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ABSTRACT

This work comprises several projects that involve optimization of physical systems.

By a physical system we understand an object or a process that is governed by physical,

mechanical, chemical, biological, etc., laws. Such objects and the related optimization

problems are relatively rarely considered in operations research literature, where the tra-

ditional subjects of optimization methods are represented by schedules, assignments and

allocations, sequences, and queues. The corresponding operations research and manage-

ment sciences models result in optimization problems of relatively simple structure (for

example, linear or quadratic optimization models), but whose difficulty comes from very

large number (from hundreds to millions) of optimization variables and constraints. In

contrast, in many optimization problems that arise in mechanical engineering, chemical

engineering, biomedical engineering, the number of variables or constraints in relatively

small (typically, in the range of dozens), but the objective function and constraints have

very complex, nonlinear and nonconvex analytical form. In many problems, the analytical

expressions for objective function and constraints may not be available, or are obtained as

solutions of governing equations (e.g., PDE-onstrained optimization problems), or as re-

sults of external simulation runs (black-box optimization). In this dissertation we consider

problems of classification of biomedical data, construction of optimal bounds on elastic

tensor of composite materials, multiobjective (multi-property) optimization via connection

to stochastic orderings, and black-box combinatorial optimization of crystal structures of

organic molecules.
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PUBLIC ABSTRACT

This work comprises four projects that involve optimization of physical systems,

which are governed by physical, mechanical, chemical, biological, etc., laws. The first

project is focused on efficient solving of special data classification problems, and the de-

veloped methodology was applied to several biomedical data sets in order to improve pre-

diction whether a patient or test subject has a certain type of disease (e.g., diabetes).

The second project was concerned with determining and optimizing the ranges of

material properties of composite materials. Composite materials typically consist of two

or more constituents, which are combined in such a way so as to produce a material whose

properties are superior to the properties of the individual constituent materials. The pro-

posed approach was illustrated on nano-composites, or composite materials containing car-

bon fiber nanotube inclusions.

Third part of this research is focused on multiobjective optimization, that can be

used, for example, in market portfolio management.

The final part discusses the possibility of using heuristic algorithms for crystal struc-

ture determination from X-ray diffraction data.
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CHAPTER 1
INTRODUCTION

In this work we consider several projects, which are relatively disconnected from

each other, but have a common theme of dealing with optimization of physical systems.

By a physical system we understand an object or a process that is governed by phys-

ical, mechanical, chemical, biological, etc., laws. Such objects and the related optimization

problems are relatively rarely considered in Operations Research literature, where the tra-

ditional subjects of optimization methods are represented by schedules, assignments and

allocations, sequences, and queues. The corresponding Operations Research and Manage-

ment Sciences problems, such as optimal assignment or allocation of resources, optimal

scheduling, and others, result in optimization problems of relatively simple structure (for

example, linear or quadratic optimization models), but whose difficulty comes from very

large number (from hundreds to millions) of optimization variables and constraints. In

contrast, in many optimization problems that arise in mechanical engineering, chemical

engineering, biomedical engineering, the number of variables or constraints is relatively

small (typically, in the range of dozens), but the objective function and constraints have

very complex, nonlinear, and nonconvex analytical form. In many problems, the analytical

expressions for objective function and constraints may not be available, or are obtained as

solutions of governing equations (e.g., PDE-onstrained optimization problems), or as re-

sults of external simulation runs (black-box optimization). This dissertation is concerned

with problems of the latter kind. Below we describe the projects that comprise the pre-

sented work.
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In Chapter 2, we consider a new model of linear separation, which represents one

of the popular methods used in data analysis and machine learning. In linear separation

problems, the goal is to partition points of a given data set into two classes by a linear

surface, or hyperplane. The proposed in Chapter 2 p-norm discrimination model uses a

stochastic optimization analogy to treat points that are “misclassified” by a given hyper-

plane as “outliers” that are assigned special “emphasis” or “weight” and therefore are to be

avoided. The amount of “emphasis” can be adjusted by means of the parameter p (the or-

der of the p-norm), such that when p = 1, the correctly classified and missclassified points

have equal “importance”, whereas p = 1 places the largest possible penalty on misclas-

sified points. The proposed approach was tested on three popular datasets that represent

various biomedical data. It was shown that linear discrimination models with higher values

of parameter p > 1 allow for better accuracy of classification comparing to a traditional

linear p = 1 model. As a byproduct of this project, we also obtained a reformulation of

multidimensional p-order cone as an intersection of three-dimensional second-order cones,

which is the most compact of such representations currently available in literature.

In Chapter 3, we consider the problem of deriving the tightest possible bounds for

material properties of composite materials with randomly distributed inclusions. Compos-

ite materials are “hybrid” materials that consist of two or more phases, or “ingredients”, that

act together to overcome each other’s weaknesses and form a composite material whose

properties are superior to those of its constituents. Traditionally, one of the constituent

materials is called matrix, and other materials represent inclusions that are embedded into



3

the matrix. Composite materials are used in many areas of science and technology, from

civil engineering and aerospace industry to dental implants. In development of new com-

posite materials, of great importance is the ability to derive or estimate the properties of the

resulting composite from the properties of its constituents. However, the predicted prop-

erties of thusly “formulated” composite material may not be achievable with the current

manufacturing technology. One example of such a situation is represented by nanocom-

posites that are based on single-wall carbon nanotubes (CNTs). At the micro-level, CNTs

are much stronger than steel due to perfect alignment of nanotubes. At the macrolevel,

current manufacturing processes are unable to guarantee a sufficient degree of alignment,

which results in a drastic degradation of properties of manufactured samples of CNT buck-

ypaper. Therefore, in this dissertation, we are concerned with construction of the lower

and upper bounds on the material properties (i.e., the components of the elastic tensor)

of the composite material. Such bounds would represent “the limits of the possible” that

can in principle be achieved with the given material phases, regardless of the capabilities

or limitations of manufacturing technology. For example, it would be possible to predict

whether an improvement of composite’s properties could be achieved with an improvement

of manufacturing technology, or the selected constituents are unable to yield a composite

of required properties regardless of the manufacturing process.

In this chapter, we introduced an optimization approach to determining the lower

and upper bounds on the effective overall elastic moduli of a two-phase composite ma-

terials that have random distribution/orientation of inclusions. The corresponding opti-

mization model is presented in the form of a nonlinear semidefinite programming (SDP)
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problem, where the optimization variable is a tensor of elastic properties. This formulation

ensures that the resulting elastic tensors are symmetric and positive semidefinite, which

is not always the case in many similar studies in literature. By exploring and exploiting

the properties of the objective function and the feasible region of of this nonlinear SDP

problem, we were able to reduce the solution process to finding an extremum of a univari-

ate function. In addition, using the obtained optimal solutions we evaluated the quality

of well-known Hashin-Strickman-Walpole (HSW) bounds and provided conditions under

which these bounds lead to close-to-optimal results, and when they produce bounds that

are not guaranteed to correspond to positive semidefinite tensors. Our methods yield the

tightest and most consistent bounds existing in the literature.

In Chapter 4 we present a new approach to multiobjective optimization that is based

on an analogy with the concepts of stochastic orderings and stochastic dominance relations.

This project was originally motivated by development of multifunctional materials and

structures, capable of performing multiple functions (e.g., structures that can carry load and

act like a battery by storing energy) or adapting their performance in response to changes

in the operating environment. In the context of development of multifunctional materials,

question arises regarding when a material can be considered as truly multifunctional, i.e., at

which point do the properties of an engineered material or structure improve significantly

enough comparing to the baseline design, so that the resulting design can be considered as

multifunctional? In mechanical engineering, improvement of a given property often leads

to deterioration of another property. In this regard, a mathematically rigorous methodol-
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ogy is required in order to ascertain that an “overall” improvement of a material or design

has been achieved, with an improvement in “priority” properties with, perhaps, certain

small degradation in other properties. The corresponding optimization models with multi-

ple optimization criteria are known as multi-objective optimization problems. In practice,

multiobjective optimization problems are solved by scalarization of the vectorial objective,

i.e., by employing a specific transformation that combines several optimization criteria into

a single expression. To this end, we proposed a scalarization method for multiobjective

optimization that is based on an analogy with stochastic orderings, which are used in deci-

sion making under uncertainty to rank multiple randomized outcomes with respect to their

“usefulness”. Since we were unable to find appropriate material-based data to illustrate

our approach, we conducted case studies of the proposed method on multiobjective short-

est path problem and portfolio optimization problem with simulated or historical financial

data.

Finally, in Chapter 5 we present a problem of optimal reconstruction of crystal

structures from X-ray diffraction data. This problem arises in chemistry and chemical en-

gineering, where atoms of chemical elements have to be assigned to “positions” in order to

provide the best fit to the observed crystallography data. This problem can naturally be for-

mulated as a black-box combinatorial optimization problem, where an analytic expression

for the objective function is not available and is obtained as “external” input. In this project,

we proposed several black-box solution algorithms based on popular metaheuristics, such

as nearest-neighbor search, simulated annealing, etc.



6

CHAPTER 2
A P -NORM LINEAR DISCRIMINATION MODEL FOR DATA

CLASSIFICATION

2.1 Introduction

Consider two discrete sets A,B ⇢ Rn containing k and m points, respectively:

A = {a
1

, . . . , a
k

}, B = {b
1

, . . . ,b
m

}. One of the principal tasks arising in machine

learning and data mining is that of discrimination of such sets, namely, constructing a

surface f(x) = 0 such that f(x) < 0 for any x 2 A and f(x) > 0 for all x 2 B. Of

particular interest is the linear separating surface (hyperplane):

f(x) = w

>
x� � = 0.

From the simple fact that any two points y
1

, y
2

2 Rn satisfying the inequalities w>
y

1

�

� > 0, w>
y

2

�� < 0 for some w and � are located on the opposite sides of the hyperplane

w

>
x�� = 0, it follows that the discrete sets A, B ⇢ Rn are considered linearly separable

if and only if there exist w 2 Rn such that

w

>
a

i

> � > w

>
b

j

for all i = 1, . . . , k, j = 1, . . . ,m,

with an appropriately chosen �, or, equivalently,

min

ai 2A
a

>
i

w > max

bj 2B
b

>
j

w. (2.1)

Clearly, existence of such a separating hyperplane is not guaranteed (namely, a separating

hyperplane exists if the convex hulls of sets A and B are disjoint); thus, in general, a

separating hyperplane that minimizes some sort of misclassification error is desired.
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In the next section we introduce a new linear separation model that is based on p-

order cone programming, and discuss its key properties. The proposed solution approach,

based on a reformulation of p-cone programming problems as second-order cone program-

ming (SOCP) problems when p is rational, is presented in Section 3. Section 4 contains a

case study on several popular data sets that illustrates the developed discrimination model.

2.2 The p-norm linear separation model: A stochastic optimization analogy

Since definition (2.1) involves strict inequalities, it is not well suited for mathemat-

ical programming models of selecting the “best” linear separator. However, the fact that

the separating hyperplane can be scaled by any non-negative factor allows one to formulate

the following observation:

Proposition 1 (Bennett,Mangasarian [8]). Discrete sets A, B ⇢ Rn

represented by ma-

trices A = (a

1

, . . . , a
k

)

> 2 Rk⇥n

and B = (b

1

, . . . ,b
m

)

> 2 Rm⇥n

, respectively, are

linearly separable if and only if

Aw � e� + e, Bw  e� � e for some w 2 Rn, � 2 R, (2.2)

where e is the vector of ones of an appropriate dimension, e = (1, . . . , 1)>.

Given the linear separability condition (2.2), the (non-negative) vectors

xA = (�Aw + e� + e)

+

, xB = (Bw � e� + e)

+

,

where t
+

= max{0, t}, represent misclassification errors: xA and/or xB > 0 if sets A

and B are not linearly separable. If one considers that points of sets A and B represent



8

realizations of (discretely distributed) random vectors a, b 2 Rn, respectively, the corre-

sponding elements of vectors xA, xB may be regarded as realizations of random variables

XA(a;w, �) = (�a>
w + � + 1)

+

, XB(b;w, �) = (b

>
w � � + 1)

+

, respectively, that

depend parametrically on the decision variables w and �. Then, a plausible strategy for

selecting w and � is one that minimizes, for example, the expected misclassification errors,

and which can be formulated as the following stochastic programming problem:

min

(w,�)2Rn+1

n

�
1

E
⇥

(�a>
w + � + 1)

+

⇤

+ �
2

E
⇥

(b

>
w � � + 1)

+

⇤

o

, (2.3)

where �
1,2

serve as “importance” weights of the misclassification errors for points of sets

A and B, respectively. Further, instead of minimization of expected misclassification error,

one may select the parameters w and � so as to minimize the risk of misclassification.

As it is well known in stochastic optimization and risk analysis, the “risk” associated with

random outcome of a decision under uncertainty is often attributed to the “heavy” tails of

the corresponding probability distribution. The risk-inducing “heavy” tails of probability

distributions, are, in turn, characterized by the distribution’s higher moments. Thus, if the

misclassifications introduced by a separating hyperplane can be viewed as “random”, the

misclassification risk may be controlled better if one minimizes not the average, or expected

misclassification errors, but their moments of order p > 1. This gives rise to the following

formulation for linear discrimination of sets A and B:

min

(w,�)2Rn+1
�
1

�

�

(�a>
w + � + 1)

+

�

�

p

+ �
2

�

�

(b

>
w � � + 1)

+

�

�

p

, p 2 [1,+1], (2.4)
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where k · k
p

is the usual L
p

norm:

kY k
p

=

8

>

>

>

>

<

>

>

>

>

:

�

E|Y |p
�

1/p

, p 2 [1,1),

ess sup |Y |, p =1.

If a and b are uniformly distributed with support sets A and B, respectively:

P(a = a

i

) =

1

k
, P(b = b

j

) =

1

m
for all a

i

2 A, b

j

2 B, (2.5)

the p-norm linear discrimination problem takes the form

min

(w,�)2Rn+1

�
1

k1/p

�

�

(�Aw + e� + e)

+

�

�

p

+

�
2

m1/p

�

�

(Bw � e� + e)

+

�

�

p

, (2.6)

where k · k
p

is the vector norm in Euclidean space of appropriate dimension:

kuk
p

=

8

>

>

>

>

<

>

>

>

>

:

(|u
1

|p + . . .+ |u
l

|p)1/p, p 2 [1,1),

max {|u
1

|, . . . , |u
l

|}, p =1,

(in the sequel, it shall be clear from the context whether the L
p

or Euclidean p-norm is

used). Further, (2.6) can be formulated as a p-order cone programming problem (pOCP)

min �
1

k�1/p ⇠ + �
2

m�1/p ⌘ (2.7a)

s. t. ⇠ � kyk
p

, (2.7b)

⌘ � kzk
p

, (2.7c)

y � �Aw + e� + e, (2.7d)

z � Bw � e� + e, (2.7e)

z, y � 0. (2.7f)
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Note that the special case of p = 1 and �
1

= �
2

corresponds to the linear discrimination

model of Bennett and Mangasarian [8]. The p-cone programming linear separation model

(2.4)–(2.7) shares many key properties with the LP separation model [8], including the

guarantee that the optimal solution of (2.7) is non-zero in w for linearly separable sets.

Proposition 2. When sets A and B, represented by matrices A and B, are linearly sepa-

rable (i.e., they satisfy (2.1) and (2.2)), the separating hyperplane w

⇤>
x = �⇤ given by an

optimal solution of (2.4)–(2.7) satisfies w

⇤ 6= 0.

Proof. Zero optimal value of (2.7a) immediately implies that at optimality y

⇤
= z

⇤
= 0,

or, equivalently, �Aw

⇤
+ e�⇤ + e  0, Bw

⇤� e�⇤ + e  0. If one assumes that w⇤
= 0,

then the above inequalities require that �⇤  �1, �⇤ � 1. The contradiction furnishes the

desired statement.

Secondly, the p-norm separation model (2.7) can produce a solution with w = 0

only in a rather special case that is identified by Theorem 1 below.

Theorem 1. Consider the p-order cone programming problem (2.7)–(2.6), where it is as-

sumed without loss of generality that 0 < �
1

< �
2

. Then, for any p 2 (1,1) the p-order

cone programming problem (2.7) has an optimal solution with w

⇤
= 0 if and only if

e

>

k
A = v

>
B, where e

>
v = 1, v � 0, kvk

q

 �
2

�
1

m1/p

, (2.8a)

where q satisfies

1

p
+

1

q
= 1. In other words, the arithmetic mean of the points in A must be

equal to some convex combination of points in B. In the case of �
1

= �
2

condition (2.8a)

reduces to

e

>

k
A =

e

>

m
B, (2.8b)
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i.e., the arithmetic means of the points of sets A and B must coincide.

Proof. First, let us consider the case when the p-cone discrimination model (2.7) has an

optimal solution with w

⇤
= 0 and demonstrate that (2.8) must then hold. From the for-

mulation (2.6) of problem (2.7) it follows that in the case when w = 0 at optimality, the

corresponding optimal value of the objective (2.7a) is determined as

min

�2R
f(�) =

�
1

k1/p

✓

k

P

i=1

(1 + �)p
+

◆

1/p

+

�
2

m1/p

✓

m

P

j=1

(1� �)p
+

◆

1/p

.

Clearly,

f(�) =

8

<

:

�
1

(1 + �), 1  � <1,
�
1

+ �
2

+ �(�
1

� �
2

), �1 < � < 1,
�
2

(1� �), �1 < �  �1,

whence min

�2R
f(�) = f(1) = 2�

1

due to the assumption 0 < �
1

< �
2

. Next, consider the

dual of the p-cone programming problem (2.7):

max e

>
u+ e

>
v

s. t. �A

>
u+B

>
v = 0,

e

>
u� e

>
v = 0,

0  u  �s,

0  v  �t,

ksk
q

 �
1

k�1/p,

ktk
q

 �
2

m�1/p,

(2.9)

where q is such that 1/p + 1/q = 1. Note that (2.7) is strictly feasible and bounded from

below, since for any w

0

, �
0

and " > 0 one can select y
0

= "e+ (�Aw

0

+ e�
0

+ e)

+

> 0,

z

0

= "e+(Bw

0

�e�
0

+e)

+

> 0, ⇠
0

= (1+")ky
0

k
p

> ky
0

k
p

> 0, and ⌘
0

= (1+")kz
0

k
p

>
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kz
0

k
p

> 0 that are feasible to (2.7). Thus, the duality gap for the primal-dual pair of p-

order cone programming problems (2.7) and (2.9) is zero [31]. Then, from the first two

constraints of (2.9) we have A>
u

⇤
= B

>
v

⇤ as well as e>u⇤
= e

>
v

⇤, which, given that the

optimal objective value (2.9) is 2�
1

, implies that an optimal u⇤ must satisfy

e

>
u

⇤
= �

1

. (2.10a)

Also, from (2.9) it follows that

ku⇤k
q

 �
1

k�1/p. (2.10b)

Then, it is easy to see that the unique solution of system (2.10) is

u

⇤
=

�
1

k
e =

✓

�
1

k
, . . . ,

�
1

k

◆>

, (2.11)

which corresponds to the point where the surface (uq

1

+ . . . + uq

k

)

1/q

= �
1

k�1/p is tangent

to the hyperplane u
1

+ . . .+ u
k

= �
1

in the positive of Rk.

Similar, an optimal v⇤ must satisfy e

>
v

⇤
= �

1

and kv⇤k
q

 �
2

m�1/p. Note, how-

ever, that in the case when �
2

/�
1

> 1 such v

⇤ is not unique. By substituting the obtained

characterizations for u⇤ and v

⇤ in the constraint A>
u

⇤
= B

>
v

⇤ of the dual (2.9) and di-

viding by �
1

, we obtain (2.8a). When �
1

= �
2

, the optimal v⇤ is unique: v

⇤
=

�
1

m
e, and

yields (2.8b).

To prove the statement of the Theorem in the opposite direction, assume that, for

instance, (2.8a) holds for certain u and v. Selecting u

⇤
=

�
1

k
e, v⇤

= �
1

v, and s

⇤
= �u⇤,

t

⇤
= �v⇤, it is easy to see that (u⇤,v⇤, s⇤, t⇤) represents a feasible solution of the dual

problem (2.9) with the dual cost of 2�
1

. Similarly, the tuple (w

⇤, �⇤,y⇤, z⇤, ⇠⇤, ⌘⇤), where
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w

⇤
= 0, �⇤ = 1, y

⇤
= (e�⇤ + e)

+

= 2e, z⇤ = (�e�⇤ + e)

+

= 0, ⇠⇤ = ky⇤k
p

=

2k1/p, ⌘⇤ = kz⇤k
p

= 0, represents a feasible solution of the primal problem (2.7) with the

corresponding objective value of 2�
1

. Noting the zero duality gap for the constructed pair of

feasible solutions of (2.7) and (2.9), and recalling that the primal problem is bounded and

strictly feasible, we immediately obtain that this pair of primal-dual solutions is optimal

[31]. Hence, from (2.8a) it follows that an optimal solution of (2.7) exists with w

⇤
= 0.

Observe that Theorem 1 implies that in the case of �
1

= �
2

(i.e., when misclassifi-

cation of points in one set is not favored over that for points of the other set), the p-norm

discrimination model (2.7) produces a separating hyperplane with w = 0 only when the

“geometric centers” (arithmetic means) of the sets A and B coincide. In many situations,

this would mean that the convex hulls of the sets A and B “overlap” significantly. In

practice, this implies that such sets, indeed, cannot be efficiently separated, at least by a

hyperplane, thus an occurrence of a w

⇤
= 0 solution in (2.7) should not be regarded as

the shortfall of the particular formulation (2.7), but rather the general inapplicability of the

linear discrimination method to the specific sets A and B.

In the case when a “bias” with regard to the importance of misclassification of

points of sets A and B needs to be introduced by setting �
2

> �
1

, occurrence of a w

⇤
= 0

solution in (2.7) does not necessarily imply that sets A and B are hardly amenable to linear

separation. Indeed, in this case Theorem 1 only claims that the “geometric center” of set A

must coincide with some convex combination of points of set B, i.e., it must coincide with

some point inside the convex hull of set B. In this case, linear discrimination can still be a

feasible approach, albeit at a cost of significant misclassification errors.
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In order to have the stricter condition (2.8b) for the occurrence of w⇤
= 0 solution

in the situation when the preferences for misclassification error are different for sets A and

B, the p-norm linear discrimination model can be extended to the case where misclassifi-

cations of points in A and B are measured using norms of different orders:

min

(w,�)2Rn+1
k�1/p1

�

�

(�Aw + e� + e)

+

�

�

p1
+m�1/p2

�

�

(Bw � e� + e)

+

�

�

p2
, p

1,2

2 (1,1).

(2.12)

Intuitively, a norm of higher order places more “weight” on the outliers; for instance, appli-

cation of p = 1 norm entails minimization of the average misclassification error, in effect

regarding all misclassifications as equally important. In contrast, application of the p =1

norm implies minimization of the largest misclassification errors for the two sets. Thus,

by selecting appropriately the orders p
1

and p
2

in (2.12) one may introduce tolerance pref-

erences on misclassifications in sets A and B. At the same time, it can be shown that the

occurrence of w⇤
= 0 solution in (2.12) would signal the presence of the aforementioned

singularity about the sets A and B. Namely,we have

Theorem 2. The p-order cone programming problem (2.12), where p
1

, p
2

2 (1,1), has

an optimal solution with w

⇤
= 0 if and only if (2.8b) holds.

In the next section we discuss the details of practical implementation of the p-norm

linear discrimination model (2.7).
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2.3 A second-order cone programming approach to p-order cone programming

problems

The p-order cone constraints (2.7b)–(2.7c) are central to practical implementation

of the p-norm separation method (2.7) . In the special cases of p = 1 or p = 1, p-order

cone constraints reduce to linear inequalities; specifically, the p = 1 version of model (2.7)

has been studied in [8]. In general, the amenability of the 1-norm to implementation via

linear constraints has been exploited in a variety approaches and applications, too numer-

ous to cite here. Another prominent special case of is that of p = 2, when (2.7b)–(2.7c)

represent second-order, or quadratic cones. The second-order cone programming (SOCP)

constitutes a well-developed subject of convex optimization, and a number of efficient self-

dual “long-step” interior point (IP) SOCP algorithms have been developed in the literature

and implemented in software [2, 3, 32, 33, 38]. From the computational standpoint, the

“general” case of p 2 (1, 2) [ (2,1), when the p-cone is not self-dual, has received rel-

atively little attention in the literature. IP approaches to p-order cone programming have

been considered in [16, 34, 39, 43]; an approach based on construction of polyhedral ap-

proximations of p-cones and solving the resulting linear programming problems using a

cutting-plane technique was proposed in [28].

In this work, we pursue an approach to solving p-cone programming problems that

is based on the possibility to represent a p-order cone via a sequence of second-order cones

when p is rational [2, 5, 31]. Reformulation of a rational-order p-cone programming prob-

lem as a SOCP problem allows for employing the efficient self-dual SOCP methods, but

this ability comes at a cost of a large number of second-order cones required for such a
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reformulation. In general, a rational-order cone in Rn+1 can be represented with O
�

n✓
p

�

three-dimensional second-order cones, where ✓
p

is some constant dependent on p. How-

ever, such a representation is not unique, and, depending on its particular implementation

and the corresponding value of ✓
p

, the resulting number of second-order cones can vary by

O(n). In view of this, in Section 3.2 we introduce a constructive “economical” represen-

tation of rational-order p-cones via second-order cones, which facilitates the use of SOCP

methods and solvers for tackling p-order cone programming problems.

2.3.1 Representation of rational-order p-cones with second-order cones

Without loss of generality, consider a p-cone in the positive orthant of Rn+1

t � (wp

1

+ . . .+ wp

n

)

1/p, (t, w
1

, . . . , w
n

)

> � 0. (2.13)

In the case when the parameter p is a positive rational number, p = r/s, where r, s 2 N,

the following “lifted” representation of the p-cone set (2.13) can be constructed in R2n+1

+

[2, 5, 31]:

t � u
1

+ . . .+ u
n

, wr

j

 us

j

tr�s, u
j

� 0, j = 1, . . . , n. (2.14)

Then, each nonlinear constraint in (2.14) can equivalently be replaced by a sequence of

inequalities of the form z2  xy, or three-dimensional rotated quadratic cones. Such a

representation, as it has been mentioned, is not unique. One way possibility is to rewrite

each nonlinear inequality in (2.14) as

wR  ustr�swR�r, (2.15)
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where R = 2

⇢, ⇢ = dlog
2

re, and the subscripts j are suppressed for brevity. Observe

that each side of inequality (2.15) contains 2⇢ factors; this allows one to construct a lifted

representation for (2.15) via 2

⇢ � 1 three-dimensional rotated quadratic cones using the

technique known as “tower of variables” [6]:

w2  v(⇢�1)

1

v(⇢�1)

2

(2.16a)

�

v(l)
i

�

2  v(l�1)

2i�1

v(l�1)

2i

, i = 1, . . . , 2⇢�l, l = 2, . . . , ⇢� 1, (2.16b)

�

v(1)
i

�

2  u2, i = 1, . . . , bs/2c, (2.16c)

�

v(1)
i

�

2  ut, i = bs/2c+ 1, . . . , ds/2e, (2.16d)

�

v(1)
i

�

2  t2, i = ds/2e+ 1, . . . , br/2c, (2.16e)

�

v(1)
i

�

2  tw, i = br/2c+ 1, . . . , dr/2e, (2.16f)

�

v(1)
i

�

2  w2, i = dr/2e+ 1, . . . , bR/2c, (2.16g)

w, v(`)
i

, u, t � 0.

The set of inequalities (2.16) can be visualized as a binary tree whose nodes represent the

variables in (2.16). Each constraint in (2.16) can then be viewed as a subgraph with two

arcs that connect the “parent” node (the variable at the left-hand side of the constraint) to

the two “child” nodes (the variables at the right-hand side of the same constraint). Given

this binary structure, the set of second-order cones in (2.16) can be regarded as partitioned

into l = 1, . . . , ⇢ levels, where the variable w in constraint (2.16a) constitutes the root node

of the tree, and belongs to ⇢-level, while variables u, t, w in (2.16d)–(2.16g) represent the

leaf nodes, or 0-level nodes of the tree.

In [28] it has been shown that among the 2

⇢ � 1 inequalities (2.16) there are only
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O(⇢) = O(log

2

r) non-degenerate second-order cones, while the rest reduce to linear

inequalities that can be omitted. Further, the following bounds on the number of non-

degenerate quadratic cones in (2.16) follow directly from the arguments in [28]:

Proposition 3 (Krokhmal,Soberanis [28]). When p is a positive rational number, p =

r/s, such that r > s and the greatest common divisor of r and s is 1, a p-order cone in the

positive orthant of Rn+1

can equivalently be represented by C
p

three-dimensional quadratic

cones, where C
p

satisfies

n⇢  C
p

 n(2⇢� 1), ⇢ = dlog
2

re. (2.17)

The proof of Proposition 3 exploits the fact that a non-degenerate quadratic cone

constraint in (2.16) corresponds to a subgraph where child nodes have different variables

assigned to them, and each level of the tree must necessarily contain at least one such

(non-degenerate) constraint, see [28].

It it easy to see that the order in which the variables u, t, and w are assigned to the

leaf nodes in the binary tree (2.16) can significantly affect the number of non-degenerate

quadratic cones needed to represent a rational-order p-cone in Rn+1. As an illustration,

consider the case p = 3; in accordance to the above we have ⇢ = 2, R = 4, and direct

application of (2.16) yields a binary tree where the variables u
j

, t, and w
j

are assigned to

the leaf nodes in the order (u
j

, t, t, w
j

). The resulting representation of p = 3 cone (2.13)

involves 3n three-dimensional rotated quadratic cones:

t � u
1

+ . . .+ u
n

; w2

j

 v(1)
j1

v(1)
j2

,
�

v(1)
j1

�

2  u
j

t,
�

v(1)
j2

�

2  tw
j

, j = 1, . . . , n,

(2.18)
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On the other hand, it is easy to see that an assignment of variables to the leaf nodes in

the order (u
j

, w
j

, t, t) allows for reducing the number of 3D quadratic cones necessary to

represent a p = 3 cone in Rn+1

+

to 2n:

t � u
1

+ . . .+ u
n

; w2

j

 tv(1)
2j

,
�

v(1)
2j

�

2  u
j

w
j

, j = 1, . . . , n. (2.19)

Observe that the number of second-order cones in representations (2.18) and (2.19) corre-

spond to the upper and lower bounds in (2.17), respectively.

When the described technique of transforming a p-cone programming problem into

SOCP problem is applied in practice, a reduction in the number of second-order cone in-

equalities in (2.16) leads to a reduction in the number of second-order cone constraints by

the order of dimensionality n of the original p-cone (2.13). Hence, it is of interest to devise

an “economical” representation of rational-order cones via second-order cones; the next

section addresses this issue.

2.3.2 An “economical” representation of rational-order p-cone via second order cones

Clearly, a reduction in the number of second-order cone inequalities in (2.16) leads

to a reduction in the number of second-order cone constraints in the optimization problem

by the order of dimensionality n of the original p-cone. Below we demonstrate that the

lower bound on C
p

in (2.17) is achievable for any rational p � 1, and present an algorithm

for constructing the corresponding SOCP representation of a rational-order p-cone. To this

end, consider the following convex pointed cone in R4

+

:

P =

�

y 2 R4

+

�

� yk0
0

� yk1
1

yk2
2

yk3
3

 0

 

, (2.20)

that satisfies the next four properties:
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(P1) k
0

, k
1

, k
2

, k
3

2 Z
+

;

(P2) k
0

= k
1

+ k
2

+ k
3

;

(P3) k
1

+ k
2

+ k
3

= 2

q for some integer q � 1;

(P4) exactly two numbers among k
1

, k
2

, and k
3

are odd.

Proposition 4. Cone P (2.20) that satisfies (P1)–(P4) can be represented as an intersection

of at most q three-dimensional cones of the form

�

x 2 R3

+

�

� x2

3

 x
1

x
2

 

.

Proof. The process of building such a representation of P is based on successive lifting of

P into spaces of dimensions greater than previous by 1, in such a way that the degree of the

polynomial in (2.20) is reduced by half each time.

First, let us assume that k
1

, k
3

, k
3

> 0 are all different and q � 2. Without loss of

generality, let k
1

, k
2

be odd and k
2

> k
1

, and consider the following set in R5

+

:

P⇤
=

�

y 2 R5

+

�

� y⌫0
0

� y⌫4
4

y⌫2
2

y⌫3
3

 0, y2
4

 y
1

y
2

 

,

where ⌫
0

= k
0

/2, ⌫
2

= (k
2

� k
1

)/2, ⌫
4

= k
1

, ⌫
3

= k
3

/2.

(2.21)

It is easy to see that any (y
0

, y
1

, y
2

, y
3

) 2 P can be extended to (y
0

, y
1

, y
2

, y
3

, y
4

) 2 P⇤, and

any (y
0

, y
1

, y
2

, y
3

, y
4

) 2 P⇤ is such that (y
0

, y
1

, y
2

, y
3

) 2 P.

Now, let us check that the first cone of P ⇤ satisfies (P1)–(P4). As k
1

and k
2

are

odd and positive integers by assumption, due to (P4) k
3

is even, whence ⌫
3

is a positive

integer. The above assumption also implies that k
2

� k
1

is even, means that ⌫
2

is a positive

integer. Similarly, ⌫
0

is integer and ⌫
0

= 2

q�1. Also, observe that ⌫
1

+ ⌫
2

+ ⌫
3

= (k
1

+

k
2

+ k
3

)/2 = k
0

/2 = ⌫
0

. So, the first cone in (2.21) satisfies properties (P1)–(P3). Next,

observe that ⌫
4

= k
1

is odd, thus out of two integers ⌫
2

, ⌫
3

exactly one should be odd for

⌫
2

+ ⌫
3

+ ⌫
4

= 2

q�1 to hold. Thus, condition (P4) holds as well.
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Note that if in our assumption k
1

= k
2

, then ⌫
2

= 0 in (2.21), but all conditions

still hold. Consider the case when q � 2 and one of k
1

, k
2

, k
3

is zero, assume it is k
3

. Then

k
1

, k
2

should be odd by (P4). Performing the same transformation, we obtain

P⇤⇤
=

�

y 2 R5

+

�

� y⌫0
0

� y⌫4
4

y⌫2
2

 0, y2
4

 y
1

y
2

 

,

where ⌫
0

= k
0

/2, ⌫
2

= (k
2

� k
1

)/2, ⌫
4

= k
1

.

(2.22)

The first cone of P⇤⇤ still has properties (P1)–(P4), and (y
0

, . . . , y
3

) 2 P can be extended

to (y
0

, . . . , y
4

) 2 P⇤⇤, and any (y
0

, . . . , y
4

) 2 P⇤⇤ is such that (y
0

, . . . , y
3

) 2 P.

If q = 1, then one of k
1

, k
2

, k
3

is zero, and two others are necessarily equal to 1. In

this case P is already a rotated quadratic cone. Thus, the lifting transformation described

above can be carried out no more than q � 1 times, and the conic set P (2.20) can be

represented by at most q second order cones using at most q � 1 new variables.

With the help of Proposition 4 we can now establish the following result on SOCP

representation of rational-order p-cones:

Theorem 3. Let p > 1 be a positive rational number, p = r/s, where the greatest common

divisor of r and s is 1. Then a p-order cone in the positive orthant of Rn+1

can equivalently

be represented by ndlog
2

re three-dimensional rotated quadratic cones.

Proof. In accordance to (2.13)–(2.15), the problem of representing a (r/s)-cone in Rn+1

+

via second-order cones can be reduced to finding a second-order cone representation of n

sets of the form

Q =

�

y 2 R3

+

�

� yR
3

� ys
1

yr�s

2

yR�r

3

 0

 

, (2.23)
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where R = 2

⇢, ⇢ = dlog
2

re. Observe that cone Q is equivalent to intersection of cone P

(2.20), where k
1

= s, k
2

= r�s, k
3

= R�r, with a hyperplane y
0

= y
3

. Indeed, properties

(P1)–(P3) are obvious, and (P4) holds since if r and s do not have common divisor greater

than 1, neither do r � s and s, whereby r � s and s cannot be both even.

Note that an iteration of the lifting procedure described in Proposition 4 corresponds

to a specific order in which the variables at some level of the binary tree are arranged.

For example, the first iteration of lifting corresponds to arranging the 0-level variables

{w, t, u} = {y
1

, y
2

, y
3

} in pairs corresponding to second-order cone constraints, such that

y
1

and y
2

make k
1

pairs, or y2
4

 y
1

y
2

non-degenerate cones; the remaining k
2

�k
1

variables

y
2

form (k
2

�k
1

)/2 pairs, or degenerate cones y0
4

2  y2
2

, and k
3

variables y
3

form k
3

/2 pairs,

or degenerate cones y00
4

2  y3
3

, assuming that k
1

< k
2

are odd. Obviously, the degenerate

cones can simply be disregarded.

Hence, by Proposition 4, Q admits representation by at most ⇢ = dlog
2

re second

order cones; combining this with Proposition 3, one obtains that each of n sets of the form

Q admits representation using exactly ⇢ = dlog
2

re second order cones.

The lifting procedure outlined in the proof of Proposition 4 can be used to construct

SOCP representations of rational order p-cones. The procedure is formalized in Algorithm

1.

It is well known that second order cone constrains admit an equivalent semidefinite

representation in the form of linear matrix inequalities (LMIs). In general, p-order cones

are not LMI-representable in the space of original variables (see an example for p = 4 cone

in [20, 21]), but admit lifted LMI representations.
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Algorithm 2.1 Reduction of cone P (2.20) to a set of 3D second-order cones
Input: Cone P = {y 2 R4

+

| yk0
0

 yk1
1

yk2
2

yk3
3

}

Output: Set S of three-dimensional quadratic cone constraints of the form y2
i

 y
imyin ,

defined on the set of variables Y.

S := ;;

Y := {y
0

, y
1

, y
2

, y
3

};

i := 4; // counter of a new variable to be added;

j := 1; // step counter;

k(j)

⌫

:= k
⌫

, ⌫ = 0, . . . , 3;

{l,m, n} {1, 2, 3} such that k(j)

l

is even and k(j)

m

� k(j)

n

are odd;

while k(j)

m

+ k(j)

n

+ k(j)

l

> 2 do

add new variable Y := Y [ {y
i

};

add cone: S := S [ {y2
i

 y
m

y
n

};

k(j+1)

0

:= k(j)

0

/2; k(j+1)

l

:= k(j)

l

/2; k(j+1)

m

:= (k(j)

m

� k(j)

n

)/2; k(j+1)

i

:= k(j)

n

;

update {l,m, n} {l,m, i} such that k(j+1)

l

is even and k(j+1)

m

� k(j+1)

n

are odd;

i := i+ 1, j := j + 1;

end while

add cone: S := S [ {y2
0

 y
m

y
n

};
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Corollary 1. Conic set Q (2.23) admits a lifted representation in the form of LMI

Q⇤
=

⇢

y 2 R⇢+2

+

�

�

�

�

⇢+2

P

i=1

A

i

y
i

⌫ 0

�

, (2.24)

where A

i

2 R2⇢⇥2⇢

are symmetric matrices, in the sense that the projection of Q⇤
onto the

space of variables (y
1

, y
2

, y
3

) coincides with Q.

2.4 Computational study

In this section we report computational results on using the p-norm discrimination

model (2.6) for linear separation of sets. Recall that the p-norm linear separation model

(2.6) can be presented in the form of p-order cone programming problem (pOCP) (2.7)

with two p-order cone constraints. Below we illustrate the SOCP reformulation approach

to solving (2.7) in the case when p is rational, and compare it with the polyhedral approxi-

mation technique of [28].
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2.4.1 SOCP reformulation

Applying the approach delineated in Section 3, in the case of a rational p = r/s the

pOCP problem (2.7) can be reformulated as a SOCP problem

min �
1

k�1/p ⇠ + �
2

m�1/p ⌘ (2.25a)

s. t. (2.7d), (2.7e), (2.25b)

⇠ � e

>
u

y

, (2.25c)

⌘ � e

>
u

z

, (2.25d)

(y,u
y

,v
y

, ⇠) 2 S
(r/s)

k

⇢ Rkdlog2 re+k+1

+

(2.25e)

(z,u
z

,v
z

, ⌘) 2 S(r,/s)

m

⇢ Rmdlog2 re+m+1

+

(2.25f)

y, z,u
y

,u
z

, ⌘, ⇠ � 0, (2.25g)

where S
(r/s)

n

denotes the set of three-dimensional second-order cones generated by Algo-

rithm 2.1 to represent a (n + 1)-dimensional (r/s)-order cone. The SOCP reformulation

(2.25) allows for employing efficient self-dual optimization methods for solving the p-norm

separation model (2.7), but this comes at the expense of a large number of second-order

cones in (2.25). In order to benchmark the efficiency of such an approach, we compare

it with the solution method that is based on solving polyhedral approximations of pOCP

problems using a cutting plane technique [28].

2.4.2 A polyhedral approximation procedure

The polyhedral approximation of pOCP problems obtained in [28] relies on rep-

resenting p-order cones in Rn+1 as intersection of 3-dimensional p-cones using a proce-
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dure similar to that described in Section 2.3.1. Assuming, for expositional simplicity, that

n = 2

d for some integer d, the p-cone (2.13) can be represented as

t �
�

�

�

w(d�1)

1

, w(d�1)

2

�

�

�

p

,

w(l)

j

�
�

�

�

w(l�1)

2j�1

, w(l�1)

2j

�

�

�

p

, j = 1, . . . , 2d�l, l = 2, . . . , d� 1,

w(1)

j

�
�

�

�

w
2j�1

, w
2j

�

�

�

p

, j = 1, . . . , 2d�1

(2.26)

Then, each 3D p-cone z � k(x, y)k
p

in (2.26) is replaced by by its outer polyhedral ap-

proximation via m+ 1 tangent planes

z � ↵(p)

i

(m) x+ �(p)

i

(m) y, i = 0, . . . ,m, (2.27)

where the coefficients ↵(p)

i

(m), �(p)

i

(m) depend on the parameter of construction m that

controls approximation accuracy:

↵(p)

i

(m) = (cos

p ✓
i

+sin

p ✓
i

)

1�p
p

cos

p�1 ✓
i

, �(p)

i

(m) = (cos

p ✓
i

+sin

p ✓
i

)

1�p
p

sin

p�1 ✓
i

, ✓
i

=

⇡i

2m
.

When applied to the p-cone programming model (2.7), this polyhedral approximation tech-

nique allows for replacing two p-cone constraints (2.7b)–(2.7c) with m
y

(2

d�1)+m
z

(2

h�

1) linear constraints, where the parameters m
y

, m
z

determine the number of facets in poly-

hedral approximations of 3D p-cones (2.26) corresponding to p-cones (2.7b) and (2.7c),

respectively, necessary to achieve the prescribed approximation accuracy ". Following

[15], the number of approximating linear constraints can be reduced by allowing the num-

ber of facets in polyhedral approximations (2.27) of 3D p-cones (2.26) to vary with l, such

that the total number of facets used for approximation of the high-dimensional p-cone is

minimized while guaranteeing the prescribed approximation accuracy ":

min

⇢

t

P

l=1

q
l

m
l

�

�

�

1 + " �
t

Q

l=1

(1 + ✏
l

(m
l

)), m
l

2 Z
+

�

, (2.28)



27

where, for a given l, m
l

is the number of facets in the polyhedral approximation (2.27) of a

3D p-cone, and ✏
l

= ✏
l

(m
l

) is the main term of the corresponding approximation accuracy

[28]:

✏
l

(m
l

) =

8

>

>

>

>

<

>

>

>

>

:

1

p

(1� 1

p

)

p

�

⇡

2ml

�

p

, p 2 (1, 2)

1

8

(p� 1)

�

⇡

2ml

�

2

, p 2 [2,1),

Problem (2.28) can be solved by rewriting its constraint in a logarithmic form:
P

t

l=1

ln(1+

✏
l

(m
l

))  ln(1+"), which in turn can be replaced, due to the inequality ln(1+x)  x, with

P

t

l=1

✏
l

(m
l

)  ln(1 + "). Then, relaxation of the resulting nonlinear integer programming

problem was solved using the method of Lagrange multipliers. For simplicity, we let m
l

=

dm⇤
l

e, where m⇤
l

is the solution of relaxed problem. This procedure resulted in, on average,

a 50% reduction in the number of approximating facets. The resulting linear programming

problem was then solved using the cutting plane procedure described in [28].

2.4.3 SVM analogy

Support Vector Machine is widely used in classification problems. In the general

case of linear non-separable sets SVM method can be written in the form of quadratic

optimization problem as follows:
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min

1

2

kwk
2

+

m

X

i=1

k

X

j=1

C
1

"a
i

+ C
2

"b
j

(2.29a)

s. t. w

T

a

i

� � � 1� "a
i

, i = 1 . . .m (2.29b)

�w

T

b

j

+ � � 1� "b
j

, j = 1 . . . k (2.29c)

"a
i

� 0, i = 1 . . .m (2.29d)

"b
j

� 0, j = 1 . . . k (2.29e)

where C
1

,C
2

are positive constants.

Note that (wT

a

i

� �) and (�wT

b

j

+ �) give the misclassification errors, so (2.29)

can be rewritten in terms of vectors y and z (C
1

, C
2

are positive constants):

min

⇢

1

2

kwk
2

+ C
1

⇠ + C
2

⌘
�

�

�

⇠ � kyk
1

, ⌘ � kzk
1

, (2.7d), (2.7e), (2.7f)

�

, (2.30)

Given C
1

= �
1

/k, C
2

= �
2

/m and recalling formulation of the p-norm discrimina-

tion problem (2.7), one can conclude that

C
1

⇠⇤
(p)

+ C
2

⌘⇤
(p)

 1

2

kw⇤
(SVM)

k
2

+ C
1

⇠⇤
(SVM)

+ C
2

⌘⇤
(SVM)

 1

2

kw⇤
(p)

k
2

+ C
1

⇠⇤
(p)

+ C
2

⌘⇤
(p)

where (w⇤
(SVM)

, ⇠⇤
(SVM)

, ⌘⇤
(SVM)

) stands for the optimal solution of the SVM problem

(2.30), and (w⇤
(p)

, ⇠⇤
(p)

, ⌘⇤
(p)

) refers to the optimal solution of p-norm discrimination problem

(2.7). Indeed, as kw
(SVM)

k
2

is non-negative and (w⇤
(SVM)

, ⇠⇤
(SVM)

, ⌘⇤
(SVM)

),(w⇤
(p)

, ⇠⇤
(p)

, ⌘⇤
(p)

)

are optimal solutions of corresponding problems, the following inequality holds:

1

2

kw⇤
(SVM)

k
2

+ C
1

⇠⇤
(SVM)

+ C
2

⌘⇤
(SVM)

� C
1

⇠⇤
(SVM)

+ C
2

⌘⇤
(SVM)

�

� C
1

⇠⇤
(1)

+ C
2

⌘⇤
(1)

� C
1

⇠⇤
(p)

+ C
2

⌘⇤
(p)

.
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Hence, the optimal objective value of SVM problem (2.30) gives upper bound for

the optimal objective value of p-norm discrimination problem (2.7).

2.4.4 Computational results

In our computational experiments we used three datasets from UCI Machine Learn-

ing Repository. The first dataset is Wisconsin Breast Cancer Dataset with a total of 683

instances and 9 attributes. It contains 444 instances with benign diagnosis (type A) and

239 instances with malignant diagnosis (type B). The second dataset, Cleveland Heart Dis-

ease Dataset, contains 281 instances with 13 attributes, of them 125 instances correspond

to positive diagnosis and 156 instances correspond to negative diagnosis. Finally, the Pima

Indians Diabetes Dataset reports 768 instances with 8 attributes, including 266 instances

of positive diagnosis and 502 instances of negative diagnosis. Both the Wisconsin Breast

Cancer and Cleveland Heart Disease datasets (in their then-up-to-date versions) were used

in [8], and can be regarded as relatively well suited for linear discrimination methods; in

contrast, the Pima Indians dataset appears to be less suitable for linear separation.

For each dataset, training and testing was performed by randomly selecting 100

training sets with equal number of points of both types, and testing the obtained separator

on the data not included in the training set. For computational purposes, the data in training

datasets was normalized and scaled by a factor of 104; the same transformation was then

applied to testing data. After the training and testing procedures were performed, the av-

erage misclassification error on testing set was computed. For each value of the parameter

p in the range of 1 to 4 (with a step of 0.1), the corresponding p-norm separating problem
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(2.7) with �
1,2

= 1 was solved using interior-point SOCP solver via SOCP reduction de-

scribed in Section 3.1. In addition, a polyhedral approximation of (2.7) was solved using

the cutting plane procedure of [28]. The corresponding SOCP and LP optimization models

were implemented in C++ and solved using IBM CPLEX 12.2 solver.

Table 2.1 reports the smallest average out-of-sample misclassification error for each

dataset, together with the corresponding value of p at which this error was obtained, and

compares it with the misclassification error for the case of p = 1 (which corresponds to

the method proposed due to 8). Figures 2.1, 2.2, and 2.3 illustrate the behavior of the

misclassification error with respect to the value of parameter p in (2.6) for the described

datasets. As it follows from Table 2.1 and Figures 2.1–2.3, the p-norm separation model

(2.6)–(2.7) with p > 1 allows for an improved classification accuracy as compared to the

cases of p = 1 proposed in [8] and SVM method.

In addition to classification capabilities of the p-norm linear separation model (2.6)–

(2.7), its computational properties were investigated. In particular, for all the datasets de-

scribed above we compared the running times of the cutting plane procedure for polyhedral

approximation of problem (2.7), denoted as LP/CP, and the “economical” SOCP reformu-

lation of (2.7) solved by CPLEX’s barrier solver (denoted as SOCP). All computations

were performed on a dual-core 3GHz CPU computer with 2GB of RAM. In addition to

the running times of the LP/CP and SOCP algorithms, Figures 2.4, 2.5, 2.6 display the

values of the parameter ⇢ = log

2

r, where p = r/s, that is proportional to the number of

second-order cones in the SOCP reformulation of rational-order p-cone programming prob-

lem (2.7). From Figures 2.4–2.6 it follows that the solution times for SOCP reformulation
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of a rational-order p-cone programming model (2.7) is highly correlated to the number of

second-order cones in the reformulated problem. On the other hand, the solution times of

a polyhedral approximation of (2.7) solved with a cutting plane method (LP/CP) exhibit

relatively little dependence on the value of the parameter p.

Table 2.1: Classification results for different datasets: the lowest average misclassification

error, the corresponding value of p, and misclassification error for the case of p = 1, which

corresponds to the method proposed in Bennett, Mangasarian (1992)

Dataset Error Best p p = 1

Wisconsin Breast Cancer Dataset 3.95% 1.8 4.11%
Cleveland Heart Disease Dataset 18.7% 3.8 19.5%
Pima Indians Diabetes Dataset 31.82% 3.4 35.29%
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Figure 2.1: Misclassification error as a function of p for Wisconsin Breast Cancer dataset
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Figure 2.2: Misclassification error as a function of p for Cleveland Heart Disease dataset
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Figure 2.3: Misclassification error as a function of p for Pima Indians Diabetes dataset
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Table 2.2: Comparison of Running Time for Cleveland Heart Disease Dataset: LP/CP

stands for cutting plane approximation method, SOCP denotes running time for CPLEX

solver on the initial problem (2.4) using Second Order Conic Representation

p 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
SOCP 0.000 2.538 1.890 2.647 1.944 1.214 1.733 3.089 2.476 3.105
LP/CP 0.000 0.113 0.154 0.186 0.215 0.241 0.265 0.295 0.316 0.323

p 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
SOCP 0.787 3.146 2.583 3.334 2.583 1.857 2.283 3.702 2.385 3.015
CG 0.341 0.368 0.421 0.412 0.421 0.459 0.481 0.491 0.511 0.508

p 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
SOCP 1.177 3.238 2.245 4.457 2.825 1.813 2.958 3.942 2.968 4.314
LP/CP 0.530 0.541 0.540 0.553 0.562 0.592 0.610 0.601 0.594 0.598

p 4.0
SOCP 1.130
LP/CP 0.590

Figure 2.4: Running time comparison of LP/CP and SOCP solution methods of the p-norm

separation problem for the Wisconsin Breast Cancer Dataset. The value of parameter ⇢

determines the number of second-order cones in the SOCP reformulation of problem (2.7)
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Figure 2.5: Running time comparison of LP/CP and SOCP solution methods of the p-norm

separation problem for the Cleveland Heart Disease Dataset. The value of parameter ⇢

determines the number of second-order cones in the SOCP reformulation of problem (2.7)
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Table 2.3: Comparison of Running Time for Pima Indians Diabetes Dataset: LP/CP stands

for cutting plane approximation method, SOCP denotes running time for CPLEX solver on

the initial problem (2.4) using Second Order Conic Representation

p 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
SOCP 0.127 4.217 3.847 4.895 3.598 2.4295 3.498 5.664 4.434 5.379
LP/CP 0.104 0.104 0.148 0.173 0.194 0.205 0.214 0.225 0.233 0.244

p 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
SOCP 1.395 5.904 4.506 5.314 4.570 3.303 4.105 5.251 4.159 5.264
LP/CP 0.253 0.258 0.256 0.255 0.253 0.250 0.256 0.259 0.260 0.256

p 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
SOCP 2.111 5.164 4.299 6.006 4.944 3.067 4.686 6.214 4.737 5.915
CG 0.260 0.267 0.251 0.261 0.256 0.261 0.261 0.255 0.258 0.258

p 4.0
SOCP 2.159
LP/CP 0.252
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Figure 2.6: Running time comparison of LP/CP and SOCP solution methods of the p-

norm separation problem for the Pima Indians Diabetes Dataset. The value of parameter ⇢

determines the number of second-order cones in the SOCP reformulation of problem (2.7)
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Table 2.4: Comparison of Running Time for Wisconsin Breast Cancer Dataset: LP/CP

stands for cutting plane approximation method, SOCP denotes running time for CPLEX

solver on the initial problem (2.4) using Second Order Conic Representation

p 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
SOCP 0.016 4.534 4.131 5.453 3.881 2.6218 3.849 6.201 4.439 6.312
LP/CP 0.016 0.084 0.103 0.153 0.136 0.153 0.167 0.181 0.196 0.205

p 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
SOCP 1.575 6.150 4.770 6.051 4.823 3.980 4.631 6.158 4.602 5.622
LP/CP 0.219 0.184 0.187 0.189 0.091 0.095 0.097 0.099 0.102 0.105

p 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
SOCP 2.419 5.598 4.855 6.623 5.580 3.4904 5.408 6.612 5.394 6.634
LP/CP 0.107 0.108 0.109 0.114 0.114 0.119 0.120 0.118 0.122 0.123

p 4
SOCP 2.386
LP/CP 0.124
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CHAPTER 3
SEMIDEFINITE PROGRAMMING MODELS FOR DETERMINING BOUNDS

ON THE OVERALL PROPERTIES OF COMPOSITE MATERIALS WITH
RANDOMLY ORIENTED INCLUSIONS

3.1 Introduction

The main motivation for this work comes from study of the effects of the orienta-

tional distribution of carbon nanotubes (CNTs) in buckypapers on the overall elastic prop-

erties of CNT buckypaper polymer matrix composites. Buckypapers are thin sheets of

porous carbon nanotubes networks that are prepared by a multi-step process of dispersion

and filtration of nanotube suspension. Bulk buckypaper polymeric composites are obtained

by impregnation of nanotube buckypapers into a polymer matrix. Unless a special care

is taken, the nanotubes are distributed randomly in buckypaper sheets. To achieve certain

alignment, buckypaper sheets are produced by filtrating well-dispersed nanotube suspen-

sion through a filter placed in a high strength magnetic field [29]. A strong magnetic field

(5-15 T) substantially improves alignment of CNTs and thereby increases the buckypaper’s

elastic modulus and strength in the direction of alignment. The alignment is described

by the orientation distribution function. Orientation distribution function (ODF) is used

to describe CNT orientation distributions in buckypaper. Figure 1 shows ODF derived

from the analysis of the SEM images of CNT buckypapers. ODFs are routinely included

in the micromechanical analysis. At the same time, there are no rigorous bounds derived

for the composites with orientational distribution (except for the random uniform distribu-

tion) of phases. Thus, the validity of the results of the micromechanical analysis cannot be
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established. Moreover, it has been shown that the Mori-Tanaka scheme applied to the non-

aligned CNT buckypaper polymer matrix composites leads to violation of symmetry of the

effective elastic moduli tensor (Figure 3.1) and produces the results outside of bounds (Fig-

ure 3.2). An extensive discussion of these issues can be found in the work of Zhupanska

[46].

Figure 3.1: The ratio l/l0 obtained using the MT approach for different degrees of the nan-

otube alignment (“random (isotropic) ODF” and “experimental ODF” lines do coincide)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 0.2 0.4 0.6 0.8 1

volume fraction of nanotubes

l/l
'

random (isotopic) ODF
ODF with r=2
ODF with r=6
experimental ODF

 

To derive the tightest bounds for the composites with non-aligned phases, we pro-

posed to formulate a problem as a nonlinear semidefinite optimization problem, i.e., an op-

timization problem where the optimization variables are represented by symmetric positive

semidefinite matrices. Such a formulation guarantees that any solution of the optimization

problem represents a valid tensor of elastic material properties and preserves the symmetry
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Figure 3.2: Effective elastic moduli for randomly oriented nanotubes
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of the tensor. The problem is then solved by an interior point method to find bounds for the

case of random (uniform) distribution of fibers in the matrix.

3.2 Orientation distribution function

Orientation distribution function, ODF, describes orientational distributions of

fibers in the matrix and is defined as an orientation probability density. Thus, ODF must
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satisfy the following equality:

Z

2⇡

0

Z

2⇡

0

Z

⇡

0

F (�, ✓, ) sin ✓ d✓d�d = 1 (3.1)

where F (�, ✓, ) is the ODF and �, ✓, are the Euler angles. The random (uniform) distri-

bution of the fibers is described by the following ODF F (�, ✓, ) = 1/8⇡2. ODFs enter a

micromechanical analysis through averaging of the corresponding material properties ten-

sors over all possible directions.

The following orientation distribution functions are considered in this work:

F
1

(✓) =
r + 1

8⇡2

cos

r

(✓).

Here the parameter r determines the degree of alignment of inclusions (i.e., nanotubes)

with respect to the X
1

-axis (✓ = 0 along the X
1

-axis) and is an even integer number. As

r increases the degree of inclusions alignment also increases. If, for instance, r = 0, then

F
1

(✓) = 1/8⇡2 describes random (uniform) distribution of nanotubes. Figure 3.3 shows

theoretical orientation distribution functions for r = 0, r = 2, r = 6, and an experimentally

measured ODF.

If the symmetry is preserved, then as a result of computations using (3), or, in other

words, .

3.3 Averaging for the overall elastic properties

In the notations of Hill [22] and Walpole [41] the tensor of elastic moduli, L
i

, of the

i-th phase is L
i

= (2k
i

, l
i

, l0
i

, n
i

, 2m
i

, 2p
i

) and the tensor of overall elastic moduli is written

as L = (2k, l, l0, n, 2m, 2p). Both tensors L and L
i

have to posses a diagonal symmetry:
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Figure 3.3: Orientation distribution functions
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l = l0, l
i

= l0
i

. In conjunction with the used notations, Hooke’s law for the composite with

transversely isotropic properties (X
1

is axis of material symmetry) takes the form
2
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Here k, l, n,m and p are plain bulk modulus, transverse cross modulus and axial modulus

under a uniaxial strain, the transverse shear and the axial shear moduli, respectively.

Recall that according to Euler’s rotation theorem, any rotation can be described by

only three parameters, namely, the Euler angles �, ✓, and  . Let (x
1

, x
2

, x
3

) to be a local

coordinate system and (X
1

, X
2

, X
3

) to be a global coordinate system, then an arbitrary

fourth-order tensor B possesses the following transformation rule

BX

klmn

=

X

p,q,s,t

a
kp

a
lq

a
ms

a
nt

Bx

pqst

, (3.2)
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where BX

klmn

and Bx

pqst

are components of the tensor B in the global and local coordinate

systems, respectively, and a
ij

are functions of the Euler angles:

a
11

= cos cos�� cos ✓ sin� sin ,

a
12

= cos sin�+ cos ✓ cos� sin ,

a
13

= sin sin ✓,

a
21

= � sin cos�� cos ✓ sin� cos ,

a
22

= � sin sin�+ cos ✓ cos� cos ,

a
23

= cos sin ✓,

a
31

= sin ✓ sin�, a
32

= � sin ✓ cos�, a
33

= cos ✓.

(3.3)

Introducing the orientation distribution function, F (�, ✓, ), we can rewrite the orientation-

ally averaged tensor B in the global coordinate system (X
1

, X
2

, X
3

) as

�

BX

klmn

 

=

Z

2⇡

0

Z

2⇡

0

Z

⇡

0

F (�, ✓, )BX

klmn

sin ✓ d✓d�d 

=

Z

2⇡

0

Z

2⇡

0

Z

⇡

0

F (�, ✓, )
X

p,q,s,t

�

a
kp

a
lq

a
ms

a
nt

Bx

pqst

�

⇥ sin ✓ d✓d�d 

(3.4)

Next we provide the explicit formula for transformation (3.2) of transversely

isotropic tensors. In the case of an arbitrary fourth-order tensor B the transformation (3.2)

is

BX

klmn

=

X

p,q,s,t

a
kp

a
lq

a
ms

a
nt

Bx

pqst

where BX

klmn

are components of the tensor B in the global coordinate system (X
1

, X
2

, X
3

)

and Bx

pqst

are components of the tensor B in the local coordinate system (x
1

, x
2

, x
3

), and

a
ij

are functions of the Euler angles.
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Let us consider a transversely isotropic non-symmetric tensor B

B =

2

6

6

6

6

6

6

6

6

4

d g g 0 0 0

h c+e

2

c�e

2

0 0 0

h c�e

2

c+e

2

0 0 0

0 0 0 e 0 0

0 0 0 0 f 0

0 0 0 0 0 f

3

7

7

7

7

7

7

7

7

5

In our case, B = (L⇤
0

+ L
1

)

�1 and B is symmetric, h = g. Tensor B can be written in a

more compact form may be written as B = (c, g, h, d, e, f), or as a vector

b = (c, g, h, d, e, f)>

Then six components cX , gX , hX , dX , eX , fX of the tensor B in the global coordinates are

linked to the six components cx, gx, hx, dx, ex, fx in the local coordinates by

b

X

= Tbx,

where vector bX

= (cX , gX , hX , dX , eX , fX

)

> is the vector b in the global coordinates,

b

x

= (cx, gx, hx, dx, ex, fx

)

> is the vector b in the local coordinates, and the transformation

matrix T is

T =

2
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components of which are functions of the Euler angles and expressible as:

C
c

=

1

2

�

a2
22

+ a2
23

� �

a2
22

+ a2
23

+ a2
32

+ a2
33

�

,

C
g

= a2
21

�

a2
22

+ a2
23

+ a2
32

+ a2
33

�

,

C
e

= 2a
22

a
23

a
32

a
33

+

1

2

�

a2
22

+ a2
23

�

2

+

1

2

�

a2
22

� a2
23

� �

a2
32

� a2
33

�

,

C
h

=

�

a2
21

+ a2
31

� �

a2
22

+ a2
23

�

, C
d

= a2
21

�

a2
21

+ a2
31

�
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C
f

= 2

⇥
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21

�

a2
22

+ a2
23

�

+ 2a
31

a
32

a
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22
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G
c
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32
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33
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12
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13

�

, G
d

= a2
11
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31

,

G
g
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11

�
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32
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33

�
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G
e
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12

a
13

a
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12

� a2
13
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32

� a2
33
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G
h
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12
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13
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, G
f
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13

a
33

) ,

H
c

=

1

2

�

a2
22

+ a2
23

� �

a2
12

+ a2
13
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3.4 Optimization Problem for Variational Bounds

Variational bounds are derived based on the most rigorous theoretical foundations and usu-

ally serve as checkpoints for all other direct methods. Despite a significant amount of liter-

ature accumulated in the area of variational bounds (see, e.g., [30]), construction of bounds

for the composite materials having prescribed microstructures has not been accomplished

yet. In this work an attempt is made to derive such bounds by merging micromechanics

and optimization (i.e. semidefinite programming) methodologies.

The theory of semidefinite programming (SDP) concerns solving optimization

problems where the optimization variables are symmetric positive semidefinite matrices

[10, 13]. Therefore, the optimization problem for determining bounds on the overall elastic

moduli of a two-phase composite material can be formulated in the form:

Upper bounds: min

L0

{C • ¯L(L
0

) | L
0

� L
i

⌫ 0, i = 1, 2} (3.5)

Lower bounds: max

L0

{C • ¯L(L
0

) | L
i

� L
0

⌫ 0, i = 1, 2} (3.6)

where

¯L(L
0

) =

⇣

f
1

�

(L⇤
0

+ L
1

)

�1

 

+ f
2

(L⇤
0

+ L
2

)

�1

⌘�1

� L⇤
0

is defined by Walpole (1969), matrix C is defined as C = 11

T , and • is the Frobenius inner

product,

A •B = TrATB =

X

i

X

j

A
ij

B
ij

and f
1,2

2 [0, 1], f
1

+ f
2

= 1 are given constants. Expression {A} denotes averaging of

tensor A and will be explained later in the paper.

Positive definite matrices L
1

and L
2

represent tensors of elastic moduli of the fibers
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and matrix. We consider transversely isotrropic fibers dispersed in an isotropic matrix:

L
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=
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(3.7)

L
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=
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(3.8)

L
0

is the tensor of the form

L
0

=
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(3.9)

Tensor L⇤
0

has the same form as L
0

, with n
0

, l
0

replaced by n⇤
0

, l⇤
0

, respectively, where

l⇤
0

=

2

3

(n
0

� l
0

)�
✓

2

n
0

+ l
0

+

10

7n
0

+ 2l
0

◆�1

n⇤
0

=

2

3

(n
0

� l
0

) + 2

✓

2

n
0

+ l
0

+

10

7n
0

+ 2l
0

◆�1

3.5 Solving Optimization Problem

We consider a particular case of the optimization problem for finding the upper

bound for the case of random distribution of fibers. In this case the optimization problem
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(3.5) can be rewritten in the form:

min f(x) = C •
⇣
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+ n2

1

�

1/2 � 0,

� 2k
1

+ l
0

+ 2n
0

� n
1

+

�

4k2

1

� 4k
1

l
0

+ 9l2
0

� 16l
0

l
1

+ 8l2
1

� 4k
1

n
1

+ l
0

n
1

+ n2

1

�

1/2 � 0,

(3.10)

where the semidefiniteness constraints are expressed explicitly using the elements of ma-

trices L⇤
0

, L
1

, and L
2

. To solve this nonlinear SDP optimization problem, we employ an

interior point method developed by Benson etal [9], which we briefly describe below.

Let us consider a nonlinear optimization problem

min f(x)

s. t. h(x) � 0.

(3.11)

For this problem one can write the logarithmic barrier problem

min f(x)� µ
m

X

i=1

logw
i

s. t. h(x)�w = 0

(3.12)

and the Lagrangian function in the form

L(x,y,w) = f(x)� µ
m

X

i=1

logw
i

� y

>
(h(x)�w),
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where y are dual variables of (3.11). Next, from the first-order optimality conditions one

can derive a primal-dual system

rf(x)�rh>
y = 0,

�µe+WY e = 0,

h(x)�w = 0.

where rh is the transpose of the Jacobian of the left-hand side of constraints (3.11); W

and Y are diagonal matrices with the entries of w and y, respectively: W = Diag(w),

Y = Diag(y); and e is the vector of ones of an appropriate dimension.

This system can be solved to determine the optimal descent directions for x,y, and

w:

�x = (�H �rh>W�1Yrh)�1

(��� �rh>W�1Y ⇢⇢⇢),

�y = W�1Y + ⇢⇢⇢+ ��� �W�1Yrh�x,

�w = WY �1

(��� ��y),

where

��� = rf(x)�rh>
y,

��� = µW�1

e� Y e,

⇢⇢⇢ = �h(x) +w,

H = r2f(x)�
m

X

i=1

y
i

r2h
i

(x).
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Then, the values of optimization variables x, y, and w are iteratively updated as:

x

k+1

= x

k

+ ↵k

�x

k,

y

k+1

= y

k

+ ↵k

�y

k,

w

k+1

= w

k

+ ↵k

�w

k,

where ↵k 2 (0, 1) is the step size.

The described interior point algorithm is using first- and second-order information,

e.g.,rf(x), in order to compute the iterates of the solution. In this study, the corresponding

derivatives were obtained numerically using the simple numerical differentiation scheme:

f 0
(x) =

f(x+ h)� f(x� h)

2h

3.6 Hashin-Shtrikman-Walpole (HSW) Bounds

In the case of randomly distributed (three-dimensional, spatially uniform), transversely

isotropic inclusions embedded in an isotropic matrix, there exist bounds derived by Walpole

[41] and are often referred as the Hashin-Shtrikman-Walpole (HSW) bounds. These bounds

are not optimal but rather feasible solutions of the corresponding optimization problems.

Below we briefly discuss the HSW bounds.

Consider transversely isotropic inclusions randomly dispersed in an isotropic ma-

trix. Denote the overall elastic moduli tensor of the resulting macroscopically isotropic
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composite as

L =

2

6

6

6

6

6

6

4

n l l 0 0 0

l m+ k k �m 0 0 0

l k �m m+ k 0 0 0

0 0 0 2m 0 0

0 0 0 0 2p 0

0 0 0 0 0 2p

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

n l l 0 0 0

l n l 0 0 0

l l n 0 0 0

0 0 0 n� l 0 0

0 0 0 0 n� l 0

0 0 0 0 0 n� l

3

7

7

7

7

7

7

5

(3.13)

Assume that transversely isotropic inclusions form the first phase, for which the elastic

moduli tensor can be expressed by (3.7) and an isotropic matrix is the second phase, for

which the elastic moduli tensor is can be expressed by (3.8).

Composite’s bulk modulus, K, and shear modulus, G, are

K =

1

9

(4k + 4l + n),

G =

1

3

(k � 2l + n).

(3.14)

The HSW bounds of the composite are defined as

¯K =

 

f
1

K⇤
+K

1

� a2
1

/(G⇤
+G

1

)

+

f
2

K⇤
+K

2

!�1

�K⇤,

¯G =

"

1

5

f
1

 

1

G⇤
+G

1

� a2
1

/(K⇤
+K

1

)

+

2

G⇤
+m

1

+

2

G⇤
+ p

1

!

+

f
2

G⇤
+G

2

#�1

�G⇤.

(3.15)

Here f
1

and f
2

are volume fractions of the inclusions (phase 1) and matrix (phase 2),
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correspondingly, and f
1

+ f
2

= 1. Moreover,

K
1

=

1

9

(4k
1

+ 4l
1

+ n
1

),

G
1

=

1

3

(k
1

� 2l
1

+ n
1

),

K
2

=

1

9

(4k
2

+ 4l
2

+ n
2

) =

1

3

(n
2

+ 2l
2

),

G
2

=

1

3

(k
2

� 2l
2

+ n
2

) =

1

2

(n
2

� l
2

),

a2
1

= (n
1

+ l
1

� 2k
1

)

2/27

(3.16)

and

K⇤
=

4

3

Ga,

G⇤
=

3

2

[1/Ga

+ 10/(9Ka

+ 8Ga

)]

�1 .

(3.17)

Parameters Ka and Ga in (3.17) are arbitrary and were selected by Walpole in order to

provide the tight restrictive bounds (3.15). So, explicit formulae for them depend on the

elastic properties of composite’s phases. A general procedure to determine Ka and Ga may

be found in the original paper by Walpole [41]. In particular, formula (3.15) will provide

upper bounds for bulk and shear moduli if Ka and Ga are taken as

Ka

= K
�

+ �, Ga

= G
�

+ �, (3.18)

where

K
�

= max{K
1

, K
2

},

G
�

= max{G
1

,m
1

, p
1

, G
2

}

� =

8

>

>

>

<

>

>

>

:

0, K
�

> K
1

and G
�

> G
1

|a
1

|, otherwise

(3.19)
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The lower bounds for bulk and shear moduli will be obtained from (3.15) if Ka and Ga are

selected as

Ka

= max{0, K
�

� �}, Ga

= max{0, G
�

� �}, (3.20)

where

K
�

= min{K
1

, K
2

}, (3.21)

G
�

= min{G
1

,m
1

, p
1

, G
2

} (3.22)

� =

8

>

>

>

<

>

>

>

:

0, K
�

< K
1

and G
�

< G
1

|a
1

|, otherwise

(3.23)

Note that when K
�

< �, G
�

< � in the expressions above, the corresponding lower bounds

for K and G coincide with Reuss lower bounds.

Ka

= K
�

+ �
1

, Ga

= G
�

+ �
2

,

K
�

= max {K
1

, K
2

} , G
�

= max {G
1

,m
1

, p
1

, G
2

} .
(3.24)

The lower bounds for bulk and shear moduli will be obtained from (3.15) if Ka and Ga are

selected as

Ka

= K
�

� �
1

, Ga

= G
�

� �
2

,

K
�

= min {K
1

, K
2

} , G
�

= min {G
1

,m
1

, p
1

, G
2

} .
(3.25)

Here the non-negative parameters �
1,2

, �
1,2

� 0 should be taken as small as possible with-

out violating the following inequalities

(K
�

�K
1

+ �
1

) (G
�

�G
1

+ �
2

) � a2
1

,

(K
1

�K
�

+ �
1

) (G
1

�G
�

+ �
2

) � a2
1

.

(3.26)
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If K
�

> K
1

, G
�

> G
1

, then �
1

= �
2

= 0 and, if K
1

> K
�

, G
1

> G
�

, then �
1

= �
2

= 0.

Otherwise, �
1

and/or �
2

(�
1

and/or �
2

) must be strictly positive and inequalities (3.26)

should be changed to equalities. In this case the proper choice for parameters �
1,2

, �
1,2

is

�
1

= �
2

= �
1

= �
2

= |a
1

|.

For completeness, we also list the Voigt, K
V

, G
V

, and Reuss, K
R

, G
R

, bounds

for a macroscopically isotropic composite with randomly (three-dimensional, spatially uni-

form) distributed transversely isotropic inclusions are expressible as:

K
V

= f
1

K
1

+ f
2

K
2

,

G
V

=

1

5

f
1

(G
1

+ 2m
1

+ 2p
1

) + f
2

G
2

,

1

K
R

= f
1

3G
1

k
1

E
1

+

f
2

K
2

,

1

G
R

=

1

5

f
1

✓

3K
1

k
1

E
1

+

2

m
1

+

2

p
1

◆

+

f
2

G
2

,

(3.27)

where E
1

= n
1

� l2
1

/k
1

, K
1

and G
1

are defined by (3.16). The HSW bounds are tighter

than the Voight-Reuss bounds.

It is important to emphasize again that the HSW bounds developed by Walpole and

summarized in this section represent feasible, but not necessarily optimal solutions to the

general nonlinear SDP formulations (3.5)–(3.6). Moreover, the procedure developed by

Walpole yields explicit bounds only in the case of uniformly distributed inclusions and is

not suitable to derive bounds for arbitrary ODFs. In contrast, our semidefinite program-

ming formulation (3.5) and (3.6) enables to construct bounds for composites with arbitrary

distributed phases.
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3.7 Analysis of SDP bounds

Alternative formulation of optimization problem (3.5) for upper bounds on the over-

all elastic moduli K, G:

min

G

a
,K

a
3

¯K + 2

¯G

s. t. Ka �K
2

� 0

Ga �G
2

� 0

Ga �m
1

� 0

Ga � p
1

� 0

Ka

+

1

3

Ga � k
1

� 0

Ka

+

4

3

Ga � n
1

� 0

(Ka

+

1

3

Ga � k
1

)(Ka

+

4

3

Ga � n
1

) � (Ka � 2

3

Ga � l
1

)

2

(3.28)

where ¯K, ¯G are given by (3.15) and (3.17), K
i

, G
i

are related to the components of tensors

L
1

, L
2

by (3.16), and the optimization variables Ka, Ga are related to the components of

tensor L
0

in (3.5) as

Ka

= K
0

=

n
0

+ 2l
0

3

, Ga

= G
0

=

n
0

� l
0

2

It is easy to see that the corresponding formulation (3.6) of the lower bound SDP
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problem reduces to a nonlinear programming problem for lower bounds

max

G

a
,K

a
3

¯K + 2

¯G

s. t. Ka �K
2

 0

Ga �G
2

 0

Ga �m
1

 0

Ga � p
1

 0

Ka

+

1

3

Ga � k
1

 0

Ka

+

4

3

Ga � n
1

 0

(Ka

+

1

3

Ga � k
1

)(Ka

+

4

3

Ga � n
1

) � (Ka � 2

3

Ga � l
1

)

2

(3.29)

Note that the second order cone constraint in both upper and lower bound formulations

(3.28), (3.29) is unchanged. Clearly, both these problems have feasible regions that are

convex in Ka, Ga, and a common nonlinear objective function

F (Ka, Ga

) = 3

¯K(Ka, Ga

) + 2

¯G(Ka, Ga

) (3.30)

where ¯K and ¯G are given by (3.15) and (3.17).

The optimal solutions of problems (3.28), (3.29) can be derived through the analysis

of the objective function and feasible regions of the respective problems. First, we show

that the highly nonlinear objective function F has a rather simple structure.

Proposition 5. Functions ¯K and ¯G (3.15), and consequently the objective function F in

problems (3.28), (3.29) are non-decreasing in both Ka and Ga.
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Proof. From (3.17) it is easy to see that

@K⇤

@Ka

= 0,

@K⇤

@Ga

=

4

3

> 0,

@G⇤

@Ka

3

2

[1/Ga

+ 10/(9Ka

+ 8Ga

)]

�2

10 ⇤ 9
(9Ka

+ 8Ga

)

2

> 0,

@G⇤

@Ga

3

2

[1/Ga

+ 10/(9Ka

+ 8Ga

)]

�2

1

(Ga

)

2

> 0.

Next we show that partial derivatives of ¯K and ¯G with respect to K⇤ and G⇤ are non-

negative. Consider, for example, @ ¯G/@G⇤. By introducing notation

A
1

=

1

G⇤
+G

1

� a2
1

/(K⇤
+K

1

)

,

A
2

=

1

G⇤
+m

1

A
3

=

1

G⇤
+ p

1

A
4

=

1

G⇤
+G

2

and noting that
@A

i

@G⇤ = �A2

i

, one has

@ ¯G

@G⇤ = �
�1

5

f
1

A2

1

� 2

5

f
1

A2

2

� 2

5

f
1

A2

3

� f
2

A2

4

⇣

1

5

f
1

A
1

+

2

5

f
1

A
2

+

2

5

f
1

A
3

+ f
2

A
4

⌘

2

� 1

=

⇣

1

5

f
1

A
1

+

2

5

f
1

A
2

+

2

5

f
1

A
3

+ f
2

A
4

⌘�2

V

where expression V is given by

V =

⇣

1

5

f
1

A2

1

+

2

5

f
1

A2

2

+

2

5

f
1

A2

3

+ f
2

A2

4

⌘

�
⇣

1

5

f
1

A
1

+

2

5

f
1

A
2

+

2

5

f
1

A
3

+ f
2

A
4

⌘

2

It is easy to see that V � 0 in general, and, moreover, V = 0 if and only if A
1

= . . . = A
4

.

Namely, V can be viewed as the variance of a random variable A that takes values A
1

, A
2

,
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A
3

, A
4

with probabilities 1

5

f
1

, 2

5

f
1

, 2

5

f
1

, f
2

, respectively:

V = Var(A) = E(A2

)� (EA)2 � 0.

Similarly, it can be shown that @ ¯K/@K⇤ is nonnegative.

To derive expression for @ ¯G/@K⇤, denote

[. . .] =



1

5

f
1

✓

1

G⇤
+G

1

� a2
1

/ (K⇤
+K

1

)

+

2

G⇤
+m

1

+

2

G⇤
+ p

1

◆

+

f
2

G⇤
+G

2

�

,

then

@ ¯G

@K⇤ =(�1) [. . .]�2

@

@K⇤ [. . .] =

=(�1) [. . .]�2



f
1

5

(�1)(�a2
1

)(�1)
�

1
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+G

1

� a2
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/ (K⇤
+K

1

))

2

1

(K⇤
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)

2

=
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1

5

f
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1

(G⇤
+G

1

� a2
1

/ (K⇤
+K

1

))

2

1

(K⇤
+K

1

)

2

� 0.

Nonnegativity of @ ¯K/@G⇤ can be proved the same way.

Note that it is possible that partial derivatives equal zero. @ ¯K/@G⇤ and @ ¯G/@K⇤

equal zero if and only if f
1

= 0. Partial derivative @ ¯K/@K⇤ equals zero if and only if

1

K⇤
+K

1

� a2
1

/(G⇤
+G

1

)

=

1
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+K

2
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/(K
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)�G
1

Partial derivative @ ¯G/@G⇤ equals zero if and only if

1
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)

m
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= p
1

= G
2

K⇤
= a2

1

/(G
1

�G
2

)�K
1



57

In conclusion, all partial derivatives are nonnegative, whence ¯K, ¯G are non-

decreasing in Ka, Ga.

Proposition 6. The (global) optimal solutions of upper and lower bound problems (3.28),

(3.29) are located at the boundaries of their respective feasible regions.

Proof. As shown in 5, ¯K, ¯G are non-decreasing in Ka, Ga. The objective function for

(3.29) and (3.28) is a linear combination of ¯K, ¯G and hence it is monotonically non-

decreasing in Ka and Ga. Therefore, optimum point is located at the boundaries of feasible

region.

3.7.1 Analysis of feasible region

As it has been shown in Proposition 6, optimal solutions of problems (3.28) and

(3.29) are located at the boundaries of the respective feasible sets. To facilitate analysis of

the feasible sets of problems (3.28)–(3.29), denote

Ka

= K
1

+ Y
1

, Ga

= G
1

+ Y
2

. (3.31)

Then, elementary algebraic manipulations yield that

Ka

+

1

3

Ga � k
1

= Y
1

+

1

3

Y
2

� 2C

Ka

+

4

3

Ga � n
1

= Y
1

+

4

3

Y
2

+ 4C

Ka � 2

3

Ga � l
1

= Y
1

� 2

3

Y
2

+ C,

where it is denoted

C =

1

9

(2k
1

� l
1

� n
1

). (3.32)
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Consequently, the last three constraints of problem (3.28) (respectively, (3.29)) take the

form

Y
1

+

1

3

Y
2

� 2C � () 0 (3.33)

Y
1

+

4

3

Y
2

+ 4C � () 0 (3.34)

Y
1

Y
2

� 3C2 (3.35)

It is easy to see that lines Y
1

+

1

3

Y
2

� 2C = 0 and Y
1

+

4

3

Y
2

+4C = 0 represent supporting

hyperplanes of surfaces Y
1

Y
2

� 3C2

= 0 at points (C, 3C) and (�2C,�3

2

C), respectively.

Particularly, if C > 0, then the line Y
1

+

1

3

Y
2

� 2C = 0 is tangent to the hyperbola

{Y
1

Y
2

= 3C2

; Y
1

, Y
2

� 0} at the point (C, 3C), while the line Y
1

+

4

3

Y
2

+ 4C = 0 is

tangent to the hyperbola {Y
1

Y
2

= 3C2

; Y
1

, Y
2

 0} at the point (�2C,�3

2

C).

Similarly, if C < 0, then the line Y
1

+

1

3

Y
2

� 2C = 0 is tangent to the hyperbola

{Y
1

Y
2

= 3C2

; Y
1

, Y
2

 0} at the point (C, 3C), and the line Y
1

+

4

3

Y
2

+ 4C = 0 is tangent

to the hyperbola {Y
1

Y
2

= 3C2

; Y
1

, Y
2

� 0} at the point (�2C,�3

2

C).

In these two cases, constraints (3.33) define region {Y
1

Y
2

� 3C2

; Y
1

, Y
2

� 0}

in the upper bound problem (3.28), and {Y
1

Y
2

� 3C2

; Y
1

, Y
2

 0} in the lower bound

problem (3.29).

Finally, if C = 0, then inequalities (3.33) correspond to {Y
1

� 0, Y
2

� 0} for the

upper bound problem (3.28), and {Y
1

 0, Y
2

 0} for (3.29).

The feasible regions of problems (3.28) and (3.29), respectively, can be expressed
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Figure 3.4: Feasible region for upper and lower bounds for C > 0
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Y
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Figure 3.5: Feasible region for upper and lower bounds for C < 0
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Y
1

 0, Y
2

 0 (3.43)

For further analysis it is convenient to rewrite the above representation of the feasi-
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Figure 3.6: Feasible region for upper and lower bounds for C = 0
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ble region of problem (3.28) in the form
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3.7.1.0.1 Analysis of solution to upper bound problem (3.28)

In what follows, we consider the following cases.

Case U1: Observe that due to Proposition 6, the optimal solution of (3.28) is given by

Y ⇤
1

= K
2

�K
1

, Y ⇤
2

= max{G
2

,m
1

, p
1

}�G
1

, (3.45)
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if the following conditions are satisfied:
8

>

<

>

:

K
2

> K
1
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max{G
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,m
1

, p
1

} > G
1

,

(K
2

�K
1

)(max{G
2

,m
1

, p
1

}�G
1

) � a2
1

.

(3.46)

It is easy to see that the optimal solution (3.45)–(3.46) coincides with Walpole [41] solution

(3.18)–(3.19) corresponding to � = 0 in (3.18):

Ka

= K
2

, Y W

1

= K
2

�K
1

,

Ga

= max{G
2

,m
1

, p
1

}, Y W

2

= max{G
2

,m
1

, p
1

}�G
1

(3.47)

Figure 3.7: Feasible region and optimal solution regions in cases U1-U5
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Note, however, that the third condition in (3.46) is disregarded in Walpole’s expres-

sions (3.18)–(3.19). If this condition is violated, it is possible that Walpole’s solution (3.47)
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is infeasible to the upper bound problem (3.28), as is shown next.

Case U2: If, on the other hand, one has that
8

>
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>
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K
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,
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)(max{G
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,m
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}�G
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) < a2
1

,

(3.48)

then an optimal solution of the upper bound problem (3.28) is located on a segment of the

hyperbola Y
1

Y
2

= a2
1

:

�

Y
1

� 0, Y
2

� 0 : Y
1

Y
2
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1
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, p
1

}�G
1

 

(3.49)

In this case, Walpole’s procedure (3.18)–(3.19) yields the same values values (3.47) that

are infeasible for the upper bound problem (3.28) due to violation of the conic constraint,

and thus lead to a tensor of material properties that is not guaranteed to be positive definite.

Next we show that the set of material properties {k
i

, l
i

, n
i

,m
i

, p
i

}, i = 1, 2, that sat-

isfy conditions (3.48) is non-empty. Indeed, assume that material of inclusions w(material

1) is such that

max{m
1

, p
1

}  G
1

=

1

3

(k
1

� 2l
1

+ n
1

).

Note that an isotropic material satisfies the above condition and consider a base material

(material 2) with parameters K
2

, G
2

such that

K
2

= (1 + ")K
1

, G
2

= (1 + �)G
1

for some specific " > 0 and � > 0. Obviously, one has that max{G
2

,m
1

, p
1

} = G
2

due to

the above assumption on G
1

. Then, one immediately has that the difference
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can be made negative for any given set of parameters of material 1 by choosing sufficiently

small ", � > 0.

Case U3:
(

K
2

 K
1

,

max{G
2

,m
1

, p
1

} > G
1

,
(3.50)

whereby the optimal solution of (3.28) lies on the segment of the hyperbola:
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Walpole solution is always feasible and non-optimal:
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whereby the optimal solution of (3.28) lies on the segment of the hyperbola:
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In this case, an optimal solution of upper bound problem (3.28) lies on the hyperbola

�
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,

whereas Walpole’s solution (3.18)–(3.19) represents the point (Y W

1
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2
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|, |a
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this hyperbola:
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3.8 Computational Results

Problems (3.28) and (3.29) were solved using nonlinear solver, computational re-

sults show that the obtained solution of the nonlinear SDP problem (3.10) yields improved

upper and lower bound on the effective elastic modules K and G, as compared to bounds

due to Voigt and Walpole (Figures 3.8 and 3.9).
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Figure 3.8: Upper and lower bounds on the overall bulk modulus K of a two-phase fiber

reinforced composite
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Figure 3.9: Upper and lower bounds on the overall bulk modulus G of a two-phase fiber

reinforced composite
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CHAPTER 4
STOCHASTIC ORDERINGS FOR MULTIOBJECTIVE OPTIMIZATION

4.1 Introduction

Design problems often require optimization of various parameters simultaneously.

A multiobjective optimization problem in the most general form can be written as

max f(x)

s. t. g(x)  0

x 2 X

(4.1)

where X ⇢ Rn is the set of feasible designs, and f(x) = (f
1

(x), . . . , f
m

(x))

> is a vec-

tor of objective functions, or design criteria to be maximized. Similarly, the vector-valued

function g(x) = (g
1

(x), . . . , g
`

(x)) represents the set of constraints on the design vector x.

Clearly, multiobjective optimization is usually associated with tradeoff between conflict-

ing objectives, for instance minimizing cost while maximizing efficiency of the system.

Particular design x

⇤ 2 X is said to be efficient, or Pareto optimal if it satisfies the design

constraints, g(x)  0, and there is no x 2 X that satisfies g(x)  0 and f(x) � f(x

⇤
),

with at least one scalar inequality being strict in the latter vector inequality.

Numerical procedures for solving multi-objective optimization problems of type

(4.1) typically rely on scalarization techniques, i.e., on reduction of (4.1) to a problem with

a single objective. One of such scalarization techniques transforms (4.1) into a problem of
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the form

max

m

X

i=1

µ
i

f
i

(x)

s. t. g(x)  0

x 2 X

(4.2)

where µ
i

, i = 1, . . . ,m, are the “importance weights” of design criteria f
i

. Another popular

scalarization method consists in converting the objective functions into constraints:

max f
k

(x)

s. t. f
i

(x)  �
i

, i = 1, . . . ,m, i 6= k

g(x)  0

x 2 X,

(4.3)

for some fixed k 2 {1, . . . ,m}, and preselected values �
i

, i 6= k.

By varying the parameters µ
i

in (4.2) and �
i

in (4.3), one obtains a surface (man-

ifold) in Rm that is the image of the set X⇤ ⇢ X ⇢ Rm of Pareto-optimal designs. Then,

one may select a specific design x

⇤ from the Pareto-optimal set X⇤ based on the desired

combinations of achieved values of design criteria functions f
i

(x

⇤
).

In this Chapter we consider an alternative approach to scalarizing the multiobjective

optimization problems of type (4.1) by exploring an analogy with stochastic orderings and

related utility theory concepts. The motivation for the proposed approach comes from the

recent interest in multifunctional structures and materials, which are capable of performing

more than one function, for example, carrying load and storing energy. In this regard, it

is of interest to determine whether the current design is “multifunctional”, or to determine

which of two multifunctional designs is “better”, etc.
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We expect that the developed approach will be especially useful in situations when

improvement over a “benchmark” design or solution is not possible for every objective,

thus requiring a sophisticated tradeoff principle for improving some of the objectives while

allowing a carefully chosen deterioration in others.

4.2 Stochastic Dominance

Stochastic dominance concepts represent the way of ordering random variables that

generalizes the standard ordering “>”on real line. The simplest case of stochastic domi-

nance is first-order stochastic dominance (FSD): random variable X is said to dominate a

random variable Y , with respect to FSD, X ⌫
(1)

Y , if it generally assumes greater values,

i.e.

P(X  t)  P(Y  t) for all t 2 R,

or, using the cumulative distribution functions (CDF) F
X

(t) and F
Y

(t) of random variables

X and Y , respectively,

X ⌫
(1)

Y , F
X

(t)  F
Y

(t) for all t 2 R.

To illustrate the meaning of FSD, let t be an income level, then X ⌫
(1)

Y means that for

any t the proportion of individuals with income greater than t in distribution X is higher or

equal to the proportion of individuals with income greater than t from distribution Y . Or, if

income smaller than t means poverty, the proportion of poor people in Y is higher or equal

to the proportion of poor people in X . Essentially, for any poverty threshold, poverty level

in Y is always higher than in X .

First order stochastic dominance establishes which random variable is “larger”, and
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the next step is to determine which of two random variables is “less risky”, and here the sec-

ond order stochastic dominance (SSD) comes into play. It is said that the random variable

X dominates a random variable Y with respect to SSD, which is denoted by X ⌫
(2)

Y , if

Z

t

�1
F
X

(⇠)d⇠ 
Z

t

�1
F
Y

(⇠)d⇠ for all t 2 R,

i.e., lower realizations of X are allowed with “low” probability.

In general, the k-th order stochastic dominance (kSD), k � 2, has the form

X ⌫
(k)

Y , F (k)

X

(t)  F (k)

Y

(t) for all t 2 R, (4.4)

where function F (k)

(t) is known as the k-th degree distribution function and is defined

recursively as

F (k)

X

(t) =

Z

t

�1
F (k�1)

X

(⇠) d⇠, F (1)

X

(t) = F
X

(t). (4.5)

In practice, stochastic dominance is usually implemented through its connection to

the expected utility theory of von Neumann and Morgenstern [40]. Let utility function u(·)

be a representation of decision maker’s preference for different values of the argument:

x 2 R is preferred over y 2 R if u(x) > u(y). The following Proposition shows the

connection between the First Order Stochastic Dominance and utility theory:

Proposition 7. X ⌫
(1)

Y if and only if for all non-decreasing utility functions u the fol-

lowing inequality holds:

E[u(X)] � E[u(Y )]. (4.6)

In [37] authors connected utility theory and SSD:
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Proposition 8. X dominates Y in SSD sense, X ⌫
(2)

Y , if and only if (4.6) holds for all

concave non-decresing functions u.

In general, relation X ⌫
(k)

Y equivalent to the inequality (4.6) holding for all utility func-

tions u from a certain class. As stated above, for FSD u should be nondecreasing, for SSD

u should be nondecreasing and concave, for third order u is nondecresing concave and has

positive third derivative, and so on. Thus to find non-dominated alternatives X⇤ from a

given feasible set X one should solve the maximization problem:

max

X2�
E[u(X)] = max

X2�

m

X

i=1

P (!
i

)u(X(!
i

))

with the appropriate utility function.

4.2.1 SD for multiobjective optimization

The stochastic dominance concepts can be employed to introduce ordering, or pref-

erence relations in multidimensional space Rm. Namely, random variables can be regarded

as points in Rm if the space of random events ⌦ is finite, ⌦ = {!
1

, . . . ,!
m

}, and the asso-

ciated probability measure P is fixed, P(!
i

) = p
i

> 0, i = 1, . . . ,m, p
1

+ . . . + p
m

= 1.

In such a probability space, a random variable Z : ⌦ 7! R has m realizations z
i

= Z(!
i

),

i = 1, . . . ,m, i.e., random variable Z can be represented by the vector of its realizations

(z
1

, . . . , z
m

) = z 2 Rm.

In the present context, design x

0 is clearly preferred to design x

00 if the correspond-

ing points in Rm defined by the m design criteria satisfy f(x

0
) � f(x

00
), i.e.,

f
i

(x

0
) � f

i

(x

00
), i = 1, . . . ,m.
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In practice, however, design improvements often involve tradeoffs, hence a theoretically

rigorous method of selecting the best design alternative is desirable in cases when

f
i

(x

0
) > f

i

(x

00
) but f

j

(x) < f
j

(x

00
) for some i and j.

In the present context, this translates into the possibility of comparing designs

across multiple design criteria. For example, ideally one would prefer design x

0 to de-

sign x

00 if f
i

(x

0
) � f

i

(x

00
) for all criteria f

i

, i = 1, . . . ,m. In practice, however, design

improvements often involve tradeoffs, therefore “FSD-”, “SSD-” and “kSD-based” rules

can provide a theoretically sound way to select the overall better design in the cases when

f
i

(x

0
) > f

i

(x

00
) but f

j

(x) < f
j

(x

00
) for some i and j.

As an important consequence of the described connection between the utility the-

ory and stochastic orderings, the set of “efficient”, or non-dominated elements X from a

given set of alternatives X can be determined by solving the expected utility maximization

problem with an appropriately chosen utility function u:

max

X2X
E[u(X)] = max

X2X

m

X

i=1

P(!
i

)u(X(!
i

)). (4.7)

To apply the above in the context of multiobjective optimization and multifunctional

design, to obtain a non-dominated solution of multiobjective optimization problem (4.1),

we perform a utility-based scalarization of the multiobjective problem (4.1) as follows:

max

m

X

i=1

⇡
i

U(f
i

(x))

s. t. g(x)  0

x 2 X,

(4.8)
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where U : R 7! R is the utility (e.g., “customer satisfaction”) corresponding to the design

objectives f
i

(x), i = 1, . . . ,m, that prescribes the preferred order of dominace (“FSD-

like”, “SSD-like”, and so on). Further, ⇡
i

2 (0, 1) is the relative weight of criterion i,

such that ⇡
1

+ . . . + ⇡
m

= 1. The weights ⇡
i

in (4.8) correspond to probabilities P(!
i

)

in the expected utility maximization problem (4.7). In a sense, one may consider that

the “importance” of design criterion i is derived from the relative “frequency” with which

the corresponding property/function of a multifunctional component is utilized during the

component’s service.

In such a way, the proposed formulation (4.8) represents a novel approach to scalar-

ization in multiobjective optimization, and allows for quantification of multifunctionality.

Namely, the solution/design x

0 can be considered superior to design x

00 with respect to

design criteria f
1

(x), . . . , f
m

(x) if

m

X

i=1

⇡
i

U(f
i

(x

0
)) �

m

X

i=1

⇡
i

U(f
i

(x

00
)),

and which exploits deep connections to fundamental principles of decision science.

Despite the fact that the proposed multiobjective scalarization method was devel-

oped with the goal to be applied for design of multifunctional materials and structures, we

were unable to obtain a suitable data set to test our approach in such a setting. Instead,

we consider multiobjective extensions of two well-known problems in operations research

and decision sciences, namely, a multiobjective shortest path problem, and multiobjective

resource allocation problem.
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4.3 Computational studies

As an illustration of the proposed framework, two examples are considered: a multi-

objective extension of the shortest path problem described in 4.3.1, and resource allocation

problem discussed in 4.3.2.

For the purpose of this study the utility function U was chosen to be a logarithmic

function, which defines an ordering consistent with stochastic ordering of any degree k

(kSD):

U(x) = ln x

U 0
(x) =

1

x
� 0 ! FSD

U 00
(x) = � 1

x2

 0 ! SSD

U 000
(x) =

2

x3

� 0 ! 3SD

. . .

4.3.1 Multiobjective shortest path problem

For multiobjective shortest path problem (MOSP) one can consider the network

where each arc has n attributes with preference given to the smaller values. Such attributes

may include, for instance, arc length, the cost of traversing an arc, the “risk” of traversing an

arc, etc. Shortest path problem can be easily generalized for the case of multiple objectives.

Let s denotes starting node, t denotes sink node, A to be the set of arcs, V is the set of

vertices. Let each arc has n cost parameters cl
i,j

for (i, j) 2 A and l 2 {1, . . . , n}. Then
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MOSP can be formulated as follows:

min (f
1

(x), . . . , f
m

(x))

s. t.
X

j:(i,j)2A

x
i,j

�
X

j:(j,i)2A

x
j,i

=

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

1 i = s

0 8i 62 V ({s, t})

�1 i = t

x
i,j

� 0, 8(i, j) 2 A,

where f
l

(x) denotes the path length as measured by l-th attribute:

f
l

(x) =

X

(i,j)2A

cl
i,j

x
i,j

, 8l 2 {1, . . . , n}.

In our case study, a (q + 2)-partite graph was used (with partitions

{s}, {t}, {L
1

}, . . . , {L
q

}) constructed in the following way: each of partitions {L
i

} (i =

1, . . . , q) contains r nodes (total number of nodes in the network is r2 + 2r), starting node

s is connected with all nodes in L
1

and only with them, sink node t is connected with all

nodes in L
q

and only with them, each node in L
i

(i = 1, . . . , q � 1) is connected only with

nodes in L
i+1

. For simplicity of network construction, density parameter d (denoting den-

sity between layers L
1

, . . . L
q

) was used, so that the number of arcs is d⇥r⇥r⇥(q�1)+2r.

Values of parameters cl
i,j

were chosen randomly in the range of [50, . . . , 100]; the density

parameter d was set to 0.9. In this experiments, the logarithmic function was chosen as the

utility function that provides SSD.

Observed results for graphs of different sizes are summarized in Table 1 and Table 2.

Table 1 represents values of utility objective U
F

= ⇡
i

U(f
i

(x)), weighted sum of objectives
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Figure 4.1: Example of the graph used for multiobjective shortest path problem (r = 5,

q = 2)

s"s"

t"

L_1"

L_2"

(S =

P

n

j=1

f
j

/n) and values of each objective separately (calculated at the optimal point)

for utility-based stochastic dominance approach. And for the purpose of comparison Table

2 represents optimization of f
1

solely, here value of U
F

was calculated at the optimal point.

As one can see, the proposed approach reduces the overall cost while keeping the values of

separate objectives reasonably low.

4.3.2 Multiobjective resource allocation problem

Resource allocation problem arises when the decision maker wants to assign avail-

able resources in a most reasonable way. One example of such a problem is portfolio

optimization.

The problem can be formulates as follows: given a set of assets, one wants to
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Table 4.1: Values of functions for utility-based stochastic dominance approach. Here, q is

the number of layers L
i

in between source and sink nodes, r is the number of nodes in each

layer L
i

, S is the weighted sum of f
j

: S =

P

n

j=1

f
j

/n, and U
F

is the objective function in

proposed method U
F

=

P

n

i=1

n�1U
i

(f
i

(x))

q r U
F

S f
1

f
2

f
3

f
4

f
5

f
6

f
7

5 5 24.93 388 362 372 387 387 416 391 401
5 10 24.66 371.14 385 367 366 377 368 377 358
5 20 25.02 357.71 349 371 375 382 336 352 339
10 5 45.95 725.14 719 726 730 730 715 737 719

Table 4.2: Values of functions for optimization of the attribute f
1

separately.

q r U
F

S f
1

f
2

f
3

f
4

f
5

f
6

f
7

5 5 25.44 425.71 338 423 398 499 453 465 404
5 10 25.39 422.29 321 493 387 441 408 481 425
5 20 25.32 417.86 315 475 398 473 351 452 461
10 5 46.84 794.71 680 828 747 880 816 803 809

make a portfolio with the highest expected return. As expected returns of assets include

randomness, one wants to minimize a variance of the resulting portfolio. The set of non-

dominated portfolios form an Pareto frontier and there are a number of effective algorithms

to construct it. As the main interest of this study is to explore the effectiveness of the

proposed method for multiple objectives, it seems reasonable to form the portfolio taking

into account the following objectives: expected return, variance, Sharpe ratio, Maximum

loss, CVaR. Note that not all of those objectives are for maximization, for example one

wants to minimize variance of the portfolio.
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Let x
k

be a weight of asset k in the portfolio, then the necessary feasibility condi-

tion would be
P

n

k=1

x
k

= 1. Let ⇠
kj

be a return of asset k under scenario j, j = 1, ..., N .

Let R
k

=

P

N

j=1

⇠
kj

/N be an expected return on asset k, and �
ij

= covar(⇠
i

, ⇠
j

). With

notations just introduced scalar optimization problems for objective functions under con-

sideration would be as follows.

The expected return of the portfolio is maximized:

max

X

k=1,...,n

R
i

x
i

s. t.
X

k=1,...,n

x
i

= 1, x
i

� 0

The variance of the portfolio is minimized:

min

X

i=1,...,n

X

j=1,...,n

�
ij

x
i

x
j

s. t.
X

k=1,...,n

x
i

= 1, x
i

� 0

The Maximum loss is minimized:

min M

s. t. M � �
X

k=1,...,n

⇠
kj

x
k

, j = 1, . . . ,m,

X

k=1,...,n

x
i

= 1, x
i

� 0

(here xj is the ”best” possible portfolio selection for the scenario j).
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The Conditional Value-at-Risk of portfolio’s return is minimized:

min CVaR
↵

(�
X

k=1,...,n

R
k

x
k

) = min

⌘2R
{⌘ + 1

↵
E[(�RTx+ ⌘)�]}

s. t.
X

k=1,...,n

x
i

= 1

x
i

� 0.

Observe that this problem reduces to an LP.

The Sharpe ratio is maximized:

max

X

k=1,...,n

R
k

x
k

/�

s. t.
X

k=1,...,n

x
i

= 1

x
i

� 0,

where � =

PP

x
i

x
j

�
ij

.

The corresponding problem of constructing a portfolio that optimizes all the de-

scribed criteria simultaneously, is formulated as

max F
U

=

X

U(f
i

(x)) (4.9)

s. t.
X

k=1,...,n

x
i

= 1 (4.10)

x
i

� 0 (4.11)

where f
i

are expected values of portfolio returns for objective functions described above,

and all criteria have equal weights (⇡
i

= 1/m).

The case studies were performed using data of S&P500 companies, namely daily

closing prices from January 1, 2005 to September 30,2015. Only cases with full knowledge
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of historical prices were left in the data pool, i.e. the total number of assets to choose from

was 483, and the total number of possible scenarios 2760. For the case study assets and

scenarios were chosen randomly.

Table 4.3: Expected returns for utility-based stochastic dominance approach for Resource

allocation problem. U
F

is the objective function in proposed method U
F

=

P

n

i=1

U
i

(f
i

(x))

n N F
U

SharpeRatio MaxLoss ExpectedReturn MinVariance CVaR
10 10 8.31 62.68 62.68 62.68 8.31 64.34
10 20 7.39 63.56 63.56 63.56 7.39 65.04
10 30 10.59 66.07 66.07 66.07 10.59 68.18
20 10 0.28 274.69 274.69 274.69 0.28 274.74
20 20 0.21 264.30 264.30 264.30 0.21 264.34
20 30 0.14 255.26 255.26 255.26 0.14 255.29
30 10 0.25 274.69 310.47 310.47 0.25 281.89
30 20 0.19 264.30 309.32 309.32 0.19 273.34
30 30 0.15 255.26 302.70 302.70 0.15 264.78
40 10 0.31 274.69 310.47 310.47 0.31 281.90
40 20 0.35 264.30 309.32 309.32 0.35 273.37
40 30 0.22 255.26 302.70 302.70 0.22 264.79
50 10 4.13 274.69 310.47 310.47 1.21 282.67
50 20 0.52 264.30 309.32 309.32 0.52 273.40
50 30 0.29 255.26 302.70 302.70 0.29 264.81
60 10 5.58 274.69 310.47 310.47 0.41 282.96
60 20 0.50 264.30 309.32 309.32 0.50 273.40
60 30 0.27 255.26 302.70 302.70 0.27 264.80

4.4 Conclusions

This study explores the new method for multiobjective optimization, which is based

on the stochastic dominance concept. In case of multiple objectives it is not always possible

to choose a solution that optimizes all the objectives, for example, it is not always possible
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to minimize the cost and maximize efficiency of the system at the same time. Instead,

one has to find an acceptable tradeoff between those two objectives. Multiple techniques

are known for finding such tradeoff, one of them is Pareto dominance, when a solution is

called non-dominated if it is not possible to improve one of the objectives without worsen

at least one of the others. Similar to Pareto optimality the concept of Stochastic Dominance

is used in this work to make a meaningful comparison between objective values. Also, the

well-known connection between stochastic dominance and the utility theory was used for

scalarization of the vectorial objective.
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CHAPTER 5
OPTIMIZATION TECHNIQUES FOR CRYSTAL STRUCTURE PREDICTION

BASED ON X-RAY CRYSTALLOGRAPHY DATA

5.1 Introduction

Structure of the organic molecule is essential for understanding properties and po-

tential advantages of a given material. As it is not always possible to derive the structure

of organic crystal from its chemical composition, analysis of X-ray diffraction data be-

comes an essential part of crystallographic science. Such an analysis is usually conducted

as a two-step procedure, where the structure is suggested in the first step, and an iterative

procedure of improving the initial structure is performed afterwards; the latter procedure

is called refinement. In the refinement phase the minimum energy principle is used along

with structural constraints to obtain the degree of correlation between the proposed struc-

ture and the observed data, with the goal of minimizing the mismatches. Although finding

correlation at the refinement step typically involves complicated computation, it is a well-

known area with a number of approaches developed in the literature. Nevertheless, the

initial guess about the structure and subsequent improvement require experienced operator,

and are usually done by trial-and-error method. The project described in this chapter is fo-

cused on automatization of the whole crystal structure analysis procedure, so the problem

can be formulated and solved without human involvement. The corresponding optimization

problem is formulated as a minimization of the refinement value over all possible crystal

structures. Since estimation of refinement value is well-developed area, the problem can be

treated as black-box combinatorial optimization problem, where the value of the objective
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function for a given selection of decision variables is provided by a “black box” device. For

large crystals, a straightforward enumeration becomes very resource- and time demanding,

so heuristic optimization techniques were used.

5.2 X-ray optics in crystallography

In 1914, a German physicist Max von Laue won a Nobel prize in Physics “For his

discovery of the diffraction of X-rays by crystals”. His research was critical for develop-

ment of X-ray spectroscopy. It was shown that crystals scatter X-ray radiation in different

patters, which carry the information about crystal composition (structure). However, X-

ray crystallography is not suitable for non-crystalline solids, and since many substances do

not form solid crystals (for example, proteins), the Small-Angle X-ray Scattering (SAXS)

was developed. SAXS is a technology that allows for detection of inhomogeneous electron

density at scales of 10 to 1000 Angstroms [17].

The SAXS experiment can be described as follows: the sample is placed between

an X-ray source and a detector, and a focused X-ray beam passes through the sample. The

nonhomogeneous electron density in the sample crystal causes the scattering pattern, which

can be observed in the form of intensity distribution.

Most approaches to X-ray scattering are based on the basic principals of quantum

mechanics and electromagnetic interactions, where electrons are considered as classical

oscillators [7, 12, 42].

Electron is said to scatter X-rays when under X-ray radiation the electron is set into

continuous oscillation and emits an electromagnetic wave. It is the case of elastic scattering,
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Figure 5.1: A schematic representation of SAXS experiment
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as the scattered beam and the incident beam are coherent (have the same frequency). The

dependence of the intensity of scattered beam on the angle of scattering is described by

Thomson’s equation [12]:

I = I
0

e4

r2m2c4
1 + cos

2

2✓

2

,

where I is the intensity of the scattered beam, I
0

is the intensity of the incident beam, r is

the distance between the electron and the detector, ✓ is the angle of scattering, and e, m,

and c are the standard constants: e is the electron charge, m is the mass of the electron, and

c is the speed of light in vacuum.

When X-ray is scattered by an atom, it is modeled as a superposition of scattering

by each electron of the atom, while nuclei scattering can be considered as negligible as
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the mass of the nuclei is much larger relative to the mass of the electron. However, when

X-ray beam heats the atom, electrons move in different positions, which causes the loss of

coherence property and therefore the intensities cannot be summed directly. Because of the

phase difference for the scattered waves, a partial interference occurs and that decreases

the net intensity. To describe the efficiency of scattering by an atom in a given direction,

the following ratio can be introduced:

f =

amplitude of the wave scattered by an atom
amplitude of the wave scattered by one electron

,

which is called the atomic scattering factor. For ✓ = 0, when all scattered waves are

coherent, the atomic scattering factor would be equal to the number of electrons of the

given atom. For ✓ 6= 0, the value of f decreases with increase in the value of ✓. Moreover,

✓ is reciprocal to sin

✓

�
, where � is the wave length of an incident beam. This effect is

illustrated in Figure 5.2. As the intensity of the wave is proportional to amplitude squared,

the intensity I of the scattered beam satisfies I s f 2.

Substance can be considered as a periodic arrangement (one unit is called unit cell)

of atoms, and its scattering pattern depends on the chemical composition, the distances

between atoms, type of crystal symmetry, and so on (which are collectively known as the

internal structure). The result of X-ray scattering by unit cell is described by the structure

factor F :

F
hkl

=

N

X

n=1

f
n

e2⇡(hun+kvn+lwn)i,

where N is the total number of atoms in the unit cell, f
n

is the scattering factor of each

atom, (u
n

, v
n

, w
n

) are internal coordinates of the atom n, and (h, k, l) are axes unit vectors.
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Figure 5.2: Cooper atomic scattering factor dependence on scattering angle [12]

FIG. 4-6. The atomic scattering fac-

tor of copper.

110 DIFFRACTION II : THE INTENSITIES OF DIFFRACTED BEAMS [CHAP. 4

wavelength, since the path differ-

ences will be larger relative to the

wavelength, leading to greater in-

terference between the scattered

beams. The actual calculation of /
involves sin 6 rather than 6, so that

the net effect is that / decreases as

the quantity (sin 0)/X increases!

Calculated values of / for various

atoms and various values of (sin 0)/X

are tabulated in Appendix 8, and a

curve showing the typical variation

of/, in this case for copper, is given

in Fig. 4-6. Note again that the

curve begins at the atomic number
of copper, 29, and decreases to very

low values for scattering in the back-

ward direction (0 near 90) or for

very short wavelengths. Since the intensity of a wave is proportional to

the square of its amplitude, a curve of scattered intensity fit)m an atom

can be obtained simply by squaring the ordinates of a curve such a& Fig.

4-6. (The resulting curve closely approximates the observed scattered in-

tensity per atom of a monatomic gas, as shown in Fig. 3-18.)

The scattering just discussed, whose amplitude is expressed in terms of

the atomic scattering factor, is coherent, or unmodified, scattering, which

is the only kind capable of being diffracted. On the other hand, incoherent,

or Compton modified, scattering is occurring at the same time. Since the

latter is due to collisions of quanta with loosely bound electrons, its in-

tensity relative to that of the unmodified radiation increases as the pro-

portion of loosely bound electrons increases. The intensity of Compton
modified radiation thus increases as the atomic number Z decreases. It

is for this reason that it is difficult to obtain good diffraction photographs

of organic materials, which contain light elements such as carbon, oxygen,

and hydrogen, since the strong Compton modified scattering from these

substances darkens the background of the photograph and makes it diffi-

cult to see the diffraction lines formed by the unmodified radiation. It is

also found that the intensity of the modified radiation increases as the

quantity (sin 0)/X increases. The intensities of modified scattering and of

unmodified scattering therefore vary in opposite ways with Z and with

(sin0)/X. i
To summarize,|when a monochromatic beam of x-rays strikes an atom,

two scattering processes occur4 Tightly bound electrons are jet,into pscTP"
lation and radiate x-rays of the saiffi wavelength as that of the incident

F describes both the phase and the amplitude of the scattered wave, so the intensity of the

beam would be proportional to F 2, namely

I = F 2p
1 + cos

2

2✓

sin

2 ✓ cos ✓
,

where p is multiplicity factor, i.e. the number of different planes in a form having the same

spacing.

5.2.1 Qualitative analysis of the crystal structure

One of main interests of X-ray crystallography is to perform qualitative analysis,

i.e., to determine the pattern of the substance under consideration. As it was stated be-

fore, the intensity distribution is proportional to the structure factor squared, but the phase

information is lost, which makes it impossible to derive the electron density map directly

from the X-ray diffraction information. To overcome this difficulty, the two-stage solution
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process is used.

At the first stage, one makes an assumption about the possible structure. The initial

assumption can be based on the internal knowledge of the crystal composition, or the ex-

pected structure of the molecule (if it was engineered), or any other information one might

possess about this particular crystal. At the second stage, called the refinement process, an

iterative procedure of improving the assumed structure is conducted. At each iteration the

assumed structure is updated with hope to match the experimental data and the calculated

pattern of intensities of the suggested structure (see, for example, [44]). Therefore, at each

iteration one would need a quantitative representation of the correlation between the as-

sumed and the experimentally observed data, which is represented by the fitness function.

Such a function is typically expressed as correlation between structure factors [24, 36]:

R =

P

all reflections(F0

� F
c

)

P

all reflections(Fc

)

,

where F
c

is the calculated structure factor and F
0

is the structure factor mathematically

obtained from the observed intensities I . The lower value R is, the better the suggested

structure fits the experimental data. Sometimes, a weighted fitting function is used:

R =

✓

P

all reflections wi

(F
0

� F
c

)

2

P

all reflections(Fc

)

2

◆

1/2

, (5.1)

where w
i

� 0 are the weight factors,
P

w
i

= 1.

5.3 Solution methods

5.3.1 Problem formulation and variable description

Suppose that one is trying to determine the structure of an organic crystal with

known chemical composition, i.e., the types of elements and the number of them in the
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crystal, and symmetry class. As an output of the crystallographic experiment, one can

obtain a file containing the following components: (h, k, l, I, �2

(I)) where (h, k, l) are

spacial coordinates of the intensity peaks, I is the relative value of intensity, and scattering

angle. Given this data, the problem is to assign each intensity peak to a certain element, so

that the fitting function (5.1) is minimized.

Peaks with higher intensities are more likely to be elements (rather then noise),

so in crystallographic data all peaks are sorted in descending order, with highest intensity

peaks coming first. Also, as the number of output intensity peaks in crystallographic file is

large and includes every minimal intensity fluctuation that was detected, the total number of

peaks considered is not larger then the total number of elements of non-hydrogen elements

plus half of the number of hydrogen elements. This constraint is valid as hydrogen is hard

to detect due to its low periodic number.

Let the string (Q
1

, ..., Q
n

) represent certain chemical composition, variables Q
i

can take values from the chemical composition element set. For example, if chemical

composition is “C
2

H
5

OH”, variables Q
i

can take values C, O, H and NONE (NONE

means that this peak does not correspond to any element, i.e., it represents noise), the total

number of variables n = 2 + 1 + (5 + 1)/2 = 6, the total number of different elements

is m = 3 + 1 = 4. The fitting function F = F (Q
1

, ..., Q
n

) is calculated using external

software (black box).
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5.3.2 Combinatorial Problem Formulation

Let the crystal (chemical composition) contain m different elements, with the

amount of each element being denoted by d
i

, i = 0, . . . ,m (we let the 0-element to de-

note hydrogen). From the crystallographic information one can obtain first n peaks of

highest intensity (where n = d
1

+ . . . + d
m

is the total number of non-hydrogen atoms

in the crystal). The problem is to find an assignment x of intensity peaks to elements that

minimizes the correlation function F (x). In this case, the objective function F (x) is an

unknown function, F (x) 2 [0, 1]. The the binary variables x
ij

= 1 denote assignment of

peaks to elements, i.e.,

x
ij

=

8

>

>

>

<

>

>

>

:

1, if peak i is assigned to element j , i = 1, . . . , n, j = 1, . . . ,m,

0, otherwise.

Then, the problem can be formulated as the following assignment problem:

min F (x) (5.2a)

s. t.
m

X

i=1

x
ij

= 1 for j = 1, . . . , n (5.2b)

n

X

j=1

x
ij

 d
i

for i = 1, . . . ,m (5.2c)

n

X

i=j

x
ij

= d
i

. (5.2d)

Constraints (5.2b) ensure that each peak is assigned to only one element, and constraints

(5.2c) ensure that the capacity of elements will not exceeded the prescribed values, while

constraint (5.2d) ensures that each element is assigned to some peak.
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5.3.3 Nearest neighbor search

For the problem formulation given above, the simple Nearest Neighbor (NN) search

can be performed. Let solution (A
1

, ..., A
n

) be called 1-neighbor of solution (B
1

, ..., B
n

) if

there exists such integer number k that A
i

= B
i

for all i = {1, ..., n}\{k} and A
k

6= B
k

.

In other words, 1-neighbor solutions differ in just one position. Let set {E
1

, ..., E
m

} be the

numerated set of chemical elements to use with E
1

= C, E
m�1

= H and E
m

= “NONE”;

let V = (v
1

, ..., v
m

) denote the maximum number of elements in the molecule, i.e. number

of element E
1

is v
1

and so on.

Then, at each iteration the Nearest Neighbor Search algorithm (see Algorithm 5.1)

inspects all possible 1-neighbor solutions in order to improve current solution. If such

an improvement is possible, the best improved solution becomes the current solution and

the algorithm proceeds to the next iteration. Algorithms terminates when the maximum

number of iterations N
maximum

is achieved, or when no improvement is made during the

current iteration.

If the initial solution for Algorithm 5.1 is chosen as x
0

= (Q
1

, ..., Q
n

) = (C, ..., C),

and carbon C is excluded from the set {E
1

, ..., E
m

}, at each iteration the solution would

be constantly improved and no two solutions from different iterations would coincide (as

number of carbon elements on each iteration is different). Also, one can note that if the

initial solution x
0

in Algorithm 5.1 is chosen to be feasible, at each iteration feasibility

preserves, so the x
best

would be feasible as well.

There are several possibilities for outcome of Algorithm 5.1:

• Ideally, when Algorithm 5.1 terminates, one would have the vector U =
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Algorithm 5.1 General Nearest Neighbor search algorithm
Set the initial solution to be x

0

= (Q
1

, ..., Q
n

) = (C, ..., C), calculate F
0

= F (x
0

)

Set the vector U = (v
1

�n, ..., v
m

) to be the current number of elements available to use

Improvement := true

Iteration = 0

while Improvement = true && Iteration <= N
maximum

do

Iteration+ = 1

Improvement := false

x
iteration

= x
best

for i = 1 to n do

for j = 2 to m do

if u
j

> 0 then

Calculate F
1

= F (Q
1

, ..., Q
i�1

, E
j

, Q
i+1

, ..., Q
n

)

if F
1

<= F
best

then

x
best

= (Q
1

, ..., Q
i�1

, E
j

, Q
i+1

, ..., Q
n

F
best

= F
1

Improvement := true

end if

end if

end for

if Improvement = true then

u
1

+ = 1

end if

end for

end while



92

(0, 0, ..., 0, u
n�1

, u
n

) as variables u
n�1

and u
n

correspond to the hydrogen H and

NONE elements. If this is not the case, the adjustment algorithm 5.2 should be

performed.

• Vector U returns correct numbers, but the solution is not optimal. This case is pos-

sible when two elements with close periodic numbers (such as, for instance, C and

N ) switched places, i.e., 2-neighbor of the solution would be optimal. To avoid such

situations, the check Algorithm 5.5 should be performed.

Algorithm 5.2 Nearest Neighbor adjustment algorithm
Initial solution is x = (Q

1

, ..., Q
n

), F = F (x
0

), U = (u
1

, ..., u
m

)

for j = 1 to m do

if (u
j

< 0) then

Run Algorithm 5.4

end if

if u
j

> 0 && (m  m� 2) then

Run Algorithm 5.3

end if

x = x
1

, F = F
1

end for

Algorithm 5.4 finds feasible points for those elements that are “overused,” and Al-

gorithm 5.3 finds feasible points for “underused” elements. Note that the result of Algo-
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Algorithm 5.3 Nearest Neighbor low adjustment algorithm
F
1

= 1

for i = 1 to n do

if Q
i

= “NONE” then

Calculate F
2

= F (Q
1

, ..., Q
i�1

, E
j

, Q
i+1

, ..., Q
n

)

end if

if F
2

<= F
1

then

x
1

= (Q
1

, ..., Q
i�1

, “NONE”, Q
i+1

, ..., Q
n

), F
1

= F
2

end if

end for

Algorithm 5.4 Nearest Neighbor high adjustment algorithm
F
1

= 1

for i = 1 to n do

if Q
i

= E
j

then

Calculate F
2

= F (Q
1

, ..., Q
i�1

, “NONE”, Q
i+1

, ..., Q
n

)

end if

if F
2

<= F
1

then

x
1

= (Q
1

, ..., Q
i�1

, “NONE”, Q
i+1

, ..., Q
n

), F
1

= F
2

end if

end for
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Algorithm 5.5 2-Neighbor check algorithm
Initial solution is x

0

= (Q
1

, ..., Q
n

), F
0

= F (x
0

)

Set F
best

= F
0

, x
best

= x
0

Iteration = 0

while Iteration <= N
maximum

do

Iteration+ = 1

Improvement := false

x
iteration

= x
0

for i = 1 to n do

for j = 1 to n do

Calculate F
1

= F (Q
1

, ..., Q
i�1

, Q
j

, Q
i+1

, ..., Q
j�1

, Q
i

, Q
j+1

, ..., Q
n

)

if F
1

<= F
best

then

x
best

= (Q
1

, ..., Q
i�1

, Q
j

, Q
i+1

, ..., Q
j�1

, Q
i

, Q
j+1

, ..., Q
n

)

F
best

= F
1

end if

end for

end for

end while
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rithm 5.2 might be far from optimal and one might need a new run of Algorithm 5.1 with

adjusted initial solution.

As Algorithms 5.3 and 5.4 are introduced, one might construct a variation of the

Nearest Neighbor Search (Algorithm 5.6) that allows for infeasible solutions during p it-

erations. Note that Algorithm 5.6 allows one to check the same solution at different itera-

tions, therefore its computational cost would be higher than that of Algorithm 5.1, but the

obtained solution is expected to be better.

5.3.4 Simulated annealing

Simulated Annealing (SA) is a global optimization heuristic that is inspired by an-

nealing process in metallurgy. Originally it was introduced by Scott Kirkpatrick in 1983

[27] for combinatorial optimization problems, namely the Traveling Salesman Problem.

One of the advantages of the SA is that it does not get “stuck” at local minima, as by

its nature the SA algorithm accepts solutions with worse objective function with nonzero

probability. The general SA algorithm is outlined below [4].

Let f : S ! R be an objective function to be minimized that is defined on a finite

set S. For each element s 2 S there is a set N(s) 2 S that is called neighborhood of s, for

any two elements s
1

2 S and s
2

2 S, s
1

2 N(s
2

) if and only if s
2

2 N(s
1

). Let x
0

2 S

to be initial solution, f(x
0

) is initial value of the objective function. As stopping criteria

of the algorithm one can choose the maximum number of steps, or threshold on change

in objective value �: |f(x
t

) � f(x
t+1

)|  �, or any other criterion that is suitable for the

problem. The general SA algorithm is formalized in Algorithm 5.7.
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Algorithm 5.6 Infeasible variation of Nearest Neighbor search algorithm
x
0

= (Q
1

, ..., Q
n

) = (C, ..., C),F
0

= F (x
0

), U = (v
1

� n, ..., v
m

)

Improvement := true

Iteration = 0

while Improvement = true and Iteration <= N
maximum

do

Iteration = Iteration + 1

Improvement := false

for i = 1 to n do

for j = 1 to m do

Calculate F
1

= F (Q
1

, ..., Q
i�1

, E
j

, Q
i+1

, ..., Q
n

)

if F
1

<= F
best

then

x
best

= (Q
1

, ..., Q
i�1

, E
j

, Q
i+1

, ..., Q
n

), F
best

= F
1

Improvement := true

end if

if REMINDER(Iteration/p)= 0 then

Run Algorithm 5.2

end if

end for

if Improvement = true then

u
1

+ = 1

end if

end for

end while

Run Algorithm 5.2, Algorithm5.5
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Algorithm 5.7 General SA algorithm
Set t:=0, choose x

0

and calculate f(x
0

);

while Stopping criteria are not satisfied do

Choose y 2 N(x
t

) randomly;

Set x
t+1

:= y with probability min(1, ef(xt)�f(y)/T (t)

) and x
t+1

:= x
t

otherwise

Set t := t+ 1

end while

The function T (t) : N ! R+ is called cooling schedule and is usually set as

T (t) =
d

log t
,

where d is some positive constant, d > 0.

Simulated Annealing has been extensively studied in the literature, and has been

found to possess many important properties, including the fact that it is guaranteed to con-

verge to an optimal solution, which is especially crucial in the context of non-convex prob-

lems:

Theorem 4 ([18]). We say that state s communicates with optimal set S⇤
at height h if

there exists a path in S (with each element of the path being a neighbor of the preceding

element) that starts at s and ends at some element of S⇤
and such that the larges value of f

along the path is f(s) + h. Let d⇤ be the smallest number such that every s 2 S communi-

cate with S⇤
at height d⇤. Then, the SA algorithm converges if and only if lim

t!1 T (t) = 0

and

1
X

t=1

e�d

⇤
/T (t)

=1.
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SA algorithm is used in crystallography in many ways: to predict possible crystal

structures given chemical composition, see, for example [14, 35]; for calculation of fitting

function in refinement stage [11]; for structural determination when structural fragments

are a priory known [45].

5.3.5 Genetic algorithm

Genetic Algorithm (GA) is another nature-inspired optimization metaheuristic,

which had found many applications in different areas of science and engineering [23, 25].

It is based on Darwin’s principle of “survival of the fittest” and implements three basic

ideas:

• If the individual is above-average, its genes will pass to the offspring with higher

probability

• If the individual is below-average, its genes will pass to the offspring with lower

probability, and will have less affect on the population

• Occasional mutations might happen, and result of mutation might be advantageous

or disadvantageous.

GA is an iterative algorithm, and at each iteration it maintains a set of solutions, known as

population.

Let F : S ! R be the objective function, also called fitting function. Let x
i

2 S

be an individual solution, in this case it would be a string of a certain length. A crossover

operation is defined for any pair of solutions as an exchange of portions of those solu-

tions, for example, in general case, if a = (a
1

, a
2

, ..., a
n

) and b = (b
1

, b
2

, ..., b
n

) are
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two chosen individuals, then the result (offspring) of most common crossover would be

(a
1

, a
2

, ..., a
k

, b
k+1

, ..., b
n

) and (b
1

, b
2

, ..., b
k

, a
k+1

, ..., a
n

), where k 2 [1, n] is an integer

number chosen at random. A mutation operation is defined for any individual solution as

random change of portion of that solution.

The initial population is often chosen at random, and at each iteration of GA the

population is updated as follows:

1. Each individual in the population is evaluated with fitness function, and the fittest

individual is recorded

2. Portion p
s

of population is carried to the next iteration without any change

3. Portion p
c

of population is used with crossover operation and its offspring is carried

to the next iteration

4. Portion p
m

of population is used with mutation operation and the result is carried for

the next iteration.

The parameters p
s

, p
c

, and p
m

above satisfy p
s

+ p
c

+ p
m

= 1. Parameters p
s

, p
c

, p
m

may

be constant, or may depend on the iteration, for example p
m

is often selected to decrease

as algorithm proceeds for better convergence. GA iterates until termination criteria are

satisfied. As termination criteria one can use the maximum allowable number of iterations,

or threshold on fitness function, or any other suitable condition.

In crystallography, Genetic Algorithms are used for defining better unit cell index-

ing [26], solving phase problem [1], and determining structure with the use of structural

components [19]
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5.4 Experimental results

The computational studies were conducted using data for several new organometal-

lic crystals of various sizes. The obtained results were compared to the previously known

solutions (configurations), obtained using human expertise. We refer to these previously

known solutions as the benchmark solutions. There is a number of factors affecting the

value of objective function, such as the assignment of hydrogen atoms (but in most cases it

might be omitted), finding more precise atom positioning, the use of different lattice sym-

metry class, and so on. We call a solution acceptable if its atom configuration coincides

with the benchmark solution while the fitting function values might be slightly different.

For all algorithms, running time limit of 20 minutes was set. For black-box objective func-

tion evaluation, SHELX software was used. Results are summarized in Tables 5.1 and

5.2.

For the problem stated in Section 5.3.1, three algorithms were implemented: Near-

est Neighbor search (Algorithms 5.1 and 5.6), Simulated Annealing (Algorithm 5.7), and

Genetic Algorithm.

For Nearest Neighbor search it was found that Algorithm 5.6 is less time-efficient,

but it returns the feasible optimal solution. Algorithm 5.1 with adjustment made to the final

solution, but without check algorithm is faster, but the quality of solution is slightly lower.

For the comparison of algorithms Algorithm 5.6 was used.

For SA algorithm definition of 1-neighborhood from Section 5.3.3 was used along

with the cooling schedule

T
t

=

c

1 + t
p
c
,
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where constant c denotes the percentage of non-carbon, non-hydrogen atoms in the com-

pound.

For GA, the population of 100 solutions was used. Due to the large number of

objective function evaluations, this algorithm was found to be less efficient. GA converges

to an optimal solution for each instance, but only in a few of instances an optimal solution

was constructed within the predefined time limit.

Schematic examples of structures are shown in Figures 5.3–5.8. In these exam-

ples, two structure were chosen: N-2,4-dibromophenylpyridinium chloride (denoted as

“fcp1415” in computational results) and 4,40 bis (N-3-iodopyridinium) tetraphenylethylene

bromide (denoted as “fcp157”). Figures 5.3 and 5.4 show the initial and final peak assign-

ments for fcp1415, note that solid lines in the mentioned figures denote covalent bounds.

Figures 5.5 and 5.6 show the initial and final peak assignments for fcp157.

The computational results of objective function look promising for organic crystal

structures. The next step in this research would be to extend the proposed algorithms

and test them on non-organic crystal structures. In addition, it would be of interest to

incorporate heuristics based on chemistry laws and relations into the standard metaheuristic

methods, such as NNNand implement more of chemistry knowledge in the algorithms.

5.5 Conclusions

This study explored the use of optimization techniques for qualitative analysis of

organic crystals. Given X-ray diffraction data of the compound, one can predict the struc-

ture of the crystal that correlates best with intensity distribution picture. Such prediction



102

Table 5.1: Comparison of fitting function values for solutions obtained using Simulated

Annealing algorithm (SA), Nearest Neighbor search (NN), and the benchmark solution

Crystal SA NN Benchmark solution Sample Contains
fcp138 0.1 0.12 0.1 C196 H144 N8 O54
fcp139 0.03 0.05 0.0322 C52 H36 N4 O4
fcp143 0.045 0.07 0.0444 C304 H240 N16 Br32
fcp144 0.055 0.054 0.0584 C152 H120 N8 Br16
fcp148 0.07 0.9 0.0733 C44H36 N4 Cl4 I4 O4
fcp149 0.13 0.18 0.1565 C80 H72 N8 Cl8 Br8
fcp1311 0.13 0.16 0.1893 C92 H100 N8 O48 Zn2
fcp1314 0.068 0.07 0.0716 C56 H44 N4 O4
fcp1316 0.12 0.14 0.1348 C12 H11 N1 Br1 I1
fcp1410 0.027 0.03 0.0247 C40 H32 N4 Cl4 Br8
fcp1411 0.03 0.035 0.0294 C88 H72 N8 O8 Cl8 Br8
fcp1412 0.03 0.03 0.0259 C88 H72 N8 O8 Cl8 I8 O8
fcp1415 0.032 0.033 0.0323 C44 H32 N4 O4 Cl4 Br8
fcp157 0.049 0.052 0.05 C40 H36 N2 I2 Br2

is usually done by an expert with deep knowledge of crystal composition. In previous

studies, few attempts to use optimization techniques to find the fittest structure were done,

instead they were focused on structure reconstruction from a previously known fragments

[45],[19]. In this work, it was assumed that the only knowledge about the structure is its

chemical composition and X-ray data.

In general, one can enumerate all possible variations of intensity peaks assignment

to elements of chemical composition to get the best structure, but due to the large dimen-

sionality of data such a “brute-force” method would not be efficient. This work discussed

the usage of few heuristic techniques for better crystal structure prediction. Experimental

results show that all three algorithms (NN, SA and GA) converged to the desired solution. It
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Table 5.2: Comparison of running time (in seconds) for Simulated Annealing algorithm

(SA), Nearest Neighbor search (NN) and Genetic Algorithm (GA)

instance SA NN GA
fcp138 1108 1205 -
fcp139 332 358 1169
fcp143 1071 1051 -
fcp144 984 902 -
fcp148 582 361 1094
fcp149 973 1007 -
fcp1311 820 1015 -
fcp1314 347 462 1054
fcp1316 287 264 731
fcp1410 659 731 -
fcp1411 762 940 -
fcp1412 896 913 -
fcp1415 637 704 -
fcp157 604 596 1083

was found that GA failed to reach termination criterion within the allowed computational

time, whereas NN and SA converge to a solution reasonably fast. The crystal structures

used for this study are organic crystals with metallic elements included, and one of the

possible extensions of this project would be to generalize the proposed algorithms for other

types of crystals from organic and inorganic chemistry.
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Figure 5.3: N-2,4-dibromophenylpyridinium chloride (fcp1415) initial structure
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Figure 5.4: N-2,4-dibromophenylpyridinium chloride (fcp1415) solved structure
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Figure 5.5: 4,4’ bis(N-3-iodopyridinium) tetraphenylethylene bromide (fcp157) initial

structure
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Figure 5.6: Whole solved structure of 4,4’ bis(N-3-iodopyridinium) tetraphenylethylene

bromide (fcp157)



108

Figure 5.7: Example of asymmetric unit for 4,4’ bis(N-3-iodopyridinium) tetraphenylethy-

lene bromide (fcp157)
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Figure 5.8: View down different axises for 4,4’ bis(N-3-iodopyridinium) tetraphenylethy-

lene bromide (fcp157)
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CHAPTER 6
CONCLUSIONS

This work consists of four projects, each related to the problems arising in Industrial

Engineering and Material Design. Although all chapters seem to be relatively disconnected,

all of them can be applied in the Material Design area of study.

Chapter 2 is focused on the new model of linear classification, base on p-order

conic programming. This technique was tested on real-life datasets related to biomedical

data. The possible expansion of this work would be the application of proposed method for

classification of materials.

In Chapter 4 the new technique for multiobjective optimization is presented. Case

studies for this technique are multiobjective shortest path problems and portfolio optimiza-

tion. This study can be applied for design of multifunctional materials.

Chapter 3 introduces an optimization approach to determine the tightest possible

bounds for effective overall elastic moduli of composite materials. In future, the solution

for general distribution of inclusions case is to be found.

Chapter 5 discussed the qualitative analysis of X-ray data using heuristic tech-

niques. The expantion of this work would be to explore implementation of proposed ap-

proach for inorganic structures.
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