
University of Iowa
Iowa Research Online

Theses and Dissertations

2007

A simulation study of predictive maintenance
policies and how they impact manufacturing
systems
Kevin Michael Kaiser
University of Iowa

Copyright 2007 Kevin Michael Kaiser

This thesis is available at Iowa Research Online: http://ir.uiowa.edu/etd/152

Follow this and additional works at: http://ir.uiowa.edu/etd

Part of the Industrial Engineering Commons

Recommended Citation
Kaiser, Kevin Michael. "A simulation study of predictive maintenance policies and how they impact manufacturing systems." MS
(Master of Science) thesis, University of Iowa, 2007.
http://ir.uiowa.edu/etd/152.

http://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.uiowa.edu%2Fetd%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages

A SIMULATION STUDY OF PREDICTIVE MAINTENANCE POLICIES AND HOW

THEY IMPACT MANUFACTURING SYSTEMS

by

Kevin Michael Kaiser

A thesis submitted in partial fulfillment
of the requirements for the Master of

Science degree in Industrial Engineering
in the Graduate College of

The University of Iowa

July 2007

Thesis Supervisor: Assistant Professor Nagi Z. Gebraeel

Copyright by

KEVIN MICHAEL KAISER

2007

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

MASTER'S THESIS

This is to certify that the Master's thesis of

Kevin Michael Kaiser

has been approved by the Examining Committee
for the thesis requirement for the Master of Science
degree in Industrial Engineering at the July 2007 graduation.

Thesis Committee: ___________________________________
 Nagi Z. Gebraeel, Thesis Supervisor

 Geb Thomas

 Yong Chen

 ii

ABSTRACT

The success and effectiveness of modern lean manufacturing concepts requires

robust and highly reliable machinery. In this thesis, we develop several simulation

studies to compare the performance of a several manufacturing systems under different

maintenance polices. The main focus of this work is to compare traditional time-based

maintenance policies with degradation-based predictive maintenance policies that utilize

real-time sensory information to assist in decisions regarding maintenance management

and component replacement. The simulation studies developed in this thesis demonstrate

the benefits of using sensor-based degradation models to predict failure.

 iii

TABLE OF CONTENTS

LIST OF TABLES..V

LIST OF FIGURES .. VI

CHAPTER 1: INTRODUCTION..1

1.1 Introduction...1
1.2 Maintenance Management..2

1.2.1 Corrective Maintenance..2
1.2.2 Preventive Maintenance ...3
1.2.3 Predictive Maintenance ..3

1.3 Condition-based Maintenance ..4
1.4 Degradation Modeling ..5
1.5 Research Objective and Contributions ...7
1.6 Organization ...8

CHAPTER 2: LITERATURE REVIEW...10

2.1 Simulation Analysis of Manufacturing Systems10
2.2 Condition-based Maintenance ..14

2.2.1 Markov Processes...14
2.2.2 Neural Networks...17
2.2.3 Proportional Hazard Models...19
2.2.4 Degradation Models ...23

2.3 Summary...27

CHAPTER 3: PSTUDY 1. ANALYSIS OF MAINTENANCE POLICIES IN A
PARALLEL WORKSTATION MANUFACTURING SYSTEM.............29

3.1 Preventive Maintenance..29
3.2 Predictive Maintenance ..30

3.2.1 Degradation Model I (Exponential Base Case)32
3.2.2 Degradation Model II (Exponential Base Case).............................33

3.3 Simulation Model ...36
3.3.1 Manufacturing System Submodel ..38
3.3.2 Maintenance Policy Submodel ...40

3.3.2.1 Failure Time Subroutine...40
3.3.2.1.1 PM Policy...41
3.3.2.1.2 DM-I Policy ...42
3.3.2.1.3 DM-II Policy ..43

3.3.2.2 Resource Shutdown Subroutine ...46
3.4 Implementation and Results ...47
3.5 Conclusion ..52

CHAPTER 4: STUDY 2. ANALYSIS OF MAINTENANCE POLICIES IN
SEQUENTIAL WORKSTATION MANUFACTURING SYSTEMS......54

4.1 Manufacturing System..54
4.2 System Reliability...56

 iv

4.2.1. Reliability of Series Systems...56
4.2.2 Reliability of Parallel Systems ...57
4.2.3 Reliability of Combined Series-Parallel Systems...........................58

4.3 Maintenance Policies ..60
4.3.1 Preventive Maintenance Policy ..61
4.3.2 Degradation Based Predictive Maintenance Policy62

4.4 Simulation Model ...62
4.4.1 Manufacturing System Submodel ..64
4.4.2 Maintenance Policy Submodel ...66

4.4.2.1 Failure Time Subroutine...66
4.4.2.1.1 PM Policy...67
4.4.2.1.2 DM Policy ..67

4.4.2.2 Resource Shutdown Subroutine ...70
4.4.3 System Maintenance Submodel ...71

4.5 Implementation and Results ...72
4.6 Conclusion ..79

CHAPTER 5: STUDY 3. ANALYSIS OF MAINTENANE-RELATED
DECISION POLICIES ...81

5.1 Replacement and Spare Part Inventory Models..81
5.1.1 Single-Unit Age Replacement Model ..82
5.1.2 Inventory Ordering Model..82

5.2 Sensor-driven Replacement and Inventory Policy84
5.3 Manufacturing System..86
5.4 Simulation Model ...87

5.4.1 Manufacturing System Submodel ..89
5.4.2 Decision Policy Submodel ...89

5.4.2.1 Traditional Policy...90
5.4.2.2 Sensor-driven Policy ..91

5.4.3 Resource Shutdown Submodel...93
5.5 Implementation and Results ...95
5.6 Conclusion ..98

CHAPTER 6: CONCLUSION ..100

6.1 Future Research ..102

REFERENCES ..104

APPENDIX A: ARENA SCREENSHOTS...111

A.1. Screenshots From Models Discussed in Chapter 3...............................111
A.2. Screenshots From Models Discussed in Chapter 4...............................112
A.3. Screenshots From Models Discussed in Chapter 5...............................113

APPENDIX B: VISUAL BASIC CODE...114

B.1. DM-I Policy Code Used in Section 3.2.1..114
B.2. DM-II Policy Code Used in Section 3.2.2 ..117
B.3. PM Policy Code Used in Section 4.4.2.1.2...124
B.4. DM Policy Code Used in Section 4.4.2.1.3 ..139
B.5. Traditional Policy Code Used in Section 5.4.2.1..................................154
B.6. Sensor-Driven Policy Code Used in Section 5.4.2.2162

 v

LIST OF TABLES

Table 3.1. Means and standard deviations of number of failure replacements for R
= 70% and R = 90%. ...49

Table 3.2. Means and standard deviations of number of planned replacements for R
= 70% and R = 90%. ...49

Table 3.3. Means and standard deviations of the total maintenance cost of each
policy at each reliability level. ..51

Table 4.1. Means and standard deviations of the number of failure replacements at
each reliability level. ...74

Table 4.2. Means and standard deviations of the number of planned replacements at
each reliability level. ...75

Table 4.3. Means and standard deviations of the total maintenance cost of each
policy at each reliability level. ..77

Table 4.4. Means and standard deviations of system throughput of each policy at
each reliability level. ...79

Table 5.1. Average utilization and throughput for each policy. ..95

Table 5.2. Mean and standard deviations of the number of failure and planned
replacements for each policy...96

Table 5.3. Means and standard deviations of the costs incurred by each policy at
each decision policy. ...98

 vi

LIST OF FIGURES

Figure 1.1. Example of three degradation signals..6

Figure 3.1. Schematic of the manufacturing system..37

Figure 3.2. Manufacturing system submodel...40

Figure 3.3. Characteristics of the workstation’s degradation signal.43

Figure 3.4. Updated residual life distributions via singular sensory updating.................44

Figure 3.5. Frequency of failure replacements for R = 70%..47

Figure 3.6. Frequency of failure replacements for R = 90%..48

Figure 3.7. Frequency of planned replacements for R = 70%. ..48

Figure 3.8. Frequency of planned replacements for R = 90%. ..48

Figure 3.9. Total costs of each of the maintenance policies. ...51

Figure 4.1. Schematic of the manufacturing system..55

Figure 4.2. Reliability block diagram for components in series.57

Figure 4.3. Reliability block diagram for components in parallel.58

Figure 4.4. A system comprised of components in a combined series and parallel
relationship. ...59

Figure 4.5. Schematic of the manufacturing system..60

Figure 4.6. Manufacturing system submodel...64

Figure 4.7. Frequency of failure replacements at different reliability levels...................73

Figure 4.8. Frequency of planned replacements at different reliability levels.................74

Figure 4.9. Total costs of each of the maintenance policies at different reliability
levels..76

Figure 4.10. Average workstation utilization of the system at different reliability
levels..78

Figure 4.11. Throughput of the system at different reliability levels.78

Figure 5.1. Schematic of the manufacturing system..86

Figure 5.2. Total costs incurred by each policy. ..97

 vii

Figure A.1. Failure Time Subroutine..111

Figure A.2. Resource Shutdown Subroutine...111

Figure A.3. Failure Time Subroutine..112

Figure A.4. Resource Shutdown Subroutine...112

Figure A.5. System Maintenance Submodel..112

Figure A.6. Decision Policy Submodel..113

Figure A.7. Resource Shutdown Submodel...113

1

CHAPTER 1: INTRODUCTION

1.1 Introduction

Historically, many industries have viewed maintenance departments as cost

centers that do not contribute to a company’s profitability. In recent times, this view has

changed dramatically. Managers have recognized the cost savings that result from

efficient maintenance operations [18]. Today, maintenance is regarded as an integral part

of the production process that contributes to product quality, plant availability and the

ability to meet delivery schedules [1]. This is especially important in the manufacturing

sector where there is a growing trend aimed at embracing modern Lean and Just-In-Time

manufacturing philosophies. The main challenge with such manufacturing systems is

that the low levels of buffer and work-in-process augment the damage that is caused by

unexpected interruptions in the manufacturing system. Sudden equipment/machinery

failures can be prohibitively expensive because they result in immediate lost production,

failed shipping schedules, and poor customer satisfaction.

The growing importance of maintenance management has generated an increasing

interest in the development and implementation of efficient maintenance strategies that

improve system reliability, prevent system failures, and reduce maintenance costs of

deteriorating systems [27]. The goal of this research is to use simulation studies to

investigate the impact of different maintenance policies on the performance of

manufacturing systems. We propose different predictive maintenance policies and

evaluate the performance of each policy by examining system performance measures,

such as throughput and equipment utilization. We also study effect of these policies on

component replacement and spare part inventory costs. We benchmark a proposed

2

degradation-based predictive maintenance policy with classical predictive and preventive

maintenance policies.

1.2 Maintenance Management

The increasing competition in the manufacturing sector has lead to significant

developments that primarily target cost reduction. Many of these efforts have been

successful in reducing the costs associated with inventory and work-in-process through

the implementation of lean manufacturing concepts and Just-in-Time strategies. Unless

the reliability of the manufacturing system is guaranteed, the lack of intermediate

subassemblies and stocks of finished products can be detrimental to the system’s

performance. Any equipment interruptions will immediately result in lost production,

which cannot be compensated. Indeed the presence of buffer stocks of finished products

acts as a safeguard against systems interruptions. In most cases, the system interruptions

result from unexpected equipment failure. The problem is further complicated by the

long durations associated with unscheduled maintenance activities. In the following, we

outline and discuss different types of maintenance stratgies.

1.2.1 Corrective Maintenance

Corrective maintenance is a policy that focuses on performing repair/maintenance

work after system or component failure has occurred. This type of maintenance policy is

not concerned with scheduling inspections or service routines on deteriorating

components. In a manufacturing system, component breakdown seldom, if ever occurs at

a convenient time. As a result, scheduling these repairs often constitutes a high priority

and will likely interfere with production schedules and other planned activities. In some

cases when material, equipment, or skilled maintenance personnel are not available, the

3

problem significantly worsens, especially if overtime is needed for untimely repairs or

replacement [70]. These issues have led to the development of preventive maintenance

policies.

1.2.2 Preventive Maintenance

Preventive Maintenance is one of the most popular maintenance policies used in

modern industry. Preventive Maintenance focuses on scheduling routine inspections and

performing necessary upkeep and service on components in order to prevent and fix

problems before failure occurs. Maintenance routines are scheduled by analyzing failure

time data for a population of components. Time-based empirical and parametric

distributions such as the Weibull, Normal, Exponential, and Gamma distributions have

been widely used to model the uncertainty in failure times [4, 7, 9, 28]. Such

distributions are great tools that can be used to support maintenance scheduling.

However, since PM relies on time-based models, it does not take into account the

conditions or degradation characteristics of the individual components, making it nearly

impossible to avoid catastrophic random breakdowns. In addition, PM can lead to

unneeded maintenance routines being performed, resulting in unnecessary downtime and

loss in production capacity. These types of problems have led to the development of

predictive maintenance policies that focus on predicting unexpected failures.

1.2.3 Predictive Maintenance

Predictive maintenance applies various sensor technology and analytical tools to

measure and monitor various system and their components. The observed characteristics

are compared with established or known standards and specifications in order to predict

(forecast) system or component failures [70]. Whereas corrective maintenance is applied

4

after the failure and preventive maintenance uses precautionary measures to avert

possible problems, predictive maintenance actually evaluates the existing equipment

condition and, based on a projected trend of the deterioration process, failures are

predicted and appropriate steps are taken [70]. An increasingly popular form of

predictive maintenance is condition-based maintenance.

1.3 Condition-based Maintenance

Condition-based maintenance (CBM) is based on observing and collecting

information concerning the condition and health of equipment to prevent unexpected

failures and determine optimal maintenance schedules [30]. There are many advantages

of using a CBM approach for maintenance management. Catastrophic equipment failures

can be eliminated. Maintenance activities can be scheduled to minimize or eliminate

overtime costs. Furthermore, inventory can be minimized because parts or equipment

will not have to be ordered ahead of time to support anticipated maintenance needs.

There are several categories of research efforts done in the area of CBM that

strive to increase the accuracy of time to failure prediction, including studies using

Markov processes, neural networks, proportional hazard models, and degradation models.

Chapter 2 surveys some of the literature dealing with each of these categories.

CBM utilizes condition monitoring (CM) information to schedule maintenance

routines. Condition monitoring involves observing some health-related variables

throughout a system’s lifetime to determine its degree of degradation more accurately

than information obtained a priori solely from statistical information [20]. Real-time

sensory signals, such as temperature, vibration, acoustic emissions, etc., are collected

from a functioning component in order to assess the health of the component. These

5

sensory signals often exhibit characteristic patterns that are associated with the principal

physical transitions that occur during degradation processes. These patterns, known as

degradation signals, can be used to capture the current state of components and provide

information on how that condition is likely to evolve in the future [21].

1.4 Degradation Modeling

Degradation modeling provides a mathematical framework for modeling the

evolution of degradation signals that are collected by condition monitoring technology.

Due to the stochastic nature of degradation processes that occur prior to failure, similar

components may exhibit different degradation rates; even those operating under similar

operating and environmental conditions. Figure 1.1 presents three vibration-based

degradation signals obtained from monitoring three identical rolling element thrust

bearings. As the bearings degrade over time, the resulting signals tend to increase.

Bearing failure is defined as the degradation signal crossing a predetermined vibration-

based failure threshold. As shown in Figure 1.1, the three degradation signals are

significantly different, although they correspond to identical bearings that were run to

failure under the same load and speed conditions. Indeed, relying solely on a

component’s degradation signal to estimate its remaining life can be very dangerous.

Although the degradation signals have a similar form, each signal is unique to a

component’s degradation rate; hence the different failure times (Figure 1.1).

6

Degradation Signals

0

0.01

0.02

0.03

0.04

0 100 200 300 400 500 600

Time

Figure 1.1. Example of three degradation signals.

It is not unusual for a population of “identical” devices to have a common

functional form that characterizes the degradation signal. The functional form of the

degradation signal can be used to develop stochastic degradation models that are used to

compute the residual life of partially degraded components.

The baseline degradation model used in this work was developed based on the

degradation modeling framework presented by Lu and Meeker [52]. They model the path

of a degradation signal using random coefficient growth models. The framework utilizes

a sample of degradation signals to estimate the residual life distributions for a population

of components. Although, this modeling framework attempts to capture the unit-to-unit

variability in a given population of components, it falls short of adapting to the unique

characteristics of each component.

Gebraeel et al. [28, 29] addressed this challenge by developing a sensory-based

updating method that combines degradation characteristics of the component’s

Failure Threshold

7

population along with real-time condition monitoring information unique to the

individual component being monitored. By combining these two sources of information,

the authors were able to compute and continuously update residual life distributions as in-

situ condition monitoring information became available. The result is a degradation

model that represents a more precise estimate of the true trajectory of the component’s

degradation signal and can be used to precisely estimate the remaining life of the

component being monitored. This type of degradation framework is essential in

supporting decision-making methodologies related to maintenance management and

replacement strategies.

1.5 Research Objective and Contributions

The objective of this work is to investigate the impact of different maintenance

policies on the performance of manufacturing systems. We develop simulation studies to

compare predictive maintenance policies with traditional time-based policies. Whereas

time-based maintenance policies do not take into account the conditions or degradation

characteristics of individual components, our work focuses on using predictive

maintenance policies based on the degradation models developed by Gebraeel et al. [28,

29]. This thesis also investigates the impact of the different maintenance policies on

replacement and spare part inventory costs. To perform this study, we compare the costs

incurred when using conventional single-unit age replacement and inventory models that

are based on lifetime distributions with the enhanced version of these models that rely on

the sensory-updated residual life distributions.

8

1.6 Organization

The remainder of this document is structured as follows: Chapter 2 reviews some of

the literature on simulation studies as they relate to maintenance management as well as

brief summary of maintenance policies with a special focus on condition-based

maintenance and degradation modeling.

Chapter 3 develops a simulation model to study and compare three different

maintenance policies. The first policy is based on the sensory-updated degradation

models developed by Gebraeel et al. [28, 29]. We compare this policy with two

conventional policies, a reliability-based preventive maintenance policy and another

predictive maintenance policy based on the degradation modeling framework developed

by Lu and Meeker [52]. We evaluate the efficiency of each policy by evaluating the

number of failures, planned replacements, and total maintenance costs corresponding to

each policy.

Chapter 4 extends the simulation study to investigate the impact of the maintenance

policies on system reliability. In other words, instead of basing our maintenance policy

decisions on the reliability of individual workstations as in Chapter 3, in this chapter we

base our maintenance decisions on the reliability of the entire manufacturing system. We

focus on two maintenance policies, the first policy is a reliability-based preventive

maintenance policy, and the second policy is based on the sensory-updated degradation

model developed by Gebraeel et al. [28]. We evaluate the efficiency of each policy by

evaluating the total maintenance cost, workstation utilization, and the throughput of each

policy.

9

In Chapter 5 the simulation study is extended further to compare the performance

of two different replacement and spare part inventory policies. The first policy is a

reliability-based policy developed by Armstrong and Atkins [3]. The second policy is

based on the sensory-updated degradation models developed by Gebraeel et al. [28, 29].

We evaluate and compare the system costs associated with implementing each of the

replacement and inventory policies. In addition, we evaluate the workstation utilization

and the throughput of each policy. The conclusions and future research constitute chapter

6.

10

CHAPTER 2: LITERATURE REVIEW

This chapter reviews some of the relevant literature related to simulation and

condition-based maintenance (CBM).

2.1 Simulation Analysis of Manufacturing Systems

Simulation has been widely used to study the effectiveness of maintenance

management systems [1]. Many of these studies have considered the interaction between

maintenance policies and manufacturing systems.

Logendran [51] used simulation modeling to compare the performance of cellular

and functional work cell layouts while considering machine breakdown. The mean work-

in-process inventory and mean throughput time were used to compare the performance of

a corrective and a preventive maintenance policy.

Vineyard et al. [74] used simulation to analyze the effect of five different

maintenance policies on flexible manufacturing systems (FMS) subject to random failure.

Variations of corrective, preventive, and opportunistic maintenance policies were studied.

The authors demonstrated that the choice of a maintenance policy affected the number of

maintenance tasks required, and that a hybrid maintenance policy, combining reactionary,

time and event-triggered preventive characteristics resulted in the least number of

maintenance tasks and system downtime. Savsar [64] also analyzed the performance of a

FMS considering corrective, preventive, and opportunistic maintenance policies. This

study considered a variety of time between failure distributions, and demonstrated that

the type of maintenance applied is important and should be carefully studied before

implementation.

11

Rezg et al. [62] used simulation to present a joint optimal inventory control and

preventive maintenance strategy for a randomly failing production unit which supplied an

assembly line operating according to a just-in-time configuration. The model provided a

simple estimation of the cost function from which the optimal values for the PM interval

time and buffer stock level for the system could easily be obtained.

Sheu and Krajewski [66] proposed a decision model consisting of a simulation

model and economic analysis that was used to compare alternative corrective

maintenance policies. The simulation model was used to predict inventory costs and

delivery performance of a corrective maintenance policy in various production systems.

Based on the simulation results, an economic analysis, consisting of a net preset value

model and breakeven models, determined the economic value of alternative maintenance

policies. A detailed example was offered to evaluate corrective maintenance policies

applying different combinations of worker flexibility and machine redundancy over a

variety of factory conditions. The study demonstrated the decision model’s capability to

assist managers in selecting the best corrective maintenance policy.

In a study by Dayanik and Gurler [20], a generalized age-replacement policy for

repairable systems was studied from a Bayesian perspective. Independent system failures

were classified as either critical or noncritical with a certain fixed probability. A

maintenance policy was considered where the noncritical failures were corrected with

minimal repair and the system was replaced at a critical failure or at time τ, whichever

occurred first. The purpose of the study was to find the optimal value τ that minimized

the expected cost per time. Two adaptive Bayesian procedures that utilized different

levels of information were proposed for sequentially updating the optimal replacement

12

times. The first procedure utilized the number of noncritical failures and failure times for

updating purposes; the second procedure utilized the number of noncritical failures and

failure times as well as the length of the replacement cycles for updating purposes.

System failure times were assumed to follow a Weibull distribution. Both of the

updating procedures were analyzed using simulation. A sample path of system failures

for the first 10 replacement cycles under each updating procedure was presented.

Sloan and Shanthikumar [69] considered the problem of determining the

production and maintenance schedules for a multiple-product, multiple-stage production

system. Each stage consisted of a machine whose condition deteriorated over time and

the condition affected the yield of different product types differently. The authors

developed a Markov decision process model to simultaneously determine the equipment

maintenance and production schedules for each stage of the system with the objective of

maximizing the long-run expected average profit. A simulation model of a four-station

semiconductor wafer fab was used to compare the performance of policies generated by

their model against a variety of other maintenance and dispatching policy combinations.

The results indicated that their method provided substantial improvements over

traditional methods and performed better as the diversity of the product set increased.

They showed that the reward earned using the policies from the combined production and

maintenance scheduling method was an average of more than 70% higher than the reward

earned using other policy combinations such as a fixed-state maintenance policy and a

first-come, first-serve dispatching policy.

Gong and Tang [32] developed a simulation study where an on-line sensor was

used to monitor a randomly deteriorating machine operation. The machine condition was

13

described by a finite number of states, and the machine deterioration followed a Markov

process. It was assumed that the relation between the sensor measurement and the true

machine condition was described by a known statistical relation, and maintenance

decisions were made based on the observed sensor measurements. Two maintenance

policies were considered for re-setting the deteriorating machine to a better performance

state. The first policy was a threshold setup control policy, where setup was performed

only if the sensor measurement was greater than a predetermined threshold value. The

second policy was a heuristic policy where a maintenance decision was based on the

machine condition estimated by analyzing the information through a Bayes formula. The

results showed that the cost evaluated by using a steady state distribution tended to

underestimate the actual cost and that the heuristic method performed better than the

stationary threshold method.

Dessouky and Bayer [21] presented a maintenance process model that offered a

systematic approach to analyze the maintenance process of fully occupied buildings, with

emphasis on plumbing, electrical and mechanical systems. The model was used to

identify the critical quality attributes that influenced the maintenance process. The

authors developed a simulation model to characterize the impact of the quality attributes

on the maintenance process to determine the funds to be allocated to maintenance in the

building’s design and construction phases in order to minimize maintenance costs. The

output of the simulation model was the number of labor hours resulting from random

occurrences in excess of those planned over the life of the building. The simulation

output results were used in a design of experiment procedure to identify the optimum

attribute levels that minimized excess labor hours. A loss function was then defined to

14

provide a cost basis for integrating maintenance priorities during the design and

construction phase of a building project.

The increasing interest and research in maintenance engineering has exposed the

problems and opportunities associated with inefficient maintenance practices. This has

lead to the development of predictive maintenance policies that focus on predicting

unexpected failures, such as condition-based maintenance.

2.2 Condition-based Maintenance

Condition-based maintenance (CBM) is an area that has been attracting more and

more attention in industry. CBM is a maintenance strategy that utilizes condition

monitoring (CM) information for systems undergoing stochastic deterioration in order to

assess the health of its components. A lot of research has focused on increasing the

effectiveness of CBM programs by improving the predictability of failure. The following

sections survey several different categories of research done to improve failure

predictability in CBM.

2.2.1 Markov Processes

A Markov process is a special case of a stochastic process for which the

distribution of a future random variable or state depends only on the present state and not

on how it arrived in the present state. Since changes in parameters that define equipment

degradation are generally probabilistic, as Christer [13] points out, many of the published

theoretical CBM models adopt a Markov approach to model the degradation, where states

are usually ‘operating’, ‘operating but fault present’, and ‘failed’. Transitions between

these states occur according to probabilistic laws, with each state being associated with

the coincident occurrence of an inspection and some associated maintenance action.

15

Monplaisir et al. [59] formulated a seven-state Markov chain to model the

deterioration process taking place in the crankcase locomotive diesel engines. The

authors defined the state-space in terms of certain known pathologies commonly

associated with lubricant deterioration. The weekly probabilistic change in physical

crankcase oil condition was used as the monitored condition variable. They

demonstrated the utility of the model as a maintenance decision support for fault

diagnosis, specification of preventive maintenance tasks, and evaluation of alternative

policies.

Coolen et al. [15] analyzed a basic model for the economic evaluation and

optimization of inspection techniques. The model assumed that for a specific failure

mode the system passed through an intermediate state, which could be detected by

inspection. They presented a 2-phase semi-Markov model to determine the optimal

inspection time that minimized maintenance costs. They performed sensitivity analysis

to simplify their model and determined which model parameters could be kept constant

without seriously affecting optimal decision making. Assuming that the time spent in the

intermediate state can be represented by a unimodel distribution, the authors concluded

that an estimation of the mean and standard deviation of this state was enough to provide

good decisions about the monitoring interval.

Kallen and van Noortwijk [42] presented a decision model for determining the

optimal time between periodic inspections of an object with sequential discrete states.

The deterioration model used a Markov process to model the uncertain rate of

transitioning from one state to the next, allowing the decision maker to properly

propagate the uncertainty of the component’s condition over time. The model was

16

illustrated by an application to the periodic inspection of road bridges. The author also

showed that the model could be applied to production facilities to optimize the threshold

for preventive maintenance.

Chen and Trivedi [9] presented a semi-Markov decision process for the

maintenance policy optimization of condition-based preventive maintenance problems,

and presented the approach for joint optimization of inspection rate and maintenance

policy. The joint optimization of the inspection rate and maintenance policy was

performed by taking the inspection rate as the input parameter to the semi-Markov

decision process model. For each individual inspection rate the model was solved for the

optimal maintenance policy.

Glazebrook et al. [31] formulated a Markov decision process to schedule

maintenance routines to minimize the total expected discounted cost incurred in operating

a collection of deteriorating machines over an infinite time horizon. Information on the

condition of each machine was continuously available to the decision-maker and was

expressed through the machine’s state. The methodology was illustrated via analyses of

two different machine maintenance models.

Saranga and Knezevic [63] developed a mathematical model for reliability

prediction of condition-based maintained systems in which the component deterioration

was modeled as a Markov process. A system of integral equations was used to compute

the reliability of the system at any instant of operating time. When the reliability of the

item reached the minimum required reliability level, it was assumed that the item has

reached a critical state and hence the required maintenance activities should be carried

out to restore the system to an acceptable level. The authors suggested that a well-

17

designed condition monitoring strategy incorporated into CBM could offer improved

reliability and availability at the system level.

2.2.2 Neural Networks

Artificial Intelligence techniques such as neural networks use sensory information

to detect equipment defects and classify their functional condition. A neural network is a

data processing system consisting of a large number of simple, highly interconnected

processing elements in an architecture inspired by the structure of the cerebral cortex

portion of the brain. Because of the topology of the systems and the manner in which

information is stored and manipulated, neural networks are often capable of doing things

that humans or animals do well but that conventional computers do poorly. For example,

neural networks have the ability to recognize patterns even when the information

comprising these patterns is noisy or incomplete, to do matching in high-dimensional

spaces, and to effectively interpolate and extrapolate from learned data [1].

Perhaps the most important characteristic of neural networks is their ability to

model processes and systems from actual data. The neural network is supplied with data

and then “trained” to mimic the input-output relationship of the process or system. The

ability of artificial neural networks to capture and retain nonlinear failure patterns make

them an excellent CBM tool, since equipment condition and fault developing trends are

often highly nonlinear and time-series based.

Choudhury et al. [12] used neural networks to monitor tool wear without having

to interrupt the machining process. They presented an on-line monitoring technique to

predict flank wear and concluded that flank wear values estimated by the neural network

were close to the actual flank wear measured under the tool maker’s microscope.

18

Booth et al. [8] used neural network-based condition monitoring techniques to

evaluate and classify the operating condition of power transformers in power plants.

They demonstrated that neural networks could be used to ascertain the on-line condition

of the transformer through estimating the level of vibration based upon other sensor data

input, and comparing this with the observed sensor output. They also showed that neural

networks could be used to classify the “health” of the transformer based upon the inter-

relationships between load current, and thermal and vibration parameters.

Bansal [5] introduced a real-time, predictive maintenance system based on the

motion current signature of DC motors. They proposed a system that used a neural

network to localize and detect abnormal electrical conditions in order to predict

mechanical abnormalities that indicate, or may lead to the failure of the motor. The

author developed a simulation model to map the system parameters to the motion current

signature, and then used the mapping to generate training data for the neural network.

The study showed that the classification of the machine system parameters, on the basis

of motion current signature, using a neural network approach was possible.

Sinha et al. [68] developed a neural network model to predict the failure

probability of an underground pipeline system. The neural network was trained using the

results of a simulation-based reliability analysis. Several test cases were analyzed,

demonstrating that the proposed network was very accurate in predicting the probability

of failure directly from the in-line inspection data on depth and length of corrosion

defects.

Luxhoj and Shyur [53] compared neural network and proportional hazard models

for the problem of reliability estimation extrapolated from accelerated life testing data for

19

a metal-oxide-semiconductor integrated circuit. Both modeling approaches were

discussed, and their performance in fitting accelerated failure for metal-oxide-

semiconductor integrated circuits was analyzed. The neural network model resulted in a

better fit to the data based upon minimizing the mean square error of the predictions

when using failure data from an elevated temperature and voltage to predict reliability at

a lower temperature and voltage.

Alguindigue et al. [1] discussed their work on developing a methodology for

interpreting vibration measurements based on neural networks. The methodology made it

possible to automate the monitoring and diagnostic processes for vibrating components.

The authors thought that the potential of neural networks to operate in real-time and to

handle data that may be distorted and noisy makes the methodology an attractive

complement to traditional vibration analysis. They illustrated the effectiveness of the

neural network technique to a data set consisting of vibration data from a steel sheet

manufacturing mill.

2.2.3 Proportional Hazard Models

Proportional hazard models a system’s risk of failure with its working age and

external operating conditions that are captured using explanatory covariates [50]. One of

the first proportional hazard models was developed by Cox to analyze medical survival

data [16, 17]. Proportional hazard models were then used in various engineering

applications, such as aircrafts, marine applications, and machinery [35, 36, 37, 86].

Kumar and Westberg [47] developed a PHM to estimate the optimum maintenance time

interval for a system by considering planned and unplanned maintenance costs. Kobacy

et al. [45] used simulation techniques to schedule PM intervals for pumps used in a

20

continuous process industry. The authors proposed a proportional hazard model to

evaluate the risk of failure and demonstrated that their model lead to an increase in

system availability and better performance.

Jardine et al. [39] proposed a PHM with a Weibull baseline hazard function and

time-dependent stochastic covariates representing monitored conditions to incorporate

condition monitoring information when estimating a component’s reliability. A Markov

stochastic process was assumed as a model for stochastic covariates. The optimal

replacement policy was either to replace at failure or replace when the hazard function

exceeded a threshold level determined to minimize the expected total cost per unit time.

This study was part of a continuous research effort in the area of CBM to develop

software which could assist engineers to optimize decisions in a CBM environment. A

case study dealing with diesel engine inspections and replacements illustrated the use of

the decision model and software under development. In [41], the finished software,

called EXAKTTM, was used by Campbell’s Soup to optimize CBM decisions. A study

was carried out that compared their current replacement policy of shear pump bearings

with other replacement policies, including one that used EXAKTTM. The results showed

that replacements that are made according to the output from EXAKTTM resulted in a

documented cost reduction of 33%.

Ghasemi et al. [30] derived an optimal CBM replacement policy that assumed

that the diagnostic state of the equipment was unknown, but could be estimated based on

the observed condition. The authors assumed that the information obtained at inspection

times could only be used to calculate the probability that the system is in a certain

diagnostic state. This assumption brought the model closer to real world situations since

21

most information is noise corrupted and should not be treated as perfect information. In

addition, in many situations a specific value of an observation can belong to more than

one diagnostic state. In this paper, the equipment deterioration process was formulated

by a PHM. Since the equipment’s state was unknown, the optimization of the optimal

maintenance policy was formulated as a partially observed Markov decision process

(POMDP), and the problem was solved using dynamic programming. Combining the

PHM and POMDP enabled the model to take into account two causes of system

deterioration: the ageing process and the conditions under which the system was used. In

addition, the model took into account the manufacturer knowledge, which is an important

source of information.

Prasad and Rao [61] used PHM techniques to assess the failure characteristics of

three different case studies. The first case was the failure analysis of electro-mechanical

equipment under renewal process with type of failure (electrical, compressed air, cable)

as a covariate. Non-parametric PHM methods were used to obtain failure rate ratios of

the equipment at different covariates. The second case study was maintenance

scheduling of a thermal power unit under a non-homogeneous poisson process with type

of failure mode (boiler, electrical, turbine) as a covariate. Three different non-parametric

cumulative hazard rate function estimators were discussed to evaluate rate ratios of

system covariates. The last case was accelerated life testing of a small D.C. motor with

voltage, load current and type of operation as covariates. In this case study, the failure

behavior of the motor at different operating condition using non-parametric PHM

methods was compared with the results obtained by the Weibull PHM.

22

Luxhoj and Shyur [53] compared proportional hazard and neural network models

for the analysis of time-dependent dielectric breakdown data for a metal-oxide-

semiconductor integrated circuit. The study showed that the neural network model

presented a more accurate technique for using accelerated failure data for estimating

reliability at normal operating conditions than the proportional hazards model.

Kumar and Westberg [47] suggested a reliability based approach for estimating

the optimum maintenance time interval for a system or threshold values of CM variables

under the age replacement policy. A PHM was used to estimate the reliability function,

which was based both on the failure times and the values of the monitored variables.

Then, the authors formed a maintenance cost equation based on the planned and

unplanned maintenance costs and the reliability function. In order to find the optimum

maintenance time interval or the threshold values of the monitored variables, a total time

on test (TTT) plot was used to find the minimize the long run maintenance cost. The

authors used an example based on pressure gage failure data to illustrate their approach.

Vlok et al. [75] described a case study in which the Weibull PHM was used to

determine the optimal replacement policy for a critical item which was subject to

vibration monitoring. The case study considered CBM for circulating pumps in a coal

wash plant. The CBM policy recommended in this study was based on lifetime data

collected over a period of 2 years, and was compared with current practice. The policy

was validated using data that arose from subsequent operation of the plant.

Proportional hazard models attempt to characterize degradation processes at an

aggregate level compared to other methods that focus on modeling the evolution of

sensory-based condition monitoring information. In addition, these models require a

23

baseline hazard function, which is time-based rather than condition-based [79]. As a

result, the use of degradation models is becoming increasingly popular in CBM

applications.

2.2.4 Degradation Models

Degradation modeling focuses on using degradation signals developed via

condition monitoring techniques that capture the deterioration of a component over time.

Degradation models can be used to estimate the residual life distribution of the monitored

component.

Lu and Meeker [52] developed a two-stage methodology to model the path of a

condition-based degradation signal using random coefficients growth models. Generally,

degradation models utilize a sample of degradation signals to estimate the residual life

distributions for a population of components. However, most degradation models rarely

integrate real-time condition-based degradation signals originating from in-field

components. Consequently, Gebraeel et al. [28, 29] developed a sensory-based updating

method for updating residual life distributions of components while they are operating in

the field. The authors used random coefficients models and updated the prior distribution

of the stochastic parameters of the degradation model using real-time degradation signals

unique to the individual component that was being monitored. The result is a degradation

model that represents a more precise estimate of the true trajectory of the component’s

degradation signal and can be used to refine the distribution of the residual life of the

component.

Yang and Yang [85] developed an improved method of accelerated life testing

that utilized degradation modeling with random coefficients. In accelerated life testing,

24

each component from a selected sample is subjected to elevated stress and operated until

either failure occurs or the duration of the test expires. The life times of the components

that fail are then used in life estimation for the entire population. In contrast, the method

developed in study used the life times of failed components along with degradation

information from operating components to get better estimates of lifetime parameters.

During life testing, the time at which the component degradation value reached each of

several predefined levels was recorded and used to estimate the parameters of life

distributions for each level. The authors used an experiment to demonstrate that their

method provided better estimators than traditional life testing in which only failure times

are recorded.

Crk [18] presented a method of accelerated life testing that estimated a system’s

reliability by monitoring performance degradation, instead of directly observing failure

times. Specifically, the method was more efficient in estimating the reliability of

components that have extremely high reliability, such as many electrical and

electromechanical components. In such cases traditional accelerated life tests do not

result in failure even after 1,000 or more hours of testing. Crk suggested that the

available testing time could be used more efficiently by monitoring and recording the

actual product performance degradation over time. However, since the product’s

performance degradation may progress very slowly at the operating stress level, the

accelerated degradation methodology was proposed. The proposed methodology

considered a component or a system performance degradation function whose parameters

may be random, correlated, and stress dependant. This assumption led to the

development of the multivariate, multiple regression analysis of the degradation function

25

parameters with respect to applied stresses. The methodology was based on the fact that

the failure mechanisms caused gradual degradation of a subsystem or a system

performance until it reached the critical level when the system is in a failed state. If the

failure mechanisms could be identified and the degradation measured, the system or the

subsystem reliability could be determined in terms of the critical level of degradation that

was reached after some period of time. This methodology implied that the actual time to

failure may never be observed but it could be determined by extrapolation from the

estimated degradation path for each failure mechanism and for each subsystem at given

stresses.

Wu and Tsai [82] used a degradation analysis to estimate the time-to-failure

distribution of a population of components. The authors modified the two-stage method

presented in [52] by applying a fuzzy-weighted estimation when the degradation paths of

a few life test units are different from those of most paths. A real data set was analyzed

to illustrate the approach. They found that the fuzzy-weighted estimation reduced the

affection of different patterns of degradation paths and improved the estimation results of

time-to-failure distributions.

Li and Pham [48] developed a generalized CBM model subject to multiple

competing failure processes based on degradation paths, and cumulative shock damage.

The two stochastic degradation processes considered were a random-coefficient

degradation path function, and a randomized logistic degradation path function. The

shock process was modeled according to a Poisson process. The maintenance model

assumed that there were two possible maintenance actions, which restored the system to

as good as new: preventive maintenance (PM), or corrective maintenance (CM). At each

26

maintenance inspection interval, if both degradation values were below their PM

thresholds, and the shock damage value was less than its threshold, then the system was

considered to be in good condition. Alternatively, if one of the degradation processes fell

into a specified PM zone, and the other two failure processes were less than their

corresponding failure thresholds, a PM action was performed. A degradation processes

was defined as being in its PM zone if its degradation value was above its PM threshold,

but below its failure threshold. A CM action was performed if one of the failure

processes exceeded their corresponding failure thresholds. The authors assumed that the

cost for CM was higher than the cost for PM. The need for PM or CM was determined

upon each maintenance inspection, and the inspection cycles were reduced according to

the geometric sequence as the system aged. The authors discussed an algorithm based on

the Nelder-Mead downhill simplex method to obtain the optimum inspection sequences,

as well as the PM threshold values, that minimized the long-run average maintenance

system cost rate. The authors use numerical examples to illustrate their optimization

algorithm.

Yan et al. [84] presented a prognostic method for machine degradation detection,

which could both assess machine performance and predict the remaining useful life. The

authors used logistic regression to model the relationship between independent condition

variables and machine performance, where machine performance was defined as the

probability of failure. Based on the logistic model after training, on-line condition data

was used to calculate the performance of a machine at each calculation cycle and then,

according to the previous performance assessment results, future performance tendency

was predicted by an ARMA (or Box-Jenkins) model; consequently time to failure could

27

be delivered dynamically. The authors applied the method to an elevator door motion

system and presented the results.

Christer and Wang [14] addressed the problem of scheduling condition

monitoring inspections for a production plant. During an inspection, if the degradation of

the component had progressed beyond a given threshold or the component had failed,

then it was replaced. They assumed a linear degradation model and developed a

probabilistic cost model that considered the costs of monitoring, the cost of replacement

after failure, and the cost of replacement before failure. They also developed a

probabilistic availability model that can be used to select an inspection interval that

maximized plant availability.

2.3 Summary

In the following chapters, we investigate the impact of different maintenance

policies and inventory replacement policies on hypothetical manufacturing systems

consisting of several workstations in varying manufacturing layouts. We describe three

simulations studies used to analyze and compare traditional preventive maintenance and

inventory policies with predictive maintenance and inventory policies. In Chapter 3, we

compare a maintenance policy based on the sensor-updated degradation models

developed by Gebraeel et al. [28, 29] with two other conventional policies, a reliability-

based preventive maintenance policy and a degradation-based predictive maintenance

policy. We describe a similar study in Chapter 4, however, whereas in Chapter 3 we base

maintenance decisions on the parameters of individual workstations, in Chapter 4 we

base maintenance decisions on system parameters. In Chapter 5, we compare a

traditional reliability-based preventive inventory replacement policy with a policy based

28

on the sensory-updated degradation model developed in [28, 29]. Chapter 6 discusses

conclusions and future research.

29

CHAPTER 3: STUDY 1. ANALYSIS OF MAINTENANCE POLICIES

IN A PARALLEL WORKSTATION MANUFACTURING SYSTEM

This chapter investigates the impact of different maintenance policies on the

performance of a hypothetical manufacturing system that consists of five parallel

workstations with one common arrival station and a shipping dock. We use ARENA

simulation software to model the manufacturing system. Parts are assumed to arrive

randomly to the system and can be processed on any of the five workstations, depending

on which one is empty at the time of arrival. The parts are processed at a predetermined

processing time and then delivered to the shipping dock where they exit the system. We

propose a maintenance policy that is based on the sensory-updated degradation models

developed by Gebraeel et al. [28, 29]. We compare this policy with two other

conventional policies, a reliability-based preventive maintenance policy and a

degradation-based predictive maintenance policy. We evaluate the efficiency of each

policy by evaluating the number of failures, planned replacements, and total maintenance

costs corresponding to each policy. This is achieved by collecting simulation statistics

pertaining to these variables.

3.1 Preventive Maintenance

The first maintenance policy that will be considered in this simulation-based

analysis is a conventional preventive maintenance policy. This policy uses the failure

time distribution to calculate the preventive maintenance (PM) interval. For the purpose

of this analysis, we assume that the failure time of the workstations follows a Weibull

distribution (3.1) whose parameters will be evaluated later as described in Section

30

3.3.2.1.1. We are interested in evaluating the PM interval, Rt . To do this, we solve for

Rt in expression (3.1) given a specific reliability level (1 - F(tR));

βθ)/(1)(Rt

R etF −−= (3.1)

where, F(tR) is the CDF of a Weibull distribution, θ is the scale parameter and β is the

shape parameter of the Weibull distribution, and R is the desired reliability level of the

system.

The preventive maintenance policy is a time-based policy. Its main disadvantage

is that it does not consider the condition or degradation state of the equipment being

maintained.

3.2 Predictive Maintenance

This section presents two degradation-based predictive maintenance policies used

to estimate condition-based maintenance routines based on equipment degradation

characteristics. The two predictive policies utilize condition monitoring information

associated with equipment degradation. The underlying basis of these policies is that the

evolutionary trends of the condition-based sensory signals (aka. Degradation signal) can

be used to estimate residual life the equipment.

Degradation modeling is a widely used approach used to model a component’s

degradation signal [52, 60]. One common technique is to model the degradation signal as

a stochastic process with deterministic and stochastic parameters that capture constant

and random degradation phenomena as shown in (3.2);

 () () ()tthtS εθφ += ,, (3.2)

31

The functional form of the signal, ().h , depends on the type of component being

modeled and represents a relationship between the amplitude of the signal and the

operating time. The functional form may follow a linear, polynomial, exponential, or any

other trend. The parameter φ is deterministic and is used to capture degradation

characteristics that are constant across a component’s population. The parameter θ is a

stochastic parameter that is assumed to follow some distribution)(θπ and is used to

model random degradation characteristics i.e. unit-to-unit variation across. It should be

noted that these parameters can take the form of a vector of parameters. The term ()tε is

the error term, which is used to model measurement noise and signal fluctuations.

In this chapter, we consider two degradation-based predictive maintenance

policies. The first policy is based on the two-stage degradation model developed by Lu

and Meeker [52]. We will refer to this maintenance policy as “Degradation Model I”.

The second predictive maintenance policy is based on the sensory-updated degradation

model developed by Gebraeel [28, 29]. We will refer to this model as “Degradation

Model II”.

For the manufacturing system considered in this paper, we assume that the

workstations degrade over time and that their degradation is associated with some

degradation/performance signal. As will be demonstrated later, we will utilize a database

of real-world vibration-based degradation signals obtained from a bearing testing setup to

simulate the degradation process of each workstation. The degradation signals are

developed based on the vibration characteristics of degrading bearings. These signals

possess an exponential form of growth. Due to these characteristics, we will limit our

models to the family of exponential degradation models.

32

3.2.1 Degradation Model I (Exponential Base Case)

The first predictive maintenance policy is developed based on the degradation

modeling framework presented in [52]. Under this framework, the exponential

degradation model is expressed as follows;

 tetS βθ=)((3.3)

where, as applied to (3.3), θ and β are the stochastic parameters, and there is no

deterministic parameter.

For mathematical convenience, we work with the logged degradation signal.

Thus, we define ()tL as follows;

 ()() () ttStL βθ +== lnln)((3.4)

where,)(lnθπ and)(βπ denote the prior distributions, where),(~ln 2
00 σμθ N and

),(~ 2
11 σμβ N . The exponential degradation model is used to estimate the residual life

distributions of components whose degradation signals possess an exponential functional

form. The parameters of the prior information can be estimated from a sample of

degradation signals by fitting a sample degradation signals with an exponential functional

form and noting the values of the exponential parameters. The residual life distribution is

equivalent to the distribution of the time it takes a partial degradation signal to reach a

predetermined failure threshold, D (3.5),

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

−−
Φ=≤=>

2
1

22
1

2
0

10

/][
/])(ln[))((Pr)(Pr
μσσ
μμ

t
DtDtLtT (3.5)

33

Given a desired reliability level, we use the above expression to predict the time

of a planned maintenance routine by solving for t. This policy is different from the

conventional PM policy in that planned maintenance routines are based on condition-

based information.

3.2.2 Degradation Model II (Exponential Base Case)

The second predictive maintenance policy is based on the sensory-updated

degradation model developed by Gebraeel et al. [28, 29]. The main difference between

this degradation modeling framework and the previous is that the distributions of the

stochastic parameters of the prognostic degradation models are updated using real-time

degradation signals. Consequently, the residual life distributions that were computed

using population-specific degradation characteristics can now be updated, in real-time,

based on the unique degradation characteristics of the individual components that are

being monitored.

Similar to the previous section, we focus on the sensory-updated exponential

degradation model. We consider the special case where the error term follows a

Brownian motion as proposed in [28]. Under these assumptions, we define ()tS to

denote the value of the degradation signal at time t. We assume that ()tS has the

following functional form;

 () 2
)(

2t
tteetS

σ
εβθφ

−
+= (3.6)

where φ is a constant, θ is a random variable that follows a Lognormal distribution, i.e.,

θln is Normal with mean oμ and variance 2
oσ , and β is Normal with mean 1μ and

34

variance 2
1σ . The parameters θ and β are assumed to be independent. The error

term () ()tWt σε = is a Brownian motion with mean zero and variance t2σ . For

mathematical convenience, we work with the logged degradation signal. Thus, we define

()tL as follows;

 () ()() ()
2

ln
2t

tttStL
σ

εβθφ −++′=−= (3.7)

We define θθ ln=′ and ()2/2σββ −=′ . Thus, ()tL can be expressed as

follows;

 () ()tttL εβθ +′+′= (3.8)

Next, we define () ()1−−= iii tLtLL , the difference between the observed value of

the logged signal at times it and 1−it , for ,...,3,2=i with ()11 tLL = . Furthermore, let

()θπ ′1 and ()βπ ′2 denote the prior distributions of θ′ and β ′ respectively. Note that

()βπ ′2 is a Normal distribution with mean ()2/2
11 σμμ −=′ and variance 2

1σ . Our goal is

to update the prior distributions of the stochastic parameters using the signals that we

observe from the components that are being monitored.

Given the observed signal values, kLL ,...,1 , observed at times ktt ,...,1 , we can find

the posterior distribution of θ′ and β ′ using Bayes theorem (11);

 () () () ()βπθπβθβθ ′′′′∝′′ 2111 ,,...,,...,, kk LLfLLp (3.9)

35

As mentioned earlier, this model was developed in [28]. The authors proved that

the posterior distribution of ()βθ ′′, is a Bivariate Normal distribution with mean

()βθ μμ ′′ , and variance ()22 , βθ σσ ′′ , where:

() ()

() () 1
2
1

222
11

22

2
11

2
110

22
11

22
1

' ttt

LtttL

oo

k

i ioo

σσσσσσ

σμσσσσσμσ
μθ −++

⎟
⎠
⎞⎜

⎝
⎛ ′+−++

=
∑ =

 (3.10)

() ()

() () 1
2
1

222
11

22

1
2

1
2

111
222

11
2
1

' ttt

ttLttL

oo

ooo
k

i i

σσσσσσ

σμσσσσσμσ
μβ −++

+−+⎟
⎠
⎞⎜

⎝
⎛ ′+

=
∑ =

 (3.11)

()

()() 1
2
1

222
11

22

22
11

22
2

ttt
tt

oo

oo

σσσσσσ
σσσσ

σθ −++
+

=′ (3.12)

()

()() 1
2
1

222
11

22
1

22
1

2
2

ttt
t

oo

oo

σσσσσσ
σσσσ

σ β −++
+

=′ (3.13)

Next, we use the updated distributions of the stochastic parameters to compute the

predictive distribution of the signal, ()ttL k + which is Normal with the following mean

and variance [28]:

 () () ttLtt kk βμμ ′+=+~ (3.14)

 () tttt k
222

'
2~ σσσ β +=+ (3.15)

Using the predictive distribution of the degradation signal, we calculate the

updated residual life distribution of the component that is being monitored as the

distribution of the time until the degradation signal reaches a predetermined failure

threshold D.

36

Let T denote the residual life of the partially degraded component. Therefore, T

satisfies () DttL k =+ and its distribution is given by;

 () () () ()
() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−+

Φ=≤=
k

k
kT tt

DttLLtTtF
σ

μ
~

ln~
,...,Pr 1 (3.16)

where ().Φ is the CDF of a standardized Normal random variable.

We now develop a simulation model of a manufacturing system in order to test

the three maintenance policies presented earlier.

3.3 Simulation Model

This simulation model considers three maintenance policies. It studies the effect

of these policies on the performance of a specific manufacturing system. The first

maintenance policy is a conventional reliability-based preventive maintenance policy

(Section 3.1). We refer to this policy as “PM policy”. Next, we consider two types of

predictive maintenance policies. The first policy is based on a conventional degradation

modeling framework, Degradation Model I in Section 3.2.1. We consider the

Exponential Degradation Model as our base case. We refer to this policy as “DM-I

policy. The second predictive maintenance policy is based on the Sensory-Updated

Exponential Degradation Model, Degradation Model II Section 3.2.2. We refer to this

policy as “DM-II policy”.

To analyze these maintenance policies, we develop a simulation model of a

manufacturing system using Arena. The simulated manufacturing system consists of five

parallel a single-stage manufacturing workstations.

37

Figure 3.1 presents a schematic representation of this manufacturing system. Pre-

processed parts arrive to a staging station. The inter-arrival time is assumed to be

exponential with a mean of 0.25 minutes. Upon arrival, each part is processed on one of

the five workstations (depending on which one is free). The processing times of each

workstation is assumed to follow a Triangular distribution (0.6, 0.8, and 1 minutes).

Upon completion, the finished part is transferred to a shipping area.

Workstation 1

Workstation 2

Workstation 3Pre-processed
Parts Arrive

Shipping
Department

Workstation 4

Workstation 5

Figure 3.1. Schematic of the manufacturing system.

An operational workstation can become unavailable for two possible reasons, a

random failure occurs or a scheduled maintenance routine is performed. A workstation’s

failure downtime is assumed to be random and follows a Normal distribution with mean

300 minutes and variance 30 minutes, and a workstation’s scheduled maintenance routine

downtime is assumed to be random and follow a Normal distribution with mean 30

38

minutes and variance 5 minutes. Furthermore, we assume that each workstation degrades

gradually until it fails. To represent a workstation’s degradation process, we utilize a

real-world vibration-based database of degradation signals to simulate a workstation’s

degradation. In other words, the vibration-based degradation signals and their

corresponding failure times are used to characterize the degradation process. The

degradation database is developed from a series of accelerated degradation tests in which

vibration signals associated with rolling element bearings are continuously acquired

during the duration of the test. The degradation database contains the vibration-based

degradation signals and the failure times for 50 rolling element bearings that have been

run-to-failure. The same degradation database has been used to develop degradation

models in Gebraeel et al. [28, 29].

In the following section, we discuss the simulation model used to evaluate the

performance of the three maintenance policies. The simulation model consists of two

submodels. The first submodel represents the simulated manufacturing system and the

second submodel characterizes the control logic of each maintenance policy.

3.3.1 Manufacturing System Submodel

Figure 3.2 represents a flowchart of the manufacturing system submodel. The

CREATE module is used to create entities that represent parts ready to be processed.

Each part is held in a queue at a HOLD module until a workstation is available to process

the part. If all workstations are seized, i.e., already processing parts, the part waits in

queue until a workstation becomes available. The HOLD module checks the availability

of the workstations using the following expression in ARENA:

39

 NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) <>
INACTIVE_RES, for i = 1, 2,…, 5

1. NR(Workstation i Resource) is a variable that takes on the value 0 if the

workstation is free and 1 if the workstation is already processing a part;

2. STATE(Workstation i Resource) returns the current state of the ith Workstation

Resource;

3. INACTIVE_RES checks if the resource is currently in the inactive state, which

means that the resource is either failed or being maintained.

Once a workstation is available, the first part in the queue enters a DECISION

module that checks which of the five workstations is available to process the part. This is

accomplished using the following statement:

 NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) =
INACTIVE_RES, for i = 1, 2,…, 5

Each workstation is represented by a PROCESS module. Once a part arrives at a

PROCESS module, it is processed according to a prespecified processing time. As

mentioned earlier, the processing time of each workstation follows a Triangular

distribution with the following parameters: 0.6, 0.8, and 1 minutes. Once processing is

complete, the part exits the system through a DISPOSE module.

40

Figure 3.2. Manufacturing system submodel.

3.3.2 Maintenance Policy Submodel

This submodel controls the execution of each maintenance policy. It simulates

workstation failures and controls maintenance activities. This is achieved using two

subroutines. The first is responsible for generating workstation failure times and

computing PM intervals, while the second is responsible for shutting down a workstation.

The two subroutines work in tandem to simulate maintenance routines and failures for

each workstation.

3.3.2.1 Failure Time Subroutine

The failure time subroutine is responsible for simulating workstation failures and

computing PM intervals. It begins with a CREATE module that generates a single

“phantom” entity. This entity is used to control the generation of workstation failure

times and schedule a preventive maintenance (PM) routine. The details of its

41

functionality differ according to the maintenance policy that is being used. Figure A.1

represents a flowchart of the failure time subroutine.

3.3.2.1.1 PM Policy

For the PM policy, the phantom entity instantly enters a VBA code block at time t

= 0. This VBA block is used to generate a workstation failure time , failure_time_i, and

calculate a PM interval, workstation_i_interval.

Workstations are subject to random failures. The failure time distribution is

assumed to follow a Weibull distribution. The shape and scale parameters of the Weibull

distribution are, 0549.3=β and 75.784=θ , respectively. These parameters are

evaluated using a sample of failure times obtained from the degradation database used in

Gebraeel [28, 29]. Specifically, the parameters are estimated using a sample of failure

times corresponding to 25 rolling element bearings (bearings 1 to 25) that have been run

to failure.

Preventive maintenance interval is different for different reliability levels. In

other words, for a given workstation i, the PM interval, workstation_i_interval, is

calculated by solving equation (3.1) for the desired reliability level, R.

For a given workstation i, if workstation_i_interval > failure_time_i, then the

workstation experiences a sudden failure, otherwise, a planned replacement is performed.

Consequently, there are two types of replacement activities, (1) failure replacement if the

workstation fails unexpectedly, and (2) preventive replacement if the workstation is down

for a scheduled maintenance routine. Due to their unexpected nature, the duration of

failure replacements are assumed to be longer than those of preventive replacements.

42

After replacement is complete, the phantom entity travels back to the VBA block

to calculate a new preventive maintenance interval and generate a new workstation

failure time. This routine is performed independently for each workstation.

3.3.2.1.2 DM-I Policy

A similar procedure is performed for the DM-I policy. However,

workstation_i_interval, is determined by computing the residual life distribution of the

workstation and solving expression (3.5) to find the appropriate time t. The time t

represents the maintenance interval, workstation_i_interval, which corresponds to a

prespecified reliability level, R. The parameters of the prior information are estimated

from the sample of degradation signals from the degradation database (bearings 1 to 25).

The estimated values of these parameters are ,276132.50 −=μ ,004468.01 =μ

,199013215.02
0 =σ and .108064.4 72

1
−×=σ

The residual life distribution represents the distribution of the time until the

degradation signal reaches a predetermined failure threshold. The degradation signals

considered in this paper are composed of two phases as shown in Figure 3.3. Phase I

represents the nondefective operation of the bearing while phase II characterizes the

partially degraded operation of the bearing. In this work, the residual life distribution is

computed using the phase II information. Consequently, the failure time of a

workstation, failure_time_i, is generated from the conditional Weibull distribution given

that the workstation has lasted up to time To, where To represents phase I (nondefective

phase) of the workstation’s degradation signal.

43

Similar to the PM maintenance policy, after replacement is complete the phantom

returns back to the VBA block and generates the next failure time and schedules the next

planned maintenance routine.

Degradation Signal

0

0.005

0.01

0.015

0.02

0.025

0.03

0 100 200 300 400 500 600 700 800 900
Time (mins)

A
ve

ra
ge

 A
m

pl
itu

de
 (V

rm
s)

Phase I

Phase II

Figure 3.3. Characteristics of the workstation’s degradation signal.

3.3.2.1.3 DM-II Policy

The main difference between the DM-II maintenance policy and previous two

policies is that the residual life distribution of each workstation is updated in real-time as

its degradation signal is being observed. The underlying assumption for this maintenance

policy is that a condition monitoring system is used to acquire data every 2 minutes.

Similar to the DM-I, the residual life distribution is computed at the beginning of Phase

II. However, unlike DM-I, the residual life distribution of each workstation is updated

once a signal is observed. Figure 3.4 presents an example of the updated residual life

distributions at different degradation percentiles.

44

PDF of Residual Life Distributions

0

0.002

0.004

0.006

0.008

0.01

0.012

0 200 400 600 800 1000 1200
Time (mins)

PD
F

10% 30% 50% 70% 90%

Figure 3.4. Updated residual life distributions via singular sensory updating.

The first updating procedure will begin after the first signal acquisition i.e., 2

minutes into Phase II of the degradation signal (Figure 3.3). When the phantom entity is

created by the failure time subroutine, it is delayed for two minutes before entering the

VBA block. Each time a workstation’s degradation signal is observed (every two

minutes); the VBA block is used to update the residual life distribution of that

workstation using equation (3.16). A sample of degradation signals from the degradation

database (bearings 1 to 25) was used to estimate the parameters of the prior distribution

),(βθπ ′′ . The estimated values of these parameters are ,031.60 −=μ ,008061.01 =μ

,3464.02
0 =σ ,100347.1 52

1
−×=σ and .0.0073482 =σ

In order to schedule a planned maintenance routine, it is necessary to stop the

updating process and use the most recent residual life distribution to estimate the

workstations remaining life. First, we define tk as the time elapsed after the onset of the

defective, i.e., time elapsed from the beginning of phase II. Given that we have observed

45

a partial degradation signal up to time tk, the updating process stops if RtR k ≤)(, where

)(1)(kk tFtR −= is the reliability of the system at the current updating epoch, tk,)(ktF is

the cdf of the remaining life at tk, and R is the designated reliability level of the

manufacturing system. Once a decision has been made to stop updating, the time for a

planned maintenance routine is computed as follows:

 workstation_i_interval = To + tk + tmedian (3.17)

where, oT is the duration of the nondefective phase (Phase I), kt is the time elapsed in

phase II of the degradation signal, and mediant is the median of the residual life

distribution. Note that we use the median because the mean of the residual life

distribution does not exist.

Under the DM-II maintenance policy, there are two scenarios for simulating

unexpected workstation failures. First, a workstation will experience an unexpected

failure if its degradation signal reaches the failure threshold before the stopping rule is

activated. On the other hand, if the stopping rule is activated before a workstation’s

degradation signal reaches the failure threshold, then the most recent updated residual life

distribution is used to compute the time for the workstation’s maintenance routine,

workstation_i_interval. In this case, unexpected failure of the workstation occurs if

workstation_i_interval > failure_time_i. We note that the workstation’s failure time,

failure_time_i, is generated from the conditional failure time distribution (Weibull) given

that the workstation has survived up to time To + tk.

46

3.3.2.2 Resource Shutdown Subroutine

The resource shutdown subroutine (Figure A.2) is used to simulate the

maintenance activities. This subroutine begins with a CREATE module that generates

one entity at the beginning of each simulation run. The entity enters a HOLD module,

where it waits until a workstation is shutdown. As mentioned earlier there are two main

ways a workstation is shutdown.

1. If workstation_i_interval is less than failure_time_i, then the shutdown is a result

of a planned maintenance routine. To simulate the planned replacement, we use a

PREEMPT block that stops the workstation and preempts the part being

processed. This is followed by an ALTER block that reduces the capacity of

workstation i to 0. This implies that the workstation will not be available for

processing. A DELAY module is used to simulate a planned maintenance

downtime. Once maintenance is complete, the workstation is assumed to be “as

good as new”. An ALTER block is used to increase the capacity of the

workstation back to 1, thus making it available to process parts. A variable Nm is

used to track the total number of planned replacements.

2. If workstation_i_interval is greater than failure_time_i, then the workstation

experiences an unexpected failure. A procedure similar to that discussed in the

previous case (1) simulates a failure replacement. A variable Nf is used to track

the total number of failure replacements.

Unexpected failures may also occur if a workstation’s degradation signal reaches it

failure threshold before a planned maintenance is scheduled. This is especially true for

the DM-II predictive maintenance policy.

47

3.4 Implementation and Results

Arena simulation was used to simulate the continuous operation of the

manufacturing system. Each simulation consists of three runs. Each run is 365-days and

each day is assumed to consist of two 8-hour shifts. Separate runs were performed for

each maintenance policy.

Figure 3.5 and Figure 3.6 show a frequency plot of the frequency of failure

replacements for the different maintenance policies at 70% and 90% reliability levels.

We observe that the maintenance policy which utilizes sensor-based updating of residual

life distributions provides the lowest number of workstation failures at the two levels of

reliability. Figure 3.7 and Figure 3.8 plot the frequency of planned maintenance routines,

i.e., preventive workstation replacements at two reliability levels, 70% and 90%.

0

1000
2000

3000
4000
5000

Preventive
Maintenance

Degradation
Model I

Degradation
Model II

Frequency of Failure Replacements (R = 70%)

Figure 3.5. Frequency of failure replacements for R = 70%.

48

0

1000

2000

3000

4000

Preventive
Maintenance

Degradation
Model I

Degradation
Model II

Frequency of Failure Replacements (R = 90%)

Figure 3.6. Frequency of failure replacements for R = 90%.

0

5000

10000

15000

Preventive
Maintenance

Degradation
Model I

Degradation
Model II

Frequency of Planned Replacements (R = 70%)

\

Figure 3.7. Frequency of planned replacements for R = 70%.

0

5000

10000

15000

20000

Preventive
Maintenance

Degradation
Model I

Degradation
Model II

Frequency of Planned Replacements (R = 90%)

Figure 3.8. Frequency of planned replacements for R = 90%.

49

Table 3.1 and Table 3.2 show the means and standard deviations of the number of

failure replacements and planned replacements, respectively, at 70% and 90% reliability

levels. We observe that Degradation Model II provides much lower standard deviations,

and thus much less variability in the number of maintenance routines performed.

Table 3.1. Means and standard deviations of number of failure replacements for R = 70%
and R = 90%.

Policy Mean Std. Dev. Mean Std. Dev.
Preventive Maintenance 3,601.66 24.13 1,788.65 33.04

Degradation Model I 4,039.00 36.32 3,089.67 40.78
Degradation Model II 84.00 3.36 129.00 13.12

N f (R = 70%) N f (R = 90%)

Table 3.2. Means and standard deviations of number of planned replacements for R =
70% and R = 90%.

Policy Mean Std. Dev. Mean Std. Dev.
Preventive Maintenance 8,277.65 29.17 16,115.65 45.83

Degradation Model I 6,739.67 44.41 9,239.99 52.08
Degradation Model II 13,142.67 4.69 13,305.01 18.35

N m (R = 70%) N m (R = 90%)

The performance of each maintenance policy was analyzed by estimating the total

maintenance costs of each policy. The total maintenance costs TC is defined as follows:

 mmff CNCNTC += (3.18)

50

where, fN is the number of failure replacements, fC is the cost of performing a failure

replacement (assumed to be $1500), mN is the number of workstation planned

replacements, and mC is the cost of performing a planned replacement (assumed to be

$100). Cf / Cm

The performance of each maintenance policy is influenced by the designated

reliability level of the manufacturing system. The performance of each maintenance

policy was evaluated for four different reliability levels, R: 95%, 90%, 80%, and 70%.

Figure 3.9 illustrates the total costs associated with each maintenance policy at different

reliability levels. It is clear that Degradation Model II provides a much lower total cost at

each given reliability level when compared to the other two maintenance policies. It is

interesting to note that the total maintenance cost for the PM and the DM-I maintenance

policies decreases as the reliability increases. This is an expected result since increasing

the reliability level results in fewer failures. The case is different for the DM-II

maintenance policy. The sensor-based updating procedure coupled with the fluctuations

of the degradation signals causes the residual life distributions to change dynamically at

different reliability levels. Consequently, the relationship between the reliability levels

and the maintenance cost is not very clear. However, the fact remains that the DM-II

policy provides the lowest costs.

51

Total Maintenance Cost

$0

$1,000,000

$2,000,000

$3,000,000

$4,000,000

65 70 75 80 85 90 95 100

Reliability (%)

Preventive Maintenance Degradation Model II Degradation Model II

Figure 3.9. Total costs of each of the maintenance policies.

Table 3.3 shows the means and standard deviations of the total maintenance cost

of each policy at each reliability level. We observe that the variability of total

maintenance cost is much lower for the maintenance policy that utilizes sensor-based

updating of residual life distributions.

Table 3.3. Means and standard deviations of the total maintenance cost of each policy at
each reliability level.

R (%) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
70 $1,360,767 $4,661 $6,230,255 $33,586 $6,732,467 $47,895
80 $1,447,866 $7,277 $5,222,519 $82,289 $6,149,208 $46,183
90 $1,711,001 $17,873 $4,294,540 $45,002 $5,558,504 $55,991
95 $1,935,417 $19,571 $3,575,274 $35,980 $5,025,951 $50,621

SUDM DMPM

52

3.5 Conclusion

The objective of this study was to compare a traditional preventive maintenance

policy with two predictive maintenance policies. The first policy scheduled maintenance

routines using a reliability-based preventive maintenance policy based on a Weibull

failure time distribution. The other two policies considered were predictive maintenance

policies that utilized degradation information to calculate residual life distributions, one

of which utilized real-time sensory information to continuously update the residual life

distributions.

We developed a simulation model of a manufacturing system to evaluate the

performance of each maintenance policy. The simulation analysis showed that the

sensor-updated predictive maintenance policy resulted in a much lower maintenance cost

compared to the conventional maintenance policy and the preventive maintenance policy.

The analysis also showed that the variability of performance was much lower for the

sensor-updated predictive maintenance policy. These results showed significant evidence

that updating the residual life distribution of degrading components resulted in a much

more accurate predicted failure time than not updating the residual life distribution of

degrading components. The simulation analysis also showed that that the sensor-updated

predictive maintenance policy resulted in very low performance variability, which is

critical in manufacturing systems that embrace Lean and Just-In-Time philosophies.

The results also showed that scheduling maintenance routines using a predictive

maintenance model like Degradation Model II can be more efficient than scheduling

routines using reliability-based preventive maintenance models. Since an increasing

number of manufacturing sectors are embracing Lean and Just-In-Time paradigms,

53

sensor-based prognostic maintenance policies like Degradation Model II are ideal for

preventing the occurrence of system failures, and reducing maintenance costs of

deteriorating systems.

54

CHAPTER 4: STUDY 2. ANALYSIS OF MAINTENANCE POLICIES

IN SEQUENTIAL WORKSTATION MANUFACTURING SYSTEMS

This chapter investigates the impact of different maintenance policies on the

performance of a model manufacturing system that consists of a series of work cells,

some of which contain redundant workstations. We use ARENA simulation software to

model the manufacturing system. Whereas in Chapter 3 we based our maintenance

policy decisions on the reliability of individual workstations, in this chapter we base our

maintenance decisions on the reliability of the entire manufacturing system. In other

words, we consider the combined series-parallel network of workstations in evaluating

the reliability of the manufacturing system. We evaluate the efficiency of each policy by

evaluating the workstation utilization and system throughput, as well as the number of

system failures, system planned replacements, and total maintenance costs corresponding

to each policy. This is achieved by collecting simulation statistics pertaining to these

variables.

4.1 Manufacturing System

The manufacturing system in this study is shown in Figure 4.1. It consists of a

series of three work cells. Work Cells 1 and 3 each consist of two redundant

workstations, and Work Cell 2 consists of a single workstation. When a pre-processed

part arrives to the first work cell, the part is processed on either workstation 1 or 2,

depending on which one is free. Next, the part arrives to the next work cell, where it is

processed by workstation 3. When the part arrives to the last work cell, it is processed on

either workstation 4 or 5, depending on which one is free.

55

Workstation 1

Workstation 2

Workstation 3Pre-processed
Parts Arrive

Shipping
Department

Workstation 4

Workstation 5

WORK CELL 1

WORK CELL 3

WORK CELL 2

Figure 4.1. Schematic of the manufacturing system.

Parts are assumed to arrive randomly to the system and are processed at

predetermined processing times and then delivered to the shipping dock where they exit

the system. We propose a maintenance policy that is based on the sensory-updated

degradation models developed by Gebraeel et al. [28, 29], and compare this policy with a

reliability-based preventive maintenance policy.

In the previous study (Chapter 3), the manufacturing system was assumed to

consist of a single work cell containing five redundant workstations. Maintenance

decisions for an individual workstation could be made independently of the rest of the

workstations. In this study, maintenance decisions are performed based on the reliability

of the entire manufacturing system. In other words, given a desired system reliability

level, a single planned maintenance routine is scheduled for the entire manufacturing

system, during which the entire system is shutdown for maintenance. Similarly, failure

of one of the work cells results in an unexpected failure of the entire system, at which

time the entire system would be shutdown for maintenance. Note that the failure of one

of the redundant workstations in Work Cells 1 and 3 would not result in a work cell

56

failure, whereas failure of the single workstation in Work Cell 2 would. A failed

workstation is not replaced until the entire system fails unexpectedly or a system planned

replacement is scheduled.

In analyzing a system of components, we determine an appropriate reliability or

reliability model for each component of the system, and by applying the rules of

probability according to the configuration of the components within the system, compute

a system reliability [24].

4.2 System Reliability

A system is defined as a given configuration of subsystems and/or components

whose proper functioning over a stated interval of time determines whether the system

will perform as designed. Components within a system may be related to one another in

two primary ways: in either a serial or a parallel configuration. In series all components

must function for the system to function. In a parallel, or redundant, configuration at

least one component must function for the system to function [24]. In 1964, Shelley and

Hamilton [65] presented block diagrams that depicted series and parallel relationships of

the subsystems of a multiple-engine cargo-type aircraft in order to evaluate system

reliability.

4.2.1. Reliability of Series Systems

Figure 4.2 presents a block diagram of a system consisting of several components

arranged in series.

57

Figure 4.2. Reliability block diagram for components in series.

Using the laws of probability, system reliability RS at time t may be determined

using the reliability of its individual components. Let E1 be the event that component 1

does not fail, and E2 be the event that component 2 does not fail. Then,

 Pr(E1) = ()tFE1
1− = R1 and Pr(E2) = ()tFE2

1− = R2

where, ()tFE1
 = the probability that component 1 fails at time t, ()tFE2

 = the probability

that component 2 fails at time t, R1 = the reliability of component 1, and R2 = the

reliability of component 2. Therefore, RS = Pr(E1 ∩ E2) = Pr(E1) Pr(E2) = R1 (R2),

assuming that the two components are independent (i.e., the failure or nonfailure of one

component does not change the reliability of the other component). For the system to

function, both component 1 and component 2 must function [24].

Generalizing to n mutually independent components in series, the system

reliability at time t can be expressed as follows;

)()()()(21 tRtRtRtR nS ×××= L (4.1)

4.2.2 Reliability of Parallel Systems

Two or more components are in parallel, or redundant, configuration if all units

must fail for the system to fail. If one or more units operate, the system continues to

operate. Parallel units are represented by the block diagram of Figure 4.3.

58

Figure 4.3. Reliability block diagram for components in parallel.

System reliability for n parallel and independent components is found by taking 1

minus the probability that all n components fail (i.e., the probability that at least one

component does not fail). To see this for two components, consider the following;

 RS = Pr(E1 ∪ E2) = 1 – Pr(E1 ∪ E2)C = 1 – Pr(E1
C ∩ E2

C)

 = 1 – Pr(E1
C) P(E2

C) = 1 – (1 – R1) (1 – R2)

Generalizing to n mutually independent components in parallel, the system reliability at

time t can be expressed as follows [24];

 []∏
=

−−=
n

i
iS tRtR

1

)(11)((4.2)

4.2.3 Reliability of Combined Series-Parallel Systems

Systems typically contain components in both serial and parallel relationships.

Consider, for example, Figure 4.4 [24]. Ri represents the reliability of the ith component.

To compute the system reliability, the network may be broken into serial or parallel

59

subsystems. The reliability of each subsystem is found. Then the system reliability may

be obtained on the basis of the relationship among the subsystems. In the network of

Figure 4.4, the subsystems have the following reliabilities [24]:

 RA = [1 – (1 – R1) (1 – R2)]

 RB = RA (R3) RC = R4 (R5)

Since RB and RC are in parallel with one another and in series with R6,

 RS = [1 – (1 – RB) (1 – RC)] (R6)

C

B

A

Figure 4.4. A system comprised of components in a combined series and parallel
relationship.

The manufacturing system considered in this study is shown in Figure 4.5. It

consists of two workstations in parallel, followed by a workstation in series, followed by

two additional workstations in parallel. Based on this configuration, one of the following

conditions must be met for a system failure to occur:

1. Workstation 1 and Workstation 2 fail;

2. Workstation 3 fails;

60

3. Workstation 4 and Workstation 5 fail.

To compute the reliability of the system, we determine the reliability of each

individual workstation of the system at time t, and by applying the rules of probability

according to the configuration of the components within the system, we compute a

system reliability, RS(t);

]))(1())(1(1[)(]))(1())(1(1[)(54321 tRtRtRtRtRtRS −−−−−−= (4.3)

where, Ri(t) is the reliability of the ith workstation.

Workstation 1

Workstation 2

Workstation 3Pre-processed
Parts Arrive

Shipping
Department

Workstation 4

Workstation 5

WORK CELL 1

WORK CELL 3

WORK CELL 2

Figure 4.5. Schematic of the manufacturing system.

4.3 Maintenance Policies

In this chapter we develop a simulation model that examines the effect of

different maintenance policies on the performance of the manufacturing system shown in

Figure 4.5. The first policy considered applies the reliability-based preventive

61

maintenance policy developed in Section 3.2, This policy uses a Weibull failure time

distribution to calculate PM intervals. The second policy considered is a degradation-

based predictive maintenance policy. This policy applies the sensory-updated

exponential degradation model developed in Section 3.2.2. to calculate PM intervals.

These maintenance policies are discussed in the following two sections.

4.3.1 Preventive Maintenance Policy

The first maintenance policy considered in this simulation-based study applies the

conventional preventive maintenance policy that we discussed in Section 3.2. Based on

expression (3.1), the reliability, R(t) of each workstation at time t is expressed as follows;

βθ)/()(1)(tetFtR −=−= (4.4)

where, F(t) is the CDF of a Weibull distribution, θ is the scale parameter and β is the

shape parameter of the Weibull distribution. These parameters will be evaluated later as

described in Section 4.4.2.1.

 In this study we are interested in evaluating the PM interval for the entire

system. To do this, we determine the reliability of each individual workstation of the

system at time t, using expression (4.4). Then, to evaluate the system PM Interval, we

solve for t in expression (4.3) given a specific system reliability level RS(t).

The preventive maintenance policy is a time-based policy. It does not consider

the condition or degradation state of the equipment being maintained, making it nearly

impossible to avoid catastrophic random breakdowns. This can lead to unnecessary

downtime and loss in production capacity. Unlike time-based policies such as this,

predictive maintenance policies focus on predicting unexpected failures.

62

4.3.2 Degradation Based Predictive Maintenance Policy

The second policy applies the degradation-based predictive maintenance policy

discussed in Section 3.3.2. The policy is based on the sensory-updated degradation

model developed by Gebraeel [29]. Based on the model, the reliability of a workstation

at time t is given by;

 () ()tFtR T−= 1 (4.5)

where FT(t) is the residual life distribution of the workstation, given by expression (3.16).

After computing the reliability of each workstation using expression (4.5), the system

reliability, RS(t), can be computed using expression (4.3). Accordingly, given a specific

desired system reliability, RS(t), expression (4.3) can be used to evaluate a system PM

interval by solving for t.

We now develop a simulation model of a manufacturing system in order to test

the two maintenance policies presented earlier.

4.4 Simulation Model

This simulation model considers two maintenance policies and studies the effect

of these policies on the performance of a specific manufacturing system. The first

maintenance policy is a conventional reliability-based preventive maintenance policy

(Section 4.2.1). We refer to this policy as “PM policy”. The second maintenance policy

is based on the Sensory-Updated Exponential Degradation Model (Section 4.2.2). We

refer to this degradation-based predictive maintenance policy as “DM policy”.

To analyze these maintenance policies, we develop a simulation model of a

manufacturing system using Arena. The simulated manufacturing system is a series-

63

parallel system consisting of five workstations. Figure 4.5 presents a schematic

representation of this manufacturing system. Pre-processed parts arrive to a staging

station. The inter-arrival time is assumed to be exponential with a mean of 0.25 minutes.

Upon arrival, each part is processed on one of the first two workstations (depending on

which one is free). Next, the part is processed on the third workstation, and then on one

of the last two workstations (depending on which one is free). The processing times of

workstation 1 and 2 are assumed to follow a Triangular distribution (4.25, 4.75, and 5.25

minutes); the processing time of workstation 3 is assumed to follow a Triangular

distribution (2.5, 2.75, and 3.0 minutes); the processing times of workstation 4 and 5 are

assumed to follow a Triangular distribution (4.75, 5.25, and 5.75 minutes). Upon

completion, the finished part is transferred to a shipping area.

The manufacturing system can become unavailable if a random system failure

occurs or a scheduled system maintenance routine is performed. Downtime resulting

from system failure is assumed to be random and follows a Normal distribution with

mean 300 minutes and variance 30 minutes. Downtime resulting from a scheduled

maintenance routine is assumed to be random and follow a Normal distribution with

mean 30 minutes and variance 5 minutes. The downtime resulting from an unplanned

system failure is assumed to be greater, since the demand for replacement parts and

maintenance personnel is unexpected. Furthermore, we assume that each workstation

degrades gradually until it fails. Workstation degradation is assumed to be modeled in

the same way as the simulation study in the previous chapter by utilizing a real-world

vibration-based database. In other words, the vibration-based degradation signals and

their corresponding failure times are used to characterize the degradation process.

64

In the following section, we discuss the simulation model used to evaluate the

performance of the two maintenance policies. The simulation model consists of three

submodels. The first submodel represents the simulated manufacturing system, the

second submodel characterizes the control logic of each maintenance policy, and the third

submodel controls the system maintenance activities.

4.4.1 Manufacturing System Submodel

Figure 4.6 represents a flowchart of the manufacturing system submodel.

Figure 4.6. Manufacturing system submodel.

The CREATE module is used to create entities that represent parts ready to be

processed. After their creation, each part is held in a queue at a HOLD module until one

of the first two workstations is available to process the part. If both workstations are

65

seized, i.e., already processing parts, the part waits in queue until a workstation becomes

available. The HOLD module checks the availability of the workstations using the

following expression in ARENA:

 NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) <>
INACTIVE_RES, for i = 1, 2

1. NR(Workstation i Resource) is a variable that takes on the value 0 if the ith

workstation is free and 1 if the workstation is already processing a part;

2. STATE(Workstation i Resource) returns the current state of the ith Workstation

Resource;

3. INACTIVE_RES checks if the resource is currently in the inactive state, which

means that the resource is either failed or being maintained.

Once workstation 1 or 2 is available, the first part in the queue enters a

DECISION module that checks which of the first two workstations is available to process

the part. This is accomplished using the following statement:

NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) =
INACTIVE_RES, for i = 1, 2

Each workstation is represented by a PROCESS module. Once a part arrives at a

PROCESS module, it is processed according to a prespecified processing time. As

mentioned earlier, the processing time of the first two workstations follows a Triangular

distribution with the following parameters: 4.25, 4.75, and 5.25 minutes. Once

processing is complete, the part is held in a queue at a HOLD module until workstation 3

is available to process the part; the processing time of the third workstation follows a

66

Triangular distribution with the following parameters: 2.5, 2.75, and 3.0 minutes. Once

processing is complete on workstation 3, the part is held in a queue at a HOLD module

until workstation 4 or 5 is available. Once one of the workstations is available, the part in

the queue enters a DECISION module that checks which of the last two workstations is

available to process the part. The processing time of the last two workstations follows a

Triangular distribution with the following parameters: 4.75, 5.25, and 5.75 minutes.

Once processing is complete, the finished part enters a RECORD module that tracks the

throughput of the system: throughput = throughput + 1. Hereafter, the part exits the

system through a DISPOSE module.

4.4.2 Maintenance Policy Submodel

This submodel controls the availability of each workstation. It simulates

workstation failures and controls maintenance activities. This is achieved using two

subroutines. The first is responsible for generating workstation failure times and

computing a system PM interval, while the second is responsible for shutting down a

workstation. The two subroutines work in tandem to simulate maintenance routines and

failures for each workstation.

4.4.2.1 Failure Time Subroutine

The failure time subroutine (Figure A.3) is responsible for simulating workstation

failures and computing the system PM interval. It begins with a CREATE module that

generates a single “phantom” entity. This entity is used to control the generation of

workstation failure times and schedule a system preventive maintenance (PM) routine.

The details of its functionality differ according to the maintenance policy that is being

used.

67

4.4.2.1.1 PM Policy

For the PM policy, the phantom entity instantly enters a VBA code block at time t

= 0. This VBA block is used to generate a workstation failure time , failure_time_i, and

calculate a system PM interval, denoted pm_interval.

Workstations are subject to random failures. The failure time distribution is

assumed to follow a Weibull distribution. The shape and scale parameters of the Weibull

distribution, 0549.3=β and 75.784=θ , respectively. These parameters are evaluated

using a sample of failure times obtained from the degradation database used in Gebraeel

[29]. Specifically, the parameters are estimated using a sample of failure times

corresponding to 25 rolling element bearings (bearings 1 to 25) that have been run to

failure.

The system preventive maintenance interval is different for different reliability

levels. Given the desired system reliability level, RS(t), the system PM interval is

calculated by solving for t in expression (4.1), where Ri(t) is the reliability of the ith

workstation, for i = 1, 2, …, 5. The reliability of each workstation is computed using

expression (4.2). For a given workstation i, if pm_interval > failure_time_i, then the

workstation experiences a sudden failure.

4.4.2.1.2 DM Policy

A similar procedure is performed for the DM policy. However, in this policy the

reliability of each workstation is determined by looking at its corresponding degradation

signal. Just as in Chapter 3, the degradation signals considered in this study are

composed of a nondefective and defective phase (Figure 3.3). The phase II information

68

is used to compute the residual life, and thus, the reliability distribution of the

workstation.

The reliability distribution of each workstation is updated in real-time as its

degradation signal is being observed. The underlying assumption for this maintenance

policy is that a condition monitoring system is used to acquire data every 2 minutes.

Beginning in Phase II, the reliability distribution is computed and is continuously updated

as signals are observed

When the phantom entity is created by the failure time subroutine, it is delayed

for two minutes before entering the VBA block. Every two minutes the VBA block is

used to compute the reliability of each workstation in one of the following ways;

1. If the degradation signal corresponding to the ith workstation is in its nondefective

phase (Phase I), the reliability of the workstation is assumed to be 1;

2. If the degradation signal corresponding to the ith workstation is in its defective

phase (Phase II), then the reliability of the workstation is given by expression

(4.3);

3. If the degradation signal cooresponding to the ith workstation has reached its

failure threshold, then the reliability of the workstation is assumed to be 0.

After the reliability of each workstation is computed, the system reliability can be

computed. Given the reliability or each workstation, the system reliability distribution,

)(tRS , can be computed using expression (4.1), where Ri(t) is the reliability of the ith

workstation, for i = 1, 2, …, 5. The estimated values of the prior parameters were

obtained from a sample of degradation signals from the degradation database (bearings 1

69

to 25). The computed values of the parameters are ,031.60 −=μ ,008061.01 =μ

,3464.02
0 =σ ,100347.1 52

1
−×=σ and .0.0073482 =σ

In order to schedule a system planned maintenance routine, it is necessary to stop

the updating process and use the most recent system reliability distribution to estimate the

system’s remaining life. Given that we have updated the system reliability distribution

up to time tk, the updating process stops if RtR kS ≤)(, where)(kS tR is the reliability of

the system at the current updating epoch, tk, and R is the designated reliability level of the

manufacturing system. Once a decision has been made to stop updating, the time for a

planned maintenance routine is computed as follows:

 pm_interval = tk + tmedian (4.6)

where, mediant is the median of the reliability distribution. Note that we use the median

because the mean of the reliability distribution does not exist.

Under the DM maintenance policy, there are two scenarios for simulating

unexpected workstation failures. First, a workstation will experience an unexpected

failure if its degradation signal reaches the failure threshold before the stopping rule is

activated. On the other hand, if the stopping rule is activated before a workstation’s

degradation signal reaches the failure threshold, then the most recent updated system

reliabillity distribution is used to compute the time for the workstation’s maintenance

routine, pm_interval. In this case, unexpected failure of the workstation occurs if

pm_interval > failure_time_i. We note that the workstation’s failure time, failure_time_i,

is generated from the conditional Weibull distribution given that the workstation has

survived up to time tk.

70

4.4.2.2 Resource Shutdown Subroutine

The resource shutdown subroutine (Figure A.4) is used to control the availability

of each workstation. This subroutine begins with a DETECT block that generates a

“phantom” entity when a workstation shutdown occurs. As mentioned earlier there are

two main ways a workstation is shutdown.

1. If pm_interval is greater than failure_time_i, then the workstation experiences an

unexpected failure. To simulate the workstation failure, we use a PREEMPT

block that stops the workstation and preempts the part being processed. This is

followed by an ALTER block that reduces the capacity of workstation i to 0. This

implies that the workstation will not be available for processing. The entity waits

in a HOLD module until system maintenance is initiated and completed; that is,

until it receives a signal from the System Maintenance Submodel to release the

entity (see section 4.4.3). Once maintenance is complete, the workstation is

assumed to be “as good as new”. An ALTER block is used to increase the

capacity of the workstation back to 1, thus making it available to process parts.

2. If pm_interval is less than failure_time_i, then the shutdown is a result of a

planned maintenance routine. To simulate the workstation planned replacement,

we use a PREEMPT block that stops the workstation and preempts the part being

processed. This is followed by an ALTER block that reduces the capacity of

workstation i to 0. This implies that the workstation will not be available for

processing. The entity waits in a HOLD module until system maintenance is

initiated and completed; that is, until it receives a signal from the System

Maintenance Submodel to release the entity (see section 4.4.3). Once

maintenance is complete, the workstation is assumed to be “as good as new”. An

ALTER block is used to increase the capacity of the workstation back to 1, thus

making it available to process parts.

71

Unexpected failures may also occur if a workstation’s degradation signal reaches

its failure threshold before a planned maintenance is scheduled. This is especially true

for the predictive maintenance policy.

4.4.3 System Maintenance Submodel

The system maintenance submodel (Figure A.5) is used to simulate the system

maintenance activities. This subroutine begins with a CREATE module that generates

one entity at the beginning of each simulation run. The entity enters a HOLD module,

where it waits for a system shutdown. There are two ways the system shutdown can

occur, (1) the system fails, or (2) a planned system replacement occurs.

1. As mentioned earlier, based on the configuration of the manufacturing system

used in this study (Figure 4.5), the system will fail if,

a. Workstation 1 and 2 fail;

b. Workstation 3 fails;

c. Workstation 4 and 5 fail.

If a system failure occurs, all of the workstations that have not already failed will

immediately shutdown and experience unexpected failure (see (1) of Section

4.4.2.2). A DELAY module is used to simulate a failure replacement downtime.

After the delay, a SIGNAL module is used to signal the Resource Shutdown

Subroutine to release its entities from its HOLD modules (refer to (1) of Section

4.4.2.2), and make the workstations available again. A system failure downtime

is assumed to be random and follows a Normal distribution with mean 300

72

minutes and variance 30 minutes. A variable Nf is used to track the total number

of system failure replacements.

2. A planned system replacement occurs if the system PM interval occurs before a

system failure. A DELAY module is used to simulate a planned system

replacement downtime. After the delay, a SIGNAL module is used to signal the

Resource Shutdown Subroutine to release its entities from its HOLD modules

(refer to (2) of section 4.4.2.2), and make the workstations available again. A

planned system replacement downtime is assumed to be random and follow a

Normal distribution with mean 30 minutes and variance 5 minutes. A variable Nm

is used to track the total number of system planned replacements.

4.5 Implementation and Results

Arena simulation was used to simulate the continuous operation of the

manufacturing system. Each simulation consists of five runs and each run is 365-days.

Separate runs were performed for each maintenance policy.

Figure 4.7 shows a frequency plot of the system failures for each maintenance

policy evaluated at several system reliability levels, 60%, 70%, 80%, 90%, and 95%. We

observe that degradation-based predictive maintenance (DM) policy provides the lowest

number of workstation failures at each reliability level. We also observe that the number

of failures at the 95% reliability level is relatively higher than the rest of the reliability

levels. In fact, the number of failures decreases as the reliability level decreases. This

can be attributed to the incorporation of additional degradation signals that improve the

accuracy of the residual life distribution.

73

As mentioned earlier (in Chapter 3), when using real-time degradation signals to

update a component’s residual life distribution, we stop the updating process once the cdf

of the residual life distribution at the instance of the updating epoch is equal to 1-R(t),

where R(t) is the desired reliability level of the manufacturing system. The incorporation

of additional degradation signals from a functioning device improves the accuracy of the

predicted residual life distributions. Indeed, the residual life distributions evaluated at the

95% reliability level utilize fewer real-time degradation signals compared to the

distributions evaluated at the 60% reliability level; hence the decreased number of

failures corresponding to lower reliability levels in Figure 4.7.

Figure 4.8 plots the number of planned maintenance routines, i.e., preventive

replacements in the manufacturing system evaluated at each of the reliability levels. As

expected, the number of replacement corresponding to the PM policy decreases as the

reliability level decreases. In contrast, the DM maintenance policy seems to be

unaffected by the system reliability level. Figure 4.8 shows a relatively steady number of

replacements across the different system reliability levels.

0
50

100
150
200
250
300
350

95% 90% 80% 70% 60%

System Reliability

Frequency of Failure Replacements

DM
PM

Figure 4.7. Frequency of failure replacements at different reliability levels.

74

0
200
400
600
800

1,000
1,200
1,400
1,600

95% 90% 80% 70% 60%

System Reliability

Frequency of Planned Replacements

DM
PM

Figure 4.8. Frequency of planned replacements at different reliability levels.

Table 4.1 and Table 4.2 show the means and standard deviations of the number of

failure replacements and planned replacements, respectively, at each reliability level. We

observe that the DM Policy provides lower standard deviations at a majority of the

reliability levels, and thus less variability in the number of maintenance routines

performed.

Table 4.1. Means and standard deviations of the number of failure replacements at each
reliability level.

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 26.40 7.05 73.20 7.72
90 15.40 2.14 128.20 11.61
80 10.20 3.07 202.40 20.88
70 5.80 2.10 272.00 9.07
60 2.20 1.19 329.40 17.76

DM Policy
N f PM Policy N f

75

Table 4.2. Means and standard deviations of the number of planned replacements at each
reliability level.

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 1,006.00 20.23 1,508.00 11.96
90 974.20 10.23 1,147.80 15.04
80 969.80 17.48 825.80 31.37
70 974.60 11.09 626.60 8.76
60 983.40 11.61 485.00 20.89

DM Policy
N m

PM Policy
N m

The performance of the maintenance policies was further analyzed by computing

the total maintenance costs of each policy. The total maintenance costs, TC, is defined as

follows: Preventive Maintenance: Nf

 mmff CNCNTC += (4.7)

where, fN is the number of system failure replacements, fC is the cost of performing a

system failure maintenance routine (assumed to be $1500), mN is the number of system

planned replacements, and mC is the cost of performing a system planned maintenance

routine (assumed to be $100).

The total cost of each maintenance policy is influenced by the designated

reliability level of the manufacturing system. The total cost of each maintenance policy

was evaluated at five reliability levels, R: 95%, 90%, 80%, 70% and 60%. Figure 4.9

illustrates the total maintenance costs for the two maintenance polices at each reliability

level. It is clear that the DM policy provides a much lower total cost at each given

reliability level when compared to the PM policy. It is interesting to note that the total

76

maintenance cost for the PM maintenance policy decreases as the reliability increases.

This is an expected result since increasing the reliability level results in fewer failures.

The case is different for the DM maintenance policy. The sensor-based updating

procedure results in more accurate residual life distributions at lower reliability levels due

to the incorporation of additional real-time degradation signals from the components

(workstations) being monitored. As a result, the maintenance costs of the DM policy

decrease slightly as the reliability levels decreases. The fact remains that the DM policy

provides the lowest maintenance costs. Table 4.3 shows the means and standard

deviations of the total maintenance cost of each policy at each reliability level. We

observe that the variability of total maintenance cost at a majority of the reliability levels

is much lower for the maintenance policy that utilizes sensor-based updating of residual

life distributions.

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

95% 90% 80% 70% 60%

System Reliability

Total Maintenance Cost

DM
PM

Figure 4.9. Total costs of each of the maintenance policies at different reliability levels.

77

Table 4.3. Means and standard deviations of the total maintenance cost of each policy at
each reliability level.

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 $70,780 $5,832 $131,840 $5,238
90 $60,910 $1,505 $155,400 $8,243
80 $56,820 $2,456 $158,290 $14,937
70 $53,710 $1,628 $238,330 $7,028
60 $51,490 $1,357 $274,380 $13,301

DM Policy
TC

PM Policy
TC

Workstation utilization and throughput were also used to measure the

performance of each maintenance policy. Figure 4.10 shows the average workstation

utilization for each maintenance policy at reliability levels of 95%, 90%, 80%, 70%, and

60%. We observe that the degradation model policy provides the highest workstation

utilization. Figure 4.11 shows the average throughput for each maintenance policy.

Again, it can be seen that the DM maintenance policy provides a higher throughput, and

thus lower cycle time than the traditional PM policy.

Table 4.4 shows the means and standard deviations of the system throughput of

each policy at each reliability level. We observe that the variability of throughput at three

out of the five reliability levels is lower for the maintenance policy that utilizes sensor-

based updating of residual life distributions.

78

0.72
0.74
0.76
0.78

0.8
0.82
0.84
0.86
0.88

95% 90% 80% 70% 60%

System Reliability

Workstation Utilization

DM
PM

Figure 4.10. Average workstation utilization of the system at different reliability levels.

140,000
145,000
150,000
155,000
160,000
165,000
170,000
175,000

95% 90% 80% 70% 60%

System Reliability

Throughput

DM
PM

Figure 4.11. Throughput of the system at different reliability levels.

79

Table 4.4. Means and standard deviations of system throughput of each policy at each
reliability level.

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 168,924.80 1,229.89 164,156.00 714.21
90 169,949.80 627.15 162,257.80 1,083.19
80 170,685.20 917.29 158,290.20 2,015.01
70 171,169.60 629.02 154,047.20 499.08
60 170,846.60 1,086.12 150,447.20 1,700.27

DM Policy
Throughput

PM Policy
Throughput

4.6 Conclusion

The objective of this study was to investigate the performance of degradation-

based predictive maintenance policies on system reliability of a manufacturing system.

Unlike chapter 3, where maintenance decisions were based on the reliability of the

individual workstations, this study develops maintenance decisions based on the

reliability of the entire manufacturing systems. Two different maintenance policies are

discussed. The first policy considered scheduled maintenance routines using a reliability-

based preventive maintenance policy. Workstation failures were assumed to follow a

Weibull failure time distribution. The second policy was a degradation-based predictive

maintenance policy that utilized real-time sensory information to assist in scheduling

maintenance routines. The real-time sensory information was used to update residual life

distribution of the system at each updating epoch, thus, allowing for maintenance

decisions to be based on the most current degradation states of the system’s constituents.

We developed a simulation model of a manufacturing system to evaluate the

performance of the two maintenance policies. The performance of the manufacturing

system was evaluated by analyzing the number of workstation failures, replacements,

80

total maintenance cost, and workstation utilization. The simulation analysis showed that

the predictive maintenance policy that utilized sensory-updated degradation models to

predict failures resulted in much lower maintenance costs compared to the preventive

maintenance policy. The results were analyzed at several levels of system reliability. In

addition, the degradation-based predictive maintenance policy also resulted in higher

workstation utilization and system throughput. The simulation analysis also showed that

that the sensor-updated predictive maintenance policy resulted in very low performance

variability, which is critical in Lean Manufacturing systems.

81

 CHAPTER 5: STUDY 3. ANALYSIS OF MAINTENANE-RELATED

DECISION POLICIES

This chapter investigates the impact of different replacement and spare parts

inventory policies on the performance of a hypothetical manufacturing system that

consists of a series of work cells, where some of the work cells contain redundant

workstations. We model the manufacturing system using ARENA simulation software.

We propose a replacement and inventory policy based on the sensory-updated

degradation models developed by Gebraeel et al. [28], and compare it with a traditional

time-based policy that relies on fixed lifetime distributions (Armstrong and Atkins [3]).

We compare the performance of each policy by evaluating the total cost of the system, as

well as the average workstation utilization and throughput corresponding to each policy.

5.1 Replacement and Spare Part Inventory Models

There exists a plethora of literature on replacement and inventory models. In this

work, we limit our study to a single-unit age replacement model and a single-unit

inventory model with room for storing one spare part. Both models are based on renewal

theory and were presented in Armstrong and Atkins [3]. The objective is to determine

the optimal replacement time and spare part inventory ordering time for a degraded

component. The authors consider a sequential decision making process where the

optimal replacement time is first evaluated, followed by the optimal ordering time. This

process is described below. A component is subject to random failure with a cumulative

density function (CDF))(tF , where)(tF represents the probability of component failure

by time t. Each time the component fails, the system sustains a failure cost. In the event

that the component is replaced according to a planned replacement, the system sustains a

82

planned replacement cost. Whether planned or failure replacements occur, it is necessary

to have a spare part available in stock in order to perform the replacement action. The

system incurs a holding cost per unit time to store the spare part. If the part is

unavailable at the required replacement time, the system incurs a shortage cost per unit

time.

5.1.1 Single-Unit Age Replacement Model

The objective of the replacement model is to compute the optimum planned

replacement time, *
rt . The optimal replacement time is the time that minimizes the long-

run average replacement cost per cycle. The long-run average replacement cost per cycle

is expressed as:

dttF

tFctFc
C

rt
rfrp

r

∫

+
=

0

)(

)()(
 (5.1)

where, Cr is the expected long-run replacement cost, cp is the planned replacement cost, cf

is the failure replacement cost, and)(1)(tFtF −= , where)(tF is the CDF of the

component’s failure time.

The numerator of equation 5.1 represents the expected cost per cycle and the

denominator represents the expected cycle length. After the optimum replacement time,

*
rt , has been computed, it is then used to decide when to order the spare part.

5.1.2 Inventory Ordering Model

The objective of the inventory model is to compute the optimal ordering time, *
ot .

The optimal ordering time is the ordering time that minimizes the long-run average

83

inventory cost per cycle. The model assumes a single unit storage capacity, thus, the

order quantity is always a single unit. The long-run average inventory cost per cycle is

expressed as:

dttFdttF

dttFkdttFk
C

ro

o

r

o

o

o
tLt

t

t

Lt
h

Lt

t
s

o

∫∫

∫∫

+

+

= +
+

+

0

)()(

)()(
 (5.2)

where, Co is the expected long-run ordering cost, kh is the holding cost per unit time, ks is

the shortage cost per unit time, and L is the fixed lead time elapsed from the moment of

placing the spare part order up till the point the part is received. We note that the

expected cycle length is not the same for the replacement policy case due to the

possibility of stock-outs occurring, which would cause a longer cycle.

As mentioned earlier, the replacement and inventory models use the failure time

distribution of a component to derive their decisions. Failure time distributions are

generally fixed and do not capture the degradation processes that occur prior to failure.

Even when conditional lifetime distributions are evaluated based on the survival time,

they remain time-based distributions as opposed to condition-based distributions.

In this study, however, we present a heuristic approach for sensor-driven

condition-based replacement and spare part ordering. This is achieved by combining

sensory-updated residual life distributions obtained from the degradation modeling

framework developed by Gebraeel et al. [28, 29] with the replacement and inventory

models developed by Armstrong and Atkins [3]. The updated residual life distributions

capture the underlying degradation state of a component using real-time condition-based

84

sensory signals. These distributions are then used to replace the failure time distributions

in the original replacement and inventory models. The ability to capture the evolution of

degradation processes improves failure predictability thus, leading to more accurate

decisions. As real-time signals are acquired from an operating component and its

residual life distribution updated, the corresponding replacement and inventory ordering

policies evolve dynamically to account for the changing physical transitions that

accompany degradation.

5.2 Sensor-driven Replacement and Inventory Policy

In this section, we extend the replacement and inventory policies developed by

Armstrong and Atkins [3]. As mentioned earlier, the original models use failure time

distributions to make decisions. Since these distributions are unaffected by the

underlying physical degradation processes, they do not distinguish between the different

degradation characteristics of individual components of the population. Consequently,

the extension, as proposed by [26] involves replacing these fixed lifetime distributions

with sensor-updated residual life distributions that dynamically evolve according to the

degradation states of the individual components.

We implement a sequential decision making process where the optimal

replacement time is first evaluated followed by the optimal ordering time. Each time we

acquire a signal, the residual life distribution is updated using the degradation modeling

framework developed by Gebraeel et al. [28, 29]. (Recall that the degradation framework

has been discussed in Chapter 3). The updated distribution is then used to compute the

optimal replacement and the optimal spare part ordering times.

85

The fact that the remaining life distributions evolve dynamically violates the

renewal theory assumption associated with the replacement and inventory models. The

underlying assumption that the expected cycle lengths between successive regeneration

points remain constant, no longer holds due to the dynamically evolving CDFs.

The proposed sensor-driven replacement and inventory model is essentially a

heuristic based on the renewal theoretic models. We assume that once a component’s

residual life distribution is updated, the distribution remains the same at each

regeneration point. In other words, the regeneration points correspond to minimal repair

actions that keep the component in a “as good as new” state. The optimal replacement

time is calculated using the updated distribution. Each time the distribution is updated,

the replacement and corresponding inventory ordering times are reevaluated.

The long-run average replacement and inventory costs are now expressed in terms

of the updated residual life distribution as follows,

k

t
k

k
f

k
pk

r

tdttF

tFctFc
C k

r

+

+
=

∫
0

)(

)()(
 (5.3)

k

t
k

Lt

t

k

t

Lt

k
h

Lt

t

k
s

k
o

tdttFdttF

dttFkdttFk
C k

r
k
o

k
o

k
r

j
o

k
o

o

++

+

=

∫∫

∫∫
+

+

+

0

)()(

)()(
 (5.4)

where, k
rC and k

oC are the replacement and inventory ordering cost rates per cycle,

respectively, at updating time kt .)(tF k is the updated CDF of the residual life at

86

updating time kt . The terms k
rt and k

ot are the optimal replacement and inventory

ordering time, respectively, at each updating epoch.

Note that the updating time, kt , has been added in the denominator to the cycle

time. Each cycle is now composed of two components, a fixed term given by the time up

to which the component has survived and a random component given by the integral of

the residual life distribution.

In the following section, we evaluate the performance of the proposed sensor-

driven replacement and inventory models using a simulated manufacturing system. We

compare the resulting replacement and inventory costs, as well as the average utilization

and throughput to those of the conventional models.

5.3 Manufacturing System

The manufacturing system used in this study is shown in Figure 5.1. Note that

this layout is the same as the layout used in Chapter 4, where Work Cells 1 and 3 each

contain two redundant workstations and Work Cell 2 consists of a single workstation.

Workstation 1

Workstation 2

Workstation 3Pre-processed
Parts Arrive

Shipping
Department

Workstation 4

Workstation 5

WORK CELL 1

WORK CELL 3

WORK CELL 2

Figure 5.1. Schematic of the manufacturing system

87

Parts are assumed to arrive randomly to the system, where they are processed at

predetermined processing times and delivered to the shipping dock where they exit the

system. In the following section we describe the simulation model used to compare the

sensor-driven replacement and inventory model described in Section 5.2 with the

traditional time-based policy described in section 5.1.

5.4 Simulation Model

This simulation model considers two sets of replacement and inventory policies

and studies the effect of these policies on the performance of a specific manufacturing

system. The first policy is the traditional time-based policy based on the replacement and

inventory model developed by Armstrong and Atkins [3] (Section 5.1). We refer to this

policy as “Traditional” policy. The second policy is a degradation-based policy based on

the sensor-driven replacement and inventory model described in Section 5.2. We refer to

this policy as “Sensor-driven” policy.

To analyze these replacement and inventory policies, we develop a simulation

model of a manufacturing system using Arena (similar to the model presented in Chapter

4). The simulated manufacturing system is a series-parallel system consisting of five

workstations. Figure 5.1 presents a schematic representation of this manufacturing

system. Pre-processed parts arrive to a staging station. The inter-arrival time is assumed

to be exponential with a mean of 0.25 minutes. Upon arrival, each part is processed on

one of the first two workstations (depending on which one is free). Next, the part is

processed on the third workstation, and then on one of the last two workstations

(depending on which one is free). The processing times of workstation 1 and 2 are

88

assumed to follow a Triangular distribution (4.25, 4.75, and 5.25 minutes); the processing

time of workstation 3 is assumed to follow a Triangular distribution (2.5, 2.75, and 3.0

minutes); the processing times of workstation 4 and 5 are assumed to follow a Triangular

distribution (4.75, 5.25, and 5.75 minutes). Upon completion, the finished part is

transferred to a shipping area.

A workstation can become unavailable if a random workstation failure occurs or a

planned workstation replacement is performed. Downtime resulting from workstation

failure is assumed to be random and follows a Normal distribution with mean 300

minutes and variance 30 minutes. Downtime resulting from a planned replacement

routine is assumed to be random and follow a Normal distribution with mean 30 minutes

and variance 5 minutes. The downtime resulting from an unplanned system failure is

assumed to be greater, since the demand for replacement parts and maintenance

personnel is unexpected. Furthermore, we assume that each workstation degrades

gradually until it fails. Workstation degradation is assumed to be modeled in the same

way as the simulation study in two previous chapters by utilizing a real-world vibration-

based database.

In the following section, we discuss the simulation model used to evaluate the

performance of the two replacement and inventory policies. The simulation model

consists of three submodels. The first submodel represents the simulated manufacturing

system, the second submodel characterizes the control logic of each decision policy, and

the third submodel characterizes the workstation availability control logic.

89

5.4.1 Manufacturing System Submodel

This submodel is identical to the Manufacturing System Submodel used in

Chapter 4. Figure 4.6 represents a flowchart of the submodel. Section 4.4.1 describes

this submodel in great detail. Just as in Chapter 4, this submodel records the system

throughput. Throughout the submodel, parts wait in queues until workstations become

available. Each workstation is represented by a PROCESS module. Once a part arrives

at a PROCESS module, it is processed according to a prespecified processing time. As

mentioned earlier, the processing time of the first two workstations follows a Triangular

distribution with the following parameters: 4.25, 4.75, and 5.25 minutes; the processing

time of the third workstation follows a Triangular distribution with the following

parameters: 2.5, 2.75, and 3.0 minutes; the processing time of the last two workstations

follows a Triangular distribution with the following parameters: 4.75, 5.25, and 5.75

minutes.

5.4.2 Decision Policy Submodel

The decision policy submodel (Figure A.6) controls the execution of each

replacement and inventory policy. It simulates workstation failures and computes

optimal replacement and ordering times for each policy. It begins with a CREATE

module that generates a single “phantom” entity. This entity is used to control the

generation of workstation failure times and schedule workstation replacement and

ordering activities. The following data was used concerning the replacement and

inventory policies: cp = $30, cf = $400, kh = $0.10/minute, ks = $1/minute and L = 20

minutes.

90

 The details of this submodel’s functionality differ according to the decision

policy that is being used.

5.4.2.1 Traditional Policy

For the traditional policy, the phantom instantly enters a VBA code block at time t

= 0. This VBA block is used to generate a workstation failure time, failure_time_i, and

calculate the optimal replacement and ordering time, t_replace_i and t_order_i,

respectively, for the ith workstation.

Workstations are subject to random failures. The failure time distribution is

assumed to follow a Weibull distribution. Just as in the previous two chapters, the shape

and scale parameters of the Weibull distribution are, 0549.3=β and 75.784=θ ,

respectively. These parameters are evaluated using the degradation database used in

Gebraeel [29]. Based on these parameters, we can compute the CDF of each

workstation’s failure time using the following expression;

βθ)/(1)(tetF −−= (5.5)

The CDF is then used in expression (5.1) to compute the optimal system replacement

time, t_replace_sys = *
rt , and then expression (5.2) to compute the optimal system

ordering time, t_order_sys = *
ot . For a given workstation i, if t_replace_sys >

failure_time_i, then the workstation experiences a sudden failure. The ordering time,

t_order_sys, is used in calculating the inventory cost, as explained in Section 5.4.3.

 After the optimal replacement and ordering times are computed, the “phantom”

entity enters a HOLD module, where it waits for a signal via a SIGNAL module from the

91

Resource Shutdown Submodel (Section 5.4.3), signaling the end of the replacement

cycle. At this point, the entity returns to the VBA code block to begin another cycle.

5.4.2.2 Sensor-driven Policy

A similar procedure is preformed for the Sensor-driven Policy. However, this

policy utilizes the Sensor-driven Replacement and Inventory Policy discussed in Section

5.2. In this policy, the CDF of each workstation’s residual life is determined by looking

at its corresponding degradation signal. Just as in the previous two chapters, the

degradation signals considered in this study are composed of a nondefective and

defective phase (Figure 3.3). The phase II information is used to compute the residual

life distribution of the workstation.

The residual life distribution of each workstation is updated in real-time as its

degradation signal is being observed. The underlying assumption for this decision policy

is that a condition monitoring system is used to acquire data every 2 minutes. Beginning

in Phase II, the reliability distribution is computed and is continuously updated as signals

are observed.

 When the phantom entity is created by the decision policy submodel, it is

delayed for two minutes before entering the VBA block. Every two minutes the VBA

block is used to compute the residual life of each workstation. The residual life is

computed based on the sensory-updated degradation model discussed in Chapter 3

(Section 3.3.2) using expression (3.16), where the prior parameters are ,031.60 −=μ

,008061.01 =μ ,3464.02
0 =σ ,100347.1 52

1
−×=σ and .0.0073482 =σ At each updating

epoch, the updated residual life distribution is used to compute the optimal replacement

92

time using expression (5.3), and then the optimal inventory ordering time using

expression (5.4).

The residual life distribution, replacement time, and inventory ordering time for

each workstation are updated every two minutes. The updating process continues until a

stopping rule is satisfied. The stopping rule we used is to stop updating once Ltt or +≤ ** .

This stopping rule attempts to eliminate spare part holding time and ensure just-in-time

spare part delivery. Once a decision has been made to stop updating, the replacement

time and inventory ordering times are computed as follows: given that we have updated

the decision policy up to time tk,

 t_replace_i = tk + *
rt (5.6)

 t_order_i = tk + *
ot (5.7)

Under the Sensor-driven Policy, there are two scenarios for simulating

unexpected failures. First, a workstation will experience an unexpected failure if its

degradation signal reaches the failure threshold before the stopping rule is activated. On

the other hand, if the stopping rule is activated before a workstation’s degradation signal

reaches the failure threshold, then the most recent updated decision policy is used to

compute the workstation replacement and ordering times. In this case, unexpected failure

of the workstation occurs if t_replace_i > failure_time_i. We note that the workstation’s

failure time, failure_time_i, is generated from the conditional Weibull distribution given

that the workstation has survived up to time tk. The ordering time, t_order_i, is used in

calculating the inventory cost, as explained in Section 5.4.3.

93

After the optimal replacement and ordering times are computed, the “phantom”

entity enters a HOLD module, where it waits for a signal via a SIGNAL module from the

Resource Shutdown Submodel (Section 5.4.3), signaling the end of the replacement

cycle. At this point, the entity returns to the VBA code block to begin another cycle.

5.4.3 Resource Shutdown Submodel

The resource shutdown submodel is used to simulate the replacement activities

and compute inventory costs. The submodel begins with a DETECT block that generates

a “phantom” entity when a workstation shutdown occurs. As mentioned earlier there are

two main ways a workstation is shutdown.

1. If t_replace_i is less than failure_time_i, then the shutdown is a result of a

planned replacement. To simulate the planned replacement, we use a PREEMPT

block that stops the workstation and preempts the part being processed. This is

followed by an ALTER block that reduces the capacity of workstation i to 0. This

implies that the workstation will not be available for processing. A DELAY

module is used to simulate a planned replacement downtime. Once replacement

is complete, the workstation is assumed to be “as good as new”. A SIGNAL

module sends a signal to the HOLD module in the Decision Policy Submodel

(Section 5.4.2), indicating the end of the replacement cycle. An ALTER block is

then used to increase the capacity of the workstation back to 1, thus making it

available to process parts. A variable Np is used to track the total number of

planned replacements.

2. If t_replace_i is greater than failure_time_i, then the workstation experiences an

unexpected failure. Upon failure, if a spare part has not yet been ordered (i.e.,

failure_time_i < t_order_i), it is immediately ordered for replacement. That is,

the spare part ordering time, t_order_i, is assigned to equal the workstation failure

94

time, failure_time_i. A procedure similar to that discussed in the previous case

(1) simulates a failure replacement. A variable Nf is used to track the total

number of failure replacements.

In the Sensor-driven Policy, unexpected failures may also occur if a workstation’s

degradation signal reaches its failure threshold before a planned replacement is

scheduled.

 This submodel also computes the inventory cost per replacement cycle. First, we

must determine whether or not a shortage occurs;

1. If t_shutdown_i < t_order_i + L, then a shortage occurs, where t_shutdown_i is

the time at which the workstation shuts down. In this case, we compute the

shortage time: shortage_time_i = t_order_i + L – t_replace_i.

2. If t_shutdown_i ≥ t_order_i + L, then a shortage does not occur, and we compute

the spare part holding time: holding_time_i = t_replace_i – t_order_i – L.

Then, the inventory cost for the ith workstation is computed as follows:

 sh kitimeshortagekitimeholdingitinventory)__()__(_cos_ += (5.8)

Note that if a shortage occurs, the workstation replacement cannot begin until the

spare part is delivered. Thus, when simulating a workstation replacement, we add

shortage_time_i to the delay time in the DELAY module mentioned above. The next

section discusses the implementation of the simulation model, as well as the results.

95

5.5 Implementation and Results

Arena simulation was used to simulate the continuous operation of the

manufacturing system. Each simulation consists of five runs and each run is 365-days.

Separate runs were performed for each decision policy. We assumed the following lead

time and cost values: L = 20 minutes, Cf = $400, Cp = $30, kh = $0.10/minute, ks =

$10/minute.

Workstation utilization and throughput were used to measure the performance of

each maintenance policy. Table 5.1 shows the average utilization and throughput of each

decision policy over the five simulation runs. The Sensor-driven replacement and

inventory policy resulted in higher production rates and efficiency compared to the

Traditional policy. The Sensor-driven policy’s average utilization was 5.76% higher than

the Traditional policy’s; the Sensor-driven policy’s average throughput was 5.69 %

higher than the Traditional policy’s. The standard deviations of the throughput for the

Traditional policy and Sensor-driven policy were 1,526.63 and 912.96, respectively.

Table 5.1. Average utilization and throughput for each policy.

Policy Utilization Throughput
Traditional 0.8664 163,974.33

Sensor-Driven 0.9163 173,310.67

Table 5.2 shows the average number of failure and planned replacements for each

decision policy, as well as the standard deviations. The Sensor-driven replacement and

inventory policy resulted in a lower number of failure replacements and planned

replacements. The Sensor-driven policy’s average number of failure replacements was

96

40.06% lower than the Traditional policy’s; the Sensor-driven policy’s average number

of planned replacements was 36.86% lower than the Traditional policy’s. It is interesting

to note that the Sensor-driven policy resulted in a lower standard deviation for the

number of failure replacements, but higher standard deviation for the number of failure

replacements.

Table 5.2. Mean and standard deviations of the number of failure and planned
replacements for each policy.

Policy Mean Std. Dev. Mean Std. Dev.
Traditional 322.0 49.43 8,141.3 92.21

Sensor-Driven 193.0 19.14 5,140.7 137.00

N f N p

The total maintenance cost was also used to measure the performance of each

maintenance policy. The total maintenance cost Total_Cost is based on the total

inventory cost and the total replacement cost, and is expressed as follows;

 Rep_CostInv_CostTotal_Cost += (5.9)

where, Inv_Cost and Rep_Cost are the total inventory and replacement cost incurred on

the system, respectively. The total inventory cost is computed by summing up the

inventory cost over all replacement cycles for each workstation (refer to expression (5.8)

for each workstation’s inventory cost per replacement cycle). The total replacement cost

is expressed as follows;

 ppff CNCNRep_Cost += (5.10)

97

where, fN is the number of failure replacements, fC is the cost of performing a failure

replacement (assumed to be $400), pN is the number of planned replacements, and pC is

the cost of performing a planned replacement (assumed to be $30).

Figure 5.2 shows the average inventory cost, replacement cost, and total cost for

each decision policy. The Sensor-driven policy’s total maintenance cost was 35.10%

lower than the Traditional policy’s cost.

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

$350,000

$400,000

Inv_cost Rep_cost Total_cost

Costs Incurred by Each Decision Policy

Traditional
Sensor-Driven

Figure 5.2. Total costs incurred by each policy.

Table 5.3 shows the means and standard deviations of costs incurred by each

maintenance policy. We observe that the variability of each of the costs is lower for the

maintenance policy that utilizes sensor-based updating of residual life distributions.

98

Table 5.3. Means and standard deviations of the costs incurred by each policy at each
decision policy.

Policy Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Traditional $57,174 $9,266 $372,907 $17,463 $430,080 $26,729

Sensor-Driven $47,700 $5,565 $231,420 $9,147 $279,120 $14,717

Inv_Cost Rep_Cost Total_Cost

5.6 Conclusion

 The objective of this study was to compare conventional replacement and spare

part inventory decision policies with sensor-driven degradation-based replacement and

spare part inventory models. The conventional policies use renewal theory to schedule

component replacement and spare part ordering times. These models are based on

computing long-run average replacement and inventory costs using the failure time

distributions. In contrast, the sensor-driven replacement and inventory models rely on

real-time residual life distributions to predict optimal component replacement and spare

part ordering times. These models rely on the latest degradation information of the

system/components being monitored. As subsequent real-time degradation-based

sensory information becomes available, it is used to dynamically update the residual life

distributions, thus, allowing decisions to adjust according to the degradation state of the

component.

We developed a simulation model of a manufacturing system to evaluate the

performance of the two decision paradigms. After running several simulations, the

average utilization and throughput were computed for each maintenance policy. In

addition, the total maintenance cost of each policy was computed, based on the

replacement cost and inventory cost. The replacement cost was based on the number of

99

failures and planned replacements. The inventory cost was based on spare part holding

and shortage costs.

The simulation analysis showed that the sensor-driven decision policy resulted in

higher machine utilization and throughput. In addition, the sensor-driven policy resulted

in a much lower maintenance cost compared to the traditional policy (35% lower). The

simulation analysis also showed that that the sensor-driven decision policy resulted in

very low performance variability. Low performance variability is vital in systems that

embrace Lean and Just-in-Time philosophies.

100

CHAPTER 6: CONCLUSION

The goal of this work was to investigate the impact of different maintenance

policies on the performance of a hypothetical manufacturing system. We developed

simulation studies to compare predictive maintenance policies with traditional time-based

policies. Whereas time-based maintenance policies do not take into account the

conditions or degradation characteristics of individual components, our work focused on

using predictive maintenance policies based on the degradation models developed by

Gebraeel et al. [28, 29]. The resulting degradation-based policies utilize real-time

sensory information to assist in making decisions regarding maintenance management

and component replacement.

In Chapter 3, we used a simulation study to compare three different maintenance

policies. The first policy was based on the sensory-updated degradation models

developed by Gebraeel et al. [28, 29]. We compared this policy with two other

conventional policies, a reliability-based preventive maintenance policy and a

degradation-based predictive maintenance policy developed by Lu and Meeker [52]. We

evaluated the efficiency of each policy by evaluating the total maintenance costs

corresponding to each policy, where the total maintenance cost was based on the number

of failures and planned replacements experienced by the system. The simulation analysis

showed that the sensor-updated predictive maintenance policy resulted in a much lower

maintenance cost compared to the conventional maintenance policy and the preventive

maintenance policy. In addition, the sensor-updated predictive maintenance policy also

resulted in lower performance variability.

101

In Chapter 4, we used a simulation study to compare the performance of two

different maintenance policies on system reliability. Whereas in Chapter 3 maintenance

decisions were based on the reliability of individual workstations; in chapter 4, we based

our maintenance decisions on the reliability of the entire manufacturing system. We

compared two major maintenance policies. The first policy was a reliability-based

preventive maintenance policy, and the second policy was based on the sensory-updated

degradation models developed by Gebraeel et al. [28]. We evaluated the efficiency of

each policy by evaluating the total maintenance cost, workstation utilization, and

throughput corresponding to each policy. The simulation analysis showed that the

degradation-based predictive maintenance policy resulted in a much lower maintenance

cost compared to the preventive maintenance policy at each reliability level. In addition,

the degradation-based predictive maintenance policy resulted in higher utilization and

throughput at each reliability level, as well as lower performance variability.

In Chapter 5, we used a simulation study to compare the performance of two

different replacement and inventory policies. The first policy was a reliability-based

policy developed by Armstrong and Atkins [3], and the second policy was based on the

sensory-updated degradation models developed by Gebraeel et al. [28, 29]. We

evaluated and compared the system costs associated with implementing each of the

replacement and inventory policies.

The studies performed in this thesis showed significant evidence that sensory-

updated degradation models improve reliability assessment. Indeed, the evaluation of

residual life distributions using real-time degradation signals acquired through condition

102

monitoring techniques result in better failure predictability and, thus, lower maintenance

costs.

We incorporated the sensor-updating methodology into traditional replacement

and inventory models to develop sensor-driven replacement and inventory models, and

showed that scheduling replacement and inventory ordering activities using sensory-

updated residual life distributions is more efficient than scheduling activities using the

conventional renewal-theoretic models.

Since an increasing number of manufacturing sectors are embracing Lean and

Just-In-Time paradigms, sensor-updated degradation decision policies can be very

beneficial for preventing the occurrence of system failures, and reducing maintenance

and inventory costs.

6.1 Future Research

There are several important directions for future research that are related to this

work. These future research directions are discussed below:

3. In this thesis, we investigated the impact of different maintenance policies on the

performance of manufacturing systems. A future extension would be to

investigate the possibility of incorporating maintenance decision making with

production planning and dispatching rules.

4. We focused on developing specific degradation models for which we can obtain

easy-to-compute residual-life distributions. For example, because we have

assumed normal or lognormal prior distributions for the unknown stochastic

parameters in the degradation models, all of the models developed in this thesis

are quite easy to compute. We note, however, that the Bayesian-updating

approach presented in this paper could be applied to much more general models.

103

For example, if we are not worried about obtaining closed-form expressions for

the posterior distributions, we could assume any form for the prior distributions

on the stochastic parameters.

5. This work assumed a fixed failure threshold for the degradation signal. However,

in reality these thresholds may not be clearly defined and may be probabilistic.

6. In this work we developed a sequential decision making process where the

optimal replacement time is first evaluated followed by the optimal ordering time

process. We could develop jointly-optimized replacement and spare parts

ordering policies that take into account sensory-updating residual life

distributions. In addition, we could extend the replacement and spare parts

inventory model to assume room to store more than one unit in inventory, and

incorporate variable lead time.

7. We could develop and use optimal stopping rules for the sensory-updating

methodology that take into account the updating cost.

8. In this work we focused on two primary cost components, (1) the cost of planned

replacement, and (2) the cost of failure replacement. We could incorporate

additional cost functions that capture any increase in system costs due to

component degradation. For example, we could develop cost structures that are

functions of the degradation signal, for example, K(Si – S0), where K is cost

coefficient, Si is the current level of the degradation signals, and S0 is the original

signal level.

9. We could investigate and incorporate the interaction of different failure modes

that affect deteriorating components.

104

REFERENCES

 [1] Alguindigue I.E., Loskiewicz-Buczak A., and Uhrig R.E., “Monitoring and diagnosis
of rolling element bearings using artificial neural networks,” IEEE Transactions on
Industrial Electronics, vol. 40, no. 2, pp. 209-217, 1993.

[2] Andijani, A., Duffuaa, S., “Critical evaluation of simulation studies in maintenance
systems,” Production Planning & Control, vol. 13, no. 4, pp. 336-341, 2002.

[3] Armstrong, M., Atkins, D., “Joint optimization of maintenance and inventory polcies
for a sim;le system,” IIE Transactions, vol. 28, no. 5, pp. 415-424, 1996.

[4] Ballesteros-Tajadura, R.; Velarde-Suarez, S.; Hurado-Cruz, J.T., “A predictive
maintenance procedure using pressure and acceleration signals from a centrifugal
fan,” In Applied Acoustics, vol. 67, no. 1, pp. 49-61, 2006.

[5] Bansal, D., Evan, D.J., Jones, B., “A real-time predictive maintenance system for
machine systems,” International Journal of Machine Tools & Manufacture, vol. 44,
pp. 759-766, 2004.

[6] Bartoletti, C., Desiderio, M., Di Carlo, D., Fazio, G., Muzi, F., Sacerdoti, G.,
Salvatori, F., “Vibro-acoustic techniques to diagnose power transformers,” IEEE
Transactions on Power Delivery, vol.19, no.1, pp. 221-229, 2004.

[7] Birnbaum Z.W. and Saunders S.C., “A statistical model for life-strength of materials,”
Journal of American Statistical Association, vol. 53, pp. 151-160, 1958.

[8] Booth C. and McDonald J.R., “The Use of Artificial Neural Networks for condition
Monitoring of Electrical Power Transformers,” Neurocomputing, vol. 23, pp. 97-109,
1998.

[9] Chen, D., Trivedi, K.S., “Optimization for condition-based maintenance with semi-
Markov decision process,” Reliability Engineering and System Safety, vol. 90, no. 1,
pp. 25-29, 2005.

[10] Chinnam, R.B., “On-line reliability estimation for individual components using
statistical degradation signal models,” Quality and Reliability Engineering
International, vol. 18, no. 1, pp. 53-73, 2002.

[11] Chinnam, R.B. and Baruah, P., “A neuro-fuzzy approach for estimating mean
residual life in condition-based maintenance systems,” International Journal of
Materials & Product Technology, vol. 20, pp. 166-179, 2004.

[12] Choudhury S.K., Jain V.K., and Rama Rao Ch V.V., “On-line Monitoring of Tool
Wear in Turning Using a Neural Network,” International Journal of Machine Tools &
Manufacture, vol. 39, no. 3, pp. 489-504, 1999.

[13] Christer, A.H., “Operational research applied to industrial maintenance and
replacement,” Developments in Operational Research, pp. 31-58, 1984.

105

[14] Christer, A.H. and Wang, W., “A model of condition monitoring of a production
plant,” International Journal of Production Research, vol. 30, no. 9, pp. 2199- 2211,
1992.

[15] Coolen F.P.A. and Dekker R., “Analysis of a 2-phase model for optimization of
condition monitoring intervals,” IEEE Transactions on Reliability, vol. 55, pp. 505-
511, 1995.

[16] Cox, D.R., “Regression models and life tables,” Journal of the Royal Statistical
Society, B, vol. 34, pp. 187-220, 1972.

[17] Cox D.R., and Oakes D., “Analysis of Survival Data,” Chapman and Hall, London,
1984.

[18] Crk, V., “Reliability Assessment from Degradation Data,” Proceedings of the
Annual Reliability and Maintainability Symposium, pp. 155-161, 2000.

[19] Daniels H.E., “The statistical theory of the strength of bundles of threads,”
Proceedings of the Royal Society of London, vol. 183, pp. 405-435, 1945.

[20] Dayanik, S., Gurler, U., “An adaptive Bayesian replacement policy with minimal
repair,” Operations Research, vol. 50, no. 3, pp. 552-558, 2002.

[21] Dessouky, Y.M., Bayer, A., “A simulation and design of experiments modeling
approach to minimize building maintenance costs,” Computers and Industrial
Engineering, vol. 43, no. 3, pp. 423-436, 2002.

[22] Dimla D.E., “Sensor Signals for Tool-wear monitoring in metal cutting operations -
A review of methods,” International Journal of Machine Tools & Manufacture, vol.
40, no. 8, pp. 1073-1098, 2000.

[23] Doksum K., and Hoyland A., “Models for variable-stress accelerated testing
experiments based on Wiener processes and the inverse Gaussian distribution,”
Technometrics, vol. 34, pp. 74-82, 1992.

[24] Ebeling, Charles E., An Introduction to Reliability and Maintainability Engineering,
The McGraw-Hill Companies, Inc., New York, 1997

[25] Ebersbach, S.; Peng, Z.; Kessissoglou, N.J., “The investigation of the condition and
faults of a spur gearbox using vibration and wear debris analysis technique,s” Wear,
vol.260, no.1-2, pp. 16-24, 2006.

[26] Elwany, A., “Sensor-based decision models for equipment replacement and spare
parts inventory,” Ph.D. Dissertation Proposal, University of Iowa, Iowa City, USA,
May 2007.

[27] Epstein B. and Sobel M., “Life testing,” Journal of American Statistical Association,
vol. 48, pp. 486-502, 1953.

[28] Gebraeel, N., Lawley, M., Li, R., Ryan, J., “Residual-life distributions from
component degradation signals: A Bayesian approach,” IIE Transactions, vol. 37, pp.
543-557, 2005.

106

[29] Gebraeel, N., “Sensory updating residual life distributions for components with
exponential degradation patterns,” IEEE Transactions, vol. 3, no.4, pp. 382-397,
2006.

[30] Ghasemi, A., Yacout, S., Ouali, M.S., “Optimal condition based maintenance with
imperfect information and the proportional hazards model,” International Journal of
Production Research, vol. 45, no. 4, pp. 989-1012, 2007.

[31] Glazebrook, K.D., Mitchell, H.M., Ansell, P.S., “Index policies for the maintenance
of a collection of machines by a set of repairmen,” European Journal of Operational
Research, vol. 165, no. 1, pp. 267-284, 2005.

[32] Gong, L., Tang, K., “Monitoring machine operations using on-line sensors,”
European Journal of Operational Research, vol. 96, no. 3, pp. 479-492, 1997.

[33] Grall, A., Berenguer, C., Dieulle, L., “A condition-based maintenance policy for
stochastically deteriorating systems,” Reliability Engineering and System Safety, vol.
76, ppp. 167-180, 2002.

[34] Hines,. W., Usynin, A., and Urmanov, A, “Prognosis of remaining useful life for
complex engineering systems,” 5th International Topical Meeting on Nuclear Plant
Instrumentation Controls, and Human Machine Interface Technology (NPIC and
HMIT 2006), pp. 1110-1118, 2006.

[35] Jardine, A.K.S. and Anderson, M., “Use of concomitant variables for reliability
estimation,” Maintenance Management International, vol. 5, no. 2, pp. 135-40, 1985.

[36] Jardine, A.K.S., Anderson, P.M. and Mann, D.S., “Application of the Weibull
proportional hazards model to aircraft and marine engine failure data,” Quality
Reliability Engineering International, vol. 3, no. 2, pp. 77-82, 1987.

[37] Jardine, A.K.S., Ralston, P., Reid, N. and Stafford, J., “Proportional hazards analysis
of diesel engine failure data,” Quality & Reliability Engineering International, vol. 5,
no. 3, pp. 207-16, 1989.

[38] Jardine, A.K.S., Banjevic, D., Makis, V., “Optimal replacement policy and the
structure of software for condition-based maintenance,” Journal of Quality in
Maintenance Engineering, vol. 3, no. 2, pp. 109-119, 1997.

[39] Jardine, A.K.S., Makis, V., Banjevic, D., Braticevic, D., Ennis, M., “A decision
optimization model for condition-based maintenance,” Journal of Quality in
Maintenance Engineering, vol. 4, no. 2, pp. 115-121, 1998.

[40] Jardine, A.K.S., Banjevic, D., Wiseman, M., Buck, S. and Joseph, T., “Optimizing a
mine haul truck wheel motor’s condition monitoring program, use of proportional
hazards modeling,” Journal of Quality in Maintenance Engineering, vol. 7, no. 4, pp.
286-301, 2001.

[41] Jardine, A.K.S., “Annual Reliability and Maintainability Symposium,” pp. 90-97,
2002.

[42] Kallen, M.J., van Noortwijk, J.M., “Optimal periodic inspection of a deterioration
process with sequential condition states,” International Journal of Pressure Vessels
and Piping, vol. 83, no. 4, pp. 249-255, 2006.

107

[43] Kenne, J.P., and Gharbi, A., “Experimental design in production and maintenance
control problem of a single machine, single product manufacturing system,”
International Journal of Production Research, vol. 37, pp. 621-637, 1999.

[44] Kharoufeh, J.P., Cox, S.M., “Stochastic models for degradation-based reliability,”
IIE Transactions, vol.37, no.6, pp. 533-42, 2005.

[45] Kobbacy, K.A.H., Fawzi, B.B., Percy, D.F. and Ascher, H.E., “ A full history
proportional hazards model for preventive maintenance scheduling,” Quality &
Reliability Engineering International, vol. 13, pp. 187-98, 1997.

[46] Koomsap, P., Prabhu, V.V., “Condition monitoring and lifetime estimation of a CO2
laser,” Journal of Laser Applications, vol. 15, no. 4, pp. 285-293, 2003.

[47] Kumar, D., Westber, U., “Maintenance scheduling under age replacement policy
using proportional hazars model and TTT-plotting,” European Journal of Operational
Research, vol. 99, pp. 507-515, 1997.

[48] Li, W., Pham, H., “An inspection-maintenance model for systems with multiple
competing processes,” IEEE Transactions on Reliability, vol. 54, no. 2, pp. 328-327,
2005.

[49] Liao, H., Qiu, H., Lee, J., Lin, D., Banjevic, D., Jardine, A., “A predictive tool for
remaining useful life estimation of rotating machinery components,” Proceedings of
the ASME International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference - DETC2005, pp. 509-515, 2005.

[50] Lin, D., Banjevic, D., Jardine, A.K.S., “Using principal components in a
proportional hazards model with applications in condition-based maintenance,”
Journal of the Operational Research Society, vol. 57, no. 8, pp. 910-19, 2006.

[51] Logendran, R., Talkington, D., “Analysis of cellular and functional manufacturing
systems in the presence of machine breakdown,” International Journal of Production
Economics, vol. 53, pp. 239 – 256, 1997.

[52] Lu, C. and Meeker, W., “Using degradation measures to Estimate a Time-to-failure
Distribution,” Technometrics, vol. 35, pp. 161-174, 1993.

[53] Luxhoj, J.T., Shyur, H.J., “Comparison of proportional hazards models and neural
networks for reliability estimation,” Journal of Intelligent Manufacturing, vol. 8, no.
3, pp. 227-234, 1997.

[54] Maillart, L., “Maintenance policies for systems with condition monitoring and
obvious failures,” IIE Transactions, vol. 38, pp. 463-475, 2006.

[55] Makis V., Jiang X., and Jardine A. K. S., “Condition-based maintenance model,”
IMA Journal of Mathematics Applied in Business and Industry, vol. 9, no. 2, 1998, pp
201-210.

[56] Martin K.F., “Review by discussion of condition monitoring and fault diagnosis in
machine tools,” International Journal of Machine Tools & Manufacture, vol. 34, no.
4, pp. 527-551, 1994.

108

[57] McAdams, D.A., Tumer, I.Y., “Title: Toward intelligent fault detection in turbine
blades: variational vibration models of damaged pinned-pinned beams,” Transactions
of the ASME. Journal of Vibration and Acoustics, vol. 127, no.5, pp. 467-474, 2005.

[58] McCormick, A.C., Nandi, A.K., “Classification of the rotating machine condition
using artificial neural networks,” Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering Science, vol. 211, no. 6, pp.
439-450, 1997.

[59] Monplaisir, M.H. and Arumugadasan, N.S., “Maintenance decision support:
analyzing crankcase lubricant condition using markov process modeling,” Journal of
the Operational Research Society, vol. 45, pp. 509-518, 1994.

[60] Nelson W., “Accelerated Testing Statistical Models, Test Plans, and Data Analysis,”
Wiley, New York, 1990.

[61]Prasad, P.V.N., Rao, K.R.M., “Reliability models of repairable systems considering
the effect of operating conditions,” Proceedings of the Annual Reliability and
Maintainability Symposium, pp. 503-510, 2002.

[62] Rezg, N., Chelbi, A., Xie, X., “Modeling and optimizing a joint inventory control
and preventive maintenance strategy for a randomly failing production unit: analytical
and simulation approaches,” International Journal of Computer Integrated
Manufacturing, vol. 18, no. 2-3, pp. 225-235, 2005.

[63] Saranga, H., Knezevic, J., “Reliability prediction for condition-based maintained
systems,” Reliability Engineering and System Safety, vol. 71, no. 2, pp. 219-224,
2001.

[64] Savsar, M., “Performance analysis of an FMS operating under different failure rates
and maintenance policies,” International Journal of Flexible Manufacturing Systems,
vol. 16, no. 3, pp. 229-249, 2004.

[65] Shelley, B.F., Hamilton, D.O., “Mechanized aircraft reliability analysis model,”
IEEE National Symposium on Quality Control and Reliability in Electronics, pp. 50-
566, 1964.

[66] Sheu, C., Krajewski, L.J., “Decision model for corrective maintenance
management,” International Journal of Production Research, vol. 32, no. 6, p. 1365-
1382, 1994.

[67] Sick B., “On-line and indirect tool wear monitoring in turning with artificial neural
networks: A review of more than a decade of research,” Mechanical Systems and
Signal Processing, vol. 16, no. 4, pp. 487-546, 2002.

[68] Sinha, S.K., Pandey, M.D., “Probabilistic neural network for reliability assessment
of oil and gas pipelines,” Computer-Aided Civil and Infrastructure Engineering, vol.
17, no. 5, pp. 320-329, 2002.

[69] Sloan, T.W., Shanthikumar, J.G., “Using in-line equipment condition and yield
information for maintenance scheduling and dispatching in semiconductor wafer
fabs,” IIE Transactions, vol. 34, no. 2, pp. 191-209, 2002.

109

[70] Stephens, M.P., Productivity and reliability-based maintenance management.
Prentice Hall, New Jersey, 2004.

[71] Stone G.C. and Sedding H.G., “In-service evaluation of motor and generator stator
windings using partial discharge tests,” IEEE Transactions on Industrial Applications,
vol. 31, pp. 299–303, 1995.

[72] Szczerbicki, E., White, W., “System modeling and simulation for predictive
maintenance,” Cybernetics and Systems: An International Journal, vol. 29, no. 5, pp.
481-498, 1998.

[73] Tseng S., Hamada M., and Chiao C., “Using degradation data to improve fluorescent
lamp reliability,” Journal of Quality Technology, vol. 27, pp. 363-369, 1995.

[74] Vineyard, M.L., and Meredith, J.R., “Effect of maintenance policies on FMS
failures,” International Journal of Production Research, vol. 30, pp. 2647-2657, 1992.

[75] Vlok, P.J., Coetzee, J.L., Banjevic, D., Jardine, A.K.S., Makis, V., “Optimal
component replacement decisions using vibration monitoring and the proportional-
hazards model,” Journal of the Operational Research Society, vol. 53, no. 2, pp. 193-
202, 2002.

 [76] Wang, H., “A Survey of Maintenance Policies of Deteriorating Systems,” European
Journal of Operational Research, vol. 139, pp. 469-489, 2002.

[77] Wang, W. ; Christer, A.H., “Towards a general condition based maintenance model
for a stochastic dynamic system,” Journal of the Operational Research Society, vol.
51, no. 2, pp. 145-155, 2000.

 [78] Weibull W., “A statistical theory of the strength of materials,” Ing. Vetenskaps
Akad. Handl., no. 151, 1939.

[79] Wenbiao Z. and Elsayed, E.A., “Modeling accelerated life testing based on mean
residual life,” International Journal of Systems Science, vol.36, no.11, pp. 689-696,
2005.

[80] Whitmore G., “Estimating degradation by a Wiener diffusion process subject to
measurement error,” Lifetime Data Analysis, vol. 1, pp. 307-319, 1995.

[81] Whitmore, G.A. and Schenkelberg, F., “Modeling Accelerated Degradation Using
Wiener Diffusion with a Time Scale Transformation,” Lifetime Data Analysis, vol. 3,
pp. 27-45, 1997.

[82] Wu, S., Tsai, T, “Estimation of time-to-failure distribution derived from a
degradation model using fuzzy clustering,” Quality and Reliability Engineering
International, vol. 16, no. 4, pp. 261-267, 2000.

[83] Yam, R.C.M., Tse, P.W., Li, L., Tu, P., “Intelligent predictive decision support
system for condition-based maintenance,” International Journal of Advanced
Manufacturing Technology, vol. 17, no. 5, pp. 383-391, 2001.

[84] Yan, J., Koc, M., Lee, J., “A prognostic algorithm for machine performance
assessment and its application,” Production Planning and Control, vol. 15, no. 8, pp.
796-801, 2004.

110

[85] Yang K. and Yang G., “Degradation reliability assessment using severe critical
values,” International Journal of Reliability, Quality and Safety Engineering, vol. 5,
pp. 85-95, 1998.

[86] Zhan, Y., Makis, V., Jardine, A.K.S., “Adaptive Model for Vibration Monitoring of
Rotating Machinery Subject to Random deterioration,” In Journal of Quality in
Maintenance Engineering, vol. 9, no. 4, pp. 351-375, 2003.

[87] Zhou, P.; Li, H.; Clelland, D., “Pattern recognition on diesel engine working
conditions by wavelet Kullback-Leibler distance method,” Proceedings of the
Institution of Mechanical Engineers, Part C (Journal of Mechanical Engineering
Science), vol. 219, no. C9, pp. 879-87, 2005.

[88] Zhou, X., Xi, L., Lee, J., “Reliability-centered predictive maintenance scheduling for
a continuously monitored system subject to degradation,” Reliability Engineering and
System Safety, vol. 92, no. 4, pp. 530-534, 2007.

111

APPENDIX A: ARENA SCREENSHOTS

This appendix shows sample screen shorts of the ARENA models used in the

simulation studies described in each chapter of this thesis.

A.1. Screenshots From Models Discussed in Chapter 3

Figure A.1. Failure Time Subroutine.

Figure A.2. Resource Shutdown Subroutine.

112

A.2. Screenshots From Models Discussed in Chapter 4

Figure A.3. Failure Time Subroutine.

Figure A.4. Resource Shutdown Subroutine.

Figure A.5. System Maintenance Submodel.

113

A.3. Screenshots From Models Discussed in Chapter 5

Figure A.6. Decision Policy Submodel.

Figure A.7. Resource Shutdown Submodel.

114

APPENDIX B: VISUAL BASIC CODE

This appendix shows the Visual Basic code used in the simulation models

developed in this thesis.

B.1. DM-I Policy Code Used in Section 3.2.1

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf
Function Cumnorm(X As Double) As Double
XAbs = Abs(X)
If XAbs > 37 Then
Cumnorm = 0
Else
Exponential = Exp(-XAbs ^ 2 / 2)
If XAbs < 7.07106781186547 Then
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688
Build = Build * XAbs + 6.37396220353165
Build = Build * XAbs + 33.912866078383
Build = Build * XAbs + 112.079291497871
Build = Build * XAbs + 221.213596169931
Build = Build * XAbs + 220.206867912376
Cumnorm = Exponential * Build
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264
Build = Build * XAbs + 16.064177579207
Build = Build * XAbs + 86.7807322029461
Build = Build * XAbs + 296.564248779674
Build = Build * XAbs + 637.333633378831
Build = Build * XAbs + 793.826512519948
Build = Build * XAbs + 440.413735824752
Cumnorm = Cumnorm / Build
Else
Build = XAbs + 0.65
Build = XAbs + 4 / Build
Build = XAbs + 3 / Build
Build = XAbs + 2 / Build
Build = XAbs + 1 / Build
Cumnorm = Exponential / Build / 2.506628274631
End If
End If
If X > 0 Then Cumnorm = 1 - Cumnorm
End Function

'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html
Function nc(X) As Double
Dim A(1 To 5) As Double
If X < -7 Then
 nc = ndf(X) / Sqr(1 + X * X)
ElseIf X > 7 Then
 nc = 1 - nc(-X)
Else
nc = 0.2316419

115

A(1) = 0.31938153
A(2) = -0.356563782
A(3) = 1.781477937
A(4) = -1.821255978
A(5) = 1.330274429
nc = 1 / (1 + nc * Abs(X))
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5)
If (X <= 0) Then nc = 1 - nc
End If
End Function

Function ndf(X) As Double
 ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi)
End Function

Function LN(X As Double) As Double

e = 2.71828183
LN = Log(X) / Log(e)

End Function
'Bearing 26
Private Sub VBA_Block_5_Fire()

bearing_num = 26

Dim X As Double
Dim Y As Double
Dim mu1 As Double
Dim mu2 As Double
Dim var1 As Double
Dim var2 As Double
Dim D As Double
Dim e, t, tw As Double
Dim F0 As Double
Dim F1 As Double
Dim Cost As Double
Dim counter As Integer
Dim simulation_time
Dim previous_failure_time As Double
Dim uptime_after_last_failure As Double
Dim Theta As Double
Dim Beta As Double
Dim ThetaCond As Double
Dim BetaCond As Double
Dim T0 As Double
Dim Tflat As Double
Dim FArray(1999) As Double
Dim CostArray(1999) As Double
Dim FConditionalArray(1999) As Double
Dim Sum_1_minus_FConditionalArray(1999) As Double
Dim WeibullCDF(1999) As Double
Dim WeibullCondCDF(1999) As Double
Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

116

e = 2.71828183
D = Log(0.03) / Log(e)
mu1 = -5.276132
mu2 = 0.004468
var1 = 0.199013215
var2 = 4.80643333333334 * 10 ^ -7
c1 = 750
c2 = 50
Theta = 784.74619
Beta = 3.05485
T0 = s.VariableArrayValue(s.SymbolNumber("T0", bearing_num - 25))
s.VariableArrayValue(s.SymbolNumber("Tflat")) = T0
Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", bearing_num - 25))
desired_reliability = 0.95

simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time"))
'MsgBox "The value of Simulation Time is " & simulation_time

previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Previous
Replacement Time"))
'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time

uptime_after_last_failure = simulation_time - previous_replacement_time
'MsgBox "The value of Uptime After Last Failure Time is " & uptime_after_last_failure

t = uptime_after_last_failure
i = uptime_after_last_failure
j = uptime_after_last_failure
K = uptime_after_last_failure
tw = uptime_after_last_failure

'******************Calculate Failure Time*************************************
tw = 0

Do
 tw = tw + 1
 WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta
 'MsgBox "tw is " & tw
 'MsgBox "WeibullCDF(tw) is " & WeibullCDF(tw)
Loop Until tw = 1998

tw = 0

Do
 tw = tw + 1
 WeibullCondCDF(tw) = (WeibullCDF(T0 + tw) - WeibullCDF(T0)) / (1 - WeibullCDF(T0))
Loop Until (WeibullCondCDF(tw) >= 0.632)

ThetaCond = tw
'MsgBox "ThetaCond is " & ThetaCond

Do
 tw = tw + 1
 WeibullCondCDF(tw) = (WeibullCDF(T0 + tw) - WeibullCDF(T0)) / (1 - WeibullCDF(T0))

117

Loop Until (WeibullCondCDF(tw) >= 0.99999)

BetaCond = LN(LN(1 / (1 - WeibullCondCDF(T0)))) / (LN(T0) - LN(ThetaCond))
'MsgBox "BetaCond is " & BetaCond
s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond
s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond

'***

'Calculate F immediately after failure: t=uptime_after_last_failure
FArray(t) = Cumnorm((t * mu2 + mu1 - D) / (Sqr(var1 + (var2 * t ^ 2))))

'Calculate the rest of the F's

Do
 i = i + 1
 FArray(i) = (Cumnorm((i * mu2 + mu1 - D) / (Sqr(var1 + (var2 * i ^ 2)))) - FArray(t)) / (1 - FArray(t))
 'MsgBox "FArray(i) is " & FArray(i)
Loop Until FArray(i) >= 1 - desired_reliability

t_replacement = i
'MsgBox "t_replacement is " & t_replacement
'MsgBox "T0 is " & T0

Do
 i = i + 1
 FArray(i) = (Cumnorm((i * mu2 + mu1 - D) / (Sqr(var1 + (var2 * i ^ 2)))) - FArray(t)) / (1 - FArray(t))
Loop Until i = 1999

i = 0
Do

 i = i + 1
 FConditionalArray(t_replacement + i) = (FArray(t_replacement + i) - FArray(t_replacement)) / (1 -
FArray(t_replacement))
 Sum_1_minus_FConditionalArray(t_replacement + i) =
Sum_1_minus_FConditionalArray(t_replacement + i - 1) + (1 –
Loop Until i = 1999 - t_replacement

LM_Interval = t_replacement + T0
s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Predicted Failure Time")) = LM_Interval
'MsgBox "The value of Work Cell 1 Predicted Failure Time is " & LM_Interval

End Sub

B.2. DM-II Policy Code Used in Section 3.2.2

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf
Function Cumnorm(X As Double) As Double
XAbs = Abs(X)
If XAbs > 37 Then
Cumnorm = 0
Else

118

Exponential = Exp(-XAbs ^ 2 / 2)
If XAbs < 7.07106781186547 Then
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688
Build = Build * XAbs + 6.37396220353165
Build = Build * XAbs + 33.912866078383
Build = Build * XAbs + 112.079291497871
Build = Build * XAbs + 221.213596169931
Build = Build * XAbs + 220.206867912376
Cumnorm = Exponential * Build
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264
Build = Build * XAbs + 16.064177579207
Build = Build * XAbs + 86.7807322029461
Build = Build * XAbs + 296.564248779674
Build = Build * XAbs + 637.333633378831
Build = Build * XAbs + 793.826512519948
Build = Build * XAbs + 440.413735824752
Cumnorm = Cumnorm / Build
Else
Build = XAbs + 0.65
Build = XAbs + 4 / Build
Build = XAbs + 3 / Build
Build = XAbs + 2 / Build
Build = XAbs + 1 / Build
Cumnorm = Exponential / Build / 2.506628274631
End If
End If
If X > 0 Then Cumnorm = 1 - Cumnorm
End Function

'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html
Function nc(X) As Double
Dim A(1 To 5) As Double
If X < -7 Then
 nc = ndf(X) / Sqr(1 + X * X)
ElseIf X > 7 Then
 nc = 1 - nc(-X)
Else
nc = 0.2316419
A(1) = 0.31938153
A(2) = -0.356563782
A(3) = 1.781477937
A(4) = -1.821255978
A(5) = 1.330274429
nc = 1 / (1 + nc * Abs(X))
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5)

If (X <= 0) Then nc = 1 - nc
End If
End Function

Function ndf(X) As Double
 ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi)
End Function

Function LN(X As Double) As Double

119

e = 2.71828183
LN = Log(X) / Log(e)

End Function

'Bearing 26
Static Sub VBA_Block_5_Fire()
bearing_num = 26
desired_reliability = 0.7
lead_time = 60

Dim Si As Double
Dim Li As Double
Dim e, t, tw As Double
Dim m As Double
Dim X As Double
Dim Y As Double
Dim K As Double
Dim var_x As Double
Dim var_y As Double
Dim mu_x As Double
Dim mu_y As Double
Dim rho As Double
Dim A As Double
Dim Cf As Double
Dim Cr As Double
Dim row_counter As Integer
Dim difference As Double
Dim Theta As Double
Dim Beta As Double
Dim ThetaCond As Double
Dim BetaCond As Double
Dim Tflat As Double
Dim t_k As Double
Dim MArray(1999) As Double
Dim XArray(1999) As Double
Dim YArray(1999) As Double
Dim var_xArray(1999) As Double
Dim var_yArray(1999) As Double
Dim mu_xArray(1999) As Double
Dim mu_yArray(1999) As Double
Dim RhoArray(1999) As Double
Dim SiArray(1999) As Double
Dim LiArray(1999) As Double
Dim T0 As Double
Dim Num_signal As Double
Dim CDFArray(1999, 1999) As Double
Dim ShiftedCDFArray(1999) As Double
Dim LMExpectationArray(1999) As Double
Dim NagiExpectationArray(1999) As Double
Dim WeibullCDF(1999) As Double
Dim WeibullCondCDF(1999) As Double
Dim Sum_Li(1999) As Double
Dim Sum_Lixti(1999) As Double
Dim Sum_ti(1999) As Double
Dim Sum_ti_squared(1999) As Double

120

Dim Sum_1_minus_CDF(1999, 1999) As Double
Dim Sum_1_minus_shifted_CDF(1999) As Double
Dim Replacement_Cost(1999, 1999) As Double
'Dim Min_Replacement_Cost(1999) As Double
Dim t_replacement(1999) As Double
Dim Ft_replacement(1999) As Double
Dim mu_tildaArray(1999, 1999) As Double
Dim var_tildaArray(1999, 1999) As Double
Dim LnSi(1999) As Double
Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

e = 2.71828183
D = Log(0.025) / Log(e)
mu_o = -6.031235
mu_1 = 0.008061
var_o = 0.34648893
var_1 = 0.0000103
var_err = 0.007348
corr_o = -0.362538
A = 1 - (corr_o) ^ 2
Theta = 784.74619
Beta = 3.05485

Cf = 750
Cr = 50

T0 = s.VariableArrayValue(s.SymbolNumber("T0", bearing_num - 25))
s.VariableArrayValue(s.SymbolNumber("Tflat")) = T0

Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", bearing_num - 25))

simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time"))
'MsgBox "The value of Simulation Time is " & simulation_time

previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Previous
Replacement Time"))
'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time

uptime_after_last_replacement = simulation_time - previous_replacement_time
'MsgBox "The value of Uptime After Last Replacement Time is " & uptime_after_last_replacement

ti = 2

Do
SiArray(ti) = s.VariableArrayValue(s.SymbolNumber("Signals26", ti / 2))
'MsgBox "SiArray(ti) " & SiArray(ti)

LnSi(ti) = (Log(SiArray(ti)) / Log(e))
'MsgBox "LnSi(ti) is " & LnSi(ti)

LiArray(ti) = LnSi(ti) - LnSi(ti - 2)
'MsgBox "The Li is " & LiArray(ti)

 K = ti / 2

121

 Sum_Li(ti) = Sum_Li(ti - 2) + LiArray(ti)
 'MsgBox "The Sum_Li is " & Sum_Li(ti)

 Sum_Lixti(ti) = Sum_Lixti(ti - 2) + (LiArray(ti) * ti)
 Sum_ti(ti) = Sum_ti(ti - 2) + ti
 Sum_ti_squared(ti) = Sum_ti_squared(ti - 2) + ti ^ 2

 MArray(ti) = (A * Sum_ti(ti) * Sqr(var_o) * Sqr(var_1)) - (corr_o * var_err)
 'MsgBox "The M is " & MArray(ti)

 XArray(ti) = K * A * var_o + var_err
 'MsgBox "The X is " & XArray(ti)

 YArray(ti) = A * Sum_ti_squared(ti) * var_1 + var_err
 'MsgBox "The Y is " & YArray(ti)

 'Calculate Posteriors
 var_xArray(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 'MsgBox "The var_x is " & var_xArray(ti)

 var_yArray(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 'MsgBox "The var_y is " & var_yArray(ti)

 mu_xArray(ti) = ((LiArray(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 2 *
(var_1 * Sum_Li(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 * 2)
 'MsgBox "The mu_x is " & mu_xArray(ti)

 mu_yArray(ti) = ((var_1 * Sum_Li(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * (LiArray(2)
* var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 * 2)
 'MsgBox "The mu_y is " & mu_yArray(ti)

 RhoArray(ti) = (-1 * Sqr(var_o) * Sqr(var_1) * Sqr(2)) / (Sqr((var_o + var_err * 2) * (var_1 * ti +
var_err)))
 'MsgBox "The Rho is " & RhoArray(ti)

 ti = ti + 2

Loop Until ti = Num_signal

'Calculate CDF Arrays
row_counter = 13

t_now = uptime_after_last_replacement
s.VariableArrayValue(s.SymbolNumber("t_k")) = t_now

tk = 2

If t_now >= 2 Then

 Do

 'MsgBox "t_now = " & t_now
 'MsgBox "tk = " & tk

122

 mu_tildaArray(tk, t_now) = LnSi(t_now) + (mu_yArray(t_now) * tk)
 'MsgBox "The mu_tilda is " & mu_tildaArray(tk, t_now)

 var_tildaArray(tk, t_now) = var_yArray(t_now) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda is " & var_tildaArray(tk, t_now)

 'For Nagi's Model - No shift
 CDFArray(tk, t_now) = Cumnorm((mu_tildaArray(tk, t_now) - D) / (Sqr(var_tildaArray(tk, t_now))))
 'MsgBox "The CDF is " & CDFArray(tk, t_now)

 If tk = 2 Then
 Sum_1_minus_CDF(tk, t_now) = (1 - CDFArray(tk, t_now))
 'MsgBox "The Sum_1_minus_CDF is " & Sum_1_minus_CDF(tk, t_now)

 Else
 Sum_1_minus_CDF(tk, t_now) = Sum_1_minus_CDF(tk - 2, t_now) + (1 - CDFArray(tk, t_now))
 'MsgBox "The Sum_1_minus_CDF is " & Sum_1_minus_CDF(tk, t_now)
 End If

 Replacement_Cost(tk, t_now) = (Cf * CDFArray(tk, t_now) + Cr * (1 - CDFArray(tk, t_now))) / (t_now
+ ((Sum_1_minus_CDF(tk, t_now)) * 2))
 'MsgBox "The Replacement Cost for 1 is " & Replacement_Cost(tk, t_now)

 tk = tk + 2
 Loop Until tk = 1900

Else

 predicted_failure_time = t_now

End If

t_down = 0
stop_median = 0
MsgBox "CDFArray1 on top row is " & CDFArray(2, t_now)

If CDFArray(2, t_now) >= (1 - desired_reliability) Then

 If CDFArray(2, t_now) >= 0.5 Then
 t_median = 0
 'MsgBox "t_median = 0"

 Else

 Do
 t_down = t_down + 2
 'MsgBox "CDFArray going down is " & CDFArray(t_down, t_reliability)

 If CDFArray(t_down, t_now) >= 0.5 Then

 stop_median = 1

 End If

123

 Loop Until stop_median = 1

 t_median = t_down
 MsgBox "t_median = " & t_median

 End If

 predicted_failure_time = T0 + t_now + t_median

 stop_update_time = T0 + t_now
 'MsgBox "We stopped updating 26 at " & stop_update_time

 s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Threshold")) = 1
 s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Predicted Failure Time")) =
predicted_failure_time
 'MsgBox "The Predicted Failure is " & predicted_failure_time

'******************Calculate Failure Time*************************************
tw = 0

Do
 tw = tw + 2
 WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta
Loop Until tw = 1998

tw = 0

Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(T0 + t_now + tw) - WeibullCDF(T0 + t_now)) / (1 -
WeibullCDF(T0 + t_now))
Loop Until (WeibullCondCDF(tw) >= 0.632)

ThetaCond = tw
'MsgBox "ThetaCond is " & ThetaCond

Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(T0 + t_now + tw) - WeibullCDF(T0 + t_now)) / (1 -
WeibullCDF(T0 + t_now))
Loop Until (WeibullCondCDF(tw) >= 0.99999)

'MsgBox "t0 is " & T0
'MsgBox "t_now is " & t_now
'MsgBox "weibullcondcdf(t0+t_now) is " & WeibullCondCDF(T0 + t_now)

BetaCond = LN(LN(1 / (1 - WeibullCondCDF(T0 + t_now)))) / (LN(T0 + t_now) - LN(ThetaCond))
'MsgBox "BetaCond is " & BetaCond

s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond
s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond

'***

End If
End Sub

124

B.3. PM Policy Code Used in Section 4.4.2.1.2

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf
Function Cumnorm(X As Double) As Double
XAbs = Abs(X)
If XAbs > 37 Then
Cumnorm = 0
Else
Exponential = Exp(-XAbs ^ 2 / 2)
If XAbs < 7.07106781186547 Then
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688
Build = Build * XAbs + 6.37396220353165
Build = Build * XAbs + 33.912866078383
Build = Build * XAbs + 112.079291497871
Build = Build * XAbs + 221.213596169931
Build = Build * XAbs + 220.206867912376
Cumnorm = Exponential * Build
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264
Build = Build * XAbs + 16.064177579207
Build = Build * XAbs + 86.7807322029461
Build = Build * XAbs + 296.564248779674
Build = Build * XAbs + 637.333633378831
Build = Build * XAbs + 793.826512519948
Build = Build * XAbs + 440.413735824752
Cumnorm = Cumnorm / Build
Else
Build = XAbs + 0.65
Build = XAbs + 4 / Build
Build = XAbs + 3 / Build
Build = XAbs + 2 / Build
Build = XAbs + 1 / Build
Cumnorm = Exponential / Build / 2.506628274631
End If
End If
If X > 0 Then Cumnorm = 1 - Cumnorm
End Function

'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html
Function nc(X) As Double
Dim A(1 To 5) As Double
If X < -7 Then
 nc = ndf(X) / Sqr(1 + X * X)
ElseIf X > 7 Then
 nc = 1 - nc(-X)
Else
nc = 0.2316419
A(1) = 0.31938153
A(2) = -0.356563782
A(3) = 1.781477937
A(4) = -1.821255978
A(5) = 1.330274429
nc = 1 / (1 + nc * Abs(X))
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5)
If (X <= 0) Then nc = 1 - nc

125

End If
End Function

Function ndf(X) As Double
 ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi)
End Function

Function LN(X As Double) As Double

e = 2.71828183
LN = Log(X) / Log(e)

End Function

Function T0(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

T0 = s.VariableArrayValue(s.SymbolNumber("T0", X - 25))

End Function

Function Num_signal(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25))

End Function

Function actual_failure_time(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

actual_failure_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25))

End Function

Function SiArray(X, Y) As Double
'X is bearing number
'Y is ti

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

If X = 26 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals26", Y))
Else
If X = 27 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals27", Y))

126

Else
If X = 28 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals28", Y))
Else
If X = 29 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals29", Y))
Else
If X = 30 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals30", Y))
Else
If X = 31 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals31", Y))
Else
If X = 32 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals32", Y))
Else
If X = 33 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals33", Y))
Else
If X = 34 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals34", Y))
Else
If X = 35 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals35", Y))
Else
If X = 36 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals36", Y))
Else
If X = 37 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals37", Y))
Else

If X = 38 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals38", Y))
Else
If X = 39 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals39", Y))
Else
If X = 40 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals40", Y))
Else
If X = 41 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals41", Y))
Else
If X = 42 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals42", Y))
Else
If X = 43 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals43", Y))
Else
If X = 44 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals44", Y))
Else
If X = 45 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals45", Y))
Else

127

If X = 46 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals46", Y))
Else
If X = 47 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals47", Y))
Else
If X = 48 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals48", Y))
Else
If X = 49 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals49", Y))
Else
If X = 50 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals50", Y))
Else

If X = 51 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals51", Y))
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

End Function

Static Sub VBA_Block_1_Fire()

desired_reliability = 0.95

Dim e As Double
Dim Cf As Double
Dim Cr As Double
Dim Theta As Double
Dim Beta As Double

128

Dim ThetaCond As Double
Dim BetaCond As Double
Dim uptime_after_last_replacement As Double
Dim bearing_1 As Integer
Dim bearing_2 As Integer
Dim bearing_3 As Integer
Dim bearing_4 As Integer
Dim bearing_5 As Integer

Dim var_xArray_1(1999) As Double
Dim var_xArray_2(1999) As Double
Dim var_xArray_3(1999) As Double
Dim var_xArray_4(1999) As Double
Dim var_xArray_5(1999) As Double

Dim var_yArray_1(1999) As Double
Dim var_yArray_2(1999) As Double
Dim var_yArray_3(1999) As Double
Dim var_yArray_4(1999) As Double
Dim var_yArray_5(1999) As Double

Dim mu_xArray_1(1999) As Double
Dim mu_xArray_2(1999) As Double
Dim mu_xArray_3(1999) As Double
Dim mu_xArray_4(1999) As Double
Dim mu_xArray_5(1999) As Double

Dim mu_yArray_1(1999) As Double
Dim mu_yArray_2(1999) As Double
Dim mu_yArray_3(1999) As Double
Dim mu_yArray_4(1999) As Double
Dim mu_yArray_5(1999) As Double

Dim SiArray_1(1999) As Double
Dim SiArray_2(1999) As Double
Dim SiArray_3(1999) As Double
Dim SiArray_4(1999) As Double
Dim SiArray_5(1999) As Double

Dim LiArray_1(1999) As Double
Dim LiArray_2(1999) As Double
Dim LiArray_3(1999) As Double
Dim LiArray_4(1999) As Double
Dim LiArray_5(1999) As Double

Dim Sum_Li_1(1999) As Double
Dim Sum_Li_2(1999) As Double
Dim Sum_Li_3(1999) As Double
Dim Sum_Li_4(1999) As Double
Dim Sum_Li_5(1999) As Double

Dim LnSi_1(1999) As Double
Dim LnSi_2(1999) As Double
Dim LnSi_3(1999) As Double
Dim LnSi_4(1999) As Double
Dim LnSi_5(1999) As Double

129

Dim T0_1 As Double
Dim T0_2 As Double
Dim T0_3 As Double
Dim T0_4 As Double
Dim T0_5 As Double

Dim Num_signal_1 As Double
Dim Num_signal_2 As Double
Dim Num_signal_3 As Double
Dim Num_signal_4 As Double
Dim Num_signal_5 As Double

Dim CDFArray_1(1999, 1999) As Double
Dim CDFArray_2(1999, 1999) As Double
Dim CDFArray_3(1999, 1999) As Double
Dim CDFArray_4(1999, 1999) As Double
Dim CDFArray_5(1999, 1999) As Double

Dim mu_tildaArray_1(1999, 1999) As Double
Dim mu_tildaArray_2(1999, 1999) As Double
Dim mu_tildaArray_3(1999, 1999) As Double
Dim mu_tildaArray_4(1999, 1999) As Double
Dim mu_tildaArray_5(1999, 1999) As Double

Dim var_tildaArray_1(1999, 1999) As Double
Dim var_tildaArray_2(1999, 1999) As Double
Dim var_tildaArray_3(1999, 1999) As Double
Dim var_tildaArray_4(1999, 1999) As Double
Dim var_tildaArray_5(1999, 1999) As Double

Dim Reliability_1(1999, 1999) As Double
Dim Reliability_2(1999, 1999) As Double
Dim Reliability_3(1999, 1999) As Double
Dim Reliability_4(1999, 1999) As Double
Dim Reliability_5(1999, 1999) As Double

Dim SystemRel(1999, 1999) As Double

Dim WeibullCDF(1999) As Double
Dim WeibullCondCDF(1999) As Double

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

e = 2.71828183
D = Log(0.025) / Log(e)

mu_o = -6.031235
mu_1 = 0.008061
var_o = 0.34648893
var_1 = 0.0000103
var_err = 0.007348
corr_o = -0.362538
A = 1 - (corr_o) ^ 2
Theta = 784.74619

130

Beta = 3.05485
Cf = 750
Cr = 50

bearing_1 = s.VariableArrayValue(s.SymbolNumber("bearing_1"))
bearing_2 = s.VariableArrayValue(s.SymbolNumber("bearing_2"))
bearing_3 = s.VariableArrayValue(s.SymbolNumber("bearing_3"))
bearing_4 = s.VariableArrayValue(s.SymbolNumber("bearing_4"))
bearing_5 = s.VariableArrayValue(s.SymbolNumber("bearing_5"))

'Read in Tflats, Num_signals, actual_failure_times

 T0_1 = T0(bearing_1)
 T0_2 = T0(bearing_2)
 T0_3 = T0(bearing_3)
 T0_4 = T0(bearing_4)
 T0_5 = T0(bearing_5)

 Num_signal_1 = Num_signal(bearing_1)
 Num_signal_2 = Num_signal(bearing_2)
 Num_signal_3 = Num_signal(bearing_3)
 Num_signal_4 = Num_signal(bearing_4)
 Num_signal_5 = Num_signal(bearing_5)

 actual_failure_time_1 = actual_failure_time(bearing_1)
 actual_failure_time_2 = actual_failure_time(bearing_2)
 actual_failure_time_3 = actual_failure_time(bearing_3)
 actual_failure_time_4 = actual_failure_time(bearing_4)
 actual_failure_time_5 = actual_failure_time(bearing_5)

'Read in simulation information
 simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time"))
 'MsgBox "The value of Simulation Time is " & simulation_time

 previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("previous_replacement_time"))
 'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time

 uptime_after_last_replacement = simulation_time - previous_replacement_time
 s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement")) =
uptime_after_last_replacement
 'MsgBox "The value of Uptime After Last Replacement Time is " & uptime_after_last_replacement

'@@
@@@@@@@@@@@@
'Check if Workstation 1 is ready for updating
 If uptime_after_last_replacement > T0_1 Then

 If uptime_after_last_replacement <= T0_1 + 3.5 Then
 begin_update_time_1 = uptime_after_last_replacement
 'MsgBox "1 Begin UPDATING"
 End If

 t_signal_1 = uptime_after_last_replacement + 2 - begin_update_time_1

 ti = 2
 Do

131

'Read in Signal
 SiArray_1(ti) = SiArray(bearing_1, ti / 2)
 LnSi_1(ti) = (Log(SiArray_1(ti)) / Log(e))
 LiArray_1(ti) = LnSi_1(ti) - LnSi_1(ti - 2)
 Sum_Li_1(ti) = Sum_Li_1(ti - 2) + LiArray_1(ti)

'Calculate Posteriors
 var_xArray_1(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_1(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_1(ti) = ((LiArray_1(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_1(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_1(ti) = ((var_1 * Sum_Li_1(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_1(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_1

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_1(tk, t_signal_1) = LnSi_1(t_signal_1) + (mu_yArray_1(t_signal_1) * tk)
 'MsgBox "The mu_tilda_1 is " & mu_tildaArray_1(tk, t_signal_1)
 var_tildaArray_1(tk, t_signal_1) = var_yArray_1(t_signal_1) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_1 is " & var_tildaArray_1(tk, t_signal_1)
 CDFArray_1(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_1(tk, t_signal_1) -
D) / (Sqr(var_tildaArray_1(tk, t_signal_1))))
 'MsgBox "The CDF_1 is " & CDFArray_1(tk, t_signal_1)
 Reliability_1(tk, uptime_after_last_replacement) = 1 - CDFArray_1(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_1 Then
 tk = 2
 Do
 Reliability_1(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_1")) = 1
 'MsgBox "sudden failure 1 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do

132

 Reliability_1(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 2 is ready for updating
 If uptime_after_last_replacement > T0_2 Then

 If uptime_after_last_replacement <= T0_2 + 3.5 Then
 begin_update_time_2 = uptime_after_last_replacement
 'MsgBox "Begin UPDATING 2"
 End If

 t_signal_2 = uptime_after_last_replacement + 2 - begin_update_time_2

 ti = 2
 Do

'Read in Signal
 SiArray_2(ti) = SiArray(bearing_2, ti / 2)
 LnSi_2(ti) = (Log(SiArray_2(ti)) / Log(e))
 LiArray_2(ti) = LnSi_2(ti) - LnSi_2(ti - 2)
 Sum_Li_2(ti) = Sum_Li_2(ti - 2) + LiArray_2(ti)

'Calculate Posteriors
 var_xArray_2(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_2(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_2(ti) = ((LiArray_2(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_2(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_2(ti) = ((var_1 * Sum_Li_2(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_2(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_2

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_2(tk, t_signal_2) = LnSi_2(t_signal_2) + (mu_yArray_2(t_signal_2) * tk)
 'MsgBox "The mu_tilda_2 is " & mu_tildaArray_2(tk, t_signal_2)
 var_tildaArray_2(tk, t_signal_2) = var_yArray_2(t_signal_2) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_2 is " & var_tildaArray_2(tk, t_signal_2)
 CDFArray_2(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_2(tk, t_signal_2) -
D) / (Sqr(var_tildaArray_2(tk, t_signal_2))))
 'MsgBox "The CDF_2 is " & CDFArray_2(tk, t_signal_2)
 Reliability_2(tk, uptime_after_last_replacement) = 1 - CDFArray_2(tk,
uptime_after_last_replacement)

133

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_2 Then
 tk = 2
 Do
 Reliability_2(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_2")) = 1
 'MsgBox "sudden failure 2 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_2(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 3 is ready for updating
 If uptime_after_last_replacement > T0_3 Then

 If uptime_after_last_replacement <= T0_3 + 3.5 Then
 begin_update_time_3 = uptime_after_last_replacement
 'MsgBox "3 Begin UPDATING"
 End If

 t_signal_3 = uptime_after_last_replacement + 2 - begin_update_time_3

 ti = 2
 Do

'Read in Signal
 SiArray_3(ti) = SiArray(bearing_3, ti / 2)
 LnSi_3(ti) = (Log(SiArray_3(ti)) / Log(e))
 LiArray_3(ti) = LnSi_3(ti) - LnSi_3(ti - 2)
 Sum_Li_3(ti) = Sum_Li_3(ti - 2) + LiArray_3(ti)

'Calculate Posteriors
 var_xArray_3(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_3(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)

134

 mu_xArray_3(ti) = ((LiArray_3(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_3(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_3(ti) = ((var_1 * Sum_Li_3(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_3(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_3

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_3(tk, t_signal_3) = LnSi_3(t_signal_3) + (mu_yArray_3(t_signal_3) * tk)
 'MsgBox "The mu_tilda_3 is " & mu_tildaArray_3(tk, t_signal_3)
 var_tildaArray_3(tk, t_signal_3) = var_yArray_3(t_signal_3) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_3 is " & var_tildaArray_3(tk, t_signal_3)
 CDFArray_3(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_3(tk, t_signal_3) -
D) / (Sqr(var_tildaArray_3(tk, t_signal_3))))
 'MsgBox "The CDF_3 is " & CDFArray_3(tk, t_signal_3)
 Reliability_3(tk, uptime_after_last_replacement) = 1 - CDFArray_3(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_3 Then
 tk = 2
 Do
 Reliability_3(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_3")) = 1
 'MsgBox "sudden failure 3 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_3(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 4 is ready for updating
 If uptime_after_last_replacement > T0_4 Then

135

 If uptime_after_last_replacement <= T0_4 + 3.5 Then
 begin_update_time_4 = uptime_after_last_replacement
 'MsgBox "Begin UPDATING 4"
 End If

 t_signal_4 = uptime_after_last_replacement + 2 - begin_update_time_4

 ti = 2
 Do

'Read in Signal
 SiArray_4(ti) = SiArray(bearing_4, ti / 2)
 LnSi_4(ti) = (Log(SiArray_4(ti)) / Log(e))
 LiArray_4(ti) = LnSi_4(ti) - LnSi_4(ti - 2)
 Sum_Li_4(ti) = Sum_Li_4(ti - 2) + LiArray_4(ti)

'Calculate Posteriors
 var_xArray_4(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_4(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_4(ti) = ((LiArray_4(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_4(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_4(ti) = ((var_1 * Sum_Li_4(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_4(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_4

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_4(tk, t_signal_4) = LnSi_4(t_signal_4) + (mu_yArray_4(t_signal_4) * tk)
 'MsgBox "The mu_tilda_4 is " & mu_tildaArray_4(tk, t_signal_4)
 var_tildaArray_4(tk, t_signal_4) = var_yArray_4(t_signal_4) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_4 is " & var_tildaArray_4(tk, t_signal_4)
 CDFArray_4(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_4(tk, t_signal_4) -
D) / (Sqr(var_tildaArray_4(tk, t_signal_4))))
 'MsgBox "The CDF_4 is " & CDFArray_4(tk, t_signal_4)
 Reliability_4(tk, uptime_after_last_replacement) = 1 - CDFArray_4(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_4 Then
 tk = 2
 Do
 Reliability_4(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900

136

 s.VariableArrayValue(s.SymbolNumber("sudden_fail_4")) = 1
 'MsgBox "sudden failure 4 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_4(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 5 is ready for updating
 If uptime_after_last_replacement > T0_5 Then

 If uptime_after_last_replacement <= T0_5 + 3.5 Then
 begin_update_time_5 = uptime_after_last_replacement
 'MsgBox "5 Begin UPDATING"
 End If

 t_signal_5 = uptime_after_last_replacement + 2 - begin_update_time_5
 'MsgBox "t_signal_5 is " & t_signal_5

 ti = 2
 Do

 'Read in Signal
 SiArray_5(ti) = SiArray(bearing_5, ti / 2)
 LnSi_5(ti) = (Log(SiArray_5(ti)) / Log(e))
 LiArray_5(ti) = LnSi_5(ti) - LnSi_5(ti - 2)
 Sum_Li_5(ti) = Sum_Li_5(ti - 2) + LiArray_5(ti)

 'Calculate Posteriors
 var_xArray_5(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_5(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_5(ti) = ((LiArray_5(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_5(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_5(ti) = ((var_1 * Sum_Li_5(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_5(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_5

 'Calculate CDF
 tk = 2

137

 Do
 mu_tildaArray_5(tk, t_signal_5) = LnSi_5(t_signal_5) + (mu_yArray_5(t_signal_5) * tk)
 'MsgBox "The mu_tilda_5 is " & mu_tildaArray_5(tk, t_signal_5)
 var_tildaArray_5(tk, t_signal_5) = var_yArray_5(t_signal_5) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_5 is " & var_tildaArray_5(tk, t_signal_5)
 CDFArray_5(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_5(tk, t_signal_5) -
D) / (Sqr(var_tildaArray_5(tk, t_signal_5))))
 'MsgBox "The CDF_5 is " & CDFArray_5(tk, t_signal_5)
 Reliability_5(tk, uptime_after_last_replacement) = 1 - CDFArray_5(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_5 Then
 tk = 2
 Do
 Reliability_5(tk, uptime_after_last_replacement) = 0
 tk = tk + 2

 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_5")) = 1
 'MsgBox "sudden failure 5 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_5(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Compute System Reliability for bearings 26,27,28,29,30

 tk = 2

 Do

 SystemRel(tk, uptime_after_last_replacement) = (1 - (1 - Reliability_1(tk,
uptime_after_last_replacement)) * (1 - Reliability_2(tk, uptime_after_last_replacement))) * (1 - (1 -
Reliability_4(tk, uptime_after_last_replacement)) * (1 - Reliability_5(tk, uptime_after_last_replacement)))
* Reliability_3(tk, uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

138

 t_down = 2
 stop_median = 0

 If SystemRel(2, uptime_after_last_replacement) <= (desired_reliability) Then
 If SystemRel(2, uptime_after_last_replacement) <= 0.5 Then
 t_median = 0
 Else
 Do
 If SystemRel(t_down, uptime_after_last_replacement) <= 0.5 Then
 stop_median = 1
 End If

 t_down = t_down + 2

 Loop Until stop_median = 1

 t_median = t_down

 End If

 predicted_failure_time = uptime_after_last_replacement + t_median
 'MsgBox "t_median is " & t_median
 'MsgBox "Predicted fail time is " & predicted_failure_time

 s.VariableArrayValue(s.SymbolNumber("prediction")) = 1
 s.VariableArrayValue(s.SymbolNumber("predicted_failure_time")) = predicted_failure_time

 '******************Calculate Failure Time*************************************
 tw = 0

 Do
 tw = tw + 2
 WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta

 Loop Until tw = 1998

 tw = 0
 Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) -
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement))

 Loop Until (WeibullCondCDF(tw) >= 0.632)
 ThetaCond = tw

 Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) -
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement))

 Loop Until (WeibullCondCDF(tw) >= 0.99999)
 'MsgBox "weibullcondcdf(uptime_after_last_replacement) is " &
WeibullCondCDF(uptime_after_last_replacement)

 BetaCond = LN(LN(1 / (1 - WeibullCondCDF(uptime_after_last_replacement)))) /
(LN(uptime_after_last_replacement) - LN(ThetaCond))

139

 'MsgBox "BetaCond is " & BetaCond

 s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond
 s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond
 '***

 End If

End Sub

B.4. DM Policy Code Used in Section 4.4.2.1.3

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf
Function Cumnorm(X As Double) As Double
XAbs = Abs(X)
If XAbs > 37 Then
Cumnorm = 0
Else
Exponential = Exp(-XAbs ^ 2 / 2)
If XAbs < 7.07106781186547 Then
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688
Build = Build * XAbs + 6.37396220353165
Build = Build * XAbs + 33.912866078383
Build = Build * XAbs + 112.079291497871
Build = Build * XAbs + 221.213596169931
Build = Build * XAbs + 220.206867912376
Cumnorm = Exponential * Build
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264
Build = Build * XAbs + 16.064177579207
Build = Build * XAbs + 86.7807322029461
Build = Build * XAbs + 296.564248779674
Build = Build * XAbs + 637.333633378831
Build = Build * XAbs + 793.826512519948
Build = Build * XAbs + 440.413735824752
Cumnorm = Cumnorm / Build
Else
Build = XAbs + 0.65
Build = XAbs + 4 / Build
Build = XAbs + 3 / Build
Build = XAbs + 2 / Build
Build = XAbs + 1 / Build
Cumnorm = Exponential / Build / 2.506628274631
End If
End If
If X > 0 Then Cumnorm = 1 - Cumnorm
End Function

'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html
Function nc(X) As Double
Dim A(1 To 5) As Double
If X < -7 Then
 nc = ndf(X) / Sqr(1 + X * X)
ElseIf X > 7 Then
 nc = 1 - nc(-X)
Else

140

nc = 0.2316419
A(1) = 0.31938153
A(2) = -0.356563782
A(3) = 1.781477937
A(4) = -1.821255978
A(5) = 1.330274429
nc = 1 / (1 + nc * Abs(X))
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5)
If (X <= 0) Then nc = 1 - nc
End If
End Function

Function ndf(X) As Double
 ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi)
End Function

Function LN(X As Double) As Double

e = 2.71828183
LN = Log(X) / Log(e)

End Function

Function T0(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

T0 = s.VariableArrayValue(s.SymbolNumber("T0", X - 25))

End Function

Function Num_signal(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25))

End Function

Function actual_failure_time(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

actual_failure_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25))

End Function

Function SiArray(X, Y) As Double
'X is bearing number
'Y is ti

141

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

If X = 26 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals26", Y))
Else
If X = 27 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals27", Y))
Else
If X = 28 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals28", Y))
Else
If X = 29 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals29", Y))
Else
If X = 30 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals30", Y))
Else
If X = 31 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals31", Y))
Else
If X = 32 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals32", Y))
Else
If X = 33 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals33", Y))
Else
If X = 34 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals34", Y))
Else
If X = 35 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals35", Y))
Else
If X = 36 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals36", Y))
Else
If X = 37 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals37", Y))
Else

If X = 38 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals38", Y))
Else
If X = 39 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals39", Y))
Else
If X = 40 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals40", Y))
Else
If X = 41 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals41", Y))
Else
If X = 42 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals42", Y))
Else

142

If X = 43 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals43", Y))
Else
If X = 44 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals44", Y))
Else
If X = 45 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals45", Y))
Else
If X = 46 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals46", Y))
Else
If X = 47 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals47", Y))
Else
If X = 48 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals48", Y))
Else
If X = 49 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals49", Y))
Else
If X = 50 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals50", Y))
Else

If X = 51 Then
 SiArray = s.VariableArrayValue(s.SymbolNumber("Signals51", Y))
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

End Function

143

Static Sub VBA_Block_1_Fire()

desired_reliability = 0.9

Dim e As Double
Dim Cf As Double
Dim Cr As Double
Dim Theta As Double
Dim Beta As Double
Dim ThetaCond As Double
Dim BetaCond As Double
Dim uptime_after_last_replacement As Double
Dim bearing_1 As Integer
Dim bearing_2 As Integer
Dim bearing_3 As Integer
Dim bearing_4 As Integer
Dim bearing_5 As Integer

Dim var_xArray_1(1999) As Double
Dim var_xArray_2(1999) As Double
Dim var_xArray_3(1999) As Double
Dim var_xArray_4(1999) As Double
Dim var_xArray_5(1999) As Double

Dim var_yArray_1(1999) As Double
Dim var_yArray_2(1999) As Double
Dim var_yArray_3(1999) As Double
Dim var_yArray_4(1999) As Double
Dim var_yArray_5(1999) As Double

Dim mu_xArray_1(1999) As Double
Dim mu_xArray_2(1999) As Double
Dim mu_xArray_3(1999) As Double
Dim mu_xArray_4(1999) As Double
Dim mu_xArray_5(1999) As Double

Dim mu_yArray_1(1999) As Double
Dim mu_yArray_2(1999) As Double
Dim mu_yArray_3(1999) As Double
Dim mu_yArray_4(1999) As Double
Dim mu_yArray_5(1999) As Double

Dim SiArray_1(1999) As Double
Dim SiArray_2(1999) As Double
Dim SiArray_3(1999) As Double
Dim SiArray_4(1999) As Double
Dim SiArray_5(1999) As Double

Dim LiArray_1(1999) As Double
Dim LiArray_2(1999) As Double
Dim LiArray_3(1999) As Double
Dim LiArray_4(1999) As Double
Dim LiArray_5(1999) As Double

Dim Sum_Li_1(1999) As Double
Dim Sum_Li_2(1999) As Double

144

Dim Sum_Li_3(1999) As Double
Dim Sum_Li_4(1999) As Double
Dim Sum_Li_5(1999) As Double

Dim LnSi_1(1999) As Double
Dim LnSi_2(1999) As Double
Dim LnSi_3(1999) As Double
Dim LnSi_4(1999) As Double
Dim LnSi_5(1999) As Double

Dim T0_1 As Double
Dim T0_2 As Double
Dim T0_3 As Double
Dim T0_4 As Double
Dim T0_5 As Double

Dim Num_signal_1 As Double
Dim Num_signal_2 As Double
Dim Num_signal_3 As Double
Dim Num_signal_4 As Double
Dim Num_signal_5 As Double

Dim CDFArray_1(1999, 1999) As Double
Dim CDFArray_2(1999, 1999) As Double
Dim CDFArray_3(1999, 1999) As Double
Dim CDFArray_4(1999, 1999) As Double
Dim CDFArray_5(1999, 1999) As Double

Dim mu_tildaArray_1(1999, 1999) As Double
Dim mu_tildaArray_2(1999, 1999) As Double
Dim mu_tildaArray_3(1999, 1999) As Double
Dim mu_tildaArray_4(1999, 1999) As Double
Dim mu_tildaArray_5(1999, 1999) As Double

Dim var_tildaArray_1(1999, 1999) As Double
Dim var_tildaArray_2(1999, 1999) As Double
Dim var_tildaArray_3(1999, 1999) As Double
Dim var_tildaArray_4(1999, 1999) As Double
Dim var_tildaArray_5(1999, 1999) As Double

Dim Reliability_1(1999, 1999) As Double
Dim Reliability_2(1999, 1999) As Double
Dim Reliability_3(1999, 1999) As Double
Dim Reliability_4(1999, 1999) As Double
Dim Reliability_5(1999, 1999) As Double

Dim SystemRel(1999, 1999) As Double

Dim WeibullCDF(1999) As Double
Dim WeibullCondCDF(1999) As Double

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

145

e = 2.71828183
D = Log(0.025) / Log(e)

mu_o = -6.031235
mu_1 = 0.008061
var_o = 0.34648893
var_1 = 0.0000103
var_err = 0.007348
corr_o = -0.362538
A = 1 - (corr_o) ^ 2
Theta = 784.74619
Beta = 3.05485
Cf = 750
Cr = 50

'bearing_1 = 26
'bearing_2 = 27
'bearing_3 = 28
'bearing_4 = 29
'bearing_5 = 30

bearing_1 = s.VariableArrayValue(s.SymbolNumber("bearing_1"))
bearing_2 = s.VariableArrayValue(s.SymbolNumber("bearing_2"))
bearing_3 = s.VariableArrayValue(s.SymbolNumber("bearing_3"))
bearing_4 = s.VariableArrayValue(s.SymbolNumber("bearing_4"))
bearing_5 = s.VariableArrayValue(s.SymbolNumber("bearing_5"))

'MsgBox "bearing_1 is " & bearing_1
'MsgBox "bearing_2 is " & bearing_2
'MsgBox "bearing_3 is " & bearing_3
'MsgBox "bearing_4 is " & bearing_4
'MsgBox "bearing_5 is " & bearing_5

'Read in Tflats, Num_signals, actual_failure_times

 T0_1 = T0(bearing_1)
 T0_2 = T0(bearing_2)
 T0_3 = T0(bearing_3)
 T0_4 = T0(bearing_4)
 T0_5 = T0(bearing_5)
 'MsgBox "T0_2 is " & T0_2

 Num_signal_1 = Num_signal(bearing_1)
 Num_signal_2 = Num_signal(bearing_2)
 Num_signal_3 = Num_signal(bearing_3)
 Num_signal_4 = Num_signal(bearing_4)
 Num_signal_5 = Num_signal(bearing_5)
 'MsgBox "Num_signal_5 is " & Num_signal_5

 actual_failure_time_1 = actual_failure_time(bearing_1)
 actual_failure_time_2 = actual_failure_time(bearing_2)
 actual_failure_time_3 = actual_failure_time(bearing_3)
 actual_failure_time_4 = actual_failure_time(bearing_4)
 actual_failure_time_5 = actual_failure_time(bearing_5)
 'MsgBox "actual_failure_time_3 is " & actual_failure_time_3

146

'Read in simulation information
 simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time"))
 'MsgBox "The value of Simulation Time is " & simulation_time

 previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("previous_replacement_time"))
 'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time

 uptime_after_last_replacement = simulation_time - previous_replacement_time
 s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement")) =
uptime_after_last_replacement
 'MsgBox "The value of Uptime After Last Replacement Time is " & uptime_after_last_replacement

'@@
@@@@@@@@@@@@
'Check if Workstation 1 is ready for updating
 If uptime_after_last_replacement > T0_1 Then

 If uptime_after_last_replacement <= T0_1 + 3.5 Then
 begin_update_time_1 = uptime_after_last_replacement
 'MsgBox "1 Begin UPDATING"
 End If

 t_signal_1 = uptime_after_last_replacement + 2 - begin_update_time_1

 ti = 2
 Do

'Read in Signal
 SiArray_1(ti) = SiArray(bearing_1, ti / 2)
 LnSi_1(ti) = (Log(SiArray_1(ti)) / Log(e))
 LiArray_1(ti) = LnSi_1(ti) - LnSi_1(ti - 2)
 Sum_Li_1(ti) = Sum_Li_1(ti - 2) + LiArray_1(ti)

'Calculate Posteriors
 var_xArray_1(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_1(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_1(ti) = ((LiArray_1(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_1(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_1(ti) = ((var_1 * Sum_Li_1(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_1(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_1

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_1(tk, t_signal_1) = LnSi_1(t_signal_1) + (mu_yArray_1(t_signal_1) * tk)
 'MsgBox "The mu_tilda_1 is " & mu_tildaArray_1(tk, t_signal_1)
 var_tildaArray_1(tk, t_signal_1) = var_yArray_1(t_signal_1) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_1 is " & var_tildaArray_1(tk, t_signal_1)

147

 CDFArray_1(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_1(tk, t_signal_1) -
D) / (Sqr(var_tildaArray_1(tk, t_signal_1))))
 'MsgBox "The CDF_1 is " & CDFArray_1(tk, t_signal_1)
 Reliability_1(tk, uptime_after_last_replacement) = 1 - CDFArray_1(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_1 Then
 tk = 2
 Do
 Reliability_1(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_1")) = 1
 'MsgBox "sudden failure 1 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_1(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 2 is ready for updating
 If uptime_after_last_replacement > T0_2 Then

 If uptime_after_last_replacement <= T0_2 + 3.5 Then
 begin_update_time_2 = uptime_after_last_replacement
 'MsgBox "Begin UPDATING 2"
 End If

 t_signal_2 = uptime_after_last_replacement + 2 - begin_update_time_2

 ti = 2
 Do

'Read in Signal
 SiArray_2(ti) = SiArray(bearing_2, ti / 2)
 LnSi_2(ti) = (Log(SiArray_2(ti)) / Log(e))
 LiArray_2(ti) = LnSi_2(ti) - LnSi_2(ti - 2)
 Sum_Li_2(ti) = Sum_Li_2(ti - 2) + LiArray_2(ti)

'Calculate Posteriors

148

 var_xArray_2(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_2(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_2(ti) = ((LiArray_2(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_2(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_2(ti) = ((var_1 * Sum_Li_2(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_2(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_2

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_2(tk, t_signal_2) = LnSi_2(t_signal_2) + (mu_yArray_2(t_signal_2) * tk)
 'MsgBox "The mu_tilda_2 is " & mu_tildaArray_2(tk, t_signal_2)
 var_tildaArray_2(tk, t_signal_2) = var_yArray_2(t_signal_2) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_2 is " & var_tildaArray_2(tk, t_signal_2)
 CDFArray_2(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_2(tk, t_signal_2) -
D) / (Sqr(var_tildaArray_2(tk, t_signal_2))))
 'MsgBox "The CDF_2 is " & CDFArray_2(tk, t_signal_2)
 Reliability_2(tk, uptime_after_last_replacement) = 1 - CDFArray_2(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_2 Then
 tk = 2
 Do
 Reliability_2(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_2")) = 1
 'MsgBox "sudden failure 2 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_2(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

149

'@@
@@@@@@@@@@@@
'Check if Workstation 3 is ready for updating
 If uptime_after_last_replacement > T0_3 Then

 If uptime_after_last_replacement <= T0_3 + 3.5 Then
 begin_update_time_3 = uptime_after_last_replacement
 'MsgBox "3 Begin UPDATING"
 End If

 t_signal_3 = uptime_after_last_replacement + 2 - begin_update_time_3

 ti = 2
 Do

'Read in Signal
 SiArray_3(ti) = SiArray(bearing_3, ti / 2)
 LnSi_3(ti) = (Log(SiArray_3(ti)) / Log(e))
 LiArray_3(ti) = LnSi_3(ti) - LnSi_3(ti - 2)
 Sum_Li_3(ti) = Sum_Li_3(ti - 2) + LiArray_3(ti)

'Calculate Posteriors
 var_xArray_3(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_3(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_3(ti) = ((LiArray_3(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_3(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_3(ti) = ((var_1 * Sum_Li_3(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_3(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_3

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_3(tk, t_signal_3) = LnSi_3(t_signal_3) + (mu_yArray_3(t_signal_3) * tk)
 'MsgBox "The mu_tilda_3 is " & mu_tildaArray_3(tk, t_signal_3)
 var_tildaArray_3(tk, t_signal_3) = var_yArray_3(t_signal_3) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_3 is " & var_tildaArray_3(tk, t_signal_3)
 CDFArray_3(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_3(tk, t_signal_3) -
D) / (Sqr(var_tildaArray_3(tk, t_signal_3))))
 'MsgBox "The CDF_3 is " & CDFArray_3(tk, t_signal_3)
 Reliability_3(tk, uptime_after_last_replacement) = 1 - CDFArray_3(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_3 Then

150

 tk = 2
 Do
 Reliability_3(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_3")) = 1
 'MsgBox "sudden failure 3 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_3(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 4 is ready for updating
 If uptime_after_last_replacement > T0_4 Then

 If uptime_after_last_replacement <= T0_4 + 3.5 Then
 begin_update_time_4 = uptime_after_last_replacement
 'MsgBox "Begin UPDATING 4"
 End If

 t_signal_4 = uptime_after_last_replacement + 2 - begin_update_time_4

 ti = 2
 Do

'Read in Signal
 SiArray_4(ti) = SiArray(bearing_4, ti / 2)
 LnSi_4(ti) = (Log(SiArray_4(ti)) / Log(e))
 LiArray_4(ti) = LnSi_4(ti) - LnSi_4(ti - 2)
 Sum_Li_4(ti) = Sum_Li_4(ti - 2) + LiArray_4(ti)

'Calculate Posteriors
 var_xArray_4(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_4(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_4(ti) = ((LiArray_4(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_4(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_4(ti) = ((var_1 * Sum_Li_4(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_4(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

151

 Loop Until ti = Num_signal_4

'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_4(tk, t_signal_4) = LnSi_4(t_signal_4) + (mu_yArray_4(t_signal_4) * tk)
 'MsgBox "The mu_tilda_4 is " & mu_tildaArray_4(tk, t_signal_4)
 var_tildaArray_4(tk, t_signal_4) = var_yArray_4(t_signal_4) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_4 is " & var_tildaArray_4(tk, t_signal_4)
 CDFArray_4(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_4(tk, t_signal_4) -
D) / (Sqr(var_tildaArray_4(tk, t_signal_4))))
 'MsgBox "The CDF_4 is " & CDFArray_4(tk, t_signal_4)
 Reliability_4(tk, uptime_after_last_replacement) = 1 - CDFArray_4(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_4 Then
 tk = 2
 Do
 Reliability_4(tk, uptime_after_last_replacement) = 0
 tk = tk + 2
 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_4")) = 1
 'MsgBox "sudden failure 4 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1
 tk = 2
 Do
 Reliability_4(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Check if Workstation 5 is ready for updating
 If uptime_after_last_replacement > T0_5 Then

 If uptime_after_last_replacement <= T0_5 + 3.5 Then
 begin_update_time_5 = uptime_after_last_replacement
 'MsgBox "5 Begin UPDATING"
 End If

 t_signal_5 = uptime_after_last_replacement + 2 - begin_update_time_5
 'MsgBox "t_signal_5 is " & t_signal_5

 ti = 2

152

 Do

 'Read in Signal
 SiArray_5(ti) = SiArray(bearing_5, ti / 2)
 LnSi_5(ti) = (Log(SiArray_5(ti)) / Log(e))
 LiArray_5(ti) = LnSi_5(ti) - LnSi_5(ti - 2)
 Sum_Li_5(ti) = Sum_Li_5(ti - 2) + LiArray_5(ti)

 'Calculate Posteriors
 var_xArray_5(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 *
ti + var_err) - var_o * var_1 * 2)
 var_yArray_5(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray_5(ti) = ((LiArray_5(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o *
2 * (var_1 * Sum_Li_5(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)
 mu_yArray_5(ti) = ((var_1 * Sum_Li_5(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray_5(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o *
var_1 * 2)

 ti = ti + 2

 Loop Until ti = Num_signal_5

 'Calculate CDF
 tk = 2
 Do
 mu_tildaArray_5(tk, t_signal_5) = LnSi_5(t_signal_5) + (mu_yArray_5(t_signal_5) * tk)
 'MsgBox "The mu_tilda_5 is " & mu_tildaArray_5(tk, t_signal_5)
 var_tildaArray_5(tk, t_signal_5) = var_yArray_5(t_signal_5) * tk ^ 2 + var_err * tk
 'MsgBox "The var_tilda_5 is " & var_tildaArray_5(tk, t_signal_5)
 CDFArray_5(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_5(tk, t_signal_5) -
D) / (Sqr(var_tildaArray_5(tk, t_signal_5))))
 'MsgBox "The CDF_5 is " & CDFArray_5(tk, t_signal_5)
 Reliability_5(tk, uptime_after_last_replacement) = 1 - CDFArray_5(tk,
uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time_5 Then
 tk = 2
 Do
 Reliability_5(tk, uptime_after_last_replacement) = 0
 tk = tk + 2

 Loop Until tk = 1900
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_5")) = 1
 'MsgBox "sudden failure 5 at t=" & uptime_after_last_replacement
 End If

 Else

'Hasn't started updating... Reliability=1

153

 tk = 2
 Do
 Reliability_5(tk, uptime_after_last_replacement) = 1
 tk = tk + 2

 Loop Until tk = 1900

 End If

'@@
@@@@@@@@@@@@
'Compute System Reliability for bearings 26,27,28,29,30

 tk = 2

 Do

 SystemRel(tk, uptime_after_last_replacement) = (1 - (1 - Reliability_1(tk,
uptime_after_last_replacement)) * (1 - Reliability_2(tk, uptime_after_last_replacement))) * (1 - (1 -
Reliability_4(tk, uptime_after_last_replacement)) * (1 - Reliability_5(tk, uptime_after_last_replacement)))
* Reliability_3(tk, uptime_after_last_replacement)

 tk = tk + 2

 Loop Until tk = 1900

 t_down = 2
 stop_median = 0

 If SystemRel(2, uptime_after_last_replacement) <= (desired_reliability) Then
 If SystemRel(2, uptime_after_last_replacement) <= 0.5 Then
 t_median = 0
 Else
 Do
 If SystemRel(t_down, uptime_after_last_replacement) <= 0.5 Then
 stop_median = 1
 End If

 t_down = t_down + 2

 Loop Until stop_median = 1

 t_median = t_down

 End If

 predicted_failure_time = uptime_after_last_replacement + t_median
 'MsgBox "t_median is " & t_median
 'MsgBox "Predicted fail time is " & predicted_failure_time

 s.VariableArrayValue(s.SymbolNumber("prediction")) = 1
 s.VariableArrayValue(s.SymbolNumber("predicted_failure_time")) = predicted_failure_time

 '******************Calculate Failure Time*************************************
 tw = 0

154

 Do
 tw = tw + 2
 WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta

 Loop Until tw = 1998

 tw = 0
 Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) -
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement))

 Loop Until (WeibullCondCDF(tw) >= 0.632)
 ThetaCond = tw

 Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) -
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement))

 Loop Until (WeibullCondCDF(tw) >= 0.99999)
 'MsgBox "weibullcondcdf(uptime_after_last_replacement) is " &
WeibullCondCDF(uptime_after_last_replacement)

 BetaCond = LN(LN(1 / (1 - WeibullCondCDF(uptime_after_last_replacement)))) /
(LN(uptime_after_last_replacement) - LN(ThetaCond))
 'MsgBox "BetaCond is " & BetaCond

 s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond
 s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond
 '***

 End If

End Sub

B.5. Traditional Policy Code Used in Section 5.4.2.1

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf
Function Cumnorm(X As Double) As Double
XAbs = Abs(X)
If XAbs > 37 Then
Cumnorm = 0
Else
Exponential = Exp(-XAbs ^ 2 / 2)
If XAbs < 7.07106781186547 Then
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688
Build = Build * XAbs + 6.37396220353165
Build = Build * XAbs + 33.912866078383
Build = Build * XAbs + 112.079291497871
Build = Build * XAbs + 221.213596169931
Build = Build * XAbs + 220.206867912376
Cumnorm = Exponential * Build
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264
Build = Build * XAbs + 16.064177579207

155

Build = Build * XAbs + 86.7807322029461
Build = Build * XAbs + 296.564248779674
Build = Build * XAbs + 637.333633378831
Build = Build * XAbs + 793.826512519948
Build = Build * XAbs + 440.413735824752
Cumnorm = Cumnorm / Build
Else
Build = XAbs + 0.65
Build = XAbs + 4 / Build
Build = XAbs + 3 / Build
Build = XAbs + 2 / Build
Build = XAbs + 1 / Build
Cumnorm = Exponential / Build / 2.506628274631
End If
End If
If X > 0 Then Cumnorm = 1 - Cumnorm
End Function

'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html
Function nc(X) As Double
Dim A(1 To 5) As Double
If X < -7 Then
 nc = ndf(X) / Sqr(1 + X * X)
ElseIf X > 7 Then
 nc = 1 - nc(-X)
Else
nc = 0.2316419
A(1) = 0.31938153
A(2) = -0.356563782
A(3) = 1.781477937
A(4) = -1.821255978
A(5) = 1.330274429
nc = 1 / (1 + nc * Abs(X))
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5)
If (X <= 0) Then nc = 1 - nc
End If
End Function

Function ndf(X) As Double
 ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi)
End Function

Function LN(X As Double) As Double

e = 2.71828183
LN = Log(X) / Log(e)

End Function

Function Tflat(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

Tflat = s.VariableArrayValue(s.SymbolNumber("T0", X - 25))

156

End Function

Function Num_sig(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

Num_sig = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25))

End Function

Function actual_fail_time(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

actual_fail_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25))

End Function

Function Si(X, Y) As Double
'X is bearing number
'Y is ti

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

If X = 26 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals26", Y))
Else
If X = 27 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals27", Y))
Else
If X = 28 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals28", Y))
Else
If X = 29 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals29", Y))
Else
If X = 30 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals30", Y))
Else
If X = 31 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals31", Y))
Else
If X = 32 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals32", Y))
Else
If X = 33 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals33", Y))
Else
If X = 34 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals34", Y))

157

Else
If X = 35 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals35", Y))
Else
If X = 36 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals36", Y))
Else
If X = 37 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals37", Y))
Else

If X = 38 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals38", Y))
Else
If X = 39 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals39", Y))
Else
If X = 40 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals40", Y))
Else
If X = 41 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals41", Y))
Else
If X = 42 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals42", Y))
Else
If X = 43 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals43", Y))
Else
If X = 44 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals44", Y))
Else
If X = 45 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals45", Y))
Else
If X = 46 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals46", Y))
Else
If X = 47 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals47", Y))
Else
If X = 48 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals48", Y))
Else
If X = 49 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals49", Y))
Else
If X = 50 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals50", Y))
Else

If X = 51 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals51", Y))
End If
End If
End If

158

End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

End Function

Static Sub VBA_Block_1_Fire()

Dim e As Double
Dim Cf As Double
Dim Cr As Double
Dim Theta As Double
Dim Beta As Double
Dim ThetaCond As Double
Dim BetaCond As Double
Dim uptime_after_last_replacement As Double
Dim bearing As Integer
Dim var_xArray(1999) As Double
Dim var_yArray(1999) As Double
Dim mu_xArray(1999) As Double
Dim mu_yArray(1999) As Double
Dim SiArray(1999) As Double
Dim LiArray(1999) As Double
Dim Sum_Li(1999) As Double
Dim LnSi(1999) As Double
Dim T0 As Double
Dim Num_signal As Double
Dim F(1999) As Double
Dim Fbar(1999) As Double
Dim TwiceF(1999) As Double
Dim TwiceFbar(1999) As Double
Dim SumTwiceF(1999) As Double
Dim SumTwiceFbar(1999) As Double
Dim Rep(1999) As Double
Dim Inv(1999) As Double
Dim SumF_Lfirst(1999) As Double

159

Dim Num_first(1999) As Double
Dim SumFbar_Lrest(1999) As Double
Dim Num_second(1999) As Double
Dim SumTwiceF_Lfirst(1999) As Double
Dim Denom_first(1999) As Double
Dim Denom_second(1999) As Double
Dim mu_tildaArray(1999, 1999) As Double
Dim var_tildaArray(1999, 1999) As Double
Dim Reliability(1999, 1999) As Double
Dim SystemRel(1999, 1999) As Double
Dim WeibullCDF(5999) As Double
Dim WeibullCondCDF(5999) As Double
Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

e = 2.71828183
D = Log(0.025) / Log(e)
Theta = 784.74619
Beta = 3.05485
Cp = s.VariableArrayValue(s.SymbolNumber("C_p"))
Cf = s.VariableArrayValue(s.SymbolNumber("C_f"))
Ks = s.VariableArrayValue(s.SymbolNumber("K_s"))
Kh = s.VariableArrayValue(s.SymbolNumber("K_h"))
L = s.VariableArrayValue(s.SymbolNumber("L"))

'Read in simulation information
 simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time"))
 'MsgBox "The value of Simulation Time is " & simulation_time

 previous_replacement_time =
s.VariableArrayValue(s.SymbolNumber("previous_replacement_time_1"))
 'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time

 uptime_after_last_replacement = simulation_time - previous_replacement_time
 s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement_1")) =
uptime_after_last_replacement
 'MsgBox "The value of Uptime After Last Replacement Time 1 is " & uptime_after_last_replacement

'@@
@@@@@@@@@@@@
'Calculate CDF, 1-CDF, Rep
 tk = 2
 Do
 F(tk) = 1 - e ^ (-(tk / Theta) ^ Beta)
 'MsgBox "F1 is " & F(tk)
 Fbar(tk) = 1 - F(tk)
 'MsgBox "Fbar1 is " & Fbar(tk)
 TwiceF(tk) = 2 * F(tk)
 'MsgBox "2*F1 is " & TwiceF(tk)
 TwiceFbar(tk) = 2 * Fbar(tk)
 'MsgBox "2*Fbar1 is " & TwiceFbar(tk)
 SumTwiceF(tk) = SumTwiceF(tk - 2) + TwiceF(tk)
 'MsgBox "SumTwiceF1 is " & SumTwiceF(tk)
 SumTwiceFbar(tk) = SumTwiceFbar(tk - 2) + TwiceFbar(tk)
 'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(tk)
 Rep(tk) = (Cp * Fbar(tk) + Cf * F(tk)) / SumTwiceFbar(tk)

160

 'MsgBox "Rep1 is " & Rep(tk)
 tk = tk + 2
 Loop Until tk = 1900

'Find Tr
 tk = 2
 Do
 tk = tk + 2
 Loop Until Rep(tk) > Rep(tk - 2)

 Tr = tk - 2
 'MsgBox "Tr is " & Tr
 'MsgBox "Min Rep is " & Rep(Tr)

'Inv Calculations
'Calculate First numerator summation
 tk = 2

 Do
 n = tk
 m = 0
 SumF_Lfirst(tk - 2) = 0
 Do
 m = m + 1
 SumF_Lfirst(n) = SumF_Lfirst(n - 2) + F(n)
 'MsgBox "SumF_Lfirst is " & SumF_Lfirst(n)
 n = n + 2
 Loop Until m = (L / 2) + 1
 Num_first(tk) = SumF_Lfirst(n - 2)
 'MsgBox "tk is " & tk
 'MsgBox "Num_first at tk is " & Num_first(tk)
 tk = tk + 2
 Loop Until tk = 1900

'Calculate Second numerator summation
 tk = 2
 m = 0
 counter = 2

 Do
 n = tk
 m = 0

 If tk < (Tr - L) Then
 SumFbar_Lrest(tk - 2) = 0
 Do
 SumFbar_Lrest(n) = SumFbar_Lrest(n - 2) + Fbar(n + L)
 'MsgBox "SumFbar_Lrest is " & SumFbar_Lrest(n)
 n = n + 2
 Loop Until n = (Tr - L + 2)

 'MsgBox "SumFbar_Lrest(n-2) is " & SumFbar_Lrest(n - 2)
 Num_second(tk) = SumFbar_Lrest(n - 2)
 End If

 If tk = (Tr - L) Then

161

 Num_second(tk) = Fbar(Tr)
 End If

 If tk > (Tr - L) Then
 Num_second(tk) = Num_second(tk - 2) + Fbar(tk + L)
 End If
 tk = tk + 2
 Loop Until tk = 1900

'Calculate First denominator summation
 tk = 2

 Do
 n = tk
 m = 0
 SumTwiceF_Lfirst(tk - 2) = 0
 Do
 m = m + 1
 SumTwiceF_Lfirst(n) = SumTwiceF_Lfirst(n - 2) + TwiceF(n)
 'MsgBox "SumTwiceF_Lfirst is " & SumTwiceF_Lfirst(n)
 n = n + 2
 Loop Until m = (L / 2) + 1
 Denom_first(tk) = SumTwiceF_Lfirst(n - 2)
 Loop Until tk = 1900

'Calculate Second denominator summation
 tk = 2

 Do
 Denom_second(tk) = SumTwiceFbar(Tr)
 'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(Tr)
 tk = tk + 2
 Loop Until tk = 1900

'Calculate Inv
 tk = 2
 Do
 Inv(tk) = (Ks * Num_first(tk) + Kh * Num_second(tk)) / (Denom_first(tk) + Denom_second(tk))
 tk = tk + 2
 Loop Until tk = 1900

'Find Tord
 tk = 2
 Do
 tk = tk + 2
 Loop Until Inv(tk) > Inv(tk - 2)

 Tord = tk - 2

'Output Treplace and Torder
 s.VariableArrayValue(s.SymbolNumber("Treplace_1")) = Tr
 s.VariableArrayValue(s.SymbolNumber("Torder_1")) = Tord

End Sub

162

B.6. Sensor-Driven Policy Code Used in Section 5.4.2.2

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf
Function Cumnorm(X As Double) As Double
XAbs = Abs(X)
If XAbs > 37 Then
Cumnorm = 0
Else
Exponential = Exp(-XAbs ^ 2 / 2)
If XAbs < 7.07106781186547 Then
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688
Build = Build * XAbs + 33.912866078383
Build = Build * XAbs + 6.37396220353165
Build = Build * XAbs + 112.079291497871
Build = Build * XAbs + 221.213596169931
Build = Build * XAbs + 220.206867912376
Cumnorm = Exponential * Build
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264
Build = Build * XAbs + 16.064177579207
Build = Build * XAbs + 86.7807322029461
Build = Build * XAbs + 296.564248779674
Build = Build * XAbs + 637.333633378831
Build = Build * XAbs + 793.826512519948
Build = Build * XAbs + 440.413735824752
Cumnorm = Cumnorm / Build
Else
Build = XAbs + 0.65
Build = XAbs + 4 / Build
Build = XAbs + 3 / Build
Build = XAbs + 2 / Build
Build = XAbs + 1 / Build
Cumnorm = Exponential / Build / 2.506628274631
End If
End If
If X > 0 Then Cumnorm = 1 - Cumnorm
End Function

'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html
Function nc(X) As Double
Dim A(1 To 5) As Double
If X < -7 Then
 nc = ndf(X) / Sqr(1 + X * X)
ElseIf X > 7 Then
 nc = 1 - nc(-X)
Else
nc = 0.2316419
A(1) = 0.31938153
A(2) = -0.356563782
A(3) = 1.781477937
A(4) = -1.821255978
A(5) = 1.330274429
nc = 1 / (1 + nc * Abs(X))
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5)
If (X <= 0) Then nc = 1 - nc
End If

163

End Function

Function ndf(X) As Double
 ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi)
End Function

Function LN(X As Double) As Double

e = 2.71828183
LN = Log(X) / Log(e)

End Function

Function Tflat(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

Tflat = s.VariableArrayValue(s.SymbolNumber("T0", X - 25))

End Function

Function Num_sig(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

Num_sig = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25))

End Function

Function actual_fail_time(X) As Double
'X is bearing number

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

actual_fail_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25))

End Function

Function Si(X, Y) As Double
'X is bearing number
'Y is ti

Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

If X = 26 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals26", Y))
Else
If X = 27 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals27", Y))
Else

164

If X = 28 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals28", Y))
Else
If X = 29 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals29", Y))
Else
If X = 30 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals30", Y))
Else
If X = 31 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals31", Y))
Else
If X = 32 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals32", Y))
Else
If X = 33 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals33", Y))
Else
If X = 34 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals34", Y))
Else
If X = 35 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals35", Y))
Else
If X = 36 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals36", Y))
Else
If X = 37 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals37", Y))
Else

If X = 38 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals38", Y))
Else
If X = 39 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals39", Y))
Else
If X = 40 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals40", Y))
Else
If X = 41 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals41", Y))
Else
If X = 42 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals42", Y))
Else
If X = 43 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals43", Y))
Else
If X = 44 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals44", Y))
Else
If X = 45 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals45", Y))
Else
If X = 46 Then

165

 Si = s.VariableArrayValue(s.SymbolNumber("Signals46", Y))
Else
If X = 47 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals47", Y))
Else
If X = 48 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals48", Y))
Else
If X = 49 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals49", Y))
Else
If X = 50 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals50", Y))
Else

If X = 51 Then
 Si = s.VariableArrayValue(s.SymbolNumber("Signals51", Y))
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If
End If

End Function

Static Sub VBA_Block_1_Fire()

Dim e As Double
Dim Cf As Double
Dim Cr As Double
Dim Theta As Double
Dim Beta As Double
Dim ThetaCond As Double
Dim BetaCond As Double
Dim uptime_after_last_replacement As Double

166

Dim bearing As Integer
Dim var_xArray(600) As Double
Dim var_yArray(600) As Double
Dim mu_xArray(600) As Double
Dim mu_yArray(600) As Double
Dim SiArray(600) As Double
Dim LiArray(600) As Double
Dim Sum_Li(600) As Double
Dim LnSi(600) As Double
Dim T0 As Double
Dim Num_signal As Double
Dim find_Tr As Integer
Dim F(1999, 1999) As Double
Dim Fbar(1999, 1999) As Double
Dim TwiceF(1999, 1999) As Double
Dim TwiceFbar(1999, 1999) As Double
Dim SumTwiceF(1999, 1999) As Double
Dim SumTwiceFbar(1999, 1999) As Double
Dim Rep(1999, 1999) As Double
Dim Inv(1999, 1999) As Double
Dim SumF_Lfirst(1999, 1999) As Double
Dim Num_first(1999, 1999) As Double
Dim SumFbar_Lrest(1999, 1999) As Double
Dim Num_second(1999, 1999) As Double
Dim SumTwiceF_Lfirst(1999, 1999) As Double
Dim Denom_first(1999, 1999) As Double
Dim Denom_second(1999, 1999) As Double
Dim mu_tildaArray(1999, 1999) As Double
Dim var_tildaArray(1999, 1999) As Double
Dim WeibullCDF(5999) As Double
Dim WeibullCondCDF(5999) As Double
Dim s As SIMAN
Set s = ThisDocument.Model.SIMAN

e = 2.71828183
D = Log(0.025) / Log(e)
mu_o = -6.031235
mu_1 = 0.008061
var_o = 0.34648893
var_1 = 0.000010347
var_err = 0.007348
corr_o = -0.362538
A = 1 - (corr_o) ^ 2
Theta = 797.48197
Beta = 2.65465

Cp = s.VariableArrayValue(s.SymbolNumber("C_p"))
Cf = s.VariableArrayValue(s.SymbolNumber("C_f"))
Ks = s.VariableArrayValue(s.SymbolNumber("K_s"))
Kh = s.VariableArrayValue(s.SymbolNumber("K_h"))
L = s.VariableArrayValue(s.SymbolNumber("L"))

'Read in bearing information
bearing = s.VariableArrayValue(s.SymbolNumber("bearing_1"))
T0 = Tflat(bearing)
Num_signal = Num_sig(bearing)

167

actual_failure_time = actual_fail_time(bearing)

'Read in simulation information
 simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time"))
 'MsgBox "The value of Simulation Time is " & simulation_time

 previous_replacement_time =
s.VariableArrayValue(s.SymbolNumber("previous_replacement_time_1"))
 'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time

 uptime_after_last_replacement = simulation_time - previous_replacement_time
 s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement_1")) =
uptime_after_last_replacement
 'MsgBox "The value of Uptime After Last Replacement Time 1 is " & uptime_after_last_replacement

'@@
@@@@@@@@@@@@
'Check if Workstation 1 is ready for updating
 If uptime_after_last_replacement > T0 Then

 If uptime_after_last_replacement <= T0 + 3.5 Then
 begin_update_time = uptime_after_last_replacement
 End If

 t_signal = uptime_after_last_replacement + 2 - begin_update_time

 ti = 2
 Do

'Read in Signal
 SiArray(ti) = Si(bearing, ti / 2)
 LnSi(ti) = (Log(SiArray(ti)) / Log(e))
 LiArray(ti) = LnSi(ti) - LnSi(ti - 2)
 Sum_Li(ti) = Sum_Li(ti - 2) + LiArray(ti)

'Calculate Posteriors
 var_xArray(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 var_yArray(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti +
var_err) - var_o * var_1 * 2)
 mu_xArray(ti) = ((LiArray(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 2 *
(var_1 * Sum_Li(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 * 2)
 mu_yArray(ti) = ((var_1 * Sum_Li(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 *
(LiArray(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1
* 2)

 ti = ti + 2

 Loop Until ti = Num_signal
'Calculate CDF, 1-CDF, Rep
 tk = 2
 find_Tr = 0
 Do
 mu_tildaArray(tk, t_signal) = LnSi(t_signal) + (mu_yArray(t_signal) * tk)
 'MsgBox "The mu_tilda_1 is " & mu_tildaArray(tk, t_signal)
 var_tildaArray(tk, t_signal) = var_yArray(t_signal) * tk ^ 2 + var_err * tk

168

 'MsgBox "The var_tilda_1 is " & var_tildaArray(tk, t_signal)
 F(tk, t_signal) = Cumnorm((mu_tildaArray(tk, t_signal) - D) / (Sqr(var_tildaArray(tk, t_signal))))
 'MsgBox "F1 is " & F(tk, t_signal)
 Fbar(tk, t_signal) = 1 - F(tk, t_signal)
 'MsgBox "Fbar1 is " & Fbar(tk,t_signal)
 TwiceF(tk, t_signal) = 2 * F(tk, t_signal)
 'MsgBox "2*F1 is " & TwiceF(tk,t_signal)
 TwiceFbar(tk, t_signal) = 2 * Fbar(tk, t_signal)
 'MsgBox "2*Fbar1 is " & TwiceFbar(tk,t_signal)
 SumTwiceF(tk, t_signal) = SumTwiceF(tk - 2, t_signal) + TwiceF(tk, t_signal)
 'MsgBox "SumTwiceF1 is " & SumTwiceF(tk,t_signal)
 SumTwiceFbar(tk, t_signal) = SumTwiceFbar(tk - 2, t_signal) + TwiceFbar(tk, t_signal)
 'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(tk,t_signal)
 Rep(tk, t_signal) = (Cp * Fbar(tk, t_signal) + Cf * F(tk, t_signal)) / (SumTwiceFbar(tk, t_signal) +
t_signal)
 'MsgBox "Rep1 is " & Rep(tk,t_signal)

 'If t_signal = 6 Then
 'If tk <= 20 Then
 'MsgBox "Rep is " & Rep(tk, t_signal)
 'End If
 'End If

 tk = tk + 2
 Loop Until tk = 1900

'Find Tr
 tk = 2
 Do
 tk = tk + 2
 Loop Until Rep(tk, t_signal) > Rep(tk - 2, t_signal)

 Tr = tk - 2
 'MsgBox "Tr is " & Tr
 'MsgBox "Min Rep is " & Rep(Tr,t_signal)

'Check for sudden failure
 If uptime_after_last_replacement > actual_failure_time Then
 s.VariableArrayValue(s.SymbolNumber("sudden_fail_1")) = 1
 'MsgBox "sudden failure 1 at t=" & uptime_after_last_replacement
 End If

'Inv Calculations
'Calculate First numerator summation
 tk = 2

 Do
 n = tk
 m = 0
 SumF_Lfirst(tk - 2, t_signal) = 0
 Do
 m = m + 1
 SumF_Lfirst(n, t_signal) = SumF_Lfirst(n - 2, t_signal) + F(n, t_signal)
 'MsgBox "SumF_Lfirst is " & SumF_Lfirst(n,t_signal)
 n = n + 2
 Loop Until m = (L / 2) + 1

169

 Num_first(tk, t_signal) = SumF_Lfirst(n - 2, t_signal)
 tk = tk + 2
 Loop Until tk = 1900

'Calculate Second numerator summation
 tk = 2
 m = 0
 counter = 2

 Do
 n = tk
 m = 0

 If tk < (Tr - L) Then
 SumFbar_Lrest(tk - 2, t_signal) = 0
 Do
 SumFbar_Lrest(n, t_signal) = SumFbar_Lrest(n - 2, t_signal) + Fbar(n + L, t_signal)
 n = n + 2
 Loop Until n = (Tr - L + 2)

 Num_second(tk, t_signal) = SumFbar_Lrest(n - 2, t_signal)
 End If

 If tk = (Tr - L) Then
 Num_second(tk, t_signal) = Fbar(Tr, t_signal)
 End If

 If tk > (Tr - L) Then
 Num_second(tk, t_signal) = Num_second(tk - 2, t_signal) + Fbar(tk + L, t_signal)
 End If
 tk = tk + 2
 Loop Until tk = 1900

'Calculate First denominator summation
 tk = 2

 Do
 n = tk
 m = 0
 SumTwiceF_Lfirst(tk - 2, t_signal) = 0
 Do
 m = m + 1
 SumTwiceF_Lfirst(n, t_signal) = SumTwiceF_Lfirst(n - 2, t_signal) + TwiceF(n, t_signal)
 'MsgBox "SumTwiceF_Lfirst is " & SumTwiceF_Lfirst(n,t_signal)
 n = n + 2
 Loop Until m = (L / 2) + 1
 Denom_first(tk, t_signal) = SumTwiceF_Lfirst(n - 2, t_signal)
 tk = tk + 2
 Loop Until tk = 1900

'Calculate Second denominator summation
 tk = 2

 Do
 Denom_second(tk, t_signal) = SumTwiceFbar(Tr, t_signal)
 'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(Tr,t_signal)

170

 tk = tk + 2
 Loop Until tk = 1900

'Calculate Inv
 tk = 2
 Do
 Inv(tk, t_signal) = (Ks * Num_first(tk, t_signal) + Kh * Num_second(tk, t_signal)) / (Denom_first(tk,
t_signal) + Denom_second(tk, t_signal)
 tk = tk + 2
 Loop Until tk = 1900

'Find Tord
 tk = 2
 Do
 tk = tk + 2
 Loop Until Inv(tk, t_signal) > Inv(tk - 2, t_signal)

 Tord = tk – 2
'Find t_median
 t_down = 0
 stop_median = 0

 Do
 t_down = t_down + 2
 If F(t_down, t_signal) >= 0.5 Then
 stop_median = 1
 End If

 Loop Until stop_median = 1

 t_median = t_down

 Treplace = Tr + uptime_after_last_replacement
 Torder = Tord + uptime_after_last_replacement

'Stop updating and output Tr and Tord?
 If Tr <= Tord + L Then
 s.VariableArrayValue(s.SymbolNumber("Treplace_1")) = Treplace
 'MsgBox "Treplace_1 is " & Treplace
 s.VariableArrayValue(s.SymbolNumber("Torder_1")) = Torder
 'MsgBox "Torder_1 is " & Torder
 s.VariableArrayValue(s.SymbolNumber("prediction_1")) = 1
 'MsgBox "Prediction 1 is " & uptime_after_last_replacement

 'MsgBox "Tord is " & Tord
'******************Calculate Failure Time*************************************
 tw = 0

 Do
 tw = tw + 2
 WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta

 Loop Until tw = 5998

 tw = 0
 Do

171

 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) -
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement))

 Loop Until (WeibullCondCDF(tw) >= 0.632)
 ThetaCond = tw

 Do
 tw = tw + 2
 WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) -
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement))

 Loop Until (WeibullCondCDF(tw) >= 0.99999999999999)
 'MsgBox "weibullcondcdf(uptime_after_last_replacement) is " &
WeibullCondCDF(uptime_after_last_replacement)

 If (uptime_after_last_replacement) > tw Then
 weibulladjust = 0.99999999999999
 BetaCond = LN(LN(1 / (1 - weibulladjust))) / (LN(uptime_after_last_replacement) -
LN(ThetaCond))
 'MsgBox "BetaCond is " & BetaCond
 Else
 BetaCond = LN(LN(1 / (1 - WeibullCondCDF(uptime_after_last_replacement)))) /
(LN(uptime_after_last_replacement) - LN(ThetaCond))

 End If

 s.VariableArrayValue(s.SymbolNumber("ThetaCond_1")) = ThetaCond
 s.VariableArrayValue(s.SymbolNumber("BetaCond_1")) = BetaCond
 '***

 End If

End If

End Sub

	University of Iowa
	Iowa Research Online
	2007

	A simulation study of predictive maintenance policies and how they impact manufacturing systems
	Kevin Michael Kaiser
	Recommended Citation

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1: INTRODUCTION
	1.1 Introduction
	1.2 Maintenance Management
	1.2.1 Corrective Maintenance
	1.2.2 Preventive Maintenance
	1.2.3 Predictive Maintenance

	1.3 Condition-based Maintenance
	1.4 Degradation Modeling
	1.5 Research Objective and Contributions
	1.6 Organization

	CHAPTER 2: LITERATURE REVIEW
	2.1 Simulation Analysis of Manufacturing Systems
	2.2 Condition-based Maintenance
	2.2.1 Markov Processes
	2.2.2 Neural Networks
	2.2.3 Proportional Hazard Models
	2.2.4 Degradation Models

	2.3 Summary

	CHAPTER 3: STUDY 1. ANALYSIS OF MAINTENANCE POLICIES IN A PARALLEL WORKSTATION MANUFACTURING SYSTEM
	3.1 Preventive Maintenance
	3.2 Predictive Maintenance
	3.2.1 Degradation Model I (Exponential Base Case)
	3.2.2 Degradation Model II (Exponential Base Case)

	3.3 Simulation Model
	3.3.1 Manufacturing System Submodel
	3.3.2 Maintenance Policy Submodel
	3.3.2.1 Failure Time Subroutine
	3.3.2.1.1 PM Policy
	3.3.2.1.2 DM-I Policy
	3.3.2.1.3 DM-II Policy

	3.3.2.2 Resource Shutdown Subroutine

	3.4 Implementation and Results
	3.5 Conclusion

	CHAPTER 4: STUDY 2. ANALYSIS OF MAINTENANCE POLICIES IN SEQUENTIAL WORKSTATION MANUFACTURING SYSTEMS
	4.1 Manufacturing System
	4.2 System Reliability
	4.2.1. Reliability of Series Systems
	4.2.2 Reliability of Parallel Systems
	4.2.3 Reliability of Combined Series-Parallel Systems

	4.3 Maintenance Policies
	4.3.1 Preventive Maintenance Policy
	4.3.2 Degradation Based Predictive Maintenance Policy

	4.4 Simulation Model
	4.4.1 Manufacturing System Submodel
	4.4.2 Maintenance Policy Submodel
	4.4.2.1 Failure Time Subroutine
	4.4.2.1.1 PM Policy
	4.4.2.1.2 DM Policy

	4.4.2.2 Resource Shutdown Subroutine

	4.4.3 System Maintenance Submodel

	4.5 Implementation and Results
	4.6 Conclusion

	 CHAPTER 5: STUDY 3. ANALYSIS OF MAINTENANE-RELATED DECISION POLICIES
	5.1 Replacement and Spare Part Inventory Models
	5.1.1 Single-Unit Age Replacement Model
	5.1.2 Inventory Ordering Model

	5.2 Sensor-driven Replacement and Inventory Policy
	5.3 Manufacturing System
	5.4 Simulation Model
	5.4.1 Manufacturing System Submodel
	5.4.2 Decision Policy Submodel
	5.4.2.1 Traditional Policy
	5.4.2.2 Sensor-driven Policy

	5.4.3 Resource Shutdown Submodel

	5.5 Implementation and Results
	5.6 Conclusion

	CHAPTER 6: CONCLUSION
	6.1 Future Research

	REFERENCES
	APPENDIX A: ARENA SCREENSHOTS
	A.1. Screenshots From Models Discussed in Chapter 3
	A.2. Screenshots From Models Discussed in Chapter 4
	A.3. Screenshots From Models Discussed in Chapter 5

	APPENDIX B: VISUAL BASIC CODE
	B.1. DM-I Policy Code Used in Section 3.2.1
	B.2. DM-II Policy Code Used in Section 3.2.2
	B.3. PM Policy Code Used in Section 4.4.2.1.2
	B.4. DM Policy Code Used in Section 4.4.2.1.3
	B.5. Traditional Policy Code Used in Section 5.4.2.1
	B.6. Sensor-Driven Policy Code Used in Section 5.4.2.2

