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ABSTRACT 

The success and effectiveness of modern lean manufacturing concepts requires 

robust and highly reliable machinery.  In this thesis, we develop several simulation 

studies to compare the performance of a several manufacturing systems under different 

maintenance polices.  The main focus of this work is to compare traditional time-based 

maintenance policies with degradation-based predictive maintenance policies that utilize 

real-time sensory information to assist in decisions regarding maintenance management 

and component replacement.  The simulation studies developed in this thesis demonstrate 

the benefits of using sensor-based degradation models to predict failure. 
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CHAPTER 1: INTRODUCTION 

1.1 Introduction 

Historically, many industries have viewed maintenance departments as cost 

centers that do not contribute to a company’s profitability.  In recent times, this view has 

changed dramatically.  Managers have recognized the cost savings that result from 

efficient maintenance operations [18].  Today, maintenance is regarded as an integral part 

of the production process that contributes to product quality, plant availability and the 

ability to meet delivery schedules [1].  This is especially important in the manufacturing 

sector where there is a growing trend aimed at embracing modern Lean and Just-In-Time 

manufacturing philosophies.  The main challenge with such manufacturing systems is 

that the low levels of buffer and work-in-process augment the damage that is caused by 

unexpected interruptions in the manufacturing system.  Sudden equipment/machinery 

failures can be prohibitively expensive because they result in immediate lost production, 

failed shipping schedules, and poor customer satisfaction.   

The growing importance of maintenance management has generated an increasing 

interest in the development and implementation of efficient maintenance strategies that 

improve system reliability, prevent system failures, and reduce maintenance costs of 

deteriorating systems [27].  The goal of this research is to use simulation studies to 

investigate the impact of different maintenance policies on the performance of 

manufacturing systems.  We propose different predictive maintenance policies and 

evaluate the performance of each policy by examining system performance measures, 

such as throughput and equipment utilization.  We also study effect of these policies on 

component replacement and spare part inventory costs.  We benchmark a proposed 
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degradation-based predictive maintenance policy with classical predictive and preventive 

maintenance policies. 

1.2 Maintenance Management 

The increasing competition in the manufacturing sector has lead to significant 

developments that primarily target cost reduction.  Many of these efforts have been 

successful in reducing the costs associated with inventory and work-in-process through 

the implementation of lean manufacturing concepts and Just-in-Time strategies.  Unless 

the reliability of the manufacturing system is guaranteed, the lack of intermediate 

subassemblies and stocks of finished products can be detrimental to the system’s 

performance.  Any equipment interruptions will immediately result in lost production, 

which cannot be compensated.  Indeed the presence of buffer stocks of finished products 

acts as a safeguard against systems interruptions.  In most cases, the system interruptions 

result from unexpected equipment failure.  The problem is further complicated by the 

long durations associated with unscheduled maintenance activities.  In the following, we 

outline and discuss different types of maintenance stratgies.   

1.2.1 Corrective Maintenance 

Corrective maintenance is a policy that focuses on performing repair/maintenance  

work after system or component failure has occurred.  This type of maintenance policy is 

not concerned with scheduling inspections or service routines on deteriorating 

components.  In a manufacturing system, component breakdown seldom, if ever occurs at 

a convenient time.  As a result, scheduling these repairs often constitutes a high priority 

and will likely interfere with production schedules and other planned activities.  In some 

cases when material, equipment, or skilled maintenance personnel are not available, the 
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problem significantly worsens, especially if overtime is needed for untimely repairs or 

replacement [70].  These issues have led to the development of preventive maintenance 

policies. 

1.2.2 Preventive Maintenance 

Preventive Maintenance is one of the most popular maintenance policies used in 

modern industry.  Preventive Maintenance focuses on scheduling routine inspections and 

performing necessary upkeep and service on components in order to prevent and fix 

problems before failure occurs.  Maintenance routines are scheduled by analyzing failure 

time data for a population of components.  Time-based empirical and parametric 

distributions such as the Weibull, Normal, Exponential, and Gamma distributions have 

been widely used to model the uncertainty in failure times [4, 7, 9, 28].  Such 

distributions are great tools that can be used to support maintenance scheduling.  

However, since PM relies on time-based models, it does not take into account the 

conditions or degradation characteristics of the individual components, making it nearly 

impossible to avoid catastrophic random breakdowns.  In addition, PM can lead to 

unneeded maintenance routines being performed, resulting in unnecessary downtime and 

loss in production capacity.  These types of problems have led to the development of 

predictive maintenance policies that focus on predicting unexpected failures. 

1.2.3 Predictive Maintenance 

Predictive maintenance applies various sensor technology and analytical tools to 

measure and monitor various system and their components.  The observed characteristics 

are compared with established or known standards and specifications in order to predict 

(forecast) system or component failures [70].   Whereas corrective maintenance is applied 
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after the failure and preventive maintenance uses precautionary measures to avert 

possible problems, predictive maintenance actually evaluates the existing equipment 

condition and, based on a projected trend of the deterioration process, failures are 

predicted and appropriate steps are taken [70].  An increasingly popular form of 

predictive maintenance is condition-based maintenance. 

1.3 Condition-based Maintenance 

Condition-based maintenance (CBM) is based on observing and collecting 

information concerning the condition and health of equipment to prevent unexpected 

failures and determine optimal maintenance schedules [30].  There are many advantages 

of using a CBM approach for maintenance management.  Catastrophic equipment failures 

can be eliminated.  Maintenance activities can be scheduled to minimize or eliminate 

overtime costs.  Furthermore, inventory can be minimized because parts or equipment 

will not have to be ordered ahead of time to support anticipated maintenance needs.   

There are several categories of research efforts done in the area of CBM that 

strive to increase the accuracy of time to failure prediction, including studies using 

Markov processes, neural networks, proportional hazard models, and degradation models.  

Chapter 2 surveys some of the literature dealing with each of these categories. 

CBM utilizes condition monitoring (CM) information to schedule maintenance 

routines.  Condition monitoring involves observing some health-related variables 

throughout a system’s lifetime to determine its degree of degradation more accurately 

than information obtained a priori solely from statistical information [20].  Real-time 

sensory signals, such as temperature, vibration, acoustic emissions, etc., are collected 

from a functioning component in order to assess the health of the component.  These 
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sensory signals often exhibit characteristic patterns that are associated with the principal 

physical transitions that occur during degradation processes.  These patterns, known as 

degradation signals, can be used to capture the current state of components and provide 

information on how that condition is likely to evolve in the future [21].    

1.4 Degradation Modeling 

Degradation modeling provides a mathematical framework for modeling the 

evolution of degradation signals that are collected by condition monitoring technology.  

Due to the stochastic nature of degradation processes that occur prior to failure, similar 

components may exhibit different degradation rates; even those operating under similar 

operating and environmental conditions.  Figure 1.1 presents three vibration-based 

degradation signals obtained from monitoring three identical rolling element thrust 

bearings.  As the bearings degrade over time, the resulting signals tend to increase. 

Bearing failure is defined as the degradation signal crossing a predetermined vibration-

based failure threshold.  As shown in Figure 1.1, the three degradation signals are 

significantly different, although they correspond to identical bearings that were run to 

failure under the same load and speed conditions.  Indeed, relying solely on a 

component’s degradation signal to estimate its remaining life can be very dangerous. 

Although the degradation signals have a similar form, each signal is unique to a 

component’s degradation rate; hence the different failure times (Figure 1.1). 
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Degradation Signals

0

0.01

0.02

0.03

0.04

0 100 200 300 400 500 600

Time  

Figure 1.1. Example of three degradation signals. 

 

It is not unusual for a population of “identical” devices to have a common 

functional form that characterizes the degradation signal.  The functional form of the 

degradation signal can be used to develop stochastic degradation models that are used to 

compute the residual life of partially degraded components. 

The baseline degradation model used in this work was developed based on the 

degradation modeling framework presented by Lu and Meeker [52].  They model the path 

of a degradation signal using random coefficient growth models.  The framework utilizes 

a sample of degradation signals to estimate the residual life distributions for a population 

of components.  Although, this modeling framework attempts to capture the unit-to-unit 

variability in a given population of components, it falls short of adapting to the unique 

characteristics of each component.   

Gebraeel et al. [28, 29] addressed this challenge by developing a sensory-based 

updating method that combines degradation characteristics of the component’s 

Failure Threshold 
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population along with real-time condition monitoring information unique to the 

individual component being monitored.  By combining these two sources of information, 

the authors were able to compute and continuously update residual life distributions as in-

situ condition monitoring information became available.  The result is a degradation 

model that represents a more precise estimate of the true trajectory of the component’s 

degradation signal and can be used to precisely estimate the remaining life of the 

component being monitored.  This type of degradation framework is essential in 

supporting decision-making methodologies related to maintenance management and 

replacement strategies. 

1.5 Research Objective and Contributions 

The objective of this work is to investigate the impact of different maintenance 

policies on the performance of manufacturing systems.  We develop simulation studies to 

compare predictive maintenance policies with traditional time-based policies.  Whereas 

time-based maintenance policies do not take into account the conditions or degradation 

characteristics of individual components, our work focuses on using predictive 

maintenance policies based on the degradation models developed by Gebraeel et al. [28, 

29].  This thesis also investigates the impact of the different maintenance policies on 

replacement and spare part inventory costs.  To perform this study, we compare the costs 

incurred when using conventional single-unit age replacement and inventory models that 

are based on lifetime distributions with the enhanced version of these models that rely on 

the sensory-updated residual life distributions.  
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1.6 Organization 

The remainder of this document is structured as follows: Chapter 2 reviews some of 

the literature on simulation studies as they relate to maintenance management as well as 

brief summary of maintenance policies with a special focus on condition-based 

maintenance and degradation modeling.   

Chapter 3 develops a simulation model to study and compare three different 

maintenance policies.  The first policy is based on the sensory-updated degradation 

models developed by Gebraeel et al. [28, 29].  We compare this policy with two 

conventional policies, a reliability-based preventive maintenance policy and another  

predictive maintenance policy based on the degradation modeling framework developed 

by Lu and Meeker [52].  We evaluate the efficiency of each policy by evaluating the 

number of failures, planned replacements, and total maintenance costs corresponding to 

each policy. 

Chapter 4 extends the simulation study to investigate the impact of the maintenance 

policies on system reliability.  In other words, instead of basing our maintenance policy 

decisions on the reliability of individual workstations as in Chapter 3, in this chapter we 

base our maintenance decisions on the reliability of the entire manufacturing system.  We 

focus on two maintenance policies, the first policy is a reliability-based preventive 

maintenance policy, and the second policy is based on the sensory-updated degradation 

model developed by Gebraeel et al. [28].  We evaluate the efficiency of each policy by 

evaluating the total maintenance cost, workstation utilization, and the throughput of each 

policy. 
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In Chapter 5 the simulation study is extended further to compare the performance 

of two different replacement and spare part inventory policies.  The first policy is a 

reliability-based policy developed by Armstrong and Atkins [3].  The second policy is 

based on the sensory-updated degradation models developed by Gebraeel et al. [28, 29].  

We evaluate and compare the system costs associated with implementing each of the 

replacement and inventory policies.  In addition, we evaluate the workstation utilization 

and the throughput of each policy.  The conclusions and future research constitute chapter 

6. 
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CHAPTER 2: LITERATURE REVIEW 

This chapter reviews some of the relevant literature related to simulation and 

condition-based maintenance (CBM).  

2.1 Simulation Analysis of Manufacturing Systems 

Simulation has been widely used to study the effectiveness of maintenance 

management systems [1].  Many of these studies have considered the interaction between 

maintenance policies and manufacturing systems.   

Logendran [51] used simulation modeling to compare the performance of cellular 

and functional work cell layouts while considering machine breakdown.  The mean work-

in-process inventory and mean throughput time were used to compare the performance of 

a corrective and a preventive maintenance policy.  

Vineyard et al. [74] used simulation to analyze the effect of five different 

maintenance policies on flexible manufacturing systems (FMS) subject to random failure.  

Variations of corrective, preventive, and opportunistic maintenance policies were studied.  

The authors demonstrated that the choice of a maintenance policy affected the number of 

maintenance tasks required, and that a hybrid maintenance policy, combining reactionary, 

time and event-triggered preventive characteristics resulted in the least number of 

maintenance tasks and system downtime.  Savsar [64] also analyzed the performance of a 

FMS considering corrective, preventive, and opportunistic maintenance policies.  This 

study considered a variety of time between failure distributions, and demonstrated that 

the type of maintenance applied is important and should be carefully studied before 

implementation.   
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Rezg et al. [62] used simulation to present a joint optimal inventory control and 

preventive maintenance strategy for a randomly failing production unit which supplied an 

assembly line operating according to a just-in-time configuration.  The model provided a 

simple estimation of the cost function from which the optimal values for the PM interval 

time and buffer stock level for the system could easily be obtained. 

Sheu and Krajewski [66] proposed a decision model consisting of a simulation 

model and economic analysis that was used to compare alternative corrective 

maintenance policies.  The simulation model was used to predict inventory costs and 

delivery performance of a corrective maintenance policy in various production systems.  

Based on the simulation results, an economic analysis, consisting of a net preset value 

model and breakeven models, determined the economic value of alternative maintenance 

policies.  A detailed example was offered to evaluate corrective maintenance policies 

applying different combinations of worker flexibility and machine redundancy over a 

variety of factory conditions.  The study demonstrated the decision model’s capability to 

assist managers in selecting the best corrective maintenance policy. 

In a study by Dayanik and Gurler [20], a generalized age-replacement policy for 

repairable systems was studied from a Bayesian perspective.  Independent system failures 

were classified as either critical or noncritical with a certain fixed probability.  A 

maintenance policy was considered where the noncritical failures were corrected with 

minimal repair and the system was replaced at a critical failure or at time τ, whichever 

occurred first.  The purpose of the study was to find the optimal value τ that minimized 

the expected cost per time.  Two adaptive Bayesian procedures that utilized different 

levels of information were proposed for sequentially updating the optimal replacement 
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times.  The first procedure utilized the number of noncritical failures and failure times for 

updating purposes; the second procedure utilized the number of noncritical failures and 

failure times as well as the length of the replacement cycles for updating purposes.  

System failure times were assumed to follow a Weibull distribution.  Both of the 

updating procedures were analyzed using simulation.  A sample path of system failures 

for the first 10 replacement cycles under each updating procedure was presented. 

Sloan and Shanthikumar [69] considered the problem of determining the 

production and maintenance schedules for a multiple-product, multiple-stage production 

system.  Each stage consisted of a machine whose condition deteriorated over time and 

the condition affected the yield of different product types differently.  The authors 

developed a Markov decision process model to simultaneously determine the equipment 

maintenance and production schedules for each stage of the system with the objective of 

maximizing the long-run expected average profit.  A simulation model of a four-station 

semiconductor wafer fab was used to compare the performance of policies generated by 

their model against a variety of other maintenance and dispatching policy combinations.  

The results indicated that their method provided substantial improvements over 

traditional methods and performed better as the diversity of the product set increased.  

They showed that the reward earned using the policies from the combined production and 

maintenance scheduling method was an average of more than 70% higher than the reward 

earned using other policy combinations such as a fixed-state maintenance policy and a 

first-come, first-serve dispatching policy. 

Gong and Tang [32] developed a simulation study where an on-line sensor was 

used to monitor a randomly deteriorating machine operation.  The machine condition was 
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described by a finite number of states, and the machine deterioration followed a Markov 

process.  It was assumed that the relation between the sensor measurement and the true 

machine condition was described by a known statistical relation, and maintenance 

decisions were made based on the observed sensor measurements.  Two maintenance 

policies were considered for re-setting the deteriorating machine to a better performance 

state.  The first policy was a threshold setup control policy, where setup was performed 

only if the sensor measurement was greater than a predetermined threshold value.  The 

second policy was a heuristic policy where a maintenance decision was based on the 

machine condition estimated by analyzing the information through a Bayes formula.  The 

results showed that the cost evaluated by using a steady state distribution tended to 

underestimate the actual cost and that the heuristic method performed better than the 

stationary threshold method. 

Dessouky and Bayer [21] presented a maintenance process model that offered a 

systematic approach to analyze the maintenance process of fully occupied buildings, with 

emphasis on plumbing, electrical and mechanical systems.  The model was used to 

identify the critical quality attributes that influenced the maintenance process.  The 

authors developed a simulation model to characterize the impact of the quality attributes 

on the maintenance process to determine the funds to be allocated to maintenance in the 

building’s design and construction phases in order to minimize maintenance costs.  The 

output of the simulation model was the number of labor hours resulting from random 

occurrences in excess of those planned over the life of the building.  The simulation 

output results were used in a design of experiment procedure to identify the optimum 

attribute levels that minimized excess labor hours.  A loss function was then defined to 
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provide a cost basis for integrating maintenance priorities during the design and 

construction phase of a building project. 

The increasing interest and research in maintenance engineering has exposed the 

problems and opportunities associated with inefficient maintenance practices.  This has 

lead to the development of predictive maintenance policies that focus on predicting 

unexpected failures, such as condition-based maintenance. 

2.2 Condition-based Maintenance 

Condition-based maintenance (CBM) is an area that has been attracting more and 

more attention in industry.  CBM is a maintenance strategy that utilizes condition 

monitoring (CM) information for systems undergoing stochastic deterioration in order to 

assess the health of its components.  A lot of research has focused on increasing the 

effectiveness of CBM programs by improving the predictability of failure.  The following 

sections survey several different categories of research done to improve failure 

predictability in CBM. 

2.2.1 Markov Processes 

A Markov process is a special case of a stochastic process for which the 

distribution of a future random variable or state depends only on the present state and not 

on how it arrived in the present state.  Since changes in parameters that define equipment 

degradation are generally probabilistic, as Christer [13] points out, many of the published 

theoretical CBM models adopt a Markov approach to model the degradation, where states 

are usually ‘operating’, ‘operating but fault present’, and ‘failed’.  Transitions between 

these states occur according to probabilistic laws, with each state being associated with 

the coincident occurrence of an inspection and some associated maintenance action. 



 

 

15

Monplaisir et al. [59] formulated a seven-state Markov chain to model the 

deterioration process taking place in the crankcase locomotive diesel engines.  The 

authors defined the state-space in terms of certain known pathologies commonly 

associated with lubricant deterioration.  The weekly probabilistic change in physical 

crankcase oil condition was used as the monitored condition variable.  They 

demonstrated the utility of the model as a maintenance decision support for fault 

diagnosis, specification of preventive maintenance tasks, and evaluation of alternative 

policies.  

Coolen et al. [15] analyzed a basic model for the economic evaluation and 

optimization of inspection techniques.  The model assumed that for a specific failure 

mode the system passed through an intermediate state, which could be detected by 

inspection.  They presented a 2-phase semi-Markov model to determine the optimal 

inspection time that minimized maintenance costs.  They performed sensitivity analysis 

to simplify their model and determined which model parameters could be kept constant 

without seriously affecting optimal decision making.  Assuming that the time spent in the 

intermediate state can be represented by a unimodel distribution, the authors concluded 

that an estimation of the mean and standard deviation of this state was enough to provide 

good decisions about the monitoring interval.   

Kallen and van Noortwijk [42] presented a decision model for determining the 

optimal time between periodic inspections of an object with sequential discrete states.  

The deterioration model used a Markov process to model the uncertain rate of 

transitioning from one state to the next, allowing the decision maker to properly 

propagate the uncertainty of the component’s condition over time.  The model was 
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illustrated by an application to the periodic inspection of road bridges.  The author also 

showed that the model could be applied to production facilities to optimize the threshold 

for preventive maintenance. 

Chen and Trivedi [9] presented a semi-Markov decision process for the 

maintenance policy optimization of condition-based preventive maintenance problems, 

and presented the approach for joint optimization of inspection rate and maintenance 

policy.  The joint optimization of the inspection rate and maintenance policy was 

performed by taking the inspection rate as the input parameter to the semi-Markov 

decision process model.  For each individual inspection rate the model was solved for the 

optimal maintenance policy. 

Glazebrook et al. [31] formulated a Markov decision process to schedule 

maintenance routines to minimize the total expected discounted cost incurred in operating 

a collection of deteriorating machines over an infinite time horizon.  Information on the 

condition of each machine was continuously available to the decision-maker and was 

expressed through the machine’s state.  The methodology was illustrated via analyses of 

two different machine maintenance models. 

Saranga and Knezevic [63] developed a mathematical model for reliability 

prediction of condition-based maintained systems in which the component deterioration 

was modeled as a Markov process.  A system of integral equations was used to compute 

the reliability of the system at any instant of operating time.  When the reliability of the 

item reached the minimum required reliability level, it was assumed that the item has 

reached a critical state and hence the required maintenance activities should be carried 

out to restore the system to an acceptable level.  The authors suggested that a well-
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designed condition monitoring strategy incorporated into CBM could offer improved 

reliability and availability at the system level. 

2.2.2 Neural Networks 

Artificial Intelligence techniques such as neural networks use sensory information 

to detect equipment defects and classify their functional condition.  A neural network is a 

data processing system consisting of a large number of simple, highly interconnected 

processing elements in an architecture inspired by the structure of the cerebral cortex 

portion of the brain.  Because of the topology of the systems and the manner in which 

information is stored and manipulated, neural networks are often capable of doing things 

that humans or animals do well but that conventional computers do poorly.  For example, 

neural networks have the ability to recognize patterns even when the information 

comprising these patterns is noisy or incomplete, to do matching in high-dimensional 

spaces, and to effectively interpolate and extrapolate from learned data [1].   

Perhaps the most important characteristic of neural networks is their ability to 

model processes and systems from actual data.  The neural network is supplied with data 

and then “trained” to mimic the input-output relationship of the process or system.  The 

ability of artificial neural networks to capture and retain nonlinear failure patterns make 

them an excellent CBM tool, since equipment condition and fault developing trends are 

often highly nonlinear and time-series based. 

Choudhury et al. [12] used neural networks to monitor tool wear without having 

to interrupt the machining process.  They presented an on-line monitoring technique to 

predict flank wear and concluded that flank wear values estimated by the neural network 

were close to the actual flank wear measured under the tool maker’s microscope. 
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Booth et al. [8] used neural network-based condition monitoring techniques to 

evaluate and classify the operating condition of power transformers in power plants.  

They demonstrated that neural networks could be used to ascertain the on-line condition 

of the transformer through estimating the level of vibration based upon other sensor data 

input, and comparing this with the observed sensor output.  They also showed that neural 

networks could be used to classify the “health” of the transformer based upon the inter-

relationships between load current, and thermal and vibration parameters.   

Bansal [5] introduced a real-time, predictive maintenance system based on the 

motion current signature of DC motors.  They proposed a system that used a neural 

network to localize and detect abnormal electrical conditions in order to predict 

mechanical abnormalities that indicate, or may lead to the failure of the motor.  The 

author developed a simulation model to map the system parameters to the motion current 

signature, and then used the mapping to generate training data for the neural network.  

The study showed that the classification of the machine system parameters, on the basis 

of motion current signature, using a neural network approach was possible. 

Sinha et al. [68] developed a neural network model to predict the failure 

probability of an underground pipeline system.  The neural network was trained using the 

results of a simulation-based reliability analysis.  Several test cases were analyzed, 

demonstrating that the proposed network was very accurate in predicting the probability 

of failure directly from the in-line inspection data on depth and length of corrosion 

defects. 

Luxhoj and Shyur [53] compared neural network and proportional hazard models 

for the problem of reliability estimation extrapolated from accelerated life testing data for 
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a metal-oxide-semiconductor integrated circuit.  Both modeling approaches were 

discussed, and their performance in fitting accelerated failure for metal-oxide-

semiconductor integrated circuits was analyzed.  The neural network model resulted in a 

better fit to the data based upon minimizing the mean square error of the predictions 

when using failure data from an elevated temperature and voltage to predict reliability at 

a lower temperature and voltage.  

Alguindigue et al. [1] discussed their work on developing a methodology for 

interpreting vibration measurements based on neural networks.  The methodology made it 

possible to automate the monitoring and diagnostic processes for vibrating components.  

The authors thought that the potential of neural networks to operate in real-time and to 

handle data that may be distorted and noisy makes the methodology an attractive 

complement to traditional vibration analysis.  They illustrated the effectiveness of the 

neural network technique to a data set consisting of vibration data from a steel sheet 

manufacturing mill. 

2.2.3 Proportional Hazard Models 

Proportional hazard models a system’s risk of failure with its working age and 

external operating conditions that are captured using explanatory covariates [50].  One of 

the first proportional hazard models was developed by Cox to analyze medical survival 

data [16, 17].  Proportional hazard models were then used in various engineering 

applications, such as aircrafts, marine applications, and machinery [35, 36, 37, 86].  

Kumar and Westberg [47] developed a PHM to estimate the optimum maintenance time 

interval for a system by considering planned and unplanned maintenance costs.  Kobacy 

et al. [45] used simulation techniques to schedule PM intervals for pumps used in a 
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continuous process industry.  The authors proposed a proportional hazard model to 

evaluate the risk of failure and demonstrated that their model lead to an increase in 

system availability and better performance. 

Jardine et al. [39] proposed a PHM with a Weibull baseline hazard function and 

time-dependent stochastic covariates representing monitored conditions to incorporate 

condition monitoring information when estimating a component’s reliability.  A Markov 

stochastic process was assumed as a model for stochastic covariates.  The optimal 

replacement policy was either to replace at failure or replace when the hazard function 

exceeded a threshold level determined to minimize the expected total cost per unit time.  

This study was part of a continuous research effort in the area of CBM to develop 

software which could assist engineers to optimize decisions in a CBM environment.  A 

case study dealing with diesel engine inspections and replacements illustrated the use of 

the decision model and software under development.  In [41], the finished software, 

called EXAKTTM, was used by Campbell’s Soup to optimize CBM decisions.  A study 

was carried out that compared their current replacement policy of shear pump bearings 

with other replacement policies, including one that used EXAKTTM.  The results showed 

that replacements that are made according to the output from EXAKTTM resulted in a 

documented cost reduction of 33%. 

Ghasemi et al. [30] derived an optimal CBM replacement policy that assumed 

that the diagnostic state of the equipment was unknown, but could be estimated based on 

the observed condition.  The authors assumed that the information obtained at inspection 

times could only be used to calculate the probability that the system is in a certain 

diagnostic state.  This assumption brought the model closer to real world situations since 
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most information is noise corrupted and should not be treated as perfect information.  In 

addition, in many situations a specific value of an observation can belong to more than 

one diagnostic state.  In this paper, the equipment deterioration process was formulated 

by a PHM.  Since the equipment’s state was unknown, the optimization of the optimal 

maintenance policy was formulated as a partially observed Markov decision process 

(POMDP), and the problem was solved using dynamic programming.  Combining the 

PHM and POMDP enabled the model to take into account two causes of system 

deterioration: the ageing process and the conditions under which the system was used.  In 

addition, the model took into account the manufacturer knowledge, which is an important 

source of information. 

Prasad and Rao [61] used PHM techniques to assess the failure characteristics of 

three different case studies.  The first case was the failure analysis of electro-mechanical 

equipment under renewal process with type of failure (electrical, compressed air, cable) 

as a covariate.  Non-parametric PHM methods were used to obtain failure rate ratios of 

the equipment at different covariates.  The second case study was maintenance 

scheduling of a thermal power unit under a non-homogeneous poisson process with type 

of failure mode (boiler, electrical, turbine) as a covariate.  Three different non-parametric 

cumulative hazard rate function estimators were discussed to evaluate rate ratios of 

system covariates.  The last case was accelerated life testing of a small D.C. motor with 

voltage, load current and type of operation as covariates.  In this case study, the failure 

behavior of the motor at different operating condition using non-parametric PHM 

methods was compared with the results obtained by the Weibull PHM. 
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Luxhoj and Shyur [53] compared proportional hazard and neural network models 

for the analysis of time-dependent dielectric breakdown data for a metal-oxide-

semiconductor integrated circuit.  The study showed that the neural network model 

presented a more accurate technique for using accelerated failure data for estimating 

reliability at normal operating conditions than the proportional hazards model. 

Kumar and Westberg [47] suggested a reliability based approach for estimating 

the optimum maintenance time interval for a system or threshold values of CM variables 

under the age replacement policy.  A PHM was used to estimate the reliability function, 

which was based both on the failure times and the values of the monitored variables.  

Then, the authors formed a maintenance cost equation based on the planned and 

unplanned maintenance costs and the reliability function.  In order to find the optimum 

maintenance time interval or the threshold values of the monitored variables, a total time 

on test (TTT) plot was used to find the minimize the long run maintenance cost.  The 

authors used an example based on pressure gage failure data to illustrate their approach. 

Vlok et al. [75] described a case study in which the Weibull PHM was used to 

determine the optimal replacement policy for a critical item which was subject to 

vibration monitoring.  The case study considered CBM for circulating pumps in a coal 

wash plant.  The CBM policy recommended in this study was based on lifetime data 

collected over a period of 2 years, and was compared with current practice.  The policy 

was validated using data that arose from subsequent operation of the plant. 

Proportional hazard models attempt to characterize degradation processes at an 

aggregate level compared to other methods that focus on modeling the evolution of 

sensory-based condition monitoring information.  In addition, these models require a 
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baseline hazard function, which is time-based rather than condition-based [79].  As a 

result, the use of degradation models is becoming increasingly popular in CBM 

applications. 

2.2.4 Degradation Models 

Degradation modeling focuses on using degradation signals developed via 

condition monitoring techniques that capture the deterioration of a component over time.  

Degradation models can be used to estimate the residual life distribution of the monitored 

component. 

Lu and Meeker [52] developed a two-stage methodology to model the path of a 

condition-based degradation signal using random coefficients growth models.  Generally, 

degradation models utilize a sample of degradation signals to estimate the residual life 

distributions for a population of components.  However, most degradation models rarely 

integrate real-time condition-based degradation signals originating from in-field 

components.  Consequently, Gebraeel et al. [28, 29] developed a sensory-based updating 

method for updating residual life distributions of components while they are operating in 

the field.  The authors used random coefficients models and updated the prior distribution 

of the stochastic parameters of the degradation model using real-time degradation signals 

unique to the individual component that was being monitored.  The result is a degradation 

model that represents a more precise estimate of the true trajectory of the component’s 

degradation signal and can be used to refine the distribution of the residual life of the 

component. 

Yang and Yang [85] developed an improved method of accelerated life testing 

that utilized degradation modeling with random coefficients.  In accelerated life testing, 
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each component from a selected sample is subjected to elevated stress and operated until 

either failure occurs or the duration of the test expires.  The life times of the components 

that fail are then used in life estimation for the entire population.  In contrast, the method 

developed in study used the life times of failed components along with degradation 

information from operating components to get better estimates of lifetime parameters.  

During life testing, the time at which the component degradation value reached each of 

several predefined levels was recorded and used to estimate the parameters of life 

distributions for each level.  The authors used an experiment to demonstrate that their 

method provided better estimators than traditional life testing in which only failure times 

are recorded. 

Crk [18] presented a method of accelerated life testing that estimated a system’s 

reliability by monitoring performance degradation, instead of directly observing failure 

times.  Specifically, the method was more efficient in estimating the reliability of 

components that have extremely high reliability, such as many electrical and 

electromechanical components.  In such cases traditional accelerated life tests do not 

result in failure even after 1,000 or more hours of testing.  Crk suggested that the 

available testing time could be used more efficiently by monitoring and recording the 

actual product performance degradation over time.  However, since the product’s 

performance degradation may progress very slowly at the operating stress level, the 

accelerated degradation methodology was proposed.  The proposed methodology 

considered a component or a system performance degradation function whose parameters 

may be random, correlated, and stress dependant.  This assumption led to the 

development of the multivariate, multiple regression analysis of the degradation function 
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parameters with respect to applied stresses.  The methodology was based on the fact that 

the failure mechanisms caused gradual degradation of a subsystem or a system 

performance until it reached the critical level when the system is in a failed state.  If the 

failure mechanisms could be identified and the degradation measured, the system or the 

subsystem reliability could be determined in terms of the critical level of degradation that 

was reached after some period of time.  This methodology implied that the actual time to 

failure may never be observed but it could be determined by extrapolation from the 

estimated degradation path for each failure mechanism and for each subsystem at given 

stresses. 

Wu and Tsai [82] used a degradation analysis to estimate the time-to-failure 

distribution of a population of components.  The authors modified the two-stage method 

presented in [52] by applying a fuzzy-weighted estimation when the degradation paths of 

a few life test units are different from those of most paths.  A real data set was analyzed 

to illustrate the approach.  They found that the fuzzy-weighted estimation reduced the 

affection of different patterns of degradation paths and improved the estimation results of 

time-to-failure distributions. 

Li and Pham [48] developed a generalized CBM model subject to multiple 

competing failure processes based on degradation paths, and cumulative shock damage.  

The two stochastic degradation processes considered were a random-coefficient 

degradation path function, and a randomized logistic degradation path function.  The 

shock process was modeled according to a Poisson process.  The maintenance model 

assumed that there were two possible maintenance actions, which restored the system to 

as good as new: preventive maintenance (PM), or corrective maintenance (CM).  At each 
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maintenance inspection interval, if both degradation values were below their PM 

thresholds, and the shock damage value was less than its threshold, then the system was 

considered to be in good condition.  Alternatively, if one of the degradation processes fell 

into a specified PM zone, and the other two failure processes were less than their 

corresponding failure thresholds, a PM action was performed.  A degradation processes 

was defined as being in its PM zone if its degradation value was above its PM threshold, 

but below its failure threshold.  A CM action was performed if one of the failure 

processes exceeded their corresponding failure thresholds.  The authors assumed that the 

cost for CM was higher than the cost for PM. The need for PM or CM was determined 

upon each maintenance inspection, and the inspection cycles were reduced according to 

the geometric sequence as the system aged. The authors discussed an algorithm based on 

the Nelder-Mead downhill simplex method to obtain the optimum inspection sequences, 

as well as the PM threshold values, that minimized the long-run average maintenance 

system cost rate.  The authors use numerical examples to illustrate their optimization 

algorithm. 

Yan et al. [84] presented a prognostic method for machine degradation detection, 

which could both assess machine performance and predict the remaining useful life.  The 

authors used logistic regression to model the relationship between independent condition 

variables and machine performance, where machine performance was defined as the 

probability of failure.  Based on the logistic model after training, on-line condition data 

was used to calculate the performance of a machine at each calculation cycle and then, 

according to the previous performance assessment results, future performance tendency 

was predicted by an ARMA (or Box-Jenkins) model; consequently time to failure could 
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be delivered dynamically.  The authors applied the method to an elevator door motion 

system and presented the results. 

Christer and Wang [14] addressed the problem of scheduling condition 

monitoring inspections for a production plant.  During an inspection, if the degradation of 

the component had progressed beyond a given threshold or the component had failed, 

then it was replaced.  They assumed a linear degradation model and developed a 

probabilistic cost model that considered the costs of monitoring, the cost of replacement 

after failure, and the cost of replacement before failure.  They also developed a 

probabilistic availability model that can be used to select an inspection interval that 

maximized plant availability. 

2.3 Summary 

In the following chapters, we investigate the impact of different maintenance 

policies and inventory replacement policies on hypothetical manufacturing systems 

consisting of several workstations in varying manufacturing layouts.  We describe three 

simulations studies used to analyze and compare traditional preventive maintenance and 

inventory policies with predictive maintenance and inventory policies.  In Chapter 3, we 

compare a maintenance policy based on the sensor-updated degradation models 

developed by Gebraeel et al. [28, 29] with two other conventional policies, a reliability-

based preventive maintenance policy and a degradation-based predictive maintenance 

policy.  We describe a similar study in Chapter 4, however, whereas in Chapter 3 we base 

maintenance decisions on the parameters of individual workstations, in Chapter 4 we 

base maintenance decisions on system parameters.  In Chapter 5, we compare a 

traditional reliability-based preventive inventory replacement policy with a policy based 
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on the sensory-updated degradation model developed in [28, 29].  Chapter 6 discusses 

conclusions and future research. 
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CHAPTER 3: STUDY 1. ANALYSIS OF MAINTENANCE POLICIES 

IN A PARALLEL WORKSTATION MANUFACTURING SYSTEM 

This chapter investigates the impact of different maintenance policies on the 

performance of a hypothetical manufacturing system that consists of five parallel 

workstations with one common arrival station and a shipping dock.  We use ARENA 

simulation software to model the manufacturing system.  Parts are assumed to arrive 

randomly to the system and can be processed on any of the five workstations, depending 

on which one is empty at the time of arrival.  The parts are processed at a predetermined 

processing time and then delivered to the shipping dock where they exit the system.  We 

propose a maintenance policy that is based on the sensory-updated degradation models 

developed by Gebraeel et al. [28, 29].  We compare this policy with two other 

conventional policies, a reliability-based preventive maintenance policy and a 

degradation-based predictive maintenance policy.  We evaluate the efficiency of each 

policy by evaluating the number of failures, planned replacements, and total maintenance 

costs corresponding to each policy.  This is achieved by collecting simulation statistics 

pertaining to these variables.  

3.1 Preventive Maintenance 

The first maintenance policy that will be considered in this simulation-based 

analysis is a conventional preventive maintenance policy.  This policy uses the failure 

time distribution to calculate the preventive maintenance (PM) interval.  For the purpose 

of this analysis, we assume that the failure time of the workstations follows a Weibull 

distribution (3.1) whose parameters will be evaluated later as described in Section 
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3.3.2.1.1.  We are interested in evaluating the PM interval, Rt .  To do this, we solve for 

Rt  in expression (3.1) given a specific reliability level (1 - F(tR )); 

 
βθ )/(1)( Rt

R etF −−=  (3.1)  
 

where, F(tR ) is the CDF of a Weibull distribution, θ  is the scale parameter and β  is the 

shape parameter of the Weibull distribution, and R is the desired reliability level of the 

system.   

The preventive maintenance policy is a time-based policy.  Its main disadvantage 

is that it does not consider the condition or degradation state of the equipment being 

maintained.   

3.2 Predictive Maintenance 

This section presents two degradation-based predictive maintenance policies used 

to estimate condition-based maintenance routines based on equipment degradation 

characteristics.  The two predictive policies utilize condition monitoring information 

associated with equipment degradation.  The underlying basis of these policies is that the 

evolutionary trends of the condition-based sensory signals (aka. Degradation signal) can 

be used to estimate residual life the equipment.  

Degradation modeling is a widely used approach used to model a component’s 

degradation signal [52, 60].  One common technique is to model the degradation signal as 

a stochastic process with deterministic and stochastic parameters that capture constant 

and random degradation phenomena as shown in (3.2); 

 ( ) ( ) ( )tthtS εθφ += ,,  (3.2)  
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The functional form of the signal, ( ).h , depends on the type of component being 

modeled and represents a relationship between the amplitude of the signal and the 

operating time.  The functional form may follow a linear, polynomial, exponential, or any 

other trend.  The parameter φ  is deterministic and is used to capture degradation 

characteristics that are constant across a component’s population. The parameter θ  is a 

stochastic parameter that is assumed to follow some distribution )(θπ  and is used to 

model random degradation characteristics i.e. unit-to-unit variation across.  It should be 

noted that these parameters can take the form of a vector of parameters.  The term ( )tε  is 

the error term, which is used to model measurement noise and signal fluctuations.  

In this chapter, we consider two degradation-based predictive maintenance 

policies.  The first policy is based on the two-stage degradation model developed by Lu 

and Meeker [52]. We will refer to this maintenance policy as “Degradation Model I”.  

The second predictive maintenance policy is based on the sensory-updated degradation 

model developed by Gebraeel [28, 29].  We will refer to this model as “Degradation 

Model II”.   

For the manufacturing system considered in this paper, we assume that the 

workstations degrade over time and that their degradation is associated with some 

degradation/performance signal.  As will be demonstrated later, we will utilize a database 

of real-world vibration-based degradation signals obtained from a bearing testing setup to 

simulate the degradation process of each workstation.  The degradation signals are 

developed based on the vibration characteristics of degrading bearings.  These signals 

possess an exponential form of growth.  Due to these characteristics, we will limit our 

models to the family of exponential degradation models. 
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3.2.1 Degradation Model I (Exponential Base Case) 

The first predictive maintenance policy is developed based on the degradation 

modeling framework presented in [52].  Under this framework, the exponential 

degradation model is expressed as follows; 

 tetS βθ=)(  (3.3) 
 

where, as applied to (3.3), θ  and β  are the stochastic parameters, and there is no 

deterministic parameter. 

For mathematical convenience, we work with the logged degradation signal.  

Thus, we define ( )tL  as follows; 

 ( )( ) ( ) ttStL βθ +== lnln)(  (3.4) 
 

where, )(lnθπ  and )(βπ  denote the prior distributions, where ),(~ln 2
00 σμθ N  and 

),(~ 2
11 σμβ N .  The exponential degradation model is used to estimate the residual life 

distributions of components whose degradation signals possess an exponential functional 

form.  The parameters of the prior information can be estimated from a sample of 

degradation signals by fitting a sample degradation signals with an exponential functional 

form and noting the values of the exponential parameters.  The residual life distribution is 

equivalent to the distribution of the time it takes a partial degradation signal to reach a 

predetermined failure threshold, D (3.5), 
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Given a desired reliability level, we use the above expression to predict the time 

of a planned maintenance routine by solving for t.  This policy is different from the 

conventional PM policy in that planned maintenance routines are based on condition-

based information. 

3.2.2 Degradation Model II (Exponential Base Case) 

The second predictive maintenance policy is based on the sensory-updated 

degradation model developed by Gebraeel et al. [28, 29].  The main difference between 

this degradation modeling framework and the previous is that the distributions of the 

stochastic parameters of the prognostic degradation models are updated using real-time 

degradation signals.  Consequently, the residual life distributions that were computed 

using population-specific degradation characteristics can now be updated, in real-time, 

based on the unique degradation characteristics of the individual components that are 

being monitored.   

Similar to the previous section, we focus on the sensory-updated exponential 

degradation model.  We consider the special case where the error term follows a 

Brownian motion as proposed in [28].  Under these assumptions, we define ( )tS  to 

denote the value of the degradation signal at time t.  We assume that ( )tS  has the 

following functional form; 

 ( ) 2
)(

2t
tteetS

σ
εβθφ

−
+=  (3.6)  

 

where φ  is a constant, θ  is a random variable that follows a Lognormal distribution, i.e., 

θln  is Normal with mean oμ  and variance 2
oσ , and β is Normal with mean 1μ  and 
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variance 2
1σ .  The parameters θ  and β  are assumed to be independent.  The error 

term ( ) ( )tWt σε =  is a Brownian motion with mean zero and variance t2σ .  For 

mathematical convenience, we work with the logged degradation signal.  Thus, we define 

( )tL  as follows; 

 ( ) ( )( ) ( )
2

ln
2t

tttStL
σ

εβθφ −++′=−=  (3.7) 

 

We define θθ ln=′  and ( )2/2σββ −=′ .  Thus, ( )tL  can be expressed as 

follows; 

 ( ) ( )tttL εβθ +′+′=  (3.8)  
 

Next, we define ( ) ( )1−−= iii tLtLL , the difference between the observed value of 

the logged signal at times it  and 1−it , for ,...,3,2=i  with ( )11 tLL = .  Furthermore, let 

( )θπ ′1  and ( )βπ ′2  denote the prior distributions of θ′  and β ′  respectively.  Note that 

( )βπ ′2  is a Normal distribution with mean ( )2/2
11 σμμ −=′  and variance 2

1σ .  Our goal is 

to update the prior distributions of the stochastic parameters using the signals that we 

observe from the components that are being monitored. 

Given the observed signal values, kLL ,...,1 , observed at times ktt ,...,1 , we can find 

the posterior distribution of θ′  and β ′  using Bayes theorem (11); 

 ( ) ( ) ( ) ( )βπθπβθβθ ′′′′∝′′ 2111 ,,...,,...,, kk LLfLLp  (3.9) 
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As mentioned earlier, this model was developed in [28].  The authors proved that 

the posterior distribution of  ( )βθ ′′,  is a Bivariate Normal distribution with mean 

( )βθ μμ ′′ ,  and variance ( )22 , βθ σσ ′′ , where:  
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Next, we use the updated distributions of the stochastic parameters to compute the 

predictive distribution of the signal, ( )ttL k +  which is Normal with the following mean 

and variance [28]: 

 ( ) ( ) ttLtt kk βμμ ′+=+~  (3.14) 

 ( ) tttt k
222

'
2~ σσσ β +=+  (3.15) 

 

Using the predictive distribution of the degradation signal, we calculate the 

updated residual life distribution of the component that is being monitored as the 

distribution of the time until the degradation signal reaches a predetermined failure 

threshold D.   
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Let T denote the residual life of the partially degraded component.  Therefore, T 

satisfies ( ) DttL k =+  and its distribution is given by; 

 ( ) ( ) ( ) ( )
( ) ⎟⎟
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⎛
+
−+

Φ=≤=
k

k
kT tt
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~

ln~
,...,Pr 1  (3.16) 

 

where ( ).Φ  is the CDF of a standardized Normal random variable. 

We now develop a simulation model of a manufacturing system in order to test 

the three maintenance policies presented earlier.   

3.3 Simulation Model 

This simulation model considers three maintenance policies.  It studies the effect 

of these policies on the performance of a specific manufacturing system.  The first 

maintenance policy is a conventional reliability-based preventive maintenance policy 

(Section 3.1).  We refer to this policy as “PM policy”.  Next, we consider two types of 

predictive maintenance policies.  The first policy is based on a conventional degradation 

modeling framework, Degradation Model I in Section 3.2.1.  We consider the 

Exponential Degradation Model as our base case.  We refer to this policy as “DM-I 

policy.  The second predictive maintenance policy is based on the Sensory-Updated 

Exponential Degradation Model, Degradation Model II Section 3.2.2.  We refer to this 

policy as “DM-II policy”.   

To analyze these maintenance policies, we develop a simulation model of a 

manufacturing system using Arena.  The simulated manufacturing system consists of five 

parallel a single-stage manufacturing workstations.   
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Figure 3.1 presents a schematic representation of this manufacturing system.  Pre-

processed parts arrive to a staging station.  The inter-arrival time is assumed to be 

exponential with a mean of 0.25 minutes.  Upon arrival, each part is processed on one of 

the five workstations (depending on which one is free).  The processing times of each 

workstation is assumed to follow a Triangular distribution (0.6, 0.8, and 1 minutes).  

Upon completion, the finished part is transferred to a shipping area. 

Workstation 1

Workstation 2

Workstation 3Pre-processed 
Parts Arrive

Shipping 
Department

Workstation 4

Workstation 5

 

Figure 3.1. Schematic of the manufacturing system. 

 

An operational workstation can become unavailable for two possible reasons, a 

random failure occurs or a scheduled maintenance routine is performed.  A workstation’s 

failure downtime is assumed to be random and follows a Normal distribution with mean 

300 minutes and variance 30 minutes, and a workstation’s scheduled maintenance routine 

downtime is assumed to be random and follow a Normal distribution with mean 30 
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minutes and variance 5 minutes.  Furthermore, we assume that each workstation degrades 

gradually until it fails.  To represent a workstation’s degradation process, we utilize a 

real-world vibration-based database of degradation signals to simulate a workstation’s 

degradation.  In other words, the vibration-based degradation signals and their 

corresponding failure times are used to characterize the degradation process.  The 

degradation database is developed from a series of accelerated degradation tests in which 

vibration signals associated with rolling element bearings are continuously acquired 

during the duration of the test.  The degradation database contains the vibration-based 

degradation signals and the failure times for 50 rolling element bearings that have been 

run-to-failure.  The same degradation database has been used to develop degradation 

models in Gebraeel et al. [28, 29]. 

In the following section, we discuss the simulation model used to evaluate the 

performance of the three maintenance policies.  The simulation model consists of two 

submodels.  The first submodel represents the simulated manufacturing system and the 

second submodel characterizes the control logic of each maintenance policy. 

3.3.1 Manufacturing System Submodel 

Figure 3.2 represents a flowchart of the manufacturing system submodel.  The 

CREATE module is used to create entities that represent parts ready to be processed.  

Each part is held in a queue at a HOLD module until a workstation is available to process 

the part.  If all workstations are seized, i.e., already processing parts, the part waits in 

queue until a workstation becomes available.  The HOLD module checks the availability 

of the workstations using the following expression in ARENA: 
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 NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) <> 
INACTIVE_RES, for i = 1, 2,…, 5 
  

1. NR(Workstation i Resource) is a variable that takes on the value 0 if the 

workstation is free and 1 if the workstation is already processing a part;  

2. STATE(Workstation i Resource) returns the current state of the ith Workstation 

Resource;   

3. INACTIVE_RES checks if the resource is currently in the inactive state, which 

means that the resource is either failed or being maintained. 
 

Once a workstation is available, the first part in the queue enters a DECISION 

module that checks which of the five workstations is available to process the part.  This is 

accomplished using the following statement: 

 NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) = 
INACTIVE_RES, for i = 1, 2,…, 5 
 

Each workstation is represented by a PROCESS module.  Once a part arrives at a 

PROCESS module, it is processed according to a prespecified processing time.  As 

mentioned earlier, the processing time of each workstation follows a Triangular 

distribution with the following parameters: 0.6, 0.8, and 1 minutes.  Once processing is 

complete, the part exits the system through a DISPOSE module.  
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Figure 3.2. Manufacturing system submodel. 

 

3.3.2 Maintenance Policy Submodel 

This submodel controls the execution of each maintenance policy.  It simulates 

workstation failures and controls maintenance activities.  This is achieved using two 

subroutines.  The first is responsible for generating workstation failure times and 

computing PM intervals, while the second is responsible for shutting down a workstation.  

The two subroutines work in tandem to simulate maintenance routines and failures for 

each workstation. 

3.3.2.1 Failure Time Subroutine 

The failure time subroutine is responsible for simulating workstation failures and 

computing PM intervals.  It begins with a CREATE module that generates a single 

“phantom” entity.  This entity is used to control the generation of workstation failure 

times and schedule a preventive maintenance (PM) routine.  The details of its 
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functionality differ according to the maintenance policy that is being used.  Figure A.1 

represents a flowchart of the failure time subroutine. 

3.3.2.1.1 PM Policy 

For the PM policy, the phantom entity instantly enters a VBA code block at time t 

= 0.  This VBA block is used to generate a workstation failure time , failure_time_i, and 

calculate a PM interval, workstation_i_interval. 

Workstations are subject to random failures.  The failure time distribution is 

assumed to follow a Weibull distribution.  The shape and scale parameters of the Weibull 

distribution are, 0549.3=β  and 75.784=θ , respectively.  These parameters are 

evaluated using a sample of failure times obtained from the degradation database used in 

Gebraeel [28, 29].  Specifically, the parameters are estimated using a sample of failure 

times corresponding to 25 rolling element bearings (bearings 1 to 25) that have been run 

to failure.   

Preventive maintenance interval is different for different reliability levels.  In 

other words, for a given workstation i, the PM interval, workstation_i_interval, is 

calculated by solving equation (3.1) for the desired reliability level, R.   

For a given workstation i, if workstation_i_interval > failure_time_i, then the 

workstation experiences a sudden failure, otherwise, a planned replacement is performed.  

Consequently, there are two types of replacement activities, (1) failure replacement if the 

workstation fails unexpectedly, and (2) preventive replacement if the workstation is down 

for a scheduled maintenance routine.  Due to their unexpected nature, the duration of 

failure replacements are assumed to be longer than those of preventive replacements.   
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After replacement is complete, the phantom entity travels back to the VBA block 

to calculate a new preventive maintenance interval and generate a new workstation 

failure time.  This routine is performed independently for each workstation. 

3.3.2.1.2 DM-I Policy 

A similar procedure is performed for the DM-I policy.  However, 

workstation_i_interval, is determined by computing the residual life distribution of the 

workstation and solving expression (3.5) to find the appropriate time t.  The time t 

represents the maintenance interval, workstation_i_interval, which corresponds to a 

prespecified reliability level, R.   The parameters of the prior information are estimated 

from the sample of degradation signals from the degradation database (bearings 1 to 25).  

The estimated values of these parameters are ,276132.50 −=μ  ,004468.01 =μ   

,199013215.02
0 =σ  and .108064.4 72

1
−×=σ  

The residual life distribution represents the distribution of the time until the 

degradation signal reaches a predetermined failure threshold.  The degradation signals 

considered in this paper are composed of two phases as shown in Figure 3.3.  Phase I 

represents the nondefective operation of the bearing while phase II characterizes the 

partially degraded operation of the bearing.  In this work, the residual life distribution is 

computed using the phase II information.  Consequently, the failure time of a 

workstation, failure_time_i, is generated from the conditional Weibull distribution given 

that the workstation has lasted up to time To, where To represents phase I (nondefective 

phase) of the workstation’s degradation signal.  
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Similar to the PM maintenance policy, after replacement is complete the phantom 

returns back to the VBA block and generates the next failure time and schedules the next 

planned maintenance routine. 
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Figure 3.3. Characteristics of the workstation’s degradation signal. 

 

3.3.2.1.3 DM-II Policy 

The main difference between the DM-II maintenance policy and previous two 

policies is that the residual life distribution of each workstation is updated in real-time as 

its degradation signal is being observed.  The underlying assumption for this maintenance 

policy is that a condition monitoring system is used to acquire data every 2 minutes.  

Similar to the DM-I, the residual life distribution is computed at the beginning of Phase 

II.  However, unlike DM-I, the residual life distribution of each workstation is updated 

once a signal is observed.  Figure 3.4 presents an example of the updated residual life 

distributions at different degradation percentiles.   
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Figure 3.4. Updated residual life distributions via singular sensory updating. 

 

The first updating procedure will begin after the first signal acquisition i.e., 2 

minutes into Phase II of the degradation signal (Figure 3.3).  When the phantom entity is 

created by the failure time subroutine, it is delayed for two minutes before entering the 

VBA block.  Each time a workstation’s degradation signal is observed (every two 

minutes); the VBA block is used to update the residual life distribution of that 

workstation using equation (3.16).  A sample of degradation signals from the degradation 

database (bearings 1 to 25) was used to estimate the parameters of the prior distribution 

),( βθπ ′′ .   The estimated values of these parameters are ,031.60 −=μ  ,008061.01 =μ   

,3464.02
0 =σ  ,100347.1 52

1
−×=σ  and .0.0073482 =σ  

In order to schedule a planned maintenance routine, it is necessary to stop the 

updating process and use the most recent residual life distribution to estimate the 

workstations remaining life.  First, we define tk as the time elapsed after the onset of the 

defective, i.e., time elapsed from the beginning of phase II.  Given that we have observed 
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a partial degradation signal up to time tk, the updating process stops if RtR k ≤)( , where 

)(1)( kk tFtR −=  is the reliability of the system at the current updating epoch, tk, )( ktF  is 

the cdf of the remaining life at tk, and R is the designated reliability level of the 

manufacturing system.  Once a decision has been made to stop updating, the time for a 

planned maintenance routine is computed as follows: 

 workstation_i_interval = To + tk + tmedian (3.17) 
 

where, oT  is the duration of the nondefective phase (Phase I), kt  is the time elapsed in 

phase II of the degradation signal, and mediant  is the median of the residual life 

distribution.  Note that we use the median because the mean of the residual life 

distribution does not exist.   

Under the DM-II maintenance policy, there are two scenarios for simulating 

unexpected workstation failures.  First, a workstation will experience an unexpected 

failure if its degradation signal reaches the failure threshold before the stopping rule is 

activated.  On the other hand, if the stopping rule is activated before a workstation’s 

degradation signal reaches the failure threshold, then the most recent updated residual life 

distribution is used to compute the time for the workstation’s maintenance routine, 

workstation_i_interval.  In this case, unexpected failure of the workstation occurs if 

workstation_i_interval > failure_time_i.  We note that the workstation’s failure time, 

failure_time_i, is generated from the conditional failure time distribution (Weibull) given 

that the workstation has survived up to time To + tk. 
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3.3.2.2 Resource Shutdown Subroutine 

The resource shutdown subroutine (Figure A.2) is used to simulate the 

maintenance activities.  This subroutine begins with a CREATE module that generates 

one entity at the beginning of each simulation run.  The entity enters a HOLD module, 

where it waits until a workstation is shutdown.  As mentioned earlier there are two main 

ways a workstation is shutdown.  

1. If workstation_i_interval is less than failure_time_i, then the shutdown is a result 

of a planned maintenance routine.  To simulate the planned replacement, we use a 

PREEMPT block that stops the workstation and preempts the part being 

processed.  This is followed by an ALTER block that reduces the capacity of 

workstation i to 0.  This implies that the workstation will not be available for 

processing.  A DELAY module is used to simulate a planned maintenance 

downtime.  Once maintenance is complete, the workstation is assumed to be “as 

good as new”.  An ALTER block is used to increase the capacity of the 

workstation back to 1, thus making it available to process parts.  A variable Nm is 

used to track the total number of planned replacements.  

2. If workstation_i_interval is greater than failure_time_i, then the workstation 

experiences an unexpected failure.  A procedure similar to that discussed in the 

previous case (1) simulates a failure replacement.  A variable Nf is used to track 

the total number of failure replacements. 
 

Unexpected failures may also occur if a workstation’s degradation signal reaches it 

failure threshold before a planned maintenance is scheduled.  This is especially true for 

the DM-II predictive maintenance policy. 



 

 

47

3.4 Implementation and Results 

Arena simulation was used to simulate the continuous operation of the 

manufacturing system.  Each simulation consists of three runs.  Each run is 365-days and 

each day is assumed to consist of two 8-hour shifts.  Separate runs were performed for 

each maintenance policy. 

Figure 3.5 and Figure 3.6 show a frequency plot of the frequency of failure 

replacements for the different maintenance policies at 70% and 90% reliability levels.  

We observe that the maintenance policy which utilizes sensor-based updating of residual 

life distributions provides the lowest number of workstation failures at the two levels of 

reliability.  Figure 3.7 and Figure 3.8 plot the frequency of planned maintenance routines, 

i.e., preventive workstation replacements at two reliability levels, 70% and 90%.  
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Figure 3.5. Frequency of failure replacements for R = 70%. 
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Figure 3.6. Frequency of failure replacements for R = 90%.  

0

5000

10000

15000

Preventive
Maintenance

Degradation
Model I

Degradation
Model II

Frequency of Planned Replacements (R  = 70%)

\

 

Figure 3.7. Frequency of planned replacements for R = 70%. 
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Figure 3.8. Frequency of planned replacements for R = 90%. 
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Table 3.1 and Table 3.2 show the means and standard deviations of the number of 

failure replacements and planned replacements, respectively, at 70% and 90% reliability 

levels.  We observe that Degradation Model II provides much lower standard deviations, 

and thus much less variability in the number of maintenance routines performed. 

Table 3.1. Means and standard deviations of number of failure replacements for R = 70% 
and R = 90%. 

Policy Mean Std. Dev. Mean Std. Dev.
Preventive Maintenance 3,601.66 24.13 1,788.65 33.04

Degradation Model I 4,039.00 36.32 3,089.67 40.78
Degradation Model II 84.00 3.36 129.00 13.12

N f   (R  = 70%) N f   (R  = 90%)

 

Table 3.2. Means and standard deviations of number of planned replacements for R = 
70% and R = 90%. 

Policy Mean Std. Dev. Mean Std. Dev.
Preventive Maintenance 8,277.65 29.17 16,115.65 45.83

Degradation Model I 6,739.67 44.41 9,239.99 52.08
Degradation Model II 13,142.67 4.69 13,305.01 18.35

N m   (R  = 70%) N m   (R  = 90%)

 

The performance of each maintenance policy was analyzed by estimating the total 

maintenance costs of each policy.  The total maintenance costs TC is defined as follows:  

 mmff CNCNTC +=  (3.18)  
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where, fN  is the number of failure replacements, fC  is the cost of performing a failure 

replacement (assumed to be $1500), mN  is the number of workstation planned 

replacements, and mC  is the cost of performing a planned replacement (assumed to be 

$100). Cf  / Cm 

The performance of each maintenance policy is influenced by the designated 

reliability level of the manufacturing system.  The performance of each maintenance 

policy was evaluated for four different reliability levels, R: 95%, 90%, 80%, and 70%.  

Figure 3.9 illustrates the total costs associated with each maintenance policy at different 

reliability levels.  It is clear that Degradation Model II provides a much lower total cost at 

each given reliability level when compared to the other two maintenance policies.  It is 

interesting to note that the total maintenance cost for the PM and the DM-I maintenance 

policies decreases as the reliability increases.  This is an expected result since increasing 

the reliability level results in fewer failures.  The case is different for the DM-II 

maintenance policy.  The sensor-based updating procedure coupled with the fluctuations 

of the degradation signals causes the residual life distributions to change dynamically at 

different reliability levels.  Consequently, the relationship between the reliability levels 

and the maintenance cost is not very clear.  However, the fact remains that the DM-II 

policy provides the lowest costs. 
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Figure 3.9. Total costs of each of the maintenance policies. 

 

Table 3.3 shows the means and standard deviations of the total maintenance cost 

of each policy at each reliability level.  We observe that the variability of total 

maintenance cost is much lower for the maintenance policy that utilizes sensor-based 

updating of residual life distributions. 

Table 3.3. Means and standard deviations of the total maintenance cost of each policy at 
each reliability level. 

R  (%) Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
70 $1,360,767 $4,661 $6,230,255 $33,586 $6,732,467 $47,895
80 $1,447,866 $7,277 $5,222,519 $82,289 $6,149,208 $46,183
90 $1,711,001 $17,873 $4,294,540 $45,002 $5,558,504 $55,991
95 $1,935,417 $19,571 $3,575,274 $35,980 $5,025,951 $50,621

SUDM DMPM
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3.5 Conclusion 

The objective of this study was to compare a traditional preventive maintenance 

policy with two predictive maintenance policies.  The first policy scheduled maintenance 

routines using a reliability-based preventive maintenance policy based on a Weibull 

failure time distribution.  The other two policies considered were predictive maintenance 

policies that utilized degradation information to calculate residual life distributions, one 

of which utilized real-time sensory information to continuously update the residual life 

distributions. 

We developed a simulation model of a manufacturing system to evaluate the 

performance of each maintenance policy.  The simulation analysis showed that the 

sensor-updated predictive maintenance policy resulted in a much lower maintenance cost 

compared to the conventional maintenance policy and the preventive maintenance policy.  

The analysis also showed that the variability of performance was much lower for the 

sensor-updated predictive maintenance policy.  These results showed significant evidence 

that updating the residual life distribution of degrading components resulted in a much 

more accurate predicted failure time than not updating the residual life distribution of 

degrading components.  The simulation analysis also showed that that the sensor-updated 

predictive maintenance policy resulted in very low performance variability, which is 

critical in manufacturing systems that embrace Lean and Just-In-Time philosophies.   

The results also showed that scheduling maintenance routines using a predictive 

maintenance model like Degradation Model II can be more efficient than scheduling 

routines using reliability-based preventive maintenance models.  Since an increasing 

number of manufacturing sectors are embracing Lean and Just-In-Time paradigms, 
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sensor-based prognostic maintenance policies like Degradation Model II are ideal for 

preventing the occurrence of system failures, and reducing maintenance costs of 

deteriorating systems. 
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CHAPTER 4: STUDY 2. ANALYSIS OF MAINTENANCE POLICIES 

IN SEQUENTIAL WORKSTATION MANUFACTURING SYSTEMS 

This chapter investigates the impact of different maintenance policies on the 

performance of a model manufacturing system that consists of a series of work cells, 

some of which contain redundant workstations.  We use ARENA simulation software to 

model the manufacturing system.  Whereas in Chapter 3 we based our maintenance 

policy decisions on the reliability of individual workstations, in this chapter we base our 

maintenance decisions on the reliability of the entire manufacturing system.  In other 

words, we consider the combined series-parallel network of workstations in evaluating 

the reliability of the manufacturing system.  We evaluate the efficiency of each policy by 

evaluating the workstation utilization and system throughput, as well as the number of 

system failures, system planned replacements, and total maintenance costs corresponding 

to each policy.  This is achieved by collecting simulation statistics pertaining to these 

variables.  

4.1 Manufacturing System  

The manufacturing system in this study is shown in Figure 4.1.  It consists of a 

series of three work cells.  Work Cells 1 and 3 each consist of two redundant 

workstations, and Work Cell 2 consists of a single workstation.  When a pre-processed 

part arrives to the first work cell, the part is processed on either workstation 1 or 2, 

depending on which one is free.  Next, the part arrives to the next work cell, where it is 

processed by workstation 3.  When the part arrives to the last work cell, it is processed on 

either workstation 4 or 5, depending on which one is free. 
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Figure 4.1. Schematic of the manufacturing system. 

 

Parts are assumed to arrive randomly to the system and are processed at 

predetermined processing times and then delivered to the shipping dock where they exit 

the system.  We propose a maintenance policy that is based on the sensory-updated 

degradation models developed by Gebraeel et al. [28, 29], and compare this policy with a 

reliability-based preventive maintenance policy. 

In the previous study (Chapter 3), the manufacturing system was assumed to 

consist of a single work cell containing five redundant workstations.  Maintenance 

decisions for an individual workstation could be made independently of the rest of the 

workstations.  In this study, maintenance decisions are performed based on the reliability 

of the entire manufacturing system.  In other words, given a desired system reliability 

level, a single planned maintenance routine is scheduled for the entire manufacturing 

system, during which the entire system is shutdown for maintenance.  Similarly, failure 

of one of the work cells results in an unexpected failure of the entire system, at which 

time the entire system would be shutdown for maintenance.  Note that the failure of one 

of the redundant workstations in Work Cells 1 and 3 would not result in a work cell 
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failure, whereas failure of the single workstation in Work Cell 2 would.  A failed 

workstation is not replaced until the entire system fails unexpectedly or a system planned 

replacement is scheduled.   

In analyzing a system of components, we determine an appropriate reliability or 

reliability model for each component of the system, and by applying the rules of 

probability according to the configuration of the components within the system, compute 

a system reliability [24]. 

4.2 System Reliability 

A system is defined as a given configuration of subsystems and/or components 

whose proper functioning over a stated interval of time determines whether the system 

will perform as designed.  Components within a system may be related to one another in 

two primary ways: in either a serial or a parallel configuration.  In series all components 

must function for the system to function.  In a parallel, or redundant, configuration at 

least one component must function for the system to function [24].  In 1964, Shelley and 

Hamilton [65] presented block diagrams that depicted series and parallel relationships of 

the subsystems of a multiple-engine cargo-type aircraft in order to evaluate system 

reliability.   

4.2.1. Reliability of Series Systems  

Figure 4.2 presents a block diagram of a system consisting of several components 

arranged in series. 
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Figure 4.2. Reliability block diagram for components in series. 

 

Using the laws of probability, system reliability RS at time t may be determined 

using the reliability of its individual components.  Let E1 be the event that component 1 

does not fail, and E2 be the event that component 2 does not fail.  Then,  

 Pr(E1) = ( )tFE1
1−  = R1     and     Pr(E2) = ( )tFE2

1−  = R2 

 

where,   ( )tFE1
 = the probability that component 1 fails at time t, ( )tFE2

 = the probability 

that component 2 fails at time t, R1 = the reliability of component 1, and R2 = the 

reliability of component 2.  Therefore, RS = Pr(E1 ∩ E2) = Pr(E1) Pr(E2) = R1 (R2), 

assuming that the two components are independent (i.e., the failure or nonfailure of one 

component does not change the reliability of the other component).  For the system to 

function, both component 1 and component 2 must function [24]. 

Generalizing to n mutually independent components in series, the system 

reliability at time t can be expressed as follows; 

 )()()()( 21 tRtRtRtR nS ×××= L  (4.1) 
 

4.2.2 Reliability of Parallel Systems 

Two or more components are in parallel, or redundant, configuration if all units 

must fail for the system to fail.  If one or more units operate, the system continues to 

operate.  Parallel units are represented by the block diagram of Figure 4.3. 
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Figure 4.3. Reliability block diagram for components in parallel. 

 

System reliability for n parallel and independent components is found by taking 1 

minus the probability that all n components fail (i.e., the probability that at least one 

component does not fail).  To see this for two components, consider the following; 

 RS = Pr(E1 ∪  E2) = 1 – Pr(E1 ∪  E2)C = 1 – Pr(E1
C ∩  E2

C)  

  = 1 – Pr(E1
C) P(E2

C) = 1 – (1 – R1) (1 – R2) 
 

Generalizing to n mutually independent components in parallel, the system reliability at 

time t can be expressed as follows [24]; 

 [ ]∏
=

−−=
n

i
iS tRtR

1

)(11)(  (4.2) 

 

4.2.3 Reliability of Combined Series-Parallel Systems 

Systems typically contain components in both serial and parallel relationships.  

Consider, for example, Figure 4.4 [24].  Ri represents the reliability of the ith component.  

To compute the system reliability, the network may be broken into serial or parallel 
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subsystems.  The reliability of each subsystem is found.  Then the system reliability may 

be obtained on the basis of the relationship among the subsystems.  In the network of 

Figure 4.4, the subsystems have the following reliabilities [24]: 

 RA = [1 – (1 – R1) (1 – R2)] 

 RB = RA (R3)     RC = R4 (R5) 
 

Since RB and RC are in parallel with one another and in series with R6, 

 RS = [1 – (1 – RB) (1 – RC)] (R6) 

C 

B 

A 

 

Figure 4.4. A system comprised of components in a combined series and parallel 
relationship. 

The manufacturing system considered in this study is shown in Figure 4.5.  It 

consists of two workstations in parallel, followed by a workstation in series, followed by 

two additional workstations in parallel.  Based on this configuration, one of the following 

conditions must be met for a system failure to occur: 

1. Workstation 1 and Workstation 2 fail; 

2. Workstation 3 fails; 
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3. Workstation 4 and Workstation 5 fail. 
 

To compute the reliability of the system, we determine the reliability of each 

individual workstation of the system at time t, and by applying the rules of probability 

according to the configuration of the components within the system, we compute a 

system reliability, RS(t);   

 ]))(1())(1(1[)(]))(1())(1(1[)( 54321 tRtRtRtRtRtRS −−−−−−=  (4.3) 
 

where, Ri(t) is the reliability of the ith workstation. 

Workstation 1

Workstation 2

Workstation 3Pre-processed 
Parts Arrive

Shipping 
Department

Workstation 4

Workstation 5

 

WORK CELL 1

 

WORK CELL 3

 

WORK CELL 2

 

Figure 4.5. Schematic of the manufacturing system. 

 

4.3 Maintenance Policies 

In this chapter we develop a simulation model that examines the effect of 

different maintenance policies on the performance of the manufacturing system shown in 

Figure 4.5.  The first policy considered applies the reliability-based preventive 
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maintenance policy developed in Section 3.2,  This policy uses a Weibull failure time 

distribution to calculate PM intervals.  The second policy considered is a degradation-

based predictive maintenance policy.  This policy applies the sensory-updated 

exponential degradation model developed in Section 3.2.2. to calculate PM intervals.  

These maintenance policies are discussed in the following two sections. 

4.3.1 Preventive Maintenance Policy 

The first maintenance policy considered in this simulation-based study applies the 

conventional preventive maintenance policy that we discussed in Section 3.2.  Based on 

expression (3.1), the reliability, R(t) of each workstation at time t is expressed as follows; 

 
βθ )/()(1)( tetFtR −=−=  (4.4) 

 

where, F(t) is the CDF of a Weibull distribution, θ  is the scale parameter and β  is the 

shape parameter of the Weibull distribution.  These parameters will be evaluated later as 

described in Section 4.4.2.1. 

  In this study we are interested in evaluating the PM interval for the entire 

system.  To do this, we determine the reliability of each individual workstation of the 

system at time t, using expression (4.4).  Then, to evaluate the system PM Interval, we 

solve for t in expression (4.3) given a specific system reliability level RS(t). 

The preventive maintenance policy is a time-based policy.  It does not consider 

the condition or degradation state of the equipment being maintained, making it nearly 

impossible to avoid catastrophic random breakdowns.  This can lead to unnecessary 

downtime and loss in production capacity.  Unlike time-based policies such as this, 

predictive maintenance policies focus on predicting unexpected failures. 
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4.3.2 Degradation Based Predictive Maintenance Policy 

The second policy applies the degradation-based predictive maintenance policy 

discussed in Section 3.3.2.  The policy is based on the sensory-updated degradation 

model developed by Gebraeel [29].  Based on the model, the reliability of a workstation 

at time t is given by;  

 ( ) ( )tFtR T−= 1  (4.5) 
 

where FT(t) is the residual life distribution of the workstation, given by expression (3.16).  

After computing the reliability of each workstation using expression (4.5), the system 

reliability, RS(t), can be computed using expression (4.3).  Accordingly, given a specific 

desired system reliability, RS(t), expression (4.3) can be used to evaluate a system PM 

interval by solving for t. 

We now develop a simulation model of a manufacturing system in order to test 

the two maintenance policies presented earlier. 

4.4 Simulation Model 

This simulation model considers two maintenance policies and studies the effect 

of these policies on the performance of a specific manufacturing system.  The first 

maintenance policy is a conventional reliability-based preventive maintenance policy 

(Section 4.2.1).  We refer to this policy as “PM policy”.  The second maintenance policy 

is based on the Sensory-Updated Exponential Degradation Model (Section 4.2.2).  We 

refer to this degradation-based predictive maintenance policy as “DM policy”.   

To analyze these maintenance policies, we develop a simulation model of a 

manufacturing system using Arena.  The simulated manufacturing system is a series-
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parallel system consisting of five workstations.  Figure 4.5 presents a schematic 

representation of this manufacturing system.  Pre-processed parts arrive to a staging 

station.  The inter-arrival time is assumed to be exponential with a mean of 0.25 minutes.  

Upon arrival, each part is processed on one of the first two workstations (depending on 

which one is free).  Next, the part is processed on the third workstation, and then on one 

of the last two workstations (depending on which one is free).  The processing times of 

workstation 1 and 2 are assumed to follow a Triangular distribution (4.25, 4.75, and 5.25 

minutes); the processing time of workstation 3 is assumed to follow a Triangular 

distribution (2.5, 2.75, and 3.0 minutes); the processing times of workstation 4 and 5 are 

assumed to follow a Triangular distribution (4.75, 5.25, and 5.75 minutes).  Upon 

completion, the finished part is transferred to a shipping area. 

The manufacturing system can become unavailable if a random system failure 

occurs or a scheduled system maintenance routine is performed.  Downtime resulting 

from system failure is assumed to be random and follows a Normal distribution with 

mean 300 minutes and variance 30 minutes.  Downtime resulting from a scheduled 

maintenance routine is assumed to be random and follow a Normal distribution with 

mean 30 minutes and variance 5 minutes.  The downtime resulting from an unplanned 

system failure is assumed to be greater, since the demand for replacement parts and 

maintenance personnel is unexpected.  Furthermore, we assume that each workstation 

degrades gradually until it fails.  Workstation degradation is assumed to be modeled in 

the same way as the simulation study in the previous chapter by utilizing a real-world 

vibration-based database.  In other words, the vibration-based degradation signals and 

their corresponding failure times are used to characterize the degradation process. 
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In the following section, we discuss the simulation model used to evaluate the 

performance of the two maintenance policies.  The simulation model consists of three 

submodels.  The first submodel represents the simulated manufacturing system, the 

second submodel characterizes the control logic of each maintenance policy, and the third 

submodel controls the system maintenance activities. 

4.4.1 Manufacturing System Submodel 

Figure 4.6 represents a flowchart of the manufacturing system submodel. 

 

Figure 4.6. Manufacturing system submodel. 

 

The CREATE module is used to create entities that represent parts ready to be 

processed.  After their creation, each part is held in a queue at a HOLD module until one 

of the first two workstations is available to process the part.  If both workstations are 
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seized, i.e., already processing parts, the part waits in queue until a workstation becomes 

available.  The HOLD module checks the availability of the workstations using the 

following expression in ARENA: 

 NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) <> 
INACTIVE_RES, for i = 1, 2 

 

1. NR(Workstation i Resource) is a variable that takes on the value 0 if the ith 

workstation is free and 1 if the workstation is already processing a part;  

2. STATE(Workstation i Resource) returns the current state of the ith Workstation 

Resource;   

3. INACTIVE_RES checks if the resource is currently in the inactive state, which 

means that the resource is either failed or being maintained. 

 
Once workstation 1 or 2 is available, the first part in the queue enters a 

DECISION module that checks which of the first two workstations is available to process 

the part.  This is accomplished using the following statement: 

NR(Workstation i Resource) == 0 && STATE(Workstation i Resource) = 
INACTIVE_RES, for i = 1, 2 
 

Each workstation is represented by a PROCESS module.  Once a part arrives at a 

PROCESS module, it is processed according to a prespecified processing time.  As 

mentioned earlier, the processing time of the first two workstations follows a Triangular 

distribution with the following parameters: 4.25, 4.75, and 5.25 minutes.  Once 

processing is complete, the part is held in a queue at a HOLD module until workstation 3 

is available to process the part; the processing time of the third workstation follows a 
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Triangular distribution with the following parameters: 2.5, 2.75, and 3.0 minutes.  Once 

processing is complete on workstation 3, the part is held in a queue at a HOLD module 

until workstation 4 or 5 is available.  Once one of the workstations is available, the part in 

the queue enters a DECISION module that checks which of the last two workstations is 

available to process the part.  The processing time of the last two workstations follows a 

Triangular distribution with the following parameters: 4.75, 5.25, and 5.75 minutes.  

Once processing is complete, the finished part enters a RECORD module that tracks the 

throughput of the system: throughput = throughput + 1.  Hereafter, the part exits the 

system through a DISPOSE module. 

4.4.2 Maintenance Policy Submodel 

This submodel controls the availability of each workstation.  It simulates 

workstation failures and controls maintenance activities.  This is achieved using two 

subroutines.  The first is responsible for generating workstation failure times and 

computing a system PM interval, while the second is responsible for shutting down a 

workstation.  The two subroutines work in tandem to simulate maintenance routines and 

failures for each workstation. 

4.4.2.1 Failure Time Subroutine 

The failure time subroutine (Figure A.3) is responsible for simulating workstation 

failures and computing the system PM interval.  It begins with a CREATE module that 

generates a single “phantom” entity.  This entity is used to control the generation of 

workstation failure times and schedule a system preventive maintenance (PM) routine.  

The details of its functionality differ according to the maintenance policy that is being 

used. 
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4.4.2.1.1 PM Policy 

For the PM policy, the phantom entity instantly enters a VBA code block at time t 

= 0.  This VBA block is used to generate a workstation failure time , failure_time_i, and 

calculate a system PM interval, denoted pm_interval.   

Workstations are subject to random failures.  The failure time distribution is 

assumed to follow a Weibull distribution.  The shape and scale parameters of the Weibull 

distribution, 0549.3=β  and 75.784=θ , respectively.  These parameters are evaluated 

using a sample of failure times obtained from the degradation database used in Gebraeel 

[29].  Specifically, the parameters are estimated using a sample of failure times 

corresponding to 25 rolling element bearings (bearings 1 to 25) that have been run to 

failure.   

The system preventive maintenance interval is different for different reliability 

levels.  Given the desired system reliability level, RS(t), the system PM interval is 

calculated by solving for t in expression (4.1), where Ri(t) is the reliability of the ith 

workstation, for i = 1, 2, …, 5.  The reliability of each workstation is computed using 

expression (4.2).  For a given workstation i, if pm_interval > failure_time_i, then the 

workstation experiences a sudden failure.   

4.4.2.1.2 DM Policy 

A similar procedure is performed for the DM policy.  However, in this policy the 

reliability of each workstation is determined by looking at its corresponding degradation 

signal.  Just as in Chapter 3, the degradation signals considered in this study are 

composed of a nondefective and defective phase (Figure 3.3).  The phase II information 
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is used to compute the residual life, and thus, the reliability distribution of the 

workstation.   

The reliability distribution of each workstation is updated in real-time as its 

degradation signal is being observed.  The underlying assumption for this maintenance 

policy is that a condition monitoring system is used to acquire data every 2 minutes.  

Beginning in Phase II, the reliability distribution is computed and is continuously updated 

as signals are observed 

When the phantom entity is created by the failure time subroutine, it is delayed 

for two minutes before entering the VBA block.  Every two minutes the VBA block is 

used to compute the reliability of each workstation in one of the following ways; 

1. If the degradation signal corresponding to the ith workstation is in its nondefective 

phase (Phase I), the reliability of the workstation is assumed to be 1; 

2. If the degradation signal corresponding to the ith workstation is in its defective 

phase (Phase II), then the reliability of the workstation is given by expression 

(4.3); 

3. If the degradation signal cooresponding to the ith workstation has reached its 

failure threshold, then the reliability of the workstation is assumed to be 0. 
 

After the reliability of each workstation is computed, the system reliability can be 

computed.  Given the reliability or each workstation, the system reliability distribution, 

)(tRS , can be computed using expression (4.1), where Ri(t) is the reliability of the ith 

workstation, for i = 1, 2, …, 5.  The estimated values of the prior parameters were 

obtained from a sample of degradation signals from the degradation database (bearings 1 
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to 25).  The computed values of the parameters are ,031.60 −=μ  ,008061.01 =μ   

,3464.02
0 =σ  ,100347.1 52

1
−×=σ  and .0.0073482 =σ  

In order to schedule a system planned maintenance routine, it is necessary to stop 

the updating process and use the most recent system reliability distribution to estimate the 

system’s remaining life.  Given that we have updated the system reliability distribution 

up to time tk, the updating process stops if RtR kS ≤)( , where )( kS tR  is the reliability of 

the system at the current updating epoch, tk, and R is the designated reliability level of the 

manufacturing system.  Once a decision has been made to stop updating, the time for a 

planned maintenance routine is computed as follows: 

 pm_interval = tk + tmedian (4.6) 
 

where, mediant  is the median of the reliability distribution.  Note that we use the median 

because the mean of the reliability distribution does not exist.   

Under the DM maintenance policy, there are two scenarios for simulating 

unexpected workstation failures.  First, a workstation will experience an unexpected 

failure if its degradation signal reaches the failure threshold before the stopping rule is 

activated.  On the other hand, if the stopping rule is activated before a workstation’s 

degradation signal reaches the failure threshold, then the most recent updated system 

reliabillity distribution is used to compute the time for the workstation’s maintenance 

routine, pm_interval.  In this case, unexpected failure of the workstation occurs if 

pm_interval > failure_time_i.  We note that the workstation’s failure time, failure_time_i, 

is generated from the conditional Weibull distribution given that the workstation has 

survived up to time tk. 
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4.4.2.2 Resource Shutdown Subroutine 

The resource shutdown subroutine (Figure A.4) is used to control the availability 

of each workstation.  This subroutine begins with a DETECT block that generates a 

“phantom” entity when a workstation shutdown occurs.  As mentioned earlier there are 

two main ways a workstation is shutdown. 

1. If pm_interval is greater than failure_time_i, then the workstation experiences an 

unexpected failure.  To simulate the workstation failure, we use a PREEMPT 

block that stops the workstation and preempts the part being processed.  This is 

followed by an ALTER block that reduces the capacity of workstation i to 0.  This 

implies that the workstation will not be available for processing.  The entity waits 

in a HOLD module until system maintenance is initiated and completed; that is, 

until it receives a signal from the System Maintenance Submodel to release the 

entity (see section 4.4.3).  Once maintenance is complete, the workstation is 

assumed to be “as good as new”.  An ALTER block is used to increase the 

capacity of the workstation back to 1, thus making it available to process parts.   

2. If pm_interval is less than failure_time_i, then the shutdown is a result of a 

planned maintenance routine.  To simulate the workstation planned replacement, 

we use a PREEMPT block that stops the workstation and preempts the part being 

processed.  This is followed by an ALTER block that reduces the capacity of 

workstation i to 0.  This implies that the workstation will not be available for 

processing.  The entity waits in a HOLD module until system maintenance is 

initiated and completed; that is, until it receives a signal from the System 

Maintenance Submodel to release the entity (see section 4.4.3).  Once 

maintenance is complete, the workstation is assumed to be “as good as new”.  An 

ALTER block is used to increase the capacity of the workstation back to 1, thus 

making it available to process parts.   
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Unexpected failures may also occur if a workstation’s degradation signal reaches 

its failure threshold before a planned maintenance is scheduled.  This is especially true 

for the predictive maintenance policy. 

4.4.3 System Maintenance Submodel 

The system maintenance submodel (Figure A.5) is used to simulate the system 

maintenance activities.  This subroutine begins with a CREATE module that generates 

one entity at the beginning of each simulation run.  The entity enters a HOLD module, 

where it waits for a system shutdown.  There are two ways the system shutdown can 

occur, (1) the system fails, or (2) a planned system replacement occurs.   

1. As mentioned earlier, based on the configuration of the manufacturing system 

used in this study (Figure 4.5), the system will fail if, 

a. Workstation 1 and 2 fail; 

b. Workstation 3 fails; 

c. Workstation 4 and 5 fail.   

 
If a system failure occurs, all of the workstations that have not already failed will 

immediately shutdown and experience unexpected failure (see (1) of Section 

4.4.2.2).  A DELAY module is used to simulate a failure replacement downtime.  

After the delay, a SIGNAL module is used to signal the Resource Shutdown 

Subroutine to release its entities from its HOLD modules (refer to (1) of Section 

4.4.2.2), and make the workstations available again.  A system failure downtime 

is assumed to be random and follows a Normal distribution with mean 300 
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minutes and variance 30 minutes.  A variable Nf is used to track the total number 

of system failure replacements. 

2. A planned system replacement occurs if the system PM interval occurs before a 

system failure.  A DELAY module is used to simulate a planned system 

replacement downtime.  After the delay, a SIGNAL module is used to signal the 

Resource Shutdown Subroutine to release its entities from its HOLD modules 

(refer to (2) of section 4.4.2.2), and make the workstations available again.  A 

planned system replacement downtime is assumed to be random and follow a 

Normal distribution with mean 30 minutes and variance 5 minutes.  A variable Nm 

is used to track the total number of system planned replacements. 

 

4.5 Implementation and Results 

Arena simulation was used to simulate the continuous operation of the 

manufacturing system.  Each simulation consists of five runs and each run is 365-days.  

Separate runs were performed for each maintenance policy.   

Figure 4.7 shows a frequency plot of the system failures for each maintenance 

policy evaluated at several system reliability levels, 60%, 70%, 80%, 90%, and 95%.  We 

observe that degradation-based predictive maintenance (DM) policy provides the lowest 

number of workstation failures at each reliability level.  We also observe that the number 

of failures at the 95% reliability level is relatively higher than the rest of the reliability 

levels.  In fact, the number of failures decreases as the reliability level decreases.  This 

can be attributed to the incorporation of additional degradation signals that improve the 

accuracy of the residual life distribution.  
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As mentioned earlier (in Chapter 3), when using real-time degradation signals to 

update a component’s residual life distribution, we stop the updating process once the cdf 

of the residual life distribution at the instance of the updating epoch is equal to 1-R(t), 

where R(t) is the desired reliability level of the manufacturing system.  The incorporation 

of additional degradation signals from a functioning device improves the accuracy of the 

predicted residual life distributions.  Indeed, the residual life distributions evaluated at the 

95% reliability level utilize fewer real-time degradation signals compared to the 

distributions evaluated at the 60% reliability level; hence the decreased number of 

failures corresponding to lower reliability levels in Figure 4.7. 

Figure 4.8 plots the number of planned maintenance routines, i.e., preventive 

replacements in the manufacturing system evaluated at each of the reliability levels.  As 

expected, the number of replacement corresponding to the PM policy decreases as the 

reliability level decreases.  In contrast, the DM maintenance policy seems to be 

unaffected by the system reliability level.  Figure 4.8 shows a relatively steady number of 

replacements across the different system reliability levels. 
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Figure 4.7. Frequency of failure replacements at different reliability levels. 
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Figure 4.8. Frequency of planned replacements at different reliability levels. 

 

Table 4.1 and Table 4.2 show the means and standard deviations of the number of 

failure replacements and planned replacements, respectively, at each reliability level.  We 

observe that the DM Policy provides lower standard deviations at a majority of the 

reliability levels, and thus less variability in the number of maintenance routines 

performed. 

Table 4.1. Means and standard deviations of the number of failure replacements at each 
reliability level. 

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 26.40 7.05 73.20 7.72
90 15.40 2.14 128.20 11.61
80 10.20 3.07 202.40 20.88
70 5.80 2.10 272.00 9.07
60 2.20 1.19 329.40 17.76

DM Policy                  
N f PM Policy                            N f
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Table 4.2. Means and standard deviations of the number of planned replacements at each 
reliability level. 

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 1,006.00 20.23 1,508.00 11.96
90 974.20 10.23 1,147.80 15.04
80 969.80 17.48 825.80 31.37
70 974.60 11.09 626.60 8.76
60 983.40 11.61 485.00 20.89

DM Policy                  
N m

PM Policy                  
N m

 

The performance of the maintenance policies was further analyzed by computing 

the total maintenance costs of each policy.  The total maintenance costs, TC, is defined as 

follows:  Preventive Maintenance: Nf 

 mmff CNCNTC +=  (4.7)  
 

where, fN  is the number of system failure replacements, fC  is the cost of performing a 

system failure maintenance routine (assumed to be $1500), mN  is the number of system 

planned replacements, and mC  is the cost of performing a system planned maintenance 

routine (assumed to be $100). 

The total cost of each maintenance policy is influenced by the designated 

reliability level of the manufacturing system.  The total cost of each maintenance policy 

was evaluated at five reliability levels, R: 95%, 90%, 80%, 70% and 60%.  Figure 4.9 

illustrates the total maintenance costs for the two maintenance polices at each reliability 

level.  It is clear that the DM policy provides a much lower total cost at each given 

reliability level when compared to the PM policy.  It is interesting to note that the total 
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maintenance cost for the PM maintenance policy decreases as the reliability increases.  

This is an expected result since increasing the reliability level results in fewer failures.  

The case is different for the DM maintenance policy.  The sensor-based updating 

procedure results in more accurate residual life distributions at lower reliability levels due 

to the incorporation of additional real-time degradation signals from the components 

(workstations) being monitored.  As a result, the maintenance costs of the DM policy 

decrease slightly as the reliability levels decreases.  The fact remains that the DM policy 

provides the lowest maintenance costs.  Table 4.3 shows the means and standard 

deviations of the total maintenance cost of each policy at each reliability level.  We 

observe that the variability of total maintenance cost at a majority of the reliability levels 

is much lower for the maintenance policy that utilizes sensor-based updating of residual 

life distributions. 
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Figure 4.9. Total costs of each of the maintenance policies at different reliability levels. 
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Table 4.3. Means and standard deviations of the total maintenance cost of each policy at 
each reliability level. 

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 $70,780 $5,832 $131,840 $5,238
90 $60,910 $1,505 $155,400 $8,243
80 $56,820 $2,456 $158,290 $14,937
70 $53,710 $1,628 $238,330 $7,028
60 $51,490 $1,357 $274,380 $13,301

DM Policy                  
TC

PM Policy                  
TC

 

Workstation utilization and throughput were also used to measure the 

performance of each maintenance policy.  Figure 4.10 shows the average workstation 

utilization for each maintenance policy at reliability levels of 95%, 90%, 80%, 70%, and 

60%.  We observe that the degradation model policy provides the highest workstation 

utilization.  Figure 4.11 shows the average throughput for each maintenance policy.  

Again, it can be seen that the DM maintenance policy provides a higher throughput, and 

thus lower cycle time than the traditional PM policy.   

Table 4.4 shows the means and standard deviations of the system throughput of 

each policy at each reliability level.  We observe that the variability of throughput at three 

out of the five reliability levels is lower for the maintenance policy that utilizes sensor-

based updating of residual life distributions. 
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Figure 4.10. Average workstation utilization of the system at different reliability levels. 
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Figure 4.11. Throughput of the system at different reliability levels. 
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Table 4.4.  Means and standard deviations of system throughput of each policy at each 
reliability level. 

Reliability (%) Mean Std. Dev. Mean Std. Dev.
95 168,924.80 1,229.89 164,156.00 714.21
90 169,949.80 627.15 162,257.80 1,083.19
80 170,685.20 917.29 158,290.20 2,015.01
70 171,169.60 629.02 154,047.20 499.08
60 170,846.60 1,086.12 150,447.20 1,700.27

DM Policy                  
Throughput

PM Policy                  
Throughput

 

4.6 Conclusion 

The objective of this study was to investigate the performance of degradation-

based predictive maintenance policies on system reliability of a manufacturing system.  

Unlike chapter 3, where maintenance decisions were based on the reliability of the 

individual workstations, this study develops maintenance decisions based on the 

reliability of the entire manufacturing systems.  Two different maintenance policies are 

discussed.  The first policy considered scheduled maintenance routines using a reliability-

based preventive maintenance policy.  Workstation failures were assumed to follow a 

Weibull failure time distribution.  The second policy was a degradation-based predictive 

maintenance policy that utilized real-time sensory information to assist in scheduling 

maintenance routines.  The real-time sensory information was used to update residual life 

distribution of the system at each updating epoch, thus, allowing for maintenance 

decisions to be based on the most current degradation states of the system’s constituents.   

We developed a simulation model of a manufacturing system to evaluate the 

performance of the two maintenance policies.  The performance of the manufacturing 

system was evaluated by analyzing the number of workstation failures, replacements, 
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total maintenance cost, and workstation utilization.  The simulation analysis showed that 

the predictive maintenance policy that utilized sensory-updated degradation models to 

predict failures resulted in much lower maintenance costs compared to the preventive 

maintenance policy.  The results were analyzed at several levels of system reliability.  In 

addition, the degradation-based predictive maintenance policy also resulted in higher 

workstation utilization and system throughput.  The simulation analysis also showed that 

that the sensor-updated predictive maintenance policy resulted in very low performance 

variability, which is critical in Lean Manufacturing systems.   
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  CHAPTER 5: STUDY 3. ANALYSIS OF MAINTENANE-RELATED 

DECISION POLICIES 

This chapter investigates the impact of different replacement and spare parts 

inventory policies on the performance of a hypothetical manufacturing system that 

consists of a series of work cells, where some of the work cells contain redundant 

workstations.  We model the manufacturing system using ARENA simulation software.  

We propose a replacement and inventory policy based on the sensory-updated 

degradation models developed by Gebraeel et al. [28], and compare it with a traditional 

time-based policy that relies on fixed lifetime distributions (Armstrong and Atkins [3]).  

We compare the performance of each policy by evaluating the total cost of the system, as 

well as the average workstation utilization and throughput corresponding to each policy. 

5.1 Replacement and Spare Part Inventory Models 

There exists a plethora of literature on replacement and inventory models.  In this 

work, we limit our study to a single-unit age replacement model and a single-unit 

inventory model with room for storing one spare part.  Both models are based on renewal 

theory and were presented in Armstrong and Atkins [3].  The objective is to determine 

the optimal replacement time and spare part inventory ordering time for a degraded 

component.  The authors consider a sequential decision making process where the 

optimal replacement time is first evaluated, followed by the optimal ordering time.  This 

process is described below.  A component is subject to random failure with a cumulative 

density function (CDF) )(tF , where )(tF  represents the probability of component failure 

by time t.  Each time the component fails, the system sustains a failure cost.  In the event 

that the component is replaced according to a planned replacement, the system sustains a 
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planned replacement cost.  Whether planned or failure replacements occur, it is necessary 

to have a spare part available in stock in order to perform the replacement action.  The 

system incurs a holding cost per unit time to store the spare part.  If the part is 

unavailable at the required replacement time, the system incurs a shortage cost per unit 

time.   

5.1.1 Single-Unit Age Replacement Model  

The objective of the replacement model is to compute the optimum planned 

replacement time, *
rt .  The optimal replacement time is the time that minimizes the long-

run average replacement cost per cycle.  The long-run average replacement cost per cycle 

is expressed as: 
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where, Cr is the expected long-run replacement cost, cp is the planned replacement cost, cf 

is the failure replacement cost, and )(1)( tFtF −= , where )(tF  is the CDF of the 

component’s failure time.   

The numerator of equation 5.1 represents the expected cost per cycle and the 

denominator represents the expected cycle length.  After the optimum replacement time, 

*
rt , has been computed, it is then used to decide when to order the spare part.   

5.1.2 Inventory Ordering Model  

The objective of the inventory model is to compute the optimal ordering time, *
ot .  

The optimal ordering time is the ordering time that minimizes the long-run average 
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inventory cost per cycle.  The model assumes a single unit storage capacity, thus, the 

order quantity is always a single unit.  The long-run average inventory cost per cycle is 

expressed as: 
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where, Co is the expected long-run ordering cost, kh is the holding cost per unit time, ks is 

the shortage cost per unit time, and L is the fixed lead time elapsed from the moment of 

placing the spare part order up till the point the part is received.  We note that the 

expected cycle length is not the same for the replacement policy case due to the 

possibility of stock-outs occurring, which would cause a longer cycle. 

As mentioned earlier, the replacement and inventory models use the failure time 

distribution of a component to derive their decisions.  Failure time distributions are 

generally fixed and do not capture the degradation processes that occur prior to failure.  

Even when conditional lifetime distributions are evaluated based on the survival time, 

they remain time-based distributions as opposed to condition-based distributions.  

In this study, however, we present a heuristic approach for sensor-driven 

condition-based replacement and spare part ordering.  This is achieved by combining 

sensory-updated residual life distributions obtained from the degradation modeling 

framework developed by Gebraeel et al. [28, 29] with the replacement and inventory 

models developed by Armstrong and Atkins [3].  The updated residual life distributions 

capture the underlying degradation state of a component using real-time condition-based 
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sensory signals.  These distributions are then used to replace the failure time distributions 

in the original replacement and inventory models.  The ability to capture the evolution of 

degradation processes improves failure predictability thus, leading to more accurate 

decisions.  As real-time signals are acquired from an operating component and its 

residual life distribution updated, the corresponding replacement and inventory ordering 

policies evolve dynamically to account for the changing physical transitions that 

accompany degradation. 

5.2 Sensor-driven Replacement and Inventory Policy 

In this section, we extend the replacement and inventory policies developed by 

Armstrong and Atkins [3].  As mentioned earlier, the original models use failure time 

distributions to make decisions.  Since these distributions are unaffected by the 

underlying physical degradation processes, they do not distinguish between the different 

degradation characteristics of individual components of the population.  Consequently, 

the extension, as proposed by [26] involves replacing these fixed lifetime distributions 

with sensor-updated residual life distributions that dynamically evolve according to the 

degradation states of the individual components.   

We implement a sequential decision making process where the optimal 

replacement time is first evaluated followed by the optimal ordering time.  Each time we 

acquire a signal, the residual life distribution is updated using the degradation modeling 

framework developed by Gebraeel et al. [28, 29].  (Recall that the degradation framework 

has been discussed in Chapter 3).  The updated distribution is then used to compute the 

optimal replacement and the optimal spare part ordering times.   
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The fact that the remaining life distributions evolve dynamically violates the 

renewal theory assumption associated with the replacement and inventory models.  The 

underlying assumption that the expected cycle lengths between successive regeneration 

points remain constant, no longer holds due to the dynamically evolving CDFs.   

The proposed sensor-driven replacement and inventory model is essentially a 

heuristic based on the renewal theoretic models.  We assume that once a component’s 

residual life distribution is updated, the distribution remains the same at each 

regeneration point.  In other words, the regeneration points correspond to minimal repair 

actions that keep the component in a “as good as new” state.  The optimal replacement 

time is calculated using the updated distribution.  Each time the distribution is updated, 

the replacement and corresponding inventory ordering times are reevaluated.   

The long-run average replacement and inventory costs are now expressed in terms 

of the updated residual life distribution as follows, 
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where, k
rC  and k

oC  are the replacement and inventory ordering cost rates per cycle, 

respectively, at updating time kt .  )(tF k  is the updated CDF of the residual life at 
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updating time kt .  The terms k
rt  and k

ot  are the optimal replacement and inventory 

ordering time, respectively, at each updating epoch.   

Note that the updating time, kt , has been added in the denominator to the cycle 

time.  Each cycle is now composed of two components, a fixed term given by the time up 

to which the component has survived and a random component given by the integral of 

the residual life distribution. 

In the following section, we evaluate the performance of the proposed sensor-

driven replacement and inventory models using a simulated manufacturing system.  We 

compare the resulting replacement and inventory costs, as well as the average utilization 

and throughput to those of the conventional models.  

5.3 Manufacturing System 

The manufacturing system used in this study is shown in Figure 5.1.  Note that 

this layout is the same as the layout used in Chapter 4, where Work Cells 1 and 3 each 

contain two redundant workstations and Work Cell 2 consists of a single workstation. 

Workstation 1

Workstation 2

Workstation 3Pre-processed 
Parts Arrive

Shipping 
Department

Workstation 4

Workstation 5

 

WORK CELL 1

 

WORK CELL 3

 

WORK CELL 2

 

Figure 5.1. Schematic of the manufacturing system 
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Parts are assumed to arrive randomly to the system, where they are processed at 

predetermined processing times and delivered to the shipping dock where they exit the 

system.  In the following section we describe the simulation model used to compare the 

sensor-driven replacement and inventory model described in Section 5.2 with the 

traditional time-based policy described in section 5.1.  

5.4 Simulation Model 

This simulation model considers two sets of replacement and inventory policies 

and studies the effect of these policies on the performance of a specific manufacturing 

system.  The first policy is the traditional time-based policy based on the replacement and 

inventory model developed by Armstrong and Atkins [3] (Section 5.1).  We refer to this 

policy as “Traditional” policy.  The second policy is a degradation-based policy based on 

the sensor-driven replacement and inventory model described in Section 5.2.  We refer to 

this policy as “Sensor-driven” policy. 

To analyze these replacement and inventory policies, we develop a simulation 

model of a manufacturing system using Arena (similar to the model presented in Chapter 

4).  The simulated manufacturing system is a series-parallel system consisting of five 

workstations.  Figure 5.1 presents a schematic representation of this manufacturing 

system.  Pre-processed parts arrive to a staging station.  The inter-arrival time is assumed 

to be exponential with a mean of 0.25 minutes.  Upon arrival, each part is processed on 

one of the first two workstations (depending on which one is free).  Next, the part is 

processed on the third workstation, and then on one of the last two workstations 

(depending on which one is free).  The processing times of workstation 1 and 2 are 
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assumed to follow a Triangular distribution (4.25, 4.75, and 5.25 minutes); the processing 

time of workstation 3 is assumed to follow a Triangular distribution (2.5, 2.75, and 3.0 

minutes); the processing times of workstation 4 and 5 are assumed to follow a Triangular 

distribution (4.75, 5.25, and 5.75 minutes).  Upon completion, the finished part is 

transferred to a shipping area. 

A workstation can become unavailable if a random workstation failure occurs or a 

planned workstation replacement is performed.  Downtime resulting from workstation 

failure is assumed to be random and follows a Normal distribution with mean 300 

minutes and variance 30 minutes.  Downtime resulting from a planned replacement 

routine is assumed to be random and follow a Normal distribution with mean 30 minutes 

and variance 5 minutes.  The downtime resulting from an unplanned system failure is 

assumed to be greater, since the demand for replacement parts and maintenance 

personnel is unexpected.  Furthermore, we assume that each workstation degrades 

gradually until it fails.  Workstation degradation is assumed to be modeled in the same 

way as the simulation study in two previous chapters by utilizing a real-world vibration-

based database. 

In the following section, we discuss the simulation model used to evaluate the 

performance of the two replacement and inventory policies.  The simulation model 

consists of three submodels.  The first submodel represents the simulated manufacturing 

system, the second submodel characterizes the control logic of each decision policy, and 

the third submodel characterizes the workstation availability control logic. 
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5.4.1 Manufacturing System Submodel 

This submodel is identical to the Manufacturing System Submodel used in 

Chapter 4.  Figure 4.6 represents a flowchart of the submodel.  Section 4.4.1 describes 

this submodel in great detail.  Just as in Chapter 4, this submodel records the system 

throughput.  Throughout the submodel, parts wait in queues until workstations become 

available.  Each workstation is represented by a PROCESS module.  Once a part arrives 

at a PROCESS module, it is processed according to a prespecified processing time.  As 

mentioned earlier, the processing time of the first two workstations follows a Triangular 

distribution with the following parameters: 4.25, 4.75, and 5.25 minutes; the processing 

time of the third workstation follows a Triangular distribution with the following 

parameters: 2.5, 2.75, and 3.0 minutes; the processing time of the last two workstations 

follows a Triangular distribution with the following parameters: 4.75, 5.25, and 5.75 

minutes. 

5.4.2 Decision Policy Submodel 

The decision policy submodel (Figure A.6) controls the execution of each 

replacement and inventory policy.  It simulates workstation failures and computes 

optimal replacement and ordering times for each policy.  It begins with a CREATE 

module that generates a single “phantom” entity.  This entity is used to control the 

generation of workstation failure times and schedule workstation replacement and 

ordering activities.  The following data was used concerning the replacement and 

inventory policies: cp = $30, cf = $400, kh = $0.10/minute, ks = $1/minute and L = 20 

minutes. 
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 The details of this submodel’s functionality differ according to the decision 

policy that is being used. 

5.4.2.1 Traditional Policy 

For the traditional policy, the phantom instantly enters a VBA code block at time t 

= 0.  This VBA block is used to generate a workstation failure time, failure_time_i, and 

calculate the optimal replacement and ordering time, t_replace_i and t_order_i, 

respectively, for the ith workstation. 

Workstations are subject to random failures.  The failure time distribution is 

assumed to follow a Weibull distribution.  Just as in the previous two chapters, the shape 

and scale parameters of the Weibull distribution are, 0549.3=β  and 75.784=θ , 

respectively.  These parameters are evaluated using the degradation database used in 

Gebraeel [29].  Based on these parameters, we can compute the CDF of each 

workstation’s failure time using the following expression; 

 
βθ )/(1)( tetF −−=  (5.5) 

 

The CDF is then used in expression (5.1) to compute the optimal system replacement 

time, t_replace_sys = *
rt , and then expression (5.2) to compute the optimal system 

ordering time, t_order_sys = *
ot .  For a given workstation i, if t_replace_sys > 

failure_time_i, then the workstation experiences a sudden failure.  The ordering time, 

t_order_sys, is used in calculating the inventory cost, as explained in Section 5.4.3. 

 After the optimal replacement and ordering times are computed, the “phantom” 

entity enters a HOLD module, where it waits for a signal via a SIGNAL module from the 
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Resource Shutdown Submodel (Section 5.4.3), signaling the end of the replacement 

cycle.  At this point, the entity returns to the VBA code block to begin another cycle. 

5.4.2.2 Sensor-driven Policy 

A similar procedure is preformed for the Sensor-driven Policy.  However, this 

policy utilizes the Sensor-driven Replacement and Inventory Policy discussed in Section 

5.2.  In this policy, the CDF of each workstation’s residual life is determined by looking 

at its corresponding degradation signal.  Just as in the previous two chapters, the 

degradation signals considered in this study are composed of a nondefective and 

defective phase (Figure 3.3).  The phase II information is used to compute the residual 

life distribution of the workstation. 

The residual life distribution of each workstation is updated in real-time as its 

degradation signal is being observed.  The underlying assumption for this decision policy 

is that a condition monitoring system is used to acquire data every 2 minutes.  Beginning 

in Phase II, the reliability distribution is computed and is continuously updated as signals 

are observed. 

  When the phantom entity is created by the decision policy submodel, it is 

delayed for two minutes before entering the VBA block.  Every two minutes the VBA 

block is used to compute the residual life of each workstation.  The residual life is 

computed based on the sensory-updated degradation model discussed in Chapter 3 

(Section 3.3.2) using expression (3.16), where the prior parameters are ,031.60 −=μ  

,008061.01 =μ   ,3464.02
0 =σ  ,100347.1 52

1
−×=σ  and .0.0073482 =σ   At each updating 

epoch, the updated residual life distribution is used to compute the optimal replacement 
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time using expression (5.3), and then the optimal inventory ordering time using 

expression (5.4).   

The residual life distribution, replacement time, and inventory ordering time for 

each workstation are updated every two minutes.  The updating process continues until a 

stopping rule is satisfied.  The stopping rule we used is to stop updating once Ltt or +≤ ** .  

This stopping rule attempts to eliminate spare part holding time and ensure just-in-time 

spare part delivery.  Once a decision has been made to stop updating, the replacement 

time and inventory ordering times are computed as follows: given that we have updated 

the decision policy up to time tk,  

 t_replace_i = tk + *
rt  (5.6) 

 t_order_i = tk + *
ot  (5.7) 

 

Under the Sensor-driven Policy, there are two scenarios for simulating 

unexpected failures.  First, a workstation will experience an unexpected failure if its 

degradation signal reaches the failure threshold before the stopping rule is activated.  On 

the other hand, if the stopping rule is activated before a workstation’s degradation signal 

reaches the failure threshold, then the most recent updated decision policy is used to 

compute the workstation replacement and ordering times.  In this case, unexpected failure 

of the workstation occurs if t_replace_i > failure_time_i.  We note that the workstation’s 

failure time, failure_time_i, is generated from the conditional Weibull distribution given 

that the workstation has survived up to time tk.  The ordering time, t_order_i, is used in 

calculating the inventory cost, as explained in Section 5.4.3. 
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After the optimal replacement and ordering times are computed, the “phantom” 

entity enters a HOLD module, where it waits for a signal via a SIGNAL module from the 

Resource Shutdown Submodel (Section 5.4.3), signaling the end of the replacement 

cycle.  At this point, the entity returns to the VBA code block to begin another cycle. 

5.4.3 Resource Shutdown Submodel 

The resource shutdown submodel is used to simulate the replacement activities 

and compute inventory costs. The submodel begins with a DETECT block that generates 

a “phantom” entity when a workstation shutdown occurs.  As mentioned earlier there are 

two main ways a workstation is shutdown.  

1. If t_replace_i is less than failure_time_i, then the shutdown is a result of a 

planned replacement.  To simulate the planned replacement, we use a PREEMPT 

block that stops the workstation and preempts the part being processed.  This is 

followed by an ALTER block that reduces the capacity of workstation i to 0.  This 

implies that the workstation will not be available for processing.  A DELAY 

module is used to simulate a planned replacement downtime.  Once replacement 

is complete, the workstation is assumed to be “as good as new”.  A SIGNAL 

module sends a signal to the HOLD module in the Decision Policy Submodel 

(Section 5.4.2), indicating the end of the replacement cycle.  An ALTER block is 

then used to increase the capacity of the workstation back to 1, thus making it 

available to process parts.  A variable Np is used to track the total number of 

planned replacements.  

2. If t_replace_i is greater than failure_time_i, then the workstation experiences an 

unexpected failure.  Upon failure, if a spare part has not yet been ordered (i.e., 

failure_time_i  < t_order_i), it is immediately ordered for replacement.  That is, 

the spare part ordering time, t_order_i, is assigned to equal the workstation failure 
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time, failure_time_i.  A procedure similar to that discussed in the previous case 

(1) simulates a failure replacement.  A variable Nf is used to track the total 

number of failure replacements. 
 

In the Sensor-driven Policy, unexpected failures may also occur if a workstation’s 

degradation signal reaches its failure threshold before a planned replacement is 

scheduled. 

 This submodel also computes the inventory cost per replacement cycle.  First, we 

must determine whether or not a shortage occurs; 

1. If t_shutdown_i < t_order_i + L, then a shortage occurs, where t_shutdown_i is 

the time at which the workstation shuts down.  In this case, we compute the 

shortage time: shortage_time_i = t_order_i + L – t_replace_i. 

2. If t_shutdown_i ≥ t_order_i + L, then a shortage does not occur, and we compute 

the spare part holding time: holding_time_i = t_replace_i – t_order_i – L. 

 

Then, the inventory cost for the ith workstation is computed as follows: 

 sh kitimeshortagekitimeholdingitinventory )__()__(_cos_ +=  (5.8)  

 
Note that if a shortage occurs, the workstation replacement cannot begin until the 

spare part is delivered.  Thus, when simulating a workstation replacement, we add 

shortage_time_i to the delay time in the DELAY module mentioned above.  The next 

section discusses the implementation of the simulation model, as well as the results.   
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5.5 Implementation and Results 

Arena simulation was used to simulate the continuous operation of the 

manufacturing system.  Each simulation consists of five runs and each run is 365-days.  

Separate runs were performed for each decision policy.  We assumed the following lead 

time and cost values: L = 20 minutes, Cf = $400, Cp = $30, kh = $0.10/minute, ks = 

$10/minute. 

Workstation utilization and throughput were used to measure the performance of 

each maintenance policy.  Table 5.1 shows the average utilization and throughput of each 

decision policy over the five simulation runs.  The Sensor-driven replacement and 

inventory policy resulted in higher production rates and efficiency compared to the 

Traditional policy.  The Sensor-driven policy’s average utilization was 5.76% higher than 

the Traditional policy’s; the Sensor-driven policy’s average throughput was 5.69 % 

higher than the Traditional policy’s.  The standard deviations of the throughput for the 

Traditional policy and Sensor-driven policy were 1,526.63 and 912.96, respectively.  

Table 5.1. Average utilization and throughput for each policy. 

Policy Utilization Throughput
Traditional 0.8664 163,974.33

Sensor-Driven 0.9163 173,310.67  

Table 5.2 shows the average number of failure and planned replacements for each 

decision policy, as well as the standard deviations.  The Sensor-driven replacement and 

inventory policy resulted in a lower number of failure replacements and planned 

replacements.  The Sensor-driven policy’s average number of failure replacements was 
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40.06% lower than the Traditional policy’s; the Sensor-driven policy’s average number 

of planned replacements was 36.86% lower than the Traditional policy’s.  It is interesting 

to note that the Sensor-driven policy resulted in a lower standard deviation for the 

number of failure replacements, but higher standard deviation for the number of failure 

replacements.   

Table 5.2. Mean and standard deviations of the number of failure and planned 
replacements for each policy. 

Policy Mean Std. Dev. Mean Std. Dev.
Traditional 322.0 49.43 8,141.3 92.21

Sensor-Driven 193.0 19.14 5,140.7 137.00

N f N p

 

The total maintenance cost was also used to measure the performance of each 

maintenance policy.  The total maintenance cost Total_Cost is based on the total 

inventory cost and the total replacement cost, and is expressed as follows; 

 Rep_CostInv_CostTotal_Cost +=  (5.9) 
 

where, Inv_Cost and Rep_Cost are the total inventory and replacement cost incurred on 

the system, respectively.  The total inventory cost is computed by summing up the 

inventory cost over all replacement cycles for each workstation (refer to expression (5.8) 

for each workstation’s inventory cost per replacement cycle).  The total replacement cost 

is expressed as follows; 

 ppff CNCNRep_Cost +=  (5.10)  
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where, fN  is the number of failure replacements, fC  is the cost of performing a failure 

replacement (assumed to be $400), pN  is the number of planned replacements, and pC  is 

the cost of performing a planned replacement (assumed to be $30).   

Figure 5.2 shows the average inventory cost, replacement cost, and total cost for 

each decision policy.  The Sensor-driven policy’s total maintenance cost was 35.10% 

lower than the Traditional policy’s cost. 
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Figure 5.2. Total costs incurred by each policy. 

 

Table 5.3 shows the means and standard deviations of costs incurred by each 

maintenance policy.  We observe that the variability of each of the costs is lower for the 

maintenance policy that utilizes sensor-based updating of residual life distributions. 
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Table 5.3. Means and standard deviations of the costs incurred by each policy at each 
decision policy. 

Policy Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Traditional $57,174 $9,266 $372,907 $17,463 $430,080 $26,729

Sensor-Driven $47,700 $5,565 $231,420 $9,147 $279,120 $14,717

Inv_Cost Rep_Cost Total_Cost

 

5.6 Conclusion 

 The objective of this study was to compare conventional replacement and spare 

part inventory decision policies with sensor-driven degradation-based replacement and 

spare part inventory models.  The conventional policies use renewal theory to schedule 

component replacement and spare part ordering times.  These models are based on 

computing long-run average replacement and inventory costs using the failure time 

distributions.  In contrast, the sensor-driven replacement and inventory models rely on 

real-time residual life distributions to predict optimal component replacement and spare 

part ordering times.  These models rely on the latest degradation information of the 

system/components being monitored.  As subsequent real-time degradation-based 

sensory information becomes available, it is used to dynamically update the residual life 

distributions, thus, allowing decisions to adjust according to the degradation state of the 

component.   

We developed a simulation model of a manufacturing system to evaluate the 

performance of the two decision paradigms.  After running several simulations, the 

average utilization and throughput were computed for each maintenance policy.  In 

addition, the total maintenance cost of each policy was computed, based on the 

replacement cost and inventory cost.  The replacement cost was based on the number of 
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failures and planned replacements.  The inventory cost was based on spare part holding 

and shortage costs.   

The simulation analysis showed that the sensor-driven decision policy resulted in 

higher machine utilization and throughput.  In addition, the sensor-driven policy resulted 

in a much lower maintenance cost compared to the traditional policy (35% lower).  The 

simulation analysis also showed that that the sensor-driven decision policy resulted in 

very low performance variability.  Low performance variability is vital in systems that 

embrace Lean and Just-in-Time philosophies.  
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CHAPTER 6: CONCLUSION 

The goal of this work was to investigate the impact of different maintenance 

policies on the performance of a hypothetical manufacturing system.  We developed 

simulation studies to compare predictive maintenance policies with traditional time-based 

policies.  Whereas time-based maintenance policies do not take into account the 

conditions or degradation characteristics of individual components, our work focused on 

using predictive maintenance policies based on the degradation models developed by 

Gebraeel et al. [28, 29].  The resulting degradation-based policies utilize real-time 

sensory information to assist in making decisions regarding maintenance management 

and component replacement. 

In Chapter 3, we used a simulation study to compare three different maintenance 

policies.  The first policy was based on the sensory-updated degradation models 

developed by Gebraeel et al. [28, 29].  We compared this policy with two other 

conventional policies, a reliability-based preventive maintenance policy and a 

degradation-based predictive maintenance policy developed by Lu and Meeker [52].  We 

evaluated the efficiency of each policy by evaluating the total maintenance costs 

corresponding to each policy, where the total maintenance cost was based on the number 

of failures and planned replacements experienced by the system.  The simulation analysis 

showed that the sensor-updated predictive maintenance policy resulted in a much lower 

maintenance cost compared to the conventional maintenance policy and the preventive 

maintenance policy.  In addition, the sensor-updated predictive maintenance policy also 

resulted in lower performance variability. 
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In Chapter 4, we used a simulation study to compare the performance of two 

different maintenance policies on system reliability.  Whereas in Chapter 3 maintenance 

decisions were based on the reliability of individual workstations; in chapter 4, we based 

our maintenance decisions on the reliability of the entire manufacturing system.  We 

compared two major maintenance policies.  The first policy was a reliability-based 

preventive maintenance policy, and the second policy was based on the sensory-updated 

degradation models developed by Gebraeel et al. [28].  We evaluated the efficiency of 

each policy by evaluating the total maintenance cost, workstation utilization, and 

throughput corresponding to each policy.  The simulation analysis showed that the 

degradation-based predictive maintenance policy resulted in a much lower maintenance 

cost compared to the preventive maintenance policy at each reliability level.  In addition, 

the degradation-based predictive maintenance policy resulted in higher utilization and 

throughput at each reliability level, as well as lower performance variability. 

In Chapter 5, we used a simulation study to compare the performance of two 

different replacement and inventory policies.  The first policy was a reliability-based 

policy developed by Armstrong and Atkins [3], and the second policy was based on the 

sensory-updated degradation models developed by Gebraeel et al. [28, 29].  We 

evaluated and compared the system costs associated with implementing each of the 

replacement and inventory policies.   

The studies performed in this thesis showed significant evidence that sensory-

updated degradation models improve reliability assessment.  Indeed, the evaluation of 

residual life distributions using real-time degradation signals acquired through condition 



 

 

102

monitoring techniques result in better failure predictability and, thus, lower maintenance 

costs.   

We incorporated the sensor-updating methodology into traditional replacement 

and inventory models to develop sensor-driven replacement and inventory models, and 

showed that scheduling replacement and inventory ordering activities using sensory-

updated residual life distributions is more efficient than scheduling activities using the 

conventional renewal-theoretic models.   

Since an increasing number of manufacturing sectors are embracing Lean and 

Just-In-Time paradigms, sensor-updated degradation decision policies can be very 

beneficial for preventing the occurrence of system failures, and reducing maintenance 

and inventory costs. 

6.1 Future Research 

There are several important directions for future research that are related to this 

work.  These future research directions are discussed below: 

3. In this thesis, we investigated the impact of different maintenance policies on the 

performance of manufacturing systems.  A future extension would be to 

investigate the possibility of incorporating maintenance decision making with 

production planning and dispatching rules.  

4. We focused on developing specific degradation models for which we can obtain 

easy-to-compute residual-life distributions.  For example, because we have 

assumed normal or lognormal prior distributions for the unknown stochastic 

parameters in the degradation models, all of the models developed in this thesis 

are quite easy to compute.  We note, however, that the Bayesian-updating 

approach presented in this paper could be applied to much more general models.  
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For example, if we are not worried about obtaining closed-form expressions for 

the posterior distributions, we could assume any form for the prior distributions 

on the stochastic parameters.   

5. This work assumed a fixed failure threshold for the degradation signal.  However, 

in reality these thresholds may not be clearly defined and may be probabilistic.  

6. In this work we developed a sequential decision making process where the 

optimal replacement time is first evaluated followed by the optimal ordering time 

process.  We could develop jointly-optimized replacement and spare parts 

ordering policies that take into account sensory-updating residual life 

distributions.  In addition, we could extend the replacement and spare parts 

inventory model to assume room to store more than one unit in inventory, and 

incorporate variable lead time. 

7. We could develop and use optimal stopping rules for the sensory-updating 

methodology that take into account the updating cost. 

8. In this work we focused on two primary cost components, (1) the cost of planned 

replacement, and (2) the cost of failure replacement.  We could incorporate 

additional cost functions that capture any increase in system costs due to 

component degradation.  For example, we could develop cost structures that are 

functions of the degradation signal, for example, K(Si – S0), where K is cost 

coefficient, Si is the current level of the degradation signals, and S0 is the original 

signal level. 

9. We could investigate and incorporate the interaction of different failure modes 

that affect deteriorating components. 
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APPENDIX A: ARENA SCREENSHOTS 

This appendix shows sample screen shorts of the ARENA models used in the 

simulation studies described in each chapter of this thesis. 

A.1. Screenshots From Models Discussed in Chapter 3 

 

Figure A.1. Failure Time Subroutine. 

 

 

Figure A.2. Resource Shutdown Subroutine. 
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A.2. Screenshots From Models Discussed in Chapter 4 

 

Figure A.3. Failure Time Subroutine. 

 

Figure A.4. Resource Shutdown Subroutine. 

 

Figure A.5. System Maintenance Submodel. 



 

 

113

A.3. Screenshots From Models Discussed in Chapter 5 

 

Figure A.6. Decision Policy Submodel. 

 

Figure A.7. Resource Shutdown Submodel. 
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APPENDIX B: VISUAL BASIC CODE 

This appendix shows the Visual Basic code used in the simulation models 

developed in this thesis. 

B.1. DM-I Policy Code Used in Section 3.2.1 

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf 
Function Cumnorm(X As Double) As Double 
XAbs = Abs(X) 
If XAbs > 37 Then 
Cumnorm = 0 
Else 
Exponential = Exp(-XAbs ^ 2 / 2) 
If XAbs < 7.07106781186547 Then 
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 
Build = Build * XAbs + 6.37396220353165 
Build = Build * XAbs + 33.912866078383 
Build = Build * XAbs + 112.079291497871 
Build = Build * XAbs + 221.213596169931 
Build = Build * XAbs + 220.206867912376 
Cumnorm = Exponential * Build 
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 
Build = Build * XAbs + 16.064177579207 
Build = Build * XAbs + 86.7807322029461 
Build = Build * XAbs + 296.564248779674 
Build = Build * XAbs + 637.333633378831 
Build = Build * XAbs + 793.826512519948 
Build = Build * XAbs + 440.413735824752 
Cumnorm = Cumnorm / Build 
Else 
Build = XAbs + 0.65 
Build = XAbs + 4 / Build 
Build = XAbs + 3 / Build 
Build = XAbs + 2 / Build 
Build = XAbs + 1 / Build 
Cumnorm = Exponential / Build / 2.506628274631 
End If 
End If 
If X > 0 Then Cumnorm = 1 - Cumnorm 
End Function 
 
'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html 
Function nc(X) As Double 
Dim A(1 To 5) As Double 
If X < -7 Then 
    nc = ndf(X) / Sqr(1 + X * X) 
ElseIf X > 7 Then 
    nc = 1 - nc(-X) 
Else 
nc = 0.2316419 
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A(1) = 0.31938153 
A(2) = -0.356563782 
A(3) = 1.781477937 
A(4) = -1.821255978 
A(5) = 1.330274429 
nc = 1 / (1 + nc * Abs(X)) 
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5) 
If (X <= 0) Then nc = 1 - nc 
End If 
End Function 
 
Function ndf(X) As Double 
    ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi) 
End Function 
 
Function LN(X As Double) As Double 
 
e = 2.71828183 
LN = Log(X) / Log(e) 
 
End Function 
'Bearing 26 
Private Sub VBA_Block_5_Fire() 
 
bearing_num = 26 
 
Dim X As Double 
Dim Y As Double 
Dim mu1 As Double 
Dim mu2 As Double 
Dim var1 As Double 
Dim var2 As Double 
Dim D As Double 
Dim e, t, tw As Double 
Dim F0 As Double 
Dim F1 As Double 
Dim Cost As Double 
Dim counter As Integer 
Dim simulation_time 
Dim previous_failure_time As Double 
Dim uptime_after_last_failure As Double 
Dim Theta As Double 
Dim Beta As Double 
Dim ThetaCond As Double 
Dim BetaCond As Double 
Dim T0 As Double 
Dim Tflat As Double 
Dim FArray(1999) As Double 
Dim CostArray(1999) As Double 
Dim FConditionalArray(1999) As Double 
Dim Sum_1_minus_FConditionalArray(1999) As Double 
Dim WeibullCDF(1999) As Double 
Dim WeibullCondCDF(1999) As Double 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
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e = 2.71828183 
D = Log(0.03) / Log(e) 
mu1 = -5.276132 
mu2 = 0.004468 
var1 = 0.199013215 
var2 = 4.80643333333334 * 10 ^ -7 
c1 = 750 
c2 = 50 
Theta = 784.74619 
Beta = 3.05485 
T0 = s.VariableArrayValue(s.SymbolNumber("T0", bearing_num - 25)) 
s.VariableArrayValue(s.SymbolNumber("Tflat")) = T0 
Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", bearing_num - 25)) 
desired_reliability = 0.95 
 
simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time")) 
'MsgBox "The value of Simulation Time is " & simulation_time 
 
previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Previous 
Replacement Time")) 
'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time 
 
uptime_after_last_failure = simulation_time - previous_replacement_time 
'MsgBox "The value of Uptime After Last Failure Time is " & uptime_after_last_failure 
 
t = uptime_after_last_failure 
i = uptime_after_last_failure 
j = uptime_after_last_failure 
K = uptime_after_last_failure 
tw = uptime_after_last_failure 
 
'******************Calculate Failure Time************************************* 
tw = 0 
 
Do 
    tw = tw + 1 
    WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta 
    'MsgBox "tw is " & tw 
    'MsgBox "WeibullCDF(tw) is " & WeibullCDF(tw) 
Loop Until tw = 1998 
 
tw = 0 
 
 
 
Do 
    tw = tw + 1 
    WeibullCondCDF(tw) = (WeibullCDF(T0 + tw) - WeibullCDF(T0)) / (1 - WeibullCDF(T0)) 
Loop Until (WeibullCondCDF(tw) >= 0.632) 
 
ThetaCond = tw 
'MsgBox "ThetaCond is " & ThetaCond 
 
Do 
    tw = tw + 1 
    WeibullCondCDF(tw) = (WeibullCDF(T0 + tw) - WeibullCDF(T0)) / (1 - WeibullCDF(T0)) 
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Loop Until (WeibullCondCDF(tw) >= 0.99999) 
 
BetaCond = LN(LN(1 / (1 - WeibullCondCDF(T0)))) / (LN(T0) - LN(ThetaCond)) 
'MsgBox "BetaCond is " & BetaCond 
s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond 
s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond 
 
'***************************************************************************** 
 
'Calculate F immediately after failure: t=uptime_after_last_failure 
FArray(t) = Cumnorm((t * mu2 + mu1 - D) / (Sqr(var1 + (var2 * t ^ 2)))) 
 
'Calculate the rest of the F's 
 
Do 
    i = i + 1 
    FArray(i) = (Cumnorm((i * mu2 + mu1 - D) / (Sqr(var1 + (var2 * i ^ 2)))) - FArray(t)) / (1 - FArray(t)) 
    'MsgBox "FArray(i) is " & FArray(i) 
Loop Until FArray(i) >= 1 - desired_reliability 
 
t_replacement = i 
'MsgBox "t_replacement is " & t_replacement 
'MsgBox "T0 is " & T0 
 
Do 
    i = i + 1 
    FArray(i) = (Cumnorm((i * mu2 + mu1 - D) / (Sqr(var1 + (var2 * i ^ 2)))) - FArray(t)) / (1 - FArray(t))     
Loop Until i = 1999 
 
i = 0 
Do 
     
    i = i + 1 
    FConditionalArray(t_replacement + i) = (FArray(t_replacement + i) - FArray(t_replacement)) / (1 - 
FArray(t_replacement)) 
    Sum_1_minus_FConditionalArray(t_replacement + i) = 
Sum_1_minus_FConditionalArray(t_replacement + i - 1) + (1 –  
Loop Until i = 1999 - t_replacement 
 
LM_Interval = t_replacement + T0 
s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Predicted Failure Time")) = LM_Interval 
'MsgBox "The value of Work Cell 1 Predicted Failure Time is " & LM_Interval 
 
End Sub 
 
 

B.2. DM-II Policy Code Used in Section 3.2.2 

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf 
Function Cumnorm(X As Double) As Double 
XAbs = Abs(X) 
If XAbs > 37 Then 
Cumnorm = 0 
Else 
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Exponential = Exp(-XAbs ^ 2 / 2) 
If XAbs < 7.07106781186547 Then 
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 
Build = Build * XAbs + 6.37396220353165 
Build = Build * XAbs + 33.912866078383 
Build = Build * XAbs + 112.079291497871 
Build = Build * XAbs + 221.213596169931 
Build = Build * XAbs + 220.206867912376 
Cumnorm = Exponential * Build 
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 
Build = Build * XAbs + 16.064177579207 
Build = Build * XAbs + 86.7807322029461 
Build = Build * XAbs + 296.564248779674 
Build = Build * XAbs + 637.333633378831 
Build = Build * XAbs + 793.826512519948 
Build = Build * XAbs + 440.413735824752 
Cumnorm = Cumnorm / Build 
Else 
Build = XAbs + 0.65 
Build = XAbs + 4 / Build 
Build = XAbs + 3 / Build 
Build = XAbs + 2 / Build 
Build = XAbs + 1 / Build 
Cumnorm = Exponential / Build / 2.506628274631 
End If 
End If 
If X > 0 Then Cumnorm = 1 - Cumnorm 
End Function 
 
'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html 
Function nc(X) As Double 
Dim A(1 To 5) As Double 
If X < -7 Then 
    nc = ndf(X) / Sqr(1 + X * X) 
ElseIf X > 7 Then 
    nc = 1 - nc(-X) 
Else 
nc = 0.2316419 
A(1) = 0.31938153 
A(2) = -0.356563782 
A(3) = 1.781477937 
A(4) = -1.821255978 
A(5) = 1.330274429 
nc = 1 / (1 + nc * Abs(X)) 
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5) 
 
If (X <= 0) Then nc = 1 - nc 
End If 
End Function 
 
Function ndf(X) As Double 
    ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi) 
End Function 
 
Function LN(X As Double) As Double 
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e = 2.71828183 
LN = Log(X) / Log(e) 
 
End Function 
 
'Bearing 26 
Static Sub VBA_Block_5_Fire() 
bearing_num = 26 
desired_reliability = 0.7 
lead_time = 60 
 
Dim Si As Double 
Dim Li As Double 
Dim e, t, tw As Double 
Dim m As Double 
Dim X As Double 
Dim Y As Double 
Dim K As Double 
Dim var_x As Double 
Dim var_y As Double 
Dim mu_x As Double 
Dim mu_y As Double 
Dim rho As Double 
Dim A As Double 
Dim Cf As Double 
Dim Cr As Double 
Dim row_counter As Integer 
Dim difference As Double 
Dim Theta As Double 
Dim Beta As Double 
Dim ThetaCond As Double 
Dim BetaCond As Double 
Dim Tflat As Double 
Dim t_k As Double 
Dim MArray(1999) As Double 
Dim XArray(1999) As Double 
Dim YArray(1999) As Double 
Dim var_xArray(1999) As Double 
Dim var_yArray(1999) As Double 
Dim mu_xArray(1999) As Double 
Dim mu_yArray(1999) As Double 
Dim RhoArray(1999) As Double 
Dim SiArray(1999) As Double 
Dim LiArray(1999) As Double 
Dim T0 As Double 
Dim Num_signal As Double 
Dim CDFArray(1999, 1999) As Double 
Dim ShiftedCDFArray(1999) As Double 
Dim LMExpectationArray(1999) As Double 
Dim NagiExpectationArray(1999) As Double 
Dim WeibullCDF(1999) As Double 
Dim WeibullCondCDF(1999) As Double 
Dim Sum_Li(1999) As Double 
Dim Sum_Lixti(1999) As Double 
Dim Sum_ti(1999) As Double 
Dim Sum_ti_squared(1999) As Double 
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Dim Sum_1_minus_CDF(1999, 1999) As Double 
Dim Sum_1_minus_shifted_CDF(1999) As Double 
Dim Replacement_Cost(1999, 1999) As Double 
'Dim Min_Replacement_Cost(1999) As Double 
Dim t_replacement(1999) As Double 
Dim Ft_replacement(1999) As Double 
Dim mu_tildaArray(1999, 1999) As Double 
Dim var_tildaArray(1999, 1999) As Double 
Dim LnSi(1999) As Double 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
e = 2.71828183 
D = Log(0.025) / Log(e) 
mu_o = -6.031235 
mu_1 = 0.008061 
var_o = 0.34648893 
var_1 = 0.0000103 
var_err = 0.007348 
corr_o = -0.362538 
A = 1 - (corr_o) ^ 2 
Theta = 784.74619 
Beta = 3.05485 
 
Cf = 750 
Cr = 50 
 
T0 = s.VariableArrayValue(s.SymbolNumber("T0", bearing_num - 25)) 
s.VariableArrayValue(s.SymbolNumber("Tflat")) = T0 
 
Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", bearing_num - 25)) 
 
simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time")) 
'MsgBox "The value of Simulation Time is " & simulation_time 
 
previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Previous 
Replacement Time")) 
'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time 
 
uptime_after_last_replacement = simulation_time - previous_replacement_time 
'MsgBox "The value of Uptime After Last Replacement Time is " & uptime_after_last_replacement 
 
ti = 2 
 
Do 
SiArray(ti) = s.VariableArrayValue(s.SymbolNumber("Signals26", ti / 2)) 
'MsgBox "SiArray(ti) " & SiArray(ti) 
 
LnSi(ti) = (Log(SiArray(ti)) / Log(e)) 
'MsgBox "LnSi(ti) is " & LnSi(ti) 
 
LiArray(ti) = LnSi(ti) - LnSi(ti - 2) 
'MsgBox "The Li is " & LiArray(ti) 
 
        K = ti / 2 
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        Sum_Li(ti) = Sum_Li(ti - 2) + LiArray(ti) 
        'MsgBox "The Sum_Li is " & Sum_Li(ti) 
         
        Sum_Lixti(ti) = Sum_Lixti(ti - 2) + (LiArray(ti) * ti) 
        Sum_ti(ti) = Sum_ti(ti - 2) + ti 
        Sum_ti_squared(ti) = Sum_ti_squared(ti - 2) + ti ^ 2 
                 
        MArray(ti) = (A * Sum_ti(ti) * Sqr(var_o) * Sqr(var_1)) - (corr_o * var_err) 
        'MsgBox "The M is " & MArray(ti) 
         
        XArray(ti) = K * A * var_o + var_err 
        'MsgBox "The X is " & XArray(ti) 
         
        YArray(ti) = A * Sum_ti_squared(ti) * var_1 + var_err 
        'MsgBox "The Y is " & YArray(ti) 
         
    'Calculate Posteriors 
        var_xArray(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
        'MsgBox "The var_x is " & var_xArray(ti) 
         
        var_yArray(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
        'MsgBox "The var_y is " & var_yArray(ti) 
 
        mu_xArray(ti) = ((LiArray(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 2 * 
(var_1 * Sum_Li(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 * 2) 
        'MsgBox "The mu_x is " & mu_xArray(ti) 
         
        mu_yArray(ti) = ((var_1 * Sum_Li(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * (LiArray(2) 
* var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 * 2) 
        'MsgBox "The mu_y is " & mu_yArray(ti) 
        
        RhoArray(ti) = (-1 * Sqr(var_o) * Sqr(var_1) * Sqr(2)) / (Sqr((var_o + var_err * 2) * (var_1 * ti + 
var_err))) 
        'MsgBox "The Rho is " & RhoArray(ti) 
  
 ti = ti + 2 
 
 
Loop Until ti = Num_signal 
 
'Calculate CDF Arrays 
row_counter = 13 
 
t_now = uptime_after_last_replacement 
s.VariableArrayValue(s.SymbolNumber("t_k")) = t_now 
 
tk = 2 
 
If t_now >= 2 Then 
  
    Do 
     
    'MsgBox "t_now = " & t_now 
    'MsgBox "tk = " & tk 
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    mu_tildaArray(tk, t_now) = LnSi(t_now) + (mu_yArray(t_now) * tk) 
    'MsgBox "The mu_tilda is " & mu_tildaArray(tk, t_now) 
     
    var_tildaArray(tk, t_now) = var_yArray(t_now) * tk ^ 2 + var_err * tk 
    'MsgBox "The var_tilda is " & var_tildaArray(tk, t_now) 
     
    'For Nagi's Model - No shift 
    CDFArray(tk, t_now) = Cumnorm((mu_tildaArray(tk, t_now) - D) / (Sqr(var_tildaArray(tk, t_now)))) 
    'MsgBox "The CDF is " & CDFArray(tk, t_now)     
 
    If tk = 2 Then 
        Sum_1_minus_CDF(tk, t_now) = (1 - CDFArray(tk, t_now)) 
        'MsgBox "The Sum_1_minus_CDF is " & Sum_1_minus_CDF(tk, t_now) 
         
    Else 
        Sum_1_minus_CDF(tk, t_now) = Sum_1_minus_CDF(tk - 2, t_now) + (1 - CDFArray(tk, t_now)) 
        'MsgBox "The Sum_1_minus_CDF is " & Sum_1_minus_CDF(tk, t_now) 
    End If 
 
    Replacement_Cost(tk, t_now) = (Cf * CDFArray(tk, t_now) + Cr * (1 - CDFArray(tk, t_now))) / (t_now 
+ ((Sum_1_minus_CDF(tk, t_now)) * 2)) 
    'MsgBox "The Replacement Cost for 1 is " & Replacement_Cost(tk, t_now) 
 
    tk = tk + 2 
    Loop Until tk = 1900 
     
Else 
 
    predicted_failure_time = t_now 
 
End If 
 
t_down = 0 
stop_median = 0 
MsgBox "CDFArray1 on top row is " & CDFArray(2, t_now) 
 
If CDFArray(2, t_now) >= (1 - desired_reliability) Then 
     
     
    If CDFArray(2, t_now) >= 0.5 Then 
        t_median = 0 
        'MsgBox "t_median = 0" 
         
    Else 
     
        Do 
            t_down = t_down + 2 
            'MsgBox "CDFArray going down is " & CDFArray(t_down, t_reliability) 
             
            If CDFArray(t_down, t_now) >= 0.5 Then 
     
                stop_median = 1 
         
            End If 
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        Loop Until stop_median = 1 
 
    t_median = t_down 
    MsgBox "t_median = " & t_median 
     
    End If 
     
    predicted_failure_time = T0 + t_now + t_median 
     
    stop_update_time = T0 + t_now 
    'MsgBox "We stopped updating 26 at " & stop_update_time 
     
    s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Threshold")) = 1 
    s.VariableArrayValue(s.SymbolNumber("Work Cell 1 Predicted Failure Time")) = 
predicted_failure_time 
    'MsgBox "The Predicted Failure is " & predicted_failure_time 
     
'******************Calculate Failure Time************************************* 
tw = 0 
 
Do 
    tw = tw + 2 
    WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta 
Loop Until tw = 1998 
 
tw = 0 
 
Do 
    tw = tw + 2 
    WeibullCondCDF(tw) = (WeibullCDF(T0 + t_now + tw) - WeibullCDF(T0 + t_now)) / (1 - 
WeibullCDF(T0 + t_now)) 
Loop Until (WeibullCondCDF(tw) >= 0.632) 
 
ThetaCond = tw 
'MsgBox "ThetaCond is " & ThetaCond 
 
Do 
    tw = tw + 2 
    WeibullCondCDF(tw) = (WeibullCDF(T0 + t_now + tw) - WeibullCDF(T0 + t_now)) / (1 - 
WeibullCDF(T0 + t_now)) 
Loop Until (WeibullCondCDF(tw) >= 0.99999) 
 
'MsgBox "t0 is " & T0 
'MsgBox "t_now is " & t_now 
'MsgBox "weibullcondcdf(t0+t_now) is " & WeibullCondCDF(T0 + t_now) 
 
BetaCond = LN(LN(1 / (1 - WeibullCondCDF(T0 + t_now)))) / (LN(T0 + t_now) - LN(ThetaCond)) 
'MsgBox "BetaCond is " & BetaCond 
 
s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond 
s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond 
 
'***************************************************************************** 
     
End If 
End Sub 
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B.3. PM Policy Code Used in Section 4.4.2.1.2 

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf 
Function Cumnorm(X As Double) As Double 
XAbs = Abs(X) 
If XAbs > 37 Then 
Cumnorm = 0 
Else 
Exponential = Exp(-XAbs ^ 2 / 2) 
If XAbs < 7.07106781186547 Then 
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 
Build = Build * XAbs + 6.37396220353165 
Build = Build * XAbs + 33.912866078383 
Build = Build * XAbs + 112.079291497871 
Build = Build * XAbs + 221.213596169931 
Build = Build * XAbs + 220.206867912376 
Cumnorm = Exponential * Build 
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 
Build = Build * XAbs + 16.064177579207 
Build = Build * XAbs + 86.7807322029461 
Build = Build * XAbs + 296.564248779674 
Build = Build * XAbs + 637.333633378831 
Build = Build * XAbs + 793.826512519948 
Build = Build * XAbs + 440.413735824752 
Cumnorm = Cumnorm / Build 
Else 
Build = XAbs + 0.65 
Build = XAbs + 4 / Build 
Build = XAbs + 3 / Build 
Build = XAbs + 2 / Build 
Build = XAbs + 1 / Build 
Cumnorm = Exponential / Build / 2.506628274631 
End If 
End If 
If X > 0 Then Cumnorm = 1 - Cumnorm 
End Function 
 
'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html 
Function nc(X) As Double 
Dim A(1 To 5) As Double 
If X < -7 Then 
    nc = ndf(X) / Sqr(1 + X * X) 
ElseIf X > 7 Then 
    nc = 1 - nc(-X) 
Else 
nc = 0.2316419 
A(1) = 0.31938153 
A(2) = -0.356563782 
A(3) = 1.781477937 
A(4) = -1.821255978 
A(5) = 1.330274429 
nc = 1 / (1 + nc * Abs(X)) 
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5) 
If (X <= 0) Then nc = 1 - nc 
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End If 
End Function 
 
Function ndf(X) As Double 
    ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi) 
End Function 
 
Function LN(X As Double) As Double 
 
e = 2.71828183 
LN = Log(X) / Log(e) 
 
End Function 
 
Function T0(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
T0 = s.VariableArrayValue(s.SymbolNumber("T0", X - 25)) 
 
End Function 
 
Function Num_signal(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25)) 
 
End Function 
 
Function actual_failure_time(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
actual_failure_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25)) 
 
End Function 
 
Function SiArray(X, Y) As Double 
'X is bearing number 
'Y is ti 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
If X = 26 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals26", Y)) 
Else 
If X = 27 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals27", Y)) 
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Else 
If X = 28 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals28", Y)) 
Else 
If X = 29 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals29", Y)) 
Else 
If X = 30 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals30", Y)) 
Else 
If X = 31 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals31", Y)) 
Else 
If X = 32 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals32", Y)) 
Else 
If X = 33 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals33", Y)) 
Else 
If X = 34 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals34", Y)) 
Else 
If X = 35 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals35", Y)) 
Else 
If X = 36 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals36", Y)) 
Else 
If X = 37 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals37", Y)) 
Else 
 
If X = 38 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals38", Y)) 
Else 
If X = 39 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals39", Y)) 
Else 
If X = 40 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals40", Y)) 
Else 
If X = 41 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals41", Y)) 
Else 
If X = 42 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals42", Y)) 
Else 
If X = 43 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals43", Y)) 
Else 
If X = 44 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals44", Y)) 
Else 
If X = 45 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals45", Y)) 
Else 
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If X = 46 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals46", Y)) 
Else 
If X = 47 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals47", Y)) 
Else 
If X = 48 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals48", Y)) 
Else 
If X = 49 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals49", Y)) 
Else 
If X = 50 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals50", Y)) 
Else 
 
If X = 51 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals51", Y)) 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
 
End Function 
 
Static Sub VBA_Block_1_Fire() 
 
desired_reliability = 0.95 
 
Dim e As Double 
Dim Cf As Double 
Dim Cr As Double 
Dim Theta As Double 
Dim Beta As Double 
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Dim ThetaCond As Double 
Dim BetaCond As Double 
Dim uptime_after_last_replacement As Double 
Dim bearing_1 As Integer 
Dim bearing_2 As Integer 
Dim bearing_3 As Integer 
Dim bearing_4 As Integer 
Dim bearing_5 As Integer 
 
Dim var_xArray_1(1999) As Double 
Dim var_xArray_2(1999) As Double 
Dim var_xArray_3(1999) As Double 
Dim var_xArray_4(1999) As Double 
Dim var_xArray_5(1999) As Double 
 
Dim var_yArray_1(1999) As Double 
Dim var_yArray_2(1999) As Double 
Dim var_yArray_3(1999) As Double 
Dim var_yArray_4(1999) As Double 
Dim var_yArray_5(1999) As Double 
 
Dim mu_xArray_1(1999) As Double 
Dim mu_xArray_2(1999) As Double 
Dim mu_xArray_3(1999) As Double 
Dim mu_xArray_4(1999) As Double 
Dim mu_xArray_5(1999) As Double 
 
Dim mu_yArray_1(1999) As Double 
Dim mu_yArray_2(1999) As Double 
Dim mu_yArray_3(1999) As Double 
Dim mu_yArray_4(1999) As Double 
Dim mu_yArray_5(1999) As Double 
 
Dim SiArray_1(1999) As Double 
Dim SiArray_2(1999) As Double 
Dim SiArray_3(1999) As Double 
Dim SiArray_4(1999) As Double 
Dim SiArray_5(1999) As Double 
 
Dim LiArray_1(1999) As Double 
Dim LiArray_2(1999) As Double 
Dim LiArray_3(1999) As Double 
Dim LiArray_4(1999) As Double 
Dim LiArray_5(1999) As Double 
 
Dim Sum_Li_1(1999) As Double 
Dim Sum_Li_2(1999) As Double 
Dim Sum_Li_3(1999) As Double 
Dim Sum_Li_4(1999) As Double 
Dim Sum_Li_5(1999) As Double 
 
Dim LnSi_1(1999) As Double 
Dim LnSi_2(1999) As Double 
Dim LnSi_3(1999) As Double 
Dim LnSi_4(1999) As Double 
Dim LnSi_5(1999) As Double 
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Dim T0_1 As Double 
Dim T0_2 As Double 
Dim T0_3 As Double 
Dim T0_4 As Double 
Dim T0_5 As Double 
 
Dim Num_signal_1 As Double 
Dim Num_signal_2 As Double 
Dim Num_signal_3 As Double 
Dim Num_signal_4 As Double 
Dim Num_signal_5 As Double 
 
Dim CDFArray_1(1999, 1999) As Double 
Dim CDFArray_2(1999, 1999) As Double 
Dim CDFArray_3(1999, 1999) As Double 
Dim CDFArray_4(1999, 1999) As Double 
Dim CDFArray_5(1999, 1999) As Double 
 
Dim mu_tildaArray_1(1999, 1999) As Double 
Dim mu_tildaArray_2(1999, 1999) As Double 
Dim mu_tildaArray_3(1999, 1999) As Double 
Dim mu_tildaArray_4(1999, 1999) As Double 
Dim mu_tildaArray_5(1999, 1999) As Double 
 
Dim var_tildaArray_1(1999, 1999) As Double 
Dim var_tildaArray_2(1999, 1999) As Double 
Dim var_tildaArray_3(1999, 1999) As Double 
Dim var_tildaArray_4(1999, 1999) As Double 
Dim var_tildaArray_5(1999, 1999) As Double 
 
Dim Reliability_1(1999, 1999) As Double 
Dim Reliability_2(1999, 1999) As Double 
Dim Reliability_3(1999, 1999) As Double 
Dim Reliability_4(1999, 1999) As Double 
Dim Reliability_5(1999, 1999) As Double 
 
Dim SystemRel(1999, 1999) As Double 
 
Dim WeibullCDF(1999) As Double 
Dim WeibullCondCDF(1999) As Double 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
e = 2.71828183 
D = Log(0.025) / Log(e) 
 
mu_o = -6.031235 
mu_1 = 0.008061 
var_o = 0.34648893 
var_1 = 0.0000103 
var_err = 0.007348 
corr_o = -0.362538 
A = 1 - (corr_o) ^ 2 
Theta = 784.74619 
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Beta = 3.05485 
Cf = 750 
Cr = 50 
 
bearing_1 = s.VariableArrayValue(s.SymbolNumber("bearing_1")) 
bearing_2 = s.VariableArrayValue(s.SymbolNumber("bearing_2")) 
bearing_3 = s.VariableArrayValue(s.SymbolNumber("bearing_3")) 
bearing_4 = s.VariableArrayValue(s.SymbolNumber("bearing_4")) 
bearing_5 = s.VariableArrayValue(s.SymbolNumber("bearing_5")) 
 
'Read in Tflats, Num_signals, actual_failure_times 
 
    T0_1 = T0(bearing_1) 
    T0_2 = T0(bearing_2) 
    T0_3 = T0(bearing_3) 
    T0_4 = T0(bearing_4) 
    T0_5 = T0(bearing_5) 
     
    Num_signal_1 = Num_signal(bearing_1) 
    Num_signal_2 = Num_signal(bearing_2) 
    Num_signal_3 = Num_signal(bearing_3) 
    Num_signal_4 = Num_signal(bearing_4) 
    Num_signal_5 = Num_signal(bearing_5) 
     
    actual_failure_time_1 = actual_failure_time(bearing_1) 
    actual_failure_time_2 = actual_failure_time(bearing_2) 
    actual_failure_time_3 = actual_failure_time(bearing_3) 
    actual_failure_time_4 = actual_failure_time(bearing_4) 
    actual_failure_time_5 = actual_failure_time(bearing_5) 
     
'Read in simulation information 
    simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time")) 
    'MsgBox "The value of Simulation Time is " & simulation_time 
 
    previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("previous_replacement_time")) 
    'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time 
 
    uptime_after_last_replacement = simulation_time - previous_replacement_time 
    s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement")) = 
uptime_after_last_replacement 
    'MsgBox "The value of Uptime After Last Replacement Time is " & uptime_after_last_replacement 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 1 is ready for updating 
    If uptime_after_last_replacement > T0_1 Then 
 
            If uptime_after_last_replacement <= T0_1 + 3.5 Then 
                begin_update_time_1 = uptime_after_last_replacement 
                'MsgBox "1 Begin UPDATING" 
            End If 
 
        t_signal_1 = uptime_after_last_replacement + 2 - begin_update_time_1 
     
        ti = 2 
        Do 
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'Read in Signal 
            SiArray_1(ti) = SiArray(bearing_1, ti / 2) 
            LnSi_1(ti) = (Log(SiArray_1(ti)) / Log(e)) 
            LiArray_1(ti) = LnSi_1(ti) - LnSi_1(ti - 2) 
            Sum_Li_1(ti) = Sum_Li_1(ti - 2) + LiArray_1(ti) 
 
'Calculate Posteriors 
            var_xArray_1(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_1(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_1(ti) = ((LiArray_1(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_1(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_1(ti) = ((var_1 * Sum_Li_1(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_1(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
             
            ti = ti + 2 
             
        Loop Until ti = Num_signal_1 
         
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_1(tk, t_signal_1) = LnSi_1(t_signal_1) + (mu_yArray_1(t_signal_1) * tk) 
                'MsgBox "The mu_tilda_1 is " & mu_tildaArray_1(tk, t_signal_1) 
            var_tildaArray_1(tk, t_signal_1) = var_yArray_1(t_signal_1) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_1 is " & var_tildaArray_1(tk, t_signal_1) 
            CDFArray_1(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_1(tk, t_signal_1) - 
D) / (Sqr(var_tildaArray_1(tk, t_signal_1)))) 
                'MsgBox "The CDF_1 is " & CDFArray_1(tk, t_signal_1) 
            Reliability_1(tk, uptime_after_last_replacement) = 1 - CDFArray_1(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
         
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_1 Then 
            tk = 2 
            Do 
                Reliability_1(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_1")) = 1 
            'MsgBox "sudden failure 1 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
     
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
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            Reliability_1(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
     
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 2 is ready for updating 
    If uptime_after_last_replacement > T0_2 Then 
 
            If uptime_after_last_replacement <= T0_2 + 3.5 Then 
                begin_update_time_2 = uptime_after_last_replacement 
                'MsgBox "Begin UPDATING 2" 
            End If 
     
        t_signal_2 = uptime_after_last_replacement + 2 - begin_update_time_2 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_2(ti) = SiArray(bearing_2, ti / 2) 
            LnSi_2(ti) = (Log(SiArray_2(ti)) / Log(e)) 
            LiArray_2(ti) = LnSi_2(ti) - LnSi_2(ti - 2) 
            Sum_Li_2(ti) = Sum_Li_2(ti - 2) + LiArray_2(ti) 
 
'Calculate Posteriors 
            var_xArray_2(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_2(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_2(ti) = ((LiArray_2(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_2(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_2(ti) = ((var_1 * Sum_Li_2(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_2(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
 
            ti = ti + 2 
 
        Loop Until ti = Num_signal_2 
 
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_2(tk, t_signal_2) = LnSi_2(t_signal_2) + (mu_yArray_2(t_signal_2) * tk) 
                'MsgBox "The mu_tilda_2 is " & mu_tildaArray_2(tk, t_signal_2) 
            var_tildaArray_2(tk, t_signal_2) = var_yArray_2(t_signal_2) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_2 is " & var_tildaArray_2(tk, t_signal_2) 
            CDFArray_2(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_2(tk, t_signal_2) - 
D) / (Sqr(var_tildaArray_2(tk, t_signal_2)))) 
                'MsgBox "The CDF_2 is " & CDFArray_2(tk, t_signal_2) 
            Reliability_2(tk, uptime_after_last_replacement) = 1 - CDFArray_2(tk, 
uptime_after_last_replacement) 



 

 

133

             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
 
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_2 Then 
            tk = 2 
            Do 
                Reliability_2(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_2")) = 1 
            'MsgBox "sudden failure 2 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
         
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_2(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 3 is ready for updating 
    If uptime_after_last_replacement > T0_3 Then 
 
            If uptime_after_last_replacement <= T0_3 + 3.5 Then 
                begin_update_time_3 = uptime_after_last_replacement 
                'MsgBox "3 Begin UPDATING" 
            End If 
     
        t_signal_3 = uptime_after_last_replacement + 2 - begin_update_time_3 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_3(ti) = SiArray(bearing_3, ti / 2) 
            LnSi_3(ti) = (Log(SiArray_3(ti)) / Log(e)) 
            LiArray_3(ti) = LnSi_3(ti) - LnSi_3(ti - 2) 
            Sum_Li_3(ti) = Sum_Li_3(ti - 2) + LiArray_3(ti) 
 
'Calculate Posteriors 
            var_xArray_3(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_3(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
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            mu_xArray_3(ti) = ((LiArray_3(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_3(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_3(ti) = ((var_1 * Sum_Li_3(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_3(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
             
            ti = ti + 2 
             
        Loop Until ti = Num_signal_3 
 
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_3(tk, t_signal_3) = LnSi_3(t_signal_3) + (mu_yArray_3(t_signal_3) * tk) 
                'MsgBox "The mu_tilda_3 is " & mu_tildaArray_3(tk, t_signal_3) 
            var_tildaArray_3(tk, t_signal_3) = var_yArray_3(t_signal_3) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_3 is " & var_tildaArray_3(tk, t_signal_3) 
            CDFArray_3(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_3(tk, t_signal_3) - 
D) / (Sqr(var_tildaArray_3(tk, t_signal_3)))) 
                'MsgBox "The CDF_3 is " & CDFArray_3(tk, t_signal_3) 
            Reliability_3(tk, uptime_after_last_replacement) = 1 - CDFArray_3(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
         
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_3 Then 
            tk = 2 
            Do 
                Reliability_3(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_3")) = 1 
            'MsgBox "sudden failure 3 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
     
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_3(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 4 is ready for updating 
    If uptime_after_last_replacement > T0_4 Then 
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            If uptime_after_last_replacement <= T0_4 + 3.5 Then 
                begin_update_time_4 = uptime_after_last_replacement 
                'MsgBox "Begin UPDATING 4" 
            End If 
     
        t_signal_4 = uptime_after_last_replacement + 2 - begin_update_time_4 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_4(ti) = SiArray(bearing_4, ti / 2) 
            LnSi_4(ti) = (Log(SiArray_4(ti)) / Log(e)) 
            LiArray_4(ti) = LnSi_4(ti) - LnSi_4(ti - 2) 
            Sum_Li_4(ti) = Sum_Li_4(ti - 2) + LiArray_4(ti) 
 
'Calculate Posteriors 
            var_xArray_4(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_4(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_4(ti) = ((LiArray_4(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_4(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_4(ti) = ((var_1 * Sum_Li_4(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_4(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
 
            ti = ti + 2 
             
        Loop Until ti = Num_signal_4 
 
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_4(tk, t_signal_4) = LnSi_4(t_signal_4) + (mu_yArray_4(t_signal_4) * tk) 
                'MsgBox "The mu_tilda_4 is " & mu_tildaArray_4(tk, t_signal_4) 
            var_tildaArray_4(tk, t_signal_4) = var_yArray_4(t_signal_4) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_4 is " & var_tildaArray_4(tk, t_signal_4) 
            CDFArray_4(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_4(tk, t_signal_4) - 
D) / (Sqr(var_tildaArray_4(tk, t_signal_4)))) 
                'MsgBox "The CDF_4 is " & CDFArray_4(tk, t_signal_4) 
            Reliability_4(tk, uptime_after_last_replacement) = 1 - CDFArray_4(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
            
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_4 Then 
            tk = 2 
            Do 
                Reliability_4(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
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            s.VariableArrayValue(s.SymbolNumber("sudden_fail_4")) = 1 
            'MsgBox "sudden failure 4 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
 
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_4(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 5 is ready for updating 
    If uptime_after_last_replacement > T0_5 Then 
 
            If uptime_after_last_replacement <= T0_5 + 3.5 Then 
                begin_update_time_5 = uptime_after_last_replacement 
                'MsgBox "5 Begin UPDATING" 
            End If 
     
        t_signal_5 = uptime_after_last_replacement + 2 - begin_update_time_5 
        'MsgBox "t_signal_5 is " & t_signal_5 
         
        ti = 2 
        Do 
         
    'Read in Signal 
            SiArray_5(ti) = SiArray(bearing_5, ti / 2) 
            LnSi_5(ti) = (Log(SiArray_5(ti)) / Log(e)) 
            LiArray_5(ti) = LnSi_5(ti) - LnSi_5(ti - 2) 
            Sum_Li_5(ti) = Sum_Li_5(ti - 2) + LiArray_5(ti) 
 
    'Calculate Posteriors 
            var_xArray_5(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_5(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_5(ti) = ((LiArray_5(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_5(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_5(ti) = ((var_1 * Sum_Li_5(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_5(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
 
            ti = ti + 2 
             
        Loop Until ti = Num_signal_5 
 
    'Calculate CDF 
        tk = 2 
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        Do 
            mu_tildaArray_5(tk, t_signal_5) = LnSi_5(t_signal_5) + (mu_yArray_5(t_signal_5) * tk) 
                'MsgBox "The mu_tilda_5 is " & mu_tildaArray_5(tk, t_signal_5) 
            var_tildaArray_5(tk, t_signal_5) = var_yArray_5(t_signal_5) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_5 is " & var_tildaArray_5(tk, t_signal_5) 
            CDFArray_5(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_5(tk, t_signal_5) - 
D) / (Sqr(var_tildaArray_5(tk, t_signal_5)))) 
                'MsgBox "The CDF_5 is " & CDFArray_5(tk, t_signal_5) 
            Reliability_5(tk, uptime_after_last_replacement) = 1 - CDFArray_5(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
         
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_5 Then 
            tk = 2 
            Do 
                Reliability_5(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
                 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_5")) = 1 
            'MsgBox "sudden failure 5 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
 
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_5(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Compute System Reliability for bearings 26,27,28,29,30 
 
    tk = 2 
     
    Do 
     
        SystemRel(tk, uptime_after_last_replacement) = (1 - (1 - Reliability_1(tk, 
uptime_after_last_replacement)) * (1 - Reliability_2(tk, uptime_after_last_replacement))) * (1 - (1 - 
Reliability_4(tk, uptime_after_last_replacement)) * (1 - Reliability_5(tk, uptime_after_last_replacement))) 
* Reliability_3(tk, uptime_after_last_replacement) 
         
        tk = tk + 2 
         
    Loop Until tk = 1900 
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    t_down = 2 
    stop_median = 0 
 
    If SystemRel(2, uptime_after_last_replacement) <= (desired_reliability) Then 
        If SystemRel(2, uptime_after_last_replacement) <= 0.5 Then 
            t_median = 0 
        Else 
            Do 
                If SystemRel(t_down, uptime_after_last_replacement) <= 0.5 Then 
                        stop_median = 1 
                End If 
             
                t_down = t_down + 2 
             
            Loop Until stop_median = 1 
         
        t_median = t_down 
         
        End If 
         
        predicted_failure_time = uptime_after_last_replacement + t_median 
        'MsgBox "t_median is " & t_median 
         'MsgBox "Predicted fail time is " & predicted_failure_time 
         
        s.VariableArrayValue(s.SymbolNumber("prediction")) = 1 
        s.VariableArrayValue(s.SymbolNumber("predicted_failure_time")) = predicted_failure_time 
         
        '******************Calculate Failure Time************************************* 
        tw = 0 
         
        Do 
            tw = tw + 2 
            WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta 
             
        Loop Until tw = 1998 
         
        tw = 0 
        Do 
            tw = tw + 2 
            WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) - 
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement)) 
         
        Loop Until (WeibullCondCDF(tw) >= 0.632) 
        ThetaCond = tw 
         
        Do 
            tw = tw + 2 
            WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) - 
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement)) 
             
        Loop Until (WeibullCondCDF(tw) >= 0.99999) 
        'MsgBox "weibullcondcdf(uptime_after_last_replacement) is " & 
WeibullCondCDF(uptime_after_last_replacement) 
         
        BetaCond = LN(LN(1 / (1 - WeibullCondCDF(uptime_after_last_replacement)))) / 
(LN(uptime_after_last_replacement) - LN(ThetaCond)) 
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        'MsgBox "BetaCond is " & BetaCond 
         
        s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond 
        s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond 
        '***************************************************************************** 
     
    End If 
 
End Sub 
 

B.4. DM Policy Code Used in Section 4.4.2.1.3 

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf 
Function Cumnorm(X As Double) As Double 
XAbs = Abs(X) 
If XAbs > 37 Then 
Cumnorm = 0 
Else 
Exponential = Exp(-XAbs ^ 2 / 2) 
If XAbs < 7.07106781186547 Then 
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 
Build = Build * XAbs + 6.37396220353165 
Build = Build * XAbs + 33.912866078383 
Build = Build * XAbs + 112.079291497871 
Build = Build * XAbs + 221.213596169931 
Build = Build * XAbs + 220.206867912376 
Cumnorm = Exponential * Build 
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 
Build = Build * XAbs + 16.064177579207 
Build = Build * XAbs + 86.7807322029461 
Build = Build * XAbs + 296.564248779674 
Build = Build * XAbs + 637.333633378831 
Build = Build * XAbs + 793.826512519948 
Build = Build * XAbs + 440.413735824752 
Cumnorm = Cumnorm / Build 
Else 
Build = XAbs + 0.65 
Build = XAbs + 4 / Build 
Build = XAbs + 3 / Build 
Build = XAbs + 2 / Build 
Build = XAbs + 1 / Build 
Cumnorm = Exponential / Build / 2.506628274631 
End If 
End If 
If X > 0 Then Cumnorm = 1 - Cumnorm 
End Function 
 
'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html 
Function nc(X) As Double 
Dim A(1 To 5) As Double 
If X < -7 Then 
    nc = ndf(X) / Sqr(1 + X * X) 
ElseIf X > 7 Then 
    nc = 1 - nc(-X) 
Else 
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nc = 0.2316419 
A(1) = 0.31938153 
A(2) = -0.356563782 
A(3) = 1.781477937 
A(4) = -1.821255978 
A(5) = 1.330274429 
nc = 1 / (1 + nc * Abs(X)) 
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5) 
If (X <= 0) Then nc = 1 - nc 
End If 
End Function 
 
Function ndf(X) As Double 
    ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi) 
End Function 
 
Function LN(X As Double) As Double 
 
e = 2.71828183 
LN = Log(X) / Log(e) 
 
End Function 
 
Function T0(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
T0 = s.VariableArrayValue(s.SymbolNumber("T0", X - 25)) 
 
End Function 
 
Function Num_signal(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
Num_signal = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25)) 
 
End Function 
 
Function actual_failure_time(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
actual_failure_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25)) 
 
End Function 
 
Function SiArray(X, Y) As Double 
'X is bearing number 
'Y is ti 
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Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
If X = 26 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals26", Y)) 
Else 
If X = 27 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals27", Y)) 
Else 
If X = 28 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals28", Y)) 
Else 
If X = 29 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals29", Y)) 
Else 
If X = 30 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals30", Y)) 
Else 
If X = 31 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals31", Y)) 
Else 
If X = 32 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals32", Y)) 
Else 
If X = 33 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals33", Y)) 
Else 
If X = 34 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals34", Y)) 
Else 
If X = 35 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals35", Y)) 
Else 
If X = 36 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals36", Y)) 
Else 
If X = 37 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals37", Y)) 
Else 
 
If X = 38 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals38", Y)) 
Else 
If X = 39 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals39", Y)) 
Else 
If X = 40 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals40", Y)) 
Else 
If X = 41 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals41", Y)) 
Else 
If X = 42 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals42", Y)) 
Else 
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If X = 43 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals43", Y)) 
Else 
If X = 44 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals44", Y)) 
Else 
If X = 45 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals45", Y)) 
Else 
If X = 46 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals46", Y)) 
Else 
If X = 47 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals47", Y)) 
Else 
If X = 48 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals48", Y)) 
Else 
If X = 49 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals49", Y)) 
Else 
If X = 50 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals50", Y)) 
Else 
 
If X = 51 Then 
    SiArray = s.VariableArrayValue(s.SymbolNumber("Signals51", Y)) 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
 
End Function 
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Static Sub VBA_Block_1_Fire() 
 
desired_reliability = 0.9 
 
Dim e As Double 
Dim Cf As Double 
Dim Cr As Double 
Dim Theta As Double 
Dim Beta As Double 
Dim ThetaCond As Double 
Dim BetaCond As Double 
Dim uptime_after_last_replacement As Double 
Dim bearing_1 As Integer 
Dim bearing_2 As Integer 
Dim bearing_3 As Integer 
Dim bearing_4 As Integer 
Dim bearing_5 As Integer 
 
Dim var_xArray_1(1999) As Double 
Dim var_xArray_2(1999) As Double 
Dim var_xArray_3(1999) As Double 
Dim var_xArray_4(1999) As Double 
Dim var_xArray_5(1999) As Double 
 
Dim var_yArray_1(1999) As Double 
Dim var_yArray_2(1999) As Double 
Dim var_yArray_3(1999) As Double 
Dim var_yArray_4(1999) As Double 
Dim var_yArray_5(1999) As Double 
 
Dim mu_xArray_1(1999) As Double 
Dim mu_xArray_2(1999) As Double 
Dim mu_xArray_3(1999) As Double 
Dim mu_xArray_4(1999) As Double 
Dim mu_xArray_5(1999) As Double 
 
Dim mu_yArray_1(1999) As Double 
Dim mu_yArray_2(1999) As Double 
Dim mu_yArray_3(1999) As Double 
Dim mu_yArray_4(1999) As Double 
Dim mu_yArray_5(1999) As Double 
 
Dim SiArray_1(1999) As Double 
Dim SiArray_2(1999) As Double 
Dim SiArray_3(1999) As Double 
Dim SiArray_4(1999) As Double 
Dim SiArray_5(1999) As Double 
 
Dim LiArray_1(1999) As Double 
Dim LiArray_2(1999) As Double 
Dim LiArray_3(1999) As Double 
Dim LiArray_4(1999) As Double 
Dim LiArray_5(1999) As Double 
 
Dim Sum_Li_1(1999) As Double 
Dim Sum_Li_2(1999) As Double 
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Dim Sum_Li_3(1999) As Double 
Dim Sum_Li_4(1999) As Double 
Dim Sum_Li_5(1999) As Double 
 
Dim LnSi_1(1999) As Double 
Dim LnSi_2(1999) As Double 
Dim LnSi_3(1999) As Double 
Dim LnSi_4(1999) As Double 
Dim LnSi_5(1999) As Double 
 
Dim T0_1 As Double 
Dim T0_2 As Double 
Dim T0_3 As Double 
Dim T0_4 As Double 
Dim T0_5 As Double 
 
Dim Num_signal_1 As Double 
Dim Num_signal_2 As Double 
Dim Num_signal_3 As Double 
Dim Num_signal_4 As Double 
Dim Num_signal_5 As Double 
 
Dim CDFArray_1(1999, 1999) As Double 
Dim CDFArray_2(1999, 1999) As Double 
Dim CDFArray_3(1999, 1999) As Double 
Dim CDFArray_4(1999, 1999) As Double 
Dim CDFArray_5(1999, 1999) As Double 
 
Dim mu_tildaArray_1(1999, 1999) As Double 
Dim mu_tildaArray_2(1999, 1999) As Double 
Dim mu_tildaArray_3(1999, 1999) As Double 
Dim mu_tildaArray_4(1999, 1999) As Double 
Dim mu_tildaArray_5(1999, 1999) As Double 
 
Dim var_tildaArray_1(1999, 1999) As Double 
Dim var_tildaArray_2(1999, 1999) As Double 
Dim var_tildaArray_3(1999, 1999) As Double 
Dim var_tildaArray_4(1999, 1999) As Double 
Dim var_tildaArray_5(1999, 1999) As Double 
 
Dim Reliability_1(1999, 1999) As Double 
Dim Reliability_2(1999, 1999) As Double 
Dim Reliability_3(1999, 1999) As Double 
Dim Reliability_4(1999, 1999) As Double 
Dim Reliability_5(1999, 1999) As Double 
 
Dim SystemRel(1999, 1999) As Double 
 
Dim WeibullCDF(1999) As Double 
Dim WeibullCondCDF(1999) As Double 
 
 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
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e = 2.71828183 
D = Log(0.025) / Log(e) 
 
mu_o = -6.031235 
mu_1 = 0.008061 
var_o = 0.34648893 
var_1 = 0.0000103 
var_err = 0.007348 
corr_o = -0.362538 
A = 1 - (corr_o) ^ 2 
Theta = 784.74619 
Beta = 3.05485 
Cf = 750 
Cr = 50 
 
'bearing_1 = 26 
'bearing_2 = 27 
'bearing_3 = 28 
'bearing_4 = 29 
'bearing_5 = 30 
 
bearing_1 = s.VariableArrayValue(s.SymbolNumber("bearing_1")) 
bearing_2 = s.VariableArrayValue(s.SymbolNumber("bearing_2")) 
bearing_3 = s.VariableArrayValue(s.SymbolNumber("bearing_3")) 
bearing_4 = s.VariableArrayValue(s.SymbolNumber("bearing_4")) 
bearing_5 = s.VariableArrayValue(s.SymbolNumber("bearing_5")) 
 
'MsgBox "bearing_1 is " & bearing_1 
'MsgBox "bearing_2 is " & bearing_2 
'MsgBox "bearing_3 is " & bearing_3 
'MsgBox "bearing_4 is " & bearing_4 
'MsgBox "bearing_5 is " & bearing_5 
 
'Read in Tflats, Num_signals, actual_failure_times 
 
    T0_1 = T0(bearing_1) 
    T0_2 = T0(bearing_2) 
    T0_3 = T0(bearing_3) 
    T0_4 = T0(bearing_4) 
    T0_5 = T0(bearing_5) 
    'MsgBox "T0_2 is " & T0_2 
     
    Num_signal_1 = Num_signal(bearing_1) 
    Num_signal_2 = Num_signal(bearing_2) 
    Num_signal_3 = Num_signal(bearing_3) 
    Num_signal_4 = Num_signal(bearing_4) 
    Num_signal_5 = Num_signal(bearing_5) 
    'MsgBox "Num_signal_5 is " & Num_signal_5 
     
    actual_failure_time_1 = actual_failure_time(bearing_1) 
    actual_failure_time_2 = actual_failure_time(bearing_2) 
    actual_failure_time_3 = actual_failure_time(bearing_3) 
    actual_failure_time_4 = actual_failure_time(bearing_4) 
    actual_failure_time_5 = actual_failure_time(bearing_5) 
    'MsgBox "actual_failure_time_3 is " & actual_failure_time_3 
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'Read in simulation information 
    simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time")) 
    'MsgBox "The value of Simulation Time is " & simulation_time 
 
    previous_replacement_time = s.VariableArrayValue(s.SymbolNumber("previous_replacement_time")) 
    'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time 
 
    uptime_after_last_replacement = simulation_time - previous_replacement_time 
    s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement")) = 
uptime_after_last_replacement 
    'MsgBox "The value of Uptime After Last Replacement Time is " & uptime_after_last_replacement 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 1 is ready for updating 
    If uptime_after_last_replacement > T0_1 Then 
 
            If uptime_after_last_replacement <= T0_1 + 3.5 Then 
                begin_update_time_1 = uptime_after_last_replacement 
                'MsgBox "1 Begin UPDATING" 
            End If 
     
        t_signal_1 = uptime_after_last_replacement + 2 - begin_update_time_1 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_1(ti) = SiArray(bearing_1, ti / 2) 
            LnSi_1(ti) = (Log(SiArray_1(ti)) / Log(e)) 
            LiArray_1(ti) = LnSi_1(ti) - LnSi_1(ti - 2) 
            Sum_Li_1(ti) = Sum_Li_1(ti - 2) + LiArray_1(ti) 
 
'Calculate Posteriors 
            var_xArray_1(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_1(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_1(ti) = ((LiArray_1(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_1(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_1(ti) = ((var_1 * Sum_Li_1(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_1(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
             
            ti = ti + 2 
             
        Loop Until ti = Num_signal_1 
         
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_1(tk, t_signal_1) = LnSi_1(t_signal_1) + (mu_yArray_1(t_signal_1) * tk) 
                'MsgBox "The mu_tilda_1 is " & mu_tildaArray_1(tk, t_signal_1) 
            var_tildaArray_1(tk, t_signal_1) = var_yArray_1(t_signal_1) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_1 is " & var_tildaArray_1(tk, t_signal_1) 
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            CDFArray_1(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_1(tk, t_signal_1) - 
D) / (Sqr(var_tildaArray_1(tk, t_signal_1)))) 
                'MsgBox "The CDF_1 is " & CDFArray_1(tk, t_signal_1) 
            Reliability_1(tk, uptime_after_last_replacement) = 1 - CDFArray_1(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
         
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_1 Then 
            tk = 2 
            Do 
                Reliability_1(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_1")) = 1 
            'MsgBox "sudden failure 1 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
     
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_1(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
     
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 2 is ready for updating 
    If uptime_after_last_replacement > T0_2 Then 
 
            If uptime_after_last_replacement <= T0_2 + 3.5 Then 
                begin_update_time_2 = uptime_after_last_replacement 
                'MsgBox "Begin UPDATING 2" 
            End If 
     
        t_signal_2 = uptime_after_last_replacement + 2 - begin_update_time_2 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_2(ti) = SiArray(bearing_2, ti / 2) 
            LnSi_2(ti) = (Log(SiArray_2(ti)) / Log(e)) 
            LiArray_2(ti) = LnSi_2(ti) - LnSi_2(ti - 2) 
            Sum_Li_2(ti) = Sum_Li_2(ti - 2) + LiArray_2(ti) 
 
'Calculate Posteriors 
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            var_xArray_2(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_2(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_2(ti) = ((LiArray_2(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_2(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_2(ti) = ((var_1 * Sum_Li_2(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_2(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
 
            ti = ti + 2 
 
        Loop Until ti = Num_signal_2 
 
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_2(tk, t_signal_2) = LnSi_2(t_signal_2) + (mu_yArray_2(t_signal_2) * tk) 
                'MsgBox "The mu_tilda_2 is " & mu_tildaArray_2(tk, t_signal_2) 
            var_tildaArray_2(tk, t_signal_2) = var_yArray_2(t_signal_2) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_2 is " & var_tildaArray_2(tk, t_signal_2) 
            CDFArray_2(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_2(tk, t_signal_2) - 
D) / (Sqr(var_tildaArray_2(tk, t_signal_2)))) 
                'MsgBox "The CDF_2 is " & CDFArray_2(tk, t_signal_2) 
            Reliability_2(tk, uptime_after_last_replacement) = 1 - CDFArray_2(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
 
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_2 Then 
            tk = 2 
            Do 
                Reliability_2(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_2")) = 1 
            'MsgBox "sudden failure 2 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
         
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_2(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
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'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 3 is ready for updating 
    If uptime_after_last_replacement > T0_3 Then 
 
            If uptime_after_last_replacement <= T0_3 + 3.5 Then 
                begin_update_time_3 = uptime_after_last_replacement 
                'MsgBox "3 Begin UPDATING" 
            End If 
     
        t_signal_3 = uptime_after_last_replacement + 2 - begin_update_time_3 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_3(ti) = SiArray(bearing_3, ti / 2) 
            LnSi_3(ti) = (Log(SiArray_3(ti)) / Log(e)) 
            LiArray_3(ti) = LnSi_3(ti) - LnSi_3(ti - 2) 
            Sum_Li_3(ti) = Sum_Li_3(ti - 2) + LiArray_3(ti) 
 
'Calculate Posteriors 
            var_xArray_3(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_3(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_3(ti) = ((LiArray_3(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_3(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_3(ti) = ((var_1 * Sum_Li_3(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_3(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
             
            ti = ti + 2 
             
        Loop Until ti = Num_signal_3 
 
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_3(tk, t_signal_3) = LnSi_3(t_signal_3) + (mu_yArray_3(t_signal_3) * tk) 
                'MsgBox "The mu_tilda_3 is " & mu_tildaArray_3(tk, t_signal_3) 
            var_tildaArray_3(tk, t_signal_3) = var_yArray_3(t_signal_3) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_3 is " & var_tildaArray_3(tk, t_signal_3) 
            CDFArray_3(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_3(tk, t_signal_3) - 
D) / (Sqr(var_tildaArray_3(tk, t_signal_3)))) 
                'MsgBox "The CDF_3 is " & CDFArray_3(tk, t_signal_3) 
            Reliability_3(tk, uptime_after_last_replacement) = 1 - CDFArray_3(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
         
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_3 Then 
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            tk = 2 
            Do 
                Reliability_3(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_3")) = 1 
            'MsgBox "sudden failure 3 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
     
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_3(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 4 is ready for updating 
    If uptime_after_last_replacement > T0_4 Then 
 
            If uptime_after_last_replacement <= T0_4 + 3.5 Then 
                begin_update_time_4 = uptime_after_last_replacement 
                'MsgBox "Begin UPDATING 4" 
            End If 
     
        t_signal_4 = uptime_after_last_replacement + 2 - begin_update_time_4 
     
        ti = 2 
        Do 
         
'Read in Signal 
            SiArray_4(ti) = SiArray(bearing_4, ti / 2) 
            LnSi_4(ti) = (Log(SiArray_4(ti)) / Log(e)) 
            LiArray_4(ti) = LnSi_4(ti) - LnSi_4(ti - 2) 
            Sum_Li_4(ti) = Sum_Li_4(ti - 2) + LiArray_4(ti) 
 
'Calculate Posteriors 
            var_xArray_4(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_4(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_4(ti) = ((LiArray_4(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_4(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_4(ti) = ((var_1 * Sum_Li_4(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_4(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
 
            ti = ti + 2 
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        Loop Until ti = Num_signal_4 
 
'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_4(tk, t_signal_4) = LnSi_4(t_signal_4) + (mu_yArray_4(t_signal_4) * tk) 
                'MsgBox "The mu_tilda_4 is " & mu_tildaArray_4(tk, t_signal_4) 
            var_tildaArray_4(tk, t_signal_4) = var_yArray_4(t_signal_4) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_4 is " & var_tildaArray_4(tk, t_signal_4) 
            CDFArray_4(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_4(tk, t_signal_4) - 
D) / (Sqr(var_tildaArray_4(tk, t_signal_4)))) 
                'MsgBox "The CDF_4 is " & CDFArray_4(tk, t_signal_4) 
            Reliability_4(tk, uptime_after_last_replacement) = 1 - CDFArray_4(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
            
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_4 Then 
            tk = 2 
            Do 
                Reliability_4(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_4")) = 1 
            'MsgBox "sudden failure 4 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
 
'Hasn't started updating... Reliability=1 
        tk = 2 
        Do 
            Reliability_4(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 5 is ready for updating 
    If uptime_after_last_replacement > T0_5 Then 
 
            If uptime_after_last_replacement <= T0_5 + 3.5 Then 
                begin_update_time_5 = uptime_after_last_replacement 
                'MsgBox "5 Begin UPDATING" 
            End If 
     
        t_signal_5 = uptime_after_last_replacement + 2 - begin_update_time_5 
        'MsgBox "t_signal_5 is " & t_signal_5 
         
        ti = 2 
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        Do 
         
    'Read in Signal 
            SiArray_5(ti) = SiArray(bearing_5, ti / 2) 
            LnSi_5(ti) = (Log(SiArray_5(ti)) / Log(e)) 
            LiArray_5(ti) = LnSi_5(ti) - LnSi_5(ti - 2) 
            Sum_Li_5(ti) = Sum_Li_5(ti - 2) + LiArray_5(ti) 
 
    'Calculate Posteriors 
            var_xArray_5(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * 
ti + var_err) - var_o * var_1 * 2) 
            var_yArray_5(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray_5(ti) = ((LiArray_5(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 
2 * (var_1 * Sum_Li_5(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
            mu_yArray_5(ti) = ((var_1 * Sum_Li_5(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray_5(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * 
var_1 * 2) 
 
            ti = ti + 2 
             
        Loop Until ti = Num_signal_5 
 
    'Calculate CDF 
        tk = 2 
        Do 
            mu_tildaArray_5(tk, t_signal_5) = LnSi_5(t_signal_5) + (mu_yArray_5(t_signal_5) * tk) 
                'MsgBox "The mu_tilda_5 is " & mu_tildaArray_5(tk, t_signal_5) 
            var_tildaArray_5(tk, t_signal_5) = var_yArray_5(t_signal_5) * tk ^ 2 + var_err * tk 
                'MsgBox "The var_tilda_5 is " & var_tildaArray_5(tk, t_signal_5) 
            CDFArray_5(tk, uptime_after_last_replacement) = Cumnorm((mu_tildaArray_5(tk, t_signal_5) - 
D) / (Sqr(var_tildaArray_5(tk, t_signal_5)))) 
                'MsgBox "The CDF_5 is " & CDFArray_5(tk, t_signal_5) 
            Reliability_5(tk, uptime_after_last_replacement) = 1 - CDFArray_5(tk, 
uptime_after_last_replacement) 
             
            tk = tk + 2 
                 
        Loop Until tk = 1900 
         
'Check for sudden failure 
        If uptime_after_last_replacement > actual_failure_time_5 Then 
            tk = 2 
            Do 
                Reliability_5(tk, uptime_after_last_replacement) = 0 
                tk = tk + 2 
                 
            Loop Until tk = 1900 
            s.VariableArrayValue(s.SymbolNumber("sudden_fail_5")) = 1 
            'MsgBox "sudden failure 5 at t=" & uptime_after_last_replacement 
        End If 
         
    Else 
 
'Hasn't started updating... Reliability=1 
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        tk = 2 
        Do 
            Reliability_5(tk, uptime_after_last_replacement) = 1 
            tk = tk + 2 
             
        Loop Until tk = 1900 
         
    End If 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Compute System Reliability for bearings 26,27,28,29,30 
 
    tk = 2 
     
    Do 
     
        SystemRel(tk, uptime_after_last_replacement) = (1 - (1 - Reliability_1(tk, 
uptime_after_last_replacement)) * (1 - Reliability_2(tk, uptime_after_last_replacement))) * (1 - (1 - 
Reliability_4(tk, uptime_after_last_replacement)) * (1 - Reliability_5(tk, uptime_after_last_replacement))) 
* Reliability_3(tk, uptime_after_last_replacement) 
         
        tk = tk + 2 
         
    Loop Until tk = 1900 
     
    t_down = 2 
    stop_median = 0 
 
    If SystemRel(2, uptime_after_last_replacement) <= (desired_reliability) Then 
        If SystemRel(2, uptime_after_last_replacement) <= 0.5 Then 
            t_median = 0 
        Else 
            Do 
                If SystemRel(t_down, uptime_after_last_replacement) <= 0.5 Then 
                        stop_median = 1 
                End If 
             
                t_down = t_down + 2 
             
            Loop Until stop_median = 1 
         
        t_median = t_down 
         
        End If 
         
        predicted_failure_time = uptime_after_last_replacement + t_median 
        'MsgBox "t_median is " & t_median 
         'MsgBox "Predicted fail time is " & predicted_failure_time 
         
        s.VariableArrayValue(s.SymbolNumber("prediction")) = 1 
        s.VariableArrayValue(s.SymbolNumber("predicted_failure_time")) = predicted_failure_time 
         
        '******************Calculate Failure Time************************************* 
        tw = 0 
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        Do 
            tw = tw + 2 
            WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta 
             
        Loop Until tw = 1998 
         
        tw = 0 
        Do 
            tw = tw + 2 
            WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) - 
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement)) 
         
        Loop Until (WeibullCondCDF(tw) >= 0.632) 
        ThetaCond = tw 
         
        Do 
            tw = tw + 2 
            WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) - 
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement)) 
             
        Loop Until (WeibullCondCDF(tw) >= 0.99999) 
        'MsgBox "weibullcondcdf(uptime_after_last_replacement) is " & 
WeibullCondCDF(uptime_after_last_replacement) 
         
        BetaCond = LN(LN(1 / (1 - WeibullCondCDF(uptime_after_last_replacement)))) / 
(LN(uptime_after_last_replacement) - LN(ThetaCond)) 
        'MsgBox "BetaCond is " & BetaCond 
         
        s.VariableArrayValue(s.SymbolNumber("ThetaCond")) = ThetaCond 
        s.VariableArrayValue(s.SymbolNumber("BetaCond")) = BetaCond 
        '***************************************************************************** 
     
    End If 
 
End Sub 
  

B.5. Traditional Policy Code Used in Section 5.4.2.1 

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf 
Function Cumnorm(X As Double) As Double 
XAbs = Abs(X) 
If XAbs > 37 Then 
Cumnorm = 0 
Else 
Exponential = Exp(-XAbs ^ 2 / 2) 
If XAbs < 7.07106781186547 Then 
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 
Build = Build * XAbs + 6.37396220353165 
Build = Build * XAbs + 33.912866078383 
Build = Build * XAbs + 112.079291497871 
Build = Build * XAbs + 221.213596169931 
Build = Build * XAbs + 220.206867912376 
Cumnorm = Exponential * Build 
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 
Build = Build * XAbs + 16.064177579207 
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Build = Build * XAbs + 86.7807322029461 
Build = Build * XAbs + 296.564248779674 
Build = Build * XAbs + 637.333633378831 
Build = Build * XAbs + 793.826512519948 
Build = Build * XAbs + 440.413735824752 
Cumnorm = Cumnorm / Build 
Else 
Build = XAbs + 0.65 
Build = XAbs + 4 / Build 
Build = XAbs + 3 / Build 
Build = XAbs + 2 / Build 
Build = XAbs + 1 / Build 
Cumnorm = Exponential / Build / 2.506628274631 
End If 
End If 
If X > 0 Then Cumnorm = 1 - Cumnorm 
End Function 
 
'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html 
Function nc(X) As Double 
Dim A(1 To 5) As Double 
If X < -7 Then 
    nc = ndf(X) / Sqr(1 + X * X) 
ElseIf X > 7 Then 
    nc = 1 - nc(-X) 
Else 
nc = 0.2316419 
A(1) = 0.31938153 
A(2) = -0.356563782 
A(3) = 1.781477937 
A(4) = -1.821255978 
A(5) = 1.330274429 
nc = 1 / (1 + nc * Abs(X)) 
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5) 
If (X <= 0) Then nc = 1 - nc 
End If 
End Function 
 
Function ndf(X) As Double 
    ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi) 
End Function 
 
Function LN(X As Double) As Double 
 
e = 2.71828183 
LN = Log(X) / Log(e) 
 
End Function 
 
Function Tflat(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
Tflat = s.VariableArrayValue(s.SymbolNumber("T0", X - 25)) 



 

 

156

 
End Function 
 
Function Num_sig(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
Num_sig = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25)) 
 
End Function 
 
Function actual_fail_time(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
actual_fail_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25)) 
 
End Function 
 
Function Si(X, Y) As Double 
'X is bearing number 
'Y is ti 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
If X = 26 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals26", Y)) 
Else 
If X = 27 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals27", Y)) 
Else 
If X = 28 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals28", Y)) 
Else 
If X = 29 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals29", Y)) 
Else 
If X = 30 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals30", Y)) 
Else 
If X = 31 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals31", Y)) 
Else 
If X = 32 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals32", Y)) 
Else 
If X = 33 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals33", Y)) 
Else 
If X = 34 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals34", Y)) 
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Else 
If X = 35 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals35", Y)) 
Else 
If X = 36 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals36", Y)) 
Else 
If X = 37 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals37", Y)) 
Else 
 
If X = 38 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals38", Y)) 
Else 
If X = 39 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals39", Y)) 
Else 
If X = 40 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals40", Y)) 
Else 
If X = 41 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals41", Y)) 
Else 
If X = 42 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals42", Y)) 
Else 
If X = 43 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals43", Y)) 
Else 
If X = 44 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals44", Y)) 
Else 
If X = 45 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals45", Y)) 
Else 
If X = 46 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals46", Y)) 
Else 
If X = 47 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals47", Y)) 
Else 
If X = 48 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals48", Y)) 
Else 
If X = 49 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals49", Y)) 
Else 
If X = 50 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals50", Y)) 
Else 
 
If X = 51 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals51", Y)) 
End If 
End If 
End If 
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End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
 
End Function 
 
Static Sub VBA_Block_1_Fire() 
 
Dim e As Double 
Dim Cf As Double 
Dim Cr As Double 
Dim Theta As Double 
Dim Beta As Double 
Dim ThetaCond As Double 
Dim BetaCond As Double 
Dim uptime_after_last_replacement As Double 
Dim bearing As Integer 
Dim var_xArray(1999) As Double 
Dim var_yArray(1999) As Double 
Dim mu_xArray(1999) As Double 
Dim mu_yArray(1999) As Double 
Dim SiArray(1999) As Double 
Dim LiArray(1999) As Double 
Dim Sum_Li(1999) As Double 
Dim LnSi(1999) As Double 
Dim T0 As Double 
Dim Num_signal As Double 
Dim F(1999) As Double 
Dim Fbar(1999) As Double 
Dim TwiceF(1999) As Double 
Dim TwiceFbar(1999) As Double 
Dim SumTwiceF(1999) As Double 
Dim SumTwiceFbar(1999) As Double 
Dim Rep(1999) As Double 
Dim Inv(1999) As Double 
Dim SumF_Lfirst(1999) As Double 
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Dim Num_first(1999) As Double 
Dim SumFbar_Lrest(1999) As Double 
Dim Num_second(1999) As Double 
Dim SumTwiceF_Lfirst(1999) As Double 
Dim Denom_first(1999) As Double 
Dim Denom_second(1999) As Double 
Dim mu_tildaArray(1999, 1999) As Double 
Dim var_tildaArray(1999, 1999) As Double 
Dim Reliability(1999, 1999) As Double 
Dim SystemRel(1999, 1999) As Double 
Dim WeibullCDF(5999) As Double 
Dim WeibullCondCDF(5999) As Double 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
e = 2.71828183 
D = Log(0.025) / Log(e) 
Theta = 784.74619 
Beta = 3.05485 
Cp = s.VariableArrayValue(s.SymbolNumber("C_p")) 
Cf = s.VariableArrayValue(s.SymbolNumber("C_f")) 
Ks = s.VariableArrayValue(s.SymbolNumber("K_s")) 
Kh = s.VariableArrayValue(s.SymbolNumber("K_h")) 
L = s.VariableArrayValue(s.SymbolNumber("L")) 
 
'Read in simulation information 
    simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time")) 
    'MsgBox "The value of Simulation Time is " & simulation_time 
 
    previous_replacement_time = 
s.VariableArrayValue(s.SymbolNumber("previous_replacement_time_1")) 
    'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time 
 
    uptime_after_last_replacement = simulation_time - previous_replacement_time 
    s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement_1")) = 
uptime_after_last_replacement 
    'MsgBox "The value of Uptime After Last Replacement Time 1 is " & uptime_after_last_replacement 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Calculate CDF, 1-CDF, Rep 
    tk = 2 
    Do 
        F(tk) = 1 - e ^ (-(tk / Theta) ^ Beta) 
            'MsgBox "F1 is " & F(tk) 
        Fbar(tk) = 1 - F(tk) 
            'MsgBox "Fbar1 is " & Fbar(tk) 
        TwiceF(tk) = 2 * F(tk) 
            'MsgBox "2*F1 is " & TwiceF(tk) 
        TwiceFbar(tk) = 2 * Fbar(tk) 
            'MsgBox "2*Fbar1 is " & TwiceFbar(tk) 
        SumTwiceF(tk) = SumTwiceF(tk - 2) + TwiceF(tk) 
            'MsgBox "SumTwiceF1 is " & SumTwiceF(tk) 
        SumTwiceFbar(tk) = SumTwiceFbar(tk - 2) + TwiceFbar(tk) 
            'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(tk) 
        Rep(tk) = (Cp * Fbar(tk) + Cf * F(tk)) / SumTwiceFbar(tk) 
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            'MsgBox "Rep1 is " & Rep(tk) 
        tk = tk + 2 
    Loop Until tk = 1900 
     
'Find Tr 
    tk = 2 
    Do 
        tk = tk + 2 
    Loop Until Rep(tk) > Rep(tk - 2) 
 
    Tr = tk - 2 
    'MsgBox "Tr is " & Tr 
    'MsgBox "Min Rep is " & Rep(Tr) 
 
'Inv Calculations 
'Calculate First numerator summation 
    tk = 2 
     
    Do 
    n = tk 
    m = 0 
    SumF_Lfirst(tk - 2) = 0 
        Do 
            m = m + 1 
            SumF_Lfirst(n) = SumF_Lfirst(n - 2) + F(n) 
            'MsgBox "SumF_Lfirst is " & SumF_Lfirst(n) 
            n = n + 2 
        Loop Until m = (L / 2) + 1 
        Num_first(tk) = SumF_Lfirst(n - 2) 
        'MsgBox "tk is " & tk 
        'MsgBox "Num_first at tk is " & Num_first(tk) 
        tk = tk + 2 
    Loop Until tk = 1900 
 
'Calculate Second numerator summation 
    tk = 2 
    m = 0 
    counter = 2 
     
    Do 
    n = tk 
    m = 0 
     
        If tk < (Tr - L) Then 
            SumFbar_Lrest(tk - 2) = 0 
            Do 
                SumFbar_Lrest(n) = SumFbar_Lrest(n - 2) + Fbar(n + L) 
                'MsgBox "SumFbar_Lrest is " & SumFbar_Lrest(n) 
                n = n + 2 
            Loop Until n = (Tr - L + 2) 
             
            'MsgBox "SumFbar_Lrest(n-2) is " & SumFbar_Lrest(n - 2) 
            Num_second(tk) = SumFbar_Lrest(n - 2) 
        End If 
         
        If tk = (Tr - L) Then 
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            Num_second(tk) = Fbar(Tr) 
        End If 
         
        If tk > (Tr - L) Then 
            Num_second(tk) = Num_second(tk - 2) + Fbar(tk + L) 
        End If 
        tk = tk + 2 
    Loop Until tk = 1900 
         
'Calculate First denominator summation 
    tk = 2 
     
    Do 
    n = tk 
    m = 0 
    SumTwiceF_Lfirst(tk - 2) = 0 
        Do 
            m = m + 1 
            SumTwiceF_Lfirst(n) = SumTwiceF_Lfirst(n - 2) + TwiceF(n) 
            'MsgBox "SumTwiceF_Lfirst is " & SumTwiceF_Lfirst(n) 
            n = n + 2 
        Loop Until m = (L / 2) + 1 
        Denom_first(tk) = SumTwiceF_Lfirst(n - 2) 
    Loop Until tk = 1900 
 
'Calculate Second denominator summation 
    tk = 2 
     
    Do 
        Denom_second(tk) = SumTwiceFbar(Tr) 
        'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(Tr) 
        tk = tk + 2 
    Loop Until tk = 1900 
             
'Calculate Inv 
    tk = 2 
    Do 
        Inv(tk) = (Ks * Num_first(tk) + Kh * Num_second(tk)) / (Denom_first(tk) + Denom_second(tk))         
        tk = tk + 2 
    Loop Until tk = 1900 
     
'Find Tord 
    tk = 2 
    Do 
        tk = tk + 2 
    Loop Until Inv(tk) > Inv(tk - 2) 
 
    Tord = tk - 2 
 
'Output Treplace and Torder 
    s.VariableArrayValue(s.SymbolNumber("Treplace_1")) = Tr 
    s.VariableArrayValue(s.SymbolNumber("Torder_1")) = Tord 
 
End Sub 
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B.6. Sensor-Driven Policy Code Used in Section 5.4.2.2 

'1st way to calculate CDF: http://www.cam.wits.ac.za/mfinance/papers/accuratecumnorm.pdf 
Function Cumnorm(X As Double) As Double 
XAbs = Abs(X) 
If XAbs > 37 Then 
Cumnorm = 0 
Else 
Exponential = Exp(-XAbs ^ 2 / 2) 
If XAbs < 7.07106781186547 Then 
Build = 3.52624965998911E-02 * XAbs + 0.700383064443688 
Build = Build * XAbs + 33.912866078383 
Build = Build * XAbs + 6.37396220353165 
Build = Build * XAbs + 112.079291497871 
Build = Build * XAbs + 221.213596169931 
Build = Build * XAbs + 220.206867912376 
Cumnorm = Exponential * Build 
Build = 8.83883476483184E-02 * XAbs + 1.75566716318264 
Build = Build * XAbs + 16.064177579207 
Build = Build * XAbs + 86.7807322029461 
Build = Build * XAbs + 296.564248779674 
Build = Build * XAbs + 637.333633378831 
Build = Build * XAbs + 793.826512519948 
Build = Build * XAbs + 440.413735824752 
Cumnorm = Cumnorm / Build 
Else 
Build = XAbs + 0.65 
Build = XAbs + 4 / Build 
Build = XAbs + 3 / Build 
Build = XAbs + 2 / Build 
Build = XAbs + 1 / Build 
Cumnorm = Exponential / Build / 2.506628274631 
End If 
End If 
If X > 0 Then Cumnorm = 1 - Cumnorm 
End Function 
 
'2nd way to calcualte CDF: http://www.mathfinance.de/FF/vblib.html 
Function nc(X) As Double 
Dim A(1 To 5) As Double 
If X < -7 Then 
    nc = ndf(X) / Sqr(1 + X * X) 
ElseIf X > 7 Then 
    nc = 1 - nc(-X) 
Else 
nc = 0.2316419 
A(1) = 0.31938153 
A(2) = -0.356563782 
A(3) = 1.781477937 
A(4) = -1.821255978 
A(5) = 1.330274429 
nc = 1 / (1 + nc * Abs(X)) 
nc = 1 - ndf(X) * (A(1) * nc + A(2) * nc ^ 2 + A(3) * nc ^ 3 + A(4) * nc ^ 4 + A(5) * nc ^ 5) 
If (X <= 0) Then nc = 1 - nc 
End If 
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End Function 
 
Function ndf(X) As Double 
    ndf = 0.398942280401433 * Exp(-X * X * 0.5) '0.398942280401433 = 1/sqareroot(2*pi) 
End Function 
 
Function LN(X As Double) As Double 
 
e = 2.71828183 
LN = Log(X) / Log(e) 
 
End Function 
 
Function Tflat(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
Tflat = s.VariableArrayValue(s.SymbolNumber("T0", X - 25)) 
 
End Function 
 
Function Num_sig(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
Num_sig = s.VariableArrayValue(s.SymbolNumber("Num_signal", X - 25)) 
 
End Function 
 
Function actual_fail_time(X) As Double 
'X is bearing number 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
actual_fail_time = s.VariableArrayValue(s.SymbolNumber("actual_failure_time", X - 25)) 
 
End Function 
 
Function Si(X, Y) As Double 
'X is bearing number 
'Y is ti 
 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
If X = 26 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals26", Y)) 
Else 
If X = 27 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals27", Y)) 
Else 
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If X = 28 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals28", Y)) 
Else 
If X = 29 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals29", Y)) 
Else 
If X = 30 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals30", Y)) 
Else 
If X = 31 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals31", Y)) 
Else 
If X = 32 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals32", Y)) 
Else 
If X = 33 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals33", Y)) 
Else 
If X = 34 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals34", Y)) 
Else 
If X = 35 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals35", Y)) 
Else 
If X = 36 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals36", Y)) 
Else 
If X = 37 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals37", Y)) 
Else 
 
If X = 38 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals38", Y)) 
Else 
If X = 39 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals39", Y)) 
Else 
If X = 40 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals40", Y)) 
Else 
If X = 41 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals41", Y)) 
Else 
If X = 42 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals42", Y)) 
Else 
If X = 43 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals43", Y)) 
Else 
If X = 44 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals44", Y)) 
Else 
If X = 45 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals45", Y)) 
Else 
If X = 46 Then 
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    Si = s.VariableArrayValue(s.SymbolNumber("Signals46", Y)) 
Else 
If X = 47 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals47", Y)) 
Else 
If X = 48 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals48", Y)) 
Else 
If X = 49 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals49", Y)) 
Else 
If X = 50 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals50", Y)) 
Else 
 
If X = 51 Then 
    Si = s.VariableArrayValue(s.SymbolNumber("Signals51", Y)) 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
End If 
 
End Function 
 
Static Sub VBA_Block_1_Fire() 
 
Dim e As Double 
Dim Cf As Double 
Dim Cr As Double 
Dim Theta As Double 
Dim Beta As Double 
Dim ThetaCond As Double 
Dim BetaCond As Double 
Dim uptime_after_last_replacement As Double 
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Dim bearing As Integer 
Dim var_xArray(600) As Double 
Dim var_yArray(600) As Double 
Dim mu_xArray(600) As Double 
Dim mu_yArray(600) As Double 
Dim SiArray(600) As Double 
Dim LiArray(600) As Double 
Dim Sum_Li(600) As Double 
Dim LnSi(600) As Double 
Dim T0 As Double 
Dim Num_signal As Double 
Dim find_Tr As Integer 
Dim F(1999, 1999) As Double 
Dim Fbar(1999, 1999) As Double 
Dim TwiceF(1999, 1999) As Double 
Dim TwiceFbar(1999, 1999) As Double 
Dim SumTwiceF(1999, 1999) As Double 
Dim SumTwiceFbar(1999, 1999) As Double 
Dim Rep(1999, 1999) As Double 
Dim Inv(1999, 1999) As Double 
Dim SumF_Lfirst(1999, 1999) As Double 
Dim Num_first(1999, 1999) As Double 
Dim SumFbar_Lrest(1999, 1999) As Double 
Dim Num_second(1999, 1999) As Double 
Dim SumTwiceF_Lfirst(1999, 1999) As Double 
Dim Denom_first(1999, 1999) As Double 
Dim Denom_second(1999, 1999) As Double 
Dim mu_tildaArray(1999, 1999) As Double 
Dim var_tildaArray(1999, 1999) As Double 
Dim WeibullCDF(5999) As Double 
Dim WeibullCondCDF(5999) As Double 
Dim s As SIMAN 
Set s = ThisDocument.Model.SIMAN 
 
e = 2.71828183 
D = Log(0.025) / Log(e) 
mu_o = -6.031235 
mu_1 = 0.008061 
var_o = 0.34648893 
var_1 = 0.000010347 
var_err = 0.007348 
corr_o = -0.362538 
A = 1 - (corr_o) ^ 2 
Theta = 797.48197 
Beta = 2.65465 
 
Cp = s.VariableArrayValue(s.SymbolNumber("C_p")) 
Cf = s.VariableArrayValue(s.SymbolNumber("C_f")) 
Ks = s.VariableArrayValue(s.SymbolNumber("K_s")) 
Kh = s.VariableArrayValue(s.SymbolNumber("K_h")) 
L = s.VariableArrayValue(s.SymbolNumber("L")) 
 
'Read in bearing information 
bearing = s.VariableArrayValue(s.SymbolNumber("bearing_1")) 
T0 = Tflat(bearing) 
Num_signal = Num_sig(bearing) 
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actual_failure_time = actual_fail_time(bearing) 
 
'Read in simulation information 
    simulation_time = s.LevelValue(s.SymbolNumber("Simulation Time")) 
    'MsgBox "The value of Simulation Time is " & simulation_time 
 
    previous_replacement_time = 
s.VariableArrayValue(s.SymbolNumber("previous_replacement_time_1")) 
    'MsgBox "The value of Previous Replacement Time is " & previous_replacement_time 
 
    uptime_after_last_replacement = simulation_time - previous_replacement_time 
    s.VariableArrayValue(s.SymbolNumber("uptime_after_last_replacement_1")) = 
uptime_after_last_replacement 
    'MsgBox "The value of Uptime After Last Replacement Time 1 is " & uptime_after_last_replacement 
 
'@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@ 
'Check if Workstation 1 is ready for updating 
    If uptime_after_last_replacement > T0 Then 
     
            If uptime_after_last_replacement <= T0 + 3.5 Then 
                begin_update_time = uptime_after_last_replacement 
            End If 
     
        t_signal = uptime_after_last_replacement + 2 - begin_update_time 
     
        ti = 2 
        Do 
     
'Read in Signal 
            SiArray(ti) = Si(bearing, ti / 2) 
            LnSi(ti) = (Log(SiArray(ti)) / Log(e)) 
            LiArray(ti) = LnSi(ti) - LnSi(ti - 2) 
            Sum_Li(ti) = Sum_Li(ti - 2) + LiArray(ti) 
 
'Calculate Posteriors 
            var_xArray(ti) = (var_err * var_o * 2 * (var_1 * ti + var_err)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            var_yArray(ti) = (var_err * var_1 * (var_o + var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + 
var_err) - var_o * var_1 * 2) 
            mu_xArray(ti) = ((LiArray(2) * var_o + mu_o * var_err * 2) * (var_1 * ti + var_err) - var_o * 2 * 
(var_1 * Sum_Li(ti) + mu_1 * var_err)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 * 2) 
            mu_yArray(ti) = ((var_1 * Sum_Li(ti) + mu_1 * var_err) * (var_o + var_err * 2) - var_1 * 
(LiArray(2) * var_o + mu_o * var_err * 2)) / ((var_o + var_err * 2) * (var_1 * ti + var_err) - var_o * var_1 
* 2) 
             
            ti = ti + 2 
             
        Loop Until ti = Num_signal 
'Calculate CDF, 1-CDF, Rep 
    tk = 2 
    find_Tr = 0 
    Do 
        mu_tildaArray(tk, t_signal) = LnSi(t_signal) + (mu_yArray(t_signal) * tk) 
                'MsgBox "The mu_tilda_1 is " & mu_tildaArray(tk, t_signal) 
        var_tildaArray(tk, t_signal) = var_yArray(t_signal) * tk ^ 2 + var_err * tk 
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                'MsgBox "The var_tilda_1 is " & var_tildaArray(tk, t_signal) 
        F(tk, t_signal) = Cumnorm((mu_tildaArray(tk, t_signal) - D) / (Sqr(var_tildaArray(tk, t_signal)))) 
                'MsgBox "F1 is " & F(tk, t_signal) 
        Fbar(tk, t_signal) = 1 - F(tk, t_signal) 
            'MsgBox "Fbar1 is " & Fbar(tk,t_signal) 
        TwiceF(tk, t_signal) = 2 * F(tk, t_signal) 
            'MsgBox "2*F1 is " & TwiceF(tk,t_signal) 
        TwiceFbar(tk, t_signal) = 2 * Fbar(tk, t_signal) 
            'MsgBox "2*Fbar1 is " & TwiceFbar(tk,t_signal) 
        SumTwiceF(tk, t_signal) = SumTwiceF(tk - 2, t_signal) + TwiceF(tk, t_signal) 
            'MsgBox "SumTwiceF1 is " & SumTwiceF(tk,t_signal) 
        SumTwiceFbar(tk, t_signal) = SumTwiceFbar(tk - 2, t_signal) + TwiceFbar(tk, t_signal) 
            'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(tk,t_signal) 
        Rep(tk, t_signal) = (Cp * Fbar(tk, t_signal) + Cf * F(tk, t_signal)) / (SumTwiceFbar(tk, t_signal) + 
t_signal) 
            'MsgBox "Rep1 is " & Rep(tk,t_signal) 
             
        'If t_signal = 6 Then 
            'If tk <= 20 Then 
                'MsgBox "Rep is " & Rep(tk, t_signal) 
            'End If 
        'End If 
         
        tk = tk + 2 
     Loop Until tk = 1900 
 
'Find Tr 
    tk = 2 
    Do 
        tk = tk + 2 
    Loop Until Rep(tk, t_signal) > Rep(tk - 2, t_signal) 
 
    Tr = tk - 2 
    'MsgBox "Tr is " & Tr 
    'MsgBox "Min Rep is " & Rep(Tr,t_signal) 
     
'Check for sudden failure 
    If uptime_after_last_replacement > actual_failure_time Then 
        s.VariableArrayValue(s.SymbolNumber("sudden_fail_1")) = 1 
        'MsgBox "sudden failure 1 at t=" & uptime_after_last_replacement 
    End If 
 
'Inv Calculations 
'Calculate First numerator summation 
    tk = 2 
     
    Do 
    n = tk 
    m = 0 
    SumF_Lfirst(tk - 2, t_signal) = 0 
        Do 
            m = m + 1 
            SumF_Lfirst(n, t_signal) = SumF_Lfirst(n - 2, t_signal) + F(n, t_signal) 
            'MsgBox "SumF_Lfirst is " & SumF_Lfirst(n,t_signal) 
            n = n + 2 
        Loop Until m = (L / 2) + 1 
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        Num_first(tk, t_signal) = SumF_Lfirst(n - 2, t_signal) 
        tk = tk + 2 
    Loop Until tk = 1900 
 
'Calculate Second numerator summation 
    tk = 2 
    m = 0 
    counter = 2 
     
    Do 
    n = tk 
    m = 0 
     
        If tk < (Tr - L) Then 
            SumFbar_Lrest(tk - 2, t_signal) = 0 
            Do 
                SumFbar_Lrest(n, t_signal) = SumFbar_Lrest(n - 2, t_signal) + Fbar(n + L, t_signal) 
                n = n + 2 
            Loop Until n = (Tr - L + 2) 
             
            Num_second(tk, t_signal) = SumFbar_Lrest(n - 2, t_signal) 
        End If 
         
        If tk = (Tr - L) Then 
            Num_second(tk, t_signal) = Fbar(Tr, t_signal) 
        End If 
         
        If tk > (Tr - L) Then 
            Num_second(tk, t_signal) = Num_second(tk - 2, t_signal) + Fbar(tk + L, t_signal) 
        End If 
        tk = tk + 2 
    Loop Until tk = 1900 
         
'Calculate First denominator summation 
    tk = 2 
     
    Do 
    n = tk 
    m = 0 
    SumTwiceF_Lfirst(tk - 2, t_signal) = 0 
        Do 
            m = m + 1 
            SumTwiceF_Lfirst(n, t_signal) = SumTwiceF_Lfirst(n - 2, t_signal) + TwiceF(n, t_signal) 
            'MsgBox "SumTwiceF_Lfirst is " & SumTwiceF_Lfirst(n,t_signal) 
            n = n + 2 
        Loop Until m = (L / 2) + 1 
        Denom_first(tk, t_signal) = SumTwiceF_Lfirst(n - 2, t_signal) 
        tk = tk + 2 
    Loop Until tk = 1900 
 
'Calculate Second denominator summation 
    tk = 2 
     
    Do 
        Denom_second(tk, t_signal) = SumTwiceFbar(Tr, t_signal) 
        'MsgBox "SumTwiceF1bar is " & SumTwiceFbar(Tr,t_signal) 
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        tk = tk + 2 
    Loop Until tk = 1900 
             
'Calculate Inv 
    tk = 2 
    Do 
        Inv(tk, t_signal) = (Ks * Num_first(tk, t_signal) + Kh * Num_second(tk, t_signal)) / (Denom_first(tk, 
t_signal) + Denom_second(tk, t_signal)   
        tk = tk + 2 
    Loop Until tk = 1900 
     
'Find Tord 
    tk = 2 
    Do 
        tk = tk + 2 
    Loop Until Inv(tk, t_signal) > Inv(tk - 2, t_signal) 
 
    Tord = tk – 2 
'Find t_median 
    t_down = 0 
    stop_median = 0 
     
    Do 
        t_down = t_down + 2 
            If F(t_down, t_signal) >= 0.5 Then 
                stop_median = 1 
            End If 
             
    Loop Until stop_median = 1 
         
    t_median = t_down 
     
    Treplace = Tr + uptime_after_last_replacement 
    Torder = Tord + uptime_after_last_replacement 
     
'Stop updating and output Tr and Tord? 
    If Tr <= Tord + L Then 
        s.VariableArrayValue(s.SymbolNumber("Treplace_1")) = Treplace 
        'MsgBox "Treplace_1 is " & Treplace 
        s.VariableArrayValue(s.SymbolNumber("Torder_1")) = Torder 
        'MsgBox "Torder_1 is " & Torder 
        s.VariableArrayValue(s.SymbolNumber("prediction_1")) = 1 
        'MsgBox "Prediction 1 is " & uptime_after_last_replacement 
         
    'MsgBox "Tord is " & Tord 
'******************Calculate Failure Time************************************* 
        tw = 0 
         
        Do 
            tw = tw + 2 
            WeibullCDF(tw) = 1 - e ^ -(tw / Theta) ^ Beta 
             
        Loop Until tw = 5998 
         
        tw = 0 
        Do 
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            tw = tw + 2 
            WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) - 
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement)) 
         
        Loop Until (WeibullCondCDF(tw) >= 0.632) 
        ThetaCond = tw 
         
        Do 
            tw = tw + 2 
            WeibullCondCDF(tw) = (WeibullCDF(uptime_after_last_replacement + tw) - 
WeibullCDF(uptime_after_last_replacement)) / (1 - WeibullCDF(uptime_after_last_replacement)) 
             
        Loop Until (WeibullCondCDF(tw) >= 0.99999999999999) 
        'MsgBox "weibullcondcdf(uptime_after_last_replacement) is " & 
WeibullCondCDF(uptime_after_last_replacement) 
         
        If (uptime_after_last_replacement) > tw Then 
            weibulladjust = 0.99999999999999 
            BetaCond = LN(LN(1 / (1 - weibulladjust))) / (LN(uptime_after_last_replacement) - 
LN(ThetaCond)) 
            'MsgBox "BetaCond is " & BetaCond 
        Else 
            BetaCond = LN(LN(1 / (1 - WeibullCondCDF(uptime_after_last_replacement)))) / 
(LN(uptime_after_last_replacement) - LN(ThetaCond)) 
     
        End If 
 
        s.VariableArrayValue(s.SymbolNumber("ThetaCond_1")) = ThetaCond 
        s.VariableArrayValue(s.SymbolNumber("BetaCond_1")) = BetaCond 
        '***************************************************************************** 
     
    End If 
 
End If 
 
End Sub 
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