) 

where tN  is the number of test points, iy  is the ith true response or the ith CFD result, and 

ˆiy  is the ith prediction using Kriging models.  

 

Figure 6.2 Responses of CFD Performance Functions 
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6.6.3 Parameter Estimation in MLE 

The GA is proposed to find the initial point for GPS in Section 6.2. Using 

mathematical examples, H-J, GPS and GPS with GA are compared. The mathematical 

examples are Iowa 2-D, Branin-Hoo, Camelback, Rosenbrock, and Dixon-Price 

functions. The correlation function is fixed as Gaussian. 

According to Table 6.3, GPS with GA performs better than H-J or GPS, 

especially for high-dimensional problems. Even though the computational cost is about 

twice that of GPS alone, it is relatively small compared with expensive computer 

simulation (DoE) time. 

 

Table 6.3 NRMSE with Different Parameter Search Algorithms 

Examples Iowa 2-D Branin-Hoo Camelback Rosenbrock Dixon-
Price 

No. of 
Samples 10 10 50 50 60 

H-J 10.57% 9.95% 0.04% 12.37% 12.35% 
GPS 10.55% 9.80% 0.04% 12.37% 12.35% 

GPS with GA 5.85% 9.80% 0.04% 0.70% 1.13% 

 

6.6.4 Penalized MLE 

When MLE is inaccurate, PMLE can be used as described in Section 6.3. Five 

mathematical examples are used to test the performance PMLE. There are three different 

penalty functions in PMLE: 1L  penalty function, 2L  penalty function and the SCAD 

penalty function. Performances are compared in Table 6.4. There is no one penalty 

function that is always the best. Among three penalty functions, 1L  penalty function 
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performs well in Table 6.4 and it has the simplest mathematical form. Therefore, 1L  

penalty function is used in this study.  

Table 6.4 NRMSE for Different Penalty Functions in PMLE 

Penalty 
Function Iowa 2-D Branin-

Hoo Camelback Rosenbrock Dixon-
Price 

SCAD 8.76 7.95 14.16 13.82 13.02 
1L  9.13 7.95 11.56 10.23 10.59 

2L  9.26 6.15 11.79 15.13 11.11 

 

 

Using 1L  penalty function, MLE and PMLE are compared. Five mathematical 

examples are applied and grid sampling method is used to find the best penalty function 

parameter λ in PMLE. For correlation parameter estimations, GPS with GA is applied for 

MLE and GPS is applied for PMLE. It is relatively easy to find optimum θ of Q in Eq. 

(2.2) [Li and Sudjianto 2005], thus GPS is enough for PMLE. According to Table 6.5, 

PMLE performs better than MLE for relatively small sample size problems. 

 

Table 6.5 NRMSE for MLE and PMLE 

Examples Iowa 2-D Branin-Hoo Camelback Rosenbrock Dixon-
Price 

No. of 
Samples 10 10 10 20 30 

MLE 12.08% 9.35% 15.83% 15.21% 13.02% 
PMLE 9.13% 9.21% 11.56% 10.24% 10.59% 
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Next, to find the best λ in PMLE, GPS is proposed instead of the grid sampling 

method. The grid sampling method, golden section search, and GPS are compared using 

five mathematical examples. The range of λ is [0, 10]. For the grid sampling method, 100 

grid samples are used, and thus 100 LOOCV evaluations are required. For golden section 

search and GPS, stopping tolerance is set to 410− , which is smaller resolution than the 

grid sampling method.  

In Table 6.6, GPS found true optima in all tests. Golden section search required 

19~25 LOOCV evaluations, and GPS required 23~42 evaluations, whereas grid sampling 

method used 100 evaluations. Therefore, they are more efficient than the grid sampling 

method. However, golden section search often falls into local optimum in Table 6.6. 

Therefore, GPS is more efficient and accurate than other methods.  

 

Table 6.6 Parameter λ from Different Search Algorithms 

Examples Iowa 2-D Branin-
Hoo Camelback Rosen-

brock 
Dixon-
Price 

No. of Samples 10 10 10 20 30 
Grid Sampling 0.01 3.64 0.01   0.01   0.01 
Golden Section 1.62 3.82 1.46 10.00 10.00 

GPS 0.01 9.00 0.01   0.00   0.00 

 

 

When the log-likelihood function is flat near the optimum or is misleading, PMLE 

performs better than MLE. However, PMLE performs worse than MLE for relatively 

large samples since the performance of PMLE is dependent on the CV error. 

Furthermore, PMLE is much more expensive than MLE due to CV evaluations, so 

application of PMLE should be limited to cases when PMLE is better than MLE. MLE 

has difficulty when the log-likelihood function is flat near the optimum or the optimum is 
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on the upper bound [Fan and Li 2001; Li and Sudjianto 2005; Kok 2012]. Therefore, 

PMLE is only applied when the optimal log-likelihood function value is the same as the 

log-likelihood function value at the upper bound. 

6.6.5 Correlation Function Selection 

In Section 6.4, correlation function selection by MLE is proposed. Five 

mathematical examples are used for comparison tests. As shown in Table 6.7, 

performances are different with different correlation functions, and correct correlation 

functions are identified by MLE except for the Branin-Hoo example. Even with the 

Branin-Hoo example, however, the difference in NRMSE is very small (0.58% vs. 

0.53%), which means that those two correlation functions have similar shapes. Overall, 

better correlation models are identified by MLE, and the performance is improved. 

 

Table 6.7 NRMSE for Different Correlation Functions 

 Gaussian Cubic Exponen
tial Spline Linear Spherical 

General 
Exponen

tial 
Iowa 
2-D   0.04% 10.49%   6.16%   1.75%   5.85%   5.91% 0.69% 

Branin
-Hoo   0.58%   8.90%   4.54%   1.28%   3.87%   4.31% 0.53% 

Camel
-back   0.04% 10.55%   2.26%   0.76%   3.33%   2.29% 1.55% 

Rosen-
brock 12.35% 12.35% 12.35% 12.35% 12.35% 12.35% 0.44% 

Dixon-
Price 12.36% 12.36% 12.36% 12.36% 12.36% 12.36% 0.73% 

Note: Bold numbers are the correlation functions chosen by MLE. 

 

 
 



105 
 

6.6.6 Mean Structure Selection 

In Section 6.5, a mean structure selection method using CV is proposed instead of 
2σ -based DKG. To compare two Kriging methods, Iowa 2-D, Branin-Hoo, Camelback, 

Rosenbrock, Dixon-Price, and CFD engineering problems are used. Two different sample 

sets are applied to each mathematical example, and four different samples sets are applied 

to engineering examples. Therefore, 58 cases are tested overall. To remove the effect of 

other factors, correlation functions are fixed as Gaussian and GPS with GA is applied for 

correlation parameter estimations. In this study, DKG using CV means the mean structure 

of the DKG method is selected by using CV error among many different basis function 

combinations. 

In Table 6.8, DKG using CV is more accurate than DKG using 2σ . Therefore, the 

process variance 2σ  does not seem to be a good measure for mean structure selection. 

However, DKG using CV is very expensive since many different basis function 

combinations are examined. Furthermore, CV may not be accurate enough to identify the 

differences between all basis function combinations, especially with large sample size.  

 

Table 6.8 Performances of DKG’s Using 2σ  or CV 

 Average NRMSE Total Elapsed Time (Sec) 
DKG using 2σ  7.91%   784 
DKG using CV 6.85% 1,537 

 

 

Therefore, it is proposed that the best model is chosen among the zeroth-, first- 

and second-order UKG methods based on CV error and it will be defined as CV-based 

DKG in this research. The Hartmann3 and Hartmann6 functions are included in this test, 

so 62 cases are tested. Correlation functions are fixed as Gaussian and GPS with GA is 
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applied for correlation parameter estimations. According to Table 6.9, the accuracy of 

DKG using CV is similar to that of the zeroth- and first-order UKG, but it is far more 

expensive. CV-based DKG is the most accurate, and the computational cost is much less 

than DKG using CV. Thus, CV does not seem to be accurate enough to identify all small 

differences between tested mean structures. 

Table 6.9 Performances of Different Kriging Methods 

Methods 0th UKG 1st UKG 2nd UKG DKG 
using CV 

CV-based 
DKG 

Average 
NRMSE 6.28% 6.55% 8.42% 6.45% 5.92% 

Average Time 
(sec) 0.71 0.71 0.84 48.49 6.54 

 

6.6.7 Combined Scheme 

Four different schemes are introduced to improve the accuracy of Kriging. They 

are (1) better parameter search in MLE, (2) PMLE for small sample size, (3) better 

correlation model selection, and (4) better mean structure selection. They are combined 

into one process as shown in Fig. 6.3 and this combined process is defined as CV-based 

DKG with optimum correlation in this study. For given samples, the shape of the log-

likelihood function is examined to see if it has a flat region near the optimum. If the log-

likelihood function is inaccurate, PMLE is used in correlation function selection. 

Otherwise, the best correlation function is identified by MLE. Once a correlation model 

is selected, the best mean structure is chosen based on CV error. Parameters are estimated 

at each stage, and all parameter estimations are done by GPS with GA. With 62 tests, 

average NRMSE is 5.71%, and average elapsed time is 62.83 sec. Therefore, by 

employing the proposed CV-based DKG with optimum correlation, the accuracy of the 
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surrogates is improved but more time is required. However, in general, such modeling 

time is much smaller than conventional computer experiments such as CFD and FEA. 

 

 

LL is accurate?
(Gaussian correlation, 0th 

UKG)

Correlation Type 
Selection using LL

(0th UKG)

Correlation Type 
Selection using 
Penalized LL

(0th UKG)

Mean Structure 
Selection using CV

Kriging Model

YES NO

Given Samples

 

Figure 6.3 Flowchart of CV-Based DKG with Optimum Correlation (LL Means the Log-

Likelihood Function) 

 

6.7 Conclusion 

The accuracy of the Kriging method is improved by employing four different 

methods: (1) GPS with GA for parameter search in MLE, (2) PMLE with small sample 

size, (3) correlation model selection by MLE, and (4) mean structure selection by CV 
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error. Parameter estimation in PMLE is also improved. Each method is shown to improve 

the accuracy of the Kriging model. All four methods are combined into one process, and 

the CV-based DKG with optimum correlation shows improved accuracy with 

mathematical and engineering examples. 
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CHAPTER 7 

CONCLUSION, RESEARCH PROGRESS AND FUTURE WORK 

7.1 Conclusion 

The reliability-based design optimization (RBDO) methods that use sensitivity 

have been widely applied to various engineering applications. Using sensitivities, the 

most probable point (MPP)-based RBDO can be carried out for approximating the 

reliability of the system and searching for reliable designs. However, the sensitivity often 

is not available or is difficult to obtain in complex multi-physics or multidisciplinary 

simulation-based engineering design applications. In this case, the surrogate-based 

method can provide approximations of otherwise expensive computer simulations for 

reliability analysis and design optimization. In RBDO, once accurate surrogate models 

are constructed, Monte Carlo simulation (MCS) can be directly applied to the surrogate 

model for the reliability analysis and probabilistic sensitivity analysis for RBDO with 

affordable computational cost. This method is called sampling-based RBDO.  

Previously, the dynamic Kriging (DKG) method is used for surrogates in 

sampling-based RBDO. However, response evaluations at MCS points using DKG are 

relatively expensive, because DKG uses all DoE samples and its formulation includes 

complicated matrix calculations. On the contrary, support vector machines (SVM) only 

use support vectors which is a part of the total DoE sample set and have a simpler 

formulation. Therefore, the virtual SVM (VSVM) is developed to improve the accuracy 

of SVM and achieve similar accuracy level as DKG. A comprehensive study has been 

carried out to show that VSVM is more efficient and accurate than existing methods such 

as DKG and the explicit design space decomposition (EDSD). 

A sequential sampling method is proposed to construct the accurate decision 

function efficiently. The accuracy of the VSVM model is improved by inserting new 

samples near the limit state function. The classification error is used for convergence 
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criterion for VSVM because response values are meaningless in classification methods 

and only accurate classification results are needed for the sampling-based RBDO. 

Hyper-spherical local windows are used to overcome the curse of dimension for 

high dimensional problems. The transformation/Gibbs sampling method is also 

introduced to generate initial DoE samples and convergence test points in hyper-spherical 

windows efficiently. Active and violated constraints are identified not to generate 

unnecessary VSVM models. For efficiency, existing samples are reused in different local 

windows. These efficiency strategies are implemented to perform a sampling-based 

RBDO using VSVM. 

As for the DKG method, the total computational cost can be reduced by using less 

number of DoE samples for expensive computer simulations. Therefore, four accuracy 

improvement strategies are investigated. They are: (1) generalized pattern search (GPS) 

with genetic algorithm (GA) for parameter search in maximum likelihood estimation 

(MLE), (2) penalized MLE (PMLE) with small sample size, (3) optimum correlation 

model selection by MLE, and (4) mean structure selection by cross-validation (CV) error. 

These four methods are combined into one process to develop a new the CV-based DKG 

method, which shows improved accuracy with mathematical and engineering examples. 

7.2 Research Progress 

The main objective of this study is to develop an efficient and accurate 

classification method and apply it to sampling-based RBDO. Another objective is to 

improve  the Kriging model accuracy. Four tasks have been carried out to meet these 

objectives of the study: 

Task 1: Development of an efficient and accurate classification method; 

Task 2: Development of an efficient sequential sampling method; 

Task 3: Development of a sampling-based RBDO using the proposed method; 

Task 4:  Development of more accurate Kriging method. 
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7.3 Future Work 

Performance of SVM can be unstable with unbalanced DoE samples and 

performance of VSVM is influenced by the location of DoE samples. To make the 

VSVM process more stable, universal Kriging responses at test points can be used in 

generating virtual samples. Since universal Kriging responses at test points are already 

evaluated for the constraint boundary sampling method, additional computational cost 

will be minimal. 

The RBDO problem usually has multiple constraints and the current VSVM 

method requires building VSVM model for each constraint. It would be more efficient if 

we can construct one VSVM model for multiple constraints. In CV-based DKG with 

optimum correlation, PMLE is very conservatively applied. If a threshold condition, 

under which MLE is not accurate, can be identified accurately, then the value of PMLE 

can be significant. Finally, in selection of the mean structure, the proposed DKG method 

chooses among 0th , 1st, and 2nd order universal Kriging methods. If a more accurate 

identification method is available, we can choose among various combinations of basis 

functions and more accurate DKG models can be obtained.  
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